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Abstract

The power spectrum is a very successful statistic for extracting cosmological information from the

large-scale structure of the universe. When applied to data provided by galaxy redshift surveys, one

of the key strengths of the power spectrum is its ability to determine the growth rate of structure

and the expansion history of the universe, two important probes of cosmological models. Upcoming

and future surveys will provide a higher number density of targets over a much greater volume than

previously attainable, enabling the power spectrum to test cosmological models with more precision.

Consequently, these large-volume surveys will require modelling of the power spectrum to a high

degree of accuracy over a wider range of scales, and any previous modelling assumptions should be

tested to assess their validity in this new regime.

The main task of this work is to address some of these challenges posed when modelling the

galaxy power spectrum for very deep and wide-angle redshift surveys. Working with these condi-

tions presents two problems that many previous smaller surveys did not necessarily have to address.

Firstly, the distant observer approximation is no longer valid, and so working in spherical coor-

dinates is required to properly model the survey window function that becomes convolved with

the power spectrum in any volume or magnitude-limited sample. This choice of coordinate system

introduces spherical Bessel functions into the integrals of the model equations, which can be noto-

riously difficult to evaluate. Secondly, when working with very deep surveys, the pair counting of

objects that exist at significantly different redshifts from one another requires the use of unequal-

time correlators for a full treatment of the modelling, otherwise this may introduce systematic

errors when trying to recover cosmological parameters.

We start off by reviewing the existing model for the power spectrum on the past lightcone,

working in the simple case of unbiased tracers on the full sky, and extend this model further into

the non-linear regime. We develop numerical code in C++ that is able to compute the model in

an accurate and timely manner, and test the validity of the standard mean-redshift approximation

to the unequal-time correlator. We find this to cause a significant bias in the expected power

spectrum amplitude, particularly for deep surveys. Following from this, we show that an effective

fixed-time redshift can be easily determined that gives a good approximation to the unequal-time

case, over a wide range of scales and redshifts. We then test the model against mock lightcone

catalogues, created from large-volume N -body simulations, and find excellent agreement between

our measurements and the theory, to within ±5%, over a range of magnitude-limited samples,

and for the scales 4 × 10−3 ≤ k ≤ 0.5 [h Mpc−1]. We also tested how well the commonly used
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FKP weights effected the measurements, for various values of fiducial power P0 and over the range

of magnitude cuts, finding they could boost the signal-to-noise by factors of a few. Using the

mock lightcone catalogues, we then forecast the probability of upcoming and future galaxy redshift

surveys being able to robustly detect the turnover-scale in the power spectrum. We found that

a turnover was detectable with a probability of P ≥ 95% in an all-sky catalogue, limited to an

apparent magnitude of mlim ∼ 21, with this probability remaining high for surveys with mlim ∼ 22

at 20% sky coverage.

We then extend the model of the power spectrum on the past lightcone to make it more ap-

plicable to realistic surveys, by including terms for galaxy bias and a survey mask that is not

necessarily isotropic. As accounting for these effects produces a more mathematically complicated

model, we look for new methods to make numerical evaluation more feasible. We find that as long

as time-separability of the unequal-time correlator holds, an approximation that was employed for

the previous full-sky case can still be used to make the calculation of the model at small-scales

a trivial task. For evaluation of the model at large scales, we apply the FFTLog method in con-

junction with analytic transforms of Bessel integrals, deriving expressions for our specific case and

listing an example of a step-by-step algorithm for implementing this numerically.

Finally, we give an overview of the 4MOST Cosmology Redshift Survey, an upcoming spec-

troscopic survey in the southern hemisphere which aims to synergize with weak lensing and CMB

surveys to better constrain the late-time universe. We detail the clustering pipeline that we have

developed in Python for this survey, which utilises existing libraries to compute two-point statis-

tics in both configuration and Fourier space. This can be used for for assessing the quality of the

mock catalogues being generated in advance of the survey going live, as well as for survey design

optimisation. We end by briefly reviewing some of the results produced by the pipeline when being

run on the most up-to-date mocks from the 4MOST simulation team.
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Chapter 1

Introduction

Modern cosmology, the scientific study of the origin and evolution of the Universe, emerged just

after the turn of the 20th century, and is grounded on Einstein’s theory of General Relativity as

well as the cosmological principle. While the former describes gravity as a geometric property of

space-time, the latter states that we as observers hold no special place in the universe: it should

look statistically the same no matter which direction we look out into the sky (isotropic) and be

independent of where it is observed (homogeneous). Initial cosmological models favoured a static

universe, in which space is deemed as flat, infinite in expanse and neither expanding or contracting.

To counteract the force of gravity that would eventually cause everything to collapse in on itself,

Einstein introduced the cosmological constant Λ into his field equations, which acts as an outwards

pressure, counteracting the force of gravity and thus producing a static universe.

However, observations of galaxies by Hubble in 1929 [1] showed that a galaxy’s recession velocity

from us is roughly proportional to its separation distance, now known as Hubble’s Law, forming

the basis for the theory that the universe is not static, but instead is expanding. Shortly after this,

measurements of galaxies in the nearby Coma Cluster by Zwicky [2] showed orbital velocities for

galaxies far in excess of what would be expected if the cluster consisted of ordinary baryonic matter

alone. This was the first strong evidence that the universe must contain what is referred to as Dark

Matter - a hypothetical form of matter that does not interact with the electromagnetic force, and

only acts gravitationally. Independent studies of clusters in the latter half of the century would

confirm this result [3], and the 1983 work by Rubin [4] suggested that galaxies are embedded in a

halo of dark matter to account for their higher-than-expected rotation velocities.

In the latter half of the 20th century, the accidental discovery of the cosmic microwave back-

ground (CMB) in 1965 by Penzias and Wilson [5] was a major milestone, supporting the idea of

an expanding universe and providing strong evidence for the Big Bang theory: that the universe

originated from a very hot and dense state. In addition to this, before the turn of the millennium,

measurements by Reiss, Schmidt and Perlmutter [6, 7] of Type Ia Supernova, which act as standard

candles, revealed that more distant galaxies are receding from us at rates faster than expected for a

matter dominated Universe, implying that the Universe’s expansion is accelerating. This develop-

ment rekindled interest in the cosmological constant Λ, which Einstein had introduced for his static

17



universe, and subsequently called his biggest blunder after the discovery of the expanding universe

by Hubble. The unknown substance which provides the driving force behind this acceleration,

hereafter referred to as Dark Energy, showed remarkably similar properties to the effects of having

a positive value of Λ in the field equations. Understanding Dark Energy is one of the most active

areas of research in astronomy at the present time.

All of these ingredients have contributed to the current most widely accepted model of cosmol-

ogy, called ΛCDM (Λ - dark energy, CDM - cold dark matter) or concordance cosmology. This

model assumes that gravity is accurately described by General Relativity on cosmological scales,

and is able to explain many observed phenomena, such as the CMB and large-scale structure of

the universe today, the chemical abundances of light atoms, and the accelerated expansion of the

universe [8].

More recent technological advances, such as the advent of modern high performance computers,

high resolution, low readout noise CCDs, as well as the ability to construct larger and more accurate

telescopes, have lead to a wealth of observational data for cosmologists. From ever increasingly

precise measurements of the CMB and its temperature anisotropies by the Cosmic Background

Explorer (COBE [9]), Wilkinson Microwave Anisotropy Probe (WMAP [10]) and Planck [11, 12,

13] missions, to late-time large-scale structure measurements by galaxy surveys such as the Two-

degree-Field Galaxy Survey (2dF [14]), Sloan Digital Sky Survey (SDSS [15]) and Dark Energy

Survey (DES [16]), we now have a much clearer understanding of the universe 100 years on from

from the inception of Physical cosmology. Despite this, there are still fundamental outstanding

issues in the field, not least being that Dark Matter and Dark Energy combined make up for

around 94% of the energy density of the universe today, and we have yet to properly discern the

true nature of either of these quantities. Additionally, significant tensions remain between late-time

and early-time measurements of the inferred Hubble constant today, H0, governing how fast we

think the universe is expanding. These are currently two of the main driving issues for cosmologists:

can improved understanding of the data resolve the tensions in ΛCDM, or is it just a model we

have fitted to the data, that does not truly encapsulate the underlying physics? In the next section,

we will review the model in more detail, highlighting some of its successes, as well as its flaws.

1.1 The standard model of Cosmology

We now review some of the important aspects underpinning the current standard model of cosmol-

ogy, highlighting key developments and observations that influenced its shaping, as well as detailing

some of the unresolved challenges it faces.

1.1.1 The field equations and density

The general solution to Einstein’s field equations that satisfy the cosmological principle was dis-

covered independently in the 1920’s and 30’s and is named after its discoverers: the Friedmann-

Lemaitre-Robertson-Walker (FLRW) metric. The corresponding line element of this metric de-
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scribes how to measure distances in an expanding space, and in spherical coordinates can be written

as

ds2 = c2dt2 −R2(t)
[ dr2

1− kr2
+ r2(dθ2 + sin2 θ dφ2)

]
, (1.1)

where r represents a re-scaled (but dimensionless) radial coordinate and R(t) is a quantity called the

scale factor, which parameterises the expansion of space and has units of length. The dimensionless

parameter k determines the spatial curvature and can have the values {−1, 0, 1}, corresponding to

a negatively curved or closed space, a flat space, and positively curved or open space, respectively.

The Hubble rate, which defines the rate of expansion of the universe, is defined as1

H(t) ≡ ȧ(t)

a(t)
, (1.2)

where the dot denotes a derivative with respect to coordinate time t. It is often parameterised

by its value today as H(t0) = H0 = 100hkm/s/Mpc, with h quantifying the uncertainty in the

measured value. The observational form of Hubble’s law relates the recession velocity v of a galaxy

to its proper distance d (see next section) from us:

v ≈ H0d (for small distances) , (1.3)

and was established by Hubble in 1929. While his original observations measured a value of H0 ≈
500km/s/Mpc2, more recent observations from various sources put the figure at around H0 ≈
70km/s/Mpc (see Fig. 1.1), although the exact value remains a key point of contention in the field

today.

To solve the FLRW metric of Eq. (1.1), we require some understanding of the matter content

of the universe. From the gravitational field equations of GR, we have that

Gµν = Rµν −
1

2
gµνR+ Λgµν = −8πG

c4
Tµν , (1.4)

with Gµν the Einstein tensor, describing the geometry of spacetime, Λ the cosmological constant,

and Rµν and R the Ricci tensor and Ricci scalar respectively, both of which consist of derivatives

of the metric tensor gµν . On the right hand side of the equation, we have Newton’s gravitational

constant G, the speed of light c, and the energy-momentum tensor Tµν , describing the density and

flux of energy and momentum in spacetime. Thus, we see that this theory of gravity is one in

which the energy density of spacetime is intrinsically linked to its geometry. When applying these

equations in the cosmological context, the universe is approximated as a perfect fluid, which is

characterised at each point by its proper density ρ and pressure p in the instantaneous rest frame.

1Here, a(t) is a dimensionless scale factor, given by a(t) ≡ R(t)/R(t0) where t0 is the current age of the universe
and therefore by definition we have a(t0) = 1.

2This high value was the result of errors in distance calibration.
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Figure 1.1: Left: Measurements of the recession velocities of extra-galactic nebulae by Hubble [1], as
a function of their distance from us, with overlaid lines from an inferred linear relationship (now known
as Hubble’s Law). Right: Measurements of the Hubble constant H0 from various works, as a function
of publication year (image provided by the European Space Agency). These measurements rely on an
assumption being made about the model of cosmology (in this case ΛCDM), as well as the cosmic distance
ladder - a succession of techniques used to measure distance in the universe, with each rung of the ladder
providing information for measuring a distance at the next rung up . We see the accuracy improvements of
the more recent measurements, as well as the discrepancy in the value inferred from astrophysical and CMB
probes.

The resulting energy momentum tensor is therefore

Tµν =


ρc2 0 0 0

0 p 0 0

0 0 p 0

0 0 0 p

 , (1.5)

where we see our simple model is devoid of any shear-viscous, bulk-viscous or heat-conductive

properties, apparent by the lack of off-diagonal elements. In keeping with the requirements of our

model that the universe must be homogeneous and isotropic, ρ and p can depend only on time, and

combining the line element of Eq. (1.1) with the field equations (1.4) and our energy-momentum

tensor (1.5), the cosmological field equations can be derived:

R̈

R
= −4πG

3

(
ρ+

3p

c2

)
+

Λc2

3
, (1.6)(Ṙ

R

)2
=

8πG+ Λc2

3
ρ− c2k

R2
. (1.7)

These two differential equations are known as the Friedmann-Lemaitre equations, and determine

the time evolution of the scale factor R(t). For cosmological calculations, it is often useful to derive

a third equation, known as the cosmic fluid equation, which can be used to tell us how the energy
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density ρ evolves with time:

ρ̇+
(
ρ+

p

c2

)
3H = 0 . (1.8)

This follows from the conservation of energy of the energy-momentum tensor, ∇µTµν = 0, and has

a solution

ρ ∝ a−3(1+w) , (1.9)

where w is the equation of state parameter, defined as w ≡ p/ρc2. As our cosmological fluid

consists of multiple components, we can write the density and pressure parameters as the sum of

their constituents parts,

ρ =
∑
i

ρi and p =
∑
i

pi , (1.10)

and look for solutions to equation Eq. (1.8) on an individual basis. For the ΛCDM model, our

cosmological fluid consists of matter ρm, radiation ρr, curvature ρk, and the vacuum energy ρΛ

(neglecting any contribution from neutrinos which is thought to be very small). In this model, the

equations of state are constant, and the density parameters evolve as

ρm(z) = ρm,0(1 + z)3 , (1.11)

ρr(z) = ρr,0(1 + z)4 , (1.12)

ρΛ(z) = ρΛ,0 , (1.13)

ρk(z) = ρk,0(1 + z)2 . (1.14)

These solutions are often given in terms of the critical density, defined as the density of the universe

in the case where there is zero overall curvature (see Fig. 1.2). We can derive an expression for this

density by setting k = 0 in our second Friedmann-Lemaitre equation, giving

ρcrit(t) =
3H2(t)

8πG
, (1.15)

and following from this, define the density parameters of our individual constituents of the cosmo-

logical fluid as

Ωi(t) ≡
ρi(t)

ρcrit(t)
. (1.16)

By substituting Eq. (1.10) into our second cosmological field equation (1.7), and then rewriting the

individual densities in terms of their density parameters of Eq. (1.16), we obtain

1 = Ωm + Ωr + ΩΛ −
c2k

H2R2
, (1.17)

where the last term on the right hand side is then defined as the curvature density parameter

Ωk ≡ −c2k/H2R2. This equation holds true at all times, and at late times of the universe, where
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Figure 1.2: Plot showing the evolution of the density parameters, relative to the critical density, as a
function of scale factor, in a flat universe. We see that the very early universe was dominated by radiation
and matter. The point at which these two components are equal is labelled aeq. Plot from [8].

the contribution from radiation is small, we have the relationship

Ωm + ΩΛ ' 1− Ωk . (1.18)

Thus, we only need to measure the matter and vacuum energy density parameters to determine

the curvature of the universe, with recent measurements of the CMB [17][12] showing this to be

consistent with zero (Ωk = −0.005+0.016
−0.017 from Planck combined probes).

1.1.2 Distance measures in cosmology

Being able to accurately measure distances in the universe is an essential part of cosmology. In an

expanding universe, the traditional notion of a Cartesian separation between two points is often

not the most useful measure of distance, as objects are constantly drifting away from each other.

In addition to this, due to the finite travel speed of light, whenever an observer looks out into the

universe, they are observing objects on their past lightcone, and so are also looking back in time.

Consequently, there are several ways that we can measure distances, which we briefly review now.

The redshift relates the observed wavelength of light, λo, to the emitted wavelength λe for a

distant galaxy. It is defined as

1 + z ≡ λo
λe

=
νe
νo

, (1.19)
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where ν is the frequency of light. As redshift is an observable quantity, it is of great importance for

both theory and measurements. While the redshift will predominantly be dictated by the recession

velocities of objects due to the expansion of the universe, there is also a small component due to

radial peculiar motions of both the observer and the galaxy around their local neighbourhood. We

can therefore define both observed zobs and cosmological zcos redshifts, with the latter defining

the redshift purely from the expansion rate only (the Hubble flow). These are related to peculiar

velocities along the line of sight as

vpec = c
(zobs − zcos)

1 + zcos
. (1.20)

For small radial velocities (or distances), the redshift can be approximated as

z ≈ v

c
=

d

DH
, (1.21)

where d is the proper distance, which corresponds to the distance an object would be at a specific

cosmological time, and DH is the Hubble distance:

DH =
c

H0
, (1.22)

measuring the distance to an object based on the Hubble flow. The redshift can also easily be

related to the scale factor a(t) as

a(t) =
1

1 + z
. (1.23)

The comoving distance χ, between two objects moving with the Hubble flow, remains constant

in time, as this distance accounts for the expansion of the universe. It is related to the proper

distance at cosmic time t0 via d = a(t0)χ and can be derived from the FLRW metric:

χ =

∫ t2

t1

c dt′

a(t′)
. (1.24)

In this sense, the comoving distance can be thought of as the distance travelled by a photon in an

expanding universe, also known as geodesic distance. Subsequently, the time taken for a photon to

travel this distance, the conformal time η, is simply

η =
χ

c
=

∫ t2

t1

dt′

a(t′)
. (1.25)

The comoving distance is thus a useful measure for calculating the clustering of matter (or large-

scale structure) that is moving with the expansion of the universe.

The angular diameter distance is defined as the ratio of an object’s physical transverse size to
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its angular size. It is related to the comoving distance by

DA = a(t)Sk(χ) , (1.26)

where Sk(χ) is a quantity relating distances with the spatial curvature:

Sk(χ) =


c

H0

√
|Ωk|

sin(χH0

√
|Ωk|/c) if Ωk < 0,

χ if Ωk = 0,

c
H0
√

Ωk
sinh(χH0

√
Ωk/c) if Ωk > 0.

(1.27)

It can be used to convert angular separations measured via a telescope to actual physical distances

at source, and has the interesting property that it does not increase indefinitely as z → ∞, but

actually turns over at around z ∼ 1, meaning that more distant objects actually start to appear

larger in angular size.

The luminosity distance, DL is a distance we can calculate for an object if its luminosity is

known:

DL =

√
L

4πS
, (1.28)

where S is the flux received by the observing telescope. This unit of measurement is important

when measuring the distance to standard candles such as Type Ia supernova and Cepheid variables,

which can be used to probe the expansion rate of the universe. It can be related to the comoving

and angular distances via

DL = (1 + z)2DA = (1 + z)Sk(χ) . (1.29)

One final quantity that is useful to define is the particle horizon HP(t), also known as the

cosmological horizon or comoving horizon. This is defined as the longest distance from which an

observer at time t2 can retrieve information from its past lightcone, and can be related to the

comoving distance:

HP(t2) = lim
t1→0

χ =

∫ t2

0

c dt′

a(t′)
. (1.30)

The particle horizon is therefore the radius of the observable universe for a given observer, with

anything lying outside this horizon unable to have causal contact with the observer.

1.1.3 The successes of and challenges facing the ΛCDM model

The ΛCDM model of cosmology rose to prominence in the latter half of the last century, primarily

driven by two key issues: the growing evidence that the universe is expanding, and that observations

of various phenomena suggested the presence of a large amount of cold dark matter. The model can
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Parameter Symbol Value

Physical dark matter density Ωch
2 0.1198± 0.0012

Physical baryon density Ωbh
2 0.02233± 0.00015

Hubble constant (in units [km/s/Mpc]) H0 67.37± 0.54
Amplitude of fluctuations ln(1010As) 3.043± 0.014

Scalar spectra index ns 0.9652± 0.0042
Photon optical depth τ 0.0540± 0.0074

Table 1.1: The best fit parameters with 68% confidence levels on the six free parameters of the ΛCDM
model, constrained using measurements of the CMB by Planck [13].

be described by six free parameters that can be constrained through observation, three of which

we have covered in the previous section: the physical dark matter Ωch
2 and baryon density Ωbh

2

parameters (with Ωm = Ωc + Ωb) and the Hubble constant H0. Two of the remaining parameters

relate to the energy density fluctuations in the early universe, with As dictating the amplitude of the

fluctuations, and the scalar spectral index ns describing how these fluctuations vary as a function

of scale. The final parameter τ describes the optical depth of photons at the time of reionization -

a major phase transition in the early universe, where the ignition of the first stars began to reionize

the abundant neutral hydrogen. This reionized gas interacts with the CMB in several ways, with

one of the dominant effects being a peak suppression in the CMB power spectra, caused by some of

the photons being scattered by interaction with the gas and therefore suppressing anisotropies in

the distribution that have already formed. We list current best fits to these parameters with their

68% confidence levels in Table 1.1, taken from measurements of the CMB by the Plank mission.

We see the remarkable precision of this instrument enables constraints on the parameters to . 1%

errors.

One of the strengths of the ΛCDM is its ability to accurately model real world observations

with such a small number of parameters. A striking example of this comes from measurements

of the temperature fluctuations in the CMB, visualised in the left hand plot of Fig. 1.3. While

this temperature has been measured to be near uniform across the sky, to incredible accuracy

(T0 = 2.72548± 0.00057K [18]), small-scale fluctuations in the temperature field can be quantified

by their angular power spectrum DTT
` , which measures the strength of fluctuation as a function of

angular scale `. The right hand side of Fig. 1.3 shows the measurements of this power spectrum

from the Planck 2018 results [13], with the solid line showing the theoretical prediction of ΛCDM

fitted to this data. Remarkably, measurements of the clustering of matter in the late-time universe

closely match the theoretical models when using the fitted parameters of the early universe CMB

measurements, showing that the ΛCDM model is able to account well for the evolution of the

universe over large stretches of time. An example of this is the measurement of the amplitude of

galaxy clustering and growth rate, given by the parameter fσ8, shown in Fig. 1.4. We see that

the measurements from various galaxy surveys (markers with error bars), over a range of redshifts,

agree well the prediction of ΛCDM using best fit parameters from Planck measurements (solid line).
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Figure 1.3: Left: The CMB temperature anisotropies as measured by Planck: while the CMB has a
spectrum of a near perfect black body, subtle fluctuations exist at the sub mili-Kelvin scale, pointing to over
and under dense regions of the universe. Right: The red markers with error bars show measurements of the
angular temperature power spectrum of the CMB from the 2018 data release [13], with the blue line showing
the best fitting ΛCDM model to the data. The lower section of this plot shows the residuals between the
measurements and model.

Figure 1.4: Constraints on the growth rate of fluctuations fσ8 from various galaxy surveys (coloured
markers with error bars) when compared with the prediction from ΛCDM using best fit parameters from
Planck (black line with shaded grey regions showing the 68% and 95% CLs). Plot from [13].
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There are however several challenges outstanding for the ΛCDM model. One of the most

obvious being that, while including dark energy and matter into the model has helped explain

various observed phenomena, it does not provide us with an intuition into what either of these dark

components are. Dark matter has still yet to be directly detected, with searches ongoing at both

particle [19, 20] and astronomical [21, 22] scales, while the measured value of the vacuum energy is

hugely different from that predicted by theory (by up to 120 orders of magnitude [23]), known as

the cosmological constant problem.

Further issues have arisen as observations have become more precise, in particular, the disparity

of the value of H0 inferred from measurements of the early-time and late-time universe, as can be

seen by the difference in the blue and red markers in Fig. 1.1. This is a tension that has risen

to the ∼ 4σ level, with CMB measurements giving H0 = 67.37 ± 0.54 [km/s/Mpc], while using

Type-Ia supernova as standardisable candles to obtain distance measures gives H0 = 73.24± 1.74

[km/s/Mpc] [24]. Combining Planck data with Baryon Acoustic Oscillation (BAO) measurements

from surveys like the extended Baryon Oscillation Spectroscopic Survey (eBOSS [25]) can help to

alleviate the problem marginally, giving combined constraints of H0 = 69.6± 1.8 [km/s/Mpc] [26],

however the tension still remains. While this could be down to some as yet unknown systematic in

the measurements, such as how distances are calibrated in standard candle measurements, it may

also indicate that extensions or modifications to the underlying model are required.

Several alternative theories have been put forward to try and resolve some of these issues,

including those that make modifications to the base model by adding in or tweaking components,

or those that are fundamentally different, by altering the underlying assumptions. One potential

solution to the cosmological constant problem proposes that Λ could be cancelled out by some

unknown physics, with the cosmic acceleration being driven by a new fifth force. Such models

would have a dynamical dark energy equation of state, with a popular parameterisation, known

as Chevallier-Polarski-Linder (CPL) [27, 28], given by w(a) = w0 + wa(1 − a), where w0 and wa

are constants. In this model, the equation of state gradually evolves from a value w(a) = w0 + wa

at early times to w(a) = w0 today. However, the latest constraints from Planck [13], combined

with supernova and BAO measurements, strongly constrain these additional parameters towards

their default fixed ΛCDM values of w0 = −1 and wa = 0. One can also look to fundamental

changes, such as basing a cosmological model on a theory of gravity other than GR. For example,

generalising the Lagrangian of the Einstein-Hilbert action to be some function of the Ricci scalar

leads to a family of models known as f(R) gravity. In modifying how gravity behaves, these theories

can generate an accelerated expansion of the universe, similar to that observed and generated by

ΛCDM, without a cosmological constant or the need to introduce some unknown fifth force. The

cost of this however, is a much more complicated model that needs to be fine tuned, and that spoils

many of the successes of GR and the standard model (see e.g. [29] for a comprehensive review of

modified gravity models).

Despite these issues, the future is bright for cosmology. There are several upcoming Stage IV
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Figure 1.5: Diagram showing the Horizon problem. Left: The region inside the cone at any time is causally
connected to us (at the centre). Photons emitted from the last scattering surface (at redshift ∼ 1000) started
outside of this region. Therefore, at the last scattering surface, they were not in causal contact with us and
certainly not with each other. Yet their temperatures are almost identical. Right: By having a very rapid
period of expansion in the early universe, Inflation poses a solution to the Horizon problem. In this much
wider cone, all scales were causally in contact with each other, explaining how the CMB can have a near
uniform temperature. Diagrams from [8].

experiments, such as CMB-S43, and the DESI4, 4MOST5, LSST6 and EUCLID7 galaxy surveys,

which will probe the cosmos to greater precision and over larger volumes than have ever before

been surveyed. In addition to this, the recent discovery of gravitational waves [30] provides a brand

new window into the cosmos, granting additional ways to study the universe. Being able to reduce

systematics and provide more accurate constrains on cosmological parameters will help to narrow

down on the problem areas and eliminate any models that do not fit the new data, as well as give

indications to where existing models may need to change.

1.2 Large-Scale Structure Cosmology

Initial fluctuations in the density field of matter in the early universe provided the seeds for the

growth of structure that we see today. These fluctuations have primarily evolved under the force of

gravity, and so measurements of how matter is distributed as a function of cosmological time can

provide important information about our physical model of the universe.

In the following section, we provide a short review the underlying physics that govern the

density field and growth of structure of the universe. We also detail some of the statistical tools

3https://cmb-s4.org/
4https://www.desi.lbl.gov/
5https://www.4most.eu/cms/
6https://www.lsst.org/about
7https://www.euclid-ec.org/
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used to extract information from the density field, and briefly give an overview of cosmology redshift

surveys, one of the primary ways to make observations of the large-scale structure in the late-time

universe.

1.2.1 The seeds of structure from inflation

Precise measurements of the CMB have shown it to be near uniform and isotropic, to about 1

part in 105, with these tiny fluctuations evolving as the universe developed to form the late-time

structure that we see today. These observations do pose some pressing questions however: firstly,

where did these fluctuations come from? And how is it that distant parts of the universe at the

time of last scattering appear to be in thermal equilibrium with each other, despite being outside

each others causal horizons? A solution to both of these problems was proposed in the early 80s,

as the theory of inflation [31, 32, 33]: the idea that at early times, the universe underwent a period

of rapid exponential expansion (see Fig. 1.5). While the detailed particle physics explanation for

this mechanism is still unknown, one of the most simple and well studied models of inflation is

one in which we have a single scalar field φ(η) driving the expansion, with a slow evolution of the

potential V (φ) of the field, dubbed slow-roll inflation.

To see how such inflation can turn small, primordial (quantum) fluctuations into those large

enough to lead to structure formation, let us consider now a perturbation to our scalar field φ(t).

This perturbation will necessarily have some spatial variation, such that

φ(t)→ φ(t) + δφ(t, r) . (1.31)

Before proceeding, it is useful to re-define our perturbation by making a specific choice of gauge

that will be physically meaningful. We require that our perturbations be gauge invariant8, and for

a single-field slow-roll inflation model, working in the spatially-flat gauge, we can define (in Fourier

space)

Rk =
Hδφk

φ̇
, (1.32)

where R is known as the comoving curvature perturbation. Geometrically, this perturbation mea-

sures the spatial curvature of comoving hyper-surfaces, and importantly has the property that it

remains constant outside the horizon. To demonstrate the advantage of this quality, let us consider

a perturbation of scale 1/k that starts off at a sub-horizon scale (1/k < 1/aH). During infla-

tion, the comoving horizon undergoes a period of shrinking (due to the relative rapid expansion

of space), while the fluctuation scale remains constant. This shrinking causes the perturbations to

leave the horizon as 1/k > 1/aH, effectively becoming frozen out. Intuitively we can understand

this as the perturbation being no longer able to feel its own self gravity, since it is larger than the

characteristic scale over which physical processes in the universe operate. The perturbation will

8Our perturbations must be defined in such a way that they cannot be made to disappear by some translation of
coordinates.
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Figure 1.6: Diagram showing the creation and evolution of fluctuations from inflation. Perturbations are
initially created at sub-horizon scales in the very early universe at the quantum mechanical level. As the
horizon size shrinks during inflation, these fluctuations leave the horizon, becoming frozen out and remain
constant. Upon horizon re-entry, the universe is now exponentially larger than it was when the fluctuations
left. Plot from [34]

then remain at this fixed value until after inflation, when the horizon expands again during the

Big Bang, and becomes greater than 1/k (see Fig. 1.6). Upon horizon re-entry, the perturbation is

then free to evolve again and interact with the various constituents of the universe. The key point

is that inflation enables the generation of super-horizon fluctuations in the very early universe that

then go on to provide the seeds for the anisotropies we observe in the CMB today, and thus the

structure of the late-time universe.

Before moving on, it is also worth quantifying the power spectrum PR(k)9 of the primordial

curvature perturbations, as this will be useful in the next section. Qualitatively, this tells us the

contribution to the total variance of the perturbation field per unit logarithmic interval, and is

given by

〈R(r, t)R∗(r, t)〉 =

∫ ∞
0

d(ln k)PR(k, t) . (1.33)

Taking the Fourier transform of the field to be

R(r, t) =

∫
d3k

(2π)3
R(k, t)e−ik·r , (1.34)

and remembering that for statistical isotropy and homogeneity to hold, we require that the power

spectrum must depend on k and not k, and 〈R(k, t)R∗(k, t)〉 ∝ δD(k−k′) so that the r dependence

9There are two quantities that are often both called the power spectrum in the literature. We will denote them
P(k) and P (k), and they are related via P(k) = k3P (k)/(2π2). As P (k) has units of volume, P(k) can be referred
to as the dimensionless power spectrum.
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cancels, we obtain:

〈R(k, t)R∗(k′, t)〉 =
2π2

k3
PR(k)δD(k− k′) . (1.35)

By substituting in Eq. (1.32) and evaluating at the time when the curvature perturbations leave the

horizon, it can be shown that (using slow-roll conditions) the frozen-out power spectrum is given

by

PR(k) =
( H2

2πφ̇

)2

k=aH
. (1.36)

In this slow-roll scenario, H is only slowly decreasing, while φ̇ is approximately constant and

the scale factor is exponentially increasing. As modes with a higher k will leave the horizon at

slightly later times, where H is lower, we thus see that inflation predicts a power spectrum that is

slightly declining as a function of k (but almost scale invariant), something that can be tested with

observations. Importantly, we can use this power spectrum to directly link to the power spectrum

of the observed post-inflation structure that we see in the CMB and LSS, which we will discuss in

the next section. The spectrum is often parameterised as

PR(k) = As

( k
ks

)ns−1
, (1.37)

where As is an amplitude factor, ns is the scalar spectral index and ks is some chosen observational

scale of interest. As we covered in the previous section, As and ns have both been constrained by

Planck (see Table 1.1), which indeed confirmed ns to be very close to 1, corresponding to a scale

invariant spectrum.

One of the useful properties of the power spectrum is that, for Gaussian fluctuations, the power

spectrum provides a complete statistical description of the field. Any amount of primordial non-

Gaussianty will be encoded in the higher order correlations of the field, such as the bispectrum,

〈Rk1Rk2Rk3〉. In this case, single field slow-roll inflation predicts that such non-Gaussianity will

be small [35]. This is often parameterised by the quantity fNL, with current constraints placing it

consistent with zero but with large error bars (the most stringent constraints currently come from

the CMB: f local
NL = −0.9± 5.1 [36]).

