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ABSTRACT 

Internal combustion engines (ICEs) are likely to be used in heavy-duty applications for many 

years and it is important to continue improving their efficiency. Undesirable emissions in 

internal combustion engines are of major concern due to their negative effect on the human 

health and global warming. One approach is to recover waste heat from the exhaust of heavy-

duty diesel engines (HDDEs) using waste heat recovery (WHR) technologies. WHR based 

on organic Rankine cycle (ORC) is a promising technology, which offers potential to reduce 

the fuel consumption of HDDEs by converting the wasted thermal energy to alternative 

useful electrical or mechanical energy.  

In the ORC, the evaporator is considered the most critical component of the system. Careful 

modelling of the evaporator unit is both crucial to assess the dynamic performance of the 

ORC system and challenging due to the high nonlinearity of its governing equations. This 

study uses an Adaptive Network-based Fuzzy Inference System (ANFIS) modelling 

technique to provide efficient control-oriented evaporator models for prediction of heat 

source and refrigerant temperatures at the evaporator outlet. The ANFIS model benefits from 

feed-forward output calculation and backpropagation capability of neural network, while 

keeping the interpretability of fuzzy systems. The effect of training the models using hybrid 

gradient-descent least-square estimate (GD-LSE) and particle swarm optimisation (PSO) 

techniques is investigated and the performance of both techniques are compared in terms of 

RMSE and correlation coefficients. The simulation results indicate strong learning ability 

and high generalisation performance for both techniques beyond capability of numerical 

models. However, a better accuracy is achieved for the models trained using the PSO 

algorithm.  

Experimentally-measured data is collected from a 1-kWe ORC prototype developed in Clean 

Energy Processes (CEP) laboratory at Imperial College London and the proposed ANFIS 

techniques is applied in order to investigate the application of the neuro-fuzzy technique for 

modelling the evaporator unit. Comparison of the experimental data and the neuro-fuzzy 

models predictions reveals an acceptable accuracy in predicting the evaporator outlet 

temperature and pressure.  

A novel control approach is also proposed to ensure the safe operation of ORC waste heat 

recovery system and stabilize its work output when subjected to transient heat sources in a 

range of waste heat from heavy-duty diesel engines. The control strategy comprises a neuro-

fuzzy controller based on the inverse dynamics of the ORC system to control the superheating 

at the evaporator outlet by adjusting the pump speed and a PI controller to maintain the 

expander work output by regulating the mass flow rate at the expander inlet. The performance 

of the control strategy is investigated with respect to set-point tracking and its robustness is 

tested in the presence of noise. The simulation results indicate an enhancement in the 

controller performance by combination of feedforward and feedback controllers based on 

neuro-fuzzy techniques. The proposed control scheme not only can obtain satisfactory 

transient response under various loading conditions, but also can achieve desirable 

disturbance rejection performance. 
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Chapter 1: Introduction  

1.1 Background and motivation 

The world is in growing demand for energy. The U.S. Energy Information Administration 

(EIA) in its international energy outlook 2017 predicted that between 2015 and 2040 the 

energy consumption would experience 28% increase. Most of this energy will be achieved 

through burning fossil fuels. This raises the concern about surge in greenhouse gas emissions 

and global warming that result in demand for efficient use of energy resources. The United 

Nations (UN) addressed these global concerns regarding greenhouse gas emissions and 

climate change by establishing Kyoto Protocol. Transportation, industry, electricity, and heat 

production are responsible for almost 60% of production of greenhouse gasses [1]. Efforts 

on reducing the amount of greenhouse gas production in these sectors are focused on 

improving the energy efficiency by reducing the energy consumption of equipment and 

enhancing the processes to consume less energy. An alternative approach is to harvest the 

wasted thermal energy by deploying waste heat recovery technologies in order to improve 

the overall efficiency of systems. Waste heat from these sources is usually lost to the 

atmosphere in form of streams of hot exhaust gases and liquids as well as heat conduction 

and convection. This wasted heat can be reutilised either by enhancing previously available 

waste heat recovery technologies to improve their feasibility, or by discovering new methods 

of utilising waste heat, especially from uncommon sources, where the recovery technology 

is still immature and needs to be targeted for further research. 

Almost 95% of transportation power is achieved through burning fuel in Internal Combustion 

Engines (ICEs). In today’s technology of ICEs, with maximum efficiency of 42%, a 
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significant amount of energy is lost to the atmosphere in form of heat, through hot exhaust 

gases (22-46%) and coolant system (18-42%) [1, 2]. Moreover, ICEs are likely to be used in 

heavy-duty applications for many years and it is important to enhance their efficiency to 

reduce their environmental impact that caused by their low conversion efficiency. To this 

end, technologies such as gasoline direct injection (GDI) [3], turbo direct injection (TDI) [4] 

and fuel stratified injection (FSI) [5] are developed and implemented in recent years to 

increase the efficiency of ICEs. Despite the advantages of such technologies, a substantial 

amount of energy is still lost to the atmosphere in form of waste heat. Therefore, to improve 

the efficiency of ICEs, recently engine-bottoming technologies such as waste heat recovery 

(WHR) are investigated and emphasized by researchers. WHR technologies can contribute 

to improving the efficiency of ICEs and mitigate their undesirable environmental impact by 

harvesting some of the wasted heat and converting it to some form of beneficial electrical or 

mechanical energy within the vehicle [3-5].  

One approach to improve the efficiency of ICEs and reduce their environmental impact is to 

deploy organic Rankine cycle (ORC) in order to convert the exhaust and coolant waste heat 

to useful mechanical and electrical energy. To meet the safety demand of automotive industry 

a real-time and accurate control system is required for the ORC system. This need has 

focused attentions on developing agile control-oriented models of the ORC components. In 

the ORC heat exchanging components are considered the most critical components of the 

system due to their slow response and high nonlinearity of their governing equations. 

Previous numerical models of the heat exchanging units are useful at the design stage of the 

ORC for component selection and cycle optimisation but these models are computationally 
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expensive and cannot be used for real-time application. Therefore, alternative modelling 

approaches should be considered for modelling these components.  

1.2 Objectives 

This aim of this study is to develop a control-oriented model of organic Rankine cycle 

suitable for recovery of waste heat from the exhaust of ICEs. An appropriate control method 

is also developed to address the heat source transitions during the various driving cycles of 

ICEs in heavy-duty applications.  

The following research questions are identified to address the aims of this study: 

• Is it possible to recover the wasted heat of ICEs in order to reduce their fuel 

consumption? 

• What waste heat recovery method is most feasible for ICEs?  

• How to model the components of the waste heat recovery system? 

• How to control the waste heat recovery system to meet the automotive industry 

regulations and ensure the safety of the system? 

To answer these research questions, the specific research objectives of this study are as 

follows: 

• To investigate the most efficient waste heat recovery technologies currently available 

for harvesting wasted heat of ICEs. 

• To develop a control-oriented organic Rankine cycle model for achieving the real-

time control objectives in heavy-duty applications.      
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• To develop a control scheme for the organic Rankine cycle model that constantly 

adapt to the heat source variations due to the different driving conditions in order to 

ensure the safety of components. 

• To develop a control scheme for the mass flow rate of working fluid at the expander 

inlet to prevent any potential damage to the expander and stabilise the cycle 

efficiency. 

1.3 Thesis outline 

This thesis is structured as follows: 

In chapter 2, a detailed study on potential waste heat recovery systems for applications in 

automotive industries is presented, and organic Rankine cycle due to its superior efficiency, 

simplicity and availability of components and adequate temperature profile matching with 

the heat source is chosen as the technology for further investigation. 

Chapter 3 describes various architectures of the ORC system, selection of the components 

for low-grade waste heat recovery in the range of internal combustion engines and working 

fluid selection for the cycle. Moreover, the requirements for integration of control systems 

with the ORC for mobile applications is also discussed in this chapter.  

Chapter 4 presents the model for the main components of the ORC system including pump, 

evaporator, expander, condenser, valve and liquid receiver. Particular emphasis is given to 

the study of a dynamic model of evaporator, due to its characteristics such as high 

nonlinearity and thermal inertia, high pressure and slow response. Final volume and moving 

boundary methods for modelling the evaporator in the ORC are discussed and their 

limitations in automotive applications are also pointed out.  
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In chapter 5, given the superior predictive potential of artificial intelligence techniques, they 

are used to model the evaporator behaviour to overcome the limitations arising in modelling 

the evaporator using conventional methods. A MLP neural network is trained to model the 

highly nonlinear behaviour of the evaporator. Despite acceptable performance and 

generalisation of this model, due to the black-box nature, its mathematical relations are 

unknown to the designer and have no physical meaning. Therefore, by merging the benefits 

of Takagi_Sugeno fuzzy system and feedforward neural networks a novel hybrid neuro-fuzzy 

model of evaporator is proposed for modelling the evaporator behaviour. The effect of 

training the neuro-fuzzy network using conventional gradient descent least square algorithm 

and particle swarm optimisation technique is also discussed. Furthermore, in this chapter, a 

case study using the proposed neuro-fuzzy technique of modelling the evaporator in a 1kW-

e ORC system is investigated. Finally, the proposed neuro-fuzzy evaporator model is 

integrated in the ORC system and the open loop response of the ORC system is presented.  

Chapter 6 describes the development of an inverse neuro-fuzzy controller and its 

implementation in different closed loop configurations to control the superheating at the 

evaporator outlet. Configuration of the control loop for simultaneous control of superheating 

at the evaporator outlet and control of expander output is also described. Moreover, the 

results of set-point tracking and controller robustness in presence of high frequency noise for 

different control loop configurations are also investigated. These simulation tests are 

designed to evaluate the effectiveness of the proposed control strategy. The objective of this 

study is to confirm the potential of utilizing the proposed inverse neuro-fuzzy controller for 

ORC under transient heat source of heavy-duty diesel engines. 
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Finally, in chapter 7, the conclusions of study and recommendations for future work are 

provided.  
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Chapter 2: Waste Heat Recovery Systems 

2.1 Waste heat sources 

According to the EU energy roadmap 2050, the greenhouse gas emissions should be reduced 

by 90-95% by 2050 [6]. Accordingly, this goal requires modification of the current policies 

regarding energy sector. The electricity production should be emission-free and about two 

thirds of energy should be achieved from renewable sources. This goal demands intensive 

investment in the energy sector in order to transform the current energy systems or enhance 

their efficiency by reducing the energy wastage. The later objective requires identifying the 

sources of waste heat emitted to the atmosphere. The most common sources of waste heat 

are industrial applications and transportation sector.  

2.1.1 Industrial waste heat 

Almost 26% of European energy is consumed in industrial processes [7]. The waste heat 

rejected from industrial processes such as aluminium and copper reverberatory furnaces, 

glass melting furnace, steel heating furnace, etc, is referred to as industrial waste heat. This 

waste heat is released to the atmosphere by a thermal carrier. The thermal carrier can be 

gaseous streams such as exhaust gases, liquid streams such as cooling water or even solids 

(e.g., products such as hot glass or steel). The quality of waste heat from these sources can 

be further categorised based on the temperature of thermal carrier to high, medium and low 

grade as follows [8]: 

• High grade waste heat has temperature higher than 923.15 K 

• Medium grade waste heat has temperature ranges between 505.15 K and 923.15 K 

• Low grade waste heat has temperature lower than 505.15 K      
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The appropriate WHR technology for various industries is determined based on their waste 

heat grade. Peris et al. [9] presented a summary of waste heat temperature in various 

industrial processes. In another study, Panayiotou et al. [7] outlined the waste heat grade in 

major European industries and assessed their opportunity and potential of WHR as follows: 

Table 2.1 – Waste heat potential and Carnot potential for several industrial processes [7] 

The industry type Waste heat potential Carnot’s potential 

Iron and Steel 11.40% 6.40% 

Chemical and Petrochemical 11.00% 5.13% 

Non-ferrous metal industry 9.59% 4.93% 

Non-metallic minerals (e.g., glass 

and pottery) 

11.40% 6.40% 

Food and Tobacco 8.64% 1.89% 

Paper, Pulp and Print 10.56% 4.59% 

Wood and Wood products 6% 2.00% 

Textile and Leather 11.04% 2.72% 

Other industry 10.38% 4.84% 

 

In terms of thermodynamic analysis, the exergy content of the rejected waste heat to the 

atmosphere can be determined using the Carnot efficiency (𝜂𝐶). Carnot efficiency is defined 

as the maximum efficiency that a heat engine can achieve when it is operating between two 

heat reservoirs as follows: 

𝜂𝐶 =  𝜂𝑚𝑎𝑥 = 1 −
𝑇𝐻

𝑇𝐶
                (1.1) 

where 𝑇𝐻 and 𝑇𝐶 are the heat source and heat sink temperatures, respectively. Although from 

practical point of view the Carnot efficiency has little value (due to the role of dissipative 

processes and irreversibility), but it can be used as a benchmark to compare the other 
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thermodynamic cycles. Furthermore, the Carnot efficiency better reveals the potential of the 

waste heat from the heat source for technical work or recovery [7]. Based on the Carnot’s 

potential in industrial processes, WHR technologies can offer significant reduction in 

greenhouse gas emission and considerable reduction in energy consumption.  

2.1.2 Waste heat in internal combustion engines  

Over the past century internal combustion engines (ICEs) have been the main power source 

of transportation. Automobiles, heavy-duty trucks, locomotives and ships are all using ICEs 

for generating power from fossil fuels. The United States Environmental Protection Agency 

(EPA) reported that transportation sector is responsible for the greatest share of greenhouse 

gas emissions with 28.2% of total emissions in 2018 [1]. Despite all the technologies 

implemented in the ICEs still about 60-70% of fuel energy is wasted to the atmosphere. 

Furthermore, stringent legislation on ICE emissions motivates manufacturers to improve the 

efficiency of the engines to reduce the emission levels. Most of the waste heat from ICEs is 

lost to the atmosphere through the engine exhaust and coolant. Exhaust gas recirculation 

(EGR) and charge air cooler (CAC) are another source of waste heat which have relatively 

lower energy content [2]. From the exergy point of view, the exhaust waste heat is considered 

medium-grade and coolant waste heat is regarded as low-grade [10]. Although both of 

primary sources of waste heat in ICEs have similar energy content, the higher grade of engine 

exhaust makes it more thermodynamically attractive for WHR purposes. Moreover, the 

engine coolant temperature fluctuates moderately, but the temperature and mass flow rate of 

engine exhaust gases are highly dynamic. The temperature and mass flow rate of exhaust 

gases of a typical ICE for city and highway drive cycles are shown in Figs. 2.1 and 2.2 
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respectively. This unsteady nature of exhaust gases in ICEs makes the recovery of waste heat 

from this source a challenging task.            

 

Fig. 2.1. Temperature of exhaust gases for the city and high drive cycles [11]  

 

Fig. 2.2. Mass flow rate of exhaust gases for the city and high drive cycles [11] 

2.2 Methods of waste heat recovery 

2.2.1 Thermoelectric generators 

Thermoelectric generators (TEGs) are solid state devices that allow direct conversion of heat 

flux into electrical energy. TEGs are working based on a phenomenon called Seebeck effect 

which was discovered in 1821 by Thomas Johann Seebeck. TEGs are consisting of a set of 
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different thermoelectric materials such as semiconductors and when these materials are 

subjected to a temperature gradient, electric voltage is created between them. The operating 

principle of TEGs is shown in Fig. 2.3. Direct conversion of energy, long lifespan, 

elimination of mechanical moving parts and working fluids (thus low maintenance costs) and 

noiseless operation are some of the advantages of the TEGs. This technology is considered 

as a highly reliable WHR method with efficiency of up to 5% [12]. Despite these advantages, 

for many years, the high cost of semiconductors limited the demand for TEGs to space 

application where the high price tag is justified by high reliability [13]. The materials require 

to have high electrical conductivity and low thermal conductivity in order to be considered 

as proper candidates for thermoelectric generation. The automotive industry is one the most 

attracting sectors for deploying TEGs. In the automotive industry, the objective is to integrate 

TEGs into ICEs with minimum pressure losses (in range of a few tens of millibars) and high 

efficiency. Moreover, the operating point of the engine should not be affected and the 

maximum temperature difference across the TEGs must not exceed the materials maximum 

operating temperature. Therefore, control systems for bypassing the excessive hot gases must 

be added to the system to protect the overload of engine cooling system under full-load 

condition, restrict the pressure drop under full-load condition and prevent temperature shock 

in thermoelectric modules [14]. The research for finding cost-effective, environmentally 

friendly and recyclable materials which qualify as thermoelectric materials for WHR is still 

ongoing. Several vehicle manufacturing companies such as BMW [15, 16], Ford [17], 

Renault [18], Honda [19] have investigated integrating TEGs for internal combustion 

engines. However, high manufacturing price and relatively low efficiency are the obstacles 

in development of TEGs for mass production in common applications such as ICE waste heat 

recovery.        
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Fig. 2.3. Operation principle of TEGs 

2.2.2 Stirling engine 

Stirling engine is a closed-cycle regenerative heat engine, which is operated by cyclic 

compression and expansion of a working fluid in a cylinder between two heat reservoirs in 

order to convert heat energy to mechanical work. The Stirling engines are categorised as 

external combustion engines and are first introduced by Robert Stirling in 1816. As shown 

in Fig. 2.4, the working principle of Stirling engine is based on the expansion and contraction 

property of gases when heated and cooled, respectively. A fixed amount of working fluid 

(usually gaseous substances) is sealed between two cylinders that are held at different 

temperatures. Since the volume of the working fluid is fixed, temperature variation changes 

its pressure, resulting in expansion on hot cylinder and contraction in cold cylinder. The 

Stirling engines based on the configuration of their components are divided to four types of 

alpha, beta, gamma and double-acting. Several studies investigated application of Stirling 

engines for ICE waste heat recovery. The P-V diagram of a typical Stirling Engine is 

presented in Fig. 2.5.  
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Alfarawi et al. [20], investigated the integration of a small-scale beta type Stirling engine 

with the exhaust system in order to drive the alternator. Adopting a CFD approach, authors 

claimed that a power output of 1.5 to 2 kW is achieved at an ideal thermal efficiency of 40% 

from a heat source and a heat sink at 850K and 450K, respectively. Güven et al. [21], studied 

optimization and application of three types of Stirling engine for WHR from exhaust of a 

heavy-duty truck. They concluded that, Beta-type Stirling engine due to its higher 

dimensionless work output and moderate pressure ratio is the most appropriate configuration 

for WHR from exhaust gases in ICEs. Despite increasing the exhaust back-pressure and 

imposing additional weight to the truck, the designed Stirling engine improved the engines 

power output by 1.3%, reduced fuel consumption by 1% and generated around 3 kW. Kubo 

[22] studied various configurations of Stirling engine as a bottoming cycle for heavy-duty 

diesel engines and concluded that using Stirling engines for WHR in diesel engine is not 

economically attractive as they fail to match the performance of other applicable cycles such 

as organic Rankine cycle. In another study, Bianchi et al. [23] performed a thermodynamic 

analysis on three bottoming cycles for generating electrical energy from low to medium 

temperature heat sources and concluded that despite the promising performance of Stirling 

engine for high temperature sources (in order of 800 °C), it’s been outperformed by organic 

Rankine cycle in terms of thermodynamic performance for exploiting low to medium heat 

sources ranging from 200 to 500 °C.   
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Fig. 2.4. Alpha-type Stirling engine 

 

 

Fig. 2.5. P-V diagram of a typical Stirling Engine 

2.2.3 Phase change material engines 

Phase change materials (PCMs) are substances that encounter phase transition when heated 

or cooled. Due to their high capacity for storing thermal energy, they are also known as latent 

heat storage materials. The research on PCMs has received considerable attention for their 

application as a thermal energy storage (TES) material. For instance, their ability to store a 

large amount of energy is studied to regulate the temperature of lightweight buildings with 

low thermal mass in order to reduce their energy consumption [24, 25]. Other applications 

of PCMs include latent heat TES systems for heat pumps, thermal control of spacecrafts and 

solar engineering [26]. Zalba et al. [27] reviewed materials, applications and heat transfer 
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analysis of TES devices with PCM technology. Paraffin due to its high latent heat, chemical 

stability, low cost, non-toxicity and non-corrosive characteristics is one of the most 

promising PCMs for various applications [28].  

PCM engines can be deployed for recovery of waste heat from low quality applications. They 

are taking advantage of the volume expansion of PCMs when changing from solid to liquid 

phase to generate electricity. The working principle of PCM engines is represented in Fig. 

2.6. PCM engines consist of a hydraulic system, an electric system, a heat sink and a heat 

source (usually in the liquid form [29]). The PCM (e.g., paraffine mixture) is cyclically 

expanded and contracted by exposing it to the heat source and heat sink. The volume change 

in the PCM caused by the expansion and contraction is captured using the hydraulic system. 

The linear movement of the hydraulic system is used to produce electricity by deploying a 

generator. PCM engines are suitable for recovery of low-grade waste heat in the range of 25 

to 95 °C and 2.5% conversion efficiency is reported when the temperature difference between 

the heat source and heat sink is 24 °C [29]. 

 

Fig. 2.6. Working principle of PCM engines 



16 

 

 

2.2.4 Carnot cycle 

Carnot cycle is a thermodynamic cycle proposed by French physicist Nicolas Léonard Sadi 

Carnot in 1824. It is considered as an ideal cycle which defines the maximum achievable 

amount of efficiency by any thermodynamic engine or refrigeration system that converts heat 

into work or vice versa. A heat engine that undergoes Carnot cycle is referred to as Carnot 

heat engine. Although Carnot efficiency is impossible to be achieved in practice, it can put 

an upper limit on the maximum obtainable efficiency by other practical heat engines. In a 

Carnot cycle with 𝑇𝐻 and 𝑇𝐶 as the heat and cold reservoirs, respectively, a working media 

is circulated in a closed loop and experiences several state changes. However, since the 

Carnot cycle is a perfect theoretical reversible cycle, no entropy is generated during the cycle.  

The T-S diagram of the Carnot cycle is represented in Fig. 2.7.  

 

Fig. 2.7. T-S diagram of Carnot cycle 

When the Carnot acts as a heat engine, it comprises following thermodynamic processes: 

• Isothermal expansion (1-2): at the constant temperature 𝑇𝐻, heat is transferred from 

the hot reservoir to the working fluid. 
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• Isentropic expansion (2-3): in an adiabatic process the pressure of working fluid 

decreases and it expands resulting in reduction of temperature to 𝑇𝐶. In this process, 

the internal energy of working fluid is converted to the work on the surrounding. 

• Isothermal compression (3-4): at the constant temperature 𝑇𝐶, heat is transferred from 

the working fluid to the low temperature reservoir. 

• Isentropic compression (4-1): in this process in an adiabatic reversible process the 

work is done by surrounding on the working fluid. The pressure of the working fluid 

increases and its temperature returns back to 𝑇𝐻. 

In Carnot cycle the entire cycle takes place in the two-phase liquid-vapor dome. Therefore, 

some drawbacks can be noted for its application in WHR from practical point of view. The 

fact that the isentropic compression happens in the two-phase mixture zone implies the need 

for a pump that is able to handle two-phase mixture which is currently impractical. Moreover, 

since the working fluid is not superheated, during the isentropic expansion two-phase mixture 

enters the expander, which increases the chance of corrosion and reduces the lifespan of 

equipment.  Furthermore, since isothermal heat transfer is very difficult to achieve in real 

applications, Carnot cycle could not exist in reality. 

2.2.5 Rankine cycle 

Rankine cycle is an idealised thermodynamic cycle developed by Scottish engineer William 

J.M. Rankine in 1859 which converts heat to mechanical shaft work in order to generate 

electrical energy. It is the dominant method of electricity generation deployed in large 

thermal power plants across the world. Modern power plants by utilising the water as the 

working fluid in the Rankine cycle achieved efficiency of around 50% [30]. The thermal 

energy for deriving the cycle is mostly obtained from burning fossil fuels or nuclear fission. 
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The Rankine cycle uses the phase change between vapor and liquid in order to maximise the 

specific volume difference during the expansion and compression. The T-S diagram of the 

Rankine cycle is shown in Fig. 2.8.  

