
   

 

A University of Sussex PhD thesis 

Available online via Sussex Research Online: 

http://sro.sussex.ac.uk/   

This thesis is protected by copyright which belongs to the author.   

This thesis cannot be reproduced or quoted extensively from without first 
obtaining permission in writing from the Author   

The content must not be changed in any way or sold commercially in any 
format or medium without the formal permission of the Author   

When referring to this work, full bibliographic details including the 
author, title, awarding institution and date of the thesis must be given 

Please visit Sussex Research Online for more information and further details   



DATA ANALYSIS FOR HIGH-SENSITIVITY

COSMIC MICROWAVE BACKGROUND

OBSERVATIONS

Mark Mirmelstein

Department of Physics and Astronomy

School of Mathematical and Physical Sciences

Submitted for the degree of Doctor of Philosophy

University of Sussex

September 2021



Declaration

I hereby declare that this thesis has not been and will not be submitted in whole or in part to

another University for the award of any other degree.

The work in this thesis has been completed in collaboration with Antony Lewis, Julien Peloton,

Julien Carron and Giulio Fabbian. Chapters 2 and 3 are comprised of the following papers:

• Mark Mirmelstein, Julien Carron, and Antony Lewis, “Optimal filtering for CMB lensing

reconstruction”, published in Phys. Rev. D 100, 123509.

DOI:10.1103/PhysRevD.100.123509. arXiv:1909.02653.

• Mark Mirmelstein, Giulio Fabbian, Antony Lewis, and Julien Peloton, “Instrumental

systematics biases in CMB lensing reconstruction: a simulation-based assessment”,

published in Phys. Rev. D 103, 123540.

DOI:10.1103/PhysRevD.103.123540. arXiv:2011.13910.

I made an essential contribution to all of these papers. For Chapter 2, Julien Carron and Antony

Lewis provided guidance, comments, and some of the writing and editing. For Chapter 3, Giulio

Fabbian, Antony Lewis and Julien Peloton provided guidance, comments and some of the writing

and editing. Giulio also provided the power spectra for the different systematics cases.

Most of the work for Chapter 4 was carried out by Julien Carron, who provided the cleaned and

filtered CMB maps, quadratic estimators and likelihoods. My contribution comprised of filtering

the provided quadratic estimators, and estimating the cosmological parameters.

The work in Chapter 5 was supported by Julien Peloton and Antony Lewis, who provided

guidance and comments.

Signature:

Mark Mirmelstein

https://doi.org/10.1103/PhysRevD.100.123509
https://arxiv.org/abs/1909.02653
https://doi.org/10.1103/PhysRevD.103.123540
https://arxiv.org/abs/2011.13910


UNIVERSITY OF SUSSEX

MARK MIRMELSTEIN, DOCTOR OF PHILOSOPHY

DATA ANALYSIS FOR HIGH-SENSITIVITY COSMIC MICROWAVE BACKGROUND

OBSERVATIONS

ABSTRACT

In recent decades, the cosmic microwave background radiation (CMB) has been one of the most

important tools in cosmology. Due to its primordial origin, the CMB holds information about the

early universe and how the universe evolved with time. Inferring cosmological information from

the CMB is therefore essential for learning more about the universe. Our abilities to produce

high-precision CMB measurements have progressed immensely over the years, which helped to

constrain the standard cosmological model with remarkable accuracy. As CMB measurements

improve, efforts to improve our analysis methods continue with it. The main aim of the work

presented in this thesis is to continue this endeavour for improving our ability to extract

information from CMB measurements.

We first explore several filtering methods for lensing reconstruction, and also devise a new

filtering step. We show the benefits of using an optimal filter for upcoming ground-based CMB

experiments. We adopt our lensing reconstruction method to test how instrumental systematics

may affect lensing reconstruction results of an experiment similar to the Simons Observatory

(SO), and show how some of the resulting lensing biases might be mitigated. We continue by

using our lensing reconstruction pipeline to present new lensing results from a recent release of

CMB maps from the Planck collaboration which are more accurate on large scales compared to

the previous Planck analysis method. We show how the uncertainty of different cosmological

parameters benefits from the improved reconstruction accuracy. We conclude by looking into a

different CMB effect — the effect of Rayleigh scattering on the CMB anisotropies. We

demonstrate a possible pipeline for extracting the Rayleigh signal from multi-frequency CMB

measurements, and forecast the ability of detecting the Rayleigh signal from an SO-like

experiment.
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1

“I have crossed the seas, I have left cities behind me,

and I have followed the source of rivers towards their source

or plunged into forests, always making for other cities...

I could never turn back any more than a record can spin in reverse.

And all that was leading me where?

To this very moment...”

Jean Paul Sartre



CHAPTER 1

Introduction

1.1 THE STANDARD COSMOLOGICAL MODEL

1.1.1 GEOMETRIC SPACETIME

In 1915, Albert Einstein published his geometric theory of gravitation which linked gravity to the

geometric properties of space and time via field equations [1],

Rµν −
1
2Rgµν + Λgµν = 8πG

c4 Tµν , (1.1)

where Rµν is the Ricci tensor, R is the scalar curvature, gµν is the metric tensor, Λ is the

cosmological constant, G is the Newtonian constant of gravitation, c is the speed of light, Tµν is

the stress-energy tensor, and µ, ν ∈ {0, 1, 2, 3} are the indices for the time (0) and space (1,2,3)

components of the metric. For a given metric gµν , one could calculate the Ricci tensor and scalar

curvature, which would lead to a solution of these field equations. One such solution, which

describes a homogeneous, isotropic and expanding spacetime, was developed independently

between 1920-1940 by Alexander Friedmann, Georges Lemaître, Howard P. Robertson and

Arthur Geoffrey Walker [2–9]. For an infinitesimal line element

ds2 ≡ gµνdxµdxν , (1.2)

this metric is

ds2 = −c2dt2 + a2(t)
[

dr2

1−Kr2 + r2dθ2 + r2 sin θdφ2
]
, (1.3)

where dt (dx0) is the infinitesimal time component, dr (dx1), dθ (dx2) and dφ (dx3) are the

infinitesimal space components in spherical coordinates, t is time (where we define t = t0 as

today), a is the scale factor which describes the expansion of the Universe as a function of time, r

2



INTRODUCTION 3

is the radial coordinate, and K is the spatial curvature constant. This metric, known as the FLRW

metric, is used in modern cosmology to describe the physical Universe, as various cosmological

observations can be described using this model with high precision.

Using this metric to calculateRµν andR, and using the explicit form of the stress-energy tensor,

Tµν = (ρ+ p)uµuν − pgµν , where ρ, p and u are the density, pressure and velocity of a given

material in the Universe, we can obtain the Friedmann equations,

(
ȧ

a

)2
= 8πG

3 ρ− Kc2

a2 + Λc2

3 , (1.4)

ä

a
= −4πG

3

(
ρ+ 3

c2 p

)
+ Λc2

3 , (1.5)

which tell us how the scale factor a changes as a function of time. Because these equations depend

on the properties of substances in the Universe and on the spatial curvature, the expansion of the

Universe, which is often characterised using the Hubble function,

H(t) ≡ ȧ(t)
a(t) , (1.6)

also depends on the substances in the Universe and their relative amounts, and on the spatial

curvature. The substances that make up the Universe are typically categorised according to their

different properties, which can be expressed using their equation of state,

p = ωρ, (1.7)

where ω is usually assumed to be constant1, and takes up different values for the different

components of the Universe:

ω =


1
3 for radiation,

0 for pressureless matter,

−1 for dark energy.

(1.8)

For each component i, we can define the density parameter

Ωi(t) ≡
ρi(t)
ρcrit(t)

, (1.9)

where

ρcrit(t) ≡
3c2H(t)2

8πG (1.10)

1In the case of dark energy, some theories consider a time-varying ω, however there is currently no strong evidence to
suggest that ω(t) 6= ω according to observations [10].
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is the density of a flat FLRW universe (K = 0), which is known as the critical density.

In an expanding universe, such as ours, it can be useful to associate cosmological times with

the redshift z of the radiation in the Universe, as radiation travelling in an expanding universe is

redshifted. The redshift at a given time t is related to the scale factor via

1 + z = 1
a(t) , (1.11)

such that today a(t0) = 1 and z = 0. Using these definitions, along with the first Friedmann

equation, the Hubble function can be expressed as

H(z) = H0

√
Ωm,0 (1 + z)3 + Ωγ,0 (1 + z)4 + ΩK,0 (1 + z)2 + ΩΛ,0 + Ων,z , (1.12)

where the subscript 0 indicates the value of the parameters today, and Ωm, Ωγ , ΩK , ΩΛ, Ων are

the matter, photon, curvature, cosmological constant and neutrino density parameters, such that

Ωm + Ωγ + ΩK + ΩΛ + Ων = 1. The spatial curvature density parameter, ΩK = −Kc2

H2
0

is a

fictitious energy density parameter, while the cosmological constant density parameter ΩΛ = Λ
3H2

0

is related to the energy density of the cosmological constant. The matter density parameter is often

defined as the sum of the baryonic and (cold) dark matter density parameters, Ωm ≡ Ωb + Ωc.

In the early Universe, when neutrinos were relativistic, the radiation energy density included the

contributions of both photons and neutrinos [11]. At later times, the neutrinos became non-

relativistic, and contributed to the total matter energy density. The parameters in Eq. (1.12) are

some of the main cosmological parameters which are needed to describe how the Universe evolves

with time.

The current standard cosmological model is often called ΛCDM, because the cosmological

parameters measured from observations suggest that we live in a (flat) universe with a non-zero

cosmological constant Λ, which also has a yet unknown substance named dark matter (DM) that

has non-relativistic properties, hence cold dark matter (CDM). While the evidence for a non-zero

Λ value rises from observations which suggest that the expansion of the Universe is accelerated

(driven by a substance called dark energy), it is evident that dark matter exists because of its

gravitational interaction with radiation and other matter (mainly baryons, which is what most of

the non-dark structures in the Universe are made of) [12]. Dark matter is suggested to be “cold”

mainly due to the way large-scale structures in the Universe are evidently formed; observations

suggest that small clumps of matter collapse to form larger and more massive structures. If the

temperature of the dark matter was much higher (or relativistic) before it decoupled from matter in
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the early Universe, dark matter would have smoothed primordial matter clumps, which would have

affected the scales of structures that formed as the Universe cooled down. If, on the other hand,

most or all of the dark matter in the Universe had negligible velocity dispersion (non-relativistic)

compared to other components of the Universe during the matter-radiation equality phase, the

matter clumps would not have been smoothed out and would become the large-scale structure that

we see in the Universe today [13, 14].

As the Universe evolves and expands, the different substances it is made of have different

relative contributions toward the total density in the Universe. In the next subsection, this

evolution and the various cosmological epochs are described in more detail according to our

current knowledge on the Universe from cosmological observations of the last century.

1.1.2 THE EVOLUTION OF THE UNIVERSE

Cosmological observations suggest that about 13.8 billion years ago, the Universe, which initially

was in a hot and dense state, underwent an inflationary period, during which it expanded very

rapidly over a short time interval. Most inflationary theories suggest that during inflation quantum

fluctuations occurred, such that the distribution of substances in the Universe was not entirely

homogeneous [15–22]. Inflation was developed by considering a scalar field with an equation of

state p ≈ −ρ which generates a nearly exponential expansion in the early FLWR Universe. The

power spectrum of the resulting scalar perturbations as a function of scale modes k is estimated as

Ps(k) ≈ As
(
k

k0

)ns−1
, (1.13)

where As is the amplitude of the perturbations at a pivot scale k0, and ns is the scalar spectral

index. This power spectrum, which will be elaborated on in Sec. 1.2, is measured to be

approximately scale-invariant with very small deviations from ns = 1.

After inflation ended, the statistically homogeneous and isotropic Universe continued to

expand, albeit less rapidly, and cool down. At this point in time, it also had small

inhomogeneities in the distribution of matter which were produced during the inflationary period.

These matter perturbations will be discussed in more detail in Sec. 1.2. Since inflation, the

Universe underwent several phase transitions due to its content and how its components interact

with each other. After inflation ended, the main component in the Universe was radiation; the

density of relativistic species was considerably higher than any other substance. At that time,

radiation helped to maintain a thermodynamic equilibrium between the different particles in the

Universe.
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Following the inflationary period, the Universe cooled down to a temperature of about 109

K, which was cold enough to enable the subatomic particles in it to bound and form helium-4

and small amounts of deuterium and other helium isotopes [23]. This stage in the evolution of

the Universe is called “Big Bang nucleosynthesis”, as it refers to the formation of nuclei shortly

after the beginning of the Universe (an event which is usually referred to as the Big Bang). It is

different than “Stellar nucleosynthesis”, which is the formation of heavier nuclei in the core of

stars, a process which starts at a much later stage, when stars have already formed.

Around 300 seconds after Big Bang nucleosynthesis, the temperature of the Universe was

around 8 × 108 K, high enough so that the energy density is dominated by baryons and photons.

At this point in time, the Universe is radiation-dominated, and the main interaction between the

baryons and photons is through Thomson scattering2, the elastic scattering of electromagnetic

radiation by free-moving charged particles.

The matter perturbations from inflation still exist in the early Universe, and as the Universe

expands, these perturbations evolve. The perturbations led to areas with less or more matter

compared to the overall mean density. This property is usually referred to as the inhomogeneity

of the matter. The resulting overdense regions tended to naturally become denser due to their

self-gravity. Because the Universe at that time was dominated by radiation, significant amounts

of photons were trapped in the resulting gravitational wells, leading to a growing outward

radiation pressure in these overdense regions. This pressure grew until the overdense regions

became less dense and started to expand again. As the Universe expended, the overall

gravitational potentials decreased, while the radiation continued to oscillate. With time, the

oscillation amplitude was damped due to dissipative diffusion between overdense and underdense

regions. The radiation pressure in the overdense regions caused a spherical sound wave of both

baryons and photons to start moving outwards at high velocity. The dark matter in these clumps

did not follow this wave, as it only interacts gravitationally with the baryons and the photons.

The wave propagation of the oscillations was effectively halted once the sound speed decreased

dramatically due to decoupling of photons and baryons.

About 380,000 years after the cosmological inflation started, at redshift z ≈ 1100, the

temperature in the Universe decreased to about 3000 K, cold enough so that free electrons and

protons began to form electrically-neutral hydrogen atoms. This epoch is known as the
2Thomson scattering is a limit of the Compton scattering in which the photon energy (∼0.3 eV then) is much smaller
than the rest-mass of the scattering particle (∼0.5 MeV for electron).
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recombination era. It led to a significant decrease of density of free electrons, which constantly

scattered the photons in the plasma via Thomson scattering. With many fewer free electrons, the

probability for the radiation to scatter decreased significantly, and the photons started to travel

more freely. This decoupling of the photons, which resulted from the expansion of the Universe

and the decreased amount of free electrons, created what is known as the surface of last

scattering, because these photons would appear as a spherical surface of radiation around an

observer in the late Universe such as ourselves. This radiation, which originated in the era of

recombination, is known as the cosmic microwave background radiation (CMB). We can still

observe this radiation today because the density of free electrons in the Universe never reached

similar level as to those before recombination. Due to its primordial origin, the CMB is one of

the main tools in cosmology that enables us to learn not only about the early Universe, but also

about the late Universe due to the ways in which different structures in the Universe interact and

affect this radiation. The CMB is the main topic of this thesis, and as such it is explored in more

depth in Sec. 1.3 and throughout the thesis chapters.

Following recombination, as the Universe continued to expand, matter began to clump in

overdense regions. This process eventually led to the formation of the large-scale structures

(LSS) in the Universe [24, 25]. The matter shells that were formed from the acoustic waves of the

primordial density oscillations left an imprint in these structures, which is known as the baryonic

acoustic oscillations (BAO). The radius of these shells is known as the sound horizon because it

is the comoving distance that a sound wave could travel from the beginning of the Universe until

recombination. Due to the nature of the BAO, there is a characteristic comoving scale of the

structures in the Universe. This scale can be translated into a characteristic angular size in

large-scale measurements across different redshifts. We can measure this characteristic scale

from observing the clustering of galaxies. Taking spectroscopic and photometric measurements

of galaxies enables the 3D mapping of their clustering, such that their angular- and

redshift-dependent 2-point correlation function can be estimated. The resulting correlation

function then shows the characteristic galaxy separation modes which are around the sound

horizon distance [26].

The LSS eventually gave rise to stars, and later on galaxies and galaxy clusters. The question

of when the first stars were formed is still an open question in cosmology. CMB measurements

and spectroscopic observations of quasars currently suggest that the first stars were most likely

formed around 6 . z . 30, after which the Universe is considered to be completely ionized [27,
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28]. Once the first stars and quasars were formed (due to the gravitational collapse of the baryon

clumps), their emitted high-energy radiation heated and ionized the hydrogen gas around them.

The era in which this ionization process reionized most of the interstellar medium is known as

reionization [29]. The ionization process created more free electrons, which could scatter the

CMB radiation once again since the recombination era. The probability for the CMB photons to

scatter since reionization until now depends on the reionization optical depth τ ,

τ(η) = σT

η0∫
η

a(η′)ne(η′)cdη′, (1.14)

where σT is the Thomson scattering cross-section, ne is the electron density, a is the scale factor,

and

η(t) ≡
t∫

0

dt′

a(t′) (1.15)

is the conformal time, which is the measured time in the reference frame of the expanding Universe

such that η(0) = 0. The scattering of the CMB photons since reionization are much less frequent

compared to pre-recombination times, as although the Universe becomes again fully ionized, the

Universe is also significantly larger at late times such that the overall electron density, and with

it the scattering probability, is very small. Nonetheless, these scattering events did occur, and

therefore CMB measurements can be useful for constraining reionization physics.

When the Universe was about 9.8 × 109 years old (at z ≈ 0.35), the Universe underwent

another transition, and started to accelerate faster [14, 30]. This is attributed to the dominance of

the cosmological constant over matter at that time. This is the last known phase transition that

occurred, and so the Universe continues to accelerate at increasing rate.

The evolution of the Universe that was described in this section was inferred from cosmological

observations. These observations also enable us to estimate the various cosmological parameters

that describe the Universe, and specifically the ΛCDM model. The main parameters of this model

are shown in Table. 1.1. The values of these parameters are used throughout the work in this thesis

to produce fiducial CMB power spectra and CMB realisations for various analysis applications.

Throughout, we also assume massive neutrinos with a total mass of 0.06 eV, which is the minimal

neutrino mass as measured from stellar neutrinos [11, 31].

While most of these parameters were estimated to high precision, there are still several open

questions regarding their values. The most controversial parameter value is that of the Hubble

parameter H0 ≡ 100h [km s−1 Mpc−1], which has been measured from various cosmological
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probes and presents a ∼5σ tension mainly between early Universe and late Universe probes (see,

e.g., Refs. [32–36] for review on this tension). Throughout this thesis we adopt the value which

is consistent with most of the early Universe probes and was obtained from CMB observations.

Despite the controversy around this value, the results shown in this thesis do not depend strongly

on the choice of this parameter value.

Parameter Symbol Value

Hubble parameter h 0.6736± 0.0054

Baryon density Ωb Ωbh
2 = 0.02233± 0.00015

Cold dark matter density Ωc Ωch
2 = 0.1198± 0.0012

Primordial power spectrum amplitude As ln
(
1010As

)
= 3.043± 0.014

Spectral index ns 0.9652± 0.0042

Reionization optical depth τ 0.0540± 0.0074

Table 1.1: The ΛCDM cosmological parameters. The values were obtained from the best-fit parameter estimations of the Planck
collaboration [37]. They are used to construct fiducial CMB power spectra and CMB map realisations for the various
analyses presented throughout this thesis. The Hubble constant is defined asH0 ≡ 100h [km s−1 Mpc−1]. The subscript
0 is omitted for the Hubble parameter and density parameters.

1.2 LARGE-SCALE STRUCTURE

As mentioned in the previous section, without small matter perturbations in the early Universe,

no structures such as planets, stars, galaxies, and galaxy clusters could have been formed in the

Universe. A universe without matter perturbations would be perfectly homogeneous and isotropic,

with no overdense regions which became the seeds of structure formation. To understand how the

large-scale structures (LSS) that we see in the Universe formed, we therefore need to consider

a perfectly homogeneous universe, add to it small perturbations, and evolve these perturbations

in time. Current theories suggest that these perturbations originated from inflation. As such, an

accurate description of these perturbations, along with cosmological observations, could help to

constrain early Universe physics. The exact form of the matter perturbations depends on the way

the background metric is defined. In this section, we will use the conventional definitions that are

obtained using the synchronous gauge [38].

To quantify these perturbations, we can define the fractional deviation from the mean matter

density ρ̄(t),

∆(x, t) ≡ ρ(x, t)− ρ̄(t)
ρ̄(t) , (1.16)
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where ρ(x, t) is the total matter density at spatial position x and at time t, such that at a fixed time

〈∆(x, t)〉x = 0 by definition3. We can use an ensemble average of this measure to statistically

quantify the 2-point correlation function of the matter fluctuations in Fourier space at a given time

t as 〈
∆(k, t)∆(k′, t)

〉
∆ = Pm(k, t)δ(k − k′), (1.17)

where k ≡ |k| is the Fourier mode of the perturbations, and our Fourier transformation convention

is given by

f(x) =
∫

d3k

(2π)
3
2
f(k)e−ik·x,

f(k) =
∫

d3x
(2π)

3
2
f(x)eik·x.

(1.18)

This can be done by using the statistical homogeneity requirement that the real-space correlation

between a density at two points at fixed time is the same under a spatial translation,

〈∆(x)∆(x′)〉 = 〈∆(x + c)∆(x′ + c)〉, for some constant spatial translation vector c. This

power spectrum is related to P(k) from Eq. (1.13) via

Pm(k) = 2π2

k3 Pm(k). (1.19)

The theoretical matter power spectrum and its measurements from different cosmological

probes is shown in Fig. 1.1 [39–41]. On large scales (small k values, which describe

super-horizon scales), its shape is proportional to kns , while on small scales (sub-horizon scales)

it is proportional to kns−4. For ΛCDM cosmology, the scalar spectral index is ns ≈ 1, and

therefore the matter power spectrum has a positive inclination at low k and negative inclination at

high k. At k ≈ 10−2 h Mpc−1, the power spectrum has a maximum. The small wiggles that

appear near the peak are caused by the sub-horizon baryon oscillations prior to recombination.

The spacing between the peaks of the wiggles in harmonic space is inversely proportional to the

size of the horizon when the baryons decoupled from the radiation.

The matter power spectrum measurements shown in Fig. 1.1 were obtained by several

experiments. The Planck collaboration values were obtained by measuring the TT , EE and φφ

CMB power spectra (defined later in Secs. 1.3-1.4) and relating them to the theoretical ΛCDM

matter power spectrum of Eq. (1.17) [42].

The measurements from the Sloan Digital Sky Survey (SDSS) are from galaxy clustering
3Throughout the thesis we will represent vectors and matrices using bold characters. The ways in which different
quantities are defined, however, may vary slightly between chapters.
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Figure 1.1: The theoretical linear theory matter power spectrum at z = 0 (black line) and its measurements at different k bins from
several cosmological probes. Unlike the Hubble tension, which is the current disagreement in the measured value of H0
mainly between early and late Universe probes, the power spectrum measurements, which also come from a range of
different redshifts and scales are in a very good agreement with the theory. Source: [40, 41].

observations. Measurements from galaxy clustering are expected to produce a biased power

spectrum amplitude, mainly because these are made by specifically observing overdense regions

in the Universe. As such, they may not encompass the true matter distribution for all

scales [43–47]. The resulting power spectrum is also biased due to complex mechanism of galaxy

formation at low redshifts and the relation between baryonic and dark matter densities. To

overcome these problems, the measurements in Fig. 1.1 were corrected for this bias using a

phenomenological galaxy bias model from N-body simulations for the clustering of dark

matter [48].

The Lyman-α (Ly-α) forest measurements were obtained from probing the amount of matter

at different redshifts. The Ly-α forest is a series of absorption lines seen in spectroscopic

measurements of far galaxies and quasars. Light from these sources can be absorbed by the

neutral hydrogen in the intergalactic medium along its trajectory. This absorption then excites the

electrons in the hydrogen atoms from the ground state to the first excited state. This transition is

known as the Ly-α transition. The amount of absorption lines seen when observing distant

galaxies and quasars is therefore sensitive to the matter density of neutral hydrogen clouds along

the line of sight, which enables the measurement of the matter power spectrum [49, 50].

Lastly, the Dark Energy Survey (DES) measurements were obtained from measuring the

gravitational lensing, which is caused by the LSS, of about 26 million far galaxies [51]. The
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observed shapes of lensed galaxies have shear, which is correlated to the amount of the lensing

mass. By measuring the correlations of these distortions, it is possible to probe both the linear

and non-linear matter perturbations. Due to their dependency on the non-linear growth of

structure, when using these measurements for plotting the linear theory power spectrum as in

Fig. 1.1 the non-linear effects are usually deconvolved from the total measurements [42, 52].

A useful parameter to quantify the amount of linear perturbations today (at z = 0) is the

variance of matter fluctuations in a sphere of radius r8 ≡ 8h−1Mpc,

σ2
8 =

〈∣∣∣∫r8 d3x∆(x)
∣∣∣2〉∣∣∣∫r8 d3x

∣∣∣2 , (1.20)

where ∆(x) are the density perturbations defined in Eq. (1.16) at t = 0. The specific radius

was chosen as it was measured to be the characteristic scale of mass fluctuations that give rise to

clusters; the fluctuation mean in a sphere of that radius is close to unity [53, 54]. This parameter

measures the current amplitude of the linear matter power spectrum on a scale of r8. It is therefore

directly related to the growth of matter density perturbations in the early Universe, and to the

matter power spectrum of Eq. (1.17) via

σ8 =

√√√√√4π
∞∫
0

[ 3
x3 (sin(x)− x cos(x))

]2
Pm(k, t0) k

2dk

(2π)3 , (1.21)

where x ≡ kr8 [55]4.

1.3 THE COSMIC MICROWAVE BACKGROUND

1.3.1 CMB PHYSICS

The current cosmological model suggests that the Universe initially had very high density and

temperature. At recombination, the temperature in the Universe decreased to a point where free

electrons and protons coupled into neutral hydrogen atoms. This led to a significant decrease of

free sub-atomic particles, which constantly scattered the photons in the Universe via Thomson

scattering. Because the probability for scattering then decreased drastically, and suddenly, the

radiation in the Universe was free to travel without being scattered as frequently. As mentioned
4See also: https://cosmologist.info/notes/CAMB.pdf.

https://cosmologist.info/notes/CAMB.pdf
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in Subsec. 1.1.2, this radiation, known as the CMB, is the main topic of this thesis. Due to its

primordial origin, and the various interactions it had along its path until reaching our telescopes,

its observations are one of the key tools in modern cosmology. In this section, the formation of its

anisotropies and the interactions it had throughout its trajectory across the Universe is described.

Prior to recombination, the resistance of the photon pressure to gravitational compression in

the hot plasma fluid caused acoustic oscillations. At small scales during recombination, regions

of compression can be represented by hot spots in a primordial CMB map, while regions of

rarefaction can be represented by blue spots [56]. These are the primary CMB anisotropies which

we measure today at small scales. Because some of the CMB photons escaped the gravitational

wells of the overdense regions during last scattering, they underwent a gravitational redshift,

which contributes to the CMB anisotropies at larger scales. Small-scale perturbations were also

affected by dissipative diffusion: photons with higher energies around overdensities travel to

colder regions. This effect, mostly known as Silk damping [57], smooths the anisotropies at

scales ` & 1000 in the power spectrum [58].

During and shortly after recombination, the newly formed hydrogen atoms had the first effect on

the CMB following Thomson scattering. This brief interaction, which lasted until the expansion

of the Universe brought its probability to negligible levels, is known as Rayleigh scattering. This

effect on the CMB photons is the main topic of Chapter 5, where it will be discussed in more

detail.

The anisotropy of the gravitational wells at recombination created the primary CMB

anisotropies at large scales. The CMB photons were gravitationally redshifted at different

strengths due to this anisotropy, which created an uneven radiation surface with fluctuations at

scales larger than ∼10◦. This gravitational redshift is known as the Sachs-Wolfe effect [59, 60].

If the CMB anisotropies would not have been affected in various ways before they were observed

today, measuring the CMB would have given us directly information on the initial perturbations

at the era of recombination. Many processes, however, did affect these anisotropies as the CMB

photons travelled throughout the Universe. A similar gravitational redshift process, called the

integrated Sachs-Wolfe (ISW) effect [61], continued to affect the CMB also at late times due to

the large-scale structures in the Universe; photons that pass through strong large-scale potential

wells formed by superclusters get an increase in energy, while photons that pass through voids

loose some energy. The ISW effect acts at large scales, and so its effect on the temperature power
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spectrum is limited to multipoles ` . 100, and can mainly be seen through cross-correlating

CMB maps with galaxy density maps that are usually generated by optical sky surveys [62].

The way in which the CMB anisotropies appear today can be derived by considering photons

that are moving along null geodesic lines (ds = 0, which is the case for massless particles).

Particles free from all external non-gravitational forces move along geodesic lines which are

described by the geodesic equations,

d2xµ

dλ2 + Γµαβ
dxα

dλ

dxβ

dλ
= 0, (1.22)

where λ is an affine parameter, and xµ are the spacetime coordinates at point λ on the particle

path. For massive particles, this equation describes the minimal path length in a general spacetime,

where Γµαβ are the Christoffel symbols, that describe the properties of a given metric gµν . The line

element that is usually used to describe the early Universe from which the CMB photons emerged

is a perturbed version of the FLRW metric (whose line element is defined in Eq. (1.3)),

ds2 = a(η)2
[
− (1 + 2Ψ) c2dη2 + (1− 2Φ) dx2

]
, (1.23)

where Ψ and Φ are two scalar potentials, dη ≡ dt/a(t) is the differential conformal time (which

is defined in Eq. 1.15), and x are the comoving Cartesian spatial coordinates, which remain

constant in time in a homogeneous and isotropic expanding universe. This metric is known as the

perturbed FLRW metric in the conformal Newtonian gauge [38], which is used in this context for

its simplicity [63]. While the FLRW metric describes a homogeneous and isotropic universe, the

perturbed line element describes a universe with some matter inhomogeneity, or matter

perturbations around some average energy density.

Considering photons which propagate along null geodesics in a perturbed flat universe

described by the line element of Eq. (1.23) from a sphere whose surface is the surface of last

scattering around us, we can integrate Eq. (1.22) to obtain the energy of these photons today. To

linear order in perturbations, this energy is given by

E(η0) = a(ηre)E(ηre)

1 + Ψ(ηre)−Ψ(η0) +
η0∫

ηre

dη
(
Ψ′(η) + Φ′(η)

) , (1.24)

where η0 and ηre are the conformal times today and at recombination, respectively, and primes

denote conformal time derivatives. This result shows that at 0th order in perturbations the energy

scales as E(ηre) ∝ E(η0)/a, which is the expected result when the relevant metric is the
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unperturbed FLRW metric of Eq. (1.3). The 1st order corrections from the perturbed metric

results from the difference in potentials between the point of emission and reception (photons

climbing out or fall into potential wells at the two points), and from the evolving potentials along

the line of sight (from which the photons also climb out or fall into). The latter is the ISW effect

mentioned above. The ISW effect exists because of the late dominance of dark energy, which

causes the potential wells to evolve in time from z & 0. All of these effects cause the CMB to

have less or more energy at different points on the sky, and these are the anisotropies we see in

the CMB maps today.

Since we never observe the CMB photons from their rest frame, the energy that we measure

is slightly different due to Doppler shifts, which should also be accounted or when describing

the observed CMB. The velocity of the observer with respect to the CMB rest frame vobs should

therefore be considered, as well as the peculiar velocities of the CMB itself, which is essentially

the velocity of the baryons that the CMB photons are coupled to then vb. Converting the photon

energy to the photon temperature, which are related via

ργ(z) = π2

15 (1 + z)4 T 4
γ , (1.25)

the relative observed temperature anisotropies today ∆Tobs in direction n̂ with respect to the mean

temperature today, T0 = 2.72548± 0.00057 K [64], is given by

∆Tobs

T0
(n̂) ≡ Tobs(n̂)− T0

T0
= ∆γ

4 + n̂ · (vobs − vb) + Ψ(ηre)−Ψ(η0) +
η0∫

ηre

dη
(
Ψ′(η) + Φ′(η)

)
.

(1.26)

where ∆γ is the radiation perturbation, which represents the CMB anisotropies at recombination

such that ∆γ(η0) = 0.

Before recombination, photons were constantly interacting with the free electrons via

Thomson scattering. Due to the initial CMB anisotropy, and because the Thomson scattering

cross-section depends on the polarization of the radiation [65], this elastic scattering produced a

net linear polarization to the scattered photons. The polarization states of the photons after their

last Thomson scattering event then persevered after recombination. The polarization modes

which we observe, however, are not the primordial ones, as like with the main CMB intensity,

these are affected by various processes along their trajectory before reaching our telescopes.

The common method for describing radiation is via the Stokes parameters, which hold the

information on the intensity (I), linear polarization (Q and U ), and circular polarization (V ) of

the radiation. When considering the CMB specifically, V is often nullified. This is done mainly

because it simplifies most of the analytical and numerical treatments which involve polarization,
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but also because it is not generated via Thomson scattering. Theoretical predictions also suggest

that the circular polarization of the CMB is very small compared to the other Stokes

parameters [66, 67]. Throughout this thesis, we embrace this approximation, and consider only I

(often referred to as T hereafter5), Q and U to fully describe the CMB radiation properties. The

CMB temperature and polarization anisotropies are shown in Fig. 1.2. These were measured

using full-sky observations of the Planck satellite over a period of about 4 years [68]. The

temperature anisotropies shown in this figure have a characteristic scale of ∼1 degree, while the

polarization anisotropies appear slightly larger due to the contribution from reionization.

T

−300 300µK

Q

−2.5 2.5µK

U

−2.5 2.5µK

Figure 1.2: The T, Q and U anisotropies of the CMB as measured by Planck. These maps were cleaned using the 2018 SMICA
foreground-cleaning algorithm. Source: Akrami [68].

It can be more useful to describe the CMB polarization using the E and B modes. They are

related to the polarization Stokes parameters Q and U via [69–72]

E(`)± iB(`) = −
∫
d2x
2π [Q(x)± iU(x)] e∓2iϕ`e−i`·x, (1.27)

where ϕ` is the directional angle of the 2D vector ` with amplitude ` = |`|. This definition of

the E and B modes is given using the flat-sky approximation, in which x = xx̂ + yŷ, ` =

` cosϕ`x̂ + ` sinϕ`ŷ, and ` ≡ |`|. The curved-sky definition can be found in, e.g., Ref. [70].

These polarization modes are more useful because unlike Q and U , E and B are invariant under

coordinate rotations in the plane perpendicular to the polarization direction on the sphere. This

5For a black body, the two are related via I(ν) = 2hν3

c2
1

e
hν
kBT −1

where ν is the frequency of the radiation, h is Planck’s

constant and kB is Boltzmann’s constant.
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means that the polarization magnitude does not depend on the specific directions in which the

polarization was measured, which enables more robust treatments of CMB polarization.

Inflationary theories suggest that apart from scalar perturbations, the tensor components of the

metric are also perturbed due to primordial gravitational waves [73]. As with the scalar

perturbations, these would also contribute to the CMB anisotropies, especially at large angular

scales. Due to the existence of the scalar perturbations, which are expected to dominate, it is

currently impossible to measure the contribution of the tensor perturbations to the CMB

temperature anisotropies. Another advantage of using the E and B modes is that, by

construction, while E modes are sensitive to both the scalar and tensor perturbations, the B

modes are only sensitive to the tensor perturbations. Measuring the CMB B modes could

therefore be useful for constraining inflationary theories which predict different levels of tensor

perturbations. Such measurements are one of the main targets of current and upcoming CMB

experiments, as it may provide further insight on inflation [74–77].

The task of extracting this primordial information from B modes is very challenging. Not only

are B modes contaminated by foregrounds [78, 79] and various instrumental systematics (as is

the case also with E modes and temperature measurements), the B modes are also contaminated

with E modes due to the mode mixing caused by gravitational lensing (see Sec. 1.4 for more

details). It has already been shown that reconstructing the gravitational lensing potential that

affects the CMB can help with removing the lensing contributions of B modes by delensing

them [80–84]. Delensing the T and E fields will also be beneficial, as it will allow us to better

constrain the cosmological parameters using the unlensed CMB likelihoods [85]. This is one of

the main motivations for studying gravitational lensing, which is the main topic of this thesis, and

to improve the lensing reconstruction accuracy, which would then translate into our ability to

delense the B modes to uncover primordial gravitational waves signals.

To extract cosmological information from CMB measurements, it is useful to characterise the

size of the observed temperature and polarization anisotropies as a function of angular scale. This

relation is known as the angular power spectrum. It is defined using the expansion coefficients

a`,m of a temperature or polarization CMB anisotropies map into spherical harmonics. For the

temperature anisotropies,
∆Tobs(x)

T0
=
∞∑
`=1

∑̀
m=−`

T`mY`m(x), (1.28)

where ∆Tobs(x) are the temperature anisotropies at a specific direction on the sky x, which have an

order of magnitude of 10−5K, and Y`m is a spherical harmonic function of degree ` and order m.

When using flat CMB maps, this expansion simplifies to taking the Fourier transform of the map,
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such that T`m → T` are the Fourier coefficients. The flat-sky approach for describing measured

CMB quantities will be used throughout the thesis. The only exception will be Chapters 4 and 5,

where we will use curve-sky expressions. For polarization, as described earlier, we can expand the

E and B modes in a similar fashion. The power spectrum of two CMB fields x, y ∈ {T,E,B} is

defined as the average over ensembles of these expansion coefficients,

〈x`my∗`′m′〉xy = δ``′δmm′C
xy
` , (1.29)

where δ is the Kronecker delta function. In practice, because we only observe one ensemble (we

only have our Universe to observe), we instead use an average over the orders m to obtain an

unbiased estimator for the power spectrum,

Ĉxy` = 1
2`+ 1

∑̀
m=−`

x`my
∗
`m, (1.30)

where 2`+ 1 is the number of orders m in each `. The variance of these power spectra is usually

estimated by approximating the expansion coefficients a`m as independent random Gaussian

variables of zero mean,

Var
(
Ĉxy`

)
=
(
Cxy`

)2 + Cxx` Cyy`
2`+ 1 . (1.31)

The calculation of this variance is shown in Appendix A.1. This assumption is consistent with

current CMB measurements, which also fit to simple inflationary models (e.g., where inflation is

driven by one scalar field) which give rise to the CMB anisotropies [86, 87]. It is also helpful

for making specific predictions for the CMB anisotropies pattern [88]. The resulting variance is

usually considered as the cosmic variance limit, as it sets the limit of accuracy on the power spectra

we can calculate.

The sky maps we observe to measure the CMB anisotropies are usually contaminated by

various foregrounds, instrumental systematics, and instrumental noise. To obtain the power

spectra of CMB anisotropies, these raw sky maps are first cleaned from foregrounds. It is also

common practice to mask some parts of the maps to avoid contaminating the resulting power

spectrum with foreground residuals which survive the cleaning process, such as the thermal

emissions around the galactic plane and point sources, which will be discussed in some more

detail in Subsec. 1.3.2. While applying masks can help to produce more accurate cosmological

results, applying a mask reduces the observed sky area, which can increase the statistical

uncertainty of the measurements. It can therefore be crucial for experiments to optimise the
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amount of masked areas in CMB analyses. Unobserved sky areas in measurements of CMB

experiments can also be considered as masked regions on a full-sky map. When using masked

CMB fields in Eq. (1.30), the result is the pseudo-C` [89–92]. The unbiased power spectrum can

be estimated from this pseudo-power spectrum by applying a mixing matrix M that takes into

account the fact that not all modes on the sphere were fully observed due to masking. This

method will be shown in more detail in Chapter 5. For a mask M(x), one can also approximate a

correction factor to the pseudo-C`,

fsky = 1
Npix

Npix∑
i=1

M2
i , (1.32)

instead of calculating the mixing matrix, and obtain a fairly good approximation for the unbiased

power spectrum. Although using fsky to unbias the cut-sky CMB power spectra gives generally

good results, it can be less optimal when calculating theE andB power spectra from cut-sky maps

due to the mode-mixing the masks induce [93–96]. The mixing matrix, on the other hand, can be

optimised to produce the pure E and B spectra [97].

The CMB power spectra that were measured by the Planck collaboration [37] are shown in

Fig. 1.3. This collaboration did not produce significant measurements of the B modes due to

insufficient polarization sensitivity. Most of their polarization measurements were dominated by

large-scale foregrounds and instrumental noise, and even after cleaning the polarization maps the

resultingBB power spectrum was compatible with zero [37]. On small scales,B modes do appear

in the cleaned Planck maps, however these could only be detected by correlating the maps with

other internal or external tracers [98–100].

The peaks and troughs of CTT` , CTE` and CEE` are caused by the sound waves of the density

perturbations prior to recombination. Because prior to recombination modes of different

wavelengths completed different numbers of full oscillations, the characteristic length scales

produce the series of minima and maxima in the power spectra [24, 25, 88, 101, 102]. At scales

` . 100, the TT power spectrum is relatively flat. This large-scale plateau reflects the primordial

power spectrum, which is almost scale-invariant, and does not depend on post-recombination

physics. It is often called the Sachs-Wolfe plateau [59], as the Sachs-Wolfe effect dominates

these scales. The slight increase of power at ` . 10 is due to the integrated Sachs-Wolfe effect,

which is dominant on the largest scales. The oscillations at scales ` & 1000 are smoothed due to

the gravitational lensing of the CMB photons in the late Universe. Lensing also mixes modes in

the CMB power spectra, which leads to an increase of power in modes with less unlensed power.

