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Abstract

The current thesis consists of two results obtained during my PhD, both related to approx-
imations of high/infinite-dimensional measures emerging from the Bayesian approach to
inverse problems. In the first part, we study a technique for the reduction of the dimension
in the finite but high-dimensional case when the prior is 1-exponentially distributed. In
Chapter 4, this is done in a way that the approximated posterior measure minimises the
distance to the posterior by using an appropriate metric. In the second part, we consider
the problem of estimating the drift and diffusion coefficient of a stochastic differential equa-
tion using noisy measurements on a single path. There, we use a perturbation technique
on the solution of the SDE to obtain an approximated posterior; in Chapter 5, we study
the convergence properties of this approximation.
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List of Abbreviations and Symbols

a ∝ b : It means that there exists a constant C such that a = Cb.

a . b : It means that there exists a constant C such that a ≤ Cb.

fX , fN(0,γ2), fπ : It denotes a density function of a random variable X, or a

probability N(0, γ2), π.

ΣX : It is the σ−algebra of the measurable space (X,ΣX).

EX∼π (f(X)),

Eπ (f(X))

: Expectation of f(X), where X ∼ π.

σ(Y ) : It is the smallest σ−algebra which is generated by a random

variable Y .

E
(
f(X)t

∣∣∣σ (Y )
)

: Conditional expectation of X given σ−algebra σ(Y ).

Entπ (f) : Entropy of f(X), where X ∼ π, see Definition 4.4.1.

U = (a1|a2| . . . |an) : U is the matrix with columns the vectors a1, a2, . . . , an.

U = (U1|U2) : The above definition, it also extend also with matrices

instead vectors.

πm,B : In Chapter 4, we define the one exponential probability

measure, wherem, B are parameters of the probabilty meas-

ure πm,B.

L∞(D) : It is a function space which contains bounded function over

the domain D.
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Chapter 1

Introduction

In the present thesis, we study the approximation of measures defined on high or infinite

dimensional spaces. In particular, these measures emerge in the context of the Bayesian

approach to inverse problem.

Let us start with the definition of inverse problem with measurements subject to addit-

ive noise. Without noise, the measurement y is generated by the forward model represented

by G : X → Y . We hence write

y = G(u) + η

The aim of the problem is to recover the unknown u from the knowledge of y. In general,

either the distribution or the size of noise term η is known. In our set-up, we assume that

the distribution of η is given.

Intuitively speaking, the Bayesian approach to the inverse problem can be described

as follows. Given prior information about the location of the unknown u within X and

measurements y, we are interested in an update of our prior information according to the

measurements y. In the context of Bayesian approach, both the prior information and its

updated version are considered to be distributions over elements of space X, and we call

them prior distribution and posterior distribution, respectively. Essentially, this approach

emerges from Bayes’ Theorem, if both prior and posterior distributions admit a probability

density function, Bayes’ formula provides us the following expression

fU |Y (u|y) ∝ fY |U (y|u)fU (u)

In a more general mathematical framework and under appropriate conditions, Bayes’ for-

mula provides us with the Radon-Nikodym derivative of the posterior probability with

respect to the prior probability, and the derivative is the so-called likelihood.

In statistics, one needs to introduce quantities of interest for a better understanding of
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distributions, such examples are the mean value of distribution, the variance, the mode,

etc. Returning to the Bayesian approach and considering large or infinite dimensional X,

such quantities are usually expected values of bounded continuous functions with respect

to the posterior and are approximated using Monte Carlo methods. An advantage of using

Monte Carlo is that the convergence rate of those methods is the same regardless the

dimensions of the problem.

Let us introduce the Importance Sampling method; this is a method derived from the

theory of Monte Carlo simulations. In this concept, we consider the proposal distribution

π, and we are interested in evaluating the target distribution µ. An essential condition is

that µ needs to be absolute continuous with respect to π and its Radon-Nikodym derivative

to be known up to a multiplication constant

dµ

dπ
(x) ∝ f(x)

Given the structure of the Bayesian approach, i.e. the Radon-Nikodym is known, the Im-

portance Sampling is a suitable method for the approximation of the posterior distribution.

In most presentations of Importance Sampling, it is highlighted that a way to accelerate

the computational time of the Monte Carlo is to focus on an appropriate region of X.

Essentially, we consider a subset that contributes the most to the evaluation of our Monte

Carlo simulation.

Let us now consider the following example. We assume probabilities µ and π are defined

on the infinite dimensional space R∞, and the Radon Nikodym derivative of µ with respect

to π is defined as the infinite product of a non-trivial function g, i.e. g 6≡ 1, then we have

that µ and π are singular, see for instance Agapiou et al. (2017). Consequently, we have

that for non-trivial probabilities µ and π defined on the infinite dimensional space X with

µ absolutely continuous with respect to π, the part of space X, which contributes the most

to the evaluation, tends to be restricted to low-dimensional subspaces.

That subspace is derived by a minimisation problem. More precisely, we consider can-

didate measures for the approximation of the target measure µ. Such measures correspond

to a subspace of X and the approximated measure is the one that minimises the distance

between the candidate measures and µ. The distance used in the minimisation problem

is the Kullback-Leibler divergence. The advantage of this technique is that it applies to

the Bayesian approach with nonlinear forward operators, non-Gaussian priors, and non-

Gaussian noise term, also provides us with a relation between the considered dimension r

and the error of the approximation. This methodology was proposed in Zahm et al. (2021)

where the authors consider the case of sub-Gaussian prior distributions.
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My contribution to the above mentioned methodology is its extension to the case of

1-exponential measures. In Sections 4.4.1 and 4.4.2, one can find my contributions to that

methodology. More precisely, my main contribution is Theorem 4.4.3, which allows to

extend the methodology for the case of 1-exponential measure. Also, the results of that

methodology are summarised in Proposition 4.4.1. Therein one can find error estimates

of the method with respect to Kullback Leibler divergence and the way to recover that

optimal space.

As we see in Section 2.3.1, the 1-Besov priors are defined through 1-exponential distri-

butions. These priors are important especially for the field of signal and image processing

because of their edge-preserving and sparsity-promoting properties, see e.g. Leporini and

Pesquet (2001); Kolehmainen et al. (2012); Jia et al. (2016); Tan Bui-Thanh (2015); Ran-

tala et al. (2006).

In the second part of the thesis, we study the problem of estimating the drift and

diffusion coefficients of a stochastic differential equation with a small diffusion coefficient

from discrete noisy measurements of a single path of the solution. Such equations are

usually represented as,

dX(t) = (a(X(t))− b(X(t)) ) dt+
1√
N

√
a(X(t)) + b(X(t)) dWt (1.1)

where N is a large number, i.e. N � 1. We assume that the process is restricted to the

bounded interval [0, 1] and measurements are collected from a realisation of (X (t1) , . . . X (tn))

at times 0 ≤ t1 < . . . tn ≤ T , for positive time T .

Let the forward map G : C2([0, 1])× C2([0, 1])→ Rn be defined as

G(a, b) := (X (t1) , . . . X (tn))(a, b)

where X (ti) (a, b) is the solution of the above SDE with coefficients a− b and 1√
N

√
a+ b.

Denote the noisy measurements by y ∈ [0, 1]n and the noise term by ε η = (ε η1, . . . ε ηn),

where ε > 0 and ηi are independent and identically distributed. Then, the above inverse

problem can be written in the following form,

y = G(a, b) + η

where the functions a and b are unknown.

At this point it is worth mentioning that equation (1.1) is closely connected to the

birth death process. Consider for instance (Yt)t≥0 birth death process with state space

{0, . . . , N}, where N, T > 0, as described for example in Renshaw (2015). Next, we

consider the following two set of parameters: uk is the up jump rate the k state and dk



5

down jump rate, with k ∈ {0, . . . , N}, and an initial condition Y0. Under the condition that

uN = d0 = 0 and Y0 ∈ {0, . . . , N}, we have that the process Yt will remain in {0, . . . , N}.

Suppose now that these jump rates have the so-called density dependent property Ethier

and Kurtz (2009), meaning that there exists functions a, b : [0, 1]→ R such that:

∀k ∈ {0, . . . , N}, uk
N

= a

(
k

N

)
and

dk
N

= b

(
k

N

)
,

and where we assume that U and D are non-negative on [0, 1]. Then, it is well-known, see

for instance Kurtz (1971), that in the limit of large N , the rescaled BD process
(

1
N Yt

)
t≥0

can be approximated by a diffusion process, that satisfies equation (1.1) with reflective

boundary conditions and initial condition x0 = 1
N Y0 ∈ [0, 1].

In Chapter 5, we consider the posterior distribution µy that emerges from the above

inverse problem. More precisely, we have that the likelihood is the product of transition

probabilities, which are the fundamental solution of a parabolic differential equation. Such

solutions are usually expensive to compute. We propose an approximation of the likelihood

using a random perturbation technique. This leads to an approximation of solution X, in

the form of XN ≈ X0+ 1√
N
X1 with X0 the solution of a deterministic first order differential

equation and X1 a Gaussian process. As a result, the likelihood of the approximated

posterior is much easier to compute. We establish some convergence properties ofXN under

appropriate regularity conditions on the drift and diffusion, and study the convergence

properties of the resulting approximated posterior.

1.1 Organisation of the thesis

The thesis is organised as follows. Chapter 2 summarises some of the already known

background materials for the Bayesian approach to Inverse problems and the Importance

Sampling method. In particular, Section 2.5 demonstrates a version of the Bayes’ Theorem

on Banach Space. Later in Section 2.5, there is a general framework for approximating

the posterior based on an approximation of the forward map; this is the same framework

that we desire to establish for the approximation of the posterior of the second problem,

see above. Later on, in the same chapter, there is an introductory section for Monte Carlo

simulations. More precisely, Section 2.6.1 is devoted to the Importance Sampling technique

and provides some materials about Kullback-Leibler divergence.

Chapter 3 is an introductory Section for stochastic differential equations, where the

reader can find results relevant to the existence and uniqueness of the solution. We also

study the behaviour of the solution near the spatial boundary. Furthermore, Section 3.3
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is devoted to the Fokker-Planck equation.

In Chapter 4, we first recall the methodology proposed by Zahm et al. (2021) for

dimension reduction in the case of sufficiently regular prior. Then, in our main result, we

extend this dimension reduction technique to the case of 1-exponential priors in Section

4.4.1.

In Chapter 5, we study the above mentioned inverse problem which involves the

stochastic differential equation. Section 5.2 explores the perturbation technique and in-

troduces the ODE and the Gaussian process, which describe X0 and X1, respectively. In

addition, we demonstrate our results related to the convergence of perturbation technique.

In Section 5.3, we build the framework associated with the approximation of the posterior.
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Chapter 2

Bayesian inverse problems

This chapter is devoted to background material related to Bayesian approach to inverse

problems, and gives an introduction to Monte Carlo methods. In particular, Section 2.1

starts with the generic inverse problem and then focuses on inverse problems with measure-

ments subject to additive noise which are the main interest of the current thesis. Afterward,

Section 2.2 presents the Bayesian approach to inverse problems, where we present Bayes’

Theorem on Banach spaces, which plays a central role to the definition of the current ap-

proach. We then review the conditions for the well-definedness of the solution emerging

from the Bayesian framework, the so-called posterior distribution. We then study the ef-

fect of the approximation of the underlying forward operator on the posterior distribution.

Finally, Section 2.6 is an introduction on Monte Carlo methods. More precisely, it fo-

cuses on importance sampling, which is a suitable method for approximating the posterior

distribution that emerges from the framework of the Bayesian approach.

2.1 A generic formula for inverse problems

Suppose X, Y are Banach spaces. We consider the problem of recovering the unknown

u ∈ X from some data y ∈ Y given the model

y = G̃(u),

where G̃ : X → Y is a generic stochastic mapping that associates the unknown variable u

with the observed data y. We usually call it the observation map.

One example is the case where a noise effect has been incorporated into the observed

data, and the stochastic map G̃ is given as follows

G̃(u) = G(u) + η
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where G : X → Y is a deterministic map that relates u to y, G is usually called forward

map. The noise term η is also known in some sense, one may consider either its distribution

or its magnitude to be known. In our set-up, we assume that the distribution of η is given.

Intuitively speaking, we have been asked to invert the operator G̃. One strategy for

recovering the unknown u is to deploy an estimator which behaves similarly to the inverse

of the operator G̃.

There are several difficulties that one needs to overcome in this problem:

1. Non-existence:

Consider the inverse problem of recovering u from the data

y = G(u) + η

where η is an element in Rn and the forward map G : Rn → Im(G) (( Rn) is invertible.

Consider the situation where one uses the inverse of G as the estimator which retrieves

u. Observe now that since we only know the distribution of η, we have that y and η are

inseparable and that there may be several choices of η such that y 6∈ Im(G), thus there

are several y for which our estimator cannot solve our problem.

2. Non-uniqueness:

We consider the inverse problem without the noise term here for simplicity, and assume an

underdetermined system of equations, that is a linear map G : Rn → Rm, where n > m,

satisfying

y = G(u).

In this example, we may have several u ∈ Rn solving the above equation.

3. Instability:

Let us once again consider the problem

y = G(u) + η

where G is an invertible linear map G : Rn → Rn, also assume that the noise term is

bounded by some ε > 0, ‖η‖ ≤ ε, where ‖ · ‖ is some norm over Rn. In addition, we

consider the specific case, where G is a diagonal matrix and the elements on the diagonal

decay fast to zero, for instance λi = 1/i. Then the inverse of G is given as follows

G−1 =

(
1/λ1

. . .
1/λn

)

Then using the inverse map as an estimator for the unknown u may mislead us as we see

now. Let the noise η = (0, . . . , 0, ε) and n � 1. Denote the data with noise by y and
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without noise by y† = G(u†). Let us now check the contribution of the error term in the

estimation of the unknown u,

‖u− u†‖ = ‖G−1(y − y†)‖ = ‖ (0, . . . , n ε) ‖ = n ε‖ (0, . . . , 1) ‖.

Therefore, we observe that small noise in the data could lead us in large changes of the

solution u.

The above difficulties are summarised in Hadamard’s definition of well-posedness: A

well-posed problem is a mathematical model which has the following three properties:

(a) The solution exists.

(b) The solution is unique.

(c) The solution is stable, i.e. small variations in the observed data cause small changes

to the solution.

In the following section, we introduce the Bayesian approach for inverse problems, a

probabilistic approach for recovering the unknown u in a wellposed manner. Section 2.4

presents a suitable set of assumptions which addresses the well-posedness of the Bayesian

approach.

2.2 The Bayesian approach for inverse problems

Let us consider the inverse problem of finding u from y given as

y = G(u) + η. (2.1)

We assume that (X,ΣX) and (Y,ΣY ) are measurable spaces, G : X → Y is a measurable

map and the distribution of η is given and η ∈ Y .

Intuitively speaking, this approach can be described as follows: Given prior information

about the location of the unknown u within X, and measurements y, we are interested

in an update of our prior information according to the measurements y. Both the prior

information and its updated version are considered to be distributions over space X, and

we call them prior distribution and posterior distribution, respectively.

In this approach, we treat u, y and η as random variables and determine the joint

distribution of (u, y). Notice that the distribution of η is given above. Given the prior

distribution and knowing that u and η are independent, we can then determine the joint

distribution of (u, y) using (2.1). Finally, we obtain the conditional distribution of u|y,

the so-called posterior distribution in this approach. As we show in the following sections,
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Bayes’ rule plays a central role in obtaining the posterior distribution. If u and y are finite-

dimensional random variables, Bayes’ rule implies the following for the density functions

of the concerned random variables

fU |Y (u|y) =
1

fY (y)
fY |U (y|u)fU (u). (2.2)

In the context of Bayesian approach, the density function fY |U (y|u) is called likelihood.

Using this approach allows us to incorporate a priori information about the unknown

u by choosing an appropriate prior distribution.

Next, we provide some notations to facilitate our study of the distribution of u, η and

u|y, which are used in the following section. Let (Ω,F ,P) be an abstract probability space

and (X,ΣX) and (Y,ΣY ) measurable spaces. We consider y and u as realisations of the

measurable functions Y : Ω→ Y and U : Ω→ X. We use the notation η : Ω→ Y for the

random variable representing noise as there is no room for confusion. Then we define the

two probability measures Q0(·) = P (η ∈ ·) and µ0(·) = P (U ∈ ·) over (Y,ΣY ) and (X,ΣX),

respectively. Observe that according to the same notation the posterior probability can be

written as µy(·) = P (U ∈ · |Y = y ) defined on ΣX .

Looking at the Bayes’ rule (2.2), we also need to determine the probability emerging

from the random variable Y|{U = u}. For any A ∈ ΣY and u ∈ X, we have

Qu(A) := P (Y ∈ A|U = u) = P (G (U) + η ∈ A|U = u) =

P (η ∈ A−G (u) |U = u) = P (η ∈ A−G (u)) = Q0 (A−G (u))

(2.3)

where the third equality holds due to the independence of u and η.

Now Bayes’ rule (2.2) provides us with the following Radon-Nikodym derivative

dµy

dµ0
(u) = g(u; y)

/∫
X
g(x; y)µ0(dx).

Notice that the Radon-Nikodym derivative is proportional to g(u; y) which is the so-called

likelihood, see for instance (2.2).

In the following two sections, we present an example of a finite dimensional space and

then we introduce Bayes’ theorem defined on Banach spaces.

2.2.1 Application of Bayes’ Theorem in finite dimensions

Let us consider two euclidean spaces X = Rn and Y = Rm equipped with the Borel

σ-algebra, measurable map G : X → Y and given probabilities µ0 and Q0 defined as

above. We further assume that µ0 and Q0 admit a probability density function ρ0 and ρ,
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respectively, i.e.

Q0 (A) =

∫
A
ρ (η)Lm (dη) A ∈ B (Rm)

µ0 (B) =

∫
B
ρ0 (u)Ln (du) B ∈ B (Rn)

where Ln is the Lebesgue measure defined on B (Rn) and analogously for Lm. We can

then define the joint distribution (U ,Y) in terms of Qu and µ0, but first let us observe that

the density function of Qu is equal to ρ (y −G (u)), for fixed u, see for example equation

(2.3). Therefore, the density function of (U ,Y) is proportional to ρ (y −G (u)) ρ0 (u). If

we further assume that∫
Rn
ρ (y −G (u)) ρ0 (u)Ln (du) > 01, for a given y ∈ Rm

then Bayes’ rule implies the following, see for instance Theorem 1.1 in Dashti and Stuart

(2015),
dµy

dLn
(u) ∝ ρ (y −G (u))

dµ0

dLn
(u). (2.4)

Or, in other words

µy (A) :=

∫
A

ρ0 (y −G (u))∫
Rn ρ0 (y −G (ũ))µ0 (dũ)

µ0 (du) .

Notice that Bayes’ theorem, as it is stated in this section, requires the joint distribution

(U ,Y) to admit a probability density function, i.e. Radon-Nikodym derivative with respect

to the Lebesgue measure. The following section demonstrates Bayes’ theorem on separable

Banach spaces. In an infinite dimensional space, the main problem is the absence of a

Lebesgue measure.

2.2.2 Bayes’ Theorem on Banach Spaces

Suppose that X and Y are separable Banach spaces equipped with their respective Borel

σ-algebra, G : X → Y is a measurable mapping, and that we are interested in solving the

inverse problem (2.1).

As we mentioned in the description of the Bayesian approach, the prior distribution and

the noise distribution are known, so that we can derive the joint distribution (U ,Y) ∈ X×Y

from which we are interested in computing the conditional distribution U|Y.

Let us consider the same notation as in the last two sections:

• Q0 and Qu are defined on ΣY , the distributions of noise and U|Y, respectively.

• µ0 and µy are defined on ΣX , prior and posterior distributions, respectively.
1Notice that the above integral is the marginal distribution of y, i.e. P(y) 6= 0, see for example (2.2)
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Notice also that the σ-algebras of X and Y are given as follows, ΣX = B (X) and ΣY =

B (Y ). In the following theorem, we assume that Qu is absolutely continuous with respect

to Q0 for µ0-almost every u, i.e.

Qu � Q0, ∀ µ0-a.e. u.

According to Theorem 3.8 in Folland (2013), we have that for µ0-almost every u, there exists

a B (Y )-measurable function Φ(u, ·) : X × Y → R ∪ {+∞} such that e−Φ(u,·) ∈ L1 (Q0)2

and
dQu

dQ0
(y) := e−Φ(u,y). (2.5)

Since Q0 is assumed to be a probability measure, it also holds that Ey∼Q0e
−Φ(u,y) = 1, for

µ0-a.e. u.

As noted above, the approach starts with the determination of the joint distribution of

(U ,Y), thus we define probability ν which is defined on B (X)⊗ B (Y ),

ν (du, dy) := P (U ∈ du, Y ∈ dy) = Qu(dy)µ0(du) = µy(du)P (Y ∈ dy) .

To compensate for the absence of a Lebesgue measure in function spaces, we consider the

probability measure ν0 defined on B (X)⊗ B (Y ) and given by

ν0 (du, dy) = Q0(dy)µ0(du)

as the reference measure. In what it follows, we assume that Φ(·, ·) is ν0-measurable. Note

that the definition of ν and ν0 implies that ν � ν0 and its Radon-Nikodym derivative is

written as
dν

dν0
(u, y) = e−Φ(u,y).

The following theorem summarises all the above assumptions and it is applicable to inverse

problem with measurements subject to additive noise, in the case where X and Y are

separable Banach spaces. The proof can be found in Dashti and Stuart (2015).

Theorem 2.2.1 (Bayes’ Theorem). Suppose Φ : X × Y → R, given in (2.5), is ν0-

measurable, and

Z (y) :=

∫
U
e−Φ(u,y)µ0 (du) > 0, ∀Q0 − a.s. y.

Then the conditional distribution of U|Y = y, denoted by µy (·), exists under ν. Further-

more, if µy � µ0 for ν-a.s. y, then we have

dµy

dµ0
(u) :=

1

Z (y)
e−Φ(u,y). (2.6)

2L1 (Q0) is the space of all real-valued Q0-integrable functions
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2.3 Random series construction of priors

This section presents how to build a prior probability measure on a Banach space, using

random series through a Schauder basis. It is known that a Banach space with a Schauder

basis is necessarily separable. Therefore, the following construction can practically only en-

dow a separable Banach space with a probability measure. That means that we can always

define a probability measure on a Banach space X, but the support of that probability, it

is always contained in a separable subspace of X.

Definition 2.3.1. A Schauder basis, for a Banach space X, is a sequence of elements

φi ∈ X such that for every element u ∈ X there exists a unique sequence of ui ∈ R

satisfying

u =
∞∑
i=1

uiφi

where the convergence of the above sequence is understood with respect to the norm of X.

Note that we understand the convergence in the above definition as follows: Let us

consider partial sums,

un =
n∑
i=1

uiφi

then we have,

‖un − u‖X → 0.

The basic concept of constructing a prior measure on a Banach spaceX with a Schauder

basis {φi}∞i=1 and element m0 ∈ X, is based on the following random series,

u = m0 +

∞∑
i=1

uiφi (2.7)

where ui = γiξi with deterministic sequence γ = (γi)
∞
i=1 and random sequence ξ = (ξi)

∞
i=1

of independent and identical distributed ξi. Using the definition of the random element u,

one can think of the prior µ0 as the following measure: P (ξ ∈ ·) which defines a measure

on (R∞,B(R∞)), the push forward of this measure under ξ 7→ u gives the measure µ0 on

X.

Observe that both γ and ξ are used to define the appropriate probability over X, to

keep it separate from {φi}, we assume that ‖φi‖ = 1. For fixed {φi} and ξ, the faster

γ converges to zero, the smoother space X is. Notice also that if ξ is centred, i.e. the

expectation of ξi is zero, the expected value of u is equal to m0.

In the next section, we demonstrate two examples of priors defined on Banach spaces.

Those have been highlighted in the literature.
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2.3.1 Examples of priors

This section describes three examples of priors defined on Banach spaces based on the

above construction. Those are uniform, Gaussian and Besov priors. For a more detailed

proof, see for instance Dashti and Stuart (2015).

Uniform priors

In this example, we consider the Banach space X = L∞(D) and we endow X with a

uniform probability measure. Note that the specific space is not separable, but the above-

mentioned procedure for the endowment of a Banach space with a probability measure

requires a separable Banach space; at least, the support of that probability measure has

to be contained in separable Banach space. For the definition of that separable Banach

space, we takem0 and a sequence of {φi}∞i=1 such thatm0, φi ∈ L∞(D), then the separable

Banach space X ′ is defined as the span of that sequence with respect to the ‖ · ‖∞ norm,

i.e. (X ′, ‖ · ‖∞) = (m0 + span {φi : i ∈ N} , ‖ · ‖∞).

Then, we can define the probability measure over the Banach space X as the push-

forward probability measure of the following random series,

u = m0 +
∞∑
i=1

uiφi

where ui = γiξi with deterministic sequence γ ∈ l1, and random series ξ of independent

and identical distributed with ξi ∼ U [−1, 1].

According to Theorem 2.1 in Dashti and Stuart (2015), one use appropriate condition

on the sequence γ and m0, which can control the push-forward measure emerging from

the above random series, i.e. µ0(·) = P(u ∈ ·), where u is defined through (2.7). For

example, for given a, b > 0, one can choose γ and m0 in such a way that the support of

µ0 is contained in {u : D → R |u(x) ∈ [a, b], for a.e.x ∈ D} ∩ X ′. That can be especially

useful in the case of the elliptic inverse problem, see for instance paragraph 1.3 in Dashti

and Stuart (2015).

In the same notes and more precisely in Theorem 2.3, one can find also appropriate

conditions on m0, φi and γ, in order to define a uniform prior on Hölder space with β-

exponent, i.e. X = C0,β(D).

Gaussian and Besov priors

This example builds the framework for priors over Besov and Sobolev spaces endowed with

exponential probability measures. Let us start with the following Hilbert space

X = L̇2(Td) =

{
u : Td → R :

∫
Td
|u(x)|2dx <∞,

∫
Td
u(x)dx = 0

}
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of real valued periodic functions d ≤ 3 with inner-product (·, ·)X and a norm ‖ · ‖X , where

Td is the d-dimensional torus.

Consider {φi}∞i=1 to be an orthonormal basis of X, so that u ∈ X is written as

u =
∞∑
i=1

uiφi, where ui = (u, φi)X

Then, we can define the Banach space Xt,q,

Xt,q :=

{
u : Td → R : ‖u(x)‖Xt,q <∞,

∫
Td
u(x)dx = 0

}

where ‖u‖Xt,q :=
(∑∞

i=1 i
( tqd + q

2
−1)|uj |q

)1/q
with q ∈ [1,∞) and t > 0. One can see that

using a different basis, i.e. {φi}∞i=1, X
t,q represent a different space, for example:

• If we choose {φi}∞i=1 to be the Fourier basis and q = 2, then the space Xt,2 represents

Ḣt(Td), i.e. Sobolev space of periodic functions with mean-zero and square-integrable

derivatives up to t.

• On the other hand, if we choose {φi}∞i=1 to be a wavelet basis, then the space Xt,q

represents the Besov space Bt
qq.

Then, using the random series which introduced in (2.7) with appropriate deterministic

sequence γ and random sequence ξ, one can endow the space Xt,q with a probability

measure. In this example, we take ξ to be i.i.d with ξi centred q-exponential distribution,

that is

ξi ∼ cqe−|x|
q/2

for some q ∈ [1,∞) and with cq the normalising constant. For example for q = 2, we

have that ξi are Gaussian distributed and for q = 1, ξi are Laplace-distributed. Also, for

s, δ > 0, we define the deterministic sequence γ as follows:

γj = j
−( s

d
+ 1

2
− 1
q

) 1

δ1/q

According to Theorem 2.6 in Dashti and Stuart (2015), under the appropriate assumptions

on t, s, q, we have that the support of the the push-forward measure emerging by (2.7) is

contained in Xt,q.

An interesting example of Xt,q is the 1-Besov priors with wavelets for {φi}∞i=1 and ξ are

Laplace-distributed. According to Donoho and Johnstone (1998), Bt
11 contains functions

with considerable spatial inhomogeneity, i.e. it is extremely spiky in some parts of its

domain and in other parts is extremely smooth. Also, there is an appropriate basis {φi}∞i=1

such that the most likely draws from the prior are described by relatively few non-zero
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coefficients ui in basis {φi}∞i=1. These two properties are particularly interesting in the

field of image processing and signal processing. In those fields, one needs to recover a

solution which is rapidly changing its values, see for example ultrasound images. Those

images are very smooth on some parts and it is changing rapidly on other parts.

Furthermore, using the same random series, we can endow Hölder spaces with a q-

exponential probability measures. We only need to take a basis {φi}∞i=1 which consists of

bounded and α−Hölder functions φi, and both the bound of φi and its Lipschitz constant

are growing with respect to i. Then, Theorem 2.8 in Dashti and Stuart (2015), implies

that under appropriate conditions the support of the the push-forward measure emerging

by (2.7), is contained in C0,β(Td).