 

 

a) 

 

 

b) 

Fig. 2.8. T-S diagram of Rankine cycle a) without superheating b) with superheating 
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The ideal Rankine cycle consists of the following thermodynamic processes: 

• Isentropic compression (4’-5): the pressure of water increases in an adiabatic pumping 

process. 

• Isobaric heat addition (5-2): the pressurized water enters the boiler, where it is heated 

in constant-pressure to obtain saturated vapor.   

• Isentropic expansion (2-3): the pressurized saturated vapor expands in an adiabatic 

expansion process to generate power. This process results in decreasing the 

temperature and pressure of water. 

• Isobaric heat rejection (3-4’): the wet vapor enters the condenser where it is cooled 

down in a constant-pressure process to achieve saturated liquid. 

As illustrated in the T-S diagram of Fig. 2.8, in the Rankine cycles, the working fluid is 

pumped at the saturated liquid state 4’. Pumping the water at the saturated state reduces the 

risk of formation of cavity which can damage the pump and decreases the pumping work.  

In an ideal Rankine cycle the pressure drops caused by the fluid friction is not considered 

and compression and expansion processes are assumed isentropic. However, in an actual 

cycle there is some irreversibility associated with the heat loss to the surrounding and 

pressure drops due to the friction. Hence, the work output of actual cycle is less than the ideal 

cycle. Although the efficiency of Rankine cycle is less than that of ideal Carnot cycle, it 

eliminates the practical drawbacks of the Carnot cycle. Therefore, it can be considered as the 

ideal cycle that can be approximated in practice. 

In a Rankine cycle, the irreversibility can be reduced if the cycle is operated as close as 

possible to the hot and cold reservoirs. Therefore, one approach to prevent formation of liquid 



20 

 

 

droplets in the turbine and reduce the irreversibility is to superheat the vapor before the 

expansion process. During the heat addition the boiler temperature is limited by saturation 

pressure of the working fluid. At the saturation pressure increasing the temperature beyond 

the boiling point of substance results in superheating the vapor. As illustrated in Fig. 2.8, the 

process of heat addition to the pressurized water is further extended to point 2’, where it is 

superheated in constant-pressure to obtain superheated vapor.  

Another approach to improve the efficiency of Rankine cycle is to increase its net produced 

work by increasing the pressure in the high-pressure region of the cycle (boiler) during the 

heat addition and reducing the pressure in the low-pressure region (condenser) during the 

heat rejection. In an actual power plant, the lifespan and efficiency of turbine is reduced if 

condensation happen during the expansion. When the pressure in the high-pressure region of 

Rankine cycle increases, the moisture content in the low-pressure region of the turbine also 

increases. In WHR applications from the high-grade heat sources elimination of the liquid 

droplets and increasing the vapor quality at the expander can be obtained by using the Reheat 

Cycle [31]. The Reheat Cycle can help to achieve the advantage of high-pressure in the cycle, 

yet avoid the excessive moisture in the low-pressure stage of the turbine. In this cycle the 

vapor is expanded to some intermediate pressures in a high-pressure turbine, then the vapor 

is reheated in the boiler again before enters the second low-pressure turbine. Although this 

method is beneficial for preventing the formation of liquid droplets it adds complexity to the 

expansion device in the cycle. Another variation of Rankine cycle is known as Regenerative 

Cycle. In Regenerative Cycle some of partially expanded working fluid is used to preheat the 

liquid entering the boiler, thus, increasing the efficiency of the cycle by increasing the mean 

temperature during the heat addition process [32].     
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In low to medium-grade WHR such as recovery of wasted heat in internal combustion 

engines the temperature is not enough to superheat the water at all conditions. This is due to 

the large operating range of the internal combustion engines. In other words, the heat source 

in the mobile application is not working under steady-state condition and mass flow rate and 

temperature of exhaust gases fluctuates during different driving conditions. Therefore, to 

adopt the cycle for the low to medium waste heat sources, alternative working fluids with 

lower boiling points should be considered.  

2.2.6 Kalina cycle 

Kalina cycle introduced by Dr. Alexander Kalina in 1984. It is an alternative to steam 

Rankine cycle which utilises a mixture of water and ammonia as a working fluid to change 

the thermodynamic properties of pure water. The main difference between Kalina cycle and 

conventional steam Rankine cycle is the change in temperature profile during evaporation 

and condensation that makes it more flexible with respect to fluctuation of the heat source. 

In this cycle water prevents the effect of nitridation in temperatures below 400 °C that can 

damage the equipment and in temperatures above 400 °C the amount of ammonia is far less 

than the threshold for causing any damage. The boiling and condensation temperature of 

working fluid mixture in Kalina cycle can be adjusted by manipulating the percentage of 

ammonia in mixture, thus as compared to steam Rankine cycle better efficiency in part-load 

situation can be achieved. Flammability of mixture is one of the disadvantages of the Kalina 

cycle and therefore, an intermediary fluid loop should be integrated to avoid contact of 

exhaust flows with the working fluid [33]. Another competitor of the Kalina cycle is the 

organic Rankine cycle which benefits from an organic working fluid in the cycle. Nemati et 

al. [34] carried out a comparison between the Kalina cycle and the organic Rankine cycle for 
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different operating conditions and reported that due to the lower pressure in the organic 

Rankine cycle, the material and sealing costs of the system is much lower than that of the 

Kalina cycle. Furthermore, the authors pointed out that in the Kalina cycle the output of 

turbine is a two-phase flow compared to superheated vapour in the organic Rankine cycle. 

They concluded that in all operating conditions the energy and exergy efficiencies of the 

organic Rankine cycle are more than that of the Kalina cycle. 

2.2.7 Organic Rankine cycle 

Organic Rankine cycle (ORC) has long been considered as a promising waste heat recovery 

technology that can be adopted for low to medium grade heat sources such as mobile 

applications [33, 35, 36]. The ORC is similar to the Rankine cycle but instead of water, an 

organic fluid with lower boiling temperature and higher molecular weight is used in the cycle. 

As shown in Fig 2.9, the basic ORC is comprised of several components including 

evaporator, expander, condenser and pump. Some other components such as accumulator 

and regenerator can be added to the configuration to increase the efficiency of cycle or 

improve the working condition of basic components. The principle of ORC is to evaporate 

an organic fluid in a closed cycle and use the superheated vapour pressure as the 

electromotive force to produce mechanical energy in the expander. After expansion, the 

vapour is cooled down in the condenser to saturated liquid temperature and then pumped 

back to the evaporator.   
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Fig. 2.9. Conceptual schematic of ORC system 

The ORC has several advantages over the traditional steam Rankine cycle for low to medium 

WHR. Firstly, owing to the lower boiling point of the working fluid the evaporation process 

requires less heat and it can happen in lower pressures. Secondly, the risk of turbine blade 

erosion is substantially reduced. This is because the expansion process happens at the vapor 

region. However, superheating should be kept as low as possible in the evaporator since risk 

of decomposition of organic fluid at higher temperatures exists [37]. Thirdly, due to the 

smaller temperature gradient and pressure drop between the evaporation and condensation 

processes in the ORC, there is no need for a multi-stage turbine and a single stage turbine 

can be deployed [33]. Lastly, the higher molecular weight of organic fluid compared to the 

water, reduces the required pumping work in the cycle and thus, improves the overall 

efficiency of the cycle [38]. These advantages enable the ORC to be exploited for recovery 

of energy from low to medium grade heat sources. Biomass power plants, geothermal power 

plants and solar power plants are some examples of the ORC application [33].  



24 

 

 

The ORC is characterised by its relatively high efficiency and low cost. Modularity, 

versatility, maturity of components (similar to refrigeration system) and ability to recover 

waste heat from small to moderate temperature differences are characteristics of the ORC 

technology that made it a preferable choice for recovering energy from ICEs. Therefore, since 

organic Rankine cycle has the highest feasibility potential for recovering energy from highly 

dynamic waste heat sources, this cycle is chosen in this study for further investigation with 

focus on modelling and control of the cycle. 

2.3 Summary 

In this chapter several waste heat recovery technologies are introduced and their advantages 

and drawbacks for adopting them for mobile applications are pointed out. The findings of 

this chapter can be summarised as follows: 

• Reducing the greenhouse gas emissions requires the transformation of the current 

energy system or enhancement of their efficiency. Internal combustion engines used 

in mobile applications have the greatest share of greenhouse gas emissions and are 

likely to be used for many years. Therefore, it is important to enhance their 

efficiencies.   

• The two main sources of waste heat in internal combustion engines are the medium-

grade exhaust gases and low-grade coolant. Other sources of the waste heat are 

exhaust gas recirculation and charge air cooler which have lower energy content.  

Although both of the primary sources of waste heat have similar energy content, the 

higher grade of engine exhaust makes it more thermodynamically attractive for WHR 

purposes.  
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• Some of the current waste heat recovery technologies are either too expensive due to 

deploying rare and expensive materials or have low efficiencies and are not feasible 

for adopting in automotive applications.  

• The Rankine cycle is a practical alternative of ideal Carnot cycle. It is currently being 

used for waste heat recovery in industrial applications with high-grade waste heat. 

However, due to the large operating range of ICEs, the waste heat from ICEs could 

not superheat the water in Rankine cycle at all driving conditions. Therefore, this 

could result in a reduction in efficiencies and formation of liquid droplets which can 

cause component damage.  

• Organic Rankine cycle is an alternative to the Rankine cycle which can be adopted 

for waste heat recovery from low to medium range heat sources. It utilises an organic 

fluid with lower boiling temperature and higher molecular weight which can be 

superheated across all the operating range of ICEs.  

• Implementing ORC as the waste heat recovery method for the ICE has several 

advantages as compared to the other methods, including superior efficiency, reduced 

pumping work, modularity, versatility, maturity of components (similar to 

refrigeration system) and ability to recover waste heat from small to moderate 

temperature differences. Therefore, in this study, ORC is considered for further 

investigation.     
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Chapter 3: Organic Rankine cycle 

3.1 Previous research on ICE-WHR 

Investigations on the ORC as a waste heat recovery method for ICEs started during the energy 

crisis of 70’s. Thermoelectron Corporation and Mach Trucks started research on developing 

ORC for internal combustion engines waste heat recovery in 1970s [39-41], and thereafter, 

companies such as Cummins [42], BMW [43-45] and AVL [46, 47] started research on 

implementing ORC in their projects. Cummins reported that by implementing ORC on a 

diesel engine efficiency increased from 47.5% to 51%. The research was part of the US 

Department of Energy (DOE) “SuperTruck” program with approximate cost of $284 million 

[42].  

An extensive literature review revealed that several studies reviewed the development of 

ORC as a waste heat recovery method for ICEs since 2011 [10, 48-53]. These studies mostly 

compared the ORC with other applicable technologies, such as Rankine cycle, Kalina cycle, 

TEGs and turbochargers. The superior conversion efficiency of ORC along with features 

such as availability of components, high thermal efficiency, low pressure and flexibility in 

handling low to medium grade heat sources draw the attention of researchers to the ORC and 

made it one of the research-intensive subjects in the waste heat recovery applications. The 

reviews on ORC also suggest that selection of the cycle architecture or working fluid depends 

on the characteristics of the heat source and a thermodynamic analysis should be carried out 

at the design stage of the cycle. Furthermore, for successful integration of the ORC as a 

bottoming cycle for the ICEs, the safety of system must be ensured. Therefore, a control 

system needs to be designed for the ORC system that not only ensure the system safety but 

also regulate its work output.    
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3.2 ORC architecture 

There are several ORC architectures applicable to WHR systems recovering waste heat from 

various heat sources. Single-stage regenerative ORC (SRORC), double-stage regenerative 

ORC (DRORC), reheat ORC (RORC), ORC with recuperator and double loop ORC 

(DLORC) are the variant architectures of the ORC [53].  In SRORC, to increase the thermal 

efficiency of cycle, a two-stage turbine is used and a portion of expanded vapour in the 

turbine is redirected to the feed water heater [54]. DRORC architecture is similar to the 

SRORC, but utilises two feed water heaters (in series) to enhance the cycle efficiency and 

reduce the load on evaporator [55]. The extracted vapour is taken out from the turbine and 

fed to both water heaters. The schematics for SRORC and DRORC architectures are 

represented in Figs. 3.1 and 3.2, respectively. 

 

Fig. 3.1. Schematic of single stage regenerative ORC 
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Fig. 3.2. Schematic of double-stage regenerative ORC 

The schematic of reheat ORC architecture is shown in Fig. 3.3. As shown in Fig. 3.3, Reheat 

ORC takes advantage of two turbines; the vapour is fed to the first turbine and then is returned 

back to the evaporator before feeding the second turbine. This process reduces the moisture 

content of the vapour at the final stage of expansion process [53]. In the ORC with 

recuperator architecture, a recuperator is deployed between the high-pressure and low-

pressure sides of the ORC. The expanded vapour enters the recuperator to increase the 

temperature of pressurised working fluid after the pump [56, 57]. The schematics of ORC 

with recuperator architectures is represented in Fig 3.4. 

 

Fig. 3.3. Schematic of reheat ORC 
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Fig. 3.4. Schematic of ORC with recuperator 

Fig. 3.5 represents the schematic for DLORC architecture. DLORC takes advantage of a 

high-temperature loop and a low-temperature loop. The High-temperature loop is used to 

recover the wasted energy from the main source and the low-temperature loop is used to 

recover the energy of jacket cooling water as well as the energy dissipated from condenser 

of high-temperature loop [58, 59].   

 

Fig. 3.5. Schematic of dual loop ORC 
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In applications of WHR from internal combustion engines, SRORC, DRORC and RORC are 

not generally suitable architectures, because of the complexity of the expander. However, 

ORC with recuperator architecture can be deployed to preheat the working fluid entering 

evaporator. This cycle will be beneficial as it reduces the amount of heat required for 

vaporizing the working fluid in the evaporator. Furthermore, a heat transfer loop (using a 

separate thermal oil loop) can be deployed in the cycle to reduce the transients of exhaust 

gases. In this architecture, the heat from exhaust gases is transferred to the thermal oil in a 

separate loop, and then, the heated thermal oil is fed to the ORC’s evaporator. The thermal 

oil acts as a buffer which reduces the temperature fluctuation of the heat source.       

3.3 Working fluid selection   

Selection of the optimal working fluid for the ORC system is of prominent impotence as it 

has a critical impact on the performance of the system [60]. As mentioned in section 2.1.2, 

ICEs are categorized as low to medium grade waste heat sources. In applications of WHR in 

ICEs since the temperature and mass flow rate of the heat source is not enough to superheat 

the water in the Rankine cycle at all conditions, utilizing the organic working fluids due to 

their lower boiling temperature and higher molecular weight is preferable [38]. In part-load 

condition where the temperature and mass flow rate of heat source fluctuates, ORC can 

tolerate up to 10% fluctuation in maximum power output [61], therefore, ORC has a wider 

working range compared to the steam Rankine cycle under unsteady heat source. Most of 

early studies on the ORC deployed refrigerants such as R11 or R13 as the working fluid in 

the cycle which have high ozone depletion potential (ODP). However, environmental 

concerns restrict the use of substances with high ODP or global warming potential (GWP). 

Therefore, since the performance of ORC is strongly affected by the selected working fluid, 
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a preliminary study of various working fluids needs to be carried out based on the 

thermodynamic performance, industry legislation, availability and cost of the substance, 

ODP and GWP. The substances need to have certain properties to be considered as a potential 

working fluid for the ORC application. The desired properties include adequate temperature 

profile match with the heat source, low boiling point, high auto-ignition temperature, 

chemical stability, high flash point, low ODP and GWP, etc.       

Several studies investigated the selection of most suitable working fluid for the ORC and 

concluded that the utilizing working fluids with higher critical temperature improves the 

system thermodynamic efficiency [62-66]. However, the density of vapour decreases at 

higher critical temperatures and this results in higher system costs; therefore, in addition to 

the thermodynamic performance of the system, the practical design of the ORC should be 

considered and the working fluid selection should be integrated in the ORC design process 

[67]. 

Shu et al. [68], established a multi-approach evaluation system and used four organic 

substances (R123, R245fa, R134a and R32) to comprehensively evaluate the performance of 

ORC in WHR. The outcome of their research suggests that the performance of ORC increases 

in supercritical mode. Moreover, the economic performance of ORC with R134a and R32 

improves when it is operated under supercritical pressures; however, the authors concluded 

that R123 and R245fa are the most appropriate substances for ICE-WHR. Wang et al. [66], 

analysed the performance of potential working fluids for ICE-ORC using a thermodynamic 

model of cycle developed in MATLAB linked to REFPROP. The authors concluded that 

despite better thermodynamic performance of R11, R141b, R113 and R123, the most 

environmental-friendly substances for ICE-WHR applications are R254fa and R245ca. 
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Glover et al. [69], compared the performance of 18 working fluids with critical pressure 

below 70 bar for automotive WHR by deploying a thermodynamic ORC model considering 

the boundary conditions. The authors concluded that there is a direct correlation between the 

critical temperature of substance and the expansion or density ratio, and substances with 

higher critical temperature will generally perform better as they result in higher expansion 

ratio.  Furthermore, they pointed out that the coolant temperature is not enough to allow 

supercritical expansion and for meeting the minimum temperature for expansion the exhaust 

heat is required.  

From study of literature on the selection of working fluid for ORC systems it is apparent that, 

despite the broad range of available substances, there is not a single optimal working fluid 

for all applications of the ORC and only a few of the available substances are deployed in 

commercial ORC applications [67]. Therefore, in this study R134a and R245fa due to their 

suitable critical temperature, appropriate temperature profile matching with the heat source, 

low cost, relatively high auto-ignition temperature, zero ODP and wide availability are 

chosen for investigation of ORC waste heat recovery system in simulation and practice. The 

properties of these substances are listed in Table 3.1. 

Table 3.1 – Properties of selected working fluids  

Working 

fluid 

Critical 

temperature 

(K) 

Critical 

pressure 

(MPa) 

Boiling 

temperature 

(K) 

𝑪𝒑  

(𝒌𝑱. 𝒌𝒈−𝟏. 𝑲−𝟏) 

Critical 

density 

(𝒌𝒈. 𝒎−𝟑) 

Molar mass 

(𝒌𝒈. 𝒌𝒎𝒐𝒍−𝟏) 

Auto- 

ignition 

temperature 

(K) 

ODP GWP 

R134a 374.2 4.059  247.08 1.280 511.90 102.03 1043.15 0 1200 

R245fa 427.2 3.64 288.05 1.318 519.43 134.05  685       0 950 
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3.4 Components of the ORC     

The ORC cycle is comprised of four main components: pump, evaporator, expander and 

condenser. The cycle may also take advantage of some other auxiliary components such as 

valve, accumulator, etc, for control purposes, preventing damage to main components or 

improving the cycle efficiency. Selection of the components of the ORC mostly depends on 

the application and the heat source characteristics. In automotive applications, however, the 

size and weight of the components should be taken into account at the design stage since 

excessive weight or size has a negative impact on the fuel consumption of the vehicle [70] 

and increases the frictional forces acting on the vehicle [71]. A review of the main 

components of the ORC is presented in the following sections.   

3.4.1 Pump 

The ORC architecture is divided to two zones based on the pressure level of the organic fluid. 

The organic fluid needs to be pressurized before entering the evaporator and its pressure 

decreases after the expansion process. Therefore, two zones with high-pressure and low-

pressure can be distinguished within the cycle. In order to meet the pressure requirements of 

the high-pressure zone a pump is deployed within the cycle. Selection of the pump depends 

on the pressure and flow rate demands of the cycle. Additionally, due to the stringent 

regulations of automotive industry, in mobile applications compatibility with working fluid 

and being leak proof are extra features that are required. Centrifugal [72, 73] and volumetric 

pumps [74-76] are the most common types of the pumps used in the ORC for various 

applications. Due to the fluctuating nature of the heat source in ICEs the flow rate of pump 

is usually used to control the superheating at the evaporator outlet. Therefore, the pump needs 
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to be able to deliver the organic fluid in low flow rates while keeping the pressure at the 

required level. 

The pump can be severely damaged during the operation of the cycle through a phenomenon 

called cavitation. Cavitation is formation of small vapour-filled cavities in the pump inlet at 

low pressures and usually happens when the working fluid gets close to its saturation state. 

Because of the lower latent heat of organic fluids, cavitation results in more serious negative 

consequences on the pump in the ORC as compared to the water in Rankine cycle [77]. 

Furthermore, cavitation reduces the efficiency of the ORC by reducing the volumetric flow 

and increasing the vibrations that results in the higher input energy loss of the pump [78]. 

Therefore, some extra measures should be taken at the design stage to prevent cavitation in 

the pump. The most common method is deploying a liquid receiver between the condenser 

and pump to ensure that no vapour-filled cavities are forming in the pump.            

3.4.2 Evaporator 

Evaporator is considered as the most critical component of the ORC in a waste heat recovery 

system. When dealing with low-capacity heat source in kW range such as internal 

combustion engines, the governing dynamics of system is dominated by behaviour of the 

heat exchanging components.  Additionally, due to the high thermal inertial of the evaporator, 

as compared to the other components of the ORC system, it dominates the dynamic response 

of the system. While the condenser (as a heat exchanging component) also affects the heat 

transfer greatly, the impact of evaporator is of much greater importance. This is because the 

evaporator is located in the high-pressure region of the cycle and heat transfer from the 

exhaust or other available resources of heat takes place in this component. Therefore, 

selection of the evaporator not only impacts the heat transfer efficiency, but also has a 
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remarkable effect on the ORC economy [79]. Nonetheless, operating conditions of the cycle, 

heat transfer mechanism (single-phase or two-phase), characteristics of working fluid, and 

heat transfer requirements of the ORC are the crucial criteria in the evaporator selection 

process [80]. 

Shell and tube [81, 82] and plate heat exchangers [38, 75] are the most common types of heat 

exchangers in the ORC for WHR applications from low-grade heat sources. Walraven et al. 

[83] compared the performance of shell and tube and plate heat exchangers in the ORC 

applications and concluded that the ORCs utilizing plate type heat exchangers are performing 

better than the ORCs with shell and tube heat exchangers. In mobile applications of the ORC, 

limitations of size and weight of the components should be considered at the design stage. 

Therefore, compact and lightweight heat exchangers due to their influence on the economy 

of the system are preferred. Plate heat exchangers are highly compact and acquiring the 

benefit of a large heat transfer area, hence, they are able to recover maximum amount of heat 

from the heat source [72]. Furthermore, minimum pressure drop, minimum risk of internal 

leakage and straightforward maintenance are the features that make plate heat exchanger a 

proper choice for ORC in mobile applications [80]. Some types of evaporators used in ORC 

applications are shown in Fig. 3.6.  
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a) b) 

 

c) 

Fig. 3.6. Some types of heat exchangers a) Finned tube heat exchanger [84]  b) shell and tube [85] c) Brazed Plate heat 

exchanger [86] 

3.4.3 Expander 

Expander is a device which converts the heat energy into useful rotational mechanical energy. 

There are several types of expanders available in the market for small-scale ORCs that can 

be categorized to two main types of velocity (i.e., turbomachine expanders) and volumetric 

(e.g., screw, scroll and reciprocating piston) expanders [87]. Since expanders are relatively 

expensive devices, selection of the expander type plays a vital role in the overall performance 

and cost of the ORC for small scale ORC applications. Selection of an appropriate expander 



37 

 

 

for the cycle strongly depends on the criteria such as type and characteristics of the working 

fluid, system size and weight, power range, required pressure ratio, lubrication requirements, 

complexity, reliability, availability, noise and safety. [71, 87, 88].  

