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Abstract

In the modern jet engines single-crystal materials are used for turbine stages to withstand

the high pressures, temperatures and to have su�cient creep resistance. Single crystal

materials are inherently anisotropic, and their properties are dependent on the crystal

orientation. The current technology of blade manufacturing by controlled solidi�cation of

the blades produces signi�cant scatter in the crystal orientation. The mistuning introduced

in bladed disks by blade material orientation scatter and by inevitable di�erences between

blade-disk, shroud and dampers' contact interfaces, can lead to the increase of vibratory

amplitudes and stress localization. This work aims to quantify the e�ect blade-to-blade

anisotropy orientation on the vibratory characteristics of bladed disks.

In the thesis the e�ects of the anisotropy mistuning on the modal properties and forced

response have been studied using high-�delity FE models together with detailed modelling

of nonlinear interaction at friction contact interfaces at blade-disk root joints, blade-shroud

and under-platform damper contacts.

For the analysis of the sensitivity of natural frequencies and mode shapes with respect

to the material anisotropy orientation in blades, e�cient methods have been developed

and implemented.

An e�cient framework for the calculation of the linear and nonlinear forced response

and their sensitivities for anisotropy mistuned bladed disks with friction joints has been

developed and implemented.

The sensitivity calculations for the modal properties, linear and nonlinear forced re-

sponse have been validated by �nite di�erence method. The calculated nonlinear forced

response functions have been validated against measurement data from rotating test rigs.

The e�cient modeling strategies were explored and studied to address the common issues

that occur during the nonlinear forced response analysis of large mistuned bladed disk

models.

The e�ects of the material anisotropy mistuning in bladed disks on natural frequencies,

mode shapes and on linear and nonlinear forced response amplitudes for several modes
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have been studied. For the nonlinear forced response, the e�ect of anisotropy mistuning

has been studied for varying excitation levels and damping levels. The characteristics

of the sensitivities of modal properties and nonlinear forced response amplitudes to the

anisotropy angles have been studied for several industrial mistuned bladed disks.
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Chapter 1

Introduction

The modern jet engines both in the aerospace and energy sector face high safety, en-

vironmental and economical challenges. In order to meet the requirements of the most

up-to-date standards, engineers and manufacturers are constantly searching for solutions

to increase e�ciency, reduce weight, manufacturing and maintenance costs. Nevertheless,

the highest priority for any engine development program is to meet the high regulatory

safety requirements. Therefore, the structural integrity will always be the most important

design requirement of any gas turbine.

The high cycle fatigue resistance of the blades is dependent on the static and dynamic

stresses. In general, the static stresses of the bladed disks can easily be evaluated. For

linear and linearized bladed disks, the evaluation of the dynamic stresses is also done

through commonly known approaches. On the other hand, the calculation of the vibration

amplitudes and stresses for bladed disks with friction contact interfaces, is a complex task.

The bladed disks, such as the fan, compressor and turbine stages, experience periodic

excitation during the operation of the jet engine. Generally, the airfoils in the �ow path

are the most a�ected by vibrations. Therefore, the dynamic assessment of the bladed disks

is essential for the safe operation of the engine on the whole operation range.

For the accurate calculation of the forced response amplitudes of the turbine bladed

disks, the damping of the dynamic system needs to be assessed. The materials used in

blades and disks of the turbine stages have low material damping. Apart from aero-

damping, the major source of the energy dissipated is the frictional forces appearing on

the dry friction contact interfaces. For modern turbine bladed disks, the contact interfaces

are located on the blade roots, on under-platform dampers (UPD) and between the outer

shrouds of the blades. Under centrifugal forces the contact interfaces are pressed against

each other. As vibration amplitudes of the blades around resonances increase, the friction
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joints may start to slip and under certain conditions they can partially or fully separate.

The increased energy dissipation through the friction forces and the change of dynamic

sti�ness due to the change in the contact status needs to be considered for the forced

response calculation.

For the study of the dynamic characteristics, including natural frequencies, mode shapes

and forced response, the e�ect of several design parameters needs to be assessed. The dy-

namic properties of bladed disks depend on design variables such as material properties,

airfoil geometry and properties of contact interfaces. Generally, the computational assess-

ment of the dynamic behavior is done by modeling only a sector of the bladed disk and

applying cyclic symmetric condition on its boundaries. Analyses with cyclic symmetric

conditions allow for a high discretization and the computational e�ort is signi�cantly re-

duced compared to the calculations for 360° model of bladed disk. On the other hand,

for the cyclic symmetric bladed disk model, all sectors in the bladed disk assembly are

considered to be identical. This means that the design parameters for every blade are

modeled to be identical.

In reality, despite the high manufacturing standards of the aviation industry, the blade

sectors are not identical. No manufacturing process is perfect, therefore there will always

be some variation in geometry and material. The blade-to-blade di�erences during engine

operation can increase mainly through wear of the contact interfaces, resulting in varying

contact conditions.

The small di�erences from one blade to another, called mistuning or detuning, has

been shown to lead to signi�cant increase of maximum vibratory amplitudes compared to

amplitudes of the bladed disk with identical blades. According to Whitehead's [99], the

maximum ampli�cation can be analytically derived, and it is proportional to the number of

blades in the bladed disk. The distribution of the maximum forced response amplitudes and

the dynamic stresses along the circumference of the bladed disk is signi�cantly in�uenced

by mistuning. Experimental results have shown, the distribution of the forced response

magnitudes can not only change from one bladed disk assembly to another, but also from

run to run [33]. This is considered to be caused by the change in the contact conditions

from one run to another as the bladed disk stage is loaded and unloaded. Mistuning may

cause the concentration of energy for only a few blades resulting in high vibratory stresses

that lead to reduced fatigue life of the bladed disk. The research in the �eld of the dynamic

behavior of the mistuned bladed disks have been in a focus point since the 1960s and thus

resulted in hundreds of scienti�c publications.
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One of the sources of mistuning appeared in the �eld of turbomachinery as more ad-

vanced materials have been applied for the turbine stages of the jet engine. Such materials

are nickel base superalloys: directionally solidi�ed and single crystal materials. The tur-

bine stages downstream of the combustion chamber need to be able to withstand very

high temperatures and pressures. The single crystal materials that are formed of only one

type of columnar grain can eliminate the grain boundaries and therefore reduce the risk

of the crack initiation and propagation. Moreover, using single crystal materials increase

the creep resistance of the material, which is essential for turbine stages operating in high

temperature conditions.

The nickel-based superalloys that single crystal blades are generally made of are or-

thotropic materials. The principal directions of the anisotropy depend on the orientation

of the single crystals. During blade casting the crystal orientation is carefully controlled,

making sure that one of the principal material direction does not signi�cantly deviate from

stacking axis. The orientation of the other principal material directions are generally not

controlled. This can result in signi�cant variation in crystal orientation from one blade to

another, resulting in anisotropy mistuned bladed disks.

This research is looking for the answers of one paramount question: how does the blade-

to-blade anisotropy orientation variation a�ect the dynamic characteristics of bladed disks?

This research question can be divided into subquestions along the dynamic parameters

under investigation, the methods used to investigate them and with additional complexities:

� Dynamic characteristics of linear structures are described in the form of the modal

properties. In this work it is studied, how the anisotropy mistuning in�uences the

natural frequencies and mode shapes. How do the natural frequencies for mistuned

bladed disks change when compared to the nominal (e.g. tuned) bladed disk? What

kind of changes are expected in the blade mode shapes for anisotropy mistuned bladed

disks.

� By solving the equation of motion, the forced response of the mistuned bladed disk is

calculated. The linear forced response can be calculated by the modal superposition

method when an equivalent overall modal damping is approximated. Considering

the forced response of mistuned bladed disks, the quanti�cation of the scatter in the

individual blade resonance frequencies and maximum forced response amplitudes is

of interest. The ratio between the maximum forced response amplitude around the

resonance over all blades and mean maximum or tuned forced response amplitudes

give the value of ampli�cation factor. Additionally, the mistuning can also result in
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alteration in the operational de�ection shape, which in turn may result in changes

in limiting location for vibratory stresses.

� The turbine bladed disks are inherently nonlinear structures and on the dry friction

contact interfaces nonlinear damping forces appear. In order to assess the forced

response amplitudes, the friction forces on the contact joints need to be resolved. For

such nonlinear forced response analyses work witch signi�cantly more physical and

numerical parameters, e.g. number of mode shapes, number of harmonics, number of

contact elements used in the analysis or the values for friction coe�cient and contact

sti�ness. This work is looking for the e�ect of such parameters and assesses when

converged solutions are obtained. Moreover, the e�ect of anisotropy mistuning on

the nonlinear forced response is investigated. Similarly to the analyses for the linear

forced response, the major interest lies in the value of ampli�cation factors, change

and scatter of resonance frequencies.

� For the previously mentioned dynamic characteristics there can be several ways to

quantify the e�ect of the blade-to-blade anisotropy orientation variation. This piece

of research work is aiming to show several possibilities (e.g. Monte Carlo simulation,

use of sensitivities) for studying the in�uence of the anisotropy mistuning on the

modal and dynamic properties.

� When the research question was posed, the use of sensitivities was formulated as

an e�cient way of quantifying the in�uence of the input parameters on the output

parameters of interest. In case of the anisotropy mistuned bladed disks, the crystal

orientation of the blades can be described with the anisotropy angles, and they are the

stochastic input parameters for the study. The output parameters can be the modal

properties and the linear and nonlinear forced response. The sensitivities with respect

to the design variables can provide important information about the solution for the

parameters of interest for the mistuned the bladed disks. The local sensitivities show

which parameters are in�uencing the solution more and how robust the obtained

solution is. Sensitivities are also used for optimization methods, as they provide

additional information about the gradient of the solution. Other major application

�eld of the sensitivities is the response surface type methods that can substitute the

dynamic system with a mathematical description. The response surface models, such

as the gradient based polynomial chaos, can be used to obtain statistical properties

and global sensitivities of the anisotropy mistuned bladed disk [63].
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Chapter 2

Literature review

The following literature review is written considering the posed research question. This

chapter gives an overview of previous works that are related to the current �eld of study.

As this work �ts into a long historic research e�ort, the covered topics needs to include

the vibratory characteristics of mistuned bladed disks, works on dynamic characteristics

for single crystal bladed disks, methods for model reduction and nonlinear forced response

analysis, methods for calculations for eigenvector sensitivities and practical applications

for the nonlinear forced response methods for bladed disks with friction joints and for their

sensitivity analyses.

The e�ects of mistuning on the dynamic behavior of the bladed disks have been studied

since the 1960s. The signi�cant research interest resulted in hundreds of scienti�c publica-

tions. In the early days research was done with simple single degree-of-freedom systems. As

computational capabilities started to increase, more detailed models were used to analyze

the e�ect of mistuning on forced response amplitudes. The most recent computer codes

allow for the calculation of nonlinear forced response and its sensitivities for high-�delity

mistuned bladed disks. This tremendous advancement has been achieved thanks to the

hard work of a large scienti�c community. Mentioning every publication is a challenge on

its own, here the most relevant and most important studies are reviewed.

2.1 Fundamentals of the dynamic behavior of tuned and mis-

tuned bladed disks

During the early research on the bladed disk assemblies in the 1960s and 1970s the funda-

mentals of the dynamic behavior have been described. At that point the applied mechanics

knowledge had a very good understanding of the vibration characteristics of the blades and
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the blades could also be analyzed by analytical and experimental means. One of the most

important work from this time originates from Ewins 1973 [20]. In this research paper it

has been found that it is not su�cient to analyze the blades alone as cantilever beams,

but the whole bladed disk assembly has to be analyzed. The vibration characteristics of

bladed disks result from the interaction of the disk and the individual blades, which results

in more complex system than the individual blades. This means that bladed disks have

many more natural frequencies than the individual blades. Through the interaction of the

blade and disk modes and mode families are identi�ed [21] , where for each blade mode

several disk modes with di�erent nodal diameter pattern appear. The number of maximum

nodal diameter modes is dependent on the number of blades in the bladed disk. In case

of the tuned dynamic systems for each mode only one nodal diameter component exists,

and the highest possible number of nodal diameters equal to N/2 or (N − 1)/2 if N the

number of blades in a bladed disk is even or odd respectively.

The main interest of the structural engineers lies in identifying critical resonances. In

order to �nd the rotation speed of the resonances, the source of excitation is identi�ed. Due

to the obstructions in the �ow �eld the force varies with the angular position, therefore the

blades experience a �uctuating load proportional to cos(iΩt), where i is the engine order

and Ω is the rotational speed. For jet engines, the major source of excitations are with the

engine order of the number of blades and their higher harmonics of the stators upstream

and downstream. The critical rotor speeds, at which resonances occur, can be identi�ed

where the radial lines of the engine order excitation cross the nodal diameter lines of each

mode, see Fig. 2.1. The bladed disks rotate during the gas turbine engine operation

and the rotation speed a�ects the natural frequencies. In order to analyze the e�ects of

rotation speed and determine the rotation speeds at which the resonance vibrations excited

by di�erent engine orders of the aerodynamic forces occur, the Campbell diagram is used,

see 2.1.

The Fig. 2.2 shows an example for the natural frequency-nodal diameter plot for a

tuned, with the exploitation of the cyclic symmetric conditions. One can see, that with

more and more nodal diameters in the mode shapes, the natural frequency is increasing

and asymptotically approaching the natural frequency of the cantilever blade. In [21] this

is accounted to be due to the fact that with an increasing number of nodal diameter the

disk is getting sti�er at the roots of the blades.

When in the bladed disk model also mistuning or detuning is included, then in the

modal analysis the segments cannot be considered identical. The variation from blade to
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Figure 2.1: A Campbell diagram showing resonance conditions for a mistuned bladed disk

[46]

blade makes the double natural frequencies at a certain nodal diameter for a given mode

shape family split, except for the 0 nodal diameter and N/2 in case the number of blades

is even.

One another important conclusion have been drawn in the paper [21], namely that

due to the mistuning in the bladed disk assembly, the mode shapes are not perfect nodal

diameters anymore and every mode shape consists of several more nodal diameters as well.

This results in the fact, that a mode shape with the ith nodal diameter can also be excited

with other engine order excitations, not only with the ith engine order. Therefore, on

Campbell diagram, Fig. 2.1, every engine order crossing with the nodal diameter lines is

subjected to resonance condition, which are denoted with yellow circles. On this diagram a

selected rotor speed region is selected that is mostly of interest of the structural engineers,

as in that given range two natural frequencies are located relative near to each other. The

red dots at the higher rotor speed range represent possible �utter conditions [95], which is

an unstable, self-excited vibration of the blades that can lead to severe damage in case of

fans [58].

The e�ect of mistuning on the vibration characteristics have been investigated since

the 1960s at a great extent. The variation of the structural properties from one blade to

another has been in the focus of the dynamic research of the turbomachines.

In order to simulate the forced response of the mistuned bladed disks, with direct
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Figure 2.2: Natural frequencies collected into families plotted against the number of nodal

diameters

blade-to-blade variations takes enormous computational e�ort. In order to come around

this obstacle several di�erent methods were developed in the past. Historically it has

started o� with the simplest dynamic models that consisted of a very limited degrees of

freedom lumped parameter mass-spring models (LPM). The foundation of the physics of

the mistuned bladed disks have been laid down in the years before 1990 with such signi�cant

papers as [22],[21] and [97]. The developments until this date have been concluded in the

survey of D. J. Ewins [1]. The publication states the main questions that have been

thoroughly investigated and some are still under investigation, while other questions have

been somewhat reformulated throughout the years.

� How the mistuning will in�uence the vibration characteristics of the bladed disk

assembly?

� "What will be the variation in blade vibration levels if their individual properties

vary by x%?"

� If there is blade to blade variation introduced, how much worse the vibration will be

in comparison with the tuned case?

� If the vibration is localized, which blade will have the largest amplitude?

� Is there an optimal pattern of the mistuning that can reduce vibration the most and

o�er a robust solution?
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� What are the extremes of the e�ect of mistuning?

� What are the methods that allow fast computation for a given mistuning pattern

and the methods for discovering wide range of mistuning patterns?

Most of the questions appeared as direct or indirect questions in [1], however some of

them have been formulated later in accordance with development of the research in the

�eld.

A more recent survey has also been published in 2006 by Castanier and Pierre [15].

The publication sums up the fundamental background of the dynamic behavior. It recaps

the most important developments, such as reduced order models, the analysis with respect

to mistuning sensitivity and the research related to uncertainty and reliability assessment.

2.2 Methods for the calculation of nonlinear forced response

The turbine bladed disk assemblies consists of several parts: blades, disk, retainer and

under-platform dampers. In service, nonlinear forces occur on the friction contact inter-

faces, at blade root, shroud, under-platform dampers, etc., that make the forced response

strongly nonlinear. Therefore, linear models are insu�cient to calculate accurate forced

response amplitudes for bladed disks with friction contact interfaces. Apart from the aero-

dynamic damping, the friction forces that appear on the contact surfaces are the main

source of damping. Therefore, it is necessary to assess the energy dissipation through the

nonlinear friction forces to obtain correct forced response amplitudes.

E�cient calculation of the nonlinear forced response is carried out in frequency do-

main using the multiharmonic balance method [76, 51, 26]. The principal assumption of

the multiharmonic balance method is that multi-degree-of-freedom system is excited by a

harmonic forcing and therefore the steady state solution is searched for a harmonic form.

A comprehensive review on the calculation of the nonlinear forced response with friction

contact interfaces using the multiharmonic balance method can be found in [49].

The simulations for the investigation of the dynamic properties are conventionally car-

ried out with the use of �nite element models. The calculations for modal properties and

forced response are very e�cient with cyclic symmetric models even when very �ne meshes

are applied. the modeling of mistuning is not possible with simple cyclic symmetric con-

ditions. The computation e�orts signi�cantly increase when the full mistuned bladed disk

is modeled. Such 360° models can be used for linear static and modal analysis, however a

nonlinear static or nonlinear forced response analysis would result in signi�cantly higher
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computational e�orts. As a remedy in the early 2000s a variety of reduced order methods

appear. These methods work with real size �nite element models, however still capable of

reducing the size of the system of linear equations without losing precision in the results.

One of the �rst publications on reduced order method, namely the component mode

synthesis was written by Irretier [39]. The method later used in several works including for

example [14],where it has been proven that the method can capture the forced response

with some reasonable decrease in accuracy.

The other classical recipe for using reduction in the �nite element models is called subset

of nominal modes (SNM), developed by Yang and Gri�n [102]. Running simulations with

SNM requires signi�cant amount of input data, therefore it is di�cult to use.

Further development of SNM has been presented in the later years from the same

group at the Carnegie Mellon University by Feiner et. al. [24]. They have presented the

Fundamental Mistuning Model (FMM), which is based on the tuned natural frequencies

and the blade-alone frequency deviations, given that an isolated family of modes is under

investigation. It has been worked out to be a method that is easier to use, therefore more

user-friendly.

In 2002 Petrov et. al. presented [80], where a model reduction is based on the sector

model and the modi�cation introduced in the frequency response function (FRF). The

method provides an e�cient and accurate forced response calculation.

In the publication of [78], a technique has been presented for multiharmonic vibra-

tion analysis of mistuned bladed disks. The analysis is based on a former method with

nonlinear contact calculations, and the mistuning is modeled with the random scatter of

underplatform damper parameters, shroud gap and blade frequency.

The publication of Bhartiya et. al. in 2011 [10] discussed the comparison of the

Modi�ed Modal Domain Analysis (MMDA) and the Subset of Nominal Modes (SNM)

method, which is a method based on Frequency Mistuning. It has been concluded that

MMDA delivers better results for region of isolated modes and overlapping modes, in cases

of mistuning caused by blade-to-blade geometry di�erences.

The component mode mistuning (CMM) was developed for running reduced order

model calculations with damping mistuning in [41] by Joshi and Epureanu. Statistical

methods were used in order to �nd correlation between the damping variation and ampli-

�cation factor distribution.

In the work of Hohl et. al. [36] the Component Mode Synthesis (CMS) and the Wave

Based Substructuring (WBS) has been utilized to achieve a reduced order method. Their
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method could be applied with the help of Monte Carlo simulation for �nding the best and

worst patterns of a bladed disks with respect to forced response. This paper is one of the

examples of a more overall publication taking from the developments of chapters regarding

statistical methods in Section 2.4.2 method and optimization in Section 2.4.3.

Turbine blades are designed with high-cycle fatigue in consideration, because of which,

accurate calculation of vibration amplitudes is necessary. The accuracy of the calculation

can be in�uenced by the computational parameters and by the mechanical parameters of

the contact interfaces.

Regarding the contact surface modeling parameters of tuned bladed disks with friction

joints at the blade-disk root signi�cant studies have been done, e.g. [77, 94, 37, 7, 67].

These studies cover many di�erent kinds of parameters, such as number of modes, number

of nodes, time harmonics included.

Moreover, signi�cant studies have been done on the physical parameters for the model-

ing of the friction contact interactions, such as number of contact elements, static pre-load

and contact sti�ness coe�cient.

Such parametric studies can be done very e�ciently and fast for tuned bladed disks

by considering cyclic symmetric conditions and modeling the bladed disk with only one

sector. With the current computational capabilities, the analysis of such systems can be

carried out for models with very high �delity.

For realistic mistuned bladed disks with millions of degrees of freedom considered as

a full model, such as anisotropy-mistuned bladed disks [47], a very good understanding of

how the modeling of the contact interfaces in�uence the nonlinear forced response. Due to

the increased computational e�ort, only as many nonlinear contact elements, harmonics

and mode shapes are advised to be used as necessary.

According to the previous studies, static pre-load can have signi�cant e�ect on the

nonlinear forced response. Generally, a preliminary static calculation is carried out in order

to obtain pressure values that are applied to the contact elements. The work from Zucca

et al. [104] investigated the coupling the static equation with the dynamic equation that

allows for the changes in the static pressures due to the changes in contact conditions as

vibration amplitudes change. In [101], it has been shown that considering non-uniformity

on the contact interfaces leads to changes in the forced response.

Some of the sources of the change in the contact conditions and the in pre-load are

level of static loading, the geometry uncertainty on the macro-scale, variation in assembly

procedures. One non-rotating application, the �ange joints on the outside of jet engines,
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when contact stresses have a high in�uence on the forced response was studied in [93]. A

contact model has been developed in [4] for di�erent contact geometries using non-spherical

contact surfaces. The analysis of the static displacements for bladed disks with small root

geometry variations has been analyzed in [87].

Given that the applied modeling strategies can in�uence the forced response amplitudes,

it is essential to have them validated. For the validation of the nonlinear forced response

against experimental data, only a handful of publications can be found. The experimental

evaluation of the forced response levels for blade-root geometry has been presented in [17,

25]. The calculation of the nonlinear forced response for bladed disks with friction dampers

and with blade-disk interface has been validated experimentally in [40]. A comprehensive

validation campaign was carried out by Hartung et. al. in [32]. The comparison of

the numerically and experimentally obtained forced response frequencies and levels was

done for bladed disks with root and shroud damping and with additional underplatform

dampers.

2.3 In�uence of material anisotropy angle on the modal prop-

erties and the forced response

In section earlier there have been several ways mentioned how the mistuning could be

introduced. If we are only looking at the later simulations with realistic, full-scale �nite

element models of the bladed disks, we could see several schemes for introducing blade-to-

blade variations. For example direct frequency variation [24], perturbation in the sti�ness

matrix [60], variation in the contact parameters [72], Young modulus discrepancy [9], in

the values of the frequency response function [80] or with damping variations [41]. The

orientation of the single crystals have been published on a limited extent, this chapter shall

give an overview on the available literature.

During the evolution of the turbomachines a search for more resistant materials have

been carried out, as the operating conditions in the turbines include high gas loads and

extreme temperatures [89]. In order to extend the cyclic lives, increase the creep resist-

ance and reduce oxidation, the casting method gradually developed from the conventional

casting (CC) processes.

In the recent decades, directionally solidi�ed (DS) and single crystal (SC) alloys have

been most widely used instead of polycrystalline alloys for the material of the blades in

turbomachinery applications. The SC alloys are typically used in jet engines while DS
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alloys are used in gas turbines.

The evolution of the Ni-based superalloys for the application of the single crystal blades

have been described in detail in the survey paper of [13]. The advances in the alloy

composition, the manufacturing processes is followed up for the �rst three generation of

superalloys. The study includes recent developments and outlook for future developments.

Since then the latest generation is called the 6th generation. A few examples of �rst- and

second-generation superalloys are CMSX-6, MC 2, SRR 99, PWA 1480 [16], PWA 1484,

René N and SC2000.

In the single crystal materials the elements that strengthens the grain boundaries are

suppressed, therefore the grain boundaries can be eliminated. This feature helps to elim-

inate the possibility of grain boundary separation related fatigue failures.

On the other hand, in case of the single crystal materials all crystals are oriented in

the same direction, therefore the linear material behavior is anisotropic. The crystals have

face centered cubic (FCC) crystal structure in the commonly applied nickel-based alloys.

This crystal structure introduces an additional symmetry; therefore the single crystals are

orthotropic with 3 independent material elasticity constants [30].

Most of the publications have a discussion on how the high cycle fatigue is in�uenced

by applying the new superalloys. High cycle fatigue is one of the major failure modes of

turbine bladed disks, therefore it is of engineering interest.

In 2002 Arakere and Swanson published the paper [6] in which the dependence of the

crystal orientation on the fatigue life in case of high cycle fatigue has been investigated.

Due to the orthotropic material behavior of the nickel based superalloys, in the paper

a new fatigue failure criterion is presented considering the slip systems in single crystal

materials [61]. Simulations were run with 297 di�erent crystal orientation con�guration and

evaluating the critical failure parameter on all slip systems at a critical point on the blade

model. It has been concluded that an optimum orientation can be found and therefore the

blade's resistance against fatigue crack growth can be increased by solely the control of the

single crystal orientation.

A publication from Hou et. al. has analyzed the e�ect of the in�uence of the crystal

orientation of the crystals on the fatigue life of the turbine blades [38]. In this study a single

blade has been investigated using �nite element method. During the analysis centrifugal

and thermal load has been applied and the von Mises and maximum resolved shear stress,

moreover the fatigue life has been calculated. The analyses have been carried out with

several crystal orientation and the dependence of the calculated stresses and fatigue life
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has been plotted against the independent angles of primary and secondary angles. With

limiting the deviation of the primary angle to 15°and there has been a 5% range observer

for the stress values by varying the two angles. The variation of the angles had a greater

e�ect on the fatigue life, reaching the 20% range given the varying the angles. There has

been only a limited number of angles investigated, therefore the numerical values are not

necessarily showing the limits of the range that can be achieved by varying the crystal

orientation.

There could be more papers with [35] or [62] mentioned in detail analyzing the fatigue

life of the nickel based superalloys, however at this point the focus of the literature review

mainly focuses on the research of dynamics of the single crystal blades.

One of the �rst studies regarding the dynamic behavior of the blades with single crystal

blade materials have been published in 1987 by Moss and Smith [59], which focuses on the

space shuttle application of NASA. The limited scope study using �nite element analysis,

analytical and experimental methods, concluded that no greater than 5 percent change has

been reported for the modal properties. Utilizing the Campbell diagram, the it is being

reported that one of the engine order interferences could be avoided with using the SC

instead of DS blades.

In the work of Manetti et. al. 2009 [57] the in�uence of the crystal orientation on

the turbine buckets have been investigated for a second-generation superalloy. The ana-

lyses have been carried out for a gas turbine bucket with second generation single crystal

superalloy. Experimental natural frequency measurements have been carried out for 12

specimen and were compared with natural frequencies calculated with �nite element soft-

ware. During this comparison the anisotropic material de�nition in �nite element model

with di�erent crystal orientations have been validated. In order to analyze the e�ect of the

crystal orientation on the natural frequencies a design of experiment approach has been

used. With using 20 design points with di�erent primary and secondary angles, a response

surface has been created. This allows a good prediction for the natural frequency values

between the design of experiment points. It has been concluded that the in�uence of the

crystal orientation on the �rst 10 free-free modes of the turbine buckets is smaller than 4%,

moreover the natural frequencies are more sensitive to the change in the primary angles

then to the change in the secondary angles.

In the work of Kaneko 2011 [42] it has been veri�ed that the directionally solidi�ed

blades can be considered as transverse isotropic materials even if the number of columnar

grains is small. In the publication the SC blades are modeled as simple rectangular plates
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and the e�ect of the three Euler angles describing the crystal orientations is analyzed for

�rst 10 modes. It could be seen that for a given mode not all angles have that same

in�uence, and the extent of the in�uence could be categorized by mode shape type. The

relationship between the material elastic constants in the direction of blade chord and blade

height and angles describing the crystal orientation have been examined with the help of

�rst order second method published in [44] by Kaneko et. al. in 2006. Using standard

distribution for describing the crystal orientation distribution, it could be concluded that

the standard deviation of the frequency due to the deviation caused by the elastic constants

is almost doubled for the DS and SC blade compared with the CC blades.

The e�ect of the crystal orientation of the single crystal blades on the static stresses were

investigated in the 2011 paper of Savage [91]. In this publication the generally used terms

of the primary and secondary angles are explained for single crystal blades. The analytic

demonstration of the stress transformation is presented. It has been illustrated how the

elastic constants of the single crystal blades change due to the crystal orientation. This

method is implemented in several commercial FE software and in CalculiX [19] by the linear

anisotropic material implementation. One segment of the bladed disk without shrouds has

been investigated with the help of the FE analysis. There have been 81 calculations carried

out with di�erent Eulerian angles de�ning crystal orientation. Because the simulations are

using cyclic symmetric conditions on the two sides of the model in tangential direction,

all blades have the same crystal orientation. The static simulation is calculated with

friction contact de�nitions created on the disk, that is modeled by linear isotropic material

law, and blade interfaces. The analysis focuses on the maximum principal stresses on

the contact interfaces. A 1-5% change in the stresses is reported by discovering creating

response surfaces for the given angles. Savage considers the variation of stresses important

in exploiting for increased fatigue life, however a more comprehensive investigation should

show how the rest of the blade would behave to di�erent crystal orientation settings.

In the more recent 2015 publication from Kaneko et al.[43], the resonant response and

random response of the DS blades have been investigated for a more realistic bladed disk

model. According to the knowledge of the author of this review, this is the only publication,

which analyzes the e�ect anisotropic material orientation directly on the dynamic behavior

for bladed disks. During their study the �rst the unshrouded blade alone frequency and

its sensitivity with respect to anisotropy angles were calculated, with these the response

surface was evaluated with respect to lattice growing direction. In order to use less com-

putational e�ort, the Fundamental Mistuning Model (FMM) [24] has been utilized for the
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calculation of the forced response. With the help of Monte Carlo simulations and 10,000

random variables the response surface has been calculated, which showed convex shape

for with respect to the angle variations. Any variation from the initial crystal orientation

when the crystal coordinate system coincides with the blade coordinate system, caused an

increase of the natural frequencies for the �rst and second mode shapes. An important

new result is that the resonant frequency range increases for the DS blades, compared to

CC blades. The forced response for both of kind of reached its peak when the standard

deviation of material constants was a point that caused 1% standard deviation for the

blade alone natural frequencies.

2.4 Sensitivity and statistical methods for the dynamic prop-

erties of bladed disks

For the calculated modal properties and forced response amplitudes, it is of particular

interest to carry out sensitivity studies. The overview of the methods for carrying out

the sensitivity analyses is shown here. Moreover, the sensitivities are bene�cial inputs for

statistical, optimization and robustness assessments.

2.4.1 Numerical methods for sensitivity of mode shapes

For the calculation of the sensitivity of the forced response amplitudes, �rst the sensitivity

of the modal properties needs to be available. Obtaining the derivative of the eigenval-

ues with respect to the design parameters is a straight-forward procedure. However, the

sensitivity of the mode shapes cannot be solved directly, because coe�cient matrix of the

governing equations of the sensitivity of eigenvector problem is singular. In order to over-

come this issue, several di�erent strategies have been developed. First, Fox and Kapoor

[27] developed a modal superposition method for obtaining the sensitivity of mode shapes.

The drawback of the method presented is, that it can only be used for small systems, as

the method requires all eigenvectors of the system for the sensitivity calculation. This

method has been improved in [56] and [98], where not all eigenvectors are required. In

[103] a method is presented for the calculation of the sensitivity of eigenvectors of free-free

systems. This methodology is using the transformation with the eigenvalue shift. These

improved methods account for the truncated modes in a form of a residual term.

One of the early methods developed by Nelson [64], requires the knowledge of the

eigenpair, the eigenvalues and eigenvectors, for the mode for which the derivatives are
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calculated for. This algebraic approach modi�es the rank of the original eigensystem (n-1)

to rank (n), which is then solved for a vector that together with the eigenvector gives the

�rst-order derivative of the eigenvector for systems with distinct eigenvalues.

The development of the algebraic methods has been started by Lee and Jung [52], who

developed a method for calculating the sensitivity of eigenvectors for system with distinct

eigenvalues. The method applies an additional constraint on the length of the eigenvectors

and making the matrix equation solvable.

For the calculation of the derivative of the eigenvectors iterative methods have been

developed as well e.g. [90].

In [2] the status of the research on the sensitivity analysis has been surveyed in the

middle of the 1980s.

For axis-symmetric dynamic systems, that have repeated eigenvalues, several methods

have been developed in [66, 53, 54, 55, 100, 65].

For non-conservative, asymmetric damped systems, the left and the right eigenvectors

are distinct. For the calculation of the distinct and complex left and right eigenvectors

methods in [3] and in [29] have been developed.

2.4.2 Application of statistical methods

The blade-to-blade parameters causing the mistuning in the bladed disks are inherent

distributed in a random manner. The controlling of these parameters is not always possible

as, for example, the conditions on the contact interfaces can change from one run to another

[31]. Given the variations of the mistuning parameters a search has been performed in order

to gain a better understanding of the statistical distribution of the dynamic response of

the bladed disk assemblies.

The work of Myhre et. al. [60] uses a ROM for assessing the statistical distribution of

the forced response of the mistuned bladed disk for mistuning. The mistuning is modeled

with the introduction of perturbation in the sti�ness matrix of the system. For which

perturbation parameter normal probability distribution has been applied. In order to

assess several data points and approximate the statistical distribution of the response, the

most common and simple simulation technique is the Monte Carlo simulation. The dataset

of the maximum amplitude of the whole bladed disk has been approximated with Weibull

(type III) parameter distribution, that the authors found to be the most appropriate.

In [72] Petrov has proposed a method where no sampling such as Monte Carlo is

necessary. The developed approach can calculate the statistical characteristics of the forced
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response with respect to distribution of the friction contact interfaces. The uncertainty

ranges, the coe�cients of variance and the probability density functions are calculated

analytically and with the analytical derivation of the sensitivity of the of forced response

with respect to the design parameters. It has been shown on a realistic bladed disk �nite

element model that the uncertainty of the forced response is contained within 10%. One

exception from this is the resonant conditions, where the slip-stick transition occurs on the

contact interfaces and the uncertainty signi�cantly increases.

The nonlinear forced response of mistuned bladed disks considering nonlinear contact

interfaces and geometrically nonlinear e�ects has been calculated in [11] by Capiez-Lernout

et. al. Using a reduced order method the stochastic nonlinear equations are solved with

the help of Monte Carlo simulation in time domain. The con�dence region of the amp-

li�cation factor has been evaluated for both linear and nonlinear mistuned cases. It has

been concluded, the nonlinear models have a higher con�dence range and more sensitive

to parameter variations.

2.4.3 Optimization problems for �nding extreme ampli�cation factors

and patterns

While the statistical results can help to understand the outcome of the dynamic beha-

vior in a probabilistic basis, engineers are also interested in the worst and best scenarios.