1.2.2 The growth of matter perturbations

Having covered how inflation can enlarge small-scale quantum fluctuations in the early universe

to large scales at later times, acting as seeds for structure growth, we now turn our attention to

the evolution of the matter field. The dynamics of this will primarily be dictated by the gravita-

tional potential, which evolves in conjunction with the other species that constitute the universe

(radiation, dark and ordinary matter). After inflation ends, the universe enters a period known as

reheating, where the inflaton field decays into a hot thermal plasma of particles and thus popu-
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lates the universe with the Standard Model particles that we observe today. Once this hot plasma

becomes thermalised, the universe enters the radiation-dominated era, and any modes inside the

horizon during this time will have their dynamics influenced by radiation pressure as well as gravity,

resulting in a suppression of structure growth. These effects can be encoded in what is called the

transfer function T (k), which links the power spectrum of primordial fluctuations to that of which

we see in the structure of the universe today:

P (k, z) = T 2(k)PR(k)D2(z) , (1.38)

where P (k, z) is the power spectrum of our matter fluctuations and D(z) is the normalised linear

growth rate which we will cover shortly. As the universe expands and cools, radiation will become

subdominant, as its energy density scales inversely to the scale factor more rapidly than the matter

component. At this stage the universe enters the matter-dominated era, whereby the background

radiation pressure drops off, and the force of gravity can now start to generate more significant

growth of structure. Under the simplifying assumption that there is no significant growth of per-

turbations between the time of horizon entry and matter domination, the transfer function can be

very roughly approximated as

T ≈

1 if k � keq,

(keq/k)2 if k � keq,
(1.39)

where keq is the turnover scale, corresponding to the horizon size at the time of matter-radiation

equality. While this simplification allows for an easy and intuitive understanding of the shape of the

power spectrum at these times, it is not accurate for most applications, and a more rigorous form

can be found numerically from Boltzmann solvers such as CAMB [37] or CLASS [38]. Note that the

transfer function now has no time dependence, as this is instead contained in what is known as the

growth function, D(z). This is an important term for large scale structure cosmology, as it dictates

the rate at which structures grow under gravitational instability. To determine this quantity,

we can model the matter content of the Universe as a continuous fluid, and look for perturbed

solutions to the fluid equations. While the matter distribution is in reality discrete, this continuous

approximation works perfectly well at the Megaparsec scales that the large scale structure of the

Universe is modelled at10. Neglecting the effects of any Baryon pressure, which is negligible for

non-relativistic species when compared to their energy density, we consider perturbations to the

background total matter density and gravitational fields:

ρ(r, t) = ρ0(t) + δρ(r, t) , (1.40)

Φ(r, t) = Φ0(t) + δΦ(r, t) . (1.41)

10This approximation works well at early times but starts to break down later when compact objects start to form.
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as well as taking into consideration any peculiar velocities of the matter, v(r, t). It can be shown

(see for example [39]) that the linearized fluid equations for these perturbations during matter

domination, in comoving coordinates, are given by

δ̇ +
1

a
∇ · v = 0 , (1.42)

v̇ +Hv = −1

a
∇δΦ , (1.43)

∇2δΦ = 4πGa2ρ0δ , (1.44)

where a dot denotes a derivative with respect to time t and we have defined the density contrast

δ ≡ δρ/ρ0. These expressions form a set of coupled differential equations for the velocity, density

and gravitational fields. By taking the divergence of the Euler equation (1.43):

∂

∂t
(∇ · v) +H(∇ · v) = −1

a
∇2δΦ , (1.45)

and combining with the continuity equation (1.42) for the relation between the velocity divergence

and δ, and the Poisson equation (1.44) for relating the potential δΦ and δ, we thus obtain a second

order differential equation for the density perturbation:

δ̈ + 2Hδ̇ = 4πGρ0δ . (1.46)

For a flat, matter-dominated universe we can use Eq. (1.15) and Eq. (1.17) to relate ρ0 to the Hubble

constant and matter density parameter, giving

δ̈ + 2Hδ̇ =
3

2
H2

0 Ωm,0
1

a3
δ . (1.47)

One important consequence of this equation is that, if we look at the Fourier modes δ(k, t), we see

that all scales will grow at the same rate. Thus, we can look for linear solutions of the form

δ(x, t) = D+(t)δ(x) +D−(t)δ(x) , (1.48)

where we have growing (D+) and decaying (D−) modes. The decaying modes will disappear, and

so it is the growing modes that are important for structure formation. We can therefore write, in

Fourier space,

δ(k, t) = D+(t)δ(k) , (1.49)

and see that our linear matter power spectrum will simply scale in time as the square of the growth

factor. The precise form of the growth factor will depend on the cosmological model, specifically the

matter and dark energy density parameters, and thus by measuring the power spectrum amplitude

of the matter fluctuations in the CMB or the late-time structure of the universe, we are able to
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constrain our cosmological parameters.

As the density perturbations δ(k, t) grow over time, there will come a point where our previous

linear perturbation theory treatment of the dynamics of the matter field no longer holds. At this

point, we enter the regime where our fluctuations become non-linear, and need to consider higher

order terms in Eqs. 1.42-1.44. Importantly, while in the linear regime, we have that all scales evolve

at the same rate but remain independent of one another, however including non-linear terms in

the equations of motion introduces an the effect of coupling between different Fourier modes. The

impact that including these higher order terms has on the power spectrum is that it introduces

corrections (see eg. [40] for a comprehensive review):

P (k, t) = P (0)(k, t) + P (1)(k, t) + . . . , (1.50)

where the superscript (n) denotes the n-loop11 contribution to the power spectrum, with the tree-

level term (0) just being the linear spectrum12:

P (0)(k, t) = D2(t)PL(k) . (1.51)

The one-loop correction consists of two terms:

P (1)(k, t) = P22(k, t) + P13(k, t) , (1.52)

which in turn can be obtained by convolutions of the linear power spectrum with perturbation

theory (PT) kernels, and are defined as

P22(k, t) ≡ 2

∫
d3q[F2(k− q,q)]2PL(|k− q|, t)PL(q, t) , (1.53)

P13(k, t) ≡ 6PL(k, t)

∫
d3qF3(k,q,−q)PL(q, t) . (1.54)

We see that the 22 term represents mode-coupling between waves with wave-vectors k − q and

q, whereas the 13 term can be interpreted as the first order correction to the standard linear

growth. It is important to note that these equations are obtained by working in an Einstein-de

Sitter cosmology, where we have Ωm = 1 and ΩΛ = 0 and the solutions to the equations of motion

using the perturbative expansion of the density field Eq. (1.40) are relatively simple, because they

are separable in k and t to all orders of expansion. For arbitrary cosmology, this in general is not

the case [41], however it has been demonstrated [42, 43] that separability can be recovered in the

case where13 f = Ω
1/2
m , which in practice is a good approximation for ΛCDM where f(a) ≈ Ω0.55

m (a)

[44].

11Named after their diagrammatic representation.
12Note that for the rest of this work we will make the definition D+(t) = D(t) for simplicity.
13Here, f is the linear growth rate, defined as f ≡ d ln(D(a))/d ln(a).
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1.2.3 Two-point statistics as large-scale structure probes

We now turn our attention to the late-time universe, and look at statistical methods that can

be used to extract cosmological information from the clustering of matter. As we covered in the

previous sections, the matter fluctuation field directly ties to cosmological parameters, and so this

is an important quantity for any measurement. We recall from the previous section that matter

fluctuations are defined as

δ(r, t) =
ρ(r, t)− ρ̄(t)

ρ̄(t)
, (1.55)

where ρ(r, t) is the density at a given position r and time t, and ρ̄(t) is the average background

density. For statistical homogeneity to hold, we require that 〈ρ(r, t)〉 = ρ̄(t), resulting in the

ensemble average14 of our field 〈δ(r, t)〉 = 0, and thus we cannot extract any interesting statistics

from the first-order moment of the fluctuation field. We therefore turn our attention to correlators

of pairs of the density field, and in real space this is known as the auto-correlation or two-point

correlation function:

ξ(r1, r2) ≡ 〈δ(r1)δ(r2)〉 =

∫
δ(r1)δ(r2)P

[
δ(r1), δ(r2)

]
dδ(r1)dδ(r2) , (1.56)

where P signifies the probability distribution of the field and for now we drop the time dependence

and will return to this later. This quantity is positive if the density perturbation has the same sign

at both r1 and r2, and negative if we have an over-density at one location and an under-density at

the other. Thus, it probes how density perturbations at different locations are correlated to each

other. Due to statistical homogeneity, this expression can only depend on the difference r ≡ r2−r1,

and from isotropy we require that there should be no preferred direction: r = |r|, and so we can

write

ξ(r) ≡ 〈δ(r1)δ(r1 + r)〉 . (1.57)

So far we have been discussing perturbations in the underlying matter field, however at late times

what we actually measure with surveys is the positions and thus correlations of galaxies. Whereas

the matter field is essentially continuous, galaxies form a discretised representation of this field. If

we break up our volume of space V into δVi small volumes (or cells), with the cells small enough

that they only ever contain a maximum of one galaxy, we can write that the probability of finding

a galaxy in such a cell as

δPi = Ng
δVi
V

,

= n̄gδVi , (1.58)

14See Appendix 1.A for a brief discussion on ensemble and volume averages.
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with Ng the total number of galaxies over the full volume and the mean number density is n̄g =

〈ng(r)〉. The probability will be proportional to the size of the volume element: doubling the

volume will double the chance of finding an object within it. The mean number of objects found

with a finite volume V can be found by integrating Eq. (1.58):

〈N〉 = n̄gV . (1.59)

The two-point correlation function for this discrete galaxy scenario is defined by the joint probability

of finding an object in both of the volume elements δV1 and δV2 at a separation r12:

δP12 = n̄2
gδV1δV2[1 + ξgg(r12)] . (1.60)

We see that the correlation function will be dimensionless, and in keeping with homogeneity and

isotropy, it only depends on the separation between the points. For a uniform random Poisson

process, where the probabilities of finding objects in cells δV1 and δV2 are independent, the joint

probability is just the product of individual probabilities of Eq. (1.58):

δP12 = n̄2
gδV1δV2 , (1.61)

i.e. in this case we have ξgg = 0. As before, if the two positions are correlated we will have ξgg > 0

and if they are anti-correlated we have −1 ≤ ξgg < 0. We immediately see from Eqs. (1.60) and

(1.61) that the correlation function describes the excess in probability, relative to a Poisson, of

finding two galaxies separated by a distance r12. Therefore, if we chose a galaxy at random from

the ensemble, then the probability of finding a neighbour in a volume δV at some distance r is

given by

δP = n̄gδV [1 + ξgg(r)] . (1.62)

To see how our discrete correlation function relates back to the continuous case of Eq. (1.57), we

have from Eq. (1.58) that the probability of finding two points in volumes δV1 and δV2 can be

written as

δP12 = 〈N1N2〉 ≡ 〈ng(r1)ng(r2)〉δV1δV2 . (1.63)

Then, defining the galaxy overdensity field δg(r) as:

ng(r) = n̄g[1 + δg(r)] , (1.64)

and substituting this in gives

δP12 = n̄2
gδV1δV2〈[1 + δg(r1)][1 + δg(r2)]〉 ,

= n̄2
gδV1δV2[1 + 〈δg(r1)δg(r2)〉] , (1.65)
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where we then readily see by comparing this with Eq. (1.60) that ξgg(r12) = 〈δg(r1)δg(r2)〉, analo-

gously to the matter field.

Another useful statistical quantity to cover is the power spectrum, P (k), which describes the

clustering in Fourier space. We briefly covered this already in the previous sections, where we

showed that inflationary theories make direct predictions of what we expect the power spectrum

to be, a useful fact if we want to be able to compare our late-time measurements back to theory.

The power spectrum is defined analogously to the auto-correlation function:

〈δg(k1)δg(k2)〉 = (2π)3Pgg(k)δD(k1 + k2) . (1.66)

We can show how this relates back to ξgg, by first taking the Fourier transform of our galaxy

fluctuation field, which we define with the convention

δg(k) =

∫
d3r δg(r)eik·r . (1.67)

Looking at the ensemble of a product of fields as before, we find have

〈δg(k1)δg(k2)〉 =

∫
d3r1d3r2 〈δg(r1)δg(r2)〉eik1·r1eik2·r2 . (1.68)

Performing a coordinate shift of −r1 both density perturbations on the right hand side of this

equation (which we are free to do due to homogeneity) we obtain

〈δg(k1)δg(k2)〉 =

∫
d3r1d3r2 〈δg(0)δg(r2 − r1)〉eik1·r1eik2·r2 . (1.69)

By defining r21 = r2−r1, we see that the correlator on the right hand side of the equation is simply

the auto-correlation function defined in Eq. (1.57). Substituting this in gives

〈δg(k1)δg(k2)〉 =

∫
d3r1d3r21 ξ(r21)eik1·r1eik2·(r21+r1) ,

=

∫
d3r1e

ir1·(k1+k2)

∫
d3r21 ξ(r21)eik2·r21 ,

= (2π)3δD(k1 + k2)

∫
d3r21 ξ(r21)eik2·r21 , (1.70)

and then by matching to Eq. (1.66) we see that we arrive at another definition of the power spectrum:

Pgg(k) ≡
∫

d3r ξgg(r)eik·r . (1.71)

Thus, the power spectrum and auto-correlation function form a Fourier transform pair. One of

the useful properties of the power spectrum is that it is necessarily positive everywhere, unlike the

auto-correlation function, which can make for easy determination of unphysical results when taking

measurements. In addition to this, if the underlying fluctuation field is Gaussian in nature, which
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we saw from inflationary theory in the previous section is a good approximation on large scales,

then all individual k modes are independent of each other, and the covariance matrix is diagonal

which makes for faster calculations.

There are a few details which we have neglected so far in our calculations that can complicate

matters slightly, which we will cover in more detail in Chapters 2 & 3, but will give a brief de-

scription of here. The first of these is that galaxies are what we refer to as biased tracers of the

underlying matter field. The relationship is not one-to-one, but at linear scales is provided by a

scale independent parameter b1:

δg = b1δ . (1.72)

This means that, when taking measurements of the galaxy power spectrum, we are not only mea-

suring the amplitudes of the fluctuations at a given scale, but a combination of this with the bias

parameter such that at linear order we have

Pgg(k, t) = b21(t)P (k, t) ,

= b21(t)D2(t)P (k, t0) . (1.73)

We therefore require some detailed understanding of this bias parameter if we want to determine

the more meaningful cosmological information contained in the growth factor D(t). In addition to

this, not only will this bias be different for different tracers, but it will also depend on time. At

earlier times in the universe, the first galaxies to form were those that traced out the largest peaks

in the underlying density field, as these were the areas with the highest gravitational potential, and

therefore the bias is higher at these times than today. In the absence of any complete description

of the complicated process of galaxy formation and evolution, to dictate what these bias functions

should look like, the values of these bias parameters must be determined empirically through taking

different statistical measures of the density field to break the degeneracy with the growth factor.

A second complication arises from the fact that, while galaxies have some recession velocity

from us due to the expansion of the universe, they will also have some peculiar velocity generated

by the large-scale gravitational field of their local surroundings. For any galaxies that have a non-

zero component of their peculiar velocity in the radial direction to us as the observers, any distance

measure we infer via redshift will be distorted. This effect is called redshift-space distortions (RSD)

[45], and has two different effects depending on the scales considered, which we explain with the

diagram in Fig. 1.7. These distortions will induce a line of sight dependence to the power spectrum,

where again at linear order and working in the plane-parallel approximation, the redshift-space

power spectrum is related to the real-space power spectrum via

PSgg(k, µ) = PRgg(k)[1 + βµ2]2 . (1.74)

Here, the superscripts S and R denote redshift-space and real-space, respectively, and the quantity
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Figure 1.7: Diagram showing the effect of redshift-space distortions. The left hand side of the figure shows
the real-space distribution of matter (represented by the circular shapes) falling into a central gravitational
well, with the top row representing larger scales and the bottom row representing smaller scales. The
right hand side shows the distribution of matter in redshift-space, as would be seen by an observer at the
bottom of the diagram. On linear scales, the coherent in-fall of matter causes an apparent flattening of the
distribution, known as the Kaiser effect, which boosts the clustering signal at these scales. At non-linear
scales, the matter is deeper into the potential and has a higher velocity, appearing on the opposite side of
the potential compared to its actual location. This is known as the Fingers-of-God effect (FoG), and causes
a reduction in clustering signal at these scales. Figure from [8].

µ is the cosine of the angle to the line of sight. The parameter β describes the relationship between

the galaxy bias and the linear growth rate f , defined as

β ≡ f

b
, (1.75)

RSD further complicate measurements of the power spectrum, however, as they are caused by the

galaxy velocity field that is sourced by the gravitational potential of the local environment, they

can be used to probe the matter-density parameter.

Finally, in our definitions so far in this section, we have chosen to neglect the time dependence

of our correlation function and power spectrum, assuming that we are correlating density fields

existing at the same cosmological time, known as the fixed-time regime. This however is only an

approximation, as in reality we observe galaxies on our past lightcone, and so correlating any two

points not at the same radial distance from the observer will be existing at different redshifts and
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Figure 1.8: As we observe galaxies on our past lightcone, galaxies at different radial distances from us will
exist at different cosmological times. If the difference in radial distance between the two galaxies r12 is small,
then approximating them to be at equal times will only incur a small error in calculations (see Chapter 2).
However as this distance grows lager, a full treatment of the unequal time correlator is required so as to not
significantly bias any results. Diagram from [46].

therefore different cosmological times (see Fig. 1.8). While the fixed-time prescription has served as

a good approximation for previous surveys that have either been shallow in depth, or have looked

to break up measurement regions into thin redshift slices, for upcoming deep-redshift surveys, a

proper model involving the unequal time correlator will be necessary to avoid biasing clustering

statistics. In this instance, we will be interested in correlators of the form

〈δg(k1, t1)δg(k2, t2)〉 = (2π)3Pgg(k1, t1, t2)δD(k1 + k2) , (1.76)

where P (k1, t1, t2) is known as the unequal time power spectrum [47]. This is one of the primary

focuses of this piece of work, which we will cover in more detail in the following chapters.

1.2.4 Cosmology redshift surveys

Three-dimensional galaxy redshift surveys, which measure the redshift distance to a galaxy, and

pair this with angular positional data, form a vital tool for understanding the distribution of matter

in the universe. By using statistical tools like the two-point correlation function, and its Fourier

counterpart the power spectrum, cosmologists can use survey data to extract information about

the type of universe we live in. While the angular positions of galaxies are relatively easy to

record, the redshift information is more difficult to measure due to the need for powerful telescopes

and a longer observation time per target. In addition, redshifts obtained need to be accurate

for robust 3D analysis, as any positional error will translate into uncertainties in the statistical
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Figure 1.9: Plot of the inferred linear matter power spectrum from various probes of the large scale structure
and CMB, across a variety of redshift ranges, but normalised to today. Solid line shows the theoretical linear
matter power spectrum, with the dotted line indicating the non-linear spectrum, based on best-fit Planck
2018 data [13]. Figure from [48], where they describe the corrections performed to account for non-linear
clustering and time evolution.

probes. Remembering that the redshift of a target is related to the wavelength of light observed,

redshifts can be determined by recording where spectral features of distant galaxies appear as a

function of wavelength, and see how much these features have shifted when compared with baseline

values. Galaxy surveys fall into two different categories for recording redshifts: photometric and

spectroscopic. While spectroscopic instruments record the full spectrum of light by passing it

through a dispersive element before it reaches the detector, and recording the intensity as a function

of wavelength, photometric instruments pass the light through specific colour filters, focusing on a

band of wavelengths at a time. Each method has its advantages and disadvantages: spectroscopic

methods will generally have a greater discriminating power of spectral features due to seeing the

full spectrum, but the light is more spread out over the detector and thus it takes longer to achieve

the desired signal-to-noise. Conversely, by focusing on specific wavelengths at a time, photometric

instruments can reach this signal-to-noise faster, or see more distant targets, at the expense of

diminished ability to identify spectral features.
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The earliest wide-angle galaxy redshift surveys were the CfA survey [49] and its follow up, CfA2

[50] in the 70’s and 80’s, with the latter recording 18,000 spectroscopic redshifts of bright galaxies

in the northern sky. These were the first surveys to robustly probe the large-scale structure of the

universe, with CfA2 discovering a large filament-like feature made up of galaxies, dubbed the CfA2

great wall. The existence of such structures was subsequently confirmed by more modern surveys

like 2dFS and SDSS, which provided orders of magnitude increase in both volume probed and

number of redshifts recorded. These surveys are shown in Fig. 1.10, where we can clearly see that

the large-scale distribution of galaxies in the universe consists of a web-like structure, containing

large clusters of galaxies connected by filaments and separated by voids. Also shown in this figure is

the results from the Millennium simulations [51], large N -body simulated galaxy catalogues, which

we see can be calibrated to accurately mimic the real world data on these scales. Such simulations

are useful for testing models, statistical analysis and forecasting the accuracy of potential future

surveys.

As more modern surveys grow larger in scale and scope, they offer the chance to probe a wider

range of scales with our clustering statistics, and enable us to test the universe in new ways. Figure

1.9 shows the measurement of the matter power spectrum from various cosmological probes, with

amplitudes normalised to today. We see that galaxy redshift surveys to date (red markers from

SDSS data release 7) have only been able to robustly measure the power spectrum on intermediate

scales of 0.03 . k . 0.3 hMpc−1, with the largest scales currently probed solely by the CMB.

Upcoming and future surveys will enable the measurement of the power spectrum out to these

larger scales, enabling joint constraints with the CMB on features such as the turnover scale,

corresponding to the size of the cosmic horizon at the time of matter-radiation equality in the early

universe. This is an interesting scale, as it allows us to measure the redshift of this epoch, as well

as the matter density parameter. Another prospect will be the ability to more robustly constrain

primordial non-Gaussianty (PNG) from the large-scale galaxy power spectrum, an area where the

CMB currently holds the most accurate measurement. Being able to test the universe over a range

of scales, from probes at different epochs, is key to being able to test our cosmological models.
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Figure 1.10: Upper and left: Slices from the CfA2, 2dF and SDSS galaxy redshift surveys, showing the
large-scale structure of matter in the universe (the ’cosmic web’) as viewed by us as observers at the centre
of the image. Structures such as filaments and nodes consisting of large clusters of millions of galaxies, as
well the spaces in between the structures, called voids, containing very little matter are easily visible. Lower
and right: Slices of simulated data from the Millennium Simulations, where each slice was created with a
selection function and magnitude cuts corresponding to the diametrically opposed real data. At the visual
level, we can clearly see how closely the simulations are able to match the survey data. Figure from [52].
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1.3 Motivation and outline of thesis

The power spectrum is one of the most useful tools for measuring the large-scale structure of the

universe. One of the key quantities it enables us to constrain is the growth rate of structure, an

important factor for discerning between different cosmological models. As upcoming and future

galaxy surveys such as 4MOST, DESI, EUCLID and LSST will probe structure out to greater

volumes and with higher number densities than previous endeavours, it is important that we review

how we model the power spectrum, with a focus on large-scale effects that previously may not have

been important.

One of the most commonly used approximations to date when modelling the power spectrum

is the equal time approximation - that the whole galaxy sample is taken to be existing on the

same constant-time hyper-surface, at some effective or mean redshift. While this approximation

may be valid for shallow surveys, the main aim of this thesis it to investigate what effect it has as

survey depth grows. In addition to this, as future surveys will cover large fractions of the sky, we

look to perform all of our analysis in spherical coordinates, taking into consideration an angular

survey mask. While this provides more accurate modelling for wide-angle surveys than simply

assuming a flat-sky approximation, it does introduce numerical challenges in the form of spherical

Bessel functions, which can be tricky to compute when performing integration. We therefore also

investigate how existing numerical and analytic methods can be used to evaluate such expressions

with accuracy and speed.

The thesis outline is as follows:

• In Chapter 2 we derive a model for the galaxy power spectrum on the past lightcone, in

the simple case of a full-sky survey with no galaxy bias. We evaluate this model up to two-

loop corrections in the non-linear regime, and investigate how the use of mean redshift and

effective redshift approximations have on the amplitude and shape of the power spectrum,

over a wide range of scales. We develop numerical code for both evaluating the model, and

also for estimating the power spectrum from survey data. Our model is then put to the test by

comparing it to power spectra that we estimate from lightcone mock catalogues, constructed

from large N -body simulations, and review what effect using an optimum weighting scheme

has on the signal-to-noise of the estimated power. Finally, we look to constrain the power

spectrum turnover scale from our simulated mocks, and investigate how survey size effects

the probability of being able to robustly detect if a turnover has occurred.

• In Chapter 3 we further develop the model of the previous chapter, by introducing an angular

survey mask and galaxy bias. Due to the complex nature of the model, we also investigate

ways in which such a model can be computed numerically, using power series expansions and

analytic transforms of integrals to avoid having to compute spherical Bessel functions that a

spherical decomposition of the density field introduces.
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• In Chapter 4 we review the upcoming 4MOST project, with a particular focus on the Cosmol-

ogy Redshift survey. We detail a clustering pipeline that we have developed for performing

two-point clustering statistics to analyse multi-tracer mock catalogues from the 4MOST sim-

ulation team, to be used for analysis and planning before the launch of the survey.
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Appendices

1.A A note on ensemble averages

In this work we will often encounter ensemble averages, and it is worth spending a second defining

what we mean by this and how it differs from the volume average.

The volume average applies to a particular realisation (and some volume V in it). It is denoted

with an over bar, and for a quantity f(x) is defined as

f̄ ≡ 1

V

∫
V

dV (x)f(x) . (1.77)

The ensemble average on the other hand, refers to the random process. We assume that the

observed density field is just one of an ensemble of an infinite number of possible realisations that

could have resulted from the random process. The random process is governed by the probability

distribution, e.g. P(γ) of the quantities γ produced by it. Therefore, the ensemble average of a

quantity f(γ) is denoted by 〈f〉 and is defined as

〈f〉 ≡
∫

dγP(γ)f(γ) . (1.78)

Here f could be (for example) the value of ρ(x) at some location x. The ensemble average is also

known as the expectation value. Thus, the ensemble represents a probability distribution, and the

properties of the density field (i.e. statistical homogeneity and isotropy, ergodicity etc.) will be

properties of this ensemble. Statistical homogeneity means that the expectation value 〈f(x)〉 must

be the same at all x and thus we can just write 〈f〉. Statistical isotropy means that for quantities

which involve a direction, the statistical properties are independent of the direction, i.e. for the

vector quantities v all directions must be equally probable, implying 〈v〉 = 0.

How do we compare theory and observation, when we can only observe one realisation but our

theory is talking about ensembles? It seems reasonable that the statistics we get by comparing

different parts of a large volume should be similar to the statistics of a given part over different

realisations, i.e. that they provide a fair sample of the probability distribution. This is called

ergodicity. Fields that satisfy

f̄ → 〈f〉 as V →∞ , (1.79)
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are called ergodic and we assume that the density field is ergodic. The equality of f̄ with 〈f〉 does

not hold for a finite volume V ; the difference in these two values is called sample variance or cosmic

variance. This variance is thus inversely proportional to the volume V , and limits how accurately

we can compare theory with observations. It is therefore important for galaxy redshift surveys to

cover large enough volumes with high enough number densities to reduce cosmic and statistical

variance as much as possible.
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Chapter 2

The galaxy power spectrum on the

past lightcone: deep, wide-angle

redshift surveys and the detectability

of the turnover scale

2.1 Introduction

The next decade will herald in significant advances in the quantity of high fidelity data for mapping

the large-scale distribution of galaxies. This will be facilitated through a series of exciting new wide

field observatories, such as the spectroscopic missions DESI1 [53], 4MOST2 [54], the ESA Euclid3

space mission [55] and the NASA mission SPHEREx [56]. These will be complemented by the

photometric imaging surveys like LSST4 [57]. Together these observatories will map the galaxy

distribution out to high redshift and over significant fractions of the full-sky, and will thus chart

effective volumes that approach the observable size of our Universe out to a given redshift [56]. All

of these surveys will be able to make unprecedented measurements of the statistical properties of

the spatial distribution of galaxies.

The lowest order spatial statistic of interest is the correlation function, or equivalently its Fourier

space dual the power spectrum. The full shape and amplitude of the matter power spectrum carries

a great deal of information about the cosmological model and the primordial distribution of the

initial density fluctuations [58]. However, the extraction of this information is complicated by a

number of effects: first, the initial linear density perturbations become nonlinearly coupled due to

gravitational instability [59, 40]. Understanding this process is further complicated by the fact that

the matter distribution is built from the weighted densities of baryons, cold dark matter and massive

1www.desi.lbl.gov
2www.4most.eu/cms/
3sci.esa.int/web/euclid
4www.lsst.org
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neutrinos, each of component of which needs to be propagated into the nonlinear regime through

careful modelling [60, 61, 62]. Second, galaxies are a biased set of tracers for the matter distribution,

and may in full generality be a nonlinear, time-dependent, non-local, stochastic sampling of the

matter, and this connection varies with the types of galaxies that are selected [63, 64, 65, 66, 67,

68, 69]. Third, owing to the fact that galaxy positions are inferred from their measured redshifts

there is a distortion in the mapping from observed to true position, which arises due to the fact that

galaxies have peculiar velocities relative to the Hubble flow – the so called redshift space distortions

[45, 70, 71].

To this standard set one can also add the lightcone effect, which has surfaced in this recent era of

precision cosmology – for deep surveys one has to account for the fact that we are correlating galaxy

positions on the observer’s past lightcone [72, 73]. Furthermore, there are additional corrections

that arise due to general relativistic effects and also the magnification effects that all arise due to

light propagation in a weakly perturbed spacetime [74, 75]. Another source of error arises from

the assumption of a wrong cosmological model, in principle this could be overcome by simply

recalculating the statistic of interest for every assumed cosmological model to be tested [76, 77].

Together, these effects can all be thought of as modelling problems and one should forward model

the theory to account for them. Besides these ‘physical’ effects one can add a number of important

‘observational’ effects that also need to be carefully taken into account: the survey mask; star–

galaxy classification; curved sky effects; fibre collision and completeness; accurate flux calibration

across the survey; K-corrections.

In this chapter we focus on a subset of these issues. Our goal here is to build up the methodology

for forward modelling the theory of the real space, 3D galaxy power spectrum in a survey that is

deep and which spans the full sky. This means that we will need to take into account: the lightcone

effect, including the unequal-time correlators and work on the curved sky. Our aim is thus to evolve

the measurement and analysis methodology to the next level [78, 79, 80, 81, 82]. Regarding the

lightcone effect, our work here is most closely inspired by that of [72] and we provide alternate

derivations of results from that work. Many authors have explored the formalism of performing a

spherical harmonic analysis of a galaxy redshift survey [83, 84, 85, 86, 87, 88, 89, 90, 91, 92], and

we take many of our cues from these important works. However, one important distinction is that

the main aim here is to retain the full 3D information of the galaxy field and not project out the

radial modes, as is usually done in a number of these earlier works.

An additional important science driver for future surveys is the question of: How well can we

detect the ‘turnover scale’ of the matter power spectrum. This length scale denotes the point of

maximum amplitude of the matter power spectrum and for the ΛCDM model is a direct imprint of

the epoch of matter-radiation equality in the early stages of the Universe. A number of previous

works have examined this issue [93, 94, 95]. However, here we now relax some of the simplifying

assumptions and use our improved formalism to attempt to address questions on this topic.

The chapter breaks down as follows: In Sections §2.2 and §2.3 we develop the theory of the

galaxy power spectrum on the curved-sky, past lightcone. Then in Section §2.4 we describe how
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we create mock lightcone catalogues, and detail the process used to estimate the power spectrum

from these mocks. In Section §2.5 we discuss the results of these measurements, and how including

an optimum weighting scheme effects the power spectrum. We also use our mocks to test the

detectability of the turnover scale. Finally, in Section §2.6 we summarise our findings, conclude

and discuss future work.

2.2 Theoretical background

We now review some of the key aspects of the background theory necessary for what follows. Note

that we will neglect the effects of time delay and photon deviations that are required to describe a

full general relativistic treatment of light propagation on the perturbed past lightcone.

2.2.1 The past lightcone

To begin, we assume that the unperturbed background spacetime is a spatially flat, homogeneous

and isotropic, spacetime. Hence, in spherical coordinates the differential FLRW line element can

be written as:

ds2 = a(η)2
[
c2dη2 − dχ2 − χ2dθ2 − χ2 sin2 θdφ2

]
, (2.1)

where η is the conformal time, a(η) is the scale factor, χ is the comoving radial geodesic distance,

c is the speed of light and θ and φ are the usual polar angles, which we denote collectively as

γ → (θ, φ). A light signal emitted at spacetime point (η1, χ1,γ1) will be received by an observer

located at the origin of our coordinate system at spacetime point (η2, 0,0). From the FLRW line

element, we see that points on the past lightcone are required to obey the following relation between

the radial comoving distance from the observer and the redshift:

r(z) =

∣∣∣∣∫ 0

r
dχ′
∣∣∣∣ =

∫ η2

η1

cdη =

∫ z

0

cdz′

H(z′)
, (2.2)

where the redshift is related to the expansion factor as z = 1/a(η) − 1 and the Hubble rate is

H(z) ≡ a′/a2, with ′ = d/dη. This can be calculated from the Friedmann equations, and for the

case of flat ΛCDM is given by:

H2(z) = H2
0

[
Ωm,0(1 + z)3 + ΩΛ,0

]
, (2.3)

where Ωm,0 and ΩΛ,0 are the present day matter and Lambda density parameters, respectively.

Since we are assuming a flat model here, we also have Ωm,0 + ΩΛ,0 = 1.
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2.2.2 The galaxy overdensity field on the past lightcone

Following [72], let us define the galaxy density field at time η, with radial and angular positions

(χ,γ), as:

n(η, χ,γ) = n0(η) [1 + ∆(η, χ,γ)] , (2.4)

where n0(η) is the mean number density of galaxies at time η and ∆(η, χ,γ) is the density contrast

of galaxies at the position. Thus on the past lightcone the number density is written:

nLC(r) = n0(η) [1 + ∆(η, χ,γ)]|η→η0−r,χ→r , (2.5)

where r→ (r,γ) and where η0 is the present day conformal time. We can also define another useful

quantity:

nLC
0 (η) = n0(η)|η→η0−r . (2.6)

We now introduce the galaxy survey density field as the quantity:

FLC(r) ≡ A
[
nLC(r)− αnLC

s (r)
]
, (2.7)

where nLC
s (r) is a synthetic galaxy catalogue that is 1/α times denser than the original galaxy

catalogue on the lightcone that replicates all of the selection effects of the true sample, but which

contains no intrinsic spatial correlations. A is a constant to be determined. Let us define the

overdensity contrast of galaxies on the past lightcone as:

∆LC(r) ≡ ∆(η0 − r, r,γ) ≡ nLC(r)− nLC
0 (r)

nLC
0 (r)

. (2.8)

In the absence of shot noise, this could also be written in terms of the galaxy survey density field

as:

∆LC(r) =
FLC(r)

AαnLC
s (r)

=
nLC(r)− αnLC

s (r)

αnLC
s (r)

, (2.9)

where α
〈
nLC

s (r)
〉

= nLC
0 (r). Note that at this point we are neglecting the angular mask, redshift

space distortions, optimal weighting and relativistic corrections for a perturbed spacetime.

2.2.3 Spherical-Fourier-Bessel (SFB) expansion

For a fundamental observer viewing their past lightcone, homogeneity will be violated, but isotropy

is preserved. In addition, the survey mask would be completely angular and evolution and redshift

space distortions will be purely radial. It will therefore be useful to decompose the problem into a

set of orthogonal spherical and radial modes. To do this we will make use of the Spherical-Fourier-

Bessel (SFB) expansion of a scalar field [for a discussion, see 83, 96, 87].