Velocity type expanders can be categorized as the radial and axial flow turbines. While the 

axial flow turbines are preferred for the applications with high mass flow rates and low 

pressure ratios, radial flow turbines are more appropriate for the applications involving low 

mass flow rates and high pressure ratios [71]. Velocity type expanders, are usually deployed 

for WHR applications such as CHP with the expected regenerative power capacity in the 

range of 50 kW [87]. Moreover, due to the high cost and high rotational speed of these type 

of expanders (i.e., turbine) they are not viable options for the plants with power outputs less 

than 50 kW [71], and hence, they are not commercially available with a few exceptions for 

experimental purposes. Fiaschi et al. [89], studied the preliminary design of turbo-expanders 

for ORC and investigated the behavior of different working fluids. The results revealed that 

among the selected working fluids, the ORC with R134a as the working fluid achieved the 

highest efficiency of 0.85. Bao et al. [88], reviewed the working fluid and expander selection 

for ORC and mentioned the potential of one-stage radial inflow turbines for ORCs with 

higher pressure and lower pressure ratio, however, they pointed out the leakage of organic 

fluid to the atmosphere and overspeed issues of turbine at the peak load are among the 

problems of turbine expanders.  

An alternative type of expanders that could be used in small-scale ORC applications is the 

volumetric type expander which is also known as positive displacement expanders. As the 

name implies, volumetric expanders are featuring a fixed volumetric ratio. Compared to the 

velocity type expanders, volumetric type expanders such as screw, scroll and reciprocating 
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piston expanders, generally acquire the benefit of operating under lower flow rates, higher 

pressure ratios and much lower rotational speeds, and therefore, are a preferred choice for 

low grade heat recovery in the range of 1-50 kW [71]. Nonetheless, considering the 

similarities between the ORC and refrigeration systems, most of the volumetric expanders 

studied in the literature are modified and reversed type of compressors used in the 

refrigeration systems.  

Screw expanders are volumetric type expanders which comprise a helical rotor with an 

approximate 50 µm clearance. There are two types of screw expanders: synchronized and 

unsynchronized. Screw expanders are characterized with their wide power output range of 

1.5 kW to 1 MW [90-94] and the isentropic efficiency ranging between 20% to 70% [95-97]. 

Despite ability to handle two-phase region, because of higher manufacturing cost and high 

risk of working fluid leakage, this type of expander is not usually recommended for ORC 

applications with the rated output power less than 10 kW [87, 88, 98]. Furthermore, due to 

their relatively high rotational speed they may need a speed reduction gearbox which 

increases the cost of plant [87]. Also, lubrication of unsynchronized expanders escalates the 

complexity of the system by adding an external lubrication loop to the expander while 

reducing the risk of working fluid leakage [71].    
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Fig. 3.7. Twin screw expander [99] 

Piston expanders are another type of volumetric expanders with applications in small scale 

CHP systems, WHR in ICEs and refrigeration cycles. The efficiency of piston expanders is 

usually lower than 50% [100-102]. The reported operating temperature range and pressure 

of piston expander is ranging from 380 to 560 °C and 9 MPa, respectively [102-104]. The 

lower speed of piston expanders (600-2000 rpm) as compared to the screw expanders, 

eliminates the need for a gearbox and expander can be directly coupled with the generator 

[105]. However, lubrication requirements, possibility of leakage losses and high 

manufacturing complexity makes it a less attractive option among other types of volumetric 

expanders, and restricts its commercial production for small-scale ORC systems. 

Scroll expanders are the most widely used volumetric expanders for small-scale ORC 

applications with maximum reported expander output of 12 kW [106]. Scroll expanders 

comprise of two spirals and have a fixed built-in volume ratio. They are characterized by 

their simple structure, low cost, wide availability and reduced number of moving parts. The 

isentropic efficiency of scroll expanders is reported between 38% to 86% in the literature 

[107, 108]. Due to the similarities of ORC with refrigeration cycles scroll compressors can 
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be restructured and deployed as scroll expanders [71]. Scroll expanders can be categorized 

to two groups of compliant and cinematically constrained scroll expanders. Compliant scroll 

expanders require lubrication during operation. In contrast, cinematically constrained scroll 

expanders, due to their linking mechanism between the two spirals can operate without 

lubrication. Moreover, since in the design of cinematically constrained scroll expanders the 

inlet and exhaust valves are eliminated, they can operate with lower noise and better 

durability [109]. However, to prevent internal leakage sealing is required.           

3.4.4 Condenser 

The condenser is a heat exchanger which is responsible for removing the excessive heat from 

the working fluid through an isobaric heat transfer process and condense it to the liquid form. 

The working fluid exits the expander in form of vapour or mixture of the liquid and vapour. 

In order to ensure that the pump is supplied with liquid, the excessive energy of the working 

fluid needs to be removed by the condenser. This energy is transferred to a cooling medium 

such as water or air. In the ORC applications two types of condensers based on their cooling 

medium can be distinguished: water-cooled condensers and air-cooled condensers. The 

former type is mostly used for the ORC applications which have access to consistent supply 

of water. Plate type heat exchangers are commonly used as water-cooled condensers [74-76]. 

The later type is usually used where there are limitations in terms of water supply. Finned 

tube heat exchangers are the most frequently deployed air-cooled condensers in the literature 

[110-112]. The condenser selection criteria depend on factors such as the amount of cooling 

required, the size and weight of plant and type of the cooling media. Due to elimination of 

the secondary cooling water loop, air-cooled condensers are preferred over the water-cooled 

condensers.      
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3.5 Control of the ORC 

The research about adopting the ORC for harvesting energy from internal combustion 

engines is mostly dedicated to choosing the best architecture [113], working fluid and 

expander selection [88] and modelling [114, 115]. Publications about thermal management 

and control of the ORC are scarce, and not usually supported by experimental results. 

Furthermore, control of high-pressure part of the ORC adopted for recovering energy in 

automotive applications is not a trivial task. First, the heat source transient behaviour (in 

terms of mass flow rate and temperature) makes the operation of the cycle very different from 

a typical steam Rankine cycle. Second, automotive regulations impose several constraints for 

working fluid selection. Third, the size and weight of components are constraints that should 

be addressed at the design stage of the ORC. Lastly, a reliable control system is required to 

ensure the safety of the system by keeping the system parameters within the limits and 

maximise the heat recovery efficiency [116].  

An important technical issue to address when designing the ORC system for mobile 

applications is the large range of operating condition and resulting thermal power fluctuation 

of the heat source due to driving conditions. For example, mass flow rates and temperatures 

of exhaust gases fluctuate with load condition and slope of the road [117]. In order to mitigate 

the effect of unsteady heat source in the ORC system, strategies such as controlling the 

vapour temperature at the evaporator outlet and using thermal energy storage (TES) devices 

can be considered to prevent the component damage and increase the efficiency of the WHR 

system [118]. In the ORC system, typical objectives of a control system in the high-pressure 

part of the cycle are to control the evaporator outlet temperature (superheating) by adjusting 

the pump speed and maintaining the required pressure by changing the expander speed [119]. 
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In [74] the authors proposed three different control strategies to control superheating and 

evaporating temperature by adjusting pump speed and expander speed as the manipulated 

variables, respectively. Two independent PI controllers deployed to examine the performance 

of the control strategies. The best performance achieved from the optimized evaporating 

temperature strategy; however, the performance of the controller drops as the operating 

condition changes from the nominal condition.  

Endo et al. [120] studied a distributed control system using two proportional controllers with 

feed-forward pressure and temperature terms from the evaporator outlet for an ORC system. 

In their study, the outlet temperature of evaporator manipulated using the pump speed and 

vapour pressure adjusted by changing the expander speed. In [121], Peralez et al. designed a 

gain scheduled PID controller combined with a nonlinear feed-forward action computed from 

a reduced-order model of the high-pressure region of the ORC system to control superheating 

at the evaporator outlet. More recently, authors in [122] deployed offline dynamic 

programming and online optimization techniques to maximise the power production of a 

diesel-electric railcar. Hou et al. [123] applied a generalized minimum variance controller 

(GMVC) to a 100 kW ORC system to control the outlet temperature of evaporator, power, 

condenser outlet temperature and throttle pressure. However, the stochastic disturbances in 

the system have not been considered in their proposed control scheme. 

 Zhang et al. [110] investigated a multi-variable linear quadratic regulator (LQR) coupled 

with a PI controller and an extended observer. This control scheme is developed based on the 

linear state-space model of the ORC system. Liu et al. [124] developed adaptive linear model 

predictive control (LMPC) and nonlinear model predictive control (NMPC) . The controllers 

in their study are designed based on a reduced-order moving boundary (MB) model of the 
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ORC system using ethanol as the working fluid. The authors pointed out the superiority of 

both control methods in terms of set-point tracking and disturbance rejection as compared to 

a tuned PID controller, but it should be noted that this improvement is achieved at the price 

of higher online computations, because both LMPC and NMPC require the online iterative 

solution of optimal control problem.  

Despite high potential of employing the ORC for increasing the efficiency of internal 

combustion engines, implementation challenges such as developing non-toxic and non-

corrosive organic fluids, designing high efficiency expander capable of withstanding high 

pressures and obtaining safe and efficient system operating points by utilising an effective 

control system have limited the commercial usage of this technology. Therefore, to adopt the 

ORC for mobile applications, the study of agile and efficient real-time controllers for the 

cycle should be emphasized to ensure the safety of system and maximise its performance in 

simulation before the experimental stage.     

In order to address the objectives of this thesis the rest of this study is organized as follows: 

In chapter 4, the model for all components of the ORC is presented. Since the evaporator unit 

dominates the dynamic response of the ORC cycle, in chapter 5, a novel neuro-fuzzy model 

of this unit is presented and its performance is compared to the conventional numerical 

models. The neuro-fuzzy model of the evaporator is integrated with the model of other 

components of the ORC and in chapter 6, an agile neuro-fuzzy controller based on the inverse 

dynamics of the ORC cycle is developed to ensure the safety of the cycle and maximise its 

performance. 



44 

 

 

3.6 Summary 

In this chapter initially various architectures of ORC are reviewed and their suitability for 

integration as a bottoming technology for waste heat recovery in internal combustion engines 

is discussed. Furthermore, the criteria for selection of the appropriate ORC working fluid for 

waste heat recovery are investigated. Moreover, selection of the main components of the 

ORC and their applicability for mobile applications is discussed. The findings of this chapter 

are summarised as follows: 

• The superior conversion efficiency and compatibility with low to medium 

temperature heat sources are among the advantages of the ORC that makes it a viable 

option for waste heat recovery in mobile application. 

• The reviews suggest that selection of the cycle architecture mostly depends on the 

heat source characteristics. In applications of WHR from internal combustion 

engines, SRORC, DRORC and RORC due to the complexity of the expander are not 

generally suitable architectures. However, ORC with recuperator architecture can be 

deployed to preheat the working fluid entering evaporator. This cycle will be 

beneficial as it reduces the amount of heat required for vaporizing the working fluid 

in the evaporator. 

• Despite the broad range of available substances, there is not a single optimal working 

fluid for all applications of the ORC and only a few of the available substances are 

deployed in commercial ORC applications. The desired properties of working fluid 

include adequate temperature profile match with the heat source, low boiling point, 

high auto-ignition temperature, chemical stability, high flash point, low ODP and 

GWP. 
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• In automotive applications of the ORC, the size and weight of the components should 

be taken into account at the design stage since excessive weight or size has a negative 

impact on the fuel consumption of the vehicle. 

• Selection of the pump depends on the pressure and flow rate demands of the cycle. 

In mobile applications compatibility with working fluid and being leak proof are extra 

features that are required. Since the flow rate of pump is usually used to control the 

superheating at the evaporator outlet, the pump needs to be able to deliver the organic 

fluid in low flow rates while keeping the pressure at the required level. 

• Due to the high thermal inertial, the evaporator dominates the dynamic response of 

the system. Plate heat exchangers are highly compact and have a large heat transfer 

area, hence, they are able to recover maximum amount of heat from the heat source. 

Furthermore, minimum pressure drop, minimum risk of internal leakage and 

straightforward maintenance are the features that make plate heat exchanger a proper 

choice for ORC in mobile applications.   

• Selection of the expander type plays a vital role in the overall performance and cost 

of the ORC for small scale ORC applications. Scroll expanders are the most widely 

used volumetric expanders for small-scale ORC applications with maximum reported 

expander output of 12 kW. 

• The condenser selection depends on factors such as the amount of cooling required, 

the size and weight of plant and type of the cooling media. Air-cooled condensers are 

preferred over the water-cooled condensers since they do not require a secondary 

cooling water loop. 
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• In the ORC system, typical objectives of a control system in the high-pressure part of 

the cycle are to control the evaporator outlet temperature (superheating) by adjusting 

the pump speed and maintaining the required pressure by changing the expander 

speed.   
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Chapter 4: Modelling the components of ORC  

In this chapter models of components in the ORC system are presented. The objective is to 

create an agile control-oriented ORC model that can be used for real-time control purposes. 

It should be noted that while the model of some components such as pumps and expanders 

are readily available in the literature, the correct representation of the components which 

determine the dynamic response of the ORC (i.e., heat exchangers) is a challenging task. 

Therefore, the modelling techniques for these components will be emphasized in this study.  

4.1 Pump model 

In the ORC waste heat recovery system, the pump is responsible for pressurizing the working 

fluid and providing the required mass flow rate through the cycle. Depending on the mass 

flow rate and pressure requirements centrifugal and volumetric-type pumps such as 

diaphragm and piston pumps can be utilized. However, in automotive applications, other 

requirements such as being leak-proof, ability to deliver lower mass flow rate at higher 

pressures and compatibility with the organic working fluid should be met. In this study, 

among the available options a diaphragm pump is selected for the ORC system. The enthalpy 

of working fluid at the evaporator outlet 𝐻𝑝,𝑜 and the pump work 𝑊𝑝 are given by: 

𝐻𝑝,𝑜 =
𝜈𝑝(𝑃𝑝,𝑜−𝑃𝑝,𝑖)

 𝑝

+ 𝐻𝑝,𝑖                (4.1) 

𝑊𝑝 =
𝑚̇𝑝𝜈𝑝(𝑃𝑝,𝑜−𝑃𝑝,𝑖)

 𝑝

                 (4.2) 

where 𝑃𝑝,𝑜 and 𝑃𝑝,𝑖 are the inlet and outlet pressures of the pump, respectively. 𝐻𝑝,𝑖 is the 

working fluid enthalpy at the pump inlet, 𝑚̇𝑝 is the pump mass flow rate in 𝑘𝑔/𝑠; 𝜈𝑝is the 

average specific volume of the working fluid in 𝑚3/𝑘𝑔 and 
𝑝
 is the pump efficiency. 
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4.2 Expander model  

The expander selection plays a vital role in the performance of ORC. In small-scale ORC 

systems, volumetric-type expanders are usually preferred over velocity-type expanders, 

because of their reliability, availability, reduced number of moving parts and ability to 

operate at the higher pressures and lower mass flow rates [125]. Selection of the expander 

type depends on many factors such as type of working fluid and expansion process pressure 

ratio. Moreover, the dynamic response of expander is much faster than the heat exchanging 

components in the cycle. Therefore, a detailed dynamic model of the expander is unnecessary 

for the simulation and a steady-state model is sufficient for this purpose. In this study, a 

volumetric scroll type expander is used. A zero-dimensional thermodynamic model for the 

expander based on the state enthalpies is formulated. The expander output work 𝑊𝑒𝑥𝑝 is given 

by: 

𝑊𝑒𝑥𝑝 = 𝑚̇𝑒𝑥𝑝
𝑒𝑥𝑝

(𝐻𝑒𝑥𝑝,𝑜 − 𝐻𝑒𝑥𝑝,𝑖)        (4.3) 

where 𝑚̇𝑒𝑥𝑝 is the working fluid mass flow rate passing through the expander, 𝐻𝑒𝑥𝑝,𝑜 and 

𝐻𝑒𝑥𝑝,𝑖 are the inlet and outlet enthalpies of working fluid in 𝑘𝐽/𝑘𝑔, and 
𝑒𝑥𝑝

is the expander 

efficiency. 

4.3 Condenser model 

The heat exchanging elements are determining the dynamic response of the ORC system due 

to their slower response time. Nevertheless, since the ORC system is operating under the 

supercritical pressures, prediction and control of the high-pressure side of the ORC system 

is much more important. This is due to complex heat transfer behaviour in the evaporator 

under supercritical pressures and transient heat source. In this study, it is assumed that there 
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is enough cooling capacity on board to remove the excessive heat from the working fluid in 

the condenser. This task can be achieved by using a separate fan to cool down the condenser 

or utilizing the engine cooling fan to reduce the temperature of organic fluid. Therefore, the 

working fluid at the outlet of condenser is considered to be subcooled and a zero-order 

thermodynamic model according to the inlet and outlet working fluid enthalpies describes 

the condenser power 𝑄𝑐𝑜𝑛 as follows:         

𝑄𝑐𝑜𝑛 = 𝑚̇𝑐𝑜𝑛𝑑(𝐻𝑒𝑥𝑝,𝑜 − 𝐻𝑐𝑜𝑛,𝑜)        (4.4) 

where 𝑚̇𝑐𝑜𝑛𝑑 is the mass flow rate of refrigerant through the condenser and 𝐻𝑒𝑥𝑝,𝑜 and 

𝐻𝑐𝑜𝑛,𝑜 are the enthalpies at the expander outlet and condenser outlet, respectively. 

4.4 Valve model 

A three-way control valve in the ORC configuration is responsible for bypassing the 

excessive mass flow rate of working fluid. The valve provides an extra degree of freedom in 

the ORC configuration to regulate the work output of the expander by adjusting the 

percentage of working fluid mass flow rate passing through the expander. The working fluid 

mass flow rate passing through the valve is as follows: 

𝑚̇𝑟,𝑣 =  𝛼 𝐴𝑣√2𝜌∆𝑃         (4.5) 

where 𝛼 is the percentage of the valve opening, 𝐴𝑣 is the valve cross-section area in 𝑚2 and 

∆𝑃 is the pressure drop between the evaporator outlet and the valve inlet calculated using 

the Darcy-Weisback pressure drop correlation [126] as follows: 

∆𝑃𝑝𝑖𝑝𝑒 =
𝑓𝐷𝜌𝐿𝑝𝑣2

2𝐷ℎ
         (4.6) 
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1

√𝑓𝐷
= −1.8 log  [(

∈𝑝/𝐷

3.7
)

1.11

+
6.9

𝑅𝑒
]       (4.7) 

where 𝐷ℎ and  𝐿𝑝 are the pipes hydraulic diameter and length of pipe in 𝑚, respectively and 

∈𝑝 and ∈𝑝/𝐷  denote the absolute and relative roughness of the pipe in 𝑚.  

4.5 Liquid receiver model 

Liquid receiver is a storage vessel used in thermodynamic cycles to temporarily hold the 

excessive working fluid which is not in circulation and reduce the fluctuation of working 

fluid level occurring due to the dynamic operation of the cycle. The performance of ORC 

system can be influenced by the amount of working fluid charge circulating in the system. 

Similar to refrigerant systems, during the dynamic operation of the ORC, the excessive 

working fluid can accumulate in the condenser and reduce the effective condensing heat 

transfer area [127]. Furthermore, supplying the pump with two-phase mixture flow may 

result in formation of cavity which can damage it. Therefore, improper charge within the 

cycle can reduce its efficiency and compromise its reliability. 

In order to prevent the accumulation of excessive charge in the condenser and ensure that the 

pump is only supplied with saturated liquid a liquid receiver needs to be installed between 

the condenser and pump within the cycle. The size of liquid receiver should be large enough 

to absorb the refrigerant fluctuations caused by dynamic operation of the system and prevent 

liquid back up in the condenser that can impair the ORC performance [127]. By assuming a 

properly sized liquid receiver installed between the condenser and pump in the cycle, in a 

dynamic model of ORC system, the effect of two-phase mixture flow on the pump and liquid 

back up in the condenser can be neglected. The behaviour of liquid receiver can be modelled 

by deploying the following conservation equations:   
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𝑑𝛹

𝑑𝑡
−

𝑚̇𝑟,𝑙𝑟,𝑖−𝑚̇𝑟,𝑙𝑟,𝑜

𝜌𝑟,𝑙𝑉𝑎𝑐
= 0             (4.8) 

𝑑𝐻𝑙𝑟

𝑑𝑡
−

𝑚̇𝑟,𝑙𝑟,𝑜(𝐻𝑙𝑟,𝑖−𝐻𝑙𝑟,𝑜)

𝜌𝑟,𝑙𝑉𝑙𝑟
= 0            (4.9) 

where 𝛹 denotes the liquid receiver’s relative liquid refrigerant level, 𝑚̇𝑟,𝑙𝑟,𝑖 𝑎𝑛𝑑 𝑚̇𝑟,𝑙𝑟,𝑜 are 

the mass flow rate of working fluid at the receiver’s inlet and outlet, respectively. 𝜌𝑟,𝑙 is the 

density of liquid working fluid, and 𝑉𝑙𝑟 represents the total volume of the liquid receiver tank. 

𝐻𝑙𝑟,𝑖 𝑎𝑛𝑑 𝐻𝑙𝑟,𝑜 are the enthalpy of working fluid at the inlet and outlet of liquid receiver. 

4.6 Evaporator model 

Designing an effective and reliable control system for the ORC relies on accurate 

modelling of all components in the system. The evaporator is the most critical component of 

the ORC system, responsible for the energy transfer from heat source to working fluid. When 

dealing with a low-capacity heat source in kW range found in ICEs, the governing dynamics 

of the system is dominated by the behavior of the evaporator. Moreover, due to highly 

dynamic engine conditions the conventional methods of evaporator modelling such as the 

single-segment lumped method leads to poor off-design performance of the ORC system for 

a variety of driving conditions since they do not model the dynamic nature of the heat source 

and the phase change of working fluid is not considered in them. Several methods including, 

intermediary thermal fluid loop, exhaust gas mixture recirculation, thermal energy storage 

(TES) have been developed to dampen or reduce the fluctuation of heat source and optimize 

it around a certain steady-state point [128]. Addition of these systems to ORC system has 

several drawbacks, including reducing the efficiency potential in the loop, increasing the 

exergy loss of the system and increasing the size, cost and weight of the system which can 

reduce the feasibility potential of the system [128]. Although these methods can help to 
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reduce the chance of decomposition of the organic working fluid, none of them is able to 

eliminate the fluctuations of the heat source completely. Therefore, it is necessary to create 

a dynamic model of the evaporator that is capable of handling transient conditions in an ORC 

waste heat recovery system. Among different modelling techniques of the evaporator, Finite 

Volume (FV) [129, 130] and Moving Boundary (MB) [131-134] techniques are the most 

widely used approaches to model evaporator in the ORC for cycle optimisation, working 

fluid selection and testing the response of different control strategies. 

Quoilin et al. [74] modelled the ORC for low-grade source heat (120-300 °C) to investigate 

the behaviour of three different control strategies using the steady-state and dynamic FV 

method for the evaporator. In steady-state model all the time derivatives are set to zero, while 

in the dynamic model the time derivatives are taken into account. The authors discretized the 

whole length of evaporator into 10 segments and used the steady-state model in Engineering 

Equation Solver software to optimize the working condition of evaporator for 31 different 

working points. The heat transfer coefficient for hot fluid side considered to be constant 

whereas a variable heat transfer coefficient for the working fluid side. The optimized working 

points then used to derive the equations for control strategies. The dynamic model is deployed 

to compare the performance of the control strategies. The authors concluded that this method 

cannot be used as a predictive model to precisely evaluate the energy recovery potential of 

the system, due to the various simplification that are considered in the hypothesis, including 

evaporation pressure of the working fluid considered to be constant and the assumption of a 

constant pinch value. 

Wei et al. [115] presented a comparison between the FV and MB methods for a stationary, 

industrial-sized 100 kW ORC system. For the FV method they discretized the evaporator to 
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5 segments and assumed the linear pressure drop in whole evaporator length. The authors 

concluded that the MB method is the preferred method over the FV method since both of the 

models simulate the system correctly during transients and MB method is less 

computationally demanding which results in a faster model.  

Benato et al. [135] modelled a horizontal circular finned-tube evaporator using the FV 

method. The authors investigated the decomposition of the working fluid during transients in 

an ORC waste heat recovery system used for a gas turbine power plant. Furthermore, it is 

worth mentioning that due to the higher thermal inertia in power plants’ evaporators, the 

obtained response time of the system was about 60 minutes which is much higher than the 

response time of the mobile ORC systems.  