While the primordial CMB anisotropies are Gaussian to good approximation [103–105], the
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Figure 1.3: The CMB TT , TE and EE power spectra measurements and best-fit from Planck, where D` ≡ `(`+ 1)C`/(2π). The
Bottom-right panel shows the current state of the CMB BB power spectrum measurements. The CBB` measurements
from Planck and SPTpol are from cross-correlations with a B-mode template. Sources: Aghanim [37] and Ade [99].

observed anisotropies are no longer Gaussian, mainly due to CMB lensing. The weak

gravitational lensing of the CMB is described in more detail in Sec. 1.4.

In the late Universe, the CMB photons undergo further scattering during and after reionization.

The resulting anisotropies come from different parts of the sky, which causes a map-level

suppression of anisotropies proportional to e−τ on small scales (high `s), where τ is the optical

depth to reionization of Eq. (1.14). The resulting temperature power spectrum is therefore also

suppressed by a factor of e−2τ . While the same factor affects the polarization power at high `

values as well, unlike with temperature this scattering also increases the polarization anisotropy

at low multipoles [106–108]. This is due to the larger temperature quadrupole at recombination,

which is the mode that generates polarization from Thomson scattering.

Another effect which induces anisotropies in the CMB in the late Universe is the Sunyaev-

Zeldovich effect [24, 109]. CMB photons can collide with the much more energetic free electrons
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in the intracluster medium, and as a result gain some energy on average. This additional energy

changes slightly the CMB anisotropies in the direction of galaxy cluster. Measuring this energy

excess can therefore be used to detect galaxy clusters [110, 111]. Masking areas with known

clusters in the CMB maps can help reduce the impact of this effect when analysing CMB maps.

As discussed earlier, the relative motion between the CMB and the observer provides an

additional large-scale anisotropy due to the Doppler effect. This effect manifests at the dipole

level of the CMB (the monopole contribution is the mean temperature of the radiation). The

measured CMB dipole, which is caused by the peculiar velocity of the solar system relative to the

comoving cosmic rest frame of the CMB, indicates a relative velocity of 369.82 ± 0.11

km/sec [40, 112].

The ability to numerically compute the theoretical power spectra of the CMB temperature and

polarization anisotropies is very useful in cosmology. Such computations are used extensively to

relate observations with theory, and to estimate cosmological parameters. The theoretical CMB

power spectra for a given model can be calculated with cosmological Boltzmann codes. These

codes evolve the distribution function of the CMB photons using the Boltzmann equations, which

describe the statistical interactions and forces that affect the propagation of the CMB radiation

in the evolving Universe. It usually uses General Relativity to calculate the effects of gravity

and spacetime curvature on the trajectory of the photons, and includes the transfer functions for

baryons, neutrinos, dark matter, and dark energy. The resulting CMB statistics depends on the

assumed initial conditions in the early Universe, which are used as the input parameters. The (log)

primordial scalar and tensor perturbations are often parametrised as running power laws, following

the slow-roll inflationary model [77],

ln (Ps(k)) = ln (As) + (ns − 1) ln
(
k

ks

)
+ ns,run1

2

[
ln
(
k

ks

)]2
+ ns,run2

6

[
ln
(
k

ks

)]3
,

ln (Pt(k)) = ln (At) + nt ln
(
k

kt

)
+ nt,run1

2

[
ln
(
k

kt

)]2
,

(1.33)

where Ai are the perturbation amplitudes at pivot scales ki, ni are the spectral indices, and

ni,runj ≡ d(j)ni/d ln(k)(j). These parameters, along with the other cosmological parameters

shown in Table 1.1, are used as input to Boltzmann codes to evaluate the resulting CMB power

spectra of the assumed cosmological model. The work presented in this thesis uses fiducial power
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spectra that were generated by the well-known Boltzmann code CAMB [113]6. We use these

power spectra extensively for various purposes, such as generating different CMB map

realisations and comparing power spectra results with the theoretical ΛCDM power spectra.

1.3.2 OBSERVING THE CMB

The CMB was originally detected in 1964 by Arno Penzias and Robert Wilson as an isotropic

and homogeneous radiation with mean temperature of TCMB = 3.5 ± 1. K [114]. This

background temperature was measured even earlier, in 1941, by Andrew McKellar from

spectroscopic observations of CN absorption lines in the spectrum of a B-type start without

relating it to its cosmic origin [115]. This mean temperature of the Universe today was also

predicted in 1948 by Ralph Alpher and Robert Herman to be about 5 K [116].

Following the discovery of the CMB, many experiments were built to characterise this

radiation with increasing accuracy. In November 1989, the COsmic Background Explorer

(COBE) [117], the first satellite mission devoted mainly to CMB cosmology research, was

launched. This satellite carried three distinct experiments on board: A differential microwave

radiometer (DMR) that mapped the CMB anisotropies, a far-infrared absolute spectrophotometer

(FIRAS) which was used to measure the spectrum of the CMB, and a diffuse infrared background

experiment (DIRBE), a multi-wavelength infrared detector that mapped the galactic dust

emissions. It performed measurements in 31, 53 and 90 GHz, with sensitivities in the range

15-43 mK
√

sec . One of the main results of DMR and FIRAS experiments was that the CMB can

be very well approximated as a black-body radiation with temperature of 2.728 ± 0.002 K [118,

119]. The DMR angular resolution, 7◦, was not sufficiently small to measure the small-scale

CMB anisotropies.

The second CMB satellite mission was the Wilkinson Microwave Anisotropy Probe (WMAP),

which operated between the years 2001-2010 [120]. WMAP measured both the temperature and

polarization of the CMB at five different frequency bands between 23 and 94 GHz. Its 94 GHz

measurements had a resolution of 13.2 arcminutes, about 33 times higher than the COBE

resolution, at a sensitivity 45 times higher than that of COBE. These significant improvements in

precision enabled detailed measurements of the CMB anisotropies. As the first CMB satellite

mission that was sensitive to polarization, WMAP also enabled the first detection of the TE

cross-correlation [28].

Close to the end of the WMAP operation, the third and, as of writing these words, last satellite
6Available at https://camb.info/.

https://camb.info/
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CMB mission, Planck, was launched [121]. Even almost 10 years since Planck retired, its CMB

measurements are still considered as some of the most accurate ones, which help ground-based

experiments to perform various calibrations for their measurements7. Its main improvements

compared to WMAP were the much higher sensitivity in both temperature and polarization

measurements, a resolution of more than 2 times greater, and a larger variety of frequency

channels [122]. Planck’s 5-year mission provided high-resolution maps of the CMB anisotropies,

which helped to improve the estimates of the cosmological parameters, measure the E mode

power spectrum, and also, for the first time, to produce the auto-power spectrum of the

reconstructed CMB lensing potential due to its sensitivity to small scales [98, 100, 123].

Before Planck was launched, many ground-based CMB experiments began operating and

producing cosmological results. The main advantage of such ground-based experiments is that

much larger arrays can be used, which in turn provide higher resolution maps. They can also host

a much larger amount of detectors to measure the sky with. Using more detectors not only

increases overall sensitivity, but also improves the immunity of the resulting maps to some

instrumental systematic effects, as then multiple detectors, each with its own systematic, observe

the same sky area, which can lead to reduced systematics contamination due to averaging. The

main disadvantage of ground-based experiments is the Earth’s atmosphere. The atmosphere has

many particles which absorb, reflect, or emit radiation around the same frequencies a typical

CMB experiments observes in, which is usually between 30-800 GHz. Fluctuating particle

densities in the atmosphere also introduce spatial and temporal correlations between

measurements. These distortions can be hard to realistically simulate and remove from sky

maps [124]. To minimise atmospheric noise, CMB observatories are usually constructed at high

elevations where the air is relatively dry, stable, and cold. These requirements led the Atacama

Desert in Chile, which is 5,200 meters above sea level, and Antarctica, which is 3,048 meters

above sea level, to be the main locations for ground-based CMB experiments. Some of the CMB

experiments in the Atacama Desert include the Atacama Cosmology Telescope (ACT) [125], the

POLARization of the Background Radiation (POLARBEAR) experiment [126], and the

Cosmology Large Angular Scale Surveyor (CLASS) [127]. The main CMB experiments that are

located at the South pole are the South Pole Telescope (SPT) [128], the Background Imaging of

Cosmic Extragalactic Polarization (BICEP) experiment [129], and the Keck array [130]. These

experiments finished their initial observation runs and have been since then enhanced to

commence observations.
7Unlike spaceborne CMB missions, ground-based CMB experiments have the challenge of controlling the detectors
environment, which often means the measured gains are miscalibrated. To calibrate the gains, they often use the
Planck measurements.



INTRODUCTION 24

In the upcoming years, more CMB experiments are expected to be built and start observations.

As recent decades showed, it is expected that these experiments will continue to become more

and more sensitive to the CMB anisotropies and provide increasingly better CMB measurements.

This improvement trend is illustrated in Fig. 1.4, where current experiments are considered to be

between Stage-III and Stage-IV. The next CMB experiment that will start observations is the

Simons Observatory [131, 132], which will provide arcminute-scale sky measurements in 6

different frequency bands between 27-280 GHz using around 60,000 detectors. Several forecasts

for this experiment are done in Chapters 2, 3 and 5. The currently-proposed next-generation

CMB ground-based experiment, CMB Stage-4 (CMB-S4) [133–135], is expected to produce

even more sensitive CMB measurements.
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Figure 1.4: Sensitivities of past, present, and future CMB experiments in temperature measurements. Polarization sensitivities are
larger by a factor of

√
2 . ACT, SPT, POLARBEAR and BICEP are around Stage-II and Stage-III, while the Simons

Observatory is planned to be between Stage-III and Stage-IV. Source: Abazajian [133].

Apart from more ground-based experiments, there have also been several approved proposals

for satellite missions that will observe the CMB over a larger frequency range. One such mission,

the Lite (Light) satellite for the study of B-mode polarization and Inflation from cosmic

background Radiation Detection (liteBIRD) [136], which will have 15 channels (compared to

Planck’s 9 channels) between 34-448 GHz, is expected to be the successor of the Planck mission

and provide new insights for CMB observations largely due to its expected robustness to battle

foreground contamination. It is currently planned to be launched in 2028 for a 3-year mission,

operating from the same location as the Planck satellite.

The main way in which today’s experiments measure the CMB is through telescopes which

receive signals from their environment and transfer them to bolometers. The bolometers measure

the power of the incident radiation through a heating element with a temperature-dependent
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electrical resistance. The input signal changes the temperature of this heating element, and this

temperature is converted to an electric signal. This time-dependent signal is usually referred to as

the observed time-ordered data (TOD). Using the sky location from which the TOD arrives,

which is defined by the pointing matrix of the experiment, the TOD can be converted to

temperature and polarization maps. The maps can then be constructed from individual detector

pairs (or even individual detectors, for constructing the temperature map specifically;

pair-differencing is usually required for polarization measurements), or from different

combinations of detectors. If the same sky area is observed several times by the full experiment,

maps can also be made by combining data from different observation runs. These different

combinations are important for data analysis, as these combinations help to reduce noise,

systematics, and foregrounds in the final maps. As experiments become more sensitive, the way

in which CMB measurements are made can affect the uncertainty of the measurements. The

measurement process and how different instrumental systematics affect the reconstructed lensing

potential from future CMB observations is discussed in more detail in Chapter 3.

Producing sky observations in multiple frequencies is also very important for CMB

observations. While the CMB power peaks at around 160.4 GHz (or 1.9 mm), it also has power at

lower and higher frequencies. Combining different frequency maps can also help reducing

contaminants in the final map. When observing the sky in these radio frequencies, we do not only

see the CMB. Sky maps in different frequencies show that there are many foregrounds between

the CMB and the telescope, most of which scale with the observation frequency, which

contaminate the CMB anisotropies maps. The most contaminating foreground in a large range of

frequencies is the thermal emissions from the intergalactic medium of the Milky Way. Another

important contaminant is point sources. These are objects such as galaxies, quasars, blazars, and

gamma-ray bursts that appear as point-like signals in the CMB maps but do not have a primordial

origin [137]. Point sources which are detected by CMB and various radio telescopes can be used

to construct point source masks that can be applied to CMB maps for cosmological

analyses [138–140]. Such point source masks can then be used alongside a galactic plane mask to

reduce the impact of residual foregrounds on the CMB analysis.
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1.4 CMB LENSING

1.4.1 WEAK GRAVITATIONAL LENSING OF THE CMB

In the previous section, we mentioned that along its trajectory, the CMB photons were affected by

the LSS in the late Universe through gravitational lensing. In this section, we will describe this

effect in more detail, and show how the lensing potential can be inferred from CMB measurements.

To discuss the gravitational effects on the CMB, we must consider a spacetime metric which

includes gravitational potentials. These potentials affect the CMB trajectory and lens the CMB

photons [141]. For this, we use the perturbed FLRW metric in the conformal Newtonian gauge

[141],

ds2 = a2(η)
[
− (1 + 2Ψ) c2dη2 + (1− 2Φ)

[
dχ2 + f2

K(χ)dθ2 + f2
K(χ) sin2 θdφ2

]]
. (1.34)

Here, χ is the comoving radial distance,

χ(t) =
t∫

te

c
dt′

a(t′) , (1.35)

where te is the time in which photons were emitted from the observed source. This distance factors

out the expansion of the Universe, and so comoving distances do not increase as the Universe

expands. fK(χ) is the comoving angular diameter distance, which depends on the curvature of

the Universe K, and is given by

fK(χ) =


K−1/2 sin(K1/2χ) for K > 0 (closed universe),

χ for K = 0 (flat universe),

|K|−1/2 sinh(|K|1/2χ) for K < 0 (open universe).

(1.36)

The angular diameter distance is the ratio between the physical size of the observed object and its

apparent angular size as seen by an observer at comoving distance χ away from the object. The

potential Ψ satisfies the relativistic Poisson equation,

∇2Ψ = 4πGa2

c2

∑
i

δρi, (1.37)

where δρ is the density perturbation in the total density rest-frame, and i sums over all the different

components that make up the total density. For CMB lensing, the main component is dark matter.

The two potentials are equal in a universe in which the anisotropic components of the stress-energy
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tensor Tµν is zero in the rest-frame of the total density [38]. As this is the case for ΛCDM during

matter-domination, we set Ψ = Φ in our calculations.

The gravitational potential that is caused by a massM at radius r away from its centre of gravity

is given by

Φ(r) ≡ −GM
c2r

. (1.38)

By using the geodesic equations of Eq. (1.22) and using the approximation |Φ| � 1 along the

photon’s trajectory, it can be shown that a photon that is affected gravitationally by mass M will

change its trajectory by an angle

θ = 4GM
c2R0

, (1.39)

whereR0 is the distance of closest approach between the photon and the lensing mass. If the object

that curves spacetime along the photon’s trajectory is a black hole, this equation holds as long as

R0 is much larger than the black hole’s Schwarzschild radius. For any other object with a relatively

weak gravitational field, this equation holds when R0 is larger than the radius of the object, as the

photon could interact with the object’s particles and be affected by more than just gravity. We can

express the differential deflection angle as a function of the gradient of the gravitational potential

which affects the CMB photons. In terms of the differential conformal distance, this deflection

angle becomes

δθ = −2∇⊥Φ(χ)δχ, (1.40)

where ∇⊥ is the gradient in the direction of the lensing potential, which is perpendicular to the

photon’s trajectory, and δχ is a differential distance along the photon path.

For the CMB, this lensing effect is called weak gravitational lensing, as the deflection angles

are small (typically around 1 arcminute in size [142]). This means that the observed lensed

anisotropies of the CMB have small shear- and magnification-like distortions, which change the

statistics of the CMB anisotropies. The effect of lensing can therefore only be measured

statistically from the CMB. Such measurements provide a unique insight on the lensing potential,

as unlike with some lensing probes such as background galaxies lensed by galaxy clusters,

measuring the lensing potential does not require making any assumptions on the shape of the

lensing mass.

In CMB lensing, we are interested to know how the deflection affects the observed CMB. We

therefore want to relate the deflection angle to the observed angle shift δα. For this, we use the

comoving angular diameter distances between the CMB and the observer, fK(χ∗), and between
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the lensing potential and the observer, fK(χ). The comoving distances χ and χ∗, along with the

deflection angles, are shown in Fig. 1.5. Using simple trigonometry and assuming small deflection

angles, the relation between the two angles is

δα = fK(χ∗ − χ)
fK(χ∗)

δθ = −fK(χ∗ − χ)
fK(χ∗)

2δχ∇⊥Φ (1.41)

in the direction ∇⊥Φ. The total deflection angle from all potential gradients between us and

𝝌𝝌∗

𝝌𝝌

Lensing potential 
𝚽𝚽

Surface of 
last scattering

𝜸𝜸𝐂𝐂𝐂𝐂𝐂𝐂
𝜹𝜹𝜹𝜹 𝜹𝜹𝜹𝜹

CMB 
experiment

Figure 1.5: A not-to-scale illustration of the effect of gravitational lensing on a CMB photon γCMB which originates from the surface
of last scattering. For CMB lensing, χ∗−χ� χ, as most of the lensing potential affecting the radiation is at low redshifts.
The lensing potential is illustrated as a single dark matter halo, although in practice a single photon can be deflected by
many halos.

recombination is then

α = −2
χ∗∫
0

dχ
fK(χ∗ − χ)
fK(χ∗)fK(χ)∇⊥Φ(χn̂; η0 − χ/c), (1.42)

where Φ(χn̂; η0 − χ/c) is the gravitational potential at conformal distance χ along the direction

n̂ at conformal time η0−χ/c. When we observe the CMB anisotropy in direction n̂, it is in fact a

‘primordial’ anisotropy in the direction n̂+ ∇φ(n̂) on the sky, where ∇φ(n̂) is the CMB lensing

potential [142]. It is related to the observed deflection angle via α = ∇φ(n̂), such that

φ(n̂) ≡ −2
χ∗∫
0

dχ
fK(χ∗ − χ)
fK(χ∗)fK(χ)Φ(χn̂; η0 − χ/c). (1.43)

If we assume that Φ is Gaussian, we can define its power spectrum PΦ(k) as we defined the

matter power spectrum. Using the Fourier transform of the lensing field,

Φ(x; η) =
∫

d3k

(2π)3 Φ(k; η)e−ik·x, (1.44)
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such that 〈
Φ(k; η)Φ∗(k′; η′)

〉
= 2π2

k3 PΦ(k; η, η′)δ(k − k′). (1.45)

Using this definition of the gravitational potential power spectrum, along with the definition of the

lensing potential from Eq. (1.43) and the correlation function of the lensing potential in spherical

harmonics,

〈φ`mφ∗`′m′〉 = δ``′δmm′C
φφ
` , (1.46)

we can express the angular power spectrum of φ as a function of PΦ(k) and comoving angular

diameter distances,

Cφφ` = 16π
∫
dk

k

χ∗∫
0

dχ

χ∗∫
0

dχ′PΦ(k; η0−χ/c, η0−χ′/c)j`(kχ)j`(kχ′)
fK(χ∗)− fK(χ)
fK(χ∗)fK(χ)

fK(χ′∗)− fK(χ′)
fK(χ′∗)fK(χ′) .

(1.47)

where j`(kχ) are the spherical Bessel functions.

To infer this lensing potential from CMB experiments, we can use the statistical properties it

induces on the CMB anisotropies. As we will show below, lensing produces off-diagonal

correlations between the modes of the CMB anisotropies across the sky in harmonic space.

Studying these correlations enables the estimation of the lensing potential. A simple way to

express how CMB lensing affects an observed CMB field X (either T , Q or U ) is through a

series expansion in small deflection angles ∇φ(n̂),

X̃(n̂) =X(n̂′) = X(n̂ + ∇φ)

≈X(n̂) +∇i1φ(n̂)∇i1X(n̂) + 1
2∇

i1φ(n̂)∇i2φ(n̂)∇i1∇i2X(n̂) + · · · ,
(1.48)

where X̃(n̂) is the observed lensed anisotropy in the direction n̂, X(n̂′) is the unlensed field in

the direction n̂′ ≡ n̂ + ∇φ, and i1 and i2 sum over the 2D coordinates in directions e1, e2.

For polarization, since it is more convenient to use the E and B modes and not the Q and U

Stokes parameters (as discussed in Subsec. 1.3.1), Eq. (1.48) can be used for X(n̂) = ±X(n̂) ≡

Q(n̂)± iU(n̂) such that ±X(`) = E(`)± iB(`).

The expansion in Eq. (1.48) can be re-written in harmonic space using the Fourier transforms

of the deflection angle and gradient of the CMB fields,

∇φ(n̂) = i

∫
d2`

2π `φ(`)ei`·n̂ (1.49)

∇T (n̂) = i

∫
d2`

2π `T (`)ei`·n̂ (1.50)

∇Q(n̂)± i∇U(n̂) = −i
∫
d2`

2π ` [E(`)± iB(`)] e∓2iϕ
`ei`·n̂ (1.51)
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to obtain (to first order in φ and using the flat-sky approximation) [143, 144]

T̃ (`) ≈ T (`)−
∫
d2`′

2π `
′ · (`− `′)φ(`− `′)T (`′),

Ẽ(`) ≈ E(`)−
∫
d2`′

2π `
′ · (`− `′)φ(`− `′)

[
E(`′) cos

(
2
(
ϕ

`
− ϕ

`′

))
−B(`′) sin

(
2
(
ϕ

`
− ϕ

`′

))]
,

B̃(`) ≈ B(`)−
∫
d2`′

2π `
′ · (`− `′)φ(`− `′)

[
E(`′) sin

(
2
(
ϕ

`
− ϕ

`′

))
+B(`′) cos

(
2
(
ϕ

`
− ϕ

`′

))]
.

(1.52)

The expansions of the polarization modes can be simplified further if we assume that there are

no unlensed B modes, which is the case for ΛCDM. As mentioned before, in practice the CMB

temperature and polarization fields X̃(n̂) are not observed directly, as sky measurements can be

contaminated by, e.g., instrumental noise and foregrounds. We neglect their contributions to the

observed fields in this subsection for convenience. Some of these additional complexities will be

discussed in the next subsection and in later chapters.

Eq. (1.52) shows that lensing mixes the different modes of the observed fields. We can use

this to infer the lensing potential from a given sky realisation using the off-diagonal terms of the

correlation of any two lensed fields X̃ , Ỹ [145]. Using the definition of the power spectrum for

statistically-isotropic fields,

〈X̃(`)Ỹ ∗(`′)〉X̃Ỹ = δ(`− `′)CX̃Ỹ` , (1.53)

with the expressions of Eq. (1.52) results in

〈X̃(`)Ỹ ∗(`− L)〉X̃Ỹ = δ(L)CXY` + 1
2πfXY (`, `− L)φ (L) +O(φ2), (1.54)

where fXY are defined in Table 1.2 for all CMB fields combinations [145]. This shows that for

L = 0 (which represents the diagonal elements of the covariance matrix CXY ) we only have

contributions from the unlensed XY cross-correlation power spectrum, while for L 6= 0 (the

off-diagonal elements) we have some dependency on the lensing potential φ. This means that

we cannot observe the 0th mode of the lensing potential, and therefore all lensing-related modes

throughout the thesis will be defined only for L ≡ |L| ≥ 1 on the curved sky.

When neglecting higher-order terms in φ due to their smaller contribution to the overall

distortions, Eq. (1.54) becomes, for all L > 0,

〈X̃(`)Ỹ ∗(`− L)〉X̃Ỹ = 1
2πfXY (`, `− L)φ (L) . (1.55)
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XY fXY (`1, `2) FXY (`1, `2)

TT CTT`1 (L · `1) + CTT`2 (L · `2) fTT (`1, `2)
2CTT`1 CTT`2

TE CTE`1 cos (2∆ϕ`1`2) (L · `1) + CTE`2 (L · `2) fTE(`1, `2) + fTE(`2, `1)
CTT`1 CEE`2 + CTE`1 CTE`2 + CEE`1 CTT`2

TB CTB`1 sin (2∆ϕ`1`2) (L · `1) fTB(`1, `2) + fTB(`2, `1)
CTT`1 CEE`2 + CEE`1 CTT`2

EE
[
CEE`1 (L · `1) + CEE`2 (L · `2)

]
cos (2∆ϕ`1`2) fEE(`1, `2)

2CEE`1 CEE`2

EB
[
CEE`1 (L · `1)− CBB`2 (L · `2)

]
sin (2∆ϕ`1`2) fEB(`1, `2) + fEB(`2, `1)

CEE`1 CBB`2 + CBB`1 CEE`2

BB
[
CBB`1 (L · `1) + CBB`2 (L · `2)

]
cos (2∆ϕ`1`2) fBB(`1, `2)

2CBB`1 CBB`2

Table 1.2: Minimum-variance weights for reconstructing the lensing potential, with `2 ≡ L − `1 and ∆ϕ`1`2 ≡
(
ϕ`1 − ϕ`2

)
.

The fXY terms provide more optimal lensing estimators using power spectra which are defined by
〈

∇̃T (`)T̃ (`′)
〉

=
i`δ(`+ `′)C̃T∇T` where ∇̃T (x) ≡ (∇T ) (x + ∇φ) is the lensed temperature gradient [146]. The power spectra in the
denominator of the FXY terms are the power spectra of the lensed CMB fields+noise.

While this equation deceivingly suggests we can easily measure φ directly from the off-diagonal

elements of the covariance of two CMB maps, the left-hand side of the equation is an average

over CMB realisations. In practice, when we want to estimate the lensing potential from CMB

observations, we only have one realisation to measure φ from, so a more sophisticated technique

is required to estimate the covariance matrix to obtain φ. Instead of using different realisations,

we can average over all off-diagonal elements to extract statistical information on φ. To do this

optimally, we could use a weighted mean, where the weights would minimize the variance of the

lensing potential estimator φ̂. The estimator can then be written as

φ̂XY (L) ≡ 1
RXY (L)

∫
d2`

2π X̃(`)Ỹ ∗(`− L)FXY (`,L− `), (1.56)

where FXY are given in Table 1.2 for all field combinations. An unbiased estimator (such that〈
φ̂(L)

〉
XY

= φ(L)) is obtained when the normalization is

RXY (L) =
∫

d2`

(2π)2 fXY (`,L− `)FXY (`,L− `). (1.57)
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The optimal weights FXY (`,L− `) can be obtained from minimizing the estimator variance,

〈(
φ̂XY (L)− φ(L)

) (
φ̂ZD(L′)− φ(L′)

)∗〉
XY ZD

= 1
RXY (L)

1
R∗ZD(L′)

×
∫
d2`

2π

∫
d2`′

2π
〈
X̃(`)Ỹ ∗(`− L)Z̃∗(`′)D̃(`′ − L′)

〉
XY ZD

FXY (`,L)F ∗ZD(`′,L′)

+
〈
φ(L)φ∗(L′)

〉
.

(1.58)

The trispectrum of the lensed fields can be expanded to 0th order in φ using Wick’s theorem [147],

the definition of the power spectrum in Eq. (1.53), and the fact that X(`) = X∗(−`), such that

〈
X(`)Y ∗(`− L)Z∗(`′)D(`′ − L′)

〉
= 〈X(`)Y ∗(`− L)〉

〈
Z∗(`′)D(`′ − L′)

〉
+
〈
X(`)Z∗(`′)

〉 〈
Y ∗(`− L)D(`′ − L′)

〉
+
〈
X(`)D(`′ − L′)

〉 〈
Z∗(`− L)Y ∗(`′)

〉
=δ(L)δ(L′)CXY` CZD`′

+ δ(`− `′)δ(`− L− (`′ − L′))CXZ` CY D|`−L|

+ δ(`− (L′ − `′))CXD` δ(L− `− `′)CY Z|L−`|.

(1.59)

Plugging this result into Eq. (1.58), and equating the derivative of the variance with respect to φ to

zero, leads to the weights shown in Table 1.2. This method for reconstructing the lensing potential

from CMB fields assumes a linear dependency of the lensed CMB fields on the lensing potential.

In the following subsection, we show a more accurate way of reconstructing the lensing potential

and present the main method which is used in the lensing analyses of Chapters 2-4.

1.4.2 CMB LENSING RECONSTRUCTION

The first lensing reconstruction was done using the CMB measurements of WMAP, which

enabled the first detection of the lensing field through cross-correlations with large-scale

traces [148, 149]. The ACT collaboration was the first to produce lensing power estimates

through CMB measurements alone [150]. Their 4σ detection for modes between 75 < L < 2050,

used CMB temperature measurements. They were followed by the SPT collaboration, which

produced similar measurements [151]. The POLARBEAR collaboration was then the first to

produce lensing estimates from polarization-only measurements [152], after which SPTpol

produced both polarization-only and temperature+polarization lensing estimates [153]. Around

the same time, the Planck collaboration produced its first lensing estimates for a larger multipole
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range 40 < L < 2048 (due to the larger sky-area Planck observed) [123], which was improved

even further in their 2018 analysis to 8 < L < 2048, and later also released estimates from

combining temperature and polarization measurements [98, 100]. The BICEP2 & Keck Array

collaboration also produced results which are consistent with the others using polarization-only

maps [154]. The most recent lensing deflection map from Planck and lensing potential power

spectrum estimates are shown in Fig. 1.6. The power spectrum estimates from all experiments are

consistent with the theory spectrum, and the estimates from Planck are overall more accurate.
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Figure 1.6: The Planck reconstructed α ≡ ∇φ map (top panel) and lensing power spectrum (bottom panels). The power spectrum
plot shows that the estimates from Planck, SPT and ACT are all consistent with the theory spectrum shown (black line),
and that the reconstruction uncertainties of the Planck estimates are smaller compared to the others. Source: Aghanim
[100].

In the previous subsection, we saw that the lensing field can be approximately extracted from the

CMB fields while neglecting their higher order dependencies on the lensing potential φ. Due to this

approximation, it is not the most optimal method that can be used to extract the maximal amount

of information about the lensing potential from CMB observations. In this subsection, a more

optimal method, the maximum-likelihood estimator (MLE), is described. This method is sufficient

for lensing reconstructions when the noise in the measurements is dominant, but suboptimal for

signal-dominated experiments. Nonetheless, this method was improved over the years to provide

better and more accurate lensing measurements, while measurements of the CMB became more



INTRODUCTION 34

sensitive.

Although the MLE is an iterative method for reconstructing φ, currently all real-data

implementations of this method use the first iteration for the lensing estimate. Apart from MLE, a

possibly more optimal method which uses Bayes’ theorem [155] was recently demonstrated by

the SPT collaboration using SPTpol measurements [156]. Their Bayesian procedure produced a

marginal improvement in lensing reconstruction compared to their results from the first iterative

solution of the MLE. These improvements are expected to be more significant with future CMB

measurements which will have much lower noise levels, especially in polarization measurements.

Both reconstruction methods are based on the relatively good approximation that the lensing

field, the CMB fields and the noise in the CMB maps are Gaussian. This assumption is useful,

because it allows us to express various probabilities and analytical likelihoods analytically to

extract information on the lensing potential from CMB fields.

The basis of the MLE method is using a given data set D, plus a model with parameter vector

θ to calculate how likely is the data given specific parameter values. This likelihood is essentially

the conditional probability, P (D|θ). We can incorporate any other pieces of information into this

likelihood from different data sets or estimations of other experiments to obtain more constrained

parameters from this likelihood.

To apply this method for CMB lensing, let us consider a vector X̃ (X) of the lensed (unlensed)

CMB temperature and polarization fields, such that the observed vector isXtot = X̃+n where n is

the (Gaussian) noise vector. Given a theoretical covariance of the lensed fields, S =
〈
X̃X̃>

〉
X,n

,

which is determined by the CMB power spectra, the likelihood for measuring the specific CMB

fields given a fixed lensing field φ is

P (Xtot|φ,S,N) = 1

(2π)
3Npix

2
√
|C|

e−
1
2 (Xtot)>C−1Xtot . (1.60)

where C ≡ CXtotXtot = S +N is the full covariance of Xtot and Npix is the number of pixels in

each CMB map. Defining L [φ] ≡ − ln(P (Xtot|φ,S,N)), such that

L [φ] = 1
2
[
ln (|C|) + (Xtot)> C−1Xtot + 3Npix ln (2π)

]
, (1.61)

we obtain a more convenient function for finding the value of φ for which the likelihood is

maximal. This value is found by taking the functional derivative [157] of L with respect to φ, and
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setting the result to zero:

δL [φ]
δφ(x) = 1

2

[
Tr
(

C−1 δC
δφ(x)

)
− (Xtot)> C−1 δC

δφ(x)C−1Xtot

]
= 0, (1.62)

where we used the identity ln (|X|) = Tr (lnX). The lensing potential estimate that solves this

equation is φ̂.

The equation we want to solve can be rewritten as

gφ − 〈gφ〉X̃,n = 0, (1.63)

where

gφ(x) ≡ 1
2
[
C−1Xtot

]>
(x) δC

δφ(x)
[
C−1Xtot

]
(x). (1.64)

Here, we used the identity Tr (A) =
〈
x>AC−1x

〉
x

for matrixA and vector of Gaussian random

variables x with covariance C. The average term 〈gφ〉X̃,n, known as the mean field (MF) term,

vanishes ifXtot = X̃ and if these fields have no masked regions, as in this case gφ is isotropic and

its ensemble average goes to zero. This term is therefore sensitive to the noise and to the masking

artefacts in the CMB maps, and is considered to be a bias term that is needed to be evaluated and

subtracted from the reconstructed QE ĝφ that maximise the likelihood.

In practice, Eq. (1.63) is usually solved numerically using the Newton-Raphson method [158],

which finds the roots of a function f(x) relatively efficiently [159]. It does so by iteratively finding

values xi such that lim
i→∞

f(xi) = 0, starting from an initial value x0. The next value, x1, is obtained

from the intersect of the tangent t(x) to the function f(x) from the point corresponding to the

previous value, (x0, f(x0)), with the x-axis, which is given by t(x) = f ′(x0)x+f(x0)−f ′(x0)x0.

This leads to the next guess, x1 = x0−f(x0)/f ′(x0), which can then be used as the starting point

for the next iteration. For CMB lensing, the initial guess is usually taken to be x0 = φ0 = 0,

and the function f(x) = gφ is defined in Eq. (1.64). The first iteration of this calculation is

sufficient for an accurate lensing reconstruction from current and near-future experiments, which

is the estimator most CMB experiments currently use in their lensing analysis. Setting φ0 = 0, the

first iteration gives

φ̂1(x) =−
(

[gφ − 〈gφ〉]φ=0

[
δ

δφ(x)
(
[gφ − 〈gφ〉]φ=0

)]−1

φ=0

)
(x)

=
(

[gφ − 〈gφ〉]φ=0F
−1
φ

∣∣∣
φ=0

)
(x),

(1.65)
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where we approximated the derivative as the Fisher matrix F (see Ref. [158] and Appendix A.1

for more details) for further simplification. For current and near-future CMB observations, it was

shown that this first iteration already results in a very accurate estimator [160, 161]. We therefore

use the estimate φ̂ ≡ φ̂1 throughout.

To further simplify gφ, the functional derivative of C with respect to φ can be calculated by

defining the covariance of the observed fields as a function of the lensing operator,

Λφ(x,y) = δ(x + ∇φ(x)− y). (1.66)

Approximating it as a linear operator (such that Λ>φ (x,y) = Λφ(y,x)), the covariance then

becomes

C [φ] = ΛφC
XXΛ>φ +N . (1.67)

The functional derivative of the covariance is then

δC(y, z)
δφ(x) =

∫
d2z′

δΛφ(y, z′)
δφ(x)

(
CXXΛ>φ

)
(z′, z) +

∫
d2y′

(
ΛφC

XX
)

(y,y′)
δΛ>φ (z,y′)
δφ(x) .

(1.68)

The functional derivative of the lensing operator can be calculated using the relation of this

operator with some field Ξ,

ΛφΞ(x) = Ξ(x + ∇φ(x)), (1.69)

to get

δ (ΛφΞ) (y)
δφ(x) =

∫
d2x′ δ∇φ(x′)

δφ(x) · δ (ΛφΞ) (y)
δ∇φ(x′) = (∇yδ(y− x)) · (Λφ∇Ξ) (y). (1.70)

Using this result, Eq. (1.68) becomes

δC(y, z)
δφ(x) =

∫
d2z′ (∇yδ(y− x)) · (Λφ∇) (y, z′)

(
CXXΛ>φ

)
(z′, z)

+
∫
d2y′

(
ΛφC

XX
)

(y,y′) (∇zδ(z− x)) ·
(
Λ>φ∇

)
(z,y′)

= (∇yδ(y− x)) ·
(
Λφ∇CXXΛ>φ

)
(y, z) + (∇zδ(z− x)) ·

(
Λφ∇CXXΛ>φ

)
(z,y).

(1.71)

Plugging this into Eq. (1.64), the QE gφ simplifies to be

gφ = ∇ ·
[(

C−1Xtot

)>
Λφ∇CXXΛ−1

φ C−1Xtot

]
. (1.72)

We can then interpret this form of gφ to first order in φ as a product of filtered CMB fields [158,
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160, 162],

gφ(x) = ∇ ·
[(
XIVF

tot

)>
(x)

(
∇XWF

tot

)
(x)
]
, (1.73)

whereXIVF
tot andXWF

tot are the inverse-variance filtered (IVF) and the Wiener-filtered (WF) CMB

fields, respectively (see Appendix A.2 for more details), which are given by

XIVF
tot (x) ≡

[
C−1Xtot

]
(x),

XWF
tot (x) ≡

[
Λ−1
φ C

X̃X̃C−1Xtot

]
(x).

(1.74)

Plugging this into Eq. (1.65), we obtain the lensing field estimator, which is our desired quantity.

This form of real-space φ̂ is a more general expression of the harmonic-space estimator shown in

Eq. (1.56), which can be simplified to the latter when taking X = Y .

Gravitational lensing in general can affect the size, stretch, and angle of the observed lensed

object by producing (de)magnification, shear, or rotation, respectively. Generally, rotation is not

produced at leading order and is therefore much smaller [158]. It can therefore be useful to refer

to the convergence parameter κ(x) ≡ 1
2∇ · α(x) instead of the lensing potential [163]. This will

be elaborated on more and used in upcoming chapters.

The normalized QE in Eq. (1.65) provides an estimated map of the lensing potential. From this

map, the lensing power spectrum can be obtained, which, as with the CMB fields, tells us about

the lens scales. The lensing potential map from CMB observations can also be used along with

potential maps from other tracers, such as galaxy surveys which observe the mass in the Universe

directly, to calculate cross-power spectra. These correlations can provide further constraints on

the growth of dark matter, help break degeneracies between cosmology and galaxy physics, and

be used to test theories of modified gravity [164, 165].

Throughout Chapters 2-4, the main lensing product of interest is the reconstructed lensing

power spectrum. Unlike with the CMB temperature and polarization maps, obtaining an unbiased

lensing power spectrum is somewhat more complicated due to the bias terms that result from

correlating two QEs. Such correlation not only gives the wanted lensing power spectrum

estimate, but also other correlations which are usually referred to as bias terms. We define the

(biased) lensing power spectrum from two quadratic estimators that are obtained using a general

combination of CMB fields as

C φ̂
XY φ̂ZD

L = 1
nL

∑
` in L bin

φ̂(`)XY
(
φ̂(`)ZD

)∗
, (1.75)
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where nL is the number of modes in each multipole L. This is the flat-sky analogy of the power

spectrum definition of Eq. (1.30). The resulting power spectrum is biased due to the different

contractions of the fields creating the QEs [144, 166, 167]. We can write the bias terms explicitly

through the 2-point correlation of two lensing estimates,

〈
φ̂XYL

(
φ̂ZDL′

)∗〉
= δL−L′

[
CφφL +

∞∑
i=0

Nφφ
i,L

]
, (1.76)

where the index i represent the dependency of the bias terms Nφφ
i,L on

(
CφφL

)i
. These bias terms

can be evaluated analytically by calculating the left-hand side of Eq. (1.76) using the definition

of φ̂XYL from Eq. (1.56). The resulting trispectrum would then be of the four lensed fields, and

the respective map noises nX . The lensed fields are not Gaussian, so the trispectrum cannot be

simplified using Wick’s theorem as before. We can, however, use the full series expansions of the

lensed fields,

Xtot(n̂) =
∞∑
j=0

δjX(n̂) + nX(n̂), (1.77)

where δjX(n̂) are the expansion terms of order j from Eq. (1.48) (such that, i.e., δ1X(n̂) ≡

∇aX(n̂)∇aφ(n̂)) with

δ0X(n̂) ≡ X(n̂), (1.78)

and for polarization we define

δjE` ≡ − cos (2ϕ`) δjQ` − sin (2ϕ`) δjU`,

δjB` ≡ sin (2ϕ`) δjQ` − cos (2ϕ`) δjU`.
(1.79)

The first terms of these expansions were shown in Eq. (1.52). By using these expansions, we end

up with correlations of Gaussian fields (the unlensed CMB fields and the lensing field), and their

correlations can again be simplified using Wick’s theorem [144, 166, 167]. The various

correlations are usually split according to their order of dependency on CφφL , as shown in

Eq. (1.76). For most current and near-future CMB experiments, the main bias terms are Nφφ
0,L and
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Nφφ
1,L [144]. They can be expressed analytically using the series expansions as

Nφφ
0,L = 1

RφXYL RφZDL

∫
d2`

(2π)2

×
[
fXY (L, `)fZD(L,−`− L)CXtotDtot

|`+L| C
YtotZtot
` + fXZ(L, `)fY D(L, `)CXtotZtot

|`+L| C
YtotDtot
`

]
,

Nφφ
1,L = 1

RφXYL RφZDL

∫
d2`1

(2π)2

∫
d2`′1
(2π)2FXZ(`1, `2)FY D(`1, `2)

×
[
Cφφ|`1−`′1|

fXZ(−`1, `
′
1)fY D(−`2, `

′
2) + Cφφ|`1−`′2|

fXD(−`1, `
′
2)fY Z(−`2, `

′
1)
]
,

(1.80)

where FXY (`, `′) are the same weights of Eq. (1.56) that minimize the quadratic estimator

variance, and `1 + `2 = `′1 + `′2 = L. The analogous curved-sky biases can be found in [168].