To begin, consider some scalar field A(r) in space and let us define its forward and backward
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Fourier transforms as:

A(r) =

∫
d3k

(2π)3
A(k)e−ik·r ⇔ A(k) =

∫
d3rA(r)eik·r . (2.10)

On following the steps in Appendix §2.A we show that the SFB expansion of A(r) is given by:

A(r) =

∞∑
`=0

∑̀
m=−`

Y`m(r̂)A`m(r) , (2.11)

where the Y`m(r̂) are (Laplace) spherical harmonics and the radial harmonic amplitudes are given

by:

A`m(r) ≡ (−i)`
∫

d3k

(2π)3
j`(kr)Y

∗
`m(k̂)A(k) . (2.12)

2.3 Spatial statistics on the lightcone

As an initial first step, let us assume that we have a full sky redshift survey that has complete sky

coverage and let us neglect the redshift space distortions. While the inclusion of RSD at linear order

using the ‘distant observer’ approximation would be relatively easy to incorporate in the following

derivations and has been well studied in the literature (see [70] for a review), for our case where

we are dealing with statistics on the full sky a more rigorous treatment of RSD would be required.

By working in a spherical basis, we avoid the need to include any ‘wide-angle’ effects that previous

studies [74] have used when extending works like FKP, however, this basis introduces spherical

Bessel functions which make calculations more difficult and costly. We will discuss methods in the

following chapter that can be used to make the Bessel integrals we will shortly encounter more

feasible, after which an inclusion of RSD into the analysis will be more readily achieveable. We

refer the reader to the recent study by Grasshorn and Jeong (2020) [97] for a look at the angular

power spectrum including RSD in a spherical basis, and note that for our analysis of the turnover

scale in section 2.5.3, RSD at the large scales of interest only modify the amplitude, but not the

shape, of the power spectrum and thus should not effect the results we obtain.

2.3.1 Two-point correlation function on the past lightcone

Let us now compute the expectation of the product of the density field at two separate locations

on the lightcone. Using our Fourier-Bessel harmonic expansion from Eq. (2.11) this can be written

as:

〈∆(r1)∆(r2)〉 =
∑
`1,m1

∑
`2,m2

Y`1m1(r̂1)Y ∗`2m2
(r̂2)

×
〈
∆`1m1(η1, r1)∆∗`2m2

(η2, r2)
〉
. (2.13)
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On substituting in for the harmonic amplitudes given by Eqs (2.12) and (2.97) the above expression

becomes:

〈∆(r1)∆(r2)〉 =
∑
`1,m1

∑
`2,m2

(−i)`1i`2Y`1m1(r̂1)Y ∗`2m2
(r̂2)

×
∫

dk1k
2
1

2π2

∫
dk2k

2
2

2π2
j`1(k1r1)j`2(k2r2)

×
〈
∆`1m1(η1, k1)∆∗`2m2

(η2, k2)
〉
. (2.14)

Consider now the expectation factor in the above expression and let us use Eqs (2.92) and (2.93)

to rewrite this in the following way:

〈
∆`1m1(η1, k1)∆∗`2m2

(η2, k2)
〉

=

∫
dk̂1dk̂2 Y

∗
`1m1

(k̂1)

× Y`2m2(k̂2) 〈∆(η1,k1)∆∗(η2,k2)〉 . (2.15)

The unequal time correlator 〈∆(η1,k1)∆∗(η2,k2)〉 has the property that:

〈∆(η1,k1)∆∗(η2,k2)〉 = (2π)3δD
3D(k1 − k2)P (k1, η1, η2) . (2.16)

Furthermore, the Dirac delta function can be written in the spherical polar coordinates as:

δD
3D(k1 − k2) =

δD
1D(k1 − k2)

k2
1

δD
2D(k̂1 − k̂2) . (2.17)

On putting all of this together and on integrating over the Dirac delta functions we find Eq. (2.14)

becomes:

〈∆(r1)∆(r2)〉 =
(2π)3

4π4

∑
`1,m1

∑
`2,m2

(−i)`1i`2Y`1m1(r̂1)Y ∗`2m2
(r̂2)

×
∫

dkk2j`1(kr1)j`2(kr2)P (k, η1, η2)

×
∫

dk̂ Y ∗`1m1
(k̂)Y`2m2(k̂) . (2.18)

The last integral on the right-hand-side can be computed owing to the orthogonality of spherical

harmonics to give: ∫
dk̂1 Y

∗
`1m1

(k̂1)Y`2m2(k̂1) = δK
`1,`2δ

K
m1,m2

, (2.19)
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where δK is the Kronecker delta symbol. On utilising this fact, Eq. (2.18) becomes:

〈∆(r1)∆(r2)〉 =
2

π

∑
`,m

Y`m(r̂1)Y ∗`m(r̂2)

∫
dkk2j`(kr1)j`(kr2)

× P (k, η1, η2) . (2.20)

The addition theorem of spherical harmonics is:

L`(cos θr1r2) =
4π

2`+ 1

∑̀
m=−`

Y`m(r̂1)Y ∗`m(r̂2) , (2.21)

where θr1r2 is the angle between the two vectors r̂1 and r̂2. On using this relation in Eq. (2.20) we

find the result:

〈∆(r1)∆(r2)〉 =
∑
`

(2`+ 1)L`(cos θr1r2)ξ`(r1, r2) , (2.22)

where L`(x) is the Legendre polynomial of order ` and where we defined the correlation function

multi-pole amplitude as:

ξ`(r1, r2) ≡
∫

d3k

(2π)3
j`(kr1)j`(kr2)P (k, η1, η2) . (2.23)

Returning to our observed galaxy density field FLC(r), the above result implies that:

〈
FLC(r1)FLC(r2)

〉
= A2nLC

0 (r1)nLC
0 (r2)

∑
`

(2`+ 1)

× L`(cos θr1r2)ξ`(r1, r2) . (2.24)

In order to evaluate the above expression one would need access to a model for the nonlinear

unequal time correlator P (k1, η1, η2).

2.3.2 The power spectrum on the past lightcone

We next turn to the issue of determining the power spectrum of our observed lightcone density

field FLC(r). Let us work this out, but starting from:〈
FLC(q1)

[
FLC(q2)

]∗〉
=

∫
d3r1d3r2e

iq1·r1e−iq2·r2

×
〈
FLC(r1)FLC(r2)

〉
. (2.25)
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Figure 2.1: The kernel window functionR11(q, k) of Eq. 2.39 as a function of q, for seven values of k selected
to lie in the range k ∈ {0.001, 0.5}hMpc−1, with the smallest in dark red and the largest in purple (see
annotated values in the right-most plot). The panels from left to right show the results for volume limited
surveys with maximum redshifts of zmax = {0.37, 0.83, 1.47}, respectively, corresponding to a maximal radial
distance of {1, 2, 3}h−1Gpc in our chosen cosmology. We see that for scales much smaller than the survey
volume these window functions do indeed take on Dirac delta function like properties: R11(q, k) ≈ δD(q−k).

If we plug in to this relation Eq. (2.7) we get:〈
FLC(q1)

[
FLC(q2)

]∗〉
=

∫
d3r1d3r2A

2eiq1·r1e−iq2·r2

×
〈[
nLC(r1)− αnLC

s (r1)
] [
nLC(r2)− αnLC

s (r2)
]〉

. (2.26)

In the absence of shot-noise, the term in angle brackets on the right-hand-side can be written:〈 [
nLC(r1)− αnLC

s (r1)
] [
nLC(r2)− αnLC

s (r2)
]〉

= nLC
0 (r1)nLC

0 (r2)
〈

∆(r1)∆(r2)
〉
. (2.27)

On inserting the above expression back into Eq. (2.26) and on making use of our derived expression

for the matter correlation function given by Eq. (2.20), we can obtain the following relation:〈
FLC(q1)

[
FLC(q2)

]∗〉
=

∫
d3r1d3r2A

2eiq1·r1e−iq2·r2

× nLC
0 (r1)nLC

0 (r2)4π
∑
`m

Y`m(r̂1)Y ∗`m(r̂2)ξ`(r1, r2) . (2.28)
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We now make use of the spherical harmonic expansion of the plane waves from Eqs (2.84) and (2.85)

and on using these in the above expression we find:〈
FLC(q1)

[
FLC(q2)

]∗〉
= (4π)3A2

∫
d3r1d3r2n

LC
0 (r1)nLC

0 (r2)

×
∑
`1m1

i`1j`1(q1r1)Y`1m1(q̂1)Y ∗`1m1
(r̂1)

×
∑
`2m2

(−i)`2j`2(q2r2)Y ∗`2m2
(q̂2)Y`2m2(r̂2)

×
∑
`m

Y`m(r̂1)Y ∗`m(r̂2)ξ`(r1, r2) , (2.29)

where in rewriting the second plane-wave using the harmonic expansion we have made use of the

fact that the complex conjugate can appear on either of the spherical harmonics. The advantage

of this is that the volume integrals over r1 and r2 can now be broken up into radial and surface

integrals. The only terms that depend on r̂1 and r̂2 are the spherical harmonics, and so on making

repeated use of the orthogonality relation, we have:〈
FLC(q1)

[
FLC(q2)

]∗〉
= 4πA2

∫
d3r1d3r2n

LC
0 (r1)nLC

0 (r2)

×
∑
`m

j`(q1r1)j`(q2r2)Y`m(q̂1)Y ∗`m(q̂2)ξ`(r1, r2). (2.30)

Again, on making use of the addition theorem for spherical harmonics we find that the above

expression can be further simplified to:〈
FLC(q1)

[
FLC(q2)

]∗〉
=
∑
`

P`(q1, q2)L`(cos θq1q2) , (2.31)

where we have defined the FLC power spectrum multipoles:

P`(q1, q2) ≡ (2`+ 1)A2

∫
d3r1d3r2n

LC
0 (r1)nLC

0 (r2)

× j`(q1r1)j`(q2r2)ξ`(r1, r2). (2.32)

In practice, the above expression for the multipoles is rather cumbersome. A more useful variation

can be obtained by substituting our expression for ξ` from Eq. (2.23) and on rearranging the order

of integration, moving the k integral to the front, we get:

P`(q1, q2) = (2`+ 1)A2

∫
d3k

(2π)3

2∏
j=1

{∫
d3rjn

LC
0 (rj)

× j`(qjrj)j`(krj)
}
P (k, η1, η2) . (2.33)
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Some interesting points to note are: first, for the case where the unequal time correlator is not

a separable function of time, the evaluation of the above expression requires one to compute a

3D-numerical integral. On the other hand if it is, and as we will show in the next section, the

integral can be reduced to a set of 2D integrals. Second, the observed lightcone power spectrum,

defined PF(q) ≡
〈∣∣FLC(q)

∣∣2〉, can be obtained from the above equations by setting q1 = q2, or

equivalently θq1q2 = 0, whereupon L`(1) = 1, and we have a sum over all ` of P`(q1, q1). It is

also interesting to note that,
〈
FLC(q1)

[
FLC(q2)

]∗〉
does not vanish for θq1q2 6= 0. This arises due

to the fact that for the lightcone observer, homogeneity is broken and so there is no Dirac delta

function. However, isotropy is not broken. Lastly, for expressions discussing the shell-averages of

the observed power spectrum see Appendix 2.C.
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Figure 2.2: Upper: A plot of the window-convolved nonlinear power spectrum on the lightcone for an all sky
survey reaching out to increasing redshift depths (corresponding to fainter magnitude cuts). The solid lines
show the unequal time model (Eq. (2.38)), while the dot-dashed lines show the small scale approximation
(Eq. (2.44)). The lower plot shows the percentage difference between calculating the power spectrum using
the full formula versus using the small scale approximation. We see that these two formulas reach convergence
to well within 1% on small scales, where the approximate formula is used to reduce computation time.

2.3.3 Approximate forms: the time separable UETC

Let us suppose that the UETC can be written as a separable function of time or more generally as

a set of functionals of P (k, η0) each of which has time separable behaviour. Hence, we propose the
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ansatz:

P (k, η1, η2) =
∑
a,b

Ga(η1, η0)Gb(η2, η0)Fab[P ](k) , (2.34)

where the functions Ga(η, η0) give the amplification at time η relative to some fiducial time η0 and

the functionals Fab only involve integrals over the equal time correlator. We note that the above

form may be justified on the grounds that the UETC is symmetric in time, i.e. P (k, η1, η2) =

P (k, η2, η1) and by the fact that this form will capture a wide range of perturbative expansion

schemes. For example, in linear theory Eq. (2.34) has the form:

P (k, η1, η2) = D(η1)D(η2)PLin(k, η0) , (2.35)

where G1(η1, η0) = D(η1) are growth factors relative to time η0 and Fab[P ](k) = PLin(k, η0) is the

linear theory power spectrum at time η0. In Eulerian perturbation theory the nonlinear power

spectrum including the next-to-leading order corrections can also be expressed in the form of

Eq. (2.34). In this case Ga(η, η0) = D(η)a and F13 = P13, F22 = P22 and F12 = F21 = 0, giving

[47]:

P (k, η1, η2) = D(η1)D(η2)PLin(k) +D2(η1)D2(η2)P22(k)

+
[
D3(η1)D(η2) +D(η1)D3(η2)

]
P13(k) . (2.36)

Focusing on the general separable form, if we insert Eq. (2.34) into Eq. (2.33) then, for the case

of q1 = q2 we see that:

P`(q, q) = (2`+ 1)A2
∑
a,b

∫
d3k

(2π)3
Fab[P (k, η0)](k)

×
2∏

α={a,b}

{∫
d3rnLC

0 (r)Gα(η, η0)j`(qr)j`(kr)

}
. (2.37)

Notice that the final product of integrals are not dependent upon one another, and this makes the

evaluation of the above expression a sum over 2D integrals. With this result in hand, we see that

Eq. (2.37) can be written in the compact form:

PF(q) =
∑
a,b

∫
d3k

(2π)3
Fab[P ](k)Rab(q, k) , (2.38)

where the kernel window function can be written

Rab(q, k) ≡
∑
`

(2`+ 1)W
(a)
` (q, k)W

(b)
` (q, k) , (2.39)
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where we have defined

W
(a)
` (q, k) ≡ A

∫
d3rnLC

0 (r)Ga(η, η0)j`(qr)j`(kr) . (2.40)

Figure 2.1 shows the behaviour of the kernel window function of Eq. (2.39), normalised by its

maximum value. Here we present the case for the linear theory UETC, and have also made the

further simplifying assumption of a volume limited survey with a constant comoving number density

of galaxies nLC
0 (r) = 1 up to a scale rmax, and then a vanishingly small density thereafter. The three

panel from left to right show the results for increasing survey volume. We see that on small scales

(i.e. when qrmax � 1 and krmax � 1) R becomes highly spiked and so exhibits delta function like

behaviour where k ≈ q. These plots also demonstrate the need to bound the k integral wisely (i.e.

the bounds should be q dependent) to save on computational overheads. Not too unsurprisingly,

this mimics the window function G(k − q) described in the FKP method [78].

2.3.4 Approximate forms: small-scale limit: krmax � 1

If this behaviour is realised for all of the terms in Eq. (2.34) then Eq. (2.38) can be further approx-

imated. Let us thus consider the case where Rab(q, k) ∝ δD(k − q). If the functions Fab[P ](k) are

slowly varying on scale q, then we can write:

PF(q) ≈ A2
∑
ab

Fab[P ](q)

∫
d3k

(2π)3
Rab(q, k) , (2.41)

where ∫
d3k

(2π)3
Rab(q, k) =

∑
`

(2`+ 1)

∫
d3k

(2π)3

×
2∏

α={a,b}

{∫
d3rnLC

0 (r)Gα(η, η0)j`(qr)j`(kr)

}
. (2.42)

On expanding out the square bracket we can reorder the integrals so that we compute the infinite

integral over the k dependent terms first. We recognise that this can be computed using the

orthogonality of the spherical Bessel functions:∫
dkk2j`(kr1)j`(kr2) =

π

2r2
2

δD(r1 − r2). (2.43)
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On substituting this equation back into the expanded form of Eq. (2.42) and performing the integral

over r2 we obtain the relation:

PF(q) ≈ A2
∑
ab

Fab(q)
∫

d3r
[
nLC

0 (r)
]2
Ga(η)Gb(η)

≈ A2

∫
d3r

[
nLC

0 (r)
]2
P (q, η) . (2.44)

In order to obtain the above expression we made use of the fact that an infinite sum over the

squares of spherical Bessel functions is unity (result 10.1.50 of [98]):

∞∑
`

(2`+ 1)j2
` (x) = 1 , (2.45)

and we have made an appropriate choice for A, such that

1

A2
≡
∫

d3r
[
nLC

0 (r)
]2

. (2.46)

This tells us that in the limit where the the radial weight functions are very broad and smooth,

such that the W
(a)
` (q, k) are very narrowly peaked, the lightcone power spectrum is approximately

given by the equal time correlator weighted by the square of the selection function averaged over

the radial extent of the survey.

In Figure 2.2 we plot the window-convolved power spectrum on the past lightcone for an all-sky

survey, out to increasing redshift depths, using the full expression of Eq. (2.38) (solid lines). We also

plot the small-scale approximation given by Eq. (2.44) with the dash-dotted lines, with the lower

panel of the plot showing the percentage difference between the two methods. We see that for the

cases considered, for q > 0.1hMpc−1, there is . 1% difference between the two formulae, and so in

this region we can safely use the approximated formula, which will drastically save on computational

time. We also see that the approximation performs worse for shallower survey depths, where one

has to calculate the full formula to a higher value of k, relative to a deeper survey, before being

able to safely switch over to this approximation.

2.3.5 Approximate forms: the large-scale limit

We also look at the behaviour of the window-convolved power spectrum in the very large scale limit,

as q → 0. In this region, the power spectrum and survey window function are highly convolved

with one another, and we expect to see significant modifications to the shape of the power. Indeed,

we see in Fig. 2.2 that instead of dropping off towards zero as the input spectrum does, we now

have that the power converges on some constant value in q.

To determine this value, we use the properly of the spherical Bessel functions:

j`(x)
∣∣∣
x→0

= δ`0 , (2.47)
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and inserting into Eq. (2.38), writing out the terms explicitly at linear order we have

PF(q)
∣∣∣
q→0

=

∫
d3k

(2π)3
PLin(k)

[
A

∫
d3rG(η, η0)j0(kr)

]2
. (2.48)

From this we see that on these very large scales, the value of the power spectrum depends purely

on the survey depth and form of the radial kernel function G(η, η0).

2.3.6 Evaluating theoretical models at an effective time

In many large-scale structure analyses, it is common to find that the theoretical models are evalu-

ated at the mean redshift of the sample, calculated via

zmean =

∫
dz dV

dz z n
LC
Eff(z)∫

dz dV
dz n

LC
Eff(z)

. (2.49)

Alternatively, one can instead use an effective survey-fixed redshift. On inspection of Eq. (2.38) we

see that, for a general nonlinear model, this can not be realised in detail and that the presence

of nonlinear terms with different time dependence violates this approximation. To see this let us

rewrite Eq. (2.44) in a simplified form and assume that there is an effective time at which we have

the following equality:

PF(q) ≈
∫

d3rw(r)P (q, η)
?≈ P (q, ηeff) , (2.50)

where w(r) = A2
[
nLC

0 (r)
]2

and a super-script question mark has been used notate that we are

asking whether the conjecture is true. On making repeated use of Eq. (2.34) we find:∑
a,b

Ga(ηeff , η0)Gb(ηeff , η0)Fab[P ](k)

?≈
∑
a,b

∫
d3rw(r)Ga(η, η0)Gb(η, η0)Fab[P ](k) . (2.51)

For the case of linear theory, where a = 1, b = 1, and Fab[P ](k) = PLin(k), we see that a Linear

effective time ηLin
eff can be found that will satisfy Eq. (2.51) if we can numerically solve the relation:

D2(ηLin
eff ) =

∫
d3r

[
nLC

0 (r)
]2
D2(η, η0)∫

d3r
[
nLC

0 (r)
]2 . (2.52)

However, what is also clear, is that as soon as we add in any additional nonlinear terms, there is

no effective time for which Eq. (2.51) can be satisfied.

We can get an idea of the error that is incurred by making the unique time approximation by

considering the case of standard perturbation theory at the 1-loop level. In this case, if we set ηeff

in accordance with Eq. (2.52), then the first term in the left-hand and right-hand-side expansions

of Eq. (2.51) are guaranteed to vanish. The next terms which come from the loop corrections would
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thus incur the error:

PErr(k, η
Lin
eff ) =

[
P13(k, ηLin

eff ) + P22(k, ηLin
eff )

]
×
{

1−
∫

d3r
[
nLC

0 (r)
]2

[D(η)/D(ηLin
eff )]4∫

d3r
[
nLC

0 (r)
]2

}
. (2.53)

If one could guarantee that, on a given scale, a nonlinear correction of a certain order was dominant.

Then, one could find a new effective time to evaluate the theory at. For example, if there is a scale

where the 1-loop contribution is dominant and the linear and 2-loop corrections are negligible, then

one could evaluate the theory at the 1-loop effective time, η1−loop
eff , defined through solving the

relation:

D4(η1−loop
eff ) =

∫
d3r

[
nLC

0 (r)
]2
D4(η, η0)∫

d3r
[
nLC

0 (r)
]2 . (2.54)

Iterating on this logic, one would thus need a set of effective times for all the scales where the

various nonlinear components dominate the clustering signal.

We illustrate the impact of using the different approaches to a fixed-time approximation in

Figure 2.3. In both of the plots, we show the unequal-time power spectrum model (solid lines) for

increasing survey depth. This is calculated using Eq. (2.38) on large scales, and uses the small-

scale approximation of Eq. (2.44) for scales well within the scale of the survey window function.

In the left hand plot, we compare this with the mean redshift approximation of Eq. (2.49), and

in the right hand plot we instead use the effective redshift (or time) approximation calculated

from Eq. (2.52), with both approximations represented by dashed lines5. The lower plots in each

case show the percentage difference between the full model and the given approximation, with the

shaded region showing the ±1% threshold. We see that using the mean redshift approximation

results in a k-dependent bias of the power spectrum amplitude, which increases with severity as the

survey depth increases. At intermediate scales where there is minimal convolution with the survey

window function and non-linear effects are small, this offset is roughly constant due to the fact that

the linear power spectrum scales as D2(r). We notice that the difference grows larger at smaller

scales where we pick up non-linear corrections, depending on higher powers of the growth factor.

Conversely, from the right hand plot, we see that using the effective time approximation works very

well at all but the largest and smallest scales, only deviating from sub-percent level accuracy at

these extremities for the deeper survey examples. Therefore, where a fixed time approximation is

required to evaluate theory, we strongly advocate the use of Eq. (2.52) to do this.

2.3.7 Extending the theory to the nonlinear regime

Building on the theory from the previous sections, it is straight forward to extend our model for the

power spectrum on the lightcone to the non-linear regime, by perturbatively expanding the density

5Note that for each of these approximations, the only quantity we are changing when compared to the full UETC
model is to evaluate the growth factor at some fixed redshift.
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Figure 2.3: Plots showing a comparison between the full unequal-time nonlinear power spectrum model
of Eq. (2.38) (solid lines, with colours representing differing survey depths), with various fixed time approxi-
mations (dashed lines). In the left hand plot we show the mean redshift approximation of Eq. (2.49), where
the power spectrum is evaluated with the growth factor fixed at D(z = zmean). The right hand plot instead
shows effective time approximation D(η = ηLin

eff ), calculated from Eq. (2.52). The lower section of each plot
shows the percentage difference between the full unequal-time model and the given approximation, with the
shaded region showing the ±1% difference. We see that the mean redshift approximation induces a signifi-
cant scale dependent bias to the power spectrum amplitude, that increases in severity as the redshift depth
of the survey increases. The effective time approximation performs much better however, and can achieve
sub-percent accuracy over a wide range of scales, only deviating from this at the largest and smallest scales
for the deeper surveys (blue and red lines).

field in terms of powers of the growth factor. As we will be in the small-scale limit, we can can use

the approximate form of our equation, given by Eq. (2.44), and substitute in the equal-time version

of the UETC expansion of the density field, in Eq. (2.36), giving:

PF(q) ≈ A2

∫
d3r

[
nLC

0 (r)
]2
P (q, η)

≈ PLin(q)W2 + P1−loop(q)W4 + P2−loop(q)W6, (2.55)

where for brevity we have made the definition:

W i = A2

∫
d3r

[
nLC

0 (r)
]2
Di(r). (2.56)

In summary, our final model for the power spectrum on the past lightcone is pieced together

using two different models: on large scales, we use the full unequal-time linear model given by

Eq. (2.38), and on small scales where the approximation is valid, we use Eq. (2.55). We use CAMB to

generate the PLin term, and then use this linear power with FAST-PT [99] to generate the 1-loop

term. Finally, as a simple toy model, we take the full CAMB non-linear power, and subtract off PLin

and the 1-loop contribution from FAST-PT to get the approximate contribution of the 2-loop term.
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These are all generated at z = 0 and then scaled as appropriate using powers of the growth factor

Di(r) as indicated above.

2.4 Validation with N-body simulation mock catalogues

We now turn to the issue of validating the derived expressions using galaxy mock catalogues ob-

tained from N -body simulations of the past lightcone. We first detail the N -body data that we

use, the process for creating the dark matter lightcone, and then finally the estimator methodology

that we use to measure the power spectrum.

2.4.1 Dämmerung Simulation

For construction of the past lightcone we make use of the large-volume simulation from the

“Dämmerung Suite” of runs [for full details see 100]. In summary, the cosmological parameters of

this run were in accord with the Planck best-fit [101]. The exact cosmological parameter values

that were used are: the dark energy equation of state parameters were w0 = −1.0 and wa = 0.0;

the dark energy density parameter was ΩDE = 0.6914, which, since the cosmological model was

spatially flat, gave a matter density Ωm = 0.3086; the physical densities of cold dark matter and

baryons were set to ωc = 0.11889 and ωb = 0.022161, respectively; the primordial power spectrum

spectral index, amplitude and running were set to ns = 0.9611, As = 2.14818× 10−9 and α = 0.0,

respectively. The linear matter power spectrum was computed using CAMB [102], down to z = 0.

This was rescaled back to the z = 49 using the scale-independent matter-only linear growth factor

and the initial conditions were lain down using an upgraded version of 2LPT [103].

The N -body simulation was run using the code Gadget-3 developed for the Millennium-

XXL simulation[104, 105]. The large-volume simulation was performed with N = 20483 dark

matter particles, in a comoving box of size L = 3000h−1Mpc, yielding a mass per particle of

mp = 2.69× 1011h−1M�. Sixty snapshots were output between z = 49 and z = 0, with a hybrid

linear-logarithmic output spacing that matched the Millennium Run I simulation [51]. The simu-

lation was run on the SuperMUC machine at the Leibniz Rechnum Zentrum in Garching and the

full particle data storage was ∼20 TB. Haloes and subhaloes were extracted on-the-fly using the

built-in FoF and subfind algorithms. Isolated FoF haloes are identified with at least 15 particles.

Thus the smallest dark matter halo in the catalogue has a mass Mmin
h ≈ 4× 1012h−1M�.

2.4.2 Construction of the past lightcones for dark matter particles

Full details of our method for construction of the past lightcone is described separately in Booth et

al. (2021, in preparation). However, the methodology follows in along the same vein as the work

of [106], however the precise details differ. Nevertheless, the main steps of the algorithm can be

summarised as follows:

• We wish to solve the lightcone crossing equation for each dark matter particle in the N -body
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Figure 2.4: Upper: The measured number densities of the data (’+’) and random (’x’) catalogues from the
five magnitude cuts, ranging from 18 in orange to 22 in purple. The theoretical prediction (solid lines) is
calculated from the integral of the evolving Schechter function in Eq. (2.99). Lower: The ratio between the
data and random n(r) distributions. Note: as there are 500 times as many random points as data points,
we have plotted ñr(r) = nr(r)/500 for easier comparison in both plots).

simulation. For the kth particle we want to solve the equation

|rk(χ, θ, φ, tc)− rO| =
∫ t0

tc

cdt

a(t)
, (2.57)

for the time tc, which gives the coordinate time when the particle exits the past lightcone.

Where rk is the world line of the particle and rO is the observers location.

• To solve the above equation, we need to reconstruct the full world line of each particle. We

do this in a piece wise fashion by using a Taylor expansion up to cubic order in look-back

time to interpolate the particle positions and velocities between neighbouring snapshots. The

parameters of the Taylor expansion are fixed using the particle positions and velocities at the

snapshots. For example, the equation for the Cartesian x component of the particle world
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Figure 2.5: A 40 h−1 Mpc thick slice through one realisation of the lightcone, including zoom regions near
the edge and the centre of the catalogue. The lightcone spans a redshift range of z = 0 at the centre to
z ≈ 1.45 at the edge. We can clearly see the difference in structure formation between the two zoom regions,
with the lower redshift plot (bottom left) displaying more evolved filaments, clusters and voids.

line is:

x(t) ≈ X − ∆V∆T

8
+

(
3∆X − V∆T

)
2

(
t− T
∆T

)
+

∆V∆T

2

(
t− T
∆T

)2

− 2
[
∆X − V∆T

]( t− T
∆T

)3

, (2.58)

where T ≡ (ti + ti+1)/2 and where δt = t − T i with ti and ti+1 being the lookback times

to the neighbouring snapshots, with ti < ti+1. Also we have defined X ≡ (xi + xi+1)/2,

∆X ≡ xi+1 − xi, V ≡ (vi+1 + vi)/2, and ∆V ≡ vi+1 − vi, with (xi, vi) and (xi+1, vi+1)

referring to the particle’s position and velocity for the neighbouring snapshots, respectively.

In Booth et al. (2021, in prep.) we show that for our simulation we can do this to an accuracy

of r ∼ 100h−1kpc, for all particles.

We apply the above algorithm to generate 8 different dark-matter particle lightcones, where

we have set the different observer locations to be the vertices of a cubical lattice of side L/2 =

1500h−1Mpc. The data footprint of each particle lightcone is roughly 2TB. While these lightcones

are not fully independent, on scales smaller than r < L/4 they have no repeated structures and

thus for shallower surveys can be considered independent from one another. The further advantage

of doing this for the deeper lightcones is that one averages over similar structures, but at different

epochs. Nevertheless, in what follows while we will present the mean statistic averaged over the
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8 quasi-independent lightcones, we will compute the errors on the observables using the Gaussian

theory estimates.

2.4.3 Constructing the galaxy past lightcone

We would like to be able to explore how well the theory from the previous sections works for a

galaxy sample that would be comparable to that for the Bright Galaxy Sample (hereafter BGS-like)

from DESI or the 4MOST CRS. However, owing to the fact that the large-volume “Dämmerung

run” does not have sufficient resolution to resolve the typical halo masses in these surveys, we

have therefore decided to adopt a the simplified strategy of assuming that the BGS-like galaxies

are simply a Poisson sampling of the dark matter particles. However, we introduce realistic radial

selection functions to emulate the effects of the flux-limits that we adopt.

Our mock galaxy recipe follows the following steps:

1. Adopt a magnitude limit, mlim and set the bounding redshifts zmin and zmax for the survey.

2. We next assume a functional form for the (evolving) galaxy luminosity function of the survey.

The number density of particles in the dark matter past lightcone sets the maximum density

of galaxies that we may have in the mock catalogue, such that:

n̄max(rmin) ≤
∫ ∞

Lmin(rmin)
φ(L|rmin)dL . (2.59)

As can be seen this then imposes the minimum luminosity that a galaxy could have and make

it into the survey.

3. To each dark matter particle in the lightcone we now sample a luminosity from our desired

GLF following the methodology outlined in Appendix 2.B.2.

4. For the specified flux-limit, and for a given particle with redshift z, we then use the minimum

luminosity that a galaxy could have at that distance and be contained in the survey, given by

[
Lmin(r)/h−2L�

]
= 10−

2
5

(mlim−25−M�)
[
dL(r)/ h−1Mpc

]2
, (2.60)

where M� is the absolute magnitude of the sun. This step is most efficiently done through

creating a cubic-spline of this function. We then include or exclude the potential mock galaxy

(particle) based on whether it passes the criteria its luminosity should satisfy L ≥ Lmin(r).

5. This process is repeated for all of the flux-limit samples of interest.

We also generate unclustered mock random data sets to go alongside these magnitude-cut

catalogues, for use in our power spectrum measurements. These random catalogues are created

by distributing points uniform-randomly in a sphere of radius rmax = 3Gpc, and then sampling

magnitudes using the same method as above and making matching apparent magnitude limit cuts
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List of simulated catalogues

mlim Avg. Nd z range χ range [h−1Mpc]

None 35.0× 109 0.01 ≤ z ≤ 1.45 30 ≤ χ ≤ 2974
18.0 4.6× 106 0.01 ≤ z ≤ 0.36 30 ≤ χ ≤ 975
19.0 16.7× 106 0.01 ≤ z ≤ 0.53 30 ≤ χ ≤ 1390
20.0 60.0× 106 0.01 ≤ z ≤ 0.81 30 ≤ χ ≤ 1950
21.0 212.8× 106 0.01 ≤ z ≤ 1.24 30 ≤ χ ≤ 2680
22.0 756.0× 106 0.01 ≤ z ≤ 1.45 30 ≤ χ ≤ 2974

Table 2.1: List of the particle count Nd in each of our magnitude cut catalogues, where we have taken
the average over the 8 realisations for each cut. We also list the effective ranges of redshift and comoving
distance that the catalogues cover, where the upper bounds on these ranges signify where the n(r) drops
4 orders of magnitude below its peak value, if this is less than the maximum range of 2974h−1Mpc (see
Fig. 2.4).

– one small difference though, is that we omit Step ii and use the same Lmin(r) as the clustered

catalogue to sample luminosities with. This process is iterated for each cut, until we have 5 mock

random catalogues, which match the overall survey geometry of their data counterparts, but with

Nrand ' 500Ndata for each.

In Figure 2.4 we show the resultant number densities of the different apparent magnitude-cut

catalogues for both the data and the randoms. Here we also show the expected theoretical prediction

given by Eq. (2.99). In Table 2.1, we list some useful properties (averaged over the 8 realisations)

of each catalogue.

In Figure 2.5 we show a slice through one of our full-sky dark matter lightcones and several

zoom-in regions, which shows how the strength of the large-scale structure drops off as one gets to

the outer rim of the sphere.

