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Abstract

In the modern jet engines single-crystal materials are used for turbine stages to withstand
the high pressures, temperatures and to have sufficient creep resistance. Single crystal
materials are inherently anisotropic, and their properties are dependent on the crystal
orientation. The current technology of blade manufacturing by controlled solidification of
the blades produces significant scatter in the crystal orientation. The mistuning introduced
in bladed disks by blade material orientation scatter and by inevitable differences between
blade-disk, shroud and dampers’ contact interfaces, can lead to the increase of vibratory
amplitudes and stress localization. This work aims to quantify the effect blade-to-blade
anisotropy orientation on the vibratory characteristics of bladed disks.

In the thesis the effects of the anisotropy mistuning on the modal properties and forced
response have been studied using high-fidelity FE models together with detailed modelling
of nonlinear interaction at friction contact interfaces at blade-disk root joints, blade-shroud
and under-platform damper contacts.

For the analysis of the sensitivity of natural frequencies and mode shapes with respect
to the material anisotropy orientation in blades, efficient methods have been developed
and implemented.

An efficient framework for the calculation of the linear and nonlinear forced response
and their sensitivities for anisotropy mistuned bladed disks with friction joints has been
developed and implemented.

The sensitivity calculations for the modal properties, linear and nonlinear forced re-
sponse have been validated by finite difference method. The calculated nonlinear forced
response functions have been validated against measurement data from rotating test rigs.
The efficient modeling strategies were explored and studied to address the common issues
that occur during the nonlinear forced response analysis of large mistuned bladed disk
models.

The effects of the material anisotropy mistuning in bladed disks on natural frequencies,

mode shapes and on linear and nonlinear forced response amplitudes for several modes
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have been studied. For the nonlinear forced response, the effect of anisotropy mistuning
has been studied for varying excitation levels and damping levels. The characteristics
of the sensitivities of modal properties and nonlinear forced response amplitudes to the

anisotropy angles have been studied for several industrial mistuned bladed disks.
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Chapter 1

Introduction

The modern jet engines both in the aerospace and energy sector face high safety, en-
vironmental and economical challenges. In order to meet the requirements of the most
up-to-date standards, engineers and manufacturers are constantly searching for solutions
to increase efficiency, reduce weight, manufacturing and maintenance costs. Nevertheless,
the highest priority for any engine development program is to meet the high regulatory
safety requirements. Therefore, the structural integrity will always be the most important
design requirement of any gas turbine.

The high cycle fatigue resistance of the blades is dependent on the static and dynamic
stresses. In general, the static stresses of the bladed disks can easily be evaluated. For
linear and linearized bladed disks, the evaluation of the dynamic stresses is also done
through commonly known approaches. On the other hand, the calculation of the vibration
amplitudes and stresses for bladed disks with friction contact interfaces, is a complex task.

The bladed disks, such as the fan, compressor and turbine stages, experience periodic
excitation during the operation of the jet engine. Generally, the airfoils in the flow path
are the most affected by vibrations. Therefore, the dynamic assessment of the bladed disks
is essential for the safe operation of the engine on the whole operation range.

For the accurate calculation of the forced response amplitudes of the turbine bladed
disks, the damping of the dynamic system needs to be assessed. The materials used in
blades and disks of the turbine stages have low material damping. Apart from aero-
damping, the major source of the energy dissipated is the frictional forces appearing on
the dry friction contact interfaces. For modern turbine bladed disks, the contact interfaces
are located on the blade roots, on under-platform dampers (UPD) and between the outer
shrouds of the blades. Under centrifugal forces the contact interfaces are pressed against

each other. As vibration amplitudes of the blades around resonances increase, the friction
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joints may start to slip and under certain conditions they can partially or fully separate.
The increased energy dissipation through the friction forces and the change of dynamic
stiffness due to the change in the contact status needs to be considered for the forced

response calculation.

For the study of the dynamic characteristics, including natural frequencies, mode shapes
and forced response, the effect of several design parameters needs to be assessed. The dy-
namic properties of bladed disks depend on design variables such as material properties,
airfoil geometry and properties of contact interfaces. Generally, the computational assess-
ment of the dynamic behavior is done by modeling only a sector of the bladed disk and
applying cyclic symmetric condition on its boundaries. Analyses with cyclic symmetric
conditions allow for a high discretization and the computational effort is significantly re-
duced compared to the calculations for 360° model of bladed disk. On the other hand,
for the cyclic symmetric bladed disk model, all sectors in the bladed disk assembly are
considered to be identical. This means that the design parameters for every blade are

modeled to be identical.

In reality, despite the high manufacturing standards of the aviation industry, the blade
sectors are not identical. No manufacturing process is perfect, therefore there will always
be some variation in geometry and material. The blade-to-blade differences during engine
operation can increase mainly through wear of the contact interfaces, resulting in varying

contact conditions.

The small differences from one blade to another, called mistuning or detuning, has
been shown to lead to significant increase of maximum vibratory amplitudes compared to
amplitudes of the bladed disk with identical blades. According to Whitehead’s [99], the
maximum amplification can be analytically derived, and it is proportional to the number of
blades in the bladed disk. The distribution of the maximum forced response amplitudes and
the dynamic stresses along the circumference of the bladed disk is significantly influenced
by mistuning. Experimental results have shown, the distribution of the forced response
magnitudes can not only change from one bladed disk assembly to another, but also from
run to run [33]. This is considered to be caused by the change in the contact conditions
from one run to another as the bladed disk stage is loaded and unloaded. Mistuning may
cause the concentration of energy for only a few blades resulting in high vibratory stresses
that lead to reduced fatigue life of the bladed disk. The research in the field of the dynamic
behavior of the mistuned bladed disks have been in a focus point since the 1960s and thus

resulted in hundreds of scientific publications.
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One of the sources of mistuning appeared in the field of turbomachinery as more ad-
vanced materials have been applied for the turbine stages of the jet engine. Such materials
are nickel base superalloys: directionally solidified and single crystal materials. The tur-
bine stages downstream of the combustion chamber need to be able to withstand very
high temperatures and pressures. The single crystal materials that are formed of only one
type of columnar grain can eliminate the grain boundaries and therefore reduce the risk
of the crack initiation and propagation. Moreover, using single crystal materials increase
the creep resistance of the material, which is essential for turbine stages operating in high
temperature conditions.

The nickel-based superalloys that single crystal blades are generally made of are or-
thotropic materials. The principal directions of the anisotropy depend on the orientation
of the single crystals. During blade casting the crystal orientation is carefully controlled,
making sure that one of the principal material direction does not significantly deviate from
stacking axis. The orientation of the other principal material directions are generally not
controlled. This can result in significant variation in crystal orientation from one blade to
another, resulting in anisotropy mistuned bladed disks.

This research is looking for the answers of one paramount question: how does the blade-
to-blade anisotropy orientation variation affect the dynamic characteristics of bladed disks?

This research question can be divided into subquestions along the dynamic parameters

under investigation, the methods used to investigate them and with additional complexities:

e Dynamic characteristics of linear structures are described in the form of the modal
properties. In this work it is studied, how the anisotropy mistuning influences the
natural frequencies and mode shapes. How do the natural frequencies for mistuned
bladed disks change when compared to the nominal (e.g. tuned) bladed disk? What
kind of changes are expected in the blade mode shapes for anisotropy mistuned bladed

disks.

¢ By solving the equation of motion, the forced response of the mistuned bladed disk is
calculated. The linear forced response can be calculated by the modal superposition
method when an equivalent overall modal damping is approximated. Considering
the forced response of mistuned bladed disks, the quantification of the scatter in the
individual blade resonance frequencies and maximum forced response amplitudes is
of interest. The ratio between the maximum forced response amplitude around the
resonance over all blades and mean maximum or tuned forced response amplitudes

give the value of amplification factor. Additionally, the mistuning can also result in
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alteration in the operational deflection shape, which in turn may result in changes

in limiting location for vibratory stresses.

¢ The turbine bladed disks are inherently nonlinear structures and on the dry friction
contact interfaces nonlinear damping forces appear. In order to assess the forced
response amplitudes, the friction forces on the contact joints need to be resolved. For
such nonlinear forced response analyses work witch significantly more physical and
numerical parameters, e.g. number of mode shapes, number of harmonics, number of
contact elements used in the analysis or the values for friction coefficient and contact
stiffness. This work is looking for the effect of such parameters and assesses when
converged solutions are obtained. Moreover, the effect of anisotropy mistuning on
the nonlinear forced response is investigated. Similarly to the analyses for the linear
forced response, the major interest lies in the value of amplification factors, change

and scatter of resonance frequencies.

e For the previously mentioned dynamic characteristics there can be several ways to
quantify the effect of the blade-to-blade anisotropy orientation variation. This piece
of research work is aiming to show several possibilities (e.g. Monte Carlo simulation,
use of sensitivities) for studying the influence of the anisotropy mistuning on the

modal and dynamic properties.

e When the research question was posed, the use of sensitivities was formulated as
an efficient way of quantifying the influence of the input parameters on the output
parameters of interest. In case of the anisotropy mistuned bladed disks, the crystal
orientation of the blades can be described with the anisotropy angles, and they are the
stochastic input parameters for the study. The output parameters can be the modal
properties and the linear and nonlinear forced response. The sensitivities with respect
to the design variables can provide important information about the solution for the
parameters of interest for the mistuned the bladed disks. The local sensitivities show
which parameters are influencing the solution more and how robust the obtained
solution is. Sensitivities are also used for optimization methods, as they provide
additional information about the gradient of the solution. Other major application
field of the sensitivities is the response surface type methods that can substitute the
dynamic system with a mathematical description. The response surface models, such
as the gradient based polynomial chaos, can be used to obtain statistical properties

and global sensitivities of the anisotropy mistuned bladed disk [63].
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Chapter 2

Literature review

The following literature review is written considering the posed research question. This
chapter gives an overview of previous works that are related to the current field of study.
As this work fits into a long historic research effort, the covered topics needs to include
the vibratory characteristics of mistuned bladed disks, works on dynamic characteristics
for single crystal bladed disks, methods for model reduction and nonlinear forced response
analysis, methods for calculations for eigenvector sensitivities and practical applications
for the nonlinear forced response methods for bladed disks with friction joints and for their
sensitivity analyses.

The effects of mistuning on the dynamic behavior of the bladed disks have been studied
since the 1960s. The significant research interest resulted in hundreds of scientific publica-
tions. In the early days research was done with simple single degree-of-freedom systems. As
computational capabilities started to increase, more detailed models were used to analyze
the effect of mistuning on forced response amplitudes. The most recent computer codes
allow for the calculation of nonlinear forced response and its sensitivities for high-fidelity
mistuned bladed disks. This tremendous advancement has been achieved thanks to the
hard work of a large scientific community. Mentioning every publication is a challenge on

its own, here the most relevant and most important studies are reviewed.

2.1 Fundamentals of the dynamic behavior of tuned and mis-

tuned bladed disks

During the early research on the bladed disk assemblies in the 1960s and 1970s the funda-
mentals of the dynamic behavior have been described. At that point the applied mechanics

knowledge had a very good understanding of the vibration characteristics of the blades and
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the blades could also be analyzed by analytical and experimental means. One of the most
important work from this time originates from Ewins 1973 [20]. In this research paper it
has been found that it is not sufficient to analyze the blades alone as cantilever beams,
but the whole bladed disk assembly has to be analyzed. The vibration characteristics of
bladed disks result from the interaction of the disk and the individual blades, which results
in more complex system than the individual blades. This means that bladed disks have
many more natural frequencies than the individual blades. Through the interaction of the
blade and disk modes and mode families are identified [21] , where for each blade mode
several disk modes with different nodal diameter pattern appear. The number of maximum
nodal diameter modes is dependent on the number of blades in the bladed disk. In case
of the tuned dynamic systems for each mode only one nodal diameter component exists,
and the highest possible number of nodal diameters equal to N/2 or (N —1)/2 if N the

number of blades in a bladed disk is even or odd respectively.

The main interest of the structural engineers lies in identifying critical resonances. In
order to find the rotation speed of the resonances, the source of excitation is identified. Due
to the obstructions in the flow field the force varies with the angular position, therefore the
blades experience a fluctuating load proportional to cos(i€2t), where ¢ is the engine order
and (2 is the rotational speed. For jet engines, the major source of excitations are with the
engine order of the number of blades and their higher harmonics of the stators upstream
and downstream. The critical rotor speeds, at which resonances occur, can be identified
where the radial lines of the engine order excitation cross the nodal diameter lines of each
mode, see Fig. 2.1. The bladed disks rotate during the gas turbine engine operation
and the rotation speed affects the natural frequencies. In order to analyze the effects of
rotation speed and determine the rotation speeds at which the resonance vibrations excited
by different engine orders of the aerodynamic forces occur, the Campbell diagram is used,

see 2.1.

The Fig. 2.2 shows an example for the natural frequency-nodal diameter plot for a
tuned, with the exploitation of the cyclic symmetric conditions. One can see, that with
more and more nodal diameters in the mode shapes, the natural frequency is increasing
and asymptotically approaching the natural frequency of the cantilever blade. In [21] this
is accounted to be due to the fact that with an increasing number of nodal diameter the

disk is getting stiffer at the roots of the blades.

When in the bladed disk model also mistuning or detuning is included, then in the

modal analysis the segments cannot be considered identical. The variation from blade to
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Figure 2.1: A Campbell diagram showing resonance conditions for a mistuned bladed disk
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blade makes the double natural frequencies at a certain nodal diameter for a given mode
shape family split, except for the 0 nodal diameter and N/2 in case the number of blades
is even.

One another important conclusion have been drawn in the paper [21], namely that
due to the mistuning in the bladed disk assembly, the mode shapes are not perfect nodal
diameters anymore and every mode shape consists of several more nodal diameters as well.
This results in the fact, that a mode shape with the i** nodal diameter can also be excited
with other engine order excitations, not only with the i** engine order. Therefore, on
Campbell diagram, Fig. 2.1, every engine order crossing with the nodal diameter lines is
subjected to resonance condition, which are denoted with yellow circles. On this diagram a
selected rotor speed region is selected that is mostly of interest of the structural engineers,
as in that given range two natural frequencies are located relative near to each other. The
red dots at the higher rotor speed range represent possible flutter conditions [95], which is
an unstable, self-excited vibration of the blades that can lead to severe damage in case of
fans [58].

The effect of mistuning on the vibration characteristics have been investigated since
the 1960s at a great extent. The variation of the structural properties from one blade to
another has been in the focus of the dynamic research of the turbomachines.

In order to simulate the forced response of the mistuned bladed disks, with direct
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diameters

blade-to-blade variations takes enormous computational effort. In order to come around
this obstacle several different methods were developed in the past. Historically it has
started off with the simplest dynamic models that consisted of a very limited degrees of
freedom lumped parameter mass-spring models (LPM). The foundation of the physics of
the mistuned bladed disks have been laid down in the years before 1990 with such significant
papers as [22],]21] and [97]. The developments until this date have been concluded in the
survey of D. J. Ewins [1]. The publication states the main questions that have been
thoroughly investigated and some are still under investigation, while other questions have

been somewhat reformulated throughout the years.

How the mistuning will influence the vibration characteristics of the bladed disk

assembly?

e "What will be the variation in blade vibration levels if their individual properties

vary by x%?"

o If there is blade to blade variation introduced, how much worse the vibration will be

in comparison with the tuned case?
e [f the vibration is localized, which blade will have the largest amplitude?

e [s there an optimal pattern of the mistuning that can reduce vibration the most and

offer a robust solution?
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e What are the extremes of the effect of mistuning?

e What are the methods that allow fast computation for a given mistuning pattern

and the methods for discovering wide range of mistuning patterns?

Most of the questions appeared as direct or indirect questions in [1], however some of
them have been formulated later in accordance with development of the research in the
field.

A more recent survey has also been published in 2006 by Castanier and Pierre [15].
The publication sums up the fundamental background of the dynamic behavior. It recaps
the most important developments, such as reduced order models, the analysis with respect

to mistuning sensitivity and the research related to uncertainty and reliability assessment.

2.2 Methods for the calculation of nonlinear forced response

The turbine bladed disk assemblies consists of several parts: blades, disk, retainer and
under-platform dampers. In service, nonlinear forces occur on the friction contact inter-
faces, at blade root, shroud, under-platform dampers, etc., that make the forced response
strongly nonlinear. Therefore, linear models are insufficient to calculate accurate forced
response amplitudes for bladed disks with friction contact interfaces. Apart from the aero-
dynamic damping, the friction forces that appear on the contact surfaces are the main
source of damping. Therefore, it is necessary to assess the energy dissipation through the
nonlinear friction forces to obtain correct forced response amplitudes.

Efficient calculation of the nonlinear forced response is carried out in frequency do-
main using the multiharmonic balance method [76, 51, 26]. The principal assumption of
the multiharmonic balance method is that multi-degree-of-freedom system is excited by a
harmonic forcing and therefore the steady state solution is searched for a harmonic form.
A comprehensive review on the calculation of the nonlinear forced response with friction
contact interfaces using the multiharmonic balance method can be found in [49].

The simulations for the investigation of the dynamic properties are conventionally car-
ried out with the use of finite element models. The calculations for modal properties and
forced response are very efficient with cyclic symmetric models even when very fine meshes
are applied. the modeling of mistuning is not possible with simple cyclic symmetric con-
ditions. The computation efforts significantly increase when the full mistuned bladed disk
is modeled. Such 360° models can be used for linear static and modal analysis, however a

nonlinear static or nonlinear forced response analysis would result in significantly higher
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computational efforts. As a remedy in the early 2000s a variety of reduced order methods
appear. These methods work with real size finite element models, however still capable of

reducing the size of the system of linear equations without losing precision in the results.

One of the first publications on reduced order method, namely the component mode
synthesis was written by Irretier [39]. The method later used in several works including for
example [14],where it has been proven that the method can capture the forced response

with some reasonable decrease in accuracy.

The other classical recipe for using reduction in the finite element models is called subset
of nominal modes (SNM), developed by Yang and Griffin [102]. Running simulations with

SNM requires significant amount of input data, therefore it is difficult to use.

Further development of SNM has been presented in the later years from the same
group at the Carnegie Mellon University by Feiner et. al. [24]. They have presented the
Fundamental Mistuning Model (FMM), which is based on the tuned natural frequencies
and the blade-alone frequency deviations, given that an isolated family of modes is under
investigation. It has been worked out to be a method that is easier to use, therefore more

user-friendly.

In 2002 Petrov et. al. presented [80], where a model reduction is based on the sector
model and the modification introduced in the frequency response function (FRF). The

method provides an efficient and accurate forced response calculation.

In the publication of [78], a technique has been presented for multiharmonic vibra-
tion analysis of mistuned bladed disks. The analysis is based on a former method with
nonlinear contact calculations, and the mistuning is modeled with the random scatter of

underplatform damper parameters, shroud gap and blade frequency.

The publication of Bhartiya et. al. in 2011 [10] discussed the comparison of the
Modified Modal Domain Analysis (MMDA) and the Subset of Nominal Modes (SNM)
method, which is a method based on Frequency Mistuning. It has been concluded that
MMDA delivers better results for region of isolated modes and overlapping modes, in cases

of mistuning caused by blade-to-blade geometry differences.

The component mode mistuning (CMM) was developed for running reduced order
model calculations with damping mistuning in [41] by Joshi and Epureanu. Statistical
methods were used in order to find correlation between the damping variation and ampli-

fication factor distribution.

In the work of Hohl et. al. |[36] the Component Mode Synthesis (CMS) and the Wave
Based Substructuring (WBS) has been utilized to achieve a reduced order method. Their
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method could be applied with the help of Monte Carlo simulation for finding the best and
worst patterns of a bladed disks with respect to forced response. This paper is one of the
examples of a more overall publication taking from the developments of chapters regarding

statistical methods in Section 2.4.2 method and optimization in Section 2.4.3.

Turbine blades are designed with high-cycle fatigue in consideration, because of which,
accurate calculation of vibration amplitudes is necessary. The accuracy of the calculation
can be influenced by the computational parameters and by the mechanical parameters of

the contact interfaces.

Regarding the contact surface modeling parameters of tuned bladed disks with friction
joints at the blade-disk root significant studies have been done, e.g. [77, 94, 37, 7, 67].
These studies cover many different kinds of parameters, such as number of modes, number

of nodes, time harmonics included.

Moreover, significant studies have been done on the physical parameters for the model-
ing of the friction contact interactions, such as number of contact elements, static pre-load

and contact stiffness coefficient.

Such parametric studies can be done very efficiently and fast for tuned bladed disks
by considering cyclic symmetric conditions and modeling the bladed disk with only one
sector. With the current computational capabilities, the analysis of such systems can be

carried out for models with very high fidelity.

For realistic mistuned bladed disks with millions of degrees of freedom considered as
a full model, such as anisotropy-mistuned bladed disks [47], a very good understanding of
how the modeling of the contact interfaces influence the nonlinear forced response. Due to
the increased computational effort, only as many nonlinear contact elements, harmonics

and mode shapes are advised to be used as necessary.

According to the previous studies, static pre-load can have significant effect on the
nonlinear forced response. Generally, a preliminary static calculation is carried out in order
to obtain pressure values that are applied to the contact elements. The work from Zucca
et al. [104] investigated the coupling the static equation with the dynamic equation that
allows for the changes in the static pressures due to the changes in contact conditions as
vibration amplitudes change. In [101], it has been shown that considering non-uniformity
on the contact interfaces leads to changes in the forced response.

Some of the sources of the change in the contact conditions and the in pre-load are

level of static loading, the geometry uncertainty on the macro-scale, variation in assembly

procedures. One non-rotating application, the flange joints on the outside of jet engines,
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when contact stresses have a high influence on the forced response was studied in [93]. A
contact model has been developed in [4] for different contact geometries using non-spherical
contact surfaces. The analysis of the static displacements for bladed disks with small root
geometry variations has been analyzed in [87].

Given that the applied modeling strategies can influence the forced response amplitudes,
it is essential to have them validated. For the validation of the nonlinear forced response
against experimental data, only a handful of publications can be found. The experimental
evaluation of the forced response levels for blade-root geometry has been presented in [17,
25]. The calculation of the nonlinear forced response for bladed disks with friction dampers
and with blade-disk interface has been validated experimentally in [40]. A comprehensive
validation campaign was carried out by Hartung et. al. in [32]. The comparison of
the numerically and experimentally obtained forced response frequencies and levels was
done for bladed disks with root and shroud damping and with additional underplatform

dampers.

2.3 Influence of material anisotropy angle on the modal prop-

erties and the forced response

In section earlier there have been several ways mentioned how the mistuning could be
introduced. If we are only looking at the later simulations with realistic, full-scale finite
element models of the bladed disks, we could see several schemes for introducing blade-to-
blade variations. For example direct frequency variation [24], perturbation in the stiffness
matrix [60], variation in the contact parameters [72]|, Young modulus discrepancy [9], in
the values of the frequency response function [80] or with damping variations [41]. The
orientation of the single crystals have been published on a limited extent, this chapter shall
give an overview on the available literature.

During the evolution of the turbomachines a search for more resistant materials have
been carried out, as the operating conditions in the turbines include high gas loads and
extreme temperatures [89]. In order to extend the cyclic lives, increase the creep resist-
ance and reduce oxidation, the casting method gradually developed from the conventional
casting (CC) processes.

In the recent decades, directionally solidified (DS) and single crystal (SC) alloys have
been most widely used instead of polycrystalline alloys for the material of the blades in

turbomachinery applications. The SC alloys are typically used in jet engines while DS
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alloys are used in gas turbines.