Jiménez-Arreola et al. [136] modelled two type of compact evaporator in order to compare 

their dynamic behaviour in applications with fluctuating heat sources at the design stage. The 

authors used the 1-D FV method and discretized both fin-and-tube and louver fin and multi-

port flat tubes evaporators to 20 segments and considered the pressure drop in the whole 

length of evaporators according to the correlation of flow inside the pipes. The commercial 

TIL library of Dymola and REFPROP were deployed to simulate the system and calculate 

the thermodynamic properties, respectively. Based on their simulation results the authors 

concluded that the response time for fin-and-tube evaporator is almost double the louver fin 

multi-port flat tubes evaporator.  

Desideri et al. [137] provided a comparison between the MB and FV methods for modelling 

low capacity (5-150 kW) evaporators in terms of model integrity and accuracy. The Authors 

used the mathematical formulation of 1-D mass and energy conservation laws to develop the 

equations for the evaporators. Both models are available in open-source ThermoCycle 

Modelica library. Pressure drop across the whole length of evaporator is neglected in both 
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modelling techniques. The models are used to develop a low-capacity ORC system and are 

validated using the experimental data from an 11 kW ORC power unit. Moreover, the open-

source CoolProp software is utilized to calculate the thermodynamic properties of the 

working fluid. The obtained simulation time for the steady-state FV model of evaporator with 

100 control volumes is 625s and one-third of this time is reported for MB model simulation. 

Rongqi Shi et al. [128] used the MB approach to model the dynamics of the evaporator in 

order to investigate the effect of Exhaust Gas Mixture Recirculation (EGMR) loop on the 

ORC system. The mass, energy and momentum conservation equations are derived to model 

the dynamic behaviour of evaporator. Furthermore, the authors utilized the Active 

Disturbance Rejection Control (ADRC) as the control scheme. The mass flow rate of exhaust 

gas and the evaporating pressure of working fluid is considered as the control input and 

output, respectively. According to the simulation results the cycle efficiency of 7% is 

reported. The overall efficiency of system is increased from 0.9% for conventional ORC 

system to 1.5% for EGMR-ORC system.  

4.6.1 Finite Volume model 

In most of the ORC investigations, FV and MB methods have been used to model the 

evaporator behaviours under steady or transient heat sources. In the FV technique, the 

evaporator volume is discretised to a finite number of equally spaced and constant control 

volumes. The governing equations of evaporator are calculated by integrating the 1-D mass, 

energy and momentum conservation equations over the control volumes. Output of each cell 

is input to the next cell and by formulating the governing equations the final outputs can be 

calculated by utilising an iteration process. Fig. 4.1 represents the discretisation of the 

evaporator with length 𝐿 to 𝑁 control volumes.  
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As the number of the control volumes increases, the accuracy of the model improves. 

Selection of the number of control volumes is a compromise between accuracy and total 

computational time of the model [137]. If the number of control volumes is high enough to 

capture the transients, since the temperature variations within the cells is considered to be 

low, the thermo-physical properties of working fluid within the cells can be assumed 

constant.  

 

Fig. 4.1. Discretisation of evaporator to N control volumes 

The mass, energy and momentum conservation equations for each cell J of refrigerant side 

of the evaporator will be derived hereunder. 

The mass conservation equation representing the evaporator behaviour is: 

𝑑𝑀

𝑑𝑡
= 𝑚̇𝑟,𝑖𝑛 − 𝑚̇𝑟,𝑜𝑢𝑡              (4.10) 

Definition of mass and its relation with volume and density results in the following equation: 

𝑑𝑀

𝑑𝑡
= 𝑉𝑟

𝜕𝜌𝑟

𝜕𝑡
                  (4.11) 

Substituting the term 
𝑑𝑀

𝑑𝑡
  from equation (4.10) in equation (4.11) results in: 

𝑚̇𝑟,𝑖𝑛 − 𝑚̇𝑟,𝑜𝑢𝑡 = 𝑉𝑟
𝜕𝜌𝑟

𝜕𝑡
 (4.12) 
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The pressure drop across the evaporator is neglected; therefore, the momentum conservation 

equation is in form of equation (4.13). 

𝑃𝑖𝑛 = 𝑃𝑜𝑢𝑡                (4.13) 

The energy balance for the evaporator can be represented as (4.14), where  𝐻𝑟,𝑖𝑛 and 𝐻𝑟,𝑜𝑢𝑡 

are the input and output enthalpy of refrigerant for each cell J, 𝑄𝑟 is the evaporator heat input 

and  𝑊𝑟 is the work done by the evaporator which by assumption is considered to be zero. 

𝑑𝑈

𝑑𝑡
= 𝑚̇𝑟,𝑖𝑛 𝐻𝑟,𝑖𝑛 − 𝑚̇𝑟,𝑜𝑢𝑡 𝐻𝑟,𝑜𝑢𝑡 + 𝑄𝑟 + 𝑊𝑟 − 𝑃

𝑑𝑉𝑟

𝑑𝑡
           (4.14) 

By definition, the system energy U can be represented in form of total enthalpy, pressure and 

volume as follows: 

𝑈 = 𝐻𝑟 − 𝑃𝑉𝑟                 (4.15) 

𝐻𝑟 = 𝐻𝑟 ⋅ 𝑚𝑟               (4.16) 

𝑈 = 𝐻𝑟 ⋅ 𝑚𝑟 − 𝑃𝑉𝑟 = 𝐻𝑟 ⋅ 𝜌𝑟 𝑉𝑟 − 𝑃𝑉𝑟            (4.17) 

Applying the chain rule differentiation to equation (4.17) results in equation (4.18). Since the 

pressure drop across the evaporator is neglected the term 𝑉𝑟
𝑑𝑃

𝑑𝑡
  in equation (4.18) becomes 

zero. 

𝑑𝑢

𝑑𝑡
= 𝑉𝑟 𝜌𝑟

𝜕𝐻𝑟

𝜕𝑡
+ 𝑉𝑟 𝐻𝑟

𝜕𝜌𝑟

𝜕𝑡
− 𝑉𝑟

𝑑𝑃

𝑑𝑡
             (4.18) 

By substituting the term  
𝑑𝑈

𝑑𝑡
 from equation (4.18) in equation (4.14), equation (4.19) can be 

written as: 

𝑉𝑟 𝜌𝑟
𝜕𝐻𝑟

𝜕𝑡
+ 𝑉𝑟 𝐻𝑟

𝜕𝜌𝑟

𝜕𝑡
= 𝑚̇𝑟,𝑖𝑛 𝐻𝑟,𝑖𝑛 − 𝑚̇𝑟,𝑜𝑢𝑡 𝐻𝑟,𝑜𝑢𝑡 + 𝑄𝑟          (4.19) 
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Combining equation (4.11) and equation (4.19) results in equation (4.20).  

𝑉𝑟 𝜌𝑟
𝜕𝐻𝑟

𝜕𝑡
+ (𝑚̇𝑟,𝑖𝑛 − 𝑚̇𝑟,𝑜𝑢𝑡)𝐻𝑟 = 𝑚̇𝑖𝑛 𝐻𝑟,𝑖𝑛 − 𝑚̇𝑜𝑢𝑡 𝐻𝑟,𝑜𝑢𝑡 + 𝑄𝑟                          (4.20) 

By rearranging the terms, the general term of balance equation for refrigerant side can be 

written as equation (4.21). 

𝑉𝑟 𝜌𝑟
𝜕𝐻𝑟

𝜕𝑡
= 𝑚̇𝑖𝑛(𝐻𝑟,𝑖𝑛 − 𝐻𝑟) − 𝑚̇𝑜𝑢𝑡(𝐻𝑟,𝑜𝑢𝑡 − 𝐻𝑟) + 𝑄𝑟                                                           (4.21) 

Equation (4.21) can be represented in general form for each cell J as follows: 

𝑉𝑟 𝜌𝑟
𝜕𝐻𝑟

𝜕𝑡
− 𝑚̇𝑟(𝐻𝑟,𝐽 − 𝐻𝑟,𝐽−1) − 𝑄𝑟 = 0             (4.22) 

Since the procedure for deriving the equations for the hot fluid side is the same as refrigerant 

side, the derivation is not presented here. Equation (4.23) represents the general balance 

equation for cell J in the hot fluid side.   

𝑉ℎ 𝜌ℎ 𝐶𝑝,ℎ
𝜕𝑇ℎ

𝜕𝑡
+ 𝑚̇ℎ 𝐶𝑝,ℎ(𝑇ℎ,𝐽 − 𝑇ℎ,𝐽+1) + 𝑄ℎ = 0           (4.23) 

Equation (4.24) represents the energy conservation principle across the evaporator’s wall. 

𝑚𝑤𝑎𝑙𝑙 𝐶𝑝,𝑤𝑎𝑙𝑙
𝜕𝑇𝑤𝑎𝑙𝑙

𝜕𝑡
− 𝑄ℎ + 𝑄𝑟 = 0                                                                                     (4.24) 

where 𝑄𝑟 and 𝑄ℎ are the heat input in the refrigerant side and hot fluid side, respectively, and 

are given by equation (4.25) and (4.26). 

𝑄𝑟 = 𝐴𝑟 ℎ𝑟(𝑇𝑤𝑎𝑙𝑙 − 𝑇𝑟)              (4.25) 

𝑄ℎ = 𝐴ℎ ℎℎ(𝑇ℎ − 𝑇𝑤𝑎𝑙𝑙)                (4.26) 
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Equation (4.22), (4.23) and (4.24) are the three equations representing the behaviour of the 

evaporator. In order to solve these equations, they are discretized numerically according to 

the finite volume theorem and equations (4.27), (4.28) and (4.29) are achieved.  

𝐻𝑟,𝐽
𝑡+1 = 𝐻𝑟,𝐽

𝑡 +
𝛥𝑡

𝑉𝑟,𝐽 𝜌𝑟,𝐽
𝑡 (𝐴𝑟,𝐽 ℎ𝑟,𝐽

𝑡 (𝑇𝑤𝑎𝑙𝑙,𝐽
𝑡 − 𝑇𝑟,𝐽

𝑡 ) − 𝑚̇𝑟,𝐽
𝑡 (𝐻𝑟,𝐽

𝑡 − 𝐻𝑟,𝐽−1
𝑡 ))                           (4.27) 

𝑇ℎ,𝐽
𝑡+1 = 𝑇ℎ,𝐽

𝑡 +
𝛥𝑡

𝑉ℎ,𝐽 𝜌ℎ,𝐽 
𝑡 𝐶𝑝ℎ,𝐽

𝑡 (𝑚̇ℎ,𝐽 
𝑡 𝐶𝑝ℎ,𝐽

𝑡 (𝑇ℎ,𝐽+1
𝑡 − 𝑇ℎ,𝐽

𝑡 ) − 𝐴ℎ,𝐽 ℎℎ,𝐽
𝑡 (𝑇ℎ,𝐽

𝑡 − 𝑇𝑤𝑎𝑙𝑙,𝐽
𝑡+1 ))                 (4.28) 

𝑇𝑤𝑎𝑙𝑙,𝐽
𝑡+1 = 𝑇𝑤𝑎𝑙𝑙,𝐽

𝑡 +
𝛥𝑡

𝑚𝑤𝑎𝑙𝑙,𝐽 𝐶𝑝𝑤𝑎𝑙𝑙,𝐽
(𝐴ℎ,𝐽 ℎℎ,𝐽

𝑡 (𝑇ℎ,𝐽
𝑡 − 𝑇𝑤𝑎𝑙𝑙,𝐽

𝑡 ) − 𝐴𝑟,𝐽 ℎ𝑟,𝐽
𝑡 (𝑇𝑤𝑎𝑙𝑙,𝐽

𝑡 − 𝑇𝑟,𝐽
𝑡 ))    (4.29) 

4.6.1.1 Stability criteria and numerical time step calculation 

According to the finite volume method of discretization, for obtaining a stable solution and 

prevent instability of numerical calculations the coefficients of 𝐻𝑟,𝐽
𝑡  and 𝑇ℎ,𝐽

𝑡  in equations 

(4.27) and (4.28) respectively, must be greater than zero. 

Therefore, from equation (4.27) the time step can be written as: 

1 −
𝛥𝑡⋅𝑚̇𝑟,𝐽

𝑡

𝑉𝑟,𝐽 𝜌𝑟,𝐽
𝑡 ≥ 0                (4.30) 

𝛥𝑡 ≤
𝑉𝑟,𝐽 𝜌𝑟,𝐽

𝑡

𝑚̇𝑟,𝐽
𝑡                (4.31) 

And from equation (4.28) time step can be calculated as: 

1 +
𝛥𝑡

𝑉ℎ,𝐽 𝜌ℎ,𝐽 
𝑡 𝐶𝑝ℎ,𝐽

𝑡 (−𝑚̇ℎ,𝐽 
𝑡 𝐶𝑝ℎ,𝐽

𝑡 − 𝐴ℎ,𝐽 ℎℎ,𝐽
𝑡 ) ≥ 0           (4.32) 

𝛥𝑡 ≤
𝑉ℎ,𝐽 𝜌ℎ,𝐽 

𝑡 𝐶𝑝ℎ,𝐽
𝑡

𝑚̇ℎ,𝐽
𝑡  𝐶𝑝ℎ,𝐽

𝑡 +𝐴ℎ,𝐽 ℎℎ,𝐽
𝑡                (4.33) 
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Since stability criteria for equations (4.27) and (4.28) result in two different time steps, in 

order to choose a unique time step that guarantees the stability of model, the minimum value 

of  𝛥𝑡 from equation (4.31) and (4.33) will be calculated and used as numerical time step as 

follows: 

𝛥𝑡 = 𝑚𝑖𝑛 (
𝑉𝑟,𝐽 𝜌𝑟,𝐽

𝑡

𝑚̇𝑟,𝐽
𝑡 ,

𝑉ℎ,𝐽 𝜌ℎ,𝐽
𝑡  𝐶𝑝ℎ,𝐽

𝑡

𝑚̇ℎ,𝐽 
𝑡 𝐶𝑝ℎ,𝐽

𝑡 +𝐴ℎ,𝐽 ℎℎ,𝐽
𝑡 )           (4.34)   

This method can be used to produce accurate simulations; however, it is computationally 

expensive and is not appropriate for control purposes. The computational time of a super-

critical FV model is reported to be over three times more than the actual number of operating 

hours of evaporator [138]. FV method is robust, accurate and widely used in the literature 

[72, 74, 139], but this method is not suitable for real-time control purposes.    

4.6.2 Moving Boundary model 

The MB method divides the whole length of evaporator into three control volumes 

(liquid, two-phase mixture, vapour) with intermediate moving boundaries that vary with 

time, thus, the number of states is less than that of FV models [115]. In the MB model, if any 

of three phases disappears, this creates a singularity that causes numerical problems. 

Therefore, the MB model is not appropriate for situations where all three distinct phases of 

working fluid do not exist such as start-up and shut-down. Unfortunately, most of the ORC 

components failure occurs in such conditions [115]. Therefore, in such situations, a switching 

mechanism is required to switch between Two-Phase and vapour region mode (TP-V) and 

Two-Phase region mode (TP) [140]. Comparisons between both models have been made in 

[115, 137, 141] that show, in terms of accuracy, the FV models are slightly more accurate 

since they have a finer spatial discretisation, but due to the lower number of state variables, 
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MB models are less computationally expensive. Wei et al. [115] represented two FV and MB 

models for the evaporator and compared the mass flow rate and outlet temperature of 

evaporator of both models with the experimental data available by UTRC (United 

Technology Research Center) for a 100 kW ORC system. From their simulation results, it is 

observable that the accuracy of FV model with five cells is better than the MB model. 

4.7 Summary 

In this chapter mathematical representation of the ORC components are presented. The 

objective is to create a model of the ORC which is fast enough to be used for real-time control 

purposes. As opposed to the model of some components such as pump and expander which 

can be easily obtained, deriving a model of evaporator which determines the dynamic 

response of the system is challenging. Most of studies in the literature deployed the moving 

boundary and finite volume methods to formulate the evaporator model. The FV is a robust 

and accurate model which is able to handle the supercritical pressures. However, this method 

utilises a numerical iteration process for mimicking the evaporator behaviour. Therefore, this 

model is computationally expensive. The accuracy of the finite volume model in influenced 

by number of the control volumes and as the number of control volumes increases the 

computational time of the model increases too. To overcome this issue the moving boundary 

evaporator model can be utilised which is slightly less accurate but is computationally less 

expensive. In the moving boundary model just three control volumes based on the phase of 

the fluid are considered. This model suffers from singularity when any of distinct phases 

disappear that could cause numerical issues. Therefore, this model is not appropriate for 

conditions such as start-up or shut-down which are responsible for most of the ORC 

components failure. 
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The numerical methods of evaporator modelling are useful at the design stage of the ORC 

system to find the best components of the cycle and the optimal working fluid selection, but 

a more traceable model is required for the real-time control of the ORC with transient heat 

source. In the next chapter a novel data-driven neuro-fuzzy approach is deployed to reduce 

the computation burden of the evaporator model.  
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Chapter 5: Neuro-fuzzy modelling of evaporator 

5.1 Artificial intelligence modelling  

Artificial intelligence (AI) has emerged as a powerful tool for modelling and control of 

nonlinear and challenging problems. As machines become increasingly capable, intelligent 

modelling and control has been increasingly applied in many disciplines for a wide range of 

applications. The ability of AI technologies to deal with cognitive tasks such as learning, 

adaptation and optimization makes them adequate candidates for overcoming the limitations 

arising in modelling and control of challenging plants using conventional methods. 

Intelligent systems mainly consist of technologies such as expert systems, artificial neural 

networks, fuzzy systems and evolutionary computation. Given the superior predicative 

potential of AI techniques, they became popular for modelling and control of complex 

systems. In order to mitigate the drawbacks of traditional AI methods, hybrid techniques are 

developed to join their advantages by combining different methods. This chapter aims to 

provide an overview of some major AI techniques and model the highly nonlinear behaviour 

of an evaporator used in the ORC applications using the input-output data gathered from a 

conventional FV model.  

5.2 Artificial neural network modelling 

The human brain capabilities have always fascinated researchers and motivated them to 

replicate its function. Artificial Neural Networks (ANN) are developed to mimic the 

remarkable ability of biological neural network to reason and learn in an uncertain and 

imprecise environment. The elementary unit of an ANN is called neuron. The ANN 

resembles the biological neural network in two respects [142]:  
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• The network requires a learning process to acquire knowledge from its environment. 

• The acquired knowledge is stored in the interneuron connection strengths known as 

synaptic weights.  

The fundamental information processing unit of an ANN is called a neuron. A neuron is a 

mathematical function that mimics the function of a biological neuron. Fig. 5.1 represents 

the model of neuron which is a basis for designing various types of neural networks. Each 

neuron comprises three basic elements: weighted connecting links which are also known as 

synapses, the summing junction for adding the input signals and an activation function to 

limit the neurons output amplitude.      

 

Fig. 5.1. Nonlinear model of a neuron [142] 

In mathematical terms, the model of a neuron can be formulated as follows: 

𝑣𝑘 = ∑ 𝑤𝑘𝑗𝑥𝑗
𝑚
𝑗=0                  (5.1) 

𝑦𝑘 = 𝜑(𝑣𝑘)                     (5.2) 
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where 𝑥𝑗 represents the input signal, 𝑤𝑘𝑗 denotes the respective synaptic neuron weight, 𝜑(. ) 

is the neurons activation function, and 𝑦𝑘  is the output signal of the neuron. 

A layer is formed by employing one or more neuron which perform parallel operation. An 

ANN comprises an input layer, an output layer and one or more hidden layers. The neurons 

in the hidden layer are connected to neurons in input and output layers using directional 

connections with adaptive weights. The neurons can process the signal and then transmit it 

to the other connected nodes. The connection between these neurons determines the function 

of network. The ANN method is categorised as a data-driven non-parametric technique in 

which requires data for mapping the input variables to the output variables [143].  

After forming the architecture of network, it needs to be trained to perform the required task. 

The process of tuning the weights in a network in order to perform the adequate mapping 

between the input and output variables is called training the network. The weights are initially 

selected randomly and the data is presented to the network. In the next step, optimisation 

algorithms are employed to adjust the network weights in order to minimise the error between 

target data and the network-calculated data.  

5.2.1 Implementation of ANN evaporator model  

In this study two Multi-Layer Perceptron (MLP) neural networks are trained using 1000 data 

points collected from the FV model of the evaporator to model the heat source outlet 

temperature and refrigerant outlet temperature of the evaporator. The inputs to the model are 

mass flow rate and temperature of heat source and mass flow rate of refrigerant. 

To train the ANN model, the FV model of evaporator is excited by changing the heat source 

mass flow rate (𝑚̇ℎ), the heat source temperature (𝑇ℎ) and the mass flow rate of refrigerant 
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(𝑚̇𝑟) in the range of 0.07-0.29 kg/s, 412-523 K and 0.03-0.22 kg/s, respectively. The heat 

source mass flow rate and temperature data are randomly selected according to the range of 

a generic heat source in ICE of heavy-duty trucks. Details of the FV model used for collecting 

the data can be found in [129]. In total, 1000 data points collected and each data point 

represents one second of actual evaporator input-output behaviour. The input and output data 

are shown in Fig. 5.2.  

  

(a) (b) 

 

 

(c) 

Fig. 5.2. Input-output data gathered from FV model of evaporator (a) Mass flow rate and temperature of generic heat 

source (b) Mass flow rate of refrigerant (c) Refrigerant and heat source temperatures at the evaporator outlet 
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When training the network, it is important to prevent overfitting the network. If the model is 

overfitted it would perform well for predicting the outputs of training dataset, but its 

performance on other datasets is not satisfactory. A very common approach to overcome the 

overfitting issue is to use a validation and a test data set. The network is trained using the 

training dataset, the validation dataset is used to avoid the overfitting during the training 

process and finally the test dataset is deployed to check the generalization ability of the 

network for an unseen data set. Therefore, the dataset is randomly divided into three subsets: 

training dataset (70%), validation dataset (15%) and test dataset (15%). The architecture of 

the network is shown in Fig. 5.3. As illustrated, the network consists of a hidden layer with 

10 neurons and an output layer with one neuron. The activation function of the hidden layer 

is Tansig function and Purelin function is used in the output layer. The Levenburg-Marquardt 

algorithm is deployed for training the network and the number of iterations is set to 500. 

Moreover, the MSE and RMSE are used to evaluate the performance of the network. 

 

 

Fig. 5.3. MLP neural network architecture and refrigerant outlet temperature model input output variables  

As illustrated in Fig. 5.4. for the outlet refrigerant temperature prediction, the best validation 

performance is reached at iteration 426 with MSE equal to 0.0014. The comparison of the 
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performance of MLP neural networks model and FV model for the training and test datasets 

is presented in Figs. 5.5 and 5.6, respectively.  Table 5.1 represents the performance of the 

MLP neural networks model in predicting the refrigerant outlet temperature for training and 

test datasets.  

Table 5.1 – Network performance for prediction of refrigerant outlet temperature  

 MSE RMSE R 

Training data 0.0014 0.038 0.9999 

Test data 0.0019 0.043 0.9999 

    

The results indicate acceptable generalisation performance for prediction of outlet 

temperature of refrigerant with RMSE equal to 0.038 and 0.043 for training and test datasets, 

respectively. Furthermore, the linear correlation coefficient (R) of 0.99 obtained for both 

training and test datasets which indicates the high accuracy of the trained network in 

prediction of the evaporator data.  

 

 

Fig. 5.4. Mean square error during the network training 
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Fig. 5.5. Performance of the network in predicting the evaporator outlet temperature (training data) 

 

Fig. 5.6. Performance of the network in predicting the evaporator outlet temperature (test data) 
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Similar to the network trained for prediction of refrigerant outlet temperature, an MLP neural 

network with the same parameters is trained for modelling the heat source outlet temperature. 

The network architecture and model’s input and output variables are shown in Fig. 5.7. 

 

 

Fig. 5.7. MLP neural network architecture and heat source outlet temperature model input output variables 

The reduction of mean square error during the training phase of the network is represented 

in Fig. 5.8. For this network, the best validation performance equal to 0.023 reached at epoch 

500.   