2.4.4 The power spectrum estimator

We use the FFT method of estimating the power spectrum, based on the work in [78] and [107],

which we summarise here. Both data and random catalogues are interpolated onto separate 10243

grids using a Triangular-Shaped-Cloud (TSC) mass assignment scheme. To reduce the effects of

small scale aliasing caused by finite grid resolution [108] we employ the method of interlacing as

covered in [109]6. In that work, they demonstrate that combining TSC assignment with interlacing

is able to measure the power spectrum of N -body simulation data in a periodic box to sub 0.1%

accuracies, right up to the Nyquist frequency of the grid. In our case, as we are testing on simulated

galaxy data contained in a survey window, we note that it is important to interlace both the data

and the random catalogues to get the full benefits of interlacing on small scales, while also being

able to accurately measure the large scale modes. The offset grids used in interlacing are created by

6Grid aliasing is caused by the FFT grid sampling smaller scale modes than are actually supported by the grid,
leading to spurious contributions to the FFT-determined Fourier coefficients. This causes an uptick in power for
k & kNyq/2, and so not correcting for this effect leads to a decrease in the number of k modes that one is effectively
able to probe.
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taking the original data sets, and displacing each particle by {+lx/2,+ly/2,+lz/2} before painting

them to a grid, where li is the length of an individual grid cell in the xi Cartesian direction. We

thus have 4×10243 grids for each measurement: nd(x), nr(x), n̂d(x) and n̂r(x), where nd represents

our data points, nr is the random points, and the hat signifies an offset grid for interlacing. For

convenience, we normalise our random grids such that
∑

i nr(xi) = 1 and make the definition of

a survey window grid as W (x) = Ndnr(x). Here, Nd is the total number of data particles on the

grid. Our process for calculating the power spectrum is as follows:

1. We take the FFT of the galaxy overdensity field and its offset counterpart:

F̃G1(k) = A
∑
x

w(x)[nd(x)−W (x)] exp(ik · x), (2.61)

F̃G2(k) = A
∑
x

ŵ(x)[n̂d(x)− Ŵ (x)] exp(ik · x). (2.62)

Here, w(x) is the FKP weight function:

w(x) =
1

1 + n̄(x)P0
=

1

1 +W (x)P0

, (2.63)

designed to maximise the signal to noise7, and A is the normalisation:

A =
[∑

x

W 2(x)w2(x)
]1/2

. (2.64)

2. To perform interlacing, we then take the average of these two fields in Fourier space, while

taking into account an additional phase factor8 for the offset grid:

F̃G(k) =
1

2

[
F̃G1(k) + F̃G2(k) exp(−ik ·∆xlattice)

]
, (2.65)

where ∆xlattice ≡ (lxi + lyj + lzk)/2 in the radial direction. Note that for our case we are

setting lx = ly = lz = L/Ngrid.

3. To be able to accurately recover the small scale clustering, the TSC mass assignment window,

WTSC(x), needs to be deconvolved from the resultant field. As this is a convolution between

the particles and the mass assignment window function in position space, which has then

been Fourier transformed, this convolution is thus simply a multiplication in Fourier space,

and so a division of the F.T. of the window will correct for this effect. For TSC assignment,

this window function in Fourier space is given by [110]:

WTSC(k) =
[sin(kx,N)

kx,N

sin(ky,N)

ky,N

sin(kz,N)

kz,N

]3
(2.66)

7Note that W (x) signifies a spherical average of the window function i.e. the spherically-averaged number density
of the synthetic randoms catalogue.

8This additional factor comes from the shift theorem of the Fourier transform.
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where ki,N = πki/2kNyq,i. Therefore, we can recover the deconvolved field with the operation:

FG(k) =
F̃G(k)

WTSC(k)
. (2.67)

4. The last ingredient of the estimator is to calculate and subtract off the normalised shot noise,

given by

Pshot = A−2
∑
x

W (x)w2(x). (2.68)

We also make sure to model and subtract this off of our theoretical predictions.

5. Finally, we define our estimator of the power spectrum as

P̂ (k) = |FG(k)|2 − Pshot, (2.69)

which we will measure in logarithmic bins between the fundamental mode and the Nyquist

frequency of the grid. This estimate is therefore the shot-noise corrected, survey-window-

convolved power spectrum which we can directly compare with our predictions for the con-

volved power spectrum on the lightcone, as described in §2.3.2.

2.4.5 Statistical fluctuations in the power

For the covariance, we shall simply take Eqn (20) from [107]:

〈δP (ki)δP (kj)〉 =
2A4

∑
ki,kj

|PiQ(ki − kj) + S(ki − kj)|2

NkiNkj

, (2.70)

where Nki is the number of modes in a given bin and the equations for Q(k) and S(k) are given

by:

Q(k) =
∑

W 2(x)w2(x) exp(ik · x) , (2.71)

S(k) =
∑

W (x)w2(x) exp(ik · x) . (2.72)

It is worth pointing out that Eq. (2.70) assumes that the Fourier coefficients FG(k) are Gaussian-

distributed. While Eq. (2.70) shows that modes in different k-bins do become correlated with each

other, in the limit that the survey window function is sufficiently compact, centred on each bin,

we see that the diagonal covariance approximation will be accurate on scales that lie sufficiently

within the survey window. However, for larger scales it will be an under-estimation of the true

error. This leads us to the following approximate form of the covariance (FKP Eqn. (2.2.6)):

〈
δP (ki)

2
〉
' 2A4

Nk
|P (ki)Q(ki) + S(ki)|2. (2.73)
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2.4.6 Implementation and Validation of Estimator code

We have implemented our estimator algorithm in Python 3.69, making use of NumPy [111], SciPy

[112], AstroPy [113], Numba [114], and the python wrappers for MPI [115] and FFTW [116]. All

code was run on the Cosma7 partition of the Cosma HPC, part of the DiRAC supercomputer

facilities hosted at Durham University.

To test the accuracy of the code, we first use it to measure the power spectrum of some of the

original Dämmerung Simulation redshift snapshots, where our results can easily be compared to the

output of CAMB nonlinear power spectra at the specified redshift, as well as the power measured by

GADGET-4 [117]. We perform the measurements in 25 logarithmically spaced bins, where the upper

and lower bin edges are set to match the largest and smallest modes supported by the box, giving bin

edges such that 0.0021hMpc−1 ≤ k ≤ 1.07hMpc−1, and bin width log10(∆k/[hMpc−1]) = 0.108.

Figure 2.6 presents the results from these tests, where we measure the power spectrum at

redshifts z = 0.0 and z = 1.5, which is the approximate redshift range spanned by our lightcone

simulations. We see excellent agreement between our measurements and the nonlinear prediction

from CAMB and GADGET across all scales. Note that the error bars are based on Eq. (2.73) and that

we have computed the spectrum all the way to the Nyquist frequency of the Fourier mesh with no

resultant boost in power which is characteristic of aliasing effects.

This gives us confidence that the estimator methodology is working as desired, and we now

move on to tackle the analysis of the lightcone data.

2.4.7 Measurements of the mock lightcone survey catalogues

We measure the power spectrum for the 8 pseudo-independent realisations of our lightcone cat-

alogue, in the 5 different apparent magnitude limited mock galaxy catalogues that we have cre-

ated. This gives us a total of 40 sets of measurements. As with our testing on the individual

Dämmerung Simulation snapshots, we measure the power in 25 logarithmically spaced bins, but

this time in the reduced k-range of 0.0042hMpc−1 < k ≤ 0.54hMpc−1. Thus giving a k-bin

width of log10(∆k/[hMpc−1]) = 0.0844. The range reduction in the nonlinear regime is due to the

length of this box being twice the size of the original Dämmerung Simulation box, thus halving the

Nyquist frequency of the FFT grid. We set the lowest frequency bin to the fundamental frequency

of the base simulation kf = 2π/(1500h−1Mpc) ≈ 0.0042 h Mpc−1. For wavemodes below this scale

the box replication becomes relevant and we would expect repeated structures to appear on the

same lightcone, despite existing at different stages of evolution.

2.5 Results and Discussion

The results of our power spectrum measurements, averaged over the 8 realisations for each of the 5

magnitude cuts, is shown in Fig. 2.7 (error bars) as well as our prediction from the theory as out-

9(Python Software Foundation, https://www.python.org/ .)
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Figure 2.6: Measurements of the power spectrum from individual Dämmerung snapshots at the redshifts of
z = 1.5 (orange markers) and z = 0 (purple markers) using our estimator code, compared with the nonlinear
matter P (k) from CAMB (solid lines), and measurements from the snapshots performed by GADGET-4 (’x’
markers). Our measurements are in very good agreement with CAMB and GADGET at all scales, with only some
minor deviation around k ∼ 1 h/Mpc−1 for the higher redshift measurement. At large scales just beyond the
turnover, we see a slight up-kick in power - the imprint of this cosmic variance can be seen in the lightcone
measurements in Fig. 2.7.

lined in §2.3 (solid lines). For this first set of measurements we do not include any optimal weights,

equivalent to setting P0 to zero in Eq. (2.63), so as to form a baseline of measurements for compari-

son. The bottom right subplot of the figure shows the ratio between the measurements and theory,

as shaded regions spanning the width of the measurement error bars, for the mlim = {18, 20, 22}
catalogues. In this plot we also show the ±5% difference between theory and measurement as the

shaded grey horizontal region. For all of the magnitude cuts, we see that the theory lies well within

the error bars of the measurements at all scales, right up to the Nyquist frequency of the grid.

We do see some slight dipping of the estimated power starting to occur beyond scales of around

k ≥ 0.2 [h Mpc−1], most likely due to inaccuracies of our modelling of the 2-loop corrections to the

theory as detailed in §2.3.7.
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Figure 2.7: Upper and left: Plots of the power spectrum measurements (points with error bars) from the
5 different magnitude cut catalogues, compared with the predictions from the theory (solid line). Bottom
right: Ratio plots comparing the measurements to the model for 3 of the catalogues, with 5% difference in
the shaded grey region.
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Figure 2.8: Same as Fig. 2.7 but with FKP weights, with the choice of P0 indicated on each figure.
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2.5.1 The effect of optimal weights

The idea of including a weighting scheme in power spectrum analysis was first explored in [78],

where they showed that weighting a galaxy in a way that was inversely proportional to the mean

number density of the survey at the galaxy’s position could improve the signal to noise of the

measurement, with a weighing function of the form

wFKP(r) =
1

1 + n̄(r)P0
. (2.74)

The idea behind this weighting scheme is simple: for small r, we have a high number density per unit

volume, and so are cosmic variance limited and want to give equal weight to each measurement

volume. Conversely at large r where the galaxy field is much more sparsely populated, we are

shot noise limited and want to give equal weight per galaxy. This FKP weighting function was

derived under the assumptions that the long wavelength Fourier modes are Gaussian distributed,

and results in a minimum-variance estimator which tackles both aforementioned issues, and has

been used extensively in galaxy survey measurements such as 2dF [118], SDSS [119], 6dF [120],

BOSS [121] and WiggleZ [107]. Other, more elaborate weighting schemes have been discussed in

the literature, such as those of PVP [81] which depend on position and luminosity, or those of [82,

122] which depend on position and host halo mass.

For our analysis, we opt to use the straight-forward FKP weights10, and repeat the measure-

ments of the last section, but now using Eq. (2.63) in our estimator and Eq. (2.74) in the modelling

of the theory. For each catalogue we chose P0 such that it matches the total shot noise of the

unweighted measurements in Fig. 2.7, as we find at this scale we get a significant gain in the signal

to noise of the measurements, without overly affecting the shape of the measured power. The effects

of including this optimum weighting scheme are shown in Fig. 2.8, where we see a great reduction

in error bars when compared with the unweighted measurements. As with the unweighted case, we

do start to see some issues between the theory and measured power at the nonlinear scales, around

k ≈ 0.2hMpc−1 and above, where the measured power starts to peak and then fall off, while still

remaining in the ±5% region.

We also investigate how the choice of P0 effects the resulting P (k) estimate, by taking measure-

ments on the smallest and largest catalogues, for various values of P0, which are shown in Fig. 2.9.

In this figure, we plot the shape of the weight function (left), the resulting power spectrum mea-

surement (centre) and the boost gained in signal to noise for including the FKP weight (right),

with the upper and lower rows representing different catalogues. The value of P0 should be chosen

so that wFKP(r) slowly but consistently varies over the radial depth of the survey, down weighting

those points in high density regions, and up weighting those where the survey is more sparse. If P0

is set too high, then the majority of particles in the box will be close to zero weighted, except those

at the outer edges. In this case (red points in Fig. 2.9), the shape of the power spectrum starts to

10We do not resort to these more elaborate weighting schemes in this work due to the fact that we are studying
unbiased galaxies in our simulated data sets.
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Figure 2.9: Plots demonstrating how varying the P0 parameter in the FKP weight function in Eq. (2.63)
effects the power spectrum analysis. The top (bottom) row relates to the magnitude cut 18 (22) catalogues.
Left: A plot of the FKP weight function for various values of P0. Centre: Measurements of the power
spectrum. Right: The boost in the signal to noise of the power spectrum measurement when using these
FKP weights. We begin to see diminishing returns in the signal to noise gain as P0 increases, at the nonlinear
scales. In this scenario we also start to see a slight boosting of power at the largest scales.

get mildly distorted (boosted) on large scales, and we also start to see diminishing returns in the

signal to noise gain at nonlinear scales. Conversely, if P0 is set too small then almost all the points

have the same weights and provide almost no benefit. We see that in both cases, similar choices of

P0 provide similar gains in the signal to noise. We note that our used values of P0 are at least an

order of magnitude smaller than those used for surveys like BOSS (P0 ' 10000h−3Mpc3) [121] or

WiggleZ (P0 = 2500h−3Mpc3) [107] due to our number density being significantly higher.

2.5.2 FFT grid resolution tests

Owing to the fact that our full-sky lightcones are non-periodic functions, it is interesting to examine

whether there is any impact of grid-resolution, and thus, aliasing effects on the estimated power

spectra. We examine this by focusing our attention on the deepest mlim = 22 galaxy catalogue and
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Figure 2.10: Plot showing the effect of varying the grid resolution on the power spectrum measurements.
We show estimates from using 2563, 5123 and 10243 FFT grids, for both unweighted (blue hues) and FKP
weighted (red hues) data, using the mlim = 22 catalogue, as well as the theoretical predictions (solid lines).
Aside from a different available k range of measurements, we see that grid resolution has little effect on the
resulting measured power. Note that weighed measurements and model have been offset by a factor of 0.7
in the vertical direction for clarity.

fixing the weighting scheme and varying the FFT grid dimension.

Figure 2.10 shows the results of this exercise for the three grid resolutions Ngrid = 2563, 5123

and 10243 and for the case of equal weights and FKP weights, with P0 = 100h−3Mpc3. We see that

the estimates for the different grid resolutions are in excellent agreement, showing a close grouping

for both the weighted and unweighted cases. We also show again our theoretical predictions from

§2.3.2 for the case of the equal weight and FKP weighting. These results indicate that the small-

scale discrepancies, noted earlier, are most likely caused by issues with the nonlinear modelling, as

opposed to any effects from aliasing or the interlacing with the TSC mass assignment.

2.5.3 Measuring the turnover scale

One of the exciting aspects of being able to measure the power spectrum on large scales is it

presents us with the opportunity to probe the epoch of matter-radiation equality in the early

universe. The imprint of this epoch can be directly linked to the peak power spectrum: the theory
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of inflation predicts that the primordial matter power spectrum should possess a simple power-

law of the form, PPrim(k) ∝ kns . However, as the Universe expands from this hot-dense state,

fluctuation growth inside the horizon is suppressed by radiation pressure support and also radiation

dominated expansion – the ‘Mézáros Effect’ (for a detailed treatment see [8]). The consequence

of this is that the peak point of the power spectrum, located at k0, corresponds to the size of the

cosmological horizon at the epoch of matter-radiation equality, and its measurement thus allows us

to constrain the redshift of this epoch, which in turn is sensitive to both the matter density and

Hubble parameters through the combination Ωmh
2, amongst other parameters.

To explore the detectability of this scale on the past lightcone we shall employ the framework

that was developed by [95], and then employed and further refined [123], where they applied the

process to the WiggleZ Dark Energy Survey11 to measure {k0, zeq,Ωmh
2}. We follow their process

for ease of comparison between works, and refer the reader to these papers for full details, but in

summary the process is as follows. The power spectrum is modelled as a piecewise power law of

the form12:

log10 P (k) =

log10

[
P0(1− αx2)

]
if k < k0,

log10

[
P0(1− βx2)

]
if k ≥ k0,

(2.75)

where

x ≡ ln k − ln k0

ln k0
, (2.76)

P0 is the power spectrum amplitude at turnover, and α and β are parameters that define the slope

of the power spectrum on either side of the turnover (the point where k = k0). We fit three different

sets of power spectra to this model:

• The measured P (k) from our magnitude cut catalogues, as described in §2.4, with no weights

(Fig. 2.7).

• The same P (k) but with FKP weights. (Fig. 2.8)

• We also fit directly to the theoretical predictions, given by the solid lines in Fig. 2.8, and using

the error bars from the associated measured power (the error bars of the points in the same

figure). We use this as a test case to see how easy or difficult it is to measure the turnover

scale, if we assume that we can measure the power to a very high degree of accuracy.

The maximum a posteriori parameters for the turnover model of Eq. (2.75) are obtained through

use of the MCMC algorithm. To do this we make use of the Python package emcee [124], which

implements an affine-invariant ensemble MCMC sampler. We use 1000 walkers, with an initial

11https://wigglez.swin.edu.au/
12We chose to model the power in log space as it is a much more slowly varying function in this basis, which will

avoid any rapid changes in values for the MCMC walkers.
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Parameter Min Max

log10 P0 3 5
k0 5× 10−3 0.05
α -5 10
β -5 10

Table 2.2: List of allowed ranges for the parameters in the simple power spectrum model listed in equation
Eq. (2.75), used to determine the turnover scale. Note, for the no-turnover case, α is set to 0. All ranges are
uniform (flat).

burn-in stage of 1000 steps, followed by 105 iterations per walker to explore the parameter space

giving 108 total propositions. We also adopt a Gaussian likelihood model:

lnL = −1

2

∑
n

(yn − xn)2

σ2
n

+ lnσ2
n , (2.77)

where yn and σn are the measured power spectrum and error bars, and xn is the fitted power

using Eq. (2.75). Note that we actually use 10 raised to the power of these quantities (xn, yn, σn),

as our turnover model is in log base 10. We use flat uninformative priors and Table 2.2 lists

the prior ranges for the four fitted parameters. The starting points for our MCMC walkers are

distributed in a uniform random way throughout the prior volume. To remove the complexity of

modelling non-linear clustering effects and BAO features, we restrict the k-domain of the fit to

k < kmax = 0.05hMpc−1.

To calculate the probability that a power spectrum turnover has been measured, we perform a

likelihood ratio test. We do this for the above turnover model, as well as for the model where α is

set to zero, which signifies no turnover. For our adopted Gaussian likelihood models, this ratio can

be written as:

Rrel =
Lno−turn

Lturn
= exp[−(χ2

no−turn − χ2
turn)/2] , (2.78)

where χ2
no−turn and χ2

turn are the chi-square distributions:

χ2
no−turn =

∑
i

[Pi − Pno−turn(ki)]
2

σ2
i

; (2.79)

χ2
turn =

∑
i

[Pi − Pturn(ki)]
2

σ2
i

. (2.80)

From this information we can now derive the probability that we have detected a turnover13. From

the constraint that pno−turn + pturn = 1, and that the ratio of likelihoods is proportional to the

13We note that, strictly speaking, a calculation of the likelihoods would require evaluation of the full covariance
matrix, however for our two large catalogues that we are running the current analysis on, the window function is
significantly compact at and around the turnover scale as to minimise the effect of our diagonal covariance assumption
in Eq. (2.73).
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Figure 2.11: The probability that a turnover has been measured, for the 5 different magnitude cut cat-
alogues, and for no weights (red), FKP weights (blue) and FKP weights using the theoretical predictions
(green). We see that only the largest two catalogues, using FKP weights, are able to measure a turnover in
the power spectrum at the > 95% CL.

probability ratios Lno−turn/Lturn = pno−turn/pturn, we have:

pturn = 1− pno−turn =
1

1 +Rrel
. (2.81)

Thus, for each power spectrum measurement, we can calculate the χ2 value for both models, the

relative probability, and then pturn.

Figure 2.11 shows the turnover probability as a function of survey limiting magnitude, and for

the three different scenarios listed above. We see that the ability to detect a turnover scale with

95% confidence (dashed line) in our magnitude limited catalogues is only achievable for our deepest

two mocks (mlim = 21 and mlim = 22), and only when we employ the FKP weighting scheme. This

result is independent of whether we use our actual measurements from the lightcones, or from the

theoretical predictions. Conversely, in the absence of an optimal weighting scheme, we find that

this simpler approach cannot unambiguously discern the turnover scale.

Figure 2.12 shows the joint 2-D and 1-D posterior distributions for the k0 and α parameters from

the MCMC analysis for the deep mlim = 22 catalogue. These are the key parameters that determine

whether the data has a turnover or not. The bottom left panel shows the 68% and 95% joint contours

as the lighter and darker shaded regions, respectively. The top left and bottom right panels show

the 1-D posteriors. We see that the joint constraints from all three scenarios considered find similar
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Figure 2.12: Parameter constraints on the turnover scale k0 and the large scale slope α, for the magnitude
cut 22 catalogue, with 68% contours for no weights (red), FKP weights (blue) and the theoretical predictions
using FKP weights and error bars from the corresponding measurement (green). For the FKP weighted
contours, we see that the value of α = 0, corresponding to no turnover (grey dotted lines), is convincingly
ruled out. Our range of values of log10(k0) lie slightly below the actual value of −1.785 (black dashed line),
showing the difficulty of measuring the turnover precisely due to the flattened nature of the peak of the
power spectrum, as well as larger error bars around this scale.

values for the turnover scale, with the FKP weighted data giving k0 = 0.0141 ± 0.0015hMpc−1.

This value is within 1.5 sigma of the actual value for the turnover of the underlying linear power

spectrum k = 0.0164hMpc−1 (denoted as the vertical dashed black line in the plot). We note that

the slight bump in the measured power spectra at around k ' 10−2 hMpc−1, which can be seen in

Figs. 2.7 and 2.8, has the effect of flattening the top of the power spectrum. This has the effect

of dragging the best fit turnover scale towards slightly larger scales. Nevertheless, we also note

that the joint constraints for the best-fit turnover slope parameter are, for the FKP weighted data,

α = 1.150.25
−0.46. Thus the no turnover case corresponding to α = 0 can be convincingly rejected for
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this sample.

In Figure 2.13 we present again the measured power spectra for the mlim = 22 mock catalogue

as a function of wavenumber. The lines show the theoretical model predictions using Eq. (2.75),

with the best-fit posterior parameters. We also overlay the best-fit values for the turnover scale

k0 for each data set, as coloured dashed vertical lines. The black dash vertical line indicates the

true turnover scale as measured from the input linear theory spectrum. One can see that while the

model fits well there is a small mismatch between the true k0 and the one that emerges from the

analysis presented here. We will consider improving this modelling in future work.

Up to this point our analysis has focused on an all-sky survey, which is of most relevance to

planned missions like SPHEREx [56]. However, we now attempt to relate our study to upcoming

smaller wide angled deep galaxy redshift surveys. We do this by examining how the probability

pturn depends on surveyed sky fraction fsky. Recalling Eq. (2.73), we see that the error bars for our

P (k) estimates scale as σ(k) ∝ 1/
√
Nk, where Nk is the number of Fourier modes. This quantity

scales as Nk ∝ V max
µ , is the survey volume, which in turn is proportional to fsky. Thus we expect

that σ(k) ∝ 1/
√
fsky.

Since we were only able to robustly detect the turnover scale for our deeper surveys, we will

restrict our attention to the mlim = 21 and 22 catalogues. We now repeat the MCMC posterior

estimation, but increasing the error bars by a factor of 1/
√
fsky for fsky ∈ {1.0, 0.1} in 0.1 intervals.

Figure 2.14 shows the detection probability for the two deep catalogues as function of the sky

fraction fsky. We see that the mlim = 22 catalogue is able to detect the turnover scale at & 95%

CL threshold for sky fractions & 20%14. For the shallower mlim = 21 mock catalogue we see that

the sky fraction needs to be & 55% for a similar level of detection.

Before we move on, it is important to note that here we have assumed that the shape of the

power spectrum remains constant as the sky fraction is reduced. While this should hold true at

smaller scales, depending on how the survey geometry changes, we may lose the ability to probe

k-modes at the largest scales, thus decreasing the number of data points past the turnover scale

that we have available to constrain the model. Further, the covariance is non-diagonal due to the

mask, and so true significance must be determined from recourse to a more advanced analysis.

2.6 Conclusions and discussion

Upcoming measurements of the large-scale structure of the Universe will probe volumes that ap-

proach ‘effective volumes’ for the entire observable Universe [56]. This will enable us to perform

cosmological tests to an unprecedented precision. However, in order to extract the information

from such data sets, we must ensure that we are also able to model the observable clustering sig-

nals with an unprecedented degree of both accuracy and precision. This work contributes to that

effort. In this work, we have performed a detailed study of the geometrical lightcone effect on the

14For comparison, the DESI footprint has a sky fraction of around 35%, while for the 4MOST cosmology redshift
survey its around 18%.
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Figure 2.13: Plot showing the turnover model of Eq. (2.75) (solid lines) using the best fitting parameters,
fitted to the data points (circles with error bars), corresponding to the contours shown in Fig. 2.12. We plot
the derived values of k0 as dashed vertical lines, with shaded regions (with separate y ranges for clarity)
showing the errors. We can see that the large scale fluctuations of the estimated P (k) points (red and blue)
drag the measured value of the turnover scale k0 to larger scales on the left of the plot, compared with using
the theoretical prediction P (k) with error bars from the estimate (green). The actual value of k0 is shown
in the dashed vertical black line.

two-point galaxy clustering signal in Fourier space (the power spectrum) for a deep, flux-limited,

full-sky survey.

In §2.2 we presented some key background concepts, in particular the observable density field

on the past lightcone and the spherical-Fourier-Bessel expansion of the field.

In §2.3 we have derived an expression for the galaxy two-point correlation function of matter

fluctuations on the past-lightcone. We also presented the theory for the observable galaxy power

spectrum for the case of an evolving luminosity function. We found that the theory required a model

for the unequal time correlator (UETC) for galaxies. We also developed a series of approximations

to the full analytic expressions that aided evaluation. We explored how the expressions would

simplify for time separable models of the UETC. We derived approximations in the large-scale

limit, finding that the observed power, unlike the linear theory, asymptoted to a constant value.

On small scales, we were able to show that the observed spectrum reduced to a more tractable form.

We also examined that the fixed time approximation and showed that provided that the time was
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Figure 2.14: We investigate how the sky fraction covered by our simulated data will affect the probability to
detect a turnover, using the largest two catalogues with FKP weights. Using the all sky results, we increase

the errors bars on the estimate of the power spectrum by a factor of f
−1/2
sky and re-run the MCMC sampler

to fit the turnover model and calculate the detection probability, for fsky ∈ {1.0, 0.1} in 0.1 intervals. We
see that a 20% sky coverage is enough to clear the 95% CL threshold for the mlim = 22 catalogue, increasing
to around a 55% requirement for the mlim = 21 catalogue.

carefully chosen, one could minimise the errors on this, but over a restricted range of wavenumbers

and that nonlinear evolution would always break this approximation. Here we also discussed how

to extend the model into the nonlinear regime.

In §2.4 we turned to validating our model, using N -body simulations. We did this by developing

an algorithm to generate full-sky dark matter lightcones by using a quadratic interpolation scheme

to interpolate the world lines of all particles in a piecewise fashion between consecutive snapshots.

We then used this as the base from which we generated out mock galaxy samples. We also developed

a parallel code for estimating the power spectrum from large data sets, making use of an interlacing

technique to obtain accurate results all the way up to the Nyquist frequency.

In §2.5 we compared our theoretical predictions to the estimates from our lightcone mocks

and found excellent agreement on the scales considered. However, some small discrepancies were

found on small scales, which we attributed to the breakdown of the specific form of our nonlinear

corrections. We also investigated whether including the FKP weighting scheme would improve the

signal-to-noise ratio of our measurements. We found that, provided one makes a careful choice for

P0 and hence n̄P0, we could boost this by a factor of a few. We also found that if values of P0 were

too large, then this would impact the detailed shape of the power on larger scales, but with limited
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improvement on the signal-to-noise ratio on scales of k . 0.1hMpc−1.

We also revisited the question of detecting the turnover scale of the power spectrum as a probe

for the epoch of matter-radiation equality in the early universe. Following the method outlined in

[95] and [123] we used our mock catalogues for various flux-limited surveys to measure a peak scale

k0 and the power-law slope α of the spectrum red-wards of the peak. We did this by performing

a standard Bayesian parameter estimation scheme, where we explored the full parameter space

using an efficient MCMC sampler. We found that only galaxy catalogues with mlim & 21, in

conjunction with FKP weighting scheme, had sufficient statistical power to detect the turnover

with a probability P & 95%. By rescaling the covariance by the inverse of the sky-fraction, 1/fsky,

we recomputed the posterior distributions and found that the detection level was maintained for

surveys with mlim = 21 and mlim = 22 for sky coverages greater than 50% and 20%, respectively.

There are several possible directions in which this work can be extended. First, the model

that we have developed is overly simplistic, in that we worked only in real space. In reality, the

radial positions are affected by redshift space distortions. However, this is likely not going to

change our conclusions concerning the turnover scale, since it is expected that for such large scales

these distortions would only modify the amplitude of the signal and not the shape of the peak

(the ‘Kaiser’ effect). Second, we restricted our attention to full-sky surveys only. One should take

account of the survey angular mask in the formalism. Third, we neglected galaxy bias and treated

all of the particles in our simulation as unbiased galaxies. We were unable to explore this with

our simulations, due to resolution issues and the difficulty in interpolating halo positions between

snapshots (although see [106] for an example of how this could be done).

All three of these extensions make the model in Eq. (2.38) more complicated, and thus it also

becomes necessary to improve the numerical methods used to forward model the theory. Our current

method employs a set of adaptive numerical quadrature routines to compute the full Bessel function

integrals on large scales. This brute force approach is somewhat slow and prone to convergence

issues. A more efficient way of such integrals would be through the FFTLog algorithm of [125]. We

will tackle some of these issues in the next chapter.

Another interesting prospect of being able to measure the power spectrum accurately on large

scales, particularly past the turnover scale, is the increased ability to constrain signatures of primor-

dial non-Gaussianity. Such measurements remain one of the most promising probes to discriminate

between inflationary models, with the most stringent constrains currently coming from measure-

ments of the CMB [13]. However, as we probe out to larger volumes with late-time Universe

surveys, measurements of the large-scale structures will be highly complimentary and competitive

[56, 126, 127].
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Appendices

2.A Spherical-Fourier-Bessel (SFB) expansion

For an observer viewing their past lightcone, homogeneity will be violated, but isotropy is preserved.

In addition, the survey mask will be completely angular and redshift space distortions will be radial.

It will therefore be useful to decompose the problem into a set of orthogonal spherical and radial

modes. To do this we will make use of the Spherical-Fourier-Bessel expansion of a scalar field.

To begin, consider some scalar field A(r) in space and let us define its forward and backward

Fourier transforms as:

A(r) =

∫
d3k

(2π)3
A(k)e−ik·r ⇔ A(k) =

∫
d3rA(r)eik·r . (2.82)

Let us now consider the overdensity field ∆(η, r) this can be written in Fourier space as:

∆(η, r) =

∫
d3k

(2π)3
∆(η,k)e−ik·r . (2.83)

At this point we can expand the plane wave using the Fourier-Bessel expansion, i.e.

eik·r = 4π
∞∑
`=0

∑̀
m=−`

i`j`(kr)Y`m(k̂)Y ∗`m(r̂) , (2.84)

and

e−ik·r = ei(−k)·r = 4π

∞∑
`=0

∑̀
m=−`

i`j`(kr)Y`m(−k̂)Y ∗`m(r̂) = 4π
∞∑
`=0

∑̀
m=−`

(−i)`j`(kr)Y`m(k̂)Y ∗`m(r̂) ,

(2.85)

where we have used the fact that Y`m(−k̂) = (−1)`Y`m(k̂). Thus we have:

∆(η, r) =

∞∑
`=0

∑̀
m=−`

(−i)`Y ∗`m(r̂)

∫
d3k

(2π)3
4πj`(kr)Y`m(k̂)∆(η,k) . (2.86)
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Consider the integral factor, this can be written as:∫
d3k

(2π)3
4πj`(kr)Y`m(k̂)∆(η,k) =

∫
dkk2

(2π2)
j`(kr)

∫
dk̂ Y`m(k̂)∆(η,k) . (2.87)

Let us focus on the last part of this expression, and we see that it can be written:

I`m(η, k) ≡
∫

dk̂ Y`m(k̂)∆(η,k) =

[∫
dk̂ Y ∗`m(k̂)∆∗(η,k)

]∗
. (2.88)

The condition that the density field is a real quantity means that ∆(η,k) = ∆∗(η,−k), and using

this in the above leads us to:

I`m(η, k) =

[∫
dk̂ Y ∗`m(k̂)∆(η,−k)

]∗
. (2.89)

If we now make the change of variables k′ = −k, so dk′ = −dk, then the integral becomes:

I`m(η, k) =

[∫
dk̂′ Y ∗`m(−k̂′)∆(η,k′)

]∗
. (2.90)

We now again make use of the fact that Y`m(−k̂) = (−1)`Y`m(k̂), to obtain:

I`m(η, k) = (−1)`
[∫

dk̂′ Y ∗`m(k̂′)∆(η,k′)

]∗
. (2.91)

The factor in the brackets is the projection of the function ∆(η,k′) on to the Spherical harmonic

basis functions, i.e.