2.4 Well-posedess of Bayesian approach

This section presents a set of conditions that ensure the well-posedness of the Bayesian

approach. Thus, the following results are divided as follows: the posterior is well-defined,

i.e. it satisfies existence and uniqueness, and stability under an appropriate metric, that

is, small variation in the observed data causes small changes in the posterior distribution.

Let us consider X, Y to be separable Banach spaces equipped with the Borel σ-algebra,

and µ0 is a measure on X. We also assume that µy � µ0 and the Radon-Nikodym

derivative of µy with respect to µ0 is given as follows

dµy

dµ0
(u) =

1

Z (y)
e−Φ(u;y), where Z (y) =

∫
X

e−Φ(u;y)µ0 (du) (2.8)

Assumption 2.4.1. Let X ′ ⊆ X and assume that Φ ∈ C (X ′ × Y ;R). Assume further

that there are functions Mi : [0,∞)2 → [0,∞), i = 1, 2 monotonic nondecreasing separately

in each argument, and with M2 strictly positive, such that for all u ∈ X ′, y, y1, y2 ∈

BY (0, r),

−M1 (r, ||u||X) ≤ Φ (u; y)

|Φ (u; y1)− Φ (u; y2) | ≤M2 (r, ||u||X) ‖y1 − y2‖Y

Remark 2.4.1. Note that in the case of an inverse problem with finite dimension data

and with Gaussian noise, we always have that the corresponding Φ(u; y) satisfies the first

inequality. For the second inequality, we need further to assume that the forward operator

is Lipschitz, or even satisfies the condition of polynomial growth.

In the following theorem, we see that, under appropriate assumptions, for any y ∈ Y ,

there exists a unique posterior distribution µy, the proof of this theorem can be found in

Dashti and Stuart (2015).
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Theorem 2.4.1. Let Assumption 2.4.1 hold. Assume that µ0 (X ′) = 1 and that µ0 (X ′ ∩B) >

0 for some bounded set B in X. Assume additionally that, for every fixed r > 0,

eM1(r,||u||X) ∈ L1
µ0

(X;R) .

Then, for every y ∈ Y , Z (y) given by (2.8) is positive and finite and the probability measure

µy given by (2.8) is well-defined.

The following result is related to the stability of the posterior distribution µy which

means that for y′ in a small neighbourhood of y, i.e. for 0 < δ � 1, y′ ∈ B‖·‖Y (y, δ), the

posterior µy′ is close to µy. For the definition of this kind of stability, one needs to consider

a metric on the probability space M (X) := { probabilities π defined on (X,B (X))}. In

this case, we consider the Hellinger distance,

dHell (µ, ν)2 :=
1

2

∫ (√
dµ

dζ
−

√
dν

dζ

)2

dζ, where ζ ∈M(X) with µ, π � ζ

Then, we know that Hellinger distance defines the metric space (M(X), dHell). The follow-

ing theorem provides the stability of the posterior distribution with respect to Hellinger

distance and its proof can be found in Dashti and Stuart (2015).

Theorem 2.4.2. Let Assumption 2.4.1 hold. Assume that µ0 (X ′) = 1 and that µ0 (X ′ ∩B) >

0 for some bounded set B in X. Assume additionally that, for every fixed r > 0,

eM1(r,||u||X)
(

1 +M2 (r, ||u||X)2
)
∈ L1

µ0
(X;R) . (2.9)

Then there is C = C (r) > 0 such that, for all y, y′ ∈ BY (0, r)

dHell

(
µy, µy

′
)
≤ C||y − y′||

2.5 Approximations of the posterior

This section demonstrates a continuity property of the posterior distribution based on Φ,

see for example (2.5). The metric on the probability space M(X) is considered to be the

Hellinger distance.

In this case, we only need to focus on X, so we drop the subscript about the data

y. Let us consider X Banach space and µ0 prior defined on X. We consider µ and µN

posterior distributions which are absolutely continuous with respect to µ0, and are given

by the following two formulas

dµ

dµ0
(u) =

1

Z (y)
e−Φ(u;y), where Z (y) =

∫
X

e−Φ(u;y)µ0 (du)

dµN

dµ0
(u) =

1

ZN (y)
e−ΦN (u;y), where ZN (y) =

∫
X

e−ΦN (u;y)µ0 (du)

(2.10)
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As we see the following assumption is analogous to the one in the former section.

Assumption 2.5.1. Let X ′ ⊆ X and assume that Φ ∈ C (X ′;R). Assume further that

there are functions Mi : [0,∞) → [0,∞), i = 1, 2 monotonic nondecreasing, and with M2

strictly positive, such that for all u ∈ X ′,

−M1 (||u||X) ≤ Φ (u)

−M1 (||u||X) ≤ ΦN (u)

|Φ (u)− ΦN (u) | ≤M2 (||u||X)ψ (N) where ψ (N)→ 0 as N →∞

Notice that the important result in the following theorem is that µN can be used as

an approximation for the posterior distribution of µ, its proof can be found in Dashti and

Stuart (2015).

Theorem 2.5.1. Let Assumptions (2.5.1) hold. Assume that µ0 (X ′) = 1 and that µ0 (X ′ ∩B) >

0 for some bounded set B in X. Assume additionally that, for every fixed r > 0,

eM1(||u||X)
(

1 +M2 (||u||X)2
)
∈ L1

µ0
(X;R) .

Then the probability measures µ and µN given by (2.10) are well-defined. Furthermore,

there is a constant C > 0 such that, for all N sufficiently large, the following holds

dHell
(
µ, µN

)
≤ Cψ (N)

2.6 Monte Carlo approximation

In the previous framework, we start with a known prior probability and we are interested

in approximating the posterior distribution. This approximation computes the posterior

distribution indirectly. Essentially, we are interested in evaluating the so-called quantity of

interest. Those quantities describe the statistical behaviour of the posterior distribution,

for example they are: confidence intervals, mean values, variances, probabilities for certain

events, etc. In most of the cases, those quantities are expected values of measurable

functions with respect to the posterior distribution.

Consider a measurable function φ : D → R, a probability space (Ω,Σ,P) and the

random variable X which is distributed uniformly on the set D, i.e. X ∼ U(D). Suppose,

we want to compute the integral

I(φ,U(D)) =

∫
D
φ(x)dx =

∫
Ω
φ(X(ω))P(dω)
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One way for the approximation of those quantities is to use Monte Carlo simulations. This

method arises from probability theory and more precisely an inspiration about this theory

comes from the law of large number.

Let us consider the following method, for given X1, . . . XN random variables independ-

ent and identically distributed by X1 ∼ U(D), we define the approximation IN as follows

IN (φ,U(D)) =
1

N

N∑
n=1

φ(Xn)

For simplicity, let us now denote I(φ,U(D)), IN (φ,U(D)) by I, IN . According to the

Strong law of large number, if X1, X2 . . . is a sequence of independent and identically

distributed with finite mean and finite variance then we have that

IN =
1

N

N∑
n=1

φ(Xn) −→ Eφ(X) =

∫
D
φ(x)dx = I

Thus, based on this, we can build the basic Monte Carlo method. Another important

factor for an approximation method is to estimate its convergence rate, or in other words,

how fast our method converges. The answer to that question is given by the central limit

theorem,
√
N (IN − I) −→ N(0, σ2), in distribution

where σ2 = V ar(g(X)). Notice that the central limit theorem does not depend on the

dimension of X. Then, the convergence rate can be assessed and we get that the "error

term" is of order O(1/
√
N) regardless of the dimension of X.

Let us consider the Riemann approximation and compare it with the above mentioned

method. First, we assume D = [0, 1] and define the Riemann approximation as follows,

ĨN :=
1

N

N∑
n=1

φ(yn)

where yn = n/N . For a smooth function, one can take that the convergence rate for

this approximation is of order O(1/N). Apparently, in this particular case the Riemann

technique has better convergence rate in comparison to the Monte Carlo. On the other

hand, deterministic approximations are not invariant to the change of the dimension. See

for example that if we define the same technique on D = [0, 1]10, in order to achieve the

same level of accuracy O(1/N), we need to evaluate O(1/N10) points. Therefore, Monte

Carlo simulation are more suitable for the computation of integrals in high-dimensional

space.

The following example aims to present an idea for the acceleration of Monte Carlo based

on a better sampling technique. Consider the function φ with support within the interval
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[a, b] and two probability measures µ, π with density functions fµ, fπ, respectively. The

following two Figures2.1.(a) and 2.1.(b) consists of the graphs of φ, fµ and fπ. Notice that

(a) density of µ (b) density of π

Figure 2.1: The solid line refers to the function φ and the dashed line refers to the density

function µ and π, respectively.

most of the mass of the probability µ is on the complement of the support of φ, while in

case of π, it happens quite the contrary. Similar to the above mentioned Monte Carlo, we

define the approximations IN (φ, π) and IN (φ, µ) which approximate the integrals I(φ, π)

and IN (φ, µ), respectively. We observe that most of Xi, in the case of IN (φ, µ), takes

values on [a, b]c, while in case of π, it happens quite the contrary. Therefore, we have that

IN (φ, π) approaches I(φ, π) faster than IN (φ, µ) approaches I(φ, µ).

The above example suggests that the acceleration of the computation of a Monte Carlo

method can be achieved using a sampling technique that concentrates most of the drawn

points in a region, where φ takes its largest values.

In the next section, we study the importance sampling method. In that method, we

consider two different measures: the first is the one we want to approximate, i.e. I(·, µ), and

the other is the one, we draw the sample from, i.e. IN (·, π), those are the so-called target

measure and proposal measure, respectively. In addition, we observe that the definition

of that method provides a more suitable framework for the approximation of the posterior

distribution.

2.6.1 Importance sampling

Let us consider a probability measure µ defined on (X,B (X)) and a µ-integrable function

φ : X → R. The purpose of this method is the computation of the following integral using

a similar probabilistic technique as the above relying on the (L.L.N.)

µ(φ) :=

∫
X
φ(x)µ(dx)

In contrast with the above technique, the sample is not drawn directly from µ, but instead

from an appropriate probability π, the so-called proposal probability. Also, in this point
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it is worth mentioning that µ is the so-called target probability measure.

The definition of the current method is based on the assumption that the Radon-

Nikodym derivative of µ with respect to π, is known up to a multiplication constant

dµ

dπ
(u) = g(u)

/∫
X
g(x)π(dx)

Since µ and π are measures, then g : X → R+ is a non-negative function. Moreover,

an equivalent condition for the existence of such g is that µ is absolutely continuous with

respect to π. Notice that

µ(φ) :=

∫
X
φ(u)

dµ

dπ
(u)π(du) =

∫
X
φ(u)g(u)π(du)

/∫
X
g(x)π(dx) =:

π(φg)

π(g)

which is basically the inspiration for the following definition.

Definition 2.6.1. The auto-normalised importance sampling estimator is given by:

µN (φ) :=

1

N

N∑
n=1

φ (un) g (un)

1

N

N∑
m=1

g (um)

un ∼ π i.i.d

=
N∑
n=1

wnφ (un) where wn :=
g (un)∑N

m=1 g (um)

Next, we examine the convergence of the auto-normalised importance sampling estim-

ator. These results are presented as follows. First, we study the estimator’s asymptotic

consistency, and then we provide bounds for the bias of the estimator and the mean square

error (MSE). Note that the last two quantities quantify the accuracy of the given estimator.

On the other hand, asymptotic consistency tells us that the distribution of the estimator

becomes more and more concentrated around the true value of µ(φ) as the sample size

becomes larger, i.e. N � 1.

The convergence of estimator µN (φ) to µ(φ) is a consequence of (L.L.N.) and the

following property,

Xn
P−→ X, Yn

P−→ Y ⇒ (Xn, Yn)
P−→ (X,Y )

Thus a sufficient condition for the convergence of the estimator is that both π(g), π(φg)

should be finite. Similarly, for the application of the central limit theorem, we use Slutsky’s

theorem, which says that

Xn
in law−−−→ X, Yn

P−→ c ⇒ Xn/Yn
in law−−−→ X/c
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where c is constant. Therefore a sufficient condition for the application of the central limit

theorem is that π(g2) and π(φ2g2) are finite,

√
N
(
µN (φ)− µ (φ)

) in law−−−→ N

0,
π
(
g2 (φ− µ (φ))2

)
π (g)2


The following estimations about bias and MSE are obtained in Agapiou et al. (2017).

Therein, the author emphasises the importance of the quantity ρ, which is defined as the

second moment of the Radon-Nikodym derivative of the target measure with respect to

the proposal, i.e.

ρ =
π(g2)

π(g)2

It is also easy to see, using Cauchy-Schwarz inequality, that ρ ≥ 1. The proof of the

following theorem can be found in Agapiou et al. (2017), see Theorem 2.1.

Theorem 2.6.1. Assume that µ is absolutely continuous with respect to π, with square-

integrable density g, that is, π
(
g2
)
<∞. The bias and MSE of importance sampling over

bounded test functions may be characterized as follows:

sup
|φ|≤1

∣∣E [µN (φ)− µ (φ)
]∣∣ ≤ 12ρ

N

and

sup
|φ|≤1

E
[
µN (φ)− µ (φ)

]2 ≤ 4ρ

N

It is easy to see that the above estimates do not apply only to the case where |φ| ≤ 1,

but they can be used as a general statement for bounded functions. The extension for any

bounded φ can be shown by using the estimator definition and µ(φ). In addition, Theorem

2.3 in the same paper provides us with bounds on the bias and MSE for given φ which is

not necessarily bounded.

We remind the example of the last section, see Figure 2.1, its purpose is to highlight

that an appropriate proposal distribution can accelerate the computation of the Monte

Carlo estimates. Let us re-state that example in a way that matches with the definition

of the importance sampling. Suppose we have a given function φ and probability µ that

admits a density function fµ, then similarly to that example, we see that the best candidate

for fπ is a function in the shape of the product of φ and fµ.

Based on that example, we study the effective sample size (ess) which is defined as

follows, see for instance Agapiou et al. (2017),

ess(N) :=

(
N∑
n=1

(wn)2

)−1

=

(∑N
n=1 g (un)

)2

∑N
m=1 g (um)2

= N
πNMC (g)2

πNMC (g2)
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where πNMC is the empirical Monte Carlo estimate

πNMC (g) :=
1

N

N∑
n=1

g (un) , un ∼ π

The following inequality provide the range of ess, the right-hand side of the inequality is a

result of the Cauchy-Schwarz, for the the other side, wn is less than or equal to 1

1 ≤ ess(N) ≤ N

In order to see that ess(N) quantifies the effectiveness of the sample, we show two extreme

examples. Let us consider an N -sized sample (u1, u2, . . . , uN ). In the first case we assume

that only one wn is non-zero, then by definition ess(N) = 1. On the other hand, we

consider a sample that all weights are equal, so we get ess(N) = N . Observe that between

the former two examples, the most efficient sample is the second one. The last example is

given through the following Figure 2.2, observe that for a typical N -sample drawn from π,

it is more likely for the ess(N) of Figure 2.2(a) to be smaller than ess(N) of Figure 2.2(b).

(a) Low ess (b) High ess

Figure 2.2: Notice that in both figures, there is a dashed line and a dot-dashed line, in order

to spot the differences the dot-dashed line is chosen in both figure to be the lower function.

The dashed line represent the density function of the target measure µ, the dot-dashed line

the proposal measure π and the solid line represents the unnormalised Radon-Nikodym of

µ� π.

If we further assume that π(g2) <∞, then the Strong Law of the Large Number implies

that
πNMC (g)2

πNMC (g2)

a.s.−−→ 1

ρ

Or equivalently, we get that for sufficient large N , it holds that

ess(N) ≈ N

ρ
.

Therefore, for sufficient large N , the MSE can be controlled using ess(N)

sup
|φ|≤1

E
[
µN (φ)− µ (φ)

]2
/

4

ess(N)
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2.6.1.1 High and infinite dimension case

The purpose of the following example is to highlight a particular behaviour of the Radon-

Nikodym derivative, i.e. g, for probability measures µ, π defined in High-dimensional

space.

Suppose two probability measures µ1 and π1 are defined on (R,B (R)) with g1(u) =

e−h(u) and h : R → R+. In addition, we assume that the mean and the variance of µ1 and

π1 are finite and also h is not constant in order to avoid the trivial case µ1 = π1. Now, we

consider the product probability measures µn and πn on (Rn,B (Rn)) with

µn(du) :=

n∏
i=1

µ1(dui), πn :=

n∏
i=1

π1(dui)

The unnormalised Radon-Nikodym is given by

gn(u) = e−
∑n
i=1 h(ui)

Since h is non-negative, we have that has all the polynomial moments of gn under πn are

finite. Moreover, we have that for every finite n, µn � πn, thus we can apply importance

sampling on each one of them.

Let us define the set

Aµ1 =

{
u ∈ R∞ : lim

N→∞

1

N

N∑
i=1

ui =

∫
xµ1(dx)

}

and µ∞ and π∞ are the limit probability measures of µn and πn, respectively.

Next, we want to evaluate µ∞(Aµ1) and π∞(Aµ1). Notice also that∫
xµ1(dx) =

∫
x
g1(x)

π1(g1)
π1(dx) 6=

∫
xπ1(dx)

Using the Strong Law of Large Number, one can prove that

µ∞(Aµ1) = 1, π∞(Aµ1) = 0

Thus, µ∞ and π∞ are mutually singular. The above mentioned example taught as that

any two measure µ∞ and π∞ which differ, in the above sense, in infinite dimension without

that difference is vanishing as long n goes to infinity, then we will always have that those

two measures, µ∞, π∞, are mutually singular. Note that since µ∞ and π∞ are mutually

singular, thus there is no Radon-Nikodym derivative and hence importance sampling can

not be defined.

Based on the singularity, it is worth investigating how this affects MSE as the dimension

of the problem increases. Remember that ρ/N controls MSE. Using that h is not constant,
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we get that ρ1 > 1, and also due to the structure of µn and πn, we have ρn = (ρ1)n. Let

us say we are interested in achieving the same accuracy, i.e. MSE, as n goes to infinity.

In order to compensate the exponential growth of ρn, we need to increase the sample size

exponentially with respect to n.

Essentially, the above example says that if each coordinate of g plays a significant

role for the construction of µ∞, then the probability measures µ∞ and π∞ are mutually

singular. As a consequence, we have that for non-trivial probabilities µ and π defined on

the high dimensional space X with µ � π, the part of X that contributes most to the

evaluation, tends to be limited to a low-dimensional subspace.

Motivated by these considerations, we are interested in a distance that can quantify

the significance of each coordinate of g. In order to determine that distance, we use the

exponential structure of ρ that emerges from the above example. Therefore, we introduce

the so-called Kullback-Leibler divergence.

Let us assume two probability measures µ and π are defined over the same measurable

space (X,B (X)). Then their Kullback-Leibler divergence is defined as follows

DKL(µ||π) =

∫
log

(
dµ

dπ

)
dµ (2.11)

Notice that

DKL(µ||π) =

 <∞, µ� π

∞, otherwise

Thus it is obvious that Kullback-Leibler is not symmetric.

Using Jensen inequality, one can show that

DKL(µ||π) ≥ log

(∫
dµ

dπ
dµ

)
= 0 (2.12)

In addition, it may be shown that

eDKL(µ||π) ≤ ρ

Let us recall that ρ/N controls the MSE, see Theorem 2.6.1, thus we have that N has to

be at least exponentially larger than DKL(µ||π).



26

Chapter 3

Stochastic differential equations

In this chapter we discuss stochastic differential equations. We review the theory of ex-

istence of solutions and well-posedness and their corresponding forward and backward

Kolmogorov equations. As we shall be considering these equations on bounded intervals

later in the thesis, we shall also look at how the process is defined in a neighbourhood of

the boundary points.

3.1 Existence and uniqueness in R

We consider a complete probability space (Ω,F ,P) with a filtration (Ft)t≥0 that is right-

continuous and F0 contains all P−null sets. Also, (Wt)t≥0 is a brownian motion defined

on that space. Let consider µ : [0, T ] × R → R and σ : [0, T ] × R → R to be measurable

functions. Then, we can define a stochastic differential equation of Itô type with initial

values, as follows

dXt = µ (t,Xt) dt+ σ (t,Xt) dWt, t ∈ [0, T ]

X(t0) = x0

(3.1)

There are several frameworks that one consider in oder to define a solution to the above

equation. Let start with the most common structure for a solution that satisfies (3.1)

and summarise the structure in the following definition, this definition comes from Evans

(2012) book.

Definition 3.1.1. A real-valued stochastic process (X(t))t∈[0,T ] is called solution of (3.1)

with initial value X(t0) = x0, if the following hold:

(i) (X(t))t∈[0,T ] is continuous for a.e. path and Ft adapted

(ii) E
∫ T

0 |µ (s,Xs) |ds <∞ and E
∫ T

0 |σ (s,Xs) |2ds <∞

(iii) equation (3.1) holds for every t ∈ [0, T ] with probability 1.
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The question that naturally comes to a person who is interested in the solution of such

equations is, whether there are more than one solution to this problem. There are several

definitions about the uniqueness of such problems, but specifically in this framework the

one we consider is the so-called path-wise uniqueness and it is given in the following terms:

We say that the solution of equation (3.1) is unique, if for any processes (X(t))t∈[0,T ]

and
(
X(t)

)
t∈[0,T ]

which solves equation (3.1) holds that

P
(
X(t) = X(t), ∀t ∈ [0, T ]

)
= 1

The following theorem gives the most common assumptions under which equation (3.1)

has a unique solution, for more details about its proof see for instance Theorem 3.1 in Mao

(2007),

Theorem 3.1.1. Assume functions µ and σ satisfy the following two properties:

(i) (Lipschitz condition) there exists a constant C such that: ∀x, y ∈ R and t ∈ [0, T ]

|µ(t, x)− µ(t, y)|+ |σ(t, x)− σ(t, y)| ≤ C|x− y|

(ii) (Linear growth condition) there exists a constant C ′ such that: ∀x ∈ R and t ∈ [0, T ]

|µ(t, x)|+ |σ(t, x)| ≤ C ′ (1 + |x|)

Then, there is a unique solution X for equation (3.1).

For the purpose of the present thesis, we study the particular case,

dXt = µ (Xt) dt+
√
σ (Xt)dWt, t ∈ [0, T ]

Xt0 = x0

(3.2)

where µ, σ are Lipschitz and σ ≥ 0. As, we can see the so-called diffusion coefficients of

(3.2) is 1/2-Holder, so it does not fulfill the requirements of theorem 3.1.1. We can easily

see that
√
σ (·) is 1/2-Holder because it satisfies the following inequality,

|
√
σ(x)−

√
σ(y)| ≤

√
|σ(x)− σ(y)| ≤

√
C
√
|x− y| (3.3)

The following theorem will provide us with the existence of solutions to (3.2). Before that

theorem, one needs to extend the definition provided above for the solution of equation

(3.2). The following definition determines a weak solution, see for instance Karatzas and

Shreve (2014).

Definition 3.1.2. A weak solution of (3.1) with initial condition x is a stochastic pro-

cess (X(t))t≥0 on some probability space (Ω,F ,P) such that for some Brownian motion

(W (t))t≥0 and some filtration (Ft)t≥0 with the usual condition1, X satisfies the following:
1A filtration {Ft}t≥0 is said to satisfy the usual conditions, if it is right-continuous and F0 contains all

the P-negligible events in F
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(i) (X(t))t≥0 is continuous a.e. and Ft adapted

(ii) ω − a.e., we have that:
∫ T

0 |µ (s,Xs) |+
∫ T

0 |σ (s,Xs) |2ds <∞ for every T > 0,

(iii) equation (3.1) holds for every t ≥ 0 with probability 1.

We see that the following theorem relaxes the condition for the existence of such a

solution but also refers to a more general solution, for the proof of the following theorem,

see page 60 of Skorokhod (1982).

Theorem 3.1.2. Consider equation (3.1) with coefficients µ, σ ∈ C([0, T ]×R) and assume

that µ and σ satisfy the linear growth condition from Theorem 3.1.1. Then, equation (3.1)

has at least a solution which is bounded with probability 1.

Using inequality (3.3) and the Lipschitz continuity of µ, we can obtain a constant C > 0

in the following way

|µ(x)|+ |
√
σ(x)| ≤ µ(0) + Cµ|x|+ σ(0) +

√
Cσ
√
|x| ≤ C(1 + |x|)

Hence, we can see that the coefficients of equation (3.2) satisfy Theorem 3.1.3.

Let us now state the following theorem which provide us the uniqueness for the solution

of equation (3.2), the proof of that Theorem can be found in Yamada and Watanabe (1971).

Theorem 3.1.3. Consider the equation,

dX = µ(Xt)dt+ σ(Xt)dWt. (3.4)

Suppose that

(i) there exists a positive increasing function ρ(x) for x ∈ (0,∞) such that:

|σ(x)− σ(y)| ≤ ρ(|x− y|), ∀x, y ∈ R

and
∫

0+

ρ−2(s)ds = +∞

(ii) there exists a positive increasing concave function κ(x) for x ∈ (0,∞) such that:

|µ(x)− µ(y)| ≤ κ(|x− y|), ∀x, y ∈ R

and
∫

0+

κ−1(s)ds = +∞.

Then, the solution is pathwise unique.

3.2 SDEs on bounded sets

In this section, we consider processes which take values in an I sub-interval of the real

line. In particular, we have that the equation in (3.1) determines the behaviour of the
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process only in the interior of interval I, where for the boundary, we need to take further

assumptions.

According to Feller (1954a) and Feller (1954b), in one dimension, there are only four

kinds of behaviours that a process can have on the boundary in order for this to have

continuous paths:

(i) absorption: once the process reaches the boundary, it remains there.

(ii) instantaneous reflection: when the process reaches the boundary, it returns to the

interior of the interval in a continuous way; moreover, the time that almost each path

spends on the boundary is zero.

(iii) delayed reflection: similarly as the above, but instead of leaving instantaneously, it

remains for a positive time, so for almost each path, we have that the time the process

spends on the boundary is positive.

(iv) partial reflection: this is a combination of absorption and instantaneous reflection,

which means that once the process reaches the boundary it either remains there, or

reflects instantaneously.

In the case of an SDE with absorption on the boundary, this is the so-called SDE with

absorbing barrier, Doob (1955) suggests that the solution of an SDE with absorbing barrier

can be realised as the stopped process of the solution of the equation (3.1). In particular,

the author defines the standard Itô process as the solution Xt of equation (3.1) under

the conditions that the coefficients: µ and σ are Baire functions with respect to the pair

(t, x), also these are satisfying the Lipschitz and the linear growth conditions, see (3.1.1),

and last σ is positive. Then, if Xt is a standard Itô process and τ is a stopping time, the

process Xt∧τ is given by the following equation

X (t ∧ τ)−X (0) =

∫ t

0
µ (s,Xs) 1 (τ > s) ds+

∫ t

0
σ (s,Xs) 1 (τ > s) dWs

Also, in the same paper, one can find the following theorem which provides the uniqueness

conditions.

Theorem 3.2.1. Consider two standard Itô processes (X1(t))t∈[0,T ] and (X2(t))t∈[0,T ] with

initial value Xi(0) = x and coefficients µi and σi, for i = 1, 2, respectively. Assume that

Xi(t), i = 1, 2 are defined with the same Brownian motionW (t). Consider a closed interval

I (finite, or infinite) such that for every t ∈ [0, T ] and y ∈ I, µi coefficients coincide and

similarly for σi, and, define the stopping times τi = inf {t : Xi(t) ∈ ∂I}. Then, if x ∈ I,

we have that:

P (τ1 = τ2) = 1, P (X1(t) = X2(t), ∀t ≤ τ1) = 1



30

For boundary cases (ii)-(iv) above, one can find the conditions for existence and unique-

ness of the process in Skorokhod (1961) and Skorokhod (1962). The following is an example

of a reflecting SDE with instantaneous reflection on the boundary, the so-called SDE with

reflecting barrier. Let us consider the case, where the domain of the process is the half-line

{x : x ≥ 0}, and the boundary point is 0. The above references suggest that the solution

should be sought as a pair of two processes (ξ, l) which satisfy the following equation

ξ (t)− ξ (0) =

∫ t

0
µ (s, ξs) ds+

∫ t

0
σ (s, ξs) dWs + l(s) (3.5)

where l satisfy the following properties: for almost every path, l is a continuous monotone

function and the points of growth can only occur when the process ξ attains the boundary,

i.e. ξ = 0, and the set {t : ξ(t) = 0} has Lebesgue measure 0. Also in Skorokhod (1962),

we can find a different representation for the process l from the one that follows in the

next section.

In the following two subsections, we focus on the above example in order to develop

some necessary tools that we need later for this thesis. In the first subsection, we intro-

duce the Skorokhod problem and the corresponding Skorokhod map, while in the second

subsection, we use that map in order to obtain an equivalent differential form of equation

(3.5), where that new differential form looks similar to (3.1).