The Nφφ
0,L bias will be non-zero even without a lensing field, as it does not depend on the lensing

potential. The Nφφ
1,L term is smaller compared to Nφφ

0,L, and is more dominant at small-scale

lensing modes (high Ls).

To obtain an unbiased lensing power spectrum, these terms are needed to be calculated and

subtracted from the constructed biased lensing power spectrum. When the QEs are constructed

from maps with inhomogeneous and isotropic noise due to, e.g., the scanning strategy of the

telescope and the mask used, these analytic estimates are not sufficient to capture the full biases.

This problem can be solved by calculating these bias terms in other ways:

• The patch approximation: The observed sky area can be partitioned into patches such

that each patch has approximately homogeneous noise. This noise can then be used to

evaluate Nφφ
0,L and Nφφ

1,L for each patch. This method works well when the main problem

is the inhomogeneity of the noise on the sky, but it cannot be used to properly correct for

systematic effects or correlated noise which cannot be approximated as being locally white

on the map.

• Monte Carlo estimates: Instead of evaluating these bias terms analytically, we can use

the fact that they result from the connected and disconnected contractions of the 4-point

correlations of lensed CMB fields to estimate them using Monte Carlo (MC) simulations

via ensemble averaging. When estimating Nφφ
0,L with MC simulations, incorporating the

specific data fields used in the reconstruction can be useful to correct any linear covariance

differences between the measured fields and the simulated MC fields [169]. The resulting

bias term is usually referred to as the realisation-dependent Nφφ
0,L.

The latter method will be used throughout the thesis, while the patch approximation method will
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be used in a slightly different way in our lensing reconstruction analyses. These methods will be

described in more detail in Chapters 2- 4.

1.5 THESIS OUTLINE

Throughout the introduction, the theoretical background and key concepts in cosmology and CMB

lensing that the work done in this thesis is based on were described. Each of the following chapters

is composed of independent works, which are somewhat related in different ways.

As most of the work in the thesis deals with CMB lensing, we start by exploring in more detail

how lensing reconstruction is achieved. In Chapter 2 we explore and compare several filtering

methods that are applied to the CMB maps for lensing reconstruction, and add a newly-developed

filtering step which is applied to the constructed quadratic estimator. We show how the different

methods compare in terms of accuracy on the reconstructed lensing map, and both auto- and

cross-spectrum with the input simulated lensing map, and provide improvement forecasts for the

upcoming Simons Observatory (SO) and CMB-S4 experiments.

We continue by adopting the most optimal pipeline of Chapter 2 to explore how instrumental

systematics might bias the lensing reconstruction analysis of an SO-like experiment. This is done

by producing CMB simulations that include the effects of several instrumental systematics, and

using our lensing reconstruction pipeline to analyse them. We then compare the resulting lensing

power spectra that are made from simulations with and without the effects of systematics to show

how each effect manifests on the lensing power spectrum and the lensing bias terms. This work

is concluded by evaluating the detection significance of each effect, given the specific parameters

chosen for their simulations, and discuss several mitigation strategies for the more problematic

systematics.

While both first chapters concentrate on analysing CMB simulations, the next two chapters

involve analysing real CMB data, specifically from the Planck mission. In Chapter 4 we use our

lensing pipeline on a new release of the Planck maps, known as the NPIPE maps. We show that

our lensing reconstruction pipeline improves the large-scale lensing estimates from Planck

compared to Planck’s baseline lensing analysis, and propagate this accurate to estimating

cosmological parameters using likelihoods. The uncertainties of the lensing-dependent

cosmological parameters also improve by applying our QE filter, which is yet another motivation

for including our filtering method in the lensing analyses of upcoming CMB experiments.

The last work we present deviates from the CMB lensing theme of the other chapters, where

we look into the effect of Rayleigh scattering on the CMB. Chapter 5 shows how the Rayleigh
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signal, which affected the CMB photons in the early Universe, could be detected from multi-

frequency CMB measurements. We describe the pipeline that can be used for this purpose while

demonstrating it using the Planck CMB temperature maps. We conclude this work by providing an

updated forecast on the ability to detect the Rayleigh signal from Planck maps, and also estimate

its detection levels for an SO-like experiment.

The results of these works are then summarised in Chapter 6.



CHAPTER 2

Optimal filtering for CMB lensing

reconstruction

MARK MIRMELSTEIN, JULIEN CARRON, ANTONY LEWIS

Abstract

Upcoming ground-based cosmic microwave background experiments will provide CMB

maps with high sensitivity and resolution that can be used for high fidelity lensing

reconstruction. However, the sky coverage will be incomplete and the noise highly

anisotropic, so optimized estimators are required to extract the most information from the

maps. We focus on quadratic-estimator based lensing reconstruction methods that are fast to

implement, and compare new more-optimally filtered estimators with various estimators that

have previously been used in the literature. Input CMB maps can be optimally

inverse-signal-plus-noise filtered using conjugate gradient (or other) techniques to account

for the noise anisotropy. However, lensing reconstructions from these filtered input maps

have an anisotropic response to the lensing signal and are difficult to interpret directly. We

describe a second-stage filtering of the lensing maps and analytic response model that can be

used to construct lensing power spectrum estimates that account for the anisotropic response

and noise inhomogeneity in an approximately optimal way while remaining fast to compute.

We compare results for simulations of upcoming Simons Observatory and CMB Stage-4

experiments to show the robustness of the more optimal lensing reconstruction pipeline and

quantify the improvement compared to less optimal estimators. We find a substantial

improvement in reconstructed lensing power variance between optimal anisotropic and

isotropic filtering of CMB maps, and up to 30% improvement in variance by using the

additional filtering step on the reconstructed potential map. Our approximate analytic

response model is unbiased to within a small percent-level additional Monte Carlo

correction.

42
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2.1 INTRODUCTION

Gravitational lensing of the cosmic microwave background (CMB) can be measured from the

small changes induced in the observed temperature and polarization anisotropies (see Ref. [142]

for a review). Precision observations of the CMB can therefore be used to reconstruct the lensing

potential, and constrain the evolution and geometry of the Universe between recombination and

today. Planck has measured the lensing signal over 70 % of the sky [100], but the lensing

reconstruction remains noise-dominated on most scales due to the limited resolution and

sensitivity of the CMB measurements. In the upcoming years, new ground-based CMB

experiments will substantially improve current measurements, with Simons Observatory

(SO) [131] and then CMB-S4 [133] (hereafter S4) building on the ongoing observations by

ACTPol [170], SPTpol [153] and POLARBEAR [171]. However, the instrumental noise

affecting the B-mode polarization used for lensing reconstruction will remain important, and the

lensing reconstruction noise from the instrumental noise and cosmic variance of the unlensed

CMB will continue to dominate for small-scale lensing reconstruction modes (L > 400 for SO)1.

The instrumental noise also typically varies substantially over the observed sky area due to the

exact way in which the sky is repeatedly scanned. It is therefore important to consider how to

account for the inhomogeneous noise properties to exploit the CMB maps in an efficient way.

Since the noise and unlensed CMB are expected to be Gaussian, and lensing simply deflects

points on the sky, it is straightforward to write down a likelihood for the observed CMB given a

fixed lensing deflection field. The lensing potential is also Gaussian to a good approximation on

most relevant scales, so finding the lensing potential that maximizes the posterior then gives an

optimal estimator for the lensing potential [160, 161]. The resulting estimator is a complicated

non-linear function of observed fields that has to be evaluated iteratively, but can be approximated

to good accuracy for the near future by a quadratic estimator (QE) that is easier to evaluate [158,

162, 172]. To be optimal with anisotropic noise, the QE must be written as a quadratic function

of filtered observed CMB fields, where the inverse-signal-plus-noise filters act to down-weight

areas of the sky with higher noise (or foreground power). In this chapter we compare this optimal

filtering with various simpler filtering methods that have been used in the literature, to assess the

improvement that can be obtained by using optimal filtering with upcoming experiments. We also

present a new more optimal estimator that uses a second filtering step applied to the quadratic

estimator reconstruction map.

Converting the lensing reconstruction map into an unbiased estimate of the lensing power

spectrum (and any relevant cross-spectra) is important for parameter estimation, but is more
1We follow the standard convention and use L rather than ` for lensing multipoles.
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complicated if the input maps are inhomogeneously filtered as the lensing reconstruction maps

then effectively have a position-dependent normalization. This can be accounted for by applying

a brute-force Monte Carlo (MC) correction, but we show that a simple analytic ‘patch’

approximation is sufficient to capture the dominant effect. This approximation relies on the fact

that the lensing estimators are quasi-local, so the lensing reconstruction at a given point mostly

depends on the surrounding area of the observed CMB. If the noise varies slowly over the sky, we

can therefore model the full signal as being made up of a set of patches within which the noise is

nearly constant and the response can be calculated analytically. Corrections to this approximation

can be measured by MC simulations and are perturbatively small, so the dominant signal can still

be related analytically to the theoretical model.

Since the instrumental noise is inhomogeneous, the lensing reconstruction noise is also

inhomogeneous, and an optimal spectrum estimator should account for this. It is possible to write

down an approximate full likelihood for the lensing power spectrum and maximize it [161];

however, this again has to be solved iteratively, and makes the final lensing spectrum estimate a

highly non-trivial function of the theoretical model parameters. Instead, we consider a simpler

approximate solution that estimates the power spectrum from filtered QE maps, and assess the

improvement using an approximate model for the reconstruction noise. The resulting power

spectrum depends only on the four-point function of the CMB maps, and hence can be modelled

straightforwardly as a function of parameters in a similar way to other QE-based analyses.

We start in Sec. 2.2 by outlining the lensing reconstruction methodology and steps required to

estimate the lensing power from the observed maps, and discuss various possible ways of filtering

the CMB maps. In Sec. 2.3 we develop the analytic patch approximation and assess its accuracy by

comparison with simulations. Sec. 2.4 presents our main results, where we show the improvement

in signal-to-noise that can be obtained using the two optimal filtering steps. Throughout, we

assume a Gaussian unlensed CMB and inhomogeneous but uncorrelated pixel instrumental noise.

For illustration we show results assuming a fiducial ΛCDM model using parameters similar to

those estimated by Planck [31].

2.2 METHODOLOGY

We broadly follow the methodology of the Planck lensing analysis [100]. For simplicity, we use

the flat-sky approximation when showing numerical results, using lensing analysis tools and

simulated lensed CMB from LENSIT2. Our lensing analysis is based on QEs, which can be
2https://github.com/carronj/LensIt

https://github.com/carronj/LensIt
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evaluated efficiently in the case of full-sky observations with isotropic noise using methods

explained in Refs. [142, 158, 172]. Here, we will briefly review the motivation for using

quadratic estimates and explain the need for filtered maps.

Following Ref. [158], we take the observed maps to be a vector of fields3 X (with temperature

T , and/or polarization Stokes parameters Q or U ) with X(x) = X̃(x) + n(x) in pixel space

at position x, where n is the instrumental noise realization which is assumed to be Gaussian,

anisotropic and spatially uncorrelated. Here X̃ is the beamed and lensed CMB given in terms of

the unlensed fields X and deflection angle α by X̃(x) = bX(x + α) where b accounts for the

beam transfer function. For a fixed lens model, we can write down the log-likelihood L of the

observed CMB given the lensing potential φ (which is related to the deflection angle, α = ∇φ)

as

−L (X|φ) = 1
2X

>
(
CXX
φ

)−1
X + 1

2 ln
∣∣∣CXX

φ

∣∣∣ , (2.1)

where CXX
φ ≡ CXX

φ (x,y) = CX̃X̃
φ (x,y) + N(x,y) is the covariance of the map for fixed

lensing potential φ. Here the coordinates are integrated over in the contractions and N is the

covariance of the noise, which we take to be diagonal in pixel space and uncorrelated between

T,Q,U . We want to maximize the likelihood with respect to φ(x). This is done by equating the

log-likelihood’s derivative with respect to φ(x) to zero,

δL

δφ(x) = 1
2X

>
(
CXX
φ

)−1 δCXX
φ

δφ(x)
(
CXX
φ

)−1
X − 1

2Tr
[(
CXX
φ

)−1 δCXX
φ

δφ(x)

]

= 0.
(2.2)

The trace term can be written as a ‘mean field’ (MF) average of the first term (≡ ĝφ(x), see

Ref. [158, 162]), so that we require a solution to ĝφ(x) − 〈ĝφ(x)〉 = 0. The general solution for

φ(x) has to be obtained iteratively, but the first step of Newton-Raphson from zero (denoted by a

subscript of 0 below) gives the approximate QE solution

φ̂ = F−1
(
ĝφ0 − 〈ĝ

φ
0 〉
)
, (2.3)

where ĝφ0 now depends on the CMB maps only via the inverse-variance filtered combination(
CXX
φ=0

)−1
X . Here technically the covariance is evaluated with φ = 0, however the accuracy of

the estimator can be improved beyond leading order by using
(
CXX

)−1
X , i.e. filtering using

the covariance evaluated using lensed CMB power spectra [146, 173].

In Eq. (2.3) the Hessian matrix of second derivatives of the log-likelihood is approximated by
3Throughout, bold symbols are used to describe vectors or matrices.
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its expectation, the Fisher matrix F (see Appendix A.1 for more details). This normalizes the

result, and can be evaluated analytically in the case of full sky and isotropic noise where it is

diagonal in harmonic space; more generally it is non-trivial to evaluate exactly. The approximate

optimal maximum likelihood solution involves inverse-variance filtering, but it is also possible to

make other choices: as long as F is adjusted appropriately, the estimator can remain unbiased (at

the expense of some increase in reconstruction noise compared to the optimal case).

In the limit of a perturbatively Gaussian lensing field, the optimal maximum-likelihood

estimator for the power spectrum can also be derived from the likelihood function. As shown by

Appendix B of Ref. [174] this reduces to a (bias-subtracted) QE up to a Fisher-normalization,

where the QE is calculated using inverse-variance filtered fields. The CMB maps only enters via

their inverse-variance filtered version, as for the estimator of φ itself, so our first filtering step of

the CMB maps should remain perturbatively optimal. The optimal power spectrum estimator also

only depends on the naive power spectrum of the (unnormalized) φ estimator, corresponding to

the inverse-noise weighted φ estimator (in agreement with Ref. [100] that for noise-dominated

reconstructions uniform weighting of the inverse-noise filtered field is optimal). The limit of

small CφφL does not of course apply directly in the case of lensing reconstruction, where the

signal can be measured at high signal-to-noise, but we can expect that for larger CφφL the

inverse-noise weighting will approximately generalize to inverse-signal-plus-noise weighting,

which is consistent with the perturbatively-optimal estimator in the small-signal limit.

In general, the QE lensing power spectrum analysis consists of the following five stages:

A. Filtering the observed CMB maps. As mentioned, there are several filtering methods one

could use on the CMB maps before obtaining the QE. In this work, we compare the optimal

method to alternative methods that have been used in the literature.

B. Constructing the quadratic lensing estimators. The filtered fields are efficiently

combined in real space to obtain the unnormalized lensing QE.

C. Subtracting the mean field. The map-level MF signal expected from mask, noise and other

anisotropic features of the map in the absence of lensing is subtracted. Here we also apply

an approximate analytic and isotropic normalization at the map level, though this has no

impact on the resulted lensing power as long as everything is done consistently.

D. Filtering the reconstructed κ map. This optional step is new to our analysis.

Approximating the unnormalized convergence (κ) reconstruction map as depending locally

on the CMB maps and their filtered versions of stage A, we can apply an approximate local

normalization to obtain the noisy reconstructed κ map and then inverse-variance filter it
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using an approximate model for the local variance.

E. Estimating the power spectrum. The power spectrum of the filtered κ is biased, due

to reconstruction noise, other lensing contractions, masking and other non-idealities, and

because it is not yet normalized (the unfiltered-κ spectrum is also biased, but with different

debiasing terms). We subtract an MC estimate of the N0,L reconstruction noise and N1,L

signal contractions, both obtained using 500 MC simulations, and multiply the resulting

spectrum by an analytic correction made using a patch approximation (the latter is needed as

the normalization of the QE applied in Stage C is only a local approximation; even without

filtering the κ map, any analytic response model would need to be corrected due to the

inhomogeneity of the noise in the map).

These steps are shown in Fig. 2.1 and discussed in more detail below.
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Figure 2.1: The structure of the optimized QE lensing reconstruction pipeline which was used in this work. Here we use the same
CMB realizations for constructing the QEs, (MC)N0,L and (MC)N1,L terms. The analytic correction is calculated using
the simulated hit count map shown in Fig. 2.2.
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2.2.1 FILTERING METHODS

The first filtering step is a linear operation that is applied to the CMB maps giving a filtered CMB

field

X̄ ≡MX, (2.4)

whereM is some linear filtering matrix that’s designed to removed masked areas and (optionally)

down-weight noisier pixels or other noisy or contaminated modes. For optimal filtering M is

non-diagonal, and performs the full anisotropic inverse-variance filtering. For comparison we also

consider approximate filtering methods where M is taken to be diagonal in pixel space, which is

somewhat faster to implement but less optimal.

We compare three different filtering methods by using them for lensing reconstruction on

simulated sky maps with inhomogeneous noise. To simulate realistic noise inhomogeneity we

use a part of a suggested scanning strategy for Simons Observatory’s Small Aperture Telescope

(SAT), the “opportunistic” scanning strategy presented in Ref. [175] as the hit count map. Note

that while the lensing analysis of SO will come mainly from its Large Aperture Telescope (LAT),

we chose to work with a part of the SAT scan as this scan has a well-contained area and is

therefore more convenient for our flat-sky analysis. To obtain the flat scanned area, we used the

Cartesian projection from the HEALPix package4 [176] to project the curved sky hit count map

onto the flat sky. The normalized hit count map mhits(x) is shown in Fig. 2.2. The white pixels

are seen more frequently during the sky scan simulation and so have a higher hit count

(corresponding to lower noise), while the blue and purple areas show pixels which were scanned

less often. Black pixels are not scanned.

We then use the hit count map to model the white noise standard deviation map

mnoise(x) =
√

s2Nhits,tot

tobsmhits(x) , (2.5)

where s is the instrument sensitivity for temperature or polarization, tobs is the total observation

time on the patch (with 1/5 efficiency), and Nhits,tot is the total number of hits in the hit count

map mhits(x). Using this model, noise is taken to be infinite outside the scanned region. The

specifications we consider are discussed in Sec. 2.4.

In the following, each filtering method is presented along with motivation and assumptions.

We filter modes below 4096 in the input maps using each method, and cut the filtered fields to

40 ≤ ` ≤ 3000 before using them to obtain the QEs in stage B.
4http://healpix.sf.net/

http://healpix.sf.net/


OPTIMAL FILTERING FOR CMB LENSING RECONSTRUCTION 49

40 20 0 20 40
x [Degrees]

30

20

10

0

10

20

30

y 
[D

eg
re

es
]

0.0

0.2

0.4

0.6

0.8

1.0

Figure 2.2: The normalized hit count map used to simulate anisotropic noise in the simulations. The white pixels are those which
were scanned for longer time, while the dark blue-purple fade shows pixels which were scanned less frequently. The black
pixels are those which were not scanned. The area within the green boundary shows the unmasked regions used for the
comparison isotropic-filtering analysis described in Sec. 2.2.1. The normalized hit count map is also used as the weights
for the comparison weighted maps analysis (Sec. 2.2.1). The area with non-zero hits corresponds to 39% of the flat-sky
map we simulate, and about 13% of the full sky area 4π. The figure above is centred on the main observed area and does
not show additional unobserved regions which all together form a 4096x4096 pixels map, which is 116 degrees on the
side.
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Figure 2.3: The normalized inverse approximate lensing reconstruction noise
(
Nκ

0,eff(x)
)−1

from an analysis for an SO-like
experiment using temperature and polarization. Compared to the hit count map in Fig. 2.2, the reconstruction noise
varies less strongly across the patch because it depends on the (isotropic) CMB variance as well as the (anisotropic) noise.
The approximate effective white reconstruction noiseNκ

0,eff(x) is defined as the average value of the isotropicNκ
0,L over

the multipole range 40 ≤ L ≤ 90 on local approximately constant noise patches. This figure, along with most of the
figures in this thesis, were produced using the Matplotlib [177] Python library.

Optimal filtering

The inverse-variance filtered CMB maps can be written as

X̄ ≡
(
bCfidb> +N

)−1
X =

(
Cfid

)−1
[(
Cfid

)−1
+ b>N−1b

]−1
b>N−1X, (2.6)

where b is the transfer function (here we consider a simple isotropic Gaussian beam with full-

width half-maximum θFWHM) and Cfid is a set of fiducial lensed power spectra. The noise can

include variance due to foreground residuals, and a mask can be accounted for simply by taking
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the elements ofN−1 to be zero in the corresponding pixels.

There are various possible ways to solve Eq. (2.6). We follow the multi-grid-preconditioned

conjugate gradient method first demonstrated in the context of lensing by Ref. [148] and then by

the Planck and SPTpol lensing analyses [98, 100, 123, 153]. The pixel noise is in general spatially

varying, but for simplicity the main Planck lensing analyses approximate the noise as isotropic

and white. Ref. [100] demonstrated that accounting for inhomogeneous noise in the filter can

substantially improve Planck’s noise-dominated polarization reconstruction, and in this chapter

we only use ‘optimal’ to refer to the full anisotropic filter.

Rearranging (2.6) to the form
(
bCfidb> +N

)
X̄ = X , we define our stopping criterion for

convergence to be when the norm of the difference of the two sides of the equation is smaller than

ε|X|. We use ε = 10−5 for reconstructions using temperature and ε = 10−4 when using only

polarization. We discuss some details of the choice of preconditioner and numerical performance

in Appendix B.

Isotropic filtering of masked maps

The covariance matrix
(
bCfidb> +N

)
in Eq. (2.6) is trivial to invert in harmonic space if the

noise (and beam) is taken as isotropic, as both the theory and noise covariance matrices are then

diagonal in harmonic space. We refer to this approximation as ‘isotropic filtering’, which is

substantially faster than optimal filtering since it avoids the conjugate-gradient inversion. The

isotropic filter is expected to be close to optimal over scales on which the corresponding CMB

fields are signal dominated, or when the noise is close to uniform. However, since it does not

account for masking, even in these cases it is expected to be suboptimal. In practice the isotropic

filter is applied to maps multiplied by an apodized mask, following Ref. [178]. This maintains

quasi-locality of the lensing in real space, so masking artefacts are then only expected to be

significant near the mask boundaries. For this filtering method, we mask all pixels with

(temperature map) noise over ∼9.6 µK arcmin for SO and ∼1.8 µK arcmin for S4. Before

applying this new mask, it is apodized using a 30 arcmin-width Gaussian to avoid power

spectrum errors due to a sharp cut-off in the sky maps. Both of these procedures result in an

effective scanned area which is ∼46% smaller than the original scanned area, shown by the green

outline in Fig. 2.2. The assumed isotropic noise level in the filter is taken to be that which

minimizes the variance of the reconstructed lensing potential (we consider all reconstructed

multipoles for this minimization as we saw no significant differences using different multipole

ranges).



OPTIMAL FILTERING FOR CMB LENSING RECONSTRUCTION 51

Isotropic filtering of weighted maps

Instead of applying isotropic filtering to apodized masked maps, one can also apply it to a more

generally weighted map, for example to try to down-weight regions with higher noise. This

corresponds to using the filter
(
bCfidb> +N

)−1
WX , where W is diagonal in pixel space and

N is taken to be isotropic. We consider the specific case where W (x,x) is proportional to the

inverse of the instrumental pixel noise variance, similar to the weighting applied by

ACTPol [170], so the diagonal of W is the normalized hit count map, having values between

zero (for masked areas) and one. This is expected to be close to optimal when the CMB fields are

dominated by instrumental noise, so that the ∼N−1 dependence of the optimal filter is mostly

captured by the weights.

In the case of polarization, specific window functions can also be used for separation of E

and B modes on the partial sky [92]. Several authors have applied lensing reconstruction EB

estimators to the separated modes [154, 170, 179]. This has the advantage of being relatively

fast to implement, but is clearly sub-optimal and previous analyses have not attempted to also

accurately account for spatial variation in the noise. The optimal filter described in 2.2.1 already

accounts for the cut-sky-induced B modes, since the optimal filter automatically down-weights B

modes that are substantially contaminated by variance of the E modes.

2.2.2 QUADRATIC ESTIMATORS

We calculate the unnormalized QE ĝφ0 (x) using different field combinations: temperature-only

(T), polarization-only (P), or temperature+polarization (minimum variance, MV). We cut lensing

modes outside the range 40 ≤ L ≤ 3000 in harmonic space where our reconstruction is considered

unreliable.

Unless we use isotropic filtering (or even in this case close to the mask boundaries), the

estimator normalization in Eq. (2.3) is non-diagonal and difficult to calculate exactly, effectively

varying spatially over the sky. We do not attempt to correctly normalize the lensing

reconstruction map here, but instead correct the normalization at the level of the power spectrum

(see below). If the filter varies smoothly over the map, an approximately-normalized

reconstruction map could be made by using locally-defined values of the analytic isotropic

normalization (see Sec. 2.3 below).
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2.2.3 MEAN FIELD AND NORMALIZATION

We calculate the mean field (MF) of the unnormalized QE 〈ĝφ0 〉MC twice, each calculation using

50 different MC simulations. This gives two MF estimates, MF1 and MF2, with independent

MC noise, so the lensing power spectrum calculated from a pair of MF-subtracted QEs will not

have any MC noise bias. Following the MF subtraction and response normalization we obtain the

estimator for the lensing potential φ̂ given by

φ̂L ≡ 1
Rφ,fid
L

(
ĝφ0,L − 〈ĝ

φ
0,L〉MC

)
, (2.7)

whereRφ,fid
L is a fiducial isotropic response for the reconstruction (see Eq. (2.15)), and L is the 2D

flat-sky multipole vector. The definition of the isotropic response is discussed later in Sect. 2.3,

along with how the power spectrum can be corrected for the anisotropy.

2.2.4 FILTERING THE QUADRATIC ESTIMATORS

The likelihood-based lensing power spectrum estimator given by Ref. [161] involves the CMB

maps via the maximum a posteriori (MAP) estimate of the lensing field. Since MAP estimators

give an estimate of the Wiener-filtered (i.e. Cκκ
(
Cκκ +Nκ

0,MAP

)−1
-filtered, see Appendix A.2

for more details) field, this suggests that a close-to-optimal analysis should use estimated lensing

maps weighted by their inverse covariance. More generally, if we approximate the lensing

reconstruction as a Gaussian lensing field plus Gaussian reconstruction noise, the optimal power

spectrum would also involve the inverse-covariance weighted fields.

When using isotropic filtering the reconstruction noise is considered to be isotropic, so an

additional isotropic filtering step would simply be a re-definition of the diagonal normalization.

With optimal anisotropic filtering things are more complicated, but we can use the same iterative

filtering method presented in Sec. 2.2.1 if we approximate the lensing reconstruction noise as

diagonal in pixel space. This is clearly not a good approximation in general since the lensing

reconstruction noise spectrum is not white; however, if the noise is slowly varying, the large-scale

effect of slowly varying reconstruction noise can be approximately modelled using a

patch-uncorrelated estimate of the local noise variance Nκ
0,eff(x). Here we use the lensing

convergence (κ) reconstruction noise, since it is the convergence reconstruction which is

approximately local in real space, and hence is uncorrelated between patches on large scales and

has approximately white noise. We take the effective reconstruction noise Nκ
0,eff(xp) in each
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patch p to be the average value of Nκ
0,L (the isotropic reconstruction noise N0,L for

κL ≡ L(L + 1)φL/2 and the local patch noise value5) over the multipole range 40 ≤ L ≤ 90.

Each patch is composed of pixels of approximately the same instrumental noise (each patch

could be taken to be a single pixel, but it is more numerically convenient to model batches of

pixels with similar noise levels together).

An example for the inverse of the reconstruction noise map is shown in Fig. 2.3 for lensing

reconstruction from temperature and polarization. Averaging over a different multipole range to

define Nκ
0,eff(x) would result in a better agreement with the full N0,L-filtered theory variances

across corresponding multipoles, although we demonstrate that our chosen range is already quite

optimal for the multipoles in which the improvement from this filtering stage is considered

significant (see Fig. 2.7 for comparison between using Nκ
0,eff and N0,L in the filter).

The Cκκ
fid

(
Cκκ

fid +Nκ
0,eff

)−1
filtering process should be applied to the correctly normalized

reconstructed convergence map, but the QE constructed from optimally-filtered CMB maps is

not correctly normalized locally. However, in the patch approximation, we can approximately

normalize the map locally using a local response: we take the un-normalized full QE field ĝκ(x),

and normalize locally in real space by an effective local response map Rκeff(x). This gives a

reconstruction which is approximately locally normalized following Eq. (2.14), where we define

the approximate effective Rκeff analogously to Nκ
0,eff. The final approximately filtered estimator is

then

κ̂filt ≡ Cκκ
fid

(
Cκκ

fid +Nκ
0,eff

)−1
(Rκ

eff)
−1 ĝκ, (2.8)

where6

ĝκL ≡
(
ĝφL − 〈ĝ

φ
L〉MC

)
× 2
L(L+ 1) . (2.9)

Here Cκκ is diagonal in harmonic space and we have defined Rκ
eff and N0,eff to be diagonal in

pixel space (with Nκ
0,eff(x)−1 = 0 in masked areas). The only non-trivial filtering step involving(

Cκκ
fid +Nκ

0,eff

)−1
is therefore analogous to the optimal CMB map filtering discussed in

Sec. 2.2.1, and can be performed using the same conjugate gradient techniques.

Although the filtering is very approximate, it does not introduce any biases in the power

spectrum as long as the approximate filter is propagated self-consistently into the normalization

(see Sec. 2.3 for more details). For simplicity, we call this estimator the κ-filtered estimator.
5We use L(L+ 1) albeit the flat-sky analysis, as this factor is arbitrary when used consistently throughout.
6Notice that the φL → κL conversion factor L(L+ 1)/2 is being divided instead of multiplied, as the conversion here
is between the unnormalized QEs of φ and κ, so the scaling also accounts for the conversion of the response.
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2.2.5 LENSING POWER SPECTRUM

For a pair of lensing map estimates φ̂1 and φ̂2 (from Eq. (2.7) without filtering κ; numerical indices

indicate that a different MF was used), we obtain the cross-spectrum

C φ̂1φ̂2
L ≡ 1

fA,LnL

∑
` in L bin

φ̂1,`φ̂
∗
2,`, (2.10)

where nL is the somewhat irregular number of modes on the flat sky assigned to lensing multipole

L in our simulation maps and fA,L is a normalization defined to make the estimator approximately

unbiased in a fiducial model. We give an approximate analytic formula for fA,L in Sec. 2.3 below;

in simple cases it can just be interpreted as an effective fractional area of our flat-sky simulation

map (see Fig. 2.2).

Analogous definitions apply for the κ-filtered estimator of Eq. (2.8). For brevity, in this section

we only explicitly give results for φ; when using the filtered κ estimators, κ̂filt, the resulting biases

are related by the usual scaling. We subtract the connected Gaussian noise bias from the power

spectrum estimator using the estimator [153]

(MC)N φ̂φ̂
0,L =

〈
C φ̂φ̂L

[
X̄

MCφ1
1
, X̄

MCφ2
2
, X̄

MCφ2
2
, X̄

MCφ1
1

]
+C φ̂φ̂L

[
X̄

MCφ1
1
, X̄

MCφ2
2
, X̄

MCφ1
1
, X̄

MCφ2
2

]〉
MC1,MC2

.

Likewise, we subtract the signal-dependent (MC)N φ̂φ̂
1,L bias estimated using [144, 153]

(MC)N φ̂φ̂
1,L =

〈
C φ̂φ̂L

[
X̄

MCφ1
1
, X̄

MCφ1
2
, X̄

MCφ1
1
, X̄

MCφ1
2

]
+C φ̂φ̂L

[
X̄

MCφ1
1
, X̄

MCφ1
2
, X̄

MCφ1
2
, X̄

MCφ1
1

]
−C φ̂φ̂L

[
X̄

MCφ1
1
, X̄

MCφ2
2
, X̄

MCφ2
2
, X̄

MCφ1
1

]
−C φ̂φ̂L

[
X̄

MCφ1
1
, X̄

MCφ2
2
, X̄

MCφ1
1
, X̄

MCφ2
2

]〉
MC1,MC2

,

(2.11)

where we use noise-free (beamed) CMB simulations, and in the first two terms each pair of MC

simulations in the average have the same lensing field φ1, while the last two terms constitute a

(negative) instrumental noise-free (MC)N0,L. When analysing data maps (instead of simulations),

using the realization-dependent (RD) N0,L will account for fluctuations in realization power and

correct for small errors in the assumed fiducial spectrum [98, 153, 173]. We do not use (RD)N0,L

here since it is numerically expensive to calculate for 500 “data” simulations, but we do not expect

that this would change our main results, which are based on comparisons between variances of
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Figure 2.4: Mean field power spectrum CMF1MF2
L (solid lines), reconstruction noise (MC)N0,L (dashed lines) and

(MC)N1,L bias (dot-dashed lines) for anisotropic-filtering analyses of temperature (green), polarization (pink) and
temperature+polarization (purple) for SO (left) and S4 (right). The theory CφφL curve (black) is shown to indicate which
biases dominate the reconstruction and over which L range. The MF power is the cross-correlation of the two MF values
(each was obtained using 50 different simulations). The MF curves were smoothed for aesthetics, while the smoothed
(MC)N1,L shown is used in the pipeline for debiasing the reconstructed spectrum. The N0,L and N1,L curves shown for
S4 are analytic using the effective noise level shown in Table 2.1.

different reconstruction methods.

The resulting power spectrum estimate is then

ĈφφL ≡ C φ̂1φ̂2
L − (MC)N φ̂φ̂

0,L −
(MC)N φ̂φ̂

1,L. (2.12)

The de-biasing components are shown in Fig. 2.4 for SO- and S4-like experiments using

(`min, `max) = (40, 3000) of the filtered CMB maps. We see that the temperature noise N0,L is

similar for both SO and S4 (though this may change if a larger `-range is considered for S4).

However, the S4 lensing reconstruction benefits much more from using polarization where the

reconstruction is signal-dominated for a larger L-range. We also see the importance of MF

subtraction on large scales in the presence of anisotropic noise, especially for lensing

reconstructions using temperature.

2.3 APPROXIMATE ANALYTIC MODEL

In the case of full sky and isotropic noise, the QE of Eq. (2.3) simplifies considerably and we can

obtain analytic results. For harmonic-space field combinations

X ∈

 T T
(E,B) P

(T,E,B) MV
(2.13)
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the estimator can be written as [145]

φ̂(L) ≡
(
RφL
)−1 ∫ d2`

(2π)2X(`− L)†FX(`, `− L)X(`),

(2.14)

where FX(`, ` − L) collects the optimized filter and QE weights [145]. The normalization

(response) RφL is diagonal in harmonic space, and to obtain an unbiased estimator for

cross-correlation with the true field the normalization is given by

RφL =
∫

d2`

(2π)2 Tr [FX(`, `− L)fX(`, `− L)] , (2.15)

where the mode response functions fX are defined by

〈
δ

δφ(L)
(
X(`1)X(`2)†

)〉
= δ(`1 − `2 − L)fX(`1,−`2). (2.16)

We use gradient spectra to calculate the components of the mode response functions fX(`1, `2)

following Refs. [146] and [164], and all theory power spectra were obtained from CAMB7 [113].

Note that the response is related to the reconstruction noise by RL ∼ N−1
0,L [145], but without

exact equality here because of the use of gradient rather than lensed spectra in the mode response

functions fX .

In the presence of anisotropic noise and optimal filtering, the above results no longer hold,

but we can still predict the lensing spectrum’s normalization fairly accurately using the simple

independent-patch approximation. The lensing convergence QEs are all quasi-local, in that the

lensing field estimated at x depends mostly on nearby pixels of the CMB fields where the noise

level is similar if the noise is slowly varying.

Dividing the sky into patches p with different approximately constant noise levels, we can

define a local (correctly-normalized) isotropic estimator φ̂pL in each patch using the appropriate

local noise level. The full filtered estimators all locally provide estimators of the same lensing

field, but have different local normalizations. We can therefore write the estimators approximately

as

φ̂L '
∑
p

wpLφ̂
p
L, (2.17)

where wpL is a local normalization for patch p and φ̂pL is taken to vanish outside patch p. Hence,

7https://camb.info

https://camb.info
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approximating the patches as uncorrelated, the power spectrum estimator of Eq. (2.10) becomes

C φ̂φ̂L ' 1
fA,LnL

∑
p

∑
` in L bin

(wpL)2φ̂p` φ̂
p∗
`

' 1
fA,L

∑
p

(wpL)2fpĈ
φpφp

L , (2.18)

where Ĉφ
pφp

L is the normalized power spectrum estimator over patch p and fp is the fraction of the

map area in patch p. To be correctly normalized after bias subtraction, this implies

fA,L '
∑
p

fp(wpL)2, (2.19)

which gives our analytic patch approximation for the estimator normalization. In the case of

isotropic filtering with a simple binary mask, fA,L reduces to the fraction of the map area that is

unmasked. The estimator is quadratic in the CMB fields, so when the filtering is an apodized

mask or local weighting W (x), the local estimator normalization is just the square of the

corresponding CMB map weight function, wpL = [W (xp)]2. The normalization fA,L then defines

an L-independent effective map area fraction [178].8 In the case of the cross-correlation power

spectrum C φ̂φL , the corresponding normalization to be unbiased is instead

f cross
A,L '

∑
p

fpw
p
L. (2.20)

For the case of optimal anisotropic filtering, each patch is effectively locally isotropically

filtered using the appropriate local noise level. Since in Eq. (2.7) we applied a single fiducial

response Rφ,fid
L (with a different, somewhat arbitrary, fiducial noise level), the local estimate in a

patch centred on xp is biased by an L-dependent factor

wpL = Rφ,pL
Rφ,fid
L

, (2.21)

where Rφ,pL is the true response according to the local noise levels in patch p [100]. Since Rφ,pL
is easily calculated analytically for each patch using Eq. (2.15), this provides an approximate

analytical normalization for the optimally-filtered estimator.
8In our case, this effective area fraction equals to 0.13 and 0.03 when we mask and weight the maps respectively
(corresponding to effective full-sky fractions fsky ≈ 0.04 and 0.01); for the cross-correlation cases fA,L becomes
0.14 and 0.06 respectively.



OPTIMAL FILTERING FOR CMB LENSING RECONSTRUCTION 58

Fully optimal κ-filtering would give

wpL =
CκκL,fid

CκκL,fid +Nκ,p
0,L

, (2.22)

so that each correctly normalized patch is appropriately Wiener-filtered. Our approximate

κ-filtering instead first approximately locally normalizes the optimally-filtered reconstruction

map usingRκeff, and then approximately Wiener filters it with white noise Nκ
eff,L giving

wpL =
CκκL,fid

CκκL,fid +Nκ,p
0,eff

Rκ,pL
Rκ,peff

. (2.23)

The patch approximation is reminiscent of the patch lensing estimator of Ref. [180], where the

authors combine lensing estimators on patches with different noise levels to optimize the signal.

However, our patch approximation is only used for approximate theoretical modelling of the

responses and to motivate the κ-filtering step using a locally defined effective lensing

reconstruction noise. Our estimator is continuous on the observed sky, so we do not have to deal

with complexities related to actually dividing the CMB maps into patches, and it should also

handle filtering for mask and noise variation more accurately. Ref. [181] also combine different

patches, however their motivation is different, being focussed on how to combine observations

from different overlapping experiments.

In Fig. 2.5, we compare the analytic correction fA,L (obtained using 160 patches in our

baseline analysis, but we find the same results if we use 10 times fewer patches) with the required

correction as determined from 500 MC simulations. The analytic estimate agrees well with the

MC result on most scales with a slight deviation at low-L (where the patch approximation is

expected to break down because the real-space lensing mode size becomes comparable to the

scale of variation of the noise). Similar-size MC corrections have been seen in previous

analyses [100]. Improving the tolerance level for convergence of the conjugate-gradient filtering

does not improve this consistency: at low-L the fractional difference of the φ power spectra

between a tolerance of 10−5 and 10−6 for the temperature map is . 0.1%. The number of

patches we used to obtain the analytic correction is converged, with more patches changing the

result by . 0.1%.

Fig. 2.5 shows that the fA,L estimates are in good agreement with simulations for 100 . L .

1500. To correct for the remaining inconsistency of the reconstructed power compared to the

theory spectrum, especially at low-L, an additional small MC correction can be applied to obtain

the unbiased lensing power. Fig. 2.6 shows that the additive MC correction is close to zero over

the above multipole range, and is a small but important correction elsewhere. This correction is
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Figure 2.5: Comparison between the approximate analytic fA,L normalization (lines) and Monte Carlo normalization (markers)
required to obtain unbiased lensing reconstruction power spectra from SO-like simulations. The left plot shows the result
for just optimally filtering the input CMB maps (Eq. (2.19)+(2.21)), which is close to unity on all scales; its magnitude
shows how close Rφ,fid

L is to the true response. The right plot shows the result for the estimator which is also κ-filtered
(Eq. (2.19)+(2.23)), which spans many orders of magnitude due to its dependence on C/(C + N) (which goes to zero
on small scales but near unity on large scales). A discrepancy with the analytic result is evident on large scales for both
results; the discrepancy for the κ-filtered case is shown more clearly by the additional final MC correction shown in
Fig. 2.6.

obtained by adding CφφL,fid−
〈
ĈφφL

〉
to the reconstructed power as a final debiasing step. Since the

MC correction is small, it is likely to be a good approximation to neglect its dependence on the

fiducial theoretical model.
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Figure 2.6: The additive MC correction required after applying analytic fA,L normalization for reconstruction using anisotropic
filtering and combined with κ-filtering (left) and using the two isotropic filtering methods (right) from SO-like simulations.
The MC correction for all methods is relatively small. We use this additional MC correction when plotting the final
reconstruction variances in Fig. 2.9.