∆`m(η, k) ≡
∫

dk̂ Y ∗`m(k̂)∆(η,k) , (2.92)

∆∗`m(η, k) ≡
∫

dk̂ Y`m(k̂)∆∗(η,k) . (2.93)

Hence, we find:

I`m(η, k) = (−1)`∆∗`m(η, k) . (2.94)

On substituting this back into Eq. (2.87) and then in turn substituting this back into Eq. (2.86)

gives:

∆(η, r) =
∞∑
`=0

∑̀
m=−`

Y ∗`m(r̂)∆∗`m(η, r) , (2.95)

=

∞∑
`=0

∑̀
m=−`

Y`m(r̂)∆`m(η, r) , (2.96)

where the second equality follows from the reality of the density field, i.e. ∆(η, r) = ∆∗(η, r) and
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where in the above we have defined the amplitudes of the spherical harmonics as:

∆∗`m(η, r) ≡ i`
∫

d3k

(2π)3
j`(kr)∆

∗
`m(η, k) , (2.97)

→ ∆`m(η, r) ≡ (−i)`
∫

d3k

(2π)3
j`(kr)∆`m(η, k) (2.98)

2.B Modelling the evolving galaxy luminosity function and gen-

eration of mock samples

2.B.1 The evolving luminosity function

In this section, we detail how the number density on the lightcone, nLC
0 (r), is calculated. We use

the following formula:

nLC
0 (r) =

∫ −∞
Mlim(r)

φ(M, r)dM , (2.99)

where φ(M, r) is the evolving Schechter luminosity function, given in terms of absolute magnitudes

by

φ(M, r) =
2

5
φ∗(r) ln(10)10

2
5

(α+1)[M∗(r)−M ]

× exp
(
− 10

2
5

[M∗(r)−M ]
)
. (2.100)

We let two of the Schechter parameters evolve with survey depth (M∗(r) and φ∗(r)) while keeping

the third, α, fixed. We use the evolution parameters and fitted values given in [128], specifically:

M∗(z) = M∗(z0)−Q(z − z0), (2.101)

φ∗(z) = φ∗(0)100.4Pz. (2.102)

These parameters were fitted to the phase 1 GAMA data using the stepwise maximum likelihood

method [129], and we use the combination of blue and red galaxies in the r-band, giving P = 1.6,

Q = 0.2, α = −1.23, M∗ − 5 log h = −20.7 and φ∗ = 0.94 × 10−2h3Mpc−3. The fiducial redshift

z0 is the redshift to which the magnitudes were K-corrected, in this case z0 = 0.1. The lower

limit on the integral in Eq. (2.99) is the faintest possible object detectable, in terms of its absolute

magnitude, at a given comoving radial distance r, and this is calculated as

Mlim(r) = mlim − 5 log10

( r

10pc

)
. (2.103)

Our first use of Eq. (2.99) is in our theoretical modelling of the window-convolved power spec-

trum on the lightcone Eq. (2.33). Secondly, we use it for sampling magnitudes for our lightcone

N -body simulations, so as to make magnitude-cut catalogues to mimic galaxy samples that would
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be observed by a real survey. We take 5 magnitude cuts at mlim = {18, 19, 20, 21, 22} (see Ap-

pendix §2.B.2 for details on sampling). We note that these catalogues are thus not independent

realisations from one another, but rather the faintest catalogue, mlim = 18, contains a subset of

particles from the mlim = 19 catalogue, which in itself is a subset of the mlim = 20 catalogue, and

so on.

2.B.2 Sampling luminosities from the evolving Schechter Function

To be able to sample luminosities from our evolving Schechter function φ(L, z) covered in Appendix

§2.B.1, we want to be able to draw numbers from a random uniform distribution U(x) of variable

x, and translate these into a random luminosities L. Using the probability integral transform we

have (suppressing the dependency on redshift for neatness)

|U(x)dx| = |P (L)dL|, (2.104)

where P (L) = φ(L)/n̄ with φ(L) being the Schechter function and n̄ the mean number density of

the survey. By integrating both sides we require that∫ x

0
U(x′)dx′ = x =

∫ Lmax

Lmin

P (L)dL. (2.105)

We chose our luminosities such that Lmax = 100L∗ and the minimum luminosity is determined

from the mean number density of our unbiased galaxy sample:

n̄ =

∫ ∞
Lmin

φ(M)dM. (2.106)

We can exploit the relationship between integrals of the Schechter function and the incomplete

gamma functions, as∫ Lmax

Lmin

P (L)dL =
φ∗

n̄

∫ Lmax

Lmin

( L
L∗

)α
exp

(
− L

L∗

)dL

L∗
,

=
φ∗

n̄

[
Γ
(
α+ 1,

Lmin

L∗
)
− Γ

(
α+ 1,

Lmax

L∗
)]
,

= Φ(L/L∗) = x. (2.107)

Therefore, if we invert the above Φ function, we see that by inputting random uniform numbers x,

this will generate a distribution of L/L∗ that is distributed like a Schechter function:

Φ−1(x) =
L

L∗
, Lmin ≤ L ≤ Lmax . (2.108)

We implement this by calculating Φ(L/L∗) for a fixed redshift, over the given range in L/L∗ to get

the range of x, and then inverse spline the result. We repeat this for a range of redshift values,

covering the minimum and maximum redshift of our survey, and create a larger 2D spline of the
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overall relationship.

2.C Shell averaged estimates of the power spectrum

When one estimates the observed power spectrum on the past lightcone, it is customary to bin the

spectra in a k-space shell of thickness ∆k centred on a bin ki. This needs to be taken into account

when comparing the measurements with theory. The bin-averaged spectrum can thus be written:

PF(ki) =
1

V (ki)

∑
`

∫ ki+∆k/2

ki−∆k/2
4πq2P`(q, q)dq , (2.109)

where the shell volume is given by:

V (k) =

∫ k+∆k/2

k−∆k/2
4πq2dq =

4

3
πk3

[
1 +

1

12

(
∆k

k

)2
]
. (2.110)

If we substitute Eq. (2.33) into Eq. (2.109) then we find:

PF(ki) =
∑
`

(2`+ 1)
4πA2

V (ki)

∫ ki+∆k/2

ki−∆k/2
dqq2

∫
d3k

(2π)3

×
2∏
j=1

{∫
d3rjn

LC
0 (rj)j`(qrj)j`(krj)

}
P (k, η1, η2) . (2.111)

If we rearrange the integrals so that the q integral is first, we see that we are required to compute

an integral of the type (result 5.54.1 [130]):

J`(α, β, a) ≡
∫ a

0
dxx2j`(αx)j`(βx) ,

=
a2

α2 − β2
[αj`+1(αa)j`(βa)− βj`(αa)j`+1(βa)] . (2.112)

On using the above relation we see that Eq. (2.111) simplifies to:

PF(ki) =
32πA2

V (ki)

∑
`

(2`+ 1)

∫
dkk2

∫
dr1r

2
1

∫
dr2r

2
2

× nLC
0 (r1)nLC

0 (r2)j`(kr1)j`(kr2)P (k, η1, η2)

×
[
J`(r1, r2, k

+
i )− J`(r1, r2, k

−
i )
]
, (2.113)

where we defined k+
i ≡ ki + ∆k/2 and k−i ≡ ki −∆k/2.
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Chapter 3

The galaxy power spectrum on the

past lightcone II: Galaxy bias and

angular masks

3.1 Introduction

In the previous chapter, we focused on developing and testing a model for the full-sky matter

power spectrum on the past lightcone, up to two loops in perturbation theory. We now turn our

attention to extending this model in order to be more useful for galaxy surveys, including terms for

the galaxy bias, as well as modelling an angular survey mask to account for the fact that surveys

in general do not observe over the full-sky. We will work under the assumption however that our

survey footprint is wide and deep enough such that the standard plane-parallel approximation is

not valid, and that we still need to consider the effects of the unequal-time correlator of Eq. (2.16).

In addition to this, as the equations encountered will be even more numerically challenging than

those of the last chapter (eg. Eq. (2.42)), such that a brute force on the large scales is no longer

feasible, we will also review potential methods that can be used to tackle such equations in an

accurate and timely manner.

Our work differs from approaches such as those used for the Six-degree Field Galaxy Survey

(6dFGS) [120], as in that instance they made the equal-time correlator approximation due to

shallow survey depth, and convolved the survey window function with the underlying model power

spectrum using 3D grid-based FFT methods. The drawback of such methods is that they can be

memory intensive, require numerous FFTs and the k-range available to be probed at small scales

is limited by the grid resolution. Additionally, the discretisation of quantities onto 3D grids can

introduce aliasing at small k, as discussed in the previous chapter. While our approach is more

mathematically complicated, we rely on only 1D FFTs and are less limited in k.

The chapter is laid out as follows: In Section §3.2, we extend the previous model of the full-sky

power spectrum on the past lightcone to the generalised case where we now include a survey mask.
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We then look at specific scenarios that make the resulting expression more numerically tractable.

We also extend the model to the nonlinear regime before briefly discussing calculation of the angular

mask term. In Section §3.3 we review and discuss numerical methods for solving the expressions

obtained for the masked galaxy power spectrum on the past lightcone, drawing on previous works

and adapting to our specific case. Finally, in Section §3.4 we conclude and discuss further work

and extensions to the model.

3.2 The masked galaxy power spectrum on the past lightcone

We now look to define the power spectrum on the past lightcone, taking into consideration terms for

a survey mask and galaxy bias. We will make use of the forwards and backwards Fourier transform,

which we define, for some scalar field A(r), with the convention

A(r) =

∫
d3k

(2π)3
A(k)e−ik·r ⇔ A(k) =

∫
d3rA(r)eik·r . (3.1)

We make the assumption that the survey mask is separable into angular and radial components,

and as we will be dealing with a wide-angle survey, it is more useful to break down the problem into

a set of orthogonal radial and angular modes. For this, we will need the Fourier-Bessel expansion

of the plane wave, and its complex conjugate, given by

eik·r = 4π
∞∑
`=0

∑̀
m=−`

i`j`(kr)Y`m(k̂)Y ∗`m(r̂) , (3.2)

e−ik·r = 4π
∞∑
`=0

∑̀
m=−`

(−i)`j`(kr)Y`m(k̂)Y ∗`m(r̂) . (3.3)

3.2.1 The generalised case

We start by dealing with the most general case, where we make no assumption about the form of

the unequal-time power spectrum, P (k, η1, η2). Following on directly from the arguments in Section

§2.2 of the previous chapter, we now define our weighted and masked galaxy survey density field as

FLC(r) = Aw(r)Θ(r)
[
nLC(r)− αnLC

s (r)
]
, (3.4)

where A and α are constants to be determined, w(r) is an optimal weighting scheme (e.g. the FKP

weights of [78]) and Θ(r) is the survey mask given by

Θ(r) =

1 Inside the scope of the survey ,

0 elsewhere .
(3.5)
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The quantities nLC(r) and nLC
s (r) represent the number densities on the lightcone of galaxy and

unclustered synthetic catalogues, respectively, and relate back to the the true overdensity of galaxies

via

∆(η0 − r, r,γ) =
nLC(r)− αnLC

s (r)

αnLC
s (r)

=
nLC(r)− nLC

0 (r)

nLC
0 (r)

, (3.6)

where the second equality follows from the assumption that α
〈
nLC

s (r)
〉

= nLC
0 (r).

Taking the Fourier transform of our FLC(r) field and looking at the correlation of a product of

two of these, we have:〈
FLC(q1)

[
FLC(q2)

]∗〉
= A2

∫
d3r1d3r2e

iq1·r1e−iq2·r2w(r1)w(r2)Θ(r1)Θ(r2)

×
〈 [
nLC(r1)− αnLC

s (r1)
] [
nLC(r2)− αnLC

s (r2)
] 〉

. (3.7)

Using the expression for the overdensity of galaxies in Eq. (3.6), we can reduce this to〈
FLC(q1)

[
FLC(q2)

]∗〉
= A2

∫
d3r1d3r2e

iq1·r1e−iq2·r2w(r1)w(r2)Θ(r1)Θ(r2)

×nLC
0 (r1)nLC

0 (r2)
〈

∆(r1)∆(r2)
〉

+ Pshot(q1,q2) . (3.8)

We calculate the shot noise term Pshot(q1,q2) in Appendix §3.A, and omit it for brevity in the

following calculations, only adding it on to key results at the end of derivations. The ensemble

average brackets term on the RHS of the equation is the real space unequal-time correlator (UETC).

We derived an expression for this in Section §2.3.1 in the previous chapter:

〈∆(r1)∆(r2)〉 = 2
π

∑
`,m Y`m(r̂1)Y ∗`m(r̂2)

∫
dkk2j`(kr1)j`(kr2)P (k, η1, η2) , (3.9)

where P (k, η1, η2) is the unequal time power spectrum, Y`m(r̂) are spherical harmonics and the

j`(r) are spherical Bessels. Inserting this into our equation we have1

〈
FLC(q1)

[
FLC(q2)

]∗〉
= A2

∫
d3r1d3r2e

iq1·r1e−iq2·r2w(r1)w(r2)Θ(r1)Θ(r2)nLC
0 (r1)nLC

0 (r2)

×∑`,m Y`m(r̂1)Y ∗`m(r̂2)
∫

dkk2j`(kr1)j`(kr2)P (k, η1, η2) . (3.10)

Next, using the spherical Fourier-Bessel expansion of the plane wave given by Eq. (3.2) and Eq. (3.3)

to expand the two exponential terms, separating out the survey mask so that Θ(r) = Θ(r)Θ(r̂) and

1Whenever we obtain any constant factors in the following derivations we will automatically absorb them into the
normalisation constant term A, and define this quantity later on.
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defining a radial kernel function Z(r) ≡ w(r)Θ(r)nLC
0 (r), we obtain〈

FLC(q1)
[
FLC(q2)

]∗〉
= A2

∫
d3r1d3r2Z(r1)Z(r2)Θ(r̂1)Θ(r̂2)

∑
`,m

Y`m(r̂1)Y ∗`m(r̂2)

×
∫

dkk2j`(kr1)j`(kr2)P (k, η1, η2)
∑
`1,m1

i`1j`1(q1r1)Y`1m1(q̂1)Y ∗`1m1
(r̂1)

×
∑
`2,m2

(−i)`2j`2(q2r2)Y`2m2(q̂2)Y ∗`2m2
(r̂2) . (3.11)

We can also expand the angular components of the mask in terms of spherical harmonics:

Θ(r̂1) =
∑
`3,m3

Θ`3m3Y`3m3(r̂1) , (3.12)

Θ(r̂2) =
∑
`4,m4

Θ∗`4m4
Y ∗`4m4

(r̂2) , (3.13)

where for the second expression we have used the fact that the Θ(r̂) function is real. If we shift

the conjugate from the Y ∗`1m1
(r̂1) term to the Y`1m1(q̂1) term, using that

`1∑
m=−`1

Y`1m1(q̂1)Y ∗`1m1
(r̂1) =

`1∑
m=−`1

(−1)m1Y ∗`1,−m1
(q̂1)(−1)m1Y`1,−m1(r̂1) ,

=

`1∑
m=−`1

Y ∗`1,−m1
(q̂1)Y`1,−m1(r̂1) ,

=

`1∑
m=−`1

Y ∗`1,m1
(q̂1)Y`1,m1(r̂1) , (3.14)

we are then free to perform the angular integrals dr̂1 and dr̂2:∫
dr̂1Y`m(r̂1)Y`1m1(r̂1)Y`3m3(r̂1) = G``1`3mm1m3

, (3.15)∫
dr̂2Y

∗
`m(r̂2)Y ∗`2m2

(r̂2)Y ∗`4m4
(r̂2) = G``2`4mm2m4

. (3.16)

where G is the Gaunt symbol, which we cover in Appendix §3.B. Putting this all together, we are

left with the following expression:〈
FLC(q1)

[
FLC(q2)

]∗〉
= A2

∑
`,m

∑
`1,m1

∑
`2,m2

∑
`3,m3

∑
`4,m4

i`1(−i)`2G``1`3mm1m3
G``2`4mm2m4

Θ`3m3Θ∗`4m4
Y ∗`1m1

(q̂1)

× Y`2m2(q̂2)

∫
dkk2

2∏
i=1

{∫
drir

2
i j`(kri)j`i(qiri)Z(ri)

}
P (k, η1, η2) . (3.17)

Numerical evaluation of such an expression will be a tricky task: the unequal-time power spectrum
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couples the two r integrals, such that we would have to evaluate a 3D integral over products of

highly oscillatory Bessel functions, all while performing multiple order sums. In addition to this,

integration would need to be done to calculate the angular mask expansion coefficients Θ`3m3Θ∗`4m4

in advance.

Luckily, we are interested in calculating the observed power spectrum on the lightcone, which

will simplify this expression. Using that while homogeneity is broken on the lightcone (the above

expression does not vanish for q1 6= q2), isotropy must be maintained, we require that PF(q) ≡∫
dq̂
〈∣∣FLC(q)

∣∣2〉. Thus, restricting ourselves to the case where q1 = q2 and performing the

angular integral over q̂, we can make this expression more tractable. Using the orthogonality of

the spherical harmonics, ∫
dq̂Y ∗`1m1

(q̂)Y`2m2(q̂) = δ`1`2δm1m2 , (3.18)

we can reduce Eq. (3.17) to

PF(q) = A2
∑

`,m

∑
`1,m1

∑
`3,m3

∑
`4,m4

G``1`3mm1m3
G``1`4mm1m4

Θ`3m3Θ∗`4m4

×
∫

dkk2
∏2
i=1

{∫
drir

2
i j`(kri)j`1(qiri)Z(ri)

}
P (k, η1, η2) . (3.19)

Following from this, summing over the product of two Gaunt symbols where the first two columns

of indices are the same can be written as:

∑
m

∑
m1

G``1`3mm1m3
G``1`4mm1m4

=
(2l + 1)(2l1 + 1)

4π
δl3l4δm3m4

(
` `1 `3

0 0 0

)2

{l l1 l3} , (3.20)

where {l l1 l3} is the triangular delta (see Appendix §3.B for necessary derivations and definitions),

imposing additional restrictions on the sums which will speed up any calculations. Our expression

for the power spectrum is now2

PF(q) = A2
∑
`1

∑
`2

∑
`3,m3

|Θ`3m3 |2(2`1 + 1)(2`2 + 1)

(
`1 `2 `3

0 0 0

)2

{l1 l2 l3}

×
∫

dkk2
2∏
i=1

{∫
rir

2
i j`1(kri)j`2(qiri)Z(ri)

}
P (k, η1, η2) . (3.21)

We can write this in a more succinct form:

PF(q) =
∑̂
`1`2`3

C`3

∫
dkk2

2∏
i=1

{
T (i)
`1`2

(q, k)
}
P (k, η1, η2) + Pshot , (3.22)

2Note that we have renamed the indices `1 → `2 and `→ `1.
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where we now include the shot noise term, and have made the definitions:

∑̂
`1`2`3

≡
∑
`1

∑
`2

∑
`3

(2`1 + 1)(2`2 + 1)

(
`1 `2 `3

0 0 0

)2

{l1 l2 l3} , (3.23)

C`3 ≡
∑
m3

|Θ`3m3 |2 , (3.24)

T (i)
`1`2

(q, k) ≡ A

∫
drir

2
iZ(ri)j`1(kri)j`2(qri) . (3.25)

To check that the above result of Eq. (3.22) is sensible, we require that in the limit our survey mask

becomes constant everywhere, we can recover the full-sky result of Eq. (2.33) in Chapter §2. We

address this in Appendix §3.C.

At this point, it is worth noting the similarities between Eq. (3.22) and the result of FKP [78]:

our survey power spectrum is the convolution of the underlying power spectrum with a survey

window function
∏2
i=1

{
T (i)
`1`2

(q, k)
}

, which is the analogue of the |G(k − k′)|2 function in FKP

equation (2.1.6), plus a shot noise term. Introducing the survey mask, wide-angle effects and

an unequal-time power spectrum has added in some new elements in terms of having to perform

infinite (but converging) sums, as well as the coupling of the k integral with the r integrals. As

with Eq. (3.17), we are still faced with a complicated numerical 3D integral, however we now turn

our attention to some specific cases that can make this expression more manageable.

3.2.2 The time separable UETC at linear order

In a similar fashion to our workings in Section §2.3.3 of the previous chapter, we now look to make

the ansatz that the unequal-time power spectrum is time-separable. Starting with the simplest case

[72], we make the assumption that the relationship between the galaxy field with the underlying

matter field is described by a linear bias parameter which may evolve in time, but is independent

of scale:

∆(η, k) = b1(η)δ(η, k) , (3.26)

and that we have linear growth of density fluctuations:

δ(η, k) = D(η)δ(η0, k) . (3.27)

Using this, the unequal-time galaxy power spectrum at linear order is thus given by

PG
Lin(k, η1, η2) = D(η1)D(η2)b1(η1)b1(η2)PLin(k, η0) . (3.28)

where D(η) is the linear growth factor, normalised against some time η0, b1(η) is the evolving linear

galaxy bias, and PLin(k, η0) is the equal-time linear matter power spectrum. Substituting this into
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Eq. (3.22), we have

PF,Lin(q) =
∑̂
`1`2`3

C`3
∫

dkk2
2∏
i=1

{
T (i)
`1`2

(q, k)
}
D(η1)D(η2)b1(η1)b1(η2)PLin(k, η0) + Pshot(q, q) ,

=
∑̂
`1`2`3

∑
m3

(2`1 + 1)(2`2 + 1)|Θ`3m3 |2
∫

dkk2PLin(k, η0)

×
[
A

∫
drr2D(η)b1(η)Z(r)j`1(kr)j`2(qr)

]2
+ Pshot . (3.29)

We see immediately that in assuming time separability, we have decoupled the r integrals and

reduced the overall dimensionality of integration from 3D down to 2D. Moreover, we have halved

the number of spherical Bessel functions that need to be integrated. The two problem areas that

remain in terms of numerical evaluation are the multiple sums and the remaining Bessel integral.

The former is not as challenging as it seems on the surface, as the triangular delta imposes conditions

coupling `1, `2 and `3, such that in practice it is only a double sum (see the end of Appendix §3.B

for these conditions). Additionally, the angular mask coefficients Θ`3m3 are the only quantities

depending on m3, and these can be computed and the sum over m3 done in advance and stored, as

we will show in Section §3.2.6. The integral can be tackled in two different ways: on large scales,

we can use the FFTLog algorithm on the radial kernel functions, after which the whole integration

over the r domain can be done analytically. We will cover this method in Section §3.3.1. On smaller

scales we can use an approximation owing to the shape of the window function which we discuss

in the next section.

Before moving on, it is worth noting that one of the interesting prospects of being able to

measure the power spectrum on the largest scales is the ability to test for signatures of primordial

non-Gaussianity (PNG): any deviation from the assumption that the primordial fluctuations laid

down by inflation are Gaussian in nature. While single-field slow-roll inflation predicts that any

non-Gaussian contribution will be small [35], it has yet to be decisively ruled out by experiment

[36, 131]. A significant detection of PNG would therefore lead to a breakthrough in terms of

our understanding of inflationary models and provide invaluable information about the nature of

physical processes in the early universe. Including PNG in a model for the power spectrum effects

the linear bias term by adding in a correction [132, 133, 134, 135]:

b1(η)→ b1(η) + ∆b(k, η) , (3.30)

where this new term is inversely proportional to k2. We see that including this in our model for

the power spectrum does not break time-separability:

PG
Lin(k, η1, η2) = D(η1)D(η2)[b1(η1) + ∆b(k, η1)][b1(η2) + ∆b(k, η2)]PLin(k, η0) , (3.31)

but will introduce additional terms to calculate at these large scales where the effect is important.
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3.2.3 The small-scale limit and normalisation

We now turn our attention to any approximations that can be made to Eq. (3.29), to improve the

prospects of numerical evaluation, without introducing significant systematics to the results. In the

previous chapter we showed that, on small scales, i.e. where q � 1/L with L3 being the volume

of our survey box, the survey window function becomes very compact and sharply peaks around

the point where q = k, such that it acts like a Dirac delta function δD(q − k). We found this

approximation to differ from the full result by � 1% in the appropriate q range (lower right plot

of Fig. 2.2). While in that scenario we were working on the full sky, introducing a survey mask

will not affect this property of the window function, so long as we only apply the approximation to

scales much smaller than the characteristic scale of the survey volume.

Taking Eq. (3.29), and using that the function P (k, η0) is smooth and slowly varying in k, we

have in the small-scale limit (q > qlim) that the Linear order term can be approximated as

PF,Lin(q > qlim) ≈
∑̂
`1`2`3

∑
m3

(2`1 + 1)(2`2 + 1)|Θ`3m3 |2PLin(q, η0)

×
∫

dkk2
[
A

∫
drr2D(η)b1(η)Z(r)j`1(kr)j`2(qr)

]2
,

≈
∑̂
`1`2`3

∑
m3

(2`1 + 1)(2`2 + 1)|Θ`3m3 |2PLin(q, η0)
[
A

∫
drr2D(η)b1(η)Z(r)j`2(qr)

]2

×
∫

dkk2j`1(kr1)j`1(kr2) ,

≈
∑̂
`1`2`3

∑
m3

(2`1 + 1)(2`2 + 1)|Θ`3m3 |2PLin(q, η0)A2

×
∫

drr2D2(η)b21(η)Z2(r)j2
`2(qr) , (3.32)

where in the last line we have used the orthogonality the spherical Bessel function:∫
dkk2j`(kr1)j`(kr2) =

π

2r2
2

δD(r1 − r2) . (3.33)

As the power spectrum has effectively decoupled from survey window function in this small-scale

limit, the estimated power should be the same as in the full sky case: only the covariance will be

different between the two scenarios, as that is related to the survey volume. Thus, by setting our

survey mask equal to 1 in this limit, we can use Eq. (3.98) from Appendix §3.C, further reducing

our approximate result to

PF,Lin(q > qlim) ≈
∑
`1

(2`1 + 1)PLin(q, η0)A2

∫
drr2D2(η)b21(η)[nLC

0 (r)]2w2(r)j2
`1(qr) . (3.34)
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The final step is to use the completeness relation of the spherical Bessel functions∑
`

(2`+ 1)j2
` (x) = 1 , (3.35)

which leaves us with

PF,Lin(q > qlim) ≈ PLin(q, η0)A2

∫
drr2D2(η)b21(η)[nLC

0 (r)]2w2(r) + Pshot . (3.36)

There are several important points to note here. Firstly, the small scale limit has allowed us

to reduce a multi-sum, 2D numerical integration problem, containing oscillating functions, down

to a simple 1D integral over smooth functions. This means that we only have to compute the

full expression on the largest of scales, where q is small, and then switch over to this very fast

approximate form once the value of q reaches a certain limit, which can be obtained numerically.

Secondly, if we chose our normalisation constant to be

A =
[ ∫

drr2[nLC
0 (r)]2w2(r)

]−1/2
, (3.37)

we see that our observed power spectrum on these scales will just be the true underlying power

spectrum, with the amplitude modulated by a constant factor determined by the survey depth:

PF,Lin(q > qlim) ≈ α0 PLin(q, η0) + Pshot , (3.38)

where the α0 factor is given by

α0 =

∫
drr2D2(η)b21(η)[nLC

0 (r)]2w2(r)∫
drr2[nLC

0 (r)]2w2(r)
. (3.39)

The result of Eq. (3.38) is analogous to Eq. (2.1.8) of FKP and Eq. (16) of Yamamoto [72].

3.2.4 The large-scale limit

Turning our attention to the largest scales, we now investigate the expected shape of the power

spectrum as q → 0. Starting from Eq. (3.29) and including the bias term for PNG:

PF,Lin(q) =
∑̂
`1`2`3

∑
m3

(2`1 + 1)(2`2 + 1)|Θ`3m3 |2
∫

dkk2PLin(k, η0)

×
[
A

∫
drr2D(η)[b1(η) + ∆b(k, η)]Z(r)j`1(kr)j`2(qr)

]2
, (3.40)

we exploit a property of the spherical Bessel function:

j`(x)
∣∣∣
x→0

= δ`0 . (3.41)
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Using this eliminates any q dependence from the equation:

PF,Lin(q)
∣∣∣
q→0

=
∑̂
`1`3

∑
m3

(2`1 + 1)|Θ`3m3 |2
∫

dkk2PLin(k, η0)

×
[
A

∫
drr2D(η)[b1(η) + ∆b(k, η)]Z(r)j`1(kr)

]2
+ Pshot , (3.42)

and we see the power will converge to a constant value on these scales, similar to our findings in

Section §2.3.5.

3.2.5 Extension to the nonlinear regime

We now generalise the result of a time-separable power spectrum beyond the linear order, and make

an ansatz that the unequal time power spectrum of can be expanded in the following way:

P (k, η1, η2) =
∑
a,b

Ga(η1, η0)Gb(η2, η0)ba(η1, k)bb(η2, k)Fab[P ](k) , (3.43)

where the functions Ga(η, η0) give the amplification at time η relative to some fiducial time η0,

ba(η1, k) are generalised evolving bias functions which may be scale dependent, and the functionals

Fab only involve integrals over the equal time correlator. Note that we make no assumptions about

the form of the bias functions, except that they must be smoothly varying in k, and include them

here in a general way as an example (we discuss this more at the end of the section). Assuming this

power-series form allows us to encompass a range of models, such as that of Kitching & Heavens

[47]. Listing terms up to first order, we have

P (k, η1, η2) = D(η1)D(η2)b1(η1, k)b1(η2, k)PLin(k, η0)

+ D2(η1)D2(η2)b2(η1, k)b2(η2, k)F22[P ](k)

+
[
D(η1)D3(η2)b1(η1, k)b3(η2, k) +D3(η1)D(η2)b3(η1, k)b1(η2, k)

]
F13[P ](k)

+ . . . . (3.44)

Substituting this into Eq. (3.22) will give three terms, which we refer to as linear, ‘2-2’ and ‘1-3’

terms. The linear term can be solved in two regimes: on large scales where, we have the expression

given by Eq. (3.29) and can use the FFTLog algorithm, which we cover in Section §3.3.1, to avoid

having to numerically compute the double Bessel integral. For the rest of the q domain, we can

use the small scale approximation of Eq. (3.36).

Turning our attention next to the first order corrections, we start with the ‘2-2’ term, substi-
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tuting line 2 of Eq. (3.44) into Eq. (3.22):

PF,22(q) =
∑̂
`1`2`3

C`3
∫

dkk2
2∏
i=1

{
T (i)
`1`2

(q, k)
}
D2(η1)D2(η2)b2(η1, k)b2(η2, k)F22[P ](k) ,

=
∑̂
`1`2`3

∑
m3

(2`1 + 1)(2`2 + 1)|Θ`3m3 |2
∫

dkk2F22[P ](k)

×
[
A

∫
drr2D2(η)b2(η, k)Z(r)j`1(kr)j`2(qr)

]2
, (3.45)

where as before we have been able to decouple the radial integrals do reduce the overall dimension-

ality of integration. As this term is only significant in the nonlinear regime were q is small, and as

we expect our bias functions to be smooth and slowly varying in k, we are again free to use the

small-scale approximation. This will reduce thus reduce down to

PF,22(q > qlim) ≈ α1(q) F22[P ](q) , (3.46)

where

α1(q) =

∫
drr2D4(η)b22(η, q)[nLC

0 (r)]2w2(r)∫
drr2[nLC

0 (r)]2w2(r)
. (3.47)

For the ‘1-3’ term, we have

PF,13(q) =
∑̂
`1`2`3

C`3
∫

dkk2
2∏
i=1

{
T (i)
`1`2

(q, k)
}[
D(η1)D3(η2)b1(η1, k)b3(η2, k)

+D3(η1)D(η2)b3(η1, k)b1(η2, k)
]
F13[P ](k) ,

=
∑̂
`1`2`3

∑
m3

(2`1 + 1)(2`2 + 1)|Θ`3m3 |2
∫

dkk2F213[P ](k)

×A2
[ ∫

dr1r
2
1D(η1)b1(η1, k)Z(r1)j`1(kr1)j`2(qr1)

×
∫

dr2r
2
2D

3(η2)b3(η2, k)Z(r2)j`1(kr2)j`2(qr2) +

∫
dr1r

2
1D

3(η1)b3(η1, k)Z(r1)j`1(kr1)j`2(qr1)

×
∫

dr2r
2
2D(η2)b1(η2, k)Z(r2)j`1(kr2)j`2(qr2)

]
, (3.48)

which in the small-scale approximation reduces down to

PF,13(q > qlim) ≈ α2(q) F13[P ](q) , (3.49)

with

α2(q) =
2
∫

drr2D4(η)b1(η)b3(η, q)[nLC
0 (r)]2w2(r)∫

drr2[nLC
0 (r)]2w2(r)

. (3.50)
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Putting all this together, we have a piecewise expression for evaluating our masked galaxy power

spectrum on the lightcone, up to first order:

PF(q) '


∑̂

`1`2`3
C`3
∫

dkk2PLin(k, η0)
[
A
∫

drr2D(η)b1(η)Z(r)j`1(kr)j`2(qr)
]2

+ Pshot for q ≤ qlim ,

α0 PLin(q, η0) + α1(q) F22[P ](q) + α2(q) F13[P ](q) + Pshot for q > qlim ,

(3.51)

where for the case q ≤ qlim we work at large scales and so neglect nonlinear corrections, and for the

case q > qlim we use the small-scale approximation and consider terms up to 1-loop in perturbation

theory. We see that for each term of our generalised expansion of the unequal time power spectrum,

assuming time separability allows us to reduce the complexity of the problem on large scales, and

combining this with the small-scale approximation significantly simplifies the problem at smaller

scales, as in this region we always obtain 1D integrals over smooth functions.

Applying this model in a real-world scenario can be difficult however, as the value of the bias

parameters are not directly predicted by theory, and will vary with tracer type. These parameters

will also depend on time: in the early universe, the first galaxies to form will be those situated

in the largest over-densities of the matter distribution, and so galaxy bias will be higher at these

times than in the late-time universe where the distribution of galaxies more evenly represents the

distribution of matter. A significant amount of work in the literature over the past few decades has

been dedicated to the topic of tracer bias ([136] for a comprehensive review), with the approaches

broadly fall into two categories: the first is where one does not try to tackle the complicated process

of galaxy formation, and instead starts off with a model of bias once the galaxy has formed and

thus evolves under the force of gravity. An example of this, for modelling the evolution of the linear

bias parameter, was proposed in [137] and given a more general form in [138]:

b1(η) = c+
b0 − c
Dγ(η)

, (3.52)

where b0 is the constant linear bias term, D(η) is the usual linear growth factor, and c and γ are

constants to be determined empirically by fitting to data or simulations. We see that this term is

a smoothly varying function in time and thus will not introduce any numerical complications on

large scales. We can also include the PNG term from Eq. (3.30) here, which has the form [135]

∆b(k, η) =
3(b1(η)− 1)fNLΩm,0H

2
0δc

D(η)k2T (k)
, (3.53)

where Ωm,0 and H0 are the matter density and Hubble parameters today, T (k) is the transfer

function, δc ' 1.68 is the threshold linear density contrast for a spherical collapse of an overdensity

region, and fNL paramterises the amount of PNG. The effect of this term modifies the power on

large scales in a smooth manner (see eg. Fig. 7 in [132]), based on the value of fNL, and therefore,

similar to b1(η), this term will be easy to handle from a numerical perspective.