Therefore, there has been research carried out for �nding the best and worst mistuning

patterns in a bladed disk. This can either be carried out with a large sample of design

variables such as Monte Carlo simulation, or as an optimization problem. If an optimiz-

ation method is applied, one shall calculate the sensitivity of the response function with

respect to the design variables, which gradient information is essential in order to carry

out the optimization search.

The �rst theoretical prediction of the largest ampli�cation factor was published by

Whitehead in 1966 [99]. It has the very elegant form of 1
2(1 +

√
N) where N is the number

of blades in a stage. In the early research several other limits were calculated for the

vibration levels of the blades with the help of simple mass-spring models in [22], [23] and

[8].

One of the �rst optimization method applied for the mistuned bladed disk was published

by Petrov, Vitali and Haftka in 2000 [81]. By selecting the amplitude of the vibration and

the individual blade mistuning to be objective function and design variable respectively,

the optimization process is carried out. A robust method is presented that utilizes both
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the response surface and gradient information for �nding the best and worst mistuning

patterns.

Optimization process was carried out in [75] with the use of detailed, realistic �nite

element models. For the design parameters the frequency deviation of the single sectors

was chosen, and the sensitivities of the displacements calculated with respect to those

design variables. The paper has shown a superior solution for �nding the worst mistuning

pattern, in comparison with the random statistical search. Petrov and Ewins could �nd a

response ampli�cation factor of 5.02 during this work.

In breakthrough publication [73] of Petrov a new phenomenon has been revealed. Until

that point mistuning has only been reported for increasing the amplitudes of the forced

response, and for stabilizing the unstable �utter vibrations. In the work it has been proven

that the distortion in the mode shapes can cause an increase of the overall damping of

the mistuned bladed disk system. The simulations including and excluding aero-e�ects

have been conducted for a large sample of patterns, that were either randomly assembled

or rearranged given an initial mistuning pattern. The probability density functions have

proved, the aero-e�ects are reducing the ampli�cation factors. This work also includes a

sensitivity-based optimization for the search of the optimum pattern, for which the initial

pattern where the search is started from is decisive. With the optimum search approach

a maximum of 3.2 times lower ampli�cation factor has been found. During this research

it has been proven that the minimums of the objective functions can provide a robust

solution.

The work of Beirow et. al. [9] has continued on the research with and without aer-

oelastic e�ects. With the help of the SNM reduced order method several Young modulus

based mistuning patterns were investigated. Using the �nite element model of a compressor

blisk they could �nd the highest ampli�cation factor of 2.82 and the lowest of 0.52.

Analyses for frequency mistuned linear bladed disks were done in [96]. The presented

approach calculates the �rst and second derivative of the forced response function with

respect to the frequency mistuning parameter. The sensitivities then applied in optimizing

algorithm for �nding best and worst mistuning patterns. The work assessed the e�ect of

linearized damping on the ampli�cation factor for the worst and best mistuning patterns.

As it could be seen there were di�erent ampli�cation factors calculated for di�erent

mistuning cases, therefore, the maximum ampli�cation caused by mistuning is dependent

on the bladed disk, the type of mistuning was introduced, moreover on the method with

which the calculations have been carried out.
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2.4.4 Investigations regarding damping assessment and contact condi-

tions

One of the challenges in assessing the forced response of the complex dynamic systems,

such as bladed disk assemblies, is the good prediction of the damping caused by the energy

dissipation on the contact interfaces. A review has been published by Gri�n in 1990 [28]

on the modeling aspects of the friction dampers in order to reduce the vibrations of the

compressor and turbine stages.

In 2003 Petrov and Ewins [76] have derived an analytical formulation for the friction

contact interactions for calculating forced response. Given that an analytical ansatz has

been implemented, it provides fast, accurate and stable computations.

The paper of Petrov [71] the method was used for assessing the probability density

function of the forced response with respect to the contact parameters.

A year later in 2009 Petrov released a study [84] on the sensitivity analysis of the bladed

disks at the resonance condition. The results in that publication have been collected with

several di�erent kind of bladed disk assemblies.

Krack et. al. have reported [48] an optimization method with additional robustness

analysis of uncertainty of the contact parameters of a tuned bladed disk. The proposed

technique utilizes analytically derived sensitivity calculations for assessing the uncertainty

of the forced response with respect to varying parameters.

2.4.5 Conclusions

This literature review highlighted the basic di�erences in the dynamic properties for the

tuned and mistuned bladed disks. Most of the analyses for this research was done for

anisotropy mistuned bladed disks, while some, mainly the parametric studies, were done

for tuned bladed disks.

After reviewing the work on the static and dynamic characteristics for turbine blades

and bladed disks made of directionally solidi�ed and single crystal materials opportunities

for new research arise. The previous works already covered the e�ect of anisotropy ori-

entation variation on static and modal properties. In the work of Kaneko [43] the forced

response of anisotropy mistuned bladed disks were studied for the �rst time.

For anisotropy mistuned bladed disks, there is potential in further analyzing the e�ect

of crystal orientation variation on modal properties and linear forced response. As for

the nonlinear forced response, which was not done for anisotropy mistuned bladed disk at

the beginning of the research, considering damping through friction forces leads to new



13th April 2022 21

research �ndings. Moreover, the literature review showed that at the time of the beginning

of the research work, no sensitivity studies has been done in which the design parameter

the crystal orientation was.

In order to accomplish the previously described new research, already existing methods

can be applied, and some methods can be modi�ed for the calculations for anisotropy

mistuned bladed disks.

The forced response calculation for bladed disks with friction contact joints is a chal-

lenging task, which is generally solved in the frequency domain. The two major challenges

appear in the form of large number of DOFs in the system, which result in extreme cal-

culation times moreover, the exact description of the contact status and friction forces in

time domain. Among the methods presented in the previous sections, in this work the

high-accuracy model reduction [85] is used. The method for the nonlinear forced response

calculation, which is selected for this work is described in reference [76].

For the sensitivity calculation of the linear and nonlinear forced response the already

available method described in [71] is used. In order to calculate the sensitivity for the forced

response the sensitivity of modal properties with respect to anisotropy angles need to be

obtained �rst. To this end the already available methods based on modal superposition

and algebraic bordering methods are implemented in a modi�ed form.
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Chapter 3

Methods of the nonlinear forced

response and its sensitivities with

respect to material anisotropy angles

In this chapter the methods used for the modeling of anisotropic material behavior of the

single crystal blades are presented. The discussion also extends to the methods used for

the calculation of the linear and nonlinear forced response of tuned and mistuned bladed

disks. Regarding the sensitivities, the methods used for the calculations of the sensitivity

of modal properties, �exibility matrix and forced response are presented.

3.1 Modeling of the material properties of single crystal blades

For the modeling of the linear elastic behavior of single crystal blades anisotropic material

models are used. The crystals of the modern nickel-base superalloy blades are organized in

a face centered cubic crystal structure. This symmetric structure results in a material that

is a subset of orthotropic materials: cubic material. The material has the 3 independent

material constants, unlike a general anisotropic material that has 21 independent constants.

The three independent material constants de�ned in the material coordinate system (CS)

are the Young's modulus E0, the shear modulus G0 and the Poissions's ration ν0.

The compliance matrix in the stress-strain relation ε = Sσ, using the Voigt notation,

for a nickel base superalloy is de�ned in the material CS as Eq. (3.1). Where the constants
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are: S33 = 1/E0, S13 = −ν0/E0 and S44 = 1/G0.

S =



S33 S13 S13 0 0 0

S13 S33 S13 0 0 0

S13 S13 S33 0 0 0

0 0 0 S44 0 0

0 0 0 0 S44 0

0 0 0 0 0 S44


(3.1)

The elasticity matrix is de�ned as the inverse of the of the compliance matrix, from

σ = S−1ε = Cε. The elasticity matrix can be de�ned in a di�erent coordinate system as

C∗, by multiplying the elasticity matrix with stress transformation matrix from the left

and right as

C∗ = T C T T . (3.2)

where T is the stress transformation matrix between two coordinate systems, T T the trans-

pose of the stress transformation matrix and C is the elasticity matrix in the initial CS,

in other words the material CS. In order to be able to specify the stress transformation

matrix, the coordinate transformation matrix needs to be speci�ed between the two co-

ordinate systems [30]. The stress transformation matrix between coordinate systems for

which the rotation matrix is in the form

R =


l1 l2 l3

m1 m2 m3

n1 n2 n3

 (3.3)

can be written as

T =



l21 m2
1 n21 2l1m1 2l1n1 2m1n1

l22 m2
2 n22 2l2m2 2l2n2 2m2n2

l23 m2
3 n23 2l3m3 2l3n3 2m3n3

l1l2 m1m2 n1n2 l1m2 +m1l2 l1n2 + n1l2 m1n2 + n1m2

l1l3 m1m3 n1n3 l1m3 +m1l3 l1n3 + n1l3 m1n3 + n1m3

l2l3 m2m3 n2n3 l2m3 +m2l3 l2n3 + n2l3 m2n3 + n2m3


(3.4)

For the description of the material properties of single crystal blades in a bladed disk

assembly, three coordinate systems need to be de�ned. The material CS de�ned with the

material axes [100][010] and [001] in Fig. 3.1a. This coordinate system is used for the

description of the material constants, E0, G0 and ν0.

For single crystal blades, the material CS is generally not coinciding with the CS of

the blade, denoted with x′, y′ and z′ in Fig. 3.1a. The z′ axis is the stacking axis of each
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(a) De�nition of the material and blade CS (b) Blade CS in the global CS

Figure 3.1: De�nition of the material and blade coordinate system

blade and x′ is parallel to the machine's axis. The deviation of the material CS system

with respect to blade CS is described by the material anisotropy angles, α, β and ζ.

In the current practice, the description of the material anisotropy is de�ned by the

material anisotropy angles Γ = {α, β, ζ} that are de�ned in the local coordinate system

of each blade in the following way: The primary angle, the deviation of [001] axis with

respect to is z′ axis, is represented by α. The secondary angle β is de�ned as the smaller

angle between x′ axis and [100] or x′ axis and [010]. The third angle ζ de�nes the position

of the [001] axis on a circle de�ned parallel to the x′ − y′ plane. The angle ζ can take any

value between −180° and 180°.

After the casting process, the anisotropy angles of the single crystal blades are measured

by the manufacturer using the Laue method [5, 50]. After years of single crystal blade

production a MTU has collected a large sample of anisotropy angles, which allows for

�tting a statistical evaluation to the anisotropy parameters. For each of the anisotropy

angles, α, β and ζ, a commonly known statistical distribution is �tted. Using pseudo

random sampling from the distributions of the crystal orientation angles random anisotropy

mistuning patterns can be created. The type and the parameters cannot be published due

to con�dentiality agreements with the sponsor company.
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For the �nite element (FE) description an anisotropy mistuned bladed disk, it is im-

portant to be able to describe the anisotropy orientation for every blade in the global CS

of the FE model. The origin of the global Cartesian coordinate system is placed such that

the x axis coincides the axis of rotation. In order to be able to calculate the �nite element

matrices, all anisotropic material properties need to be calculated for global coordinate

system.

In order to be able to de�ne the material properties for each blade in an anisotropy

mistuned bladed disk in the global CS, coordinate transformation needs to be de�ned from

the material CS to the global CS. The rotation matrix de�ning the crystal orientation of

the blade material with respect to the CS of the blade is de�ned by RM . The matrix RM

can be described by rotating with the anisotropy angles of α, β and ζ:

RM (Γ) = RζRβ∗Rα (3.5)

where β∗ = β−ζ. The rotation matrix Rα rotates about y′ axis and Rβ∗, Rζ rotate about

z′ axis.

For the rotation between the stacking axis of the speci�c blade and the global CS the

rotation matrix RB is de�ned. Arriving to the rotation matrix RG(Γ) which, describes

the blade material crystal orientation in the global CS depending on the location of the

blade taking the form:

RG(Γ) = RBRM (Γ) (3.6)

The transformation of the elasticity tensor for linear-elastic materials can be executed

from the CS attached to every blade to the global CS with the help of the stress trans-

formation matrix T as:

C∗(RM ,RB) = T (RM ,RB)C T T (RM ,RB) (3.7)

The stress transformation matrix T is dependent on the rotation matrices RM and

RB.

The element sti�ness matrix can be calculated using the element sti�ness formulation

for 3D isoparametric elements:

ke =

∫
V e

BT C∗B dV (3.8)

Where ke is the �nite element sti�ness matrix, C∗ is the elasticity matrix de�ned in

the global coordinate system, B is the strain-displacement matrix and V e is the volume

of the element. The global sti�ness matrix K can be assembled by adding the expanded



13th April 2022 26

element sti�ness matrices together, after which the �nite element calculations for the whole

structure can be carried out.

K =
⋃
e

ke (3.9)

3.2 Modal properties of bladed disks

The natural frequencies and the modes shapes describe the dynamic behavior of the linear

structures. In this section the modal properties are described for tuned and mistuned

bladed disks.

For tuned bladed disks it is su�cient to model only one sector of the structure. For

blade disks this is generally sector with one blade with the corresponding disk sector. For

bladed disks with intentional mistuning, e.g. A and B pattern mistuning of low- and high-

frequency airfoils [92], two airfoils are included in a cyclic symmetric sector. Applying

cyclically symmetric conditions on the left and right boundaries of the blade disk sector

signi�cantly reduces the computational e�ort of the calculations.

When modal properties of mistuned bladed disks are obtained, no cyclic symmetric

conditions are applied and the full bladed disk is modeled. This modeling allows the intro-

duction of blade-to-blade variation. Such variation can be changes in geometry, material

properties or contact parameters.

The interest of the studies was the sensitivities of the modal parameters with respect

to anisotropy angles for mistuned bladed disks. The method for the sensitivity calculation

of mistuned bladed disks are presented here.

The modal properties are the model input for linear and nonlinear forced response

calculations. For the calculation of the sensitivity of forced response, �rst the sensitivity

of the modal characteristics need to be calculated.

3.2.1 Modal properties of tuned bladed disks with cyclic symmetric con-

ditions

For the calculation of the mode shapes of the cyclic symmetric bladed disks CalculiX is used

[18]. The cyclic symmetric condition is applied such that an NND nodal diameter (ND)

mode shape has NND complete sinusoidal waves along the circumference of the bladed

disk. The maximum value of nodal diameters for bladed disks with N blades is

NND,max =


N/2 for even N

(N − 1)/2 for odd N
(3.10)
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The boundary condition of the cyclic symmetry can be expressed [? ] as

φB = φA · ei
2πNND

N (3.11)

for point A and point B along the circumference of the cyclic symmetric structure. Point A

is the left and B is on the right boundaries and the phase shift for the modal displacements

between them is 2πNND
N .

Because of the complex boundary conditions on the boundaries of the fundamental

sector, the resulting eigenproblem will also be complex. Therefore, the calculated the

resulting eigenvalues will be duplicate and the eigenvectors for the eigenvalue pairs are

complex conjugates.

3.2.2 Modal properties of mistuned bladed disks

For anisotropy mistuned bladed disks, the full FE model allows for applying di�erent

crystal orientation for each blade. As described in section 3.1, for each single crystal blade

in the bladed disk the crystal orientation can be de�ned by a set of anisotropy angles

Γ = {α, β, ζ}. Therefore, for a mistuned bladed disk the anisotropy mistuning pattern can

be de�ned by 3 ·N number of anisotropy parameters.

The eigenvalue problem for asymmetric systems, such as anisotropy mistuned bladed

disks, can be written in the form

Kφj = λjMφj (3.12)

Where, the sti�ness matrixK, the eigenvalues λj and the mode shapes, φj , are dependent

on the anisotropy angles, but the mass matrix M , for anisotropy mistuned bladed disks,

is not, and the subscript j is the mode number. The geometric sti�ening e�ects of the

centrifugal forces of a rotating bladed disk assembly can be considered in the sti�ness

matrix K.

It is worth noting that for a mistuned system all eigenvalues and mode shapes are real

and distinct. Moreover, for each mode shape family there are N number of mode shapes.

This means that for example for a bladed disks with 75 blades, there will be 75 mode

shapes from the �rst mode family. If the modes of interest are from the higher mode shape

families, it takes signi�cant calculation e�ort to obtain hundreds of modes.

For solving the equation (3.12) and obtaining natural frequencies and mode shapes,

the open-source FE solve of CalculiX is used: CalculiX CrunchiX (ccx).
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3.3 Sensitivity of modal characteristics

The eigenvalue problem of the multi-degree-of-freedom (MDOF) dynamic system can be

written in the form:

K(γ)φj = λjMφj (3.13)

Where, the sti�ness matrix K(γ), the eigenvalues λj and the mode shapes, φj , are de-

pendent on the anisotropy angles, but the mass matrix M is not, and the subscript j is

the mode number. Here, γ is introduced as a general parameter that can be any parameter

describing the crystal orientation of the anisotropic material.

Assuming mass-normalized eigenvectors, φj , the equation describing the sensitivity of

the eigenvalues for a MDOF dynamic system takes the form [27] :

∂λj
∂γ

= φTj

(
∂K

∂γ
− λj

∂M

∂γ

)
φj (3.14)

Since the mass matrix is not dependent on γ for the applications considered in this work,

this expression becomes:
∂λj
∂γ

= φTj
∂K

∂γ
φj (3.15)

The derivative of the sti�ness matrix in Eq. (3.15), with respect to the anisotropy

angle for linear calculations can be calculated using an analytic method. The sensitivity

of the sti�ness matrix on the element level can be expressed with the modi�ed equation of

the element sti�ness formulation of a three-dimensional isoparametric �nite element as:

∂ke

∂γ
=

∫
V e

BT ∂C
∗

∂γ
B dV (3.16)

Where ke is the �nite element sti�ness matrix, C∗ is the elasticity matrix de�ned in the

global coordinate system, B is the strain-displacement matrix and V e is the volume of the

�nite element. In order to carry out the calculation described in Eq.(3.16) the derivative

of the elasticity matrix is calculated.

The methodologies for the calculation of the sensitivity of mode characteristics have

been implemented in the open-source �nite element software CalculiX. The calculation of

the derivative of the sti�ness matrix is done using the �nite di�erence scheme as

∂ke(γ)

∂γ
≈ k

e(γ + ∆γ)− ke(γ)

∆γ
(3.17)

where, ∆γ is the �nite di�erence step. For the application of the formula, two evalu-

ations are necessary for each sensitivity calculation. One with unperturbed rotation vector

components and one with a perturbed rotation vector component.
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3.3.1 Enhanced modal method

In order to express the sensitivity of mode shapes, a series expansion formulation is tradi-

tionally used e.g. see Ref. [2]

∂φj
∂γ

=

m∑
k=1

cjkφk = Φcj (3.18)

The formulation in Eq. (3.18) considers only a subset of mode shapes m in the expansion

of the derivative of the mode shapes. In order to increase the precision and the speed of

convergence, an enhanced method is proposed [82]. This approach accounts for the mode

shapes that are not included in the expansion, in the form of a residual vector rj .

∂φj
∂γ

= Φcj + rj (3.19)

The coe�cients of the �rst term on the right hand side of Eq. (3.19), cj , can be derived

by �rst substituting Eq. (3.18) into the total derivative of Eq. (3.13) with respect to the

general anisotropy parameter γ:

(K − λjM) Φcj = fj (3.20)

where the right hand side for a general case is:

fj = −
(
∂K

∂γ
− λj

∂M

∂γ
− ∂λj

∂γ
M

)
φj (3.21)

Then the components cjk of the vector of the sensitivity expansion coe�cients for j-th

mode shape cj are obtained for k 6= j by multiplying Eq. (3.20) with the kth mass-

normalized mode shape φTk from the left. The coe�cient cjj is calculated by di�erentiating

the normalization condition: φTjMφj = 1, which for a general case gives:

cjj = −0.5φTj
∂M

∂γ
φj (3.22)

For the sensitivity analysis to material anisotropy orientation, considered in this paper, the

dependence of the mass matrix on the anisotropy orientation can be neglected. Therefore,

Eq. (3.21) takes the following form:

fj = −
(
∂K

∂γ
− ∂λj

∂γ
M

)
φj (3.23)

The coe�cients of the mode shape sensitivity expansion, considering that the mass matrix

is not dependent on γ, result in:

cjk =


φTk fj
λk−λj if k 6= j

0 if k = j

(3.24)
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The residual vector in Eq. (3.19) teaks into account the contribution of the modes which

are truncated in Eq. (3.18)

rj =

N∑
k=m+1

φTk fj
λk − λj

φk (3.25)

where N is the total number of modes in a considered structure (which is equal to the

total number of DOFs in the �nite element model). In order to be able to calculate the

residual vector, here some value λ0 is substituted instead of λj . This value is chosen to be

very close to, but di�erent from λj to avoid division by 0.

The expression rj can be divided into two terms as:

rj ≈
N∑
k=1

φTk fj
λk − λ0

φk −
m∑
k=1

φTk fj
λk − λ0

φk = r0j −
m∑
k=1

crjkφk (3.26)

The former term can be reformulated as a system of linear equations and therefore solved

with a linear equation solver.

(K − λ0M) r0j = fj (3.27)

Substitution of Eq.(3.26) in Eq. (3.19) gives us the enhanced expression for the mode

shape sensitivities:
∂φj
∂γ

= Φcj + r0j −Φcrj = Φc∗j + r0j (3.28)

The coe�cients of the sensitivity of mode shapes using enhanced formulation in Eq. (3.28)

can be calculated as:

c∗jk =


λj−λ0

(λk−λj)(λk−λ0)φ
T
k fj if k 6= j

− φTk fj
λk−λ0 if k = j

(3.29)

3.3.2 Algebraic method

For the introduction of the algebraic method [83], the sensitivity eigenvalue problem, to-

gether with the derivative of the equation for the mass normalized mode shapes, can be

rewritten in the following form: K − λjM −Mφj

−φTjM 0

 ∂φj/∂γ

∂λj/∂γ

 =

 −((∂K/∂γ)− λj(∂M/∂γ))φj

0

 (3.30)

This system of equations in Eq. (3.30) can be written in a compact form: A b

bT 0

 ∂φj/∂γ

∂λj/∂γ

 =

 c

0

 (3.31)

where, A = K − λjM , b = −Mφj and c = −((∂K/∂γ) − λj(∂M/∂γ))φj . Using the

notations in Eq. (3.31) the sensitivity of the eigenvalues in Eq. (3.14) can be expressed as

∂λj/∂γ = −φTj c (3.32)
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By de�nition, the matrix A is singular. Here, bordering algorithm [45] is used for

solving the singular system of equations. The matrix A is regularized by adding the

regularization coe�cient s to one of the entries on the principal diagonal of the matrix.

Ã = A+ s · eseTs (3.33)

According to the general bordering algorithm, the sensitivity of mode shapes can be

expressed exactly using the formulation of

∂φj/∂γ = gφ − gλ(∂λj/∂γ) + αge (3.34)

where

Ãgλ = b; Ãgφ = c; Ãge = sej (3.35)

and

α =

(
bTgλ

bTge

)
(∂λj/∂γ)− b

Tgφ

bTge
(3.36)

The calculation of the vectors gλ,gφ and ge is done by solving the system of linear

equations in Eq. (3.35). Note that the factorization of the matrix Ã and the calculation

of b, gλ, ge, bTge and (bTgλ)/(bTge) is done only once for a considered mode shape. This

must be considered for structures that have a large number of design variables. In case of

bladed disks with 72 blades, the number of design variables describing the anisotropy axis

orientation of the monocrystalline blade is 72 · 3 = 216. The calculation of c, gφ and λ′ is

done for every design variable of the system.

The advantage of the proposed method is that only the eigenpair and the sensitivity

of the eigenvalue for which the eigenvector sensitivities are calculated are necessary for

the calculation for obtaining the sensitivity of the eigenvector. In modal analysis of large

systems, normally the lowest �rst m eigenvalues are calculated and using the proposed

method there is no need for the calculation of additional eigenvalues and eigenvectors

to obtain the derivative of the mode shape φm with respect to the design variables. The

proposed method also allows for an exact solution can be calculated without removing rows

and columns from matrix A. Additionally, this algebraic method is simple to program.

3.4 Forced response and its sensitivity for bladed disks

In this work, two major types of bladed disks are analyzed: (i) mistuned bladed disks (ii)

tuned bladed disks.
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For tuned bladed disks, cyclic symmetric conditions can be applied, but for mistuned

systems a whole bladed disk is modeled, where each single crystal blade has a varying

crystal orientation. For the nonlinear forced response calculations the code ContaDyn

developed by E.P. Petrov is used, which is based on the multiharmonic balance and fully

analytical formulation for nonlinear contact interactions (see Refs. [69, 76, 78, 85]).

3.4.1 Forced response and its sensitivity for linear mistuned bladed disks

For linear mistuned bladed disks, the equation of motion can be written in the form:

Kx(t) +Cẋ(t) +Mẍ(t) = p(t) (3.37)

Where, K,C andM are structural sti�ness, damping and mass matrices; x(t) is the time

varying forced response for all degrees of freedom in the mistuned bladed disk; p(t) is

harmonic excitation applied on the mistuned bladed disk. The periodic excitation of the

bladed disk is a traveling wave type, and it takes the form:

p(t) = {p1(t),p1(t− α), ...,p1(t− (N − 1)α)}T (3.38)

Where, p1(t) is the harmonic load applied on �rst sector of the bladed disk model. The

dynamic load can be applied to a single node or distributed over several nodes of the FE

mesh. The value α = T/N is the phase shift in the applied forces from one sector to

next one; the period is T = 2π/ω, where ω is the principal excitation frequency that is

ω = ωm · EO, the machine rotation speed multiplied by engine order number (EO). For

the harmonic excitation in the from p(t) = P eiωt, the solution of the vibration is sought

in the form of x(t) = Xeiωt.

The equation of motion takes in frequency domain the form:

[
K + iωC − ω2M

]
X = P (3.39)

For linear systems, the forced response displacements can be calculated with the modal

superposition method. With the natural frequencies and mode shapes already calculated

for the mistuned bladed disk, the forced response amplitudes can be written in the form:

X =

Nm∑
j=1

φTj P

(1 + iηj)ω2
j − ω2

φj =

Nm∑
j=1

cjφj (3.40)

Where, ωj , φj and ηj are natural frequency, mode shape and modal damping factor for j-th

mode; in the modal expansion Nm number of modes are included; and the unit imaginary

number is i =
√
−1. The high-�delity �nite element models of mistuned bladed disks
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include millions of DOFs. The advantage of the modal superposition method is that only

the degrees of freedom of the nodes where harmonic excitation is applied and the nodes

of interest need to be included in the calculations, which reduces the computation time

signi�cantly.

Sensitivity of linear forced response for mistuned bladed disks

For linear systems the sensitivity of forced response can be calculated by taking the deriv-

ative Eq. (3.40) with respect to the anisotropy design parameter γ:

∂X

∂γ
=

Nm∑
j=1

∂cj
∂γ
φj + cj

∂φj
∂γ

(3.41)

Where, the sensitivity of the mode shapes is already available and the sensitivity of the

modal expansion coe�cients can be calculated as:

∂cj
∂γ

=
P T (∂φj/∂γ)

(1 + iηj)ω2
j − ω2

−
P Tφj

[
(1 + i ((∂ηj/∂γ))ω2

j + 2 (1 + iηj)ωj (∂ωj/∂γ)
]

[
(1 + iηj)ω2

j − ω2
]2 (3.42)

3.4.2 Nonlinear forced response and its sensitivity for mistuned bladed

disks with friction joints

For nonlinear mistuned bladed disks with friction contact interfaces, the equation of motion

is extended with the term f(x(t)) describing the nonlinear friction forces as:

Kx(t) +Cẋ(t) +Mẍ(t) + f(x(t)) = p(t) (3.43)

The turbine bladed disk assemblies used in practical applications many frictional con-

tact surfaces. The nonlinear forces occur on blade-root disk interfaces, on the surfaces

of under-platform dampers, blade retainers and on the shroud interfaces of the adjacent

blades. Moreover, high-energy rubs can occur between the blade tip and honeycomb sealing

material of the casing. The main sources of nonlinearities on the contact interfaces are the

friction forces, unilateral interaction of the paired interfaces, gap closure and opening etc.

The analytically formulated nonlinear contact forces have been derived in Refs. [76, 74].

The 3D nonlinear contact elements used in this work allow for the interactions of relative

motion along the two surface tangential and normal directions.

For the calculation of the periodic forced response vibrations, the multiharmonic bal-

ance method is applied. The dynamic system is excited by a harmonic excitation, and
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therefore the solution of Eq. (3.43) is sought for in the form of a restricted Fourier series.

x(t) = X0 +

Nh∑
j=1

X
(c)
j cos(kjωt) +X

(s)
j sin(kjωt) (3.44)

where, X̃ = {X0,X
c
1, ...,X

s
n} can be de�ned as the vector of harmonic coe�cients

describing the vibration for all degrees-of-freedom; the harmonic coe�cients are kj and

the number of harmonics included in the Fourier series are Nh, and ω is the principal

excitation frequency. Similarly, the nonlinear forces f(x(t)) and the excitation forces p(t)

can be written in the multiharmonic expression as

f(t) = F0 +

Nh∑
j=1

F
(c)
j cos(kjωt) + F

(s)
j sin(kjωt) (3.45)

p(t) = P0 +

Nh∑
j=1

P
(c)
j cos(kjωt) + P

(s)
j sin(kjωt) (3.46)

where similarly, the F = {F0,F
c
1 , ...,F

s
n} and P = {P0,P

c
1 , ...,P

s
n} can be de�ned as

the vectors of harmonic coe�cients for the nonlinear forced and excitation forces.

After applying the harmonic balance method, the nonlinear equation for harmonic

number j for vector X̃j is written as:

[
K + iωjC − ω2

jM
]
X̃j + Fj(X̃j) = Pj (3.47)

In general the large-scale �nite element models of bladed disks consist of millions of

degrees of freedom. Solving equation (3.47) directly for such systems would be computa-

tionally prohibited. In order to reduced the computational e�ort, the reduction of model is

necessary. For this the high-accuracy model reduction method, which has been presented

in Ref. [85], is used. The reduction method allows for signi�cant reduction in the number

of degrees of freedom, because only the DOFs of the nonlinear contact interaction need

to be kept in the reduced order model. At the same time, the reduction method o�ers

exceptionally high accuracy for the reduced model. Using this approach, the equation of

motion in frequency domain can be reformulated as:

R(X) = X −Xlin +A(ω)F (X) (3.48)

Where, on the left-hand side of the equation R is the residual vector for all nonlinear

degrees of freedom; the vector X is the nonlinear multiharmonic amplitudes determined

for all DOF on the nonlinear contact interfaces; F (X) is the multiharmonic nonlinear

contact forces and Xlin is the vector of harmonic coe�cients without the application of
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nonlinear contact forces. The multiharmonic forced response function (FRF) matrix A(ω)

is expressed through the FRF matrices of the individual harmonics:

A (ω) = diag

A0,

 ARe
k1

AIm
k1

−AIm
k1

ARe
k1

 , ...,
 ARe

kn
AIm
kn

−AIm
kn

ARe
kn

 (3.49)

The FRF matrix calculation for dynamic problems with friction forces can be done

with high accuracy using the reduction method developed in Ref. [85]. The method allows

to calculate the relative displacement of the contact pairs by using of the local �exibility

information of for the degree of freedom on the contact interfaces. The FRF matrix is

written in the form:

Akj = A0 +Ad(kjω) (3.50)

Where, A0 is the �exibility matrix calculated exactly for the contact nodes at a reference

frequency ω0 as [
K − ω2

0M
]
A0 = I (3.51)

On the right-hand side of the equation I is the unit matrix. The value of the reference

frequency ω0 for most practical applications can be chosen as 0. For structures with rigid

body motions, the reference frequency needs to be chosen as non-zero, but far from every

natural frequency. For ω = 0 the equation system for the �exibility matrix calculation

simpli�es to:

KA0 = I (3.52)

The �exibility matrix is only calculated once, before the nonlinear solution of the forced

response. For solving Eq. (3.51), the CalculiX FE solver is used.

The second, dynamic term, in Eq. (3.59), is expressed as:

Ad (ω) =

Nm∑
j=1

(
ω2 − ω2

0 − iηjω2
j

)
φjφ

T
j(

ω2
j − ω2

0

)(
(1 + iηj)ω2

j − ω2
) (3.53)

Where, Nm is the number of mode shapes included in the reduced order model; ωj , φj and

ηj are the j-th natural frequency, mode shape and damping.

The solution of the equation of motion in Eq. (3.48) is obtained with the Newton-

Raphson method. The initial solution is iteratively calculated using the following expres-

sion:

J
(
X(k)

)(
X(k+1) −X(k)

)
= R

(
X(k)

)
(3.54)

where the Jacobian matrix of the nonlinear equation J = ∂R/∂X is calculated analytically

(see Refs. [76] and ??). The solution along the frequency range of interest is e�ciently

obtained using solution continuation techniques.
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Sensitivity of nonlinear forced response for mistuned bladed disks

The sensitivity of the nonlinear forced response amplitudes for a converged solution X∗

can be calculated by taking the derivative of the residual equation, Eq. 3.48. With the

help of the already calculated Jacobian matrix it can be written:

∂R(X∗)

∂γ
= J(X∗)

∂X∗

∂γ
=

[
∂A0

∂γ
+
∂Ad

∂γ

]
(F (X∗)− P ) (3.55)

The sensitivity of the static term of the FRF matrix, the �exibility matrix, is calculated

only once using CalculiX as:[
K (r)− ω2

0M
] ∂A0

∂γ
=
∂K (r)

∂γ
A0 (3.56)

The derivative of the dynamic term with respect to the anisotropy parameter is

∂Ad (ω, r)

∂rk
=

Nm∑
j=1

∂cj
∂rk

φjφ
T
j + cj

(
∂φj
∂rk

φTj + φj
∂φTj
∂rk

)
(3.57)

where cj =
(
ω2 − ω2

0 − iηjω2
j

)
/
[(
ω2
j − ω2

0

)(
(1 + iηj)ω

2
j − ω2

)]
; ωj , ηj and φj are nat-

ural frequency, modal damping and mode shape; the derivative ∂cj/∂γ is calculated taking

into account the dependency of the modal properties of the bladed disk on the anisotropy

angles and obtaining the modal sensitivity properties as it is described in the previous

section; Nm is the total number of modes used for the calculation of the dynamic FRF

matrix component, Ad.

3.4.3 Nonlinear forced response of tuned bladed disks

The cyclic symmetry condition can be applied for the analysis of forced response of tuned

bladed disks as it has been proven in Ref. [70].

The equation of motion for a cyclic symmetric sector can be written in the form:

KSx(t) +CSẋ(t) +MSẍ(t)+

+fS (x(t)) + fl (x(t− T/N),x(t)) + fr (x(t),x(t+ T/N)) = p1(t)
(3.58)

where KS , CS andMS are sti�ness, damping and mass matrices for the substructure sec-

tor; x(t) is vector of displacements for the sector ; fS (x(t)) is the vector of nonlinear forces

applied to nodes belonging to the sector; fl (x(t− T/N),x(t)) ,fr (x(t),x(t+ T/N)) are

nonlinear forces obtained in the results of interaction with neighboring sectors at the left

and at the right sector boundaries. The vibration of any j-th sector of tuned bladed disk

can be expressed through x(t) in the form: xj = x(t− α(j − 1)).