Our main interest is to focus on these two cases, so we are not going to provide any

further details about boundaries as in case (iii), or (iv).

3.2.1 Skorokhod problem

In this problem, we consider a continuous function f and we are interested to divide it in

a unique way into the difference of two positive functions g and l. The following is a more

rigorous definition of that problem, see for instance in Pilipenko (2014).

Definition 3.2.1. For a given f ∈ C ([0, T ]) with f(0) ≥ 0, a pair of continuous functions

g and l are called a solution of the Skorokhod problem for f if

(i) g(t) ≥ 0, t ∈ [0, T ]

(ii) l(0) = 0 and l is non-decreasing w.r.to t

(iii)
∫ T
0

1 (g(s) > 0) dl(s) = 0

(iv) g(t) = f(t) + l(t), ∀t ∈ [0, T ]

The following theorem provides the existence and uniqueness of the Skorokhod prob-

lem’s solution; the proof is omitted but it can be found in Skorokhod (1962).
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Theorem 3.2.2. Suppose f ∈ C ([0, T ]) and f(0) ≥ 0. Then, the Skorokhod problem has

a unique solution. Furthermore, the solution is given as it follows:

l(t) = − min
s∈[0,t]

{f(s) ∧ 0} = max
s∈[0,t]

{(−f(s)) ∨ 0}

g(t) = f(t) + l(t) = f(t)− min
s∈[0,t]

{f(s) ∧ 0}

Before, we return in the case of the reflecting barrier, we define Skorokhod map as it

follows:

g (·) = Γf (·) = f (·)− min
s∈[0,·]

{f(s) ∧ 0} (3.6)

The following Lemma summarises some of the Skorokhod map properties, the proof of

which is omitted, but it is easy to obtain and can be found in Pilipenko (2014).

Lemma 3.2.1. Let consider the Skorokhod map Γ : (C([0, T ]), ‖ · ‖) → (C([0, T ]), ‖ · ‖),

where ‖f‖[0, t] := sups∈[0,t] |f(s)|. Then, the following holds:

(i) for every f1, f2 ∈ C ([0, T ]) and t ∈ [0, T ]

‖g1 − g2‖[0, t] ≤ 2‖f1 − f2‖[0, t]

‖l1 − l2‖[0, t] ≤ ‖f1 − f2‖[0, t]

where gi = Γfi and li = fi − gi for i = 1, 2

(ii) for every δ > 0 and f ∈ C ([0, T ]):

ωg(δ) ≤ ωf (δ), ωl(δ) ≤ ωf (δ)

where g = Γf , l = f − g and ωf (δ) := sup
t,s∈[0,T ]
|t−s|<δ

|f(t)− f(s)|

(iii) for every f ∈ C ([0, T ]) and t ∈ [0, T ]

‖Γf‖[0, t] ≤ 2‖f‖[0, t], ‖l‖[0, t] ≤ ‖f‖[0, t]

From point (i) of the above Lemma, it is immediate to conclude that Skorokhod map

is continuous.

3.2.2 Existence and uniqueness of SDE’s solution with reflecting barrier

Let us consider once again the example that introduced in (3.5),

dξt = µ(t, ξt)dt+ σ(t, ξt)dWt + dlt, t ≥ 0

with reflection at 0 and initial condition ξ(0) = ξ0.
(3.7)

The following definition summarises all the properties suggested in Skorokhod (1961) and

can be found in Pilipenko (2014).
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Definition 3.2.2. A pair of continuous Ft-adapted processes (ξt, lt)t≥0 is called solution

of the stochastic differential equation (3.7), if ξ(t) and l(t) satisfy the following:

(i) ξ(t) ≥ 0 for t ≥ 0

(ii) l is non-decreasing and l(0) = 0

(iii)
∫ t
0

1 (ξ(s) > 0) dl(s) = 0, t ≥ 0

(iv) For almost every ω, we have that: for t ≥ 0 it holds that

ξ(t) = ξ0 +

∫ t

0
µ(s, ξ(s))ds+

∫ t

0
σ(s, ξ(s))dWs + l(t) (3.8)

and all integrals are well-defined.

We now show that equation (3.7) and the Skorokhod problem can be combined in such

a way that we can obtain an equivalent differential form to equation (3.8).

Let us assume that there exists a pair of processes following definition 3.2.2 and fix ω

that satisfies equation (3.8), and define

Y (t) = ξ0 +

∫ t

0
µ(s, ξ(s))ds+

∫ t

0
σ(s, ξ(s))dWs, t ≥ 0. (3.9)

According to the definition 3.2.2, the integrals are well-defined which implies that the

process Y is continuous. Observe that for fixed ω, we can apply Theorem 3.2.2. We

only need to see that ξ(t, ω) satisfies the same assumption as the one considered for the

function g(t) in definition 3.2.1, and also the same holds for l(t, ω) and the corresponding

l(t) comes from the definition 3.2.1. The uniqueness of Theorem 3.2.2 provides us that

there is a unique pair (ξ(t, ω), l(t, ω)) which satisfies the definition in 3.2.1 and defines

Y (t, ω). Therefore, using the representation for the solution of the Skorokhod problem, we

get that

ξ(t, ω) = ΓY (t, ω), t ≥ 0

Hence, equation (3.9) can be written as follows:

Y (t) = ξ0 +

∫ t

0
µ(s,ΓY (s))ds+

∫ t

0
σ(s,ΓY (s))dWs, t ≥ 0 (3.10)

Conversely, assuming a process Y that satisfies equation (3.10). The application of

Theorem 3.2.2 on Y provides us with such ξ and l which satisfy definition 3.2.2.

Since equations (3.8) and (3.10) are equivalent, it make sense to take the following

notation: let consider equation (3.8) with coefficients µ(t, ·) and σ(t, ·), then the coefficients

of equation (3.10) can be denoted by µ̃(t, ·) := µ(t,Γ(·)t) and σ̃(t, ·) := σ(t,Γ(·)t). By using
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Lemma 3.2.1, it is easy to see that if µ and σ satisfy Lipschitz continuity and linear growth,

as in Theorem 3.1.1, then µ̃ and σ̃ satisfy similar properties:

|µ̃(t, f1)− µ̃(t, f2)|+ |σ̃(t, f1)− σ̃(t, f2)| ≤ 2C‖f1 − f2‖[0, t]

|µ̃(t, f)|+ |σ̃(t, f)| ≤ 2C ′ (1 + ‖f‖[0, t])
∀f, f1, f2 ∈ C([0, T ]) and t ∈ [0, T ]

where the above ‖·‖ is the supremum-norm, the same as the one, we use in the last section.

The following theorem is the analogue of Theorem 3.1.1, the proof of which is omitted,

but we can find it in two different forms, either by using the above observation for the

coefficients of equation (3.10) and then apply the proof of Theorem 2.2 on page 150 in

Mao (2007), or we can use an alternative proof based on equation (3.8), see Theorem 1.2.1

in Pilipenko (2014).

Theorem 3.2.3. Let ξ0 be a non-negative F0-adapted random variable and also assume

functions µ and σ satisfying the following two properties:

(i) (Lipschitz condition) there exists constant C such that: ∀x, y ∈ R and t ∈ [0, T ]

|µ(t, x)− µ(t, y)|+ |σ(t, x)− σ(t, y)| ≤ C|x− y|

(ii) (Linear growth condition) there exists constant C ′ such that: ∀x ∈ R and t ∈ [0, T ]

|µ(t, x)|+ |σ(t, x)| ≤ C ′ (1 + |x|)

Then, there exists a unique solution according to the definition 3.2.2.

Similarly, as in section 3.1, we are also interested to study the analogous equation to

equation (3.2), i.e. the case where µ and σ are Lipschitz, σ ≥ 0 and ξ, l satisfy the following

equation:

dξt = µ (ξt) dt+
√
σ (ξt)dWt + dlt, t ∈ [0, T ]

ξ(0) = ξ0

(3.11)

By using the same notation for µ̃ and σ̃, as the one is used earlier in this section, applying

part (iii) of Lemma 3.2.1 and the Lipschitz property of µ and σ, we are able to obtain that

µ̃ and
√
σ̃ satisfy the linear growth condition:

|µ(Γ(Y )t)|+ |
√
σ(Γ(Y )t)| ≤ |µ(0)|+ |

√
σ(0)|+ 2C

(
|Γ(Y )t|+ |Γ(Y )t|1/2

)
≤ C̃(1 +‖Y ‖[0, t])

The following theorem provides us the uniqueness of the solution of equation (3.11) and its

proof can be found in section 3.4.1 below. Therein, we combine the following two proofs:

Theorems 1 from Yamada and Watanabe (1971) and Theorem 1.2.1 from Pilipenko (2014).

Theorem 3.2.4. Let ξ0 be a non-negative F0-adapted random variable and µ and σ from

equation (3.11) satisfy the Lipschitz condition. Then, Equation 3.11 has a unique solution.
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3.3 Fokker-Planck equation

The purpose of the current section is to introduce Fokker-Planck equations and associate

them with the solution of parabolic and elliptic equation. We open this sections with

the demonstration of the generic form of Kolmogorov equations, backward and forward.

Then, an introduction to semigroups defined over a Markov process follows and then,

we provide several examples of semigroups which represent the solution of parabolic and

elliptic equations.

Let X be the strong solution of equation (3.1), which also admits a transition probab-

ility density function p(t, y; s, x), i.e.

P (Xt ∈ dy|Xs = x) := p(t, y; s, x) dy, for s < t

It is worth to point out that the transition probability density function p has two set of

variables (t, y) and (s, x) which represent the current position (at time s) and the future

position, respectively. Therefore, a Kolmogorov equations is called backward, or forward

respectively, based on which set of variables is differentiated. For a better visualisation of

the two differential forms, we choose to omit the set of variables that does not contribute

to the problem. A backward Kolmogorov equation is given in the following terms

−∂ p(s, x)

∂s
=

1

2
σ2(s, x)

∂2 p(s, x)

∂x2
+ µ(s, x)

∂ p(s, x)

∂x

lim
s↗t

p(t, y; s, x) = δ(y − x)
(3.12)

A forward Kolmogorov equation, which also called Fokker-Planck equation, is given in the

following terms

∂ p(t, y)

∂t
=

1

2

∂2

∂y2

(
σ2(t, y)p(t, y)

)
− ∂

∂y
(µ(t, y)p(t, y) )

lim
t↘s

p(t, y; s, x) = δ(y − x)

(3.13)

Next, an example follows which aims to highlight the relation between solution of

equation (3.1) and the backward Kolmogorov equation. Consider a differential operator in

the form of L(·) = µ(x) d
dx(·) + 1

2σ
2(x) d2

dx2 (·), a continuous function f which is non-negative,

or it has a polynomial growth, and also the following equation

−∂u
∂t

= Lu, for s ∈ [0, t), x ∈ R

u(t, x) = f(x)

Let p satisfy backward Kolmogorov equation. Next, we define u to be given by the following

expression, essentially u is defined through the following semigroup which act over the
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function f ,

u(s, x) =

∫
f(y)p(t, y; s, x)dy

Now, we take the derivative of u with respect to t and see that

−us(s, x) =

∫
f(y)

(
−∂p(t, y; s, x)

∂s

)
dy

=

∫
f(y)

(
1

2
σ2(s, x)

∂2

∂x2
p(t, y; s, x) + µ(s, x)

∂

∂x
p(t, y; s, x)

)
dy

= Lu(s, x)

Notice that lims↗t p(t, y; s, x) = δ(y − x) implies that

lim
s↗t

u(s, x) = f(x)

The formula that relates the solution of equation (3.1) and of a parabolic equation is

known as Feynman–Kac formula, for its proof see for instance the proof of Theorem 7.6 in

Karatzas and Shreve (2014).

Next, a brief introduction of semigroups defined over homogeneous Markov process is

presented, that builds a concept which can be applied on solutions of a homogeneous SDE,

see for example (3.4). This concept can also be extended in order to cover the solutions of

SDEs in the generic form of (3.1).

3.3.1 Markov process and semigroups

Let us consider a probability space (Ω,F ,P) and a Markov Process Xt which takes values

on X, where (X,B (X)) is a measurable space, with transition probability

P (t,Γ; s, x) := P (Xt ∈ Γ|Xs = x) , for 0 < s < t, Γ ∈ B (X)

We consider that the transition probability is stationary, that means

P (t,Γ; s, x) =: P (t− s, x,Γ).

We also say that a transition probability is stochastically continuous, if for any x ∈ X and

any neighbourhood Γ contains x holds,

P (t, x,Γ)→ 1, t ↓ 0.

Also, Markov property provides us with the so-called Chapman-Kolmogorov identity,

P (t+ s, x,Γ) =

∫
X
P (s, y,Γ)P (t, x, dy).
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Let us denote B to be the Banach space of bounded measurable functions on X endowed

with the supremum-norm ‖f‖ = supx∈X |f(x)|. Now, we can associate a Markov process

with a family of operators Tt acting over the space B, for t ≥ 0, in the following way,

Ttf(x) = Exf(Xt) =

∫
X
f(y)P (t, x, dy), ∀f ∈ B.

As we can see, Tt is a contraction linear map2 and satisfies the semigroup property3, the

latter being a direct consequence of Chapman-Kolmogorov identity. Similarly, we denote

V to be the Banach space of finite and finitely additive measures on B (X), the norm of V

is the total variation, and then, we can define the semigroup Ut acting over the space V ,

as follows

(Utµ)(Γ) =

∫
X
P (t, x,Γ)µ(dx), ∀µ ∈ V, Γ ∈ B (X)

As we can see V is the dual space of B, so the following equality comes to highlight that

Tt and Ut are conjugate operators∫
X
Ttf(x)µ(dx) =

∫
X
f(x)(Utµ)(dx), f ∈ B,µ ∈ V

Let us now focus on Tt semigroup and define its infinitesimal generator A

Af := lim
t↓0

1
t (Ttf − f)

where the limit is with respect to the norm of B, i.e. limt↓0 ‖ 1
t (Ttf − f)− Af‖ = 0. As,

we observe in order to define Af , we need at least to be restricted on those f which satisfy

limt↓0 ||Ttf − f || = 0

B0 :=

{
f ∈ B : lim

t↓0
||Ttf − f || = 0

}
Let us now denote with D(A) the domain of the infinitesimal generator A. Then, we know

the following about it: D(A) is a vector space and it is everywhere dense in the space B0,

see for instance Theorem 1.4 in Dynkin (1965). In the same book Theorem 2.3 states that

every stochastically continuous P is uniquely determined by its infinitesimal A. Also, we

have that for every for every f ∈ D(A), the corresponding Cauchy problem,

∂ut(x)

∂t
= Aut(x), where ut(x) = u(t, x)

lim
t↓0

u(t, x) = f(x)
(3.14)

has a unique solution within the class of bounded functions: u(t, x) = Ttf(x), see Theorem

1.3 in Dynkin (1965).
2That means that Tt satisfy the inequality ‖Ttf‖ ≤ ‖f‖
3A mapping T(·) : R+ → L(X;X) is called semigroup, if satisfy the following two properties: T0 = I,

Tt+s = Tt · Ts, where the product of two semi-groups is given by the composition of those two mappings.
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Similarly, we can define the infinitesimal generator A∗ for the semigroup Ut, for a µ ∈

D(A∗), we can define a function νt(Γ) = Utµ(Γ) which is the solution of the corresponding

Cauchy problem.

3.3.2 Association between diffusion processes and differential equations

In diffusion theory one usually considers that the transition probability P (t, x,Γ), as above,

with a density function p(t, x, y) that for fixed y satisfy the backward equation (3.12). A

rigorous definition about the Diffusion process can be found on page 12 in Bogachev et al.

(2015) and also in the same page we have Proposition 1.3.1 which says that the transition

probability of such process is the solution of the corresponding Fokker-Planck, see for

instance (3.13).

Let now take an Itô diffusion X, the solution of equation (3.4) with coefficients which

satisfy the Lipschitz condition. We also know that an Itô diffusions satisfy the strong

Markov property, admits an infinitesimal generator and characteristic operator, see for

instance Chapter 7 in Øksendal (2010). Let take a function f ∈ C2
c (R) and apply Itô’s

formula, see for instance Theorem 6.2 in Mao (2007)

f(Xt)− f(x) =

∫ t

0
f ′(Xs)µ(Xs) + 1

2f
′′(Xs)σ

2(Xs)ds+

∫ t

0
f ′(Xs)σ(Xs)dWs

Let denote by L, the following differential form

L(·) = µ(x)
d

dx
(·) +

1

2
σ2(x)

d2

dx2
(·)

Let consider again the semigroup Tt, as in the preceding section. In this case, the limit

in the definition of the infinitesimal generator understood point-wise, with respect to x,

and the domain D(A) is the set of f where the limit exist for every x ∈ R. Let consider

the following abbreviation Ttf(x) = Exf(Xt)
4 and proceed with the calculation of the

infinitesimal generator

Af(x) = lim
t↓0

1
t Ex(f(Xt)− f(X0)) = lim

t↓0
1
t Ex(

∫ t

0
Lf(Xs)ds) = Lf(x)

In the above calculation, we use that the expectation of the above stochastic integral is

zero, the continuity and the boundedness of Lf(x), which comes from f ∈ C2
c (R). Using

the fundamental theorem of calculus combined with the dominated convergence theorem,

we obtain the above limit.

Notice that A is an extension of the differential operator L, also as we mention in

the previous section f ∈ D(A), (C2
c (R) ⊂ D(A) ) then u(t, x) := Exf(Xt) is the unique

4The abbreviation is a shortening for the conditional expectation, Exf(Xt) := E (f(Xt)|X0 = x).
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solution of (3.14) within the space of bounded functions, therefore if there is a classical

solution for the problem

∂u(t, x)

∂t
= Lu(t, x), x ∈ R, t > 0

u(0, x) = f(x), x ∈ R

it holds that u(t, x) := Exf(Xt) is its solution.

Similarly, let consider the following Cauchy problem

∂u(t, x)

∂t
= Lu(t, x) + c(x)u(t, x), x ∈ R, t > 0

u(0, x) = f(x) x ∈ R

where c(x) ≤ 0 bounded uniformly continuous function, and L, as before, with the extra

property that its coefficients are bounded.

If we define the following map T̃tf(x) := Exf(Xt)e
∫ t
0 c(Xs)ds acting over B. It is easy

to see that T̃tf is a semigroup. Let us denote by Ã the infinitesimal generator of T̃tf . See

that Lemma 3.4.1 implies that Ãf(x) = Af(x) + c(x) for every f ∈ C2
c (R). This implies

that the solution of the above Cauchy problem can be written as follows

u(t, x) := T̃tf(x) = Exf(Xt)e
∫ t
0 c(Xs)ds

One can also prove that the solution of the non-homogeneous parabolic equation:

∂v(t, x)

∂t
= Lv(t, x) + c(x)v(t, x) + f(x), x ∈ R, t > 0

v(0, x) = 0

it is given in the following form,

v(x, t) := Ex
∫ t

0
f(Xs)e

∫ s
0 c(Xu)duds

Before, we derive the solution of elliptic problem, let us go back to the definition of a

diffusion process. According to Feller (1954a), a process is called of diffusion type, if it is a

Markov process which satisfy Kolmogorov backward equation (3.12) and also, if we define

the Laplace Transformation over the semigroup Ttf

Fλ(x) =

∫ ∞
0

e−λt Ttf(x) dt, λ > 0

is a solution of the differential equation,

λFλ(x)− LFλ(x) = f(x)
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Taking this into account, we can now move on the elliptic problem. Also, in what fol-

lows, we present examples which are defined on an open bounded interval D with boundary

∂D.

Example(Dirichlet problem):

Lu(x)− c(x)u(x) = f(x), x ∈ D

u(x) = ψ(x), x ∈ ∂D

where c(x), f(x) and ψ(x) are bounded continuous functions and c(x), ψ(x) are non-

negative. Let us also consider operator L with coefficients which satisfy Lipschitz condition

and σ has a positive lower bound for x ∈ D, closure of D. Next, let us define the first exit

from the boundary with τ = inf {t ≥ 0 : Xt 6∈ D}, if D is open then we have that τ is a

stopping time, see for instance Example 7.2.2. in Øksendal (2010).

Thus it is obvious that, we should start by applying the Itô formula to u(Xt)e
Yt , where

Yt = −
∫ t

0 c(Xs)ds and u is a solution of Dirichlet problem. See also that the process Yt is

monotone, so using a similar version to Theorem 7.14 in Mörters and Peres (2010), we get

that

u(Xt)e
Yt − u(x) =

∫ t

0
eYsu′(Xs)σ(Xs)dWs +

∫ t

0
eYs (Lu(Xs)− u(Xs)c(Xs)) ds.

Next, we have that for t < τ , it holds that Lu(Xs)− u(Xs)c(Xs) = f(Xs). Also, we have

that under the above conditions that Exτ <∞ and according to the definition 5.15 in Mao

(2007), we have that

Ex
∫ t∧τ

0
eYsu′(Xs)σ(Xs)dWs = 0

Therefore, we have that u satisfies the following equation

u(x) = Exψ(Xτ )e−
∫ τ
0 c(Xs)ds − Ex

∫ τ

0
f(Xs)e

−
∫ s
0 c(Xs)dsds.

Let us consider a simpler elliptic equation with Neumann boundary conditions. Suppose

that λ > 0 and ψ and L as in the last example,

Lu− λu = 0, x ∈ D

u′(x) = ψ(x), x ∈ ∂D

has a unique solution. Next, let us take the reflected SDE, see for instance (3.11),

dξt = µ(ξt)dt+ σ(ξt)dWt + dls, ξ0 = x

Considering the function e−λtu(x) and applying Itô’s formula, we get that

Exu(ξt)e
−λt − u(x) = Ex

∫ t

0
e−λs(L− λI)u(ξs)ds+

∫ t

0
e−λsu′(ξs)dls

= Ex
∫ t

0
e−λsψ(ξs)dls

(3.15)
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For the last equality, we use part (iii) in definition 3.2.2, which provide us that ξs does

not sticky on the boundary for positive time, therefore, we can use that (L− λ)u = 0.

For the following we use the boundedness of u, similarly with the last example u assumed

to be the solution of the elliptic problem on a bounded interval. According to the last

equality, we have that u(x) satisfies the above equation for each t, thus, by letting t goes

to infinite, and applying the Dominated convergence theorem on the right-hand side and

the monotone convergence theorem on the left hand-side we have that

u(x) = −Ex
∫ ∞

0
e−λsψ(ξs)dls

Let us now take an open bounded interval D, the boundary consists of two components

∂D1 and ∂D2, also ψ and λ are defined as above,

Lu− λu = 0,

u(x) = 0,

u′(x) = ψ(x),

x ∈ D

x ∈ ∂D1

x ∈ ∂D2

Let u has a unique solution u. Let again consider the first exit from the boundary ∂D1

and denote it by τ . Similarly, we get that that equation (3.15) holds also for this case, so

we have that

Exu (ξ(t ∧ τ)) e−λ(t∧τ) − u(x) = Ex
∫ t∧τ

0
e−λsψ(ξs)dls

Similar to the previous example, we get that

u(x) = Exu (ξ(τ)) e−λτ − Ex
∫ τ

0
ψ(ξs)dls

The last example is for mixed boundary value problem, for λ and ψ as above, we

consider the problem,

Lu = 0, x ∈ D

u′ − λu = g, x ∈ ∂D

Let u be the unique solution and define

Yt = u(ξt)−
∫ t

0
u′(ξs)dls

Yt is martingale5, next apply Itô’s formula for the product Yte−λlt ,

d
(
Yte
−λlt

)
= e−λlt

(
u′(ξt)σ(ξt)dWt − λYtdlt

)
5Take into account that u is the solution of the elliptic problem and by applying Itô’s formula on Yt,

we get that dYt = u′(ξt)σ(ξt)dWt
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equivalently,

d
(
u(ξt)e

−λlt
)
−d
(
e−λlt

∫ t

0
u′(ξs)dls

)
= e−λlt

(
u′(ξt)σ(ξt)dWt − λu(ξt)dlt + λ

∫ t

0
u′(ξs)dls dlt

)
equivalently6,

d
(
u(ξt)e

−λlt
)

=
(
u′(ξt)− λu

)
(ξt) e−λltdlt + e−λltu′(ξt)σ(ξt)dWt

Similar as before, we have

u(ξt)e
−λlt − u(ξ0)e−λl0 =

∫ t

0
ψ(ξs)e

−λlsdls +

∫ t

0
e−λlsu′(ξt)σ(ξt)dWt (3.16)

Under the assumption that σ is uniformly positive, we can show that: lt → ∞ as t → ∞

and so to obtain that

lim
t→∞

Exe−λlt = 0 (3.17)

In order to prove it, one can for instance use equation (21) in Anderson and Orey (1976),

in that paper, the authors consider an open set U0 inside the interval D and defines two

sequences of stopping times: S0 = 0, S1 = inf {t : X ∈ U0}, T1 = inf {t > S1 : X ∈ ∂D},

. . .Sk = inf {t > Tk−1 : X ∈ U0}, Tk := inf {t > Sk : X ∈ ∂D}, then shows that there ex-

ists positive c such that for every k ≥ 1 the following hold

P
(
lSk+1

− lSk > c|FSk
)
>

1

4

Using the last inequality, the authors prove that for every M > 0 and every n ≥ 8M/c,

one can conclude that:

P

(
n∑
k=1

(lSk+1
− lSk+1

) < M

)
→ 0, as n→∞

from that point, it is easy to obtain our claim.

Next, we apply the expectation on the formula (3.16) and take the limits for t to ∞,

using that u is bounded and the limit (3.17), we get that:

u(x) = −Ex
∫ ∞

0
ψ(ξt)e

−λltdlt

3.4 Proof for Theorem 3.2.4 and Lemma 3.4.1

Lemma 3.4.1. Suppose that X is a solution of equation (3.4) with uniformly bounded coef-

ficients µ and σ which satisfy Lipschitz and linear growth properties. Consider a bounded

6We have that: d
(
e−λlt

∫ t
0
u′(ξs)dls

)
= −λe−λlt

∫ t
0
u′(ξs)dlsdlt + e−λltu′(ξt)(ξt)dlt
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and uniformly continuous function c(x) ≤ 0 and define T̃tf(x) := Exf(Xt)e
∫ t
0 c(Xs)ds over

the set of bounded measurable functions with its infinitesimal generator denoted by Ã. Let

us also denote by A the infinitesimal generator of Ttf(x) := Exf(Xt). Then, we have that

for every f ∈ C2
c (R), it holds that

Ãf(x) = Af(x) + c(x)f(x)

Proof.

Ãf(x) = lim
t↓0

1

t
Ex
(
f(Xt)e

∫ t
0 c(Xs)ds − f(x)

)
= lim

t↓0

1

t
Ex
∫ t

0
d
(
f(Xq)e

∫ q
0 c(Xs)ds

)
= lim

t↓0

1

t
Ex
∫ t

0
e
∫ q
0 c(Xs)ds

(
f(Xq)c(Xq) + f ′(Xq)µ(Xq) +

1

2
f”(Xq)σ

2(Xq)

)
dq

= lim
t↓0

1

t
Ex
∫ t

0
e
∫ q
0 c(Xs)ds (f(Xq)c(Xq) + Lf(Xq)) dq

Note also that, from c(x) ≤ 0, we have that e
∫ q
0 c(Xs)ds ≤ 1, also since f ∈ C2

c (R), we get

the continuity and the boundedness of f(Xq), Lf(Xq) and also by definition, we have that

c(x) is also bounded.

Using the dominated convergence theorem, we have that

Ãf(x) = Ex lim
t↓0

1

t

∫ t

0
e
∫ q
0 c(Xs)ds (f(Xq)c(Xq) + Lf(Xq)) dq

= f(x)c(x) + Lf(x)

the last equality is a consequence of fundamental theorem of calculus and the continuity

f(Xq)c(Xq) + Lf(Xq) with respect to q.

3.4.1 Uniqueness for reflecting barrier

In this proof, we consider an increasing sequence of C2(R) functions denoted by φk(x),

such that its limit converges in the absolute value of x, i.e. | · |. Using that sequence,

we can show that for any two (ξ1, l1) and (ξ2, l2) satisfying equation (3.11), it holds that

P (ξ1(t) = ξ2(t), ∀t ≥ 0) = 1.

First, let build the sequence of those φk:

We have that for every T > 0, it holds that
∫ T

0 1/u du = ∞. Hence, we can choose a

positive decreasing sequence of ak that goes to zero such that:
∫ ak−1

ak
1/u du = k. Let take

a sequence of φk ∈ C2 (R+) with the following properties:

φk(0) = 0, φk(u)′ :=


0, u ∈ [0, ak]

[0, 1], u ∈ (ak, ak−1)

1, u ∈ [ak−1,∞)

, φk(u)′′ :=


0, u ∈ [0, ak]

[0,
2

ku
], u ∈ (ak, ak−1)

0, u ∈ [ak−1,∞)
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Once, we have φk for x ≥ 0, they can be extended on R in the following way:

φk(u) = φk(|u|). Therefore, it is easy to see that: φ′k(u) = −φ′k(−u) and φk(u)↗ |u|.