The other approach to tackling bias is based on the knowledge that the large-scale structure
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we see today was seeded by small fluctuations in the underlying matter-density field in the early

universe. Thus, one can take the approach of perturbation theory, modelling the galaxy density

field as a series expansion of an unknown function of the matter-density field, with the coefficients

of the series expansion being the bias parameters, for example in the case of SPT we have

δg(r) = f(δm(r)) =
∑
n

bn
n!
δnm(r) . (3.54)

However, the bias parameters in this approach must be renormalised in order to obtain sensible

results that can match observables [139], whereby one can obtain an expression for the power

spectrum that is similar in form to Eq. (3.44). While the specific details of this are not in-scope for

the current work, the important point is that as long as time separability holds, the problem can

always be reduced to one that is more numerically feasible.

3.2.6 Calculating the angular mask

Before moving on to numerical methods for tackling our model of galaxy power spectrum on the

lightcone, we turn our attention to computation of the angular mask term CΘ
`3
≡ ∑m3

|Θ`3m3 |2,

effectively the power spectrum of the angular mask. As this is the only quantity in our main

result of Eq. (3.22) than has an index of m3, for a specific survey mask, the array of CΘ
`3

’s can be

pre-computed up to some large value of `max and stored.

We start by giving an example where our survey has a simple geometry: the spherical cap mask.

This could be used to approximate the angular component for any survey over a single, continuous

field with geometry that roughly approximates a circle. Recall from equations (3.12) and (3.13)

that we performed a spherical harmonic expansion of the angular component of the survey mask:

Θ(r̂) = Θ(θ, φ) =
∑
`,m

Θ`mY`m(θ, φ) . (3.55)

The coefficients of such an expansion can be recovered by integrating the original angular function

against the complex conjugate of the spherical harmonic,

Θ`m =

∫ 2π

0
dφ

∫ π

0
dθ sin(θ)Y ∗`m(θ, φ)Θ(θ, φ) , (3.56)

and recalling that the spherical harmonics are related to the associated Legendre polynomials via

Y ∗`m(θ, φ) = (−1)m

√
(2`+ 1)

4π

(`−m)!

(`+m)!
P`m(cos θ)e−imφ , (3.57)

allows us to separate the integration variables θ and φ:

Θ`m = (−1)m

√
(2`)

4π

(`−m)!

(`+m)!

∫ 2π

0
dφ e−imφ

∫ π

0
dθ sin(θ)P`m(cos θ). (3.58)
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For a spherical cap mask, we have that Θ(θ, φ) is 1 in the regions 0 ≤ φ ≤ 2π and 0 ≤ θ ≤ µ, where

µ is some arbitrary angle in declination, and zero elsewhere:

Θ`m =

∫ 2π

0
dφ e−imφ

∫ µ

0
dθ sin(θ)(−1)m

√
(2`+ 1)

4π

(`−m)!

(`+m)!
P`m(cos θ) ,

= 2πδm0

∫ µ

0
dθ sin(θ)(−1)m

√
(2`+ 1)

4π

(`−m)!

(`+m)!
P`m(cos θ) ,

=
√
π(2`+ 1)

∫ µ

0
dθ sin(θ)P`(cos θ) . (3.59)

If we then make the substitution y = cos(θ) and take the modulus-square, we obtain the expression

for CΘ
` in this case:

CΘ
` = π(2`+ 1)

∣∣∣ ∫ cos(µ)

1
P`(y)dy

∣∣∣2. (3.60)

By assuming this geometry of the mask, we have removed the sum over m and the problem reduces

to simple integration over standard Legendre polynomials.

For a more generalised case, where we have a complicated survey mask that may also contain

multiple regions, we can compute the CΘ
` ’s numerically with software like HEALPix3 [140]. As an

example, in Fig. 3.1 we plot the angular footprint of the upcoming 4MOST Cosmology Redshift

Survey [54], as well as the resulting CΘ
` ’s, and compare this to the simple case of the spherical

cap mask with declination angle µ = 25◦. While both of these cases produce mask coefficients

that are oscillatory in nature, as we are only summing over them and not integrating, this task

is numerically fast. In addition to this, we see a general trend that the value of the mask power

spectrum drops off exponentially as ` increases, which will speed up convergence of the double sum

in Eq. (3.29).

3.3 Numerical methods for evaluating the wide-angle masked power

spectrum

Having now established our theoretical model for the masked galaxy power spectrum on the light-

cone, we now review some numerical methods that can be used to tackle the double-Bessel integrals

encountered in §3.2 such as Eq. (3.29), which contains an integral of the form

R`1`2(q, k) =

∫
dr r2χ(r)j`1(kr)j`2(qr) , (3.61)

where χ(r) is some smooth radial kernel function. These integrals can be challenging in nature

to solve and prone to numerical instability, due to the oscillatory nature of the Bessel functions,

3See for example the ‘healpy.sphtfunc.anafast’ routine in the python implementation of HEALPix -
https://healpy.readthedocs.io/
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Figure 3.1: Left: A HEALPix map showing the angular mask of the 4MOST Cosmology Redshift Survey.
Right: The corresponding CΘ

` ’s up to `max = 1000 for the 4MOST survey mask (red solid line), calculated
using healpy, the python implementation of HEALPix. We also plot the result for the spherical cap mask
presented in Eq. (3.60) with µ = 25◦ (blue dashed line), calculated directly from the equation.

particularly as ` or the argument grow larger. This is compounded by the fact that as we go to

smaller scales, a growing number of {`1, `2} terms need to be calculated before the sums converge

to a specified precision. In Chapter §2 we encountered a similar expression, but where `1 = `2, and

only one sum over ` was required (see Eq. (3.100)). In that scenario, it was sufficient to brute force

the equation on large scales (q > qlim), after which we could use the small-scale approximation

outlined in §3.2.3. By introducing an angular mask, we now have a product of Bessel functions of

differing ` order, and a conditional double sum over {`1, `2`3}, therefore it is appropriate to look

for analytical solutions that will be more numerically feasible.

The double-Bessel integral of Eq. (3.61) is a challenge being encountered more frequently in

the field of cosmology as surveys have grown in size and the required modelling of observables has

necessarily become more sophisticated. One of the most commonly used techniques to solve the

problem involves performing a complex power-law expansion on the kernel function via the FFTLog

method, after which an analytic solution to the integral can be employed. In doing this, we reduce

a difficult integral over r to a finite sum over a smooth function in q and k.

The FFTLog algorithm takes the fast Fourier (or Hankel) transform of a periodic sequence of

logarithmically spaced points - it is the logarithmic analogue of the standard transforms that work

in a linear spacing. An early example of this method being applied to the field of cosmology was in

Hamilton [125], allowing for fast transforms between the power spectrum and two point correlation

function. More recent developments have seen this method applied to Bessel integrals, particularly

when dealing with perturbation theory calculations [99], angular and projected power spectra [141,

142, 143, 144], as well as higher order statistics [145, 146]. The majority of this literature has been

focused on solving integrals over the Power spectrum multiplied by one or two Bessel functions
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(with common index `), of the form:

I`(r) =

∫
dkk2P (k)j`(kr) , (3.62)

I`(r1, r2) =

∫
dkk2P (k)j`(kr1)j`(kr2) , (3.63)

with the focus being performing a power-law expansion of the power spectrum. For our scenario

in Eq. (3.29), this approach is sub optimal, as if we look to tackle the k integral first it would

re-couple the r integrals, turning the overall expression back into a 3D integral, and we would still

be left with integrals over Bessel functions. In this work we apply the method to the radial integral

instead, where the Bessels have differing index `.

3.3.1 FFTLog of the radial integral

We now apply the FFTLog method to our radial kernel function r2χ(r), following the convention

of McEwen et al. [99]. We look to approximate the function, sampled evenly in logspace over Nr

points, as a complex series expansion of the form

χ(rn) =

Nr/2∑
m=−Nr/2

cmr
β+iηm
n ⇔ cm = Wm

Nr−1∑
n=0

χ(rn)r−βn e−2πimn/N , (3.64)

where cm are the Fourier coefficients, ηm = 2πm/Nr∆ with ∆ the linear spacing i.e. rn =

r0 exp(n∆), m = −Nr/2,−Nr/2 + 1, . . . , Nr/2 − 1, Nr/2, and Wm is a window function designed

to reduce ringing that can be induced by the transform (we use a window function given by equa-

tion (C.1) in McEwen). We bias the transform by a factor of rβn, with beta chosen such that it

causes the function rβ+2
n χ(rn) to be approximately periodic over the interval of interest, which can

improve the convergence of the FFTLog method [141]. As an example, in Fig. 3.2 we demonstrate

the FFTLog of a radial kernel

r2χ(r) = r2nLC
0 (r)b1(η)D(η) , (3.65)

where for nLC
0 (r) we use the evolving Schechter function described in Appendix §2.B, and b1(η) is

given by the linear evolving bias model of Eq. (3.52) with parameters {c = 0.57, b0 = 0.79, γ = 2.23}
[138]. We sample the radial kernel over Nr = 65 points and chose a bias value of β = 0.48. The

exact function is represented as the black dashed line in the figure, with the FFTLog approximation

shown by the blue solid line. In the lower half of the plot we show the percentage difference between

these two lines, where we see that the FFTLog approximates the function to much less than 1%

error over the whole range, with some small amount of ringing at either end. We also plot the exact

function multiplied by rβ to demonstrate the effect this has: the bias effectively ‘tilts’ the original

function, such that it becomes very close to being periodic over the interval.

One of the advantages of this FFTLog method is that the cm coefficients can be computed in

106



100 101 102 103

101

102

103

104

r2
χ

(r
)

[h
M

p
c−

1 ]
r2χ(r)

r2χ(r) FFTLog, Nr = 65

Biased FFTLog

100 101 102 103

r [h
−1 Mpc]

−2.5

0.0

2.5

E
rr

or
%

±1%

Figure 3.2: Figure showing the radial kernel function r2χ(r) of Eq. (3.65) (black dashed line), and its
approximation using the FFTLog method of Eq. (3.64) (blue solid line) using Nr = 65 sampling points and
a bias factor of β = 0.48. The lower sub plot shows the percentage error between these two lines, with the
solid black lines bounding the shaded grey region representing the ±1% error. We see that the FFTLog
method with our choice of N and β provides an excellent approximation to the original function. The green
dashed line in the upper plot is the radial kernel function multiplied by rβ : we see that this has the effect of
’tilting’ the original function, making it very close to being periodic over the interval.

advance of any calculation, and only ever need to be calculated once for a given χ(r) and then

stored. We chose Nr = 65 sampling points as this was the lowest possible value for our example

χ(r) that still gave accurate results. In practice, one wants to minimize N as much as possible

for two reasons: firstly, it reduces the number of terms that are required to be summed, which

increases the speed of any further calculation steps that rely on this method. Secondly, it reduces

the size of the arguments being fed into the hypergeometric functions that we will encounter in the

next section, which is important for both speed and numerical stability.

The FFTLog method is still applicable if a scale-dependent bias term is included in the radial
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kernel function such that χ(r)→ χ(r, k). In this case, the function should be sampled as a 2D array,

with the additional dimension coming from a sampling in the k range by Nk points, where for each

kn we have a specific bias value βk. While this will slightly increase the up-front computational cost,

it is not prohibitive as the process is already fast and only needs to be performed once. Care must

be chosen to pick a value of Nr that is suitable for all values of kn, but employing a method like a

least-squares fitting to quickly determine the βk values could be used to automate this process.

3.3.2 The analytic Bessel integrals

Once the complex power law decomposition of the radial function has been employed, our radial

integral becomes

R`1`2(q, k) =

∫
dr r2χ(r)j`1(kr)j`2(qr) ,

=

N/2∑
m=−N/2

cm

∫
dr rβ+iηmj`1(kr)j`2(qr) . (3.66)

We now look for analytic solutions to this equation, based on the values of k and q. In the region

where k ≤ q, we make the substitutions τ = k/q, qr = x and β + iηm = −ν, leading to

R`1`2(q, k) =

N/2∑
m=−N/2

cmq
νm−1

∫
dx x−νmj`1(τx)j`2(x) ,

=

N/2∑
m=−N/2

cmq
νm−1I`1`2(νm, τ) , (3.67)

where we have defined the quantity

I`1`2(νm, τ) ≡
∫

dx x−νmj`1(τx)j`2(x) . (3.68)

In Appendix §3.D we briefly derive the transforms of this equation using [130], and for 0 < τ < 1

we have from Eq. (3.104):

I`1`2(νm, τ) =
πτ `1Γ

(
`1+`2−νm+1

2

)
2νm+2Γ

(
−`1+`2+νm+2

2

)
Γ
(
`1 + 3

2

)
× 2F1

(`1 + `2 − νm + 1

2
,
`1 − `2 − νm

2
, `1 +

3

2
, τ2
)
, (3.69)

Re[`1 + `2 − νm + 1] > 0 , Re[νm] > −2 , 0 < τ < 1 ,
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where Γ(x) is the usual Gamma function and 2F1(a, b, c; z) is know as the Gauss Hypergeometric

function, which has a series representation of

2F1(a, b, c, z) =

∞∑
n=0

(a)n(b)n
(c)n

zn

n!
. (3.70)

Here, (x)n is the (rising) Pochhammer symbol:

(x)n ≡
Γ(x+ n)

Γ(x)
, (3.71)

and the 2F1(a, b, c; z) series converges if c is not a negative integer, for |z| < 1, and on the unit

circle |z| = 1 for Re[c − a − b] > 0. In the instance where τ = 1, the hypergeometric function can

be expressed purely in terms of gamma functions, and we can use the transform of Eq. (3.105):

I`1`2(νm, 1) =
πΓ
(
ν + 1

)
Γ
(
`1+`2−νm+1

2

)
2νm+2Γ

(
−`1+`2+νm+2

2

)
Γ
(
`1+`2+νm+3

2

)
Γ
(
`1−`2+νm+2

2

) , (3.72)

Re[`1 + `2 + 2] > Re[νm + 1] > 0 .

In the region where k > q, we instead make the substitutions4 τ ′ = q/k and kr = x and β + iηm =

−νm, giving

R`1`2(q, k) =

N/2∑
m=−N/2

cmk
νm−1

∫
dx x−νmj`1(x)j`2(τ ′x) ,

=

N/2∑
m=−N/2

cmk
νm−1M`1`2(νm, τ

′) , (3.73)

where we have defined the quantity

M`1`2(νm, τ
′) ≡

∫
dx x−νmj`1(x)j`2(τ ′x) . (3.74)

4The usual method in the literature to solve Eq. (3.68) for the region where τ > 1 is to make a substitution of
integration variables, where it can then easily be shown that I`1`2(νm, τ) = τ−νmI`1`2(νm, 1/τ), which will bring the
4th argument of the Gauss Hypergeometric function back into the domain of validity. However, this trick only works
when `1 = `2 : we can see from [130] equation (6.574.1) that the RHS is not symmetric on swapping the arguments
and orders of the two Bessel functions when `1 6= `2.

109



For this, we use Eq. (3.108):

M`1`2(νm, τ
′) =

πτ ′`1Γ
(
`1+`2−νm+1

2

)
2νm+2Γ

(
`1−`2+νm+2

2

)
Γ
(
`1 + 3

2

)
× 2F1

(`1 + `2 − νm + 1

2
,
−`1 + `2 − νm

2
, `2 +

3

2
, τ ′2

)
, (3.75)

Re[`1 + `2 − νm + 1] > 0 , Re[νm] > −2 , 0 < τ ′ < 1 .

Despite being integrals over rapidly oscillating Bessel functions, the analytic transforms I`1`2(νm, τ)

and M`1`2(νm, τ
′) are actually smooth in τ and Λ, and thus performing these transforms has turned

a challenging numerical integral into a finite sum of terms of smooth functions. To summarise, we

have the following piecewise expression for solving our radial integral analytically:

R`1`2(q, k) =


∑

m cmq
νm−1I`1`2(νm, τ) when k < q, see Eq. (3.69) ,∑

m cmq
νm−1I`1`2(νm, 1) when k = q, see Eq. (3.72) ,∑

m cmq
νm−1M`1`2(νm, τ

′) when k > q, see Eq. (3.75) ,

(3.76)

and our full expression for the power spectrum on large scales is now

PF (q) = A2
∑̂

`1`2`3
C`3
∫

dkk2PLin(k, η0)[R`1`2(q, k)]2 + Pshot . (3.77)

The task therefore boils down to efficient evaluation of the hypergeometric function contained in

I`1`2(νm, τ) and M`1`2(νm, τ
′), over the region 0 < τ < 1. This has already been studied in the

literature [141, 143, 142], where the general method involves performing transforms on the the

2F1(a, b, c; τ2) function to reduce the size of the arguments into domains of increased numerical

speed and stability5. In particular, care must be taken when either a, b or c grow large, especially if

they are complex as a and b are in our case, as in these regions numerical instability will occur [147].

Additionally, as τ → 1, computation of the hypergeometric function is slower as more terms are

needed to reach convergence, and so it is useful to find a value τ∗ (numerically) such that whenever

τ∗ < τ < 1, a transform is performed on this argument to bring it back below τ∗ (examples in

Appendix A and B of [141]).

3.3.3 A practical algorithm

We now bring together all the steps of the previous sections to outline a practical algorithm for

evaluating the masked power spectrum PF (q) on the lightcone, assuming the underlying unequal

time power spectrum P (k, η1, η2) is time separable. We outline the process as follows:

1. Several quantities can be precomputed and saved in advance of the calculation:

5See https://mathworld.wolfram.com/EulersHypergeometricTransformations.html for the Euler’s hypergeometric
transforms or Abramowitz and Stegun p.555 [98].
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(a) The power of the angular mask CΘ
`3

outlined in Section §3.2.6, up to some `max. This

can be be done quickly using existing software packages like HEALPix, and only has to

be calculated once for a specified angular mask.

(b) Perform the FFTLog decomposition of the radial kernel function, as outlined in Section

§3.3.1 to obtain the Fourier coefficients cm given by Eq. (3.64), which only have to be

calculated once for a given radial kernel function r2χ(r). An appropriate number of

sampling points Nr and value for the bias parameter β should be chosen, to ensure

accuracy and fast convergence of the series.

(c) The the allowed combinations of `1, `2 and `3 using the triangular rules outlined at the

end of Appendix §3.B: determine all of the valid pairs of `1 and `2 for a given `3, for

0 ≤ `3 ≤ `max. This is independent of cosmology and survey geometry and so can be

calculated and stored as a 2D array for all future calculations.

(d) The shot noise contribution Pshot derived in Appendix §3.A and the normalisation con-

stant A given by Eq. (3.37), with the former depending on the survey mask and radial

kernel, and the latter dependent only on the number density nLC
0 (r) and choice of optimal

weighting scheme w(r).

2. With these pre-calculations complete, we can then compute PF(q) over the full range of q

using the small-scale approximation, given by the lower line of Eq. (3.51). While this will

only give you the correct power on small scales (q > qlim), it is very fast to compute as you

are only having to evaluate smooth 1D integrals, and having this evaluated over the full range

of q can be useful as a reference.

3. We now need to perform the full calculation of PF,Lin(q) given by the upper line of Eq. (3.51),

between the ranges qmin < q < qlim. For a given q, starting from `3 = 0, sum over the allowed

pairs of `1 and `2:

(a) Calculate the square of the radial integral R`1`2(τ) using Eq. (3.76), following the analytic

methods described in Section §3.3.2, for the given q, `1 and `2, over an array of Nk points

of k values between kmin and kmax, choosing Nk to be large enough to accurately sample

the function, and then create a spline of this function in k.

(b) Use this to calculate the full expression for the power given by Eq. (3.77), by performing

the integral over k of this spline multiplied by k2PLin(k), and then multiply this by the

power of the angular mask and any other constant terms, including the normalisation,

and subtract off the shot noise

(c) Once convergence over the `1 `2 sum pair has been reached, iterate over `3 and repeat

the above two steps, until convergence over the `3 sum has been achieved.

(d) Then step to the next value of q and repeat the above three steps, until the power has

been evaluated for all desired values of q.
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If the FFTLog method is deployed optimally, then the calculation of PF,Lin(q) will be fast (∼
seconds) for a given {q, `1, `2, `3} combination [143], and is easily parallelisable. One potential

source of difficulty in the above process is ensuring that the ` sums have fully converged, as the

overall expression is not necessarily a decreasing function as the combinations of the `s increases:

this can potentially be countered by always calculating a few more ` terms than we may think is

necessary, which will not overly effect the total computation time.

3.4 Conclusions and extensions

In this chapter, we extended the modelling of the previous chapter of the survey window-convolved

power spectrum on the lightcone PF (q), by including terms for galaxy bias and a survey mask that

includes both angular and radial components. We also gave a generalised case for the extension

of the model into the nonlinear regime, assuming that the unequal-time power spectrum remains

time separable. As the obtained expression for the power spectrum when including an angular

survey mask is significantly more numerically challenging than in the full-sky regime, we detailed

several methods that can be used for calculation. Similarly to the method used in Section §2.3.4, for

q � qlim we can use the small-scale approximation, which reduces the multi-dimensional integration

over a pair of spherical Bessel functions down to a simple 1D integration over a smooth radial kernel

function. On large scales however, where this approximation is not valid, we detailed how the use

of the FFTLog algorithm, in combination with analytic transforms of the double-Bessel integrals,

can be used to make the problem numerically tractable. We also laid out the steps required for

implementing this procedure, and highlighted potential problem regions where parameters can cause

this method to encounter numerical instability or run at sub-optimal speeds. Due to the challenging

nature of the implementation, we leave this to future work, however once in place, we can then

look to test this extended model against large-scale N -body lightcone simulations, similarly to the

methods used in the previous chapter.

Being able to accurately model the power spectrum on large scales will be important for upcom-

ing and future galaxy redshift surveys, which will enable cosmologists to probe as-of-yet measured

features of the power spectrum, such as the turnover scale or if there is any scale-dependent bias

caused by primordial non-Gaussianity. To be useful for such surveys, the most pressing extension

to the modelling in this chapter is to look at how the effects of working in redshift-space modify

our obtained expressions. There have been numerous works already into wide-angle redshift-space

distortions [148, 87, 149, 70, 150, 151] which can be drawn on to integrate with the current model.

In Raccanelli et al. (2010) [152], they showed that using a local plane-parallel approximation,

which greatly simplifies the mathematics of RSD, can lead to a non-negligible error induced in

the clustering amplitude even for small galaxy-pair separations, highlighting the importance of the

need to model this effect correctly for future surveys.

A further area of modelling that we have yet to discuss is the covariance of the power spectrum

on the past lightcone when working in a spherical geometry. As this will depend on the Fourier
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transform of products of four of our FLC(r) fields, it is important to develop robust numerical

methods to evaluate the power spectrum before approaching this even more challenging task.
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Appendices

3.A The shot noise term

In this appendix we detail the calculation of the shot noise term. Starting from equation Eq. (3.7),

we had 〈
FLC(q1)

[
FLC(q2)

]∗〉
=

∫
d3r1d3r2A

2eiq1·r1e−iq2·r2w(r1)w(r2)Θ(r1)Θ(r2)

×
〈 [
nLC(r1)− αnLC

s (r1)
] [
nLC(r2)− αnLC

s (r2)
] 〉

. (3.78)

If we now expand out the angular brackets but do not neglect the shot noise then we need to work

out the following three terms:

〈
nLC(r1)nLC(r2)

〉
,〈

nLC
s (r1)nLC

s (r2)
〉
,〈

nLC(r1)nLC
s (r2)

〉
,

which can be achieved by following the lines of the FKP method. For the first, we have

〈
nLC(r1)nLC(r2)

〉
=

〈
nLC

0 (r1)nLC
0 (r2)

[
1 + ∆(η1, r1)

][
1 + ∆(η2, r2)

]〉
+
N

V
δ(r1 − r2) ,

= nLC
0 (r1)nLC

0 (r2)
〈[

1 + ∆(η1, r1) + ∆(η2, r2) + ∆(η1, r1)∆(η2, r2)
]〉

+nLC
0 (r1)δ(r1 − r2) ,

= nLC
0 (r1)nLC

0 (r2)
[
1 +

〈
∆(η1, r1)∆(η2, r2)

〉]
+ nLC

0 (r1)δ(r1 − r2) . (3.79)

The second term is as above but with the correlation function set to zero and with factors of α,

such that

〈
nLC

s (r1)nLC
s (r2)

〉
= α−2nLC

0 (r1)nLC
0 (r2) + α−1nLC

0 (r1)δ(r1 − r2) . (3.80)

The third term is simpler still, giving just

〈
nLC(r1)nLC

s (r2)
〉

= α−1nLC
0 (r1)nLC

0 (r2) . (3.81)
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Substituting back in for these terms with appropriate factors of α, we obtain〈
FLC(q1)

[
FLC(q2)

]∗〉
=

∫
d3r1d3r2A

2eiq1·r1e−iq2·r2w(r1)w(r2)Θ(r1)Θ(r2)

×
〈 [
nLC(r1)− αnLC

s (r1)
] [
nLC(r2)− αnLC

s (r2)
] 〉

,

=

∫
d3r1d3r2A

2eiq1·r1e−iq2·r2w(r1)w(r2)Θ(r1)Θ(r2)

×
[
nLC

0 (r1)nLC
0 (r2)

〈
∆(η1, r1)∆(η2, r2)

〉
+(1 + α)nLC

0 (r1)δ(r1 − r2)
]
, (3.82)

where in the last line, the second term with the delta function is our new shot noise term. Thus,

Pshot(q1,q2) = (1 + α)A2

∫
d3r1d3r2e

iq1·r1e−iq2·r2w(r1)w(r2)Θ(r1)Θ(r2)nLC
0 (r1)δ(r1 − r2) ,

= (1 + α)A2

∫
d3r eir·(q1−q2)w2(r)Θ2(r)nLC

0 (r), (3.83)

and at this stage our shot noise term only differs from the FKP result by the inclusion of the

survey mask Θ(r). We now look at the case where q1 = q2 and, similar to the derivation in Section

§3.2, separate out the survey mask into a radial and an angular component, the latter of which we

expand in terms of spherical harmonics using Eq. (3.12) and Eq. (3.13), giving

Pshot = (1 + α)A2

∫
d3rw2(r)Θ2(r)nLC

0 (r)Θ2(r̂) ,

= (1 + α)A2

∫
d3rw2(r)Θ2(r)nLC

0 (r)
∑
`3m3

∑
`4m4

Y`3m3(r̂)Y ∗`4m4
(r̂)Θ`3m3Θ∗`4m4

, (3.84)

where we have used the shorthand Pshot(q1,q1) = Pshot. Using the orthogonality relation of spher-

ical harmonics (Eq. (3.18)) we perform the angular dr̂ integral, killing off the spherical harmonic

terms and causing `4m4 → `3m3, resulting in

Pshot = (1 + α)A2
∑
`3m3

|Θ`3m3 |2
∫

dr r2w2(r)Θ2(r)nLC
0 (r) . (3.85)

We see that the effect of including a survey mask only adds the complication of having to pre-

compute and sum over some expansion coefficients Θ`m, the same coefficients that appear in the

main expression for our power spectrum on the lightcone, Eq. (3.22). We cover the computation of

such coefficients in Section §3.2.6 for the general case, as well as a simplified case where we assume

the mask has some spherical symmetry.
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3.B Properties of the Gaunt symbol

We now cover some useful properties of the Gaunt symbol, used in our derivations in Section §3.2.

The symbol is defined by the integral over a product of three spherical harmonics Y`m(x̂) which

have a common argument x̂ but can have differing subscripts ` and m:

G`1`2`3m1m2m3
≡
∫

dr̂1Y`1m1(r̂1)Y`2m2(r̂1)Y`3m3(r̂1) . (3.86)

The Gaunt symbol itself can be described in terms of the Wigner 3-j symbol:

G`1`2`3m1m2m3
=

√
(2`1 + 1)(2`2 + 1)(2`3 + 1)

4π

(
`1 `2 `3

0 0 0

)(
`1 `2 `3

m1 m2 m3

)
. (3.87)

As the Wigner 3-j symbol returns real values, we see that the Gaunt symbol is a real function.

Subsequently, it must be true that the Gaunt symbol can also be defined by the integral over a

product of three complex conjugate spherical harmonic functions:

G`1`2`3m1m2m3

?≡
∫

dr̂1Y
∗
`1m1

(r̂1)Y ∗`2m2
(r̂1)Y ∗`3m3

(r̂1) . (3.88)

We can show this relatively easily using the relationship between a spherical harmonic and its

complex conjugate, which is given by Y ∗`1m1
= (−1)mY ∗`1−m. Substituting this in we have∫

dr̂1Y
∗
`1m1

(r̂1)Y ∗`2m2
(r̂1)Y ∗`3m3

(r̂1) = (−1)m1+m2+m3

∫
dr̂1Y`1−m1(r̂1)Y`2−m2(r̂1)Y`3−m3(r̂1) ,

= (−1)m1+m2+m3G`1`2`3−m1−m2−m3
,

= (−1)m1+m2+m3

√
(2`1 + 1)(2`2 + 1)(2`3 + 1)

4π

(
`1 `2 `3

0 0 0

)

×
(

`1 `2 `3

−m1 −m2 −m3

)
,

=

√
(2`1 + 1)(2`2 + 1)(2`3 + 1)

4π

(
`1 `2 `3

0 0 0

)(
`1 `2 `3

m1 m2 m3

)
,

= G`1`2`3m1m2m3
, (3.89)

as required. Note that in moving from the 3rd to the 4th line we used the property of the 3-j

symbol:

(−1)m1+m2+m3

(
`1 `2 `3

−m1 −m2 −m3

)
=

(
`1 `2 `3

m1 m2 m3

)
. (3.90)
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In the main text we also encountered the product of two Gaunt symbols, sharing identical indices

on the first and second columns:

G`1`2`3m1m2m3
G`1`2`4m1m2m4

=

√
(2`1 + 1)(2`2 + 1)(2`3 + 1)

4π

√
(2`1 + 1)(2`2 + 1)(2`4 + 1)

4π

×
(
`1 `2 `3

0 0 0

)(
`1 `2 `3

m1 m2 m3

)

×
(
`1 `2 `4

0 0 0

)(
`1 `2 `4

m1 m2 m4

)
. (3.91)

Next we can employ the orthogonality relation of the Wigner 3-j symbol, given by

∑
m1m2

(
`1 `2 `3

m1 m2 m3

)(
`1 `2 `4

m1 m2 m4

)
=
δ`3`4δm3m4

(2`3 + 1)
{`1 `2 `3} , (3.92)

where the triangular delta {`1 `2 `3} is equal to 1 when the triad (`1, `2, `3) satisfies the triangle

condition (see bullet point 3 below), and zero otherwise. Note that the 3-j symbol and triangular

delta are invariant under cyclic permutations of their columns, and pick up a factor of (−1)`1+`2+`3

for non-cyclic permutations. Combining the above two equations gives

∑
m1m2

G`1`2`3m1m2m3
G`1`2`4m1m2m4

=

√
(2`1 + 1)(2`2 + 1)(2`3 + 1)

4π

√
(2`1 + 1)(2`2 + 1)(2`4 + 1)

4π

×
(
`1 `2 `3

0 0 0

)(
`1 `2 `4

0 0 0

)
δ`3`4δm3m4

(2`3 + 1)
{`1 `2 `3} ,

=
(2`1 + 1)(2`2 + 1)

4π

(
`1 `2 `3

0 0 0

)2

δ`3`4δm3m4{`1 `2 `3} .(3.93)

It is also worth noting at this point the that the 3-j symbol and the triangular delta are zero unless

the following conditions on the values of `123 and m123 are met:

• mi ∈ {−|`i|, ..., |`i|}, (i = 1, 2, 3) ,

• m1 +m2 +m3 = 0 ,

• |`1 − `2| ≤ `3 ≤ `1 + `2 ,

• `1 + `2 + `3 is an integer (and, moreover, an even integer if m1 = m2 = m3 = 0) .