The patch approximation could also be used to obtain analytic predictions for N0,L and N1,L

and then use them to debias the lensing power instead of using the MC versions. It was shown in

Ref. [100] that the analytic patch N1,L is in good agreement with (MC)N1,L in the case of Planck.

However, an MC result is required to make a reliable assessment of accuracy. In the case of N0,L,

an accurate result is critical to obtain an unbiased power spectrum: if the approximation were

wrong by a few percent that would translate to a large power spectrum bias on small scales, so an

accurate MC result should be used rather than the approximation. On real data, the
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realization-dependent (RD)N0,L would also reduce the variance and correct leading-order

sensitivity to inaccuracies in the simulations [173]. The analytic approximations should however

be accurate enough to account for the model dependence of the spectra and hence construct a

likelihood by straightforward generalization of the linear correction method developed by

Ref. [98].

We can also use the patch approximation to assess the variance of the different estimators. The

variance of the unbiased estimator Ĉφ
pφp

L measured only over patch p is given approximately by

the Gaussian result

Var
(
Ĉφ

pφp

L

)
≈

2(CφφL +Np
0,L)2

fpnL
, (2.24)

where we neglect contributions to the variance fromN1,L variance (which could become important

on small scales) and a p index indicates the value in a patch with corresponding local noise value.

Using Eq. (2.18) and again taking the patches to be uncorrelated we then have

Var
(
ĈφφL

)
' 1

[fA,L]2
∑
p

2(CφφL +Np
0,L)2

nL
fp(wpL)4, (2.25)

which is approximately reduced by a factor ∆L for bins of width ∆L centred at L.

Without κ-filtering the expected (binned) power variance from optimally filtering the CMB

maps is then

Var
(
ĈκκL

)
=

∑
p

2(CκκL +Nκ,p
0,L)2

∆LnL fp

(
Rκ,pL
Rκ,fid
L

)4

[∑
p
fp

(
Rκ,pL
Rκ,fid
L

)2
]2 . (2.26)

The best-case expected variance after filtering κ using the ideal full L-dependency of Nκ
0,L is

Var
(
ĈκκL,filt

)
=

∑
p

2(CκκL +Nκ,p
0,L)2

∆LnL fp

(
CκκL,fid

CκκL,fid+Nκ,p
0,L

)4

[∑
p
fp

(
CκκL,fid

CκκL,fid+Nκ,p
0,L

)2
]2 . (2.27)

Instead, using the effective noise level (which is what we use in practice), the expected variance

becomes (from Eq. (2.23))

Var
(
ĈκκL,filt

)
=

∑
p

2(CκκL +Nκ,p
0,L)2

∆LnL fp

(
Rκ,pL
Rκ,peff

)4 (
CκκL,fid

CκκL,fid+Nκ,p
0,eff

)4

[∑
p
fp

(
Rκ,pL
Rκ,peff

)2 (
CκκL,fid

CκκL,fid+Nκ,p
0,eff

)2
]2 . (2.28)



OPTIMAL FILTERING FOR CMB LENSING RECONSTRUCTION 61

The fractional differences between the unfiltered variance and the two filtered variances are

shown (in percent) in Fig. 2.7. The κ-filtering step significantly reduces the variance of the large-

scale power spectrum, while having little effect on small scales where just optimally-filtering

the CMB maps is already nearly optimal (because the local response is effectively automatically

inverse-noise weighting, and inverse-noise weighting is optimal when the noise is large).
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Figure 2.7: Fractional improvement in the theoretical binned variance of ĈκκL when using an additional κ-filtering step for an SO-like
experiment (left) and an S4-like experiment (right), estimated using an analytic patch approximation with 64 patches. The
green curves show the optimal result which would be obtained if we could locally filter with Np

0,L (Eq. (2.27)), while
the purple curves show the very similar result from our approximate local normalization followed by filtering using an
effective white reconstruction noiseNκ

0,eff(x) in the filter (Eq. (2.28)). The reconstruction from polarization alone benefits
most from this additional filtering step since it is most affected by the noise anisotropy.

The improvement expected from κ-filtering depends on the CMB noise level relative to the

signal, and is therefore different for temperature and polarization. For temperature analysis with

our choice of `max the improvement for SO-like noise is small, and negligible for S4, since the

CMB temperature is signal dominated in both cases (so the lensing responses are already nearly

isotropic because the contribution from noise variance is small). For polarization the gains are

significant because the polarization noise (and hence its anisotropy) is significant in both

experiments, with a somewhat larger improvement for SO where the noise is relatively more

important.

The impact of both filtering steps compared to other methods will depend on the specific hit

count distribution and hence relative importance of noise variations. For larger areas (such as the

survey areas available for lensing in SO and S4) the counts may be more or less anisotropic than

in the patch we tested in detail, leading to somewhat larger or smaller overall gains respectively.

2.4 RESULTS

We now compare simulation-based lensing reconstruction results from the different filtering

methods described in Sections 2.2.1 and 2.2.4. We compare power spectrum results from
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applying an isotropic filter on masked or weighted CMB maps, as used by several previous

experiments, to applying an optimal anisotropic filtering with or without also filtering the

reconstructed κ map. The reconstructions were made from simulations with SO- and S4-like

noise and beam while for simplicity considering the same scanning strategy, corresponding to a

sky fraction of fsky = 0.13 and strongly anisotropic hit count map shown in Fig. 2.2. The

instrument sensitivities, (effective) noise levels, beam widths and observation time considered for

each experiment are given in Table 2.1. We assume an observation efficiency of 1/5 for both

experiments, and each simulation has 4096 pixels on a side with 1.7 arcminute pixel size.

Experiment sT ∆T θFWHM tobs

[µK-
√

sec ] [µK-arcmin] [arcmin] [years]

SO 6.7 5.0 1.4 5

S4 1.5 1.0 1.5 7

Table 2.1: Experimental specifications for our SO- and S4-like simulations. The ∆T effective map-level sensitivity is not used for
the simulations, but obtained from the power spectrum of weighted noise map realizations. The value of SO’s temperature
sensitivity sT is the LAT ‘baseline’ level for 145 GHz from [131] and the corresponding ∆T is the result from the specific
hit count map considered. For S4, on the other hand, we determined the sensitivity for 145 GHz so that ∆T results in the
forecast value from [133, 135]9. Polarization sensitivity is taken to be ∆P =

√
2 ∆T . We consider the same scanning

time efficiency of 1/5 and (post-filtering) CMB multiple range (`min, `max) = (40, 3000) for both experiments.

We perform lensing reconstructions from different field combinations, T, P, and MV, using

500 simulations, from which we calculate the reconstruction variances and the cross-correlation

coefficients with the input lensing map.

The reconstructed power before applying an additive MC correction is shown in Fig. 2.8 from

SO using P and MV, and from S4 using P. These spectra were obtained using the optimal

anisotropic filter followed by filtering the reconstructed κ map, and demonstrate that the analytic

patch normalization described in Sec. 2.3 is accurate to the percent level. Comparing the two SO

power spectra, we see that while the low-L bias is relatively similar as expected (as this results

from the mask/scan area), the high-L bias is much less significant for MV, most likely due to the

contribution from the signal-dominated T. To obtain the unbiased spectra, we apply small

additional MC corrections. These additional corrections are shown in Fig. 2.6, and for both

experiments are smaller than 3%.

The unbiased lensing reconstruction power spectra variances for the various filtering methods

are shown in Fig. 2.9. As expected, lower variances are achieved when using both temperature

and polarization maps for the reconstruction. For reconstructions using temperature, the optimal

anisotropic filter yields an improvement in variance by a factor of 2-5 compared to isotropic

filtering a masked or weighted map, though the level of improvement does depend on the mask
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Figure 2.8: Simulated lensing potential reconstruction power spectrum and residuals from optimal anisotropic filtering of the CMB
maps and approximate κ-filtering, for the SO MV estimator (magenta) and using only polarization maps for SO (blue)
and S4 (green). An MC correction can be further applied to get the final unbiased power; see Fig. 2.6. The opaque error
bars in the residual plot are the MC errors expected from the average of 500 simulations, while the translucent error bars
in the upper panel are the latter scaled by

√
500 to show the uncertainty for one lensing realization (points offset for

clarity, and errors slightly underestimated on small scales because we neglect the (MC)N1,L MC error).

chosen for the isotropic-filtering analysis. The improvement is smaller for a polarization-only

reconstruction where reconstruction noise rather than cosmic variance is relatively more

important near the edges of the scanned area. The isotropic filtering results depend both on the

noise level used in the isotropic filter, which was chosen to minimise the variance, and (in the

masked case) also the masked area actually used (to reduce variance from very noisy areas near

the edge). We did not optimize the mask area, but testing with several sensible masking schemes

showed no large variance improvement. Compared to the isotropic filtering methods, the optimal

and κ-filtering methods have fewer free parameters, and varying these only has a small effect on

results, which are already close to optimal.

The difference plots in Fig. 2.9 show the further fractional improvement in variance after

applying our approximate additional κ reconstruction filtering. Results agree well with the

predicted theoretical curves shown in Fig. 2.7, demonstrating that the patch approximation is

capturing the main effect well. The predicted ∼30% reduction in variance on large scales is

therefore achievable in practice, at only a small additional numerical cost.

We also compare some reconstructed real-space lensing maps from the various reconstruction

method. Fig. 2.10 shows the input α map (where αL =
√
L(L+ 1) φL) of one simulation in

comparison to the MV reconstruction maps using the same lensing realization with the various

different filtering methods. Qualitatively, all maps demonstrate a good reconstruction in the low-
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Figure 2.9: Reconstructed lensing power spectrum variances from the various filtering methods for an SO-like experiment and an
S4-like experiment (bottom right). The error bars on the variance and the fractional differences were estimated using 10
sub-batches of variance estimates. The black curve is the cosmic variance for the lensing power shown as a reference for
the minimal variance we could obtain with no noise over the entire scanned area. Using the optimal anisotropic filter leads
to variance improvements by a factor of 2-5 for most of the considered L-range compared to considering isotropic filtering
over a reduced sky area. The improvement is largest for reconstructions using polarization, which is less signal-dominated
than temperature. The lower panels of each plot show the fractional difference between reconstruction variances with and
without additional κ reconstruction filtering (pink), plotted against the corresponding theoretical curves from Fig. 2.7
(purple lines), demonstrating good agreement with the approximate analytic model. For S4, polarization dominates the
reconstruction, so we only show the polarization results.

noise pixels near the centre of the patch that have longer observation times. Isotropic filtering on

weighted maps significantly down-weights the reconstruction in the higher-noise pixels, while the

reconstruction from masked maps only down-weights around the edges of the mask (however the

effective area is reduced due to the mask excluding high noise pixels). When applying the optimal

anisotropic filter, we reconstruct the lensing potential on most of the scanned region giving lower

power spectrum variance. Applying the further κ-filtering step on the locally normalized map

removes the effective down-weighting around the edges of the scanned sky area, which can explain

the variance improvements we see at low-L where the reconstruction is signal-dominated.

We then calculate the cross-correlation coefficients with the input lensing map,

ρ̂L ≡
C φ̂φL√
C φ̂φ̂L CφφL

. (2.29)
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The cross-correlation coefficients of the SO reconstructions are shown in Fig. 2.11. We see

an improved correlation after filtering the reconstructed κ map compared to only anisotropically

filtering the CMB maps. This improvement is most visible for the signal-dominated regime at

L . 300. The lensing reconstruction from the isotropic filtering process is done over a smaller

effective area, in which the signal-to-noise is already high, so the cross-correlation coefficient

restricted to that area is higher (over the same area the more optimal methods would also give

substantially higher cross-correlation coefficients).

2.5 CONCLUSIONS

In this chapter we demonstrated the importance of optimizing the reconstruction pipeline to

minimize the lensing spectrum variance when sky maps have anisotropic noise. We showed that

optimal CMB map filtering can have significant gains compared to simple isotropic filtering (a

factor of 2-5 decrease in variance for our choice of masking on the configurations tested).

Lensing reconstructions using optimally filtered maps are effectively inverse-noise weighted

because the normalization response is directly related to the reconstruction noise in simple cases.

This weighting is nearly optimal for the power spectrum on small scales where the reconstruction

is noise dominated, however it is significantly suboptimal on larger scales where lensing modes

are reconstructed with high signal-to-noise. We showed that an additional approximate

κ-reconstruction filtering stage can significantly improve the variance of power spectrum

estimates in the signal dominated regime on large scales, while also smoothly approaching close

to the original optimal result on small scales. The anisotropic filtering performs well for both SO-

and S4-like noise levels, and for the specific anisotropic noise we tested the κ filtering step

reduces the variance by about 30% on large scales. Our optimal filtering steps use a conjugate

gradient approach, making the optimized estimators easily numerically tractable (but still

somewhat numerically expensive; there is potential for further gains using other methods, e.g.

filtering using a pre-trained neutral network [182]).

We used a flat-sky analysis, but do not expect our results to be significantly different when

applying to a full-sky lensing reconstruction, though developing a full-sky analysis is clearly a

requirement for analysis of realistic data over large sky areas. We also considered only a single

frequency map and ignored the complication of foreground residual modelling. The relative

improvements that we have shown should however still remain valid as they only depend on the

overall broad distribution of the map hit counts. Realistic ground-based data also usually has
9Reference design is also available at https://cmb-s4.org/wiki/index.php/
Expected_Survey_Performance_for_Science_Forecasting.

https://cmb-s4.org/wiki/index.php/Expected_Survey_Performance_for_Science_Forecasting#DSR_Reference_Design
https://cmb-s4.org/wiki/index.php/Expected_Survey_Performance_for_Science_Forecasting#DSR_Reference_Design
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Figure 2.10: 1: Input deflection α map of one of the realizations used (where αL =
√
L(L+ 1) φL). 2: The Wiener-filtered

reconstructed α obtained when applying an optimal anisotropic filter to the temperature and polarization maps. The map
is normalized using a fiducial isotropic normalizationRfid

L , where the specific choice of effective isotropic noise chosen

has some impact on the map, and the isotropic WF applies
C
φφ
L,fid

C
φφ
L,fid+ (MC)N

φ
0,L

to φ̂L. 3: The α reconstruction map from

applying a further anisotropic filter on the optimally-reconstructed κ map after approximate local normalization. The
approximate white local normalization improves the match to the input near the patch boundaries, but underweights
small scales compared to the true normalization (RκL ∼ Nκ

0,L
−1 falls at high L compared to fixed value we chose that

matches on large scales), so this map appears smoother. This is corrected at the power spectrum level by the analytic
patch normalization correction. 4: The Wiener-filtered reconstructed α map using an isotropic filter on a masked map.
The same WF as in panel 2 is applied with the respective (MC)Nφ

0,L. 5: The Wiener-filtered reconstructedαmap using an

isotropic filter on a weighted map. The same WF as in panel 2 is applied with the respective (MC)Nφ
0,L. All reconstructed

maps are from the same lensing potential realization, and show the same colour ranges as the input map.
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Figure 2.11: Cross-correlation coefficients (Eq. (2.29)) for the various reconstruction methods and an SO-like experiment. The curves
were smoothed with a σL = 12 width Gaussian to reduce sampling noise. The best reconstruction is made from a
combined analysis of temperature and polarization maps (MV). The improvement due to the additional κ-filtering step
when using anisotropic filter on the CMB maps is mostly visible for L . 200. The most correlated maps are those
obtained from applying an isotropic filter over a reduced sky area, but this reduced sky area loses information compared
to other methods using the full observed area.

strongly correlated noise, making full signal-plus-noise filtering substantially more challenging;

however, the amplitude of the noise would still follow the broad hit count distribution, so the

uncorrelated noise approximation that we made may still be sufficient to obtain significant gains

compared to less optimized estimators. Further work would be needed to study the best way to

filter correlated noise in practice.

The fast optimized QE lensing pipeline presented in this work can easily be run on many
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simulations, and so may prove valuable for quantifying the impact of systematics, foregrounds,

and other effects that can be simulated on lensing reconstruction. The effect of several potentially

dangerous systematics will be explored in Chapter 3. The simple but accurate analytic patch

approximations results may also prove valuable for optimization of observing strategies.

Although we have demonstrated significant gains compared to simple QE estimators, our

results are clearly not fully optimal both because of approximations in the κ-filtering and because

the estimator is still fundamentally quadratic. A likelihood based approach using iterative

estimators [160, 161] could perform substantially better in the high signal-to-noise regime where

quadratic estimators become suboptimal. However, a fully optimal power spectrum estimator

applicable to realistic cut-sky data with inhomogeneous noise does not currently exist, and

developing such an estimator would be an interesting avenue for future research. Comparison

with a fully optimal estimator would allow us to assess gains compared to the approximate

estimators we have presented. However, our approximate estimators are likely to still remain

useful as they are fast to calculate and straightforward to approximately model analytically using

the patch approximation.



CHAPTER 3

Instrumental systematics biases in CMB

lensing reconstruction:

a simulation-based assessment

MARK MIRMELSTEIN, GIULIO FABBIAN, ANTONY LEWIS, JULIEN PELOTON

Abstract

Weak gravitational lensing of the cosmic microwave background (CMB) is an important

cosmological tool that allows us to learn about the structure, composition and evolution of

the Universe. Upcoming CMB experiments, such as the Simons Observatory (SO), will

provide high-resolution and low-noise CMB measurements. We consider the impact of

instrumental systematics on the corresponding high-precision lensing reconstruction power

spectrum measurements. We simulate CMB temperature and polarization maps for an

SO-like instrument and potential scanning strategy, and explore systematics relating to beam

asymmetries and offsets, boresight pointing, polarization angle, gain drifts, gain calibration

and electric crosstalk. Our analysis shows that the majority of the biases induced by the

systematics we modelled are below a detection level of ∼0.6σ. We discuss potential

mitigation techniques to further reduce the impact of the more significant systematics, and

pave the way for future lensing-related systematics analyses.

3.1 INTRODUCTION

One of the main scientific objectives of upcoming cosmic microwave background (CMB)

experiments is to measure the gravitational lensing of the CMB photons over a substantial sky

area with the highest precision to date. This will enable us to better constrain dark energy models

and inflation, provide more information on neutrino masses, and learn more about the large-scale

69
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structure of the Universe up to high redshift. To achieve this from upcoming observations, it is

crucial to understand how instrumental systematics could bias the lensing potential

reconstruction. This challenge will be more important for future CMB experiments such as the

Simons Observatory (SO) [131] and CMB-S4 [133], as small systematics become more

significant with higher resolution and lower noise levels.

The ability to effectively reconstruct the lensing potential (see [142] for a review) from

upcoming ground-based CMB experiments could be limited by various instrumental systematics.

For example, systematics could induce lensing-like features in the CMB maps or act to

effectively increase the reconstruction noise. Previous work in the literature has characterized the

influence and potential significance of several systematics on lensing reconstruction [183–185].

However, these treatments have mostly used analytic approximations and idealized scanning

strategies, rather than employing realistic instrument, scans, and modelling of systematics based

on levels observed in real data. Several experiments have used a simulation-based approach to

characterize residual systematic uncertainties, but focused on the CMB power spectra [40, 171,

186] or to guide the design of future instruments [e.g. 187]. The POLARBEAR collaboration has

recently used a simulation-based approach to propagate residual systematics uncertainties in their

latest lensing reconstruction measurements [188].

In this work, we adopt a similar end-to-end simulation approach to propagate the most

common instrumental effects related to beam, calibration, pointing and readout electronics

through to a lensing reconstruction analysis for a next-generation SO-like instrument. We assume

a realistic amplitude for the modelled systematics, as observed in the current generation of

experiments, or as expected for the next generation instruments given their design specifications.

Our baseline reconstruction pipeline performs a semi-optimal treatment of noise inhomogeneities

induced by the scanning strategies of ground-based experiments (see Chapter 2), however it does

not automatically mitigate possible residual systematic biases. Using systematics-free Monte

Carlo (MC) simulations to obtain the noise-debiasing terms for the CMB lensing power spectrum

could lead to biases on real data. It is therefore crucial to understand the detailed behavior of

systematics-induced biases and their potential significance for a more accurate lensing

reconstruction, and to design mitigation strategies when required (for example, by including an

accurate model of the most important effects in the corresponding MC simulations used in the

lensing analysis). In this work, we focus on the CMB lensing power spectrum reconstruction, and

do not consider the impact on other important analyses such as the delensing of CMB

polarization. A more detailed study may be required for the delensing analysis, as small

systematics-induced map-level effects could become relatively more important.
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This chapter is structured as follows. We begin in Sec. 3.2 by describing how we model the

instrumental systematics that we consider, and how these systematics affect the time-stream data

simulations. Sec. 3.3 gives a short overview of the lensing reconstruction pipeline that we use

to analyze our simulations. The systematics-induced biases and their significance on the CMB

power spectra and the reconstructed lensing power spectrum are shown in Sec. 3.4. We discuss

possible mitigation strategies in Sec. 3.5, and summarize our findings and future prospects in

Sec. 3.6. Throughout this chapter we assume a Gaussian unlensed CMB model corresponding

to a fiducial ΛCDM model with Planck-estimated parameters [31], and inhomogeneous but pixel-

uncorrelated instrumental noise (e.g. neglecting 1/f noise from the atmosphere or from instrument

electronics). We also do not attempt to model systematics that couple to foregrounds, and consider

an experiment which is insensitive to the CMB temperature monopole and dipole. For the scanning

strategy considered here, the latter are largely removed by the filtering usually employed on real

data to handle slowly varying correlated (1/f ) noise induced by the atmosphere.

3.2 INSTRUMENTAL SYSTEMATICS SIMULATIONS

Due to the time dependency of the data acquisition chain of CMB experiments, the most accurate

and natural way to include the effects of instrumental systematics is to inject them at the raw

time-ordered data (TOD) level. For this purpose, and to construct sky maps from the simulated

TOD, we use the public Python package s4cmb1 [189]. This software, which is derived from

the POLARBEAR data analysis systematics pipeline, has been used to perform a preliminary

systematics study for SO [187, 190, 191], and to explore the effects of systematics on B-mode

measurements on real data [171, 192]. Injecting systematics directly into the simulated detector-

by-detector TOD allows us to explore a wider set of systematics in a more realistic way than

other possible treatments of systematics (such as effective induced map-domain systematics), and

includes their variation across the focal plane of the instrument.

We start by converting noise-free and beam-free CMB temperature and polarization realization

maps, s = {T,Q,U}, to TOD based on instrument specifications. The instrument (white) noise

n, instrument beam b, and systematics, are then injected into the TOD, which is then converted to

temperature and polarization maps following a scanning strategy’s pointing model. We can write

the generated data time stream dt for a specific time sample t as

dt = Tt +Qt cos(2ψt) + Ut sin(2ψt) + nt, (3.1)

1Available at https://github.com/JulienPeloton/s4cmb/.

https://github.com/JulienPeloton/s4cmb/


INSTRUMENTAL SYSTEMATICS BIASES IN CMB LENSING RECONSTRUCTION:
A SIMULATION-BASED ASSESSMENT 72

where ψ is the polarization angle of the detector with respect to the sky coordinates, Tt, Qt and Ut

are the T,Q,U Stokes parameters of the CMB observed in the sky direction where the telescope is

pointing at given time t, and n is the instrument noise. At this point we define the CMB signals to

already be affected by the instrument beam and systematic effects. The instrument noise, which is

not affected by the beam, may also be affected by some systematic effects such as gain variations.

Throughout, we hereafter drop the t subscript for convenience. The way in which the systematics

we model affect the TOD is shown individually in the following subsections.

The generated TOD with systematics is then converted into three temperature and polarization

flat-sky maps using a binned map-making process; rewriting Eq. (3.1) in vector notation,

d = As+ n, (3.2)

where A is the pointing matrix of the scanning strategy, the reconstructed sky maps ŝ are the

generalized least square solution of Eq. (3.2) [193, 194],

ŝ =
(
A>N−1A

)−1
A>N−1d, (3.3)

where N is the time-domain instrument noise correlation matrix that we assume is diagonal and

proportional to the noise variance of the TOD (and the same for all the detectors). In the

following we will use a pair-differencing approach, where we map independently the half sum

and half difference of the TOD from a pair of detectors within a focal plane pixel that observe the

sky with orthogonal polarization angles [195]. This is a commonly-used strategy to isolate the

polarized and unpolarized components of the signal while minimizing the mixing between the

two. Mixing between intensity and polarization is particularly dangerous for polarization

measurements from the ground, for which any leakage of the unpolarized signal is dominated by

the strong atmospheric emission. We do not use any filtering during the map-making process to

avoid the need to correct the reconstructed lensing potential power spectrum by additional MC

corrections due to filter-induced biases. While some filtering procedures [194, 196] or other

map-making-stage modifications [197–199] may mitigate some systematic effects, in this work

we only demonstrate to leading order the potential lensing biases which may result from

systematics alone.

We use the process described above to obtain three groups of simulations:

1. MC simulations: systematics-free simulations which are obtained using our default

instrument specifications and scanning strategy. These make up different simulation sets

used for calculating different debiasing terms for the lensing reconstruction analysis. In
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total, we use 576 MC simulations. Their allocation to the different debiasing terms is

described in Sec. 3.3.

2. Systematics-free “data” simulations: 10 simulations similar to the MC simulations, but

using a specific set of 10 CMB + noise realizations. These simulations are used for a

systematics-free lensing reconstruction analysis for comparison.

3. “Data” simulations: same as group 2, but with the effect of systematics. Each considered

systematic has its own set of 10 “data” simulations from which we reconstruct the lensing

potential. The averaged reconstructed lensing power spectra of this set are compared to the

same power spectra obtained from the systematics-free “data” set.

To simulate realistic observations, we use an existing scanning strategy in s4cmb, the “deep

patch” scan, for all simulations. This simulates observations covering ∼5% of the sky, which is

consistent with the plan of the deepest CMB observations of SO and CMB-S4 [175, 200]. The

specific scanning strategy we adopted throughout this work is composed of 12 individual constant

elevation scans (CESs) having a unique scanning pattern, as shown in Fig. 3.1. Future surveys

dedicated to CMB lensing science will typically cover a much larger sky area (∼ 50% of the

sky). However, our specific choice of scanning strategy is a good compromise that allows us to

perform rapid simulations relatively inexpensively numerically. As we will discuss later on, the

amount of cross-linking of the scans is a crucial factor affecting the impact of several instrumental

systematics.

The normalized hit count map of the full 12-day scan is shown in Fig. 3.2. This “weights” map

is used throughout the lensing analysis as a baseline for the anisotropic noise covariance map.

A hit, or sample, is acquired every 1/15 seconds with a telescope’s constant azimuth speed of

0.4◦/sec at an elevation of 5,200 meters for an observatory located in the Atacama plateau (which

is the SO location). Since we simulate only 12 days of observations, which is only a fraction of a

CMB experiment’s full multiyear run, the effects of systematics which are expected to average out

with time will be larger than in reality. Our bias estimates from these systematics should therefore

be closer to an upper bound for what a similar experiment might observe in reality.

While our chosen scanning strategy is commonly employed by ground-based CMB

experiments, other scans may be more optimal for mitigating systematics [201]. We focus on the

scan defined above to characterize any lensing biases, so we can understand in a baseline

configuration which systematics may be important for upcoming CMB experiments, and hence

require more detailed study. Using a simple scan also avoids underestimating biases due to the

choice of a specific more-complex scanning pattern that may not actually be implemented by

future experiments.
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Figure 3.1: Sky coverage of each constant elevation scan (CES) of our scanning strategy. Each of scans 2-11 simulates∼4 observation

hours while scans 1 and 12 simulate ∼5 hours. In each CES, all detectors in the focal plane operate at the same time.
The color map shows the number of observations per pixel in the scanned regions. Blue areas are observed less, and red
areas are observed more times. The sub-panels of this figure cover the same area of Fig. 3.2, where we show the full
composition of the scans.
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Figure 3.2: The full normalized hit count map composed of the different CESs from Fig. 3.1. This hits map is the baseline for
constructing the anisotropic noise covariance map which is used in the lensing reconstruction filtering processes. Blue
areas are observed less, and red areas are observed more times. The resolution of the maps is 1.7 arcminutes and the total
sky area observed is ∼5% of the full sky.

For the instrument specifications, instead of simulating a full-sized SO-like experiment, which

could be a very numerically expensive task, we consider an instrument with 6,272 bolometers

(3,136 detector pairs) distributed over 4 different detector wafers. The way in which detectors

are wired in the focal plane, and the specific readout technology used in experiments, affect the

electronic crosstalk systematic. We consider two hardware configurations based on fMUX and

µMUX technologies, which we describe in more detail in Subsec. 3.2.7. The square focal plane

we consider is 60 cm on the side and has a field of view (FOV) on the sky of 3◦2. The central
2This makes up a subset of the full SO focal plane, which has a field of view of ∼5◦ [202].
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region of the focal plane is shown in Fig. 3.3. Although the total number of detectors and the

FOV are reduced compared to the current SO design, the configuration is the ballpark expected

for CMB-focused frequency channels of large-aperture telescopes targeting CMB lensing surveys

in the upcoming years. In the absence of specific pointing or polarization angle systematics, which

we describe further below, each bolometer pair (top and bottom detectors in the following) in the

focal plane has a specific coordinate such that two detectors within a pair are on top of each other

and have a 90-degree difference in their polarization angle orientation. The focal plane is cut into

four quadrants which represent a wafer. Within a quadrant, pixels form rows or columns which

correspond to eitherQ or U modes in detector coordinates (with a fixed exact 45-degree difference

between them, in absence of polarization angle systematics), depending on their polarization angle

(indicated by the angle of the markers in the figure). Each quadrant is rotated by 90◦ with respect

to the next quadrant. This layout is commonly adopted in the design of bolometric focal planes to

allow an efficient averaging over orientation of angles during the scans.
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Figure 3.3: The center of the focal plane model used in the simulations, projected on the sky. The focal plane is composed of 4 wafers
(illustrated by the dividing dashed gray lines) in which detectors within a pair (top and bottom, illustrated by the blue and
red bars respectively) are on top of each other. The different marker-pair angles correspond to pairs belonging to the two
polarization modes Q and U (forming “+” and “×”-like shapes in the figure respectively). The full focal plane extends
to 60 cm on the side.

All other instrument properties we consider are based on the SO ‘baseline’ large aperture

telescope (LAT) specifications at 145 GHz, described in Refs. [131, 203]. We use a baseline

circularly-symmetric (CS) Gaussian beam with a full width at half maximum (FWHM) of 1.4

arcminutes. We rescale the SO baseline noise level to mimic the observations of an SO-like

instrument scanning 5% of the sky with a 20% observation efficiency for 2.5 years. The
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corresponding map-domain white noise is 5.4 (7.6) µK-arcminutes for temperature (polarization)

after 12-days of simulated scanning. Since the noise in the map is inhomogeneous due to the

nature of the scan, this white-noise level is estimated from the power spectrum of weighted

temperature and polarization noise maps. It is between the homogeneous noise level expected for

an SO-like experiment observing 5% of the sky for 5 years (3.5 µK-arcminutes), and the

10µK-arcminutes on 40% of the sky expected for the baseline SO survey3. While using CMB

maps with relatively low scaled noise may reduce noise-coupled systematic biases, the relative

noise-related errors will also be smaller in our analysis, so we should still be sensitive to

important effects.

Consistent with the design of SO LAT, our instrument model does not simulate the effects

of a half-wave plate (HWP). Although a HWP could help to mitigate instrumental systematics

for polarization [204, 205], especially if operated at cryogenic temperatures, the large-aperture

telescopes typically used for lensing surveys do not normally use one as it is challenging to produce

the large-sized plates required, and the HWP could also produce large unwanted systematics of its

own [206].

The configurations described above are used for all of our simulations. For each “data” set

(apart from the systematics-free ones) we also include one systematic effect. Below, we describe

how each injected systematic effect is modelled and how it affects the TOD. The impact of these

systematics on the corresponding CMB power spectra and lensing reconstruction are discussed in

Sec. 3.4.

3.2.1 BEAM ELLIPTICITY

An ideal bolometer observes a patch of the sky with a known shape (or beam), usually taken to be a

circularly-symmetric (CS) Gaussian. Realistically, however, a detector’s beam has some deviation

from this symmetric shape. A realistic beam instead has an approximately elliptical shape with

unequal minor and major axes which have some tilt angle with respect to the predefined focal

plane axes. This means that realistic detectors do not observe the same sky area that detectors with

circular beams would. When each beam in an array of detectors has some different deviation from

a CS shape, this can cause “smearing” effects in the resulting sky map. This could look similar

to shearing or varying magnification expected from CMB lensing, and hence cause a lensing bias.

When producing polarization maps using pair differencing, if the two beams of a detector-pair

have a different shape there could be a substantial leakage between temperature and polarization
3These estimated values were obtained using the SO noise calculator, available at
https://github.com/simonsobs/so_noise_models [131], and assume a 20% efficiency in the observing time.

https://github.com/simonsobs/so_noise_models
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measurements. This would induce biases both in the maps’ power spectra and in the reconstructed

lensing potential.

The effects of beam ellipticity on lensing reconstruction have been previously explored

analytically [184], and several methods have been developed for mitigating beam asymmetry

effects in CMB maps [207, 208]. Precise simulations of beam asymmetry in TOD simulations

can be a very numerically-expensive task. The map of each simulated observation sample would

need to be convolved with a specific pointing-dependent beam over a 4π solid angle [209]. Since

it is too expensive to perform such convolution on a large number of samples (in our case, this

would be performing a convolution over 4 × 1010 times for each simulation), we consider an

approximate treatment for simulating the beam-shape systematic effects as TOD leakage terms

following Ref. [210]. This approach does not account for the effect of far sidelobes, but these are

expected to be more important for large-scale CMB modes that only have a minor impact on

lensing reconstruction.

Given a temperature sample T in a specific (time-dependent) position on the sky x and its

corresponding beam b(x), which is not necessarily circular, the observed signal of this sample is

Tobs(x) ≡ b(x)~ T (x) =
∫
b(x− y)T (y)dy. (3.4)

We can approximate the true beam b(x) as a perturbed CS Gaussian beam bcs(x − y) with width

σFWHM,

b(x) ≈ α0bcs(x) + α1,i
∂bcs(x)
∂xi

+ α2,ij
∂2bcs(x)
∂xi∂xj

, (3.5)

where αi are sets of expansion coefficients for the 0th-, 1st- and 2nd-order derivatives of bcs(x).

Eq. (3.4) is then approximated as

Tobs(x) ≈
∫ [

α0bcs(x− y) + α1,i
∂bcs(x− y)

∂xi
+ α2,ij

∂2bcs(x− y)
∂xi∂xj

]
T (y)dy

= α0Tb(x) + α1,i
∂Tb(x)
∂xi

+ α2,ij
∂2Tb(x)
∂xi∂xj

,

(3.6)

where

Tb(x) ≡
∫
bcs(x− y)T (y)dy (3.7)

is the temperature signal convolved with the CS beam. We can therefore approximate the observed

samples as a map convolved with a CS beam, Tb, plus leakage terms as shown in Eq. (3.6). The

leakage terms depend on the derivatives of Tb and on the coefficients αi which are derived from

expanding the perturbed beam b(x) around the CS beam bcs. Instead of repeating this convolution

process for each sample, we can obtain Tb from convolving our input sky map with the CS beam
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and use this map and its derivatives to get the leakage terms for each observed sample.

Using this treatment, we can analyze how these leakage terms affect the TOD and the resulting

temperature and polarization signals. The time streams of top and bottom detectors within a pair

(two orthogonal detectors which are in this case aimed towards the same sky area) can be written

as

dtop = btop ~ [T +Q cos (2ψ) + U sin (2ψ)] ,

dbottom = bbottom ~ [T −Q cos (2ψ)− U sin (2ψ)] ,
(3.8)

where btop and bbottom are the top and bottom bolometers’ beams, respectively, and ψ is the

polarization angle. The temperature and polarization time streams are then given by the sum and

the difference of the pair’s time streams:

d+ = b+ ~ T + b− ~ [Q cos (2ψ) + U sin (2ψ)] ,

d− = b− ~ T + b+ ~ [Q cos (2ψ) + U sin (2ψ)] ,
(3.9)

where

b± ≡
btop ± bbottom

2 . (3.10)

Repeating the beam approximation above for the convolution terms in Eq. (3.9), we get

d+ = α0(+)Tb + α1,i(+)
∂Tb(x)
∂xi

+ α2,ij(+)
∂2Tb(x)
∂xi∂xj

+ α0(−)Pb + α1,i(−)
∂Pb(x)
∂xi

+ α2,ij(−)
∂2Pb(x)
∂xi∂xj

,

d− = α0(−)Tb + α1,i(−)
∂Tb(x)
∂xi

+ α2,ij(−)
∂2Tb(x)
∂xi∂xj

+ α0(+)Pb + α1,i(+)
∂Pb(x)
∂xi

+ α2,ij(+)
∂2Pb(x)
∂xi∂xj

,

(3.11)

where the coefficients αi(±) correspond to b±, and we define Pb ≡ Qb cos (2ψ) + Ub sin (2ψ),

the polarization field convolved with the CS beam in analogy with Eq. (3.7), for convenience. In

practice, the αi(±) coefficients are time-dependent. The time dependency is due to the different

orientation of the expansion basis used for computing their values and the sky coordinate system

at a given observation time. The difference in orientation can be easily accounted for by rotating

the coefficients computed in Eq. (3.5) by a suitable angle.

Leakage which results from α0(+) 6= 1, and thus from a loss of optical power, is usually

mitigated during gain calibration or polarization efficiency estimation. We therefore set α0(+) to

1 for all detectors to focus on the less trivial leakage terms, and perform a separate analysis of

gain systematics in a later subsection. When a pair’s beams have the same shape, even if
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elliptical, b− = 0 and b+ = btop = bbottom. In this case, α1(−) = α2(−) = 0, and all T → P and

P → T leakage terms vanish. Any biases in this scenario are attributed only to T → T and

P → P leakages which depend on the deviation of the elliptical beam b+ from being CS. When a

pair’s beams do not have the same shape, the T → P and P → T leakage terms do not vanish.

This can induce a significant bias in the polarization maps due to the large temperature signal

amplitude, which can then affect the lensing reconstruction. We simulate the most general case of

beam asymmetry systematics described above, in which all leakage terms (apart from the

gain-related ones) are injected into the TOD. To calculate the fitting coefficients αi(±), we define

the CS and the parametrized elliptical beams as

bcs(x) ≡ 1
2πσ2

cs
e
− x2

2σ2cs ,

b(x) ≡ 1
2πσminσmaj

e−
1
2 [σ−1·R(ε)·x]2 , (3.12)

where

σcs ≡
σFWHM√

8 ln 2
,

σ ≡
(
σmaj 0

0 σmin

)
,

R(ε) ≡
( cos(2ε) − sin(2ε)

sin(2ε) cos(2ε)

)
, (3.13)

σmaj (σmin) is the size of the semi-major (minor) axis, and R is a matrix responsible for rotating

the ellipse by some angle ε between the major axis of beam ellipse and the focal plane’s x axis.

The beam parameters are illustrated in Fig. 3.4. The minor and major ellipse axes of each beam

deviate symmetrically from σcs,

σmaj
min

= σcs ±
∆σ
2 , (3.14)

where ∆σ is determined using the ellipticity ebeam definition,

ebeam ≡
σ2

maj − σ2
min

σ2
maj + σ2

min
. (3.15)

Each detector beam is assigned with a random ellipticity ebeam and a random ellipticity angle

ε. To add a level of realism to the ellipticity models, we correlate each ellipticity and angle to

the detector’s distance from the boresight coordinates and polar angle, respectively, by assuming

a 2nd degree polynomial that mimics the fact that detectors observing regions close to the edge of
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Figure 3.4: Illustration of the beam models and parameters in Eq. (3.12). Panel (a) shows the two overlapping circularly-symmetric
(CS) Gaussian beams (σmaj = σmin = σcs) of a detector pair. This represents the beam shape in all simulations apart
from the beam ellipticity and differential pointing “data” simulation sets. Panel (b) shows the beam ellipticity model we
use. In this case, the two beams of a detector pair have a different ellipticity: σmaj 6= σmin for each beam, different
axes lengths for each detector, and some angle difference ∆ε also exists between their major axes (on top of the 90◦
orthogonality of the two detectors). Panel (c) shows the same unperturbed beam shapes as in (a), however in this case
each beam’s center is shifted. This is our differential pointing model, in which the beam centers of a detector pair are
shifted according to Eq. (3.16).

the FOV are subject to more optical distortions4. The polynomial functions, along with the beam

ellipticities and angles, are shown in Fig. 3.5. The ellipticities and angles are drawn from a normal

distribution with mean centered on the respective polynomial function with 2% and 45◦ standard

deviations, respectively. These dispersion values are consistent with e.g. POLARBEAR [171]

and BICEP2 [211] beam measurements. On top of the ellipticity angles, which are the same for

two detectors in a pair, a random differential angle ∆ε is also used to perturb the beams of all

bottom detectors. These angles are drawn from a normal distribution with a zero mean and a

5◦ width. All beam parameters are drawn once per simulation and therefore remain constant in

time throughout the simulated observation period. The relevant derivatives of the temperature and

polarization maps, which are used in the leakage terms, are obtained using the synfast routine

of the HEALPix [176] package.