For the tuned bladed disks, the same high-accuracy model reduction method can be

applied, and one arrives to Eq. (3.48).
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The FRF matrix, for tuned bladed disks is expressed as

Akj = A0
ND +Ad

ND(kjω) (3.59)

Where, A0
ND is the �exibility matrix calculated exactly for the contact nodes. For tuned

bladed disks, modeled with sector model, the �exibility matrix and the mode shapes have

sinusoidal spatial distribution along the circumference of the bladed disk, they are described

by the number of nodal diameters, ND. For the calculation of the FRF matrix not all

ND modes and �exibility matrices are required. The ND of the spatial harmonic used is

dependent on the harmonic describing the time variation, given by the equation:

ND (kj) =

 mod(kj , N)for mod (kj , N) ≤ N/2

− (N − mod(kj , N)) for mod (kj , N) > N/2
(3.60)

The �exibility matrix, the �rst term in Eq. (3.59) is calculated at a reference frequency

ω0 as [
KND
S − ω2

0M
ND
S

]
A0
ND = I (3.61)

The matrices KND
S andMND

S are the sti�ness and mass matrices of the sector model for

the given nodal diameter. On the right-hand side of the equation I is the unit matrix.

The value of the reference frequency ω0 for most practical applications can be chosen as

0. For structures with rigid body motions, the reference frequency needs to be chosen as

non-zero, but far from every natural frequency. For ω = 0 the equation system for the

�exibility matrix calculation simpli�es to a linear static problem:

KND
S A0

ND = I (3.62)

Equation (3.61) is solved only once, before the nonlinear solution of the forced response.

For this purpose, the CalculiX FE solver is used.

The second frequency dependent dynamic term, in Eq. (3.59), is expressed as:

Ad
ND (ω) =

Nm∑
j=1

(
ω2 − ω2

0 − iηNDjω2
NDj

)
φNDjφ

T
NDj(

ω2
NDj − ω2

0

)(
(1 + iηNDj)ω2

NDj − ω2
) (3.63)

Where, Nm is the number of mode shapes included in the reduced order model; ωNDj ,

φNDj and ηNDj are the j-th natural frequency, mode shape and damping for the selected

ND.

The Newton-Raphson method for obtaining the solution of the equation of motion can

be applied in the same manner as for mistuned bladed disks.
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3.4.4 Modeling of additional parts of the bladed disk assembly for non-

linear forced response

Bladed disks, as its name suggests, consist of a disk where the individual blades are inserted.

While they are never integral parts for turbine stages, for the forced response analysis they

are always considered together. In certain bladed disk assemblies additional parts, such as

under-platform dampers (UPD) and retainers are included. Generally friction forces are

negligible on the retainers, but if under-platform dampers are included in the bladed disk

design the appearing friction forces contribute to the damping of the forced vibrations.

A method has been developed for including additional parts such as under-platform

dampers into the bladed disk assembly. The input of the modal properties and �exibility

matrix is handled separately from the rest of the bladed disk structure. Which means,

the �nite element model of the UPD model is created. The damper is placed in the

global coordinate system of the 1st blade and its coordinates are de�ned by its place under

the blade platform. In agreement with the method of high-accuracy model reduction,

which requires free contact interfaces, the damper does not have any boundary conditions.

Therefore, modal properties calculated for the UPD include the rigid-body modes.

The modal properties and the �exibility matrix of stand-alone UPD is read by Conta-

Dyn and it is included in the reduced order model of the bladed disk.

For asymmetric mistuned bladed disks the mode shapes and the �exibility matrix of

UPDs are rotated to the position between the respective blades. The mode shape j for the

ith UPD is obtained by the rotation

φij = Ri
Bφj (3.64)

where, Φj is mode shape j of the stand-alone UPD and Ri
B is the rotation matrix for

bladed disk sector i.

The rotation of the �exibility matrix for blade sector i is done by

Xi = Ri
BA0R

i
B
T

(3.65)

where, A0 is the �exibility matrix for the stand-alone UPD.

3.4.5 Calculation of the sensitivities with respect to material anisotropy

angles described in the local coordinate system of the blades

For the application of single crystal bladed disks, the commonly used description of the

single crystal material orientation are the anisotropy angles. However, in the open-source
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FE software CalculiX a more general set of parameters are used for the description of

anisotropy orientation. This set of parameters are the rotation vector components that are

used for the sensitivity calculations [46]. The advantage of the rotation vectors is that they

are de�ned in the global CS. By choosing the rotation vectors as design variables CalculiX

can be used for the calculation of the sensitivities of any other structure with anisotropic

material.

The material CS describing the crystal orientation of each blade in the global CS is

de�ned by the rotation vector:

v =


vx

vy

vz

 (3.66)

The rotation matrix can be then expressed as:

R (v) = I +
sin(‖v‖)
‖v‖

ω̃v +
1− cos(‖v‖)
‖v‖2

ω̃vω̃v (3.67)

Where, ω̃v is the skew-symmetric matrix de�ned in the global coordinate system by the

rotation vector components as:

ω̃v =


0 −vz vy

vz 0 −vx

−vy vx 0

 (3.68)

and I is the identity matrix.

The sensitivities of the �nite element calculations are obtained with respect to the

rotation vector components, de�ned in the global CS, but for assessment of the anisotropy

e�ect the sensitivity with respect to measured experimental angles are needed. In order

to calculate the sensitivities with respect to the anisotropy angles, the sensitivities to the

rotation vectors must be transformed into the blade coordinate system. The transformation

can be carried out using the chain rule:

∂a

∂Γ
=


∂vx/∂α ∂vy/∂α ∂vz/∂α

∂vx/∂β ∂vy/∂β ∂vz/∂β

∂vx/∂ζ ∂vy/∂ζ ∂vz/∂ζ

 ∂a∂v =
∂v

∂Γ
· ∂a
∂v

(3.69)

where a is any parameter of interest, and in this case this is natural frequency, modal

displacement or forced response displacement. The derivation of the Jacobian matrix,

J = ∂v/∂Γ, is derived here in analytical form.
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3.5 Calculation of the transformation matrix between global

and blade coordinate systems

For the expression derived for the Jacobian in Eq. (3.69) it can be stated, that the in�n-

itesimal rotations expressed through rotation matrices of both coordinate systems: global

CS and blade CS, are identical. The in�nitesimal rotation δω = {δωx, δωy, δωz} can be

expressed through the rotation matrix in the form, see Ref. [12]:

δω̃ = δRRT (3.70)

Substituting Eq. (3.6) in Eq. (3.70) the expression for in�nitesimal rotations is obtained

in through manufacturer material anisotropy angles in the form:

δω̃ = δRGR
T
G =

(
RB

∂RM

∂α
RT
MR

T
B

)
dα+(

RB
∂RM

∂β
RT
MR

T
B

)
dβ +

(
RB

∂RM

∂ζ
RT
MR

T
B

)
dζ

(3.71)

Taking into account that the matrix δω̃ obtained from Eq. (3.71) is a spin matrix (see

Eq. (3.68)) and that each summand in Eq. (3.71) is a spin matrix, this equation can be

rewritten in a vector form:

δω = ωαδα+ ωβδβ + ωζδζ (3.72)

On another side, the vector of in�nitesimal rotations can be expressed through the rotation

vector, v, describing the material anisotropy in global CS. Using an available expression

(see Refs. [12] and [68]), we have:

δω = T T δv (3.73)

where the tangent operator matrix, T , is expressed as:

T (r) = I +
cos(‖v‖)− 1

‖v‖2
ω̃v +

‖v‖ − sin(‖v‖)
‖v‖3

ω̃vω̃v (3.74)

Equalizing the terms upon independent variations of the rotation matrix parameters in

Eqs. (3.72) and (3.73), we obtain the equations for the determination of the rows of the

Jacobian matrix, J , used for the transformation between the two coordinate systems: the

global CS and blade CS:

T T
∂v

∂α
= ωα , T T

∂v

∂β
= ωβ , T T

∂v

∂ζ
= ωζ (3.75)
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3.6 Visualization of forced response in time domain

The forced response amplitudes are only calculated directly for the nodes that are included

in the reduced order model. For bladed disks, these nodes are the nodes on the nonlinear

contact patches, the nodes where the harmonic excitation is applied and some nodes of

interest (e.g. blade tip or mid-span). In many cases, these nodes are su�cient for the

evaluation of the forced response.

In some cases, it is necessary to obtain the forced response amplitudes for the whole

FE mesh. The visualization of the operational de�ection shape for all FE nodes gives

additional information compared the linear mode shapes and the nonlinear forced response

amplitudes of the nodes of interest. The screening for the nodes of interest is done on the

linear mode shapes. For some nonlinear systems with friction forces the node of maximum

displacement can change along the airfoil and to identify such change the visualization of

the forced response for the full model is an ideal tool. Moreover, due to the mistuning the

location of the maximum forced response can vary between blades.

3.6.1 Recovery of forced response in time domain for asymmetric sys-

tems

The equations for the calculation of the forced response displacement in time domain are

written in the form of modal expansion, for asymmetric dynamic systems as

x (τ) =

nHarms∑
k=1

nModes∑
j=1

φjRe
(
ei·kHarm(k)·τ ck,j

)
(3.76)

where φj is the j-th mode shape, ck,j is the complex conjugate of the modal coe�cient for

k-th harmonic number and j-th mode, nModes is the number of modes and nHarms is

the number of harmonics used for the forced response calculation. The τ discrete pseudo

time is de�ned on τ ∈ [0, 2π] and kHarm is a vector of the harmonics used for the forced

response calculation.

3.6.2 Recovery of forced response in time domain for symmetric systems

The recovery of the displacements for cyclic symmetric systems takes the form

x (τ) =

nHarms∑
k=1

Re

nModes∑
j=1

φjND(k)e
i·kHarm(k)·τ ck,j

 (3.77)

where φjND(k) is j-th mode shape of ND(k) nodal diameter that corresponds to k-th

harmonic number. The discrete pseudo time for cyclic symmetric systems is de�ned on
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τ ∈ [0, 2π/EO], where EO is the engine order of the principal excitation. The relationship

between time harmonics and the spatial harmonic (ND) of the mode shapes is described

in Eq. 3.60. For the mode shapes with negative ND values (negative harmonic index), the

following relationship is applied: φND = φ−ND.

3.6.3 Recovery of sensitivity of forced response in time domain for asym-

metric systems

For mistuned bladed disks, the sensitivity of the mode shapes can be visualized for all

FE nodes, by taking the derivative of Eq. 3.76 with respect to the respective material

anisotropy angles:

∂x (τ)

∂γ
=

nHarms∑
k=1

nModes∑
j=1

∂φj
∂γ

Re
(
ei·kHarm(k)·τ ck,j

)
+ φjRe

(
ei·kHarm(k)·τ ∂ck,j

∂γ

)
(3.78)

where γ can be any design variable describing crystal orientation of single crystal blades.

The implementation of the previous equations has been carried out in the framework of

the current project. The InterDyn code reads the mode shapes and the modal coe�cients

that are stored in CalculiX result �le (.frd) and in ContaDyn result �le formats respectively.

After evaluating the summations, the nodal values for each time step are written in the

results format of CalculiX. This allows for the visualization of the time domain results with

the already available capabilities of CalculiX GraphiX.

It is worth noting, that the above formulations calculate the forced response as a modal

expansion, neglecting the local �exibilities on the contact interfaces. The method gives

su�cient accuracy for the visualization of the forced response on the airfoil. However, it

is not suitable for detailed investigation of the contact behavior of the nonlinear friction

elements in time domain.

During the multiharmonic nonlinear forced response calculation, the harmonic coe�-

cients of the contact forces and relative displacements are calculated. By evaluating the

Fourier expansion formula for the relative displacements and for the contact forces, the

time domain solution can be obtained. Using InterDyn the nodal values of the contact

forces and relative displacements are written in CalculiX result format and can be visual-

ized on the FE mesh in CacluliX GraphiX. The relative displacements and contact forces

can be used for the identi�cation of the contact separation in time domain.
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3.7 Development of integrator-interface code InterDyn and

its use for the analysis of nonlinear forced response and

sensitivities

For the calculation of the nonlinear forced response and its sensitivities an automated

work�ow has been developed, see Fig. 3.2. During the PhD project it has been of particular

importance of developing a user interface that allows the e�cient pre- and post-processing

for the forced response analyses.

The implementation is based on three main modules, namely CalculiX, ContaDyn and

InterDyn. The FE calculations are done using CalculiX. The nonlinear forced response

solver code is called ContaDyn. InterDyn is used as a pre-processing tool for the selection

of pair of nonlinear contact nodes, provides an interface for the input data for ContaDyn

from CalculiX. Additionally, it provides an interface from ContaDyn to CalculiX for the

visualization of the forced response results.

The work�ow of the nonlinear forced response analysis of the bladed disks starts with

a sector model of the bladed disk. The user is requested to select the nodes where the

harmonic loads will be applied and where the output of the forced response amplitudes

and sensitivities will be requested. For nonlinear studies with friction interfaces, the user

is also requested to select FE nodes on the contact interfaces. At these FE nodes nonlinear

friction contact elements will be applied for the forced response analysis. For coarse FE

meshes or for �ne FE meshes of tuned bladed disks, nonlinear contact elements can be

applied to all FE nodes on the contact interfaces. However, for �ne meshes or for full

mistuned bladed disks, using all nodes on the contact patches for nonlinear forced response

calculations would be computationally very expensive. In order to reduce computational

e�ort by a coarser discretization in the ROM, the user is allowed to select a subset of nodes

on the contact patch. The selection of the nonlinear contact nodes needs to be done only

for one of the contact patches in the contact interaction.

In the next step, the InterDyn script will �nd select the nearest FE node on the match-

ing contact interface for each nonlinear contact nodes that has previously been selected.

The nonlinear contact elements are applied for the contact pairs selected this way.

In case of the mistuned bladed disk study, the full model of the bladed disk is created

with the ccx_complex code developed in [46]. When the full FE model of bladed disk

is created, all set of nodes previously selected for the sector model will be expanded for

the other blade sectors of the bladed disk. Additionally, all boundary conditions such as
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(a) Part 1

(b) Part 2

Figure 3.2: Work�ow of the nonlinear forced response calculations
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single-point constraints (SPC), multi-point constraints (MPC) or friction contact elements

are expanded for all bladed disk sectors. The script allows the de�nition of user-de�ned or

random anisotropy mistuning pattern.

In the next step, the static displacement �eld due to centrifugal loading and gas load

is calculated including nonlinearities from friction contact interfaces and large de�ections.

For the solving the static problem, the FE solver of CalculiX is used: CalculiX CrunchiX.

Static normal pressure values obtained on the nonlinear friction contact interfaces and

stored for the subsequent forced response analysis. For each contact element, the static

contact pressure is assigned individually.

For the subsequent modal calculation, the nonlinear contact interfaces are freed. The

nonlinear friction contact elements are removed and the free modes are obtained. The

sti�ness matrix used in the modal calculation is the tangent sti�ness matrix of the last

converged step from the nonlinear static solution.

The �exibility matrix is obtained around the same converged static solution as the

modal properties. The nonlinear contact elements are removed for the �exibility calcula-

tion. The �exibility matrix is obtained for all degrees of freedom that are included in the

reduced order model of the nonlinear forced response calculation. The equation 3.51 is

solved for every DOF separately, by applying unit force for the speci�c DOF.

For anisotropy mistuned bladed disks, the sensitivity of the nonlinear forced response

with respect to the anisotropy angles can be obtained. In order to do that, the forced

response solver requires the sensitivities of the modal properties and the �exibility matrix.

These sensitivities can be obtained with CalculiX after the modes and the �exibility matrix

is obtained. In CalculiX, the sensitivities are calculated with respect to the rotation vector

components de�ned in the global coordinate system.

The crystal orientation of the single crystal blades are measured for each blade in-

dividually. The measured anisotropy angles are de�ned in the coordinate system of the

blades. Because the interest is in the sensitivity with respect to the anisotropy angles

that are de�ned in the local coordinate system of each blade, the sensitivities need to be

transformed into the coordinate system of the blades. This calculation can be done with

the code in InterDyn.

As the next step, the e�cient interface implemented in InterDyn is used for taking the

results (modes, �exibility matrix and their sensitivities) and convert them in the input

format of ContaDyn.

The ContaDyn simulations can be started with the help of an inputdeck text �le.
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This inputdeck can get very lengthy for nonlinear forced response simulations of tuned

and mistuned bladed disks. Therefore, InterDyn provides capabilities for fast creation of

ContaDyn inputdecks.

In the ContaDyn inputdeck the following data are provided

� Simulation title

� Solver parameters

� Name of the modal and �exibility input �les

� Name of the sensitivity �les

� Local coordinate system of the contact interfaces

� Contact pairs

� Surface area values for each contact pair

� Normal contact pressure values for each contact pair

� Contact sti�ness values of the contact interfaces

� Harmonic excitation

� Output requests

ContaDyn calculates the forced response amplitudes directly for nodes included in the

reduced order model. If a sensitivity study is carried out, the output for the sensitivity of

the forced response amplitudes can be requested for the nodes in the reduced order model.

The amplitudes are obtained over the calculated frequency range. The amplitudes can be

nodal maximum or maximum in the spatial directions.

ContaDyn allows the output of the modal expansion coe�cients for the forced response

displacements and their sensitivities. If the mode shapes are available for all nodes in the

FE model, the forced response amplitudes can be recovered for all nodes in the model.

Similarly, if mode shape sensitivities for all nodes are available, forced response sensitivities

can be recovered. The recovery of the forced response and their sensitivities are done

for selected excitation frequency in time domain. User is allowed to select the temporal

discretization for the displacement recovery over a period of vibration. The recovered

displacements and their sensitivities are written in the .frd result format that can be read

by the pre- and post-processing module of CalculiX: CalculiX GraphiX.
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For a detailed analysis of the contact situation at the interacting surfaces, the data

regarding the contact elements are written. For each frequency and for each contact element

the contact status, the multiharmonic components of the relative displacement of the

contact node pairs and the multiharmonic components of the contact forces are written in

the local coordinate system of the contact interface. With the help of the InterDyn code,

the contact forces and the relative displacements can be calculated in time domain and

visualized for the contact nodes in CalculiX GraphiX.

3.8 Conclusions

In this chapter, the methods used for the analyses about the e�ect of blade anisotropy ori-

entation variation on the dynamic characteristics have been presented. Important aspect

is how the anisotropy orientation is modeled in the �nite element models. For the �nite

element modeling whole bladed disk models are used and the anisotropy orientation for

each blade is de�ned by a rotation matrix. The anisotropy angles, Γ = {α, β, ζ}, meas-

ured for every blade are de�ned in the blade local coordinate system. The well-known

expressions for the calculation of modal properties have been presented. The key dif-

ferences between the modal properties for symmetric and asymmetric systems have been

shown. The methods for calculation of the linear and nonlinear forced response have been

presented. The forced response calculation for tuned bladed disks with cyclic symmetric

conditions have been presented because such systems allow fast calculations and therefore

parametric studies can be quickly done. For bladed disks with under-platform dampers,

the modal parameters of damper are not calculated together with the rest of the bladed

disk assembly, but as individual parts and the models are assembled in the forced response

analysis.

In this research, the major development is with respect to the sensitivity analysis of the

dynamic characteristics. For which the �rst step is to obtain the sensitivities with respect

to the anisotropy angles. New methods, based on [82] and [83], have been presented

for the calculation of eigenvectors. The two methods for the calculation of mode shape

sensitivities, modal and algebraic methods, include computational parameters for which,

the ideal value needs to be studied. When the sensitivity of the modal parameters are

available, the sensitivity of the linear and nonlinear forced response can be obtained by the

method presented above. Because the anisotropy angles are de�ned the local coordinate

system of the blades, and the FE tool CalculiX calculates the sensitivities with respect to

the rotation vector parameters de�ned in the global coordinate system, the sensitivities



13th April 2022 48

need to be transformed to the for each blade individually. The method for this calculation

s based on equivalence of the in�nitesimal rotations in both reference frames.

In the InterDyn toolbox, which serves as the interface and integrator tool, the major

capabilities for the post-processing of the forced response results have been implemented.

Namely, the recovery of the forced response displacements and their sensitivities in time

domain, which can after post-processing be visualized in the CalculiX GraphiX.

Last, but not least a general overview of the implemented (or already available) methods

that are used in this research was presented.
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Chapter 4

Validation of the methods for the

calculation of the sensitivity of

forced response

The veri�cation for the implemented methods presented in the chapter before is shown

in this chapter. The validation for the calculation of modal properties is not required, as

CalculiX is constantly validated with every new release. The calculation of linear forced

response using ContaDyn can be veri�ed against other readily available tools, e.g. Cal-

culiX. The validation of the nonlinear forced response amplitudes is presented in chapter

7, together with the modeling strategies for the nonlinear forced response calculation. The

emphasis in this chapter is on the validation of the calculated sensitivities for modal prop-

erties and forced response.

For the veri�cation studies, three models are used: (i) cantilever beam (ii) simpli�ed

bladed disk (iii) realistic bladed disk, see Fig. 4.1.

4.1 Validation of the calculation of linear forced response

The linear forced response amplitudes calculated with ContaDyn are compared with forced

response amplitudes obtained with CalculiX. CalculiX also uses the modal superposition

method for the calculation of the steady state dynamic response and the method imple-

mented in CalculiX already has been validated. Moreover, another advantage is that both

CalculiX and ContaDyn use the same mode shapes for the calculation process.

For the validation, the simpli�ed mistuned bladed disk model, shown in Fig. 4.1b is

used. The bladed disk has 72 blades, and every blade has a random anisotropy axis orient-
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(a) Cantilever beam with node for analysis of nodal results shown

with "A"

(b) Quarter of simpli�ed bladed disk (c) Quarter of realistic bladed disk

Figure 4.1: Models used for numerical analyses in the veri�cation of the

ation. The modal properties are obtained considering a perturbed state due to centrifugal

loading.

For the �rst validation example only a single concentrated harmonic force is applied

on the mid-span of blade No. 1. The forced response amplitude calculated using CalculiX

and ContaDyn for blade 1 shown in Fig. 4.2. The forced response amplitudes are in good

agreement for the whole frequency range.

For the second validation example, the bladed disk is excited on all blades with engine

order 8 excitation. For each blade, the harmonic force is applied on the same node in axial

direction. The phase of the excitation force for blade j is αj = j · EO · 2π/N , where N is

the number of blades in the bladed disk. It is worth noting that in order to obtain the same

forced response the harmonic excitation need to be applied as backward traveling wave.

This means, the phase shift α(CCX)
j = −αj is applied with negative sign in CalculiX.

The linear forced response calculated at blade 1, for the engine order 8 excitation

is shown in Fig. 4.3. The results calculated with ContaDyn and CalculiX are in good
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Figure 4.2: Comparison of forced response amplitudes of blade #1 calculated to excitation

of one concentrated harmonic force on blade #1 using CalculiX and ContaDyn

Figure 4.3: Comparison of forced response amplitudes of blade #1 calculated for EO8

excitation using CalculiX and ContaDyn

agreement for all excitation frequencies.

With the comparison of the forced response amplitudes, it can be stated the in-house

code ContaDyn is validated against CalculiX. Moreover, the validated linear forced re-

sponse calculation also means, that InterDyn, the interface that transfers the mode shapes

between CalculiX and ContaDyn, works as expected.

4.2 Optimal �nite di�erence step size for the calculation of

the derivative of the sti�ness matrix

In order to calculate the sensitivity of the eigenpairs, the derivative of the sti�ness matrix

with respect to the design variable need to be calculated, as derived in Eqs. (3.12) and
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(3.23). As discussed earlier, in this work the �nite di�erence evaluation of the sensitivity

of the sti�ness matrix is used.

For the �nite di�erence evaluation, see Eq. (3.17), it is critical to choose an optimal

�nite di�erence step value. If �nite di�erence step is large, it will cause large round-o�

errors. If the �nite di�erence step is set too small, it will result in large truncation error.

An optimal value of the �nite di�erence step can be found, when the total error is minimum

[86].

For linear problems, when K is not dependent on the displacements, the derivative

of the sti�ness matrix with respect to the material anisotropy angles can be expressed

analytically, see Ref. [46]. Hence, the exact analytical solution for the sensitivity of natural

frequencies can be used as a reference in this study.

Figure 4.4: Error of the sensitivities for the 1st and 2nd natural frequencies with varying

�nite di�erence steps

The sensitivity of natural frequencies are calculated for a series of di�erent crystal

orientations. The crystal orientations were de�ned by the rotation vector component,

which were varied between -0.5 and 0.5 in 0.1 for all three spatial directions. The crystal

orientations were assigned for all possible combinations, which is N = 1331 individual

crystal orientations. For each crystal orientation, the sensitivity of natural frequencies using

the analytically derived sti�ness matrix derivative and the one calculated using the �nite

di�erence method. The sensitivity has been calculated for the following �nite di�erence

steps: ∆h =
{

10−7, 5 · 10−7, 10−6, 5 · 10−6, 10−5, 5 · 10−5, 10−4, 5 · 10−4
}
. For each �nite

di�erence step, the total error of the sensitivities has been calculated with the following
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equation:

εj =
1
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)
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∣∣∣∣
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(
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A

 · 100% (4.1)

The total error calculated for the 1st and 2nd natural frequencies, see Fig. 4.4, show

that the error in the sensitivity calculation is lowest if �nite di�erence step 10−5 is used.

Therefore, this is the �nite di�erence step used in the current implementation in CalculiX.

For both modes, the error of sensitivities increases when smaller or larger �nite steps are

used.

4.3 Validation of the sensitivity of natural frequencies

The sensitivities of the natural frequencies calculated with the semi-analytic method, de-

scribed in section 3.3, are compared with the sensitivity values obtained by the �nite

di�erence method. The calculation of the approximation of the derivatives by the �nite

di�erence method is performed as:

∂fj (γ)

∂γ
≈ fj(γ + ∆γ)− fj(γ)

∆γ
(4.2)

where ∆γ = 0.001rad and fj(γ) is the j-th natural frequency.

It should be noted that the �nite di�erence approximation allows the validation the

implementation of the new method, however its accuracy is generally lower in comparison

with the newly implemented semi-analytical method. The sensitivities calculated with the

value of ∆γ = 0.001rad has been found to result in the most accurate results. The reason

for the loss of accuracy in the sensitivities calculated using the �nite di�erence method is

the limited precision of the natural frequency, used in Eq. (4.2).
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(a) Single

blade

(b) Quarter of the bladed disk

Figure 4.5: Finite element models used for the validation of the sensitivity calculations

The validation of the sensitivity calculations for natural frequencies has been done for

realistic bladed disk models. First, the sensitivities of the �rst ten natural frequencies of

a single blade were calculated. The �nite element model consists of quadratic tetrahedral

elements with approximately 19,000 nodes. The material of the disk segment is isotropic,

and the blade material is orthotropic. Fixed boundary conditions have been applied on

the two sides of the disk segment (blue nodes in Fig. 4.5a), the contact interfaces on the

blade-root joints are fully stuck and the shrouds are free. Centrifugal load has been applied

and the static calculation has been carried out with nonlinear geometric e�ects included.

The modal properties were calculated around the converged static solution.

The sensitivities were obtained with respect to all three anisotropy angles, Γ = {α, β, ζ}.

The validation for the calculation of the natural frequency sensitivities using the new

method was �rst done for a single blade. The sensitivities calculated using the new method

are shown with �lled symbols and the results obtained from the �nite di�erence formula-

tion is plotted with empty symbols in Fig. 4.6. The normalized natural frequency values

calculated with the two methods, that are overlapping in the plot, reveal a good corres-
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pondence.

Figure 4.6: Normalized natural frequency sensitivities with respect to anisotropy angles

for single blade calculated using the new method and �nite di�erences

For the analysis of a mistuned bladed disk a full model of a bladed disk with 75 blades

has been created. The random mistuning pattern was generated using realistic statistical

distribution provided by the blade manufacturer for all the anisotropy angles. The �nite

element model consists of approximately 0.5 million nodes. The nodes shown in blue in

Fig. 4.5b have �xed boundary conditions applied in axial and tangential directions. At the

contact interfaces on the �r-tree and on the shrouds are fully stuck. The static analysis

with centrifugal loading is performed with nonlinear geometric e�ects included and the

static stress distribution are used as a perturbation for the subsequent modal analysis

step.

Figure 4.7: Natural frequency-nodal diameter diagram of the cyclic symmetric bladed disk

model with full contact on the shrouds
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The calculation of sensitivities of the natural frequencies have been validated for mis-

tuned bladed disks by the comparison with the �nite di�erence method. Each natural

frequency sensitivity has been normalized by the perspective natural frequency.

(a) Comparison of the natural frequency sensitivities for the �rst

100 modes obtained with two methods

(b) Comparison of the natural frequency sensitivities for selec-

ted modes from the �rst 12 mode families obtained with two

methods

Figure 4.8: Validation of sensitivity of natural frequencies with respect to the anisotropy

angles of blade 5 for mistuned bladed disk

The results of the validation for the �rst 100 modes in Fig. 4.8a and for selected higher

natural frequency sensitivities in Fig. 4.8b, show a good correspondence with the �nite

di�erence reference approximation values. The sensitivities are shown here with respect to

anisotropy angles α, β and ζ of blade 5.

The validation of the natural frequency sensitivity calculation has been done for systems

with nonlinear friction contact interfaces. For the �nite di�erence approximation of the

sensitivities, see Eq. (4.2), the natural frequencies were calculated for the perturbed and

the unperturbed crystal orientations. For both calculations, the static pre-stress state

is obtained for unperturbed anisotropy crystal orientations. Which means, the natural

frequencies in the subsequent step are calculated for the same system matrices. For the

calculation with the perturbed crystal orientation, change in the anisotropy orientation is
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introduced for the modal calculation step.

Figure 4.9: Validation of the sensitivity of natural frequencies for mistuned blade disks

with (i) stuck interfaces (modes 100 to 200)

Figure 4.10: Validation of the sensitivity of natural frequencies for mistuned blade disks

with (ii) sliding interfaces (modes 100 to 200)

The static calculation preceding the modal analysis is done with nonlinear friction

elements included on the contact. In order to linearize the dynamic system for the modal

analysis two options were studied (i) increasing the friction coe�cient to a very high value

resulting in a fully stuck contact (ii) decreasing the friction coe�cient to 0 resulting in a

perfect sliding contact.

For this validation a mistuned bladed disk with a random anisotropy mistuning pattern

is used. For this bladed disk surface to surface nonlinear friction contact elements are

applied on the root and shroud interfaces for every blade. The validation of the sensitivities

has been done for the �rst 200 natural frequencies (approximately 3 mode families) with

respect to the primary anisotropy angle (α) of blade number 21. The choice for blade 21

has been arbitrary. The sensitivity of natural frequencies, shown in Figs. 4.9, and 4.10,

show good agreement for the new semi-analytical method and the �nite di�erence method.
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For some modes negligible di�erences can be observed, which is considered to be due to

limited accuracy of the �nite di�erence method.

4.4 Validation and optimal parameters for the calculation of

the sensitivity of mode shapes

In section 3.3, two methods have been proposed for the calculation of the sensitivity of

mode shapes of mistuned bladed disks. In this section, a numerical study is carried out

for the above presented methods on the accuracy and the computational e�ort. The study

focuses on the application for large scale �nite element models with high spectral density,

such as the anisotropy mistuned bladed disks.

For the enhanced modal method of the mode shape sensitivity calculation, the optimal

selection for the value of parameter λ0 is studied. For the algebraic method, the e�ect of

the placement of the regularization coe�cient is studied.

4.4.1 Optimal value of parameter for the enhanced modal method

For the �rst analyses, a cantilever beam is used for which the �rst 20 mode shapes and their

sensitivities are calculated. The model consists of 720 degrees of freedom. The material of

the beam is anisotropic, and the anisotropy orientation is described by the rotation vector

components de�ned in the global coordinate system. The sensitivities are calculated with

respect to the three rotation vector components.

The sensitivity of the mode shapes are calculated using the modal and the algebraic

methods. For each calculation of the mode shape sensitivity with the enhanced modal

method the λ0 value has been gradually changed. Its value is varied stepwise, such that

between each eigenvalue 100 λ0 value has been selected for the mode shape sensitivity

calculation.

The sensitivity of the mode shapes are analyzed for the nodal values at node A, see Fig.

4.1a, for all three spatial directions. These sensitivities are normalized with the reference

values calculated with �nite di�erences. In order to apply the �nite di�erence formulation,

the mode shapes are calculated twice, once with an initial anisotropy orientation and once

with one of the rotation vector components describing the anisotropy orientation changed

by a small value: ∆ri = 10−5.

∂φ(ri)

∂ri
≈ φ(ri + ∆ri)− φ(ri)

∆ri
(4.3)
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The sensitivities of the eigenvectors calculated with the enhanced modal method using

continuously increasing λ0 values are shown with continues lines. The sensitivities obtained

using λ0 = (λj + λj−1)/2, where j is the number of mode shape under consideration, is

shown with �lled circle symbols. The sensitivities calculated with the algebraic method

are shown with empty circle symbols. For this study the mode shapes 3, 6, 14 and 20 are

picked.

The sensitivity of mode shape #3, see Fig. 4.11a, show little dependency on the value of

λ0 for most sensitivities. The negligible e�ect of λ0 is due to the having 20 modes included

in the modal expansion. For modes, for which the mode shape sensitivity is calculated for,

has signi�cantly lower eigenvalue that the eigenvalue of the highest mode included in the

modal expansion, the value of λ0 can be chose 0, as it is shown in [98].

(a) Sensitivity of mode shape 3 (b) Sensitivity of mode shape 6

(c) Sensitivity of mode shape 14 (d) Sensitivity of mode shape 20

Figure 4.11: Sensitivity of mode shapes calculated with the modal method for beam model

at node A with increasing value of λ0

The value of the sensitivity ∂φy/∂ry is changing as the parameter λ0 is varied. This

sensitivity has orders of magnitude smaller numerical value compared to the other sensit-

ivity values. For ∂φy/∂ry when λ0 = (λj + λj−1)/2, the �nite di�erence method did not
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provide the exact same value, however the 0.5% deviation is considered to be acceptable.

The sensitivities of mode shape 6 and 14, in Fig. 4.11b and 4.11c, show a more no-

ticeable dependency on the λ0 value. The closer this parameter value is chosen to λj , the

eigenvalue of the mode under consideration, the better the residual term accounts for the

truncated modes. As λ0 cannot be chosen to be equal to λj in order to avoid singularity in

Eq. (3.27), a good compromise is to choose the method parameter as λ0 = (λj + λj−1)/2.

This introduces negligible error in the sensitivity calculation for the eigenvectors, but en-

sures that singularity does not occur. The sensitivity of mode shapes calculated with the

algebraic method provides accurate value, shown with empty circles.

The highest mode calculated for this beam model is mode 20. The sensitivities with

respect to the design variable r, shown in Fig. (4.11d) calculated with the enhanced

modal method using λ0 = 0 show errors up to 30%. This can be reduced to maximum

5% if λ0 = (λj + λj−1)/2 and further reduced by coming closer to the value of λ20. The

proposed algebraic method provides accurate results for the sensitivities of the highest

calculated mode shape.

It is worth noting that for the sensitivity of higher modes, the value of the method

parameter λ0 more drastically in�uences the numerical value of the sensitivity of eigen-

vectors. For example if the λ0 = 0 is used as the value of the method parameter, for modes

3 and 6, the error introduced is less than 1%, but for higher modes, such as 14 or 20, the

relative error is 10-60%.

For practical dynamic systems with large degrees of freedom only a subset of modes

are calculated. If for these systems the sensitivities need to be obtained for all calculated

modes using the modal method, then accounting for the mode shapes that have not been

calculated are necessary. The optimal selection of the method parameter λ0 is essential for

obtaining correct numerical values for the sensitivity of mode shapes. A good approxima-

tion can be obtained for the sensitivity of lower modes of the MDOF system, by using the

traditional method [98] when λ0 = 0. For the higher calculated mode shapes, the λ0 value

needs to be very close to λj , but cannot be equal to that as it would lead to a singular

system of equations in Eq. (3.27). A good compromise is to set λ0 = (λj + λj−1)/2 for

every mode shape j. This way, accurate enough results can be obtained for the sensitivity

of mode shapes, and the method can also cope with models with high frequency density.
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4.4.2 Studies for the ideal placement of the regularization coe�cient

In order to use the algebraic method for the calculation of the sensitivity of eigenvectors

in practice, the regularization coe�cient needs to be added to an optimal member in the

system matrix A, see Eq. 3.33. When the regularization coe�cient is inserted into matrix

A, the matrix Ã becomes regular so the system of linear equations can be solved with suf-

�cient accuracy. Several of the investigated strategies for the location of the regularization

coe�cient have been studied with the aim of �nding a strategy that consistently avoids

singular matrices with low condition numbers.