 

Fig. 5.8. Mean square error during the network training 
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Figs. 5.9 and 5.10 represent the comparison of the trained MLP neural networks model and 

FV model outputs in prediction of heat source outlet temperature for training and test 

datasets, respectively. The performance of the network in prediction of training and test 

datasets is compared in Table 5.2. 

Table 5.2 – Network performance for prediction of refrigerant outlet temperature 

 MSE RMSE R 

Training data 0.021 0.145 0.9999 

Test data 0.024 0.157 0.9999 

The comparison of obtained results from FV model and MLP neural networks model 

indicated an acceptable agreement between both model outputs. The RMSEs obtained for the 

training dataset and test dataset are equal to 0.145 and 0.157, respectively. Furthermore, the 

MSE of training dataset is 0.021 and 0.024 achieved for the test dataset. Both obtained R 

values are close to 1 which indicate acceptable generalisation ability of the network.

 

Fig. 5.9. Performance of the network in predicting the heat source outlet temperature (training data) 
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Fig. 5.10. Performance of the network in predicting the heat source outlet temperature (test data) 

 

Although the performance of both MLP neural networks trained for predicting the outlet 

temperature of heat source and outlet temperature of refrigerant are acceptable, these models 

are referred to as black-box models. As opposed to the principle-based models, in black-box 

models the mathematical relations are unknown to the designer and have no physical 

meaning. Furthermore, these models require proper training in order to perform efficiently. 

Therefore, since the model performance depends on the design parameters such as model 

architecture, number of neurons in hidden layers, activation function of neurons, optimisation 

algorithm and learning rate parameter, deploying the ANN technique and its training involves 

a trial-and-error task.        
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5.3 Fuzzy theory and fuzzy modelling 

Fuzzy systems are knowledge-based and rule-based systems introduced by Zadeh in 1965 

[144]. Since the introduction of fuzzy systems, it has been gradually developed and applied 

in a variety of fields such as control, signal processing, communications, medicine, 

psychology, etc. Fuzzy logic can be considered as an extension of Boolean logic. While the 

Boolean logic assigns the value of 0 for “false” and 1 for “true” to the variables, fuzzy logic 

allows the variables to take any value in the interval [0, 1]. Therefore, fuzzy logic can handle 

the vague or uncertain data similar to the way that humans often think or communicate.  

A common issue of the traditional mathematical modelling techniques is inability to 

incorporate the extra information provided by engineers or operator due to the vague and 

imprecise nature of this information.  The fact that humans are able to manage complex tasks 

with high uncertainty has motivated the researches to search for alternative modelling and 

control approaches. Fuzzy modelling and control are an example of incorporation of human 

knowledge and deductive processes. Fuzzy models are considered as logical models that 

deploy “if-then” rules to establish qualitative relationships among the model variables. 

Fuzzy modelling approach is usually chosen where the system is complex, ill-defined or 

uncertain and conventional modelling techniques could not provide satisfactory results. The 

rule-based nature of fuzzy models makes them transparent to interpretation and allows the 

use of information which is expressed in form of natural language [145].  Nonetheless, 

similar to neural network models, the fuzzy models are referred to as flexible mathematical 

structures which are able to approximate a large class of complex nonlinear systems to a 

desired degree of accuracy [145].        
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5.3.1 Fuzzy sets and membership function 

The essential component of any fuzzy system is the concept of fuzzy sets. Unlike the Boolean 

logic that the truth values of variables can only be 0 or 1, in fuzzy sets the truth values can 

be any real number ranging between 0 and 1.  Consider evaporator temperature as an 

example. In order to identify a temperature (x) as “high”, the degree of membership of this 

temperature 𝜇𝐴𝑖
(𝑥)  to the set A (high) could be defined as follows: 

𝜇𝐴(𝑥) = 1 , if x is completely in A 

𝜇𝐴(𝑥) = 0 , if x is not in A 

0 < 𝜇𝐴(𝑥) < 1 , if x is partially in A              (5.3) 

If we consider evaporator temperatures more than 450K as high, we can define the set of 

evaporator high temperatures using the classical sets as follows: 

𝐴 = {𝑥|𝑥 ≥ 450𝐾}                 (5.4) 

As depicted in the Fig. 5.11, this classical set imposes a sharp boundary at 450K, and a 

temperature would have to be either high or not. Using the classical set theory, an evaporator 

with temperature = 449 K does not belong to this set and is not considered high. In the fuzzy 

set methodology, a fuzzy set can be defined whose elements have a degree of membership. 

A fuzzy set allows gradual assessment of membership of elements in a set. A fuzzy set of a 

universe of discourse X (the range of variable change) is defined using the membership 

functions 𝜇𝐴(𝑥) ∶ 𝑋 → [0, 1]. This membership function assigns a degree of membership to 

all elements (x) in the universe of discourse in the interval [0, 1]. The membership function 

could be a curve (e.g., Gaussian membership function) which defines how each point in the 

input space is mapped to a degree of membership. The fuzzy set of evaporator high 
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temperatures is represented in Fig. 5.12. Since the assessment of membership using the 

membership function is gradual the boundary is no longer crisp. In selection of appropriate 

type of membership function, factors such as simplicity, speed, convenience and efficiency 

should be considered [146].   

 

Fig. 5.11. Crisp set of a high temperature 

 

Fig. 5.12. Fuzzy set of high temperature 

5.3.2 Linguistic variables and fuzzy rules  

The concept of linguistic variables was introduced by Lotfi A. Zadeh in 1975 and it allows 

the variables to take linguistic expressions (words, sentences) instead of numerical values 
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[147]. The motivation for using the linguistic variables instead of numerical values rely on 

the fact that they are, in general, less specific. Temperature is a linguistic variable if the values 

are expressed in linguistic form rather than numerical. For example, freezing, cool, warm and 

hot instead of -10°C, 10°C, 20°C and 40°C, may imply the same meaning but are less precise, 

and thus, are less informative. Therefore, the terms freezing, cool, warm and hot could be 

considered as the linguistic values of the linguistic variable temperature. Fuzzy sets of 

freezing, cool, warm and hot are represented in Fig. 5.13.  

 

Fig. 5.13. Fuzzy sets of freezing, cool, warm and hot 

More specifically, a linguistic variable can be characterised using a quintuple as follows 

[147]: 

 (L, T(L), U, G, M)                (5.5) 

where L denotes the variable name, T(L) is referred to as term-set of L which contains the 

linguistic values, U is universe of discourse, G is a syntactic rule for generating the terms in 

T(L) and M is a semantic rule which associates meaning to the each linguistic value X. 

Linguistic variables help to approximately characterise various phenomena that are ill-
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defined or too complex to be susceptible of description in precise terms (numerical values) 

and, therefore, could be used in a wide variety of practical applications [147]. Nonetheless, 

the level of precision of the system can be adjusted by the number of linguistic terms and 

shape and overlap of membership functions.  

Linguistic fuzzy rules can be formed using the IF-THEN statements, where the fuzzy sets are 

expressed in form of linguistic expressions. The general form of a fuzzy rule can be defined 

in the form: 

𝑅𝑖:   IF x is 𝐴𝑖 THEN y is 𝐵𝑖,       i = 1, 2, 3, …, K            (5.6) 

where input of the fuzzy system is x (also referred to as antecedent variable). The output of 

fuzzy system (or consequent variable) is y. 𝐴𝑖 and 𝐵𝑖 are fuzzy sets (linguistic variables) 

defined by multi-variable membership functions 𝜇𝐴𝑖
(𝑥): 𝑋 → [0, 1] and 𝜇𝑦𝑖

(𝑦): 𝑌 → [0, 1], 

respectively, and K is the number of rules.   

The antecedent proposition is usually formed by combining simple fuzzy propositions of the 

individual components (𝑥𝑖) of the system input (x). logical operators such as conjunction, 

disjunction and negation can be used for creating a compound proposition such as:  

𝑅𝑖:   IF 𝑥1 is 𝐴𝑖1 OR 𝑥2 is 𝐴𝑖2 AND 𝑥3 is NOT 𝐴𝑖3 THEN y is 𝐵𝑖,  i = 1, 2, 3, …, K    (5.7) 

Moreover, the t-norm, t-conorm and complement operators can be used to compute the 

degree of fulfilment of a rule, e.g., [145]:  

𝐵𝑖 = 𝜇𝐴𝑖1
(𝑥1) ∪ 𝜇𝐴𝑖2

(𝑥2) ∩ (1 − 𝜇
𝐴𝑖3

(𝑥3))             (5.8) 
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where the maximum operator (∪) and minimum operator (∩) represent disjunction (OR) and 

conjunction (AND), respectively, and 1 − 𝜇
𝐴𝑖3

(𝑥3) represents negation.  

The intersection or disjunction of two fuzzy sets can be defined as: 

𝜇𝐴∩B(𝑥) = min(𝜇𝐴(𝑥) , 𝜇𝐵(𝑥))               (5.9) 

The union or conjunction of two fuzzy sets can be defined as: 

𝜇𝐴∪B(𝑥) = max(𝜇𝐴(𝑥) , 𝜇𝐵(𝑥))               (5.10) 

And the complement or negation of the fuzzy set A can be represented as: 

𝜇Ā(𝑥) = 1 − 𝜇𝐴(𝑥)                 (5.11) 

By combining these operators, the antecedent space can be partitioned as required. 

5.3.3 Fuzzy inference system 

Given the inputs and rules of the fuzzy system, fuzzy inference system (FIS) is referred to 

the process of deriving the output of fuzzy set. Fig. 5.14 represents a fuzzy inference system 

with five functional blocks.  

 

Fig. 5.14. Fuzzy inference system 
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The fuzzification block is responsible for assignment of a membership grade to each crisp 

input according to the defined type of membership function. In the next step the inference 

engine applies appropriate fuzzy operators in order to conduct the fuzzy reasoning process. 

Then, the defuzzification block transforms the output fuzzy set of inference engine to a crisp 

output by using appropriate defuzzification method. The centre of gravity (COG) and mean 

of maxima (MOM) are the most common defuzzification methods for generating a crisp 

output.  

  

a)  b)  

Fig. 5.15. Defuzzification methods a) center of gravity b) mean of maxima 

The COG and MOM methods are graphically represented in Fig. 5.15.  for the fuzzy set A, 

COG method numerically calculates the y coordinate of the fuzzy set as follows [145]: 

𝐶𝑂𝐺(𝐴) =
∑ µ𝐴(𝑦𝑞)𝑦𝑞

𝑁𝑞
𝑞=1

∑ µ𝐴(𝑦𝑞)
𝑁𝑞
𝑞=1

                (5.11) 

where 𝑁𝑞 is the number of discretised values 𝑦𝑞 in 𝑌.  
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The MOM method calculates the mean value of interval with the largest membership value 

as follows:   

𝑀𝑂𝑀(𝐴) = 𝑚𝑒𝑎𝑛 {𝑦 | µ𝐴(𝑦) = 𝑚𝑎𝑥 µ𝐴(𝑦)}           (5.12) 

Mamdani and Sugeno (TSK) methods are the most commonly used methods of fuzzy 

inference system [148].  Although both methods share some common features, their 

difference is in the specification of the consequent part. In the Mamdani inference system the 

consequents are fuzzy sets which are transformed to a crisp output using the defuzzification 

methods. In contrast, the consequents in the TSK method are not in the form of membership 

functions. The consequents are either constant or a linear (weighted) mathematical 

expression. The crisp result (also known as singleton output) is obtained using weighted 

average of the rules’ consequent. The rules of first-order TSK fuzzy inference system 

represented in Fig. 5.16 are as follows: 

𝑅𝑖:   IF 𝑥 is 𝐴 AND 𝑦 is 𝐵  THEN 𝑧 = 𝑝𝑥 + 𝑞𝑦 + 𝑟              (5.13) 

where 𝐴 and B denote the fuzzy sets of antecedent and p, q, and r are the parameter set of 

linear consequent functions. 

 

Fig. 5.16. First-order TSK fuzzy inference system [149] 
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5.3.4  Fuzzy based evaporator model 

The numerical methods of evaporator modelling are useful at the design stage of the ORC 

system to find the best components of the cycle and the optimal working fluid selection, but 

a more traceable model is required for the real-time control of the ORC with transient heat 

source. The concept of a real-time control-oriented evaporator model has been investigated 

in Chowdhury et al. studies [138, 150] demonstrating fuzzy steady-state and dynamic models 

of evaporator. In their study, the nonlinear relationship between the input and output is 

mapped using the linguistic rules based on the expert knowledge about the evaporator 

behaviour.  

Inputs of the Mamdani fuzzy system in their study are the mass flow rate and temperature of 

the hot fluid (𝑚̇ℎ, 𝑇ℎ) and mass flow rate of the organic working fluid (𝑚̇𝑟). The desired 

outputs are the working fluid and heat source output temperatures (𝑇𝑟,𝑜, 𝑇ℎ,𝑜). By deploying 

membership functions the input and outputs of the fuzzy model are classified into different 

linguistic levels. Three linguistic levels of Low, Medium and High are assigned to describe 

the input variables. For the first output variable (𝑇𝑟,𝑜) five linguistic variables of Very Low, 

Low, Medium, High and Very High are selected. The second output variable (𝑇ℎ,𝑜) has an 

extra linguistic variable called Medium to High. Figs. 5.17 and 5.18, represent the normalised 

membership functions and their assigned linguistic level for input and output parameters. 

A set of twenty-seven IF-THEN rules listed in Table 5.3 were applied to model the behaviour 

of evaporator. The format of the rules is defined as follows: 

𝑅𝑖 : IF 𝑚̇𝑟 is 𝛼𝑖 AND 𝑚̇ℎ is 𝛽𝑖 AND 𝑇ℎ is 𝛾𝑖 THEN 𝑇𝑟,𝑜 is 𝛿𝑖 AND 𝑇ℎ,𝑜 is 𝛹𝑖 
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where i = 1, 2, 3, ..., n, is the number of fuzzy rules, 𝛼𝑖, 𝛽𝑖, 𝛾𝑖, 𝛿𝑖, 𝛹𝑖 are the ith fuzzy sets 

of the input and output variables of the fuzzy system. 

From the simulation results the authors concluded that compared to the previous 

computational methods of evaporator modelling, the fuzzy logic evaporator model is much 

faster and can calculate the outputs in 5.19 seconds compared to 3820.6 seconds for the FV 

model. Furthermore, the governing nonlinear partial differential equations of the evaporator 

does not need to be calculated and fuzzy system estimates the behaviour of evaporator using 

the previous knowledge of the system behaviour.  

Comparison of the fuzzy and FV models of the evaporator for calculating the outlet 

refrigerant temperature and the heat source outlet temperature are presented in Figs. 5.19 and 

5.20. The RMSE, fitness percentage and MAPE are used to evaluate the performance of fuzzy 

model in predicting the FV evaporator data. The reported RMSE for the outlet refrigerant 

temperature model and the heat source outlet temperature are 1.10 K and 3.09 K, 

respectively. Moreover, the MAPE obtained for the outlet refrigerant temperature model is 

reported 0.19%, and for the heat source outlet temperature, MAPE of 0.58% is obtained. The 

fitness percentage achieved are 90.32% and 91.24% for the outlet refrigerant temperature 

model and the heat source outlet temperature, respectively. 
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Fig. 5.17. Normalized membership functions of input variables [150] 

 

Fig. 5.18. Normalized membership functions of outlet variables [150] 
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Fig. 5.19. Comparison of refrigerant outlet temperature between Fuzzy model and FV model [150] 

 

 

Fig. 5.20. Comparison of heat source outlet temperature between Fuzzy model and FV model [150] 
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Table 5.3 – Fuzzy rules of fuzzy evaporator model [150] 

Rule number IF 𝑚̇𝑟 is AND 𝑚̇ℎ is AND 𝑇ℎ is Then 𝑇𝑟,𝑜 is AND 𝑇ℎ,𝑜 is 

1 L L L L VL 

2 L L M M L 

3 L L H M L 

4 L M L L L 

5 L M M L LM 

6 L M H VH M 

7 L H L M LM 

8 L H M H M 

9 L H H VH MH 

10 M L L VL VL 

11 M L M L L 

12 M L H L L 

13 M M L VL LM 

14 M M M L M 

15 M M H M MH 

16 M H L VL M 

17 M H M L MH 

18 M H H M VH 

19 H L L VL VL 

20 H L M VL L 

21 H L H VL L 

22 H M L VL LM 

23 H M M L M 

24 H M H L MH 

25 H H L VL M 

26 H H M L H 

27 H H H L VH 
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This model can expeditiously be used for real-time modelling of the control system due to its 

lower computational time. Although the fuzzy method is agile, if any of evaporator design 

parameters such as size or evaporator layout change, the fuzzy rules and the membership 

functions of the fuzzy system need to be adjusted accordingly. Moreover, the parameters of 

membership functions and fuzzy rules are not tuned using the available adaptive techniques; 

therefore, setting the rules for manually tuning the evaporator behaviour is an adversely time-

consuming task.  

The lack of learning capability in this Mamdani model can be addressed by deploying hybrid 

modelling techniques such as neuro-fuzzy approach. Hybrid modelling techniques combine 

the techniques with learning capability such as neural networks with the fuzzy system in 

order to provide learning ability for the model while keep the transparency of the fuzzy 

system.  Furthermore, inadequacies of both techniques can be covered and a better balance 

between credibility and understandability can be attained. Therefore, to reduce the modelling 

effort, increase the accuracy of models and eliminate the dependency of fuzzy models on 

expert knowledge about the system, the adaptive neuro-fuzzy system (ANFIS) modelling 

technique is represented in the next section for modelling the input-output behaviour of the 

evaporator. 

5.4 Adaptive neuro-fuzzy inference system modelling 

ANFIS is a systematic hybrid input-output mapping technique introduced by Jang [149] in 

1993 and since its introduction has been applied in a wide range of engineering problems. 

This method combines feedforward neural network and Takagi-Sugeno fuzzy inference 

system. The optimal distribution of membership functions in the fuzzy system is determined 

using this technique, independent of expert knowledge of the system. The neural network is 
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particularly adequate for pattern recognition in nonlinear systems and the fuzzy technique is 

a powerful approach for modelling nonlinear systems. The model obtained using the ANFIS 

method is not regarded as a completely black-box model, because the fuzzy-logic capabilities 

of the model makes it interpretable in terms of the linguistic variables [151].  

Despite the desirable capabilities of the ANFIS modelling technique, to the best of the 

author’s knowledge, it has not been used to model the evaporator’s behaviour in the literature. 

Therefore, this study aims to provide a model of evaporator using the ANFIS technique for 

the first time.  

5.4.1 ANFIS architecture 

The architecture of ANFIS consists of five layers and each layer has multiple nodes that 

are described by node functions as shown in Fig. 5.21.  

 

Fig. 5.21. ANFIS architecture 

For simplicity, a system with two inputs and one output is considered here to illustrate the 

ANFIS procedure by assuming two Takagi-Sugeno type fuzzy IF-THEN rules for the ANFIS 

system rule base. The proposed defined rules are: 
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Rule 1: If 𝑥 is 𝐴1 and 𝑦 is 𝐵1, then 𝑓1 = 𝑝1𝑥 + 𝑞1𝑦 + 𝑟1  

Rule 2: If 𝑥 is 𝐴2 and 𝑦 is 𝐵2, then 𝑓2 = 𝑝2𝑥 + 𝑞2𝑦 + 𝑟2         (5.14) 

where 𝑥 and 𝑦 are input variables, 𝑓𝑖 is the output and 𝐴𝑖 and 𝐵𝑖 represent the fuzzy sets 

which are defined over the input domain, and 𝑝𝑖, 𝑞𝑖 and 𝑟𝑖 are the parameters of linear 

polynomial in the fourth layer of ANFIS network. There are two types of nodes in the ANFIS 

architecture: adaptive and fixed. The adaptive nodes contain tuneable parameters, whereas 

the fixed nodes which can only perform a specific task. The function of the nodes in each 

layer is described as follows: 

Layer 1: The nodes in first layer of ANFIS are adaptive nodes with the node function: 

𝑂1,𝑖 = 𝜇𝐴𝑖
(𝑥) for 𝑖 = 1,2, or 

𝑂1,𝑖 = 𝜇𝐵𝑖−2
(𝑦) for 𝑖 = 3,4             (5.15) 

where 𝑥 and 𝑦 are the inputs to the node 𝑖, 𝐴 and 𝐵 are the linguistic labels and 𝜇(𝑥) and 

𝜇(𝑦) are Gaussian membership functions with the range between 0 and 1, as follows: 

𝜇(𝑥) = exp(−
(𝐶𝑖−𝑥)2

2𝜎𝑖
2 )             (5.16) 

In equation (5.16), 𝑐𝑖 and 𝜎𝑖 determine the centre and width of the fuzzy set, respectively. 

The parameters in the first layer of ANFIS are referred to as premise parameters. Selection 

of shape and number of membership functions has a substantial influence on the complexity 

and accuracy of ANFIS-based models [152]. Therefore, Gaussian membership functions due 

to their smooth representation of input space are selected. 



88 

 

 

Layer 2: Nodes in this layer are fixed and their outputs are determining the firing strength 

of the rules by multiplying all incoming signals, as follows: 

𝑂2,𝑖 = 𝑤𝑖 = 𝜇𝐴𝑖
(𝑥)𝜇𝐵𝑖

(𝑦),  𝑖 = 1,2            (5.17) 

Layer 3: The nodes in this layer are fixed and are responsible for normalizing the firing 

strengths. The output in this layer is calculated by dividing the 𝑖𝑡ℎ rule’s firing strength to 

sum of all rules firing strengths: 

𝑤𝑖 =
𝑤𝑖

𝑤1+𝑤2
,  𝑖 = 1,2              (5.18) 

Layer 4: All the nodes in this layer are adaptive with the node function: 

𝑂4,𝑖 = 𝑤𝑖𝑓𝑖 = 𝑤𝑖(𝑝𝑖𝑥 + 𝑞𝑖𝑦 + 𝑟𝑖)            (5.19) 

where 𝑤𝑖 is the normalized firing strength from previous layer and 𝑝𝑖, 𝑞𝑖 and 𝑟𝑖 are the 

parameters set referred to as consequent parameters. 

Layer 5: The single node in this layer is a fixed node and calculates the summation of all 

incoming signals to produce a crisp output as follows: 

𝑂5,1 = ∑ 𝑤𝑖𝑓𝑖 =
∑ 𝑤𝑖𝑓𝑖𝑖

∑ 𝑤𝑖𝑖
𝑖              (5.20) 

5.4.2 Training algorithms of the network 

The aim of training the ANFIS network is to adjust the premise and consequent parameters 

in the adaptive nodes to minimise a performance measure known as the error function. 

Despite outperforming other fuzzy methods, ANFIS requires an effective learning algorithm 

for training the parameters of the network. In the original ANFIS paper proposed by Jang 

[153] a hybrid gradient descent, least square estimate (GD-LSE) method is used to identify 
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the premise and consequent parameters of the network. In this method, because of utilising a 

gradient-based approach, the algorithm has a tendency to trap in local minima. Therefore, in 

search for a more effective training method for ANFIS, metaheuristic approaches have been 

investigated by researchers as an alternative for identifying the network parameters. 

Extensive literature review illustrates that various metaheuristic algorithms such as PSO, GA, 

ABC and their variants have been used for training the premise and consequent parameters 

of the ANFIS network for a range of engineering problems. Table 5.4, summarises some 

studies which have used metaheuristic methods for training the ANFIS network. 

Table 5.4 – Summary of studies which utilised metaheuristic algorithms for ANFIS training. 