In our simulations, we do not model the cross-polar beam response. This response is expected

to be subdominant for an SO-like instrument based on modern optical coupling technologies for

bolometric detectors and cross-Dragone telescopes [187, 190]. We also assume that all baseline

beams have a perfect circular shape with a Gaussian radial profile. In practice, this is an

approximation, as diffraction effects in the optics will cause the beam to decay asymptotically as

∼1/θ3, where θ is the angle from the beam peak [171, 212]. Any characterization of the beam

properties in the field through dedicated calibration observations will naturally include these

effects in the main beam model, and hence include it in the transfer function used for subsequent

steps of the data analysis. While we do not include diffraction effects in our baseline beams, we
4A good demonstration of these correlations is shown in Ref. [202], where a more comprehensive review of the SO
optics can also be found.
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found that when perturbing our elliptical beams around a beam which includes diffraction tails,

the resulting leakage coefficients αi(±) are similar to those obtained using the fully Gaussian

beam. As such, although the diffraction tails affect the beam beyond its FWHM scale, we do not

expect these corrections to significantly change our results for beam-related or other systematics

considered in this work. In general, diffraction tails could be important, as they allow the

telescope to pick up spurious emissions coming from the ground or other astronomical sources,

and would have to be included in a dedicated analysis of the telescope sidelobes, which we did

not consider in this work.
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Figure 3.5: Beam ellipticities and angles of all simulated top (blue markers) and bottom (red markers) detectors. Each plot shows the
function used as the normal distribution mean for generating the beam random variables (black lines). The functions were
estimated using the NumPy [213] and SciPy [214] Python libraries.

The b± maps are shown in Fig. 3.6 for a detector pair from our simulations. The beam difference

b− map for beam ellipticity has quadrupole-like symmetry, corresponding to the main leakage

terms for this systematic coming from the 2nd derivative terms. The map-level effects of beam

ellipticity for temperature and polarization are shown in Fig. 3.7. Compared to the simulation

with CS beams, the residuals seem negligible relative to the signal amplitudes. Expectedly, the

polarization residuals are larger than those of the temperature due to the T → P leakage terms.
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3.2.2 DIFFERENTIAL POINTING

Another beam-related systematic that we model results from detectors in a focal plane pixel not

being centered on the same sky coordinates. In other words, the beams of two detectors in a

pair are not aligned in the focal plane reference frame. When this occurs, the temperature and

polarization maps, which are produced from the sum and difference of the pair data streams, will

be distorted. Typically, this is mitigated during map-making by considering the mid-point beam

centers as the true center of each beam in a pair. The residual of this effect can, however, produce

smearing features and T → P leakage in the maps, which could potentially propagate to the

lensing reconstruction. Analytic approaches for characterizing the differential pointing effects on

the lensing potential were previously explored in Refs. [184, 185].

In our simulations, this systematic effect is modelled by introducing an offset to the beam-center

coordinates of two detectors within a pair. A different offset is drawn for each detector pair. For

a given pair, the unperturbed pointing coordinates (x0, y0) in the focal plane reference frame is

shifted by

(∆x,∆y) top
bottom

= ±ρ2 (cos θ, sin θ) , (3.16)

where ρ ∈N(15′′, 1.5′′) is the offset magnitude and θ ∈ U(0, 2π) is the offset direction angle with

respect to the horizontal focal plane axis. The magnitude of the ρ that we use is conservative, as

current-generation experiments with on-chip detectors achieved differential pointing well below

the mean value assumed here [192]. The differential pointing offset is illustrated in Fig. 3.4c.

Following the previous sections, the perturbed beams are then used to compute the coefficients αi

for the leakage terms which are injected into the temperature and polarization time streams as in

Eq. (3.11).

The b± maps for the differential pointing systematic are shown in Fig. 3.6 for a detector pair

from our simulations. The beam difference b− map has dipole-like features, which suggests that

the main leakage terms for this systematic would stem from the 1st derivative leakage terms.

The map-level effects of differential pointing for temperature and polarization are shown in

Fig. 3.7. The differential pointing residuals for both temperature and polarization maps are larger

compared to the beam ellipticity residuals. For both of these beam-related systematic effects, the

temperature residuals appear to be nearly spatially uncorrelated. The polarization residuals in the

differential pointing case do not have Q- and U -like features as with the beam ellipticity residuals.
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Figure 3.6: Row 1: Difference between b+ maps of the perturbed and CS beams for the beam ellipticity (left panel) and differential
pointing (right panel) systematics for a detector pair in our simulations. The deviation from CS is larger for the differential
pointing systematic. Row 2: The b− maps for the beam ellipticity (left panel) and differential pointing (right panel)
systematics of a detector pair from our simulations. As with b+, the difference between the two beams within a pair is
larger for the differential pointing systematic. The shape of b− for beam ellipticity (differential pointing) has quadrupole-
(dipole-)like features.

3.2.3 BORESIGHT POINTING

The systematics discussed in the previous subsections involved perturbed models of detector

beams. In this subsection, we describe a systematic effect that is produced from inaccuracies in

the pointing coordinates of the entire focal plane, or boresight pointing, during scans. The exact

pointing of the telescope needs to be reconstructed from the position of known sources. The

direction in which the focal plane of a telescope is pointing during a scan might differ slightly

from the pointing direction recorded by the telescope position encoders. These errors can

originate from wind gusts, temperature changes, temperature gradients across the focal plane due

to heating of the telescope structure, vibrations due to the motion of the telescope, deformation of

the telescope’s mirror due to its own weight, and more. The errors due to deformation can mostly

be corrected by estimating the variations of the pointing correction (that relates the recorded

telescope position to the position of known sources) as a function of time, while other effects can

be assumed as random. We therefore simulate the pointing errors by perturbing the boresight’s

azimuth and elevation for each sampling, while using their original unperturbed values in the

pointing matrix in the map-making stage. The azimuth and elevation offsets are drawn from a
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Figure 3.7: Row 1: White-noise-free temperature (left), Q (middle) and U (right) maps of a systematics-free “data” simulation.
Rows 2-8: Difference maps of the same realization with and without systematics for temperature (left column),Q (middle
column) andU (right column). All panels show the middle area of the full simulated box with dimensions 17×25.5 deg2.
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normal distribution with a 3 arcseconds mean (a typical precision of a telescope position encoder)

and a variance such that the total pointing uncertainty is 13 arcseconds and error in azimuth and

elevation are uncorrelated. This pointing error is about ∼10% of the CS beam FWHM we

considered in this work and is consistent with typical results of state-of-the-art experiments [192].

The map-level effects of the boresight pointing systematic for temperature and polarization are

shown in Fig. 3.7. Unlike the previously mentioned systematics, the residuals from perturbing the

boresight coordinates are as important for temperature as for polarization. The map-level residuals

are small-scale changes arising from a small additional smoothing-like effect on the maps due to

the randomized pointing. This systematic does not produce any T ↔ P mixing.

3.2.4 POLARIZATION ANGLE

The accuracy of polarization angle measurements is important to correctly characterize the E and

B modes of the CMB [215, 216]. If the true polarization angles of each detector deviate from

their estimated values, which are used to make the Q and U maps, E/B mixing is introduced.

This not only contaminates the resulting E and B modes, but also produces non-zero EB and

TB correlations. These correlations are expected to vanish in cosmological models where parity

is preserved [70, 76, 217–220]. Models that include non-standard physical mechanisms which

manifest on cosmological scales (such as cosmic birefringence, parity violation) predict the

existence of intrinsic EB or TB correlations that can also get contaminated by a polarization

angle miscalibration [221].

In general, the polarization angles of the top and bottom detectors can each be different from

the expected angle ψ by a different ∆ψ, such that the time streams of a detector pair are

dtop = T +Q cos [2 (ψ + ∆ψtop)] + U sin [2 (ψ + ∆ψtop)],

dbottom = T −Q cos [2 (ψ + ∆ψbottom)]− U sin [2 (ψ + ∆ψbottom)]. (3.17)
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The temperature and polarization time streams are then

d+ = T + Q
cos [2 (ψ + ∆ψtop)]− cos [2 (ψ + ∆ψbottom)]

2

+ U
sin [2 (ψ + ∆ψtop)]− sin [2 (ψ + ∆ψbottom)]

2 ,

d− = T + Q
cos [2 (ψ + ∆ψtop)] + cos [2 (ψ + ∆ψbottom)]

2

+ U
sin [2 (ψ + ∆ψtop)] + sin [2 (ψ + ∆ψbottom)]

2 .

(3.18)

When ∆ψtop = ∆ψbottom ≡ ∆ψ, there is no P → T leakage. When all detector pairs are

perturbed with the same ∆ψ value, the recovered polarization maps are effectively equivalent to

the true polarization sky signals rotated by a constant angle ∆ψ. Under this assumption, it is

straight-forward to propagate this systematic effect all the way to the E and B modes and their

power spectra [215]. When the polarization angle perturbations in the top and bottom detectors are

completely anti-correlated, i.e. ∆ψtop = −∆ψbottom, the polarization bias becomes an effective

gain error of the size cos(2∆ψtop). In this work, we consider the most general case, in which

both ∆ψtop and ∆ψbottom are independently drawn for each detector pair, such that both the

polarization and temperature signals are affected by the perturbed angles.

We model differential polarization angle perturbations by drawing a different value for ∆ψ

from N(−1.1◦, 0.5◦) for each detector in each detector pair. This perturbation level will be

referred to as “setup A” throughout the chapter. The perturbation values for this setup are

consistent with the polarization angle errors measured by POLARBEAR and BICEP2 prior to

applying a polarization angle self-calibration procedure (see [222, 223] and discussion around

Eq. (3.44) in Sec. 3.5). Other experiments, such as ACTPol and SPTpol, have reported lower

mean values for the polarization angle errors consistent with ∆ψ ∼ 0.5◦ [224, 225]. Although

we do not consider this case in detail for estimating lensing biases, we give a comparison

between setup A and an ACTPol-like setup with ∆ψ drawn from N(−0.5◦, 2.0◦) (“setup B”) in

Secs. 3.4.2 and 3.5.

The map-level effects of the polarization angle systematic for temperature and polarization are

shown in Fig. 3.7. The small temperature residuals are the P → T leakage induced by the

differential polarization angles within a detector pair. These residuals also show the scanning

strategy stripes due to its correlation with the polarization angles. Because this systematic

effectively rotates the polarization maps, the Q residual map mostly consist of U features, and

vice versa.
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3.2.5 GAIN DRIFTS

In this and the next subsection we discuss detector-level systematics which relate to the TOD

gains. During an observation run, various internal or external factors could change the measured

bolometer gain that calibrates the raw data to physical units: local temperature gradients across the

focal plane could induce gain drifts for each detector pair until a gain recalibration is performed;

external heating of the entire focal plane or a coherent change of the detectors’ optical loading

could cause a coherent gain drift for all detectors. In our simulations, we model these gain drift

effects as a function of time using a linear drift model,

g(t) = 1 + ∆g (t mod tR)
tR

, (3.19)

such that after each time interval tR the gain is recalibrated back to unity. This assumes that

the gain calibration procedure restores a perfect calibration relative to the input map. As such, we

assume potential effects due to bandpasses can be characterized with a sufficient level of precision.

In Subsec. 3.2.6 we also consider a related effect in which the recalibration produces some gain

mismatch between the detectors in a pair, producing an inter-calibration problem. We consider

a retuning interval of ∼1.2 hours, and draw the gain perturbation variable ∆g for each pair (and

once for each drifting duration) from a normal distribution with a zero mean and a 0.05 width.

Although the retuning interval can be optimized depending on the exact scanning strategy, we use

a value similar to those employed for observations performed from the Atacama plateau with a

similar scanning strategy [226].
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Figure 3.8: Illustration of the linear gain drift model during the course of CES 1 from Fig. 3.1 for two detector pairs (green and blue
lines). Recalibration occurs 4 times during each CES, shown by the dashed red lines. For this CES, which lasts∼5 hours,
recalibration occurs every ∼1.25 hours. For the shorter CESs, recalibration occurs roughly every hour. This illustration
shows the incoherent gain drift of two detector pairs. In our coherent gain drift simulations, the green gains are identical
to the blue gains, and represent the drift of all detector pairs.
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This gain drift model, which is illustrated in Fig. 3.8, simulates the effect of incoherent gain

drifts between detector pairs. As mentioned before, another possibility is a coherent gain drift

across the focal plane. We therefore produce an additional simulation set for this effect. We

consider these two extreme gain drift scenarios instead of simulating a local (on the focal plane)

drifting model to demonstrate how different drifting scenarios affect the lensing reconstruction.

For coherent gain drift, the same random variable ∆g is used for all detector pairs for each drifting

duration, but is different after each recalibration. This type of drift is similar to that illustrated in

Fig. 3.8, but with the gains of both pairs (and all other pairs in the focal plane) being the same in

each drifting period.

Since gain is a multiplicative parameter for the time-stream signal and noise,

dtop = g [T +Q cos (2ψ) + U sin (2ψ) + n] ,

dbottom = g [T −Q cos (2ψ)− U sin (2ψ) + n] ,
(3.20)

we can estimate its average effect on the 2-point and 4-point correlation functions, which we define

later in Sec. 3.3, analytically.

The map-level effects of the incoherent and coherent gain drift systematics for temperature and

polarization are shown in Fig. 3.7. Expectedly, the incoherent gain drift residuals are much smaller

compared to the coherent drifts. This happens because when different pairs have a different drift,

the systematic effect averages out quickly for a sky area which is observed by multiple pairs

over time. Coherent drift biases take a longer time to average out. As such, their residuals leave

large-scale areas which are affected by an incorrect calibration. The resulting patterns depend on

the scanning strategy, sampling frequency, and gain recalibration frequency. Longer observations

using the same basic scan, but a more frequent recalibration strategy, would change these patterns

and reduce the residual amplitude.

3.2.6 CALIBRATION MISMATCH

Another gain-related systematic effect results from an inaccurate gain inter-calibration process

between two detectors in a given pair. During an observation run, gains are usually calibrated

back to unity multiple times. This recalibration process could potentially produce some level of

differential gain, or calibration mismatch, if the new gains of a detector pair are not equal. In this

case, each detector gain has some deviation from unity. This gain offset can be different after each

gain recalibration. We simulate this effect by symmetrically offsetting the top and bottom gains g
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of each detector pair such that

gtop(t)− gbottom(t) = 2εg(t). (3.21)

We model this systematic effect symmetrically so that only the leakage terms in the temperature

and polarization time streams depend on the gain mismatch level, and the overall absolute

calibration of the T , Q and U Stokes parameters is not affected. This is consistent with the choice

made in the previous sections where we assumed absolute calibration and polarization

efficiencies effects can be correctly measured or calibrated on other external data sets such as e.g.

Planck. A different gain offset εg is applied after each calibration and for each detector pair. The

modified gains of a detector over time are illustrated in Fig. 3.9. We use the same probability

distribution as before, N(0, 0.05), to draw a different offset εg for each detector pair. This

distribution is a conservative estimate of possible gain systematics as current generation of

experiments have demonstrated the feasibility of minimizing differential gain effects if reliable

inter-calibration sources are available. POLARBEAR, for example, estimated the upper limit of

these effects to be . 0.3% [192], while SPTpol constrained them to be ∼1% prior to any

marginalization [227].

Using this calibration mismatch model in Eq. (3.20), a detector pair’s TOD are

dtop = (1 + εg) [T +Q cos (2ψ) + U sin (2ψ) + n] ,

dbottom = (1− εg) [T −Q cos (2ψ)− U sin (2ψ) + n] ,
(3.22)

and the corresponding sum and difference time streams read

d+ = T + εg [Q cos (2ψ) + U sin (2ψ)] ,

d− = εgT +Q cos (2ψ) + U sin (2ψ),
(3.23)

such that T → P and P → T leakage terms depend on the gain offset parameter. We expect

the former leakage term to be more significant than the latter given the lower amplitude of the

polarization signal, and that cross-linking during observation runs will reduce overall leakage in

both d+ and d−.

The map-level effects of the calibration mismatch systematic for temperature and polarization

are shown in Fig. 3.7. Expectedly, the temperature residuals are smaller compared to the

polarization residuals. As this effect produces T/P mixing, the temperature residual map has

features similar to the spatial distribution of the polarization signal, and vice versa for the

polarization maps, where the residual amplitude is ∼10% of the input map. As with the other
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Figure 3.9: Illustration of the calibration mismatch model during the course of CES 1 from Fig. 3.1 for top (blue) and bottom (green)
detectors within a pair. As with the gain drift model which is illustrated in Fig. 3.8, recalibration occurs 4 times during
each CES, shown by the dashed red lines. For this CES, which lasts ∼5 hours, recalibration occurs every ∼1.25 hours.
For the shorter CESs, recalibration occurs roughly every hour. Unlike the gain drift model, here each calibration process
adds a symmetrically gain distortion between the two detectors in a pair.

gain-related systematics, this effect is also expected to average-out with more frequent

calibrations, more detectors, and longer observation time.

3.2.7 CROSSTALK

The last systematic effect we explore in this work is due to the experiment’s electronic readout

systems. Modern CMB experiments typically employ bolometric detectors operating in cryogenic

environments. They adopt complex multiplexing technologies to simultaneously read out signals

from many bolometers on a single readout line. This capability is required to minimize thermal

losses in the cryostat that hosts the focal plane. Due to the complexity of readout technologies

in cryogenic environments, the readout device can introduce a mixing of the electric signals of

bolometers transported on the same readout line, an effect which is called electric crosstalk [228].

We give baseline results for a readout electronic setup similar to the one employed in µMUX

technologies, where all 1,568 bolometers in a wafer are multiplexed together in a single SQUID

(superconducting quantum interference device; used to read out the signal from the transition-edge

sensors). Future experiments such as SO are expected to adopt a µMUX technology and therefore

have a readout scheme close to the one we simulate [229]. We also consider an alternative setup

with 7 frequency-domain multiplexers (fMUX) with 4 SQUIDs per fMUX, and 28 detector pairs

per SQUID. This is the reference technology for several current generation of experiment such as

POLARBEAR-2/Simons Array and SPT-3G [230, 231], and has also been discussed in the context

of future experiments [187]. The results we obtain with this setup are similar to those presented in

the following.
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The effect of crosstalk is such that the acquired raw TODs dt at a given time are in reality a

linear combination of the true sky measurements of each detector ddet
t acquired at the same time.

This can be characterized by the crosstalk leakage matrix L as

dt = (1+L)ddet
t , (3.24)

where 1 is the identity matrix. To identify the signal di ∈ ddet
t from each detector i, each detector

carrier is modulated to a different readout frequency fi for detectors that are all wired together

within a SQUID. A realistic representation of the element i, j of the leakage matrix is then

Lij = kij

(∆fij)2 , (3.25)

where kij is a leakage coefficient, and the leakage depends on ∆fij , the location-dependent

frequency spacing between bolometers i and j in the focal plane [228]. We set kii = 0 to avoid

additional gain miscalibration, and the resulting time-stream leakage then attenuates with a

constant power of 2 with respect to ∆f . While there are a large number of possible modulation

schemes, we use a simple linearly-spaced modulation. The readout frequencies of all bolometers

within a SQUID form an arithmetic progression between a minimal and a maximal frequency

fmin and fmax based on the detector’s sequential placement order in rows within the SQUID. In

this case, ∆fij ≡ (fmax − fmin) /nMUX for two consecutive detectors i, j where nMUX is the

number of bolometers connected together within a SQUID. While this modulation model is not

optimized, as bolometers which are physically near do not have the maximal possible frequency

difference within the specific frequency range, the leakage amplitude proved to be dominated by

the overall hardware settings (for instance resistance and induction in the readout system) such

that optimizing the modulation pattern is less important. We also use nMUX as the leakage radius

so that all the bolometers within a SQUID are affected by crosstalk to achieve realistic and

conservative results.

The off-diagonal leakage coefficients kij for detectors within a SQUID are drawn once for each

simulation (so that the crosstalk leakage matrix remains constant during the full observation time)

from a normal distribution with a −0.03% mean and a 0.01% width [187]. These values are

consistent with the current capabilities of the readout technologies considered for SO and CMB-

S4 instruments [229, 232]. The modulation frequency range is set between fmin = 4 GHz and

fmax = 8 GHz for µMUX and fmin = 1 MHz and fmax = 5 MHz for the fMUX setup, which

are typical values for these technologies. A block of the full simulated crosstalk leakage matrix

L is shown in Fig. 3.10. Leakages beyond the correlation radius represent the SQUID-to-SQUID
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crosstalk. Since this effect is subdominant, and laboratory measurements usually only provide an

upper limit for it, these leakage values are drawn from a Gaussian distribution with zero mean and

0.01% width [187].
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Figure 3.10: The simulated (log) crosstalk leakage matrix L for a subsection of the simulated detectors, given the fMUX setup. The
axes correspond to a detector’s placement order across the focal plane. The leakage coefficients for detectors which are
wired together in the same SQUID are obtained using the power-law leakage term in Eq. (3.25). Leakage decreases as
a function of frequency-distance between bolometers. The leakage appears as noise for bolometers that are sufficiently
separated in frequency space. This intra-SQUID noise level is also the stochastic SQUID-to-SQUID crosstalk leakage.
Diagonal elements are by default set to 1 to avoid inducing systematics that are corrected during the calibration of the
bolometers. For this fMUX setup, the figure shows 6 SQUIDs in a wafer, for which bolometers placed at the largest
separation distance in frequency space (the top-right and bottom-left corners of each SQUID block) start having crosstalk
levels which resemble the overall SQUID-to-SQUID levels. For the µMUX setup, a similar plot would show more intra-
SQUID correlations, as there are more detectors within a SQUID. However, due to the frequency spacing choice, most
of the additional correlations would be lower than our SQUID-to-SQUID levels.

To understand the effect of crosstalk on the time streams, we follow the toy model of Ref. [187].

For an experiment with only two detector pairs, the (crosstalk- and noise-free) time stream d of

each detector is

di = T1 + P1
dj = T1 − P1

} Pair1

dk = T2 + P2
dl = T2 − P2

} Pair2 ,

(3.26)

where we assume that both in-pair bolometers point to the same direction n̂r so that Tr ≡ T (n̂r)

and Pr ≡ Q(n̂r) cos(2ψr) + U(n̂r) sin(2ψr) for r ∈ {1, 2}. The induced crosstalk leakage in



INSTRUMENTAL SYSTEMATICS BIASES IN CMB LENSING RECONSTRUCTION:
A SIMULATION-BASED ASSESSMENT 93

each time stream is then

dleak
i = Ljidj + Lkidk + Llidl

dleak
j = Lijdi + Lkjdk + Lljdl

dleak
k = Likdi + Ljkdj + Llkdl

dleak
l = Lildi + Ljldj + Lkldk,

(3.27)

with no summation, such that the resulting temperature and polarization time-stream leakages are

dleak
+ =1

2 [Lji + Lij ]T1 + 1
2 [Lji − Lij ]P1

+ 1
2 [Lki + Lkj + Lli + Llj ]T2

+ 1
2 [Lki − Lkj + Lli − Llj ]P2,

dleak
− =1

2 [Lji − Lij ]T1 −
1
2 [Lji + Lij ]P1

+ 1
2 [Lki − Lkj + Lli − Llj ]T2

+ 1
2 [Lki − Lkj − Lli + Llj ]P2.

(3.28)

A joint calibration of detectors within a pair should cancel the in-pair leakage terms, in which case

Lij = Lji = 0 for i, j within a detector pair. The leakage terms then become

dleak
+ =1

2 [Lki + Lkj + Lli + Llj ]T2 + 1
2 [Lki − Lkj + Lli − Llj ]P2,

dleak
− =1

2 [Lki − Lkj + Lli − Llj ]T2 + 1
2 [Lki − Lkj − Lli + Llj ]P2.

(3.29)

Since T � P , the dominant temperature leakage term is T2 → T1. The multiplicative factor of

T2 in this leakage term is negative, as crosstalk coefficients are mostly negative, which results in

a decreased temperature power. This would also be the case if the in-pair leakage elements of

Eq. (3.28) are not nullified. The polarization biases are not easily estimated given the analytic

leakage terms above. They depend on the specific simulated crosstalk leakage matrix and how it

is coupled to the effective cross-linking with which a given sky pixel is observed. In our

simulations, we keep the in-pair leakage terms for completeness, and comment on their

significance in Subsec. 3.4.2.

The map-level effects of the crosstalk systematic for temperature and polarization are shown

in Fig. 3.7. Both temperature and polarization residual maps have smoothed features of the base

maps, with amplitudes consistent with the induced leakage level of -0.03%. Future experiments

will employ dichroic detectors sensitive to multiple CMB frequencies at the same time, where

crosstalk in the electronics will in practice generate crosstalk between the sky signal (and between
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its different components) at different frequencies. We did not consider this effect in this work and

defer its study to future work.

Lastly, we note that other non-crosstalk-related electronic effects that are related to the readout

chain may also introduce systematics that affect the low frequency part of the TOD. Detectors

coupled to circuits with large time constants or data acquisition chains having a non-linear analog-

to-digital (ADC) response in the electronics might distort the signal along the scan direction. It has

been shown that both of these effects can be particularly complicated to deal with in the case of past

experiments. Therefore, they should be given serious attention in the analysis of real data. Planck,

for example, accounted for ADC non-linearities and time-constant effects in the data analysis, but

showed that the major residual contamination induced by both of these effects have an important

impact on the largest angular scales ` . 200 [233, 234]. These scales carry a limited weight in the

lensing reconstruction, and we not to investigate them in this work. Furthermore, the typical time

constants of modern detectors have a lower amplitude compared to that of Planck [235] so their

impact on future CMB experiments should be less severe.

3.3 LENSING ANALYSIS

We reconstruct the lensing potential of each simulation from the different “data” simulation sets.

We perform a flat-sky quadratic estimator (QE) lensing reconstruction using the pipeline

presented in Chapter 2. After performing the standard quadratic estimator lensing reconstruction,

this analysis also includes a filtering step applied to the reconstructed lensing field, which is

designed to approximately minimize the corresponding power spectrum errors. The filtering is

based on a patch approximation, which considers small patches within the observed area to have

homogeneous noise with an effective lensing reconstruction response. This approach was shown

to deliver an approximately optimal estimate of the lensing power in the presence of

smoothly-varying inhomogeneous noise. We use one set of 10 systematic-free simulations to

obtain an averaged reconstructed lensing power spectrum, and then repeat this calculation with

sets of 10 simulations with the same CMB and noise realizations but including the effects of one

of the systematics discussed in Sec. 3.2.

The lensing reconstruction stages are as follows. First, each simulation from a given set is

optimally filtered using the inhomogeneous noise maps for temperature and/or polarization N

(constructed from the pixel weights shown in Fig. 3.2, withN−1 set to zero in unobserved pixels),
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X̄ ≡
(
bCfidb> +N

)−1
X

=
(
Cfid

)−1
[(
Cfid

)−1
+ b>N−1b

]−1
b>N−1X,

(3.30)

where

X ∈


T T

(E,B) P
(T,E,B) MV

(3.31)

is a vector of the CMB maps, b is the transfer function (a CS Gaussian beam with σFWHM width)

and Cfid is a set of fiducial lensed power spectra which were obtained from CAMB5 [113].

Eq. (3.30) is solved using the multi-grid-preconditioned conjugate gradient method [98, 100, 123,

148, 153]. Then, the filtered simulations from each “data” set are used to estimate φ̂(x), the

unnormalized QE, using

φ̂(x) = 1
2X̄

> δC
XX

δφ(x) X̄, (3.32)

whereCXX is the covariance of the mapX [158]. This QE is biased by non-zero average values

of statistical anisotropy in the map (due to e.g. sky masking and noise anisotropy). This mean field

(MF) bias, 〈φ̂〉MC, is subtracted from the lensing estimator φ̂. The unbiased, and unnormalized,

QE is then converted to the convergence estimator

κ̂L ≡
(
φ̂L − 〈φ̂L〉MC

)
× 2
L(L+ 1) . (3.33)

This is then filtered using the effective patch-approximated response Rκ
eff, the reconstruction noise

Nκ
0,eff (see Chapter 2) and a fiducial κ spectrum Cκκ

fid , to define

κ̂filt ≡ Cκκ
fid

(
Cκκ

fid +Nκ
0,eff

)−1
(Rκ

eff)
−1 κ̂. (3.34)

The QE is also normalized in this step using the effective response. This additional filtering is

specifically performed on the convergence (κ) map and not directly on φ̂ as the κ reconstruction is

approximately local in real space and has approximately white noise. The (noise biased) lensing

power spectrum is then obtained from the filtered κ maps,

C φ̂1φ̂2
L ≡ 4

fA,LnLL2(L+ 1)2

∑
` in L bin

κ̂filt
1,`

(
κ̂filt

2,`

)∗
,

(3.35)
5https://camb.info/.

https://camb.info/
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where nL is the number of modes on the flat sky assigned to lensing multipole L in our simulation

maps6 and

fA,L =
∑
p

fp

(
Rκ,pL
Rκ,fid
L

)2

(3.36)

is the required normalization for our analytic patch approximation estimator (see Chapter 2). fp

is the fraction of the map area in patch p. The MF is calculated twice, from two sets of 48

MC simulations. The subscripts of κ and φ in Eq. (3.35) indicate the MF set which was used

to debias each estimator. Each MF estimate has independent MC noise, so the lensing power

spectrum calculated from a pair of MF-subtracted QEs has no MC noise biases. We do not include

systematics in the MF simulations during the analysis, but we comment on this possibility in

Sec. 3.5.

Since the lensing power spectrum estimator is a 4-point correlation function, it has a

disconnected bias arising from the correlation of Gaussian fields, Nφφ
0,L. There is an additional

bias term, Nφφ
1,L, resulting from connected contractions that are not proportional to the lensing

spectrum at L. Both terms can be modelled analytically to correct the obtained lensing power

spectrum [144, 166], although calculating a realization-dependent Nφφ
0,L and a Nφφ

1,L term using

the patch approximation corrects the reconstruction biases more optimally. We subtract an

estimate of Nφφ
0,L from each power spectrum estimate, with the respective realization-dependent

estimate (RD)Nφφ
0,L obtained from a set of 480 MC simulations [98, 153],

(RD)N φ̂φ̂
0,L =

〈
−C φ̂φ̂L

[
X̄

MCφ1
1
, X̄

MCφ2
2
, X̄

MCφ2
2
, X̄

MCφ1
1

]
−C φ̂φ̂L

[
X̄

MCφ1
1
, X̄

MCφ2
2
, X̄

MCφ1
1
, X̄

MCφ2
2

]
+C φ̂φ̂L

[
X̄

MCφ1
1
, X̄dat, X̄dat, X̄MCφ1

1

]
+C φ̂φ̂L

[
X̄dat, X̄MCφ1

1
, X̄

MCφ1
1
, X̄dat

]
+C φ̂φ̂L

[
X̄dat, X̄MCφ1

1
, X̄dat, X̄MCφ1

1

]
+C φ̂φ̂L

[
X̄

MCφ1
1
, X̄dat, X̄MCφ1

1
, X̄dat

]〉
MCφ1

1 ,MCφ2
2

where X̄dat is the vector of our “data” simulations and the 1 and 2 subscripts refer to the matching

CMB and lensing potential realizations of a given MC simulation. Using the realization-dependent

debiasing term rather than a general MC Nφφ
0,L is crucial, as it automatically mitigates systematic

biases that arise entirely from small changes to the noise and CMB power spectra that enter the
6In a full-sky analysis, nL = 2L+ 1.
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disconnected bias. We show the differences between (RD)Nφφ
0,L from “data” simulations with and

without systematics in Sec. 3.4.2.

The debiased lensing power is then

ĈφφL ≡ C φ̂1φ̂2
L − (RD)N φ̂φ̂

0,L. (3.37)

We do not debias the reconstructed power using (MC)Nφφ
1,L as this term would vanish when

differencing power spectra with and without systematics (because our MC simulations are

systematics-free).

Lastly, all 10 power spectra from each set are averaged and compared to the averaged

systematics-free power spectrum to assess how the systematics affect the reconstructed CMB

lensing power spectrum. We perform temperature-only (T), polarization-only (P) and

minimum-variance (MV) temperature+polarization lensing reconstructions for each “data” set to

show how the systematics bias different estimators. The resulting systematic effects on lensing

reconstruction are shown and discussed in the following section.

3.4 SYSTEMATICS BIASES

3.4.1 CMB POWER SPECTRUM BIASES

We start by examining the effects of the systematics described in Sec. 3.2 on the temperature

and polarization power spectra C`. Apart from providing a good consistency check, these power

spectra can help us understand the nature of some of the induced lensing biases and hence suggest

possible mitigation techniques.

We first calculate the pseudo power spectra C̃`s of the flat-sky maps using the discrete 2D

Fourier components of the weighted temperature or polarization maps, a`,

C̃` ≡
1
n`b2`

∑
` in ` bin

a`a
∗
` , (3.38)

where n` is the number of modes on the flat sky assigned to the multipole ` in our simulation maps.

To obtain an unbiased estimate of C` we then deconvolve the effect of the sky mask using the

MASTER approach, using a pure estimator to avoid E/B mixing [92] in the polarization field as

implemented in the publicly available code NaMaster7 [236, 237] (for the lensing reconstruction,

our first optimal filtering step optimally suppresses E/B mixing variance as the filter includes the

7https://github.com/LSSTDESC/NaMaster

https://github.com/LSSTDESC/NaMaster
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Figure 3.11: The fractional differences between the T (red lines), E (blue lines) and B (purple lines) power spectra C` with and
without systematics in the multipole range 40 < ` < 3000. The bright to dark curve shades correspond to observation
times of 3, 6, 9 and 12 days respectively. Curves were smoothed with σ` = 5 to highlight the bias differences for different
observation times. For temperature, C` is mostly signal-dominated, while for the B-mode it is noise-dominated. Noise
becomes dominant for the E-mode spectrum at ` & 2000.

full noise and mask inhomogeneity, so no further E/B projection is required). The fractional

differences between C`s of maps with and without systematics are shown in Fig. 3.11. These

power spectra were computed from noise-free simulations in order to highlight the impact of the

systematics on the signal.

The fractional differences in the power spectra due to beam ellipticity, differential pointing, and

boresight pointing systematics have a similar shape to a beam transfer function, especially for the

temperature and E-mode spectra. The B-mode spectrum residual shapes for beam ellipticity and

differential pointing are affected by leakage from T and E, which are large relative to the B-mode

power amplitude, and causes them to have a somewhat different shape. In practice, the effects of

these systematics, combined with the scanning strategy, produce a modified smoothing to the map

which is not corrected by the CS beam transfer function b` used for constructing the power spectra

(in our beam-related systematic analyses, the reference beam window function does not account

for these beam-like effects, nor do we include any beam uncertainties in the analysis). For the
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beam ellipticity and differential pointing systematics, this bias stems from the leakage terms of

Eq. (3.11) which are coupled to b+. The increase of power observed at small scales induced by the

beam ellipticity systematic is consistent with the fact that an elliptical beam, whose axes are given

by Eq. (3.14), has effectively a smaller average width than a circular Gaussian beam of width σcs

(the average width of the elliptical beam is taken as√σminσmaj ).

The boresight pointing systematic smoothing stems from the nature of the systematic itself:

jitters during an observation run induce additional smoothing in the map. Fig. 3.11 also shows

the fractional differences for 3, 6, 9 and 12 days of observation. For these three systematics, the

biases remain relatively constant in time and do not average out. The beam ellipticity systematic

produces the smallest biases compared to the other systematics we simulate. The lensing bias

induced by these effective beam mismatches is largely corrected at the lensing reconstruction step

by (RD)N0,L, as we show in Sec. 3.5. Using a beam window function with an effective width

tailored to each of these systematics in the lensing reconstructing analysis should also mitigate

most of their biases that originate from differences in power (see Sec. 3.5).

The polarization angle biases are quite substantial for the polarization power spectra. These

biases are characterized well by the analytic approximations [215] for an effective constant angle

perturbation ∆ψ,

CẼẼ` = cos2 (2∆ψ)CEE` − sin2 (2∆ψ)CBB` ,

CB̃B̃` = sin2 (2∆ψ)CEE` + cos2 (2∆ψ)CBB` ,
(3.39)

where Ẽ and B̃ are the perturbed polarization modes. From these equations, we see that the large

CBB` bias is mostly the CEE` power spectrum, scaled by a constant which depends on an effective

polarization angle error, while the CEE` bias is an effective gain which also depends on this error,

as theB → E leakage term is sub-dominant. As the analytic approximations describe these biases

well for an effective ∆ψ despite each detector having a different polarization angle error, they may

be used to sufficiently mitigate these biases (see Sec. 3.5 for more details on this bias mitigation).

The incoherent gain drift biases evidently decrease with increased observation time. The power

spectra from the full 12 observation days have a negligible bias relative to the C` amplitudes for

temperature and polarization. For the coherent gain drift, however, more frequent gain calibrations

are required for the biases to average out, or a longer observation time that improves the overall

cross-linking. While a long-lasting coherent gain drift induces relatively significant biases, the

majority of this effect would be identified and mitigated during early stages of an experiment’s

data analysis prior to the lensing reconstruction. For example, it is possible to correct for this

bias during the map-making stage using the signal variations of bolometers inside the cryostat that
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are not coupled to the optical chain, as those are insensitive to the sky signal. Our estimates for

this systematic effect are therefore pessimistic. Both of these gain systematics have a relatively

constant amplitude effect on the spectra across the considered `-range, as expected from the mean

gain described in Subsec. 3.2.5.

For the calibration mismatch systematic biases, while these also decrease with longer

observation times, they continue to be significant for the polarization spectra after 12 observation

days. Expectedly, the temperature power spectrum biases are small, as they stem from P → T

leakage which is small compared to the temperature power amplitude. The T → P leakage,

however, is quite substantial, especially for the mid-`-range B-mode power spectrum. As the

B-mode spectrum is noise-dominated at ` > 1000, the large bias in that multipole range is not

very significant.

As seen in Fig. 3.11, crosstalk is the only systematic for which the temperature biases are higher

than the polarization biases. Excluding the in-pair leakage terms of Eq. (3.28) in both temperature

and polarization time streams results in a∼30% bias decrease. Since the overall leakage is already

quite negligible, we reconstruct the lensing potential from systematics which include the in-pair

leakage terms. As discussed in Subsec. 3.2.7, the temperature power spectrum bias is negative.

For our specifications the resulting polarization power spectra have additional power.

3.4.2 LENSING POWER BIASES

As there are various ways in which the lensing power can be used for constraining cosmological

observables, it is useful to show the significance of the systematics-induced lensing biases in

several ways. We first demonstrate how significant these biases are with respect to the lensing

power spectrum. The fractional differences between the averaged reconstructed lensing power

from simulations with and without systematics for T, P and MV reconstructions are shown in

Fig. 3.12.

All bias amplitudes are below the 5% level compared to the lensing power, with most under

0.5%. These levels are generally consistent with their expected values from the C`-level biases.

The main difference between the C` and the ĈφφL biases is in their shapes. Beam-like C` biases

appear as a bias on the φ power spectrum amplitude. This is expected to be roughly constant on

large scales, as the φ̂ estimator is normalized using biased fiducial CMB power spectra, so the

resulting ĈφφL have a different amplitude. Moreover, for beam-like systematics the MV

reconstruction biases appear to be bounded by the T and P biases. The most significant bias of

these cases comes from the boresight pointing systematic, which is at a 1% level for an MV
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(green squares) lensing reconstructions. The reconstruction noise dominates at L & 200 for T and P reconstructions,
and at L & 300 for MV reconstruction. The 13 bin widths are log-spaced between 10 and 1000.

reconstruction. As with the power spectra, the beam ellipticity biases on the reconstructed

lensing power spectra are negligible.

The polarization-only lensing reconstruction is most problematic in the presence of

unmitigated polarization angle errors. From our pessimistic probability distribution for ∆ψ, the

resulting amplitude of polarization-only lensing biases is up to ∼5% for L < 1000. MV

reconstruction benefits from the low P → T leakage, and the bias levels remain below ∼1.5%

for the same multipole range.
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The gain-related systematics biases are randomly scattered around zero with varying levels of

significance. As with the C`, the most prominent bias is that of the coherent gain drift. Its

temperature-only reconstructed power is ∼5% higher compared to the systematics-free

reconstructed power in the signal-dominant multipole range, although with a large uncertainty.

Its MV reconstruction bias is . 2.5%.

For crosstalk, while the reconstruction biases are consistently below 0.3%, the MV

reconstruction proves to be the least biased over the signal-dominated L-range. This is most

likely due to the opposite signs of the biases in T and P reconstructions, which seems to cancel in

the combined reconstruction.

The only systematics for which the MV biases are the smallest of the three are incoherent gain

drift, calibration mismatch and crosstalk.

Another way to quantify systematic-induced lensing biases is by performing a likelihood

analysis to estimate their detectability in the lensing spectrum. Although significance values

estimated from our 12-day scaled-noise simulations are not expected to correspond to what an

experiment with a realistic observing time would see, they provide a useful reference point. We

use the simplified log-likelihood

lnL = −
∑
Lbin

A2
(
Ĉφφ,syst
Lbin

− ĈφφLbin

)2

2σ2
ĈφφLbin

, (3.40)

where Ĉφφ,syst
Lbin

and ĈφφLbin
are the reconstructed lensing power spectra with and without systematic

effects, respectively, in a specific multipole bin Lbin. The parameter A is the amplitude parameter

for the bias with uncertainty σA, which quantifies how significant the bias is compared to the

reconstructed lensing power error bar σ
ĈφφLbin

. The second derivative of L with respect to A is the

inverse variance of A, σ−2
A , such that

σA =

∑
Lbin

(
Ĉφφ,syst
Lbin

− ĈφφLbin

)2

σ2
ĈφφLbin


− 1

2

. (3.41)

A constant bias for which σA < 1 will be detectable by more than 1σ, and vice versa. The values

of σ−1
A for the different systematics are shown in Table 3.1. For the study-case we considered,

the only systematic that can be detected by more than 1σ is the polarization angle systematic.