Since, φk are twice differentiable, we can apply Itô’s formula, see for instance Theorem

6.2 at page 32 Mao (2007),

φk(ξ1(t)− ξ2(t)) =

∫ t

0
φ′k(ξ1 − ξ2)(µ(ξ1)− µ(ξ2))ds+

1

2

∫ t

0
φ′′k(ξ1 − ξ2)(

√
σ(ξ1)−

√
σ(ξ2) )2 ds

+

∫ t

0
φ′k(ξ1 − ξ2)(

√
σ(ξ1)−

√
σ(ξ2) )dWs +

∫ t

0
φ′k(ξ1 − ξ2)d(l1 − l2)

Let us denote the above integrals by I1, . . . I4, respectively. Using the properties of φk and

also Lipschitz conditions of µ and σ, we get

I1 ≤ Kµ

∫ t

0
|ξ1 − ξ2|ds

I2 ≤
1

k

∫ t

0
1(|ξ1 − ξ2| ∈ (ak, ak−1))

|σ(ξ1)− σ(ξ2)|
|ξ1 − ξ2|

ds ≤ 1

k
Kσ t

According to the definition of li, see part (iii) 3.2.1, we have the last integral

I4 =

∫ t

0
1(ξ1 = 0)φ′k(ξ1 − ξ2)dl1(s)−

∫ t

0
1(ξ2 = 0)φ′k(ξ1 − ξ2)dl2(s)

= −
(∫ t

0
1(ξ1 = 0)φ′k(ξ2)dl1(s) +

∫ t

0
1(ξ2 = 0)φ′k(ξ1)dl2(s)

)
≤ 0

The last equality holds because φ′k is an odd function. Also, the last part is non-positive

because ξi are non-negative, thus φ′k(ξi) are non-negative, furthermore li are increasing

functions, thus the integrals with respect to dli(s) over a non-negative function are also

non-negative.

Let fix n and denote the stopping time:

τn = inf {t ≥ 0 : |ξ1| ∧ |ξ2| ≥ n}

So, we have

Eφk(ξ1(t ∧ τn)− ξ2(t ∧ τn)) . E
∫ t∧τn

0
|ξ1 − ξ2|(s) ds+

1

k
E t ∧ τn

+ E
∫ t∧τn

0
φ′k(ξ1 − ξ2)(

√
σ(ξ1)−

√
σ(ξ2) )dWs

We have that:
∫ t
0
φ′k(ξ1 − ξ2)(

√
σ(ξ1) −

√
σ(ξ2) )1(s < τn)dWs is martingale, so the last

term is zero. In this point, we need to mention that the proportionality of the above

inequality does not depend on the choice of k. Therefore, using the monotonicity of φk

E|ξ1 − ξ2|(t ∧ τn) = lim
k

Eφk (ξ1(t ∧ τn)− ξ2(t ∧ τn)) . lim sup
k

(
E
∫ t∧τn

0
|ξ1 − ξ2|(s) ds+

t ∧ τn
k

)
= E

∫ t∧τn

0
|ξ1 − ξ2|(s) ds ≤

∫ t

0
E|ξ1 − ξ2|(s ∧ τn) ds
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Using Grönwall’s inequality, one can see that:

E|ξ1 − ξ2|(t ∧ τn) = 0, ∀t ≥ 0

Therefore, we have that: ∀t ≥ 0 and n, it holds P ( ξ1(t ∧ τn) = ξ2(t ∧ τn) ) = 1, the

monotonicity of τn implies that: ∀t ≥ 0, it holds P ( ξ1(t) = ξ2(t) ) = 1. Last, the continuity

of ξi provides us the following:

P (ξ1(t) = ξ2(t), ∀t ≥ 0) = P (ξ1(t) = ξ2(t), ∀t ∈ Q+)

= lim
m→∞

P (ξ1(t) = ξ2(t), ∀t ∈ Pm) = 1

where Pm is an increasing sequence of partition of Q+ and m is the cardinality of that

set. The first equality holds because Q+ is dense in R+ and a.e. path of ξi is continu-

ous, where for the second equality use Pm is an increasing sequence and also holds that

P (ξ1(t) = ξ2(t), ∀t ∈ Pm) = 1 for every m.

Last, the uniqueness of li follows from equation (3.11)

l1(t) = ξ1(t)− ξ0 −
∫ t

0
a(ξ1(s))ds−

∫ t

0
b(ξ1(s))dWs = l2(t), ∀t ≥ 0 a.s.
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Chapter 4

Dimension reduction for exponential

priors

4.1 Introduction

In this chapter, we consider probabilities µ and π with the assumption that the Radon-

Nikodym derivative of µ with respect to π, similar to Section 2.6.1, is given, up to a

multiplication constant. Here µ and π are defined on a finite but high-dimensional space Rd.

We consider a methodology for the identification of the optimal subspace for sampling in

the case of exponential priors. That methodology was first proposed in Zahm et al. (2021),

and recovers a subspace that contains the most weight of the prior distribution based

on Kullback-Leibler divergence. The methodology is based on the logarithmic Sobolev

inequality. The logarithmic Sobolev inequality can be obtained for Gaussian measures,

and then can be extend also in the of sub-Gaussians. Therefore, the methodology depends

on the prior distribution.

Observe that 1-exponential probabilities measures have heavier tails, i.e. the tails

tend to 0 slower than the tails of Gaussian and also that logarithmic Sobolev inequality

does not apply to 1-exponential probabilities measures. Therefore, the extension of that

methodology is based on a modified logarithmic Sobolev inequality, see in LEDOUX (1997).

My main contribution for this extension is Theorem 4.4.3, which allows us to extend the

methodology proposed in Zahm et al. (2021) in the case of 1-exponential prior measures.

Then the identification and recovery of the optimal subspace come from Proposition 4.4.1,

where we can also find the error estimates of that method with respect to Kullback Leibler

divergence. In addition, using the proof in LEDOUX (1997), we obtain a local version

of the modified logarithmic Sobolev inequality. That local version aims to provide some



46

further control of the method based on the local properties of the likelihood.

4.2 The general methodology

Suppose, we have a probability π which is defined on
(
Rd,B

(
Rd
))

and a non-negative

integrable function f with respect to π, i.e. f ∈ L1(π) ∩ {f ≥ 0}. Also, we have a

probability µ which is defined through the following expression:

dµ

dπ
(u) ∝ f (u) (4.1)

Observe that the above expression follows the same framework as in Section 2.6.1.

We first review the methodology suggested by Zahm et al. (2021) for approximation

of µ on an appropriate subspace of dimension r < d. The core idea of this method is the

approximation of µ using probabilities which are defined as follows,

dµr
dπ

(u) ∝ g ◦ Pr (u) (4.2)

where Pr : Rd → Rd is a linear projection with rank r, i.e. Im(Pr) ∼= Rr which satisfies the

property P 2
r = Pr, and g : Rd → R+ is a Borel function. At this point, it is worth men-

tioning that Pr is not necessarily an orthogonal matrix. Let us now observe the following

decomposition: for every x ∈ Rd, we have that

x = (Id − Pr)x+ Prx = x⊥ + xr

where x⊥ ∈ ker(Pr) and xr ∈ Im(Pr), i.e. Rd = ker(Pr)⊕ Im(Pr). This method aims to

identify an r dimensional subspace of Rd, i.e. Im(Pr), which contains ‘most’ of the weight of

the measure µ. Intuitively speaking, the structure of Pr implies that probability µr replaces

the function f with a function in the form of g ◦Pr(x) = g(xr), where xr ∈ Im(Pr) ∼= Rr.

Therefore, we are looking for a probability µg,Pr which minimises the distance to µ.

The suggested distance for this methodology is the Kullback-Leibler divergence, denoted

by DKL (·||·) and it is defined as follows

DKL(µ||π) =

∫
log

(
dµ

dπ

)
dµ. (4.3)

Let us now denote by Pr the collection of candidate projections Pr

Pr =
{
Pr ∈ Rd×d

∣∣ Im(Pr) ∼= Rr, P 2
r = Pr

}
(4.4)

Then the minimisation problem can be written in the following form:

µ∗r = argmin
µr∈MPr

DKL (µ||µr)
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whereMPr is defined as follows

MPr =

µr defined on B
(
Rd
) ∣∣∣∣∣∣ g : Rd → R+ is a Borel function,

Pr ∈ Pr, dµr
dπ (u) ∝ g ◦ Pr


The above minimisation problem can also be written in terms of g ◦ Pr as follows

(g ◦ Pr)∗ = argmin
µr∈MPr

DKL (µ||µr) . (4.5)

4.3 Optimal g

In this section, we fix the projection Pr and find the solution of problem (4.5) only with

respect to g.

The notation σ (Pr) is used for the σ−algebra generated by Pr, or in other words, is defined

as the smallest σ−algebra which includes the collection
{
P−1
r A : for some A ∈ B

(
Rd
)}

.

According to Lemma 2.2 in Zahm et al. (2021), which is a special case of Doob-Dynkin’s

Lemma, for a given projection Pr ∈ Rd×d, the following two assertions hold:

g ◦ Pr is a σ (Pr) -measurable function (4.6)

and conversely, for a given σ (Pr)-measurable function h, there exists a measurable function

g defined on Rd such that

h = g ◦ Pr (4.7)

for the general statement of Doob-Dynkin’s Lemma, see for instance Lemma 1.13 in Kal-

lenberg and Kallenberg (1997). Essentially, the Lemma allows us to replace g◦Pr with any

σ (Pr)-measurable function. Hence, our first consideration is on the conditional expecta-

tion of f given σ (Pr) under the distribution π, denoted by Eπ (f |σ (Pr)), that defines a

real valued function on Rd. A property of the conditional expextation is that Eπ (f |σ (Pr))

is the unique σ (Pr) measurable function which for every σ (Pr)-measurable function h,

satisfies ∫
f h dπ =

∫
Eπ (f |σ (Pr)) h dπ. (4.8)

We can now state the following result by Zahm et al. (2021).

Lemma 4.3.1. Suppose Pr and consider the following minimisation problem

argmin
g Borel function

DKL

(
µ||µg◦Pr

)
Then, we have that the above problem attains its optimal solution at µ̃r given by

dµ̃r
dπ

(u) ∝ Eπ (f |σ (Pr)) . (4.9)
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Proof. Given µg,Pr we evaluate the following difference,

DKL

(
µ||µg,Pr

)
−DKL (µ||µ̃r) =

∫
log
(

Zg◦Pr
ZEπ(f |σ(Pr))

Eπ(f |σ(Pr))
g◦Pr

)
f
Zf
dπ

=

∫
log
(
Zg◦Pr
Zf

Eπ(f |σ(Pr))
g◦Pr

)
Eπ(f |σ(Pr))

Zf
dπ = DKL

(
µ̃r||µg,Pr

)
where Zg◦Pr , ZEπ(f |σ(Pr)), and Zf are the normalisation constants. Using (4.8) we have

Zf :=

∫
fdπ =

∫
Eπ (f |σ (Pr)) dπ = ZEπ(f |σ(Pr)).

The second equality follows from (4.8), observe that the logarithm is a σ (Pr)-measurable

function. According to (2.12), we have that the Kullback–Leibler divergence is non-

negative, so using it in the above difference, we have that

DKL (µ||µ̃r) ≤ DKL

(
µ||µg,Pr

)
giving the result.

4.3.1 Properties of conditional expectation on Pr

We start with showing that the sets in the collection
{
P−1
r A : for some A ∈ B

(
Rd
)}

have

the following form

B + ker(Pr), where B ⊆ Im(Pr). (4.10)

Consider xr ∈ Im(Pr), x⊥ ∈ ker(Pr) \ {0}. We have

P−1
r {0} = ker(Pr), P−1

r {xr} = ker(Pr) + {xr} , P−1
r {x⊥ + xr} = ∅.

Notice that the above formula for {xr} comes from the property P 2
r = Pr. Hence, every

set from the above collection is written in the form of (4.10). In addition, we have that

σ(Pr) is the smallest σ−algebra generated by sets of the form (4.10).

Therefore, it is natural to construct a map U which separates Rd in the following two

subspace Im(Pr) and ker(Pr). Thus, we consider the invertible matrix U = (Ur|U⊥) :

Rr × Rd−r → Rd, such that U(Rr × {0}) = Im(Pr) and U({0} × Rd−r) = ker(Pr). Based

on that matrix, Proposition 2.4 in Zahm et al. (2021) provides a representation for the

conditional expectation of f given σ(Pr) under the probability measure π. We recall it

here.

Proposition 4.3.1. For any probability measure π which admits a probability density

function ρ, i.e. π(dx) = ρ(x)dx, and for any r-rank projector Pr, consider the matrix
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U⊥ ∈ Rd×(d−r) with columns consisting of vectors that form a basis on ker(Pr). Let p⊥ be

the conditional probability density on Rd−r, defined by

p⊥ (ξ⊥|Prx) =
ρ (Prx+ U⊥ξ⊥)∫

Rd−r ρ
(
Prx+ U⊥ξ

′
⊥
)

dξ′⊥
(4.11)

for every ξ⊥ ∈ Rd−r and x ∈ Rd, under the convention that p⊥ (ξ⊥|Prx) = 0 whenever the

denominator of (4.11) is zero. Then, for any Borel function f, the conditional expectation

Eµ (f |σ (Pr)) is given us as follows

Eπ (f |σ (Pr)) (x) :=

∫
Rd−r

f (Prx+ U⊥ξ⊥) p⊥ (ξ⊥|Prx) dξ⊥.

Remark 4.3.1. i) Looking at the proof of the above Proposition (Zahm et al. (2021)),

one can define the following integration rule that applies to every Borel function f :

f(x)π(dx) = f(x) ρ(x)dx = f ◦ U(ξ) |U |ρ(Uξ)dξ

= f ◦ U(ξ)
ρ(Urξr + U⊥ξ⊥)∫
ρ(Urξr + U⊥ξ

′
⊥)dξ′⊥

dξ⊥

(
|U |
∫
ρ(Urξr + U⊥ξ

′′
⊥)dξ′′⊥

)
dξr

= f ◦ U(ξ) p⊥(ξ⊥|Urξr)dξ⊥ pr(ξr)dξr = f ◦ U(ξ)π⊥(dξ⊥|ξr)πr(dξr)
(4.12)

where ξr, ξ⊥ take values in Rr and Rd−r, respectively, ξ =

(
ξr

ξ⊥

)
and the probabilities

π⊥(·|ξr), πr(·) are defined through the probability density functions p⊥(·|Urξr), pr(·)

on the following Borel σ-algebras B
(
Rd−r

)
and B (Rr), respectively.

Since Pr is a projection hence P 2
r = Pr, and by definition of Ur and U⊥, which says

that every column vector of Ur and U⊥ form a basis for Im(Pr) and Ker(Pr) respect-

ively, we get that PrU = PrUr = Ur. Therefore, the above mentioned representation

of Eπ (f |σ (Pr)) can be written as follows

Eπ (f |σ (Pr)) (Urξr + U⊥ξ
′
⊥) :=

∫
Rd−r

f (Urξr + U⊥ξ⊥) p⊥ (ξ⊥|Prx) dξ⊥ (4.13)

ii) Another interesting property of the conditional expectation given a σ-algebra generated

by a projection is that: for any two projections Qr, Pr with ker(Qr) = ker(Pr), the

following holds

Eπ (f |σ (Pr)) = Eπ (f |σ (Qr)) . (4.14)

To see that let us consider Qr, Pr as above, then we have that Qr ◦ Pr = Qr and

Pr ◦Qr = Pr, see for instance the proof of Proposition 2.2 in Zahm et al. (2019). Let

now use the last observation in combination with (4.6) and (4.7), we are able to get
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that every σ(Pr)-measurable function is σ(Qr)-measurable, and conversely. Hence,

for any h σ(Pr)-measurable, or σ(Qr)-measurable, we have∫
f h dπ =

∫
Eπ (f |σ (Pr)) h dπ =

∫
Eπ (f |σ (Qr)) h dπ

the uniqueness of such a function implies that (4.14) holds.

4.4 Constructing Pr

In this section, we complete the theoretical part of the method, by minimising an upper

bound on the distance between µ and µ̃r given in (4.2) and (4.9) respectively. More

precisely, we first obtain an upper bound on the the Kullback-Leibler divergence of µ and

µ̃r in terms of the projection Pr. We then obtain a Pr which minimises this upper bound.

By Lemma 4.3.1 the optimal g ◦ Pr is attained at Eπ (f |σ (Pr)) and we hence have

DKL (µ||µ̃r) =

∫
log

(
f

Eπ (f |σ (Pr))

)
f

Zf
dπ. (4.15)

According to (4.13), for the calculation of denominator of the above logarithm, we have that

as long as Pr is a projection and π admits a Lebesgue density, we can define the conditional

probability density p⊥ as in equation (4.11). More precisely, using the integration rule as

it is stated in (4.12), we can define the probability measures π⊥(dξ⊥|ξr) and πr(dξr) which,

for every Borel function f , satisfy the following equality∫
Rd
f(x)π(dx) =

∫
Rr

∫
Rd−r

f(Urξr + U⊥ξ⊥)π⊥(dξ⊥|ξr)πr(dξr).

Applying the integration rule together with the representation of Eπ (f |σ (Pr)), see (4.13),

on the above mentioned Kullback Leibler divergence, we get that

ZfDKL (µ||µ̃r) =

∫
f log

(
f

Eπm,B (f |σ (Pr))

)
dπm,B

=

∫ ∫
f ◦ U(ξ) log

(
f ◦ U(ξ)∫

f ◦ U(ξ̃)π⊥(dξ̃⊥|ξr)

)
π⊥(dξ⊥|ξr)πr(dξr)

=

∫
Entπ⊥(·|ξr) (f ◦ U)πr(dξr)

(4.16)

where ξ̃ =
(
ξr
ξ̃⊥

)
and the last equality emerges from the definition of the entropy of f ◦ U

under the probability π⊥(dξ⊥|ξr) given below.

Definition 4.4.1. Suppose a probability π and a non-negative function h with Eπh log+ (h) <

∞. Then we define the entropy of h under the probability π as follows,

Entπ (h) := Eπh log (h)− Eπh log (Eπh) . (4.17)
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Therefore, the suggested minimisation of DKL (µ||µ̃r) is based on some entropy in-

equality, or more precisely, on the logarithmic Sobolev inequality.

Let us denote the Lebesgue measure with λ. Then, we say that λ satisfies the logar-

ithmic Sobolev inequality, if for every smooth function f , the following inequality holds∫
f2(x) log

(
f2(x)∫
f2 dλ

)
λ(dx) ≤ C

∫
‖∇f(x)‖22λ(dx)

The above inequality emerges from Sobolev inequalities, a proof for the Lebesgue measure

is given in Gentil (2003), also, we can show that C is independent from the choice of f and

the dimension of Rd.

An analogous inequality for Gaussian measures, γ(dx) = 1

(2π)n/2
e−‖x‖

2
2λ(dx), has been

proved in Gross (1975). In addition, paper Zahm et al. (2021) summarises some conditions

on the probability π that imply that π satisfies LSI. Those conditions are the following:

probability π needs to have convex support K = supp(π) ⊆ Rd and its density function ρ

should satisfy ρ(x) ∝ e−(V (x)+Ψ(x)), where V ∈ C2(K) is a strongly convex function on K

and Ψ is bounded in K. More precisely, the above assumptions imply the existence of a

positive definite matrix Γ and a constant κ ≥ 1 such that

∇2V (x)− Γ, is a positive semi-definite matrix ∀x ∈ Rd

and

esup Ψ−inf Ψ ≤ κ

Then, such probabilities satisfy the following inequality for a sufficiently smooth f∫
f2(x) log

(
f2(x)∫
f2 dπ

)
π(dx) ≤ 2κ

∫
‖∇f(x)‖2Γ−1π(dx)

where Γ−1-norm is defined through the following inner product, ‖x‖Γ−1 =
(
Γ−1x, x

)
. The

above assumptions are the result of the Bakry-Émery Theorem Bakry and Émery (1985);

Bobkov and Ledoux (2000); Otto and Villani (2000) and the Holley–Stroock perturbation

Lemma Holley and Stroock (1986).

Observe that the last two assumptions for the density function of the prior probability

π cover quite a wide class of probabilities, essentially this class contains the Sub-Gaussian

distributions, i.e. distributions decaying to zero at least as fast as the Gaussian tails.

Examples include uniform and q-Besov measures, whenever q ≥ 2, see for instance Section

2.3.1.

A very interesting case of Besov priors not satisfying the above assumptions is the case

where q = 1. These are of interest especially for the field of signal processing because
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of their edge-preserving and sparsity-promoting properties, see e.g. Leporini and Pesquet

(2001); Kolehmainen et al. (2012); Jia et al. (2016); Tan Bui-Thanh (2015); Rantala et al.

(2006). The edge-preserving property is useful when the function of interest has spatial

inhomogeneity, i.e. it is extremely spiky in some parts of its domain and in other parts

is extremely smooth. These priors are said to be sparsity-promoting property since they

promotes solutions that under an appropriate expansion, see for instance equation (2.7),

can be represented by a small number of coefficients. That is, there is an appropriate

basis {φi}∞i=1 such that the most likely draws from the prior are described by relatively few

non-zero coefficients ui in basis {φi}∞i=1.

As we mention in Section 2.3.1, the construction of 1-Besov prior is based on 1-

exponential probabilities. The considerations presented in the previous paragraph mo-

tivate our work in this chapter in extending the approximation methodology of Zahm

et al. (2021) to the case of 1-exponential probabilities. Let us recall the formula for the

density of 1-exponential measures in Rd

πm,B (dx) := e−‖B
−1(x−m)‖1 dx

2d|det (B) | (4.18)

where m is the mean value, B is an invertible matrix on Rd×d and ‖ · ‖1 is the 1-norm

defined on Rd, i.e. ‖x‖1 =
∑d

i=1 |xi|. We note that in the case of 1-Besov priors, as

explained in Section 2.3.1, by construction B is a diagonal matrix.

For establishing a logarithmic Sobolev inequality for the 1-exponential probability

measures, we follow the approach by LEDOUX (1997). Therein, the author provides a

simplified version of the proof of the concentration property for the 1-exponential probab-

ility measures which has been previously proved in Talagrand (1991). The concentration

property for the 1-exponential probability measure π0,Id is given as follows: for every Borel

set A with π0,Id(A) ≥ 1
2 and for every r ≥ 0, it holds that

π0,Id

(
A+
√
rB2 + rB1

)
≥ 1− e−

r
K

for some K > 0, where B2 is the Euclidean unit ball and B1 is the l1 unit ball in Rd, i.e.

B1 =

{
x ∈ Rd :

d∑
i=1

|xi| < 1

}
At this point, it is worth mentioning that a probability measure π which satisfies a logar-

ithmic Sobolev inequalities, also satisfies a concentration property. This can be shown by

using the Herbst argument, see for instance section 2.3 LEDOUX (1997).

We state Theorem 4.2 of LEDOUX (1997) here, which provides us with the modified

logarithmic Sobolev inequality for the 1-exponential probability measures. For the sake of
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completeness, we include the proof of that theorem in Section 4.5. In what follows, we call

a positive function h : Rd → R log-Lipschitz, if there exists a constant L such that every

x, y ∈ Rd

| log(h(x))− log(h(y))| ≤ L‖x− y‖.

We denote the induced operator norms for a matrix A by ‖A‖∗1 and ‖A‖∗∞ for l1 and l∞

vector norms respectively.

Theorem 4.4.1 (LEDOUX (1997)). Consider the probability πm,B, as defined in (4.18).

Let h : Rd → R be log-Lipschitz and suppose that K := ‖∇ log (h) ‖∞ < 1/‖B‖∗∞. Then,

Entπm,B (h) ≤ 2

1− (‖B‖∗∞K)

∫
h‖BT∇ log (h) ‖22 dπm,B.

Using the ideas of the proof of the above theorem, we also prove another modified

version that can be found in the next section. The purpose of the modified version is to

address the case where K := ‖∇ log (h) ‖∞ is very close to 1/‖B‖∗∞. Then, Theorem 4.4.3

is an application of Theorems 4.4.1 and 4.4.2 on a subspace, which essentially provide us

a bound for the Kullback-Leibler divergence, through the expression in (4.16).

Due to limitations of the one-exponential probability measures, we need to re-consider

the minimisation problem and more specifically the collection of candidate projections.

In case of a Gaussian, or a sub-gaussian, measure the collection Pπ,r, as it is stated in

(4.4), works perfectly, see for instance Theorem 2.9 in Zahm et al. (2021). In contrast with

the Gaussian case, in order to define the minimisation problem for the one-exponential

probability measure πm,B, we need to restrict ourselves to the following sub-collection

Pπm,B ,r =

Pr ∈ Rd×d
∣∣∣∣∣∣ Im(Pr) ∼= Rr, P 2

r = Pr, ∃P permutation

such that: ker (Pr) = BP
(
{0}r × Rd−r

)
 .

Let us highlight two properties that contribute in the definition of the above collection.

Firstly, we observe that Gaussian probabilities are invariant under any rotation, where

in this case the probabilities are only invariant under permutation, i.e. ‖(x1, x2)‖1 =

‖(x2, x1)‖1. Essentially, the permutation matrix P is used in such way that the conditional

probability emerging from the integration rule stated in (4.12), i.e. π⊥(·|ξr), is independent

from the choice of ξr. Secondly, the kernel property that is stated in the above collection

can be explained as follows. Let us consider two projections Pr, Qr, where their kernels

coincide, and define probability measures µ̃r, µr according to formula (4.9) based on the

projections Pr, Qr, respectively. Then, applying the property in (4.14), one can get that

DKL (µ||µ̃r) = DKL (µ||µr).
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Therefore, the proposed minimisation problem for the case of 1-exponential probability

is summarised as follows,

µ∗r = argmin
µr∈MPπm,B,r

DKL (µ||µr)

4.4.1 Local versions of LSI for 1-exponential priors

The following two theorems give local versions of the modified LSI. Hence, the solution of

the minimisation problem emerging from this section also depends on the properties of a

given set C in combination with the function f .

In the following we call a convex set C ⊆ Rd a cube, if we can define d connected

intervals Ci ⊆ R such that C can be written in the following way

C = C1 × C2 × · · · × Cd

An example of such a cube on Rd is the set C =
{
x ∈ Rd : ‖x‖∞ ≤ 1

}
. Let us also observe

that the above definition is invariant with respect to translations, see for instance that for

a given cube C ⊂ Rd and a point x ∈ Rd, we have that (C − x) is cube.

The following theorem provides a bound for the entropy of 1(· ∈ C)h under the 1-

exponential probability, the proof of which can be found in Section 4.5 and is an extension

of the proof of Theorem 4.2 in LEDOUX (1997).

Theorem 4.4.2 (Local version of Modified LSI). Consider the probability πm,B, as defined

in (4.18) and a convex set C. Let h be a log-Lipschitz function with positive c := inf {h (x) : x ∈ C}.

Then the following inequality holds∫
C
h log

(
h∫

C h dπm,B

)
dπm,B ≤

2

c

∫
C
||BT∇h||22,d dπm,B + M̃ πm,B (Cc)

where M := sup
{
h(x) : x ∈ C

}
, M̃ := d ·M . In addition, if B−1 (C) is a cube, we have

that M̃ := M . In the particular case where C = Rd, the above inequality is given as follows∫
h log

(
h∫

h dπm,B

)
dπm,B ≤

2

c

∫
||BT∇h||22,d dπm,B

Having obtained a local version of the modified Logarithmic Sobolev inequality for the

1-exponential probabilities, we use equation (4.16) and the probability defined in there,

π⊥(dξ⊥|ξr), to get an upper bound for the Kullback Leibler divergence. The following

theorem provides us with sufficient assumptions needed in order to be able to apply the

modified LSI on the probability π⊥(dξ⊥|ξr). The result of the following theorem lets us

control DKL (µ||µ̃r) in a way that allows us to identify the directions in Rd that contribute

the most to the evaluation of the probability µ for a given probability πm,B. The proof of
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the following theorem can be found in Section 4.5. In what follows the standard basis of

Rd is represented by {ei}di=1

Theorem 4.4.3. Consider the probability πm,B, as in (4.18) and a projection Pr ∈ Pπm,B ,r

and its corresponding permutation P . Let f be a log-Lipschitz function and C a convex set

such that c := inf
{
f(x) : x ∈ C

}
is positive.

i) Assume Λ to be a convex subset of C such that B−1(Λ) is a cube. Then∫
f log

(
f

Eπm,B (f |σ (Pr))

)
πm,B(dx) ≤ 2

c

∫
C
‖UT⊥∇f(x)‖22,d−r πm,B(dx) +Rf,C,πm,B

where

Rf,C,πm,B := max
{
M̃,MCc (d− r)

(
K‖U⊥‖∗1

1−β + log (K‖U⊥‖∗1 + 1)
)
,MCc log

(
MCc

c λ̃

)}
πm,B (Cc)

with U⊥ = BP (er+1, . . . , ed), MA := sup
x∈A

f(x) for A ⊂ Rd, K = ‖∇ log (f) ‖∞, M̃ :=

dMC , β := π0,Id−r (CTd−rU
−1(C \ Λ −m) ), and λ̃ ≥ min

{
π0,1

(
eTi B

−1(Λ−m)
)}d−r.