The evolution of the Ni-based superalloys for the application of the single crystal blades
have been described in detail in the survey paper of [13|. The advances in the alloy
composition, the manufacturing processes is followed up for the first three generation of
superalloys. The study includes recent developments and outlook for future developments.
Since then the latest generation is called the 6"

second-generation superalloys are CMSX-6, MC 2, SRR 99, PWA 1480 [16], PWA 1484,
René N and SC2000.

generation. A few examples of first- and

In the single crystal materials the elements that strengthens the grain boundaries are
suppressed, therefore the grain boundaries can be eliminated. This feature helps to elim-

inate the possibility of grain boundary separation related fatigue failures.

On the other hand, in case of the single crystal materials all crystals are oriented in
the same direction, therefore the linear material behavior is anisotropic. The crystals have
face centered cubic (FCC) crystal structure in the commonly applied nickel-based alloys.
This crystal structure introduces an additional symmetry; therefore the single crystals are

orthotropic with 3 independent material elasticity constants [30].

Most of the publications have a discussion on how the high cycle fatigue is influenced
by applying the new superalloys. High cycle fatigue is one of the major failure modes of

turbine bladed disks, therefore it is of engineering interest.

In 2002 Arakere and Swanson published the paper [6] in which the dependence of the
crystal orientation on the fatigue life in case of high cycle fatigue has been investigated.
Due to the orthotropic material behavior of the nickel based superalloys, in the paper
a new fatigue failure criterion is presented considering the slip systems in single crystal
materials [61]. Simulations were run with 297 different crystal orientation configuration and
evaluating the critical failure parameter on all slip systems at a critical point on the blade
model. It has been concluded that an optimum orientation can be found and therefore the
blade’s resistance against fatigue crack growth can be increased by solely the control of the

single crystal orientation.

A publication from Hou et. al. has analyzed the effect of the influence of the crystal
orientation of the crystals on the fatigue life of the turbine blades [38]. In this study a single
blade has been investigated using finite element method. During the analysis centrifugal
and thermal load has been applied and the von Mises and maximum resolved shear stress,
moreover the fatigue life has been calculated. The analyses have been carried out with

several crystal orientation and the dependence of the calculated stresses and fatigue life
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has been plotted against the independent angles of primary and secondary angles. With
limiting the deviation of the primary angle to 15°and there has been a 5% range observer
for the stress values by varying the two angles. The variation of the angles had a greater
effect on the fatigue life, reaching the 20% range given the varying the angles. There has
been only a limited number of angles investigated, therefore the numerical values are not
necessarily showing the limits of the range that can be achieved by varying the crystal

orientation.

There could be more papers with [35] or [62] mentioned in detail analyzing the fatigue
life of the nickel based superalloys, however at this point the focus of the literature review

mainly focuses on the research of dynamics of the single crystal blades.

One of the first studies regarding the dynamic behavior of the blades with single crystal
blade materials have been published in 1987 by Moss and Smith [59], which focuses on the
space shuttle application of NASA. The limited scope study using finite element analysis,
analytical and experimental methods, concluded that no greater than 5 percent change has
been reported for the modal properties. Utilizing the Campbell diagram, the it is being
reported that one of the engine order interferences could be avoided with using the SC

instead of DS blades.

In the work of Manetti et. al. 2009 [57] the influence of the crystal orientation on
the turbine buckets have been investigated for a second-generation superalloy. The ana-
lyses have been carried out for a gas turbine bucket with second generation single crystal
superalloy. Experimental natural frequency measurements have been carried out for 12
specimen and were compared with natural frequencies calculated with finite element soft-
ware. During this comparison the anisotropic material definition in finite element model
with different crystal orientations have been validated. In order to analyze the effect of the
crystal orientation on the natural frequencies a design of experiment approach has been
used. With using 20 design points with different primary and secondary angles, a response
surface has been created. This allows a good prediction for the natural frequency values
between the design of experiment points. It has been concluded that the influence of the
crystal orientation on the first 10 free-free modes of the turbine buckets is smaller than 4%,
moreover the natural frequencies are more sensitive to the change in the primary angles

then to the change in the secondary angles.

In the work of Kaneko 2011 [42] it has been verified that the directionally solidified
blades can be considered as transverse isotropic materials even if the number of columnar

grains is small. In the publication the SC blades are modeled as simple rectangular plates
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and the effect of the three Euler angles describing the crystal orientations is analyzed for
first 10 modes. It could be seen that for a given mode not all angles have that same
influence, and the extent of the influence could be categorized by mode shape type. The
relationship between the material elastic constants in the direction of blade chord and blade
height and angles describing the crystal orientation have been examined with the help of
first order second method published in [44] by Kaneko et. al. in 2006. Using standard
distribution for describing the crystal orientation distribution, it could be concluded that
the standard deviation of the frequency due to the deviation caused by the elastic constants

is almost doubled for the DS and SC blade compared with the CC blades.

The effect of the crystal orientation of the single crystal blades on the static stresses were
investigated in the 2011 paper of Savage [91]. In this publication the generally used terms
of the primary and secondary angles are explained for single crystal blades. The analytic
demonstration of the stress transformation is presented. It has been illustrated how the
elastic constants of the single crystal blades change due to the crystal orientation. This
method is implemented in several commercial FE software and in CalculiX [19] by the linear
anisotropic material implementation. One segment of the bladed disk without shrouds has
been investigated with the help of the FE analysis. There have been 81 calculations carried
out with different Fulerian angles defining crystal orientation. Because the simulations are
using cyclic symmetric conditions on the two sides of the model in tangential direction,
all blades have the same crystal orientation. The static simulation is calculated with
friction contact definitions created on the disk, that is modeled by linear isotropic material
law, and blade interfaces. The analysis focuses on the maximum principal stresses on
the contact interfaces. A 1-5% change in the stresses is reported by discovering creating
response surfaces for the given angles. Savage considers the variation of stresses important
in exploiting for increased fatigue life, however a more comprehensive investigation should

show how the rest of the blade would behave to different crystal orientation settings.

In the more recent 2015 publication from Kaneko et al.[43], the resonant response and
random response of the DS blades have been investigated for a more realistic bladed disk
model. According to the knowledge of the author of this review, this is the only publication,
which analyzes the effect anisotropic material orientation directly on the dynamic behavior
for bladed disks. During their study the first the unshrouded blade alone frequency and
its sensitivity with respect to anisotropy angles were calculated, with these the response
surface was evaluated with respect to lattice growing direction. In order to use less com-

putational effort, the Fundamental Mistuning Model (FMM) [24] has been utilized for the
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calculation of the forced response. With the help of Monte Carlo simulations and 10,000
random variables the response surface has been calculated, which showed convex shape
for with respect to the angle variations. Any variation from the initial crystal orientation
when the crystal coordinate system coincides with the blade coordinate system, caused an
increase of the natural frequencies for the first and second mode shapes. An important
new result is that the resonant frequency range increases for the DS blades, compared to
CC blades. The forced response for both of kind of reached its peak when the standard
deviation of material constants was a point that caused 1% standard deviation for the

blade alone natural frequencies.

2.4 Sensitivity and statistical methods for the dynamic prop-
erties of bladed disks

For the calculated modal properties and forced response amplitudes, it is of particular
interest to carry out sensitivity studies. The overview of the methods for carrying out
the sensitivity analyses is shown here. Moreover, the sensitivities are beneficial inputs for

statistical, optimization and robustness assessments.

2.4.1 Numerical methods for sensitivity of mode shapes

For the calculation of the sensitivity of the forced response amplitudes, first the sensitivity
of the modal properties needs to be available. Obtaining the derivative of the eigenval-
ues with respect to the design parameters is a straight-forward procedure. However, the
sensitivity of the mode shapes cannot be solved directly, because coefficient matrix of the
governing equations of the sensitivity of eigenvector problem is singular. In order to over-
come this issue, several different strategies have been developed. First, Fox and Kapoor
[27] developed a modal superposition method for obtaining the sensitivity of mode shapes.
The drawback of the method presented is, that it can only be used for small systems, as
the method requires all eigenvectors of the system for the sensitivity calculation. This
method has been improved in [56] and [98], where not all eigenvectors are required. In
[103] a method is presented for the calculation of the sensitivity of eigenvectors of free-free
systems. This methodology is using the transformation with the eigenvalue shift. These
improved methods account for the truncated modes in a form of a residual term.

Omne of the early methods developed by Nelson [64], requires the knowledge of the

eigenpair, the eigenvalues and eigenvectors, for the mode for which the derivatives are
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calculated for. This algebraic approach modifies the rank of the original eigensystem (n-1)
to rank (n), which is then solved for a vector that together with the eigenvector gives the
first-order derivative of the eigenvector for systems with distinct eigenvalues.

The development of the algebraic methods has been started by Lee and Jung [52], who
developed a method for calculating the sensitivity of eigenvectors for system with distinct
eigenvalues. The method applies an additional constraint on the length of the eigenvectors
and making the matrix equation solvable.

For the calculation of the derivative of the eigenvectors iterative methods have been
developed as well e.g. [90].

In [2] the status of the research on the sensitivity analysis has been surveyed in the
middle of the 1980s.

For axis-symmetric dynamic systems, that have repeated eigenvalues, several methods
have been developed in [66, 53, 54, 55, 100, 65].

For non-conservative, asymmetric damped systems, the left and the right eigenvectors
are distinct. For the calculation of the distinct and complex left and right eigenvectors

methods in [3] and in [29] have been developed.

2.4.2 Application of statistical methods

The blade-to-blade parameters causing the mistuning in the bladed disks are inherent
distributed in a random manner. The controlling of these parameters is not always possible
as, for example, the conditions on the contact interfaces can change from one run to another
[31]. Given the variations of the mistuning parameters a search has been performed in order
to gain a better understanding of the statistical distribution of the dynamic response of
the bladed disk assemblies.

The work of Myhre et. al. [60] uses a ROM for assessing the statistical distribution of
the forced response of the mistuned bladed disk for mistuning. The mistuning is modeled
with the introduction of perturbation in the stiffness matrix of the system. For which
perturbation parameter normal probability distribution has been applied. In order to
assess several data points and approximate the statistical distribution of the response, the
most common and simple simulation technique is the Monte Carlo simulation. The dataset
of the maximum amplitude of the whole bladed disk has been approximated with Weibull
(type IIT) parameter distribution, that the authors found to be the most appropriate.

In [72] Petrov has proposed a method where no sampling such as Monte Carlo is

necessary. The developed approach can calculate the statistical characteristics of the forced
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response with respect to distribution of the friction contact interfaces. The uncertainty
ranges, the coefficients of variance and the probability density functions are calculated
analytically and with the analytical derivation of the sensitivity of the of forced response
with respect to the design parameters. It has been shown on a realistic bladed disk finite
element model that the uncertainty of the forced response is contained within 10%. One
exception from this is the resonant conditions, where the slip-stick transition occurs on the
contact interfaces and the uncertainty significantly increases.

The nonlinear forced response of mistuned bladed disks considering nonlinear contact
interfaces and geometrically nonlinear effects has been calculated in [11] by Capiez-Lernout
et. al. Using a reduced order method the stochastic nonlinear equations are solved with
the help of Monte Carlo simulation in time domain. The confidence region of the amp-
lification factor has been evaluated for both linear and nonlinear mistuned cases. It has
been concluded, the nonlinear models have a higher confidence range and more sensitive

to parameter variations.

2.4.3 Optimization problems for finding extreme amplification factors

and patterns

While the statistical results can help to understand the outcome of the dynamic beha-
vior in a probabilistic basis, engineers are also interested in the worst and best scenarios.
Therefore, there has been research carried out for finding the best and worst mistuning
patterns in a bladed disk. This can either be carried out with a large sample of design
variables such as Monte Carlo simulation, or as an optimization problem. If an optimiz-
ation method is applied, one shall calculate the sensitivity of the response function with
respect to the design variables, which gradient information is essential in order to carry
out the optimization search.

The first theoretical prediction of the largest amplification factor was published by
Whitehead in 1966 [99]. It has the very elegant form of (1 + VN) where N is the number
of blades in a stage. In the early research several other limits were calculated for the
vibration levels of the blades with the help of simple mass-spring models in [22], [23] and
18]

One of the first optimization method applied for the mistuned bladed disk was published
by Petrov, Vitali and Haftka in 2000 [81]. By selecting the amplitude of the vibration and
the individual blade mistuning to be objective function and design variable respectively,

the optimization process is carried out. A robust method is presented that utilizes both
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the response surface and gradient information for finding the best and worst mistuning

patterns.

Optimization process was carried out in [75] with the use of detailed, realistic finite
element models. For the design parameters the frequency deviation of the single sectors
was chosen, and the sensitivities of the displacements calculated with respect to those
design variables. The paper has shown a superior solution for finding the worst mistuning
pattern, in comparison with the random statistical search. Petrov and Ewins could find a

response amplification factor of 5.02 during this work.

In breakthrough publication [73] of Petrov a new phenomenon has been revealed. Until
that point mistuning has only been reported for increasing the amplitudes of the forced
response, and for stabilizing the unstable flutter vibrations. In the work it has been proven
that the distortion in the mode shapes can cause an increase of the overall damping of
the mistuned bladed disk system. The simulations including and excluding aero-effects
have been conducted for a large sample of patterns, that were either randomly assembled
or rearranged given an initial mistuning pattern. The probability density functions have
proved, the aero-effects are reducing the amplification factors. This work also includes a
sensitivity-based optimization for the search of the optimum pattern, for which the initial
pattern where the search is started from is decisive. With the optimum search approach
a maximum of 3.2 times lower amplification factor has been found. During this research
it has been proven that the minimums of the objective functions can provide a robust

solution.

The work of Beirow et. al. [9] has continued on the research with and without aer-
oelastic effects. With the help of the SNM reduced order method several Young modulus
based mistuning patterns were investigated. Using the finite element model of a compressor

blisk they could find the highest amplification factor of 2.82 and the lowest of 0.52.

Analyses for frequency mistuned linear bladed disks were done in [96]. The presented
approach calculates the first and second derivative of the forced response function with
respect to the frequency mistuning parameter. The sensitivities then applied in optimizing
algorithm for finding best and worst mistuning patterns. The work assessed the effect of

linearized damping on the amplification factor for the worst and best mistuning patterns.

As it could be seen there were different amplification factors calculated for different
mistuning cases, therefore, the maximum amplification caused by mistuning is dependent
on the bladed disk, the type of mistuning was introduced, moreover on the method with

which the calculations have been carried out.
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2.4.4 Investigations regarding damping assessment and contact condi-

tions

One of the challenges in assessing the forced response of the complex dynamic systems,
such as bladed disk assemblies, is the good prediction of the damping caused by the energy
dissipation on the contact interfaces. A review has been published by Griffin in 1990 [28]
on the modeling aspects of the friction dampers in order to reduce the vibrations of the
compressor and turbine stages.

In 2003 Petrov and Ewins [76] have derived an analytical formulation for the friction
contact interactions for calculating forced response. Given that an analytical ansatz has
been implemented, it provides fast, accurate and stable computations.

The paper of Petrov [71| the method was used for assessing the probability density
function of the forced response with respect to the contact parameters.

A year later in 2009 Petrov released a study [84] on the sensitivity analysis of the bladed
disks at the resonance condition. The results in that publication have been collected with
several different kind of bladed disk assemblies.

Krack et. al. have reported [48] an optimization method with additional robustness
analysis of uncertainty of the contact parameters of a tuned bladed disk. The proposed
technique utilizes analytically derived sensitivity calculations for assessing the uncertainty

of the forced response with respect to varying parameters.

2.4.5 Conclusions

This literature review highlighted the basic differences in the dynamic properties for the
tuned and mistuned bladed disks. Most of the analyses for this research was done for
anisotropy mistuned bladed disks, while some, mainly the parametric studies, were done
for tuned bladed disks.

After reviewing the work on the static and dynamic characteristics for turbine blades
and bladed disks made of directionally solidified and single crystal materials opportunities
for new research arise. The previous works already covered the effect of anisotropy ori-
entation variation on static and modal properties. In the work of Kaneko [43] the forced
response of anisotropy mistuned bladed disks were studied for the first time.

For anisotropy mistuned bladed disks, there is potential in further analyzing the effect
of crystal orientation variation on modal properties and linear forced response. As for
the nonlinear forced response, which was not done for anisotropy mistuned bladed disk at

the beginning of the research, considering damping through friction forces leads to new
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research findings. Moreover, the literature review showed that at the time of the beginning
of the research work, no sensitivity studies has been done in which the design parameter
the crystal orientation was.

In order to accomplish the previously described new research, already existing methods
can be applied, and some methods can be modified for the calculations for anisotropy
mistuned bladed disks.

The forced response calculation for bladed disks with friction contact joints is a chal-
lenging task, which is generally solved in the frequency domain. The two major challenges
appear in the form of large number of DOFs in the system, which result in extreme cal-
culation times moreover, the exact description of the contact status and friction forces in
time domain. Among the methods presented in the previous sections, in this work the
high-accuracy model reduction [85] is used. The method for the nonlinear forced response
calculation, which is selected for this work is described in reference [76].

For the sensitivity calculation of the linear and nonlinear forced response the already
available method described in [71] is used. In order to calculate the sensitivity for the forced
response the sensitivity of modal properties with respect to anisotropy angles need to be
obtained first. To this end the already available methods based on modal superposition

and algebraic bordering methods are implemented in a modified form.
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Chapter 3

Methods of the nonlinear forced
response and its sensitivities with

respect to material anisotropy angles

In this chapter the methods used for the modeling of anisotropic material behavior of the
single crystal blades are presented. The discussion also extends to the methods used for
the calculation of the linear and nonlinear forced response of tuned and mistuned bladed
disks. Regarding the sensitivities, the methods used for the calculations of the sensitivity

of modal properties, flexibility matrix and forced response are presented.

3.1 Modeling of the material properties of single crystal blades

For the modeling of the linear elastic behavior of single crystal blades anisotropic material
models are used. The crystals of the modern nickel-base superalloy blades are organized in
a face centered cubic crystal structure. This symmetric structure results in a material that
is a subset of orthotropic materials: cubic material. The material has the 3 independent
material constants, unlike a general anisotropic material that has 21 independent constants.
The three independent material constants defined in the material coordinate system (CS)

are the Young’s modulus FEjy, the shear modulus Gy and the Poissions’s ration vy.

The compliance matrix in the stress-strain relation € = So, using the Voigt notation,

for a nickel base superalloy is defined in the material CS as Eq. (3.1). Where the constants
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are: 533 = 1/E0, 513 = —V[)/E[) and S44 = 1/G0.
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The elasticity matrix is defined as the inverse of the of the compliance matrix, from

o = S~ 'e = Ce. The elasticity matrix can be defined in a different coordinate system as

C*, by multiplying the elasticity matrix with stress transformation matrix from the left
and right as

cr=1CT". (3.2)

where T is the stress transformation matrix between two coordinate systems, T the trans-
pose of the stress transformation matrix and C' is the elasticity matrix in the initial CS,
in other words the material CS. In order to be able to specify the stress transformation
matrix, the coordinate transformation matrix needs to be specified between the two co-
ordinate systems [30]. The stress transformation matrix between coordinate systems for

which the rotation matrix is in the form

R = mq ma ms (33>
ni no ns

can be written as
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For the description of the material properties of single crystal blades in a bladed disk
assembly, three coordinate systems need to be defined. The material CS defined with the
material axes [100][010] and [001] in Fig. 3.la. This coordinate system is used for the
description of the material constants, Fy, Go and 1.
For single crystal blades, the material CS is generally not coinciding with the CS of

the blade, denoted with 2/, ¢ and 2’ in Fig. 3.1a. The 2’ axis is the stacking axis of each
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(a) Definition of the material and blade CS (b) Blade CS in the global CS

Figure 3.1: Definition of the material and blade coordinate system

blade and z’ is parallel to the machine’s axis. The deviation of the material CS system

with respect to blade CS is described by the material anisotropy angles, «, 8 and (.

In the current practice, the description of the material anisotropy is defined by the
material anisotropy angles I' = {«, 3,(} that are defined in the local coordinate system
of each blade in the following way: The primary angle, the deviation of [001] axis with
respect to is 2’ axis, is represented by a. The secondary angle (3 is defined as the smaller
angle between 2’ axis and [100] or 2’ axis and [010]. The third angle ¢ defines the position
of the [001] axis on a circle defined parallel to the 2/ — 3/ plane. The angle ¢ can take any
value between —180° and 180°.

After the casting process, the anisotropy angles of the single crystal blades are measured
by the manufacturer using the Laue method [5, 50]. After years of single crystal blade
production a MTU has collected a large sample of anisotropy angles, which allows for
fitting a statistical evaluation to the anisotropy parameters. For each of the anisotropy
angles, o, § and (, a commonly known statistical distribution is fitted. Using pseudo
random sampling from the distributions of the crystal orientation angles random anisotropy
mistuning patterns can be created. The type and the parameters cannot be published due

to confidentiality agreements with the sponsor company.
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For the finite element (FE) description an anisotropy mistuned bladed disk, it is im-
portant to be able to describe the anisotropy orientation for every blade in the global CS
of the FE model. The origin of the global Cartesian coordinate system is placed such that
the x axis coincides the axis of rotation. In order to be able to calculate the finite element
matrices, all anisotropic material properties need to be calculated for global coordinate
system.

In order to be able to define the material properties for each blade in an anisotropy
mistuned bladed disk in the global CS, coordinate transformation needs to be defined from
the material CS to the global CS. The rotation matrix defining the crystal orientation of
the blade material with respect to the CS of the blade is defined by Rj;. The matrix Ry

can be described by rotating with the anisotropy angles of «, 5 and (:

Ry(T) = ReRs-R, (3.5)

where §% = f—(. The rotation matrix R, rotates about y" axis and Rg,, R rotate about
7' axis.

For the rotation between the stacking axis of the specific blade and the global CS the
rotation matrix Rp is defined. Arriving to the rotation matrix Rqg(I') which, describes
the blade material crystal orientation in the global CS depending on the location of the
blade taking the form:

Rg(T') = RpRy(T) (3.6)

The transformation of the elasticity tensor for linear-elastic materials can be executed
from the CS attached to every blade to the global CS with the help of the stress trans-

formation matrix T as:
C*(Ry,Rp) = T(Ry, Rp) CT" (Ru, Ri) (3.7)

The stress transformation matrix 7" is dependent on the rotation matrices Rj; and
Rp.
The element stiffness matrix can be calculated using the element stiffness formulation

for 3D isoparametric elements:

k€ = /BT C*BdV (3.8)

e
Where k€ is the finite element stiffness matrix, C* is the elasticity matrix defined in
the global coordinate system, B is the strain-displacement matrix and V¢ is the volume

of the element. The global stiffness matrix K can be assembled by adding the expanded
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element stiffness matrices together, after which the finite element calculations for the whole

structure can be carried out.

K= Jk* (3.9)

3.2 Modal properties of bladed disks

The natural frequencies and the modes shapes describe the dynamic behavior of the linear
structures. In this section the modal properties are described for tuned and mistuned
bladed disks.

For tuned bladed disks it is sufficient to model only one sector of the structure. For
blade disks this is generally sector with one blade with the corresponding disk sector. For
bladed disks with intentional mistuning, e.g. A and B pattern mistuning of low- and high-
frequency airfoils |92|, two airfoils are included in a cyclic symmetric sector. Applying
cyclically symmetric conditions on the left and right boundaries of the blade disk sector
significantly reduces the computational effort of the calculations.

When modal properties of mistuned bladed disks are obtained, no cyclic symmetric
conditions are applied and the full bladed disk is modeled. This modeling allows the intro-
duction of blade-to-blade variation. Such variation can be changes in geometry, material
properties or contact parameters.

The interest of the studies was the sensitivities of the modal parameters with respect
to anisotropy angles for mistuned bladed disks. The method for the sensitivity calculation
of mistuned bladed disks are presented here.

The modal properties are the model input for linear and nonlinear forced response
calculations. For the calculation of the sensitivity of forced response, first the sensitivity

of the modal characteristics need to be calculated.