Here, two approaches have been studied for the ideal placement of the regularization

term adding it to the element on the diagonal of the matrix A (i) that has the smallest

absolute value and (ii) that corresponds to the degree of freedom with the largest modal

displacement for the mode, which the sensitivity is calculated for. In order to quantify

how these approaches perform in regularizing the singular system, the condition number

of matrix Ã has been calculated. Here it is worth noting that the matrix A is di�erent for

each mode shape, see Eqs. (3.30) and (3.31).

(a) Condition numbers for mode 5 (b) Condition numbers for mode 15

Figure 4.12: Condition numbers for Ã depending on the placement of the regularization

coe�cient when ordered in ascending absolute main diagonal value

For the study of method (i) the diagonal members have been ordered in increasing

absolute numerical values and the regularization coe�cient s has been added to every

10th. This has been done 100 times and the calculated condition numbers have been

calculated for each of the 100 Ã. The sti�ness and mass matrices, moreover the �rst 100

eigenvalues are calculated for a simpli�ed bladed disks, shown in Fig. 4.1b. The �nite

element model consists of approximately 110,000 degrees of freedom. This bladed disk

is anisotropy mistuned. As examples, the condition numbers are shown in Fig. 4.12 for

Modes 5 and 15. The �gures show that there is a signi�cant scatter between the condition
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Figure 4.13: Condition number for mode 60 depending on the placement of the regulariz-

ation coe�cient when ordered in ascending absolute main diagonal value

numbers, depending on which member of matrix they are added to. Moreover, there is

no clear correlation visible between the numerical value of the diagonal member and the

calculated condition number. Adding the regularization term to the lowest absolute value

of main diagonal provides acceptable condition numbers for some modes, e.g. mode 5, but

for others e.g. mode 15 the condition number of Ã is large.

In order to analyze the general behavior, the condition number has been calculated for

the matrix when the regularization constant has been added to every 1000th member of the

main diagonal of the matrix in increasing absolute value order. The condition values in Fig.

4.13 show a great variation of the condition number for matrix Ã, the condition number

does not increase as the absolute numerical value of the diagonal member increases.

The studies using approach (ii) for adding the regularization term has been done for

several mode shapes. As an example, here a localized mode shapes from the �rst family

of modes is chosen. The mode shape of mode no. 60 is shown in Fig. 4.14. The condition

number has been calculated after adding s to three di�erent entries of the diagonal of the

matrix: (a) to the DOF with the largest modal displacement (b) to one of the DOF on

the disk (c) and to the DOF corresponding to the lowest absolute value of the diagonal

of the matrix. The nodes for the corresponding DOFs are shown in Fig. 4.14. When

the condition numbers are evaluated, they result as (a) 1.4 · 1011, (b) 6.0 · 1012 and (c)

3.3 ·1014. This shows, that if the regularization term is added to the diagonal member that

corresponds to the DOF with the largest modal displacement, then the regularization is

the most e�ective.

In order to study the correlation between the condition number of matrix Ã and the
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Figure 4.14: Mode shape 60 for the simpli�ed mistuned bladed disk with regularization

coe�cient degrees of freedom shown

location on the main diagonal depending on the absolute value of the modal displacement

for the corresponding DOF, the following study was done: The DOF absolute values of the

mode shape 60 have been sorted in descending order, and the regularization term has been

added for every 1000th diagonal, and for each regularized matrix Ã, the condition number

has been calculated. The results shown in Fig. 4.15 show a clear correlation, namely if s

is added to diagonal term corresponding to a degree of freedom with large modal displace-

ment, the resulting condition number is the smallest. The condition number increases as

it is added to diagonal terms corresponding to DOF with smaller modal displacements.

The two regularization strategies are compared in Fig. 4.16 for the �rst 100 modes of

the blade disk system. It shows that adding s to the diagonal member of the DOF with the

largest modal displacement provides lower condition number than adding it to the lowest

absolute value of the diagonal member. This corresponds to the �ndings of Nelson in [64],

where the rows and columns corresponding to the maximum eigenvector value are deleted.

This study shows that by selecting the highest degree-of-freedom of the mode shape

under analysis and adding the regularization coe�cient to the corresponding term on the

main diagonal ofA consistently provides low regularization coe�cients. Therefore, this has

been selected as the strategy for the regularization in the algebraic method for calculation

of sensitivity of mode shapes.
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Figure 4.15: Condition number depending on the placing of the regularization coe�cient

for mode 60

Figure 4.16: Condition number calculated for the matrices obtained with the two regular-

ization strategies for the �rst 100 modes

4.4.3 Comparison of the two methods presented for the calculation of

the mode shape sensitivities

The study of the accuracy of the two previously presented methods, the modal method

and the analytic method, is done using the earlier presented simpli�ed anisotropy mistuned

bladed disk, shown in Fig. 4.1b. The bladed disk has 72 blades, which results in 216 design

variables specifying the anisotropy orientation of all blades. The dynamic characteristics

of the bladed disks can be studied using the natural frequency-nodal diameter diagram.

Using this plot, shown in Fig. 4.17, the mode families of the bladed disk can be identi�ed.

It is shown that the disk sti� and frequency against nodal-diameter curve becomes �at

very quickly. This results in high modal density in certain frequency ranges, therefore
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Figure 4.17: Normalized natural frequency values plotted against the nodal diameter num-

ber for the simpli�ed bladed disk shown in Fig. 4.1b that is used for the comparison of

the algebraic and modal method for calculation of mode shape sensitivities

this bladed disk model is ideal for testing the capabilities of the proposed methods for the

calculation of the eigenvector sensitivities.

It has previously been shown, using the beam model, that both methods provide ac-

curate numerical results for the sensitivity of the mode shapes. According to what has

been concluded in the earlier sections, for the enhanced the λ0 = (λj + λj+1)/2 is used,

which is updated for every mode. This means that the equation system in Eq. (3.27)

needs to be factorized for every mode once. For this bladed disk, Eq. (3.27) needs to be

solved as many times as the number of design variables, 216. Therefore, for such systems

with many design variables, the relative e�ort of the LU decomposition of the system of

linear equations becomes less signi�cant. In the modal expansion basis, see Eq. (3.19), all

calculated modes are included.

For the algebraic method, the regularization coe�cient s is added to the main diagonal

member of matrix A, that corresponds to the DOF with the largest modal displacement.

The sensitivity of the mode shapes are analyzed at one particular node: in the mid-

span of blade 20. The sensitivities are calculated with respect to all three rotation vec-

tor components of blade 20 r = {rx20, ry20, rz20} and for all 3 spatial directions φj =

{φj,x, φj,y, φj,z}. The sensitivity of the �rst 100 eigenvectors of the mistuned bladed disk

are calculated using the modal method (MM) and the algebraic method (AM). In order to

be able to compare the numerical values obtained using the two methods, relative errors
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(a) 100 modes in the modal expansion for MM (b) 200 modes in the modal expansion for MM

Figure 4.18: Error of the sensitivity of mode shapes calculated with algebraic method

(AM) and with the modal method (MM) using Eq. 4.4

are calculated for all mode shape sensitivities under investigation:

εj =
(∂φj/∂r)AM − (∂φj/∂r)MM

(∂φj/∂r)AM
(4.4)

The calculated errors of the sensitivities of the �rst 80 mode shapes, shown in Fig.

4.18a, with 100 modes in the expansion basis for the MM, are negligible. This is because

in the expansion basis all the modes from the �rst mode family are included, therefore

their sensitivities are calculated accurately.

The error between sensitivities calculated using the two methods is larger than 10%

for mode number 82 for φ82,x/rx and φ82,y/rx. The numerical value of the sensitivities is

very small, therefore this large relative error is acceptable.

The error calculated for the last modes in the 100 modes range has an increasing tend-

ency. This is expected for the results calculated with the MM, because the sensitivities of

modes shapes are obtained with 100 modes in the expansion formulation. The accuracy of

the sensitivities calculated can be increased by using more mode shapes for the eigenvector

sensitivity calculations. As an example, Fig. 4.18b shows the relative errors with 200

modes retained in the series expansion basis.

The studies done for the modal and algebraic method for the calculation of the sensit-

ivity of mode shapes done for the simple bladed disk model has proved, that both methods

can be applied for structures with high frequency density. The comparison of the sensit-

ivities calculated for both methods, showed that the modal method that accounts for the

mode shapes not included in the series expansion basis provides accurate results except for

the highest modes included.
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4.4.4 Study of the convergence characteristics of the modal method for

high-�delity bladed disk models

(a) As reference the sensitivities calculated with

�nite di�erence method is chosen (see Eq. 4.5)

(b) As reference the sensitivities calculated with

algebraic method is chosen (see Eq. 4.6)

Figure 4.19: Relative error of the sensitivities calculated with modal method for di�erent

number of modes in the modal expansion basis

The convergence characteristics of the sensitivity of the mode shapes, calculated using the

modal method, have been studied for higher family of mode shapes using a high-�delity

bladed disk model. This realistic bladed disk model, shown in Fig. 4.1c, has 0.5 million

nodes, about 1.5 million degrees-of-freedom. For the convergence study, from the �rst 1000

modes, 12 has been arbitrarily selected from di�erent families of modes. The sensitivity

of these modes have been calculated with di�erent number of mode shapes included in

the expansion basis. In Fig. 4.19a, the relative error of the sensitivity of mode shapes

have been calculated for modal displacement in x direction with respect to x component of

rotation vector of the material anisotropy orientation of blade 42 v42,x. The relative error

is calculated with respect to the approximation of the sensitivities using �nite di�erence

(FD) method such as

εFD =
(∂φ/∂r42,x)MM − (∂φ/∂r42,x)FD

(∂φ/∂r42,x)FD
(4.5)

It needs to be mentioned here, that for bladed disk structures the sensitivities calculated

using the FD method is generally less accurate. Nevertheless, it can be used to validate

the sensitivity calculations with the proposed methods. The results shown in Fig. 4.19a

show a fast convergence of the mode shape sensitivities over the mode shapes. The error

reduces to less than 2% for all modes except for mode 490 which has a small value of mode

shape sensitivities; therefore these results are acceptable.

The relative error of the sensitivities of the modes analyzed earlier can be calculated
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Figure 4.20: MAC numbers calculated for sensitivity of mode shapes calculated using the

modal and algebraic method, as Eq. 4.7

by taking the exact solution obtained with the algebraic method.

εAM =
(∂φ/∂r42,x)MM − (∂φ/∂r42,x)AM

(∂φ/∂r42,x)AM
(4.6)

The relative error values shown in Fig 4.19b show signi�cantly lower values compared to

the ones shown in Fig. 4.19a. The convergence characteristics of the modal method can

clearly be seen in this graph, as the error of the mode shape sensitivities are 1%-10% when

the sensitivities are calculated for the highest mode shapes that is included in the series

expansion formulation. When an additional 10-20 modes are included in the expansion,

the error becomes negligible. As an example, the relative error for sensitivity of mode

shape 293 is 10.3% when 295 mode shapes are used for the calculation of the mode shapes.

If 305 modes are used for the series expansion, the error becomes 0.27%.

The vector of sensitivity of mode shapes calculated for using AM and MM can be

compared with the help of MAC values, using the formulation

MAC

((
∂φj
∂r

)
MM

,

(
∂φj
∂r

)
AM

)
=

|
(
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∂r

)T
MM
·
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∂r

)T
AM
|2(

∂φj

∂r

)T
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·
(
∂φj

∂r

)
MM
·
(
∂φj

∂r

)T
AM
·
(
∂φj

∂r

)
AM
(4.7)

where (∂φj/∂r)MM and (∂φj/∂r)AM are the mode shape sensitivities of the j-th mode

calculated using the modal and algebraic method respectively.

The MAC values have been calculated for the mode shape sensitivities for the �rst
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150 modes with respect to all 225 design variables. For the bladed disk 150 modes were

calculated, therefore MAC values for the sensitivity of mode shape calculated using the

modal method and the algebraic method decreases for the mode no. 150 and 148, see Fig.

4.20.

4.4.5 Comparison of the computational e�orts

For the methods proposed in this work it is essential to assess the computational e�ort

associated to each method, especially the calculation time. For this study, the already

presented simpli�ed bladed disk modal, see Fig. 4.1b, and a bladed disk model with 0.5

million nodes are used. This more detailed model, shown in Fig. 4.1c, can represent the

calculation e�orts that are currently typical for industrial applications.

The calculation times of the derivative of the eigenpairs have been calculated for 100

and 400 modes, using the simpli�ed bladed disk model. For these calculations, there cannot

be a signi�cant di�erence observed in the calculation times. When the same analysis was

done for 100 and 600 modes of the realistic bladed disk model, the di�erence is more

notable.

Table 4.1: Calculation times for the modal and algebraic methods for calculation of the

sensitivity of mode shapes

Finite element Number of Calculation time [hours]

model modes
Modal

method

Algebraic

method

Simpli�ed

bladed disk
100 1.4 1.2

Simpli�ed

bladed disk
400 5.1 2

Realistic

bladed disk
100 10.2 5.7

Realistic

bladed disk
600 195.7 33.7

It is worth, noting that the calculation time of the enhanced modal method increases

signi�cantly as the number of modes for which the sensitivity of eigenpairs increase. This

is mainly due to the fact, that the number of coe�cients used in the series expansion
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increase, see Eq. 3.29, and with that the calculation time as well. A way to improve the

calculation time could be to restrict the number of modes used in the expansion basis for

the sensitivity calculation of the lower modes.

4.5 Validation of the sensitivity calculation of forced response

The sensitivity of natural frequencies and mode shapes serve as input for the calculations

of the sensitivity of forced response amplitudes. In this section, the validation of the sens-

itivity calculation for forced response of linear and nonlinear anisotropy mistuned bladed

disks is done.

4.5.1 Validation for the calculation of sensitivity for linear forced re-

sponse

First, the sensitivity of the linear forced response has been veri�ed. All contact interfaces

of the bladed disk are considered to be welded together. For the bladed disk, the natural

frequency-nodal diameter plot is shown in Fig. 4.7. For the bladed disk a traveling wave

type excitation is applied with engine order 11 that excites the 2nd mode family. The

harmonic excitation is applied on one node for each blade at the forced response amplitudes

are obtained for these nodes. The amplitudes for all 75 blades are on shown in Fig. 4.21.

the frequency range of the 2nd mode are shown. The forced response amplitudes are

normalized with respect to the amplitudes calculated for a tuned bladed disk where all

blades have anisotropy angles α = β = ζ = 0 and the excitation is the same engine

order and same frequency range. The excitation frequency is normalized with the natural

frequency of the stand-alone blade with open shrouds.

Figure 4.21: Normalized forced response of all 75 blades at EO11 for mode family 2

In Fig. 4.21, it can be identi�ed that one of the blades (blade 10) has higher vibration
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Figure 4.22: Recovered forced response in time domain of all 75 blades at EO11 for mode

family 2 at f = 4.608 for the time instant where the maximum forced response displacement

occurs

amplitudes at normalized frequency f = 4.608. Using the capabilities of the forced response

recovery for all the FE nodes, the forced response can be visualized for the time instant

where blade 10 has maximum vibration amplitudes, see Fig. 4.22.

For the validation of the sensitivity calculation, the sensitivity with respect to blade

10 is analyzed for the forced response displacements of all blades. The sensitivity calcu-

lated with the new methodology is compared with sensitivities calculated using the �nite

di�erence method. The sensitivities obtained with both methods are in good agreement

for all blades, as shown in Fig. 4.23. The small di�erences are due to limited accuracy of

the �nite di�erence method.

Figure 4.23: Validation of sensitivities of the forced response (calculated with the new

method and with �nite di�erences) with respect to α angle of blade 10 at f = 4.608
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4.5.2 Validation for the calculation of sensitivity for nonlinear forced

response

The sensitivity of the nonlinear forced response has been validated for a two-blade model

with nonlinear friction contact interfaces. The two-blade model, shown in Fig. 4.24, is

�xed on lower and on the higher side of the disk sector. On the shroud interfaces on

the two ends of the sector model, sliding boundary conditions are applied. These sliding

boundary conditions restrict all motions on the normal direction of the contact surfaces,

while allowing tangential movement. Nonlinear contact elements are de�ned on the root

interfaces of both blades and on the shroud interfaces between the two blades.

Figure 4.24: Two-blade model

On each of the 4 root interfaces 12 nonlinear contact elements are applied. On the two

contact interfaces on the shroud contact patches, 3 and 3 contact elements are applied.

The harmonic excitation is applied at the mid-span of the trailing edge. The harmonic

excitation has 38.4° phase shift between the two blades, that would be equivalent to EO8

excitation for a full blade model.

The sensitivities with respect to anisotropy angles of the left blade has been calculated

with the new method and with �nite di�erence method. The calculated sensitivities and

the nonlinear forced response are shown in Fig. 4.25. The sensitivities calculated with

the two methods are in good agreement, therefore it can be concluded that sensitivity

calculation of the nonlinear forced response with respect to the anisotropy angles of single

crystal bladed disks are validated.
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Figure 4.25: The forced response amplitudes and their sensitivities with respect to aniso-

tropy angles α, β and ζ calculated with the new method and with �nite di�erences around

the resonance

4.6 Validation of the calculation of the forced response dis-

placement recovery in time domain

The forced response amplitudes are calculated by ContaDyn only for the degrees of free-

dom included in the reduced order model. For any selected frequency, the forced response

amplitudes in time domain can be obtained by Eqs. 3.76 and 3.77 for all DOF the �nite

element model. The method and the implementation for the recovery of the forced re-

sponse amplitudes and their sensitivities, described in in section 3.6, has been validated

for asymmetric and symmetric bladed disk structures.

4.6.1 Asymmetric bladed disk structure

The two-blade structure shown in Fig. 4.26 is used for the validation for the calculations

of an asymmetric bladed disk structure. The two blades are �xed at the root and in

normal direction on the shrouds. Between the two blades there are two nonlinear contact

interfaces and they are discretized by one contact element for each patch. The two blades

are harmonically excited on the leading edge of the blades. The two blades are single crystal

blades with di�erent crystal orientation, which results in distinct natural frequencies. For

the forced response calculation and for the displacement recovery, 50 modes are included.

Moreover, in the forced response function calculation the harmonics 1 and 3 are included.
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Figure 4.26: Two-blade structure used

for the validation of the recovered forced

response and their sensitivities

Figure 4.27: Forced response of nodes A

and B of the two-blade structure

The forced response is plotted for node A, where the contact element is applied on the

left blade (blade 1), and for blade B around the resonance in Fig. 4.27. The recovered

displacements are calculated at 1065 Hz for 31 time steps over the vibration period. The

recovered displacements can be animated over the period using CalculiX GraphiX, in Fig.

4.28 the displacements for the time instants when the 2nd blade has extreme de�ections

are shown.

(a) Time instant of maximum de�ection

of blade 1 in positive y direction

(b) Time instant of maximum de�ection

of blade 2 in negative y direction

Figure 4.28: Recovered displacements at two time instants for f = 1065Hz

The de�ections in Fig. 4.28 show the �rst bending mode for the shrouded blade. In

order to validate the forced response amplitudes, the recovered displacements are compared
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(a) Node A, x direction (b) Node B, x direction

(c) Node A, y direction (d) Node B, y direction

(e) Node A, z direction (f) Node B, z direction

Figure 4.29: Validation of recovered forced response displacements for two-blade system,

where the displacements are recovered using the mode shapes or the displacements are

calculated from the harmonic coe�cients

with the harmonic coe�cients of the forced response amplitudes placed in the time domain

equation of the forced response in Eq. 3.44. This is called here as the direct calculation.

The comparison can be done for the nodes included in the reduced order model, therefore

for the analysis A and B nodes are selected. The forced response amplitudes calculated

with the two methods, shown in Fig 4.29, are in good agreement with each other. The

forced response of node A in x direction is several magnitudes lower than the other forced

response amplitudes, which explains the deviation between the forced response in time

domain. With this, the validation of the nonlinear forced response recovery for asymmetric

(i.e. mistuned) systems has been successfully done.
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Figure 4.30: Bladed disk used

for the validation of the re-

covered tuned forced response

Figure 4.31: Forced response of tuned bladed disks

to EO20 excitation of mode 2

4.6.2 Symmetric bladed disk structure

The recovery of the cyclic symmetric forced response displacements is validated in a similar

manner, using the cyclic symmetric bladed disk shown in Fig. 4.30. The bladed disk is

�xed on the rotor in axial and tangential direction. The nonlinear contact is considered

on the leading edge side of the shroud interface. Some FE elements have been removed

from the left side and moved to the right side, shown with red color. Cyclic symmetric

condition has been applied on the surfaces that have been cut due to the moving of the

above mentioned FE elements. Nonlinear friction contact has been modeled with 35 friction

contact elements on the shroud interface. The root contact between the blade and the disk

is considered to be fully stuck.

The bladed disk is excited on the airfoil with EO20 excitation, that excites the 2nd

mode of the bladed disk. The nonlinear forced response is calculated using time harmonics

0, 20, 40, 60 and 80. The forced response obtained for an airfoil node is plotted around the

resonance in Fig. 4.31. The forced response shows, that the system response is strongly

nonlinear due to the friction forced that appear on the shrouds. For such systems, the

�exibility matrix included in the FRF calculation is essential to calculate the FRF matrix

accurately.

The comparison of the forced response recovery is done at resonance frequency for 2

nodes that are included in the reduced order model: one node on the airfoil trailing edge

and one on the shroud contact patch. The normalized forced responses at the resonance

frequency are plotted for all three degrees of freedom for the two nodes under investigation.
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(a) Trailing edge, x direction (b) Shroud contact interface, x direction

(c) Trailing edge, y direction (d) Shroud contact interface, y direction

(e) Trailing edge, z direction (f) Shroud contact interface, z direction

Figure 4.32: Validation of the recovered forced response displacements of the cyclic sym-

metric bladed disk

The displacements have been normalized with the maximum vibration amplitude of the

node on the trailing edge.

The recovered forced response displacements show good agreement for the node on the

trailing edge for x and y directions, see Fig. 4.32. The amplitude of the displacements in

z direction is smaller, resulting in some discrepancy over the period.

The forced response compared on the shroud interfaces obtained with the two di�erent

method shows more noticeable discrepancy between the results. Similarly to the node on

the trailing edge, the results with larger vibration amplitudes are in better agreement.

The di�erence between the time-domain solutions is contributed to the lack of �exibility

information, which is particularly important for the friction contact interfaces where the

nonlinear friction forces are acting. Far from the nonlinearities, e.g. on the airfoil, the

importance of the �exibility information reduces and the recovered displacements allow for

an accurate representation of the operational de�ection shape.
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4.7 Conclusions

In this chapter the veri�cation of the methods used in research has been presented. The

validation of the implemented methods for the sensitivity needed to be done before the

extensive analyses for mistuned bladed disks had been started.

The validation was �rst completed for the linear forced response. The forced response

amplitudes calculated using ContaDyn, the forced response tool in this work, has been

compared with CalculiX, for which the linear forced response calculations have been valid-

ated. As both tools use the modal basis with the same mode shapes, complete coincidence

in the amplitudes have been obtained.

The sensitivity calculation of the element sti�ness matrices in CalculiX are done by

�nite di�erences. In order to �nd an optimal �nite di�erence step size, the sensitivity

of natural frequencies were calculated with di�erent step sizes and compared with the

sensitivity of natural frequency obtained using the analytically calculated derivative of

the element sti�ness matrix. Because the analytical formulation for the elements sti�ness

matrix derivative cannot be used, the optimal value for the �nite di�erence is used for the

sensitivity calculations: 10−5.

The calculation of sensitivity of natural frequencies have been validated for single blades

and for mistuned bladed disks. The sensitivities obtained directly from CalculiX using the

new method has been compared with sensitivities obtained the �nite di�erences of two

separate modal calculations. The sensitivity values showed a very good agreement.

The derivative of the eigenvectors cannot directly be expressed, therefore two di�erent

methods have been proposed ([82] and [83]) for the calculation of the mode shape sensitiv-

ities. The modal and algebraic methods have been implemented in CalculiX. Both methods

require a parameter to be chosen, which has been investigated in detail. For the modal

method, a reference frequency needs to be set, for which the optimal value is the mean of

the eigenvalue of the mode for which the sensitivity is calculated for and the eigenvalue

of the mode one lower. For the algebraic method, the regularization coe�cient needs to

be added to one of the members on the main diagonal of the system matrix. For this the

optimal strategy is to add this value to the main diagonal member that corresponds to the

largest modal displacement of the mode for which the sensitivity is calculated for.

For the modal method of the mode shape sensitivity, the convergence characteristics

have been studied. In general, it can be stated, that in order to obtain accurate results

for the derivative of the mode shapes, at least one more mode family needs to be included

than the mode for which the sensitivity is calculated for.
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The sensitivity of linear and nonlinear forced response has been presented in this

chapter. The sensitivities calculated using the new method and the �nite di�erences are

in good agreement and the negligible di�erences are considered to be due to the limited

accuracy of the derivative approximated by the �nite di�erence method.

InterDyn allows to calculate the forced response and their sensitivities in time domain

for all FE nodes of the original model at a selected frequency. The recovered displacements

then can be visualized in the pre- and post-processing tool CalculiX GraphiX. The valida-

tion for the degrees of freedom included in the reduced order model could be done by the

comparison of the displacements obtained through the direct harmonic expression.
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Chapter 5

Sensitivity analysis of the modal

characteristics of the anisotropy

mistuned bladed disks

The modal properties of mistuned bladed disks are an important indicator about the

dynamic characteristics of the structure. The linear modal properties are also the basis

for calculation of the linear and nonlinear forced response function, as shown in chapter

3. Similarly, the sensitivity of natural frequencies and mode shapes also carry important

information about the sensitivity of the dynamic behavior of the mistuned bladed disk.

In this chapter, the in�uence of varying crystal orientation angles for single blade and

varying anisotropy mistuning patterns on the modal characteristics are studied. Further-

more, the sensitivity of the eigenpairs of mistuned bladed disks are analyzed for selected

modes of a mistuned bladed disk.

5.1 E�ect of anisotropy orientation axis scatter on the single

blade natural frequencies

The e�ect of the anisotropy angle variation of the single crystal blades on the natural

frequencies is shown for a single stand-alone sector of bladed disk model.

The �nite element model, shown in Fig. 5.1a consists of 19,000 nodes. The material

of the blade is anisotropic and the material of the disk is isotropic. The two areas on the

side of the segment on the disk have been �xed. On the blade a centrifugal loading has

been applied and the modal properties have been calculated around the converged static

solution. The contact interfaces between the disk and the blade are modeled to be fully
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(a) Single

blade

(b) Quarter of the bladed disk

Figure 5.1: Finite element models used for the study of anisotropy orientation variation

on the modal properties and their sensitivities

stuck.

For the description of the crystal orientation of the blade material, anisotropy angles

have been randomly generated. The random values of α, β and ζ have been sampled from

the corresponding statistical distribution described by the manufacturer of the blades.

There have been 10,000 di�erent crystal orientations obtained and for this 10,000 blade

sector model, the �rst six natural frequencies have been calculated. Additionally, the

natural frequencies for 2 models with special anisotropy angles have been calculated, (i)

one with anisotropy orientation coinciding with the blade stacking axis and (ii) on with

anisotropy angles equal to the mean value of the statistical distribution of the respective

angle.

The range of the normalized natural frequencies are shown in Fig. 5.2. The values

in this plot have been normalized with respect to the natural frequencies calculated for

the blade with anisotropy axis coinciding with the stacking axis. These values of natural

frequencies are shown with symbols of green triangles. The empty red circles in the �gure

show the natural frequencies calculated for the bladed disk sector with mean anisotropy

angles. The �lled blue circles are showing the result of the mean value of the 10,000 natural

frequencies obtained for the �rst six natural frequencies.

The range of variation show, that for the �rst (1st �ap, 1F), the second (1st edgewise,
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Figure 5.2: Normalized natural frequency of single blade with varied crystal orientation

1E), the �fth (2nd edgewise - 2E) and the sixth (3rd edgewise, 3E) natural frequencies the

crystal orientation variation mainly results in increase in the value of natural frequencies,

compared to the natural frequencies calculated for the blade with crystal orientation co-

inciding with the stacking axis. Similarly, For the values of the natural frequencies three

(2nd �ap, 2F) and four (1st torsional, 1T) both increase and decrease can be observed.

The largest variation of the natural frequency, 13.8% can be observed for mode 4. The

smallest variation has been obtained for mode 5, 4.7%.

It is worth noting, that for modes 2,5 and 6 the mean value of natural frequencies

calculated for the 10,000 crystal orientations are almost the same as the natural frequencies

calculated for the blade with mean angles, but for modes 1,3 and 4 a deviation can be

observed in these values.

It is also important to note, that while the range of variation can be quite signi�cant,

the mean values of the calculated natural frequencies do not lie very far from the value of

the natural frequency calculated for the blade with crystal orientation coinciding with the

stacking axis. The histogram of the �rst six modes also con�rms this, as for the �rst �ve

modes the bin with maximum count is within 1% range of the natural frequency of the

blade with anisotropy axis coinciding with the stacking axis.

The histograms for the large number of seeded anisotropy orientations are shown in Fig.

5.3. These �gures also show that the distribution of the resulting blade alone natural fre-

quencies are asymmetric and they change from one mode to another. The modes belonging

to the same mode families e.g. bending or edge-wise modes also show distinct distributions

therefore, the e�ect of anisotropy orientation mistuning needs to be individually assessed

for every mode.
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(a) Normalized natural frequency 1 (1F) (b) Normalized natural frequency 2 (1E)

(c) Normalized natural frequency 3 (2F) (d) Normalized natural frequency 4 (1T)

(e) Normalized natural frequency 5 (3F) (f) Normalized natural frequency 6 (2E)

Figure 5.3: Histogram for the �rst six normalized natural frequencies due to random crystal

orientation variation

In order to visualize the e�ect of the crystal orientation variation on the value of natural

frequencies, two of the anisotropy angles, α and β have been gradually changed and the

natural frequencies calculated. The third anisotropy angle, ζ has been kept constant at

value 0. The normalized natural frequencies are shown in Fig. 5.4 for the �rst 6 modes.

For modes 1,3 and 5, that are all bending modes, the natural frequencies change in a

very similar manner. The values of the natural frequencies increase monotonously with
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(a) Normalized natural frequency 1 (1F) (b) Normalized natural frequency 2 (2F)

(c) Normalized natural frequency 3 (1E) (d) Normalized natural frequency 4 (1T)

(e) Normalized natural frequency 5 (3F) (f) Normalized natural frequency 6 (2E)

Figure 5.4: Normalized natural frequency of six modes with varying crystal orientation
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the change increasing α value, that represent a deviation of [001] material axis from the

stacking axis of the blade. The rate of change of natural frequencies increases as the value

of α increases: the gradient is larger on α ∈ [10°, 15°] than on the range of α ∈ [0°, 5°].

For these modes, the natural frequencies are more sensitive to the change in the value of α

anisotropy angle, compared to β. It is worth noting that for large value of α, the sensitivity

with respect to β increases.

For the edgewise modes (modes 3 and 6) a softening e�ect can be noticed for α ∈ [0°, 7°].

This softening continues for the �rst edgewise mode, but for the second edgewise mode

again a sti�ening occurs on α ∈ [10°, 15°].

For mode 4 (1T), as expected the secondary angle also has a signi�cant in�uence on

the value of the natural frequency, which e�ect increases as α increases.

The variation of natural frequencies due to anisotropy axis orientation can be signi-

�cant. The results show that for some of the modes, the natural frequencies can change

within the range of up to 5-6%. For some higher modes, the change in crystal orientation

can both sti�en or soften the blade. For the study carried out with 10,000 random crystal

orientations, the mean value of the natural frequencies of the sample population is close in

value to the natural frequency calculated for the blade with anisotropy orientation axis co-

inciding with the stacking axis. The studies show, that the primary anisotropy angle α has

the most signi�cant in�uence on the natural frequencies of the fundamental bending and

edgewise modes, but for the �rst torsional mode both α and β are in�uential parameters.

5.2 E�ect of anisotropy orientation axis scatter on the mis-

tuned bladed disk mode shapes

In the previous section it has been shown, how the anisotropy orientation of the single

crystal blade in�uences the natural frequencies for the stand-alone turbine blades. In the

following, the e�ect of anisotropy orientation scatter on the mode shapes are discussed for

mistuned turbine bladed disks.

For the studies the �nite element model of a bladed disk with 75 blades is used, shown

in Fig. 5.1b. The �nite element mesh consists of 500,000 nodes. The model is constrained

in axial direction at the blue nodes on the shoulder of the disk shown in Fig. 5.1b. For this

bladed disk there are contact interfaces on the disk-blades joints and between the blades on

the shrouds. For this study all these contact interfaces are considered to be stuck, which

is modeled by linear multi-point-constraints (MPC).
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Figure 5.5: Natural frequency-nodal diameter diagram of the cyclic symmetric bladed disk

model with full contact on the shrouds used in the subsequent analyses. Where the modes

of interest are denoted by circles and Latin letters

The natural frequency - nodal diameter diagram has been calculated using the cyclic

symmetric sector model of the bladed disk, see Fig. 5.5. In this �gure, three di�erent type

of modes have been identi�ed for the upcoming studies: (i) low nodal diameter (ii) high

nodal diameter and (iii) transition modes. For the low nodal diameter modes the slope

of the curves in Fig. 5.5 is nonzero. Due to the low nodal diameter pattern the disk is

relatively �exible in comparison to the blades, therefore these modes are dominated by the

disk modes. For the high nodal diameter modes the slope of the frequency-ND curves is 0

or close to 0. Because of the high nodal diameter pattern of the mode, the disks become

sti�, and the mode of the bladed disk is dominated by the individual blade modes. Finally,

the transition modes are de�ned where the slope of the frequency-ND curves level o� and

it includes characteristics of both disk and blade dominated modes. In Fig. 5.5 A and B

are examples for disk dominated modes, C and E are examples for transition modes, and

the modes in range D are blade dominated. Here, the transition modes are de�ned in the

veering regions where mode shapes show the characteristics of blade dominated and disk

dominated modes.

For the study of showing the in�uence of the crystal orientation variation on the mode
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(a) Mode shape A, a disk dominated mode with ND = 2

(b) Mode shape C, a transition mode between disk and blade dominated modes with

ND = 9

(c) Mode shape D, a strongly disk dominated mode without recognizable ND pattern

Figure 5.6: Mode shape along the bladed disk circumference showing the mode shape for

tuned bladed disks (black line) and the variation for mistuned bladed disks with 10 di�erent

anisotropy mistuning patterns (colored lines)
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shapes, modes A,C and range D are selected. In the study, the mode shapes for 50 mistuned

bladed disks with random mistuning patterns have been calculated. Each crystal orienta-

tion for all the blades have been randomly evaluated based on the statistical distribution

provided by the blade manufacturer.

The nodal value of the axial component of the mode shapes are plotted along the

circumference of the bladed disk at one node for each blade. This node is at the midspan

of the leading edge, shown with red circles in Fig. 5.1b. In order to be able to see

the individual mode shapes, in Fig. 5.6 only the mode shapes of 10 di�erent anisotropy

mistuning pattern are plotted. Additional to the mistuned mode shapes, the tuned mode

shapes for the full bladed disk has been plotted with thick black lines for modes A and C

in Figs. 5.6a and 5.6b. Because the mistuned mode shapes in mode range D are highly

localized, it was not possible to �nd a tuned equivalent.