In addition, if B−1 (C) is cube, we choose Λ = C and then we have that M̃ := M

and the term K‖U⊥‖∗1
1−β is becoming K‖U⊥‖∗1. In the particular case where C = Rd,

then Rf,C,πm,B is equal to zero.

ii) If f is log-Lipschitz with K = ‖UT⊥‖∗∞ ‖∇ log (f) ‖L∞(πm,B),∞ < 1, then it holds that∫
f log

(
f

Eπm,B (f |σ (Pr))

)
dπm,B ≤

2

1−K

∫
‖UT⊥∇ log (f) ‖22,d−r f dπm,B

Observe that the first bound requires f to be bounded, except in the case where C = Rd.

On the other hand for the second bound it is not necessary to assume that f is bounded.

4.4.2 Bounding the error of approximated posterior and constructing Pr

The augmented logarithmic Sobolev inequlaities given in Theorem 4.4.3 result in corres-

ponding bounds on DKL (µ||µ̃r) given in the following theorem. The proof is given in

Section 4.5.

Theorem 4.4.4. We consider the same assumptions as in Theorem 4.4.3. We also have

that for any Pr ∈ Pπm,B ,r there is a permutation matrix P and for that specific P , there

exists a bijective function σP : {1, . . . d} → {1, . . . d} such that P =
(
eσP (1), . . . , eσP (d)

)
.

Then the next two bounds on DKL (µ||µ̃r) are respectively corresponding to part (i) and

(ii) of Theorem 4.4.3.
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i) DKL (µ||µ̃r) ≤ tr(QTAQ) +Rf,C,πm,B

where Q =
(
eσP (r+1), . . . , eσP (d)

)
and A = BTHCB with HC := 2

Zf c

∫
C ∇f(∇f)Tdπm,B.

ii) DKL (µ||µ̃r) ≤ tr(QTAQ)

where Q =
(
eσP (r+1), . . . , eσP (d)

)
and A = BTHB with H = 2

1−K
∫
∇ log (f) (∇ log (f))Tdµ.

The result of the following proposition together with the second bound of the above

corollary, gives an upper bound for the following minimisation problem,

min
µr∈MPπm,B,r

DKL (µ||µr) ≤ min
P∈Rd×d permutation
Q=P (er+1,...,ed)

tr(QTAQ).

Indeed it gives a projection Pr which minimises the trace term in the right-hand side.

Proposition 4.4.1. For the matrix A = (aij) ∈ Rd×d, we have

min
P∈Rd×d permutation
Q=P (er+1,...,ed)

tr(QTAQ) =

d−r∑
i=1

aτA(i),τA(i)

where τA : {1, . . . d} → {1, . . . d} is a bijective function which satisfies the following property

aτA(1),τA(1) ≤ · · · ≤ aτA(d),τA(d).

Furthermore, the projection

Pr = I −
d−r∑
j=1

yjy
T
j

where yj =
uj
‖uj‖2 with uj = vj −

(∑j−1
i=1 projuj (vi)

)
, vi = BeτA(i) and proju(v) := (u,v)

(u,u)u,

is a minimiser of tr(QTAQ).

4.5 Proofs of dimension reduction for exponential priors

Proof of Theorem 4.4.2 The proof is built in the following way: In the first part, we

show the result for π0,1, the one-exponential probability measure on the real-line. Next,

in the second part, we extend the inequality to probability measures π0,Id×d defined on

a d-dimensional euclidean space as product measure of d copies of i. i. d measures with

density π0,1. As we see below, the entropy under a product measure can be written in

terms of the entropy of the individual measures of that product. The last part is a direct

application of Integration by Substitution for the extension to general one-exponential

probability measure.

For simplicity, we replace the left hand side of the original inequality with the notation

of Entropy, see for instance (4.17) and we also use the notation π instead of the probability
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π(·,·), whenever it is necessary.

Step 1: we consider probability π0,1 with probability density function e−|x|/2 and denote

with I (π0,1) the following collection of differentiable functions,

I (π0,1) :=

h : R → R+

∣∣∣∣∣∣
continuous, differentiable almost everywhere

with
∫
|h|dπ <∞,

∫
|h′|dπ <∞, lim

x→±∞
h (x) e−|x| = 0


Notice that using the Integration by parts formula, we can easily show that the following

expression holds for any h ∈ I (π0,1),∫
h dπ0,1 = h (0) +

∫
sgn (x)h′ (x)π0,1 (dx) (4.19)

Since h is log-Lipschitz, we have that h is differentiable almost everywhere, see for

instance Theorem 6 on page 281 in Evans (1998). In addition, a necessary condition for

h ∈ I (π0,1) is to assume that for sufficient large x, | log (h)′ | to be uniformly strictly

bounded below to 1, i.e. ∃x0 >> 1 such that z := sup|x|≥x0
| log (h(x))′ | < 1. In order to

show that we only need to observe that max
{
h(x)e−|x|, log (h(x))′ h(x)e−|x|

}
. e(z−1)|x|

with z − 1 < 0.

For the local version of this theorem, we consider the interval C = (a, b), since C is not

necessarily bounded we have that a, b ∈ R ∪ {±∞}. Similar to (4.19), we have that the

integral of h over the set C can be written as follows,∫ b

a
h dπ0,1 = Aπ0,1 (h, a, b) +

∫ b

a
sgn (x)h′ (x)π0,1 (dx)

where Aπ0,1 (h, a, b) denotes the boundary term that emerges from the integration by part

formula. In order to avoid dealing with the term Aπ0,1 (h, a, b) where is necessary, we can

use Lemma 4.5.1.

We begin the proof with the estimation of the following entropy,

Entπ (1 (· ∈ C)H) = Eπ (1 (· ∈ C)H log (H))− Eπ (1 (· ∈ C)H) log (Eπ1 (· ∈ C)H)

where q := argminx∈C |x| and H(x) := h(x)/h(q). In addition, we observe that for every

u ≥ 0, we have that

u− 1 ≤ u log (u)

By applying the above inequality to the entropy, we get that

Entπ (1 (· ∈ C)H) ≤ Eπ1 (· ∈ C) (H log (H)−H + 1) + π (Cc)

For simplicity, we consider the measure π(· ∩ C) and use the notation Eπ( · ∩ C)(h) as

an abbreviation for Eπ(1 (· ∈ C) h). Notice also that H log(H) − H + 1 ∈ I (π0,1) and
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H(q) log(H(q))−H(q) + 1 = 0, thus we can apply Lemma 4.5.1 on that function,

Eπ( · ∩ C) (H log (H)−H + 1) ≤
∫
C
sgn (x)H ′ (x) log (H (x))π (dx)

Using Cauchy-Schwarz inequality on the right hand side of the above inequality, we get

that

Eπ( · ∩ C) (H log (H)−H + 1) ≤ ||H ′||L2(π( · ∩ C))|| log (H) ||L2(π( · ∩ C)) (4.20)

Similar to the above two inequalities, it is easy to show that log (H)2 ∈ I (π0,1) and

log (H(q))2 = 0, so we can apply Lemma 4.5.1 on log (H)2. Then, repeating the last two

steps for the function log (H)2, we get that

Eπ( · ∩ C) log (H)2 ≤ 2 || log (H) ||L2(π( · ∩ C))|| log (H)′ ||L2(π( · ∩ C)) (4.21)

Applying inequality (4.21) to the inequality (4.20), we get that

Entπ( · ∩ C) (H) ≤ 2||H ′||L2(π( · ∩ C))|| log (H)′ ||L2(π( · ∩ C)) + π (Cc)

Since H(x) := h(x)/h(q), we have that

Entπ (1 (· ∈ C)h) ≤ 2||h′||L2(π( · ∩ C))|| log (h)′ ||L2(π( · ∩ C)) + h (q)π (Cc)

Using the positivity of c, we obtain that | log (h(x))′ | ≤ |h(x)′|
c for every x ∈ C. Thus, we

have that

Entπ (1 (· ∈ C)h) ≤ 2

c

∫
I

(
h′
)2
dπ + h (q)π (Cc) (4.22)

Notice also that the above inequality holds even in the case where C is unbounded.

Step 2: we consider probability π0,I on the product space R × . . .R, this probability can

be written as product of probabilities π0,1 as it follows

π0,I (dx1 ⊗ · · · ⊗ dxd) = π1(dx1) · . . . πd(dxd), where πi(dxi) = π0,1(dxi)

Since π0,I is product measure, the entropy of π0,I satisfies the following inequality, see for

instance Proposition 2.2 in LEDOUX (1997),

Entπ0,I (h) ≤
d∑
i=1

Eπ0,I (Entπi (h)) (4.23)

where Entπi (h) is defined as follows

Entπi (h) (x1, . . . , xi−1, xi+1, . . . xd) :=

∫
h(. . . , xi, . . . ) log

(
h(. . . , xi, . . . )∫

h(. . . , xi, . . . )π0,1(dxi)

)
π0,1(dxi)

The next step is to apply the inequality obtained in the first part of this proof on the above

inequality, but first, we need to introduce the following notation that allows us to cut a
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given convex set C into slices. In particular, those slices are based on the standard basis

of Rd, i.e. ei = (0, . . . , 1 . . . , 0)T .

Let us consider the permutation map gi : Rd−1×R → Rd defined as follows gi(xi, xi) =

(xi1, . . . , xi, . . . x
i
d−1). It is obvious that gi can be represented by a permutation matrix P .

In addition, it is known that every permutation map is an invertible matrix1, so the inverse

map g−1
i (x) =

(
xi, xi

)
is well-defined. Using functions gi, we can define the following two

sets

Ci =
{
xi ∈ Rd−1 : ∃xi ∈ R such that gi

(
xi, xi

)
∈ C

}
and then, for every xi ∈ Ci we define

C
(
xi
)

=
{
xi ∈ R : gi(x

i, xi) ∈ C
}

For a given set C and using the above notation, we have that the indicator function of C

can be written as follows,

1 (x ∈ C) = 1(xi ∈ Ci, xi ∈ C(xi))

In addition, let us consider the following notation hi(xi)(x
i) := h ◦ g(xi, xi). Then, the

entropy Entπi (h), which comes from the inequality (4.23), can be rewritten as follows

Entπi (h) (x1, . . . , xi−1, xi+1, . . . xd) = EntXi∼π0,1

(
h ◦ g(xi, Xi)

)
Using the above notations, we have that the right hand side of (4.23) can be written in the

following way, Eπ0,I (Entπi (h)) = Egi(Xi,Xi)∼π0,I

(
Entπi(hi)(X

i)
)
. Therefore, the entropy

of 1 (· ∈ C)h under the probability π0,I is given as follows

Entπ0,I (1 (· ∈ C)h) ≤
d∑
i=1

Egi(Xi,Xi)∼π0,I

{
1
(
Xi ∈ Ci

)
Entπi(1

(
· ∈ C

(
Xi
))
hi)(X

i)
}

It is easy to see that for a given convex set C and xi ∈ Ci, the C
(
xi
)
is an interval. To

see that let us consider the set C̃(xi) :=
{
x ∈ C : ∃xi ∈ C(xi) such that x = gi(x

i, xi)
}
.

Since C̃(xi) is defined as the intersection of a line and a convex set C, we have that C̃(xi)

defines a line segment. Moreover, we have that C(xi) is the projection of the line segment

C̃(xi) on the axis of ei. The continuity of the last projection combined with that the C̃(xi)

defines a line segment, we have that for every xi ∈ Ci, C
(
xi
)
is a connected set.

1See also that gi can be written as follows gi(xi, xi) =



eT1
...

eTi−1

eTi+1

...

eTd

eTi



 xi

xi

, where ei is the standard basis
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Therefore, we can apply the inequality (4.22) to the entropy appearing in the last

inequality. For the application of that inequality, the original q and c will be replaced by

qxi = argmin
{
|xi| : xi ∈ C

(
xi
)}

and cxi = inf
{
h ◦ gi(xi, xi) : xi ∈ C (xi)

}
, respectively.

See also that for every xi ∈ Ci, we have that cxi ≥ c = inf
{
h(x) : x ∈ C

}
. The application

of this gives us the following inequality

Entπ0,Id
(1 (· ∈ C)h) ≤

2

c

d∑
i=1

Egi(Xi,Xi)∼π0,I

{
1
(
Xi ∈ Ci

)
EYi∼π0,11

(
Yi ∈ C

(
Xi
))

(∂ih)2 (gi(X
i, Yi))

}
+

d∑
i=1

Egi(Xi,Xi)∼π0,I
1
(
Xi ∈ Ci, Xi 6∈ C

(
Xi
))
hi ◦ gi

(
Xi, qXi

)
Notice that qxi takes values either from the boundary of C(xi), or it takes zero in case of

C̃(xi) ∩ {0} 6= ∅. Thus, we can bound hi ◦ gi
(
Xi, qXi

)
, which appears on the right hand

side of the above inequality, by M = sup
{
h(x) : x ∈ C

}
. We also notice that the first

expectation on the right hand side of the above inequality does not involve the random

variable Xi. Using that π0,Id is a product of πi, we have that

Entπ0,I (1 (· ∈ C)h) ≤ 2

c

∫
C
||∇h||22 dπ0,Id

+M

d∑
i=1

Egi(Xi,Xi)∼π0,I
1
(
Xi ∈ Ci, Xi 6∈ C

(
Xi
))

(4.24)

Next, we want to estimate the sum in the last inequality:

For generic C, the following holds

E(Xi,Xi)∼π0,I
1
(
Xi ∈ Ci, Xi 6∈ C

(
Xi
))
≤ π0,I(C

c)

Let us consider the specific case, where C is cube, then it is easy to show that:

d∑
i=1

E(Xi,Xi)∼π0,I
1
(
Xi ∈ Ci, Xi 6∈ C

(
Xi
))
≤ π0,I(C

c)

See for example that

E1((X1, X2) 6∈ C1 × C2) = E (1(X1 6∈ C1, X2 6∈ C2) + 1(X1 6∈ C1, X2 ∈ C2) + 1(X1 ∈ C1, X2 6∈ C2))

≥ E (1(X1 6∈ C1, X2 ∈ C2) + 1(X1 ∈ C1, X2 6∈ C2))

It can be easily seen that π0,I is invariant under permutations gi, i.e. π0,I = gi#π0,I ,

where g#π0,I(·) is the so-called push forward of π0,I and it is defined through the following

formula g#π0,I(·) = π0,I ◦ g−1(·). Hence, the above observation about (Xi, Xi) ∼ π0,I can

be applied also to the sum in inequality (4.24). Therefore, we get that

Entπ0,I (1 (· ∈ C)h) ≤ 2

c
Eπ0,I1 (· ∈ C) ||∇h||22 + M̃ π0,I (Cc) , (4.25)
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where c := inf
{
h(x) : x ∈ C

}
, M := sup

{
h(x) : x ∈ C

}
, a :=

 1, if C is cube

d, otherwise
, and

M̃ := aM

Step 3: We now extend the above inequality to probabilities πm,B using integration by

substitution.

Since B is invertible, we can define the affine map g (x) := Bx+m. Using the Integra-

tion by substitution, we have that EY∼πm,Bh (Y ) = EX∼π0,I
h ◦ g(X). Also, the linearity of

g(x)−m implies that the inverse image of a convex set is also convex, thus we have that

Entπm,B (1 (· ∈ C)h) = Entπ0,I

(
1
(
· ∈ g−1(C)

)
h ◦ g

)
≤ 2

c

∫
g−1(C)

||∇ (h ◦ g) ||22 dπ0,I + M̃ π0,I

(
g−1(C)

)
=

2

c

∫
g−1(C)

||BT (∇h) ◦ g||22 dπ0,I + M̃ πm,B (C)

=
2

c

∫
C
||BT∇h||22 dπm,B + M̃ πm,B (Cc)

where M := sup
{
h ◦ g(x) : x ∈ g−1(C)

}
= sup

{
h(x) : x ∈ C

}
, this holds due to the con-

tinuity of g, similar withM , we get that c = inf
{
h(x) : x ∈ C

}
, a :=

 1, if g−1(C) is cube

d, otherwise
,

and M̃ := aM .

Proof of Theorem 4.4.1 All the following steps are similar to the Proof of Theorem

4.4.2 except some minor changes that needs to be made. The part for π0,1 is the original

proof as it stated in LEDOUX (1997).

Let us start with the probability measure π0,1. Here, we consider H(x) = h(x)/h(0)

and using the inequality u− 1 ≤ u log (u) for u ≥ 0, we have that

Entπ (H) ≤
∫
sgn (x)H ′ (x) log (H (x))π (dx) ≤ ‖

√
H log (H) ‖L2(π)‖

√
H log (H)′ ‖L2(π)

also for the last inequality, we use Cauchy-Schwarz inequality. Next, an evaluation follows

for the term ‖
√
H log (H) ‖2L2(π), see that H log(H)2 ∈ I (π0,1) and H(0) log (H(0))2 = 0,

so the integration by part formula stated in (4.19) implies that

EπH log(H)2 = 2

∫
sgn (x)H (x) (log (H (x)))′ log (H (x))π (dx)

+

∫
sgn (x)H ′ (x) log (H (x))2 π (dx)

≤ 2‖
√
H log (H)′ ‖L2(π)‖

√
H log (H) ‖L2(π) +K‖

√
H log (H) ‖2L2(π)

the last inequality holds due to Cauchy-Schwarz inequality for the first term, for the second

term see that H ′ = H log (H)′, using the hypothesis for the derivative of log (H), we have
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that ‖ log (H)′ ‖L∞(π) < 1 and for this part of the proof, we denote ‖ log (H)′ ‖L∞(π) by K.

The above inequality is equivalent to

‖
√
H log (H) ‖L2(π) ≤

2

1−K
‖
√
H log (H)′ ‖L2(π)

Therefore, we obtain that

Entπ (H) ≤ 2

1−K
‖
√
H log (H)′ ‖2L2(π)

Using that H(x) = h(x)/h(0), we have that

Entπ (h) ≤ 2

1−K

∫
h(log (h)′)2π(dx)

For the next step, we consider π0,I and apply Proposition 2.2 in LEDOUX (1997). If

we further assume that K = ‖∇ log (h) ‖∞ = max1≤i≤d ‖∂i log (h) ‖∞ < 1, we have that

Entπ0,I (h) ≤
d∑
i=1

Eπ0,I (Entπi (h)) ≤ 2

1−K

∫
h‖∇ log (h) ‖22π(dx)

For the last step, we extend the last inequality which is obtained for π0,I to the

probability measure πm,B, applying a change of variable in the same way as we did

in the previous proof. Employing the affine map g (x) := Bx + m and assuming that

K = ‖∇ log (h ◦ g) ‖∞ < 1, we get that

Entπm,B (h) = Entπ0,I (h ◦ g) ≤ 2

1−K

∫
h ◦ g‖∇ log (h ◦ g) ‖22 dπ0,I

=
2

1−K

∫
h‖BT∇ log (h) ‖22 dπm,B

Let us denote by bi the columns of B, i.e. B =
(
b1, . . . bd

)
. Then using the chain rule, we

get that K can be written as follows,

K = max
{
‖
(
bi,∇ log (h)

)
‖∞ : i ∈ {1, . . . , d}

}
Now, let us consider the vector infinite-norm which is defined on Rd and denote it by

‖ · ‖∞,d. Next, we define its dual norm ‖ · ‖∗∞,d through the following expression ‖b‖∗∞,d =

sup‖x‖∞,d=1 | (b, x) |. Also, notice that ‖ · ‖∗∞,d = ‖ · ‖1,d, thus we have that

‖
(
bi,∇ log (h)

)
‖∞ ≤ ‖bi‖∗∞‖∇ log (h) ‖∞ = ‖bi‖1,d‖∇ log (h) ‖∞

See for example that the induced matrix norm by the vector norm ‖ · ‖∗∞,d of the matrix

BT is equal to ‖BT ‖∗∞ = max
{
‖bi‖1 : i ∈ {1, . . . d}

}
. Thus, we get that

K ≤ ‖BT ‖∗∞‖∇ log (h) ‖∞.
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Proof of Theorem 4.4.3 Let us consider the matrix U = BP , where P corresponds

to the permutation matrix considered from the definition of Pr ∈ Pπm,B ,r. In addition,

we consider the standard basis of Rd denoted by ei, i.e. ei is the d-vector with zero

everywhere except in the i-th coordinate which take the value 1, then, we define matrices

Cr := (e1, . . . er) and Cd−r := (er+1, . . . ed). Furthermore, we can define the matrices

Ur := UCr and U⊥ := UCd−r, see also that "it holds" U = (Ur|U⊥).

Observe also that the columns of the matrices Ur and U⊥ forms a basis of the sub-

spaces Im(Pr) and Ker(Pr), respectively. Therefore, the matrices Ur and U⊥ satisfies the

assumptions stated in Section 4.3.1 and in particular for the construction of the probability

measures π⊥(·|ξr) and πr(·), as it is stated in the integration rule (4.12).

An advantage of choosing that particular U is that π⊥(dξ⊥|ξr) is independent of the

choice of ξr. In order to show our claim, we observe that for every ξ :=
(
ξr
ξ⊥

)
∈ Rd, where

ξr ∈ Rr and ξ⊥ ∈ Rd−r, we have that

‖B−1U(ξ − m̃)‖1,d = ‖CTr PB−1Ur(ξr − m̃r)‖1,r + ‖CTd−rPB−1U⊥(ξ⊥ − m̃⊥)‖1,d−r

where m̃ := U−1m, m̃r := CTr m̃, m̃⊥ := CT⊥m̃ and ‖ · ‖1,n is the 1-norm is defined on Rn,

i.e. ‖x‖1,n :=
∑n

i=1 |xi|. Note that the last equality, is obtained readily by observing the

following matrix

P TB−1U =

 Ir 0
0 Id−r

 (4.26)

where Ir and Id−r are the corresponding identity matrices. Hence, we have that CTr P TB−1U =

(Ir|0). Next, using the definition of π⊥(dξ⊥|ξr) and the expression for the conditional ex-

pectation p⊥, see expression (4.11), we get that

π⊥(dξ⊥|ξr) = p⊥ (ξ⊥|Urξr) dξ⊥ =
e−‖C

T
r P

TB−1U⊥(ξ⊥−m̃⊥)‖1,d−r∫
Rd−r e

−‖CTr PTB−1U⊥(ξ⊥−m̃⊥)‖1,d−rdξ′⊥

Therefore the structure of U combined with the assumption on the projection Pr implies

that π⊥(dξ⊥|ξr) is independent of the choice of ξr, i.e. π⊥(dξ⊥|ξr) = πm̃⊥,Id−r(dξ⊥).

For the purpose of this proof, the quantity of interest is divided into the following two

integrals,∫
f log

(
f

Eπm,B (f |σ(Pr))

)
dπm,B =

∫
C
f log

(
f

Eπm,B (f |σ(Pr))

)
dπm,B

+

∫
Cc
f log

(
f

Eπm,B (f |σ(Pr))

)
dπm,B

(4.27)
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For the estimation of the first integral, we apply the local version of the modified LSI

which is obtained in Theorem 4.4.2. Observe that the probability πm̃⊥,Id−r(dξ⊥) admits

the assumptions of that Theorem. But first, let us consider the set C and define the set

C̃r and C̃ (ξr) as follows,

C̃r :=
{
ξr ∈ Rr : ∃ξ⊥, U

(
ξr
ξ⊥

)
∈ C

}
= CTr U

−1(C)

and for a given ξr ∈ C̃r

C̃ (ξr) :=
{
ξ⊥ ∈ Rd−r : U

(
ξr
ξ⊥

)
∈ C

}
Using the integration rule (4.12) in a similar way as we use it for getting the expression in

(4.16), we get that∫
C
f log

(
f

Eπm,B (f |σ(Pr))

)
dπm,B ≤

∫
C̃r
Entπm̃⊥,Id−r

(
1
(
· ∈ C̃ (ξr)

)
f ◦ U

)
πr(dξr)

for getting the above inequality, we only needs to apply the following inequality, for every

ξr ∈ C̃r, we have that∫
C̃(ξr)

f ◦ U
(
ξr
ξ⊥

)
πm̃⊥,Id−r(dξ⊥) ≤

∫
f ◦ U

(
ξr
ξ⊥

)
πm̃⊥,Id−r(dξ⊥)

For simplicity, let us denote g (ξ⊥) = f (Urξr + U⊥ξ⊥) and apply theorem 4.4.2 on

πm̃⊥,Id−r , we have that

Entπm̃⊥,Id−r

(
1
(
· ∈ C̃ (ξr)

)
g
)
≤ 2

cξr

∫
C̃(ξr)

‖∇g(ξ⊥)‖22,d−r πm̃⊥,Id−r(dξ⊥) + M̃ξr πm̃⊥,Id−r

(
C̃ (ξr)

c
)

where M̃ξr := aξr Mξr and cξr , aξr Mξr are given in the following forms,

cξr = inf
{
f ◦ U

(
ξr
ξ⊥

)
: ξ⊥ ∈ C̃ (ξr)

}
Mξr := sup

{
f ◦ U

(
ξr
ξ⊥

)
: ξ⊥ ∈ C̃ (ξr)

}

aξr :=

 1, if C̃ (ξr)− m̃⊥ is cube

d, otherwise

It is obvious that the definition of cube is invariant under permutations and translations,

i.e. if C ⊂ Rd is cube, P ∈ Rd×d permutation matrix and m ∈ Rd, we have that P (C−m)

is cube. Notice that if B−1(C) is cube, then we have that U−1(C) is cube, so there exist

A ⊆ Rr and B ⊆ Rd−r such that U−1(C) = Ar × A⊥. See also that by definition of C̃r

and C̃ (ξr), U−1(C) can be written as follows

U−1(C) :=
{(

ξr
ξ⊥

)
: ξr ∈ C̃r, ξ⊥ ∈ C̃ (ξr)

}
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Therefore, if B−1(C) is cube, we have that for every ξr ∈ C̃r, the set C̃ (ξr) = A⊥, see

also that A⊥ is cube by definition. That implies that sup{aξr : ξr ∈ C̃r} ≤ a, where a is

defined as follows,

a :=

 1, if B−1(C) is cube

d, otherwise

See also that

inf
{
cξr : ξr ∈ C̃r

}
≥ inf

{
f ◦ U

(
ξr
ξ⊥

)
: ξr ∈ C̃r, ξ⊥ ∈ C̃ (ξr)

}
≥ inf

{
f(x) : x ∈ C

}
= c

Similar to the lower bound of cξr , we have that

sup
{
cξr : ξr ∈ C̃r

}
≤ sup

{
f(x) : x ∈ C

}
= M

Let us substitute g with f ◦ U , also see that using the the chain rule, we have that

∇g (ξ⊥) := UT⊥∇f (Urξr + U⊥ξ⊥),

Entπm̃⊥,Id−r

(
1
(
· ∈ C̃ (ξr)

)
f ◦ U

)
≤ 2

c

∫
C̃(ξr)

‖UT⊥∇f (Urξr + U⊥ξ⊥)‖22,d−r πm̃⊥,Id−r(dξ⊥) + M̃ πm̃⊥,Id−r

(
C̃ (ξr)

c
)

Let us integrate the above inequality with respect to πr(dξr) over the set C̃r,∫
C̃r
Entπm̃⊥,Id−r

(
1
(
· ∈ C̃ (ξr)

)
f ◦ U

)
πr(dξr)

≤ 2

c

∫
C̃r

∫
C̃(ξr)

‖UT⊥(∇f)(Urξr + U⊥ξ⊥)‖22,d−r πm̃⊥,Id−r(dξ⊥)πr(dξr)

+ M̃

∫
C̃r
πm̃⊥,Id−r

(
C̃ (ξr)

c
)
πr(dξr)

=
2

c

∫
C
‖UT⊥(∇f)(x)‖22,d−r πm,B(dx) + M̃ πm,B (Cc)

In the following part of the proof, we estimate the second term of (4.27) which is an

integral involving the values of f over the set Cc. By applying the integration rule which

is given in (4.12), we obtain the following∫
Cc
f log

(
f

Eπm,B (f |σ (Pr))

)
dπm,B =∫ ∫

(U−1C)c
f ◦ U log

(
f ◦ U

Eπm,B (f |σ (Pr)) ◦ U

)
πm̃⊥,Id−r(dξ⊥)πr(dξr)

It is easy to see that the above integral over
(
U−1C

)c, it is bounded by the following two

integrals,∫
C̃r

∫
C̃(ξr)

c
f ◦ U log

(
f ◦ U∫

f ◦ Udπm̃⊥,Id−r

)
πm̃⊥,Id−r(dξ⊥)πr(dξr)+∫

(C̃r)
c
Entπm̃⊥,G (f ◦ U)πr(dξr)

(4.28)
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Before, we start with the estimation of the last two integrals, we use the log-Lipschitz

condition of f to obtain a bound for the Logarithm that appears in the above two integ-

rals. Since f is log-Lipschitz, we have that ‖∇ log (f) ‖L∞(πm,B),∞ is finite. In addition, the

definition of log-Lipschitz for positive functions implies that for every x, y ∈ Rd, it holds

f(y)e−K||x−y||1 ≤ f(x) ≤ f(y)eK||x−y||1

where K = ‖∇ log (f) ‖L∞(πm,B),∞.