3.2.1 Modal properties of tuned bladed disks with cyclic symmetric con-

ditions

For the calculation of the mode shapes of the cyclic symmetric bladed disks CalculiX is used
[18]. The cyclic symmetric condition is applied such that an Nyp nodal diameter (ND)
mode shape has Nyp complete sinusoidal waves along the circumference of the bladed

disk. The maximum value of nodal diameters for bladed disks with N blades is

N/2 for even N
NNDmaz = (3.10)
(N—-1)/2 for odd N
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The boundary condition of the cyclic symmetry can be expressed [? | as

.2rNN D

¢ =@ € ¥ (3.11)

for point A and point B along the circumference of the cyclic symmetric structure. Point A
is the left and B is on the right boundaries and the phase shift for the modal displacements
between them is W%.

Because of the complex boundary conditions on the boundaries of the fundamental
sector, the resulting eigenproblem will also be complex. Therefore, the calculated the
resulting eigenvalues will be duplicate and the eigenvectors for the eigenvalue pairs are

complex conjugates.

3.2.2 Modal properties of mistuned bladed disks

For anisotropy mistuned bladed disks, the full FE model allows for applying different
crystal orientation for each blade. As described in section 3.1, for each single crystal blade
in the bladed disk the crystal orientation can be defined by a set of anisotropy angles
I' ={a, B,(}. Therefore, for a mistuned bladed disk the anisotropy mistuning pattern can
be defined by 3 - N number of anisotropy parameters.

The eigenvalue problem for asymmetric systems, such as anisotropy mistuned bladed

disks, can be written in the form
Ko¢j=\Mo; (3.12)

Where, the stiffness matrix K, the eigenvalues A; and the mode shapes, ¢;, are dependent
on the anisotropy angles, but the mass matrix M, for anisotropy mistuned bladed disks,
is not, and the subscript j is the mode number. The geometric stiffening effects of the
centrifugal forces of a rotating bladed disk assembly can be considered in the stiffness
matrix K.

It is worth noting that for a mistuned system all eigenvalues and mode shapes are real
and distinct. Moreover, for each mode shape family there are N number of mode shapes.
This means that for example for a bladed disks with 75 blades, there will be 75 mode
shapes from the first mode family. If the modes of interest are from the higher mode shape
families, it takes significant calculation effort to obtain hundreds of modes.

For solving the equation (3.12) and obtaining natural frequencies and mode shapes,

the open-source FE solve of CalculiX is used: CalculiX CrunchiX (ccx).
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3.3 Sensitivity of modal characteristics

The eigenvalue problem of the multi-degree-of-freedom (MDOF) dynamic system can be

written in the form:
K(v)$j =AjMo; (3.13)

Where, the stiffness matrix K (), the eigenvalues A\; and the mode shapes, ¢;, are de-
pendent on the anisotropy angles, but the mass matrix M is not, and the subscript j is
the mode number. Here, v is introduced as a general parameter that can be any parameter
describing the crystal orientation of the anisotropic material.

Assuming mass-normalized eigenvectors, ¢;, the equation describing the sensitivity of
the eigenvalues for a MDOF dynamic system takes the form [27] :

O _ g <8K \ 8M)
J

=2 = 2N ) 9 14
a,y 6,}, J a,y d)J (3 )

Since the mass matrix is not dependent on  for the applications considered in this work,

this expression becomes:
O\j

9N _ rIK
0y

P, (3.15)

The derivative of the stiffness matrix in Eq. (3.15), with respect to the anisotropy
angle for linear calculations can be calculated using an analytic method. The sensitivity
of the stiffness matrix on the element level can be expressed with the modified equation of

the element stiffness formulation of a three-dimensional isoparametric finite element as:

Ok L C

= 1

e / B S Bav (3.16)
Ve

Where k€ is the finite element stiffness matrix, C* is the elasticity matrix defined in the
global coordinate system, B is the strain-displacement matrix and V¢ is the volume of the
finite element. In order to carry out the calculation described in Eq.(3.16) the derivative
of the elasticity matrix is calculated.

The methodologies for the calculation of the sensitivity of mode characteristics have
been implemented in the open-source finite element software CalculiX. The calculation of

the derivative of the stiffness matrix is done using the finite difference scheme as

Ok°(y) _ k(v + Av) —k°(y)
5~ A (3.17)

where, A~y is the finite difference step. For the application of the formula, two evalu-
ations are necessary for each sensitivity calculation. One with unperturbed rotation vector

components and one with a perturbed rotation vector component.
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3.3.1 Enhanced modal method

In order to express the sensitivity of mode shapes, a series expansion formulation is tradi-

tionally used e.g. see Ref. 2]

ap;
a‘if =3 it = B (3.18)
k=1

The formulation in Eq. (3.18) considers only a subset of mode shapes m in the expansion
of the derivative of the mode shapes. In order to increase the precision and the speed of
convergence, an enhanced method is proposed [82]. This approach accounts for the mode
shapes that are not included in the expansion, in the form of a residual vector r;.

0.
aﬁj = ®c; + 1, (3.19)
The coefficients of the first term on the right hand side of Eq. (3.19), ¢;, can be derived
by first substituting Eq. (3.18) into the total derivative of Eq. (3.13) with respect to the

general anisotropy parameter +:
(K - )\JM) (I)Cj = fj (320)

where the right hand side for a general case is:

0K OM 0\
= (= o - @, 3.21
T <3'y oy oy )d)] (321
Then the components cj; of the vector of the sensitivity expansion coefficients for j-th
mode shape ¢; are obtained for k # j by multiplying Eq. (3.20) with the k' mass-

normalized mode shape (,z')g from the left. The coefficient c;; is calculated by differentiating

the normalization condition: qﬁfM ¢; = 1, which for a general case gives:

oM
cjj = —0.5¢7 ——a; 3.22
73 ¢j af}/ d)] ( )
For the sensitivity analysis to material anisotropy orientation, considered in this paper, the
dependence of the mass matrix on the anisotropy orientation can be neglected. Therefore,

Eq. (3.21) takes the following form:

OK 0\

The coefficients of the mode shape sensitivity expansion, considering that the mass matrix
is not dependent on ~, result in:
T .
T i k£
Cjk = (3.24)
0 ifk=j
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The residual vector in Eq. (3.19) teaks into account the contribution of the modes which
are truncated in Eq. (3.18)
N
oL i
> B, 3.29
k=m+1 k
where N is the total number of modes in a considered structure (which is equal to the

total number of DOFs in the finite element model). In order to be able to calculate the
residual vector, here some value \g is substituted instead of A;. This value is chosen to be
very close to, but different from ); to avoid division by 0.

The expression r; can be divided into two terms as:

m

T T
e yitha St a3 e o

k=1

The former term can be reformulated as a system of linear equations and therefore solved

with a linear equation solver.

(K — XM)7r) = f; (3.27)

Substitution of Eq.(3.26) in Eq. (3.19) gives us the enhanced expression for the mode

shape sensitivities:

9.
(;iy] = Pc; + 7‘? — ®c; = ®c; + 7’? (3.28)

The coefficients of the sensitivity of mode shapes using enhanced formulation in Eq. (3.28)

can be calculated as:

Aj—A . .

* ()‘k )\ )\2 )\0 d)k‘f] lfk #]
o= O V) (3.29)

)\kk )\’O ifk=j

3.3.2 Algebraic method

For the introduction of the algebraic method [83], the sensitivity eigenvalue problem, to-
gether with the derivative of the equation for the mass normalized mode shapes, can be

rewritten in the following form:

K-y vy | [osyjoy | [ —(oKjon —yomione | o
—gb]TM 0 O\ /0y 0
This system of equations in Eq. (3.30) can be written in a compact form:

A b 0¢;/0 c
®;/0v _ (3.31)

bl 0 ON; /Oy 0
where, A = K — A\jM, b= —-M¢; and ¢ = —((0K /0y) — X\;(O0M /0v))¢;. Using the
notations in Eq. (3.31) the sensitivity of the eigenvalues in Eq. (3.14) can be expressed as

O\ /0y = —d);fpc (3.32)
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By definition, the matrix A is singular. Here, bordering algorithm [45] is used for
solving the singular system of equations. The matrix A is regularized by adding the

regularization coefficient s to one of the entries on the principal diagonal of the matrix.

A=A+s el (3.33)

s

According to the general bordering algorithm, the sensitivity of mode shapes can be

expressed exactly using the formulation of

0¢;/0 = g° — g(9X;/07) + ag°® (3.34)
where
Agr=b; Ag®=c; Ag°= se; (3.35)
and
a= <Z§Z:> (OX;/0y) — z;z(: (3.36)

The calculation of the vectors g*,g? and g°¢ is done by solving the system of linear
equations in Eq. (3.35). Note that the factorization of the matrix A and the calculation
of b, g*, g¢, bTg® and (b"'g")/(b” g¢) is done only once for a considered mode shape. This
must be considered for structures that have a large number of design variables. In case of
bladed disks with 72 blades, the number of design variables describing the anisotropy axis
orientation of the monocrystalline blade is 72 - 3 = 216. The calculation of ¢, g® and X is
done for every design variable of the system.

The advantage of the proposed method is that only the eigenpair and the sensitivity
of the eigenvalue for which the eigenvector sensitivities are calculated are necessary for
the calculation for obtaining the sensitivity of the eigenvector. In modal analysis of large
systems, normally the lowest first m eigenvalues are calculated and using the proposed
method there is no need for the calculation of additional eigenvalues and eigenvectors
to obtain the derivative of the mode shape ¢,, with respect to the design variables. The
proposed method also allows for an exact solution can be calculated without removing rows

and columns from matrix A. Additionally, this algebraic method is simple to program.

3.4 Forced response and its sensitivity for bladed disks

In this work, two major types of bladed disks are analyzed: (i) mistuned bladed disks (ii)
tuned bladed disks.
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For tuned bladed disks, cyclic symmetric conditions can be applied, but for mistuned
systems a whole bladed disk is modeled, where each single crystal blade has a varying
crystal orientation. For the nonlinear forced response calculations the code ContaDyn
developed by E.P. Petrov is used, which is based on the multiharmonic balance and fully

analytical formulation for nonlinear contact interactions (see Refs. [69, 76, 78, 85]).

3.4.1 Forced response and its sensitivity for linear mistuned bladed disks

For linear mistuned bladed disks, the equation of motion can be written in the form:
Kax(t) + Cx(t) + M&(t) = p(t) (3.37)

Where, K, C and M are structural stiffness, damping and mass matrices; x(t) is the time
varying forced response for all degrees of freedom in the mistuned bladed disk; p(t) is
harmonic excitation applied on the mistuned bladed disk. The periodic excitation of the

bladed disk is a traveling wave type, and it takes the form:
p(t) = {p1(t),p1(t — a), ...p1(t — (N = D)) }" (3.38)

Where, p;(t) is the harmonic load applied on first sector of the bladed disk model. The
dynamic load can be applied to a single node or distributed over several nodes of the FE
mesh. The value « = T/N is the phase shift in the applied forces from one sector to
next one; the period is T = 27 /w, where w is the principal excitation frequency that is
w = wy, - FO, the machine rotation speed multiplied by engine order number (EO). For
the harmonic excitation in the from p(t) = Pe™! the solution of the vibration is sought
in the form of x(t) = Xe™*.

The equation of motion takes in frequency domain the form:
[K +iwC —w’M] X =P (3.39)

For linear systems, the forced response displacements can be calculated with the modal
superposition method. With the natural frequencies and mode shapes already calculated

for the mistuned bladed disk, the forced response amplitudes can be written in the form:

Nm ¢TP Nim
xX=> 2 = ¢id; 3.40
j=1 (1+ i??j)%z - w? # =1 % ( )

Where, wj, ¢; and n; are natural frequency, mode shape and modal damping factor for j-th
mode; in the modal expansion N, number of modes are included; and the unit imaginary

number is i = /—1. The high-fidelity finite element models of mistuned bladed disks
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include millions of DOFs. The advantage of the modal superposition method is that only
the degrees of freedom of the nodes where harmonic excitation is applied and the nodes
of interest need to be included in the calculations, which reduces the computation time

significantly.

Sensitivity of linear forced response for mistuned bladed disks

For linear systems the sensitivity of forced response can be calculated by taking the deriv-

ative Eq. (3.40) with respect to the anisotropy design parameter 7:

N

0X O, 0
5 _; 5 b; + ¢ 5 (3.41)

Where, the sensitivity of the mode shapes is already available and the sensitivity of the

modal expansion coefficients can be calculated as:

oc;  PT(d¢;)0y) P [(1 +i((9n;/07)) wi + 2 (1 +in;) wj (Bw;/0v)
oy (A tin)w! —w? 342

2
[(1 + i) Wi — w?
3.4.2 Nonlinear forced response and its sensitivity for mistuned bladed

disks with friction joints

For nonlinear mistuned bladed disks with friction contact interfaces, the equation of motion

is extended with the term f(x(t)) describing the nonlinear friction forces as:
Kz(t)+ Ca(t) + M&(t) + f(x(t)) = p(t) (3.43)

The turbine bladed disk assemblies used in practical applications many frictional con-
tact surfaces. The nonlinear forces occur on blade-root disk interfaces, on the surfaces
of under-platform dampers, blade retainers and on the shroud interfaces of the adjacent
blades. Moreover, high-energy rubs can occur between the blade tip and honeycomb sealing
material of the casing. The main sources of nonlinearities on the contact interfaces are the
friction forces, unilateral interaction of the paired interfaces, gap closure and opening etc.
The analytically formulated nonlinear contact forces have been derived in Refs. [76, 74].
The 3D nonlinear contact elements used in this work allow for the interactions of relative
motion along the two surface tangential and normal directions.

For the calculation of the periodic forced response vibrations, the multiharmonic bal-

ance method is applied. The dynamic system is excited by a harmonic excitation, and
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therefore the solution of Eq. (3.43) is sought for in the form of a restricted Fourier series.

Ny,
xz(t) = Xo + Z X](-c) cos(kjwt) + X](-S) sin(kjwt) (3.44)

j=1
where, X = {Xo, X7{,..., X5} can be defined as the vector of harmonic coefficients
describing the vibration for all degrees-of-freedom; the harmonic coefficients are k; and
the number of harmonics included in the Fourier series are Np, and w is the principal
excitation frequency. Similarly, the nonlinear forces f(x(t)) and the excitation forces p(t)

can be written in the multiharmonic expression as

Np,
ft)=Fy+ Z Fj(c) cos(kjwt) + Fj(s) sin(kjwt) (3.45)

j=1

Np,
p(t) =Py + Z Pj(c) cos(kjwt) + Pj(s) sin(kjwt) (3.46)
j=1

where similarly, the F = {Fp, Ff,...,F:} and P = {Py, Pf, ..., P5} can be defined as
the vectors of harmonic coefficients for the nonlinear forced and excitation forces.
After applying the harmonic balance method, the nonlinear equation for harmonic

number j for vector )A(/j is written as:
[K +iw;C — wiM] X; + Fj(X;) = P (3.47)

In general the large-scale finite element models of bladed disks consist of millions of
degrees of freedom. Solving equation (3.47) directly for such systems would be computa-
tionally prohibited. In order to reduced the computational effort, the reduction of model is
necessary. For this the high-accuracy model reduction method, which has been presented
in Ref. |85], is used. The reduction method allows for significant reduction in the number
of degrees of freedom, because only the DOFs of the nonlinear contact interaction need
to be kept in the reduced order model. At the same time, the reduction method offers
exceptionally high accuracy for the reduced model. Using this approach, the equation of

motion in frequency domain can be reformulated as:
R(X)=X - Xjn + Aw)F (X) (3.48)

Where, on the left-hand side of the equation R is the residual vector for all nonlinear
degrees of freedom; the vector X is the nonlinear multiharmonic amplitudes determined
for all DOF on the nonlinear contact interfaces; F'(X) is the multiharmonic nonlinear

contact forces and X, is the vector of harmonic coeflicients without the application of
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nonlinear contact forces. The multiharmonic forced response function (FRF) matrix A(w)

is expressed through the FRF matrices of the individual harmonics:

ARe AIm ARe AIm
A (w) = diag | Ao, ’“11 ’; ’f; ’; (3.49)
RS B A A

The FRF matrix calculation for dynamic problems with friction forces can be done
with high accuracy using the reduction method developed in Ref. [85]. The method allows
to calculate the relative displacement of the contact pairs by using of the local flexibility
information of for the degree of freedom on the contact interfaces. The FRF matrix is

written in the form:

Ay, = A"+ A% (kjw) (3.50)

Where, A? is the flexibility matrix calculated exactly for the contact nodes at a reference
frequency wg as

[K —wiM] A =1 (3.51)

On the right-hand side of the equation I is the unit matrix. The value of the reference
frequency wp for most practical applications can be chosen as 0. For structures with rigid
body motions, the reference frequency needs to be chosen as non-zero, but far from every
natural frequency. For w = 0 the equation system for the flexibility matrix calculation
simplifies to:

KA =1 (3.52)

The flexibility matrix is only calculated once, before the nonlinear solution of the forced

response. For solving Eq. (3.51), the CalculiX FE solver is used.
The second, dynamic term, in Eq. (3.59), is expressed as:

Nim <w2 —wi — imw?) (i)]qﬁ;f

d w) =
At(w) =3 (w?—w(?) ((1+inj)wf—w2)

j=1
Where, N,, is the number of mode shapes included in the reduced order model; w;, ¢; and

(3.53)

n; are the j-th natural frequency, mode shape and damping.
The solution of the equation of motion in Eq. (3.48) is obtained with the Newton-
Raphson method. The initial solution is iteratively calculated using the following expres-

sion:

J (X(’“)> (X(k“) - X(k)> -R (X(k>) (3.54)

where the Jacobian matrix of the nonlinear equation J = 0R/0X is calculated analytically
(see Refs. [76] and 7?). The solution along the frequency range of interest is efficiently

obtained using solution continuation techniques.
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Sensitivity of nonlinear forced response for mistuned bladed disks

The sensitivity of the nonlinear forced response amplitudes for a converged solution X*
can be calculated by taking the derivative of the residual equation, Eq. 3.48. With the
help of the already calculated Jacobian matrix it can be written:

OR(X™) 0X* [8A0 oAl

o :J(X)av ~ Loy - o

] (F(X*) - P) (3.55)

The sensitivity of the static term of the FRF matrix, the flexibility matrix, is calculated

only once using CalculiX as:

0A"  OK (r)
K (r) —wiM = A" 3.56
[ (T) wWo ] 8’}’ 8,)/ ( )
The derivative of the dynamic term with respect to the anisotropy parameter is
0At (w,r) 20, g (0 o . O0B]
— = E —@;p; | =— 5 j—— 3.57
8rk = 67“k ¢J ¢] + CJ 87‘]f ¢] * ¢] 87‘]f ( )

where ¢j = <w2 — w2 - injwjz) / [(%2 - w8> ((1 + ir]j)w]z - wzﬂ ; wj, 1; and ¢; are nat-
ural frequency, modal damping and mode shape; the derivative dc; /07 is calculated taking
into account the dependency of the modal properties of the bladed disk on the anisotropy
angles and obtaining the modal sensitivity properties as it is described in the previous
section; N, is the total number of modes used for the calculation of the dynamic FRF

matrix component, A%,

3.4.3 Nonlinear forced response of tuned bladed disks

The cyclic symmetry condition can be applied for the analysis of forced response of tuned
bladed disks as it has been proven in Ref. [70].

The equation of motion for a cyclic symmetric sector can be written in the form:

ng(t) + CSdJ(t) + Msi(t)"F
+fs (x(t) + fi (2t —T/N),x(t)) + fr (x(t), z(t + T/N)) = p1(t)

where Kg, Cs and Mg are stiffness, damping and mass matrices for the substructure sec-

(3.58)

tor; x(t) is vector of displacements for the sector ; fg ((t)) is the vector of nonlinear forces
applied to nodes belonging to the sector; fi (x(t — T/N),x(t)), fr (x(t),x(t + T/N)) are
nonlinear forces obtained in the results of interaction with neighboring sectors at the left
and at the right sector boundaries. The vibration of any j-th sector of tuned bladed disk
can be expressed through x(t) in the form: x; = z(t — a(j — 1)).

For the tuned bladed disks, the same high-accuracy model reduction method can be

applied, and one arrives to Eq. (3.48).
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The FRF matrix, for tuned bladed disks is expressed as
Ay, = Alp + Afp(kjw) (3.59)

Where, A(])V p is the flexibility matrix calculated exactly for the contact nodes. For tuned
bladed disks, modeled with sector model, the flexibility matrix and the mode shapes have
sinusoidal spatial distribution along the circumference of the bladed disk, they are described
by the number of nodal diameters, ND. For the calculation of the FRF matrix not all
ND modes and flexibility matrices are required. The ND of the spatial harmonic used is
dependent on the harmonic describing the time variation, given by the equation:
ND (k) = mod (k;, N)for mod (k;, N) < N/2 (3.60)
— (N — mod(kj, N)) for mod (kj, N) > N/2
The flexibility matrix, the first term in Eq. (3.59) is calculated at a reference frequency
wo as

[K§P —wiMEP| A =1 (3.61)

The matrices K év D and M év D are the stiffness and mass matrices of the sector model for
the given nodal diameter. On the right-hand side of the equation I is the unit matrix.
The value of the reference frequency wqg for most practical applications can be chosen as
0. For structures with rigid body motions, the reference frequency needs to be chosen as
non-zero, but far from every natural frequency. For w = 0 the equation system for the

flexibility matrix calculation simplifies to a linear static problem:
KYPAS =1 (3.62)

Equation (3.61) is solved only once, before the nonlinear solution of the forced response.
For this purpose, the CalculiX FE solver is used.

The second frequency dependent dynamic term, in Eq. (3.59), is expressed as:
N, <w2 —wj - i??NDjW?VDj) PNDj PN D,

A(]iVD (w) = Z

j=1 (w?VDj — wg) ((1 + i"?NDj)CU]QVDj — w2)

(3.63)

Where, Np, is the number of mode shapes included in the reduced order model; wypj,
¢npj and nyp; are the j-th natural frequency, mode shape and damping for the selected
ND.

The Newton-Raphson method for obtaining the solution of the equation of motion can

be applied in the same manner as for mistuned bladed disks.
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3.4.4 Modeling of additional parts of the bladed disk assembly for non-

linear forced response

Bladed disks, as its name suggests, consist of a disk where the individual blades are inserted.
While they are never integral parts for turbine stages, for the forced response analysis they
are always considered together. In certain bladed disk assemblies additional parts, such as
under-platform dampers (UPD) and retainers are included. Generally friction forces are
negligible on the retainers, but if under-platform dampers are included in the bladed disk
design the appearing friction forces contribute to the damping of the forced vibrations.

A method has been developed for including additional parts such as under-platform
dampers into the bladed disk assembly. The input of the modal properties and flexibility
matrix is handled separately from the rest of the bladed disk structure. Which means,
the finite element model of the UPD model is created. The damper is placed in the
global coordinate system of the 15 blade and its coordinates are defined by its place under
the blade platform. In agreement with the method of high-accuracy model reduction,
which requires free contact interfaces, the damper does not have any boundary conditions.
Therefore, modal properties calculated for the UPD include the rigid-body modes.

The modal properties and the flexibility matrix of stand-alone UPD is read by Conta-
Dyn and it is included in the reduced order model of the bladed disk.

For asymmetric mistuned bladed disks the mode shapes and the flexibility matrix of
UPDs are rotated to the position between the respective blades. The mode shape j for the
ith UPD is obtained by the rotation

¢ = Rz (3.64)

where, ®; is mode shape j of the stand-alone UPD and RiB is the rotation matrix for
bladed disk sector 1.

The rotation of the flexibility matrix for blade sector ¢ is done by
X' = R, AoR}," (3.65)
where, Ay is the flexibility matrix for the stand-alone UPD.