For the disk dominated mode A, shown in Fig. 5.6a with 2 nodal diameter, other

than phase shift between the modes shapes of the individual mistuning patterns, no other

signi�cant change can be seen.

For the transition mode C, shown in Fig. 5.6b, with 9 nodal diameters, a phase shift

can be observed between the mode shapes of di�erent mistuned bladed disks. However, for

this higher nodal diameter mode shape, there is a small variation in the maximum value

of the mode shape from mistuning pattern to mistuning pattern.

For the blade dominated mode, from range D, for each mistuning pattern the mode

shape 76 has been selected, shown in Fig. 5.6c. It is clearly visible, that the nodal

diameter pattern is very distorted and localization of the mode shape occurs. Depending

on the mistuning pattern the extreme value of the mode shape and its location around the

circumference of the bladed disk varies signi�cantly.

5.3 Investigation of the sensitivity of modal characteristics

for disk

The new capabilities for the calculation of the modal characteristics of bladed disks allow

for the visualization of the sensitivity of the mode shapes using the already existing facilities

of CalculiX GraphiX.

As an example the contour plot of the mode shape amplitudes are shown for mode 70,

one of the blade dominated modes from range D, in Fig. 5.7a. This mode shape has a

localization at blade 25 and in its neighboring blades. For this mode shape, the sensitivities
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(a) Mode shape (b) Mode shape sensitivity

Figure 5.7: Mode shape D (70) and its sensitivity with respect to anisotropy angle α of

blade 25

can be calculated with respect to all three anisotropy angles of the 75 blades. In Fig. 5.7b,

the sensitivity of the mode shape amplitudes with respect to the primary angle α of blade

25 is shown for all FE nodes of the bladed disk. It is worth noting, that despite the mode

shape being highly localized, the sensitivity with respect to the anisotropy angle has a

global e�ect. The sensitivity maximum is for blade 25, but signi�cant sensitivity values

can also be observed around the circumference of the bladed disk. It is worth noting,

that the mode has maximum amplitudes at the midspan of the blade, typical for 1F mode

of shrouded blades, and the sensitivity of the mode shape has maximum values at the

midspan of the blades.

The study of the sensitivities is divided into three groups: (i) disk dominated modes

(ii) blade dominated modes and (iii) transition modes. In order to gain a comprehensive

insight into the sensitivity of the modal characteristics, for each mode under investigation,

the mode shape, the sensitivity of natural frequencies and the sensitivity of mode shapes are

discussed together. There has been many anisotropy mistuning patterns studies, however

here an example the results for one mistuning pattern are discussed in detail.

5.3.1 Disk dominated modes

As disk dominated mode, the mode B from Fig. 5.5 is analyzed. The mode shape of this

mode, shown is Fig. 5.8a has 3 nodal diameter and it has the largest modal displacement

in axial direction. The sinusoidal shape of the nodal diameter mode shape does not visibly

get distorted.
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(a) Modal displacements in three spatial direction

along the bladed disk circumference

(b) Sensitivity of natural frequency to α angles of all

blades

(c) Sensitivity of axial modal displacements of the

mode shape to α angles of selected blades along the

bladed disk circumference

Figure 5.8: Mode B: Mode shape and sensitivity of modal characteristics for a disk dom-

inated mode

The normalized value of the sensitivities of the natural frequency with respect to the

all the 75 primary angles of the bladed disk are shown in Fig. 5.8b. The values of the

sensitivities of the natural frequency are small.

The sensitivity of the disk dominated mode shape with respect selected primary an-

isotropy angles have been plotted in Fig. 5.8c. The anisotropy angles shown in the �gure

have been selected such: (i) two are the primary angles with respect to the maximum and

minimum natural frequency Sensitivities have been obtained (blades 41 and 47), and (ii)
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two blades for which the maximum and minimum value of the mode shape sensitivity is

obtained along the circumference of the bladed disk (blades 7 and 13). The α anisotropy

angles of blades 41 and 47 has the largest e�ect on the natural frequency of the bladed

disk however, the sensitivity of the mode shape with respect to these anisotropy angles are

small. On the other hand, the blades that in�uence the mode shape the most have small

sensitivity of the natural frequencies.

It is also worth noting that sensitivities of the modes shapes are shifted to the mode

shapes by 90° along the circumference of the bladed disk. The sensitivity of mode shape

has extreme value where the mode shapes are null and has null value where the mode

shapes have extreme value. This con�rms the earlier made conclusions that the variation

of the anisotropy mistuning patterns do not change the maximum value of the modal

displacements, however the phase along the circumference of the bladed disk can vary

from one mistuning pattern to another.

5.3.2 Blade dominated modes

From range D, shown in Fig. 5.5, mode number 70 has been selected for the study of a

blade dominated mode. This mode is from the �rst family of modes, and the mode shape

is localized for approximately seven blades, shown in Fig. 5.9a. For this mode shape, the

tangential and axial modal displacements are the largest.

The sensitivity of the natural frequencies with respect to all the primary angles α in

the bladed disk are shown in Fig. 5.9b. The �gure shows that the largest sensitivity of

natural frequencies are with respect to the blades that have large modal displacements,

blades 22-28. The sensitivities with respect to the anisotropy angles of the blades with

small modal displacements are negligible. For this mode, the normalized natural frequency

sensitivities are larger than for mode B.

The sensitivities of the mode shape with respect to selected α anisotropy angles are

shown in Fig. 5.9c. Here, the sensitivities are shown with respect to selected anisotropy

angles. Anisotropy angles to which high natural frequency sensitivity is calculated and

one primary angle α to which the sensitivity of natural frequency is negligible (blade 50).

The sensitivities of the mode shape with respect to the anisotropy angles of blades 25, 26

and 28 are large around the whole circumference of the bladed disk. The extreme value

of the mode shape sensitivities are for the blades 25 and 28 and with respect to their

respective primary anisotropy angles. It is worth noting, that the sensitivities of the mode

shapes are not localized, meaning that changing the anisotropy angle of a blade with large
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(a) Modal displacements in all three spatial direction for

mode 70 (D) along the bladed disk circumference

(b) Sensitivity of natural frequency to α angles of all

blades

(c) Sensitivity of tangential modal displacements of the

mode shape to α angles of selected blades along the

bladed disk circumference

Figure 5.9: Mode 70 (D): mode shape and sensitivity of modal characteristics for a blade

dominated mode
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modal displacement can in�uence many blades in the bladed disk stage. The value of the

sensitivities of the mode shapes for disk dominated modes are at least one magnitude larger

than for disk dominated modes.

5.3.3 Transition modes

The mode shape of transition mode E in Fig. 5.5 is shown in Fig. 5.10a. The mode shape

has a distorted nodal diameter pattern with 12 nodal diameters.

The sensitivities of the natural frequency with respect to all the α angles of the blades

are shown in Fig. 5.10b. Because there is no localization in the mode shape, the sensitivities

of the natural frequency are also not only signi�cant for a restricted number of blades. With

only a few exceptions all primary anisotropy angles increase this natural frequency of the

bladed disk.
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(a) Modal displacements in all three spatial direction

for mode E along the bladed disk circumference

(b) Sensitivity of natural frequency of mode E to α

angles of all blades

(c) Sensitivity of modal tangential displacements of

mode shape E to α angles of selected blades

Figure 5.10: Mode E: sensitivity of modal characteristics for a transition mode of a mis-

tuned bladed disk

The sensitivity of the mode shapes, shown in Fig. 5.10, with respect to selected blades.

Blade 72 and 75 has large in�uence on the natural frequency and on the mode shape,

with sensitivities with respect to blade 72 having extreme value for both sensitivities. The

crystal orientation of blade 35 has little in�uence on the natural frequencies, however the

sensitivity of the mode shape with respect to this blade cannot be neglected. On the other

hand, the sensitivity of the natural frequency with respect to the α anisotropy angle of

blade 13 is relatively large, the sensitivity of mode shape is not more signi�cant than the

sensitivity with respect to blade 35 anisotropy angle.
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Therefore, it can be concluded that the transition nodes have the characteristics for disk

and blade dominated modes. The sensitivity of natural frequencies and mode shapes with

respect to some blades are coupled, meaning they are both relatively large. But for some

blades are not coupled, meaning that they have high in�uence on the natural frequency

but small in�uence on the mode shape or the other way around.

It is worth noting, that for transition modes, the value of the normalized sensitivities

are larger than for disk dominated modes, but smaller than for blade dominated modes.

5.4 Maximum value of sensitivity of natural frequencies for

the �rst family of modes with analysis for the e�ect of

shroud boundary conditions on the sensitivity of natural

frequencies

The examples presented in the section above, showed the characteristics of the sensitivity

of modal properties for disk and blade dominated and for transition modes for anisotropy

mistuned bladed disk. In this section the sensitivity of natural frequencies are studied

further for all the modes of the �rst mode family. For the �rst 80 modes, the maximum

and minimum value of the sensitivity of natural frequency is calculated with respect to

anisotropy angles α, β and ζ. This calculation is carried out for three kind of contact

conditions between the shrouds of the blades: (i) stuck shroud, the same as it has been

used in the previous examples (ii) perfectly sliding shroud interfaces (iii) no contact between

the shroud interfaces.

The extreme values with respect to the anisotropy angles are shown in Fig. 5.11 for

stuck shrouds. For the �rst 10 modes, the value of the sensitivities are negligible, these

modes are disk dominated modes with nodal diameter mode shape pattern. The transition

modes ranging from mode 25 to 69 show increasing values for the sensitivities of the natural

frequencies. These modes are the transition modes. The modes ranging from 70 to 80 are

blade dominated modes with localized mode shapes, which results in high values of natural

frequency sensitivities. It is worth noting that the largest positive values of the sensitivities

are with respect to the primary anisotropy angles α, but the largest negative sensitivities

are with respect to the β anisotropy angles for this mistuning pattern. The sensitivities of

the natural frequencies with respect to ζ anisotropy angles are negligible for all 80 modes.

For the bladed disk with perfectly sliding shroud contact conditions, the extreme value

plot of the natural frequencies change, see Fig. 5.12. The sensitivities with respect to



13th April 2022 96

Figure 5.11: Highest value of the normalized natural frequency sensitivity with respect to

all anisotropy angles for a mistuned bladed disk with stick contact on the shrouds

Figure 5.12: Highest value of the normalized natural frequency sensitivity with respect to

all anisotropy angles for a mistuned bladed disk with sliding contact on the shrouds

the primary angle α increase signi�cantly. This is due to the earlier localization of the

blade dominated modes as the coupling between the blades are reduced as the contact

condition is changed to sliding. With the increase of the sensitivity of the primary angles,

the sensitivities with respect to ζ also increase. This is due to the coupling between the

two anisotropy angles, because ζ is de�ning the position of the [001] material axis on a

polar coordinate basis. This results in sensitivities that are larger with respect to ζ than

to α or β for most localized modes.

The coupling between the blades further reduced when the contact de�nition between

the blade shrouds are removed. The sensitivities with respect to α increase compared

to the results calculated for the bladed disk with sliding contact. The sensitivities with

respect to β and ζ are similar to what has been obtained for the bladed disk with sliding

contact.
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Figure 5.13: Highest value of the normalized natural frequency sensitivity with respect to

all anisotropy angles for a mistuned bladed disk without contact on the shrouds

Figure 5.14: Highest value of the normalized natural frequency sensitivities to α for ten

di�erent mistuning pattern and with stuck contact on the blades shrouds

In order to see the validity of the results for more mistuning patterns, the sensitivity

of the natural frequencies have been calculated for 10 di�erent mistuning patterns. In

Fig. 5.14 the maximum and minimum values of the sensitivity of the �rst 80 natural

frequencies are shown with respect to the primary anisotropy angle α. The numerical

value of the extreme values of the sensitivities are very close for the 10 di�erent mistuning

patterns in case of the lower modes. The modes higher than 70, that are blade dominated

modes, the values signi�cantly increase and vary for the di�erent mistuning patterns.

5.5 Conclusions

In this chapter the e�ect of the anisotropy mistuning has been studied for modal properties

and their sensitivities of single blades and bladed disks. The e�ect of natural frequency
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for stand-alone blades have been studied by a series of random sampling. The results

show that the crystal orientation can increase and decrease the natural frequencies and the

distribution of natural frequencies are asymmetric.

The anisotropy axis scatter for bladed disks have been studied for disk dominated,

blade dominated and transition modes. The modes with low nodal diameter patterns do

not signi�cantly change due to mistuning. The e�ect of the mistuning for blade dominated

modes resulted in strong localization, where the modal displacements are signi�cantly

larger for a few blades when compared with the rest of the blades.

The analysis of the sensitivity of the natural frequencies and mode shapes showed that

the localized mode shapes of the mistuned bladed disks are most sensitive to the change in

the crystal orientation. In case of the localized mode shapes the sensitivities with respect

to the anisotropy angles of the blades where localization occurs highly in�uence the modal

properties.

The study of the e�ect of the di�erent boundary conditions of the shrouded blade disks

on the natural frequency sensitivities has been performed. The analyses showed that the

sensitivity with respect to anisotropy angles increases as the coupling with the neighboring

blades reduces.
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Chapter 6

Linear forced response and its

sensitivity for the anisotropy

mistuned bladed disks

The study of many linear systems is relevant for many bladed disks. For example the

modern compressor stages are integrated bladed rotors and therefore inherently linear

dynamic systems. For turbine bladed disks with friction joints, it can be advantageous to

linearize the models. Linear models can be used to obtain forced response amplitudes of

bladed disks faster and there is no need to calculate forced response with a computationally

expensive nonlinear solver. The linearization of bladed disks can be done if measurement

data is available for the turbine stage [31]. And applying an equivalent linear damping

coe�cient by a half-power method in the measurement data. Calculating equivalent linear

damping is particularly successful if individual resonance peaks can be isolated and there

are no strong nonlinearities in the system, e.g. partial opening of shroud interfaces, that

can cause the forced response function to have overhanging branches.

In the current study a realistic mistuned bladed disk with 75 blades with approximately

0.5 million FE nodes, see Fig. 5.1b.
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6.1 Comparison of the modeling methods of frequency mis-

tuning and anisotropy mistuning for linear forced re-

sponse of monocrystalline mistuned bladed disks

Traditionally mistuned bladed disks are modeled with frequency mistuning that is intro-

duced by adding lumped masses or by changing the Young's and/or the shear modulus

to change the natural frequency of the individual blades. In this section, the traditional

method of modeling mistuning is compared with the direct anisotropy modeling, used in

this work.

First, a random anisotropy mistuning pattern is created for all blades in the bladed

disk. The �ve �rst natural frequencies are calculated for all stand-alone blades with random

crystal orientations and the nominal elasticity and shear modulus. The stand-alone blades

are calculated together with the disk sector, that is �xed on the sector edges. The natural

frequencies are calculated for non-rotating blades i.e. without any pre-stress applied.

Second, the mean value of the anisotropy angles is calculated and the corresponding

crystal orientation is set for all stand-alone blades. At the same time, the Young's modulus

and shear modulus is scaled such that the same stand-alone �rst natural frequencies are

obtained. The scaling factor is calculated for i-th blade using equation

ci =

(
ωianisotropy
ωmean

)2

(6.1)

where ωjanisotropy is the �rst natural frequency of the anisotropy mistuned stand-alone

blade and ωmean is the �rst natural frequency of the stand-alone blade with mean crystal

orientations and nominal sti�ness properties.

Figure 6.1: First natural frequencies calculated for anisotropy and sti�ness detuned stand-

alone blade against scaling factor value
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Figure 6.3: Natural frequency-nodal diameter diagram of the cyclic symmetric model with

stuck and free shroud interfaces

Figure 6.2: First natural frequencies calculated for anisotropy and sti�ness detuned stand-

alone blade against blade number

In the next step, the natural frequencies and mode shapes have been calculated for

the frequency mistuned and for the anisotropy orientation mistuned bladed disk. The �rst

natural frequencies are equal when calculated with both detuning methods, see Figs. 6.1

and 6.2.

The full model of mistuned bladed disk is assembled using the stand-alone blades with

frequency detuning. The �rst 150 modes of the mistuned bladed disks have been calculated.

The contact interfaces of the bladed disks are modeled linearly using MPCs. Two di�erent

modeling has been considered on the shroud interfaces of the mistuned bladed disk: (i)

fully stuck contact and (ii) no contact.

For shroud contact conditions (i) and (ii), the forced response has been calculated to
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Figure 6.4: Envelope of the linear forced response calculated with anisotropy and frequency

mistuning for EO35 excitation of mode 1 with stuck shrouds

Figure 6.5: Maximum forced response amplitude of each blade over the analyzed frequency

range for anisotropy and frequency mistuned bladed disk to EO35 excitation to mode 1

with stuck shrouds

EO35 excitation for the �rst mode family, marked by A and B in Fig. 6.3. The forced

responses have been obtained for bladed disks with anisotropy and frequency mistuning.

The envelope of the forced response for bladed disk with stuck shrouds (i) when mode

A is excited is shown in Fig. 6.4. The resonance frequency of the forced response of

the mistuned bladed disk modeled with frequency mistuning shows 2% increase compared

to full modeling of anisotropy mistuning. The envelope of the response shows di�erence

in the maximum forced response amplitudes, 9% increase compared to when frequency

mistuning is applied. The distribution of the maximum forced response amplitudes along

the circumference of the mistuned bladed disk shows signi�cant di�erences when compared

for the two modeling methods, as seen in Fig. 6.5. The results obtained show, that for the

analysis of the turbine bladed disks with shroud contact, the method of frequency mistuning

based on the natural frequencies of stand-alone blades does not provide su�cient accuracy.
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Figure 6.6: Envelope of the linear forced response calculated with anisotropy and frequency

mistuning for EO35 excitation of mode 1 with free shrouds

Figure 6.7: Maximum forced response amplitude of each blade over the analyzed frequency

range for anisotropy and frequency mistuned bladed disk to EO35 excitation to mode 1

with free shrouds

Additionally, the forced response of the mode 1 for bladed disks with (ii) open shrouds

were analyzed using the two methods for the modeling of mistuning. Because the �rst mode

family of the bladed disk without shroud contact is very similar to the �rst mode of the

stand-alone blade, the envelope and the distribution of the forced response amplitudes are

very similar when calculated using the two mistuning modeling methods. The resonance

frequency of the forced response function, as shown in the Fig. 6.6, is from a practical

view identical for both mistuning modeling methods. The study of the distribution of

the maximum forced response, shown in Fig. 6.7, show that the maximum amplitude on

the calculated frequency range varies when they are calculated with anisotropy mistuning

or frequency mistuning modeling. Nevertheless, the observed di�erences in case of open

shrouds are smaller than for the bladed disk with closed shrouds.

For the 2nd mode of the same bladed disk with (ii) open shrouds the comparison of

the two modeling methods for the mistuning modeling was done. The modeling of the

frequency mistuning uses the same coe�cients as previous studies, using Eq. (6.1) for

mode 1 of the stand-alone blades. The envelope of the two mistuned forced responses
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Figure 6.8: Envelope of the linear forced response calculated with anisotropy and frequency

mistuning for EO35 excitation of mode 2 with free shrouds

in Fig. 6.8 show larger deviation between the forced response curves calculated with the

two mistuning modeling methods. In order to be able to obtain acceptable results, the

frequency mistuning coe�cients need to be calculated for the 2nd mode of the stand-alone

blade.

The above presented studies show that it is essential to use high-accuracy modelling of

the anisotropy mistuned bladed disk. The studies above investigated the forced response

of the bladed disk modes to high engine order excitations. Due to the high sti�ness of

the disk the high nodal diameter modes are blade dominated, which also means that

the bladed disk modes are very similar to the restricted stand-alone blade modes. The

deviation between the forced response functions obtained with frequency mistuning and

high-accuracy anisotropy mistuning are expected to be larger.

For the analysis of the nonlinear forced response, it is essential to use the high-accuracy

anisotropy mistuning modeling, because in the nonlinear forced response calculation all

modes are involved.

6.2 E�ect of anisotropy orientation scatter on the forced re-

sponse of mistuned bladed disks

The study of anisotropy orientation variation of the single crystal turbine bladed disks

on the linear forced response was studied by generating 10 random mistuning patterns.

The 10 random anisotropy mistuning patterns were created by random sampling from the

statistical distributions described for the anisotropy angles. The e�ect of anisotropy mis-

tuning has been analyzed for resonances of the modes shown in Fig. 6.9. For the selection

of the modes several criteria has been considered: (i) both lower fundamental modes and

higher modes were analyzed (ii) low nodal diameter (disk dominated), high nodal diameter
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Figure 6.9: Natural frequency-nodal diameter diagram of tuned bladed disk with stuck

root and shroud interfaces

(blade dominated) and modes with nodal diameter values in between (transition modes)

have been studied (iii) veering regions where two or more modes can interact.

For each mode the ampli�cation factor has been calculated, such that maximum forced

response amplitude of the mistuned bladed disk has been divided by the maximum forced

response of the tuned bladed disk on the analyzed frequency range. The tuned bladed

disks have all blade crystal orientation aligned with the stacking axis (α = β = ζ = 0).

The forced response is calculated for 15 nodes on the airfoil directly from the reduced order

model. The nodes are shown in Fig. 6.10, where each node is referred to by its radial (A to

E) and by its axial (1 to 3) location. For each mode of the tuned bladed disk a screening

is done to decide which node has the largest displacement and the amplitude of this node

will be used to calculate the ampli�cation factor of the mistuned bladed disks.

In Figure 6.11 the mean value of the ampli�cation factors for the 10 random mistuning

patterns are plotted. The largest ampli�cation factors are observed for the veering region

B when EO7 excitation is applied, the maximum mistuned forced response is more than

2.6 higher than for the tuned bladed disk. The large ampli�cation factor is due to the

interaction between other modes in this frequency range.

For modes in range G, the frequency gap between modes 5 and 6 increases due to the

anisotropy mistuning. Therefore, the interaction between the two modes is not signi�cant.

This results in a lower average ampli�cation factor: 1.61. The ampli�cation factors for the
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Figure 6.10: Nodes of output on the pressure side of the airfoil

Figure 6.11: Average ampli�cation factors calculated for linear forced response of several

modes for 10 di�erent anisotropy mistuned bladed disks

disk dominated modes e.g. modes A, C and E are the lowest, under 1.2.

In Fig. 6.12, the envelope of forced response for 10 di�erent mistuning patterns and the

forced response for two tuned bladed disks are shown. The tuned bladed disks are either set-

up such that the anisotropy axis is aligned with the stacking axis for all blades (tuned: 0)

or all anisotropy angles are set to the mean value of their respective statistical distributions

(tuned:mean). The forced response envelopes for these disk dominated modes show little

sensitivity to the anisotropy orientation of the single crystal blades, only the splitting of the

resonance frequencies can be observed. Further learning is that the resonance frequencies

of the mistuned bladed disks are in between the resonance frequency of the two tuned

forced responses. It is also worth noting, that all mistuning patterns have ampli�cation

factors higher than 1, which is in agreement with the expectations.
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Figure 6.12: Envelopes of the forced response calculated for 10 di�erent anisotropy mis-

tuning patterns at 8EO for mode family 1 (C)

Figure 6.13: Harmonic spectrum of the response for 8EO excitation of mode family 1 (B)

and 2 (D)

For the modes of D and F, the low engine order 8 excitation is applied. Because the

bladed disk is mistuned, in the modes in the same frequency range but with high nodal

diameter are also excited. To study which modes of the mistuned system are excited,

the Fourier transformation of the tangential displacements along the circumference of the

bladed disk has been calculated for modes B and D, see Fig. 6.13. The analysis of

the harmonic coe�cients shows that for the �rst mode (mode B) the 8th nodal diameter

mode is dominant. When mode D is excited then nodal diameter 8 and also the higher

nodal diameter modes of mode family 1 is excited, which results in the larger values of

ampli�cation factor.

The forced response envelopes of the 10 random mistuned bladed disks are shown in

Fig. 6.14 for mode D. The resonance frequencies of the mistuned systems are, similarly
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Figure 6.14: Envelopes of the forced response calculated for 10 di�erent anisotropy mis-

tuning patterns at 8EO for mode family 2

as for mode C, between the resonance frequencies of the two tuned forced responses. The

shape of the forced response envelopes indicate that the response is dominated by localized

modes.

The modes I,J and K that are excited by EO35 excitation. The high engine order

excitation sti�ens the disk, and therefore the individual blade modes become more dom-

inant, therefore an average ampli�cation of 1.31-1.51 is obtained that is larger than what

has been calculated for the purely disk dominated modes of A,C and E. The large engine

order excitation cannot excite the modes with lower nodal diameter, which results in a

lower ampli�cation factor that is observed for modes D and F.

6.3 Sensitivity analysis of the forced response of the aniso-

tropy mistuned bladed disk

For the sensitivity analysis of the anisotropy mistuned bladed disk the modes have been

selected: (i) a disk dominated, mode C (ii) disk dominated mode that is coupled with

higher nodal diameter blade dominated mode, mode D and (iii) blade dominated mode of

the �rst family, mode I. For all modes the mistuning pattern 1 is selected for the further

sensitivity analyses.

6.3.1 Disk dominated modes

The forced response of the mistuned bladed disk to EO8 excitation in the frequency range

of the �rst mode family (mode C) is shown in Fig. 6.15a. The forced response function
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(a) Forced response function of all blades (b) Maximum forced response for each blade

over

Figure 6.15: Forced response function and maximum forced response amplitudes of all

blades for 8EO excitation of mode family 1

shows doubling of the resonance frequency. The forced response for all blades is shown

considering the screening for the maximum forced response over the nodes on airfoil, as

shown in Fig. 6.10. The maximum forced response amplitudes are located at the tip or

the airfoil, between nodes E1,E2 and E3, for all 75 blades.

The maximum forced response of every blade over the given frequency range is de-

picted in Fig. 6.15b, which shows that no blade has signi�cantly larger, localized large

amplitude. Moreover, it is worth noting that the maximum forced response amplitude

along the circumference of the bladed disk shows an imperfect periodicity with 8 nodal

diameter pattern.

The location on the airfoil for the mistuned system has been identi�ed for all blades on

the frequency range of mode family 1. All blades have the maximum vibration amplitudes

at the tip of the airfoil, row E in Fig. 6.10, which is expected for a coupled-disk "umbrella"

mode. The Fig. 6.16 shows that almost all blades have the largest vibration amplitudes at

the trailing edge (node E3), but a small portion of blades have the location of maximum

forced response at nodes E1 and E2. This change of the maximum forced response amp-

litudes is another example for the e�ect of anisotropy mistuning on the forced response

functions, here namely the change of the operational de�ection shape of the mistuned

system compared to the tuned bladed disk.
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Figure 6.16: Location of maximum forced response for each blade on the airfoil for 8EO

excitation of mode family 1 over f ∈ [2.36, 2.41]

Figure 6.17: Sensitivity of normalized forced response amplitude of blade 31 with respect

to the α angle of all the blades for 8EO excitation of mode family 1

For the subsequent sensitivity analysis, �rst the blade with the largest forced response

amplitude, its location on the airfoil and its resonance frequency is selected: location E3 on

blade 31 at normalized frequency f = 2.374. The sensitivities of the normalized maximum

nodal displacement of blade 31 is shown with respect to the α angles of all the blades

in Fig. 6.17. The vertical lines in the plot show the two resonance frequencies of the

mistuned bladed disk. The sensitivities with respect to primary angles of all blades show

a similar behavior: the sensitivities are changing sign around both resonance frequencies.

The change of signs around the resonance indicates that the change in the anisotropy

angles shifts the resonance peaks. The zero value of sensitivity at resonance f = 2.374

and the small value of sensitivity at f = 2.398 indicate that the maximum forced response

amplitudes have small sensitivity to the crystal orientations. This learning is in agreement

with the low ampli�cation factors observed for 10 mistuned bladed disks at mode C, see
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Figure 6.18: Sensitivity of the ampli�cation factor at blade 31 with respect to all anisotropy

angles of all the blades for 8EO excitation at f = 2.377 of mode family 1

Fig 6.12.

The values of the sensitivities with respect to α anisotropy angle of all blades at f =

2.377, where the maximum value of sensitivity is observed is show in Fig. 6.18. The

maximum forced response sensitivity is largest with respect to the α primary angle of

the blade 31, nevertheless it is not signi�cantly larger than the sensitivities with respect

to anisotropy angles of the other blades. It is worth noting, for the modes that are not

signi�cantly distorted by the anisotropy mistuning pattern, sensitivities are small and have

an imperfect periodic pattern.

6.3.2 Disk dominated mode coupling with blade dominated mode

The forced response and its sensitivities have been studied for mistuned bladed disk for the

frequency range D, excited by engine order 8. The normalized forced response is shown for

all blades with forced response ampli�cation factor 1.5 and above in Fig. 6.19a. From the

75 blades 10 blades have such large ampli�cation factor, which is typical for blade dom-

inated modes of mistuned bladed disks. The maximum forced response amplitudes along

the circumference of the mistuned bladed disk also show that the operational de�ection

shape is localized only for certain blades , see Fig. 6.19b. A signi�cant in�uence of the

anisotropy angles on the mode shapes have been identi�ed by investigating the location

of the maximum forced amplitudes for each blade, see Fig. 6.20. Most of the blades have

the maximum forced response on the mid-span of the trailing edge, which is expected for

the �rst bending mode of the shrouded blades with thin trailing edges. Nevertheless, for

a signi�cant number of blades, the node with the maximum forced response changes to

another node along the trailing edge of the blade.
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(a) Forced response function of selected blades (b) Maximum forced response for each blade

Figure 6.19: Forced response function and maximum forced response amplitudes for 8EO

excitation of mode family 2

Figure 6.20: Location of maximum forced response for each blade on the airfoil for 8EO

excitation of mode family 2 over f ∈ [4.26, 4.38]

For the study of the sensitivity analysis, the maximum forced response has been iden-

ti�ed for blade 57 at the midspan location (C3) for excitation frequency f = 4.321. The

sensitivities of the forced response amplitudes are expected to be the largest for this mode

with respect to the primary anisotropy angles. This is shown in Fig. 6.21 where the value

of the sensitivity of forced response amplitude with respect to all anisotropy angles in the

bladed disk are shown at the excitation frequency f = 4.321. As a general trend, it can

be observed that the forced response at the resonance frequency is the most sensitive to

the blades that have high vibration amplitudes or are located in the vicinity of a blade

that has high displacements, see also Fig. 6.19b. The neighboring blades can have a high

in�uence on the forced response, as the coupling is high between the blades, because of

the stuck shrouds.

Because the forced response sensitivities are the largest with respect to the primary

anisotropy angles, the sensitivities with respect to α angles of selected blades are plotted

along the frequency range of interest, see Fig. 6.22. The sensitivities are plotted with

respect to those blades that have a large in�uence on the forced response amplitudes and
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Figure 6.21: Sensitivity of the ampli�cation factor at blade 57 with respect to all anisotropy

angles of all the blades for 8EO excitation at f = 4.321 of mode family 2

Figure 6.22: Sensitivity of forced response amplitude of blade 57 with respect to the α

anisotropy angle of selected blades for 8EO excitation of mode family 2

the excitation frequency where blade 57 has the maximum forced response amplitude is

shown with a vertical line at f = 4.321. For this mode, the sensitivities are non-zero at

f = 4.321, which means that the change of anisotropy orientation parameter can result

in a change of forced response amplitudes of blade 57 which can change the ampli�cation

factor of the whole mistuned bladed disk. The minimum and maximum of the sensitivities

are at slightly higher and lower frequency than the excitation frequency of f = 4.321,

which means that the change of anisotropy angles can also result in shift in individual

blade resonance frequencies. The above-mentioned indications of the sensitivities are also

visible in the forced response functions of the 10 mistuned bladed disk samples, see Fig.

6.14. The excitation frequency of the blade with maximum forced response amplitude and

the amplitude of that blade have a signi�cant variation between the 10 samples.
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(a) Forced response function of all blades (b) Maximum forced response for each blade

Figure 6.23: Forced response function and maximum forced response amplitudes for 35EO

excitation of mode family 1

6.3.3 Blade dominated mode

The sensitivity of the response for 35EO excitation has been analyzed for the 1st family

of modes (I), with the same anisotropy mistuning pattern as for mode D. The �st mode

family has been chosen, because it provided the highest ampli�cation factor of 1.85 from

all purely blade dominated modes excited by EO35.

The forced response amplitudes of all blades over the analyzed frequency range, in

Fig. 6.23a, show that the maximum amplitudes and the frequency of maximum forced

response amplitudes greatly vary from blade to blade. Such behavior is expected for blade

dominated modes. The maximum forced response amplitude distribution shows that only

a portion of blades have larger than 1 ampli�cation factors and they are clustered together

due to the coupling between the blades via the shrouds. It is worth noting, that although

the maximum ampli�cation factor the this mode is lower than for more (D), there are

more blades that are within the 20% range of the maximum forced response amplitude.

It is also important to mention, that although the mistuning pattern of the bladed disk

is the same as for mode D, the distribution of the maximum forced response amplitude

is di�erent for this mode. This is contributed to the fact that when the engine order 35

excitation is applied, the lower nodal diameter modes, such as ND8 of mode 2 is excited to

lesser extent. The forced response amplitudes of the mistuned bladed disk are the largest

for node C3. While a di�erence in the operational de�ection shape is expected from one

blade to another, the resolution of the output nodes in the reduced model could not resolve

them.

For the sensitivity analysis, the blade number with the maximum vibratory amplitudes

and its excitation frequency is identi�ed: blade 29 at f = 4.290. The sensitivities with

respect to all anisotropy angles are shown in Fig. 6.24 at the resonance frequency of
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Figure 6.24: Sensitivity of the amplitude of blade 29 with respect to all anisotropy angles

of all the blades for 35EO excitation at f = 4.290 of mode family 1

Figure 6.25: Sensitivity of forced response amplitudes of blade 29 with respect to the α

anisotropy angle of all blades for 35EO excitation of mode family 1
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blade 29. The sensitivities at this frequency are largest with respect to primary angles α

followed by second angles β, while ζ sensitivities are the smallest. In agreement with the

conclusions drawn for mode D, here also the sensitivities with respect to blade 29 and to its

neighboring blades are the largest and the value of maximum normalized forced response

sensitivities are in the same order of magnitude. The sensitivities with respect to all α

angle over the frequency range of interest show non-zero sensitivities with respect to most

anisotropy angles.

6.3.4 Conclusions

In this chapter the e�ect of anisotropy orientation has been studied for linear bladed disks.

The linear forced response has been calculated for several excitations and with di�erent

mistuning patterns. The average ampli�cation factors for the bladed disks with several

di�erent realistic mistuning pattern can reach values up to 2.6 for some modes. Generally,

blade dominated modes have higher ampli�cation factors.

The e�ect of anisotropy mistuning on the forced response for disk dominated modes is

mainly the splitting of the resonance peaks. For blade dominated modes, the operational

de�ection shape shows localization to a few blades. For these modes, variation in forced

amplitudes and resonance frequencies are signi�cant from one mistuning pattern to an-

other. For both type of modes, some variation of the location of maximum forced response

amplitude on the airfoil surface occurs over the blades in the bladed disk assembly. This

is particularly interesting, as due to anisotropy orientation variation, the HCF limiting

location on the airfoil may change.