Let us also consider the following notation, for every ξ⊥, ξ′⊥ ∈ Rd−r and ξr ∈ Rr, we

denote with ξ, ξ′ ∈ Rd the following two vectors
(
ξr
ξ⊥

)
,
(
ξr
ξ′⊥

)
, respectively. Then, we have

that for every ξr ∈ Rr and ξ⊥ ∈ Rd−r, it holds∫
f ◦ U(ξ′)

f ◦ U(ξ)
πm̃⊥,G(dξ′⊥) ≥

∫
e−K‖U⊥(ξ⊥−ξ′⊥)‖1 πm̃⊥,G(dξ′⊥)

≥
∫
e−K‖U⊥‖

∗
1 ‖ξ⊥−ξ′⊥‖1 πm̃⊥,G(dξ′⊥)

where ‖U⊥‖∗1 is the dual-norm of U⊥ with respect to ‖ · ‖1, i.e. ‖U⊥‖∗1 = sup
ξ⊥∈Rd−r

‖U⊥ξ⊥‖1,d
‖ξ⊥‖1,d−r .

Then, using the triangular inequality on the logarithm of (4.28), we have that

log

(
f ◦ U∫

f ◦ Udπm̃⊥,Id−r

)
≤ K‖U⊥‖∗1 ‖ξ⊥ − m̃⊥‖1 + log

(
1∫

e−K‖U⊥‖
∗
1 ‖ξ′⊥−m̃⊥‖1πm̃⊥,G(dξ′⊥)

)
= K‖U⊥‖∗1 ‖ξ⊥ − m̃⊥‖1 + (d− r) log (K‖U⊥‖∗1 + 1)

(4.29)

the last equality holds, since for any positive α we have∫
Rd−r

e−α‖ξ̃⊥−m̃⊥‖1,d−rπm̃⊥,Id−r (dξ⊥) =
1

(α+ 1)d−r

Next, by applying the inequality (4.29) on the second integral of (4.28), we have that∫
(C̃r)

c
Entξ⊥∼πm̃⊥,G (f ◦ U(ξ))πr(dξr)

=

∫
(C̃r)

c

∫
Rd−r

f ◦ U(ξ) log

(
f ◦ U(ξ)∫

f ◦ U(ξ′)πm̃⊥,Id−r(dξ
′
⊥)

)
πm̃⊥,Id−r(dξ⊥)πr(dξr)

≤MCc

∫
(C̃r)

c

∫
Rd−r

K‖U⊥‖∗1 ‖ξ⊥ − m̃⊥‖1 + (d− r) log (K‖U⊥‖∗1 + 1)πm̃⊥,Id−r(dξ⊥)πr(dξr)

= MCc (d− r) (K‖U⊥‖∗1 + log (K‖U⊥‖∗1 + 1))

∫
(C̃r)

c

∫
Rd−r

πm̃⊥,Id−r(dξ⊥)πr(dξr)

(4.30)

where MCc = sup {f (x) : x ∈ Cc} and the last equality holds, since we have that∫
Rd−r

‖ξ̃⊥ − m̃⊥‖1,d−rπm̃⊥,Id−r (dξ⊥) = d− r (4.31)

For the estimation of the first integral of (4.28), we consider Λ similar to the one is assumed

in the theorem and then we define sets Λ̃r, Λ̃ (ξr) similar to the definition of C̃r, C̃ (ξr).
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Let us consider the case where ξr ∈ C̃r \ Λ̃r. Applying the inequality (4.29) on the

following integral, we get that∫
C̃(ξr)

c
f ◦ U log

(
f ◦ U∫

f ◦ Udπm̃⊥,Id−r

)
πm̃⊥,Id−r(dξ⊥)

≤MCc

∫
C̃(ξr)

c
K‖U⊥‖∗1 ‖ξ⊥ − m̃⊥‖1 + (d− r) log (K‖U⊥‖∗1 + 1)πm̃⊥,Id−r(dξ⊥)

Notice that {(
ξr
ξ⊥

)
: ξr ∈ C̃r \ Λ̃r, ξ⊥ ∈ C̃ (ξr)

}
⊆ U−1(C \ Λ)

Then, it is obvious that for every ξr ∈ C̃r, we have that C̃ (ξr) ⊆ CTd−rU
−1(C \ Λ). Thus,

the following holds

sup
{
πm̃⊥,Id−r(C̃(ξr)) : ξr ∈ C̃r \ Λ̃r

}
≤ πm̃⊥,Id−r(C

T
d−rU

−1(C \ Λ) )

= π0,Id−r(C
T
d−rU

−1(C \ Λ −m) ) =: β

which implies that

sup
ξr∈C̃r\Λ̃r

πm̃⊥,Id−r(C̃(ξr))

πm̃⊥,Id−r(C̃(ξr)c)
≤ β

1− β

Combining the above inequality with the integral of (4.31), we obtain that∫
C̃(ξr)

c
‖ξ̃⊥ − m̃⊥‖1,d−rπm̃⊥,Id−r (dξ⊥) ≤ d− r

1− β
πm̃⊥,Id−r

(
C̃ (ξr)

c
)

Hence, integrating with respect to πr(dξr) over the set C̃r \ Λ̃r, we get that∫
C̃r\Λ̃r

∫
C̃(ξr)

c
f ◦ U log

(
f ◦ U∫

f ◦ Udπm̃⊥,Id−r

)
πm̃⊥,Id−r(dξ⊥)πr(dξr)

≤MCc (d− r)
(
K‖U⊥‖∗1

1− β
+ log (K‖U⊥‖∗1 + 1)

)∫
C̃r\Λ̃r

∫
C̃(ξr)

c
πm̃⊥,G(dξ⊥)πr(dξr)

(4.32)

Next, we consider the case where ξr ∈ Λ̃r and define the following constant

λ̃ := inf
{
πm̃⊥,Id−r

(
Λ̃ (ξr)

)
: ξr ∈ Λ̃r

}
= inf

{
π0,Id−r

(
Λ̃ (ξr)− m̃⊥

)
: ξr ∈ Λ̃r

}
Using the definition of Λ̃ (ξr) and U , we have that

π0,Id−r

(
Λ̃ (ξr)− m̃⊥

)
= π0,Id−r

({
ξ⊥ − m̃⊥ ∈ Rd−r :

(
ξr−m̃r
ξ⊥−m̃⊥

)
∈ P TB−1 (Λ−m)

})
≥ min

{
π0,1

(
eTi B

−1(Λ−m)
)

: ei is the standard basis of Rd
}d−r

for the last inequality, we only need to use that π0,Id−r is the product of π0,1 over

span {e1, . . . ed}. Next, using that B−1(Λ) is cube and P is the permutation matrix,

we get that U−1(Λ −m) = PB−1(Λ −m) is cube. Thus, it is obvious that for every ei,
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π0,1

(
eTi B

−1(Λ−m)
)
is positive, and so, it follows that λ̃ > 0. Then, the first term of

(4.28) can be bounded as follows∫
C̃(ξr)

c
f ◦ U log

(
f ◦ U∫

f ◦ Udπm̃⊥,Id−r

)
πm̃⊥,Id−r(dξ⊥)

≤
∫
C̃(ξr)

c
f ◦ U log

(
f ◦ U∫

Λ̃(ξr)
f ◦ Udπm̃⊥,Id−r

)
πm̃⊥,Id−r(dξ⊥)

≤
∫
C̃(ξr)

c
f ◦ U log

(
MCc

cλ̃

)
πm̃⊥,Id−r(dξ⊥)

Let us integrate the above inequality with respect to πr(dξr) over the set Λ̃r,∫
Λ̃r

∫
C̃(ξr)

c
f ◦ U log

(
f ◦ U∫

f ◦ Udπm̃⊥,Id−r

)
πm̃⊥,Id−r(dξ⊥)πr(dξr) ≤

MCc max

{
log

(
MCc

c λ̃

)
, 0

}∫
Λ̃r

∫
C̃(ξr)

c
πm̃⊥,Id−r(dξ⊥)πr(dξr)

(4.33)

Applying inequalities (4.30), (4.32) and (4.33) on the relation (4.28), we obtain that∫
Cc
f log

(
f

Eπm,B (f |σ (Pr))

)
dπm,B

≤MCc max

{
(d− r)

(
K‖U⊥‖∗1

1− β
+ log (K‖U⊥‖∗1 + 1)

)
, log

(
MCc

c λ̃

)
, 0

}
πm,B(Cc)

Therefore, we have that∫
f log

(
f

Eπm,B (h|σ (Pr))

)
πm,B(dx) ≤ 2

c

∫
C
‖UT⊥∇f(x)‖22,d−r πm,B(dx)

+ max

{
M̃,MCc (d− r)

(
K‖U⊥‖∗1

1− β
+ log (K‖U⊥‖∗1 + 1)

)
,MCc log

(
MCc

c λ̃

)}
πm,B (Cc)

This complete proves the first two inequalities of the theorem.

The last inequality is a consequence of Theorem 4.4.1. So, proceeding similarly as

above, we fix ξr ∈ Rr and consider the function g (ξ⊥) = f (Urξr + U⊥ξ⊥). Next, using the

chain rule, we have that ∇ log (g(ξ⊥)) = UT⊥∇ log (f(x)) |x=Urξr+U⊥ξ⊥ . In order to apply

Theorem 4.4.1, we need to define Kξr = ‖∇ log (g) ‖L∞(πm̃⊥,Id−r),∞ for every ξr ∈ Rr. See

that for every ξr ∈ Rr, the following holds

Kξr ≤ ‖UT⊥∇ log (f) ‖L∞(πm,B),∞ ≤ K := ‖UT⊥‖∗∞ ‖∇ log (f) ‖L∞(πm,B),∞ < 1

Since Kξr < 1, Theorem 4.4.1 implies that

Entπm̃⊥,Id−r (g) ≤ 2

1−Kξr

∫
g(ξ⊥)‖∇g(ξ⊥)‖22,d−rπm̃⊥,Id−r(dξ⊥)

Then, we substitute g and ∇g integrate with respect to πr(dξr),∫
Entπm̃⊥,Id−r (f ◦ U)πr(dξr)

≤ 2

1−K

∫ ∫
f ◦ U

(
ξr
ξ⊥

)
‖UT⊥ (∇ log (f)) ◦ U

(
ξr
ξ⊥

)
‖22,d−r πm̃⊥,Id−r(dξ⊥)πr(dξr)
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Therefore, using the integration rule (4.12), we get that∫
f log

(
f

Eπm,B (f |σ (Pr))

)
dπm,B ≤

2

1−K

∫
f ‖UT⊥∇ log (f) ‖22,d−r dπm,B

Proof of Theorem 4.4.4 First, we know that for any a ∈ Rd, the 2-norm can be

written as follows

‖a‖22,d = (a, a) = aTa = tr(aaT )

Hence, if we apply the second bound coming from Theorem 4.4.3 in equation (4.15), we

have that

DKL (µ||µ̃r) ≤
2

1−K

∫
‖UT⊥∇ log (f) ‖22,d−r

f

Zf
dπm,B

=
2

1−K

∫
tr(UT⊥∇ log (f) (∇ log (f))TU⊥) dµ = tr(UT⊥HU⊥)

where H = 2
1−K

∫
∇ log (f) (∇ log (f))Tdµ ∈ Rd×d.

Also, by the definition of Pπm,B ,r, we have that for every Pr ∈ Pπm,B ,r there is a

corresponding permutation matrix P . Notice also that the structure of a permutation

matrix is essentially an rearrangement of the columns of the identity matrix. Hence,

for every P there exists a bijective function σP : {1, . . . d} → {1, . . . d} such that P =(
eσP (1), . . . , eσP (d)

)
. Then if we denote by Q = P (er+1, . . . , ed) ∈ Rd×(d−r), we have that

Q =
(
eσP (r+1), . . . , eσP (d)

)
. Recalling the definition of U⊥ = BP (er+1, . . . , ed) = BQ.

Hence, the above integral can be written as follows,

tr(UT⊥HU⊥) = tr(QTBTHBQ) = tr(QTAQ)

where A := BTHB.

Similarly for the first bound, we have that

DKL (µ||µ̃r) ≤ tr(QTAQ) +Rf,C,πm,B

where A = BTHCB with HC := 2
Zf c

∫
C ∇f(∇f)Tdπm,B ∈ Rd×d.

Proof of Proposition 4.4.1 We recall that for every P , there exists a bijective

function σP : {1, . . . d} → {1, . . . d} such that P =
(
eσP (1), . . . , eσP (d)

)
. Thus, Q =

P (er+1, . . . , ed) =
(
eσP (r+1), . . . , eσP (d)

)
and

QTAQ =

 eT
σP (r+1)

...
eT
σP (d)

A
(
eσP (r+1), . . . , eσP (d)

)
=
(
aσP (r+i),σP (r+j)

)
i,j∈{1,...(d−r)}
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Hence,

tr(QTAQ) =

d−r∑
i=1

aσP (r+i),σP (r+j)

Then, the minimum comes naturally from the definition of the function τA.

Notice that the sequence of yi in Proposition 4.4.1 is defined according to Gram–Schmidt

process which ensures us that {y1, . . . , yd−r} is orthonormal basis of Im
(
B
(
eτA(1), . . . , eτA(d−r)

))
.

According to the context of Theorem 4.4.3, there is a projection Pr ∈ Pπm,B ,r such

that U⊥ = B
(
eτA(1), . . . , eτA(d−r)

)
. In Section 4.3.1, we see that Im(U⊥) = ker(Pr) =

Im(I − Pr), it is also obvious that if Pr is a projection then I − Pr is projection too.

Therefore, it is sufficient to prove that for any orthonormal sub-basis {a1, . . . , ad−r} of Rd,

the matrix
∑d−r

i=1 aia
T
i is an r-rank projection with Im

(
d−r∑
i=1

aia
T
i

)
=

d−r⊕
i=1
〈ai〉.

Notice that

(
d−r∑
i=1

ai a
T
i

)2

=

d−r∑
i=1

(ai a
T
i )2 +

∑
i 6=j

1≤i,j≤(d−r)

ai a
T
i aj a

T
j

=

d−r∑
i=1

(ai, ai)ai a
T
i +

∑
i 6=j

1≤i,j≤(d−r)

(ai, aj)ai a
T
j =

d−r∑
i=1

ai a
T
i

In addition, we observe that ai 6= 0, for every i ∈ {1, . . . d}, so we have that Ker(ai aTi ) ={
x ∈ Rd : ai a

T
i x = 0

}
=
{
x ∈ Rd : (ai, x) = 0

}
, thus ai aTi is 1-rank matrix. Further-

more, we have that aj ∈ Ker(ai a
T
i ), for every j ∈ {1, . . . d} \ {i}, thus it holds that

Im

(
d−r∑
i=1

aia
T
i

)
=

d−r⊕
i=1
〈ai〉.

4.5.1 Lemmas

Lemma 4.5.1. Suppose an interval I and q = argminx∈I |x|. Then, the following inequality

holds for any h ∈ I (π0,1) with h(q) = 0,

∫
I
h dπ0,1 ≤

∫
I
sgn (x)h′ (x)π0,1 (dx)

Proof 4.5.1 (Lemma 4.5.1). For simplicity, we consider the interval I = (a, b) where

a, b ∈ R ∪ {±∞}. Next, let us apply the integration by part formula on the left hand side

of the above inequality and denote the boundary term by Aπ0,1 : L1 × R2 → R,

∫ b

a
h dπ0,1 = Aπ0,1 (h, a, b) +

∫ b

a
sgn (x)h′ (x)π0,1 (dx)
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The explicit formula of Aπ0,1 (h, a, b) is given as follows

Aπ0,1 (h, a, b) =


h (b) eb − h (a) ea

2
, if b ≤ 0

h (a) e−a − h (b) e−b

2
, if 0 ≤ a

h (0)− h (b) e−b + h (a) ea

2
, if 0 ∈ (a, b)

By definition q ∈ I and takes the closure value to 0, we also have that h is non-negative

and h (q) = 0, so it is straightforward to see that Aπ (h, a, b) ≤ 0. Therefore, we have that∫ b

a
h dπ ≤

∫ b

a
sgn (x)h′ (x)π (dx) (4.34)
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Chapter 5

SDEs with vanishing diffusions on

bounded intervals

In this chapter we consider the inverse problem of recovering the diffusion and drift func-

tions of a stochastic differential equation from discrete measurements of its solution. It

is known that applying the Bayesian approach to this problem gives rise to a well-posed

posterior measure provided that the diffusion and drift functions are Hölder continuous

Croix et al. (2020). Motivated by applications of this problem in estimating the para-

meters of birth-and-death processes in a large population, we study the case where the

diffusion coefficient depends on a small parameter. We use random perturbation methods

to approximate the solution of the stochastic differential equation, and study the conver-

gence properties of this approximation at the limit of vanishing diffusion coefficient. We

also formulate and study the resulting approximated posterior measure.

5.1 The inverse problem

Similarly to Section 3.2, we consider the stochastic process X(t) defined on a bounded

subinterval of R, denoted by I, such that

dX(t) = (a(X(t))− b(X(t))) dt+
1√
N

√
a(X(t)) + b(X(t))dWt, ∀t ≥ t0 (5.1)

with initial value X(t0) = x0. Furthermore, we assume that N is a large number, i.e.

N � 1. Also, we have that the drift and diffusion coefficients are in the form of a(x)−b(x)

and
√
a(x) + b(x), respectively. For simplicity, let us denote them as follows:

µ(x) := a(x)− b(x) and σ(x) :=
√
a(x) + b(x). (5.2)
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In addition, (Wt)t≥0 is the standard Brownian motion defined over a filtered probability

space
(

Ω,F , (Ft)t≥0 ,P
)
. Let us assume that I = [0, 1] and the behaviour of X on the

boundary is described as follows, the left bound is an absorbing barrier and the right

bound is a reflective barrier. For clarity in what follows, we denote the solution of the

above equation X at time t for a given a and b by X(a,b)(t).

Then, we consider the problem of recovering a and b using noisy discrete measurements

of a realisation of X(a,b)(t). Thus, assuming a given time discretisation of the interval [0, T ]

denoted by 0 < t1 < . . . tJ ≤ T , the inverse problem is given as follows: estimate (a, b)

given

yi = X(a,b)(ti) + εηi, for every i ∈ {1, . . . J} (5.3)

where ε > 0, and ηi are i.i.d. with ηi ∼ N(0, 1). As we mention above, we denote drift and

diffusion coefficients by µ and σ, respectively. If a+ b is positive, we observe that there is

invertible matrix that maps (a, b)→ (µ, σ). That is, we can restate the inverse problem as

follows: estimate µ and σ given

yi = X(µ,σ)(ti) + εηi, for every i ∈ {1, . . . J} (5.4)

where ε > 0, and ηi are i.i.d. with ηi ∼ N(0, 1).

Let us denote by π0 and πyN the prior and the posterior distribution of the above inverse

problem. We note that the index N of the measure πyN may be omitted at times.

Now, we are interested in evaluating the likelihood of the problem (i.e. the unnormalised

Radon-Nikodym of πy with respect to π0) in the case of no measurement noise, i.e. ε = 0

(see the remark below for the noisy case). We note that X(µ,σ)(·) is an Ito diffusion, thus

it satisfies the Markov property. In addition, let us assume that the transition probability

of X(µ,σ)(·) admits a density function. Notice also that Bayes’ formula implies that the

likelihood is given as the density function of Y (the distribution of the data) for fixed (µ, σ).

Combining the last two observation with the assumption about the density of X(µ,σ)(·),

we have that the likelihood is given as the product of the transition density function of

X(µ,σ)(·) evaluated in points (yi, ti). Thus, the likelihood Ly,s (µ, σ) can be written as

follows

dπy

dπ0
(µ, σ) ∝ Ly,s (µ, σ) :=

J−1∏
i=0

p(µ,σ)(yi+1, ti+1; yi, ti) (5.5)

According to Section 3.3 and since X(µ,σ)(·) admits a transition probability density func-

tion, p(µ,σ)(t, y; s, x), for t ≥ s, satisfies the associated backward Kolmogorov equation
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−∂ p
(µ,σ)(s, x)

∂s
=
σ2(x)

2N

∂2 p(µ,σ)(s, x)

∂x2
+ µ(x)

∂ p(µ,σ)(s, x)

∂x

lim
s↗t

p(µ,σ)(t, y; s, x) = δ(y − x)
(5.6)

variables (y, t) are omitted in the above expression, since these are fixed.

As we can see in Croix et al. (2020), in the case of noisy measurements, i.e. ε > 0, we

have that the likelihood of the problem is similar to the above one where the transition

probability density p(µ,σ) is replaced by the following

p̃(µ,σ)(ỹi+1, ti+1; ỹi, ti) =

∫ ∫
p(µ,σ)(z, ti+1;w, ti)fN(0,ε2)(ỹi+1 − z)fN(0,ε2)(ỹi − w)dzdw

(5.7)

since the noise term has a Gaussian distribution, we denote by fN(0,ε2) the density function

of N(0, ε2). For simplicity, let us define the following notation: we define convolution at

time t, for given function f convoluted with transition density function p as follows

p ∗t f (y, t;x, s) :=

∫
R
p (z, t;x, s) f (y − z) dz

Also, we define convolution at time s, for given function f convoluted with transition

density function p as follows

p ∗s f (y, t;x, s) :=

∫
R
p (y, t; z, s) f (x− z) dz

Then p̃ can be rewritten in the following way

p̃(yi+1, ti+1;xi, ti) : =

∫
R
p ∗ti+1 fN(0,ε2) (yi+1, ti+1; q, ti) fN(0,ε2)(yi − q)dq

=
(
p ∗ti+1 fN(0,ε2)

)
∗ti fN(0,ε2) (yi+1, ti+1; yi, ti)

Let us now restate the appropriate framework for the well-posedness of the Bayesian

approach for the current inverse problem. This framework has been introduced in Croix

et al. (2020). Therein, they define the following Banach space,

Λ =

{
(µ, σ) : µ, σ2 ∈ C0,1([0, 1]), mσ := min

x∈[0,1]
σ(x) > 0

}
endowed with the following norm: given (µ, σ2) ∈ C0,1([0, 1])2, we define

‖(µ, σ2)‖ := ‖µ‖0,1 + ‖σ2‖0,1

where ‖ · ‖0,1 is 1-Hölder norm. In general, we define α-Hölder norm for some α ∈ (0, 1] as

follows: given f ∈ C0,α([0, 1])

‖f‖0,α := ‖f‖L∞([0,1]) + sup
x∈[0,1]

‖f(x)− f(y)‖
‖x− y‖α

.
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Let us then restate the following theorem which provides us with the well-definedness of

the posterior emerging from the above problem, and also, the stability of the Bayesian

approach. Its proof can be found in Croix et al. (2020).

Theorem 5.1.1. Let T>0, J ≥ 1 and consider y = (y1, . . . , yJ) ∈ (0, 1)n to be the data at

times t = (t1, . . . , tJ) with 0 < t1 ≤ · · · ≤ tJ ≤ T . Suppose that π0 a probability measure

with π0(Λ) = 1 and there exists C > 0 and q > 2 such that

Eπ0

(
exp

(
Cm(1−q)

σ ‖(µ, σ)‖q
))

<∞

Then there exists a unique posterior measure πy,s given by

dπy,s

dπ0
(µ, σ) =

1

Z(y, s)
Ly,s (µ, σ)

where Z(y, s) is normalisation constant which defined as follows

Z(y, s) =

∫
Λ
Ly,s (µ, σ) dπ0(µ, σ) ∈ (0,∞)

Moreover, the posterior probability πy,s is continuous in y with respect to the Hellinger

metric.

Remark 5.1.1. In the original work for the definition of the above space, they use any

α-Hölder within α ∈ (0, 1] instead of C0,1([0, 1]) and the appropriate norm for each choice

of α. Also, the statement in the original theorem includes the choice of α.

Due to the computational complexity of the likelihood, we can easily see that the

estimation of the posterior is becoming very expensive in terms of computational cost.

Observe that the implementation of a Monte Carlo simulation requires the evaluation of

the likelihood in several points (µ, σ) which means that for every single choice of (µ, σ),

we need to compute the solution of the corresponding equation (5.6). For this reason, it is

important to find an approximation that reduces the computational cost for the evaluation

of the likelihood.

In the last mentioned paper, they provide a quite general theorem for the approximation

of the posterior πy. For example, that theorem can be used in combination with a Galerkin

method which approximates the solution of equation (5.6). That could probably accelerate

the estimation of the posterior πy.

In our case, we consider a slightly different problem, as the diffusion term depends on

a large N , this kind of diffusion term appears in many population models, where also N

is supposed to be very large. Based on the last observation of our problem, we consider
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a different type of approximation from the one considered in Croix et al. (2020). The

proposing approach, for the posterior πy, considers an approximated posterior with a

much easier to compute likelihood. More specifically, we use a perturbation technique to

approximate X(µ,σ)(·) with the stochastic process
(
X

(µ,σ)
0 + 1√

N
X

(µ,σ)
1

)
(·). Considering

now a new inverse problem based on the collected data y and with forward map emerging

from
(
X

(µ,σ)
0 + 1√

N
X

(µ,σ)
1

)
(·), we end up with a new likelihood which is much easier to

compute.

In the following sections, we firstly discuss the perturbation technique and provide the

convergence of that technique to the solution X(µ,σ)(·). Then, we state the approximated

formulation for the Bayesian inverse problem using the process
(
X

(µ,σ)
0 + 1√

N
X

(µ,σ)
1

)
(·).

The approximated posterior is denoted by νyN , also note that both . Then, we prove the

well-posedness of νyN , and finally, we show that for large N , πyN and νyN are close under the

Hellinger metric. Also, in most of the following notes the index N on the probabilities πyN
and νyN may be omitted from time to time without prejudice.

5.2 Perturbation technique

In the case of an Itô diffusion process with fine scale diffusion coefficient, one can use a

perturbation technique for the approximation of that process. We start with the presenta-

tion of that perturbation technique for Itô diffusion process with no boundary conditions.

Afterwards, we suggest a similar approximation for Itô diffusion process with a reflecting

barrier. Our contribution is the establishment of the approximations’ convergence for an

Itô diffusion process specifically with the derivative of the drift coefficient to be Lipschitz

continuous and the diffusion coefficient to be 1/2-Hölder continuous.

Let us start with the simple case where X : Ω × R+ → R is an Itô diffusion process

with no boundary conditions as in Section 3.1. Suppose process X with fine scale diffusion

coefficient satisfies the following stochastic differential equation

dX(t) = µ (X(t)) dt+
1√
N
σ (X(t)) dWt, ∀t ≥ 0 and X(0) = x0 (5.8)

with parameter N to be a large number.

Our aim in this technique is to show that there are simpler processes X0, X1 which

approximate X as N tends to infinity. For the purpose of this section an extra assumption

has to be made, there exists N0 such that for every N ≥ N0 the corresponding equation

admits a solution. The intuition behind this approximation is that one wants to find

processes X0, X1 . . . which are independent of N and approximate Xt in the following
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way

X0(t) +
1√
N
X1(t) +

1

N
X2(t) + . . . , for every N ≥ N0 (5.9)

If we further assume that coefficients µ, σ are sufficiently smooth for applying Taylor

expansion on them, then by substituting the above series into equation (5.8), we obtain

that

dX0 +
1√
N
dX1 +

1

N
dX2 . . . =

µ(X0) dt+
1√
N
µ′(X0)X1 dt+

1

N

(
µ′(X0)X2 + 1

2µ
′′(X0)X2

1

)
dt . . .

+
1√
N
σ(X0) dWt +

1

N
σ′(X0)X1dWt + . . .

Since Xi(t) does not depend on N , for any i, and the above equation holds for every

N ≥ N0, we can obtain that X0, X1, . . . satisfies the following equations

dX0 = µ(X0) dt, dX1 = µ′(X0)X1 dt+ σ(X0) dWt, . . .

with initial conditions X0(0) = x0, X1(0) = 0, X2(0) = 0, . . .