3.4.5 Calculation of the sensitivities with respect to material anisotropy

angles described in the local coordinate system of the blades

For the application of single crystal bladed disks, the commonly used description of the

single crystal material orientation are the anisotropy angles. However, in the open-source
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FE software CalculiX a more general set of parameters are used for the description of
anisotropy orientation. This set of parameters are the rotation vector components that are
used for the sensitivity calculations [46]. The advantage of the rotation vectors is that they
are defined in the global CS. By choosing the rotation vectors as design variables CalculiX
can be used for the calculation of the sensitivities of any other structure with anisotropic
material.

The material CS describing the crystal orientation of each blade in the global CS is

defined by the rotation vector:

v=| v, (3.66)

Uy
The rotation matrix can be then expressed as:

sin(flof) - 1—cos(llv]]) - ~

R =1
S T TR ™ PR

(3.67)

Where, w,, is the skew-symmetric matrix defined in the global coordinate system by the

rotation vector components as:

0 —U; Uy
&v = Uy 0 — Uy (368)
Uy Vg 0

and I is the identity matrix.

The sensitivities of the finite element calculations are obtained with respect to the
rotation vector components, defined in the global CS, but for assessment of the anisotropy
effect the sensitivity with respect to measured experimental angles are needed. In order
to calculate the sensitivities with respect to the anisotropy angles, the sensitivities to the
rotation vectors must be transformed into the blade coordinate system. The transformation

can be carried out using the chain rule:

0vg /0 Ovy/Oae Qv /O
Oa da Ov Oa
8T = 32}3;/3,8 8vy/3ﬁ avz/aﬁ % = QT : 871) (3-69)

0v,/OC  Ovy /O 0Ov,/OC

where a is any parameter of interest, and in this case this is natural frequency, modal
displacement or forced response displacement. The derivation of the Jacobian matrix,

J = 0v /0T, is derived here in analytical form.



13th April 2022 40

3.5 Calculation of the transformation matrix between global
and blade coordinate systems

For the expression derived for the Jacobian in Eq. (3.69) it can be stated, that the infin-

itesimal rotations expressed through rotation matrices of both coordinate systems: global

CS and blade CS, are identical. The infinitesimal rotation dw = {dwy,dw,,dw,} can be

expressed through the rotation matrix in the form, see Ref. [12]:
6@ = 0RRT (3.70)

Substituting Eq. (3.6) in Eq. (3.70) the expression for infinitesimal rotations is obtained

in through manufacturer material anisotropy angles in the form:

6@ = SRGRE = <R38§MR£,R§> do+
R ;R (3.71)
(RBaBMR}QR}g) g + <RB 5 CM R}QRE) d¢

Taking into account that the matrix dw obtained from Eq. (3.71) is a spin matrix (see
Eq. (3.68)) and that each summand in Eq. (3.71) is a spin matrix, this equation can be

rewritten in a vector form:
dw = weda + wgd 8 + wedC (3.72)

On another side, the vector of infinitesimal rotations can be expressed through the rotation

vector, v, describing the material anisotropy in global CS. Using an available expression

(see Refs. [12] and [68]), we have:
dw =TT v (3.73)
where the tangent operator matrix, T', is expressed as:

cos([[of) =1 [lo]| —sin(flo])) - -
v v™vu
0|12 [o]?

T(r)=1I+ (3.74)

Equalizing the terms upon independent variations of the rotation matrix parameters in
Egs. (3.72) and (3.73), we obtain the equations for the determination of the rows of the

Jacobian matrix, J, used for the transformation between the two coordinate systems: the

global CS and blade CS:

rov

ov ov
T T —— =
¢

o 6B w< (3.75)

:“-’,Ba
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3.6 Visualization of forced response in time domain

The forced response amplitudes are only calculated directly for the nodes that are included
in the reduced order model. For bladed disks, these nodes are the nodes on the nonlinear
contact patches, the nodes where the harmonic excitation is applied and some nodes of
interest (e.g. blade tip or mid-span). In many cases, these nodes are sufficient for the
evaluation of the forced response.

In some cases, it is necessary to obtain the forced response amplitudes for the whole
FE mesh. The visualization of the operational deflection shape for all FE nodes gives
additional information compared the linear mode shapes and the nonlinear forced response
amplitudes of the nodes of interest. The screening for the nodes of interest is done on the
linear mode shapes. For some nonlinear systems with friction forces the node of maximum
displacement can change along the airfoil and to identify such change the visualization of
the forced response for the full model is an ideal tool. Moreover, due to the mistuning the

location of the maximum forced response can vary between blades.

3.6.1 Recovery of forced response in time domain for asymmetric sys-

tems

The equations for the calculation of the forced response displacement in time domain are
written in the form of modal expansion, for asymmetric dynamic systems as

nHarmsnModes

z(r)= > Y gyhe (TG, ) (3.76)
k=1 j=1

where ¢; is the j-th mode shape, ¢ ; is the complex conjugate of the modal coefficient for
k-th harmonic number and j-th mode, nModes is the number of modes and nHarms is
the number of harmonics used for the forced response calculation. The 7 discrete pseudo
time is defined on 7 € [0,27] and kHarm is a vector of the harmonics used for the forced

response calculation.

3.6.2 Recovery of forced response in time domain for symmetric systems

The recovery of the displacements for cyclic symmetric systems takes the form

nHarms nM odes

z(r)= Y, Re| > dnppe™ e, (3.77)
k=1 j=1

where qb?VD(k) is j-th mode shape of ND(k) nodal diameter that corresponds to k-th

harmonic number. The discrete pseudo time for cyclic symmetric systems is defined on
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7 € [0,27/EO], where EO is the engine order of the principal excitation. The relationship
between time harmonics and the spatial harmonic (ND) of the mode shapes is described
in Eq. 3.60. For the mode shapes with negative ND values (negative harmonic index), the

following relationship is applied: ¢xp = @_np-

3.6.3 Recovery of sensitivity of forced response in time domain for asym-

metric systems

For mistuned bladed disks, the sensitivity of the mode shapes can be visualized for all
FE nodes, by taking the derivative of Eq. 3.76 with respect to the respective material

anisotropy angles:

ox (T) _ nHZaT:mS TLMXOSI% %Re (ei-kHarm(k)-TEk ) + ¢iRe <ei-kHarm(k)-7- ack’,j) (378)
Oy P gl A dy

=1

where v can be any design variable describing crystal orientation of single crystal blades.

The implementation of the previous equations has been carried out in the framework of
the current project. The InterDyn code reads the mode shapes and the modal coefficients
that are stored in CalculiX result file (.frd) and in ContaDyn result file formats respectively.
After evaluating the summations, the nodal values for each time step are written in the
results format of CalculiX. This allows for the visualization of the time domain results with

the already available capabilities of CalculiX GraphiX.

It is worth noting, that the above formulations calculate the forced response as a modal
expansion, neglecting the local flexibilities on the contact interfaces. The method gives
sufficient accuracy for the visualization of the forced response on the airfoil. However, it
is not suitable for detailed investigation of the contact behavior of the nonlinear friction

elements in time domain.

During the multiharmonic nonlinear forced response calculation, the harmonic coeffi-
cients of the contact forces and relative displacements are calculated. By evaluating the
Fourier expansion formula for the relative displacements and for the contact forces, the
time domain solution can be obtained. Using InterDyn the nodal values of the contact
forces and relative displacements are written in CalculiX result format and can be visual-
ized on the FE mesh in CacluliX GraphiX. The relative displacements and contact forces

can be used for the identification of the contact separation in time domain.
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3.7 Development of integrator-interface code InterDyn and
its use for the analysis of nonlinear forced response and

sensitivities

For the calculation of the nonlinear forced response and its sensitivities an automated
workflow has been developed, see Fig. 3.2. During the PhD project it has been of particular
importance of developing a user interface that allows the efficient pre- and post-processing

for the forced response analyses.

The implementation is based on three main modules, namely CalculiX, ContaDyn and
InterDyn. The FE calculations are done using CalculiX. The nonlinear forced response
solver code is called ContaDyn. InterDyn is used as a pre-processing tool for the selection
of pair of nonlinear contact nodes, provides an interface for the input data for ContaDyn
from CalculiX. Additionally, it provides an interface from ContaDyn to CalculiX for the

visualization of the forced response results.

The workflow of the nonlinear forced response analysis of the bladed disks starts with
a sector model of the bladed disk. The user is requested to select the nodes where the
harmonic loads will be applied and where the output of the forced response amplitudes
and sensitivities will be requested. For nonlinear studies with friction interfaces, the user
is also requested to select FE nodes on the contact interfaces. At these FE nodes nonlinear
friction contact elements will be applied for the forced response analysis. For coarse FE
meshes or for fine FE meshes of tuned bladed disks, nonlinear contact elements can be
applied to all FE nodes on the contact interfaces. However, for fine meshes or for full
mistuned bladed disks, using all nodes on the contact patches for nonlinear forced response
calculations would be computationally very expensive. In order to reduce computational
effort by a coarser discretization in the ROM, the user is allowed to select a subset of nodes
on the contact patch. The selection of the nonlinear contact nodes needs to be done only

for one of the contact patches in the contact interaction.

In the next step, the InterDyn script will find select the nearest FE node on the match-
ing contact interface for each nonlinear contact nodes that has previously been selected.

The nonlinear contact elements are applied for the contact pairs selected this way.

In case of the mistuned bladed disk study, the full model of the bladed disk is created
with the ccx_complex code developed in [46]. When the full FE model of bladed disk
is created, all set of nodes previously selected for the sector model will be expanded for

the other blade sectors of the bladed disk. Additionally, all boundary conditions such as
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single-point constraints (SPC), multi-point constraints (MPC) or friction contact elements
are expanded for all bladed disk sectors. The script allows the definition of user-defined or

random anisotropy mistuning pattern.

In the next step, the static displacement field due to centrifugal loading and gas load
is calculated including nonlinearities from friction contact interfaces and large deflections.
For the solving the static problem, the FE solver of CalculiX is used: CalculiX CrunchiX.
Static normal pressure values obtained on the nonlinear friction contact interfaces and
stored for the subsequent forced response analysis. For each contact element, the static

contact pressure is assigned individually.

For the subsequent modal calculation, the nonlinear contact interfaces are freed. The
nonlinear friction contact elements are removed and the free modes are obtained. The
stiffness matrix used in the modal calculation is the tangent stiffness matrix of the last

converged step from the nonlinear static solution.

The flexibility matrix is obtained around the same converged static solution as the
modal properties. The nonlinear contact elements are removed for the flexibility calcula-
tion. The flexibility matrix is obtained for all degrees of freedom that are included in the
reduced order model of the nonlinear forced response calculation. The equation 3.51 is

solved for every DOF separately, by applying unit force for the specific DOF.

For anisotropy mistuned bladed disks, the sensitivity of the nonlinear forced response
with respect to the anisotropy angles can be obtained. In order to do that, the forced
response solver requires the sensitivities of the modal properties and the flexibility matrix.
These sensitivities can be obtained with CalculiX after the modes and the flexibility matrix
is obtained. In CalculiX, the sensitivities are calculated with respect to the rotation vector

components defined in the global coordinate system.

The crystal orientation of the single crystal blades are measured for each blade in-
dividually. The measured anisotropy angles are defined in the coordinate system of the
blades. Because the interest is in the sensitivity with respect to the anisotropy angles
that are defined in the local coordinate system of each blade, the sensitivities need to be
transformed into the coordinate system of the blades. This calculation can be done with

the code in InterDyn.

As the next step, the efficient interface implemented in InterDyn is used for taking the
results (modes, flexibility matrix and their sensitivities) and convert them in the input

format of ContaDyn.

The ContaDyn simulations can be started with the help of an inputdeck text file.
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This inputdeck can get very lengthy for nonlinear forced response simulations of tuned
and mistuned bladed disks. Therefore, InterDyn provides capabilities for fast creation of
ContaDyn inputdecks.

In the ContaDyn inputdeck the following data are provided

e Simulation title

e Solver parameters

e Name of the modal and flexibility input files

e Name of the sensitivity files

e Local coordinate system of the contact interfaces
e Contact pairs

e Surface area values for each contact pair

e Normal contact pressure values for each contact pair
e Contact stiffness values of the contact interfaces
e Harmonic excitation

e Output requests

ContaDyn calculates the forced response amplitudes directly for nodes included in the
reduced order model. If a sensitivity study is carried out, the output for the sensitivity of
the forced response amplitudes can be requested for the nodes in the reduced order model.
The amplitudes are obtained over the calculated frequency range. The amplitudes can be
nodal maximum or maximum in the spatial directions.

ContaDyn allows the output of the modal expansion coefficients for the forced response
displacements and their sensitivities. If the mode shapes are available for all nodes in the
FE model, the forced response amplitudes can be recovered for all nodes in the model.
Similarly, if mode shape sensitivities for all nodes are available, forced response sensitivities
can be recovered. The recovery of the forced response and their sensitivities are done
for selected excitation frequency in time domain. User is allowed to select the temporal
discretization for the displacement recovery over a period of vibration. The recovered
displacements and their sensitivities are written in the .frd result format that can be read

by the pre- and post-processing module of CalculiX: CalculiX GraphiX.
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For a detailed analysis of the contact situation at the interacting surfaces, the data
regarding the contact elements are written. For each frequency and for each contact element
the contact status, the multiharmonic components of the relative displacement of the
contact node pairs and the multiharmonic components of the contact forces are written in
the local coordinate system of the contact interface. With the help of the InterDyn code,
the contact forces and the relative displacements can be calculated in time domain and

visualized for the contact nodes in CalculiX GraphiX.

3.8 Conclusions

In this chapter, the methods used for the analyses about the effect of blade anisotropy ori-
entation variation on the dynamic characteristics have been presented. Important aspect
is how the anisotropy orientation is modeled in the finite element models. For the finite
element modeling whole bladed disk models are used and the anisotropy orientation for
each blade is defined by a rotation matrix. The anisotropy angles, I' = {«, /3,(}, meas-
ured for every blade are defined in the blade local coordinate system. The well-known
expressions for the calculation of modal properties have been presented. The key dif-
ferences between the modal properties for symmetric and asymmetric systems have been
shown. The methods for calculation of the linear and nonlinear forced response have been
presented. The forced response calculation for tuned bladed disks with cyclic symmetric
conditions have been presented because such systems allow fast calculations and therefore
parametric studies can be quickly done. For bladed disks with under-platform dampers,
the modal parameters of damper are not calculated together with the rest of the bladed
disk assembly, but as individual parts and the models are assembled in the forced response
analysis.

In this research, the major development is with respect to the sensitivity analysis of the
dynamic characteristics. For which the first step is to obtain the sensitivities with respect
to the anisotropy angles. New methods, based on [82] and [83], have been presented
for the calculation of eigenvectors. The two methods for the calculation of mode shape
sensitivities, modal and algebraic methods, include computational parameters for which,
the ideal value needs to be studied. When the sensitivity of the modal parameters are
available, the sensitivity of the linear and nonlinear forced response can be obtained by the
method presented above. Because the anisotropy angles are defined the local coordinate
system of the blades, and the FE tool CalculiX calculates the sensitivities with respect to

the rotation vector parameters defined in the global coordinate system, the sensitivities
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need to be transformed to the for each blade individually. The method for this calculation
s based on equivalence of the infinitesimal rotations in both reference frames.

In the InterDyn toolbox, which serves as the interface and integrator tool, the major
capabilities for the post-processing of the forced response results have been implemented.
Namely, the recovery of the forced response displacements and their sensitivities in time
domain, which can after post-processing be visualized in the CalculiX GraphiX.

Last, but not least a general overview of the implemented (or already available) methods

that are used in this research was presented.
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Chapter 4

Validation of the methods for the
calculation of the sensitivity of

forced response

The verification for the implemented methods presented in the chapter before is shown
in this chapter. The validation for the calculation of modal properties is not required, as
CalculiX is constantly validated with every new release. The calculation of linear forced
response using ContaDyn can be verified against other readily available tools, e.g. Cal-
culiX. The validation of the nonlinear forced response amplitudes is presented in chapter
7, together with the modeling strategies for the nonlinear forced response calculation. The
emphasis in this chapter is on the validation of the calculated sensitivities for modal prop-
erties and forced response.

For the verification studies, three models are used: (i) cantilever beam (ii) simplified

bladed disk (iii) realistic bladed disk, see Fig. 4.1.

4.1 Validation of the calculation of linear forced response

The linear forced response amplitudes calculated with ContaDyn are compared with forced
response amplitudes obtained with CalculiX. CalculiX also uses the modal superposition
method for the calculation of the steady state dynamic response and the method imple-
mented in CalculiX already has been validated. Moreover, another advantage is that both
CalculiX and ContaDyn use the same mode shapes for the calculation process.

For the validation, the simplified mistuned bladed disk model, shown in Fig. 4.1b is

used. The bladed disk has 72 blades, and every blade has a random anisotropy axis orient-
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Figure 4.1: Models used for numerical analyses in the verification of the

ation. The modal properties are obtained considering a perturbed state due to centrifugal

loading.

For the first validation example only a single concentrated harmonic force is applied
on the mid-span of blade No. 1. The forced response amplitude calculated using CalculiX
and ContaDyn for blade 1 shown in Fig. 4.2. The forced response amplitudes are in good

agreement for the whole frequency range.

For the second validation example, the bladed disk is excited on all blades with engine
order 8 excitation. For each blade, the harmonic force is applied on the same node in axial
direction. The phase of the excitation force for blade j is a; = j - EO - 2w /N, where N is
the number of blades in the bladed disk. It is worth noting that in order to obtain the same
forced response the harmonic excitation need to be applied as backward traveling wave.
This means, the phase shift a§CCX) = —a; is applied with negative sign in CalculiX.

The linear forced respounse calculated at blade 1, for the engine order 8 excitation

is shown in Fig. 4.3. The results calculated with ContaDyn and CalculiX are in good
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Figure 4.2: Comparison of forced response amplitudes of blade #1 calculated to excitation
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Figure 4.3: Comparison of forced response amplitudes of blade #1 calculated for EOS8

excitation using CalculiX and ContaDyn

agreement for all excitation frequencies.

With the comparison of the forced response amplitudes, it can be stated the in-house
code ContaDyn is validated against CalculiX. Moreover, the validated linear forced re-
sponse calculation also means, that InterDyn, the interface that transfers the mode shapes

between CalculiX and ContaDyn, works as expected.

4.2 Optimal finite difference step size for the calculation of

the derivative of the stiffness matrix

In order to calculate the sensitivity of the eigenpairs, the derivative of the stiffness matrix

with respect to the design variable need to be calculated, as derived in Egs. (3.12) and
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(3.23). As discussed earlier, in this work the finite difference evaluation of the sensitivity
of the stiffness matrix is used.

For the finite difference evaluation, see Eq. (3.17), it is critical to choose an optimal
finite difference step value. If finite difference step is large, it will cause large round-off
errors. If the finite difference step is set too small, it will result in large truncation error.
An optimal value of the finite difference step can be found, when the total error is minimum
[86].

For linear problems, when K is not dependent on the displacements, the derivative
of the stiffness matrix with respect to the material anisotropy angles can be expressed
analytically, see Ref. [46]. Hence, the exact analytical solution for the sensitivity of natural

frequencies can be used as a reference in this study.

03
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Figure 4.4: Error of the sensitivities for the 1% and 2"d natural frequencies with varying

finite difference steps

The sensitivity of natural frequencies are calculated for a series of different crystal
orientations. The crystal orientations were defined by the rotation vector component,
which were varied between -0.5 and 0.5 in 0.1 for all three spatial directions. The crystal
orientations were assigned for all possible combinations, which is N = 1331 individual
crystal orientations. For each crystal orientation, the sensitivity of natural frequencies using
the analytically derived stiffness matrix derivative and the one calculated using the finite
difference method. The sensitivity has been calculated for the following finite difference
steps: Ah = {1077,5-1077,1075,5-107%,107°,5-107°,107*,5- 10~*}. For each finite

difference step, the total error of the sensitivities has been calculated with the following
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equation:

-100% (4.1)

The total error calculated for the 15 and 2" natural frequencies, see Fig. 4.4, show
that the error in the sensitivity calculation is lowest if finite difference step 1075 is used.
Therefore, this is the finite difference step used in the current implementation in CalculiX.
For both modes, the error of sensitivities increases when smaller or larger finite steps are

used.

4.3 Validation of the sensitivity of natural frequencies

The sensitivities of the natural frequencies calculated with the semi-analytic method, de-
scribed in section 3.3, are compared with the sensitivity values obtained by the finite
difference method. The calculation of the approximation of the derivatives by the finite

difference method is performed as:

Afi(v) _ fily +Ay) = fi(v)
oy A~y

(4.2)

where Ay = 0.001rad and f;(7y) is the j-th natural frequency.

It should be noted that the finite difference approximation allows the validation the
implementation of the new method, however its accuracy is generally lower in comparison
with the newly implemented semi-analytical method. The sensitivities calculated with the
value of Ay = 0.001rad has been found to result in the most accurate results. The reason
for the loss of accuracy in the sensitivities calculated using the finite difference method is

the limited precision of the natural frequency, used in Eq. (4.2).
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(b) Quarter of the bladed disk

Figure 4.5: Finite element models used for the validation of the sensitivity calculations

The validation of the sensitivity calculations for natural frequencies has been done for
realistic bladed disk models. First, the sensitivities of the first ten natural frequencies of
a single blade were calculated. The finite element model consists of quadratic tetrahedral
elements with approximately 19,000 nodes. The material of the disk segment is isotropic,
and the blade material is orthotropic. Fixed boundary conditions have been applied on

the two sides of the disk segment (blue nodes in Fig. 4.5a), the contact interfaces on the
blade-root joints are fully stuck and the shrouds are free. Centrifugal load has been applied

and the static calculation has been carried out with nonlinear geometric effects included.

The modal properties were calculated around the converged static solution.

The sensitivities were obtained with respect to all three anisotropy angles, I' = {«, 3, (}.
The validation for the calculation of the natural frequency sensitivities using the new
method was first done for a single blade. The sensitivities calculated using the new method
are shown with filled symbols and the results obtained from the finite difference formula-
tion is plotted with empty symbols in Fig. 4.6. The normalized natural frequency values

calculated with the two methods, that are overlapping in the plot, reveal a good corres-
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pondence.

Figure 4.6: Normalized natural frequency sensitivities with respect to anisotropy angles
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for single blade calculated using the new method and finite differences

For the analysis of a mistuned bladed disk a full model of a bladed disk with 75 blades
has been created. The random mistuning pattern was generated using realistic statistical
distribution provided by the blade manufacturer for all the anisotropy angles. The finite
element model consists of approximately 0.5 million nodes. The nodes shown in blue in
Fig. 4.5b have fixed boundary conditions applied in axial and tangential directions. At the
contact interfaces on the fir-tree and on the shrouds are fully stuck. The static analysis
with centrifugal loading is performed with nonlinear geometric effects included and the

static stress distribution are used as a perturbation for the subsequent modal analysis

step.

Figure 4.7: Natural frequency-nodal diameter diagram of the cyclic symmetric bladed disk

Normalized frequency
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model with full contact on the shrouds
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The calculation of sensitivities of the natural frequencies have been validated for mis-
tuned bladed disks by the comparison with the finite difference method. Each natural

frequency sensitivity has been normalized by the perspective natural frequency.
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Figure 4.8: Validation of sensitivity of natural frequencies with respect to the anisotropy

angles of blade 5 for mistuned bladed disk

The results of the validation for the first 100 modes in Fig. 4.8a and for selected higher
natural frequency sensitivities in Fig. 4.8b, show a good correspondence with the finite
difference reference approximation values. The sensitivities are shown here with respect to
anisotropy angles «, 8 and ¢ of blade 5.