For all the scenarios in consideration here, we always end up with Wigner 3-j symbols in our final

results that have all zeros on the bottom row, and as we are always summing the `’s from zero

upwards, we only need to pay attention to the 3rd condition as the other three are satisfied by

default.
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3.C Recovery of the full sky result

We now check that in limit where our survey mask becomes equal to unity everywhere, we can

recover the full sky result of the previous chapter. Aside from simply setting the radial component

Θ(r) = 1, we need to establish the value of the angular coefficients Θ`m in this limit. For an angular

function expanded in terms of spherical harmonics Θ(r) =
∑

`m Θ`mY`m(r̂), we can recover these

coefficients via

Θ`m =

∫ 2π

0
dφ

∫ π

0
dθ sin(θ)Y ∗`m(θ, φ)Θ(θ, φ) . (3.94)

Setting the term Θ(θ, φ) = 1, we thus need to perform the integral over all angles of the spherical

harmonic function. To do this, we note that as
√

4πY 0
0 (θ, φ) = 1, and then can substitute this in,

exploiting the orthogonality relation of the spherical harmonics:

Θ`m

∣∣∣
Θ(r)→1

=

∫ 2π

0
dφ

∫ π

0
dθ sin(θ)Y ∗`m(θ, φ) ∗ 1 ,

=
√

4π

∫ 2π

0
dφ

∫ π

0
dθ sin(θ)Y ∗`m(θ, φ)Y 0

0 (θ, φ) ,

=
√

4πδl0δ
m
0 . (3.95)

We note that the same result will hold true for the complex conjugate Θ∗`m in this limit. In the

case of our main result of the masked power spectrum on the lightcone, given by Eq. (3.22), these

angular mask coefficients have subscript `3m3, and so writing out only terms from this equation

that contain these subscripts, we have

∑
`3

∑
m3

|Θ`3m3 |2
(
`1 `2 `3

0 0 0

)2

{`1 `2 `3} = 4π
∑
`3

∑
m3

δ`30 δ
m3
0

(
`1 `2 `3

0 0 0

)2

{`1 `2 `3} ,

= 4π

(
`1 `2 0

0 0 0

)2

{`1 `2 0} ,

= 4π

(
`1 `1 0

0 0 0

)2

δ`1`2 , (3.96)

where the last line follows from the third condition of the Wigner 3-j rules at the end of Ap-

pendix §3.B. From here, we can use a special case of the 3-j symbol:(
`1 `1 0

0 0 0

)
=

(−1)`1√
2`1 + 1

→
(
`1 `1 0

0 0 0

)2

=
1

2`1 + 1
. (3.97)
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Combining these to previous results, we therefore have that:

∑
`3

∑
m3

|Θ`3m3 |2
(
`1 `2 `3

0 0 0

)2

{`1 `2 `3} =
4π

2`1 + 1
δ`1`2 . (3.98)

Remembering our main result of Eq. (3.22):

PF(q) =
∑̂
`1`2`3

C`3
∫

dkk2
2∏
i=1

{
T (i)
`1`2

(q, k)
}
P (k, η1, η2) ,

= A2
∑
`1

∑
`2

∑
`3,m3

|Θ`3m3 |2(2`1 + 1)(2`2 + 1)

(
`1 `2 `3

0 0 0

)2

{l1 l2 l3}

×
∫

dkk2
2∏
i=1

{∫
drir

2
i j`1(kri)j`2(qiri)Z(ri)

}
P (k, η1, η2) , (3.99)

we then substitute in Eq. (3.98) and set Θ(r) = 1, giving:

PF(q)
∣∣∣
Θ(r)→1

= A2
∑
`1

∑
`2

(2`1 + 1)(2`2 + 1)
4π

2`1 + 1
δ`1`2

×
∫

dkk2
2∏
i=1

{∫
drir

2
i n

LC
0 (r)w(r)j`1(kri)j`2(qiri)

}
P (k, η1, η2) ,

= A2
∑
`1

(2`1 + 1)

∫
dkk2

2∏
i=1

{∫
drir

2
i n

LC
0 (r)w(r)j`1(kri)j`1(qiri)

}
×P (k, η1, η2) , (3.100)

where we see that this last line matches the result obtained in Section (§2.3.2) of Chapter §2.

3.D Derivations of the Bessel integral transforms

Here we derive the integral transforms I`1`2(ν, τ) and M`1`2(ν,Λ) for a double spherical Bessel

integral of differing orders, with a power law. Starting with Eq. (3.68) for the case where k ≤ q,

with τ = k/q,

I`1`2(ν, τ) ≡
∫

dx x−νj`1(τx)j`2(x) , (3.101)

and substituting in the relationship between the Bessel function and its spherical counterpart:

j`(x) =

√
π

2x
J`+1/2(x), (3.102)
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gives

I`1`2(ν, τ) =
π

2
τ−1/2

∫
dx x−ν−1J`1+1/2(τx)J`2+1/2(x) . (3.103)

We can now use Gradshteyn [130] Eq. (6.574) to find analytic solutions for this, for different values

of τ . In the case where τ < 1, we have (from 6.574.1):

I`1`2(ν, τ) =
πτ `1Γ

(
`1+`2−ν+1

2

)
2ν+2Γ

(
−`1+`2+ν+2

2

)
Γ
(
`1 + 3

2

)2F1

(`1 + `2 − ν + 1

2
,
`1 − `2 − ν

2
, `1 +

3

2
, τ2
)
,(3.104)

Re[`1 + `2 − ν + 1] > 0 , Re[ν] > −2 , 0 < τ < 1 .

The RHS of this equation is not analytic where τ = 1, and so for this case we instead use Gradshteyn

Eq. (6.574.2):

I`1`2(ν, 1) =
πΓ
(
ν + 1

)
Γ
(
`1+`2−ν+1

2

)
2ν+2Γ

(
−`1+`2+ν+2

2

)
Γ
(
`1+`2+ν+3

2

)
Γ
(
`1−`2+ν+2

2

) , (3.105)

Re[`1 + `2 + 2] > Re[ν + 1] > 0 .

Next we consider Eq. (3.74) for the case where q < k and we make the substitution τ ′ = q/k:

M`1`2(ν, τ ′) ≡
∫

dx x−νj`1(x)j`2(τ ′x) . (3.106)

Substituting out the spherical Bessel functions for the regular Bessels as before, gives

M`1`2(ν, τ ′) =
π

2
τ ′−1/2

∫
dx x−ν−1J`1+1/2(x)J`2+1/2(τ ′x) , (3.107)

and to solve we use Gradshteyn Eq. (6.574.3), resulting in:

M`1`2(ν, τ ′) =
πτ ′`1Γ

(
`1+`2−ν+1

2

)
2ν+2Γ

(
`1−`2+ν+2

2

)
Γ
(
`1 + 3

2

)
× 2F1

(`1 + `2 − ν + 1

2
,
−`1 + `2 − ν

2
, `2 +

3

2
, τ ′2

)
, (3.108)

Re[`1 + `2 − ν + 1] > 0 , Re[ν] > −2 , 0 < τ ′ < 1 .
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Chapter 4

Clustering of the 4MOST simulations

The 4MOST1 (4-metre Multi-Object Spectroscopic Telescope) Cosmology Redshift Survey (CRS)

is an upcoming large-volume spectroscopic survey in the southern hemisphere. With the aim of

obtaining approximately four million accurate redshifts for multiple types of dark-matter tracers,

they key science goal of the survey is to help better understand the nature of dark energy and the

expansion rate of the universe. In advance of the survey launching in 2023, the 4MOST Facility

Simulator (4FS) team has been producing simulated data catalogues of the expected observations

from 4MOST, for use in forecasting and survey design optimisation. The aim of this current work

is to develop a clustering pipeline to analyse the simulated galaxy catalogues produced by the 4FS,

focusing on calculating two-point clustering statistics in both configuration and Fourier space. The

chapter breaks down as follows: in Section §4.1 and §4.2, we give an overview of the 4MOST project

and the CRS, outlining the survey specifications and main science aims. In Section §4.3 we give a

brief overview of the clustering estimators used by the pipeline software to calculate the statistics,

before then reviewing some of the results produced by the pipeline when run on the latest 4FS

catalogues in Section §4.4. We provide links to the relevant software libraries used in Appendix

§4.A, and a more detailed guide of each stage of the pipeline in Appendix §4.B.

4.1 The 4MOST project

The 4MOST instrument is an upcoming fibre-fed spectrograph being fitted to the existing Visible

and Infrared Survey Telescope for Astronomy (VISTA) facility in Chile. Forming part of the

European Southern Observatory’s (ESO) array of telescopes in the region, the new instrument is

being overseen and managed by the 4MOST consortium, with operations planned to start in Q3

2023, and an initial run time of five years.

The 4MOST project [153] consists of ten surveys being run in parallel2, with five of these

dedicated to studying the Milky Way galaxy, and the remaining five, which includes the CRS,

1https://www.4most.eu/cms/
2The 4MOST consortium surveys will be assigned 70% of the fibre hours with the rest going to community surveys.
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Figure 4.1: Table showing the expected survey parameters for the four different galaxy targets of the
4MOST Cosmology Redshift survey, from [54].

being extra-galactic in nature. The key aim of the galactic surveys is to complement the Gaia3

space observatory in understanding the formation and evolution of the Milky Way. By recording 18

million spectra from a variety of stellar populations, these surveys will provide a dense and deep map

of the stellar properties in the Milky Way and the Magellanic Clouds. The primary science goals

of the extra-galactic consortium surveys are to study the growth rate of structure in the universe,

test theories for the nature of dark energy and dark matter, constrain the cosmological equation

of state, as well as investigate the formation and evolution of the first stars, black holes, galaxies.

They will also look to study supermassive black holes and how they influence their surroundings

and host galaxies. These goals will be achieved by obtaining a total of 13 million low-resolution

spectra for galaxies, active galactic nuclei and quasars; and around 100,000 transient sources such

as supernovae, out to a redshift of 6.

The 4MOST instrument has a viewing plane of 4.2 square degrees, and the ability to observe

up to 2400 targets simultaneously through robotically controlled fibre-fed high and low resolution

spectrographs, with a target collision radius of 15′′. The telescopes will observe targets over an area

of 20, 000 square degrees in the southern hemisphere, in the visible to near-infrared wavelengths

(370nm < λ < 950nm), and a limiting AB magnitude of ∼ 20.2(15.8) for the low(high) resolution

spectrographs, from 6× 20 minute exposures. Due to the complicated nature of conducting a large

number of different surveys in parallel, specific tiling patterns and fibre assignment algorithms

have been developed [154, 155], to maximise fibre efficiency while meeting the required goals of

each survey.

4.2 The 4MOST Cosmology Redshift Survey

The 4MOST Cosmology Redshift Survey [54] will measure spectroscopic redshifts for four distinct

galaxy types: Bright Galaxies (BG), Luminous Red Galaxies (LRG), Quasars (QSO) and Quasar

Lyman Alpha’s (Lyα), shown in the table in Fig. 4.1, covering an area 7500 square degrees and

a redshift range of 0.15 < z < 3.5. The key science aim of the CRS is to help understand the

nature of dark energy, and more accurately constrain the expansion rate of the universe. Providing

a high number density of targets over a wide redshift range, the CRS will enable the measurement

of the growth rate of structure and baryon acoustic oscillations (BAO) in many fine-binned redshift

intervals, offering improved constraints over more data points. Additionally, there is currently no

3https://sci.esa.int/web/gaia/
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existing large-scale southern hemisphere redshift survey beyond the local Universe, a gap in the

data that 4MOST will fill.

Many of the key science aims of the CRS will be achieved through cross-correlations with

overlapping surveys, some of which are shown in shown in Fig. 4.2. In particular, utilising weak

lensing data from surveys such as KiDS4, LSST5 and DES6 will enable a ‘3x2’ point analysis of

combined probes: using galaxy-galaxy clustering measurements with galaxy-galaxy lensing (seeing

how foreground lens galaxies distort the shape of background source galaxies) and cosmic shear

(correlating shape distortions on background galaxies). This can be used to break the degeneracy of

galaxy bias with the growth factor - a vital step for recovery of underlying cosmological parameters.

Having accurate spectroscopic redshifts for source galaxies, which 4MOST will provide, will also

help to reduce systematics in the measurements from existing weak lensing data sets.

Being the only large-scale spectroscopic redshift survey in the southern hemisphere, the CRS is

also uniquely positioned to provide cross correlations with ongoing and upcoming CMB surveys such

as the South Pole Telescope7 (SPT), the Atacama Cosmology Telescope8 (ACT), CMB-S49 and

Simons Observatory10 (SO) which will map the CMB to unprecedented resolution and accuracy.

Much like galaxy-galaxy lensing, CMB photons are gravitationally deflected by the large-scale

distribution of matter in the Universe which leaves subtle imprints in the CMB temperature and

polarization anisotropies. These can be used to create a reconstructed map of the lensing potential,

indicating how matter is distributed, from which cosmological information can be extracted.

In advance of 4MOST launching, mock data catalogues are produced by the 4MOST Facility

Simulator (4FS), software designed to simulate what 4MOST will be able to observe over the initial

five year run period. This is a vital tool for examining how particular survey design specifications

are likely to affect survey outcomes, and is able to model the local operating environment, such

as long-term atmospheric and environmental conditions at the Paranal site in Chile. The software

runs on the latest algorithms for determining fibre-to-target assignment, survey strategy and tiling,

as well as survey balancing and feedback mechanisms, and so can be used to improve all of these

methods. To aid in the analysis of the catalogues produced by 4FS, we have created a clustering

pipeline in Python, detailed in Appendix §4.B, to perform two-point statistics on the mock CRS

data, and tested this on the latest available catalogues.

4http://kids.strw.leidenuniv.nl/
5https://www.lsst.org/
6https://www.darkenergysurvey.org/
7https://pole.uchicago.edu/public/Home.html
8https://act.princeton.edu/
9https://cmb-s4.org/

10https://simonsobservatory.org/
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Figure 4.2: Footprint of the 4MOST CRS shown in the shaded regions outlined in turquoise, and we refer
to the larger 4MOST footprint on the right as ‘field 1’ and the smaller on the left as ‘field 2’. Also overlaid
are footprints from some overlapping surveys which 4MOST will synergise with. Fig from [54]. Note that
the light coloured, higher density region in field 1 on the right denotes Emission Line Galaxy (ELG) tracers
that have since been removed from the scope of the CRS.

4.3 The two-point clustering estimators

4.3.1 In configuration space

To measure two-point clustering statistics in configuration space, our pipeline uses the TreeCorr

[156] and CorrFunc [157] Python libraries. The clustering algorithms employed by these libraries

use the Landy & Szalay (LS) [158] estimator, which has been shown [159] to outperform other

types of estimators on large scales while matching performance at small scales. The binned w(θn)

and ξ(rn) correlation functions are calculated in TreeCorr, and given by:

SLS(xn) =
DD(xn)− 2DR(xn) +RR(xn)

RR(xn)
. (4.1)

Here, S is the type of correlation function (e.g. ξ or w), measured in bins xn, and the quantities

DD, DR and RR correspond to normalised data-data, random-random, and data-random pair

counts, respectively. These are defined as

DD(rn) =
dd(rn)

Nd(Nd − 1)/2
, (4.2)

RR(rn) =
rr(rn)

Nr(Nr − 1)/2
, (4.3)

DR(rn) =
dr(rn)

NdNr
, (4.4)
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where Nd and Nr are the number of data and random points in the sample, respectively, and xx(rn)

are the pair counts in bin rn. The N(N − 1)/2 factors are to avoid overestimating the number of

pairs from double counting or self counting.

The projected correlation function wp(rp), performed using CorrFunc, can be calculated by first

breaking up the 3D correlation function into separations perpendicular to (rp) and parallel to (π)

the line of sight, before integrating along the line of sight. Specifically,

wp(rp) =

∫ ∞
−∞

ξ(rp, π)dπ , (4.5)

≈ 2

∫ πmax

0
ξ(rp, π)dπ , (4.6)

where the second line follows from assuming (large-scale) isotropy and imposing some finite upper

limit on the integral. This is a particularly useful measure when considering RSD, as these contam-

inate any radial positional data such that we cannot truly tell where the galaxy is. We can try to

negate this complication by performing a line of sight integral, providing the region of integration

is wide enough to make the approximation valid. Typically, πmax is set somewhere between 40 and

80 h−1 Mpc [160], with the default value in our implementation set to 50 h−1 Mpc. If set too small

then the amplitude may be under estimated, but if set too large then calculation can become very

slow and may be dominated by noise. The details of the implementation in CorrFunc can be found

in [157], and it uses the LS estimator as described above.

Covariance matrix calculations are performed using the ‘jackknife’ resampling method [161],

which consists of splitting the data into N sub-regions, the performing N clustering measurements

by omitting an individual region at a time for each measurement. The volume of one of these

individual measurements is then (N − 1)/N of the original full volume, and the covariance is given

by

Cjk(xi, xj) =
N − 1

N

N∑
k=1

(xki − x̄i)(xkj − x̄j) , (4.7)

where xi is the ith measure of the statistic of interest (out of N total measures), and the mean

is given by x̄i =
∑N

k=1 x
k
i /N . The jackknife method reduces the bias on an estimate, and in our

implementation, we divide our regions into equal slices in right-ascension for the calculation. Due

to the irregular survey geometry of 4MOST, this means the areas will be uneven in size for this

covariance estimate, an area of potential improvement for the code. The correlation matrices Ĉ are

calculated from the covariance matrices:

Ĉxixj =
C(xi, xj)

σiσj
, (4.8)

where σ2
i is the variance of the ith variable.

We also implement a simple fibre-collision correction on the w(θ) measurement of the output
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catalogues. Fibre collisions can occur where the physical size of the spectroscopic fibre prevents

observations of targets that are too close to each other on the sky [162]. This effect can thus hinder

observations in high target density regions such as those found in galaxy clusters, and will cause

a loss in observed clustering signal. The effect can partly be mitigated by an observing strategy

that involves repeated measurements of the same areas, so that close galaxy pairs can be measured

individually on separate visits, but is expensive in terms of fibre hours to completely eliminate.

The correction scheme [163] applied to w(θn) of the output catalogues involves multiplying the

results by an up-weighting factor wfc(θn), based on the expected clustering signal from the parent

catalogue (in this case, the input catalogues):

wfc(θn) =
1 + win(θn)

1 + wout(θn)
. (4.9)

Accounting for the fibre-collision effect for 3D clustering statistics is a more complicated process.

Various ‘nearest-neighbour’ approaches have been used, whereby one assigns a redshift to an unob-

served galaxy based on the redshift of the closest observed neighbour [164], or assigns the weight

of the unobserved galaxy to this observed neighbour [165]. The problems with these methods is

they do not properly account for the correlation between the observed and unobserved pairs, and

can also introduce systematics due to intrinsic alignments of galaxies. An alternate method, more

recently put forward in Bianchi & Percival [166], proposed a ‘pair-inverse-probability’ (PIP) weight-

ing scheme. This involves calculating the selection probability of a pair of galaxies by averaging

over many mock simulations, designed to accurately represent the survey in consideration, and then

using this to up-weight galaxy pairs by the inverse of the probability. Due to the current lack of

multiple realisations of 4FS simulations, as well as the complicated fibre-to-target algorithms used

by 4MOST to manage the demands of many different surveys simultaneously, we leave correcting

this effect for 3D statistics to future work. We note that a good starting point may be to test out

the methodology put forward in Smith et al. (2019) [167], where they combined the PIP method

with an angular upweighting scheme to a DESI-like Bright Galaxy mock sample to achieve an

unbiased correction to galaxy clustering measurements.

The results of the real space clustering measurements are calculated individually for each of the

two observing fields of the CRS (pictured in Fig. 4.2) and then averaged using an inverse variance

weighting. These results are stored in the ‘full 4FS results’ class, the attributes of which are listed

in Table 4.6.

4.3.2 In Fourier space

The pipeline uses the nbodykit [168] Python library to perform power spectrum measurements,

which we chose over our own implementation of an estimator detailed in Chapter §2, due to it

being well documented as well as having ongoing support. The library has an implementation of

a FFT-based anisotropic power spectrum estimator, with multipole decomposition. The details of

this are covered in [169], which is based on the Yamamoto estimator [170], and we give a brief
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review here.

Similar to derivations found in Chapters §2 & §3, we start by defining the weighted galaxy

density field:

F (r) =
wFKP(r)[ng(r)− αns(r)]

A
, (4.10)

where ng(r) and ns(r) are the number densities of the data and random catalogues respectively,

and the α factor renormalises the density of the randoms if the catalogues have a differing total

number of objects N : α = Ng/Ns. The wFKP term is the optimal weighting (see Eq. (2.63)) of

Feldman, Kaiser and Peacock [78], and normalisation A is:

A =
[ ∫

d3r w2
FKP(r)n̄2(r)

]1/2
, (4.11)

with n̄(r) the mean number of objects at position r. The estimator for the multipole moments of

the power spectrum is then given by

P`(k) =
2`+ 1

A2

∫
dΩk

4π

[ ∫
d3r1

∫
d3r2 F (r1)F (r2)eik·(r1−r2)L`(k̂ · r̂h)− P noise

` (k)
]
, (4.12)

where rh ≡ (r1 + r2)/2 is the line-of-sight to the mid-point of the two objects, L`(x) are Legendre

polynomials and P noise
` (k) is the shot noise term:

P noise
` (k) = (1 + α)

∫
d3r n̄(r)w2

FKP(r)L`(k̂ · r̂) . (4.13)

By defining the Fourier transformed galaxy density field multipoles as

F`(k) ≡
∫

drF (r)eik·rL`(k̂ · r̂) ,

=
4π

2`+ 1

∑̀
m=−`

Y`m(k)

∫
drF (r)Y ∗`m(r)eik·r , (4.14)

where we have made use of the addition theorem of the spherical harmonic functions Y`m(x̂), the

expression for the power spectrum multipoles simplifies to

P`(k) =
2`+ 1

A2

∫
dΩk

4π
F0(k)F`(−k) . (4.15)

This estimator is implemented in nbodykit by painting the data and random points onto a combined

3D mesh, with the integrals turning into sums over the grid. The sum over m has 2`+ 1 terms and

so each calculation of P`(k) only requires this many FFT operations.

The discretisation of particles onto a grid causes some amount of aliasing, caused by spurious

contribution to high-k modes, corresponding to small-scale modes not supported by the grid that

masquerade as modes of the frequency range we are interested in. To reduce the effects of this
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aliasing as k approaches the Nyquist frequency of the grid (kNyq, the maximum k mode the grid

can support), we opt to use Triangular-Shaped Cloud (TSC) interpolation on to the grid with the

interlacing technique, outlined in [109]. Simply put, this technique involves the averaging of two

grids that are offset by half a cell width in each direction, which causes the aliasing contributions

to destructively interfere. This technique, in combination with TSC, is able to achieve at least sub-

percent accuracy on P (k) measurements right up to the Nyquist frequency. We also have window

compensation turned on as default, to deconvolve the mass-assignment window-kernel function (see

equation (18-21) in [108], and the specific nbodykit page11 for more information).

As nbodykit does not include any in-built functionality for covariance matrix calculation, a

rough estimate for the error on the power spectrum is calculated by the pipeline as

σP`(kn) =

√
2

Nk

[
P`(kn) +

1

n̄

]
, (4.16)

where Nk is the number of modes in the knth bin, and the second term in the square brackets

is the contribution from the shot noise. Here we have used the Gaussian approximation that the

covariance matrix is diagonal, and the selection function is constant everywhere [107]. We will

implement the more robust but time consuming jackknife covariance technique via MPI in a future

update, to be in line with how the covariance is calculated for the configuration-space measurements.

4.4 Clustering in the 4MOST OpSim Output

We use the latest input and output catalogues from the 4FS simulation data to test the pipeline,

for all of the four tracers that will be targeted by the CRS. The input data was generated by

the 4FS team from the UNIT12 simulations, which runs on the GADGET-2 [104] N -body simula-

tion code. This is then run through the 4FS OpSim simulation code to generate the output

data. The input file is from the ‘cat-20210525’ batch, while the outputs come from the file

‘iwg2 20210610 run03fix4newtiling’. Table 4.1 lists some key properties of these catalogues

by tracer type, including number of targets in each as well as the completeness and sky densities

of the output catalogues. The sky coverage of the total footprint for the CRS is approximately

7500 deg2, with field 1 contributing ∼ 65% to this and and the remaining ∼ 35% covered by field

2.

For all of our configuration-space clustering measurements, we chose to measure in 20 log-spaced

bins, with ranges of 0.01 < θ < 10 [deg], 0.1 < r < 50 [h−1 Mpc] and 0.1 < rp < 50 [h−1 Mpc]

for the w(θ), ξ(r) and wp(rp) measurements, respectively. We also set a default value of πmax = 50

[h−1 Mpc] for the projected clustering, and calculate the covariance using 20 jackknife regions.

The results of the real-space w(θ) measurement are shown in Fig. 4.3, where each of the subplots

represents a tracer type, with the upper part of the plot showing the measurements and the lower

part showing the fibre-collision correction wfc applied to the displayed output data points using

11https://nbodykit.readthedocs.io/en/latest/mesh/creating.html
12https://unitsims.ft.uam.es/index.php/simulations
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Figure 4.3: Figure showing the results of the angular clustering measurement w(θ), for all tracers and both
input and output catalogues. Each plot has a subplot showing the correction for fibre collisions, which has
been applied to the output results, and is more dominant at smaller scales. The lighter blue and red points
joined by dashed lines show positive values, while the darker red and blue points joined by dotted lines show
the modulus of negative values. We also fit a power-law model to the data, using the positive values only,
which is shown by the grey dashed lines with the fitted parameters given in Table 4.2.
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Tracer Nin Nout n̄out [deg−2] Redshift range Completeness

BG 1.89× 106 1.42× 106 189 0.02 ≤ z ≤ 0.62 74.8%
LRG 3.02× 106 1.95× 106 260 0.01 ≤ z ≤ 1.13 64.6%
QSO 1.06× 106 7.87× 105 105 0.90 ≤ z ≤ 2.20 74.4%
Lyα 3.75× 105 3.01× 105 40 2.20 ≤ z ≤ 6.00 80.1%

Table 4.1: Table showing the number of objects in the input and output catalogues used to test the pipeline,
by tracer type. Also included is the angular number density of targets in the output catalogue n̄out, the
redshift range spanned by the data and the completeness: (Noutput/Ninput)%.

Tracer Aω γ

BG (1.13± 0.05)× 10−2 1.77± 0.01
LRG (6.93± 0.36)× 10−3 1.77± 0.02
QSO (5.59± 1.23)× 10−4 2.04± 0.07
Lyα (3.62± 0.62)× 10−4 1.70± 0.06

Table 4.2: Table showing the obtained parameters of the power law, given by Eq. (4.17), when fitted to the
angular clustering measurements of the output catalogue data.

Eq. (4.9). The results from the input(output) catalogues are plotted with red(blue) lines for all

of the following configuration-space measurements. At larger scales where there is more noise

and some points become negative, we have plotted the modulus, represented by the darker colour

markers and joined by dotted instead of dashed lines. We also perform a power-law fit to the output

measurements for reference:

w(θ) = Aωθ
1−γ , (4.17)

represented by the grey dashed lines, where we only use positive values in the fit, with the resulting

parameter values Aω and γ given in Table 4.2. Both the BG and LRG tracers are well represented by

a power law up to scales of about one degree, before this relationship begins to break down. We find

a slope parameter of γ ∼ 1.75 for the power-law fits to the BG, LRG and Lyα samples, with a value

similar to that found by 2dFGRS and SDSS (γ ' 1.7 [171], γ ' 1.72 [172], γLRG = 1.67 ± 0.07

[173]), with the QSO slope parameter being slightly higher than expected. The QSO and Lyα

tracers, being sparser in number density, follow the power-law relationship much more loosely,

with the QSO angular clustering showing signs of break-down at around 0.4 degrees. While the

fibre-collision correction by design forces the output measurements to exactly match those of the

input, this matching has been mildly broken in some cases by the inverse variance weighting when

averaging the results from the two survey fields. The associated correlation matrix, calculated from

the covariance matrix, is shown for the output catalogue measurements in Fig. 4.4.

The real-space 3D and projected clustering measurements are shown in Fig. 4.5 and Fig. 4.6

for all tracers. We also plot the redshift-space ξ(r) measurements for the BG and LRG samples

from the input(output) catalogues with orange(green) lines, as this information is also available in
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Figure 4.4: The correlation matrices for the output samples of the w(θ) measurements in Fig. 4.3.
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Figure 4.5: Figure showing the results of the real-space 3D clustering measurement ξ(r), for all tracers
and both input and output catalogues. We also plot the redshift-space measurements for the BG and
LRG tracers. We perform a power-law fit to the data, represented by a dashed grey line, with the best-fit
parameters given in Table 4.3.

the 4FS raw data. For these redshift-space measurements, the linear Kaiser effect can be seen by

a boost in amplitude at larger scales, with the Fingers-of-God effect causing damping at smaller

scales. We fit power laws of the form [174]

ξ(r) =
(r0

r

)γ
, (4.18)

wp(rp)

rp
=

(r0

rp

)γ[Γ
(

1
2

)
Γ
(γ−1

2

)
Γ
(γ

2

) ]
=
(r0

rp

)γ
A(γ) , (4.19)

to the real-space output results, where in the second line A(γ) represents the term in the square

brackets, and Γ(x) is the gamma function. As with the angular measurements, we only fit to
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Figure 4.6: Figure showing the results of the real-space projected clustering measurement wp(rp), for all
tracers and both input and output catalogues, with πmax = 50 [h−1 Mpc]. We perform a power-law fit to
the data, represented by a dashed grey line, with the best-fit parameters given in Table 4.3.

positive values, and for ξ(r) fit in the regions r > 3 Mpc h−1 for BG and LRG, and r > 1 Mpc h−1

for QSO and Lyα, to reduce the effects of non-linear clustering. We display the fitted parameters

in Table 4.3. For ξ(r), we find a fitted power-law slope parameter γ, for all of the tracers, to

be within a few error bars of measurements from 2dFGRS (γLRG ∼ 1.72 ± 0.06 [173]) and SDSS

(γQSO = 1.55 ± 0.3 [175]). The BG, LRG and QSO samples start to deviate from the power-law

form on larger scales at around 20 h−1Mpc, with the BGs showing a break down at approximately

35 h−1Mpc. Similarly, the fit to the projected clustering results gives a slope parameter within a

few error bars of 2dFGRS and SDSS (γLRG = 1.83± 0.05 [173], γQSO = 1.86± 0.23 [175]). The fits

perform visibly worse in this case, due to the characteristic inflections in wp(rp) at around rp ∼ 1−2

h−1Mpc, caused by the transition between the small-scale one halo regime to the large-scale two

halo regime, as predicted by Halo Occupation Distribution (HOD) models [176, 177]. For both of
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Tracer ξ(r): r0 ξ(r): γ wp(rp): r0 wp(rp): γ

BG 5.09± 0.02 1.62± 0.02 4.19± 0.08 1.81± 0.02
LRG 6.43± 0.02 1.58± 0.01 5.17± 0.12 1.85± 0.03
QSO 5.30± 0.07 1.39± 0.01 4.36± 0.19 1.90± 0.05
Lyα 6.15± 0.21 1.49± 0.03 5.28± 0.13 1.72± 0.03

Table 4.3: Table showing the obtained parameters of the power laws, given by Eq. (4.18) & (4.19), when
fitted to the 3D and projected measurements of the real-space output catalogue data.

these statistics, we see small scale drops in the output catalogues compared to the inputs, most

likely due to the fibre-collision effect. This is more pronounced in the lower target density QSO

and Lyα catalogues.

We show measurements of the real-space monopole power spectrum in Fig. 4.7, additionally

including the redshift-space measurements for the BG and LRG samples, using the same colour

scheme as in the previous plots. The catalogues are painted to a 10243 mesh, minimising the

effects of high-k aliasing by using the Triangular-Shaped Cloud mass assignment scheme with the

interlacing technique (described in Chapter §2 and Section §4.3.2). The measurements are taken

in linearly-spaced bins13 between 0.01 < k < kNyq, with the bin width varying by tracer type to

ensure an appropriate number of measurements are obtained for each sample. We use FKP weights

with Pfid = 104 h−3 Mpc3, and also plot the theoretical prediction from CAMB [102] for the matter

power spectrum at z = 0 for reference. We see good agreement between input and output catalogues

at larger scales, with a visible drop in power for the BG and LRG output catalogues at the more

non-linear scales, most likely due to the fibre-collision effect. For these two tracers, the Kaiser and

Fingers-of-God effects caused by RSD can be clearly seen with the yellow and green lines, similar

to the configuration-space measurements.

In Fig. 4.8 we show an example of the redshift-binned power spectrum measurements for the

output LRG and QSO catalogues, plotting only a few of the bins for clarity. The pipeline is able

to perform this binned measurement for any number of redshift bins and across all catalogues, in

both real and redshift-space (where available), which can be used to test how parameters like the

growth rate evolve as a function of cosmological time.

4.5 Pipeline summary and future work

In its first five years of operation, the upcoming 4MOST Cosmology Redshift Survey will obtain

accurate spectroscopic redshifts for roughly four million galaxies over a significant portion of the

southern hemisphere and spanning a wide redshift range. Such a large catalogue will enable tighter

constraints on cosmological models and help in the task of understanding the nature of dark energy,

via measurements of galaxy clustering and cross-correlations with weak lensing and CMB surveys.

13Currently, nbodykit is unable to measure in log-space bins, which are useful for measuring the power on large-
scales. This feature has been requested.
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Figure 4.7: Measurements of the real-space monopole power spectrum for the four tracers for both input
(red line) and output (blue line) catalogues. We also show the redshift-space measurements where available
in green and yellow-dashed lines. The theoretical prediction for the matter power spectrum from CAMB at
z = 0 is plotted as a dashed black line for reference.

In advance of the CRS going live, it is imperative to run simulations of the expected performance

of the instrument, particularly as the 4MOST project is a complex multi-survey operation. To aid

in the analysis of the simulation outputs for the CRS, we have developed a clustering pipeline,

focusing on data validation, creation of mock-random catalogues and two-point clustering statistics

in both configuration and Fourier space. While these stages are all performing as intended, there

are several areas where improvements can be made, which we summarise as following:

• Currently, the output files generated by the 4MOST OpSim do not have any radial positional

data (redshifts), and so the most labour intensive stage of the pipeline is having to use the

TOPCAT [178] software to perform a merge on the input and output raw data files to pull

this information through. This merge then also produces duplicate columns that have to be
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Figure 4.8: Measurements of the real-space monopole power spectrum in redshift bins for the LRG and
QSO tracers. The theoretical prediction for the matter power spectrum from CAMB at z = 0 is plotted as
a dashed black line for reference.

removed. In future versions of the OpSim where the full 3D information is generated, this

entire data cleaning and reduction stage of the pipeline can easily be automated in Python,

significantly reducing the amount of manual work that has to be done up front.

• The jackknife covariance matrix calculation on the real space clustering statistics is one of

the main bottlenecks in terms of speed at present. This is performed by each task looping

over the jackknife region and calculating the correlation functions in a sequential manner,

but could be adapted so that each task on a node is given a region to calculate via MPI, with

the root task then collating the results to calculate the covariance matrix. However, an even

more efficient algorithm could be employed, whereby instead of repeating the pair counts for

every jackknife region, the pair counts could just be performed once for the entire region, and

then one could use a weighting scheme for the individual pair counts at the binning stage.

Using this method, the pair weights would be equal to 1 if the galaxy pair is in scope for

this region, and 0 if one or both of the galaxies of the pair are out of scope. This would

drastically speed up computation time such that it would remain roughly the same as for a

single calculation, regardless of how many jackknife regions are chosen, but requires a more

sophisticated algorithm in terms of weights at the binning stage.

• The error calculation on the Power spectrum (Eq. (4.16)) currently assumes a diagonal co-

variance matrix and constant survey selection function, but should be upgraded to use the

jackknife technique (or equivalent) to give more robust results. It is also worth drawing

attention to the very recent work of Mohammad & Percival (2021) [179] on Jackknife meth-

ods for 2-point correlation functions, where they compare different Jackknife methods and

demonstrate correction terms that can be used to obtain unbiased results.
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• We currently only employ the fibre-collision correction on the angular clustering statistic

w(θ) for the output catalogue, via the simple method of comparison with the expected signal

from the input catalogue, but this should be extended to all of the statistics to account for

missing pairs that particularly effect the smaller scales. This will be a challenging tasks for

the 4MOST survey and outside the scope of the current work, due to the complicated and

stochastic nature of the fibre assignment process when dealing with targeting many different

tracers for multiple surveys simultaneously.