In our approximation, we only consider the first two processes, i.e. X0 and X1, which

are defined through the following differential equations

dX0(t) = µ (X0(t)) dt

dX1(t) = µ′ (X0(t))X1(t)dt + σ (X0(t)) dWt

with X0 (0) = x0

with X1 (0) = 0
(5.10)

and our approximation can be written as it follows

X̃(t) = X0(t) +
1√
N
X1(t) (5.11)

note also that X̃(t) satisfies the following equation

dX̃(t) =
(
µ(X0(t)) + µ′(X0(t))(X̃(t)−X0(t))

)
dt+

1√
N
σ(X0(t))dWt,

X̃(0) = x0

(5.12)

Note also that the existence and uniqueness of deterministic process X0 follows from

the Lipschitz condition assumed for µ. Hence, X0 is a well defined continuous function, and

on every close interval [0, T ], X0 is bounded. Thus, it is easy to see that the drift and the

diffusion term of X1 are satisfying the Lipschitz and linear growth condition. Hence, there

exists a unique solution for X1, see for instance Theorem 3.1.1. Therefore, the process X̃

is well-defined.

The following theorem shows that under appropriate assumptions on drift and diffusion

coefficients and for large N , the process X̃ approaches X. More precisely, we prove that

X = X̃ +O

(
1

Na

)
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where O(·) is defined based on the norm E sup | · |p and as we will show in the following

theorem a ≥ 3/4. For the sake of clarity of the following result, we define γ

γ(t,N) := N
(
X(t)− X̃(t)

)
(5.13)

the so-called residual term of the approximation.

Theorem 5.2.1. We consider equations (5.8) and (5.10) with coefficients µ and σ, and

γ as it is defined in (5.13). Suppose µ, µ′ and σ satisfy the Lipschitz condition. Then, it

holds that:

E sup
t∈[0,T ]
N≥N0

|γ(t,N)|p <∞, whenever T > 0 and p ≥ 1

Furthermore, if we only have that σ is 1
2 -Hölder, then it holds that:

E sup
t∈[0,T ]
N≥N0

∣∣∣∣ 1
4
√
N
γ(t,N)

∣∣∣∣p <∞, whenever T > 0 and p ≥ 1

The proofs of the two above results are very similar. For the proof of the first part,

one can find the original proof of Theorem 3 in Blagoveshchenskii (1962). The proof of the

second part is a modification of the original one and it is given in Section 5.4.2.

5.2.1 Approximated SDE with Reflecting barrier

In the current Section, we define stochastic process ξ defined on the positive half-line [0,∞)

with reflecting barrier at point 0, which also satisfies equation (5.8) as long ξ(t) takes values

in (0,∞). As it discussed in Section 3.2.2, this kind of stochastic process ξ can always be

defined as the pair of stochastic processes (l, ξ) which satisfies the following equation

dξ(t) = µ (ξ(t)) dt+
1√
N
σ (ξ(t)) dWt + dl(t), ξ(0) = x0 (5.14)

for a more detailed definition of the pair (l, ξ), one can see Definition 3.2.2.

In addition, we remind that the definition of (l, ξ) is related to the Skorokhod problem,

see Definition 3.2.1. Furthermore, as it discussed in Section 3.2.2, one can always define

an equivalent differential form for the definition ξ. Let us consider stochastic process Y

which satisfies the following SDE

Y (t) = ξ0 +

∫ t

0
µ(ΓY (s))ds+

∫ t

0
σ(ΓY (s))dWs, Y (0) = x0 (5.15)

where Γ : C([0, T ])→ C([0, T ]) is the Skorokhod map with Γf (t) = f (t)− min
s∈[0,t]

{f(s) ∧ 0}

and ξ(t) := ΓY (t). For further properties of map Γ, one can see Lemma 3.2.1.
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Inspired by the approximation demonstrated in the last Section, we are interested in

defining an approximation ξ̃ in a similar way, as we did for X̃. Our first step is to define

the analogue of X0, denoted by ξ0. For the definition of such function, we consider a

non-negative function ξ0 which satisfies equation (5.10) as long ξ0(t) takes values in (0,∞)

and also has a reflective barrier at point 0. Thus, (ξ0, l0) is defined as the pair of solutions

which satisfies equation

dξ0(t) = µ(ξ0(t))dt+ dl0(t), ξ0(0) = x0. (5.16)

Then, according to Theorem 2 in Anderson and Orey (1976), ξ0 satisfies the following

limit

E sup
t∈[0,T ]

|ξ(t)− ξ0(t)|p → 0, as N →∞, for any p ≥ 1

Let us now define the approximation ξ̃, for the stochastic process ξ, to be a non-negative

process with with reflecting barrier at point 0 which satisfies equation (5.12) as long ξ̃(t)

takes values in (0,∞). For the definition of which, we are going to consider a pair of

solutions
(
l̃, ξ̃
)
which satisfies the following SDE

dξ̃(t) =
(
µ(ξ0(t)) + µ′(ξ0(t))(ξ̃ − ξ0(t))

)
dt+

1√
N
σ(ξ0(t))dWt + dl̃(t), ξ̃(0) = x0

(5.17)

For completeness, we may then define the analogue of X1, denoted by ξ1, but in this

case, ξ1 is not necessarily a non-negative process with with reflecting barrier at point 0.

The definition of which comes from the following expression ξ1 := N
(
ξ̃ − ξ0

)
, and we can

easily see that ξ1 satisfies the following equation,

dξ1(t) = µ′(ξ0(t))ξ1(t)dt+ σ(ξ0(t))dWt +
√
Nd(l̃ − l0)(t), ξ1(0) = 0 (5.18)

Similarly as we did for the case of the unbounded stochastic process X̃, we can show

that ξ̃ is well-defined, but first, we need to define the following two equivalent differential

forms of ξ0 and ξ̃. We first consider processes Y0 and Ỹ which satisfy the following two

equations

dY0(t) = µ(Γ(Y0)(t) )dt

dỸ (t) = µ(Γ(Y0)(t) ) + µ′(Γ(Y0)(t) )
(

Γ(Ỹ )(t)− Γ(Y0)(t)
)
dt+

1√
N
σ (Γ(Y0)(t) ) dWt

(5.19)

with initial values Y0(0) = x0 and Ỹ (0) = x0, and then, we can define ξ0 and ξ̃ as follows:

ξ0(t) = Γ(Y0)(t) and ξ̃(t) = Γ(Ỹ )(t).

Note then that Y0 is well-defined, since µ(Γ(·)(t)) satisfies the Lipschitz condition and

the linear growth. Then, using the existence and uniqueness, see Theorem 3.2.2, for the
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Skorokhod problem, we get that the pair (l0, ξ0) is well-defined. Last, using the bounded-

ness of ξ0 on a bounded interval [0, T ], we see that the drift and diffusion coefficients of

ξ̃ satisfy the hypothesis assumed in Theorem 3.2.3. Thus, we have that the pair
(
l̃, ξ̃
)
is

well-defined.

The following Theorem is analogous to Theorem 5.2.1 for the case where ξ is a fine

scale diffusion coefficient with reflecting barrier at zero. The proof of the Theorem can

found in Section 5.4.2. Let us also re-consider and re-write the definition of the residual

term for this case,

γ(t,N) := N
(
ξ(t)− ξ̃(t)

)
(5.20)

Theorem 5.2.2. We consider equations (5.14) and (5.17) with coefficients µ and σ, and

γ as it is defined in (5.20). Suppose µ, µ′ satisfy the Lipschitz condition and σ is 1
2 -Hölder

continuous. Then, it holds that:

E sup
t∈[0,T ]
N≥N0

∣∣∣∣ 1
4
√
N
γ(t,N)

∣∣∣∣p <∞, whenever T > 0 and p ≥ 1

5.3 Likelihood of the approximate posterior

Using the approximate stochastic process of the previous section in our Bayesian inverse

problem, for finding the drift and diffusion terms, gives rise to an approximation of the

posterior which is the subject of this section. At this point, we need to mention that

the results of the current Section concern only the case where the stochastic process X

has no boundary conditions, i.e. X has neither absorbing nor reflecting barrier on the

boundaries. Therefore, the posterior distribution πy and its approximation νy correspond

to the Bayesian inverse problem with forward map the unrestricted stochastic process X.

The proof for the case of the stochastic process with absorbing and reflective barrier is still

in progress.

Let us consider an appropriate function space for the unbounded stochastic process:

given constants C1, C2, C3 > 0, then we define

ΛC1,C2,C3 =

{
(µ, σ) : µ ∈ C1,1(R), σ2 ∈ C0,1(R),min

x∈R
σ(x) ≥ C1, ‖σ2‖0,1 ≤ C2, ‖µ‖1,1 ≤ C3

}
we also recall the definition of ‖ · ‖1,1 which is given as follows: given f ∈ C1,1(R)

‖f‖1,1 := ‖f‖L∞(R) + ‖f ′‖L∞(R) + sup
x,y∈R

‖f ′(x)− f ′(y)‖
‖x− y‖

.

For the approximation of the posterior πy, we suggest the probability measure νy over

the function space ΛC1,C2,C3 . We first define process X̃(µ,σ)(t; ξ, τ) based on the framework
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built in the previous section. In addition, we denote by q(µ,σ)
ξ,τ the transition density function

of X̃(µ,σ)(t; ξ, τ), and then, we define function Q(y, t; ξ, τ) := qξ,τ (y, t; ξ, τ). Using the

definition of Q, we then can define νy through its Radon-Nikodym with respect to π0,

similarly as in the case of πy, see for instance (5.5),

dνy

dπ0
(µ, σ) ∝ L̃y (µ, σ) =

J−1∏
i=0

Q̃(µ,σ)(ỹi+1, ti+1; ỹi, ti), (5.21)

where Q̃(µ,σ)(y, t;x, s) is defined as follows

Q̃(µ,σ)(y, t;x, s) :=

∫ ∫
Q(µ,σ)(z, t;w, s)fN(0,ε2)(y − z) fN(0,ε2)(x− w)dzdw. (5.22)

Let us then take µ ∈ C1,1(R) and σ2 ∈ C0,1(R), and consider X̃ similarly as in equation

(5.12) with the only difference that we know the initial values of X̃, X0 and X1 at time

τ instead of time 0. Since, X̃ depends on µ and σ, it is more convenient to change the

notation of X0 to φτ (t;µ, ξ), or simply φτ (t; ξ), where parameters τ, ξ correspond to the

initial value of φ, i.e. φτ (τ ; ξ) = ξ. Similarly for X1, we may use the parameter τ , i.e.

X1(t; τ), to highlight that X1 is the process with initial value 0 at time τ , i.e. X1(τ ; τ) = 0.

Let us now rewrite equations (5.11) and (5.12) in terms of φτ (t;µ, ξ) and X1(t; τ)

X̃(t; ξ, τ) = φτ (t;µ, ξ) +
1√
N
X1(t; τ) (5.23)

where φτ (t;µ, ξ) and X1(t; τ) satisfy equations (5.10) with initial value at τ . Next, we have

that X̃(t; ξ, τ), or simply X̃(t), satisfies the following equation

dX̃(t) = µ̃(X̃(t), t)dt+
1√
N
σ̃(t)dWt, for t ≥ t0

X̃(τ) = ξ

(5.24)

where µ̃ and σ̃ are defined as follows

µ̃(x, t) = µ (φτ (t; ξ) ) + µ′ (φτ (t; ξ) ) (x− φτ (t; ξ))

σ̃(t) = σ (φτ (t; ξ) ) .

Let us now obtain the transition probability of X̃. We see that equation (5.10) can be

also be written as follows

d
(
X1(t) e

−
∫ t
t0
µ′(φτ (λ;ξ) )dλ

)
= σ (φτ (t; ξ) ) e

−
∫ t
t0
µ′(φτ (λ;ξ) )dλ

dWt

Or equivalently, we have that for t0 ≤ s ≤ t

X1(t) = X1(s)e
∫ t
s µ
′(φτ (λ;ξ) )dλ +

∫ t

s
σ (φτ (q; ξ) ) e

∫ t
q µ
′(φτ (λ;ξ) )dλ dWq (5.25)

in Section 5.4.1, one can find more details on how we obtain the last equation.
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Next, if we apply the explicit form of X1 into the expression of (5.23), we get that

X̃(t) = φτ (t; ξ) +
(
X̃(s)− φτ (s; ξ)

)
e
∫ t
s
µ′(φτ (λ;ξ) )dλ +

1√
N

∫ t

s

σ (φτ (s; ξ) ) e
∫ t
q
µ′(φτ (λ;ξ) )dλ dWq

(5.26)

Hence, we have that the transition probability of X̃(µ,σ)(t; ξ, τ) is Gaussian distributed, i.e.

q
(µ,σ)
ξ,τ (y, t;x, s) :=

1√
2πFN (t; s)

e
− (y−Φ(t;x,s))2

2FN (t;s) (5.27)

where Φ (t;x, s) and FN (t; s) are defined as follows

Φ (t;x, s) = φτ (t; ξ) + (x− φτ (s; ξ)) e
∫ t
s µ
′(φτ (λ;ξ) )dλ

FN (t; s) =
1

N

∫ t

s
σ2 (φτ (q; ξ) ) e2

∫ t
q µ
′(φτ (λ;ξ) )dλ dq,

observe that Φ (t;x, s) and FN (t; s) depend on ξ and τ , but for the readability of the current

work, we choose not to include them in our notation. We also note that qξ,τ (y, t;x, s)

satisfies the associated backward Kolmogorov equation of X̃(t; ξ, τ),

−
dqξ,τ (x, s)

ds
=
σ̃2(s)

2N

∂2qξ,τ (x, s)

∂x2
+ µ̃(x, s)

∂qξ,τ (x, s)

∂x
,

lim
s↗t

qξ,τ (y, t;x, s) = δ(y − x),
(5.28)

variables (y, t) are omitted in the above expression, since these are fixed.

Since we have obtained the unnormalised likelihood L̃y (µ, σ), we can now state the

following Theorem which provides us that the proposed measure νy is well-defined. Its

proof can be found in Section 5.4.2.

Theorem 5.3.1. Let T>0, J ≥ 1 and consider y = (y1, . . . , yJ) ∈ RJ to be the data

at time t = (t1, . . . , tJ) with 0 < t1 < · · · < tJ ≤ T . Suppose a probability measure

π0 and set CM :=

{
(µ, σ) ∈ ΛC1,C2,C3 : max

i∈{0,...J−1}
|yi+1 − φti (ti+1;µ, yi)| ≤M

}
such that

π0(ΛC1,C2,C3) = 1 and π0 (CM ) > 0. Then there exists a unique measure νy given by

dνy

dπ0
(µ, σ) =

1

Z̃(y)
L̃y (µ, σ)

where Z̃(y) is the normalisation constant given as

Z̃(y) =

∫
Λ
L̃y (µ, σ) dπ0 (µ, σ) ∈ (0,∞)

Remark 5.3.1. The last theorem can be applied on priors π0 which have bounded support

similar to the example of uniform priors as in Section 2.3.1. Similar to the uniform priors,

one can define r-exponential prior distributions, r ≥ 1, on bounded subsets of ΛC1,C2,C3, by

using for example truncated r-exponential distributions on ξ, see the model (2.7) in Section

2.3.
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5.3.1 Convergence of the approximated posterior

In this part, we provide an estimate for the Hellinger distance between the approximated

posterior νy and the posterior πy as N tends to infinity. The aim of which is to finally

prove the convergence of νy to the posterior πy as N tends infinity.

Essential component for estimating the above mentioned distance is the following the-

orem. The proof of the following theorem can be found in Section 5.4.2

Theorem 5.3.2. Given (µ, σ) ∈ ΛC1,C2,C3, we consider the transition density function p

of Itô diffusion X with X satisfies equation (5.8), and the transition density function Q of

Itô diffusion X̃(t; ξ, τ) with X̃(t; ξ, τ) as it is defined in equation (5.24). Then, for every

ξ ∈ R, it holds that

∣∣p ∗t fN(0,ε2)(y, t; ξ, τ)−Q ∗t fN(0,ε2)(y, t; ξ, τ)
∣∣ ≤ C

(
1 + ξ2

)
√
N

(5.29)

with C depends on t− τ, ε, C1, C2 and C3.

Remark 5.3.2. Using the well-posedness of the transformation which is used for the re-

flective barrier (Skorohod map), see Section 3.2.2, and an appropriate stopping time for

the left hand side Dirichlet boundary condition, one can show this result for the bounded

interval.

We now fix the prior to obtain the approximation rates. We assume that π0 is the

truncated α-regular r-exponential measure, with r ≥ 1 and α ≥ 4, that is, the draws u of

π0 are defined as

u =
∞∑
j=1

j−
1
2
−αξjψj (5.30)

with {ψj} a regular enough basis for ΛC1,C2,C3 and ξj appropriately truncated i.i.d r-

exponential random variable with density cre−|x|
r/r (see Agapiou et al. (2021)). The fol-

lowing theorem provides an estimate for the Hellinger distance between the approximated

posterior νy and the posterior πy. Its proof can be found in Section 5.4.2.

Theorem 5.3.3. Let us consider the same set-up as in Theorem 5.3.1. Then, it holds

that

dHell(π
y, νy) ≤ C√

N

for large N and with C depend on C1, C2, C3, J,M, ε, π0 (CM ) and ∆t := max
i∈{1,...J}

|ti − ti−1|.
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5.4 Proofs for Chapter 5

5.4.1 Explicit form of the approximated solution

For given X0, the second equation in (5.10) can be written as follows:

dX1 = g(t)X1dt+ b(t)dWt

where g and b are continuous functions. Let us define G(t) = e
−

∫ t
t0
g(s)ds, the derivative

of which is given as follows: G′(t) = −g(t)G(t). Let us take integral of G with respect to

dX1,

G(t)dX1 = g(t)G(t)X1dt+ b(t)G(t)dWt

Equivalently, we have that

G′(t)X1 dt+G(t)dX1 = b(t)G(t)dWt

Applying Itô’s formula on the product G(t)Xt, we get that:

d (G(t)X1) = G′(t)X1 dt+G(t)dX1

Using the last two equations, we get that:

G(t)X1(t)−G(t0)X1(t0) =

∫ t

t0

G(s)b(s)dWs

The initial value of X1(t0) = 0, thus we obtain the following solution:

X1(t) =
1

G(t)

∫ t

0
G(s)b(s)dWs

Therefore, we get:

X1(t) =

∫ t

0
b(s) e

∫ t
s g(q)dq dWs

5.4.2 Proofs of the theorems

Proof of theorem 5.2.1

We first show the desired result for p ≥ 2. Let us first denote the following function

M(X̃(t), t) := µ(X0(t)) + µ′(X0(t))(X̃(t)−X0(t)) and consider γ according to (5.13), for

the definition of X and X̃, see equations (5.8) and (5.11),

1

N
γ(t,N) =

∫ t

0
µ (X(q) )−M(X̃(q), q) dq +

∫ t

0
σ (X(q) )− σ (X0(q) ) dWq
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Next, we only consider the term which appears in the first integral

∣∣∣µ (X(q) )−M(X̃(q), q)
∣∣∣ ≤ ∣∣∣µ (X(q) )− µ

(
X̃(q)

)∣∣∣ +
∣∣∣µ( X̃(q)

)
−M(X̃(t), t)

∣∣∣
(5.31)

Using the mean value Theorem, we can obtain θ(q) ∈ [0, 1√
N

] for every q such that:

µ
(
X0(q) + 1√

N
X1(q)

)
− µ (X0(q) ) = 1√

N
X1(q)µ′ (X0(q) + θ(q)X1(q) )

We observe that by the definition of X̃, the difference X̃(t) − X0(t) = 1√
N
X1(t). In

addition, we note that the above difference appears in the second term of the right hand

side of inequality (5.31). Thus, if we apply the Lipschitz property of µ and µ′, we get that

∣∣∣µ (X(q) )−M(X̃(q), q)
∣∣∣ ≤ ‖µ‖0,1 ∣∣∣X(q)− X̃(q)

∣∣∣
+

1√
N
|X1(q)|

∣∣µ′ (X0(q) + θ(q)X1(q) )− µ′ (X0(q) )
∣∣

≤ ‖µ‖0,1
N

|γ(q,N)|+ ‖µ
′‖0,1
N

|X1(q)|2

(5.32)

we remind that γ(q,N) := N
(
X(q)− X̃(q)

)
. Hence, γ can be bounded from the following

1

N
γ(t,N) ≤ ‖µ‖1,1

N

[∫ t

0
sup
s∈[0,q]

|γ(s,N)|+ sup
s∈[0,q]

X2
1 (s)dq

]

+
1√
N

∫ t

0
σ (X(q) )− σ (X0(q) ) dWq

(5.33)

See now that |x|p is convex, thus Jensen inequality implies that: (a+ b)p ≤ 2p−1 (ap + bp),

whenever a, b ≥ 0. Next, we consider the expectation of γ(t,N), the following inequality

is obtained by applying both inequality (5.33) and the above property of |x|p

E sup
0≤s≤t

| 1
N γ(s,N)|p . tp−1

N
E
∫ t

0
|γ(q,N)|p + sup

s∈[0,q]
X2p

1 (s) dq

+
1

Np/2
E sup

0≤s≤t

∣∣∣∣∫ t

0
σ (X(q) )− σ (X0(q) ) dWq

∣∣∣∣p
observe also that the last inequality and more specifically, in order to obtain the first term

of the right hand side of the above inequality, we need to apply the Hölder inequality.

According to Lemma 5.4.1, we have that the expected value of the supremum of X2p
1

is bounded. Moreover, we have that the expected value of the supremum of X for every

p ≥ 2 is bounded. See that both coefficients µ(·) and σ(·) are satisfying the linear growth

condition, since µ(·) is Lipschitz and σ(·) is 1
2 -Hölder continuous and depends only on x

and not on t. Then, the boundedness of X follows from Lemma 2.3.2 in Mao (2007). The
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upper bound of the integral with respect to the Brownian motion comes from Theorem

1.7.2 in Mao (2007)

E sup
0≤s≤t

| 1
N γ(s,N)|p . 1

Np

[∫ t

0
E sup

0≤s≤q
|γ(s,N)|pdq + 1

]
+

1

Np/2

∫ t

0
E |σ (X(q) )− σ (X0(q) )|pdq

Let us now consider only the last term of the right hand side of the above inequality and

apply 1
2 -Hölder continuity of σ, we have that

∫ t

0
E |σ (X(q) )− σ (X0(q) )|p dq ≤

‖σ‖20, 12√
N


p
2 ∫ t

0
E sup
s∈[0,q]

∣∣∣∣X1(s) +
1√
N
γ(s,N)

∣∣∣∣ p2 dq
(5.34)

Next, we apply once again inequality (a+ b)p ≤ 2p−1(ap + bp), the boundedness of the

expected value of the supremum of X1, and also, that 1 + |x|
p
2 . 1 + |x|p. Applying all

three of them in the above (5.34), we get that

∫ t

0
E |σ (X(q) )− σ (X0(q) )|pdq .

1

Np/4

[
1 +

∫ t

0
E sup
s∈[0,q]

∣∣∣∣ 1√
N
γ(s,N)

∣∣∣∣p dq
]

Thus,
1

Np
E sup

0≤s≤t
|γ(s,N)|p . 1

Np

∫ t

0
E sup

0≤s≤q
|γ(s,N)|p dq +

1

N
3p
4

Or, equivalently,

E sup
0≤s≤t

∣∣∣∣ 1
4
√
N
γ(s,N)

∣∣∣∣p . ∫ t

0
E sup

0≤s≤q

∣∣∣∣ 1
4
√
N
γ(s,N)

∣∣∣∣p dq + 1

Using Grönwall’s inequality, see for instance Lemma1.11 on page 30 in Freidlin andWentzell

(2012), implies that,

E sup
0≤s≤t

| 1
4
√
N
γ(s,N)|p ≤ 2CeCt

note also that C does not depend on N .

For 1 ≤ p < 2 the result follows from an application of Hölder inequality.

Proof of Theorem 5.2.2

The proof of this Theorem is quite similar to the proof of Theorem 5.2.1. We first show

the desired result for p ≥ 2. As we discuss in Section 5.2.1, we can define Y0 and Ỹ

which satisfy equations (5.19), then ξ0 and ξ̃ can be defined through Skorokhod map as

it follows ξ0(t) = Γ(Y0)(t) and ξ̃(t) = Γ(Ỹ )(t). Let us denote the following function

M(ξ̃(t), t) := µ(ξ0(t)) +µ′(ξ0(t))(ξ̃(t)− ξ0(t)) and consider γ according to (5.20) and Y as

1If m(t) ≤ a
∫ t

0
m(s)ds+ C implies m(t) ≤ Ceat
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in equation (5.15) with ξ(t) = Γ(Y )(t). Then, let us take the supremum of γ,

sup
s∈[0,t]

∣∣∣∣ 1

N
γ(s,N)

∣∣∣∣ = sup
s∈[0,t]

∣∣∣ξ(t)− ξ̃(t)∣∣∣ ≤ 2 sup
s∈[0,t]

∣∣∣Y (t)− Ỹ (t)
∣∣∣

= 2 sup
s∈[0,t]

∣∣∣∣∫ t

0
d
(
Y (q)− Ỹ (q)

)∣∣∣∣
. sup

s∈[0,t]

∣∣∣∣∫ s

0
(µ(ξ(q))−M(ξ̃(q), q) )dq

∣∣∣∣+
1√
N

sup
s∈[0,t]

∣∣∣∣∫ s

0
σ(ξ(q))− σ(ξ0(q))dWq

∣∣∣∣
.
∫ t

0

∣∣∣µ(ξ(q))−M(ξ̃(q), q)
∣∣∣ dq +

1√
N

sup
s∈[0,t]

∣∣∣∣∫ s

0
σ(ξ(q))− σ(ξ0(q))dWq

∣∣∣∣
note that the first inequality is a property of the Skorokhod map, see part (i) in Lemma

3.2.1. We recall the following inequality which is immediate consequence of Jensen’s in-

equality: (a+ b)p ≤ 2p−1 (ap + bp), whenever a, b ≥ 0. Then, we take the square of the

last supremum and apply Young’s inequality and Hölder inequality on the first integral

sup
s∈[0,t]

∣∣∣∣ 1

N
γ(s,N)

∣∣∣∣p . tp−1

∫ t

0

∣∣∣µ(ξ(q))−M(ξ̃(q), q)
∣∣∣p dq

+
1

Np/2
sup
s∈[0,t]

∣∣∣∣∫ s

0
σ(ξ(q))− σ(ξ0(q))dWq

∣∣∣∣p
After that, we consider the expectation of the above supremum and we combine it with

Theorem 1.7.2 from Mao (2007), we can get an easier form to estimate

E sup
s∈[0,t]

(
1

N
γ(s,N)

)p
. E

∫ t

0

∣∣∣µ(ξ(q))−M(ξ̃(q), q)
∣∣∣p dq

+
1

Np/2
E
∫ t

0
|σ(ξ(q))− σ(ξ0(q))|p dq

(5.35)

we also note that the coefficient
√
t has been absorbed by ".". Part of the following steps

are similar to the proof of Theorem 5.2.1, thus some explanations are omitted. Similarly

to inequality (5.32), we get that∣∣∣µ ( ξ(s) )−M(ξ̃(s), s)
∣∣∣ ≤ ‖µ‖1,1

N

(
|γ(s,N)|+ ξ2

1(s)
)

By applying inequality (a+ b)p ≤ 2p−1 (ap + bp), whenever a, b ≥ 0, we get that∣∣∣µ ( ξ(s) )−M(ξ̃(s), s)
∣∣∣p . ‖µ‖p1,1

Np

(
|γ(s,N)|p + ξ2p

1 (s)
)

Let us recall Young’s inequality, for given a, b non-negative and p, q > 1 with 1
p + 1

q = 1,

we have that ab ≤ ap

p + aq

q . Using both 1
2 -Hölder continuity of σ and Young’s inequality,

we get that

|σ(ξ(s))− σ(ξ0(s))|2 ≤
‖σ‖2

0, 1
2√

N

(
1√
N
|γ(s,N)|+ |ξ1(s)|

)

.
‖σ‖2

0, 1
2√

N

(
1√
N
γ2(s,N) + |ξ1(s)|+ 1

)
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By applying inequality (a+ b+ c)p ≤ 3p−1 (ap + bp + cp), whenever a, b, c ≥ 0, we get

that

|σ(ξ(s))− σ(ξ0(s))|p .
‖σ‖p

0, 1
2

Np/4

(
1

Np/4
γp(s,N) + |ξ1(s)|p/2 + 1

)
By applying the last inequalities in (5.35), we get that

E sup
s∈[0,t]

(
1

N
γ(s,N)

)p
.
∫ t

0
E sup
s∈[0,q]

∣∣∣∣ 1

N
γ(s,N)

∣∣∣∣p dq
+

1

N3p/4

∫ t

0

(
E sup
s∈[0,q]

ξ2p
1 (s) + E sup

s∈[0,q]
|ξ1(s)|p/2 + 1

)
dq

Observe that we can interchange the order of expectation and the integral, since we have

non-negative functions, and then, we can apply Tonelli’s Theorem. Note also that the

multiplication constant of the last inequality, i.e. ., depends on ‖µ‖p1,1 ∨ ‖σ‖
p

0, 1
2

.