The above studies showed that the local sensitivities are signi�cant when blade dom-

inated modes are excited. The sensitivities indicate that the calculated forced response

amplitudes of the blade with the maximum vibratory response can change due variation

of the crystal orientation its own anisotropy angles. Large sensitivities were also observed

with respect to the neighboring blades because of the strong coupling through the disk

and shrouds. The disk dominated modes with low nodal diameter operational de�ection

shape pattern show that the sensitivities of the forced response function indicate the shift of

resonance frequency by change of sign for the sensitivities around the resonance frequency.
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Chapter 7

Validation and modeling of the

nonlinear forced response calculation

Before the calculation of the forced response there are several modeling decisions need to

be made. The way of modeling and the parameters of the forced response calculations can

greatly in�uence the calculated forced response functions. In order to be able to calculate

meaningful results of the sensitivity of forced response amplitudes, it needs to be made

sure that the calculated forced response is su�ciently robust and have a good basis for the

in�uence of the input numerical and mechanical parameters.

Moreover, for the calculation of the nonlinear forced response for bladed disks with

friction contact interfaces, it is essential to have the method for calculation of the vibration

amplitudes validated.

In this chapter the modeling issues are discussed together with the measurement data, if

available. The combined discussion gives an insight to how the modeling parameters change

the forced response amplitudes and resonance frequencies in relation to their measured

data.

The validation of the calculation forced response is generally done against other, already

validated, software or against measured vibration amplitudes that are obtained with vi-

bration experiments.

According to the knowledge of the authors, currently there is no commercially available

FE program that can calculate nonlinear forced response in frequency domain of dynamic

systems with friction contact elements. The calculation of the steady state solution of

the forced response with time domain solvers is prohibitive for large scale bladed disk

models. During the implementation phase of the PhD studies, a validation campaign has

been done at MTU Aero Engines, during which the forced response amplitudes have been
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Figure 7.1: Rotating excitation rig [34], which was used to obtain measured forced response

amplitudes and resonance frequencies used for the validation

validated against the measurement data obtained from the rotating excitation rig [31]. The

excitation rig is capable of easily controlling the resulting force level of the air jets that are

ejected for a pre-de�ned engine order excitation [34].

The validation campaign was done for the bladed disks, "stage A" and "stage B"

for which a validation campaign was done earlier, see [32], and the experimental data is

available at MTU. An overview of the analyzed con�gurations can be seen in Table 7.

Con�-

guration
Stage

Engine

order
Mode

Root

damping

Shroud

damping
UPD Tuned Mistuned

1 A low 1/1F X - - X -

2 A high 1/1F X X - X -

3 B low 1/1CD X X - X -

4 B high 2/1F X X - X X

5 B low 1/1CD X X X X X

6 B high 2/1F X X X X X

For stage A, the forced response of tuned bladed disks were calculated with (1) root

damping and open shrouds and (2) with root and shroud damping (closed shrouds). For

stage B, tuned and mistuned bladed disks were calculated for (3) to low engine order

excitation with root and shroud damping and (4) to high engine order excitation with

root and shroud damping. For stage B, under-platform dampers (UPD) were added to the
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already existing models of (3) and (4) which resulted in the most complex models of (5)

and (6).

The vibratory displacements were measured using MTU in-house non-contact vibration

measurement system for shrouded turbine blades. The measurement system is can capture

the maximum amplitude for all blades for each experimental run. Because after several

measurement runs a large amount of data is collected, the measurement data for each

con�guration is distilled into minimum, maximum and mean values and standard deviation

for the forced response amplitudes and for the resonance frequencies. It is worth noting,

especially when measured data is compared with forced response results for tuned bladed

disks, that the bladed disk measured in the tests is inherently mistuned.

7.1 Modeling strategies for tuned bladed disks

The modeling strategies were �rst studied on tuned bladed disks. By taking advantage of

the cyclic symmetric conditions, a higher discretization can be used for the �nite element

and contact interface modeling and the nonlinear forced response analyses are calculated

faster. Moreover, the validity of the learning from the studies of the forced response of the

tuned bladed disks are relevant in industrial applications and are a good basis for further

studies for mistuned bladed disks.

7.1.1 E�ect of number and distribution of contact elements

The number of nonlinear contact elements used for the nonlinear forced response simulation

has, together with the included harmonics, the largest in�uence on the computational

e�ort. The following studies are on the e�ect of the number and distribution of the blade

root joints nonlinear contact elements on the nonlinear forced response. For the analyses

the considered schemes of the contact element distributions are shown in Fig. 7.2. Here

one of four contact patches at the blade �r-tree root is shown. The nodes of the FE mesh

at this patch where the contact elements are applied are marked by green squares.

The nonlinear forced response has been calculated for all schemes shown in Fig. 7.2

and for low and high harmonic excitation levels, see Fig. 7.3.

Contact node schemes with 56 and 63 nodes per contact patch are obtained by selecting

every second row of the FE mesh. From Fig. 7.3 we can see that 56 friction contact scheme

provide higher the maximum amplitude and resonance frequency than 63 contact element

scheme.
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(a) 7 nodes (b) 12 nodes

(c) 15 nodes, variant A (d) 15 nodes, variant B

(e) 24 nodes (f) 27 nodes

(g) 36 nodes (h) 56 nodes

(i) 63 nodes (j) 119 nodes, all FE nodes

Figure 7.2: Location of nonlinear contact nodes on one blade contact patch (total number

of patches: 4)

(a) Forced response for the lower excitation level:

excitation level 1

(b) Forced response for the higher excitation level:

excitation level 5

Figure 7.3: Nonlinear forced response of cyclic symmetric bladed disk with di�erent number

of contact elements on the root contact interfaces

The forced response amplitudes calculated with 36 contact elements on each contact

patch are very close to the amplitudes calculated with 119 contact elements, for low and

high excitation levels. The scheme 36 would be recommended for the study of tuned bladed

disks if faster calculation time is required. Such analyses can be parametric or studies to

acquire statistical properties.

The evenly distributed nodes for the scheme with 36 contact elements are capable of
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capturing the slip occurring locally when excitation level 1 is applied.

If less contact elements are used, the amplitudes are either overestimated or underes-

timated for the low excitation level. The forced response is underestimated when 12, 15

variant B or 27 nodes are applied. For these schemes, many of the nodes are located at the

edge of the contact interface. This is where contact pressure concentrations occur however,

if the nodes on the contact interface are not coinciding, the calculated contact pressures

are low. At these nodes, especially at the top of the interface where slipping starts as

vibration amplitudes increase.

The schemes with 7 and 15 nodes variant A, all nodes are located within the edge of

the contact interface. The forced response calculated for these schemes overestimate the

forced response as it cannot capture the localized micro-slip on the contact surface.

Forced response calculated for high excitation level, shown in Fig. 7.3b, show less

di�erence between the nonlinear contact distribution schemes in respect of the maximum

amplitudes. This is due to the fact, that when high levels of harmonic excitation is applied,

most of the upper �r-tree contact patch slips. This behavior can be captured accurately

even with 7 to 15 nonlinear contact elements per surface.

The resonance frequency for both excitation levels decrease in the same manner as the

number of nonlinear contact elements are reduced. With 36 nodes on each of the contact

surfaces, the resonance frequency decreases about 1% compared to the reference solution

calculated with 119 contact elements. This is negligible for most practical applications.

With 12 elements per each contact interface, the maximum decrease in resonance fre-

quency is 4.5%. This deviation is more signi�cant and needs to be considered for practical

applications.

From this study it can be concluded that there is noticeable dependency of the nonlinear

forced response on the number and location of the nonlinear contact elements. As a general

tendency, by using less contact elements than what is available in the FE model, the

resonance frequency decreases, for the current model this decrease was 1-4%. This is due

to the decrease of the sti�ness of the dynamic system.

The second reason for the change of maximum forced response is the signi�cant vari-

ation of the contact pressure values over the contact interface surfaces. The choice of

di�erent number of nodes over the contact interfaces changes the location of the contact

nodes. The energy dissipated by friction is generally higher, for the considered operating

conditions, if contact elements are located where the contact pressure is relatively low. If

the contact elements are located at the parts of the contact surfaces where pressure levels
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is high enough to suppress the slip then these elements do not contribute to the friction

damping.

This e�ect is particularly important when the level of harmonic excitation is low, see

Fig. 7.3a. In order to obtain representative forced response amplitudes it recommended

to use a well-structured scheme, such as the one shown in Fig. 7.2g with 36 nodes.

7.1.2 Number of mode shapes considered

The operation de�ection shape of the nonlinear bladed disks with friction joints is calcu-

lated as the combination of the linear mode shapes. Generally, one mode is dominant in

the vibration response, but due to the nonlinearities energy is transferred to higher modes,

and they are also excited. Therefore, to accurately calculate the forced response function

many structural modes need to be included in the modal basis. It is worth noting here,

that the mode shapes included in the FRF calculation are obtained for bladed disks with

open contact surfaces. Which means, in general more modes of the structure with free

contact interfaces are required to capture the structure in contact.

The study for the e�ect of the number of mode shapes on the nonlinear forced response

has been done for MTU production bladed disks and calculated forced responses were

compared with the measurement data obtained from the excitation rig. For this study the

bladed disks forced response for con�gurations #2, #3 and #4 were calculated, see Table

7.

In general, it can be stated that for all analyzed tuned bladed disks, a converged

solution can be reached and the convergence over the number of modes included in the

FRF calculation is fast.

The analyses have shown that the number of modes included do not a�ect the calcula-

tion time of the nonlinear forced response. Nevertheless, it is worth remembering that the

number of linear modes calculated in the modal analysis can take signi�cant computational

e�ort for large systems when many modes are calculated.

Con�guration #2, stage A excited with high EO with root and shroud damping

The bladed disk geometry and the FE model of bladed disk is the production version of the

bladed disk used in the majority of this work, see for example Fig. 5.1. The bladed disk

four contact interfaces on the blade-root interfaces and two contact patches on the blade

outer shrouds. The reduced order model includes 440 nonlinear contact elements, which

results in a �ne contact discretization on all contact interfaces. The contact parameters,
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Figure 7.4: Nonlinear forced response of tuned bladed disks with varying number of modes

included, compared with minimum, mean and maximum over all measured data for con-

�guration #2

contact sti�ness and friction coe�cients, have an initial value kn = kt = k0, µshroud = µs0

and µroot = µr0. How the value of contact parameters a�ect the nonlinear forced response

is discussed in subsection 7.1.4.

The high engine order excitation is applied on the airfoil mid-span suction side. The

excitation frequency range is selected such that the �rst bending mode (1F) is excited.

The node of output is located on the trailing edge in the mid-span of the airfoil.

Th calculation here is done with harmonics 0,1,2 and 3 included. The forced response

of the tuned bladed disk calculated with 5 to 100 modes included, is shown in Fig. 7.4.

The forced response amplitudes can be captured well even for 5 modes, but with respect

to the resonance frequency, at least 30 modes are required to achieve converged solution.

The forced response amplitudes and resonance frequency is normalized in Fig. 7.4 with

respect to the mean forced response amplitudes and resonance frequencies. In this �gure,

the minimum, maximum and the mean value over all blades and for several measurement

runs are plotted, together with the calculated forced response curves. The calculated

forced response amplitude and the resonance frequency is within the mean and maximum

measured data, which is expected for the forced response amplitude calculated for tuned

bladed disks. The maximum forced response amplitude is larger than the mean measured

value, which is expected: the mean value of the forced response amplitude for mistuned

bladed disks is less than the amplitudes for tuned bladed disks.
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Figure 7.5: Nonlinear forced response of tuned bladed disks with varying number of modes

included, compared with minimum, mean, maximum and standard deviation over all meas-

ured data #3

Con�guration #3, stage B excited with low EO with root and shroud damping

The bladed disk of stage B has 4 contact interfaces on the blade roots and 1 contact

interface between the shrouds. The contact interfaces are discretized with 410 contact

elements in the reduced order model of the bladed disk. The contact parameters, contact

sti�ness and friction coe�cients, have an initial value kn = kt = k0, µshroud = µ0s and

µroot = µ0r . How the value of contact parameters a�ect the nonlinear forced response is

discussed in subsection 7.1.4. The low engine order excitation, applied on the suction side

of the airfoil near the blade tip and the trailing edge, excites the �rst coupled blade-disk

mode (1CD).

The calculation here is done with harmonics 0,1,2, and 3 included. The forced response

of the tuned bladed disk calculated with 5 to 40 modes included, is shown in Fig. 7.5. The

forced response amplitudes can be captured well even for 5 modes, but with respect to the

resonance frequency, at least 20 modes are required to achieve converged solution.

The forced response amplitudes and resonance frequency is normalized in Fig 7.5 with

respect to the mean forced response amplitudes and resonance frequencies. The calculated

forced response amplitude and the resonance frequency is outside of the range of minimum

and maximum measured data. The measured frequency range for the resonances is very

narrow, therefore in order to accurately capture the resonance frequency a very �ne FE

mesh needed for the modal analysis. Here, the deviation from the mean measured resonance

frequency is within 2%.

The minimum, maximum and the mean value over all measured forced response amp-
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litude are also shown in Fig. 7.5. In this �gure the standard deviation of the forced

response amplitudes are also plotted around the mean value. The two ends of the line

represent the standard deviation added and extracted from the mean value.

The calculated forced response amplitude is 5% higher for this mode than the measured

amplitude. The deviation for the vibration amplitudes is assumed to be caused by the

following factors: (i) the evaluation of the measurement data was done using linear modes

(ii) the uncertainty in the contact parameters, see subsection 7.1.4 (iii) static calculation

of the pres-stress state was done with nonlinear contact on the shroud which resulted in

contact only in a small portion of the contact interface leading to a softer system when

compared with a bladed disk with cyclic symmetric conditions on the shroud contact

interface (iv) forced response calculations generally show higher amplitudes than mean

values of mistuned bladed disks.

Con�guration #4, stage B excited with high EO with root and shroud damping

In this study the 2nd mode (1F) of stage B is excited by a high engine order excitation.

The excitation is applied on the suction side at the midspan of the airfoil. The contact

parameters, contact sti�ness and friction coe�cients, have an initial value kn = kt = k0,

µshroud = µ0s and µroot = µ0r . How the value of contact parameters a�ect the nonlinear

forced response is discussed in subsection 7.1.4.

The calculation here is done with harmonics 0, 1, 2, and 3 included. The forced

response amplitudes and resonance frequency is normalized in Fig 7.6 with respect to the

mean forced response amplitudes and resonance frequencies.

To reach converged solution, here more modes are needed than in the earlier studies: the

excited structural mode is from the second mode family. With 30 modes, convergence can

be reached. For any practical reason, with 10-15 modes the forced response is calculated

su�ciently accurate.
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Figure 7.6: Nonlinear forced response of tuned bladed disks with varying number of modes

included, compared with minimum, mean, maximum and standard deviation over all meas-

ured data for con�guration #4

The maximum forced response amplitude and the resonance frequency is within the

range of the measured values. The calculated amplitudes are within the measured mean

and maximum values resulting in successful validation.

7.1.3 Number of harmonic coe�cients

The number of harmonic coe�cients included in the FRF evaluation is one of the most

important parameters during the nonlinear forced response analyses. In order to be able

to capture the energy transfers to the higher harmonics, the higher harmonic coe�cients

need to be included. The change of the static equilibrium can be captured by including

the 0th harmonic number in the FRF calculation.

On the other hand, the size of the equation system of the nonlinear forced response in-

creases proportional to the number of harmonics included, which has a signi�cant in�uence

on the numerical e�orts. Moreover, the by considering the change of the static equilibrium

in normal and tangential directions, the number of bifurcation points along the solution

paths can increase leading to challenging path-following problems.

Con�guration #1, stage A excited with low EO with root damping

The bladed disk studied in con�guration #1 has contact on the blade roots, the shrouds

contacts are open and do not come into contact. The results of the study of nonlinear

forced response with di�erent number of harmonic coe�cients is shown in Fig. 7.7. The

nonlinear forced response function converges fast over the number of harmonics included.
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(a) Forced response curves with measurement data (b) Forced response curves zoomed for resonance

peak

Figure 7.7: Nonlinear forced response of cyclic symmetric bladed disk with di�erent number

of harmonic coe�cients included, compared with minimum, mean and maximum over all

measured data for con�guration #1

With harmonics 1 and 3 an accurate calculation can be calculated which is very near the

forced response function calculated with harmonics 0, 1,2,3,4,5,6 and 7. It is worth noting,

that the when the even harmonics and the 0th harmonic coe�cients are included in the

FRF calculations, the solution does not change. The reason for that is that the contact

interfaces on the blade roots do not separate over the vibration period.

For bladed disks with root contact, it is su�cient to include only odd harmonic num-

bers and with harmonics 1 and 3 su�ciently accurate forced response amplitudes when

compared with the measurement data. The calculated forced response amplitude is within

5% of the measured mean forced response amplitude. The resonance frequency is 2% lower

than the mean measured resonance frequency, the deviation has been attributed to the

lower natural frequency of FE model of the bladed disk.

Con�guration #2, stage A excited with high EO with root and shroud damping

The bladed disk of con�guration #2 has nonlinear contact interfaces on the blade roots

and on two contact patches of blade outer shrouds. The nonlinear forced response shown

in Fig. 7.8 shows a very fast convergence over number of harmonics included in the FRF.

With harmonics 0,1,2,3,4 converged results are obtained. For this bladed disk, the 0th

harmonic coe�cient is noticeable but not very signi�cant because the contact separation

for this bladed disk with two contact patches on the shrouds does not happen.
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Figure 7.8: Nonlinear forced response of tuned bladed disks with varying number of har-

monic coe�cients included, compared with measurements for con�guration #2

Con�guration #3, stage B excited with low EO with root and shroud damping

The e�ect of the number of harmonics on the nonlinear forced response was studied for

tuned bladed disk that is excited by low EO excitation, see con�guration #3 in Table

7. The results in Fig. 7.9a show that without including the 0th harmonic number, the

forced response amplitude and the resonance frequency is overestimated. The 0th har-

monic coe�cients are required to capture the contact separation on the shroud contact

interfaces. Moreover, not including the even harmonics leads to underestimated forced

response amplitudes.

The forced response functions plotted in �gure 7.9b show that convergence is very fast

once 0th, the �rst two odd and the �rst even harmonics are included. By including the

�rst 10 harmonic numbers, the change in forced response amplitudes is within a few %.

For the mode under investigation, the nonlinear forced response is calculated accurately

when the 0th harmonic numbers are included in the forced response function calculation.

The need for the 0th harmonic number is attributed to the partial separation of the shroud

contact interfaces. To investigate to what extent the contact interfaces separate, the rel-

ative normal displacement of the contact pairs are investigated at resonance frequency in

time domain. The relative displacements in time domain are obtained by evaluating the

Fourier expansion formula as

xr(t) = Xr,0 +

Nh∑
j=1

X
(c)
r,j cos(kjωt) +X

(s)
r,j sin(kjωt) (7.1)

where the xr(t) is the relative displacement of the contact nodes in time domain and Xr,0
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(a) Forced response curves with measurement data (b) Forced response at resonance calculated with

0, odd and even harmonics

Figure 7.9: Nonlinear forced response of cyclic symmetric bladed disk with di�erent number

of harmonic coe�cients included, compared with minimum, mean, maximum and standard

deviation over all measured data for con�guration #3

are the 0th harmonic coe�cients and X(c)
r,j X

(s)
r,j are the j-th harmonic coe�cients.

The contact interface on the outer shroud near the leading edge, is discretized by 38

nonlinear contact elements. The forced response is calculated with 0th and the �rst 7

harmonic numbers included, which allows for an accurate harmonic discretization, making

the identi�cation of contact-separation possible. The relative forced response displacements

can be recovered for arbitrary number of time points over the period, here 31 time points

are used.

For the contact elements the same static pre-stress level has been set. The over-closure

is expressed as u = pcontact/kn − u0, where u0 is the over-closure to pre-stress and kn is

the contact sti�ness in normal direction. Depending on the static pre-stress level and the

normal contact sti�ness, the contact separation happens at a certain relative displacement,

which can be express by u = −u0. The relative displacements in Fig. 7.10 have been nor-

malized by the value of the static over-closure u0. The relative displacement where contact

separation occurs is indicated with a horizontal line at normalized relative displacement

-1.

For con�dentiality reasons, the blade shrouds cannot be shown. In order to illustrate

the kinematics of the blade shroud contact interface, the relative displacements of the

contact elements are shown. The contact patch is making a rocking motion, over one

half of the period one side is separating and the other is in full contact. The contact

elements on the two sides of the contact patch, see Figs. 7.10a and 7.10c, separate with

large maximum relative displacements with approximately 90° degree phase shift. The Fig.

7.10b shows that 15 contact elements in the middle of the contact surface separate twice
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(a) Contact elements closer to leading edge (b) Contact elements closer to trailing edge

(c) Contact elements around the middle of the con-

tact patch

(d) Contact elements in the middle of the contact

patch

Figure 7.10: Surface normal relative displacements for all nodes on the shroud contact

interface for con�guration #3

over the period. There are only 3 contact elements that do not separate over the period,

see Fig. 7.10d. There is no time instant when all contact elements are separating which

would lead to hammering of the contact interfaces.

This study showed signi�cant separation occurs on the shroud contact patches, and

in order to accurately determine the contact-separation the 0th harmonic coe�cients are

required.

Con�guration #4, stage B excited with high EO with root and shroud damping

The e�ect of the number of harmonics on the nonlinear forced response was studied for

tuned bladed disk that is excited by high EO excitation, see con�guration #4 in Table 7.

The results in Fig. 7.11 show that without including the 0th harmonic number, the forced

response amplitude and the resonance frequency is overestimated. The 0th harmonic coef-

�cients are required to capture the contact separation on the shroud contact interfaces.

Moreover, not including the even harmonics leads to underestimated forced response amp-

litudes. In Fig. 7.11b, the forced response calculated for 0th, odd and even harmonics show

a very fast convergence.

In order to con�rm the assumption that the 0th harmonic coe�cient is required for the

dynamic systems where contact-separation occurs, the contact status over the period at

resonance frequency is studied for this mode of the bladed disk. Compared to the results

shown for the mode 1 excited with low EO excitation, shown in Fig. 7.10, for this mode
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(a) Forced response with measurement data (b) Forced response zoomed to resonance calcu-

lated with 0, odd and even harmonics

Figure 7.11: Nonlinear forced response of tuned bladed disks with varying number of

harmonic coe�cients included, compared with minimum, mean, maximum and standard

deviation over all measured data for con�guration #4

(a) Contact elements closer to leading edge (b) Contact elements closer to trailing edge

(c) Contact elements around the middle of contact

patch

(d) Contact elements in the middle of contact patch

Figure 7.12: Surface normal relative displacements for all nodes on the shroud contact

interface for con�guration #4
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Figure 7.13: Under-platform damper with springs for stage B

the more nonlinear contact elements are in contact over the whole period of vibration.

The relative normal displacements in Fig. 7.12 show that time intervals of separation are

reduced and the number of contact pairs in contact over the entire period increase to 8.

It is worth noting that the from the 38 nodes on the contact interfaces, 30 contact node

pairs separate at least at one time instant during the period.

The forced response calculation for this mode, despite that less separation occurs on the

blade shrouds compared to the bladed disk in con�guration #3, requires the 0th harmonic

for the accurate calculation.

Con�guration #6, stage B excited by high EO with root, shroud and UPD

damping

The e�ect of the number of harmonics is studied for the bladed disk in con�guration #6.

The bladed disk is excited with the same harmonic forces on the same frequency range as

for con�guration #4, but here an under-platform damper is included in the assembly see

Fig. 7.13. In the study for the harmonics included in the forced response calculation for the

bladed disk mode for con�guration #4, it has been shown that the 0th harmonics are need

to be included in the FRF calculation due to the separation on the blade outer shrouds.

With the introduction of the under-platform damper, the forced response amplitudes are

expected to decrease and through that the separation on the outer shrouds are also expected

to reduce. Which would mean that the error in the calculated forced response amplitudes

by not including the 0th harmonic coe�cients are is expected to reduce. The relative

displacements in surface normal direction, shown in Fig. 7.14 shows that the number of

contact elements in separation decreases. The focus of this study has been the modeling

of bladed disks with under-platform dampers including the 0th harmonic coe�cients in the

FRF calculation.

The mode shapes and the �exibility matrix of the under-platform damper is calculated

separately from the rest of the bladed disk structure. In order not to detune the natural
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(a) Contact elements closer to leading edge (b) Contact elements closer to trailing edge

(c) Contact elements around the center of the contact patch

Figure 7.14: Surface normal relative displacements for all nodes on the shroud contact

interface for con�guration #6

Figure 7.15: Nonlinear forced response of tuned bladed disks with varying number of

harmonic coe�cients included, compared with measurements for con�guration #6
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Figure 7.16: Sensitivity study of the nonlinear forced response of tuned bladed disks with

varying contact sti�ness and friction coe�cient, compared with measurements for con�g-

uration #3

frequencies of the damper, its boundary conditions are modeled as close to free-free bound-

aries as possible. If free-free boundary conditions are applied, the �rst six modes of the

damper are rigid body modes. If the 0th harmonic coe�cients are included in the FRF

calculation for a dynamic system with rigid body modes, the forced response amplitudes

become in�nite. In order to achieve sensible results the following work-around is proposed:

the underplatform damper is placed on soft spring, as shown in Fig. 7.13.

7.1.4 E�ect of variation of contact sti�ness and friction coe�cients

During the lifetime of the turbine blades, the contact surfaces are prone to fretting wear

and in certain cases to hammering on shroud contact interfaces. This leads to changing

contact parameters as the jet engine accumulates cycles, such as contact sti�ness and

friction coe�cients. Another reason for the study of the e�ect of the contact parameters

on the nonlinear forced response is the di�culty when measuring the sti�ness of the micro-

asperity layer of the rough contact surfaces.

The sensitivity studies for the friction coe�cients and for the contact sti�ness are

presented for the bladed disks and for the modes described in con�gurations #3 and

#4. The bladed disks have contact interfaces on the blade shrouds and blade roots, for

which an initial value of contact sti�ness and friction coe�cient are assigned: knormal =

ktangential = k0, µshroud = µ0s and µroot = µ0r . In this sensitivity study, the value of the

contact parameters are increased and decreased to account for the uncertainties.

The forced response functions for the varying contact parameters are shown in Figs.
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(a) Varying contact sti�ness (b) Varying friction coe�cient

Figure 7.17: Sensitivity study of the nonlinear forced response of tuned bladed disks with

varying contact sti�ness and friction coe�cient, compared with measurements for con�g-

uration #4

7.16 and 7.17. The friction coe�cients for the blade root and for the blade shrouds are

varied together in 0.1 steps. As for the contact sti�ness, by decreasing the sti�ness value

the system becomes softer resulting in lower resonance frequency and higher amplitudes.

For k0 and above forced response function converges and increasing the contact sti�ness

has negligible e�ect on the forced response. It is worth mentioning here, that setting the

contact sti�ness to a large value may lead to di�culty to converge and to longer calculation

times.

The e�ect of the change of friction coe�cients on the nonlinear forced response is similar

for both modes. By increasing the friction coe�cient the split limit µFn is increased,

therefore reducing the damping e�ect of the contact interfaces. It is also worth noting that

for con�guration #3 (Fig. 7.16) the reduction of the friction coe�cient values leads to a

more sharp-edged forced response function.

7.1.5 E�ect of multi-point-constraints between blade and disk

The mode shapes used for the FRF matrix calculation need to be mode shapes of the bladed

disk structure with free boundary conditions for the degrees of freedom where the nonlinear

contact elements are to be applied. Therefore, the contact elements of the nonlinear friction

joints are removed in the modal analysis. For some bladed disk assemblies the removal of

the the contact elements lead to rigid body modes. Moreover, because modes are calculated

in the rotating reference frame, the rigid body modes have complex natural frequencies

attributed to them. For these reasons, it is bene�cial to include additional multi-point-

constraints (MPC) in the modeling, in order to remove the rigid body modes. The MPCs



13th April 2022 136

(a) Leading edge

view

(b) Trailing edge view

Figure 7.18: Multi-point-constraint setup 1

(a) Leading edge

view

(b) Trailing edge

view

(c) Cross-section view

Figure 7.19: Multi-point-constraint setup 2

are applied to a very small number of FE nodes so it does not change dynamic behavior.

Here, the e�ect of the choice of nodes used for the application of MPCs was performed.

Two di�erent setups for the MPCs are used: see Figs. 7.18 and 7.19. The node pairs

shown in red and blue are coupled for all 3 degrees of freedom at each pair of nodes. Setup

1 has 8 pairs of nodes coupled by MPCs, which is sti�er. This setup restricts motion near

the edge of the contact interfaces. On the other hand, MPC setup 2 has only 3 pairs of

nodes coupled, which results in mode shapes that are closer to the mode shapes with fully

free contact interfaces.

The nonlinear forced response has been calculated for two di�erence excitation levels

(low and high) and with varying number of contact elements used for the root damping

discretization, see Fig. 7.20 The forced responses calculated for the two di�erent MPC

setups show little di�erence when detailed contact description is applied using large number

of nonlinear contact elements. When small number of friction contact nodes (e.g. 7 and

15) is applied, then the additional sti�ness introduced in MPC setup 1 has a noticeably

e�ect on the forced response: maximum amplitudes are higher (about 10%) and resonance
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(a) Excitation level 1 (b) Excitation level 5

Figure 7.20: Nonlinear forced response of tuned bladed disk with di�erent number of nodes

on the contact interfaces and MPC setups

frequency is slightly higher (about 1%).

7.2 Modeling strategies for mistuned bladed disks

The nonlinear forced response calculations require more computational e�orts than of the

simulations for their tuned counterparts. Therefore it is important to have an assessment on

the in�uence of the parameters that also a�ect the computational e�orts. The e�ect of the

number of contact elements, number of mode shapes and number of harmonic coe�cients

are considered on the nonlinear forced response of mistuned bladed disks. For some bladed

disks measurement data is available according to Table 7.

7.2.1 E�ect of contact pressure variation on shroud contact interfaces

The dynamic change of contact status is, among other factors, dependent on the static pre-

stress state of the contact interfaces. For mistuned bladed disks with contact interfaces,

the static contact pressures vary from one sector to another. In order to accurately capture

the change in the normal pressure values of the contact joints, a su�ciently detailed FE

discretization needs to be used. The desired accuracy can easily be achieved on the blade

root contact patches. The contact stresses on the �r-tree interfaces are generally evenly

distributed and their value is large. On the other hand, the contact interfaces on the outer

shroud transfer the contact forces on a small surface area and the contact forces are an

order of magnitude lower than the normal contact forces on the blade root contact surfaces.

The relatively low value of the contact pressures on the shroud contact surfaces function

as an e�ective damping device, but the accurate calculation of the contact pressures with

the FE models of mistuned bladed disks is challenging.
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In order to illustrate the e�ect of the shroud contact pressure variation on the nonlinear

forced response a tuned and a mistuned bladed disk with 75 blades are used. The damping

on the root is not considered for the analyses, the blade root - disk contact is modeled

with linear multi-point-constraints. There are two contact patches between each blade

on the shrouds, one near the leading edge and another one near the trailing edge. First,

the nonlinear contact interfaces are discretized by 5 contact elements per contact patch,

which results in 10 contact elements per blade and in 450 nonlinear contact elements in

the mistuned bladed disk. The calculations are done for one mistuned bladed with random

anisotropy orientation distribution. For the nonlinear static calculation, surface-to-surface

contact elements are applied on the two shroud contact interfaces for every blade. For the

static pre-stress state of the nonlinear contact elements of the forced response analysis, the

nodal normal pressure values of the converged nonlinear static solution is used. Due to the

variation of the anisotropy parameters from one blade to another, the contact pressures, and

potential contact gaps, are changing from one blade to another. The natural frequencies

and modal shapes calculated for the anisotropy mistuned blade disks are included in the

reduced order model.

In the model for the nonlinear forced response calculation there are two kinds of mis-

tuning included: modal mistuning through the mistuned modal basis and static mistuning

through the mistuned pre-stress �eld of the contact elements. On the bladed disk EO28

harmonic force is applied that excites the �rst mode (1F). The excitation amplitude is kept

contact for all analyses. For the calculation of the FRF harmonic numbers 1 and 3 are

included.

The envelope of the nonlinear forced response for tuned and mistuned bladed disks are

shown in Fig. 7.21. The normal stresses on the contact patches for the tuned and for the

modal mistuned bladed disks are the same. The envelope of the forced response shows

that the modal mistuned bladed disk has an ampli�cation factor higher than 1. On the

other hand, the maximum forced response of the bladed disk with both static and modal

mistuning, is lower than the maximum forced response of the tuned bladed disk. For

mistuned bladed disks, ampli�cation factor of smaller than 1 is against the expectations.

According to general observations vibration amplitude reduction of the mistuned bladed

disks are only obtained if aeroelastic e�ects are included in the analysis [73]. The variation

of the static contact condition on the shroud interfaces causes an increase in the damping

and results in reduction of forced response amplitudes for all blades. Such behavior, while

is worth studying in further detail, due to the relatively coarse FE mesh on the contact
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Figure 7.21: Nonlinear forced response of mistuned bladed disks with modal mistuning

and with combined modal and static mistuning

interfaces, the accurate evaluation of the contact pressure values on the shroud contact

interfaces are not possible.

Therefore, the e�ect of the contact pressure values on the nonlinear forced response of

the mistuned bladed disk are studied for tuned static pre-stress states on the shrouds. The

same value of the contact pressure is applied for every nonlinear contact element and the

value of contact pressure is changed in gradual steps. For the tuned bladed disk the normal

pressure value of 18 MPa is chosen. The contact pressure of the mistuned bladed disks

is varied between 2 and 20 MPa. The contact pressures applied for the shroud contact

interfaces are in the range that is realistic for turbine bladed disks.

The envelope of the nonlinear forced response of the mistuned bladed disks and the

forced response amplitudes of the tuned bladed disk is shown in Fig. 7.22. The results show

that small di�erences in the contact pressure values on the shroud interfaces have signi�cant

in�uence on the forced response amplitudes on the midspan of the bladed disk. The

amplitudes of the mistuned bladed disk for contact pressure values of 16 MPa or more are

higher than the amplitudes of the tuned bladed disk with 18 MPa contact pressures applied.

For lower contact pressure values, the stick-slip transition occurs for lower amplitudes and

results in increased damping. This study shows that for the assessment of the ampli�cation

factors of mistuned bladed disks with friction joints on shroud interfaces, the accurate

assessment of the static contact status including contact pressure values is essential.

It is important to note here, that the contact pressure values not only in�uence max-

imum forced response amplitudes, but also the distribution and the variance of the max-

imum forced response along the circumference of the bladed disk. The results of the studies
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Figure 7.22: Nonlinear forced response of mistuned bladed disks with varying tuned contact

pressures

are summarized in chapter 8.

7.2.2 E�ect of contact pressure variation on root contact interfaces

The e�ect of the static contact pressure variation due to anisotropy mistuning is studied

for a bladed disk with 75 blades, root damping and free shrouds. The contact pressure

values are obtained from the nonlinear static calculation. The static calculation is obtained

under centrifugal loading at the rotation speed of the EO14/1F crossing, see excitation B

in Fig. 6.3. The structural mesh on the root contact interfaces and the relatively high

contact pressure values allow for a reliable contact calculation using surface to surface

contact elements. Similarly to the analysis for the shrouds, the e�ect of the separate modal

mistuning and the combined e�ect of the modal and static mistuning on the nonlinear

forced response is studied. Under the modal mistuning here the mistuning of natural

frequencies, mode shapes and �exibility matrix are considered.

The reduced order model of the nonlinear forced response analysis is discretized by 6

nonlinear contact elements on the 4 contact patches of each blade root. The total number

of nonlinear contact elements in the bladed disk is 1800.

In order to quantify the e�ect of the static mistuning on the nonlinear forced response

two types of simulations were done: (i) mistuned modal properties and �exibilities but

applying the contact pressure values calculated for the tuned bladed disk model on the

nonlinear contact elements (ii) mistuned modal properties, �exibilities and contact pressure

values on the blade root interfaces.