For this systematic, the unmitigated polarization-only bias detection level is the highest, however

including the temperature map in the analysis significantly reduces the bias significance. Only

the boresight pointing, coherent gain drift and polarization angle systematics produce biases with
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detection levels above 0.5σ. Unlike the polarization angle systematic, for coherent gain drift

the highest bias detection level occurs when using the temperature map alone to reconstruct the

lensing potential, while for polarization angle this is the case for only for the polarization-only

reconstruction.

For differential beam ellipticity, we found that the leakage reduced to significantly below the

detection level, mainly due to the number of bolometers used. An experiment with the same beam

width and only 10-100 detectors, or larger beam-width and similar number of detectors, would be

more affected by this systematic.

Apart from the polarization angle systematic, the biases resulting from our coherent gain drift

model also seem to be relatively problematic for SO and future CMB experiments. This is not the

case for the incoherent drift, mainly because scanning the sky repeatedly with a large number of

detectors, each of which has a different gain drift, helps to average out the effect. Performing gain

calibrations at shorter time intervals, or observing each sky area more times, may mitigate some

of the effect of coherent drifts. On the other hand, experiments using a scanning strategy with less

cross-linking may find a larger effect.

Systematics T P MV

Beam ellipticity 0.06 0.00 0.01

Differential pointing 0.27 0.09 0.28

Boresight pointing 0.52 0.20 0.52

Polarization angle 0.05 2.20 0.60

Incoherent gain drift 0.36 0.05 0.04

Coherent gain drift 0.56 0.28 0.64

Calibration mismatch 0.38 0.11 0.09

Crosstalk 0.11 0.06 0.03

Table 3.1: Detection significance of systematics biases with respect to the lensing power uncertainty for T, P and MV reconstructions.
The values in the table are calculated using Eq. (3.41). The values are color-coded from most significant biases (darker red)
to less significant (lighter red). The detection significance for the polarization-only reconstruction beam ellipticity bias is
∼1 × 10−3. Assuming that all the biases are independent, the combined bias is measured with a ∼0.9σ significance for
MV and T reconstructions.

Our chosen parameters for modelling the calibration mismatch are relatively pessimistic, as

most CMB experiment have a lower gain uncertainty. While this systematic can potentially be a

problem, it is evident that for our specifications, especially the number of detectors and scanning
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strategy, even this pessimistic case does not affect our reconstructed lensing power spectra in an

important way. Decreasing the gain uncertainties by a factor of 10 to ≈ 1% compared to the

baseline case shown here would lead to CφφL -level biases lower than ∼0.1% for all three

reconstruction setups and detection levels of 0.18 (T), 0.01 (P), and 0.03 (MV). A moderate

improvement compared to the pessimistic case we assumed should thus already be sufficient to

mitigate this bias to an acceptable level, although a more realistic scanning time may also be

sufficient.

Our crosstalk simulations use realistic but relatively pessimistic parameters. Excluding in-pair

leakage terms, which can be usually corrected when performing in-pair gain calibrations, reduces

the C` bias levels by 30%. Optimizing the frequency spacing of the different bolometers can

also be achieved to establish lower leakage levels. Since the overall bias levels we show are very

low, we did not perform further optimization to our crosstalk modelling. Increasing the crosstalk

leakage coefficient distribution’s mean and width by a factor of 10, theC` bias levels also increased

by a factor of 10, although the significance stays below ∼1σ. This suggests that controlling the

crosstalk leakage levels to about−0.3% is sufficient for the purpose of lensing reconstruction. This

crosstalk level is higher than the expected performance of future-generation instruments based on

µMUX technologies. We therefore conclude that crosstalk is not expected to become a major

systematic for lensing. Moreover, since crosstalk is constant in time (as it mainly depends on the

wiring of the electronics), it should be possible to account for its potential biases, at least partly, in

the simulations used to evaluate the mean field of the quadratic estimator if needed (see Sec. 3.5

for more details). For the most extreme scenarios, the crosstalk leakage matrix can be estimated

from dedicated calibration data and used to correct for its effect at the time-stream level prior to

the map-making step, but at the cost of inducing correlated noise [238].

The last thing we consider for characterizing systematics-induced lensing biases relates to the

lensing curl signal. The CMB photon deflection field d is a vector field defined on the sphere,

and as such it can be written as a combination of a gradient and a curl-like mode, d = ∇φ +

?∇Ω, where φ is the lensing potential and Ω the curl potential8. In addition to biases in the

lensing potential power spectrum, we also tested whether instrumental systematics produce a non-

zero lensing curl signal. While cosmological curl signal is already expected to be non-zero from

second-order lensing effects [161, 239–241], these would remain undetectable in the curl power

spectrum for the foreseeable future. As for the lensing potential, the lensing curl mode can also

be reconstructed using the quadratic estimators [242]. We use a pipeline analogous to the one

described in Sec. 3.3 for φ, but using the lensing response functions relevant to Ω. We found that
8We recall that in two dimensions and in the flat sky approximation ?êx = êy and ?êy = −êx.
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Figure 3.13: Top: The lensing curl signal induced by the polarization angle systematic for a polarization-only reconstruction. For
setup A (∆ψ ∈ N(−1.1◦, 0.5◦), blue line), this signal is detectable by just over 2σ at L . 50. For setup B (∆ψ ∈
N(−0.5◦, 2.0◦), red line), this signal has . 1σ detection level for L > 40. The polarization angle shift of setup
A was used as a baseline in the lensing biases analysis. Bottom: CẼB̃` power spectra of one simulation induced by a
miscalibration of the polarization angles of the detectors for setup A (blue) and setup B (red). The darker solid lines for
each power spectrum show the power spectra corresponding to the best-fit value of ∆ψ obtained by fitting the analytic
approximation of Eq. (3.44) to the simulated CẼB̃` and assuming the theoretical E and B power spectra expected from
the underlying cosmological model. The recovered effective values of ∆ψ for each fit deviate from the mean of the input
error by up to ∼6%.
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the only systematic which produces a significant non-zero lensing curl signal is the polarization

angle miscalibration. The resulting curl signal, shown in Fig. 3.13, manifests more significantly

at large scales, for L . 50. When the polarization angle perturbations are drawn from the less

pessimistic distribution of setup B, this signal is less prominent and remains below detection levels.

This suggests that having a non-zero curl signal could be a useful tool for diagnosing problems

with the calibration of polarization angles.

3.5 MITIGATION TECHNIQUES

Systematics mitigation can generally be performed at different levels, from instrument planning

through data collection to the final analysis stage. In this section, we focus on mitigation

techniques performed at the analysis stage. This is mainly motivated by the results of our work,

which demonstrate that our realistic and conservative assumptions on instrument specifications

already yield relatively small bias levels.

Before discussing analysis-level mitigation techniques, we first briefly discuss how an

experiment’s scanning strategy affects systematic biases. Some systematic biases are

automatically mitigated by scanning the same region of the sky from different directions. Each

time a given sky pixel is observed by a different detector pair, the final map value in the pixel is

less sensitive to systematic variations between detectors (as well as a reduced instrument

white-noise level). Observing the same sky area with the same detector pair also contributes

toward mitigation, as a given detector pair may also have systematics that vary randomly in time.

This is important when an experiment plans its scanning strategy, as there is a trade-off between

repeated observation of specific areas in a given time frame, and using the same given time frame

to scan more areas of the sky at the expense of reduced cross-linking.

In our simulations, we modelled observations over a relatively small sky patch, within which

most CESs had some overlapping region. For the systematics that do not depend on properties of

the instrument that are constant in time, we found that the process of repeated observation over

the same area reduces most of the biases in the CMB maps and power spectra, which in turn also

reduces the biases on the lensing reconstruction power. A scanning strategy can also be devised

to mitigate specific systematic biases. For example, differential pointing and differential gain

systematics can be mitigated by introducing a boresight rotation to the scanning strategy [201].

It may also be possible to mitigate differential pointing effects by knowing analytically how the

scanning strategy couples to the pointing signal [243]. To avoid experiment-specific conclusions,

in this work we adopted the most conservative approach and did not try to implement scans that
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are optimized to mitigate systematic effects (as done for several instruments); most of the biases

we find are in any case only of marginal importance. Below, we also show that the differential

pointing and polarization angle biases can be mitigated also at the analysis stage. Mitigation at

the analysis stage may be more generally applicable, as it does not depend strongly on a given

experiment’s scanning strategy or other specifications.

As for mitigating systematic biases at the analysis stage, we first discuss techniques that are

potentially helpful at the map-making level. Solving Eq. (3.2) can be done more optimally by

including deprojection terms in the signal vector, or by employing filters to mitigate unwanted

signal contaminants. In our efforts to mitigate some of the gain drift biases, we tried using a

simple deprojection technique to solve for an additional gain which contaminates the polarization

maps [222], but depends only on the sky pointing. This is done by solving for an additional sky

component G which enters the polarization time stream as

d− = G+Q cos (2ψ) + U sin (2ψ) . (3.42)

Our simulated gain variation is not constant in time, so this deprojection model did not mitigate

any of the biases we observe. Using different deprojection methods, such as those using template

fitting [244] or solving for additional degrees of freedom that mimic leakages that depend on

cos (2ψ) and sin (2ψ) may help mitigating gain or beam-related biases [243], at the cost of an

increased noise in the final map.

Mitigating systematic biases on the lensing power spectrum specifically can also be achieved

by calculating cross-spectra. Reconstructing the lensing potential using different pairs of maps

from different observation runs, frequencies, detector-pair sets, or other data splits, and using

these to calculate cross-power spectra, could help in averaging out systematic effects, as each

map is affected differently by random systematics and the size of the connected bias terms may

be substantially reduced [245]. The resulting power spectrum might be less affected by the

systematics, but its uncertainty is likely to increase due to the estimator being less optimal, as

well as potentially more issues with missing pixels and other issues affecting map-making using

less data.

The lensing reconstruction analysis could also adopt some mitigation techniques. Due to the

strong dependency of a lensing reconstruction analysis on the experiment forward modelling

through MC simulations, the most direct way of mitigating most biases is by modelling the

systematics in the MC simulations used to obtain the debiasing terms, namely MF, (RD)Nφφ
0,L and

(MC)Nφφ
1,L. In our analysis, the only similarities between the MC and “data” simulation sets are the

instrument specifications and scanning strategy. Investing resources into more precise modelling
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of systematics in the MC simulations could reduce their impact on the lensing reconstruction if

they are partly simulated. However, not all systematics can be accurately simulated, and some

parameter uncertainty in the systematic modelling would not mitigate lensing reconstructions

biases entirely. Since the detection level of the systematics-induced lensing biases shown in this

work are already low, we do not explore this method of mitigation. We do, however, compare

between the MF debiasing terms with and without systematics to understand if any

systematics-induced biases may be mitigated by including systematics in the MF simulations.

Including systematics in the MC simulations will only give a non-zero contribution to the

mean field in specific cases, e.g. where the amplitude of the noise mean field is affected by

systematics, or where systematics-inducing parameters are known (e.g. the actual beam

ellipticities or the crosstalk scheme). Systematics leading to a specific spatial pattern that

depends on the specific actual realization or time variation of random variables would average to

zero if only random realizations can be simulated. To test whether modelling randomized

systematic effects in the MF simulations might help, we use random variables with the same

parameter distributions as with the “data” sets. The fractional differences between the cross-MF

power spectra CMF1MF2
L with and without systematics and the lensing power spectrum are shown

in Fig. 3.14. The resulting biases are all consistent with zero, meaning that including a level of

variance in the systematics modelling in the MF simulations may not improve the lensing

reconstruction. Planck showed that for their specifications (e.g. beam size and scanning strategy)

the known beam ellipticity was also negligible when calculating the MF [246] over the multipole

range we consider. We have shown that systematic effects from the narrow beams that we

considered are relatively negligible for lensing reconstruction, so we do not attempt to model

them in the MF simulations. The polarization angle and coherent gain drift systematics are more

important, but including these systematic effects in the MF simulations with parameter

uncertainties similar to those used in the “data” simulations did not result in bias mitigation. We

did, however, find that including the polarization angle systematic in the MF simulations when

reconstructing the curl lensing signal successfully mitigated the signal to undetectable levels.

The other debiasing term, (RD)Nφφ
0,L, already responds to the “data” CMB power spectrum

amplitude and shape, and mitigates (to leading order) some of the biases that affect the connected

reconstruction noise. The fractional differences between (RD)Nφφ
0,L for a given realization for

“data” simulations with and without systematics are shown in Fig. 3.15. The calibration

mismatch systematic bias is largely mitigated by the (RD)Nφφ
0,L subtraction, especially for

polarization-only reconstruction; its lensing power spectrum-level biases are less than 0.5% of

the lensing power spectrum amplitude while its (RD)Nφφ
0,L amplitude is about 1% higher than the
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Figure 3.14: The fractional differences between ∆CMF1MF2
L and Cφφ,theory

L . ∆CMF1MF2
L is the difference between the MF

cross-spectra calculated using simulations with and without systematics for T (purple circles), P (pink triangles), and
MV (green squares) lensing reconstructions.

systematic-free (RD)Nφφ
0,L amplitude. The (RD)Nφφ

0,L amplitude is also affected by the biases of the

other systematics, however their lensing spectrum biases remain large compared to the

systematics-free spectrum. The largest (RD)Nφφ
0,L amplitude deviation results from the polarization

angle and coherent gain drift systematics. While the use of this debiasing term does help with

decreasing the lensing spectrum bias, it does not necessarily mitigate it to negligible significance

levels.
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Figure 3.15: The fractional differences between (RD)Nφφ
0,L with and without systematics for T (purple lines), P (pink), and MV (green

lines) lensing reconstructions for a given CMB+noise realization “data” simulation.

As an alternative to full modelling of systematic effects in the MC simulations, some biases

can be mitigated by using a different fiducial beam in the lensing reconstruction analysis. We

have shown in Subsec. 3.4.1 that the main beam ellipticity, differential pointing and boresight

pointing systematics biases appear as a change in the effective beam model. In practice, the beam

model is often determined by dedicated observations of point sources [212, 222, 238]. These

empirical measurements include the same observational systematics, so the effective beam model

determined from them should already mitigate some of the beam-like effects to some extent.
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To test how well an effective beam can mitigate the lensing systematics we, performed lensing

reconstructions which included an effective beam. We corrected our baseline Gaussian beam,

which has a width σFWHM, by a correction beam with width σcorr. The value of σcorr was obtained

from fitting the CTT` fractions with and without systematics to an effective circular Gaussian beam

model. The total width of the effective beam, σeff, is then given by

σ−2
eff ≡ σ

−2
FWHM + σ−2

corr. (3.43)

More generally, one could define an effective beam transfer function as a general function of `,

but using the simple Gaussian model already captures the main systematic effect.

Boresight pointing jitters are expected to be well captured by an effective beam. We find that

the correction determined from the power spectrum gives an effective beam correction σcorr that

matches the input pointing distribution width very well (13 arcseconds, matched to about 0.4%).

Applying this effective beam lowers the lensing bias detection levels to 0.06 (T), 0.001 (P), 0.07

(MV). The boresight pointing jitters are not correlated to the scan in the basic model we

considered, and do not depend on detector-level properties, which makes this effect simple to

mitigate. The main effect should be included automatically in beam measurements from point

sources. In more realistic cases, pointing errors might be correlated to the motion of the

telescope, or through systematic errors in the pointing solution that relate the recorded position of

the telescope encoder to the true sky position. Such correlations could introduce larger biases in

lensing reconstruction as they could mimic correlated shifts on the sky, however they are hard to

model and quantify in advance as they are highly instrument-dependent. A similar mitigation

strategy could, however, reduce the overall effect. An effective beam transfer function known to

at least 10-20% precision should be sufficient to mitigate the boresight pointing bias effectively.

Differential pointing produced an effective-beam like effect, but also T → P leakage. This

systematic is mainly due to distortions in the focal plane and in the telescope mirror, so the effect

is coupled to the scanning strategy and overall cross-linking of different pixels. Employing an

effective beam in this case can only partly mitigate the effect, since it would not correct T →

P leakage. The beam correction is also likely to be less well captured by point-source beam

measurements, since point source scans are usually different than the scanning strategy used for

CMB observations. If the leakage corrections can be constrained or measured well enough from

calibration observations, and they are relatively stable in time, it may be possible to propagate them

through simulations to define an effective transfer function that would mitigate most of the effect.

We found that by using the effective beam determined from the power spectra, the differential

pointing bias detection significance levels decrease to 0.03 (T), 0.02 (P) and 0.01 (MV). These
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residual detection levels are consistent with the biases expected from having only the leakage

terms involving b− of Eq. (3.11) that give rise to T ↔ P leakage in the data simulations. Using

an effective beam should therefore remove the majority of the differential pointing bias, as the

T ↔ P leakage biases are subdominant. The fitted correction width σcorr deviates from the mean

of the differential pointing distribution, 15 arcseconds, by about 12%.

The beam ellipticity bias mainly originates from the b+ leakage terms; removing the b+ terms

results in biases which are ∼2 orders of magnitude smaller, so the majority of this bias is also

corrected by an effective beam. Measurements of the beam transfer function from calibration

observations should be sufficient to capture the majority of the ellipticity systematic and correct

for it. However, there may be some deviations between the “true” and measured beam shapes due

to the coupling to the scanning strategy.

To assess how accurately the effective beam needs to be known, we used a beam correction

width reduced by a factor of 2 from the best value to correct for the differential pointing bias.

This lead to a reduction of the bias detection levels by about a factor of 2 compared to using no

effective beam. For boresight pointing, the effective beam is likely to be measured better than this,

as calibration observations are expected to estimate the correct beam shape for this systematic

quite well; however, our results suggest that even an approximate beam model may be sufficient

to substantially reduce the lensing biases.

The most common method for mitigating polarization angle systematics is by fitting the

resulting non-zero EB cross-spectrum to the analytical expression [215],

CẼB̃` = 1
2 sin (4∆ψ)

[
CEE` − CBB`

]
, (3.44)

where X̃ is a polarization field affected by the polarization angle systematic for a constant angle

shift ∆ψ. To test the effectiveness of this mitigation method, we fitted the resulting EB power

spectrum, shown in Fig. 3.13, to the analytic formula of Eq. (3.44) using the theoretical E and B

power spectra to obtain the effective angle ∆ψ, and used it to rotate the input Q and U maps for

the lensing analysis. Although this method approximates the systematic to be a global map-level

effect, while the systematic is in practice injected at the per-detector level, it corrects for most of

the effect and considerably mitigates both the lensing biases and the curl signal to undetectable

levels. After mitigation, the lensing bias detection levels reduce to 0.04σ (P) and 0.03σ (MV).

This mitigation does not affect the already-negligible bias detection levels for a temperature-only

reconstruction significantly. We note that this mitigation strategy makes assumptions on the

underlying cosmology, i.e. CẼB̃` = 0 in absence of systematics. This suggests that it could also

unwantedly remove any signals which are caused from other sources, such as cosmic
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birefringence. As this systematic produces a lensing curl signal, which could potentially also be

coupled with cosmic birefringence, it may be possible to include the curl signal as an additional

diagnostic tool to break the degeneracy between systematic-induced and cosmologically-induced

rotations.

Gain systematic effects can also be mitigated to some extent, following the common practice of

most CMB ground-based experiments, by cross-correlating the resulting maps with external data

sets such as the Planck maps [171, 247–249]. This calibration can help correct an overall mean

gain error, however position-dependent gain variations may still remain after this absolute gain

calibration.

In this work, we have we used QEs to assess the effect of instrumental systematics on the

lensing reconstruction. Other reconstruction methods could have different sensitivities to these

effects, and some may be able to mitigate systematic effects, at least partially. For example, one

could in theory produce a bias-hardened reconstruction which is less sensitive to various

systematic effects by construction [169]. Methods which avoid the need for reconstruction bias

subtraction [250] may also be less sensitive to instrumental systematics, as they do not need to

accurately model systematics that affect debiasing terms that are no longer needed. Performing a

lensing reconstruction from split data may also prove to be useful against systematics biases, as

different data points are affected differently by systematics (and uncorrelated instrument noise)

such that their effect on the lensing contractions may average out [245]. Nonetheless, the lensing

pipeline we used proved to perform well against these biases, as most of their effects could be

corrected directly by (RD)N0 subtraction, by implementing an effective beam in the lensing

analysis, or by rotating the polarization maps prior to the lensing analysis.

3.6 CONCLUSIONS AND FUTURE PROSPECTS

In this work, we explored how various instrumental systematics affect the lensing reconstruction

power spectrum. We reconstructed the lensing potential from CMB simulations that include

realistic levels of contamination due to different instrumental systematics expected for an SO-like

instrument, and assessed the significance of the resulting biases. We showed that for the

instrument specifications and scanning strategy we used, most of the systematics we considered

will have a relatively small effect on lensing reconstruction for upcoming CMB experiments,

with significance levels of up to 0.5σ, apart from the boresight pointing, polarization angle and

coherent gain drift systematics, which produce biases with > 0.5σ significance levels when left

unmitigated. We also investigated whether these instrumental systematics produce a lensing curl
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signal, and found that when not calibrating for polarization angle errors the signal can be

detectable. All of the significance levels we have presented in this work might be somewhat

different for a full observation run, especially for gain drifts and calibration mismatch where the

biases average out with time. Systematics that appear in the maps’ power spectra as an effective

beam are also likely to be substantially mitigated once the beam is empirically calibrated.

Future CMB experiments, such as CMB-S4, which will produce CMB maps with even lower

instrument noise, may be more sensitive to these systematics, as their lensing reconstruction

noise level is expected to be even lower. A more accurate quantitative assessment of the impact

of instrumental systematics on lensing reconstruction for a given experiment depends on the

details of its scanning strategy, focal plane configuration and instrument properties. These can

only be characterized in their full complexity during the observational campaign. As such, the

absolute value of the systematics we explored may differ from the results presented in this work.

Nonetheless, our results are a useful guide toward identifying the most relevant potential

problems and planning the lensing analysis for upcoming ground-based CMB experiments.

Throughout this work we made various simplifications and assumptions, which should be

investigated more carefully in the future. Modelling multi-frequency bolometers would allow for

a more robust estimator, with some handle on frequency-dependent systematics and foregrounds.

However, having more than one band potentially increases the range of possible systematics, and

some small systematics could become relatively more important due to the process of foreground

cleaning. We also neglected any foreground residuals in the post-cleaning CMB maps and any

systematics that may couple to bright foreground emission. Another effect which may be crucial

for upcoming ground-based CMB experiments is correlated noise. When observing the sky from

the ground, the resulting time streams are contaminated by atmospheric emission. This could

have a significant impact on the resulting CMB maps, which could then bias the lensing

reconstruction. Residuals from various correlated noise cleaning methods could also negatively

affect the lensing reconstruction. Additional filtering on the map level could improve the

reconstruction accuracy from correlated-noise-contaminated maps [170], however a full

optimization analysis for such methods has not yet been performed. Exploring systemically how

filtering affects lensing biases specifically would require implementing a more sophisticated

map-making method than the one we used here [251], and simulation tests would require realistic

atmospheric noise simulations [124].

Apart from modelling different systematics, testing how the biases change for different

scanning strategies could also be useful for planning optimal scans for future experiments. Many

instrumental systematics effects are mitigated when the same area of the sky is scanned multiple
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times from different angles during several observation runs. Since scanning more area of the sky

is also beneficial to reduce cosmic variance, performing an optimization analysis to understand

how this interplay affects systematics could be key for future CMB experiment planning.

Another important aspect of CMB lensing is the ability to delens CMB maps with high

precision. Systematics may affect a delensing analysis somewhat differently, and some may even

prove to be relatively more important for delensing rather than for the lensing power spectrum.

Performing a delensing analysis using CMB maps which include systematics would be the next

step toward a comprehensive investigation on the effects of systematics on lensing-related

analyses.

So far, our results show a promising future for lensing-related CMB cosmology. We have

demonstrated that most of the systematics we considered should be relatively negligible for an

SO-like experiment, especially when using many more detectors compared to our analysis and

observing more sky area and for longer times, or could be mitigated effectively. Within the

limitations of our work, we conclude that the upcoming generation of instruments such as SO

should be able to deliver the lensing science case they target.
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Improved lensing analysis estimates

using the Planck NPIPE maps
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Abstract

The reconstruction of the gravitational lensing potential from cosmic microwave

background radiation (CMB) observations is one of the main targets of past, current, and

future CMB experiments. An accurate reconstruction of the lensing field is important for

constraining inflationary physics via delensing, for learning more about the matter evolution

in the Universe, and for providing insights on neutrino mass. The most accurate lensing

measurements to date were produced by the Planck collaboration, who presented

minimum-variance lensing estimates across a large multipole range.

The Planck collaboration has recently released updated CMB maps using an improved

pipeline known as NPIPE, which, due to their lower noise levels, could provide more

accurate lensing estimates. In this work, we reconstruct the lensing potential using these

newly-available NPIPE maps using a similar method used by Planck in their 2018 lensing

analysis. We introduce a new filtering step to this pipeline, which approximates the

reconstruction noise as locally homogeneous to filter the lensing quadratic estimators. We

compare the lensing estimates of the lensing reconstruction pipeline with and without this

additional filtering step and use their respective likelihoods to estimate the lensing-related

cosmological parameter.

We show that the anisotropy of the Planck pixel noise variance is large enough that

applying the additional filtering step on the lensing quadratic estimators improves the lensing

power spectrum uncertainty by an additional 7% at L . 200. We also show that using the

new analysis method can improve the uncertainties of the estimated lensing-related

cosmological parameters by up to ∼16%. This work is the first demonstration of the

κ-filtering process on real CMB data, and the results we obtained could motivate the use of

our analysis method in future lensing reconstruction analyses.
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4.1 INTRODUCTION

In the last decade, one of the main experiments that provided new cosmological insights that

helped to shape our knowledge on the Universe was Planck. Planck’s full-sky observations enabled

a deep view into the CMB anisotropies, which allowed cosmologists to reconstruct the lensing

potential from CMB observations for a wide multipole range [123, 252].

Since the first Planck release, both the lensing reconstruction techniques and the map building

capabilities have improved. The first iteration of the Planck lensing analysis used the temperature

CMB map and homogeneous noise in the filters [123]. As more Planck measurements became

available, the Planck maps themselves also improved by having less intrinsic noise. The improved

polarization sensitivity specifically enabled the inclusion of the Planck polarization maps in the

lensing pipeline to achieve a minimum-variance (MV) reconstruction [98], and the more recent

lensing analysis of Planck also including the full map covariance in the filtering weights [100].

The collaboration’s foreground-cleaning and map-making pipelines have also been enhanced over

time [197, 253, 254]. The lensing reconstruction accuracy improved significantly through its

iterations, with current results agreeing with the theoretical ΛCDM lensing spectrum by 40σ.

In this work, we continue to explore the possible lensing reconstruction improvements that can

be made using the Planck data maps. We use a recent data release of the Planck temperature and

polarization maps made using the processing pipeline NPIPE (NERSC PIPEline1) [255], to

perform a joint temperature+polarization lensing reconstruction. These newly-available data

benefit from having less overall noise, which by itself allows for a more precise lensing

reconstruction. We use these new data as an opportunity to apply the latest Planck lensing

pipeline, which uses optimal filters, and compare its results to a similar reconstruction pipeline

which includes an additional κ-filtering step (see Chapter 2 for more details about this filter).

Previous work showed that adding this to a lensing reconstruction pipeline improves the lensing

uncertainties by up to ∼30 for a Simons Observatory-like experiment at L . 1000, however this

new method has not yet been used on data. Here, we will concentrate on the differences made by

including this additional step to show how the Planck lensing analysis benefits from it, both at the

level of the lensing power spectrum, and at the cosmological parameter estimation level.

This chapter is structured as follows. In Sec. 4.2 we describe the NPIPE data maps which are

used in the lensing reconstruction analyses. We briefly outline the two lensing reconstruction

methods used in this work in Sec. 4.3 and compare the results of the two methods on the lensing

power spectrum uncertainty and the parameter estimations from their respective likelihoods in
1The National Energy Research Scientific Computer Center (NERSC) is the high-performance computing facility which
hosts the machines on which this processing pipeline was developed and run.
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Sec. 4.4. Our findings are then summarised in Sec. 4.5. Throughout this work we consider a

Gaussian lensing field and work with the Planck best-fit ΛCDM parameters when producing

fiducial power spectra and CMB simulations.

4.2 THE NPIPE MAPS

In this work, we use one of the more recent Planck maps releases for lensing reconstruction.

These maps were made using Planck’s new processing pipeline NPIPE [255]2. It produces

calibrated CMB temperature and polarization maps which are combined from both the low- and

high-frequency instruments of Planck. Some of the main improvements of this pipeline

compared to the previous ones are:

1. Including additional measurements that were carried out during the instrument’s repointing

manoeuvres. These add up to having ∼8% more data in the final maps.

2. Applying a low-pass filter for the low-frequency instrument to reduce the amount of

uncorrelated noise in the differenced signal.

3. Estimating the detectors’ polarization parameters more accurately by integrating

information from the flight data.

Overall, the pipeline yields maps with 10% less noise and reduced level of systematic effects at all

angular scales compared to the third Planck data release.

For this work, the raw multi-frequency NPIPE maps were used to construct a

foreground-cleaned map by applying a cleaning pipeline that resembles the 2018 SMICA

(Spectral Matching Independent Component Analysis) method [68, 256–258]. The SMICA

process produces CMB maps by linearly combining the frequency channels measurements in

harmonic space with multipole-dependent weights for ` . 4000. The weights are optimised so

that the mismatch between modelled foreground templates and the auto- and cross-power spectra

of the frequency maps is minimised. This process is done independently for the temperature and

polarization maps. The resulting maps have an effective beam window function of 5 arcminutes.

The weights using in the cleaning process are the 2018 SMICA weights rescaled by the new noise

levels and effective transfer functions of each frequency channel of the NPIPE maps. The

required rescaling was estimated from cross-correlating the NPIPE maps with CMB simulations
2The temperature and polarization NPIPE maps are available at
https://lambda.gsfc.nasa.gov/product/planck/curr/planck_prod_irsa.cfm.

https://lambda.gsfc.nasa.gov/product/planck/curr/planck_prod_irsa.cfm
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that have similar features to those of the SMICA-cleaned maps from the 2018 analysis. The

resulting foreground-cleaned NPIPE maps, shown masked in Fig. 4.1, are the input data maps in

our lensing reconstruction pipeline. The mask used in this analysis is comprised of the mask used

in the latest Planck lensing analysis [100] and the latest released component separation

mask [68].

T

-462.622 420.636

Q

-76.5276 71.598

U

-72.905 86.0089

Figure 4.1: The masked foreground-cleaned temperature and polarization NPIPE maps we use in our lensing analyses. The mask is
comprised of the mask used in the 2018 Planck lensing analysis [100] and the latest released component separation mask
of Planck [68]. All of the curved-sky figures shown were made using the healpy [259] Python package.

4.3 LENSING ANALYSIS

In this work, we use two of the lensing methods that were described in Chapter 2, where we used

a flat-sky version of the analysis presented here. The main difference between these two cases

is the way in which the quadratic estimators (QEs) are calculated. We apply an optimal Wiener

filter (WF) to the input maps Xdat (for X ∈ {T,Q,U}) using similar procedures as described in

Chapter 2 (see also Appendix A.2),


TWF

EWF

BWF

 ≡ CfidT >Cov−1


T dat

Qdat + iUdat

Qdat − iUdat

 , (4.1)
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whereCfid is a set of fiducial lensed CMB spectra, T is the full transfer function from multipoles

to pixel-space (which also depends on the maps’ beam b), Cov ≡ T CfidT > +N is the pixel-

space covariance, and N is the pixel-space noise. As before, we invert Cov using a multigrid-

preconditioned conjugate-gradient search [148].

The filtered maps are then used to derive the spin-1 pixel-space unnormalized lensing

displacement estimate,

1d̂(n̂) = −
∑

s=0,±2
−sX

IVF(n̂)
[
ðsXWF

]
(n̂), (4.2)

where ðs are the spin-raising and lowering operators [260] such that

[
ð0X

WF
]

(n̂) ≡
∑
`m

√
`(`+ 1) TWF

`m 1Y`m(n̂),

[
ð−2X

WF
]

(n̂) ≡−
∑
`m

√
(`+ 1)(`− 1)

[
EWF
`m − iBWF

`m

]
−1Y`m(n̂),

[
ð+2X

WF
]

(n̂) ≡−
∑
`m

√
(`− 2)(`+ 3)

[
EWF
`m + iBWF

`m

]
+3Y`m(n̂),

(4.3)

and the inverse-variance-filtered (IVF) maps are defined as

XIVF(n̂) ≡
[
b>Cov−1Xdat

]
(n̂). (4.4)

The deflection estimate is then decomposed into the gradient ĝφLM and curl ĉφLM QEs,

±1d̂(n̂) ≡ ∓
∑
LM

(
ĝφLM ± iĉ

φ
LM√

L(L+ 1)

)
±1YLM (n̂), (4.5)

although here we only use the gradient term, as it contains the information on the lensing potential.

Once the QEs are obtained, we filter them using the methodology that was introduced in

Chapter 2. The unmasked regions of the sky are partitioned into 64 patches based on their relative

pixel noises. The number of patches was chosen such that the theoretical lensing power spectrum

variance of Eq. (2.28), which includes the contribution of κ-filtering, is converged. The noise

variance in each patch is approximated as homogeneous, which is the main requirement for this

filtering process. This partitioning scheme is used to construct an effective response map, Rκeff,

which is used to normalize the unnormalized and unfiltered QEs, and to obtain the effective

lensing reconstruction noise level of each patch, Nκ
0,eff, which is used in the filtering process. The

effective noise values are calculated from averaging the values of Nκ
0,L (the isotropic

reconstruction noise N0,L for κLM ≡ L(L + 1)φLM/2) over the multipole range 8 ≤ L ≤ 100.

In this multipole range the reconstruction noise is relatively white. The values for the response



IMPROVED LENSING ANALYSIS ESTIMATES USING THE PLANCK NPIPE MAPS 121

mapRκeff are obtained in a similar way from the response

RφφL = 1
2 (2L+ 1)

∑
`1

∑
`2

fXZ(`1, `2)FXZ(`1, `2), (4.6)

whereRκL = 4RφφL /[L(L+ 1)]2, `1 + `2 = L, and fX,Y and FXY are given in Table 1.2. Fig. 4.2

shows the reconstruction noise map which is used to filter the QEs, where we set Nκ
0,eff(x)−1 = 0

in masked areas. This filter is applied on the lensing convergence κ rather than the lensing potential

φ, as the κ reconstruction noise is approximately white and local in real-space, such that it is

uncorrelated between patches on large scales.

(N0, eff(x)) 1

0 1

Figure 4.2: The normalized inverse approximate lensing reconstruction noise
(
Nκκ

0,eff(x)
)−1

for an MV lensing reconstruction using
64 patches. The approximate effective white reconstruction noise in each patch is defined as the average value of the
isotropic Nκκ

0,L over the multipole range 8 ≤ L ≤ 100.

We define the κ-filtered estimator as

κ̂filt ≡ Cκκ
fid

(
Cκκ

fid +Nκ
0,eff

)−1
(Rκ

eff)
−1 ĝκ, (4.7)

where Cκκ
fid is the theory κ power spectrum, and the QE map ĝκ is defined, in harmonic space, as

ĝκLM ≡
(
ĝφLM − 〈ĝ

φ
LM 〉MC

)
× 2
L(L+ 1) . (4.8)

The inverse variance,
(
Cκκfid +Nκ

0,eff

)−1
, that is needed for this filtering step is calculated using the

same conjugate gradient method used for the inverse-variance of the CMB maps. We produce two

filtered QEs, where each one is unbiased using a different mean-field (MF) estimator 〈ĝφLM 〉MC.

We calculate the lensing power spectrum twice, once from the two unfiltered QEs, and once

from the two filtered κ estimators. For the unfiltered QEs, this power spectrum is

C
φ̂MF1 φ̂MF2
L ≡ 1

(2L+ 1)fsky

L∑
M=−L

φ̂MF1,LM φ̂
∗
MF1,LM , (4.9)
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such that the unbiased power spectrum is obtained:

ĈφφL ≡
(
C
φ̂MF1 φ̂MF2
L − (RD)Nφφ

0,L −
(MC)Nφφ

1,L

)
× fA,LAMC. (4.10)

Similar relations hold for κfilt. The analytic correction,

fA,L ≡
∑
p

fp(wpL)2, (4.11)

is required to unbias the power spectrum. It is the effective map area fraction (see [178] and

Chapter 2), which also corrects for the filtering weights,

wpL =
CκκL,fid

CκκL,fid +Nκ,p
0,eff

Rκ,pL
Rκ,peff

. (4.12)

The final applied multiplicative MC correction, AMC ≡ ĈκκL,MC/C
κκ,th
L , is obtained using the

reconstructed lensing power spectra of 480 MC simulations by calculating the ratio between the

resulting averaged power ĈκκL,MC and the theoretical power Cκκ,thL . This correction is expected

to correct for mode-mixing effects, and for calibration of the QE responses [100]. We also use

480 MC simulations to calculate the two MF estimates and (RD)N0,L (given in Eq. (3.37)), and 95

simulations for calculating (MC)N1,L (given in Eq. (2.11)).

The final unbiased power spectra are then binned using

ĈκκLb ≡

 Lb
max∑

L=Lb
min

BLb ĈκκL




Lb
max∑

L=Lb
min

BLbCκκL,fid

Lb
max∑

L=Lb
min

BLb
〈
ĈκκL

〉
MC

 . (4.13)

where the convergence power is defined as

ĈκκL ≡
[
L(L+ 1)

2

]2
ĈφφL . (4.14)

We use the same binning weights of Planck,

BL,b ≡
CκκLb,fidC

κκ
L,fidV

−1
L

Lb
max∑

L′=Lb
min

(
CκκL′,fid

)2
V −1
L′

, (4.15)
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where Lb are the binned multipoles,

Lb ≡

Lb
max∑

L=Lb
min

BL,bL

Lb
max∑

L=Lb
min

BL,b
, (4.16)

and

VL ≡
2
(
C κ̂κ̂L fA,LAMC

)2

(2L+ 1) fsky
(4.17)

is the reconstruction variance. The binning weights are defined such that the binned fiducial

spectrum at a given bin Lb is equal to the fiducial spectrum at L = Lb.

4.4 RESULTS

4.4.1 LENSING POWER SPECTRUM

We compare the reconstructed lensing power spectra obtained from the NPIPE maps with and

without κ-filtering. Figure 4.3 shows both power spectra for an MV reconstruction using the

NPIPE maps in the multipole range 8 ≤ L ≤ 400. This conservative binning scheme

concentrates on the multipoles where the signal-to-noise of the estimator is maximal [98, 100,

123]. The resulting band powers of the two power spectra do not differ significantly, although the

MC correction AMC, shown in the right panel of Fig. 4.4, do differ; the correction for the

κ-filtered case is slightly smaller in magnitude.

The main benefit from including the additional filtering step is having lower band power

uncertainties. The resulting uncertainties of both lensing reconstructions are given in Table. 4.1.

The uncertainties are lower for L . 200 by up to 7%, and only increase slightly compared to the

results of the original Planck analysis by up to 2.5% for 200 . L . 300. It may be possible to

further optimise the κ-filtering process to avoid the increased reconstruction uncertainties in the

latter multipole range. For example, by producing several κ-filtered estimators, where each

filtering is done using different noise levels, the combined estimator might be more optimal.

Since the benefit of κ-filtering is already quite significant at low-L, we do not try to optimise it

further in this work.

We also compare the uncertainty improvements with the theoretical prediction, which is shown

in Fig. 4.4. This figure compares the variances of lensing reconstructions with and without this

filtering step. The κ-filtering variances were calculated using the theoretical lensing power



IMPROVED LENSING ANALYSIS ESTIMATES USING THE PLANCK NPIPE MAPS 124

50 100 150 200 250 300 350 400
L

0.2

0.4

0.6

0.8

1.0

1.2

1.4

L2 (
L

+
1)

2 C
L

/(2
)

Opt. filt.
Opt. filt. + -filt.
Theory

Figure 4.3: The reconstructed lensing power spectra with (blue) and without (green) the κ-filtering using the Planck NPIPE data
maps. The multipole range shown is for 8 ≤ L ≤ 400, which is around the peak of the lensing power spectrum where
the reconstruction noise is minimal. The bins and errorbars are given in Table 4.1. The additional filtering step does not
change the bin means considerably. The power spectrum uncertainties were obtained from the lensing power spectrum
covariance, calculated using 480 MC simulations.

spectrum variance of Eq. (2.28). The variance improvement from analysing the NPIPE data

(green curve) is in good agreement with the theoretical expectations for an MV reconstruction

(dark purple curve). The theoretical improvement is also shown for temperature-only and

polarization-only reconstructions. It is evident that the noise-dominated polarization-only lensing

reconstruction could also benefit from this approximated filtering, slightly more than the MV

case, although this reconstruction would already have larger variance due to the high noise level.

The polarization-only analysis will be carried out in future work.
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Figure 4.4: Left: Fractional improvement in the theoretical binned variance of ĈφφL when using an additional κ-filtering step for
temperature-only (pink), polarization-only (purple) and MV (dark purple) reconstructions. The variances are obtained
analytically from the theoretical lensing power spectrum variance of Eq. (2.28) using an analytic patch approximation
with 64 patches, each with its own noise level, which is assumed to be homogeneous within a patch. The green curve is
the comparison between the variances obtained from the reconstruction made in this work using the NPIPE data. It is in
good agreement with the MV predictions.
Right: The required MC corrections for lensing reconstructions with (blue) and without (green) the κ-filtering step.
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σ
CφφL

L range Opt. filt. Opt. filt. + κ-filt.