According to Lemma 5.4.2, we get that the expected value of the supremum of |ξ1|p,

for every power p ≥ 1, is bounded thus we get that the integral of the last parethensis in

the right hand side of the above inequality is bounded and of order 1
N3/2 . Hence, we get

that

E sup
s∈[0,t]

(
1

4
√
N
γ(s,N)

)p
.
∫ t

0
E sup
s∈[0,q]

(
1

4
√
N
γ(s,N)

)p
dq + C

where C depends on the bounds of ξ1, T, p. Then the desired result is consequence of

Grönwall’s inequality

E sup
s∈[0,t]

∣∣∣∣ 1
4
√
N
γ(s,N)

∣∣∣∣p ≤ C1e
C2t

note also that C1, C2 do not depend on N .

For 1 ≤ p < 2 the result follows from an application of Hölder inequality.

Proof of Theorem 5.3.1

According to Bayes’ Theorem, see for instance Theorem 2.2.1, for proving that the Bayesian

approach is well-defined, it is sufficient to show that L̃y(µ, σ) is B (Λ)⊗B (Y )-measurable

and Z(y) ∈ (0,+∞) for a.e. y.

In order to get the continuity of Q(µ,σ)(z, ti+1;w, ti) with respect to (z, w, µ, σ), we

only need to see that Q(µ,σ)(z, ti+1;w, ti) is an exponential functions of z and the forward

solution of the ODE, φ(ti+1;µ,w), and polynomially dependent on σ; and, one can readily

verify that φ(ti+1;µ,w) are continuous with respect to µ and w. From equation (5.22), we

have that Q̃(µ,σ)(z, ti+1;w, ti) =
(
Q(µ,σ) ∗ti+1 fN(0,ε)

)
∗ti fN(0,ε)(z, ti+1;w, ti). Since, Q̃(µ,σ)

is convolutions ofQ(µ,σ) with Gaussian densities, then we have that also Q̃(µ,σ)(z, ti+1;w, ti)

is continuous. From equation (5.21), we have that the likelihood is given as the product of

continuous functions. It remains to show that Z̃y ∈ (0,+∞).
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Next, we use that Q(µ,σ)(y, t; ξ, τ) follows the law of N (φτ (t; ξ) , FN (t; τ)), see for

instance (5.27). Thus, we get that

Q(µ,σ) ∗t fN(0,ε2)(y, t; ξ, τ) =

∫
fN(φτ (t;ξ), FN (t;τ))(y − z)fN(0,ε2)(z)dz

= fN(φτ (t;ξ), FN (t;τ)+ε2)(y)

(5.36)

the last equality holds, due to the following property of Gaussian distributions: If we

assume that X ∼ N(µX , σ
2
X) and Y ∼ N(µY , σ

2
Y ) with X independent of Y , then it holds

X + Y ∼ N(µX + µY , σ
2
X + σ2

Y ). (5.37)

The proof of the above property is considered trivial, hence its proof is omitted.

From (5.36), we get that Q̃(µ,σ)(y, t; ξ, τ) is bounded

Q̃(µ,σ)(y, t; ξ, τ) =

∫
q(µ,σ) ∗t fN(0,ε2)(y, t;w, τ)fN(0,ε2)(ξ − w)dw

≤ 1

ε

∫
fN(0,ε2)(ξ − w)dw =

1

ε

(5.38)

Then, we have that

Z̃y :=

∫
L̃y (µ, σ) dπ0 (µ, σ) =

∫ J∏
i=1

Q̃(µ,σ)(yi+1, ti+1; yi, ti)dπ0 (µ, σ) ≤ 1

εJ

Let us denote ∆t := max
i∈{1,...J}

|ti − ti−1|, and get N ≥ ∆t

(
C‖σ‖∞e

2C‖µ′‖∞∆t

ε

)2

. Then, we

have that for every i ∈ {0, . . . J − 1}, it holds that

ε2 ≤ FN (ti+1; ti) =
1

N

∫ ti+1

ti

σ2 (φti(q; yi) ) e2
∫ ti+1
q µ′(φti (λ;yi) )dλ dq + ε2 ≤ 2ε2

If we have that |x| ≤ M̃ and σ ∈ [a, b], then we can easily show that 1
σ
√

2π
e−

x2

2σ2 ≥
1

b
√

2π
e−

M̃2

2 a2 . Similarly, we have that for every (µ, σ) ∈ CM it holds that

1

2ε
√
π

e−
M2

2 ε2 ≤ fN(φti (ti+1;yi), FN (ti+1;ti)+ε2)(yi+1) = Q̃(µ,σ)(yi+1, ti+1; yi, ti)

for every i ∈ {0, . . . J − 1}. Therefore, we obtain that

0 <
1

2JεJπJ
e−

J M2

2 ε2 π0 (CM ) ≤ Z̃y (5.39)

Proof of Theorem 5.3.3

Let us begin with the definition of the Hellinger metric,

2dHell(π
y, νy) =

∫√Ly(µ, σ)

Z
−

√
L̃y(µ, σ)

L̃

2

dπ0(µ, σ)
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where Ly(µ, σ) is the likelihood of the posterior πy and L̃y(µ, σ) is the likelihood of the

posterior νy, also Z and Z̃ are the normalisation constant of Ly(µ, σ) and L̃y(µ, σ), re-

spectively.

Having well-posedness of L, L̃ and Z, Z̃ ∈ (0,∞), and, using (
√
x − √y)2 ≤ |x − y|,

using their definitions (5.7) and (5.21), we have that

2dHell(π
y, νy) ≤

∫ ∣∣Ly(µ, σ)

Z
− L̃

y(µ, σ)

Z̃

∣∣dπ0(µ, σ)

≤
∫ ∣∣Ly(µ, σ)− L̃y(µ, σ)

∣∣
Z̃

+
∣∣Ly(µ, σ)

∣∣ ∣∣ 1

Z
− 1

Z̃

∣∣dπ0(µ, σ)

=

∫ ∣∣Ly(µ, σ)− L̃y(µ, σ)
∣∣

Z̃
dπ0(µ, σ) +

∣∣Z − Z̃∣∣
Z̃

≤ 2

Z̃

∫ ∣∣Ly(µ, σ)− L̃y(µ, σ)
∣∣dπ0(µ, σ)

Let us estimate the difference of Ly(µ, σ)− L̃y(µ, σ), we have that

|Ly(µ, σ)− L̃y(µ, σ)| =

∣∣∣∣∣
J−1∏
i=0

p̃(µ,σ)(yi+1, ti+1; yi, ti)−
J−1∏
i=0

Q̃(µ,σ)(yi+1, ti+1; yi, ti)

∣∣∣∣∣ (5.40)

For simplicity, let us define pi = p̃(µ,σ)(yi+1, ti+1; yi, ti), qi = Q̃(µ,σ)(yi+1, ti+1; yi, ti) and

∆t := max
i∈{1,...J}

|ti − ti−1|. Then, for every i ∈ {0, . . . J} we have that

|pi − qi| ≤
∫ ∣∣∣(p(µ,σ) −Q(µ,σ)

)
∗ti+1 fN(0,ε2)(yi+1, ti+1;w, ti)fN(0,ε2)(yi − w)

∣∣∣ dw
≤ C√

N

∫ (
1 + w2

)
fN(0,ε2)(yi − w)dw =

C(1 + ε2 + y2
i )√

N

observe that the inequality holds due to Theorem 5.3.2 and we also note that C depends

on C1, C2, C3, ∆t and ε.

We can easily see that the following inequality holds∣∣∣∣∣
J−1∏
i=0

pi −
J−1∏
i=0

qi

∣∣∣∣∣ ≤
J−2∏
j=0

(pj+1 ∨ qj)

 J−1∑
i=0

|pi − qi|

In addition, let us assume N ≥ max

{
∆t

(
C‖σ‖∞e

2C‖µ′‖∞∆t

ε

)2

, C
2

ε2

}
. Then, we have that

pi+1 is bounded

pi+1 ≤ qi+1 + |pi+1 − qi+1| ≤ 2 max

{
ε−1,

C∆t,µ,σ,ε√
N

}
≤ 2

ε

note that qi+1 ≤ 1
ε according to equation (5.38) in the Proof of Theorem 5.3.1. Also, since

N ≥ ∆t

(
C‖σ‖∞e

2C‖µ′‖∞∆t

ε

)2

, we have that there exists a constant C̃M,ε,J with Z̃y ≥ C̃M,ε,J ,

see equation (5.39) in the Proof of Theorem 5.3.1.
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If we now apply the last four inequalities in (5.40), we obtain that the following differ-

ence is of order O(
√
N),

1

Z̃y

∣∣∣Ly (µ, σ)− L̃y (µ, σ)
∣∣∣ ≤ C̃√

N

with C̃ depends only on J,M,∆t, ε and π0 (CM ). Therefore, we get the desired bound for

the Hellinger inequality, i.e.

dHell(π
y, νy) ≤ C√

N

Proof of Theorem 5.3.2

Let us consider transition density function q as in (5.27) and define the following function

w(x, s) := p ∗t fN(0,ε2)(y, t;x, s)− qξ,τ ∗t fN(0,ε2)(y, t;x, s) (5.41)

for s within the time interval [τ, t]. For simplicity, let us define the following two functions:

u(x, s) = p ∗t fN(0,ε2)(y, t;x, s)

v(x, s) = qξ,τ ∗t fN(0,ε)(y, t;x, s)
(5.42)

Thus, the difference can be written as w(x, s) = u(x, s)− v(x, s). Using the corresponding

backward Kolmogorov equation for p and qξ,τ , see in (5.6) and (5.28), and let us further

denote by A and Ã the differential operators appear on the right hand of their backward

Kolmogorov equation, respectively. We then can easily see that u and v satisfy the following

two equations −∂su(x, s) = Au(x, s) and −∂su(x, s) = Ãu(x, s), respectively. For seeing

that we only need to observe that

− ∂s v(x, s) =

∫
fN(0,ε2)(z) [−∂sqξ,τ (y − z, t;x, s)] dz

=

∫
fN(0,ε2)(z)

[
Ãqξ,τ (y − z, t;x, s)

]
dz = Ãv(x, s)

(5.43)

Next, using the final conditions of p and qξ,τ , see in (5.6) and (5.28), we get that u and v

satisfy the same final condition fN(0,ε2)(y − x),

lim
s↗t

v(x, s) = lim
s↗t

qξ,τ ∗t fN(0,ε2)(y, t;x, s) =

∫
fN(0,ε2)(y − z)δx (dz) = fN(0,ε2)(y − x)

Therefore, we have that w(x, s) satisfies the following differential problem with final con-

ditions
−∂sw(x, s) = Ap(x, s)− Ãqξ,τ (x, s) = Aw(x, s) + g(x, s)

lim
s↗t

w(y, t;x, s) = 0,
(5.44)

where g is defined as it follows

g(x, s) :=
σ2(x)− σ̃2(s)

2N
∂xxv(x, s) + (µ(x)− µ̃(x, s)) ∂xv(x, s) (5.45)
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Using the definition of v, see (5.42), the definition of qξ,τ , see (5.27), and the same argument

as in (5.37), we get that

v(y, t;x, s) = fN(Φ(t;x,s),FN (t;s)) ∗ fN(0,ε2)(y) = fN(Φ(t;x,s),FN (t;s)+ ε2)(y) (5.46)

Then, let us evaluate the following derivatives of v. Using the form of u which is obtained

in equation (5.46), we get that

∂sv(x, s) = v(x, s)

[
−∂s

(y − Φ (t;x, s))2

2 (FN (t; s) + ε2)
− 1

2
∂s log

(
FN (t; s) + ε2

)]

= v(x, s)

[
y − Φ (t;x, s)

FN (t; s) + ε2
∂sΦ (t;x, s)

+

(
(y − Φ (t;x, s))2

2 (FN (t; s) + ε2)
− 1

2

)
∂s log

(
FN (t; s) + ε2

)]
and

∂xv(x, s) = v(x, s)

[
y − Φ (t;x, s)

FN (t; s) + ε2
∂xΦ (t;x, s)

]
Using equation (5.43), we get that

σ̃2(s)

2N
∂xxv(x, s) = − [∂s + µ̃(x, s) ∂x] v(x, s)

= −v(x, s)
[y − Φ (t;x, s)

FN (t; s) + ε2
[∂s + µ̃(x, s) ∂x] Φ (t;x, s)

+

(
(y − Φ (t;x, s))2

2 (FN (t; s) + ε2)
− 1

2

)
∂s log

(
FN (t; s) + ε2

) ]
Then, it is easy to see that [∂s + µ̃(x, s) ∂x] Φ (t;x, s) = 0, thus we have that

σ̃2(s)

2N
∂xxv(x, s) = v(x, s)

(
(y − Φ (t;x, s))2

2 (FN (t; s) + ε2)
− 1

2

)
∂s log

(
1

FN (t; s) + ε2

)
Let us define the following two functions

Σ(x, s) =
σ2(x)− σ̃2(s)

σ̃2(s)

M(x, s) = µ(x)− µ̃(x, s)

Thus, the function g can be written as follows

g(x, s) = Σ(x, s)v(x, s)

(
(y − Φ (t;x, s))2

2 (FN (t; s) + ε2)
− 1

2

)
∂s log

(
1

FN (t; s) + ε2

)
+NM(x, s) v(x, s)

[
y − Φ (t;x, s)

NFN (t, s) +Nε2
∂xΦ (t;x, s)

]
Next, we see that ∂s log

(
1

FN (t;s)+ε2

)
is bounded, for every s within [τ, t],

0 ≤ ∂s log

(
1

FN (t; s) + ε2

)
=

[σ (φ (s;µ) ) ∂xΦ (t;x, s) ]2

NFN (t, s) +Nε2
≤

(
‖σ‖∞e‖µ

′‖∞(t−τ)

ε

)2

=: C1
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in the last inequality, we use that ∂xΦ (t;x, s) = e
∫ t
s µ
′(φτ (λ;ξ) )dλ ≤ e‖µ

′‖∞(t−τ). We also

note that the constant C1 depends on t− τ, ε, ‖µ‖∞ and ‖σ‖∞. Also, it is easy to obtain

that for x ∈ R, we have that e−|x| |x| ≤ e−1 and e−x
2 |x| ≤ 1

2e1/4 . From the definition of v,

see (5.46), we get that

v(x, s) |y − Φ (t;x, s)| ≤ 1

2 e1/4
√
π

v(x, s)
(y − Φ (t;x, s))2√
2 (FN (t; s) + ε2)

≤ 1

e
√
π

(5.47)

and by definition of v, we have that v(x, s) ≤ 1√
2π(FN (t;s)+ε2)

. Hence, using the last three

bounds and the bound for ∂s log
(

1
FN (t;s)+ε2

)
, we have that

|g(x, s)| ≤ C ′1

(
|Σ(x, s)|√

2 (FN (t; s) + ε2)
+

|M(x, s)|
2 (FN (t; s) + ε2)

)

Since FN (t; s) is non-negative, we get that

|g(x, s)| ≤ C̃1 (|Σ(x, s)|+ |M(x, s)|)

with constant C̃1 depends again on the same variables as C1.

Using the lower bound of σinf , combined with the Lipschitz condition of σ, we get that

|Σ(x, s)| =
∣∣σ2(x)− σ2 (φτ (s;µ) )

∣∣
σ2(φτ (s;µ))

≤ Cσ |x− φτ (s;µ)|

observe that the constant Cσ depends only on σinf and ‖σ‖0,1. Next, using the Lipschitz

condition of µ′, we get that

|M(x, s)| =
∣∣µ(x)− µ(φτ (s;µ))− µ′(φτ (s;µ))(x− φτ (s;µ))

∣∣ ≤ Cµ (x− φ (s;µ))2

observe that the constant Cµ depends only on ‖µ′‖0,1. Therefore, we have that

|g(x, s)| ≤ C2

(
|x− φτ (s;µ)|+ (x− φτ (s;µ))2

)
(5.48)

with C2 depends on t − τ, ε, σinf , ‖σ‖0,1 and ‖µ‖1,1. Hence, we have that g satisfies the

following condition

|g(x, s)| ≤ 2C2 sup
s∈[τ,t]

φ2
τ (s;µ)

(
1 + x2

)
From the continuity of φτ (s;µ) on s ∈ [τ, t], we get that the above supremum is finite.

Also, we have that w(x, s) is bounded

|w(x, s)| ≤
∣∣p ∗t fN(0,ε2)(y, t;x, s)

∣∣+
∣∣qξ,τ ∗t fN(0,ε2)(y, t;x, s)

∣∣
≤ 1

ε
√

2π

(∣∣∣∣∫ p(z, t;x, s)dz

∣∣∣∣+

∣∣∣∣∫ qξ,τ (z, t;x, s)dz

∣∣∣∣) =
2

ε
√

2π
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the second line holds, since fN(0,ε2)(x) ≤ 1
ε
√

2π
, and p, qξ,τ are density functions with

respect to z. Using Feynman-Kac formula, see for instance Theorem 7.6 at page 366 in

Karatzas and Shreve (2014), one can write w as it follows

|w(ξ, τ)| =
∣∣∣∣E∫ t

τ
g(X(s), s)ds

∣∣∣∣ ≤ C2

∫ t

τ
E |X(s)− φτ (s;µ)|+ E (X(s)− φτ (s;µ))2 ds

on the last inequality, we use that the right-hand side of inequality (5.48) is non-negative,

thus Tonelli’s theorem implies the interchange of the integral with the expectation. Let us

apply Cauchy–Schwarz inequality, as it follows

|w(ξ, τ)| ≤ C2

∫ t

τ

√
E (X(s)− φτ (s;µ))2 + E (X(s)− φτ (s;µ))2 ds

Then, Lemma 5.4.4 provide us with the following

|w(ξ, τ)| ≤ C2

∫ t

τ

√
C̃

N
(1 + ξ2) +

C̃

N
(1 + ξ2)ds ≤ C̃2(1 + ξ2)√

N

with C̃2 depends on t− τ, ε, σinf , ‖σ‖0,1 and ‖µ‖1,1.

5.4.3 Lemmas for unbounded process

Lemma 5.4.1. For a given T > 0, we consider X0 ∈ C ([0, T ])2 and X1 satisfies the SDE

in equation (5.10), where µ ∈ C1 (R) and σ ∈ C (R). Then, it holds that: for every p ≥ 1

E sup
t∈[0,T ]

|X1(t)|p ≤ C, for T > 0 and p ≥ 1

with C depending on ‖µ′‖∞, ‖σ‖∞, p and T .

Proof. It is sufficient to show the lemma for p ≥ 2. For p ≥ 2 and a, b ≥ 0, we have that

|x|p is convex, thus we have: (a+ b)p ≤ 2p−1 (ap + bp). Next, we apply the integral form

of equation (5.10) and the last inequality on the following

E sup
t∈[0,T ]

|X1 (s) |p ≤ 2p−1
(
E sup
t∈[0,T ]

|
∫ t

0
X1(q)µ′ (X0(q) ) dq|p+E sup

t∈[0,T ]
|
∫ t

0
σ (X0(q) ) dWq|p

)
(5.49)

Theorem 7.2 at p.40 in Mao (2007) provides us the following inequality,

E sup
t∈[0,T ]

∣∣∣ ∫ t

0
σ (X0(q) ) dWq

∣∣∣p ≤ Kp,T

∫ T

0
E|σ (X0(q) ) |pdq (5.50)

Let apply Hölder inequality for the first integral in (5.49) and also apply the last inequality

E sup
t∈[0,T ]

|X1 (t) |p ≤ KT,p

(
E
∫ T

0
|µ′ (X0(q) )X1(q)|pdq + E

∫ T

0
|σ (X0(q) ) |pdq

)
(5.51)

2It is not necessary that X0 satisfies the ODE in (5.10), but the existence of the ODE implies X0 ∈

C ([0, T ])
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We have that µ′ (X0(q) ) and σ (X0(q) ) are bounded functions. We use Tonelli’s theorem

to interchange the following integrals,

E sup
0≤s≤t

|X1 (s) |p ≤ KT,p,‖µ′‖∞

∫ t

0
E sup

0≤s≤q
|X1(s)|pdq +KT,p,‖σ‖∞

Last, by applying Grönwall inequality, see for instance Lemma1.1 at page 30 in Freidlin

and Wentzell (2012), we get the the desired result

E sup
0≤s≤t

|X1 (s) |p ≤ KT,p,‖σ‖∞e
KT,p,‖µ′‖∞ t

For 1 ≤ p < 2 the result follows from an application of Hölder inequality.

Lemma 5.4.2. For a given T > 0, we consider ξ0 ∈ C ([0, T ]) and ξ1 satisfy the following

two differential equations (5.16) and (5.18), respectively. Suppose also that µ ∈ C1 (R) and

σ ∈ C (R). Then, it holds that:

E sup
t∈[0,T ]

|ξ1(t)|p ≤ C, for T > 0 and p ≥ 1

with C depending on ‖µ′‖∞, ‖σ‖∞, p and T .

Proof. We first show the desired result for p ≥ 2. As we discuss in Section 5.2.1, we can

define Y0 and Ỹ which satisfies equations (5.19), then ξ0 and ξ̃ can be defined through

Skorokhod map as it follows ξ0(t) = Γ(Y0)(t) and ξ̃(t) = Γ(Ỹ )(t). In addition, let us define

ξ∗1(t) :=
√
N
(
Ỹ (t)− Y0(t)

)
, then we have that ξ∗1 satisfies the following equation

dξ∗1(t) =
√
Nµ′(Γ(Y0)(t) )

(
Γ(Ỹ )(t)− Γ(Y0)(t)

)
dt+ σ(Γ(Y0)(t) )dWt

Since p ≥ 2, for the evaluation of the expected value of the supremum of ξ∗1 , we can apply

the same steps as that has been used in Lemma 5.4.1 to obtain an inequality analogous to

inequality of (5.51). Then, we get that

E sup
s∈[0,T ]

|ξ∗1(s)|p . Np/2

∫ T

0
E
∣∣∣µ′(Γ(Y0)(q) )

(
Γ(Ỹ )(q)− Γ(Y0)(q)

)∣∣∣p ds
+

∫ T

0
|σ(Γ(Y0)(q) )|p ds

and the constant which is implied by ., it only depends on p, T . From the continuity

of µ′, σ and Γ(Y0)(q), we have that both µ′(Γ(Y0)(q) ) and σ(Γ(Y0)(q) ) are bounded on

interval q ∈ [0, T ], thus we get that

E sup
s∈[0,T ]

∣∣∣√N (Γ(Ỹ )(s)− Γ(Y0)(s)
)∣∣∣p ≤ 2E sup

s∈[0,T ]
|ξ∗1(s)|p

.
∫ T

0
E sup
s∈[0,q]

∣∣∣√N (Γ(Ỹ )(s)− Γ(Y0)(s)
)∣∣∣p dq + 1
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Observe that the first inequality is a property of the Skorokhod map, see for example

part (i) in Lemma 3.2.1. We also note that the constant in the above inequality de-

pends on the upper bound of µ′, σ, p, T . At this point, it worths to observe that ξ1(q) =
√
N
(
ξ̃(q)− ξ0(q)

)
:=
√
N
(

Γ(Ỹ )(q)− Γ(Y0)(q)
)
, thus the Grönwall inequality implies

that

E sup
s∈[0,T ]

|ξ1(s)|p ≤ CeCT

For 1 ≤ p < 2 the result follows from an application of Hölder inequality.

Lemma 5.4.3. Suppose µ, µ̃ are Lipschitz and the corresponding solutions φτ (·;µ, yτ ),

φ̃τ (·; µ̃, yτ ), similar as in Section 5.3, defined for times t ≥ τ . Then, it holds that for every

t ≥ τ

sup
s∈[τ,t]

∣∣φτ (s;µ, yτ )− φ̃τ (s; µ̃, yτ )
∣∣ ≤ C‖µ− µ̃‖∞

with C depending on ‖µ‖0,1 and T .

Proof. For simplicity instead of using the notation of φτ (·;µ, yτ ) mentioned in the state-

ment of the Lemma, let us change it accordingly to the following:

y(s) = φτ (s;µ, yτ ) g(s) = φ̃τ (s; µ̃, yτ )

Using the differential form of y, we have that

sup
s∈[τ,t]

|y(s)| ≤ |yτ |+ (t− τ)‖µ‖∞

Looking at the differential equation satisfied by the difference of y and g, we have that

sup
s∈[τ,t]

∣∣y(s)− g(s)
∣∣ ≤ ∫ t

τ

∣∣µ(y(q))− µ(g(q))
∣∣+
∣∣µ(g(q))− µ̃(g(q))

∣∣dq
≤
∫ t

τ
‖µ‖0,1 sup

q̃∈[τ,q]

∣∣y(q̃)− g(q̃)
∣∣+ ‖µ− µ̃‖∞dq

Then, using Grönwall inequality, we obtain that desired inequality.

Lemma 5.4.4. Suppose that X(µ,σ) is the solution of equation (5.8) and φτ (·;µ, ξ), or

simply denoted by φτ (·; ξ), the solution of the deterministic ODE which appears in the

system of equations in (5.10) with initial value ξ at time τ . In addition, let us assume

that the coefficients µ, σ2 are Lipschitz continuous. Then, for every t ≥ τ there exists a

constant C which depends on ‖µ‖0,1, ‖σ2‖0,1 and t− τ such that

sup
s∈[τ,t]

Eξ,τ (X(µ,σ)(s)− φτ (·;µ, ξ))2 ≤
C
(
1 + ξ2

)
N

.
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Proof. We observe that in this case, the Lipschitz condition of µ and σ2 implies their linear

growth condition, note that for every x ∈ R it holds the following

|µ(x)| ≤ Kµ|x|+ |µ(0)| ≤ ‖µ‖0,1(1 + |x|)∣∣σ2(x)
∣∣ ≤ Kσ2 |x|+ σ2(0) ≤ ‖σ2‖0,1(1 + |x|)

(5.52)

The following argument implies that the solution X is bounded in the following way:

Eξ,τ sup
q∈[τ,s]

X2
q −ξ2 . Eξ,τ sup

q∈[τ,s]
(

∫ q

τ
µ(Xq)dq)

2 +
1

N
Eξ,τ sup

q∈[τ,s]
(

∫ q

τ
σ(Xq)dWq)2

≤ Eξ,τ
∫ s

τ
µ(Xq)

2dq(s− τ) +
1

N
Eξ,τ

∫ s

τ
σ(Xq)

2dq

≤ Eξ,τ
∫ s

τ
C(1 +X2

q )dq(s− τ) +
1

N
Eξ,τ

∫ s

τ
C(1 + |Xq|)dq

≤ Eξ,τ
∫ s

τ
C(1 +X2

q )dq(s− τ) +
1

N
Eξ,τ

∫ s

τ
C(1 + |Xq|)2dq

. Eξ,τ
∫ s

τ
C(1 +X2

q )dq(s− τ) +
1

N
Eξ,τ

∫ s

τ
C(1 +X2

q )dq

= C(s− τ +
1

N
)

∫ s

τ
Eξ,τ sup

q̃∈[τ,q]
X2
q̃ dq + C(s− τ)(s− τ +

1

N
)

Grönwall’s inequality implies that the following holds for every s ∈ [τ, t]

Eξ,τ sup
q∈[τ,s]

X2
q ≤ C(s− τ)(s− τ + 1)

(
1 + ξ2

)
eC(s−τ+1)(s−τ)

observe that C depends on the linear growth of µ and σ2. Using the boundedness of

Eξ,τ supq∈[τ,s]X
2
q , we get that

Eξ,τ (X(s)− φτ (s; ξ))2 = 2Eξ,τ
∫ s

τ

(X(q)− φτ (q; ξ))(µ(X(q))− µ(φτ (q; ξ)))dq +
1

N
Eξ,τ

∫ s

τ

σ(X(q))2dq

≤ 2Kµ

∫ s

τ

Eξ,τ (X(q)− φτ (q; ξ))2dq +
1

N
Kσ,lin.

∫ s

τ

Eξ,τ (1 + |X(q)|)dq

.
∫ s

τ

Eξ,τ (X(q)− φτ (q; ξ))2dq +
1

N

∫ s

τ

Eξ,τ (1 +X(q)2)dq

.
∫ s

τ

Eξ,τ (X(q)− φτ (q; ξ))2dq +
(s− τ)
N

(1 + Eξ,τ sup
q∈[τ,s]

X(q)2)

Grönwall’s inequality implies that the following holds for every s ∈ [τ, t]

Eξ,τ (X(s)− φτ (s; ξ))2 ≤ C̃ (s− τ)

N
eC̃(s−τ)

(
1 + ξ2

)
observe that C̃ depends on the linear growth of µ and σ2 and the Lipschitz constant of

µ. Using inequality (5.52), we see that C̃(s − τ)eC̃(s−τ) can be obtained as a function of

‖µ‖0,1, ‖σ2‖0,1 and s− τ .
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