• As the 4FS OpSim catalogues provide data on reddening caused by dust in the interstellar

medium, this information could be used to weight the clustering statistics to improve results.

• The next major stage of the pipeline will be to use the output measurements for forecasting

on parameter constraints, which will require accurate and fast modelling of the theoretical

predictions for each of the statistics. While we have demonstrated a model with accompa-

nying code to forward-model the full-sky window-convolved power spectrum in Chapter §2,

extending this to improve speed and include angular survey masks and galaxy bias (described

in Chapter §3) remains a challenging prospect.

137



Appendices

4.A Clustering pipeline software and links

The three main pieces of software required for the pipeline are Python3.6, TOPCAT14, and Jupyter

Notebooks. Links for the pipeline, including download locations of the code and of the data files, is

provided in Table 4.4. In Table 4.5 we list the Python libraries required for the clustering pipeline

to run, as well as the versions used to write the code.

Item Link

Clustering pipeline code https://github.com/danpryer/4FS_clustering_pipeline

Input and Output data catalogues https://4most.mpe.mpg.de/IWG2/

Survey mask files15 https://gitlab.mpcdf.mpg.de/joco/lss_mock_dev/

UNIT simulations https://unitsims.ft.uam.es/index.php/simulations

Table 4.4: Links to key files needed to run the clustering pipeline.

4.B The clustering pipeline

We now give a more detailed overview of the clustering pipeline. In terms of data that is most

relevant to the CRS, the 4FS takes a large target input catalogue of positional galaxy data, and

then produces an output catalogue of the measurements, including data on the probability that

each target was observed. We can then use this data to make any relevant redshift and magnitude

cuts, while keeping only observed targets, and then feed this into the clustering pipeline for further

analysis. Radial redshift data is provided in both real and redshift space, with the latter, enabling

the measurement of redshift-space distortions (RSD), only provided for the BG and LRG tracers.

The clustering pipeline is broken up into several stages, with an initial data cleaning stage

performed using TOPCAT [178], to separate the full output catalogue down into separate tracer

catalogues specific to the CRS (for the BG, LRG, QSO and Lyα targets). The remaining stages of

the pipeline are coded in Python3.6, with any visualisation steps performed in Jupyter Notebooks.

The pipeline generates mock random un-clustered catalogues to go alongside the simulated data

14http://www.star.bris.ac.uk/ mbt/topcat/
15Navigate to the data → masks folder and download the atlasngc, atlasngcnotdes, des, kidsn and kidss polygon

files.
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Library Version Link

NumPy 1.19.5 https://numpy.org/doc/

Matplotlib 2.2.2 https://matplotlib.org/

Numba 0.51.2 https://numba.pydata.org/

Jupyter 1.0.0 https://jupyter.org/

Pandas 0.22.0 https://pandas.pydata.org/

Mpi4Py 3.0.0 https://mpi4py.readthedocs.io/en/stable/

AstroPy 4.1 https://www.astropy.org/

SciPy 1.5.4 https://scipy.org/

HealPy 1.12.0 https://healpy.readthedocs.io/en/latest/

PyMangle 0.9.2 https://github.com/esheldon/pymangle

Fitsio 0.9.11 https://pypi.org/project/fitsio/

nbodykit 0.3.7 https://nbodykit.readthedocs.io/en/latest/

TreeCorr 4.1.7 https://rmjarvis.github.io/TreeCorr/

CorrFunc 2.2.0 https://corrfunc.readthedocs.io/en/master/

CAMB 1.3.2 https://camb.readthedocs.io/en/latest/

Table 4.5: List of Python libraries used by the pipeline, including versions used in development, and links
to main document pages.

catalogues, for use in the two-point clustering statistics. We use the TreeCorr library to perform

both 3D ξ(r) and and angular w(θ) correlation function measurements, and the CorrFunc library

to produce projected clustering measurements, wp(rp). For Fourier-space clustering, we use the

nbodykit library, which provides measurement of the power spectrum multipoles P`(k), which are

particularly useful when studying the effects of redshift space distortions.

The pipeline is designed to be run on a HPC, and uses parallelisation via the Python imple-

mentation of MPI (mpi4py [115]). In addition to this, the TreeCorr and CorrFunc libraries use

OpenMP16 under the hood to speed up pair counting operations. The nbodykit library can be

configured to run data I/O and Fast Fourier Transforms (FFTs) in parallel however we have not

currently implemented this due to the relatively small data sets from 4FS, as well as a good baseline

speed from the library without these features.

In the following sub-sections, we give a more detailed outline of each stage of the pipeline (also

pictured in Fig. 4.9), listing any parameter configurations that are required at each stage, as well

as any relevant background equations for the statistical tools used. The pipeline is designed to be

as ‘hands-off’ as possible, aside from the initial data cleaning stage performed in TOPCAT. Links to

relevant websites for the pipeline code data catalogues and survey mask files, as well as the list of

software requirements, are covered in Appendix §4.A.

4.B.1 Stage 1 - Folder preparation (Python)

The first stage of the pipeline involves setting up the relevant folder structure on the machine that

the pipeline is to be run on, as well as defining some key properties relating to the catalogues being

16https://www.openmp.org/
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Stage 2a – Data cleaning 
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Stage 3a – Create mock 
randoms
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spectrum
(python)
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spectrum, z-binned
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powerspec_zbins.py to calculate P(k) 
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Figure 4.9: Flow diagram of the clustering pipeline in its current form.

processed. The user can modify the variables in the ‘initial setup.py’ program, specifying the

main file path for where the data and results are to be stored, and then once run, the program will

create the hierarchy of folders required for the rest of the pipeline, as well as saving the relevant

catalogue variables for a given run to a pickle file to be read by the latter stages of the code. The

user will also provide the cosmological parameters from the initial N-Body simulation that was

used to create the input simulation data. The created folder structure is shown in Fig. 4.10.

Once the folder structure is set up, the raw input and output data catalogues, as well as the

survey mask files, should be downloaded and placed into the relevant folders as indicated in the

folder structure diagram.
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Figure 4.10: The folder structure created for the data being fed into, and created by, the pipeline, as well
as the results that it produces. Each run of the pipeline will have a specified catalogue name, 〈cat name〉,
and stage 1 generates run-specific folders for any of the blue boxes in the diagram that have this variable in
the name.

4.B.2 Stage 2a - Data cleaning (TOPCAT)

The second stage of the pipeline involves some cleaning of the input and output data files from

4FS, which can contain many columns of data, a lot of which are redundant for our clustering work.

The aim of this stage is to create reduced catalogues which contain only the necessary columns,

which are the angular and radial data columns, as well as any magnitude and colour information

which can be used to make data cuts where necessary. If the raw output files do not contain any

radial or magnitude/colour information, then a merge can be performed in TOPCAT on the input

files to pull this information through. Resulting reduced catalogues should be saved as FITS files

to the relevant Input and Output data folders as specified in Stage 1, with the minimum columns

needed for the rest of the pipeline to run being ‘RA’, ‘DEC’ and ‘REDSHIFT ESTIMATE’ (case

sensitive). The BG and LRG tracers will also have a ‘redshift S’ column (redshift-space redshift

measurement), which can be included for RSD measurements if desired. As the QSO and Lyα

141



samples are at a much higher redshift, the peculiar velocity component of their observed recession

velocity will be much less than the Hubble flow velocity, so only one redshift is given. The files

should be named as ‘input reduced 〈tracer〉.fits’ and ‘output reduced 〈tracer〉.fits’, with 〈tracer〉 ∈
{BG, LRG, QSO, Ly-α}. The raw output files will also contain a ‘fobs’ column, detailing if the

specified target has been observed or not, and suitable filter should be put on this column before

saving (e.g. only rows where fobs ≥ 1). Additionally, at this stage one could choose to make any

redshift or magnitude cuts to the data before proceeding.

4.B.3 Stage 2b - Data preparation (Python)

The next step involves adding Cartesian coordinates and comoving distances to the eight re-

duced catalogues. This is done by running the file ‘add cords.py’, which uses the ‘comov-

ing distance’ function from the ‘FLRW’ class of the Astropy cosmology class, as well as the ‘spheri-

cal to cartesian’ function from the Astropy coordinates class. This stage will overwrite the reduced

catalogues, now containing four additional columns: ‘comov dist’, ‘xpos’, ‘ypos’ and ‘zpos’. For

the LRG and BG samples, redshift-space Cartesian coordinates will aso be added (‘comov dist S’,

‘xpos S’, ‘ypos S’ and ‘zpos S’) if the ‘redshift S’ column was included in the previous stage.

4.B.4 Stage 3a - Creating mock random catalogues (Python)

Mock random (un-clustered) catalogues are then generated by running the ‘parallel rand gen.py’

file. As this is parallel code using MPI, it should be submitted to a job queue on a HPC, and is

designed to run on Ncat × Ntracer tasks. for example if we have two sets of catalogues (input and

output) and four tracer types, this will run on eight tasks producing eight random catalogues. The

resultant catalogues will have Ndata × Rmulti = Nrand points, where the random multiplier Rmulti

variable is set in the catalogue variables class in stage 1. An example submission script for how to

run this on an HPC using the Slurm17 workload manager is provided in ‘submit rand gen.sh’.

To create the random catalogues, the data catalogues are first broken up into their separate

fields (where field 1 is the larger field on the right of figure 4.2, and field 2 the smaller on the

left) for speed purposes18, with a square in angular space placed around each field, and random

points generated uniformly in RA and sin(DEC) within each square. The program then uses the

polygon survey footprint files, together with functions in the ‘surv footprint.py’ file, to see if the

generated points are in scope, discarding any that are not. For the input catalogues, this process is

repeated until we have the desired number of points Nrand in scope for each field. For the output

catalogues, we generate more random points than are required, based on the completeness of the

sample. We then use a Healpix map to down weight the randoms on a pixel by pixel basis, to

match the varying angular completeness, such that we end up with the correct Nrand) points overall.

17https://slurm.schedmd.com/documentation.html
18Note that this splitting into fields may artificially suppress any Poisson fluctuations between fields, if present,

and so this should only be done when the target densities are equivalent for the fields (as is the case in our mock
catalogues used in our tests.)
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The Healpix nside parameter, which determines how many pixels a Healpix map will contain and

is given by

nside = 12× 2n , (4.20)

is set with n = 2, giving a pixel area of ∼ 1.5 square degrees, to match the 4MOST viewing plane

as closely as possible.

To obtain random redshifts, the program will take Rmulti randomly shuffled copies of the ‘RED-

SHIFT ESTIMATE’ column from the data catalogue. Finally, the program will then calculate

and add the comoving distance and Cartesian coordinates for these random points, and save the

resulting catalogues to FITS files in the respective randoms folders, as shown in Fig. 4.10.

4.B.5 Stage 3b - Data and Randoms validation (Jupyter Notebook)

Before running the clustering measurements, the data and random catalogues can be inspected in

the ‘validate catalogues.ipynb’ Jupyter notebook. A multi-grid plot is produced for each of the

tracers, showing Healpix maps of the data and randoms for both input and output catalogues, as

well as a radial profile of the number density n(z), and completeness of the outputs. The plots

are saved for each tracer into the relevant ‘plots validation’ folder, and an example for the Bright

Galaxy (BG) sample is shown in Fig. 4.11. This notebook is intended to serve as an easy visual

tool to check that the random catalogues have been created in the correct survey footprint, as well

as checking that there are no problem areas in terms of completeness of the output sample. It can

also be used to check if there are any irregularities of the radial selection function via the n(z) plot.

4.B.6 Stage 4a - Real-space clustering (Python)

Once the data catalogues have been cleaned and the associated random catalogue generated, we

can run the file ‘parallel corr.py’, which will use the functions in ‘twopointcorr.py’ to calculate

the real-space two-point clustering statistics w(θ), ξ(r) and wp(rp). As with stage 3, this step is

also designed to run on a HPC for speed, and, following the previous example, will run on eight

tasks using MPI (one for each task and catalogue combination). The TreeCorr and CorrFunc

programs used to calculate the statistics run OpenMP under the hood for parallelisation, and so

it is recommended that each task has its own full node to run on, with all the CPUs on the

node given over to the OpenMP parallelisation. An example Slurm script for this can be found in

‘submit parallel corr.sh’, showing the specific task and CPU configurations.

Before running the program, variables can be configured at the top of the Python file, to specify

the number of bins and bin ranges for each of the statistics to be calculated. The user can also

specify the number of OpenMP threads to use, and the number of jackknife regions to split the data

into for covariance matrix calculation. Finally, one can specify which of the three statistics to

calculate via the ‘statistics’ variable array, and also add a custom string onto the naming of the

results files, if one wants to take measurements with different parameter configurations and save
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these all to separate files.

The TreeCorr and CorrFunc libraries use the Landy-Szalay estimator to calculate the correla-

tion functions, which we discussed in section §4.3.1, along with the jackknife method for calculating

the covariance matrices, and a simple fibre-collision correction is performed on the angular w(θ)

measurements. Calculations are done individually on each of the two footprint fields, and then

averaged using an inverse variance weighting scheme19. The results are saved in a results class ob-

ject (‘full 4FS results’ - see Table 4.6 for a list of attributes) in the associated input and output

results folders.

4.B.7 Stage 4b - Fourier-space clustering (Python)

To perform measurements of the Fourier-space clustering of the 4FS data, we employ the widely

used Python library nbodykit20. This code implements an FFT-based anisotropic estimator of the

power spectrum and its multipoles, detailed in [169] and which we briefly covered in Section §4.3.2.

The library computes the survey-window convolved power spectrum, with optional functionality

for a choice of custom weighting and mesh interpolation schemes, anti-aliasing, parallelisation and

more. We opt to use this code over our own implementation, discussed in Chapter §2, due to it

being well documented and will have ongoing support and updates.

We use this library in our program ‘powerspec.py’, which is designed to be run as an array

job on a HPC (included example run script ‘submit powerspec.sh’), with each job calculating

a specific catalogue and tracer combination. Some variables for each run can be configured at the

top of the program, such as bin parameters, FFT mesh resolutions and interpolation schemes, as

well as anti-aliasing options. As a default, the program computes the ` = [0, 2, 4] multipoles of the

power but this can be set to any combination of any `’s the user needs: nbodykit and the pipeline

can calculate and store up to arbitrary order. The calculation is performed over the whole survey

region (both fields at once), with the main run parameters stored in a parent class, and the specific

power spectrum measurements stored in a child class which then gets attributed to the parent21

and saved to the relevant output folders.

4.B.8 Stage 4c - Fourier-space clustering in redshift bins (Python)

Measurement of the power spectrum multipoles can also be calculated over a range of redshift bins,

using the ‘powerspec zbins.py’ program, which functions similar to ‘powerspec.py’ except for

a few differences. In this instance, the program only calculates for one tracer and catalogue combi-

nation at a time, with the majority of the run parameters specified as command line arguments22.

A sample Slurm script for this program is included in ‘submit powerspec zbins.sh’. The results

are stored in the same class structure as the full survey volume results, where we have a parent

19Note the covariance matrices are averaged using a simple average, Cavg = (C1 + C2)/2 .
20https://nbodykit.readthedocs.io/en/latest/index.html .
21The ‘results powerspec’ class is the parent and the ‘powerspec measurement’ class is the child, see Tables

4.7 & 4.8 at the botto of this Appendix for details.
22To enable the user to quickly submit multiple jobs to a HPC queue.
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List of attributes of the real-space correlation function results class

Attribute Type Description

bin mid 1D array Mid point of the measurement bin.
res 1 1D array Clustering result from field 1 .
res 2 1D array As above for field 2.

res avg 1D array Average of the results from field 1 and 2.

err 1 1D array Error on the calculation for field 1 .
err 2 1D array As above for field 2

err avg 1D array Average of the errors from field 1 and 2.
cov 1 2D array Covariance matrix for field 1 calc.
cov 2 2D array As above for field 2.

cov avg 2D array Average of the covariances from field 1 and 2.

DD1 1D array
DD2 1D array
RR1 1D array Pair counts for the fields.
RR2 1D array
DR1 1D array
DR2 1D array

res 1 uncorr 1D array w(θ) only. Result without fibre-collision correction, field 1
res 2 uncorr 1D array w(θ) only. Result without fibre-collision correction, field 2
fibre 1 corr 1D array w(θ) only. Fibre-collision correction factor, field 1
fibre 2 corr 1D array w(θ) only. Fibre-collision correction factor, field 2

Table 4.6: Description of the attributes stored in the ‘full 4FS results’ class, generated by the three
real-space clustering statistics, ξ(r), w(θ) and wp(rp).

class for the overall run parameters, then an instance of a child class for each set of measurements

in a given redshift bin.

4.B.9 Stage 5 - Clustering Results (Jupyter Notebook)

A Jupyter Notebook ‘cluster results.ipynb’ is provided for accessing and plotting the results from

the clustering measurements. Example plotting routines are provided for all statistics, including the

covariance and correlation matrices, and the resulting plots are saved in the relevant ‘plots results’

folder. We discuss some of the plots generated by this notebook in Section §4.4

Contributions

All of the work in this chapter, including the development of the clustering pipeline, was undertaken

by myself, with feedback, suggestions and guidance from my supervisor Dr. Jon Loveday. The

pipeline uses several key Python libraries, particularly for performing clustering statistics, and I

have indicated as necessary where this is the case.
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List of attributes of the P`(k) parent class

Attribute Type Description

tracer string Which tracer the calculation is for.
catalogue string ‘input’ or ‘output’ catalogue.

Nmesh Int Mesh resolution of the FFT grid.
window String Mass assignment scheme used.

interlaced Boolean If interlacing was used.
compensated Boolean If compensating for the mass window was used.

Ndata Int Number of data points in the full volume.
Nrand Int Number of random points in the full volume.

Nbins Z Int Number of redshift bins if doing a binned measurement.
Z edges 1D double array Edges of the redshift bins.

Z bins mid 1D double array Mid points of the redshift bins.

Table 4.7: Description of the attributes stored in the ‘results powerspec’ class, generated by the power
spectrum calculation using nbodykit. This is the parent class for the overall run, and will also store an
instance of the ‘powerspec measurement’ class in Table 4.8 for each redshift bin measurement that is
performed. These child classes will be named [‘bin0’, ‘bin1’, ‘bin2’, ..., ‘binn’].

List of attributes of the P`(k) child class

Attribute Type Description

bin mid 1D double array Mid point of the measurement k bin.
multipoles 1D int array Array of ` modes to be measured.

Pk0 1D double array Monopole P0(k) measurement.
Pk2 1D double array Quadrupole P2(k) measurement.
... ... ...

Pkn 1D double array nth pole measurement of the power spectrum.
Pk0 err 1D double array Error on the monopole power.
Pk2 err 1D double array Error on the quadrupolepole power.

... ... ...
Pkn err 1D double array Error on the nth pole measurement.

Nmodes 1D int array Number of modes in each k bin.
Ndata Int Number of data points in the binned calculation.
Nrand Int Number of random points in the binned calculation.

dk Double Linear bin width.
kmin Double Lowest edge of first k bin measured.
Nbins Int Number of k bins.
Pk fid Double Fiducial P (k) used for the FKP weights.

Z min Double Lower edge of redshift bin for this measurement.
Z max Double Upper edge of redshift bin for this measurement.
Z mid Double Mid points of the redshift edges.

Table 4.8: Description of the attributes stored in the ‘powerspec measurement’ child class, generated
by the power spectrum calculation using nbodykit. An instance of this class will be created for each redshift
bin measurement and added to the parent ‘results powerspec’ class in Table 4.7. The power spectrum
measurements P`(k), and their errors, get dynamically added to the class to allow for arbitrary order of ` to
be calculated and saved.
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Chapter 5

Conclusions

Cosmology redshift surveys are a powerful tool for extracting cosmological information from the

large-scale structure of the late-time universe. With a whole host of such surveys launching over

the next decade, the universe is set to be probed to greater precision and over larger volumes than

previously observed. The power spectrum is one of the most useful statistics for analysing data

from cosmology redshift surveys, being able to constrain cosmological models in multiple different

ways. In particular, the measurement of redshift space distortions and baryon acoustic oscillations,

which leave imprints in the shape and amplitude of the power spectrum, provide powerful means

to constrain the growth rate of structure and expansion history of the universe.

As statistical measurement errors shrink due to the growing size of survey data, careful con-

sideration must be given to the modelling of observables like the power spectrum, to minimise any

systematics that can be introduced by not properly accounting for certain effects. In this work,

we focused on a forward-modelling approach of the power spectrum on the past lightcone, when

convolved with a survey window function, taking into consideration large-survey effects.

5.1 The power spectrum on the past lightcone

In Chapter 2, we began by reviewing the current model of the past lightcone power spectrum for

deep-redshift surveys on the full-sky. In this regime, working in spherical coordinates is preferable

due to the curved nature of the survey volume, and the large survey depth requires the use of

unequal-time correlators, to properly account for pair counting objects that exist at significantly

different redshifts. We provided an alternative derivation of the key result as well as a generalised

expression to extend the model into the non-linear regime (Sec. §2.3.7). As the model contains

numerically challenging multi-dimensional integrals of spherical Bessel functions, we investigated

approximations that can be employed in the small-scale regime, where the Bessel functions are

more difficult to integrate due to their highly oscillatory nature. We developed C++ code to

numerically evaluate the model up to two-loops in perturbation theory, making use of a small-

scale approximation (Sec. §2.3.4) under the assumption of time-separability of the unequal-time

correlator. We found this approximation dramatically reduced calculation time while maintaining
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accuracy. We used this code to test the mean-redshift approximation that is commonly used in

place of the unequal-time correlator when dealing with shallow survey depths, finding that this

approximation significantly biases the amplitude of the power spectrum (see left plot in Fig. 2.3),

particularly as survey depth increases. We go on to show that an ‘effective fixed-time’ redshift

can be easily calculated (Sec. §2.3.6), giving a more accurate approximation to the unequal-time

correlator than the mean-redshift approximation (right plot in Fig. 2.3).

We then put our model to the test by comparing it to power spectra measured from lightcone

mock catalogues, constructed from large-volume N -body simulations. We developed a Python

pipeline to perform a data reduction on these very large data sets, creating magnitude-limited

unbiased galaxy catalogues, with associated random unclustered mocks, as well as code to measure

the power spectrum from the resulting data cubes (Sec. §2.4). We found excellent agreement

between our measurements and the theory, to within ±5%, over a range of magnitude limits and

for the scales 4 × 10−3 ≤ k ≤ 0.5 [h Mpc−1] (Fig. 2.7). We also tested how well the commonly

used FKP weights effected the measurements, for various values of fiducial power P0 and over the

range of magnitude-limited samples, finding they could boost the signal-to-noise by factors of a few

(Fig. 2.9). We closed the chapter by using the lightcone mocks to test how well we could measure

the turnover scale in the power spectrum, an important feature which allows us to probe the epoch

of matter-radiation equality in the early universe. We found that a turnover was detectable with

a probability of P ≥ 95% in an all-sky catalogue, limited to an apparent magnitude of mlim ∼ 21,

with this probability remaining high for surveys with mlim ∼ 22 at 20% sky coverage.

In Chapter 3 we extended the previous model of the power spectrum on the past lightcone,

now including terms for galaxy bias and an angular survey mask that is not necessarily isotropic.

As the obtained expression for the power spectrum when including these additional components is

significantly more numerically challenging than in the full-sky regime, we detailed several methods

that can be used for calculation of the model. Similarly to the method used in the previous chapter,

on small scales we showed that as long as time-separability of the unequal-time power spectrum

holds, an approximation can be used that dramatically simplifies the mathematics. On large scales

however, where this approximation is not valid, we detailed how the use of the FFTLog algorithm

(Sec. §3.3), in combination with analytic transforms of the double-Bessel integrals, can be used to

make the problem numerically tractable. We also laid out the steps required for implementing this

procedure, and highlighted potential problem regions where parameters can cause this method to

encounter numerical instability or run at sub-optimal speeds.

There are several different ways in which this work can be extended. On the modelling side,

the most pressing issue for advancing our model of the power spectrum on the past lightcone is to

include the effect of wide-angle redshift-space distortions [148, 87, 149, 70, 150, 151]. While these

have not been accounted for in the model so far, we do not believe that their inclusion will effect

our findings for measuring the turnover scale, as at these scales RSD is expected to only modify the

amplitude of the power spectrum peak, and not its shape. Additionally, being able to accurately
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model and measure the power spectrum past this turnover scale increases the ability to test for

signatures of primordial non-Gaussianity. Such measurements can provide vital information about

the physics of the universe at very early times, and would help to discriminate between different

inflationary models. As these signatures of PNG would manifest as a scale-dependent bias term,

modifying the shape of the power spectrum on the largest scales, it is of key importance to be able

to accurately model the theory in this regime.

From a numerical perspective, work needs to be done in order to speed up calculation times of

the model. While we were able to develop C++ code to effectively evaluate the lightcone power

spectrum in the case where we have an all-sky survey, this code still has a run time on the order of

tens of minutes when running in parallel on a single HPC node, and was unsuitable for the model

including an angular mask. These run times make the code prohibitive for use in a likelihood

analysis in its current form, however, deployment of the FFTLog algorithm and analytic Bessel

transforms, as covered in Chapter §3, are expected to speed up evaluation dramatically while also

allowing for inclusion of the angular-mask term. These methods could be used in conjunction

with interpolation techniques to allow for a wide range of parameter space to be covered while

minimising the required amount of full evaluations of the model. Additionally, the development

of efficient routines to calculate the challenging expressions encountered when working in spherical

coordinates will make the prospect of calculating the covariance matrix, as well as higher order

correlation functions like the Bispectrum and Trispectrum, more feasible. Some work has already

been done in this area (for example in [145] they address the angular Trispectra), but would

require adapting to our specific case. On the near horizon, there are plans to include fast and

efficient code for solving double-Bessel integrals using the analytic methods as described in 3 in the

Core Cosmology Library1 (CCL) [180]. The team behind this software recently hosted a hackathon

challenge to to address these types of numerical problems, and so once the winning code has been

tested and implemented, this would provide an easy pathway to extend the lightcone work to

include non-isotropic survey geometry, redshift-space distortions, covariance matrix calculations

and parameter estimation.

5.2 Clustering of the 4MOST simulations

The 4MOST Cosmology Redshift Survey is an upcoming spectroscopic southern-hemisphere survey,

which will obtain accurate redshifts for approximately four million dark-matter tracers over an

initial run period of five years. The main aim of the survey is to help uncover the nature of dark

energy and measure the expansion rate of the universe, via measurements of large-scale structure

clustering as well as through cross-correlations with other surveys and CMB experiments. In

advance of the survey going live, the 4MOST Facility Simulator (4FS) team have been running

simulations to produce expected output data sets for the survey. This data is vital for cosmological

parameter forecasting and survey design optimisation.

1https://ccl.readthedocs.io/en/latest/
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In Chapter 4, we gave an overview of the clustering pipeline that we have developed to analyse

this 4FS data. The pipeline currently has three key roles: to generate mock random unclustered

catalogues that mimic the survey data for use in clustering statistics, to provide validation of both

data and mock-random catalogues for identification of issues with the underlying data, and finally

to measure two-point clustering statistics in both configuration and Fourier space. In Section §4.4

we reviewed the clustering results produced by the pipeline when run on the latest available input

and output data sets for the 4MOST CRS. For the configuration-space measurements, we fitted

power law models to the output data catalogues, finding derived parameters for the power-law slope

of these models to be in close agreement to measurements from surveys such as 2dF and SDSS. We

observed some drop off in clustering signal in the output catalogues across all of the statistics at

small-scales, most probably caused by the fibre-collision effect, and found we were able to eliminate

this effect via way of a simple correction factor for the angular clustering measurements.

There are several key areas of development for the clustering pipeline, the most pressing of

which is the modelling and correction of the fibre-collision effect for the 3D and projected cluster-

ing statistics. Due to the complicated nature of 4MOST observing thousands of targets simultane-

ously for multiple different surveys, work should be undertaken to see if previous methods like the

pair-inverse-probability weighting of [166] can be employed, or if a new approach is required. In

addition to this, the pipeline should be optimised through further parallelisation to increase speed,

particularly for the covariance matrix calculations that rely on the jackknife technique. With these

improvements in place, the clustering statistics of the pipeline could be used to make forecasts for

cosmological parameters through a Fisher matrix analysis. This will require accurate modelling of

theoretical predictions for the two-point statistics, taking into consideration the effects of the survey

window. As the 4MOST survey volume covers a wide angle across two separate fields, and spans a

large redshift range, methods outlined in Chapters 2 & 3 could be utilised for this modelling.
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[56] Olivier Doré et al. “Cosmology with the SPHEREX All-Sky Spectral Survey”. In: arXiv

e-prints, arXiv:1412.4872 (Dec. 2014), arXiv:1412.4872. arXiv: 1412.4872 [astro-ph.CO].

[57] LSST. “LSST Science Book, Version 2.0”. In: ArXiv e-prints (Dec. 2009). arXiv: 0912.0201

[astro-ph.IM].

[58] M. Tegmark. “Measuring Cosmological Parameters with Galaxy Surveys”. In: Physical Re-

view Letters 79 (Nov. 1997), pp. 3806–3809. eprint: arXiv:astro-ph/9706198.

[59] P. J. E. Peebles. The large-scale structure of the universe. Research supported by the Na-

tional Science Foundation. Princeton, N.J., Princeton University Press, 1980. 435 p., 1980.

[60] Y. P. Jing et al. “The Influence of Baryons on the Clustering of Matter and Weak-Lensing

Surveys”. In: ApJL 640.2 (Apr. 2006), pp. L119–L122. doi: 10.1086/503547. arXiv: astro-

ph/0512426 [astro-ph].

[61] G. Somogyi and R. E. Smith. “Cosmological perturbation theory for baryons and dark

matter: One-loop corrections in the renormalized perturbation theory framework”. In: PRD

81.2 (Jan. 2010), pp. 023524–+. doi: 10.1103/PhysRevD.81.023524. arXiv: 0910.5220.

[62] Ian G. McCarthy et al. “The BAHAMAS project: the CMB-large-scale structure tension

and the roles of massive neutrinos and galaxy formation”. In: MNRAS 476.3 (May 2018),

pp. 2999–3030. doi: 10.1093/mnras/sty377. arXiv: 1712.02411 [astro-ph.CO].

[63] N. Kaiser. “On the spatial correlations of Abell clusters”. In: ApJL 284 (Sept. 1984), pp. L9–

L12. doi: 10.1086/184341.

[64] J. N. Fry and E. Gaztanaga. “Biasing and hierarchical statistics in large-scale structure”.

In: ApJ 413 (Aug. 1993), pp. 447–452. doi: 10.1086/173015. eprint: arXiv:astro-ph/

9302009.

[65] P. Coles. “Galaxy formation with a local bias”. In: MNRAS 262 (June 1993), pp. 1065–1075.

[66] A. Dekel and O. Lahav. “Stochastic Nonlinear Galaxy Biasing”. In: ApJ 520 (July 1999),

pp. 24–34. doi: 10.1086/307428. eprint: arXiv:astro-ph/9806193.

156

https://doi.org/10.1038/nature04805
http://arxiv.org/abs/astro-ph/0604561
http://arxiv.org/abs/1611.00036
http://arxiv.org/abs/1611.00036
https://doi.org/10.18727/0722-6691/5127
http://arxiv.org/abs/1903.02474
http://arxiv.org/abs/1110.3193
http://arxiv.org/abs/1412.4872
http://arxiv.org/abs/0912.0201
http://arxiv.org/abs/0912.0201
arXiv:astro-ph/9706198
https://doi.org/10.1086/503547
http://arxiv.org/abs/astro-ph/0512426
http://arxiv.org/abs/astro-ph/0512426
https://doi.org/10.1103/PhysRevD.81.023524
http://arxiv.org/abs/0910.5220
https://doi.org/10.1093/mnras/sty377
http://arxiv.org/abs/1712.02411
https://doi.org/10.1086/184341
https://doi.org/10.1086/173015
arXiv:astro-ph/9302009
arXiv:astro-ph/9302009
https://doi.org/10.1086/307428
arXiv:astro-ph/9806193


[67] Tobias Baldauf et al. “Evidence for quadratic tidal tensor bias from the halo bispectrum”.

In: PRD 86.8, 083540 (Oct. 2012), p. 083540. doi: 10.1103/PhysRevD.86.083540. arXiv:

1201.4827 [astro-ph.CO].

[68] Kwan Chuen Chan, Román Scoccimarro, and Ravi K. Sheth. “Gravity and large-scale nonlo-

cal bias”. In: PRD 85.8, 083509 (Apr. 2012), p. 083509. doi: 10.1103/PhysRevD.85.083509.

arXiv: 1201.3614 [astro-ph.CO].

[69] Alexander Eggemeier et al. “Testing one-loop galaxy bias: Joint analysis of power spectrum

and bispectrum”. In: PRD 103.12, 123550 (June 2021), p. 123550. doi: 10.1103/PhysRevD.

103.123550. arXiv: 2102.06902 [astro-ph.CO].

[70] A. J. S. Hamilton. “Linear Redshift Distortions: a Review”. In: The Evolving Universe. Ed.

by D. Hamilton. Vol. 231. Astrophysics and Space Science Library. 1998, pp. 185–+.

[71] R. Scoccimarro. “Redshift-space distortions, pairwise velocities, and nonlinearities”. In: PRD

70.8 (Oct. 2004), pp. 083007–+. doi: 10.1103/PhysRevD.70.083007. eprint: arXiv:astro-

ph/0407214.

[72] Kazuhiro Yamamoto, Hiroaki Nishioka, and Yasushi Suto. “The Cosmological Light-Cone

Effect on the Power Spectrum of Galaxies and Quasars in Wide-Field Redshift Surveys”.

In: ApJ 527.2 (Dec. 1999), pp. 488–497. doi: 10.1086/308126. arXiv: astro-ph/9908006

[astro-ph].

[73] Takahiko Matsubara. “The Correlation Function in Redshift Space: General Formula with

Wide-Angle Effects and Cosmological Distortions”. In: ApJ 535.1 (May 2000), pp. 1–23.

doi: 10.1086/308827. arXiv: astro-ph/9908056 [astro-ph].
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