 Premise Consequent 

Shoorehdeli, Teshnehlab [154] AWPSO FFRLS 

Shoorehdeli, Teshnehlab [155] AWPSO EKF 

Sargolzaei et al. [156] PSO PSO 

Turki, Bouzaida [157] PSO PSO 

Rini, Shamsuddin [158] PSO PSO 

Karaboga, Kaya [159] ABC ABC 

Soto, Melin [160] GA LSE 

Cardenas, Garcia [161] GA GA 

 

In this study, among many methods of minimising the performance measure, the particle 

swarm optimisation (PSO) and standard gradient descent, lest square estimate (GD-LSE) are 

chosen to train the ANFIS network. Moreover, their performance for matching training and 

test datasets is compared. The root mean square error (RMSE) is selected as the main 

performance indicator. The network output will better match the training target as the RMSE 

approaches zero. 
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5.4.2.1 Gradient descent least square estimate algorithm   

ANFIS learns by updating the premise (𝑐𝑖 and 𝜎𝑖) and consequent (𝑝𝑖, 𝑞𝑖 and 𝑟𝑖) parameters 

in the first and the fourth layers of network. The conventional method for finding the 

optimised premise and consequent parameters is hybrid, which combines the gradient descent 

(GD) and least square estimate (LSE) algorithms. This method consists of a forward and a 

backward pass. In the forward pass, the node outputs go forward until the fourth layer and 

the LSE algorithm identifies the consequent parameters. In the next step, by fixing the 

consequent parameters the error signals propagate backward through the network and the 

premise parameters in the first layer of ANFIS are updated by using the GD algorithm. 

Combination of a forward path and a backward path is called an epoch and with enough 

epochs the premise and consequent parameters of the ANFIS model can be set to adequately 

provide the prediction power for the model. Table 5.5 illustrates the two-pass learning 

algorithm of ANFIS. 

Table 5.5 – Hybrid GD-LSE learning algorithm 

Parameter Forward Pass Backward Pass 

Antecedent Parameters Fixed Gradient Decent 

Consequent Parameters Least Square Estimate Fixed 

Signals Node Outputs Error Signals 

 

The data is presented to the network after fixing the premise parameters. The node outputs 

propagated forward through the network and, consequently, the network output is obtained 

as a linear combination of consequent parameters as follows: 
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𝑓 =
𝑤1

𝑤1+𝑤2
𝑓1 +

𝑤2

𝑤1+𝑤2
𝑓2           

= 𝑤1𝑓1 + 𝑤2𝑓2               (5.21) 

Substituting the fuzzy if-then rules into equation (5.21) yields: 

𝑓 = (𝑤1𝑥)𝑝1 + (𝑤1𝑦)𝑞1 + (𝑤1)𝑟1 + (𝑤2𝑥)𝑝2 + (𝑤2𝑦)𝑞2 + (𝑤2)𝑟2       (5.22) 

Equation (5.22) is linear in the consequent parameters 𝑝1, 𝑞1, 𝑟1, 𝑝2, 𝑞2 and 𝑟2. 

𝑓 = 𝑋𝑊                (5.23) 

Therefore, if the X matrix is invertible: 

𝑊 = 𝑋−1𝑓                (5.24) 

Otherwise, 𝑊 is calculated by deploying a pseudo-inverse as follows: 

𝑊 = (𝑋𝑇𝑋)−1𝑋𝑇𝑓              (5.25) 

where 𝑋𝑇 is transpose of 𝑋, and (𝑋𝑇𝑋)−1𝑋𝑇is pseudo-inverse of 𝑋 if 𝑋𝑇𝑋 is non-singular. 

However, 𝑋𝑇𝑋 may become singular during the iterations that makes the problem ill-defined. 

Moreover, although equation (5.26) is concise in notation finding the inverse of X is 

expensive in computation. Therefore, to overcome this issue the recursive LSE method 

proposed by Jang [149] can be employed as follows: 

𝑊𝑖+1 = 𝑊𝑖 + 𝑆𝑖+1𝑥𝑖+1(𝑓𝑖+1
𝑇 − 𝑥𝑖+1

𝑇 𝑊𝑖)         𝑖 = 0, 1, … , 𝑃 − 1                  (5.26) 

𝑆𝑖+1 = 𝑆𝑖 −
𝑆𝑖𝑥𝑖+1𝑥𝑖+1

𝑇 𝑆𝑖

1+𝑥𝑖+1
𝑇 𝑆𝑖𝑥𝑖+1

                    (5.27) 
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where 𝑆𝑖 is the covariance matrix and least square estimate of 𝑊 is equal to 𝑊𝑃. 𝑥𝑖
𝑇is the ith 

row vector of matrix X and 𝑓𝑖
𝑇is the ith element of 𝑓.    

After identifying the consequent parameters, the output of network can be calculated and the 

error measure of 𝑃𝑡ℎentery of the training data can be obtained as follows: 

𝐸𝑃 = (𝑇𝑃 − 𝑂𝑃)2                          (5.28) 

where 𝑇𝑃 and 𝑂𝑃 represent the desired output and ANFIS output, respectively. Therefore, the 

RMSE of whole training data set can be computed as follows: 

𝑅𝑀𝑆𝐸 = √
∑ 𝐸𝑃

𝑃
                     (5.29) 

In the backwards pass, the consequent parameters are fixed and the error signals propagate 

through the network in the reverse direction. Accordingly, using the GD algorithm the 

premise parameters that are located in the first layer of the network are updated as follows:  

𝑐𝑖𝑗(𝑡 + 1) = 𝑐𝑖𝑗(𝑡) −
𝜂

𝑝
⋅

𝜕𝐸

𝜕𝑐𝑖𝑗
              (5.30) 

where, 𝑐𝑖𝑗 is the membership function’s adjustable parameter and 𝜂 represents the learning 

rate. To obtain the partial derivative  
𝜕𝐸

𝜕𝑐𝑖𝑗
 , the chain rule is applied as follows: 

𝜕𝐸

𝜕𝑐𝑖𝑗
=

𝜕𝐸

𝜕𝑓
⋅

𝜕𝑓

𝜕𝑓𝑖
⋅

𝜕𝑓𝑖

𝜕𝑤𝑖
⋅

𝜕𝑤𝑖

𝜕𝜇𝑖𝑗
⋅

𝜕𝜇𝑖𝑗

𝜕𝑐𝑖𝑗
             (5.31) 

An important disadvantage of using the gradient-based techniques for tuning the membership 

functions of the ANFIS model is that they are likely to fall into local minima. Therefore, non-

gradient methods of tuning the antecedent parameters of the model are recommended [162].  
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5.4.2.2 Particle swarm optimization 

Particle swarm optimization (PSO) is a heuristic swarm intelligence technique first 

introduced by Eberhart and Kennedy [163]. This method is inspired by biological and 

sociological behaviour of birds and fish searching for their food. PSO is a population-based 

search method, which is applied in several studies to solve optimization problems [164, 165]. 

Each possible solution to the optimisation problem is called a particle. In this method an 

initial random position is assigned to each particle and particles move in the multidimensional 

search space and their position and flight speed is updated according to their best-known 

local position guided by other whole particles best known general position, until equilibrium 

is reached or the computational limitations is exceeded. Consider a swarm with population 

size of N, initial position of 𝑥 and movement speed of 𝑣. The best local position of a particle 

is denoted as 𝑃𝑏𝑒𝑠𝑡 and position of the particle in the swarm which better minimizes the 

performance measure is denoted as 𝐺𝑏𝑒𝑠𝑡. The speed and position of the 𝑖𝑡ℎ particle of the 

swarm in the next iteration can be formulated as follows: 

𝑣𝑖(𝑘) = 𝑤𝑣𝑖(𝑘 − 1) + 𝜌1(𝑥𝑃𝑏𝑒𝑠𝑡 − 𝑥𝑖(𝑘))  +  𝜌2(𝑥𝐺𝑏𝑒𝑠𝑡 − 𝑥𝑖(𝑘))                     (5.32) 

𝑥𝑖(𝑘) =  𝑥𝑖(𝑘 − 1) + 𝑣𝑖(𝑘)              (5.33) 

where 𝜌1 and 𝜌2 are random variable defined as 𝜌1 = 𝑟1𝑐1 and 𝜌2 = 𝑟2𝑐2 , with 𝑟1 and 𝑟2 ~ 

𝑈(0, 1). The variables 𝑐1 and 𝑐2 are positive acceleration constants that satisfy the condition 

𝑐1 + 𝑐2 ≤ 4 [166] and 𝑤 is the inertial weight that can be calculated using the inertial weight 

approach (IWA) as follows [167]: 

𝑤 = 𝑤𝑚𝑎𝑥 −
𝑤𝑚𝑎𝑥−𝑤𝑚𝑖𝑛

𝐼𝑡𝑟𝑚𝑎𝑥
 𝐼𝑡𝑟              (5.34) 
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where 𝑤𝑚𝑎𝑥 and 𝑤𝑚𝑖𝑛 denote the initial and final weights, 𝐼𝑡𝑟 represents the current iteration 

number and 𝐼𝑡𝑟𝑚𝑎𝑥 is the maximum number of iterations. 

Although metaheuristic algorithms such as PSO do not guarantee convergence to the optimal 

solution, they do not require the optimization problem to be differentiable as opposed to the 

gradient-based methods. Furthermore, for a given size of network the PSO ANFIS method 

has the advantage of being less computationally expensive [162]. In this study, the PSO 

algorithm is deployed to find the optimal parameters of antecedent and consequent parts of 

ANFIS and the results are compared with the hybrid GD-LSE learning algorithm. 

5.5 ANFIS evaporator model implementation 

In this section an ANFIS evaporator model is developed using the data collected from a FV 

model of evaporator available in the literature [129]. To train the ANFIS model, the FV 

model of evaporator is excited by changing the heat source mass flow rate (𝑚̇ℎ), the heat 

source temperature (𝑇ℎ) and the mass flow rate of refrigerant (𝑚̇𝑟) in the range of 0.073-

0.2985 kg/s, 412-523 K and 0.0318-0.2243 kg/s, respectively. The heat source mass flow rate 

and temperature data are randomly selected according to the range of a generic heat source 

in ICE of heavy-duty trucks. Outlet temperature of refrigerant (𝑇𝑟𝑜𝑢𝑡) and outlet temperature 

of the heat source (𝑇ℎ𝑜𝑢𝑡) are selected as the output parameters of the evaporator model. In 

total, 1000 data points collected form dynamic FV model and each data point represents one 

second of actual evaporator input-output behaviour. Details of the FV model used for 

gathering the data can be found in Ref. [138]. Input-output data used for the modelling is 

illustrated in Fig. 5.22. As recommended in several studies, the data is further divided 

randomly to 70% for training and 30% for testing the proposed PSO ANFIS and GD-LSE 

ANFIS models. 
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(a) (b) 

 

(c) 

Fig. 5.22. Input-output data gathered from FV model of evaporator (a) Mass flow rate and temperature of generic heat 

source (b) Mass flow rate of refrigerant (c) Refrigerant and heat source temperatures at the evaporator outlet 

In order to obtain a base FIS, the input search space needs to be clustered. Grid partitioning 

(GP), subtractive clustering (SCM) and fuzzy c-means (FCM) are the most widely used 

approaches in the literature for clustering the data. In this study, FCM clustering method due 

to its higher flexibility is implemented to obtain the base FIS.  
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5.5.1 Training ANFIS evaporator model using hybrid GD-LSE algorithm 

The ANFIS method has been applied to train two multi-input single-output ANFIS models 

for prediction of the refrigerant output temperature (𝑇𝑟𝑜𝑢𝑡) and heat source output 

temperature (𝑇ℎ𝑜𝑢𝑡). Moreover, the GD algorithm is used to adjust the premise parameters 

and LSE algorithm is applied to update the consequent parameters. The ANFIS training 

parameters for both models are listed in Table 5.6. In Figs. 5.23 and 5.24, the trained 

membership functions for refrigerant and heat source output temperatures are represented, 

respectively. The fuzzy surfaces shown in Figs. 5.25 and 5.26 indicate the effect of transient 

inputs on the heat source output temperature and refrigerant output temperature, respectively. 

Table 5.6 – GD-LSE ANFIS training parameters 

Parameters GD-LSE ANFIS model for heat 

source output temperature 

GD-LSE ANFIS model for 

refrigerant output temperature  

Number of training data set 701×4 701×4 

Number of test data set 300×4 300×4 

Clustering method FCM FCM 

Membership functions Gaussian Gaussian 

Number of Clusters 7×3 8×3 

Number of Epochs 3000 3000 

Number of nodes 62 70 

Number of linear parameters 28 32 

Number of nonlinear parameters 42 48 

Total number of parameters 70 80 

Number of fuzzy rules 7 8 
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(a) (b) 

 

(C) 

Fig. 5.23. Trained membership functions of GD-LSE ANFIS model for predicting the heat source output temperature (a) 

temperature of heat source (b) mass flow rate of heat source (c) mass flow rate of refrigerant 
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(a) (b) 

 

(c) 

Fig. 5.24. Trained membership functions of GD-LSE ANFIS model for predicting the refrigerant output temperature (a) 

temperature of heat source (b) mass flow rate of heat source (c) mass flow rate of refrigerant 
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(a) (b) 

 

(c) 

Fig. 5.25. Fuzzy surfaces representing the Effect of changing the input parameters on the heat source output temperature 

in the GD-LSE ANFIS model 
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(a) (b) 

 

(c) 

Fig. 5.26. Fuzzy surfaces representing the Effect of changing the input parameters on the refrigerant output temperature 

in the GD-LSE ANFIS model 
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5.5.2 Training ANFIS evaporator model using PSO algorithm  

The standard two pass GD-LSE learning method of ANFIS is prone to get stuck in local 

minima, therefore, derivative-free metaheuristic algorithms such as PSO for training the 

parameters of ANFIS model are recommended [162]. In general, combining the ANFIS with 

PSO technique produces a model with more reliable results. The most influential parameters 

of PSO algorithm are: (1) the number of the population, (2) the personal and global learning 

coefficients (𝐶1 and 𝐶2), and (3) the inertial weight (𝑤).       

For training the ANFIS using the PSO algorithm, the parameters of Gaussian membership 

functions in the antecedent and parameters of consequent linear polynomial of the base FIS 

obtained using the FCM algorithm are extracted. These parameters are optimized using the 

PSO algorithm in order to minimize the cost function defined as the RMSE between the target 

values and the ANFIS model output values as follows: 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝐻𝑖

𝑇𝑎𝑟𝑔𝑒𝑡
− 𝐻𝑖

𝑂𝑢𝑡𝑝𝑢𝑡)𝑁
𝑖=1                                                                                        (5.35) 

The PSO parameters utilised for modelling the output temperature of refrigerant and output 

temperature of heat source are listed in Table 5.7. In Figs. 5.27 and 5.28 the trained 

membership functions of the input variables for output temperature of heat source and output 

temperature of refrigerant models are depicted, respectively. Figs. 5.29 and 5.30 indicate the 

interdependency of input variables for the output temperature of heat source and the output 

temperature of refrigerant prediction within the selected ranges, respectively. 
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Table 5.7 – Parameters of PSO ANFIS algorithm 

Parameters PSO ANFIS model for heat source 

output temperature 

PSO ANFIS model for refrigerant 

output temperature  

Number of training data set 701×4 701×4 

Number of test data set 300×4 300×4 

Clustering method FCM FCM 

Membership functions Gaussian Gaussian 

Number of Clusters 7×3 8×3 

Maximum iteration 3000 3000 

Inertial weight 1 1 

Personal learning coefficient (𝐶1) 1 1 

Global learning coefficient (𝐶2) 2 2 

Number of optimized parameters 70 80 

Number of fuzzy rules 7 8 
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(c) 

Fig. 5.27. Trained membership functions of PSO ANFIS model for predicting the heat source output temperature (a) 

temperature of heat source (b) mass flow rate of heat source (c) mass flow rate of refrigerant 
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(c) 

Fig. 5.28. Trained membership functions of PSO ANFIS model for predicting the refrigerant output temperature (a) 

temperature of heat source (b) mass flow rate of heat source (c) mass flow rate of refrigerant 
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(c) 

Fig. 5.29. Fuzzy surfaces representing the Effect of changing the input parameters on the heat source output temperature 

in the PSO ANFIS model 
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(c) 

Fig. 5.30. Fuzzy surfaces representing the Effect of changing the input parameters on the refrigerant output temperature 

in the PSO ANFIS model 
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5.6 Comparison of training ANFIS model using GD-LSE and PSO  

Two intelligent ANFIS approaches are applied to determine the output temperature of heat 

source and the output temperature refrigerant in a counter flow evaporator by considering 

mass flow rate and temperature of heat source and mass flow rate of refrigerant as input 

variables to the evaporator. A comparison between the prediction power of the GD-LSE 

ANFIS and PSO ANFIS models for the heat source output is illustrated in Fig. 5.31. As it 

can be seen, both training data and an unseen test data are applied to the trained models to 

evaluate the generalization power of the models. Additionally, a statistical criterion in terms 

of RMSE is considered to evaluate the accuracy of the models. For the training data, the 

RMSEs for PSO and GD-LSE trained ANFIS models are 0.241 and 0.327, respectively. The 

unseen test data RMSE is equal to 0.242 for the PSO ANFIS model and 0.336 for the GD-

LSE model. It can be deduced that the output heat source temperature results obtained from 

PSO ANFIS model have a better agreement with the FV model as compared with the GD-

LSE ANFIS model. 
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(a) 

  

(b) 

Fig. 5.31. Comparison of heat source output temperature prediction between GD-LSE ANFIS model and PSO ANFIS 

model for (a) training data (b) test data 

Furthermore, to better illustrate the deviation of the predicted heat source output temperatures 

from the numerically simulated values, regression plots are shown in Fig. 5.32. The linear 

correlation coefficient (R) for both models clearly imply the high generalization power of the 

models since the R value for both training and test data are close to one.     
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(a) 

  

(b) 

Fig. 5.32. Comparison of regression plots for heat source output temperature prediction between GD-LSE ANFIS model 

and PSO ANFIS model for (a) training data (b) test data 

The predicted data of refrigerant output temperature by two aforementioned methods of GD-

LSE and PSO ANFIS are plotted versus FV model data in Fig. 5.33. In order to assess the 

generalization ability of the trained models, as discussed earlier in the data preparation, a test 

dataset (30% of the whole dataset) is randomly selected, and applied to the model. The 

predicted values for test dataset versus FV is also showcased in Fig. 5.33 for the GD-LSE 

and PSO ANFIS models. It can be concluded that the models are not overfitted since the 

RMSE for the test data and the training data have a subtle difference.  
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(b) 

Fig. 5.33. Comparison of refrigerant output temperature prediction between GD-LSE ANFIS model and PSO ANFIS 

model for (a) training data (b) test data 

Similarly, comparison of regression plots for refrigerant output temperature prediction 

between the GD-LSE and PSO trained ANFIS models is presented in Fig. 5.34. The obtained 

linear correlation coefficient (R) values of both models for training and test data are close to 

one. This indicates the low deviation of results as compared to numerically calculated FV 

model results. To better point out the accuracy of proposed ANFIS models, Statistical error 

analysis is summarized in Table 5.8. Referring to RMSE and MSE for heat source and 

refrigerant output temperature models, clearly the models trained with the PSO algorithm 

have higher accuracies. The highest accuracy is achieved for the refrigerant output 

temperature model trained using PSO algorithm with the RMSE of 0.114 and MSE of 0.013 
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for the training dataset, and respectively, 0.134 and 0.018 for the test dataset. Since in the 

application of ORC cycle for recovering waste heat from exhaust of ICEs safety of the system 

is vital, such an accurate prediction of refrigerant temperature at the evaporator outlet plays 

a prominent role in designing robust control systems. On the other hand, the highest 

improvement in RMSE is achieved by PSO trained ANFIS for the heat source output 

temperature prediction compared to the GD-LSE ANFIS model by approximately 27 percent 

for both training and test datasets. 

Table 5.8 – Statistical error analysis of the proposed models 

Model Target Output Data set RMSE MSE R 

GD-LSE ANFIS  Heat source output temperature Train 0.327 0.1069 0.99995 

  Test 0.336 0.1130 0.99995 

PSO ANFIS Heat source output temperature Train 0.241 0.0583 0.99998 

  Test 0.242 0.0589 0.99998 

GD-LSE ANFIS Refrigerant output temperature Train 0.125 0.0157 0.99999 

  Test 0.147 0.0217 0.99999 

PSO-ANFIS Refrigerant output temperature Train 0.114 0.0130 0.99999 

  Test 0.134 0.0180 0.99999 
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(a) 

  

(c) 

Fig. 5.34. Comparison of regression plots for refrigerant output temperature prediction between GD-LSE ANFIS model 

and PSO ANFIS model for (a) training data (b) test data 

5.7 Case Study: 1kWe-Organic Rankine Cycle prototype 

A case study of evaporator modelling using the proposed ANFIS technique is presented in 

this section to investigate the application of neuro-fuzzy techniques for modelling the 

evaporator in a 1-kWe ORC. The testing facility built in the Clean Energy Processes (CEP) 

Laboratory at Imperial College London, is composed of a rotary-vane pump, brazed-plate 

evaporator and condenser units and a scroll expander coupled magnetically to a generator 

with an adjustable resistive load. 



113 

 

 

The ORC prototype is operated with R245fa as a working fluid, which allows to maintain 

above-atmospheric pressure within the condenser and prevent non-condensable air to be 

sucked into the closed loop. The rotary-vane pump circulates the organic fluid through the 

cycle and allows adjustment of the flowrate. Shaft power is produced from the expansion of 

the high-temperature, high-pressure vapour exiting the evaporator down to the low pressure 

maintained in the condenser. The generator converts the mechanical energy into useful 

electrical energy, which is dissipated within a resistive load bank made of a set of adjustable 

resistors – with an equivalent overall resistance ranging from 10 to 60 Ω. This resistive load 

bank is able to dissipate safely up to 2 kW of heat without external ventilation.  

The low-pressure vapour leaving the expander is then cooled down and fully condensed in 

the water-cooled condenser unit. To avoid cavitation in the pump and maintain zero sub-

cooling at the condenser outlet, a liquid receiver is placed between the condenser and the 

pump. An 18-kW electric oil heater with adjustable delivery temperature is used as the heat 

source for the ORC, thus providing a controllable stream of hot Marlotherm SM oil. A 

detailed piping and instrumentation diagram (P&ID) of the testing facility is shown in Fig. 

5.35 and an actual picture of the test bench is presented in Fig. 5.36. 
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Fig. 5.35. schematic of the ORC system (taken from [168]) 

As shown in Fig. 5.35, pressure transducers and thermocouples (T-type) are placed at the 

inlet and outlet of each component to monitor the working fluid state throughout the cycle 

and provide informed measurements of the indicated and overall performance indicators. A 

DAQ970A data acquisition system is used to record time-resolved experimental data from 

the apparatus with a 1/2-Hz sampling rate. The detailed specification of the ORC components 

is listed in Table 5.9.  
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Table 5.9 – Component specification of the ORC test rig 

  Mass flow rate Temperature range 

Heat source thermal fluid Marlotherm SM oil [0.01– 1.4] kg/s [93–142] °C 

Working fluid R254fa [14– 58] g/s [70–136] °C 

Cooling fluid Water 0.4 kg/s 18 °C 

 Model Type Area Specifications 

Pump  TMFR2 (Fluid-o-Tech 

S.R.L., Milano, Italy) 

Magnet-driven 

rotary vane pump 

_ [1100–3000] RPM 

Condenser CB60-30H-F (Alfa Laval 

Lund AB, Lund, Sweden) 

Brazed-plate 1.62 m2 _ 

Evaporator B12Lx18 (SWEP, Didcot, 

United Kingdom) 

Brazed-plate 0.45 m2 _ 

Expansion machine E15H22N4.25 (Air 

Squared Inc., Broomfield, 

USA) 

Scroll expander _ 14.5 cm3/rev, 

1kWe 

 Model    

Data acquisition system DAQ970A (Keysight Technologies, 

Wokingham, UK) 

   

Pressure transducers PXM309 (Omega Engineering, Manchester, 

United Kingdom) 

   

Coriolis flowmeter Optimass 6000 (Krohne Ltd., 

Northamptonshire, UK) 
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Fig. 5.36. Experimental test rig (taken from [168]) 

 

5.7.1 Data collection and evaporator model implementation 

In this experiment, for modelling the evaporator, a set of 756 input-output data pairs are 

collected from the ORC test rig by varying the heat source mass flow rate and temperature 

and working fluid mass flow rate. For the heat source, the mass flow rate and temperature of 

supplied Marlotherm SM oil stream is altered using the electric heater in the range of 0.01 to 

1.37 kg/s and 93 to 142 °C, respectively. Mass flow rate of the working fluid is also altered 

in the range of 14.4 to 57.8 g/s by manually changing the speed of pump. Four separate multi-

input single-output sub-models are trained for prediction of evaporator output temperature 

(𝑇𝑟𝑜𝑢𝑡) and evaporator output pressure (𝑃𝑟𝑜𝑢𝑡). The inputs to sub-models are identical and 
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consist of mass flow rate of heat source (𝑚̇ℎ), temperature of heat source (𝑇ℎ) and mass flow 

rate of the working fluid (𝑚̇𝑟). The recorded outputs for the sub-models are the evaporator 

outlet temperature (𝑇𝑟𝑜𝑢𝑡) and evaporator outlet pressure (𝑃𝑟𝑜𝑢𝑡). For evaluating the models, 

the data set is randomly divided to two subsets of training data set and test data set. The 

ANFIS network is optimised using the training data set whereas the test data set which is 

deployed for evaluating the model. In sub-models, 70% of data points are used for training 

the network and the remaining data points are deployed to test the constructed network. 