The validation of the natural frequency sensitivity calculation has been done for systems
with nonlinear friction contact interfaces. For the finite difference approximation of the
sensitivities, see Eq. (4.2), the natural frequencies were calculated for the perturbed and
the unperturbed crystal orientations. For both calculations, the static pre-stress state
is obtained for unperturbed anisotropy crystal orientations. Which means, the natural
frequencies in the subsequent step are calculated for the same system matrices. For the

calculation with the perturbed crystal orientation, change in the anisotropy orientation is
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introduced for the modal calculation step.
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Figure 4.9: Validation of the sensitivity of natural frequencies for mistuned blade disks

with (i) stuck interfaces (modes 100 to 200)
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Figure 4.10: Validation of the sensitivity of natural frequencies for mistuned blade disks

with (ii) sliding interfaces (modes 100 to 200)

The static calculation preceding the modal analysis is done with nonlinear friction
elements included on the contact. In order to linearize the dynamic system for the modal
analysis two options were studied (i) increasing the friction coefficient to a very high value
resulting in a fully stuck contact (ii) decreasing the friction coefficient to 0 resulting in a
perfect sliding contact.

For this validation a mistuned bladed disk with a random anisotropy mistuning pattern
is used. For this bladed disk surface to surface nonlinear friction contact elements are
applied on the root and shroud interfaces for every blade. The validation of the sensitivities
has been done for the first 200 natural frequencies (approximately 3 mode families) with
respect to the primary anisotropy angle («) of blade number 21. The choice for blade 21
has been arbitrary. The sensitivity of natural frequencies, shown in Figs. 4.9, and 4.10,

show good agreement for the new semi-analytical method and the finite difference method.
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For some modes negligible differences can be observed, which is considered to be due to

limited accuracy of the finite difference method.

4.4 Validation and optimal parameters for the calculation of

the sensitivity of mode shapes

In section 3.3, two methods have been proposed for the calculation of the sensitivity of
mode shapes of mistuned bladed disks. In this section, a numerical study is carried out
for the above presented methods on the accuracy and the computational effort. The study
focuses on the application for large scale finite element models with high spectral density,
such as the anisotropy mistuned bladed disks.

For the enhanced modal method of the mode shape sensitivity calculation, the optimal
selection for the value of parameter \g is studied. For the algebraic method, the effect of

the placement of the regularization coeflicient is studied.

4.4.1 Optimal value of parameter for the enhanced modal method

For the first analyses, a cantilever beam is used for which the first 20 mode shapes and their
sensitivities are calculated. The model consists of 720 degrees of freedom. The material of
the beam is anisotropic, and the anisotropy orientation is described by the rotation vector
components defined in the global coordinate system. The sensitivities are calculated with
respect to the three rotation vector components.

The sensitivity of the mode shapes are calculated using the modal and the algebraic
methods. For each calculation of the mode shape sensitivity with the enhanced modal
method the \g value has been gradually changed. Its value is varied stepwise, such that
between each eigenvalue 100 Ao value has been selected for the mode shape sensitivity
calculation.

The sensitivity of the mode shapes are analyzed for the nodal values at node A, see Fig.
4.1a, for all three spatial directions. These sensitivities are normalized with the reference
values calculated with finite differences. In order to apply the finite difference formulation,
the mode shapes are calculated twice, once with an initial anisotropy orientation and once
with one of the rotation vector components describing the anisotropy orientation changed
by a small value: Ar; = 107°.

O@(ri) _ @(ri + Ary) — P(ri)
ém- - AT,‘

(4.3)
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The sensitivities of the eigenvectors calculated with the enhanced modal method using
continuously increasing A\g values are shown with continues lines. The sensitivities obtained
using Ao = (Aj + A\j—1)/2, where j is the number of mode shape under consideration, is
shown with filled circle symbols. The sensitivities calculated with the algebraic method
are shown with empty circle symbols. For this study the mode shapes 3, 6, 14 and 20 are
picked.

The sensitivity of mode shape #3, see Fig. 4.11a, show little dependency on the value of
Ao for most sensitivities. The negligible effect of Ag is due to the having 20 modes included
in the modal expansion. For modes, for which the mode shape sensitivity is calculated for,
has significantly lower eigenvalue that the eigenvalue of the highest mode included in the

modal expansion, the value of Ay can be chose 0, as it is shown in [98].
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Figure 4.11: Sensitivity of mode shapes calculated with the modal method for beam model

at node A with increasing value of Ag

The value of the sensitivity 0¢,/0r, is changing as the parameter \g is varied. This
sensitivity has orders of magnitude smaller numerical value compared to the other sensit-

ivity values. For 0¢,/0r, when X\g = (A\; + Aj—1)/2, the finite difference method did not
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provide the exact same value, however the 0.5% deviation is considered to be acceptable.

The sensitivities of mode shape 6 and 14, in Fig. 4.11b and 4.11c¢, show a more no-
ticeable dependency on the g value. The closer this parameter value is chosen to A;, the
eigenvalue of the mode under consideration, the better the residual term accounts for the
truncated modes. As \g cannot be chosen to be equal to A; in order to avoid singularity in
Eq. (3.27), a good compromise is to choose the method parameter as \g = (A\; + Aj—1)/2.
This introduces negligible error in the sensitivity calculation for the eigenvectors, but en-
sures that singularity does not occur. The sensitivity of mode shapes calculated with the

algebraic method provides accurate value, shown with empty circles.

The highest mode calculated for this beam model is mode 20. The sensitivities with
respect to the design variable r, shown in Fig. (4.11d) calculated with the enhanced
modal method using A9 = 0 show errors up to 30%. This can be reduced to maximum
5% if Ao = (A\j + Aj—1)/2 and further reduced by coming closer to the value of Agy. The
proposed algebraic method provides accurate results for the sensitivities of the highest

calculated mode shape.

It is worth noting that for the sensitivity of higher modes, the value of the method
parameter g more drastically influences the numerical value of the sensitivity of eigen-
vectors. For example if the \g = 0 is used as the value of the method parameter, for modes
3 and 6, the error introduced is less than 1%, but for higher modes, such as 14 or 20, the

relative error is 10-60%.

For practical dynamic systems with large degrees of freedom only a subset of modes
are calculated. If for these systems the sensitivities need to be obtained for all calculated
modes using the modal method, then accounting for the mode shapes that have not been
calculated are necessary. The optimal selection of the method parameter \g is essential for
obtaining correct numerical values for the sensitivity of mode shapes. A good approxima-
tion can be obtained for the sensitivity of lower modes of the MDOF system, by using the
traditional method [98] when Ao = 0. For the higher calculated mode shapes, the Ao value
needs to be very close to Aj, but cannot be equal to that as it would lead to a singular
system of equations in Eq. (3.27). A good compromise is to set A\g = (A\; + A\j_1)/2 for
every mode shape j. This way, accurate enough results can be obtained for the sensitivity

of mode shapes, and the method can also cope with models with high frequency density.
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4.4.2 Studies for the ideal placement of the regularization coefficient

In order to use the algebraic method for the calculation of the sensitivity of eigenvectors
in practice, the regularization coefficient needs to be added to an optimal member in the
system matrix A, see Eq. 3.33. When the regularization coefficient is inserted into matrix
A, the matrix A becomes regular so the system of linear equations can be solved with suf-
ficient accuracy. Several of the investigated strategies for the location of the regularization
coefficient have been studied with the aim of finding a strategy that consistently avoids
singular matrices with low condition numbers.

Here, two approaches have been studied for the ideal placement of the regularization
term adding it to the element on the diagonal of the matrix A (i) that has the smallest
absolute value and (ii) that corresponds to the degree of freedom with the largest modal
displacement for the mode, which the sensitivity is calculated for. In order to quantify
how these approaches perform in regularizing the singular system, the condition number
of matrix A has been calculated. Here it is worth noting that the matrix A is different for

each mode shape, see Egs. (3.30) and (3.31).
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Figure 4.12: Condition numbers for A depending on the placement of the regularization

coefficient when ordered in ascending absolute main diagonal value

For the study of method (i) the diagonal members have been ordered in increasing
absolute numerical values and the regularization coefficient s has been added to every
10", This has been done 100 times and the calculated condition numbers have been
calculated for each of the 100 A. The stiffness and mass matrices, moreover the first 100
eigenvalues are calculated for a simplified bladed disks, shown in Fig. 4.1b. The finite
element model consists of approximately 110,000 degrees of freedom. This bladed disk
is anisotropy mistuned. As examples, the condition numbers are shown in Fig. 4.12 for

Modes 5 and 15. The figures show that there is a significant scatter between the condition
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Figure 4.13: Condition number for mode 60 depending on the placement of the regulariz-

ation coefficient when ordered in ascending absolute main diagonal value

numbers, depending on which member of matrix they are added to. Moreover, there is
no clear correlation visible between the numerical value of the diagonal member and the
calculated condition number. Adding the regularization term to the lowest absolute value
of main diagonal provides acceptable condition numbers for some modes, e.g. mode 5, but
for others e.g. mode 15 the condition number of A is large.

In order to analyze the general behavior, the condition number has been calculated for

0" member of the

the matrix when the regularization constant has been added to every 100
main diagonal of the matrix in increasing absolute value order. The condition values in Fig.
4.13 show a great variation of the condition number for matrix K, the condition number

does not increase as the absolute numerical value of the diagonal member increases.

The studies using approach (ii) for adding the regularization term has been done for
several mode shapes. As an example, here a localized mode shapes from the first family
of modes is chosen. The mode shape of mode no. 60 is shown in Fig. 4.14. The condition
number has been calculated after adding s to three different entries of the diagonal of the
matrix: (a) to the DOF with the largest modal displacement (b) to one of the DOF on
the disk (¢) and to the DOF corresponding to the lowest absolute value of the diagonal
of the matrix. The nodes for the corresponding DOFs are shown in Fig. 4.14. When
the condition numbers are evaluated, they result as (a) 1.4 - 101!, (b) 6.0 - 10'? and (c)
3.3-10'. This shows, that if the regularization term is added to the diagonal member that
corresponds to the DOF with the largest modal displacement, then the regularization is

the most effective.

In order to study the correlation between the condition number of matrix A and the
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Figure 4.14: Mode shape 60 for the simplified mistuned bladed disk with regularization

coefficient degrees of freedom shown

location on the main diagonal depending on the absolute value of the modal displacement
for the corresponding DOF, the following study was done: The DOF absolute values of the
mode shape 60 have been sorted in descending order, and the regularization term has been
added for every 1000 diagonal, and for each regularized matrix j, the condition number
has been calculated. The results shown in Fig. 4.15 show a clear correlation, namely if s
is added to diagonal term corresponding to a degree of freedom with large modal displace-
ment, the resulting condition number is the smallest. The condition number increases as

it is added to diagonal terms corresponding to DOF with smaller modal displacements.

The two regularization strategies are compared in Fig. 4.16 for the first 100 modes of
the blade disk system. It shows that adding s to the diagonal member of the DOF with the
largest modal displacement provides lower condition number than adding it to the lowest
absolute value of the diagonal member. This corresponds to the findings of Nelson in [64],

where the rows and columns corresponding to the maximum eigenvector value are deleted.

This study shows that by selecting the highest degree-of-freedom of the mode shape
under analysis and adding the regularization coefficient to the corresponding term on the
main diagonal of A consistently provides low regularization coefficients. Therefore, this has
been selected as the strategy for the regularization in the algebraic method for calculation

of sensitivity of mode shapes.
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Figure 4.15: Condition number depending on the placing of the regularization coeflicient

for mode 60
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Figure 4.16: Condition number calculated for the matrices obtained with the two regular-

ization strategies for the first 100 modes

4.4.3 Comparison of the two methods presented for the calculation of

the mode shape sensitivities

The study of the accuracy of the two previously presented methods, the modal method
and the analytic method, is done using the earlier presented simplified anisotropy mistuned
bladed disk, shown in Fig. 4.1b. The bladed disk has 72 blades, which results in 216 design
variables specifying the anisotropy orientation of all blades. The dynamic characteristics
of the bladed disks can be studied using the natural frequency-nodal diameter diagram.
Using this plot, shown in Fig. 4.17, the mode families of the bladed disk can be identified.
It is shown that the disk stiff and frequency against nodal-diameter curve becomes flat

very quickly. This results in high modal density in certain frequency ranges, therefore
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Figure 4.17: Normalized natural frequency values plotted against the nodal diameter num-
ber for the simplified bladed disk shown in Fig. 4.1b that is used for the comparison of

the algebraic and modal method for calculation of mode shape sensitivities

this bladed disk model is ideal for testing the capabilities of the proposed methods for the

calculation of the eigenvector sensitivities.

It has previously been shown, using the beam model, that both methods provide ac-
curate numerical results for the sensitivity of the mode shapes. According to what has
been concluded in the earlier sections, for the enhanced the Ao = (A; + \j41)/2 is used,
which is updated for every mode. This means that the equation system in Eq. (3.27)
needs to be factorized for every mode once. For this bladed disk, Eq. (3.27) needs to be
solved as many times as the number of design variables, 216. Therefore, for such systems
with many design variables, the relative effort of the LU decomposition of the system of
linear equations becomes less significant. In the modal expansion basis, see Eq. (3.19), all

calculated modes are included.

For the algebraic method, the regularization coefficient s is added to the main diagonal

member of matrix A, that corresponds to the DOF with the largest modal displacement.

The sensitivity of the mode shapes are analyzed at one particular node: in the mid-
span of blade 20. The sensitivities are calculated with respect to all three rotation vec-
tor components of blade 20 ©» = {720, 7y20,7220} and for all 3 spatial directions ¢; =
{¢jz:®jy, ®j-}. The sensitivity of the first 100 eigenvectors of the mistuned bladed disk
are calculated using the modal method (MM) and the algebraic method (AM). In order to

be able to compare the numerical values obtained using the two methods, relative errors
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Figure 4.18: Error of the sensitivity of mode shapes calculated with algebraic method

(AM) and with the modal method (MM) using Eq. 4.4

are calculated for all mode shape sensitivities under investigation:

(00 /0r) ams — (09;/07) it
= (06;/7) 4t #4)

The calculated errors of the sensitivities of the first 80 mode shapes, shown in Fig.
4.18a, with 100 modes in the expansion basis for the MM, are negligible. This is because
in the expansion basis all the modes from the first mode family are included, therefore

their sensitivities are calculated accurately.

The error between sensitivities calculated using the two methods is larger than 10%
for mode number 82 for ¢gs ,/r,; and ¢gay/ry. The numerical value of the sensitivities is

very small, therefore this large relative error is acceptable.

The error calculated for the last modes in the 100 modes range has an increasing tend-
ency. This is expected for the results calculated with the MM, because the sensitivities of
modes shapes are obtained with 100 modes in the expansion formulation. The accuracy of
the sensitivities calculated can be increased by using more mode shapes for the eigenvector
sensitivity calculations. As an example, Fig. 4.18b shows the relative errors with 200

modes retained in the series expansion basis.

The studies done for the modal and algebraic method for the calculation of the sensit-
ivity of mode shapes done for the simple bladed disk model has proved, that both methods
can be applied for structures with high frequency density. The comparison of the sensit-
ivities calculated for both methods, showed that the modal method that accounts for the
mode shapes not included in the series expansion basis provides accurate results except for

the highest modes included.
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4.4.4 Study of the convergence characteristics of the modal method for

high-fidelity bladed disk models
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Figure 4.19: Relative error of the sensitivities calculated with modal method for different

number of modes in the modal expansion basis

The convergence characteristics of the sensitivity of the mode shapes, calculated using the
modal method, have been studied for higher family of mode shapes using a high-fidelity
bladed disk model. This realistic bladed disk model, shown in Fig. 4.1c, has 0.5 million
nodes, about 1.5 million degrees-of-freedom. For the convergence study, from the first 1000
modes, 12 has been arbitrarily selected from different families of modes. The sensitivity
of these modes have been calculated with different number of mode shapes included in
the expansion basis. In Fig. 4.19a, the relative error of the sensitivity of mode shapes
have been calculated for modal displacement in x direction with respect to x component of
rotation vector of the material anisotropy orientation of blade 42 vy .. The relative error
is calculated with respect to the approximation of the sensitivities using finite difference

(FD) method such as

(a({b/aMz,a:)MM - (acb/f)mz,x)pp
(8(15/87”42@)1;[)

€Fp = (4.5)

It needs to be mentioned here, that for bladed disk structures the sensitivities calculated
using the FD method is generally less accurate. Nevertheless, it can be used to validate
the sensitivity calculations with the proposed methods. The results shown in Fig. 4.19a
show a fast convergence of the mode shape sensitivities over the mode shapes. The error
reduces to less than 2% for all modes except for mode 490 which has a small value of mode

shape sensitivities; therefore these results are acceptable.

The relative error of the sensitivities of the modes analyzed earlier can be calculated
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Figure 4.20: MAC numbers calculated for sensitivity of mode shapes calculated using the

modal and algebraic method, as Eq. 4.7

by taking the exact solution obtained with the algebraic method.

P _ (8¢/6T42,m)MM - (6¢/8r427x)AM
A (0@/0r12.2) 40y

The relative error values shown in Fig 4.19b show significantly lower values compared to

(4.6)

the ones shown in Fig. 4.19a. The convergence characteristics of the modal method can
clearly be seen in this graph, as the error of the mode shape sensitivities are 1%-10% when
the sensitivities are calculated for the highest mode shapes that is included in the series
expansion formulation. When an additional 10-20 modes are included in the expansion,
the error becomes negligible. As an example, the relative error for sensitivity of mode
shape 293 is 10.3% when 295 mode shapes are used for the calculation of the mode shapes.
If 305 modes are used for the series expansion, the error becomes 0.27%.

The vector of sensitivity of mode shapes calculated for using AM and MM can be

compared with the help of MAC values, using the formulation

mac ((2%) (9% _ |<%>LM‘<%)ZM\2
(), ().

R C O T

where (0¢;/0r),,,, and (0¢;/0r) ,,, are the mode shape sensitivities of the j-th mode
calculated using the modal and algebraic method respectively.

The MAC values have been calculated for the mode shape sensitivities for the first
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150 modes with respect to all 225 design variables. For the bladed disk 150 modes were
calculated, therefore MAC values for the sensitivity of mode shape calculated using the
modal method and the algebraic method decreases for the mode no. 150 and 148, see Fig.
4.20.

4.4.5 Comparison of the computational efforts

For the methods proposed in this work it is essential to assess the computational effort
associated to each method, especially the calculation time. For this study, the already
presented simplified bladed disk modal, see Fig. 4.1b, and a bladed disk model with 0.5
million nodes are used. This more detailed model, shown in Fig. 4.1c, can represent the
calculation efforts that are currently typical for industrial applications.

The calculation times of the derivative of the eigenpairs have been calculated for 100
and 400 modes, using the simplified bladed disk model. For these calculations, there cannot
be a significant difference observed in the calculation times. When the same analysis was
done for 100 and 600 modes of the realistic bladed disk model, the difference is more

notable.

Table 4.1: Calculation times for the modal and algebraic methods for calculation of the

sensitivity of mode shapes

Finite element | Number of | Calculation time [hours|
Modal Algebraic
model modes
method method
Simplified
100 1.4 1.2
bladed disk
Simplified
400 5.1 2
bladed disk
Realistic
100 10.2 5.7
bladed disk
Realistic
600 195.7 33.7
bladed disk

It is worth, noting that the calculation time of the enhanced modal method increases
significantly as the number of modes for which the sensitivity of eigenpairs increase. This

is mainly due to the fact, that the number of coefficients used in the series expansion
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increase, see Eq. 3.29, and with that the calculation time as well. A way to improve the
calculation time could be to restrict the number of modes used in the expansion basis for

the sensitivity calculation of the lower modes.

4.5 Validation of the sensitivity calculation of forced response

The sensitivity of natural frequencies and mode shapes serve as input for the calculations
of the sensitivity of forced response amplitudes. In this section, the validation of the sens-
itivity calculation for forced response of linear and nonlinear anisotropy mistuned bladed

disks is done.

4.5.1 Validation for the calculation of sensitivity for linear forced re-

sponse

First, the sensitivity of the linear forced response has been verified. All contact interfaces
of the bladed disk are considered to be welded together. For the bladed disk, the natural
frequency-nodal diameter plot is shown in Fig. 4.7. For the bladed disk a traveling wave
type excitation is applied with engine order 11 that excites the 2"d mode family. The
harmonic excitation is applied on one node for each blade at the forced response amplitudes
are obtained for these nodes. The amplitudes for all 75 blades are on shown in Fig. 4.21.
the frequency range of the 2" mode are shown. The forced response amplitudes are
normalized with respect to the amplitudes calculated for a tuned bladed disk where all
blades have anisotropy angles « = § = ( = 0 and the excitation is the same engine
order and same frequency range. The excitation frequency is normalized with the natural

frequency of the stand-alone blade with open shrouds.
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Figure 4.21: Normalized forced response of all 75 blades at EO11 for mode family 2

In Fig. 4.21, it can be identified that one of the blades (blade 10) has higher vibration
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Figure 4.22: Recovered forced response in time domain of all 75 blades at EO11 for mode
family 2 at f = 4.608 for the time instant where the maximum forced response displacement

occurs

amplitudes at normalized frequency f = 4.608. Using the capabilities of the forced response
recovery for all the FE nodes, the forced response can be visualized for the time instant

where blade 10 has maximum vibration amplitudes, see Fig. 4.22.

For the validation of the sensitivity calculation, the sensitivity with respect to blade
10 is analyzed for the forced response displacements of all blades. The sensitivity calcu-
lated with the new methodology is compared with sensitivities calculated using the finite
difference method. The sensitivities obtained with both methods are in good agreement
for all blades, as shown in Fig. 4.23. The small differences are due to limited accuracy of

the finite difference method.
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Figure 4.23: Validation of sensitivities of the forced response (calculated with the new

method and with finite differences) with respect to o angle of blade 10 at f = 4.608
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4.5.2 Validation for the calculation of sensitivity for nonlinear forced

respoinse

The sensitivity of the nonlinear forced response has been validated for a two-blade model
with nonlinear friction contact interfaces. The two-blade model, shown in Fig. 4.24, is
fixed on lower and on the higher side of the disk sector. On the shroud interfaces on
the two ends of the sector model, sliding boundary conditions are applied. These sliding
boundary conditions restrict all motions on the normal direction of the contact surfaces,
while allowing tangential movement. Nonlinear contact elements are defined on the root

interfaces of both blades and on the shroud interfaces between the two blades.

\
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Figure 4.24: Two-blade model

On each of the 4 root interfaces 12 nonlinear contact elements are applied. On the two
contact interfaces on the shroud contact patches, 3 and 3 contact elements are applied.
The harmonic excitation is applied at the mid-span of the trailing edge. The harmonic
excitation has 38.4° phase shift between the two blades, that would be equivalent to EO8

excitation for a full blade model.

The sensitivities with respect to anisotropy angles of the left blade has been calculated
with the new method and with finite difference method. The calculated sensitivities and
the nonlinear forced response are shown in Fig. 4.25. The sensitivities calculated with
the two methods are in good agreement, therefore it can be concluded that sensitivity
calculation of the nonlinear forced response with respect to the anisotropy angles of single

crystal bladed disks are validated.
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Figure 4.25: The forced response amplitudes and their sensitivities with respect to aniso-
tropy angles «, 8 and ( calculated with the new method and with finite differences around

the resonance

4.6 Validation of the calculation of the forced response dis-

placement recovery in time domain

The forced response amplitudes are calculated by ContaDyn only for the degrees of free-
dom included in the reduced order model. For any selected frequency, the forced response
amplitudes in time domain can be obtained by Eqgs. 3.76 and 3.77 for all DOF the finite
element model. The method and the implementation for the recovery of the forced re-
sponse amplitudes and their sensitivities, described in in section 3.6, has been validated

for asymmetric and symmetric bladed disk structures.