8 - 40 0.119 0.111

41 - 84 0.060 0.057

85 - 129 0.043 0.041

130 - 174 0.037 0.037
175 - 219 0.035 0.035

220 - 264 0.039 0.040

265 - 309 0.041 0.042

310 - 354 0.040 0.040
355 - 400 0.040 0.040

Table 4.1: Lensing reconstruction uncertainties for analyses with and without κ-filtering. The values are colour-coded from higher
(darker green) to lower (lighter green) improvements. As expected from the theoretical variance predictions (shown in
Fig. 4.4), most of the benefit from the κ-filtering procedure is for bins atL . 200, while a few bins around 200 . L . 300
show a slightly better uncertainty without this procedure. The reconstruction values are shown in Fig. 4.3.

4.4.2 COSMOLOGICAL PARAMETER ESTIMATION

Apart from demonstrating the improvements on the lensing reconstruction uncertainty, we also

show how the cosmological parameter estimation benefits from the increased large-scale lensing

reconstruction accuracy. We calculate the likelihoods of the obtained power spectra and use them

to estimate the cosmological parameters of the ΛCDM model using the Markov Chain Monte

Carlo sampling method (see Appendix A.3 for details) with Cobaya3 [261]. The resulting

samples are then analysed using GetDist4 [262].

We follow the Planck lensing analyses of Refs. [98, 100] to demonstrate the improvements

from the additional filtering step by using lensing-only likelihoods, and also a joint constraint

which includes information from baryonic acoustic oscillation (BAO) measurements. Adding

BAO likelihoods tightens the constraints on most of the parameters relevant for lensing,

especially H0 due to its strong dependency on redshift. These tight constraints on H0 helps to

breaks the σ8-Ωm degeneracy such that these parameters could be estimated individually. The

BAO likelihoods are adopted from the results of the 6dF Galaxy Survey [263], and the Baryon

Oscillation Spectroscopic Survey (BOSS) [264, 265].

3Available at https://github.com/CobayaSampler/cobaya.
4Available at https://github.com/cmbant/getdist.

https://github.com/CobayaSampler/cobaya
https://github.com/cmbant/getdist
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We calculate the likelihood of the lensing power spectrum Lφ using the same binning scheme

of Eq. 4.15,

−2 ln (Lφ) = BLi
(
ĈφφL − C

φφ,th
L

) [
Σ−1

]ij
BL′j

(
ĈφφL′ − C

φφ,th
L′

)
, (4.18)

where i and j are bin indices, and Σ is the covariance matrix. To use this likelihood for sampling,

both Cφφ,thL and ĈφφL need to be evaluated using different parameter values. Since reconstructing

ĈφφL multiple times using fiducial power spectra that are produced from different parameter

values is numerically very expensive, we can instead define Cφφ,thL to include an

approximately-linear correction which would include any deviation that ĈφφL might have from

different parameter values. As with the Planck lensing analyses [98, 100], the approximations we

use are:

1. Neglecting the dependency of (RD)Nφφ
0,L and the MF estimates on the sampled parameters:

These debiasing terms are by construction insensitive to leading order potential

discrepancies in the fiducial CMB power spectra, so we do not incorporate their

dependency on the fiducial spectra in the analysis.

2. Linearizing the dependency of the response functions and (MC)Nφφ
1,L on the CMB power

spectra: This considerably simplifies the likelihood calculation. Such linear correction is a

good approximation because the power spectra are already measured to percent-level

accuracy by Planck.

3. Assuming that the MC correction does not depend on the cosmology: The MC correction is

already very small (see left panel of Fig. 4.4), so correcting for its parameter dependency

should be negligible for the overall analysis.

These assumptions allow us to define Cφφ,thL more easily by considering only the dependencies of

the response RφφL and the debiasing term Nφφ
1,L on the sampled parameters. We therefore define it

to be

Cφφ,thL ≡
(
RφφL

∣∣
θ

RφφL
∣∣
fid

)2

CφφL
∣∣
θ

+Nφφ
1,L
∣∣
θ
−Nφφ

1,L
∣∣
fid, (4.19)

where θ are the parameters we estimate and the subscript fid refers to terms which are evaluated

using the fixed set of parameters (the Planck CMB best-fit estimates shown in Table 1.1). These

parameters are also used to calculate the CMB power spectra which are used in the construction

of the QEs. For small deviations from the fiducial model, we can Taylor-expand Eq. (4.19) around
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the fiducial values to get

Cφφ,thL ≈CφφL
∣∣
θ

+
d ln

[(
RφφL

)2
]

dCj`′

(
Cj`′
∣∣
θ
− Cj`′

∣∣
fid

)
CφφL

∣∣
fid

+MLL′,1
(
CφφL′

∣∣
θ
− CφφL′

∣∣
fid

)
+
dNφφ

1,L

dCj`′

(
Cj`′
∣∣
θ
− Cj`′

∣∣
fid

)
,

(4.20)

where the sums of index j are over all T , E, and B power spectra combinations, and MLL′,1 is

the approximated linear dependency of the analytic Nφφ
1,L on the lensing potential for fixed CMB

power spectra, which is pre-computed along with the other derivatives using the fiducial parameter

values.

As with Planck, we adopt several weak priors for constraining the parameters using the lensing

likelihoods. We fix the reionization optical depth to τ = 0.055, as the dependency of the lensing

deflections on reionization is very small and can be neglected. We put broad priors on the spectral

index using ns = 0.96±0.02 due to the weak dependency of the results on its value for a plausible

range. We put tight priors on the baryon density using Ωbh
2 = 0.0222 ± 0.0005 due to its very

accurate measurement from Big Bang nucleosynthesis models combined with quasar absorption-

line observations, which are independent of CMB measurements [266]. We also set a top-hat

prior for the reduced Hubble constant at range 0.4 < h < 1 to limit the extent of the parameter

degeneracy in a way which does not affect the results over the region of interest when adding BAO

constraints. Although these priors are biased towards results which are in agreement with ΛCDM,

we apply them to see the differences in parameter estimates from the two lensing analyses better

for comparison, which is the aim of this work.

We concentrate on comparing the estimator’s uncertainties specifically for the cosmological

parameters that are most relevant for CMB lensing. As CMB lensing directly depends on the

matter in the Universe, the CMB lensing likelihood especially helps to constrain the

matter-related parameters and their various couplings. The estimated parameter values for

lensing-only and lensing+BAO likelihoods are shown in Table 4.2. Most of the parameters we

estimated are slightly better constrained from the κ-filtering likelihoods. Specifically, the highest

improvement in uncertainty is for both Ωm and ΩΛ, whose uncertainties are ∼15.6% better using

the κ filter. Their identical uncertainty improvements, which also occurs in their lensing+BAO

estimates, are due to the relation of the two parameters, namely that Ωm,0 + ΩΛ,0 = 1. The main

parameter which is well-constrained from lensing alone, without the additional BAO likelihoods,
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is σ8Ω0.25
m [267]. Its uncertainty, however, improves only marginally by ∼2.8% with and without

the BAO likelihoods. Overall, the joint lensing+BAO analysis benefits slightly less from

κ-filtering. For this analysis, Ωch
2 sees the highest level of improvement in uncertainty of

∼8.2%, which is closely followed by Ωmh
2 with a ∼7.8% improvement. The Hubble constant

estimates are shown only for the joint lensing+BAO analysis, which constrains it better. Its

constraints with and without κ-filtering have an almost identical uncertainty, suggesting that the

contribution from the additional filtering step to its accuracy is minimal compared to the added

BAO likelihoods. Using the likelihoods with the κ-filtered QEs results in a reduced confidence

level for two parameters, σ8/h
0.5 by ∼2.3% for the lensing-only analysis, and Ωbh

2 by 0.2% for

the lensing+BAO analysis, however both reductions are very small compared to the benefits of

the other parameters.

Lensing-only Lensing+BAO

Parameter Opt . filt. Opt. filt. + κ-filt % Opt. filt. Opt. filt. + κ-filt %

Ωbh
2 0.022197± 0.000503 0.022215± 0.000500 0.6 0.022201± 0.000498 0.022204± 0.000499 -0.2

Ωch
2 0.1244+0.0105

−0.0131 0.1179+0.0100
−0.0118 7.6 0.1290+0.0100

−0.0123 0.12166+0.00968
−0.01080 8.2

H0 — — — 68.88+1.13
−1.29 68.30± 1.20 0.8

Ωm 0.3668+0.0601
−0.2190 0.3322+0.0435

−0.1920 15.6 0.3197+0.0155
−0.0175 0.3095± 0.0158 4.2

Ωmh
2 0.1473+0.0106

−0.0132 0.1408+0.0101
−0.0118 8.0 0.1519+0.0100

−0.0124 0.14451+0.00975
−0.01090 7.8

ΩΛ 0.633+0.2190
−0.0601 0.668+0.1920

−0.0435 15.6 0.6802+0.0175
−0.0155 0.6905± 0.0158 4.2

σ8 0.818+0.1430
−0.0758 0.820+0.1350

−0.0656 8.3 0.8277± 0.0171 0.8172± 0.0168 1.8

σ8/h
0.5 0.9898± 0.0195 0.9804+0.0212

−0.0187 -2.3 0.9974± 0.0180 0.9888± 0.0178 1.1

σ8Ω0.5
m 0.4659+0.0462

−0.0748 0.4454+0.0403
−0.0735 6.0 0.4680± 0.0178 0.4545± 0.0170 4.5

σ8Ω0.25
m 0.6128± 0.0181 0.6002± 0.0176 2.8 0.6223± 0.0172 0.6094± 0.0167 2.9

Table 4.2: The estimated parameters and their 68% confidence uncertainties using the optimal filtering and the optimal filtering+κ-
filtering lensing-only and lensing+BAO likelihoods. Only the main lensing-related parameters of the ΛCDM model are
presented. The colour-coded columns show the relative change in the uncertainties of the estimates between the two filtering
analyses, which range from high (darker green) to low (lighter green) improvements from using the κ-filtering process. The
red shading similarly indicates reduced uncertainties when including κ-filtering in the analysis. The lensing-only estimates
for H0 are not shown here, as this parameter is not well-constrained without redshift-dependent information. The Hubble
parameter is defined as h ≡ H0/(100 km sec−1 Mpc−1), whereH0 is the Hubble constant today. The dimensions of the
H0 values in the table are km sec−1 Mpc−1.

We also show how the mutual dependencies of the main cosmological parameters change for

each likelihood. These dependencies, from the lensing+BAO likelihoods, are shown in Fig. 4.5 for

H0, Ωm and σ8. The estimations from both reconstructions mostly overlap. They have almost the

same distributions, but with a different mean, as expected from Table 4.2. The additional filtering

step slightly shifts the confidence contours closer to the Planck 2018 analysis (pre-NPIPE) means,

which are indicated by the grey lines. The NPIPE-specific shifts that push the contours away
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from the mean for the baseline analysis (without κ-filtering) compared to the pre-NPIPE results

is currently not understood and will be explored in future work.
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Figure 4.5: The 68% confidence contours for the Hubble constant H0 (in km sec−1 Mpc−1), the matter density parameter Ωm and
σ8 using lensing+BAO likelihoods with (blue) and without (green) κ-filtering. The estimations using the κ-filtering
likelihoods are slightly more constrained and are closer to the cosmological parameters obtained from CMB alone.
The grey lines indicate the mean of the parameters from Planck’s most recent parameter estimation from the CMB
likelihoods [37].

4.5 CONCLUSIONS AND FUTURE WORK

Measuring the lensing potential with high precision from CMB measurements is one of the main

goals of current and future CMB experiments. In this work, we demonstrated a proof-of-concept

for how more precise lensing estimates can be achieved by filtering the QEs as a part of the lensing

reconstruction analysis. We demonstrated this using a recent release of the Planck CMB maps, and

found that the new lensing analysis step decreases the uncertainty of the lensing power spectrum by

up to ∼7% between 8 ≤ L ≤ 200 for Planck’s NPIPE maps. This improvement in uncertainty is

in good agreement with the predicted variance levels. We then used the reconstructed lensing band

powers to estimate the main cosmological parameters of the ΛCDM model which are relevant for

CMB lensing. The improved band power uncertainties propagate onto the parameter uncertainties,

which results in uncertainty improvements of up to ∼16% from the lensing-only analysis, and up

to ∼8% from the lensing+BAO likelihoods. The parameter estimations of future experiments

such as the Simons Observatory and CMB-S4 might benefit even more from filtering the QEs

in the lensing analysis, as following the analysis of Chapter 2 their expected lensing variance

improvement is much higher than the Planck variance.
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Since the benefit from κ-filtering depends on the amount of noise inhomogeneity and the noise

level of the CMB experiment, adding it to the lensing analyses of other experiments may not result

in large uncertainty improvements. The theoretical variance can be used as a first step to estimate

how beneficial κ-filtering would be for an experiment. Apart from implementing the κ filter as

we do in this work in future analyses, it may also be possible to further optimise it to achieve

somewhat better improvements. One possible way to optimise this filtering step is by changing

the range of multipoles over which the effective reconstruction noise of each patch is estimated.

Different patches may benefit more from higher or lower noise in the filter, and optimising the

noise chosen for each patch may also prevent the slight worsening of the variance we showed

across multipoles for which the patch approximation breaks down. It may also be possible to

optimise the filter weights for individual multipole ranges; by filtering the same map with different

effective noise values, it may be possible to construct a lensing power spectrum from combining

filtered estimates, each with an improved variance over a different multipole range. This way,

more multipoles would benefit from the filtering process and the variance may be consistently

better compared to the power spectrum estimates from unfiltered QEs. Although we have not

tried to optimise this method here, we expect further improvements would be less significant in

comparison to the overall benefits which we demonstrated. We leave the optimisation of the κ-

filter to future work.



CHAPTER 5

A method for detecting the CMB

Rayleigh scattering signal

MARK MIRMELSTEIN, ANTONY LEWIS, JULIEN PELOTON

Abstract

During and shortly after recombination, Rayleigh scattering of the cosmic microwave

background radiation (CMB) produced additional CMB anisotropies. Detecting these

Rayleigh scattering signals might be within reach of several upcoming CMB experiments.

Such a detection could allow better constraints on early universe physics and cosmological

parameters. In this work, we construct a method for detecting the Rayleigh signal from

individual frequency bands of CMB observations. The method involves cleaning the

individual frequency CMB maps and obtaining noise-reduced power spectra of both the

primary and Rayleigh-induced anisotropies to isolate the Rayleigh signal. The main limiting

factor to detect the Rayleigh scattering signal using our method is the residual foregrounds in

the cleaned maps. We demonstrate this pipeline using the multi-frequency Planck CMB

maps, and provide a forecast for the detection of this signal for a future CMB experiment

that resembles the capabilities of the upcoming Simons Observatory (SO). We show that an

SO-like experiment could detect the Rayleigh signal with a significance level of up to ∼5.8σ

when neglecting potential foreground residuals. Although detecting this signal is unlikely

with Planck, future experiments, such as liteBIRD and the proposed PRISM, COrE and

PICO, are expected to be sensitive enough for its detection. The method we present could be

used as a guideline for these collaborations to construct their Rayleigh scattering detection

pipeline.

131
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5.1 INTRODUCTION

About 380,000 years after the Big Bang, at a redshift z ≈ 1100, the temperature in the Universe

was sufficiently cold to enable electrons and protons to form neutral hydrogen atoms. This

process halted the continuous scattering of the photons from the free electrons, which enabled the

radiation, known as the cosmic microwave background (CMB) radiation, to travel almost freely

across the Universe. At that stage, most of the baryonic matter was in the form of neutral

hydrogen, which could also interact with the CMB photons in a process known as Rayleigh

scattering [268]. This frequency-dependent scattering of photons off of atoms is present in our

everyday lives; it is a contributing factor to the reason we see the sky as blue, and why dusty

windows are not as see-through as clean ones are [269]. The same scattering also affected the

newly-unbound photons in the early Universe. They ‘exited’ the surface of last scattering as an

almost perfect black body polarized radiation with some amount of anisotropies. Because some

of these photons will have scattered off of the newly-formed hydrogen atoms, the observed

anisotropies of the CMB are expected to have slightly lower power on small scales. Due to the

strong frequency-dependency of this effect, higher CMB frequencies are more likely to

experience Rayleigh scattering. Most of these scattering events occurred during a short time

period during and after recombination, while the expanding Universe had relatively high

hydrogen density.

The effects of Rayleigh scattering on the CMB photons were first thought to be large enough

to erase the primordial information in the observed CMB [270]. It was soon after shown that

these effects are actually much smaller [271]. Since then, several works in the literature have

characterised the effect of the Rayleigh scattering on CMB photons in great detail [272–274].

Other works have presented forecasts on the detection ability of the Rayleigh scattering for future

CMB experiments without considering the impact of foregrounds, and how it may be used to

improve cosmological parameters constraints [275–277].

Measuring this effect could have several implications for cosmology. Since we know this

effect should be present in the CMB anisotropies, it is important to model it accurately and

consistently for constraining cosmological parameters, cleaning foregrounds from and

performing component separation using CMB maps, and include it in any analyses which require

a more accurate description of the CMB anisotropies. As Rayleigh scattering occurred at a very

early stage in the evolution of the Universe, its detection might also provide new insights about

the early Universe and potentially help to constrain the expansion rate and ionization history

around recombination.

In this work, we develop an analysis pipeline aimed at the detection of the effect of Rayleigh
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scattering from CMB measurements at individual frequencies. We demonstrate the capabilities of

this pipeline using the multi-frequency Planck CMB maps. This is mainly motivated by the work

in Ref. [273], which suggests that it might be possible to detect the Rayleigh signal using Planck’s

353 GHz channel. As several upcoming CMB experiments are expected to be much more sensitive

to this signal compared to Planck, the method we show here can be adopted to construct a pipeline

for its detection from future multi-frequency CMB observations.

This chapter is structured as follows. In Sec. 5.2 we describe the physics of Rayleigh

scattering, and how it affects the CMB anisotropies and their power spectra. In Sec. 5.3 we

present our method for extracting the Rayleigh signal from CMB observations, and show the

results of applying it on the Planck CMB measurements. Lastly, we carry out an updated forecast

for the detection likelihood of the Rayleigh signal from the Planck maps, and forecast this

likelihood for an experiment similar to the upcoming Simons Observatory (SO) in Sec. 5.4. Our

conclusions and future prospects are discussed in Sec. 5.5. Throughout, we assume a Gaussian

unlensed CMB for CMB simulations, approximate the lensed CMB as Gaussian for the purpose

of likelihood analyses, and consider a fiducial ΛCDM model with parameter values similar to

those estimated by Planck [31] for generating CMB statistics.

5.2 RAYLEIGH SCATTERING AND THE CMB

The surface of last scattering is defined to have occurred at a specific time in which the CMB

photons underwent their last scattering off of free electrons. It occurred because the density of

the unbound electrons drops dramatically following recombination. Between then and now,

however, the CMB photons could have still experienced various scattering processes. The main

scattering they underwent following recombination was during reionization, when free electrons

fill the Universe once more. Both recombination and reionization scattering effects are known as

Thomson scattering, which is the scattering of radiation off of charged particles. The

cross-section of this scattering process only depends on the mass of the scattering particle, and

not on the frequency of the radiation. Following recombination, most of the baryonic matter in

the Universe was in the form of neutral hydrogen atoms, and these too could scatter the CMB

photons. This scattering, of radiation off of neutral atoms, is known as the Rayleigh scattering.

Although this effect is the dominant photon scattering process in the newly-neutral Universe, the

majority of the scattering events are very close to recombination. This is mainly due to the

expansion of the Universe, which decreases the density of neutral hydrogen, the main scattering

atom, as (1 + z)3, which sharply decreases the scattering probability. Moreover, the CMB
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frequencies decrease as (1 + z)−1 in the expanding Universe, which decreases this

frequency-dependent scattering probability even further.

Unlike Thomson scattering, Rayleigh scattering not only depends on the mass of the scattering

particle, but also on the photon’s frequency. The Rayleigh scattering cross-section is usually

expressed as [274]

σR(ν) = σT

 ∞∑
j=2

fj1
ν2

ν2
j1 − ν2

2

, (5.1)

where σT is the Thomson scattering cross-section, ν is the scattered photon’s frequency, and νj1

and fj1 are the Lyman series frequencies and oscillator strengths of electrons going from state j

to the ground state 1, respectively. Because the photon frequencies at recombination are much

smaller than the Lyman series frequencies1, Eq. (5.1) can be approximated as a series expansion

for νj1/ν � 1. The Rayleigh cross-section then becomes [273, 279]

σR(ν) ≈
(
ν

νeff

)4
[
1 +A2

(
ν

νeff

)2
+A4

(
ν

νeff

)4
+ . . .

]
σT , (5.2)

where νeff =
√

8/9 cR∞ ≈ 3.1× 106 GHz, R∞ is the Rydberg constant2, c is the speed of light,

and A2k are the expansion factors given in Ref. [279]3.

To express how Rayleigh scattering affects the CMB anisotropies we measure today, we need

to add the contribution of this effect to the evolution of the CMB anisotropies from

recombination until today. Previous works have shown that the effective contribution of this

effect can be expressed as Taylor-expansion terms similar to those of Eq. (5.2). Given a harmonic

decomposition of the, e.g., temperature anisotropies of the CMB at frequency νi,

∆T obs
νi (x)
T0,νi

=
∞∑
`=1

∑̀
m=−`

T`m,νiY`m(x), (5.3)

where T0,νi is the mean CMB temperature today, and Y`m are the spherical harmonics functions,

the effective harmonic space expansion terms can be written for a CMB field X ∈ {T,E,B} as

X`m,νi ≈ X`m +
∞∑
k=2

(
νi
ν0

)2k
∆X2k,`m,νi (5.4)

1At recombination, the CMB temperature is T re
CMB ≈ 0.25 eV, which provides a peak black-body frequency of

νCMB,re ≈ 1.7 × 105 GHz. The lowest Lyman series frequency is the Lyman-α frequency, ν21 ≈ 2.5 × 106

GHz [278] from state 2 to 1.
2The Rydberg constant, R∞ = mee

4

8ε2
0h

3c
≈ 10, 973, 731.6 m−1, expresses the maximal value of the wavenumber (the

inverse wavelength) of a photon that can be emitted from an atom with an infinite nuclear mass, where me is the
electron mass, e is the elementary charge, ε0 is the permittivity in vacuum, h is the Planck constant, and c is the speed
of light in vacuum [280].

3Their coefficients ck are related to A2k via A2k = ck (c0)−(1+k/2).
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where ν0 is some reference frequency, X`m is the frequency-independent primary CMB

anisotropy, and ∆X2k,`m,νi are the Rayleigh scattering contributions at frequency νi for the

frequency scaling with a power 2k. Using this expansion, we can estimate the effect of Rayleigh

scattering on the CMB power spectra for any two maps Xνi and Yνj ,

C
XνiYνj
` = 1

2`+ 1
∑̀
m=−`

X`m,νiY
∗
`m,νj

≈CXY` +
( 1
ν0

)4 [
ν4
jC

X∆Y4,νj
` + ν4

i C
∆X4,νiY
`

]
+
( 1
ν0

)6 [
ν6
jC

X∆Y6,νj
` + ν6

i C
∆X6,νiY
`

]
+
(
νiνj
ν2

0

)4
C

∆X4,νi∆Y4,νj
` + . . . .

(5.5)

While Rayleigh scattering affects both temperature and polarization CMB anisotropies, detection

levels for the Rayleigh signal using the TE power spectrum alone are expected to be about 4

times lower compared to detection levels using the TT power spectrum. The detection levels

decrease even further when using only the EE power spectrum [273]. The effects of foreground

were not included in these previous detection estimates. Adding foregrounds in detection analyses

could somewhat change the detection levels, as polarization maps are usually less contaminated

by foregrounds. Nonetheless, we will concentrate on using the CMB temperature maps alone for

detecting the Raleigh signal (such that X = Y = T above), although our methodology could be

easily expanded to include polarization measurements as well.

The different terms in Eq. (5.5) are split into three types:

1. Primary×Primary: The first term, CXX` , is the isolated CMB primary anisotropies, which

do not depend on Rayleigh scattering. To distinguish it, we shall later refer to it as CPP` .

2. Primary×Rayleigh: The second and third (and all other higher-order contributions of the

same type) are cross-spectra between the primary X and Rayleigh ∆X contributions,

CX∆X
` . We will concentrate on their detection, as these are expected to be the dominant

contributions from Rayleigh scattering to the full power spectrum. It will be later referred

to as CPR` .

3. Rayleigh×Rayleigh: Lastly, we have the terms which depend solely on Rayleigh scattering,

C∆X∆X
` . These are much more negligible, and we therefore do not try to detect them

directly. They will be referred to as CRR` .

All of these contributions to the temperature power spectrum are shown in Fig. 5.1 for Planck’s
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highest frequencies. The largest Rayleigh contributions come from the cross spectra of the primary

temperature signal with the Rayleigh contribution, especially for 545 and 857 GHz. In the Planck

analyses, these band powers were not cleaned for measuring the primary anisotropies. Instead,

they were used as templates for removing foregrounds from the lower-frequency maps.
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Figure 5.1: Comparison between the primary temperature anisotropies power spectrum CPP` (black line), the primary×Rayleigh
cross-power spectra CPR` (solid lines) and the Rayleigh auto-power spectra CRR` (dash-dot lines) for the high Planck
frequencies 143-857 GHz. The dotted lines show a rough estimate of the foreground-free noise levels for each frequency.
The values of the cross-power spectrum at ` . 50 are negative. Source: Lewis [273].

Throughout this chapter, we will demonstrate our method for measuring the Rayleigh

scattering signal from CMB maps using Planck’s single-frequency maps4. Due to the dependency

of Rayleigh scattering on the radiation frequency, it is necessary to use high-frequency CMB

observations for such endeavour. We use the Planck maps mainly because they are the most

versatile and suitable set of measurements for the task at hand. Future experiments, such as the

Lite (Light) satellite for the study of B-mode polarization and Inflation from cosmic background

Radiation Detection (liteBIRD) [136] and the proposed Cosmic Origins Explorer (COrE) [281],

Polarized Radiation Imaging and Spectroscopy Mission (PRISM) [282], and Probe of Inflation

and Cosmic Origins (PICO) [283], are expected to outperform Planck and measure the sky using

a larger variety of (high) frequencies, which would make them much more ideal for detecting the

Rayleigh signal. The detection method we develop here could be used by such experiments for

this purpose.
4All of the Planck data used in this work is available at http://pla.esac.esa.int/pla.

http://pla.esac.esa.int/pla
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5.3 METHODOLOGY

In this section, we show the method devised for detecting the Rayleigh scattering signature in the

CMB temperature power spectrum. The full methodology pipeline is summarised in Fig. 5.2. As

mentioned in the previous section, because this effect is already very small compared to the

primary anisotropies power, our aim is to detect its cross-correlation with the primary

anisotropies, CPR` , rather than its auto-correlation CRR` . We are also aiming at detecting it from a

single frequency map. Although this signal is most dominant at the 545 and 857 GHz Planck

bands, the maps at these high frequencies have the largest amount of foreground contamination,

which mainly comes from the thermal dust emissions in our galaxy (see reviews on the various

CMB foregrounds in Refs. [284, 285]). We therefore concentrate on the 353 GHz map to

calculate CPR` . The Rayleigh signal of this frequency is estimated to have the highest detection

likelihood as well, given the Planck instrumental noises [273]. For the “R” part of the

correlation, we need to use a foreground-cleaned 353 GHz temperature map, while for the “P ”

part we need a map which will be dominated by the primary CMB signal. Because the primary

CMB anisotropies also exist in the “R” map, we also need to calculate CPP` and use it to subtract

the primary contribution from the full power spectrum CTT` . Since the Rayleigh signal is

negligible at lower frequencies, we can calculate CPP` and CPR` using low-frequency maps.

Multi-frequency Planck sky maps

143HM1, 143HM2
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— Full-mission
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Figure 5.2: Summary of the methodology for isolating the Rayleigh scattering signal using the full- and half-mission multi-
frequency Planck CMB maps. The half-mission maps of the 143 GHz measurements are used as “Rayleigh-free” CMB
measurements to obtain a low-noise ĈPP` power spectrum to subtract the primary CMB signal from the “Rayleigh-rich”
Ĉ143×353
`

power spectrum.
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To understand how CPR` can be isolated from the full temperature power spectrum, let us

consider a general temperature measurement at a given pixel p. We can write down such

measurement at frequency ν as

T raw
ν (p) = (1 + gν)Bν(p) [P (p) +Rν(p) + fν(p)] + nν(p), (5.6)

where P is the primary CMB temperature anisotropy, Rν is the Rayleigh contribution to the

CMB anisotropy signal, fν is the total contribution of all foregrounds (e.g., thermal dust, point

sources, synchrotron radiation), and nν is the instrumental noise. Here, we also included two

instrumental effects: a gain deviation gν and a beam Bν . In this simplification, we neglect any

possible effects of other instrumental systematics, such as crosstalk, which could also affect the

temperature measurements. In this section, we neglect any possible gain deviations. The related

gain uncertainties will be reintroduced in Sec. 5.4 for our likelihood analyses. Throughout, we

neglect any uncertainties in the beams.

The angular power spectrum of two temperature maps at frequencies νi and νj can then be

written as

C
TνiTνj
` = 1

2`+ 1
∑̀
m=−`

T`m,νiT
∗
`m,νj

=CPP` + C
PRνi
` + C

PRνj
` + C

RνiRνj
` + C

fνifνj
` +N νiνj

` ,

(5.7)

where C
fνifνj
` is a contribution from foregrounds to the measured power spectrum, N νiνj

` is the

instrumental noise power spectrum, and we neglect any correlations between the CMB photons,

the foregrounds, and the instrumental noise. To good approximation, we can neglect any

correlations between instrumental noises at different frequencies, such that N νiνj
` = 0 for i 6= j.

This noise term also vanishes if the two correlated maps are of the same frequency but were

obtained from different observation time splits. If both νi, νj . 200 GHz, all terms which depend

on the Rayleigh signal are negligible compared to the other terms, such that they can be

neglected. Lastly, the contribution from foregrounds can be less significant when two different

frequencies are correlated, especially when correlating two foreground-cleaned maps.

We can then use two low-frequency half-mission (HM) maps for calculating CPP` , and two

full-mission (FM) maps at high and low frequencies that will produce the Rayleigh signal term

CPR` . Using the correlations of Planck temperature maps in 143 GHz and 353 GHz, we can then
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get

C
TFM

143 T
FM
353

` − CT
HM1
143 T

HM2
143

` ≈ CPP` + CPR353
` + C

f143FMf353FM
` −

(
CPP` + C

f143HM1
f143HM2

`

)
= CPR353

` + C
f143FMf353FM
` − C

f143HM1
f143HM2

` .

(5.8)

Instead of using the full- and half-missions at 143 GHz, we can also use even lower frequencies

for which the Rayleigh contribution is even smaller in order to fully subtract the primary

anisotropy contribution. The main reason for using the 143 GHz maps specifically is that at this

frequency the sky maps are already relatively clean of foregrounds, such that we can expect

C
f143HM1

f143HM2
` to be low. When correlating the 353 GHz map with the full-mission 143 GHz

map, we are effectively left with one Rayleigh-dependent power spectrum, CPR353
` . By using the

same “Rayleigh-free” frequency for estimating the two temperature power spectra, the surviving

foreground power spectrum terms would be somewhat correlated, such that their combined

contribution could be decreased due to their opposite signs. Instead of correlating a

“Rayleigh-free” map with a “Rayleigh-rich” map, we could also use another high frequency map

to have additional Rayleigh terms to improve detection possibilities. Since higher frequency

maps are more contaminated by foregrounds, such correlation may result in larger foreground

residuals, even if both maps are first cleaned from foregrounds. Eq. (5.8) shows that what limits

the detection of CPR353
` is the foreground correlations. The ability to clean individual frequency

maps from foregrounds is therefore very important for this analysis.

The contributions of Rayleigh scattering to the CMB temperature power spectrum relative to the

primary temperature power spectrum for different frequency combinations without any foreground

contamination are shown in Fig. 5.3, using

∆D`
D`
≡
DPP` −D

TνiTνj
`

DPP`
, (5.9)

where

D` ≡
`(`+ 1)

2π C`. (5.10)

These fractional differences are shown both from theoretical power spectra (dark green lines) and

from maps of Primary+Rayleigh CMB simulations (without instrumental noise or foregrounds).

The power spectra which include the effect of Rayleigh scattering on the CMB anisotropies were
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generated using the Rayleigh branch of the Boltzmann code CAMB5 [113]. Expectedly, the largest

contributions come from the auto- and cross-correlations with the 545 GHz map. While the

Rayleigh contributions would be even higher for correlations with the 875 GHz map, we do not

show them here as this map is exclusively used in the foreground cleaning process. Since the

Rayleigh signal from the 143×353 correlation is very small compared to the primary signal,

subtracting the primary contribution is essential for its detection. Below we describe the way in

which the individual frequency mas can be cleaned before estimating their correlations.
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Figure 5.3: The primary and Rayleigh scattering contributions to the total CMB temperature power spectrum for pairs of high
frequency Planck channels. The top right panel shows CPP` (black line) and the full TT power spectrum of each
frequency combination (coloured lines). The other panels show the fractional difference of Eq. 5.9. The dark green lines
were calculated from theoretical power spectra, while the other lines were obtained from primary+Rayleigh simulations
(with no instrumental noise or foregrounds) using Eq. (5.8).

5.3.1 CLEANING THE CMB MAPS

While there are many methods for cleaning CMB maps, most of them produce one cleaned map

which is composed of the CMB anisotropies from all frequency maps. One of the main cleaning

methods used by the Planck collaboration, for example, is the SMICA (Spectral Matching
5More information on CAMB can be found at http://camb.info/readme.html. The Rayleigh branch used in this work is
available at https://github.com/cmbant/CAMB/tree/rayleigh.

http://camb.info/readme.html
https://github.com/cmbant/CAMB/tree/rayleigh
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Independent Component Analysis) method [68, 256–258]. It was used to produce the CMB maps

shown in Fig. 1.2, have an effective smoothing similar to that of the 143 GHz channel. Since we

are interested in extracting Rayleigh information of a specific frequency, we need to use a method

which cleans the individual frequency maps. For this, we use one of the other cleaning methods

that were used by Planck, the SEVEM (Spectral Estimation Via Expectation Maximization)

method [258, 286–288]6. The main purpose of this method is to produce clean CMB maps of

each frequency using cleaning templates made by combining maps of other frequencies. As the

CMB anisotropies are not frequency-dependent, differencing two CMB maps of different

frequencies results in a CMB-free map. These maps can then be used as templates in the cleaning

process. While the templates can be constructed from external maps (i.e., from other

experiments), using internal maps might be best to avoid potential inconsistencies. One of the

main advantages of SEVEM is that no assumptions need to be made on the foregrounds or noise

levels in the maps for the cleaning process. Such assumptions could bias the cleaning process

which could increase overall uncertainties when using the cleaned maps.

For our methodology, we construct the cleaning template in a similar way. The templates are

constructed by differencing two maps of frequencies νa and νb to obtain foreground-dominated

maps. The cleaning process can be improved by smoothing the two maps so that they have a

common resolution prior to subtraction. For this, each map can be convolved with the beam of the

other map, which could minimise the CMB residues in the template. A template for cleaning map

of frequency νj using maps of frequencies νa and νb is then given by

Tνi,j(x) ≡
(
BνbT

raw
νa

)
(x)−

(
BνaT raw

νb

)
(x). (5.11)

The frequencies used for the templates are different than those used to calculate CPR` to avoid

unwanted correlations. As mentioned before, the higher frequency maps are usually used in the

templates due to their higher level of foregrounds. These maps can, however, add more

Rayleigh-depending terms in the resulting power spectra. Such contributions could be added to

the theoretical predictions for the expected Rayleigh signal.

Several of the templates that can be used to clean the Planck maps in our analysis are shown in

Fig. 5.4. Since we are interested specifically in the 353 GHz and 143 GHz maps, the templates are

constructed using all other frequency maps.
6More details are also available at
https://wiki.cosmos.esa.int/planckpla/index.php/CMB_and_astrophysical_component_maps#SEVEM_2.

https://wiki.cosmos.esa.int/planckpla/index.php/CMB_and_astrophysical_component_maps#SEVEM_2
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Figure 5.4: Example templates from subtracting Planck maps of different frequencies, as described in Eq. (5.11). By construction, the
templates do not have any primary CMB anisotropies, and are dominated by foregrounds. Although the spatial features
are relatively similar in all maps, the foreground contamination levels are very different.

A resulting cleaned map of frequency νi can be written as

T clean
νi (x) = T raw

νi (x)−
nt∑
j=1

ανi,jTνi,j(x) (5.12)

where T raw
νi (x) is the raw map of the same frequency, Tνi,j(x) is the jth cleaning template for

cleaning a map at frequency νi, nt is the number of templates. The ανi,j are template weights,

which are estimated by minimising the variance of the cleaned masked map,

χ2 =
∑
p

[(
T raw
νi (p)−

nt∑
j=1

αjTνi,j(p)
)
×Mask(p)

]2

(5.13)

∂χ2

∂αl
= 0 ⇒

∑
k 6=l

αk
∑
p
Tνi,l(p)Tνi,k(p) =

∑
p
Tνi,l(p)T raw

νi (p) (5.14)

where the sum is over pixels p of the map and template, and the applied mask acts as an effective

inverse variance. The sum over p in Eq. (5.14) is over the unmasked pixels. To estimate these

coefficients for Planck, the mask used is Planck’s confidence mask, which masks around ∼3% of

the sky, in combination with Planck’s point sources mask.

The Planck collaboration published SEVEM-cleaned 100, 143 and 217 GHz maps. Here we

repeat their cleaning procedure as a proof-of-concept and continue to clean the 353 and 545 GHz

maps for demonstrating the capabilities of this cleaning method and for attempting to extract the

Rayleigh signal from them. All of the cleaned maps are shown in Fig. 5.5. The lower frequency
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maps are in good agreement with the Planck cleaned maps; their masked power spectra are similar

by more than 95% across all multipole range. While some of the areas in the 353 GHz map do

possess CMB anisotropy features, both high frequency maps are still contaminated by foregrounds

more than the other maps.

  data 143GHz

-0.000460059 0.0424149

cleaned data 143GHz

-0.00323595 0.0343674

SEVEM map 143GHz

-0.00253235 0.00856324

data 217GHz

-0.000368632 0.12537

cleaned data 217GHz

-0.00417361 0.0533142

SEVEM map 217GHz

-0.00315619 0.0244792

data 353GHz

-2.73067e-05 0.89047

cleaned data 353GHz

-0.0698636 0.247564

SEVEM map 353GHz

-2.73067e-05 0.89047

data 545GHz

0.00458508 19.3218

cleaned data 545GHz

-1.08635 5.25624

SEVEM map 545GHz

0.00458508 19.3218

Figure 5.5: Comparison between the raw (left-most figure in each row) and cleaned Planck temperature maps of different frequencies.
The first two rows are for the 143 and 217 GHz frequencies, which Planck provided SEVEM-cleaned maps for. These
clean Planck maps are the right-most figure in these rows, shown for comparison with the results of our similar cleaning
implementation (the middle figure in these rows). The higher 353 and 545 GHz frequencies were not cleaned individually
by Planck. The colorbars are in Kelvin. For 143 and 217 GHz the maximal amplitudes of our cleaned maps are not exactly
as those of the Planck SEVEM maps. This might be due to the point sources inpainting procedure Planck performed in
their analysis. Instead of inpainting, we mask these regions when calculating the power spectra. The resulting power
spectra of the cleaned maps are consistent with those of the SEVEM maps.

The success of this cleaning procedure depends on several choices: Which frequency

combinations to use for making the templates, which template combinations to use to clean each

frequency map, how much of the map area should be masked for the minimisation process, and

which template smoothing level would produce the best cleaning results. These choices would be

different for each experiment, but they can easily be made by performing the cleaning procedure

using different choice combinations, as the cleaning process is very fast and not

numerically-expensive.
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5.3.2 POWER SPECTRUM ESTIMATES

The cleaned frequency maps are used to estimate the power spectra of Eq. (5.8) to obtain CPR353
` .

We use the 1st and 2nd half-mission maps at 143 GHz to calculate our “Rayleigh-free” power

spectrum, which will be subtracted from the cross-power of the 143 GHz and 353 GHz maps.

The power spectra are calculated from the masked maps. The masked applied in this stage covers

a larger area compared to the mask used to estimate the α coefficients in the cleaning process.

This is done so that areas dominated by foregrounds could help in the cleaning process, whereas

masking more areas to estimate the power spectra helps in reducing residual foregrounds. As

before, the mask used is a combination of several masks. Here, we combine the point source mask

with the galactic plane mask that masks 40% of the sky. We also include a custom-made mask

using the Planck full focal plane (FFP) foreground simulations7 [289], which include pixel-space

information from the measured thermal dust emissions. Specifically, we identified foreground-

dominated areas (pixels with exceptionally-high intensity) in the FFP8 143 GHz foreground map

and nullify their coordinates in the combined mask prior to apodization.

To avoid contaminating the power spectra with power leakage due to sharp transitions at the

boundary of the masks, they need to be apodized before they are applied to the maps.

Apodization smooths the spectral features of the mask and helps to produce a more accurate

power spectrum [178]. The total apodized mask we applied on the cleaned Planck maps is show

in Fig. 5.6. The total mask was apodized using an apodization scale of 30 arcmin.

Mask, fsky = 0.457

0 1

Figure 5.6: Our composite mask used to evaluate Ĉ
T

HM1
143 T

HM2
143

`
and Ĉ

TFM
143 T

FM
353

`
using the Planck data maps. The mask combines

the Planck galactic plane mask, which masks 40% of the sky, the 100 and 217 GHz Planck point source masks, and an
additional custom-made mask that masks areas with exceptionally-high intensity in the Planck FFP8 foreground map at
143 GHz. The mask is apodized with apodization length of 30 arcminutes to avoid power spectrum distortions.