Among the available methods of clustering FCM algorithm because of its high flexibility is 

used for clustering the input space and generating the base FIS. The GD-LSE and PSO 

techniques are applied as the learning algorithm to optimise the base FIS. The training 

parameters for all four sub-models are listed in Table 5.10. The performance of both training 

methods is compared in terms of the RMSE and linear correlation coefficient for both sub-

models.  

 

 

 

 

 

 

 

 



118 

 

 

 

Table 5.10 – Summary of the R coefficient obtained for the evaporator outlet temperature sub-model 

Parameters GD-LSE ANFIS 

model for 𝑻𝒓𝒐𝒖𝒕 

GD-LSE ANFIS 

model for 𝑷𝒓𝒐𝒖𝒕 

PSO ANFIS 

model for 𝑻𝒓𝒐𝒖𝒕 

PSO ANFIS 

model for 𝑷𝒓𝒐𝒖𝒕 

Number of training data set 529×4 529×4 529×4 529×4 

Number of test data set 227×4 227×4 227×4 227×4 

Clustering method FCM FCM FCM FCM 

Membership functions Gaussian Gaussian Gaussian Gaussian 

Number of Clusters 8×3 8×3 8×3 8×3 

Number of Epochs 1000 1000 _ _ 

Number of linear parameters 32 32 32 32 

Number of nonlinear parameters 48 48 48 48 

Total number of parameters 80 80 80 80 

Number of fuzzy rules 8 8 8 8 

Maximum iteration _ _ 1000 1000 

Population size _ _ 80 80 

Inertial weight _ _ 1 1 

Personal learning coefficient (𝐶1) _ _ 1 1 

Global learning coefficient (𝐶2) _ _ 2 2 

 

5.7.2 Learning Algorithm 

To train the premise and consequent parameters of the network hybrid gradient descent, least 

square estimate and PSO algorithm discussed in sections 5.4.2.1 and 5.4.2.2, respectively, 

are deployed. The performance of both methods for matching training and test datasets are 

compared in terms of RMSE and the linear correlation coefficient. 
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5.7.3 Simulation results 

Two neuro-fuzzy models of evaporator are developed to predict the evaporator outlet 

temperature and evaporator outlet pressure in a 1-kWe ORC test rig. Fig. 5.37 represents the 

comparison between evaporator outlet temperature prediction in the models trained using 

GD-LSE and PSO techniques. As illustrated in Fig. 5.37, for the training dataset, RMSE of 

3.48 and 2.46 achieved for GD-LSE and PSO, respectively. Furthermore, to evaluate the 

generalisation ability of the models, an unseen test dataset is applied to the models. For the 

test dataset, the obtained RMSEs are equal to 3.37 and 2.39 in the model trained using GD-

LSE method and PSO technique, respectively. Comparison of RMSE values for training 

dataset indicates an improvement of 29% achieved for the evaporator outlet temperature 

model trained using the PSO technique. Moreover, this improvement in the test dataset equals 

29%, which indicates better generalization capability of the model trained using the PSO 

technique.  

 

 

 

 



120 

 

 

  

  

Fig. 5.37. Comparison of GD-LSE ANFIS and PSO ANFIS models for prediction of Trout using the training and test data 

Furthermore, regression plots are shown in Fig. 38, to illustrate the deviation of the predicted 

evaporator outlet temperatures from the experimentally obtained evaporator outlet 

temperatures. The linear correlation coefficient for both GD-LSE and PSO models are listed 

in Table 5.11. Comparison of the R values indicate an acceptable fit for training and test data 

for both models. However, the R coefficients in the PSO model are closer to one, which 

imply better fit and greater generalization ability of the model optimised by the PSO method. 

For the training and test datasets, the R coefficients improved 1.1% and 0.9%, respectively, 

by deploying the PSO method for training. 
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Table 5.11 – Summary of the R coefficient obtained for the evaporator outlet temperature sub-model 

Training Method Training data Test data 

GD-LSE 0.9798 0.9816 

PSO 0.9902 0.9903 

 

  

  

Fig. 5.38. Comparison of regression plots between GD-LSE ANFIS and PSO ANFIS models for prediction of Trout using 

the training and test data 
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ANFIS model is applied to predict evaporator outlet pressure. The new sub-model is trained 

by deploying the GD-LSE technique and PSO technique. Comparison of the obtained RMSE 

values from both training and test dataset is presented in Fig. 5.39. For the training dataset 

RMSE of 0.42 and 0.35 are achieved from the models trained using GD-LSE technique and 

PSO technique, respectively. The obtained RMSE for the unseen test data is 0.45 for the PSO 

ANFIS model and 0.54 for the GD-LSE model. It can be inferred that the evaporator outlet 

pressure results achieved from the PSO ANFIS model have a better compliance with the 

experimental data as evaluated against the model trained by the GD-LSE technique. For the 

training data, deploying the PSO algorithm to train the neuro fuzzy model results in 15% 

improvement in the RMSE as compared with the GD-LSE method. Moreover, for the test 

data the RMSE of the model trained using the PSO technique enhanced by 18%, which 

illustrates better generalization ability in prediction of the evaporator outlet pressure.  
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Fig. 5.39. Comparison of GD-LSE ANFIS and PSO ANFIS models for prediction of Prout using the training and test data 

Similarly, to examine the accuracy of the models, comparison of the regression plots for the 

models trained by GD-LSE and PSO methods are shown in Fig. 40. The R coefficient for the 

training and test data sets in both models are close to one, which indicates the agreement of 

models’ outputs and experimentally measured evaporator outlet pressures. The obtained 

linear correlation coefficients are listed in Table 5.12. The R values achieved for the training 

and test data sets are higher in the PSO model. Furthermore, the highest obtained accuracy is 

for the refrigerant output pressure model optimised using PSO algorithm with the linear 

correlation coefficient of 0.9876 for the training dataset, and 0.9641 for the test dataset. These 

two sub-models for the evaporator outlet temperature and evaporator outlet pressure can be 

used to identify the phase of the working medium instantaneously. Therefore, in the 
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application of the ORC for recovery of the wasted heat in IC engines, this neuro-fuzzy model 

can be deployed to design an accurate control system to ensure the system safety and prevent 

decomposition of the working fluid by adjusting the pump speed. 

  

  

Fig. 5.40. Comparison of regression plots between GD-LSE ANFIS and PSO ANFIS models for prediction of Prout using 

the training and test data 
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Table 5.12 – Summary of the R coefficient obtained for the evaporator outlet pressure sub-model 

Training Method Training data Test data 

GD-LSE 0.9668 0.9492 

PSO 0.9768 0.9641 

 

5.8 Investigation of the ORC cycle using the neuro-fuzzy evaporator 

The overall model of the ORC cycle comprises evaporator, valve, expander, condenser, 

accumulator and pump as shown in Fig. 5.41. The individual component models developed 

previously in the chapter 4 are interconnected in commercial MATLAB/SIMULINK 

software to form the complete ORC cycle. The Simulink diagram of the ORC in shown in 

Fig. 5.42. 

 

Fig. 5.41. Overall model of the ORC 
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Fig. 5.42. The open-loop Simulink diagram of the ORC 

The neuro-fuzzy evaporator model developed using FV evaporator data discussed in this 

chapter is deployed to model the outlet temperature of refrigerant (𝑇𝑟𝑜𝑢𝑡) and outlet 

temperature of the heat source (𝑇ℎ𝑜𝑢𝑡) due to its accuracy and superior computational speed. 

The following relationships describe the inlet and outlet of the components of the cycle: 

• The mass flow rate of refrigerant is proportional to the pump speed. Since the high 

and low pressures are specified within the cycle, the temperature of the working fluid 

at the pump outlet and required power to drive the pump can be calculated. 

• The enthalpy drop between the pump and the evaporator is considered negligible; 

therefore, the evaporator heat recovery is considered to be a function of working fluid 

pressure, mass flowrate of working fluid, mass flow rate and temperature of heat 

source. 

• The speed of expander is not constrained and it can rotate freely. The expander’s work 

output is a function of expander inlet and outlet enthalpy. 



127 

 

 

• The condenser outlet temperature is considered constant and to maintain the desired 

outlet temperature the model calculates the required cooling power. 

• The liquid receiver maintains the working fluid level and its outlet enthalpy. 

The piping pressure losses between the evaporator outlet and expander inlet in the high-

pressure region of the ORC cycle need to be taken into account for achieving more accurate 

results. Hence, the Darcy-Weisbach correlation is adopted for modelling the total pressure 

losses of the piping as follows: 

∆𝑃𝑃𝑖𝑝𝑖𝑛𝑔 =
𝑓𝐷𝜌𝐿𝑃𝜈2

2𝐷
               (5.36) 

where 𝑓𝐷 represents the friction factor, 𝜌 denotes the pipes density, 𝐿𝑃 is the length of pipe, 

D is the pipe’s hydraulic diameter and 𝜈 id the velocity of working fluid. 

Furthermore, the Darcy friction factor in equation (5.36) is calculated using the Haaland’s 

equation for friction factor in turbulent pipe flow [169] as follows:  

1

√𝑓𝐷
= −1.8 log [(

∈𝑃
𝐷

3.7
)

2

+
6.9

𝑅𝑒
]                     (5.37) 

where ∈𝑃 and 
∈𝑃

𝐷
 denote the absolute and relative pipe roughness, respectively.  

For assessing the performance of the ORC model, a heat source with random mass flow rate 

and temperature in the range of 0.18 to 0.25 kg/s and 490 to 525 K, respectively is considered 

as shown in Fig. 5.43.  
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Fig. 5.43. Random heat source temperature and mass flow rate 

The mass flow rate of working fluid is proportional to the pump speed. The open loop 

response of the ORC cycle is simulated for 2500 seconds by considering an arbitrary fixed 

pump speed equal to 850 RPM. The refrigerant temperature at the evaporator outlet is 

represented in the Fig. 5.44. As shown in Fig. 5.44. with an arbitrary fixed pump speed of 

850 RPM and a random heat source, the refrigerant temperature at the evaporator outlet is 

fluctuating in the range of 380 to 408 K. These fluctuations in the working fluid temperature 

are caused by the transient nature of the heat source due to the different driving cycle. 

Furthermore, these fluctuations in temperature may result in decomposition of organic 

working fluid and deviation of expander work output from the nominal value. Therefore, for 

the safe and successful application of ORC in automotive applications other safety measures 

need to be considered to maintain this temperature at the desired value and maximise the 

work output of the system. 
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Fig. 5.44. Working fluid temperature at the evaporator outlet 

The pressure at the expander inlet after considering the piping pressure losses is shown in 

Fig. 5.45. From Fig. 5.45, it is observable that the expander inlet pressure due to the piping 

friction fluctuates in the range of 5995 to 6000 kPa.   

 

Fig. 5.45. The pressure at the expander inlet after considering the piping pressure losses 

The performance of overall ORC model for calculation of the expander work output is shown 

in Fig. 5.46. The simulation of the expander work output is calculated by using the generic 
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heat source presented in Fig. 5.43 and with a steady pump speed with 𝑁𝑃 = 850 RPM. From 

Fig. 5.46, it can be observed that, since the pump speed is not regulated, the expander work 

fluctuates mostly between 2 to 3.25 kW. Given that the pump speed is not regulated and is 

fixed at 𝑁𝑃 = 850 RPM, it can be inferred that the fluctuation in the expander work output 

is caused by the large range of operating conditions due to the transient nature of the heat 

source. Therefore, considering the fluctuations in the working fluid temperature at the 

evaporator outlet and expander work output, there is a vital need for a control scheme to 

simultaneously regulate the refrigerant temperature at the evaporator outlet and maintain the 

expander work output by regulating the pump speed.    

 

Fig. 5.46. The expander work output 

5.9 Summary 

In this chapter, an adaptive neuro-fuzzy inference system and its potential for modelling the 

highly nonlinear input-output behaviour of evaporator in an ORC subjected to a transient 

heat source is discussed. An ANFIS model of the evaporator is developed based on the data 

gathered from the FV evaporator model, which is computationally expensive for real-time 
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applications. Identifying the dynamics governing the behaviour of the evaporator can further 

result in proper control of the ORC in mobile applications. Furthermore, two intelligent 

learning algorithms are presented and their performances for training the ANFIS network are 

compared.  

A case study is presented for prediction of the evaporator outlet temperature and pressure of 

a 1-kWe ORC prototype. As system safety is vital in ORC applications for the recovery of 

waste heat from the exhaust gases of IC engines, accurate modelling of the evaporator outlet 

temperature and pressure plays a pivotal role in the design of suitable control systems. 

Comparisons of experimentally gathered data and predictions from the neuro-fuzzy models 

reveal an acceptable accuracy in predicting the evaporator outlet temperature and pressure. 

Based on the obtained results the main achievements of this study are as follows: 

•  The time and effort of identifying the antecedent and consequent parameters of the fuzzy 

model are decreased substantially by deploying the ANFIS method compared to the previous 

non-adaptive fuzzy models. 

•  The ANFIS models of evaporator for predicting the output temperature of heat source and 

refrigerant are trained using the hybrid GD-LSE and population-based PSO algorithms. The 

statistical analysis of the results indicates the higher accuracy and generalization ability of 

the ANFIS models trained using the PSO algorithm. 

•  The ANFIS models substantially outperformed the conventional numerical FV and MB 

methods in terms of real-time simulation time. Furthermore, the identified ANFIS models 

can be used for proper real-time control of the ORC cycle with transient heat source. 
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Chapter 6: Control of ORC  

In this chapter different control strategies for a small-scale ORC are discussed. Controlling 

the ORC cycle operating under transient heat source conditions is always challenging. 

Excessive temperature of working fluid at the evaporator outlet beyond its nominal range 

could result in decomposition of the organic fluid, damage the components of the ORC and 

adversely affect the performance of the cycle. Moreover, if the working fluid temperature is 

reduced to temperatures below the nominal range, liquid droplets may form during the 

expansion process. Therefore, considering the pressure-enthalpy diagram of R134a presented 

in Fig. 6.1, the ideal temperature of 𝑇 = 405 𝐾 is used as the nominal value for the refrigerant 

temperature at the evaporator outlet. Given the evaporator pressure is 6000 kPa, this 

temperature is the minimum temperature that prevents the formation of liquid droplets and 

corresponds to the enthalpy of 1.7 kJ/kg.K. 

 

Fig. 6.1. Selection of working fluid temperature at the evaporator outlet from the Pressure-Enthalpy diagram of R134a 
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6.1 PID control 

The Proportional, Integral, Derivative (PID) controller is a popular single-input single-output 

(SISO) control loop mechanism that is widely used in industry for variety of applications to 

regulate temperature, speed, flow or other process variables. PID employs the feedback of 

process variable y(t) and calculates the difference between the setpoint r(t) and the feedback 

value to form the error signal e(t). The objective is to minimise the error value by applying a 

correction based on proportional, integral and derivative terms. The block diagram of a PID 

controller is represented in Fig. 6.2.  

 

Fig. 6.2. Block diagram of a PID controller 

In mathematical form the overall control function of a PID controller can be represented by 

the following transfer function: 

𝑢(𝑠) = 𝐾𝑝 + 𝐾𝑖 (
1

𝑠
) + 𝐾𝑑 (

𝑧𝑠

𝑠+𝑧
)              (6.1) 

where 𝐾𝑝 is the proportional gain, 𝐾𝑖 denotes the integral gain, 𝐾𝑑 represents the derivative 

gain and z is the filter coefficient. 
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The advantage of PID controller lies in its easy implementation, good performance and 

simplicity of the controller design. Several methods such as Ziegler-Nichols, refined Ziegler-

Nichols, Chien-Hrones-Reswick, etc., have been proposed for setting the gain parameters of 

the PID controller.  

To control the ORC waste heat recovery system the pump speed needs to be adjusted in order 

to regulate the working fluid temperature at the evaporator outlet. However, the ORC is 

working under transient conditions and it has a wide range of operating conditions. Therefore, 

an operating point with the heat source mass flow rate and temperature equal to 𝑚ℎ =

0.2 𝑘𝑔/𝑠 𝑇ℎ = 500 𝐾 , is selected in order to tune the PID controller gains. The 𝐾𝑝 , 𝐾𝑖, 𝐾𝑑 

and z parameters, are tuned in order to obtain a suitable compromise between the time 

requirement and overshoot. The tuned PID controller gains are represented in Table 6.1. 

Table 6.1 – Tuned PID gains 

PID gains Tuned values 

𝑲𝒑  8.23 

𝑲𝒊 2.51 

𝑲𝒅 2.40 

z 0.13 

 

To assess the set-point tracking performance of the PID controller when the ORC is subjected 

to different heat source mass flow rate and temperature at the evaporator inlet, two more 

operating points are considered as follows: 
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 Table 6.2 – Operating points of the ORC for testing the PID controller  

 
𝒎𝒉 (

𝒌𝒈

𝒔
) 

𝑻𝒉 (𝑲) 

Case 2 0.185 520 

Case 3 0.23 495 

 

 

Fig. 6.3. Setpoint tracking of PID controller at different operating points 

The set-point tracking performance of the PID controller for different operating points is 

represented in Fig. 6.3. Comparison of the set-point tracking for different input conditions 

indicates that the performance of the PID controller is reduced significantly as the input 

condition changes from the nominal value. The reason behind this performance drop lies in 

the fixed nature of the PID gains. In automotive applications, the ORC is exposed to a stream 

of hot exhaust gases with alternating temperature and mass flow rate. Therefore, utilising the 

PID controller may result in decomposition of the working fluid, formation of liquid droplets 

at the expander inlet and safety concerns. In order to obtain better control performance and 
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protect the components of the system a novel neuro-fuzzy controller based on the inverse 

dynamics of the ORC system is introduced in the next section.   

6.2 Neuro-fuzzy system as direct inverse controller 

Intelligent control has emerged as a powerful tool for nonlinear and challenging control 

problems. For plants with high nonlinearity, uncertainties and unknown variations in plant 

parameters utilizing intelligent control techniques instead of conventional control methods 

may improve the robustness of the controller [170]. Furthermore, various intelligent 

techniques (neural networks, fuzzy logic, evolutionary algorithms, etc.) could be merged in 

order to integrate benefits of different methods. One approach is the direct inverse neuro-

fuzzy control, which utilises the learning ability of neural networks and approximate 

reasoning capability of fuzzy systems. This method assumes that the inverse model of plant 

can be obtained from the data obtained from the dynamics of the model which is not valid in 

general [170]. However, in case of the ORC, the inverse dynamics of the system can be 

realized using the data from the open-loop configuration.    

In this study, a direct inverse neuro-fuzzy control strategy is proposed for an ORC waste heat 

recovery system deployed to recover the waste heat energy of internal combustion engines 

in heavy-duty trucks. This control strategy, potentially offers a highly effective control of 

superheating at the evaporator outlet accruing the benefit of safe operation of ORC system 

under highly dynamic heat source condition. Moreover, the control system maintains the 

expander work output at the desired value by regulating the vapour pressure at the expander 

inlet. The proposed control strategy has been developed to meet two main requirements: set-

point tracking and disturbance rejection. 
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6.2.1 Development of inverse dynamic model 

This control scheme is developed based on the inverse dynamics of the ORC model. The 

controller design process is performed in two phases: the learning phase and the 

implementation phase. The flowchart in Fig. 6.4 illustrates the controller design procedure. 

The structure of inverse ANFIS controller during the learning phase is shown in Fig. 6.5. In 

the learning phase, the inverse model of the ORC is obtained based on the open-loop data 

and the goal is to minimize the error between the actual values of pump speed and its 

predicted values by the ANFIS structure. To achieve this goal, first, a random signal for the 

pump speed 𝑁𝑝 (𝑘) ranging from 80 to 1750 𝑅𝑃𝑀 is produced. This signal is based on the 

typical range and rate of change of the low to medium grade waste heat ORC pump. Then, 

this signal alongside with the random signals for heat source mass flow rate 𝑚ℎ (𝑘) and 

temperature 𝑇ℎ (𝑘) applied to the ORC model in an open loop configuration. The range of 

heat source mass flow rate signal is equal to 0.073 to 0.2985 𝑘𝑔/𝑠 and the heat source 

temperature is ranging from 412 to 523 K. The temperature of the working fluid at the 

evaporator outlet 𝑇𝑟𝑜 (𝑘)  and a unity-delayed temperature of working fluid at the evaporator 

outlet 𝑇𝑟𝑜 (𝑘 − 1) are recorded for 4500s. In the next step, the gathered data from the open-

loop configuration is used to model the inverse dynamics of the ORC system offline. The 

data is further divided randomly to 70% for training and 30% for testing the proposed inverse 

ANFIS model. Consequently, 3150 and 1350 data points are used for training and testing the 

controller model, respectively. As illustrated in Fig. 6.5, the inputs for the inverse controller 

model in the learning phase are heat source mass flow rate 𝑚ℎ (𝑘) and temperature 𝑇ℎ (𝑘), 

working fluid temperature 𝑇𝑟𝑜 (𝑘) and unity-delayed working fluid temperature 𝑇𝑟𝑜 (𝑘 − 1) 

at the evaporator outlet. The output of the model is the pump speed 𝑁𝑝 (𝑘). The ANFIS 
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parameters utilised for the inverse model during the learning phase of controller is listed in 

Table 6.3. The actual and predicted pump speeds for train and test data are shown in Fig. 

6.6. As it can be seen, the training data and an unseen test data are applied to the trained 

models to evaluate the generalisation power of the models. Additionally, a statistical criterion 

in terms of RMSE is considered to evaluate the accuracy of the models. The training and test 

RMSE for prediction of pump speeds are 7.75 and 8.45, respectively. Furthermore, to better 

illustrate the deviation of the predicted pump speeds from the actual values, regression plots 

are also included in Fig. 6.6. The linear correlation coefficient (R) for training data set is 

0.99972 and for test data set is 0.99968. The R value for training and test data clearly implies 

the high generalisation power of the model since the R value for both training and test data 

are close to one.  
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Fig. 6.4. Inverse neuro-fuzzy controller design procedure 
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Fig. 6.5. Structure of inverse ANFIS controller in the learning phase 

 

Table 6.3 – Inverse ANFIS controller training parameters 

Parameters Inverse ANFIS controller Parameters Inverse ANFIS controller 

Number of training data set 3150×5 Number of Epochs 3000 

Number of test data set 1150×5 Number of linear parameters 280 

Clustering method FCM Number of nonlinear parameters 560 

Membership functions Gaussian Total number of parameters 840 

Number of Clusters 70×4 Number of fuzzy rules 70 
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Fig. 6.6. Comparison of actual and predicted pump speeds for training and test data sets 

 

6.2.2 Implementation of inverse neuro-fuzzy controller 

Two closed loop ORC configurations are considered to assess the performance of the neuro-

fuzzy controller developed in the previous section as shown in Figs. 6.7 to 6.10. The inputs 

to the controller in the implementation phase are the transient mass flow rate 𝑚ℎ (𝑘) and 

temperature 𝑇ℎ (𝑘) of the heat source, the temperature of working fluid at the evaporator 

outlet 𝑇𝑟𝑜 (𝑘) and the reference working fluid temperature 𝑇𝑟𝑜_𝑟𝑒𝑓(𝑘). In the second 

configuration, a single-input single-output (SISO) PID controller with fixed gains based on 

the error signal from the difference between reference working fluid temperature and the 
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evaporator outlet temperature is tuned to control the working fluid temperature at the 

evaporator outlet. The PID controller is combined with the inverse ANFIS controller to 

improve the chattering effect of pump signal and reduce the settling time and overshoot of 

the system response. The PID is tuned with the nominal heat source temperature of 500 K 

and mass flow rate of 0.2 kg/s. The PID gains achieved for this control scheme are 𝐾𝑝 = 8, 

𝐾𝑖 = 2.5, 𝐾𝑖 = 2.5 and 𝑧 = 0.13, for the proportional, integral, derivative, and filter 

coefficient, respectively. In both configurations, the rate of change and range of pump speed 

are limited to ±100 𝑅𝑃𝑀/𝑠 and 80-1750 𝑅𝑃𝑀, respectively, according to the specifications 

of the deployed pump.  