4.6.1 Asymmetric bladed disk structure

The two-blade structure shown in Fig. 4.26 is used for the validation for the calculations
of an asymmetric bladed disk structure. The two blades are fixed at the root and in
normal direction on the shrouds. Between the two blades there are two nonlinear contact
interfaces and they are discretized by one contact element for each patch. The two blades
are harmonically excited on the leading edge of the blades. The two blades are single crystal
blades with different crystal orientation, which results in distinct natural frequencies. For
the forced response calculation and for the displacement recovery, 50 modes are included.

Moreover, in the forced response function calculation the harmonics 1 and 3 are included.
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Figure 4.26: Two-blade structure used Figure 4.27: Forced response of nodes A
for the validation of the recovered forced —and B of the two-blade structure

response and their sensitivities

The forced response is plotted for node A, where the contact element is applied on the
left blade (blade 1), and for blade B around the resonance in Fig. 4.27. The recovered
displacements are calculated at 1065 Hz for 31 time steps over the vibration period. The

recovered displacements can be animated over the period using CalculiX GraphiX, in Fig.

4.28 the displacements for the time instants when the ond plade has extreme deflections
are shown.
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Figure 4.28: Recovered displacements at two time instants for f = 1065H z

The deflections in Fig. 4.28 show the first bending mode for the shrouded blade. In

order to validate the forced response amplitudes, the recovered displacements are compared
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Figure 4.29: Validation of recovered forced response displacements for two-blade system,

where the displacements are recovered using the mode shapes or the displacements are

calculated from the harmonic coefficients

with the harmonic coefficients of the forced response amplitudes placed in the time domain

equation of the forced response in Eq. 3.44. This is called here as the direct calculation.

The comparison can be done for the nodes included in the reduced order model, therefore

for the analysis A and B nodes are selected. The forced response amplitudes calculated

with the two methods, shown in Fig 4.29, are in good agreement with each other. The

forced response of node A in x direction is several magnitudes lower than the other forced

response amplitudes, which explains the deviation between the forced response in time

domain. With this, the validation of the nonlinear forced response recovery for asymmetric

(i.e. mistuned) systems has been successfully done.
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Figure 4.30: Bladed disk used
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for the validation of the re-

covered tuned forced response

4.6.2 Symmetric bladed disk structure

The recovery of the cyclic symmetric forced response displacements is validated in a similar
manner, using the cyclic symmetric bladed disk shown in Fig. 4.30. The bladed disk is
fixed on the rotor in axial and tangential direction. The nonlinear contact is considered
on the leading edge side of the shroud interface. Some FE elements have been removed
from the left side and moved to the right side, shown with red color. Cyclic symmetric
condition has been applied on the surfaces that have been cut due to the moving of the
above mentioned FE elements. Nonlinear friction contact has been modeled with 35 friction
contact elements on the shroud interface. The root contact between the blade and the disk

is considered to be fully stuck.

The bladed disk is excited on the airfoil with EO20 excitation, that excites the 2™
mode of the bladed disk. The nonlinear forced response is calculated using time harmonics
0, 20, 40, 60 and 80. The forced response obtained for an airfoil node is plotted around the
resonance in Fig. 4.31. The forced response shows, that the system response is strongly
nonlinear due to the friction forced that appear on the shrouds. For such systems, the
flexibility matrix included in the FRF calculation is essential to calculate the FRF matrix

accurately.

The comparison of the forced response recovery is done at resonance frequency for 2
nodes that are included in the reduced order model: one node on the airfoil trailing edge
and one on the shroud contact patch. The normalized forced responses at the resonance

frequency are plotted for all three degrees of freedom for the two nodes under investigation.
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Figure 4.32: Validation of the recovered forced response displacements of the cyclic sym-

metric bladed disk

The displacements have been normalized with the maximum vibration amplitude of the

node on the trailing edge.

The recovered forced response displacements show good agreement for the node on the
trailing edge for x and y directions, see Fig. 4.32. The amplitude of the displacements in
z direction is smaller, resulting in some discrepancy over the period.

The forced response compared on the shroud interfaces obtained with the two different
method shows more noticeable discrepancy between the results. Similarly to the node on

the trailing edge, the results with larger vibration amplitudes are in better agreement.

The difference between the time-domain solutions is contributed to the lack of flexibility
information, which is particularly important for the friction contact interfaces where the
nonlinear friction forces are acting. Far from the nonlinearities, e.g. on the airfoil, the
importance of the flexibility information reduces and the recovered displacements allow for

an accurate representation of the operational deflection shape.
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4.7 Conclusions

In this chapter the verification of the methods used in research has been presented. The
validation of the implemented methods for the sensitivity needed to be done before the
extensive analyses for mistuned bladed disks had been started.

The validation was first completed for the linear forced response. The forced response
amplitudes calculated using ContaDyn, the forced response tool in this work, has been
compared with CalculiX, for which the linear forced response calculations have been valid-
ated. As both tools use the modal basis with the same mode shapes, complete coincidence
in the amplitudes have been obtained.

The sensitivity calculation of the element stiffness matrices in CalculiX are done by
finite differences. In order to find an optimal finite difference step size, the sensitivity
of natural frequencies were calculated with different step sizes and compared with the
sensitivity of natural frequency obtained using the analytically calculated derivative of
the element stiffness matrix. Because the analytical formulation for the elements stiffness
matrix derivative cannot be used, the optimal value for the finite difference is used for the
sensitivity calculations: 107°.

The calculation of sensitivity of natural frequencies have been validated for single blades
and for mistuned bladed disks. The sensitivities obtained directly from CalculiX using the
new method has been compared with sensitivities obtained the finite differences of two
separate modal calculations. The sensitivity values showed a very good agreement.

The derivative of the eigenvectors cannot directly be expressed, therefore two different
methods have been proposed ([82] and [83]) for the calculation of the mode shape sensitiv-
ities. The modal and algebraic methods have been implemented in CalculiX. Both methods
require a parameter to be chosen, which has been investigated in detail. For the modal
method, a reference frequency needs to be set, for which the optimal value is the mean of
the eigenvalue of the mode for which the sensitivity is calculated for and the eigenvalue
of the mode one lower. For the algebraic method, the regularization coefficient needs to
be added to one of the members on the main diagonal of the system matrix. For this the
optimal strategy is to add this value to the main diagonal member that corresponds to the
largest modal displacement of the mode for which the sensitivity is calculated for.

For the modal method of the mode shape sensitivity, the convergence characteristics
have been studied. In general, it can be stated, that in order to obtain accurate results
for the derivative of the mode shapes, at least one more mode family needs to be included

than the mode for which the sensitivity is calculated for.
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The sensitivity of linear and nonlinear forced response has been presented in this
chapter. The sensitivities calculated using the new method and the finite differences are
in good agreement and the negligible differences are considered to be due to the limited
accuracy of the derivative approximated by the finite difference method.

InterDyn allows to calculate the forced response and their sensitivities in time domain
for all FE nodes of the original model at a selected frequency. The recovered displacements
then can be visualized in the pre- and post-processing tool CalculiX GraphiX. The valida-
tion for the degrees of freedom included in the reduced order model could be done by the

comparison of the displacements obtained through the direct harmonic expression.
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Chapter 5

Sensitivity analysis of the modal

characteristics of the anisotropy

mistuned bladed disks

The modal properties of mistuned bladed disks are an important indicator about the
dynamic characteristics of the structure. The linear modal properties are also the basis
for calculation of the linear and nonlinear forced response function, as shown in chapter
3. Similarly, the sensitivity of natural frequencies and mode shapes also carry important
information about the sensitivity of the dynamic behavior of the mistuned bladed disk.
In this chapter, the influence of varying crystal orientation angles for single blade and
varying anisotropy mistuning patterns on the modal characteristics are studied. Further-
more, the sensitivity of the eigenpairs of mistuned bladed disks are analyzed for selected

modes of a mistuned bladed disk.

5.1 Effect of anisotropy orientation axis scatter on the single

blade natural frequencies

The effect of the anisotropy angle variation of the single crystal blades on the natural
frequencies is shown for a single stand-alone sector of bladed disk model.

The finite element model, shown in Fig. 5.1a consists of 19,000 nodes. The material
of the blade is anisotropic and the material of the disk is isotropic. The two areas on the
side of the segment on the disk have been fixed. On the blade a centrifugal loading has
been applied and the modal properties have been calculated around the converged static

solution. The contact interfaces between the disk and the blade are modeled to be fully



13th April 2022 81

e%u\
A

AVAVAY
Vi
N

Y AVAVA
!
i?

VAV
285

AVA™4N
VAV
AV

AVAY
AV

VaVy

s

Nk A =
(S 2 (=S i
vt S ‘%}é‘,"«
/A

~ 5
)
>

L—1 -

N
= NSREEOT L2
= N NS00
L= AANCTE —a
s DL
] Ve
= ARV = T
] VA TATA AT
] J vjm‘igﬂ'ﬂﬂ’ —
d A A RVAVAYAY AN |
. AN ey |
) VLY VAVAYAVI"AVAVSA

(a) Slngle (b) Quarter of the bladed disk

blade

Figure 5.1: Finite element models used for the study of anisotropy orientation variation

on the modal properties and their sensitivities

stuck.

For the description of the crystal orientation of the blade material, anisotropy angles
have been randomly generated. The random values of «, 8 and ¢ have been sampled from
the corresponding statistical distribution described by the manufacturer of the blades.
There have been 10,000 different crystal orientations obtained and for this 10,000 blade
sector model, the first six natural frequencies have been calculated. Additionally, the
natural frequencies for 2 models with special anisotropy angles have been calculated, (i)
one with anisotropy orientation coinciding with the blade stacking axis and (ii) on with
anisotropy angles equal to the mean value of the statistical distribution of the respective
angle.

The range of the normalized natural frequencies are shown in Fig. 5.2. The values
in this plot have been normalized with respect to the natural frequencies calculated for
the blade with anisotropy axis coinciding with the stacking axis. These values of natural
frequencies are shown with symbols of green triangles. The empty red circles in the figure
show the natural frequencies calculated for the bladed disk sector with mean anisotropy
angles. The filled blue circles are showing the result of the mean value of the 10,000 natural
frequencies obtained for the first six natural frequencies.

The range of variation show, that for the first (1% flap, 1F), the second (1%% edgewise,
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Figure 5.2: Normalized natural frequency of single blade with varied crystal orientation

1E), the fifth (2" edgewise - 2E) and the sixth (37 edgewise, 3E) natural frequencies the
crystal orientation variation mainly results in increase in the value of natural frequencies,
compared to the natural frequencies calculated for the blade with crystal orientation co-
inciding with the stacking axis. Similarly, For the values of the natural frequencies three
(27 flap, 2F) and four (1% torsional, 1T) both increase and decrease can be observed.

The largest variation of the natural frequency, 13.8% can be observed for mode 4. The
smallest variation has been obtained for mode 5, 4.7%.

It is worth noting, that for modes 2,5 and 6 the mean value of natural frequencies
calculated for the 10,000 crystal orientations are almost the same as the natural frequencies
calculated for the blade with mean angles, but for modes 1,3 and 4 a deviation can be
observed in these values.

It is also important to note, that while the range of variation can be quite significant,
the mean values of the calculated natural frequencies do not lie very far from the value of
the natural frequency calculated for the blade with crystal orientation coinciding with the
stacking axis. The histogram of the first six modes also confirms this, as for the first five
modes the bin with maximum count is within 1% range of the natural frequency of the
blade with anisotropy axis coinciding with the stacking axis.

The histograms for the large number of seeded anisotropy orientations are shown in Fig.
5.3. These figures also show that the distribution of the resulting blade alone natural fre-
quencies are asymmetric and they change from one mode to another. The modes belonging
to the same mode families e.g. bending or edge-wise modes also show distinct distributions
therefore, the effect of anisotropy orientation mistuning needs to be individually assessed

for every mode.



13th April 2022 83

Count

1 1.01 1.02 1.03 1.04 1.05 1 1.01 1.02

1.03 1.04 1.05
Normalized natural frequency

Normalized natural frequency

(a) Normalized natural frequency 1 (1F)  (b) Normalized natural frequency 2 (1E)

600

500

400

Count
Count
w
8
3

200

0.98 1 1.02 1.04 1.06 1.08 0.88 0.9 0.92 0.94 0.96 0.98 1 1.02
Normalized natural frequency Normalized natural frequency

(c) Normalized natural frequency 3 (2F)  (d) Normalized natural frequency 4 (1T)

1 1.01 1.02 1.03 1.04 0.99 1 1.01 1.02
Normalized natural frequency

1.03 1.04
Normalized natural frequency

(e) Normalized natural frequency 5 (3F)  (f) Normalized natural frequency 6 (2E)

Figure 5.3: Histogram for the first six normalized natural frequencies due to random crystal

orientation variation

In order to visualize the effect of the crystal orientation variation on the value of natural
frequencies, two of the anisotropy angles, o and § have been gradually changed and the
natural frequencies calculated. The third anisotropy angle, ¢ has been kept constant at
value 0. The normalized natural frequencies are shown in Fig. 5.4 for the first 6 modes.

For modes 1,3 and 5, that are all bending modes, the natural frequencies change in a

very similar manner. The values of the natural frequencies increase monotonously with
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the change increasing « value, that represent a deviation of [001] material axis from the
stacking axis of the blade. The rate of change of natural frequencies increases as the value
of « increases: the gradient is larger on a € [10°,15°] than on the range of a € [0°,5°].
For these modes, the natural frequencies are more sensitive to the change in the value of «
anisotropy angle, compared to 5. It is worth noting that for large value of «, the sensitivity
with respect to § increases.

For the edgewise modes (modes 3 and 6) a softening effect can be noticed for o € [0°, 7°].
This softening continues for the first edgewise mode, but for the second edgewise mode
again a stiffening occurs on « € [10°, 15°].

For mode 4 (1T), as expected the secondary angle also has a significant influence on
the value of the natural frequency, which effect increases as « increases.

The variation of natural frequencies due to anisotropy axis orientation can be signi-
ficant. The results show that for some of the modes, the natural frequencies can change
within the range of up to 5-6%. For some higher modes, the change in crystal orientation
can both stiffen or soften the blade. For the study carried out with 10,000 random crystal
orientations, the mean value of the natural frequencies of the sample population is close in
value to the natural frequency calculated for the blade with anisotropy orientation axis co-
inciding with the stacking axis. The studies show, that the primary anisotropy angle « has
the most significant influence on the natural frequencies of the fundamental bending and

edgewise modes, but for the first torsional mode both « and § are influential parameters.

5.2 Effect of anisotropy orientation axis scatter on the mis-

tuned bladed disk mode shapes

In the previous section it has been shown, how the anisotropy orientation of the single
crystal blade influences the natural frequencies for the stand-alone turbine blades. In the
following, the effect of anisotropy orientation scatter on the mode shapes are discussed for
mistuned turbine bladed disks.

For the studies the finite element model of a bladed disk with 75 blades is used, shown
in Fig. 5.1b. The finite element mesh consists of 500,000 nodes. The model is constrained
in axial direction at the blue nodes on the shoulder of the disk shown in Fig. 5.1b. For this
bladed disk there are contact interfaces on the disk-blades joints and between the blades on
the shrouds. For this study all these contact interfaces are considered to be stuck, which

is modeled by linear multi-point-constraints (MPC).
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Figure 5.5: Natural frequency-nodal diameter diagram of the cyclic symmetric bladed disk
model with full contact on the shrouds used in the subsequent analyses. Where the modes

of interest are denoted by circles and Latin letters

The natural frequency - nodal diameter diagram has been calculated using the cyclic
symmetric sector model of the bladed disk, see Fig. 5.5. In this figure, three different type
of modes have been identified for the upcoming studies: (i) low nodal diameter (ii) high
nodal diameter and (iii) transition modes. For the low nodal diameter modes the slope
of the curves in Fig. 5.5 is nonzero. Due to the low nodal diameter pattern the disk is
relatively flexible in comparison to the blades, therefore these modes are dominated by the
disk modes. For the high nodal diameter modes the slope of the frequency-ND curves is 0
or close to 0. Because of the high nodal diameter pattern of the mode, the disks become
stiff, and the mode of the bladed disk is dominated by the individual blade modes. Finally,
the transition modes are defined where the slope of the frequency-ND curves level off and
it includes characteristics of both disk and blade dominated modes. In Fig. 5.5 A and B
are examples for disk dominated modes, C and E are examples for transition modes, and
the modes in range D are blade dominated. Here, the transition modes are defined in the
veering regions where mode shapes show the characteristics of blade dominated and disk

dominated modes.

For the study of showing the influence of the crystal orientation variation on the mode
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shapes, modes A,C and range D are selected. In the study, the mode shapes for 50 mistuned
bladed disks with random mistuning patterns have been calculated. Each crystal orienta-
tion for all the blades have been randomly evaluated based on the statistical distribution
provided by the blade manufacturer.

The nodal value of the axial component of the mode shapes are plotted along the
circumference of the bladed disk at one node for each blade. This node is at the midspan
of the leading edge, shown with red circles in Fig. 5.1b. In order to be able to see
the individual mode shapes, in Fig. 5.6 only the mode shapes of 10 different anisotropy
mistuning pattern are plotted. Additional to the mistuned mode shapes, the tuned mode
shapes for the full bladed disk has been plotted with thick black lines for modes A and C
in Figs. 5.6a and 5.6b. Because the mistuned mode shapes in mode range D are highly
localized, it was not possible to find a tuned equivalent.

For the disk dominated mode A, shown in Fig. 5.6a with 2 nodal diameter, other
than phase shift between the modes shapes of the individual mistuning patterns, no other
significant change can be seen.

For the transition mode C, shown in Fig. 5.6b, with 9 nodal diameters, a phase shift
can be observed between the mode shapes of different mistuned bladed disks. However, for
this higher nodal diameter mode shape, there is a small variation in the maximum value
of the mode shape from mistuning pattern to mistuning pattern.

For the blade dominated mode, from range D, for each mistuning pattern the mode
shape 76 has been selected, shown in Fig. 5.6c. It is clearly visible, that the nodal
diameter pattern is very distorted and localization of the mode shape occurs. Depending
on the mistuning pattern the extreme value of the mode shape and its location around the

circumference of the bladed disk varies significantly.

5.3 Investigation of the sensitivity of modal characteristics

for disk

The new capabilities for the calculation of the modal characteristics of bladed disks allow
for the visualization of the sensitivity of the mode shapes using the already existing facilities
of CalculiX GraphiX.

As an example the contour plot of the mode shape amplitudes are shown for mode 70,
one of the blade dominated modes from range D, in Fig. 5.7a. This mode shape has a

localization at blade 25 and in its neighboring blades. For this mode shape, the sensitivities
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Figure 5.7: Mode shape D (70) and its sensitivity with respect to anisotropy angle a of
blade 25

can be calculated with respect to all three anisotropy angles of the 75 blades. In Fig. 5.7b,
the sensitivity of the mode shape amplitudes with respect to the primary angle a of blade
25 is shown for all FE nodes of the bladed disk. It is worth noting, that despite the mode
shape being highly localized, the sensitivity with respect to the anisotropy angle has a
global effect. The sensitivity maximum is for blade 25, but significant sensitivity values
can also be observed around the circumference of the bladed disk. It is worth noting,
that the mode has maximum amplitudes at the midspan of the blade, typical for 1F mode
of shrouded blades, and the sensitivity of the mode shape has maximum values at the
midspan of the blades.

The study of the sensitivities is divided into three groups: (i) disk dominated modes
(ii) blade dominated modes and (iii) transition modes. In order to gain a comprehensive
insight into the sensitivity of the modal characteristics, for each mode under investigation,
the mode shape, the sensitivity of natural frequencies and the sensitivity of mode shapes are
discussed together. There has been many anisotropy mistuning patterns studies, however

here an example the results for one mistuning pattern are discussed in detail.

5.3.1 Disk dominated modes

As disk dominated mode, the mode B from Fig. 5.5 is analyzed. The mode shape of this
mode, shown is Fig. 5.8a has 3 nodal diameter and it has the largest modal displacement
in axial direction. The sinusoidal shape of the nodal diameter mode shape does not visibly

get distorted.
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Figure 5.8: Mode B: Mode shape and sensitivity of modal characteristics for a disk dom-

inated mode

The normalized value of the sensitivities of the natural frequency with respect to the
all the 75 primary angles of the bladed disk are shown in Fig. 5.8b. The values of the
sensitivities of the natural frequency are small.

The sensitivity of the disk dominated mode shape with respect selected primary an-
isotropy angles have been plotted in Fig. 5.8c. The anisotropy angles shown in the figure
have been selected such: (i) two are the primary angles with respect to the maximum and

minimum natural frequency Sensitivities have been obtained (blades 41 and 47), and (ii)
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two blades for which the maximum and minimum value of the mode shape sensitivity is
obtained along the circumference of the bladed disk (blades 7 and 13). The « anisotropy
angles of blades 41 and 47 has the largest effect on the natural frequency of the bladed
disk however, the sensitivity of the mode shape with respect to these anisotropy angles are
small. On the other hand, the blades that influence the mode shape the most have small
sensitivity of the natural frequencies.

It is also worth noting that sensitivities of the modes shapes are shifted to the mode
shapes by 90° along the circumference of the bladed disk. The sensitivity of mode shape
has extreme value where the mode shapes are null and has null value where the mode
shapes have extreme value. This confirms the earlier made conclusions that the variation
of the anisotropy mistuning patterns do not change the maximum value of the modal
displacements, however the phase along the circumference of the bladed disk can vary

from one mistuning pattern to another.

5.3.2 Blade dominated modes

From range D, shown in Fig. 5.5, mode number 70 has been selected for the study of a
blade dominated mode. This mode is from the first family of modes, and the mode shape
is localized for approximately seven blades, shown in Fig. 5.9a. For this mode shape, the
tangential and axial modal displacements are the largest.

The sensitivity of the natural frequencies with respect to all the primary angles « in
the bladed disk are shown in Fig. 5.9b. The figure shows that the largest sensitivity of
natural frequencies are with respect to the blades that have large modal displacements,
blades 22-28. The seunsitivities with respect to the anisotropy angles of the blades with
small modal displacements are negligible. For this mode, the normalized natural frequency
sensitivities are larger than for mode B.

The sensitivities of the mode shape with respect to selected « anisotropy angles are
shown in Fig. 5.9c. Here, the sensitivities are shown with respect to selected anisotropy
angles. Anisotropy angles to which high natural frequency sensitivity is calculated and
one primary angle « to which the sensitivity of natural frequency is negligible (blade 50).
The sensitivities of the mode shape with respect to the anisotropy angles of blades 25, 26
and 28 are large around the whole circumference of the bladed disk. The extreme value
of the mode shape sensitivities are for the blades 25 and 28 and with respect to their
respective primary anisotropy angles. It is worth noting, that the sensitivities of the mode

shapes are not localized, meaning that changing the anisotropy angle of a blade with large
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modal displacement can influence many blades in the bladed disk stage. The value of the
sensitivities of the mode shapes for disk dominated modes are at least one magnitude larger

than for disk dominated modes.

5.3.3 Transition modes

The mode shape of transition mode E in Fig. 5.5 is shown in Fig. 5.10a. The mode shape

has a distorted nodal diameter pattern with 12 nodal diameters.

The sensitivities of the natural frequency with respect to all the « angles of the blades
are shown in Fig. 5.10b. Because there is no localization in the mode shape, the sensitivities
of the natural frequency are also not only significant for a restricted number of blades. With
only a few exceptions all primary anisotropy angles increase this natural frequency of the

bladed disk.