7More information about the simulations can be found at https://wiki.cosmos.esa.int/planckpla2015/index.php/Simulation_data.

https://wiki.cosmos.esa.int/planckpla2015/index.php/Simulation_data
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The power spectra for each combination of masked and cleaned maps is obtained for each

frequency using the pseudo-C` method [89, 90, 236, 237, 290]. This method is used to recover

the power spectrum of maps that are partially masked, as then the number of modes m in each

multipole ` of the map is different compared to the full-sky modes. For this method, we first

estimate the pseudo-power spectrum of the masked maps using the same averaging of Eq. (5.7),

C̃
TνiTνj
` = 1

2`+ 1
∑̀
m=−`

Ť`m,νi Ť
∗
`m,νj , (5.15)

where Ť`m are the harmonic coefficients of the masked temperature map Ť (n̂) ≡ M(n̂)T (n̂).

While this is not the full temperature angular power spectrum, its ensemble average is related to

the true power spectrum estimate Ĉ` via [89, 90]

〈
C̃
TνiTνj
`

〉
=
∑
`′

M``′B2
`,νi×νjP

2
`

〈
Ĉ
TνiTνj
`′

〉
, (5.16)

where is the mixing matrix [291], B`,νi×νj is the cross- or auto-correlated beam window function

of the ith and jth frequencies8, and P` is the pixel transfer function that describes the smoothing

effect induced by the finite pixel size9. The mixing matrix,

M`1`2 = 2`2 + 1
4π

∑
`3

(2`3 + 1)W`3

(
`1 `2 `3
0 0 0

)2

(5.17)

relates the number of missing modes to the full-sky modes using the Wigner-3j symbols [292] and

the power spectrum of the mask,

W` = 1
2`+ 1

∑̀
m=−`

|M`m|2 , (5.18)

where

M`m =
∫
dΩn̂M(n̂)Y ∗`m(n̂) ≈ Ωpix

∑
p

M(p)Y ∗`m(p), (5.19)

is the harmonic decomposition of the mask M(n̂) and Ωpix is the angular pixel area10.

To obtain the full power spectrum estimator from the pseudo-power spectrum, we therefore
8The beam window functions for Planck can be found at https://irsa.ipac.caltech.edu/data/Planck/release_2/ancillary-
data/.

9This function is given by HEALPix and depends on the resolution of the map [176].
10A map with Npix pixels has an angular pixel area Ωpix = 4π/Npix.

https://irsa.ipac.caltech.edu/data/Planck/release_2/ancillary-data/
https://irsa.ipac.caltech.edu/data/Planck/release_2/ancillary-data/
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need to invert the mixing matrix and calculate

Ĉ
TνiTνj
` =

∑
`′

M−1
``′ C̃

TνiTνj
`′

B2
`,νi×νjP

2
`

. (5.20)

Using this method to obtain ĈT
HM1
143 T

HM2
143

` and ĈT
FM
143 T

FM
353

` from the Planck maps, our attempt at

extracting the CPR353
` component of Eq. (5.8) is shown in Fig. 5.7. The two power spectra prior

to subtraction are dominated by the primary CMB anisotropy and foregrounds. They both recover

the first ∼4 peaks of the temperature power spectrum, however foreground residuals dominate on

scales higher than ` ≈ 1500. The multipole range of the recovered peaks is also the multipole

range where CPR353
` , shown in the dark green line, is maximal. We show the (binned) subtraction

of the two power spectra when they are constructed from the raw maps (red points) and cleaned

maps (purple points). While the cleaning process brings the resulting power closer to the expected

signal around ` ≈ 250, the foreground residuals in maps are not sufficiently low to recover the

Rayleigh signal. We nonetheless expect that a similar method could be used successfully by

future CMB experiments with the guidelines discussed in our work if foregrounds can be removed

sufficiently well.

5.4 DETECTION LIKELIHOODS AND FORECASTS

We conclude this work by performing a likelihood analysis similar to that of Ref. [273] to assess

the detection levels of the Rayleigh signal using CMB observations at different frequencies. Here

we add to the analysis possible gain variations by marginalizing over realistic gain deviation

values, and also consider the effective instrumental noises which could contaminate the clean

maps due to the cleaning process. We perform the likelihood analysis for both Planck and the

upcoming Simons Observatory (SO) experiment [131], where the noise in the SO estimates does

not include the contribution from cleaning the maps, which was not attempted in this work.

Although SO will observe the sky in less and lower frequencies compared to Planck, the SO

measurements will have significantly lower noise levels and a higher resolution, which is our

motivation for performing this forecast analysis.

We use the Fisher matrix (see Appendix A.1 for more details) to estimate the detection

likelihoods of the Rayleigh signal. The Fisher matrix components for each multipole ` can be

written as

Fij,` = 2`+ 1
2 fskyTr

(
C−1
`

∂C`
∂θi

C−1
`

∂C`
∂θj

)
, (5.21)
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Figure 5.7: The final products of our pipeline to recover the temperature×Rayleigh cross-spectrum CPR353
`

(the theory spectrum

shown in green). The efforts to recover this power spectrum used Ĉ
T

HM1
143 T

HM2
143

`
(blue line) that was subtracted from

Ĉ
TFM

143 T
FM
353

`
(orange line). The black line is the theory CPP` . All of the maps used in the power spectrum estimates were

cleaned. The binned result of the subtraction described in Eq. 5.8 is shown given power spectra that were constructing
with the raw (red points) and cleaned (purple points; purple line is the unbinned result) temperature maps. Although
using the cleaned maps improved the attempts of recovering the Rayleigh signal, especially at ` . 1500, the result from
subtracting the two power spectra of the maps is still significantly contaminated by foregrounds. The closest data point
(around ` . 500) is more than a factor of 2 higher than the theoretical signal.

where fsky is the observed sky fraction of the experiment, and C` ≡ 〈T`mT ∗`m〉 is a matrix of

the CMB covariances. In our analysis, the parameter of interest is the amplitude of the Rayleigh

scattering-related terms in the covariances, θ1 ≡ R. We also consider the calibration uncertainty

of the experiment as a second parameter, θ2 ≡ gν , for marginalization. The covariance matrix of

frequency ν and the primary signal is then

C` =


(1 + gν)2

[
CPP` + 2RCPRν` +R2CRνRν`

]
+N`,ν (1 + gν)(1 + g0)

[
CPP` +RCPRν`

]
(1 + gν)(1 + g0)

[
CPP` +RCPRν`

]
(1 + g0)2CPP` +N`,0



≈


(1 + gν)2

[
CPP` + 2RCPRν`

]
+N`,ν (1 + gν)

[
CPP` +RCPRν`

]
(1 + gν)

[
CPP` +RCPRν`

]
CPP` +N`,0

 ,
(5.22)

where N`,0 is the noise of the reference black body (pure primary CMB anisotropies without the
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contribution of Rayleigh scattering) which is taken to be uncorrelated between frequencies, and

the black body gain calibration is assumed to be well known such that g0 = 0. We also neglect the

contribution of CRνRν` to simplify the computation, as it is much smaller compared to both CPRν`

and CPP` . The derivative of the covariance matrix with respect to R is then

∂C`
∂R
≈
(

2(1 + gν)2CPRν` (1 + gν)CPRν`

(1 + gν)CPRν` 0

)
, (5.23)

and with respect to gν

∂C`
∂gν

=

 2(1 + gν)
[
CPP` + 2RCPRν`

]
CPP` +RCPRν`

CPP` +RCPRν` 0

 . (5.24)

The process of cleaning the maps from foregrounds also adds additional noise to the cleaned

map, as the templates themselves have noise. We estimate the effective noise levels in the cleaned

maps by multiplying the white noise levels of each map with the respective α coefficients of the

cleaning process and the respective beams (see Eq. (5.11)). These effective noise levels of the

cleaned maps, which are shown in Fig. 5.8, are used as the noise estimates in our Planck forecast.

Although this noise addition can be substantial in the likelihood analysis, we expect it to not affect

the accuracy of our detection method, as these noise terms do not affect the cross-spectra estimates.
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Figure 5.8: Noise levels in the cleaned maps (solid lines) compared to the instrumental white noise (dashed lines) of the multi-
frequency Planck maps [293]. The cleaned 545 GHz has the highest amount of noise contamination from the templates,
while the cleaned 353 GHz, which is our main map in the analysis, has the minimal noise addition. The effective noise at
small scales converges to the instrument white noise due to the effective beams of the template maps. This convergence
happens at smaller angular scales for the lower frequencies.

Apart from considering the effective noise levels in the analysis, we also introduce a gain

uncertainty by marginalizing over the gain deviations using the gain variance σ2
gν . The

marginalized expression of the Rayleigh×Rayleigh component of the Fisher matrix is then given
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by

Fmarg
RR,ν =


[∑

`

(
F00,` F01,`

F10,` F11,` + 1
σ2
gν

)]−1 ∣∣∣∣∣
RR


−1

, (5.25)

which included the additional information on the calibration uncertainty σgν . The values for σgν

for Planck were taken from [293], and we set the mean gain deviation to be zero. The instrument

specifications for SO were chosen prior to any official SO publication, however they are consistent

with values which have been published for the SO large aperture telescope after the work in this

chapter was carried out [131]. The SO gain uncertainties are taken as 0.5% for all frequencies.

The resulting likelihood estimates for both experiments are known in Fig. 5.9. For Planck, the

previously forecasted detection level for the 353 GHz measurements,∼3.2σ, goes down to∼2.9σ

(shown in the legends of the figure) without including foreground contribution. This suggests

that optimising the cleaning method may still not be sufficient for a 3σ detection of the Rayleigh

signal. Although the SO frequencies are lower compared to the Planck frequencies, the expected

SO noise levels are substantially lower compared to Planck. Without considering the effects of

foreground residuals, the Rayleigh signal is forecasted for an SO-like experiment to be detectable

by 5.8σ and 4.1σ using the 220 GHz and 270 GHz channels, respectively. Because foregrounds

are the limiting factor of this detection, a more robust forecast is required to provide more realistic

detection levels. Nonetheless, these promising results encourage the efforts for constructing an

SO-specific Rayleigh detection pipeline along the lines of the methodology described in this work.

5.5 CONCLUSIONS AND FUTURE PROSPECTS

Rayleigh scattering affected the CMB during and shortly after recombination, and the resulting

changes in the CMB anisotropies can be modelled very accurately both analytically and

numerically. Detecting this signal could help to better constrain early universe physics due to its

dependency on the baryon density in the early Universe, and its consistent modelling could

improve foreground modelling for cleaning the CMB and for component separation analyses.

The aim of this work was to provide a guide for constructing pipelines for detecting the

Rayleigh signal using multi-frequency CMB observations. We demonstrated our methodology by

applying it on the available high-frequency Planck data maps. Although the Rayleigh signal was

not detected in the Planck maps using our pipeline, we forecast that it may be detectable using

high frequency measurements of the upcoming Simons Observatory experiment by up to ∼5.8σ.
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Figure 5.9: Fisher analysis results for detecting the effect of Rayleigh scattering on the CMB for a Planck-like experiment with cleaned
multi-frequency maps (left) and for a Simons Observatory-like experiment using approximated experiment sensitivities
(right). The instrument specifications used for SO were internal collaboration values prior to any official SO publications,
but are consistent with current published values for the SO large aperture telescope [131]. The gain uncertainty of both
experiments were marginalized. The gain uncertainty values for Planck were adopted from Ref. [293], while for SO we
assume 0.5% uncertainty for all frequencies. The legends show the statistical significance (Nσ) of the detection for each
frequency.

The method presented here is fairly simple and not computationally expensive, such that any

future CMB experiment that observes at high-enough frequencies could easily implement it

without the need for specific instrumentation requirements. Despite its simplicity, it can be

improved and tailored for each CMB experiment to optimise detection feasibility. It is expected

that future CMB experiments such as LiteBIRD, and the proposed PICO mission, would be able

to detect this signal using a similar pipeline. LiteBIRD is expected to perform full-sky

observations for 3 years in 15 frequencies between 34-488 GHz, while PICO intends to observe

for 5 years in 21 frequencies between 21-799 GHz. These specifications make the two

experiments very ideal for detecting the Rayleigh signal with high significance level.

The detection method presented in this work could be further extended and possibly even

optimised. The main limitation for detecting the Rayleigh signal is residual foregrounds, and

therefore applying better cleaning methods could significantly improve detection likelihoods for

future experiments. Other methods which could be used to clean individual CMB frequency

maps, such as the Delta-Map method [294], might produce better results compared to the SEVEM

method shown here. Moreover, it may also be possible to construct a Wiener filter (see

Appendix A.2 for more details) to optimise the detection of the Rayleigh signal. Our likelihood
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forecast can also be further improved by including the impact of foregrounds in our covariance

matrices. While our method aims at detecting the Rayleigh signal using individual frequency

maps, it might be possible to detect an effective Rayleigh signal by using a SMICA-like method

to clean the CMB maps, which is designed to optimise the Rayleigh signal instead of the primary

CMB anisotropies. One could also perform a full joint-likelihood analysis of the primary

anisotropies and Rayleigh signals which includes models of residual foregrounds for an improved

forecast. We leave these further explorations to future work.



CHAPTER 6

Conclusions

This thesis explored various aspects of CMB data analysis which are relevant for current and

future high-sensitivity CMB experiments. The CMB has been one of the most powerful tools

in cosmology over the last few decades, as its measurements have been used to put extremely

tight constraints on the standard cosmological model. As our abilities to observe the CMB with

higher precision advance, it is key to improve our analysis methods to use the full potential of the

measurements. The results shown in this thesis are a small yet essential part in this endeavour.

We have examined in detail several CMB analysis methods, mainly around the topic of CMB

lensing. Chapter 2 demonstrated the effectiveness of different ways the CMB maps could be

filtered to establish an optimal filtering method. We showed that exploiting the full covariance

matrix of the data in the filter is essential to obtain the most accurate lensing reconstruction using

the quadratic estimator method. We also developed another filtering step, using a similar filtering

process, to filter the quadratic estimators. Using simulations, we showed that our new filtering

step can improve the accuracy of lensing estimation even further, especially when including

polarization measurements in the lensing reconstruction analysis. This was performed

specifically for the upcoming Simons Observatory (SO) and CMB-S4 experiments that are

expected to provide very high resolution and low-noise CMB measurements. The results of this

work could be used as a guideline for establishing an optimal quadratic-estimator-based lensing

pipeline for these and other future CMB experiments.

Continuing with explorations around the accuracy of the lensing analysis, Chapter 3 examined

how different instrumental systematics could affect the lensing reconstruction accuracy. Using

the optimal methods of Chapter 2 in the lensing pipeline, we showed how significant the different

systematics biases are on the lensing potential power spectrum for an SO-like experiment, and
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how it may be possible to mitigate their effects for analyses of future ground-based CMB

experiments. Our results concluded that current mitigation strategies which are used to tackle the

effects of the most problematic systematics could reduce the impact of systematics on the lensing

reconstruction analysis. Apart from providing this forecast, we have shown how the systematics

biases manifest at different levels of the lensing analysis, which could be useful for

understanding biases in future lensing analyses and guide their construction to be less vulnerable

to instrumental systematic effects. The methodology and results of this chapter could also be

used during the planning stages of a CMB experiment to help understand instrumental

requirements for obtaining optimal science products in general.

The last lensing-related work is presented in Chapter 4, where we applied our new lensing

analysis to real data for the first time. Prompted by the new Planck release, NPIPE, we set out to

analyse the new maps using the 2018 Planck lensing pipeline and assess the possible improvements

from using of our κ-filtering method. Our results showed that the new method does indeed improve

the lensing reconstruction uncertainties, and that the improvement is consistent with our theoretical

predictions given the noise covariance. While in the previous chapters our results concentrated on

the reconstruction uncertainty, in this chapter we went a step further and used the reconstruction

results to estimate some of the cosmological parameters using their likelihoods. We showed that

even when the reconstruction uncertainty is only improved by up to ∼7% at a limited multipole

range L . 200, the improvements in uncertainties of some of the parameter estimates can be

up to ∼16%. This is yet another motivation for applying our method in future lensing analyses,

especially those that we forecasted in Chapter 2 to have a much greater benefit from it. The

work done in this chapter is only a part of current on-going work around the NPIPE maps. We

have yet to explore, using these maps, the ability of our method to improve a polarization-only

reconstruction as our calculations predict. The comparisons we demonstrated here can be made

more thorough by applying our method on the previous Planck release as well. These comparisons

will be included in a future publication.

Although most of our work around lensing reconstruction involved the use of quadratic

estimators, developing even more capable lensing reconstruction techniques will be crucial in the

next few years. There is yet much work to be done to continue to improve our methods and

ability to extract lensing information from CMB measurements, and our work is a small part of

this on-going and exciting quest.

Lastly, we deviated from the main theme of lensing reconstruction to look into the detection of
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yet another CMB effect, albeit a much smaller one in comparison — the Rayleigh scattering of the

CMB. In Chapter 5 we presented a possible pipeline for detecting the Rayleigh signal using multi-

frequency CMB measurements, and as with Chapter 4, used Planck data to test its capabilities.

The work on this project was mainly motivated by the promising forecasts done in the literature

for detecting the Rayleigh signal, which showed that, without the consideration of foregrounds, it

could be detected using Planck data with a significance level slightly higher than 3σ. Although

we were not able to detect the Rayleigh signal using our pipeline, we provide the guidelines

necessary for such detection from future CMB experiments, which would be much more ideal for

the task compared to Planck. More work can also be done to improve and develop our pipeline

further. Such work would require a proper testing environment using foreground simulations,

as foregrounds are the most limiting factors of this detection. Looking more closely into the

correlation of foregrounds at both high and low frequencies, and developing better methods for

cleaning individual frequency maps, would be key to the successful detection of the Rayleigh

signal.

Our results portray a very optimistic and promising future for CMB science. Equipped with

our new insights, we now continue the endless journey of gaining a better understanding on the

perplexing universe we live in.



APPENDIX A

Statistical tools and data analysis

methods in CMB cosmology

A.1 THE FISHER MATRIX

The Fisher matrix formalism provides a simple way to forecast how experiments could constrain

parameters of given a model [295–298]. It relies on the assumption that the likelihood of the

model is Gaussian. Given a vector of random Gaussian variables θ, The element in the Fisher

information matrix F which corresponds to the ith and jth variables is defined as

Fij ≡ −
〈
∂2 ln (L)
∂θi∂θj

∣∣∣∣∣
θ=θ̄

〉
(A.1)

where L ≡ L (d,m(θ)) is the likelihood for model m with parameters θ given measurements d,

and θ̄ is a vector with fiducial parameters that maximize the likelihood. The most common use

for the Fisher matrix in CMB cosmology is to estimate the cosmological parameters given CMB

power spectra.

Using the Gaussian distribution with zero mean, we can write down the Gaussian likelihood for

a model m with n parameters θ as

L (d,m(θ)) = 1√
(2π)n |C|

e−
1
2diC

−1
ij dj , (A.2)

where 〈di〉d = 0,

〈didj〉d = Cij (A.3)

is the covariance matrix of the measurements d, and double indices are summed on. The best-fit
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parameters of the model m are those that maximise the likelihood,

∂L
∂θ

∣∣∣∣
θ=θ̄

= 0. (A.4)

For a Gaussian likelihood, it is more convenient to use the natural logarithm of the likelihood to

calculate derivatives. Differentiating the log of the Gaussian likelihood with respect to parameter

θi gives

∂ ln (L)
∂θi

=1
2
∂

∂θi

[
ln |C|+ d>C−1d

]
=1

2

[
d>C−1 ∂C

∂θi
C−1d− Tr

(
C−1 ∂C

∂θi

)]
,

(A.5)

where we used the identity ln |A| = Tr (lnA). The second derivative, with respect to parameter

θj , is then

∂2 ln (L)
∂θj∂θi

= −1
2

[
d>

∂

∂θj

(
C−1 ∂C

∂θi
C−1

)
d− Tr

(
∂

∂θj

(
C−1 ∂C

∂θi

))]
,

= −1
2

[
d>C−1∂C−1

∂θj
C−1 ∂C

∂θi
C−1d− d>C−1 ∂2C

∂θj∂θi
C−1d+ d>C−1 ∂C

∂θi
C−1∂C−1

∂θj
C−1d

−Tr
(

C−1∂C−1

∂θj
C−1 ∂C

∂θi

)
+ Tr

(
C−1 ∂2C

∂θj∂θi

)]
.

(A.6)

To calculate the Fisher matrix elements of Eq. (A.1), we need to take the ensemble average of

Eq. (A.6) over realisations of d. Using the definition of the covariance matrix in Eq. (A.3), the

three terms which are averaged on become

〈
d>C−1∂C−1

∂θj
C−1 ∂C

∂θi
C−1d

〉
=
〈
d>mC−1

mn

∂C−1
np

∂θj
C−1
pq

∂Cqr
∂θi
C−1
rs ds

〉
= C−1

mn

∂C−1
np

∂θj
C−1
pq

∂Cqr
∂θi
C−1
rs Csm

=Tr
(

C−1∂C−1

∂θj
C−1 ∂C

∂θi

)
,〈

d>C−1 ∂2C
∂θj∂θi

C−1d

〉
=
〈
d>mC−1

mn

∂2Cnp
∂θj∂θi

C−1
pq dq

〉
= C−1

mn

∂2Cnp
∂θj∂θi

C−1
pq Cqm

=Tr
(

C−1 ∂2C
∂θj∂θi

)
,〈

d>C−1 ∂C
∂θi

C−1∂C−1

∂θj
C−1d

〉
=
〈
d>mC−1

mn

∂Cnp
∂θi
C−1
pq

∂C−1
qr

∂θj
C−1
rs ds

〉
= C−1

mn

∂Cnp
∂θi
C−1
pq

∂C−1
qr

∂θj
C−1
rs Csm

=Tr
(

C−1 ∂C
∂θi

C−1∂C−1

∂θj

)
= Tr

(
C−1 ∂C

∂θj
C−1∂C−1

∂θi

)
,

(A.7)

where we used C−1
ij Cjk = 1ik and Tr (ABC) = AijBjkCki = Tr (CAB) = Tr (BCA). The
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elements of the Fisher matrix are then simply

Fij = 1
2Tr

(
C−1 ∂C

∂θi
C−1 ∂C

∂θj

)
. (A.8)

A similar derivation can be used for estimating the uncertainties of the best-fit parameters found

by maximising the likelihood. Such calculations are usually done iteratively using root finding

algorithms. These usually start with a best guess for the parameters, θ0, and progress toward θ̄

with steps δθ. The log likelihood derivative can be approximated as

∂ ln (L)
∂θi

∣∣∣∣
θ=θ̄
≈ ∂ ln (L)

∂θi

∣∣∣∣
θ=θ0

+ δθj
∂2 ln (L)
∂θi∂θj

∣∣∣∣∣
θ=θ0

= 0 (A.9)

to get

δθj ≈
[
∂2 ln (L)
∂θi∂θj

∣∣∣∣∣
θ=θ0

]−1
∂ ln (L)
∂θi

∣∣∣∣
θ=θ0

≈
[
F−1
ij

∂ ln (L)
∂θi

]∣∣∣∣
θ=θ0

, (A.10)

where δθj ≡ θ̄j − θj,0 are the steps for iteratively finding the best-fit parameters θ̄. The variance

of the estimated parameters can then be estimated as σ2
ij ≡ 〈δθiδθj〉,

〈δθiδθj〉 ≈
1
4F
−1
im F

−1
jn

〈[
d>C−1 ∂C

∂θm
C−1d− Tr

(
C−1 ∂C

∂θm

)] [
d>C−1 ∂C

∂θn
C−1d− Tr

(
C−1 ∂C

∂θn

)]〉
= 1

4F
−1
im F

−1
jn

[
〈dkdldpdq〉 C−1

kr

∂Crs
∂θm
C−1
sl C

−1
pv

∂Cvw
∂θn
C−1
wq − 〈dkdl〉 C−1

kr

∂Crs
∂θm
C−1
sl Tr

(
C−1 ∂C

∂θn

)
−〈dkdl〉 C−1

kr

∂Crs
∂θn
C−1
sl Tr

(
C−1 ∂C

∂θm

)
+ Tr

(
C−1 ∂C

∂θm

)
Tr
(

C−1 ∂C
∂θn

)]
.

(A.11)

The first term in this equation can be expanded using Wick’s theorem [147] and the covariance

definition,

〈dkdldpdq〉 = 〈dkdl〉 〈dpdq〉+ 〈dkdp〉 〈dldq〉+ 〈dkdq〉 〈dldp〉

= CklCpq + CkpClq + CkqClp ,
(A.12)

to get

〈dkdldpdq〉 C−1
kr

∂Crs
∂θm
C−1
sl C

−1
pv

∂Cvw
∂θn
C−1
wq = CklCpqC−1

kr

∂Crs
∂θm
C−1
sl C

−1
pv

∂Cvw
∂θn
C−1
wq

+ CkpClqC−1
kr

∂Crs
∂θm
C−1
sl C

−1
pv

∂Cvw
∂θn
C−1
wq + CkqClpC−1

kr

∂Crs
∂θm
C−1
sl C

−1
pv

∂Cvw
∂θn
C−1
wq

=∂Cls
∂θm
C−1
sl

∂Cqw
∂θn
C−1
wq + ∂Cpq

∂θm
C−1
pv

∂Cvw
∂θn
C−1
wq + ∂Cqp

∂θm
C−1
pv

∂Cvw
∂θn
C−1
wq

=Tr
(

C−1 ∂C
∂θm

)
Tr
(

C−1 ∂C
∂θn

)
+ 2Fmn + 2Fmn.

(A.13)
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Similarly, the next two terms simplify to the same expression of the last term (with different signs),

and we are left with

σ2
ij = 1

4F
−1
im F

−1
jn

[
Tr
(

C−1 ∂C
∂θm

)
Tr
(

C−1 ∂C
∂θn

)
+ 2Fmn + 2Fmn − Tr

(
C−1 ∂C

∂θm

)
Tr
(

C−1 ∂C
∂θn

)
− Tr

(
C−1 ∂C

∂θm

)
Tr
(

C−1 ∂C
∂θn

)
+ Tr

(
C−1 ∂C

∂θm

)
Tr
(

C−1 ∂C
∂θn

)]
=F−1

im F
−1
jn Fmn

=F−1
ij .

(A.14)

The Fisher matrix is therefore a useful tool for estimating the error on the model’s parameters.

The marginalized error of a parameter θi in the model can be estimated using

σi ≡ σ(θi) =
√

(F−1)ii . (A.15)

The Fisher matrix can be used to express the uncertainty of the CMB power spectra. For an

experiments which measures the CMB anisotropy a`m, the measurements can be described d`m =

b`a`m + n`m with effective beam b` and noise n`m. The covariance matrix is then C`m,`′m′ =

〈a`ma∗`′m′〉 = δ``′δmm′
[
b2`C` +N`

]
, where N` is the noise variance. The resulting Fisher matrix

elements for the parameters C` are given by

F``′ =1
2Tr

(
C−1 ∂C

∂C`
C−1 ∂C

∂C`′

)
=1

2C
−1
`1m1,`2m2

∂C`2m2,`3m3

∂C`
C−1
`3m3,`4m4

∂C`4m4,`1m1

∂C`′

=1
2
δ`1`2δm1m2

b2`C` +N`
δ`2`3δm2m3b

2
`2δ`2`

δ`3`4δm3m4

b2`′C`′ +N`′
δ`3`4δm3m4b

2
`4δ`4`′

=δ``′δm1m1

2

[
b2`

b2`C` +N`

]2

=δ``′(2`+ 1)
2

[
1

C` + b−2
` N`

]2

,

(A.16)

where the number of modes m for multipole ` on the full sky is given by δm1m1 = 2` + 1. The

power spectrum variance, assuming uncorrelated noise, is then

Var (C`) = F−1
`` = 2

2 + 1
[
C` + b−2

` N`

]2
. (A.17)

A similar calculation can also be done to evaluate how the CMB covariance depends on other
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parameters of a theory. Then, the more general expression for the Fisher matrix becomes

Fij,` = 2`+ 1
2 fskyTr

(
C−1
`

∂C`
∂θi

C−1
`

∂C`
∂θj

)
, (A.18)

where we also consider partial sky observations with fractional sky area fsky. This expression of

the Fisher matrix is used in Chapter 5 to produce forecasts on the Rayleigh scattering amplitude.

A.2 WIENER FILTER

Maps produced by CMB experiments usually contain some level of instrument noise, which should

be reduced before using them in cosmological analyses. One way to do this is by implementing

a Wiener filter [299] on the maps. Wiener filter is a generic name for any filter which uses an

assumed signal and noise power to produce an estimate of the desired signal from a signal-plus-

noise input by minimizing the mean square error between the assumed and desired processes. It

was first introduced in 1949 in the context of time-domain signal analysis.

Given a data vector d of length Npix which measures a signal s with noise n,

d = s+ n, (A.19)

the Wiener filter is defined as the transfer function FWF for which the estimator for s is given by

ŝ = FWFd. (A.20)

We can find FWF by maximizing the likelihood of s given the data using Bayes’

theorem [300–302],

P (s|d) = P (s)P (d|s)
P (d) . (A.21)

If we assume that the signal and noise are Gaussian, which is a good assumption for CMB signal

and noise, this likelihood becomes [303]

P (s|d) = 1√
(2π)Npix |S|

e−
1
2s
†S−1s 1√

(2π)Npix |N |
e−

1
2(d−s)†N−1(d−s) 1

P (d) , (A.22)

where

S(`) =


CTT` CTE` 0

CTE` CEE` 0

0 0 CBB`

 , (A.23)
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is the signal covariance with CTB` = CEB` = 0, and N is the noise covariance, which can either

be approximated as diagonal with an effective noise level, or be the full noise covariance of the

experiment, which is usually not diagonal. The probability of the data P (d) is arbitrary, and does

not affect the maximization analysis, so below it is set to unity.

As is often the case with Gaussian likelihoods, we can use the natural logarithm of the

likelihood,

L ≡ lnP (s|d) = −1
2 ln

(
(2π)2Npix |S| |N |

)
− 1

2s
†S−1s− 1

2 (d− s)†N−1 (d− s) , (A.24)

and differentiate it with respect to s to find the estimate of s which maximizes the likelihood,

∂L(s,d)
∂s

∣∣∣∣
s=ŝ

= 0. (A.25)

We then get [
−S−1s−N−1 (d− s)

]
s=ŝ

= 0, (A.26)

such that isolating s leads to the estimate

ŝ = S (S +N)−1 d. (A.27)

The estimator of Eq. (A.20) is therefore optimal when

FWF ≡ S (S +N)−1 . (A.28)

This is the Wiener filter. It is related to the inverse-variance filter (IVF) via FWF = SFIVF.

The first use of the Wiener filtering in CMB cosmology was as an optimal filter on the COBE

CMB maps [304]. In CMB lensing, due to the nature of the quadratic estimators of the lensing

potential, this filter is used to obtain the maximum-likelihood lensing estimators that are described

in Chapter 1 and used throughout Chapters 2-4.

The (S +N)−1 component of the filter weights each mode of the CMB map by the inverse of

its total variance, such that modes which have large noise variance contribute less for estimating

the filtered signal. Different modes in the map have different noise levels mainly due to the

inhomogeneities introduced through scanning patterns. The noise in a pixel of a CMB map is

directly related to the inverse of the time spent observing this pixel. As such, areas of the sky

which are observed for less time will have higher noise levels, so their overall contribution to the
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estimated signal should be reduced to increase the estimator’s accuracy.

To use this filter in practice, the S +N matrix must be inverted. The inverse of this matrix can

be estimated using the Conjugate gradient method [148, 159, 305]. This method can be used to

efficiently solve equations of the form

Ax = b, (A.29)

where A and b are a known matrix and vector, respectively, and x is the desired quantity. In the

case of the IVF, for example,A = S+N , x = ŝ and b = d. Since we know S, finding x for the

IVF and multiplying the result by S gives the WF estimator.

To solve this equation for x, we can define a function

f(x) = 1
2x>Ax− b>x + c, (A.30)

and find x which minimizes it, i.e. the solution for a rearranged version of Eq. (A.29),

∇f = Ax− b = 0. (A.31)

The minimization is performed iteratively by searching for directions pk in each iteration k such

that in each iteration f(xk + αkpk) is minimised. The next iteration step in the search is given by

xk+1 = xk + αkpk. For initial values x0 = r0 = p0, the direction for each iteration is set using

the relations

αk = p>k rk
p>kApk

,

rk =b−Axk,

pk =rk −
∑
i<k

p>i Ark
p>i Api

pi.

(A.32)

The way in which αk and pk are calculated for each iteration optimizes the search by having

more search points closer to the minimum. The main traits of this method is that the residuals rk
satisfy r>i rj = 0, and the directions pk satisfy the relation p>i Apj = 0. These allow for fast

convergence. The stopping criteria of the iterations is determined by the wanted accuracy of the

residuals r.
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A.3 MARKOV CHAIN MONTE CARLO

In Chapter 4 we estimate cosmological parameters using lensing and BAO likelihoods. The way

in which cosmological parameters are usually estimated from likelihoods is via the Markov

Chain Monte Carlo (MCMC) sampling method [147, 159]. MCMC is one of the most useful

tools for estimating parameters in cosmology. Given a cosmological model, such as ΛCDM, with

parameters θ, the parameter values can be estimated from cosmological observations d by

asking, “how likely is a value of a specific parameter given the data?”. This approach to

parameter estimation is especially convenient especially when there is a large number of

parameters to estimate.

The method uses Bayes’ theorem [300–302],

P (θ|d) = P (d|θ)P (θ)
P (d) , (A.33)

where P (θ|d) is the posterior probability for θ, whose quantity answers the above question,

P (d|θ) is the probability of observing the data d given the values of θ, P (θ) is the prior

probability distribution, which summarises our knowledge about the parameters regardless of the

data, and P (d) acts as the normalization factor for the posterior probability. This normalization

can be defined as the marginal likelihood,

P (d) ≡
∫
dθP (d|θ)P (θ) . (A.34)

To calculate the posterior probability for a given parameter θi, we need to integrate, or marginalize,

over all other parameters θj 6=i,

P (θi|d) ∝
∫
dθ1...dθj 6=iP (θ|d) . (A.35)

Given a set of priors and a likelihood function from measurements, we can evaluate this integral

using Bayes’ theorem in Eq. (A.33) using a sampling algorithm. A sampling algorithm is required

when the integrals cannot be solved analytically, as is the case with the standard cosmological

model. The most popular sampling method for this purpose is the MCMC method.

Given a starting value for each parameter, the MCMC method implements the Markov process

to relate each step to the previous step. The way in which consecutive steps are related is through

an acceptance criterion. One of the more commonly-used criteria, which is also implemented

in the parameter estimation analysis of Chapter 4, is the Metropolis-Hastings (MH) acceptance

criterion [306, 307]. The full sampling algorithm operates according to the following steps:
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1. The initial parameter values θ0 are used to calculate the likelihood P (d|θ0) and the prior

P (θ0) to obtain the initial value of the posterior P (θ0|d).

2. The next parameter values θ1 = θ0 + δθ are set using random Gaussian numbers δθ. Priors

on the parameters can be used to restrict the values of δθ for faster convergence.

3. The new posterior is calculated as in Step 1, using θ1.

4. The ratio of the posteriors of the two steps is then calculated, P (θ1|d)/P (θ0|d).

5. If the obtained ratio is larger than a uniformly-generated random number between 0 and 1,

the new values θ1 are used as the new initial guess, and the process starts again from Step

1. If the ratio is equal or smaller to the generated number, the initial values continue to be

θ0 for the next iteration.

Step 5 is specific for the MH acceptance criterion. Because the probability of acceptance depends

on the value of the posteriors, this criterion helps the algorithm to avoid local minima and to

sample the parameter space more efficiently.

A common way of using MCMC is by running several sampling chains at the same time until

convergence is reached. This convergence is usually defined by specifying a stopping value for

the Gelman-Rubin convergence function [308],

R ≡
(N − 1)W +

(
1 + 1

M

)
B

NW
, (A.36)

where M is the number of chains, each with N samples,

Bi ≡ N

M − 1

M∑
k=1

(
θ̄ik − θ̄i

)2
(A.37)

is the variance between chains for parameter i, and

W i ≡ 1
M (N − 1)

M∑
k=1

N∑
j=1

(
θ̄ik,j − θ̄ik

)2
(A.38)

is the combined variance of parameter i from all chains. Using this halting condition assures the

parameter uncertainties are sufficiently converged. A halting condition which is based on the

convergence of the variances rather than the mean of the parameters can also be useful, especially

when comparing parameter estimation accuracies as we do in Chapter 4, however such

convergence function was not developed for this work.



APPENDIX B

Optimal filtering performance

Optimal filtering of the CMB maps (Eq. (2.6)) must be performed iteratively to have a tractable

numerical cost. This appendix discusses the performance of our solver and convergence criteria,

for both temperature and polarization.

We use the same algorithms used for the Planck lensing 2015 [98] and 2018 [100] analyses,

using the flat-sky implementation in the LENSIT package. The inversion is performed using a

simple conjugate-gradient descent, which can be coupled to a multi-grid preconditioner [148] to

try and improve the convergence properties of the iterative search. When solving for x in the linear

equation x = A−1b, we determine convergence by monitoring the ratio ε2n of the squared norm

of the residual vector at iteration n, Axn−b, to that of the initial residual b (we always start with

x0 = 0). We then ensure that this ratio has dropped below a specific tolerance level ε.

Fig. B.1 shows the dependence of the lensing reconstruction on the choice of tolerance level,

in units of the statistical error bars, when using the simplest possible diagonal isotropic

preconditioner. The figure shows the difference to the result for ε = 10−6 (the smallest tolerance

we consider) in units of the expected statistical error bars σL[N0] induced by the reconstruction

noise, but excluding the lensing map cosmic variance. For this we use the approximation

σ2
L[N0,L] ≡

2
(

(MC)N0,L
)2

fA,LnL∆L . (B.1)

These noise-only error bars are the most relevant for applications where the lensing map rather than

its spectrum must be reconstructed accurately (such as for delensing). Fig. B.1 shows the power

spectrum difference at the iteration for which ε ' 10−2 (blue), 10−3 (orange), 10−4 (green), 10−5

(red), and for T, P and MV analyses (from top to bottom). Polarization filtering is a lot better

behaved than temperature. This is striking, both from the figure and in the number of iterations

required to reach these tolerance levels: about 80 steps are necessary to reach ε = 10−4 for
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Figure B.1: Lensing power spectra differences built from partially conjugate-gradient-converged inverse-variance filtered CMB maps,
in units of the reconstruction noise statistical error. The points shown are for the T (top panel), P (middle panel) or MV
(bottom panel) lensing spectrum estimates, for convergence levels ε = 10−2 (blue), 10−3 (orange), 10−4 (green), 10−5

(red), where ε monitors the decrease of the residual vector norm. Convergence for P is always substantially faster than
for T or MV. The points with ε = 10−3 are off the scale for T and most of MV, but close to the zero for P. Our baseline
T and MV analyses use ε = 10−5, where the bias is at most 0.2σ[N0] in T, and ε = 10−4 for P analysis. For T and
MV the convergence is not monotonic; small changes in the high-` temperature maps in the iterative search have a large
impact on the lensing power iterations.

temperature or MV filtering, but 50 for polarization. For ε = 10−5 this becomes 430 and 100, and

for ε = 10−6 this worsens to 2480 and 125, respectively.

Our T and MV baseline results used a tolerance of 10−5 and our P results used 10−4, which is

enough to ensure convergence on all relevant scales to below 0.2σ[N0,L]. To test for broadband

correlations we have evaluated biases in the overall reconstructed lensing spectrum amplitude in

the following way. Using an approximation to the spectrum variance σ2
L[Cφφ +N0] (defined as in

Eq. (B.1), but including the lens cosmic variance), we test for a non-zero lensing amplitude in the

residual

ĈφφL,ε − Ĉ
φφ
L,ε=10−6 ≡ AεCφφ,fid

L (B.2)

using the inverse-variance weighting amplitude estimator

Âε = σ2
A

3000∑
L=40

Cφφ,fid
L

(
ĈφφL,ε − Ĉ

φφ
L,ε=10−6

)
σ2
L[Cφφ,fid

L +N0,L]
, (B.3)

with normalization

1
σ2
A

=
3000∑
L=40

(
Cφφ,fid
L

)2

σ2
L[Cφφ,fid

L +N0,L]
. (B.4)

σ2
A is also the Fisher variance Var

(
Âε
)

of the lensing amplitude estimator. For ε = 10−5, in
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temperature case we find a maximal bias of 0.06σA. For the cases of polarization and MV, the

bias is much smaller still. It takes only about 5 minutes on a standard laptop to filter the maps

in temperature or polarization, and 15 for joint filtering, hence the entire process remains very

practical. We use the same filtering method to filter the reconstructed κ map. In this case, the

convergence is much faster, . 1 minute for ε = 10−7, mostly because the noise is much larger

compared to the lensing signal.

Our optimal CMB filtering step remains fast and easily fast enough for use in many simulations.

However, we used the flat-sky approximation throughout, where harmonic transforms are fast

Fourier transforms, which will not be adequate for future surveys covering a significant fraction

of the sky. On the curved sky the filtering step will be more time consuming given the much

more expensive cost of the high-resolution spherical harmonic transforms, and further numerical

optimization of the filter will potentially be of significant benefit. For our flat sky analysis we

investigated several multigrid preconditioners but found no clear-cut improvements in execution

time. However, this conclusion may well change on the curved sky where the numerical cost is

distributed differently. Given the very configuration-specific timing performance of the inversion,

it seems likely that a good solution is probably best found on a case-by-case basis. For these

reasons we do not perform further performance comparisons here and leave a systematic study of

the conjugate-gradient inversion performance for future work. The convergence criteria could also

be refined to more closely match the actual requirements in terms of numerical precision of the

filtered maps.
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