 

 

Fig. 6.7. Structure of the ORC with inverse ANFIS controller 
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Fig. 6.8. Simulink diagram of the ORC with inverse ANFIS controller 

 

Fig. 6.9. Structure of the ORC with combination of inverse ANFIS and PID controllers 
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Fig. 6.10. Simulink diagram of the ORC with combination of inverse ANFIS and PID controllers 

 

6.3 Control performance of combination of PID and inverse neuro-fuzzy 

controller 

The performance of control strategies described in this chapter are now tested in terms of set-

point tracking and robustness in presence of a highly transient heat source. The success of 

the control strategies is judged based on the ability to track the reference set-points for the 

working fluid temperature at the evaporator outlet and expander work output within 

acceptable limits. Moreover, since in practical applications environmental noise may affect 

the sensor readings, the robustness of controllers is also assessed in the presence of noise.  

6.3.1 Set-point tracking performance of the control system 

To test the set-point tracking ability of the inverse ANFIS and combination of inverse ANFIS 

and PID controllers, the closed loop control systems shown in the Figs. 6.7 and 6.9 are 
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subjected to random signals for the heat source mass flow rate and temperature within the 

range of 0.18 – 0.24 𝐾𝑔/𝑠 and 495 – 525 𝐾, respectively. These ranges are selected to 

represent the temperature and mass flow rate variations of a typical waste heat source in 

heavy-duty trucks. The heat source mass flow rate and temperature variations are shown in 

Fig. 6.11. 

 

Fig. 6.11. Heat source mass flow rate and temperature variations 

To ensure that the system reaches its steady-state condition before introducing transients to 

the ORC at 𝑡 = 500𝑠 the simulations start under steady-state heat source condition with 𝑇ℎ =

500 𝐾 and 𝑚ℎ = 0.2 𝐾𝑔/𝑠. Furthermore, during this period the controller is off and a fixed 

pump speed of 850RPM is exerted to the system. At 𝑡 = 500𝑠 the controller becomes 

functional and simultaneously the transient heat source is applied to the ORC. As can be seen 

in Fig. 6.12, a reference signal with the temperature 405 𝐾 is set for the outlet temperature 

of evaporator. A series of step changes are applied to the reference signal. These step changes 

are happening at 𝑡 = 800𝑠, 𝑡 = 1000𝑠, 𝑡 = 1200𝑠, 𝑡 = 1400𝑠, 𝑡 = 1600𝑠, with the step 

sizes of +3, -3, +5, -5 and -1, respectively. Since the PID controller has fixed gains, which 
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are tuned for nominal temperature and mass flow rate of 500 𝐾 and 0.2 𝑘𝑔/𝑠, its performance 

reduces in the presence of the transient heat source. Moreover, PID controller is unable to 

eliminate the steady-state error during the heat source disturbances. As it can be inferred from 

the results, the ANFIS controller is able to eliminate the steady-state error in the presence of 

heat source disturbances. This is achieved by intense modification of the pump speed during 

the transients to compensate for the changes in the heat source variations. However, the 

results are not very encouraging due to the chattering effect in the response of the controller. 

This chattering effect could be attributed to the fast adjustments of the pump speed in the 

presence of highly transient heat source that increases the settling time of the response. The 

results suggest that combination of a PID controller with the inverse ANFIS controller 

significantly reduces the chattering effect of the controller response and reduces its overshoot 

during the transients. Moreover, compared to the inverse ANFIS controller the second control 

strategy reduces the settling time of the response significantly. The pumps speed for different 

control scenarios are compared in Fig. 6.13.            

 

Fig. 6.12. Comparison of set-point tracking of control strategies with transient heat source 
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Fig. 6.13. Comparison of response of pump for various control schemes under transient heat source 

6.3.2 Robustness of the proposed control system 

Initial simulation test on evaporator outlet temperature control loops indicated the acceptable 

performance of combination of PID and inverse ANFIS controllers in presence of a transient 

heat source. However, in practical applications, the ORC works in a harsh environment and 

as a result, it is important to investigate the robustness of the control schemes. The robustness 

of the proposed controllers is assessed in terms of set-point tracking and disturbance rejection 

by adding a high frequency white noise to the heat source mass flow rate and temperature as 

represented in Fig. 6.14. To test the robustness of the controllers the set-point for the outlet 

evaporator temperature experiences several step changes with different amplitudes.   
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Fig. 6.14. Heat source mass-flow rate and temperature variations in the presence of white noise 

The tracking ability of PID, inverse ANFIS and combination of PID and inverse ANFIS 

controllers are shown in Fig. 6.15. The results indicate the superior performance of 

combination of PID and inverse ANFIS controllers as compared to the PID controller by 

adjusting the pump speed in the range of 400-1250 𝑅𝑃𝑀. As it can be observed from the 

pump speed responses in Fig. 6.16, the chattering effect of the pump speed is significantly 

reduced by combining a PID controller with the inverse ANFIS controller. Comparison of 

pump speed for three controllers reveals that the range of pump speed adjustment in the PID 

configuration is significantly less than the other two controllers. This lower adjustment range 

results in an undesirable increase in the working fluid temperature deviation from the set-

point. The tracking ability of controllers in Fig. 6.15 points out the ability of the controller 

in successfully tracking the working fluid temperature set-point at the evaporator outlet even 

in the presence of significant disturbances in the heat source sensors data.   
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Fig. 6.15. Comparison of set-point tracking of control strategies with transient heat source in the presence of noise 

 

Fig. 6.16. Comparison of response of pump for various control schemes with transient heat source in presence of noise 

6.4 Expander work output control 

Control of expander speed during the transients is discussed in this section. As discussed 

previously, any modification in the pump speed changes the mass flow rate of working fluid 
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passing through expander. Since the ORC in mobile applications is imposed to a highly 

transient heat source, the pump speed needs to be adjusted accordingly to compensate for 

these transients in order to maintain the superheating at the evaporator outlet. As a result, the 

mass flow rate of working fluid may experience sudden changes in the ORC system that 

causes the expander output work 𝑊𝑒𝑥 (𝑘) to change abruptly. This is due to the faster 

dynamic of expander as compared to the evaporator. Furthermore, control of the expander 

work output is not effective when it is implemented independently without regulating the 

evaporator outlet temperature. This is due to the importance of vapour quality at the expander 

inlet. If a positive superheating is not maintained at the evaporator outlet, liquid droplets can 

form, which can harm the expander. Therefore, a simultaneous control scheme is proposed 

in this study to control the superheating and expander work output at the same time. The 

configuration of the control scheme and the Simulink diagram are illustrated in Figs. 6.17 

and 6.18, respectively. A three-way valve is used in this configuration to bypass the excessive 

working fluid mass flow rate passing through the expander to maintain a steady expander 

work output. The percentage of valve opening (𝑉 − 𝑂) is determining the working fluid mass 

flow rate passing through the expander. A PI controller with gains 𝐾𝑝 = 8, 𝐾𝑖 = 2.5, and 

𝑧 = 0.13 for the proportional, integral, and filter coefficient, respectively, is tuned and 

implemented in the ORC control system. Since a steady-state model of the valve is used in 

this study, the response of the valve is filtered using a first order low-pass filter to reduce the 

oscillations as follows: 

𝑉 − 𝑂𝑓 =  
1

𝜏𝑣.𝑠+1
                   (6.2) 
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where 𝑉 − 𝑂𝑓 is the valve filter and 𝜏𝑣 is the time constant for the filter which is assumed 

to be 1s. 

 

Fig. 6.17. Structure for simultaneous control of superheating and expander work output 
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Fig. 6.18. Simulink diagram for simultaneous control of superheating and expander work output 

6.4.1.1 Performance of expander work output controller 

The ability of the expander control loop is investigated in this section. The expander control 

loop is added to the combination of PID and inverse ANFIS control loops to simultaneously 

regulate the work outlet of expander as well as the superheating at the evaporator outlet. The 

simulation results for expander work output and percentage of valve opening are shown in 

Figs. 6.19 and 6.20, respectively. A fixed set-point of 2.8 𝑘𝑊 for the expander work output 

is considered. As can be seen in the Fig. 6.19, the PI controller is able to successfully maintain 

the desired expander work output by adjusting the valve opening for majority of the test 

duration. To achieve this, the controller adjusts the valve opening in the range of 87-100 

percent. It can be seen in Fig. 6.20 that the valve opening saturates at certain periods during 

the test, specially between 𝑡 =  1030𝑠 and 𝑡 = 1210𝑠. This is because the transient nature 

of the heat source. In this specific period, the heat source quantity is not enough to superheat 
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the working fluid therefore the ORC superheating control loop tries to reduce the pump speed 

to compensate for the heat source transients and maintain the evaporator outlet temperature 

set-point. As a result, the mass flow rate of working fluid at the valve inlet decreases. 

Subsequently, the expander work output control loop responds to this change in mass flow 

rate by completely opening the three-way valve to allow more superheated vapor to enter the 

expander and this causes deviation from the set-point. However, after the quantity of the 

transient heat source improves the controller tries to adjust the mass flow rate by suddenly 

reducing the percentage of valve opening. Due to this fast transition an overshoot happens in 

the response of the expander output work until the expander work control loop regains control 

and the work output returns to its defined set-point.   

 

Fig. 6.19. Set-point tracking of expander work output 
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Fig. 6.20. Percentage of valve opening using the PI controller 

6.5 Summary 

In this chapter a new control structure comprised of two independent loops is proposed to 

control an ORC subjected to a transient heat source with heavy-duty diesel engine waste heat 

characteristics. The controlled parameters are chosen as superheating at the evaporator outlet 

and the expander work output which controlled respectively by adjusting the pump speed and 

bypassing the flow at the expander inlet using a three-way valve. The proposed control 

scheme is compared with a conventional PID controller in terms of set-point tracking and 

robustness in the presence of noises. Based on the simulation results, the main conclusions 

are as follows: 

•  The performance of PID controller with fixed gains is not satisfactory for control of 

superheating at the evaporator outlet under transient heat source conditions. 

•  The inverse neuro-fuzzy controller was able to reduce the steady state error for controlling 

the temperature at the evaporator outlet; however, due to the logic-based structure of the 
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controller the chattering in the pump speed increases, this fast adjustment of pump speed 

reduces the overall efficiency of the ORC. 

•  Combining a PID controller with the inverse neuro-fuzzy controller improves the settling 

time of the controller and reduces the chattering effect in the pump speed. Furthermore, this 

control strategy is shown to track the desirable temperature at the evaporator outlet with an 

acceptable precision. 

•  The performance of the proposed controller is compared with a PID controller in terms of 

set-point tracking and disturbance rejection, and the results suggest that the robustness of the 

controller is improved as compared to the PID controller.   

•  The performance of the PI controller is satisfactory for controlling the expander work 

output at its set-point. However, due to the importance of vapour quality at the expander inlet, 

this control strategy cannot be implemented independently without controlling the 

superheating at the evaporator outlet.      
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Chapter 7: Summary, conclusions and future work 

7.1 Summary 

This thesis involves modelling and control of an ORC waste heat recovery systems for 

applications in automotive industry where the systems are subjected to heat sources with 

unsteady characteristics. The ORC is a promising technology, which offers the potential to 

reduce the CO2 emissions in internal combustion engines as the main technology currently 

used in the transportation sector. Review of the main waste heat recovery technologies 

presented in chapter 2 shows that, recently various methods of waste heat recovery have been 

explored to utilise the significant amount of energy that is released to the atmosphere from 

the exhaust and coolant of IC engines. These technologies include thermoelectric generators, 

Stirling engine, phase change material engine, Kalina cycle and organic Rankine 

cycle engines. Among them, ORC is the preferred method of waste heat recovery in internal 

combustion engines as it offers low manufacturing cost and high efficiency in recovery of 

waste heat from the low to medium temperature range heat sources. To adopt the ORC as a 

waste heat recovery method, the components of system need to be modelled and a control 

scheme is required to address the fluctuations of heat source during the driving conditions 

and ensure the safety of system.  

Therefore, the specific objectives of this study are firstly to investigate the waste heat 

recovery technologies and their suitability for mobile applications. Secondly, developing a 

model of the chosen waste heat recovery method (ORC) that can be deployed to achieve the 

control requirements in real-time. Thirdly, developing a control scheme that can ensure the 

safety of system when it is subjected to the heat source variations due to the different driving 
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conditions. Lastly, regulating the work output of the ORC system regardless of the driving 

condition by adjusting the working fluid mass flow rate. 

To deploy the ORC as a waste heat recovery method for mobile applications, in chapter 3, 

the potential architectures of the ORC are reviewed which shows that, SRORC, DRORC and 

RORC due to the complexity of their expanders are not generally suitable architectures. 

However, ORC with recuperator architecture can be deployed to preheat the working fluid 

before entering the evaporator. This cycle will be beneficial as it reduces the amount of heat 

required for vaporizing the working fluid in the evaporator. Furthermore, it was found that 

selection of the appropriate working fluid is of prominent importance as it affects the 

performance of the ORC. The substances need to have certain properties to be considered as 

a potential working fluid for the ORC in automotive applications. Moreover, despite the 

broad range of available substances, there is not a single optimal working fluid for all 

applications of the ORC and only a few of the available substances are deployed in 

commercial ORC applications. Therefore, in this study R134a and R245fa due to their 

suitable critical temperature, appropriate temperature profile matching with the heat source, 

low cost, relatively high auto-ignition temperature, zero ODP and wide availability are 

chosen for investigation of ORC waste heat recovery system. 

To address the modelling requirements of this thesis, in chapter 4, the mathematical 

representation of the ORC components including pump, evaporator, expander, condenser, 

valve and liquid receiver are presented. The particular emphasis is given to the evaporator 

unit since it is the key component of the system as it is responsible for a large share of the 

overall exergy destruction (heat transfer over a finite temperature difference being 

irreversible by nature) and dominates the dynamic response of the ORC system. Furthermore, 

the evaporator unit is challenging to model due to the high nonlinearity of its governing 
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equations. In addition, the dynamic behaviour of ORC engines is governed by the large 

thermal inertia of the heat exchangers, in particular by that of the evaporator, which has a 

direct impact on the response time of an ORC engine subject to fluctuations in heat-source 

conditions (namely, temperature and mass flowrate). Therefore, an accurate model of the 

evaporator unit is required to capture the dynamics of the system. An accurate model of the 

evaporator is of prominent importance, not only because it is necessary for cycle optimisation 

and working fluid selection, but also as it allows a comprehensive optimisation of the 

dynamic control strategy.  

The evaporator models available in the literature are reviewed in chapter 4, and it was found 

that they can be categorised into three main categories: finite volume (FV) models, moving 

boundary (MB) models and fuzzy models. The main technique which is used in the literature 

for modelling the evaporator unit is the FV model which is computationally expensive due 

to its numerical approach and high nonlinearity of the evaporator governing equations. 

Therefore, despite high accuracy of the FV models, it is usually appropriate for performance 

assessment and working fluid selection, but cannot be applied to high-frequency, real-time 

control purposes. 

To provide an agile and control-oriented model of evaporator, in chapter 5, the potential of 

artificial intelligence techniques are investigated. An artificial neural network (ANN) model 

of evaporator is presented to predict the outlet temperature of heat source and outlet 

temperature of refrigerant. This model benefits from high accuracy and low response time in 

prediction of the desired evaporator outlet parameters, however, as oppose to the principle-

based models, due to its black-box nature the mathematical relations are unknown to the 

designer and have no physical meaning. Another drawback of this model is that training this 

model involves a trial-and-error task and the model performance depends on several design 
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parameters such as model architecture, number of neurons in the hidden layer, activation 

function of the neurons, optimization algorithm and learning rate parameter.   

To overcome the issues arising from the black-box nature of the neural network models, in 

chapter 5, neuro-fuzzy technique in introduced by combining the modelling benefits of fuzzy 

systems and pattern recognition power of neural networks. Neuro-fuzzy models are data-

driven techniques that require training before implementation. As opposed to the principle-

based methods, which are slow due to their iterative solution, neuro-fuzzy models are much 

faster and can be utilised for real-time control purposes. Adaptive neuro-fuzzy inference 

system (ANFIS) is an intelligent modelling technique acquiring the modelling benefits of 

Sugeno fuzzy inference system and learning ability of feedforward neural network.  

To contribute to the advancement of waste heat recovery based on the ORC technology, in 

chapter 5, a new neuro-fuzzy model of the evaporator based on the available data from a FV 

model of evaporator has been developed in this thesis. This evaporator model offers reduced 

complexity, high accuracy and lower computational burden for prediction of the working 

fluid and heat source temperatures at the evaporator outlet. Moreover, the effect of training 

the ANFIS evaporator model using the hybrid GD-LSE and PSO algorithms is investigated. 

The statistical analysis of the results indicates the higher accuracy and generalization ability 

of the ANFIS models trained using the PSO algorithm. 

To further validate the results obtained from the simulations, the application of neuro-fuzzy 

technique for modelling the evaporator in a 1-kWe ORC testing prototype is also investigated 

in chapter 5. Comparison of the results between the data obtained from the testing facility 

and the ANFIS evaporator models trained by GD-LSE and PSO algorithms indicates the high 

accuracy of the proposed evaporator models. Training the ANFIS models using the PSO 

algorithm improved the obtained test data RMSE values by 29% for the evaporator outlet 
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temperature and by 18% for the evaporator outlet pressure. The accuracy and speed of the 

model illustrate its potential for real-time control purposes. 

Most of current investigations on ORCs are focused on theoretical and thermodynamic 

analysis, cycle optimisation, techno-economic optimization, and working fluid selection. In 

particular, combined fluid-design optimisation studies explore the potential of novel working 

fluids using computer aided molecular design (CAMD) techniques. Several studies also 

propose advanced off-design optimisation algorithms to maximise the performance of an 

ORC engine operating under variable heat-source conditions. However, the latter are based 

on quasi-steady models of the ORC engine and are thus not suitable for dynamic applications. 

For safe and successful implementation of ORCs in the automotive industry, a reliable and 

precise control scheme is required to ensure the safe operation of the engine, prevent organic 

fluid decomposition and reduce the risk of component damage. 

To assess the performance of the neuro-fuzzy model of evaporator in an ORC-WHR system, 

the models for all the components of the ORC system are developed and integrated in a single 

loop series model. In chapter 6, a novel approach is proposed to ensure the safe operation of 

ORC-WHR system and stabilise its work output when subjected to transient heat sources in 

a range of waste heat from heavy-duty diesel engines. The control strategy comprises a neuro-

fuzzy controller based on the inverse dynamics of the ORC system to control the superheating 

at the evaporator outlet by adjusting the pump speed and a PI controller to maintain the 

expander work output by regulating the mass flow rate at the expander inlet. The performance 

of the proposed control strategies is investigated with respect to set-point tracking and its 

robustness is tested in the presence of noise. The simulation results indicate an enhancement 

in the controller performance by combination of feedforward and feedback controllers based 

on neuro-fuzzy techniques.  
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7.2 Conclusions 

The overall conclusions considering the objectives of the thesis are: 

• ORC is a promising technology for waste heat recovery in IC engines with features 

such as low manufacturing cost and high efficiency as compared to the other waste 

heat recovery methods. Due to the fluctuating nature of heat source in mobile 

applications a control scheme is required to ensure the safety of system and stabilise 

its work output.  

• Evaporator is the most critical component of the ORC and an accurate and agile 

model of evaporator is required for real-time control of the cycle. The simulation 

results indicate the evaporator models developed by using neuro-fuzzy technique can 

be deployed for real-time control of ORC in various applications. Moreover, the effort 

to identify the model parameters reduced substantially in the ANFIS models as 

opposed to the conventional non-adaptive methods of fuzzy system tuning. The 

neuro-fuzzy models offer reduced complexity, high accuracy and lower 

computational burden for prediction of the output parameters. 

• Compared to the models trained using the GD-LSE algorithm, the models trained 

using the population-based PSO algorithm obtained better accuracy in terms of 

RMSEs and R coefficients for the training and test datasets. For the evaporator outlet 

temperature, a 29% improvement in the RMSE was achieved for both the training 

and test data. Furthermore, the evaporator outlet pressure RMSE improved by 15% 

and 18% for the training and test datasets, respectively, by using the PSO algorithm. 

• The performance of PID controller with fixed gains is not satisfactory for control of 

superheating at the evaporator outlet under transient heat source conditions. The 
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inverse neuro-fuzzy controller was able to reduce the steady state error for controlling 

the temperature at the evaporator outlet; however, due to the logic-based structure of 

the controller the chattering in the pump speed increases, this fast adjustment of pump 

speed reduces the overall efficiency of the ORC and increases the settling time of the 

response.  

• Combining a PID controller with inverse neuro-fuzzy controller improves the settling 

time of the controller and reduces the chattering effect in the pump speed. 

Furthermore, this control strategy is shown to track the desirable set-point 

temperature at the evaporator outlet with an acceptable precision. The performance 

of the proposed controller is compared with a PID controller in terms of set-point 

tracking and disturbance rejection, and the results suggest that the robustness of the 

controller is improved as compared to a tuned PID controller. The proposed control 

scheme not only can obtain satisfactory transient response under various loading 

conditions, but also can achieve desirable disturbance rejection performance.  

• The performance of the PI controller is satisfactory for controlling the expander work 

output at its set-point. However, due to the importance of vapour quality at the 

expander inlet, this control strategy cannot be implemented independently without 

controlling the superheating at the evaporator outlet.  

7.3 Further work 

The particular areas where this thesis has made contribution to the field is on modelling the 

evaporator unit in the ORC waste heat recovery system using the neuro-fuzzy technique, 

validating the proposed technique using the experimental data and designing a control 

scheme that is able to control the working fluid temperature at the evaporator outlet and 
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regulating the expander work output. The obtained model and control scheme will be of direct 

benefit to the academic community since they facilitate the applications of ORC waste heat 

recovery system where the heat source has an unsteady nature.   

Although the focus of this study is on the application of the ORC in automotive industry, the 

modelling and control methods developed in this study could be applied for investigating the 

waste heat recovery using the ORC technology in variety of applications such as waste heat 

recovery in industrial processes, combined heat and power (CHP) generation, transient solar 

ORC, etc.  

The current findings of the control strategy in this thesis have been helpful in gaining 

experience in assessing the feasibility of the neuro-fuzzy control system. However, the 

proposed control system needs to be implemented on an ORC prototype with fluctuating heat 

source in order to further validate the results obtained from the simulations.   

The model of the individual components of the ORC system presented in this thesis can be 

refined to achieve higher simulation accuracy under steady and dynamic situations. For 

example, several simplifications are considered in development of the FV evaporator model 

used in this study. To achieve a more realistic model of the ORC system these simplified 

hypotheses need to be avoided. 

Although the performance of neuro-fuzzy evaporator model is satisfactory, the performance 

of the training method applied for training the neuro-fuzzy evaporator model developed in 

this study could be compared with other heuristic algorithms in search for finding the most 

efficient training algorithm. Furthermore, other improvements such as more accurate models 

for other components of the ORC system (pump, expander, etc.), cycle optimization for 
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higher thermal and heat recovery efficiency, and efficiency/life cycle analysis of waste heat 

recovery system could be considered to enhance the accuracy of results.  
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