13th April 2022 94

30
Radial —©—  Tangential —+— Axial —A—

Mode shape

I I I I I I I I I ]
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
Blade number

(a) Modal displacements in all three spatial direction

for mode E along the bladed disk circumference

0.005 Blade 75
—e—

Blade 72
0.004 -

Blade 35
Blade 13
0.003

\
ol
Il

i
B T e

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
Blade number

Normalized sensitivity of natural frequency [1/rad]

(b) Sensitivity of natural frequency of mode E to «

angles of all blades

80 a0/aay3 —+— o0/, —o—

00/d0z5,—E— 0®/oazs —A—
® R

60

40

20

0l

Sensitvity of mode shape [1/(rad*vkg)]

Blade 35 ©

-100 L L L L L L
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

Blade number

Blade 72— >0

(c) Sensitivity of modal tangential displacements of

mode shape E to a angles of selected blades

Figure 5.10: Mode E: sensitivity of modal characteristics for a transition mode of a mis-

tuned bladed disk

The sensitivity of the mode shapes, shown in Fig. 5.10, with respect to selected blades.
Blade 72 and 75 has large influence on the natural frequency and on the mode shape,
with sensitivities with respect to blade 72 having extreme value for both sensitivities. The
crystal orientation of blade 35 has little influence on the natural frequencies, however the
sensitivity of the mode shape with respect to this blade cannot be neglected. On the other
hand, the sensitivity of the natural frequency with respect to the « anisotropy angle of
blade 13 is relatively large, the sensitivity of mode shape is not more significant than the

sensitivity with respect to blade 35 anisotropy angle.
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Therefore, it can be concluded that the transition nodes have the characteristics for disk
and blade dominated modes. The sensitivity of natural frequencies and mode shapes with
respect to some blades are coupled, meaning they are both relatively large. But for some
blades are not coupled, meaning that they have high influence on the natural frequency
but small influence on the mode shape or the other way around.

It is worth noting, that for transition modes, the value of the normalized sensitivities

are larger than for disk dominated modes, but smaller than for blade dominated modes.

5.4 Maximum value of sensitivity of natural frequencies for
the first family of modes with analysis for the effect of
shroud boundary conditions on the sensitivity of natural

frequencies

The examples presented in the section above, showed the characteristics of the sensitivity
of modal properties for disk and blade dominated and for transition modes for anisotropy
mistuned bladed disk. In this section the sensitivity of natural frequencies are studied
further for all the modes of the first mode family. For the first 80 modes, the maximum
and minimum value of the sensitivity of natural frequency is calculated with respect to
anisotropy angles «, 8 and (. This calculation is carried out for three kind of contact
conditions between the shrouds of the blades: (i) stuck shroud, the same as it has been
used in the previous examples (ii) perfectly sliding shroud interfaces (iii) no contact between
the shroud interfaces.

The extreme values with respect to the anisotropy angles are shown in Fig. 5.11 for
stuck shrouds. For the first 10 modes, the value of the sensitivities are negligible, these
modes are disk dominated modes with nodal diameter mode shape pattern. The transition
modes ranging from mode 25 to 69 show increasing values for the sensitivities of the natural
frequencies. These modes are the transition modes. The modes ranging from 70 to 80 are
blade dominated modes with localized mode shapes, which results in high values of natural
frequency sensitivities. It is worth noting that the largest positive values of the sensitivities
are with respect to the primary anisotropy angles «, but the largest negative sensitivities
are with respect to the g anisotropy angles for this mistuning pattern. The sensitivities of
the natural frequencies with respect to ¢ anisotropy angles are negligible for all 80 modes.

For the bladed disk with perfectly sliding shroud contact conditions, the extreme value

plot of the natural frequencies change, see Fig. 5.12. The sensitivities with respect to
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Figure 5.12: Highest value of the normalized natural frequency sensitivity with respect to

all anisotropy angles for a mistuned bladed disk with sliding contact on the shrouds

the primary angle « increase significantly. This is due to the earlier localization of the
blade dominated modes as the coupling between the blades are reduced as the contact
condition is changed to sliding. With the increase of the sensitivity of the primary angles,
the sensitivities with respect to ( also increase. This is due to the coupling between the
two anisotropy angles, because ( is defining the position of the [001] material axis on a
polar coordinate basis. This results in sensitivities that are larger with respect to ( than
to a or 8 for most localized modes.

The coupling between the blades further reduced when the contact definition between
the blade shrouds are removed. The sensitivities with respect to « increase compared
to the results calculated for the bladed disk with sliding contact. The sensitivities with
respect to 8 and ¢ are similar to what has been obtained for the bladed disk with sliding

contact.
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all anisotropy angles for a mistuned bladed disk without contact on the shrouds
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Figure 5.14: Highest value of the normalized natural frequency sensitivities to « for ten

different mistuning pattern and with stuck contact on the blades shrouds

In order to see the validity of the results for more mistuning patterns, the sensitivity
of the natural frequencies have been calculated for 10 different mistuning patterns. In
Fig. 5.14 the maximum and minimum values of the sensitivity of the first 80 natural
frequencies are shown with respect to the primary anisotropy angle «. The numerical
value of the extreme values of the sensitivities are very close for the 10 different mistuning
patterns in case of the lower modes. The modes higher than 70, that are blade dominated

modes, the values significantly increase and vary for the different mistuning patterns.

5.5 Conclusions

In this chapter the effect of the anisotropy mistuning has been studied for modal properties

and their sensitivities of single blades and bladed disks. The effect of natural frequency
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for stand-alone blades have been studied by a series of random sampling. The results
show that the crystal orientation can increase and decrease the natural frequencies and the
distribution of natural frequencies are asymmetric.

The anisotropy axis scatter for bladed disks have been studied for disk dominated,
blade dominated and transition modes. The modes with low nodal diameter patterns do
not significantly change due to mistuning. The effect of the mistuning for blade dominated
modes resulted in strong localization, where the modal displacements are significantly
larger for a few blades when compared with the rest of the blades.

The analysis of the sensitivity of the natural frequencies and mode shapes showed that
the localized mode shapes of the mistuned bladed disks are most sensitive to the change in
the crystal orientation. In case of the localized mode shapes the sensitivities with respect
to the anisotropy angles of the blades where localization occurs highly influence the modal
properties.

The study of the effect of the different boundary conditions of the shrouded blade disks
on the natural frequency sensitivities has been performed. The analyses showed that the
sensitivity with respect to anisotropy angles increases as the coupling with the neighboring

blades reduces.
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Chapter 6

Linear forced response and its

sensitivity for the anisotropy

mistuned bladed disks

The study of many linear systems is relevant for many bladed disks. For example the
modern compressor stages are integrated bladed rotors and therefore inherently linear
dynamic systems. For turbine bladed disks with friction joints, it can be advantageous to
linearize the models. Linear models can be used to obtain forced response amplitudes of
bladed disks faster and there is no need to calculate forced response with a computationally
expensive nonlinear solver. The linearization of bladed disks can be done if measurement
data is available for the turbine stage [31]. And applying an equivalent linear damping
coefficient by a half-power method in the measurement data. Calculating equivalent linear
damping is particularly successful if individual resonance peaks can be isolated and there
are no strong nonlinearities in the system, e.g. partial opening of shroud interfaces, that

can cause the forced response function to have overhanging branches.

In the current study a realistic mistuned bladed disk with 75 blades with approximately
0.5 million FE nodes, see Fig. 5.1b.
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6.1 Comparison of the modeling methods of frequency mis-
tuning and anisotropy mistuning for linear forced re-

sponse of monocrystalline mistuned bladed disks

Traditionally mistuned bladed disks are modeled with frequency mistuning that is intro-
duced by adding lumped masses or by changing the Young’s and/or the shear modulus
to change the natural frequency of the individual blades. In this section, the traditional
method of modeling mistuning is compared with the direct anisotropy modeling, used in
this work.

First, a random anisotropy mistuning pattern is created for all blades in the bladed
disk. The five first natural frequencies are calculated for all stand-alone blades with random
crystal orientations and the nominal elasticity and shear modulus. The stand-alone blades
are calculated together with the disk sector, that is fixed on the sector edges. The natural
frequencies are calculated for non-rotating blades i.e. without any pre-stress applied.

Second, the mean value of the anisotropy angles is calculated and the corresponding
crystal orientation is set for all stand-alone blades. At the same time, the Young’s modulus
and shear modulus is scaled such that the same stand-alone first natural frequencies are

obtained. The scaling factor is calculated for i-th blade using equation

i 2
W, -
t
;= anisotropy (61)
Wmean

where w’ is the first natural frequency of the anisotropy mistuned stand-alone

anisotropy

blade and wyneqn 18 the first natural frequency of the stand-alone blade with mean crystal

orientations and nominal stiffness properties.

1.06 -
Anisotropy variation + ¥
1.05 - Stiffness variation X x

1.04 -

1.03 - *
1.02 - K
1.01 -

1r XM
0.99 - %M

0.08 I 1 I I 1 I I |
0.96 0.98 1 1.02 1.04 1.06 1.08 1.1 1.12

Normalized natural frequency

2
(w‘amsotropy/wmean)

Figure 6.1: First natural frequencies calculated for anisotropy and stiffness detuned stand-

alone blade against scaling factor value
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In the next step, the natural frequencies and mode shapes have been calculated for
the frequency mistuned and for the anisotropy orientation mistuned bladed disk. The first
natural frequencies are equal when calculated with both detuning methods, see Figs. 6.1
and 6.2.

The full model of mistuned bladed disk is assembled using the stand-alone blades with
frequency detuning. The first 150 modes of the mistuned bladed disks have been calculated.
The contact interfaces of the bladed disks are modeled linearly using MPCs. Two different
modeling has been considered on the shroud interfaces of the mistuned bladed disk: (i)
fully stuck contact and (ii) no contact.

For shroud contact conditions (i) and (ii), the forced response has been calculated to
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Figure 6.5: Maximum forced response amplitude of each blade over the analyzed frequency
range for anisotropy and frequency mistuned bladed disk to EO35 excitation to mode 1

with stuck shrouds

EO35 excitation for the first mode family, marked by A and B in Fig. 6.3. The forced
responses have been obtained for bladed disks with anisotropy and frequency mistuning.
The envelope of the forced response for bladed disk with stuck shrouds (i) when mode
A is excited is shown in Fig. 6.4. The resonance frequency of the forced response of
the mistuned bladed disk modeled with frequency mistuning shows 2% increase compared
to full modeling of anisotropy mistuning. The envelope of the response shows difference
in the maximum forced response amplitudes, 9% increase compared to when frequency
mistuning is applied. The distribution of the maximum forced response amplitudes along
the circumference of the mistuned bladed disk shows significant differences when compared
for the two modeling methods, as seen in Fig. 6.5. The results obtained show, that for the
analysis of the turbine bladed disks with shroud contact, the method of frequency mistuning

based on the natural frequencies of stand-alone blades does not provide sufficient accuracy.
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Figure 6.7: Maximum forced response amplitude of each blade over the analyzed frequency
range for anisotropy and frequency mistuned bladed disk to EO35 excitation to mode 1

with free shrouds

Additionally, the forced response of the mode 1 for bladed disks with (ii) open shrouds
were analyzed using the two methods for the modeling of mistuning. Because the first mode
family of the bladed disk without shroud contact is very similar to the first mode of the
stand-alone blade, the envelope and the distribution of the forced response amplitudes are
very similar when calculated using the two mistuning modeling methods. The resonance
frequency of the forced response function, as shown in the Fig. 6.6, is from a practical
view identical for both mistuning modeling methods. The study of the distribution of
the maximum forced response, shown in Fig. 6.7, show that the maximum amplitude on
the calculated frequency range varies when they are calculated with anisotropy mistuning
or frequency mistuning modeling. Nevertheless, the observed differences in case of open
shrouds are smaller than for the bladed disk with closed shrouds.

For the 2™ mode of the same bladed disk with (ii) open shrouds the comparison of
the two modeling methods for the mistuning modeling was done. The modeling of the
frequency mistuning uses the same coefficients as previous studies, using Eq. (6.1) for

mode 1 of the stand-alone blades. The envelope of the two mistuned forced responses
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in Fig. 6.8 show larger deviation between the forced response curves calculated with the
two mistuning modeling methods. In order to be able to obtain acceptable results, the
frequency mistuning coefficients need to be calculated for the 2"¢ mode of the stand-alone
blade.

The above presented studies show that it is essential to use high-accuracy modelling of
the anisotropy mistuned bladed disk. The studies above investigated the forced response
of the bladed disk modes to high engine order excitations. Due to the high stiffness of
the disk the high nodal diameter modes are blade dominated, which also means that
the bladed disk modes are very similar to the restricted stand-alone blade modes. The
deviation between the forced response functions obtained with frequency mistuning and
high-accuracy anisotropy mistuning are expected to be larger.

For the analysis of the nonlinear forced response, it is essential to use the high-accuracy
anisotropy mistuning modeling, because in the nonlinear forced response calculation all

modes are involved.

6.2 Effect of anisotropy orientation scatter on the forced re-

sponse of mistuned bladed disks

The study of anisotropy orientation variation of the single crystal turbine bladed disks
on the linear forced response was studied by generating 10 random mistuning patterns.
The 10 random anisotropy mistuning patterns were created by random sampling from the
statistical distributions described for the anisotropy angles. The effect of anisotropy mis-
tuning has been analyzed for resonances of the modes shown in Fig. 6.9. For the selection
of the modes several criteria has been considered: (i) both lower fundamental modes and

higher modes were analyzed (ii) low nodal diameter (disk dominated), high nodal diameter
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(blade dominated) and modes with nodal diameter values in between (transition modes)

have been studied (iii) veering regions where two or more modes can interact.

For each mode the amplification factor has been calculated, such that maximum forced
response amplitude of the mistuned bladed disk has been divided by the maximum forced
response of the tuned bladed disk on the analyzed frequency range. The tuned bladed
disks have all blade crystal orientation aligned with the stacking axis (« = f = ¢ = 0).
The forced response is calculated for 15 nodes on the airfoil directly from the reduced order
model. The nodes are shown in Fig. 6.10, where each node is referred to by its radial (A to
E) and by its axial (1 to 3) location. For each mode of the tuned bladed disk a screening
is done to decide which node has the largest displacement and the amplitude of this node

will be used to calculate the amplification factor of the mistuned bladed disks.

In Figure 6.11 the mean value of the amplification factors for the 10 random mistuning
patterns are plotted. The largest amplification factors are observed for the veering region
B when EOT7 excitation is applied, the maximum mistuned forced response is more than
2.6 higher than for the tuned bladed disk. The large amplification factor is due to the
interaction between other modes in this frequency range.

For modes in range G, the frequency gap between modes 5 and 6 increases due to the
anisotropy mistuning. Therefore, the interaction between the two modes is not significant.

This results in a lower average amplification factor: 1.61. The amplification factors for the
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Mean amplification factor

Excitation

Figure 6.11: Average amplification factors calculated for linear forced response of several

modes for 10 different anisotropy mistuned bladed disks

disk dominated modes e.g. modes A, C and E are the lowest, under 1.2.

In Fig. 6.12, the envelope of forced response for 10 different mistuning patterns and the
forced response for two tuned bladed disks are shown. The tuned bladed disks are either set-
up such that the anisotropy axis is aligned with the stacking axis for all blades (tuned: 0)
or all anisotropy angles are set to the mean value of their respective statistical distributions
(tuned:mean). The forced response envelopes for these disk dominated modes show little
sensitivity to the anisotropy orientation of the single crystal blades, only the splitting of the
resonance frequencies can be observed. Further learning is that the resonance frequencies
of the mistuned bladed disks are in between the resonance frequency of the two tuned
forced responses. It is also worth noting, that all mistuning patterns have amplification

factors higher than 1, which is in agreement with the expectations.
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Figure 6.12: Envelopes of the forced response calculated for 10 different anisotropy mis-

tuning patterns at 8EO for mode family 1 (C)
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Figure 6.13: Harmonic spectrum of the response for 8EO excitation of mode family 1 (B)

and 2 (D)

For the modes of D and F, the low engine order 8 excitation is applied. Because the
bladed disk is mistuned, in the modes in the same frequency range but with high nodal
diameter are also excited. To study which modes of the mistuned system are excited,
the Fourier transformation of the tangential displacements along the circumference of the
bladed disk has been calculated for modes B and D, see Fig. 6.13. The analysis of
the harmonic coefficients shows that for the first mode (mode B) the 8" nodal diameter
mode is dominant. When mode D is excited then nodal diameter 8 and also the higher
nodal diameter modes of mode family 1 is excited, which results in the larger values of

amplification factor.

The forced response envelopes of the 10 random mistuned bladed disks are shown in

Fig. 6.14 for mode D. The resonance frequencies of the mistuned systems are, similarly
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Figure 6.14: Envelopes of the forced response calculated for 10 different anisotropy mis-

tuning patterns at SEO for mode family 2

as for mode C, between the resonance frequencies of the two tuned forced responses. The
shape of the forced response envelopes indicate that the response is dominated by localized
modes.

The modes 1,J and K that are excited by EO35 excitation. The high engine order
excitation stiffens the disk, and therefore the individual blade modes become more dom-
inant, therefore an average amplification of 1.31-1.51 is obtained that is larger than what
has been calculated for the purely disk dominated modes of A,C and E. The large engine
order excitation cannot excite the modes with lower nodal diameter, which results in a

lower amplification factor that is observed for modes D and F.

6.3 Sensitivity analysis of the forced response of the aniso-

tropy mistuned bladed disk

For the sensitivity analysis of the anisotropy mistuned bladed disk the modes have been
selected: (i) a disk dominated, mode C (ii) disk dominated mode that is coupled with
higher nodal diameter blade dominated mode, mode D and (iii) blade dominated mode of
the first family, mode 1. For all modes the mistuning pattern 1 is selected for the further

sensitivity analyses.

6.3.1 Disk dominated modes

The forced response of the mistuned bladed disk to EOS8 excitation in the frequency range

of the first mode family (mode C) is shown in Fig. 6.15a. The forced response function
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Figure 6.15: Forced response function and maximum forced response amplitudes of all

blades for 8EO excitation of mode family 1

shows doubling of the resonance frequency. The forced response for all blades is shown
considering the screening for the maximum forced response over the nodes on airfoil, as
shown in Fig. 6.10. The maximum forced response amplitudes are located at the tip or

the airfoil, between nodes E1,E2 and E3, for all 75 blades.

The maximum forced response of every blade over the given frequency range is de-
picted in Fig. 6.15b, which shows that no blade has significantly larger, localized large
amplitude. Moreover, it is worth noting that the maximum forced response amplitude
along the circumference of the bladed disk shows an imperfect periodicity with 8 nodal

diameter pattern.

The location on the airfoil for the mistuned system has been identified for all blades on
the frequency range of mode family 1. All blades have the maximum vibration amplitudes
at the tip of the airfoil, row E in Fig. 6.10, which is expected for a coupled-disk "umbrella"
mode. The Fig. 6.16 shows that almost all blades have the largest vibration amplitudes at
the trailing edge (node E3), but a small portion of blades have the location of maximum
forced response at nodes K1 and E2. This change of the maximum forced response amp-
litudes is another example for the effect of anisotropy mistuning on the forced response
functions, here namely the change of the operational deflection shape of the mistuned

system compared to the tuned bladed disk.
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Figure 6.16: Location of maximum forced response for each blade on the airfoil for 8EO

excitation of mode family 1 over f € [2.36,2.41]
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Figure 6.17: Sensitivity of normalized forced response amplitude of blade 31 with respect

to the o angle of all the blades for SEO excitation of mode family 1

For the subsequent sensitivity analysis, first the blade with the largest forced response
amplitude, its location on the airfoil and its resonance frequency is selected: location E3 on
blade 31 at normalized frequency f = 2.374. The sensitivities of the normalized maximum
nodal displacement of blade 31 is shown with respect to the « angles of all the blades
in Fig. 6.17. The vertical lines in the plot show the two resonance frequencies of the
mistuned bladed disk. The sensitivities with respect to primary angles of all blades show
a similar behavior: the sensitivities are changing sign around both resonance frequencies.
The change of signs around the resonance indicates that the change in the anisotropy
angles shifts the resonance peaks. The zero value of sensitivity at resonance f = 2.374
and the small value of sensitivity at f = 2.398 indicate that the maximum forced response
amplitudes have small sensitivity to the crystal orientations. This learning is in agreement

with the low amplification factors observed for 10 mistuned bladed disks at mode C, see



13th April 2022 111

Normalized sensitivity of forced response [1/rad]

.0.15 I I I L I I I I I I I I I I ]
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

Blade number

Figure 6.18: Sensitivity of the amplification factor at blade 31 with respect to all anisotropy
angles of all the blades for 8EO excitation at f = 2.377 of mode family 1

Fig 6.12.

The values of the sensitivities with respect to a anisotropy angle of all blades at f =
2.377, where the maximum value of sensitivity is observed is show in Fig. 6.18. The
maximum forced response sensitivity is largest with respect to the « primary angle of
the blade 31, nevertheless it is not significantly larger than the sensitivities with respect
to anisotropy angles of the other blades. It is worth noting, for the modes that are not
significantly distorted by the anisotropy mistuning pattern, sensitivities are small and have

an imperfect periodic pattern.

6.3.2 Disk dominated mode coupling with blade dominated mode

The forced response and its sensitivities have been studied for mistuned bladed disk for the
frequency range D, excited by engine order 8. The normalized forced response is shown for
all blades with forced response amplification factor 1.5 and above in Fig. 6.19a. From the
75 blades 10 blades have such large amplification factor, which is typical for blade dom-
inated modes of mistuned bladed disks. The maximum forced response amplitudes along
the circumference of the mistuned bladed disk also show that the operational deflection
shape is localized only for certain blades , see Fig. 6.19b. A significant influence of the
anisotropy angles on the mode shapes have been identified by investigating the location
of the maximum forced amplitudes for each blade, see Fig. 6.20. Most of the blades have
the maximum forced response on the mid-span of the trailing edge, which is expected for
the first bending mode of the shrouded blades with thin trailing edges. Nevertheless, for
a significant number of blades, the node with the maximum forced response changes to

another node along the trailing edge of the blade.
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Figure 6.19: Forced response function and maximum forced response amplitudes for 8£O

excitation of mode family 2
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Figure 6.20: Location of maximum forced response for each blade on the airfoil for 8EO

excitation of mode family 2 over f € [4.26,4.38]

For the study of the sensitivity analysis, the maximum forced response has been iden-
tified for blade 57 at the midspan location (C3) for excitation frequency f = 4.321. The
sensitivities of the forced response amplitudes are expected to be the largest for this mode
with respect to the primary anisotropy angles. This is shown in Fig. 6.21 where the value
of the sensitivity of forced response amplitude with respect to all anisotropy angles in the
bladed disk are shown at the excitation frequency f = 4.321. As a general trend, it can
be observed that the forced response at the resonance frequency is the most sensitive to
the blades that have high vibration amplitudes or are located in the vicinity of a blade
that has high displacements, see also Fig. 6.19b. The neighboring blades can have a high
influence on the forced response, as the coupling is high between the blades, because of
the stuck shrouds.

Because the forced response sensitivities are the largest with respect to the primary
anisotropy angles, the sensitivities with respect to a angles of selected blades are plotted
along the frequency range of interest, see Fig. 6.22. The sensitivities are plotted with

respect to those blades that have a large influence on the forced response amplitudes and
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Figure 6.21: Sensitivity of the amplification factor at blade 57 with respect to all anisotropy
angles of all the blades for 8EO excitation at f = 4.321 of mode family 2
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Figure 6.22: Sensitivity of forced response amplitude of blade 57 with respect to the «

anisotropy angle of selected blades for 8EO excitation of mode family 2

the excitation frequency where blade 57 has the maximum forced response amplitude is
shown with a vertical line at f = 4.321. For this mode, the sensitivities are non-zero at
f = 4.321, which means that the change of anisotropy orientation parameter can result
in a change of forced response amplitudes of blade 57 which can change the amplification
factor of the whole mistuned bladed disk. The minimum and maximum of the sensitivities
are at slightly higher and lower frequency than the excitation frequency of f = 4.321,
which means that the change of anisotropy angles can also result in shift in individual
blade resonance frequencies. The above-mentioned indications of the sensitivities are also
visible in the forced response functions of the 10 mistuned bladed disk samples, see Fig.
6.14. The excitation frequency of the blade with maximum forced response amplitude and

the amplitude of that blade have a significant variation between the 10 samples.
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Figure 6.23: Forced response function and maximum forced response amplitudes for 350

excitation of mode family 1

6.3.3 Blade dominated mode

The sensitivity of the response for 35EQ excitation has been analyzed for the 1% family
of modes (I), with the same anisotropy mistuning pattern as for mode D. The fist mode
family has been chosen, because it provided the highest amplification factor of 1.85 from
all purely blade dominated modes excited by EO35.