In Fig. 7.23 the envelope of the forced response is shown for two mistuning patterns
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Figure 7.23: Maximum nonlinear forced response with separate and combined mistuning

e�ects for excitation frequency B

using both simulation input parameters. Both calculations resolve the resonance on the

same frequency range of 0.97 to 1. Nevertheless, it is worth noting that the frequency

of the highest response is di�erent for the two forced response functions. For mistuning

pattern 6 the maximum amplitude of the fully mistuned bladed disk is higher by 6.5%, but

for mistuning pattern 7 the maximum ampli�cation factor of the fully mistuned bladed

disk resulted in 3% lower value compared to the model where only modal mistuning was

introduced.

As described earlier, the envelope for the static and combined static and model mistun-

ing is similar. To see the di�erences between the forced responses amplitudes calculated

with the two modeling methods, the maximum forced response distribution for all the

blades is shown in Fig. 7.24 for pattern 7. In this �gure the maximum amplitude of the

blades signi�cantly di�er if the mistuning is only introduced in the modal characteristics

or in the static pressure values as well.

The study showed, accounting for the mistuning of the static pressure values is essen-

tial for the accurate calculation of the forced response. If only the modal mistuning is

considered, there is an error in the maximum forced response amplitude and resonance

frequency. On the contrary to the analyses with shroud contact only, the contact pressure

on the root friction interfaces can be reliably obtained with FE simulations using surface to

surface contact elements. Accounting for the combined e�ect of modal and static mistuning

is essential for obtaining correct distribution of the maximum forced response amplitude

distribution along the blades.
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Figure 7.24: Blade maximum forced response distribution with separate and combine mis-

tuning e�ects for excitation frequency B and pattern 7

7.2.3 Number of contact elements

The computational e�ort associated with the calculation of the nonlinear forced response

for mistuned bladed disks is highly dependent on the number of nonlinear contact elements

used for the discretization of the friction contact interfaces. The e�ect of the number of

contact elements was studied by varying the number of contact elements on the outer

shrouds. Where on the one contact interface between neighboring shrouds of the 84 blades

are discretized by 4, 9 and 12 contact elements for each blade. The studies were done

for the modes in con�guration #4, #5 and #6, see Table 7. The envelope of the forced

response for the modes under analysis are shown in Figs. 7.25-7.27.

For forced response of the mistuned bladed disk with UPD shown in Fig. 7.26 and 7.27,

the studies with varying contact elements show an expected behavior. By increasing the

number of contact elements, the sti�ness of the dynamic system increases. The increased

sti�ness shifts the resonance frequencies higher and decreases the vibratory amplitudes.

For the bladed disk with UPD and excited with low EO excitation (con�guration #5),

the di�erence in the maximum amplitudes between the calculations with 9 and 12 contact

elements is approximately 10 %. For the bladed disk excited with high EO, the di�erence

in amplitudes between discretizing the contact interfaces with 9 or 12 elements is negligible.

For the tuned bladed disk without UPD and for high engine order excitation of the

1F mode, it has been shown that at resonance majority of the contact elements separate

at least at one time point during the period, see Fig. 7.12. Therefore, to achieve accur-

ate forced response calculations that can capture strong nonlinearities, the high spatial
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Figure 7.25: Envelope of nonlinear forced response of mistuned bladed disks (con�guration

#4) for varying number of contact nodes for each blade sector

Figure 7.26: Envelope of nonlinear forced response of mistuned bladed disks (con�guration

#5) for varying number of contact nodes for each blade sector
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Figure 7.27: Envelope of nonlinear forced response of mistuned bladed disks (con�guration

#6) for varying number of contact nodes for each blade sector

discretization is required. For this mode, the maximum forced response amplitudes show

signi�cant variation depending on the number of contact elements applied. The maximum

amplitudes along the bladed disk circumference are dominated by mode localization that

leads to separation in the current analyses. To prove the validity of such behavior more

�nely modeled calculation would be required.

7.2.4 Number of mode shapes considered

While the number of mode shapes included in the modal basis for the nonlinear forced re-

sponse calculations does not noticeably in�uence the calculation e�ort, in the FE programs

the modal analysis is a very computationally intensive procedure. Therefore, it is recom-

mended to only include as many modes in the basis as required for the forced response

calculations. The studies have been done with di�erent bladed disk structures.

Mistuned bladed disks with shroud damping

The study of the number of mode shapes included in the FRF calculation is done for the

bladed disk with 75 blades. The analyses are for mistuned bladed disks (i) with stuck root

contact and 3 contact elements on each of the two shroud contact interfaces for each blade

and (ii) with nonlinear root contact discretized by 28 contact elements on the �r-tree and

free shroud. The bladed disk with closed shroud is excited EO28 excitation, the bladed

disk with open shroud with EO14 excitation. The bladed disk with root damping has

mistuned static contact pressure, for the bladed disk with closed shrouds 8 MPa surface

normal pressure is applied.
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Figure 7.28: Nonlinear forced response of mistuned bladed disks with shroud damping for

varying number of modes included

The e�ect of the number of modes included in the forced response function calculation

was studied �rst for the mistuned bladed disk with shroud damping. The number of modes

included were varied on the range of 150 to 500 modes, which is equivalent to approximately

1.5 to 5 mode families. The envelope of the nonlinear forced response in Fig. 7.28, show

that with less than 200 modes included, the resonance cannot be captured. Using 300

modes, the resonance can be captured, but due inaccuracies the maximum forced response

amplitude is not yet converged. For a practically converged solution, 400 modes, about 4

mode families are required.

Mistuned bladed disks with under-platform damper

The e�ect of the number of mode shapes on the forced response of mistuned bladed disks

with under-platform dampers have also been studied. To this end, the �rst bending mode

of a mistuned bladed disk with open shrouds under EO14 excitation was studied, see A

in Fig. 8.1. The blade root contact interfaces are considered to be fully stuck, and the

under-platform damper has a cottage roof design. On two upper surfaces of the UPD,

where the friction forces appear, three nonlinear contact elements are applied. For the

forced response function calculation harmonics 1,2,3 and 4 were included. In 3.4.4 it has

been described that the input of the model description of the nonlinear forced response

calculation for bladed disks assemblies with UPD are provided separately for the bladed

disk structure and for the damper structure. This means that the e�ect of the change in

the number of mode shapes can be studied independently in regard of the bladed disk and

the under-platform damper modes.
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The nonlinear forced response calculations were done for the number of bladed disk

structure modes, on the range 40-500. Because the system does not include any friction

damping elements in the bladed disk structure, the convergence can be achieved faster

than for the bladed disks with root or shroud damping. This is due to the fact, that the

linear mode shapes of the bladed disk assembly are calculated for the FE model, where

multi-point constraints are applied between the blade roots and the disk. This results in

a very fast convergence over the mode shapes: with 80 mistuned bladed disk modes the

converged forced response function can be obtained, see the forced response envelope in

Fig. 7.29. Here, 20 UPD modes were included.

Figure 7.29: Nonlinear forced response of mistuned bladed disks with under-platform

damper for varying number of bladed disk modes included

Figure 7.30: Nonlinear forced response of mistuned bladed disks with under-platform

damper for varying number of UPD modes included
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In the subsequent analyses, the forced response with varying number of under-platform

damper modes were done, using 500 bladed disk modes. The damper model does not

include any boundary condition, which results in the �rst six modes of rigid body modes.

The forced response envelope curves in Fig. 7.30, show that there is no change in the

forced response of the bladed disk when the number of UPD modes are varied. The forced

response analysis does not include the 0 harmonic component, which means that no energy

is transferred to the rigid body modes of the dampers. The higher damper modes, with

non-zero eigenvalues, have at least 20 times higher natural frequency than the bladed disk

mode excited.

Mistuned bladed disk with shroud damping and UPD

For the mistuned bladed disk calculated with the parameters of con�guration #5, the ef-

fect of the number of modes included in the forced response calculation was studied. The

envelope of the forced response, shown in 7.31, shows that with 500 modes (approximately

5 mode families) convergence is reached. The excited mode is from the �rst mode family,

therefore 200 modes (more than 2 mode families) are su�cient for capturing the reson-

ance. By including 300 modes in the forced response calculation, the resonance frequency

is showing a converging tendency and the maximum amplitude �uctuates around the con-

verged amplitude. It is also worth noting that for the calculation with 400 modes, some

overhanging branches are calculated at f = 1.035 and at f = 1.048. The phenomena is as-

sumed to be due to energy transferred into higher modes. It is assumed that for 400 modes

the mode family where the energy is transferred to is only partially included. Therefore,

the energy transfer takes place but there are not all modes included to accurately cap-

ture it. For the calculation with 500 modes, the forced response function smoothens out

on these frequency ranges, showing that including more modes can stabilize the forced

response calculation.
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Figure 7.31: Nonlinear forced response of mistuned bladed disks (con�guration #5) with

shroud damping and under-platform damper for varying number of bladed disk modes

included

Mistuned bladed disks with root damping

Similarly, for the blade disk with free shrouds and root damping, the e�ect of number of

modes included on the nonlinear forced response amplitudes was studied. The envelope

of the forced response for mistuned bladed disk to EO14 excitation of mode 1, see A in

Fig. 8.1 is shown in Fig. 7.32 for modes ranging 100 to 400. With low number of modes,

100-150, the resonance cannot accurately be captured. By including at least two mode

families, the resonance is accurately calculated.

Figure 7.32: Nonlinear forced response of mistuned bladed disks with root damping for

varying number of modes included
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Figure 7.33: Nonlinear forced response of mistuned bladed disks (con�guration #5) with

shroud damping and under-platform damper for varying harmonic numbers included

7.2.5 Number of harmonic coe�cients

The computation e�ort of the nonlinear forced response, apart from the number of nonlin-

ear contact elements, is greatly dependent on the number of harmonic coe�cients included.

In order to �nd a balance between the computation e�ort and the accuracy of the nonlinear

forced response it is worth looking at the harmonic numbers included.

For this study, the production models of turbine bladed disks with UPD are used. In

the earlier section, it has already been shown that by including the underplatform damper,

the separation on the outer shrouds are signi�cantly reduced. This allows for not including

the 0th harmonic numbers for the calculations.

For the coupled-disk mode excited by low EO excitation, see Fig. 7.33, the already

monoharmonic calculation gives a relatively good approximation. Converged solution can

be reached by including the �rst 6 harmonics. The noticeable di�erence between calcula-

tions with harmonics 1, 2, 3 and 1, 2, 3, 4 indicates that both even and odd harmonics

need to be included. The di�erence in forced response amplitudes between including the

�rst four and �rst six harmonics is negligible, therefore, to save on the computation e�orts,

including the �rst four harmonic numbers are su�cient.

For the 1F mode excited by high EO excitation, see Fig. 7.34, the monoharmonic

calculation gives an inaccurate approximation for the forced response amplitudes. The

di�erence in the maximum forced response for the calculation with the �rst four and �rst

six harmonics is noticeable. On the contrary for the previous analysis, here by including

more harmonic numbers as the forced response calculation converges, maximum amplitudes

decrease. It is worth noting that the calculations show that including the even harmonics
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Figure 7.34: Nonlinear forced response of mistuned bladed disks (con�guration #6) with

shroud damping and under-platform damper for varying harmonic numbers included

only has limited in�uence on the forced response amplitudes.

7.3 Validation of the forced response amplitudes for mis-

tuned bladed disks

For the validation of the nonlinear forced response for mistuned bladed disks the con�g-

urations 4 and 6 for stage B have been chosen. The modal basis for the FRF calculation

includes 800 modes, about 9 mode families, and the harmonics 0, 1, 2 and 3 were included.

The blade root interfaces are considered to be completely stuck, and the major source

of energy dissipation through friction forces is on the shrouds, which is discretized by 12

nonlinear contact elements on each blade. Based on the learnings from the analyses for

the tuned bladed disks, the number of modes and harmonics will be su�cient for accurate

calculation. The modal properties, �exibility, sti�ness and mass matrices were calculated

using the anisotropy mistuned whole bladed disk FE model.

Comparison of calculated and measured forced response amplitudes for con�g-

uration 4

For con�guration 4, the nonlinear forced response has been calculated two di�erent con�g-

urations for the shroud contact pressures. First, tuned contact pressure is applied, i.e. for

all blade shroud contact interfaces the contact force in normal direction is the same. The

mistuned contact pressure distribution of the normal forces has been calculated based on

the mistuned bladed disk FE model and are shown in Fig. 7.35.
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Figure 7.35: Normal shroud contact force variation along bladed disk circumference

Figure 7.36: Envelope of the mistuned forced response for con�guration 4

The nonlinear forced response for the mistuned bladed disk and using the tuned contact

pressures has been directly obtained from the reduced order model for one node along the

trailing edge of each blade. The maximum forced response along over all blades for every

excitation frequency, i.e. the envelope of the forced response, is shown in Fig. 7.36. For

the calculation of the nonlinear forced response, the 0th harmonics were included in for all

three spatial directions for all nonlinear degrees of freedom. When the maximum forced

response amplitudes over the period are evaluated, the 0th harmonics are considered, see

Eq. 3.44. In general, if the acceleration rate is slow enough, the contactless measurement

techniques do not measure the static components of the vibration, which is generally due

to change of equilibrium on the nonlinear contact interfaces.

Therefore, it is worth visualizing the maximum forced response amplitudes over the

period (i) with accounting for static components (i.e. 0th harmonic components) and (ii)

with considering only the dynamic components. The two envelopes in Fig. 7.36, show that

when only the dynamic displacements are included in the calculation of maximum forced
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Figure 7.37: Measured and calculated dynamic forced response amplitude distributions for

anisotropy mistuned bladed disk of con�guration 4 using tuned contact pressures

response amplitudes, the maximum forced response is higher than the measured mean

and lower than the measured maximum value. The envelope for the maximum amplitude

considering the static component of the vibration, is signi�cantly larger than the maximum

measured forced response amplitude for the main resonance at ω = 1.046.

The forces response has also been calculated for mistuned contact pressure conditions.

A direct comparison of the maximum blade (i) combined static and dynamic and (ii) only

dynamic amplitudes is shown in Fig. 7.38. For all practical reason, there is no di�erence

in dynamic amplitudes for the two calculations. A limited e�ect of the mistuned contact

pressures can be seen in Fig. 7.38a, where the forced response amplitude considering both

static and dynamic response is plotted. By the introduction of the contact mistuning, the

maximum forced response amplitude slightly increases. The results show that the e�ect

of anisotropy orientation on the blade sti�ness has a greater in�uence on the nonlinear

forced response than the contact pressure distribution introduced through the anisotropy

orientation scatter.

The BSSM-T measurement technique allows to capture the maximum dynamic forced

response amplitudes around the resonance measured. This o�ers the opportunity to do

a blade-to-blade comparison between the measured and calculated forced response amp-

litudes. In Fig. 7.37 the individual blade maximum forced response amplitudes are plotted

for six di�erent vibration survey runs and for the dynamic displacements calculated with

ContaDyn. In these �gures it can be seen that the characteristics of the distribution for the

vibration amplitudes along the bladed disk circumference are captured. The mean value

over the amplitudes is in good agreement with the measured data and the high nodal dia-

meter pattern with local amplitude increases is also reproduced. The agreement between
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(a) Comparison of amplitudes for combined static and dynamic response

(b) Comparison of amplitudes for dynamic response

Figure 7.38: Dynamic only and combined static and dynamic forced response distribution

for con�guration 4 calculated with tuned and mistuned normal contact forces

the measured and calculated forced response is especially noteworthy considering that the

only source of mistuned included in the calculations were the crystal orientation variation

of the single crystal blades. The range of variation of the maximum forced response amp-

litudes is not fully captured, see Table 7.1, where the variation for the calculated forced

response is 30% lower compared to the measurements. This discrepancy is considered to

be due other sources of mistuning that are not modeled here e.g. variation of contact

parameters, airfoil geometry variation, etc.

In Fig. 7.38a, it can clearly be seen that some blades have signi�cantly larger vibratory

amplitudes than others due to static component of the nonlinear vibration. The static

components describe the change of equilibrium state on the contact interfaces due to the

nonlinear vibration. It is worth investigating the contact status of the nonlinear contact

elements for the individual blade shrouds, see Fig. 7.39.

The contact status "fully stuck contact with positive/negative shift" is to be understood

that the 0th harmonic coe�cient is non-zero and depending on the de�nition of surface

normal it de�nes either a positive or negative shift of the static equilibrium. The "slip-stick
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Table 7.1: Statistical parameters for maximum forced response amplitudes along the bladed

disk circumference for con�gurations 4 and 6

Con�guration
Mean Standard deviation

Calcu-

lation

Measure-

ment

Calcu-

lation

Measure-

ment

4 0.94 1.0 0.2 0.28

6 1.18 1.0 0.13 0.29

Figure 7.39: Contact status distribution for shroud contact interfaces along the bladed

disk circumference at resonance frequency ω = 1.046

transition with full contact" means that there is at least one time instant in the vibration

period when contact pairs of the element is slipping, nevertheless there is no separation at

any time instant. Similarly, the "contact-separation with friction" means that during the

period there is at least one time instant when the contact pairs are separating.

In Fig. 7.39, it can be seen that for the blades that have a high static component in the

vibration of the airfoil, also have a large proportion of the nonlinear contact elements on

the shroud separating. As an example blade numbers 11, 30, 34 and 51 can be mentioned.

Therefore, the separation of the contact elements on blade shrouds results in shift of

equilibrium point of the vibration. Due to the mistuning in the bladed disk, such e�ects

occur locally, only for a few blades.

Comparison of calculated and measured forced response amplitudes for con�g-

uration 6

The mistuned bladed disk in con�guration 4 is extended with under-platform dampers, see

Fig. 7.13 where the red nodes denote the location nonlinear contact elements applied in

forced response analysis.
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Figure 7.40: Envelope of the mistuned forced response for con�guration 6

Figure 7.41: Measured and calculated forced response amplitude distributions for mistuned

bladed disk of con�guration 6

The envelope of the forced response shown in Fig. 7.41 show that the maximum forced

response amplitudes are in good agreement with the measured amplitudes. On the contrary

to the anisotropy mistuned bladed disk in con�guration 4., here the static component of

the nonlinear forced response is signi�cantly lower: the di�erence between the envelopes

for dynamic only and dynamic and static amplitudes are small. The contact status along

the individual blades in the bladed disk assembly, see Fig. 7.41, also give a con�rmation

that there is no blade shroud contact interface where signi�cantly high portion of contact

elements are in separation.

The distribution of the forced response amplitudes along bladed disk circumference is

shown in Fig. 7.41. The calculated forced response amplitudes are conservatively estim-

ated compared to the measured amplitudes: the calculated mean is 20% higher than the
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Figure 7.42: Contact status distribution for shroud contact interfaces along the bladed

disk circumference at resonance frequency ω = 1.069

measured one. For this con�guration, the characteristics of amplitude distribution is well

reproduced, i.e. the EO pattern is visible and the trend of higher and lower amplitudes for

some blades are in agreement.

The full range of variation compared to the maximum measured forced response amp-

litudes are not captured, see Table 7.1 where the normalized standard deviation of the

maximum amplitudes from the measurement is 0.29 and for the calculation 0.13. The

reason for calculating low standard deviation for the simulation results clearly lies within

the lack of capturing the low vibratory amplitudes. For this con�guration it may be pos-

sible that the UPD works signi�cantly better for some blades as to others. Together with

the learnings that for con�guration 4 the amplitude variation was only 30% higher than

for the calculated results, a possible reason for not capturing the variation lies in the UPD

mistuning.

7.4 Conclusions

In this chapter, the modeling methods for the calculation of the nonlinear forced response

and its validation against measurement data has been done.

The numerical and physical parameters for the nonlinear forced response calculation of

structures with friction joints were done. During this validation, the e�ects of modeling and

friction interface parameters on the accuracy of forced response predictions are assessed

including: (i) the number of mode shapes included in the bladed disk FRF matrices, (ii)

the number of harmonics included in multiharmonic periodic forced response representa-

tion, (iii) the values of contact parameters: friction coe�cients and contact sti�ness and

(iv) number of nonlinear contact elements used for the discretization of friction joints. By
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changing the mentioned numerical parameters the accuracy of the forced response and the

computational e�orts are changing. Because the forced response analyses for the whole

model of mistuned bladed disks require signi�cant computational e�orts, the appropri-

ate selections of theses parameters are required. Depending on the expected behavior of

the structure, recommendations have been formulated regarding the number of modes,

harmonic and contact elements required for the analyses.

The studies regarding the contact pressure variation on the shroud contact interfaces

have been done, highlighting the e�ect on the nonlinear forced response amplitudes.

The calculated nonlinear forced responses are compared with the experimental values

obtained for di�erent bladed disk con�gurations for tuned and mistuned bladed disks

including cases of: (i) blade root damping only; (ii) blade root and shroud damping and

(iii) blade root, shroud and under-platform damper damping. The cases of lower and higher

order excitations of bladed disk vibrations by traveling wave excitations are considered.

The comparison shows su�cient accuracy of the predicted results. The calculated forced

response amplitudes are within the scatter of blade amplitudes observed in the experiments:

slightly higher than the measured mean amplitudes and lower than the maximum measured

values.

The new facility of ContaDyn and InterDyn for the calculation of nonlinear forced re-

sponse for anisotropy-mistuned bladed disks, where the di�erences in the crystal orientation

of the single- crystal blades are considered, have been validated for two con�gurations. The

comparison of the calculated and measured maximum amplitudes obtained for all blades

in the anisotropy-mistuned show a general agreement for the con�guration with shroud

friction contacts. This indicates that when the nonlinear forced response for anisotropy-

mistuned bladed disks is considered, the mean amplitude over all blades is accurately

obtained and part of blade-to-blade variation is captured. Moreover, to some extent the

characteristics of the blade-to-blade variation along the circumference, e.g. localizations are

captured. For the mistuned bladed disk with under-platform dampers, the mean response

level is conservatively calculated but the variation of amplitudes is underestimated.
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Chapter 8

Nonlinear forced response and its

sensitivity for the anisotropy

mistuned bladed disks

Until now, the tools for the calculation of the nonlinear forced response and its sensitivities

have been validated. This chapter is on the nonlinear forced response of the mistuned

bladed disks and their sensitivities with respect to the anisotropy orientation of the single

crystal turbine blades.

The studies are �rst are focused on the nonlinear forced response of the nonlinear forced

response. The variance of the maximum forced response amplitude distribution along the

circumference of the mistuned bladed disk has been analyzed. The studies have considered

varying input parameters, such as the level of harmonic excitation, multiharmonic excita-

tion, engine order and mistuning pattern.

The sensitivity of the nonlinear forced response is studied for a pair of blades and

realistic bladed disks with and without under-platform damper.

8.1 Nonlinear forced response of mistuned bladed disks

Parametric studies were done for mistuned bladed disks regarding the harmonic excitation

levels and the value of contact pressure on the friction contact interfaces. For tuned and

mistuned bladed disk the damping e�ciency of an UPD design was studied for varying

engine order excitation.
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8.1.1 E�ect of harmonic excitation level on the nonlinear forced re-

sponse of mistuned bladed disks

The level of harmonic excitation can vary within a certain range during the engine oper-

ation. A robust friction damper design is e�ective on a wide range of excitation levels.

The e�ect of the harmonic excitation level was studied for a mistuned bladed disk with

root damping and for a mistuned bladed disk with shroud damping and under-platform

damper.

Mistuned bladed disk with root damping

First, the forced response of the bladed disk is analyzed for a model where the nonlinear

contact interfaces are only on the root and the shrouds are considered to be free. Using

this model the e�ect of the root damping can be assessed for the anisotropy mistuned

bladed disks. For each blade root 24 contact elements are applied, resulting in 1800 non-

linear contact elements for the whole bladed disk. The static pre-stress of the contact

elements, in the form of contact pressure are obtained from a nonlinear static calculation

with surface-to-surface penalty contact. For the static calculation the actual anisotropy-

mistuning pattern is used, meaning that the contact pressure values on the blade root are

inherently mistuned.

For the FRF calculation the harmonic numbers 1,3 and 5 are included, as there are

not separations expected on the blade roots which would require the use of 0th and even

harmonics.

The harmonic excitation forces are applied on the pressure side of each blade and

excitation force is equally distributed over 8 nodes. The forced response amplitudes are

studied for each blade on the same node on the trailing edge. For the radial location of

the node of interest, the blade tip is chosen where the maximum forced response of the

bladed disk is. To investigate the nonlinear forced response for di�erent excitation levels,

the normalized harmonic loading is changed between the values of 0.2, 0.6 and 1. The

studied harmonic excitation engine order is the 8th and 35th and it excites the �rst family

of modes, denoted with A and B in Fig. 8.1. The two engine order excitations are assumed

to be at the same rotation speed, meaning that the rotation speed dependency of the modal

properties and the static contact pressures is not included.

The 500 modes, equivalent to approximately 6 mode families, included in the forced

response function calculation are su�cient for accurately capturing the nonlinear forced

response of the 1st mode.
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Figure 8.1: Natural frequency-nodal diameter diagram of the cyclic symmetric model with

stuck and free shroud interfaces

For the studies, �ve di�erent anisotropy mistuning patterns are generated using random

sampling from the realistic statistical distributions de�ned for each of the anisotropy angles

(α,β and ζ) of the single crystal turbine blades. To be able to assess the ampli�cation

factors due to mistuning, the forced response of the tuned bladed disk is calculated. For

the tuned bladed disk, the material axis [001] of all blades is coinciding with the stacking

axis of the blade, meaning that α = 0.

The forced response for all blades at the same node of the blade tip is shown for

mistuning pattern 1 in Fig. 8.2. This �gure shown di�erent maximum forced response

amplitude and the frequency of the maximum forced response amplitude also varies for

each blade. Here, the largest ||p|| = 1 excitation amplitude is applied, which initiate high

vibratory response on the airfoil and also on the blade roots which results in high frictional

damping. The high frictional damping results in wider and reduced resonance peaks.

For the mistuned bladed disks, the maximum forced response over all blades is higher

than the maximum forced response of the tuned blade disk. This means, that the ampli-

�cation factor larger than 1 ampli�cation factor can be observed in Figs. 8.3 an8.4, where

the envelope of the forced response is shown for bladed disks with 5 mistuned patterns.

The ampli�cation factor is di�erent for harmonic excitation level. Nevertheless, for all

mistuning patterns it follows the same tendency, namely that for higher excitation levels,

the ampli�cation factor decreases.



13th April 2022 161

Figure 8.2: Forced response of all blades of the mistuned bladed disk with root damping

for pattern 1 using excitation level ||p|| = 1 at excitation frequency A (EO8)

The Figs. 8.3 and 8.4, apart from the forced response envelopes also include the mean

value of maximum forced response amplitudes and their frequency averaged over all blades

in the �ve di�erent mistuned bladed disks.

In case of EO8 the mean value of the forced response for each bladed disk is lower than

the maximum forced response of the tuned bladed disk: it is between 91% and 99% of the

tuned forced response. This value for EO35 is larger than calculated for the tuned forced

response: between 107% and 117% compared to the tuned forced response to EO35. It is

worth noting that the mean value of the forced response is lower, as the damping increases

through the increased excitation level.

The bladed disk only includes damping of the blade root interfaces and the shrouds

are free. Therefore, the coupling between the blades is small and only happens via the

disk. This results in a noticeable variation of the frequency of maximum forced response

amplitude for each blade in the mistuned bladed disk. This variation is noticeable in the

three-dimensional plot of Fig. 8.2 and also in the wide resonance peaks in the forced

response envelopes, see Figs. 8.3 and 8.4.

The e�ect of the excitation level on the ampli�cation factor of the mistuned bladed

disks averaged over the bladed disks with the �ve di�erent mistuning patterns is shown

in Fig. 8.5. In this Figure, the mean value of the ampli�cation factors to both EO8 and

EO35 excitation of the �rst bending mode is shown for varying excitation levels. The

results show that for both engine orders the ampli�cation factor monotonously decreases

as the excitation amplitude increases.

Furthermore, the maximum forced response distribution along the blades has been
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(a) Forced response to low excitation level: ||p|| = 0.2

(b) Forced response to medium excitation level: ||p|| = 0.6

(c) Forced response to high excitation level: ||p|| = 1

Figure 8.3: Forced response envelope of anisotropy-mistuning bladed disks with root damp-

ing for 5 di�erent mistuning patterns to excitation frequency A
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(a) Forced response to low excitation level:||p|| = 0.2

(b) Forced response to medium excitation level:||p|| = 0.6

(c) Forced response to high excitation level:||p|| = 1

Figure 8.4: Forced response envelope of anisotropy-mistuning bladed disk with root damp-

ing for 5 di�erent mistuning patterns to excitation frequency B (EO35)
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Figure 8.5: Mean of ampli�cation factor for varying excitation level for excitation frequency

A (EO8) and B (EO35) in the case of mistuned bladed disks with root damping

Figure 8.6: Averaged mean and standard deviation of maximum forced response for all

blades along the circumference of the mistuned bladed disk with root damping for varying

excitation level for excitation frequency A (EO8) and B (EO35)

studied for the �ve excitation levels. As an overview, the mean value and the standard

deviation of the maximum forced response amplitudes along the circumference of the bladed

disk is shown in Fig. 8.6, for EO8 and EO35 considering varying levels of excitation

amplitude. Similarly to the averaged ampli�cation factors, the averaged standard deviation

of the maximum blade amplitudes for the mistuned bladed disks monotonously decrease

as the excitation amplitude increases.

The maximum forced response distribution along the blades has been visualized in

Fig. 8.7 for the frequency range 0.9-1.04 of interest. The plots show the forced response

amplitudes for the anisotropy mistuning pattern 1 and for three excitation amplitudes,

||p|| = 0.2, ||p|| = 0.6 and ||p|| = 1. The similarity between the maximum forced response



13th April 2022 165

Figure 8.7: Blade maximum forced response distribution for di�erent excitation levels for

mistuned bladed disk with root damping

values for all the blades can be seen for ||p|| = 1 and ||p|| = 0.6. For these excitation

levels the nonlinear friction forces appear on the blade roots. The maximum amplitude

distribution of the blades is signi�cantly di�erent for excitation level ||p|| = 0.2. It can be

seen that the excitation level in�uences the maximum blade response distribution and as

shown earlier, the variation of the maximum forced response over the blades.

Mistuned bladed disk with shroud and under-platform damping

The e�ect of the change in excitation amplitude on the nonlinear forced response of mis-

tuned bladed disks was studied for an anisotropy-mistuned bladed disk with nonlinear

contact interfaces on one shroud surface and on two blade to under-platform damper con-

tact interfaces for each blade. The contact interfaces between the blade-root and disk is

considered to be fully stuck, therefore it is modeled by linear multi-point-constraints. This

also means that the modal properties can be calculated with fully stuck blade-root contact

interfaces, requiring to calculate less bladed disk modes. For the FRF calculations 400

bladed disk and 20 UPD modes are included. The calculation uses all harmonic numbers

from 0 to 5. Because the FRF calculation includes the 0th harmonic number, the UPD

needs to be constrained to avoid the rigid body modes. The under-platform damper is

placed on soft springs in the four lower corners of the UPD body, see Fig. 8.8. In all

four positions there are three springs in the three spatial directions. One end of the spring

has �xed BCs and the other end is connected to the damper. In order, not to detune the

higher modes and not to include noticeable additional sti�ness, the spring sti�ness is set

low: ks = 10−3N/mm. The natural frequency of the �rst six modes of the UPD is between

5 and 13 Hz, which is su�ciently far from the rigid body modes and from the excitation
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Figure 8.8: Under-platform damper placed on soft springs

Figure 8.9: Envelope of forced response for di�erent excitation levels for mistuned bladed

disk with shroud and UPD damping

frequency.

For the contact interfaces on the shrouds a �ne discretization is used, with 14 nonlin-

ear contact elements for every sector. There are 3-3 contact elements on both sides of the

cottage-roof style under-platform damper. In the whole bladed disk there are 15,000 non-

linear contact elements included. There is no static mistuning introduced: for the contact

elements the same contact pressure is used for every sector. Moreover, the contact pressure

for all contact elements on the shrouds are the equal. Similarly, the contact pressure for

all UPD contact elements are the same.

The bladed disk is anisotropy-mistuned, where the blades have random anisotropy

angles sampled from their realistic statistical distribution. The harmonic excitation is

applied on the trailing edge of each blade with the phase shift of EO20. The e�ect of

the amplitude of the harmonic excitation on the nonlinear forced response amplitudes is

studied on the normalized range of 1 to 10.

The envelope of the nonlinear forced response is shown for the varying excitation amp-
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Figure 8.10: Forced response of the blade with maximum amplitude on the frequency range

for di�erent excitation levels for mistuned bladed disks with shroud and UPD damping

litudes in Fig. 8.9. In order to illustrate the change of the forced response amplitudes over

the excitation frequency, the forced response of the blade with the maximum displacements

are shown in Fig. 8.10. The �gures show that forced response function for excitation level

1 is asymmetric around the resonance and there are two distinct resonance peaks. For

excitation level 1 the forced response does not have any overhanging branches. By increas-

ing the level of excitation the relative displacements between the contact interfaces of the

neighboring blades increase, resulting in partial contact separation. Due to the change in

the bladed disk sti�ness results in multi-valued forced response functions for the excitation

levels 2 and above. In Fig. 8.10 the blade number of the maximum forced response is

also shown for every excitation level. The blade number for the maximum forced response

amplitude is di�erent for every excitation amplitude. This shows that for mistuned bladed

disks with strong nonlinearities, the distribution of the maximum forced response amp-

litudes along the bladed disk circumference are signi�cantly in�uenced by the excitation

amplitude.

8.1.2 E�ect of contact pressure level on the nonlinear forced response

of mistuned bladed disks with shroud contact interfaces

The analysis of the e�ect of contact pressure level at the outer shroud contact patches

on the nonlinear forced response was studied for the mistuned bladed disk studied in

subsection 7.2.1. The input parameters of mistuning pattern, harmonic excitation etc. are
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Figure 8.11: Nonlinear forced response of mistuned bladed disks with varying tuned contact

pressures

kept the same as before.

For this study, the maximum forced response distribution was analyzed for di�erent

contact pressure values in two comparisons: (i) for contact pressure values 16, 18 and 20

MPa (ii) for contact pressure values 6,12 and 30 MPa. In order to be able to compare the

forced response amplitudes, the maximum forced response of each blade on the frequency

range has been normalized by the mean forced response amplitude of the bladed disk. The

forced response amplitudes were normalized for di�erent contact pressure values separately.

For contact pressure values 16 to 20 MPa, the maximum forced response amplitude

is for blade number 15. In relation to the maximum forced response in the bladed disk,

there is a small change in the amplitude distribution, see Fig. 8.12. For some blades,

the di�erence is negligible, e.g. blade number 26. For some other blades, such as blades

number 12 and 15, the relation to the mean forced response amplitude di�ers. For these

blades the deviation from mean is larger in the bladed disks where higher contact pressure

was applied.

When the analysis is extended for a larger contact pressure range, i.e. 6, 12 and 30 MPa

in Fig 8.13, one can see that the distribution of the maximum amplitudes along the bladed

disk circumference signi�cantly changes. As an example: for blade 62 the forced response

amplitude obtained with 6 MPa is smaller than the mean amplitude, while for contact

pressures 12 and 30 it is larger. The results demonstrate that for the same mistuning

pattern, the response of the individual blades and the distribution of the forced response

amplitudes signi�cantly impacted by the coupling between the blades. The static contact

pressure in�uences the contact status and the nonlinear friction forces, which in turn a�ect
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Figure 8.12: Nonlinear forced response amplitude distribution for mistuned bladed disks

with contact pressures values varied between 16 and 20 MPa

Figure 8.13: Nonlinear forced response amplitude distribution for mistuned bladed disks

with contact pressures values varied between 6 and 30 MPa

the coupling between the neighboring blades.

The change in the contact pressure on the outer shroud contact interfaces, results in

a change of the distribution of the maximum forced response amplitude of the mistuned

bladed disk. The change in the amplitude distribution also results in change of the blade

for which maximum forced response amplitudes are observed. This is shown, in Fig. 8.14,

where it can be seen that for contact pressures above 70 MPa, the maximum forced response

amplitude is for blade 36. For low contact pressure values, the amplitude distribution is

sensitive to the contact pressure variation: the blade of maximum forced response amp-

litudes changes as the contact pressure is increased. For contact pressure values between

12 and 25 MPa, blade #15 and for contact pressure between 30 and 60 MPa, blade #2

has maximum forced response amplitude.

To further investigate the phenomena of the dependence of variation of the forced

response amplitudes of mistuned bladed disk on the shroud contact pressure, the minimum

and maximum forced response amplitudes along the circumference have been observed for

the same mistuned bladed disk as the contact pressure on the shroud interfaces were varied

on the range of 4 to 400 MPa. The minimum and maximum amplitudes for all calculations

have been divided by the mean amplitude along the circumference of the bladed disk for the
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Figure 8.14: Blade number of the maximum forced response for mistuned bladed disk with

varying contact pressure on blade outer shrouds

Figure 8.15: Minimum and maximum value of forced response over all blades in mistuned

bladed disk for varying contact pressures on blade shrouds
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Figure 8.16: Standard deviation of the forced response amplitudes along the circumference

of the mistuned bladed disk

respective calculation. The results plotted in Fig. 8.15, show that the di�erence between

the minimum and the maximum forced response increases as the contact pressure increases.

It is worth noting that the up to 150 MPa, the di�erence of minimum and maximum

value from the mean value (1.0) is symmetric. The �gure shows that the minimum forced

response amplitude normalized by the mean amplitude levels o� above 200 MPa, leading to

an asymmetry when considering the di�erence of minimum and maximum forced response

amplitudes from the mean value. The maximum forced response monotonously increasing

until 400 MPa, at which point all blades are fully stuck and the forced response is linear.

For the maximum amplitudes of the 75 blades over the frequency range under con-

sideration, the standard deviation normalized by the mean value for each forced response

calculation has been obtained. The standard deviation plotted over the contact pressure

range of [4,400] MPa, in Fig. 8.16, is showing 4.5-fold decrease in standard deviation for

the calculation with low contact pressure when the compared for the fully linear analysis.

It is also worth noting that the gradient of the standard deviation over the contact pressure

curve is the largest for low contact pressure values.

The results show that the lower contact pressure values on the shroud interfaces res-

ult in smaller variance of the forced response amplitudes along the circumference of the

mistuned bladed disk. This behavior can be explained by considering that the blades with

localized, high-energy vibrations get damped and therefore those resonance peaks get sig-

ni�cantly reduced. The increase in damping does not only reduce the mean forced response

amplitudes, but also reduces the standard deviation of the individual blade amplitudes and

the through that the mistuning ampli�cation factors.
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8.1.3 E�ect of rotation speed on nonlinear forced response of mistuned

bladed disks with under-platform dampers

Under-platform dampers have been essential part of the design of turbine bladed disks. The

small damper parts are placed under the blade platform and under the centrifugal loading

they are pressed again the blade under-platforms. Due to the relative motion between the

blades and on the damper cottage roof contact interfaces friction forces appear and kinetic

energy is dissipated. The normal forces on the under-platform damper contact interfaces

are dependent on the damper geometry, friction coe�cient of the rough surfaces and the

centrifugal forces, as shown in [79].

The design of the dampers is carefully selected to be the most e�ective for a certain

mode in a certain rotation speed range. The most important design parameters of the

damper are its mass, the cottage roof surface angle and the surface area. When the

damper parameters are already known, the contact pressures can be calculated for any

rotation speed. The contact pressures play an essential role in the onset for the slip-stick

transition and in the resulting damping ratio.

In the current work, an already available bladed disk and under-platform damper was

used. In this study, it has been studied that how this damper design performs for 1F blade

mode with open shrouds and with stuck root contact interfaces. To see how the damper

performs for di�erent rotation speeds, the rotation speeds at crossings of EO6 to EO34 and

mode 1 has been considered, see the schematic Campbell diagram Fig. 2.1. The 1F mode

with open shrouds, see Fig. 8.1, is a great candidate for this study, because the mode is

disk dominated nodal diameter 5 and above, therefore the change of operational de�ection

shape through the disk sti�ening can be neglected. The modal properties are calculated

for the pre-stress state at the rotation speed of the crossing of EO14 line and mode 1. To

save computational e�orts, the rotation speed dependency of the modal properties is not

included.

First, the forced response of the tuned bladed disk has been calculated with varying

engine order excitations. As a reference the linear forced response is calculated without

UPD and fully stuck UPD. For the nonlinear forced response calculations the contact

pressure values are applied on the 3 contact elements on each side of the UPD. The pressure

values are calculated for the respective engine order crossings.

The forced response functions, shown selected EO excitations in Fig. 8.17, are nor-

malized with respect to the maximum forced response amplitude and resonance frequency

to EO14 excitation of the bladed disk without UPD. The resonance frequency of the non-
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(a) Forced response to EO34 (b) Forced response to EO24

(c) Forced response to EO20 (d) Forced response to EO14

(e) Forced response to EO12 (f) Forced response to EO8

Figure 8.17: Nonlinear forced response of tuned bladed disks with and without UPD

showing the damper e�ectiveness for di�erent centrifugal forces
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Figure 8.18: Tuned forced response amplitude reduction factors with UPDs for di�erent

EO excitations

linear forced responses are between the bladed disk with stuck and without any damper.

For lower rotation speed and therefore lower contact pressures, e.g. EO34 in Fig. 8.17a,

the forced response function is nearing the solution calculated for the blade disk without

UPD. For higher rotation speeds, the resonance frequency increases. For very high contact

pressures, as for EO8 in Fig. 8.17f, the resonance frequency approaches the bladed disk

with stuck under-platform dampers. For this engine order excitation, the forced response

function shows that the slip-stick transition only happens in the narrow frequency band

near the resonance frequency of the bladed disk with stuck dampers. On the other hand,

for higher engine order excitations the stick-slip motion dominates the forced response on

a large frequency band.

The forced response functions in Fig. 8.17 show di�erent damping for the di�erent

nonlinear forced responses due to the change in the rotation speed. In order to identify, for

which engine order excitation is the damping the most e�ective, amplitude reduction factors

have been calculated. The amplitude reduction factors have been calculated separately for

each engine order excitation by dividing the maximum nonlinear forced response amplitude

by the maximum forced response amplitude of the linear bladed disk without UPD.

The amplitude reduction factors in Fig. 8.18 show that low EO excitation, the damping

is low. On the other hand, for high EO excitation, EO30-EO34, the damping is higher

than for EO6 and EO8. For medium engine order excitation values, the reduction factor

�uctuates between 0.07 and 0.08. The lowest reduction factor is for EO19.

The forced response has been calculated similarly for a mistuned bladed disk using

varying engine order excitations. The forced response for bladed disks without UPD, with
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(a) Forced response to EO24 (b) Forced response to EO16

(c) Forced response to EO12 (d) Forced response to EO8

Figure 8.19: Nonlinear forced response of mistuned bladed disks with and without UPD

for di�erent EO excitations

stuck and nonlinear UPD has been plotted in Fig. 8.19. The forced response envelopes

for the mistuned bladed disks show a similarity with the tuned bladed disks, with respect

to the e�ect of change in engine order excitation. The excitation frequency of the peak

amplitudes for the mistuned bladed disk with nonlinear dampers are lower than for the

bladed disk with stuck damper and higher than the bladed disk without UPD. Due to the

mistuning and the limited coupling between the blades resonance conditions is on a wider

frequency range than for the tuned systems.

For mistuned bladed disks, the amplitude reduction factors were calculated similarly

as for tuned bladed disks: the ratio of maximum forced response amplitude for bladed disk

with nonlinear UPD and maximum forced response of bladed disk without damper. To

calculate the ratio, the maximum amplitudes from all blades along the frequency range

studied is selected.

By looking at the forced response amplitudes reduction factors over the engine order

number, in Fig. 8.20, it shows a signi�cant sensitivity to engine order excitation. The

largest forced response amplitude reduction is for EO 14-22. For higher and lower engine

order excitations the forced response amplitudes are reduced to a lesser extent for the
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Figure 8.20: Mistuned forced response amplitude reduction factors with UPDs for di�erent

EO excitations

nonlinear systems.

It has been studied, how the range of variation of forced response amplitude over the

blades is a�ected by changing the engine order excitations. To this end, the maximum

forced response of each blade over the frequency range for the mistuned bladed disk have

been stored. The amplitudes for each engine order excitation were normalized by the

maximum forced response of the tuned bladed disk with nonlinear UPD and with the

respective engine order excitation. For the normalized maximum blade amplitudes, the

minimum, maximum and the mean value has been calculated.

The Figure 8.21 shows for engine order 6 to 26 the minimum, maximum and mean

values. The mean values are shown with a �lled circle symbol and minimum and max-

imum values are denoted by the two ends of the error bars. The ampli�cation factor (the

maximum values) is the highest for EO 24 and 26, but a local maxima can be observed

for EO 10 and 12, for which engine orders the amplitude reduction factors showed little

damping. On the other hand, forced response ampli�cation factor is the lowest to EO 16

and 18 excitations, for which conditions the under-platform damper proved to performing

well. While for the ampli�cation factors a signi�cant variation can be seen, the mean

values of forced response vary only on the limited range of 0.8-1.0.

It is also worth noting that with the increased damping the range of amplitude variation

de�ned by the minimum and maximum forced response amplitudes decreases. The same

e�ect has been identi�ed for bladed disks with shroud damping in subsection 8.1.2.
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Figure 8.21: Minimum, maximum and mean forced response of mistuned bladed disk with

UPDs for di�erent EO excitations

8.2 Nonlinear forced response and its sensitivities with re-

spect to anisotropy orientation angle for mistuned bladed

disks

The sensitivities of forced response amplitudes were studied for industrial size bladed disks

with friction contact interfaces. The �rst analyses were done for two-blade structure with

stepwise varying anisotropy orientation. As for mistuned bladed disks, structures with (i)

blade root damping, (ii) shroud damping and (iii) shroud damping together with UPD

were considered.

8.2.1 Sensitivity of forced response of a two-blade structure

The e�ect of variation of the material anisotropy orientation on the forced response have

been studied for the model consisting of two anisotropy mistuned blades, shown in Fig.

8.22. For this analysis the anisotropy angle α of blade 1 (blade on the left-hand side

in Fig. 8.22) has been gradually increased from α1 to α10 within the realistic range of

this angle variation, while all other anisotropy angles are kept constant. This allows for

easily understanding how the change in crystal orientation in�uences the nonlinear forced

response and how that change is re�ected in the sensitivities. The nonlinear reduced order

model includes 18 contact elements on each root interface and 10 nonlinear nodes on the

shroud interfaces, which results in 164 nonlinear nodes applied in total. A small initial

gap is set between the two blade shroud interfaces which may close during the vibration

period for certain excitation frequencies.
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Figure 8.22: FE model of two-blade structure

(a) Forced response (b) Sensitivity of forced response

Figure 8.23: Forced response and its sensitivity of blade 1 with varying α anisotropy angle

The forced response amplitude of blade 1 is obtained at the midspan of the trailing

edge and shown in Fig. 8.23a. The response for the primary angle valued at α1 shows

two resonance peaks. By increasing the primary anisotropy angle, the �rst resonance peak

reduces and the second resonance peak increases. The frequency of both resonance peaks

increases as higher the value of α increases.

The sensitivity of the forced response amplitude of the �rst blade is shown in Fig.

8.23b for the di�erent primary anisotropy angle crystal orientations. The reduction of the

�rst resonance peak by increase of α is visualized by the negative sensitivities for α3-α8.

The sensitivities show the shift of the second resonance peak by the negative sensitivities

before and positive sensitivities after the resonance peak. The increase in amplitude for

this resonance peak can be seen in the sensitivities as the sensitivity is positive at the

frequency of the resonance peak.
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Figure 8.24: Forced response of selected blades for mistuned blade disk for excitation

frequency A

(a) Sensitivity of the forced response of blade 58 (b) Sensitivity of the forced response of blade 28

Figure 8.25: Sensitivity of forced response of two blades with respect to α anisotropy angle

of selected blades for excitation frequency A

8.2.2 Sensitivity of forced response of bladed disks with root damping

The sensitivity of the forced response has been calculated for the anisotropy mistuned

bladed disk with only root contact, already presented in subsection 8.1.1. Here, the mis-

tuning pattern 1 has been used for the sensitivity analyses and the normalized harmonic

excitation level is ||p|| = 1 with EO8. The forced response of a few selected blades that

have high displacement magnitude are shown in Fig. 8.24.

Because the primary anisotropy angles α are the most in�uential on the forced response,

the sensitivities are calculated with respect to the primary anisotropy angles of seven

di�erent blades. Five of them have high displacements on this frequency range (blade

numbers 1, 28, 37, 40 and 58) and two of them have lower ampli�cation than 1 (blade

number 13 and 25). The sensitivities of the forced response are calculated at two blades

that have high displacements, these are blade number 58 and 28. In Fig. 8.25a the
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sensitivities of the displacement at the mid-span of the blade 58 is shown with respect to

the primary anisotropy angle α of selected blades. The sensitivities are only signi�cant

with respect blade 13 and 28. The sensitivity with respect to the α of blade 28 is large at

the frequency of the maximum forced response amplitude of blade 58 at ω = 0.97, therefore

the crystal orientation of this blade can in�uence the maximum ampli�cation factor of the

bladed disk. The sensitivity of the forced response of this blade is higher with respect to

the α anisotropy angle of blade 13, but at this frequency the response is low.

The sensitivities of the nonlinear forced response of blade 28 with respect to the selected

primary anisotropy angles are shown in Fig. 8.25b, that has high amplitudes at ω = 0.98.

The sensitivity with respect to this blade show positive value at the ω = 0.98, moreover the

sensitivity has the maximum value at 0.99 and the minimum value 0.9. This indicates, that

with the increase of α primary angle of blade 28 the frequency of the maximum response

displacement will shift to higher frequencies.

8.2.3 E�ect of contact pressure level on the sensitivity of forced response

of bladed disks with shroud damping

The study for the e�ect of the contact pressure level on the forced response amplitudes of

the anisotropy-mistuned bladed disk with shroud dampers, see subsection 7.2.1, is extended

with the analysis of the local sensitivities.

During the calculation of the nonlinear forced response, for every frequency step the

sensitivity of the forced response for all blades is calculated with respect to all anisotropy

angles. For this bladed disk with 75 blades, the sum of all design parameters is 225.

In general, the interest for the sensitivities lies in the amplitude of the blade which

has the highest forced response amplitudes over the frequency range under investigation.

In the earlier subsection (subsection 7.2.1), the blade number of the maximum forced

response has already been identi�ed. Here, the sensitivity of the forced response for this

blade at resonance has been in focus for mistuned bladed disks varying contact pressures

on the shrouds. The sensitivities have been normalized with the maximum forced response

amplitude of the mistuned bladed disk calculated for the respective shroud contact pressure

value.

Fig. 8.26 shows the maximum value of the sensitivity of the forced response amplitude

of the blade with the maximum amplitude, broken down to anisotropy angle categories.

The �gure shows that the sensitivities are largest for all contact pressure values with respect

to α angles. The sensitivities with respect to β are the second largest for all contact pressure
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Figure 8.26: Maximum sensitivity value for each anisotropy angle for the maximum forced

response of the mistuned bladed disk with varying contact pressure on blade shrouds

values, except for the range of [20, 40] MPa.

In Fig 8.26 a clear tendency can be observed for the maximum sensitivities with the

change of contact pressure. The maximum value of the sensitivities is for contact pressure

400 MPa, when all contact interfaces are fully stuck resulting in a fully linear model. This

shows that the mistuning for linear bladed disks has the greatest in�uence on the forced

response amplitudes. As the contact pressure decreases, friction forces appear on the

contact patches of the blades with large vibration amplitudes. The increased damping for

these blades noticeable decreases the sensitivities, as shown in Fig 8.26 on contact pressure

range [400:125 ] MPa. The maximum forced response sensitivity reaches local minimum at

125 MPa, from here by further decreasing the contact pressures to 70 MPa, the sensitivity

increases.

In order to draw conclusions from this behavior, it is worth looking at maximum forced

response distribution along the bladed disk circumference and especially at the maximum

blade number shown in Fig. 8.27.

It can be seen that for contact pressures 70 to 400 MPa, the maximum forced response

amplitude is for blade #36. The maximum forced response amplitude distribution, nor-

malized by the mean value of the maximum forced response for each calculation, is shown

in 8.28 for contact pressures 70,125,250 and 400 MPa. The distribution of the maximum

response amplitudes shows that for contact pressures 350 and 400 MPa, there is signi�cant

change of the amplitudes only for blades with large amplitudes, e.g. blade numbers 15, 36,

59 and 63. For the lower contact pressures, the amplitude distribution changes for more

blades, e.g. blade numbers 2, 6 and 10.
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Figure 8.27: Blade number of the maximum forced response and the maximum sensitivity

for mistuned bladed disk with varying contact pressure on blade shrouds

Figure 8.28: Maximum forced response distribution for varying contact pressure on blade

shrouds

Figure 8.29: Sensitivity of blade #36 with maximum forced response amplitude with re-

spect to α anisotropy angles of all blades with varying contact pressure on blade shrouds



13th April 2022 183

The sensitivities for the forced response amplitude of blade #36 are shown with respect

to all α anisotropy angles in Fig. 8.29 for the earlier studied contact pressure values. The

sensitivities shown in this �gure con�rms the trend that for contact pressure 70 and 400

MPa the sensitivities are larger, and for 125 MPa the sensitivities are small with respect

to all anisotropy angles. This study shows that for 125 MPa is solution for the forced

response amplitudes the most robust, and the ampli�cation factor is the least a�ected by

changes in anisotropy angles.

Observing the maximum values of the sensitivities in Fig. 8.26 and the maximum blade

number for each calculation with varying contact pressures in Fig. 8.27 it can be concluded

that on a contact pressure range where a certain blade has the maximum forced response

amplitude, the sensitivities change in a speci�c manner. At the middle of the speci�c

contact pressure range, e.g. 50 MPa and 125-250 MPa, the sensitivities are the lowest and

pattern of the forced response amplitudes are robust. With the forced response amplitude

distribution changing, e.g. on the contact pressure ranges 70-90 MPa and 25-35 MPa.

It is also with noting that the maximum value of the sensitivities is with respect to the

anisotropy angle of a blade that is located near the blade of the maximum forced response

amplitude.

8.2.4 Sensitivity analysis of the nonlinear forced response of mistuned

bladed disks with shroud damping and under-platform dampers

The forced response amplitudes and its sensitivities of the mistuned bladed disks with

UPD and shroud damping was studied, see con�guration #6 in Table 7. The 1F mode of

the bladed disk is excited with high EO excitation. In the Chapter 7, see Fig. 7.27, it has

been shown that for this bladed disk at this resonance, the number of contact elements

applied do not signi�cantly in�uence the forced response amplitudes: the di�erence in

forced response amplitudes between using 9 or 12 contact elements on the blade shrouds is

negligible. Therefore, it is su�cient to include 9 contact elements for each shroud contact

interface for the sensitivity studies. For the forced response function calculation, the �rst

3 harmonic numbers are included.

The amplitudes for all blades are shown in Fig. 8.30, which shows that the maximum

forced response amplitude is achieved for this mistuned bladed disk at blade no. 1 at

ω1 = 1.067. The second and third highest bladed disk forced response amplitudes are

obtained at blades #81 and #27. The forced response curves have a very wide resonance

peaks, which indicates that signi�cant energy is dissipated at the friction contact interface
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Figure 8.30: Forces response of all blades around the resonance for mistuned bladed disk

with shroud and under-platform damping

of the under-platform damper and the blade shrouds. The second high resonance peak at

ω = 1.097 is a resonance of a low nodal diameter mode shapes.

The blade maximum amplitude distribution searched over the whole excitation fre-

quency range is shown in Fig. 8.31. The obtained blade amplitude distribution is typical

for cases of excitation by high EO travelling wave loads. The operational de�ection shape

localized for limited number of blades, moreover there is signi�cant variation in the amp-

litudes of the neighboring blades. The blade #1 and #81 can be considered to be part

of the same localization and blade #27 is in another localized range. The forced response

amplitudes at blades #1,#27 and #81 are shown with larger �lled circle symbols in Fig.

8.31.

A clear correspondence between the value of the primary angles and the nonlinear forced

response amplitudes, see Fig. 8.32, cannot be found for this anisotropy mistuned bladed

disk. The primary anisotropy angle of the blade with the maximum forces response is at

78% of the maximum allowable range. The primary anisotropy angle of the for blades #27

and #81 are signi�cantly lower at 46% and 19%. The lack of correspondence between amp-

litudes and primary angles is assumed to be due to the strong dynamic coupling between

the blades through shrouds, the disk and under-platform dampers, which overcomes the

e�ects of the primary anisotropy scatter.

Because the maximum forced response amplitude is found for blade no. 1, the sensitiv-

ities have been studied with respect to the nodal forced response amplitude of this blade.

The sensitivities of the amplitude of blade #1 around the resonance peak have been calcu-

lated with respect to all anisotropy angles. The sensitivities are normalized with respect to
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Figure 8.31: Maximum forced response for all blades around the resonance, with the highest

three amplitudes denoted with colored circles

Figure 8.32: Maximum forced response for all blades as the function of primary anisotropy

angle, with the highest three amplitudes denoted with colored circles
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(a) Sensitivity w.r.t. all primary angles

(b) Sensitivity w.r.t. all secondary angles

(c) Sensitivity w.r.t. all circular angles

Figure 8.33: Sensitivity of forced response amplitude of blade #1 w.r.t. all anisotropy

angles around the resonance
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(a) Sensitivity w.r.t. all primary angles

(b) [Sensitivity w.r.t. all secondary angles

(c) Sensitivity w.r.t. all circular angles

Figure 8.34: Sensitivity of forced response amplitude of blade #1 w.r.t. all anisotropy

angles at ω1 = 1.067



13th April 2022 188

the peak amplitude of blade #1 and the anisotropy angles are measured for the sensitivity

calculations in degrees. The sensitivities for the whole considered range are shown in Fig.

8.33. The local sensitivities with respect to α are an order of magnitude higher than for β

and ζ. It is worth noting that the sensitivities are particularly high with respect to a few

blades. The values of the sensitivities are large for the whole frequency range of interest,

but not the largest at the excitation frequency where blade no.1 has the maximum forced

response, shown with a vertical line for all plots in Fig. 8.33.

For the structural engineer, the maximum forced response amplitudes of the mistuned

bladed disks are of interest. Therefore, the sensitivities of the maximum forced response are

studied at excitation frequency where the maximum forced response is obtained. Figs. in

8.34, show the sensitivity of the ampli�cation factor with respect to all anisotropy angles.

As the earlier studies showed, the sensitivities of the blade with the maximum forced

response amplitudes are the largest with respect to the anisotropy angles of the blade itself

and the neighboring blades. For this bladed disk system with coupling through the UPDs

and the shrouds, the sensitivities are large with respect to up to �ve neighboring blades.

The sensitivities of the forced response amplitudes of blade #1 is largest with respect to

its own anisotropy angles α and ζ. It is worth noting that because the anisotropy angle α

is large for blade no. 1, the sensitivity with respect to ζ is large too.

8.3 Conclusions

In this chapter, the e�ect of anisotropy mistuning in combination with the friction damping

has been studied. The non-linear relationship between excitation and response has been

studied for di�erent excitation levels. The ampli�cation factors have been determined for

higher and lower friction damping. In general, it can be stated that higher friction damping

reduces the value of ampli�cation factors and the variation of amplitudes around the blades

in the bladed disk assembly.

For bladed disks with UPD, the damping e�ectiveness was studied for di�erent engine

order excitations. For mistuned bladed disks, the range of rotation speeds (i.e. EO crossing)

where the damper is the most e�ective was more localized than for tuned bladed disks.

In this chapter, the forced response and its sensitivities have been calculated for a two-

blade model for which the anisotropy orientation was gradually changed. The sensitivities

could accurately depict the two characteristics changing in the forced response: (i) change

in resonance frequency and (ii) change in peak forced response amplitude.

The studies for sensitivities done for mistuned bladed disks came to similar conclu-
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sions than for the linear forced response: sensitivities for localized operational de�ection

shapes are large with respect to blades that have high amplitudes. With increased friction

damping, the sensitivities generally tend to decrease, which is in good agreement with the

behavior seen for the standard deviation of amplitudes over all blades for changing friction

damping.
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Chapter 9

Conclusions and outlook

In this work, the dynamics characteristics of anisotropy mistuned bladed disks and their

sensitivities were studied. The presented approach uses high-�delity and direct modeling of

the mistuning for the crystal orientation blade-to-blade variation. The developed methodo-

logy and implemented framework includes the local sensitivity calculation for the dynamic

characteristics. The developed tools allowed for the calculation of the modal properties

and the nonlinear forced response for several industrial anisotropy mistuned bladed disks.

1. In this work a new methodology for the calculation of the sensitivity of modal prop-

erties have been developed, implemented and validated.

In cooperation with the CalculiX developers, a semi-analytic formulation for the

calculation of the derivative of distinct natural frequencies and the classical modal

expansion formula for the calculation of the mode shape sensitivity has been imple-

mented in CalculiX CrunchiX.

For industrial size FE models of mistuned bladed disks it is computationally expensive

to calculate large number of mode shapes. Therefore, the classical modal method for

the calculation of mode shape sensitivity cannot be applied. In order to improve on

the convergence characteristics of the mode shape sensitivity calculation two di�erent

approaches were implemented and studied.

� The enhanced modal method is an improvement on the classical method using a

modal expansion representation. This new formulation accounts for the modal

terms that are not included in the series expansion. The e�ect of the value for

λ0 parameter used in the formulation was studied. The analysis resulted the

�nding that the λ0 = (λj − λj−1)/2, where λj is the eigenvalue of the mode j,

for which the sensitivity is calculated for. In case of the mistuned bladed disk,
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the studies have shown that in order to reach convergence for a speci�c mode,

then at least an additional 20 modes need to be included in the series expansion.

� The algebraic method using a bordering algorithm allows for the exact cal-

culation of the sensitivities. For the optimal placement of the regularization

coe�cient a methodology ideal for bladed disk structures with localization has

been found: the regularization coe�cient is placed into position on the main

diagonal of matrix A where for each mode the DOF with the largest modal

displacement is calculated.

� Both methods for the calculation of the mode shape sensitivities have been

studied using high-�delity FE models for comparing them. The major advantage

of the new algebraic method is that the mode shape sensitivities are calculated

accurately for all modes and no additional modes need to be calculated to

achieve accurate mode shape sensitivity values. Moreover, the calculation times

for industrial FE models where the sensitivity of many modes are calculated is

less for the algebraic method.

The implementation of the calculation for the �exibility matrix and its sensitivity in

CalculiX was supported and thoroughly tested.

In CalculiX, the sensitivities are calculated with respect to rotation vector compon-

ents. In CalculiX, the rotation vector components have been chosen as the paramet-

ers describing the anisotropy orientation, because it is a general description and not

speci�c to mistuned bladed disks with single crystal blade materials. The rotation

vectors are de�ned in the global coordinate system of the FE model. The aniso-

tropy orientations, the actual parameter of interest, is de�ned in the local coordinate

system of the individual blades. A method using the equality of the in�nitesimal

rotations has been implemented for calculating the sensitivity of any parameter of

interest (static displacements, stresses, modal properties and �exibility matrix) in

the local blade coordinate system with respect to the anisotropy angles used by the

manufacturer.

An integrator-interface tool, InterDyn, has been developed to perform all pre- and

post-processor operations for interaction between CalculiX and the nonlinear forced

response solver, ContaDyn. Among other functions, the tool facilitates the prepar-

ation of �nite element models of mistuned bladed disks, condensation of the model,

application of the nonlinear contact elements, di�erent types of the visualization of

the forced response on the full �nite element models.
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The validation of the sensitivity calculation for natural frequency, mode shapes, �ex-

ibility matrix and forced response amplitudes has been done. The sensitivities calcu-

lated with the fast sensitivity calculation method have been compared with sensitiv-

ities obtained by using �nite di�erences. The discrepancies in the sensitivities have

been negligible although theoretically the accuracy of the �nite di�erence method is

less than for the new methods. The validation has been done for simple models and

for large scale FE models of industrial bladed disks.

2. The developed capabilities have been tested and used in a large scope of studies,

where the e�ect of the anisotropy mistuning on the modal properties and linear, non-

linear forced response for realistic anisotropy mistuned bladed disk are considered.

The anisotropy angles describing the crystal orientation of the blades are random

sampled from their statistic distribution obtained by the industrial partner for pro-

duction bladed disks from experimental measurements.

The analysis of modal properties of blades shows that the blade-alone natural fre-

quency variation can reach 14% due to scatter in the blade material crystal orient-

ation. The range of the natural frequency scatter is dependent on the mean value

of the blade stacking axis direction. The natural frequencies can be increased or

decreased.

The e�ect of the anisotropy mistuning on the mode shapes for disk dominated modes

are negligible. For blade dominated and localized modes the maximum modal dis-

placement amplitude and its location along the circumference of the bladed disk is

strongly dependent on the anisotropy mistuning pattern.

The sensitivities of the natural frequencies and the mode shapes were studied for disk

dominated, blade dominated modes and for transitional modes where disk and blade

both contribute signi�cantly to system vibrations. The largest value of sensitivities

were observed for blade dominated modes with localization concentrating to 6-7

blades. The sensitivity of the natural frequencies of such modes were large with

respect to the anisotropy angles of the few blades where the localization occurs.

The sensitivities of the modal properties are the largest with respect to the primary

material anisotropy angle and the sensitivities with respect the other two angles

characterizing the crystal orientation are signi�cantly smaller.

The sensitivities of natural frequencies were studied for di�erent boundary conditions

on the blade shrouds. The analyses show that the sensitivity of the natural frequen-
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cies with respect to the anisotropy parameters increase as the coupling between the

neighboring blades is reduces.

The commonly used method for mistuning quanti�cation by blade frequency, which

is usually applied through changing the modulus of elasticity of individual blades

to match the blade-alone frequencies in the mistuning pattern, cannot be used for

anisotropy mistuned bladed disks. The forced response amplitudes of the individual

blades obtained in this thesis are signi�cantly di�erent by description of the aniso-

tropic orientation scatters.

The linear forced response of mistuned bladed disks and its sensitivity have been

studied for several modes and engine order excitations. The observed ampli�cation

factors vary between 1.1 and 2.7, depending on the excited mode and the engine order

of the excitation. The study of the sensitivities of the forced response amplitudes

for disk dominated modes showed that the change in anisotropy orientation leads

primarily to change in resonance frequency and to negligible change in forced response

amplitudes. On the other hand, for blade dominated modes the maximum amplitude

and the resonance frequency are sensitive to the changes of the anisotropy orientation

of the blades. The maximum amplitude in the anisotropy mistuned bladed disks is

the most sensitive to the anisotropy orientation variation of its own blade and the

neighboring blades.

3. The modeling approaches for the calculation of the nonlinear forced response for

tuned and mistuned bladed disks were studied.

For the nonlinear forced response calculation, the number of nonlinear friction contact

elements strongly in�uences the accuracy of the calculated vibration amplitudes and

the computational e�ort. The studies have showed that at least 10 contact elements

are required for each friction contact interface in the bladed disk for capturing the

nonlinear interactions accurately enough.

The nonlinear forced response solver, ContaDyn, o�ers fast convergence over the

number of modes included in the FRF calculation. For bladed disks where through

contact-separation strong nonlinear e�ects appear and energy is transferred to the

higher modes, it is recommended to include 10 mode families in the reduced order

model of the mistuned bladed disks.

For bladed disks where the only contact interface is on the blade roots, it is su�cient

to include only odd harmonic numbers. The friction contact interfaces that partially
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or fully separate during the vibration period, it is required to include 0th, odd and

even harmonics. The convergence over the number of harmonics is fast, by including

the �rst 6 harmonic coe�cients, the forced response amplitudes are obtained with

high accuracy.

For some analyses it is bene�cial to remove the rigid body modes from the modal

basis. In such cases, multi-point-constraints are applied between blades and the

disk. For reduced order models with su�ciently large number of contact elements on

the blade root friction joints, the multi-point-constraints do not in�uence the forced

response amplitudes.

The calculated forced response amplitudes are sensitive to the value of the friction

coe�cient. By decreasing the value of the friction coe�cient for the applications in

stick-slip state, the slip threshold amplitudes decrease resulting in increased damping.

When the value of contact sti�ness describing the elasticity of the contact of the

rough surfaces is varied in its realistic range, the forced response amplitudes show

negligible changes.

The static pre-stress state of the friction contact elements signi�cantly in�uences

the forced response amplitudes. For mistuned bladed disks it is recommended to

calculate the contact pressure on the shroud contact interfaces with high accuracy

when both modal and static mistuning is included in the nonlinear forced response

analysis.

4. The nonlinear forced response has been successfully validated for tuned and mistuned

bladed disk. The validation campaign was done for bladed disks with (i) only root

damping, (ii) root and shroud damping and (iii) for bladed disks with nonlinear

friction contact on blade roots, shrouds and under-platform dampers. The calculated

forced response amplitudes for all modes, when the variation of the friction coe�cient

value was considered, were obtained within maximum and minimum measured forced

response amplitudes.

The tip-timing measurements allowed the comparison of the calculated and measured

forced response amplitude distribution along the circumference of the bladed disk.

The range of the blade amplitudes scatter is larger for the measured bladed disks,

which meets the expectation as the calculated mistuned forced response only included

anisotropy mistuning. For the measured and for the calculated amplitudes similar

characteristics can be observed: (i) for low engine order excitation the forced response
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amplitude distribution takes a sinusoidal wave with low nodal diameter (ii) for high

engine order excitation the amplitude distribution shows two to three localizations.

Studies included the range of scatter for forced response amplitudes and resonance

frequencies of mistuned bladed disks for varying levels of forced response excitation.

For bladed disks with under-platform damper, studies were done considering the

contact pressure variation due to the change of engine order excitation and thereby

the change of rotation speed of the resonance crossing. The engine order crossing

for which the UPD the optimal damping e�ciency has had been identi�ed for tuned

and mistuned bladed disks.

The sensitivities with respect to anisotropy orientations has been studied for mis-

tuned bladed disks with only root damping and with shroud damping and under-

platform damper. For mistuned bladed disks with friction contact interfaces, blade

dominated modes were studied. The maximum nonlinear forced response amplitudes

are sensitive to anisotropy parameters of the neighboring blades.

5. The developed capabilities o�er a large scope of possibilities for further studies.

The capabilities for the calculation of linear forced response sensitivities have been

exploited in this project in the work of R. Rajasekharan Nair in [63]. The gradient

information for the forced response amplitudes allowed for implementing the gradient

based chaos expansion for uncertainty and global sensitivity studies. For the possible

future research the following directions can be suggested:

� Applying the methodology of gradient based polynomial chaos for bladed disks

with nonlinear friction contact interfaces could be of interest.

� Extending the analyses by modeling other sources of mistuning, e.g. blade-

to-blade variation in geometry, static and contact parameters would allow the

calculation of the forced response of mistuned bladed disks more comprehens-

ively.

� The developed capabilities o�er a foundation to facilitate the sensitivity calcu-

lation of the nonlinear forced response with respect to additional parameters.

When the sensitivities with respect to many parameters are available, then it

allows for e�ective robustness study and in assessing which parameters have the

largest in�uence on the forced response amplitudes. Additionally, by �nding

the most important mistuning parameters, an e�cient optimization tools can

be developed based on the calculated gradient information.
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