The forced response amplitudes of all blades over the analyzed frequency range, in
Fig. 6.23a, show that the maximum amplitudes and the frequency of maximum forced
response amplitudes greatly vary from blade to blade. Such behavior is expected for blade
dominated modes. The maximum forced response amplitude distribution shows that only
a portion of blades have larger than 1 amplification factors and they are clustered together
due to the coupling between the blades via the shrouds. It is worth noting, that although
the maximum amplification factor the this mode is lower than for more (D), there are
more blades that are within the 20% range of the maximum forced response amplitude.
It is also important to mention, that although the mistuning pattern of the bladed disk
is the same as for mode D, the distribution of the maximum forced response amplitude
is different for this mode. This is contributed to the fact that when the engine order 35
excitation is applied, the lower nodal diameter modes, such as ND8 of mode 2 is excited to
lesser extent. The forced response amplitudes of the mistuned bladed disk are the largest
for node C3. While a difference in the operational deflection shape is expected from one
blade to another, the resolution of the output nodes in the reduced model could not resolve
them.

For the sensitivity analysis, the blade number with the maximum vibratory amplitudes
and its excitation frequency is identified: blade 29 at f = 4.290. The sensitivities with

respect to all anisotropy angles are shown in Fig. 6.24 at the resonance frequency of
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Figure 6.24: Sensitivity of the amplitude of blade 29 with respect to all anisotropy angles
of all the blades for 35EO excitation at f = 4.290 of mode family 1
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Figure 6.25: Sensitivity of forced response amplitudes of blade 29 with respect to the «
anisotropy angle of all blades for 35EO excitation of mode family 1
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blade 29. The sensitivities at this frequency are largest with respect to primary angles «
followed by second angles 3, while { sensitivities are the smallest. In agreement with the
conclusions drawn for mode D, here also the sensitivities with respect to blade 29 and to its
neighboring blades are the largest and the value of maximum normalized forced response
sensitivities are in the same order of magnitude. The sensitivities with respect to all «
angle over the frequency range of interest show non-zero sensitivities with respect to most

anisotropy angles.

6.3.4 Conclusions

In this chapter the effect of anisotropy orientation has been studied for linear bladed disks.
The linear forced response has been calculated for several excitations and with different
mistuning patterns. The average amplification factors for the bladed disks with several
different realistic mistuning pattern can reach values up to 2.6 for some modes. Generally,
blade dominated modes have higher amplification factors.

The effect of anisotropy mistuning on the forced response for disk dominated modes is
mainly the splitting of the resonance peaks. For blade dominated modes, the operational
deflection shape shows localization to a few blades. For these modes, variation in forced
amplitudes and resonance frequencies are significant from one mistuning pattern to an-
other. For both type of modes, some variation of the location of maximum forced response
amplitude on the airfoil surface occurs over the blades in the bladed disk assembly. This
is particularly interesting, as due to anisotropy orientation variation, the HCF limiting
location on the airfoil may change.

The above studies showed that the local sensitivities are significant when blade dom-
inated modes are excited. The sensitivities indicate that the calculated forced response
amplitudes of the blade with the maximum vibratory response can change due variation
of the crystal orientation its own anisotropy angles. Large sensitivities were also observed
with respect to the neighboring blades because of the strong coupling through the disk
and shrouds. The disk dominated modes with low nodal diameter operational deflection
shape pattern show that the sensitivities of the forced response function indicate the shift of

resonance frequency by change of sign for the sensitivities around the resonance frequency.
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Chapter 7

Validation and modeling of the

nonlinear forced response calculation

Before the calculation of the forced response there are several modeling decisions need to
be made. The way of modeling and the parameters of the forced response calculations can
greatly influence the calculated forced response functions. In order to be able to calculate
meaningful results of the sensitivity of forced response amplitudes, it needs to be made
sure that the calculated forced response is sufficiently robust and have a good basis for the
influence of the input numerical and mechanical parameters.

Moreover, for the calculation of the nonlinear forced response for bladed disks with
friction contact interfaces, it is essential to have the method for calculation of the vibration
amplitudes validated.

In this chapter the modeling issues are discussed together with the measurement data, if
available. The combined discussion gives an insight to how the modeling parameters change
the forced response amplitudes and resonance frequencies in relation to their measured
data.

The validation of the calculation forced response is generally done against other, already
validated, software or against measured vibration amplitudes that are obtained with vi-
bration experiments.

According to the knowledge of the authors, currently there is no commercially available
FE program that can calculate nonlinear forced response in frequency domain of dynamic
systems with friction contact elements. The calculation of the steady state solution of
the forced response with time domain solvers is prohibitive for large scale bladed disk
models. During the implementation phase of the PhD studies, a validation campaign has

been done at MTU Aero Engines, during which the forced response amplitudes have been
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Figure 7.1: Rotating excitation rig [34], which was used to obtain measured forced response

amplitudes and resonance frequencies used for the validation

validated against the measurement data obtained from the rotating excitation rig [31]. The
excitation rig is capable of easily controlling the resulting force level of the air jets that are
ejected for a pre-defined engine order excitation [34].

The validation campaign was done for the bladed disks, "stage A" and "stage B"
for which a validation campaign was done earlier, see [32], and the experimental data is

available at MTU. An overview of the analyzed configurations can be seen in Table 7.

Confi Stage Eingine Mode Hoot Shroud UPD | Tuned | Mistuned
guration order damping | damping
1 A low 1/1F X - - X -
2 A high 1/1F X X - X -
3 B low 1/1CD X X - X -
4 B high 2/1F X X - X X
5 B low 1/1CD X X X X X
6 B high 2/1F X X X X X

For stage A, the forced response of tuned bladed disks were calculated with (1) root
damping and open shrouds and (2) with root and shroud damping (closed shrouds). For
stage B, tuned and mistuned bladed disks were calculated for (3) to low engine order
excitation with root and shroud damping and (4) to high engine order excitation with

root and shroud damping. For stage B, under-platform dampers (UPD) were added to the
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already existing models of (3) and (4) which resulted in the most complex models of (5)
and (6).

The vibratory displacements were measured using MTU in-house non-contact vibration
measurement system for shrouded turbine blades. The measurement system is can capture
the maximum amplitude for all blades for each experimental run. Because after several
measurement runs a large amount of data is collected, the measurement data for each
configuration is distilled into minimum, maximum and mean values and standard deviation
for the forced response amplitudes and for the resonance frequencies. It is worth noting,
especially when measured data is compared with forced response results for tuned bladed

disks, that the bladed disk measured in the tests is inherently mistuned.

7.1 Modeling strategies for tuned bladed disks

The modeling strategies were first studied on tuned bladed disks. By taking advantage of
the cyclic symmetric conditions, a higher discretization can be used for the finite element
and contact interface modeling and the nonlinear forced response analyses are calculated
faster. Moreover, the validity of the learning from the studies of the forced response of the
tuned bladed disks are relevant in industrial applications and are a good basis for further

studies for mistuned bladed disks.

7.1.1 Effect of number and distribution of contact elements

The number of nonlinear contact elements used for the nonlinear forced response simulation
has, together with the included harmonics, the largest influence on the computational
effort. The following studies are on the effect of the number and distribution of the blade
root joints nonlinear contact elements on the nonlinear forced response. For the analyses
the considered schemes of the contact element distributions are shown in Fig. 7.2. Here
one of four contact patches at the blade fir-tree root is shown. The nodes of the FE mesh
at this patch where the contact elements are applied are marked by green squares.

The nonlinear forced response has been calculated for all schemes shown in Fig. 7.2
and for low and high harmonic excitation levels, see Fig. 7.3.

Contact node schemes with 56 and 63 nodes per contact patch are obtained by selecting
every second row of the FE mesh. From Fig. 7.3 we can see that 56 friction contact scheme
provide higher the maximum amplitude and resonance frequency than 63 contact element

scheme.
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Figure 7.2: Location of nonlinear contact nodes on one blade contact patch (total number

of patches: 4)
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Figure 7.3: Nonlinear forced response of cyclic symmetric bladed disk with different number

of contact elements on the root contact interfaces

The forced response amplitudes calculated with 36 contact elements on each contact
patch are very close to the amplitudes calculated with 119 contact elements, for low and
high excitation levels. The scheme 36 would be recommended for the study of tuned bladed
disks if faster calculation time is required. Such analyses can be parametric or studies to
acquire statistical properties.

The evenly distributed nodes for the scheme with 36 contact elements are capable of
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capturing the slip occurring locally when excitation level 1 is applied.

If less contact elements are used, the amplitudes are either overestimated or underes-
timated for the low excitation level. The forced response is underestimated when 12, 15
variant B or 27 nodes are applied. For these schemes, many of the nodes are located at the
edge of the contact interface. This is where contact pressure concentrations occur however,
if the nodes on the contact interface are not coinciding, the calculated contact pressures
are low. At these nodes, especially at the top of the interface where slipping starts as

vibration amplitudes increase.

The schemes with 7 and 15 nodes variant A, all nodes are located within the edge of
the contact interface. The forced response calculated for these schemes overestimate the

forced response as it cannot capture the localized micro-slip on the contact surface.

Forced response calculated for high excitation level, shown in Fig. 7.3b, show less
difference between the nonlinear contact distribution schemes in respect of the maximum
amplitudes. This is due to the fact, that when high levels of harmonic excitation is applied,
most of the upper fir-tree contact patch slips. This behavior can be captured accurately

even with 7 to 15 nonlinear contact elements per surface.

The resonance frequency for both excitation levels decrease in the same manner as the
number of nonlinear contact elements are reduced. With 36 nodes on each of the contact
surfaces, the resonance frequency decreases about 1% compared to the reference solution

calculated with 119 contact elements. This is negligible for most practical applications.

With 12 elements per each contact interface, the maximum decrease in resonance fre-
quency is 4.5%. This deviation is more significant and needs to be considered for practical

applications.

From this study it can be concluded that there is noticeable dependency of the nonlinear
forced response on the number and location of the nonlinear contact elements. As a general
tendency, by using less contact elements than what is available in the FE model, the
resonance frequency decreases, for the current model this decrease was 1-4%. This is due

to the decrease of the stiffness of the dynamic system.

The second reason for the change of maximum forced response is the significant vari-
ation of the contact pressure values over the contact interface surfaces. The choice of
different number of nodes over the contact interfaces changes the location of the contact
nodes. The energy dissipated by friction is generally higher, for the considered operating
conditions, if contact elements are located where the contact pressure is relatively low. If

the contact elements are located at the parts of the contact surfaces where pressure levels
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is high enough to suppress the slip then these elements do not contribute to the friction
damping.

This effect is particularly important when the level of harmonic excitation is low, see
Fig. 7.3a. In order to obtain representative forced response amplitudes it recommended

to use a well-structured scheme, such as the one shown in Fig. 7.2g with 36 nodes.

7.1.2 Number of mode shapes considered

The operation deflection shape of the nonlinear bladed disks with friction joints is calcu-
lated as the combination of the linear mode shapes. Generally, one mode is dominant in
the vibration response, but due to the nonlinearities energy is transferred to higher modes,
and they are also excited. Therefore, to accurately calculate the forced response function
many structural modes need to be included in the modal basis. It is worth noting here,
that the mode shapes included in the FRF calculation are obtained for bladed disks with
open contact surfaces. Which means, in general more modes of the structure with free
contact interfaces are required to capture the structure in contact.

The study for the effect of the number of mode shapes on the nonlinear forced response
has been done for MTU production bladed disks and calculated forced responses were
compared with the measurement data obtained from the excitation rig. For this study the
bladed disks forced response for configurations #2, #3 and #4 were calculated, see Table
7.

In general, it can be stated that for all analyzed tuned bladed disks, a converged
solution can be reached and the convergence over the number of modes included in the
FRF calculation is fast.

The analyses have shown that the number of modes included do not affect the calcula-
tion time of the nonlinear forced response. Nevertheless, it is worth remembering that the
number of linear modes calculated in the modal analysis can take significant computational

effort for large systems when many modes are calculated.

Configuration #2, stage A excited with high EO with root and shroud damping

The bladed disk geometry and the FE model of bladed disk is the production version of the
bladed disk used in the majority of this work, see for example Fig. 5.1. The bladed disk
four contact interfaces on the blade-root interfaces and two contact patches on the blade
outer shrouds. The reduced order model includes 440 nonlinear contact elements, which

results in a fine contact discretization on all contact interfaces. The contact parameters,
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Figure 7.4: Nonlinear forced response of tuned bladed disks with varying number of modes
included, compared with minimum, mean and maximum over all measured data for con-

figuration #2

contact stiffness and friction coefficients, have an initial value k, = Kkt = Ko, tshroud = 143
and firo0r = - How the value of contact parameters affect the nonlinear forced response

is discussed in subsection 7.1.4.

The high engine order excitation is applied on the airfoil mid-span suction side. The
excitation frequency range is selected such that the first bending mode (1F) is excited.

The node of output is located on the trailing edge in the mid-span of the airfoil.

Th calculation here is done with harmonics 0,1,2 and 3 included. The forced response
of the tuned bladed disk calculated with 5 to 100 modes included, is shown in Fig. 7.4.
The forced response amplitudes can be captured well even for 5 modes, but with respect

to the resonance frequency, at least 30 modes are required to achieve converged solution.

The forced response amplitudes and resonance frequency is normalized in Fig. 7.4 with
respect to the mean forced response amplitudes and resonance frequencies. In this figure,
the minimum, maximum and the mean value over all blades and for several measurement
runs are plotted, together with the calculated forced response curves. The calculated
forced response amplitude and the resonance frequency is within the mean and maximum
measured data, which is expected for the forced response amplitude calculated for tuned
bladed disks. The maximum forced response amplitude is larger than the mean measured
value, which is expected: the mean value of the forced response amplitude for mistuned

bladed disks is less than the amplitudes for tuned bladed disks.
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Figure 7.5: Nonlinear forced response of tuned bladed disks with varying number of modes

included, compared with minimum, mean, maximum and standard deviation over all meas-

ured data #3

Configuration #3, stage B excited with low EO with root and shroud damping

The bladed disk of stage B has 4 contact interfaces on the blade roots and 1 contact
interface between the shrouds. The contact interfaces are discretized with 410 contact
elements in the reduced order model of the bladed disk. The contact parameters, contact
stiffness and friction coefficients, have an initial value k, = k; = ko, fshroud = 1O and
Wroot = ,u?. How the value of contact parameters affect the nonlinear forced response is
discussed in subsection 7.1.4. The low engine order excitation, applied on the suction side
of the airfoil near the blade tip and the trailing edge, excites the first coupled blade-disk
mode (1CD).

The calculation here is done with harmonics 0,1,2, and 3 included. The forced response
of the tuned bladed disk calculated with 5 to 40 modes included, is shown in Fig. 7.5. The
forced response amplitudes can be captured well even for 5 modes, but with respect to the
resonance frequency, at least 20 modes are required to achieve converged solution.

The forced response amplitudes and resonance frequency is normalized in Fig 7.5 with
respect to the mean forced response amplitudes and resonance frequencies. The calculated
forced response amplitude and the resonance frequency is outside of the range of minimum
and maximum measured data. The measured frequency range for the resonances is very
narrow, therefore in order to accurately capture the resonance frequency a very fine FE
mesh needed for the modal analysis. Here, the deviation from the mean measured resonance
frequency is within 2%.

The minimum, maximum and the mean value over all measured forced response amp-
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litude are also shown in Fig. 7.5. In this figure the standard deviation of the forced
response amplitudes are also plotted around the mean value. The two ends of the line

represent the standard deviation added and extracted from the mean value.

The calculated forced response amplitude is 5% higher for this mode than the measured
amplitude. The deviation for the vibration amplitudes is assumed to be caused by the
following factors: (i) the evaluation of the measurement data was done using linear modes
(ii) the uncertainty in the contact parameters, see subsection 7.1.4 (iii) static calculation
of the pres-stress state was done with nonlinear contact on the shroud which resulted in
contact only in a small portion of the contact interface leading to a softer system when
compared with a bladed disk with cyclic symmetric conditions on the shroud contact
interface (iv) forced response calculations generally show higher amplitudes than mean

values of mistuned bladed disks.

Configuration #4, stage B excited with high EO with root and shroud damping

In this study the 2"¢ mode (1F) of stage B is excited by a high engine order excitation.
The excitation is applied on the suction side at the midspan of the airfoil. The contact
parameters, contact stiffness and friction coefficients, have an initial value k,, = k; = ko,
Whshroud = ,ug and flroor = MQ. How the value of contact parameters affect the nonlinear

forced response is discussed in subsection 7.1.4.

The calculation here is done with harmonics 0, 1, 2, and 3 included. The forced
response amplitudes and resonance frequency is normalized in Fig 7.6 with respect to the

mean forced response amplitudes and resonance frequencies.

To reach converged solution, here more modes are needed than in the earlier studies: the
excited structural mode is from the second mode family. With 30 modes, convergence can
be reached. For any practical reason, with 10-15 modes the forced response is calculated

sufficiently accurate.
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Figure 7.6: Nonlinear forced response of tuned bladed disks with varying number of modes
included, compared with minimum, mean, maximum and standard deviation over all meas-

ured data for configuration #4

The maximum forced response amplitude and the resonance frequency is within the
range of the measured values. The calculated amplitudes are within the measured mean

and maximum values resulting in successful validation.

7.1.3 Number of harmonic coefficients

The number of harmonic coefficients included in the FRF evaluation is one of the most
important parameters during the nonlinear forced response analyses. In order to be able
to capture the energy transfers to the higher harmonics, the higher harmonic coefficients
need to be included. The change of the static equilibrium can be captured by including
the 0'" harmonic number in the FRF calculation.

On the other hand, the size of the equation system of the nonlinear forced response in-
creases proportional to the number of harmonics included, which has a significant influence
on the numerical efforts. Moreover, the by considering the change of the static equilibrium
in normal and tangential directions, the number of bifurcation points along the solution

paths can increase leading to challenging path-following problems.

Configuration #1, stage A excited with low EO with root damping

The bladed disk studied in configuration #1 has contact on the blade roots, the shrouds
contacts are open and do not come into contact. The results of the study of nonlinear
forced response with different number of harmonic coefficients is shown in Fig. 7.7. The

nonlinear forced response function converges fast over the number of harmonics included.
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Figure 7.7: Nonlinear forced response of cyclic symmetric bladed disk with different number
of harmonic coefficients included, compared with minimum, mean and maximum over all

measured data for configuration #1

With harmonics 1 and 3 an accurate calculation can be calculated which is very near the
forced response function calculated with harmonics 0, 1,2,3,4,5,6 and 7. It is worth noting,
that the when the even harmonics and the 0" harmonic coefficients are included in the
FRF calculations, the solution does not change. The reason for that is that the contact

interfaces on the blade roots do not separate over the vibration period.

For bladed disks with root contact, it is sufficient to include only odd harmonic num-
bers and with harmonics 1 and 3 sufficiently accurate forced response amplitudes when
compared with the measurement data. The calculated forced response amplitude is within
5% of the measured mean forced response amplitude. The resonance frequency is 2% lower
than the mean measured resonance frequency, the deviation has been attributed to the

lower natural frequency of FE model of the bladed disk.

Configuration #2, stage A excited with high EO with root and shroud damping

The bladed disk of configuration #2 has nonlinear contact interfaces on the blade roots
and on two contact patches of blade outer shrouds. The nonlinear forced response shown
in Fig. 7.8 shows a very fast convergence over number of harmonics included in the FRF.
With harmonics 0,1,2,3,4 converged results are obtained. For this bladed disk, the 0"
harmonic coefficient is noticeable but not very significant because the contact separation

for this bladed disk with two contact patches on the shrouds does not happen.
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Figure 7.8: Nonlinear forced response of tuned bladed disks with varying number of har-

monic coefficients included, compared with measurements for configuration #2

Configuration #3, stage B excited with low EO with root and shroud damping

The effect of the number of harmonics on the nonlinear forced response was studied for
tuned bladed disk that is excited by low EO excitation, see configuration #3 in Table
7. The results in Fig. 7.9a show that without including the 0*" harmonic number, the
forced response amplitude and the resonance frequency is overestimated. The O har-
monic coefficients are required to capture the contact separation on the shroud contact
interfaces. Moreover, not including the even harmonics leads to underestimated forced
response amplitudes.

The forced response functions plotted in figure 7.9b show that convergence is very fast
once 0" the first two odd and the first even harmonics are included. By including the
first 10 harmonic numbers, the change in forced response amplitudes is within a few %.

For the mode under investigation, the nonlinear forced response is calculated accurately
when the 0" harmonic numbers are included in the forced response function calculation.
The need for the 0*" harmonic number is attributed to the partial separation of the shroud
contact interfaces. To investigate to what extent the contact interfaces separate, the rel-
ative normal displacement of the contact pairs are investigated at resonance frequency in
time domain. The relative displacements in time domain are obtained by evaluating the

Fourier expansion formula as

Np,
z.(t) = X0+ Z XT(,;) cos(kjwt) + XT,(;) sin(kjwt) (7.1)
j=1

where the x,(t) is the relative displacement of the contact nodes in time domain and X, o
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Figure 7.9: Nonlinear forced response of cyclic symmetric bladed disk with different number
of harmonic coefficients included, compared with minimum, mean, maximum and standard

deviation over all measured data for configuration #3

are the 0" harmonic coefficients and XT(C]) qusj) are the j-th harmonic coeflicients.

The contact interface on the outer shroud near the leading edge, is discretized by 38
nonlinear contact elements. The forced response is calculated with 0" and the first 7
harmonic numbers included, which allows for an accurate harmonic discretization, making
the identification of contact-separation possible. The relative forced response displacements
can be recovered for arbitrary number of time points over the period, here 31 time points
are used.

For the contact elements the same static pre-stress level has been set. The over-closure
is expressed as u = Peontact/kn — o, where wug is the over-closure to pre-stress and k, is
the contact stiffness in normal direction. Depending on the static pre-stress level and the
normal contact stiffness, the contact separation happens at a certain relative displacement,
which can be express by u = —ug. The relative displacements in Fig. 7.10 have been nor-
malized by the value of the static over-closure ug. The relative displacement where contact
separation occurs is indicated with a horizontal line at normalized relative displacement
-1.

For confidentiality reasons, the blade shrouds cannot be shown. In order to illustrate
the kinematics of the blade shroud contact interface, the relative displacements of the
contact elements are shown. The contact patch is making a rocking motion, over one
half of the period one side is separating and the other is in full contact. The contact
elements on the two sides of the contact patch, see Figs. 7.10a and 7.10c, separate with
large maximum relative displacements with approximately 90° degree phase shift. The Fig.

7.10b shows that 15 contact elements in the middle of the contact surface separate twice
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Figure 7.10: Surface normal relative displacements for all nodes on the shroud contact

interface for configuration #3

over the period. There are only 3 contact elements that do not separate over the period,
see Fig. 7.10d. There is no time instant when all contact elements are separating which
would lead to hammering of the contact interfaces.

This study showed significant separation occurs on the shroud contact patches, and
in order to accurately determine the contact-separation the 0" harmonic coefficients are

required.

Configuration #4, stage B excited with high EO with root and shroud damping

The effect of the number of harmonics on the nonlinear forced response was studied for
tuned bladed disk that is excited by high EO excitation, see configuration #4 in Table 7.
The results in Fig. 7.11 show that without including the 0*! harmonic number, the forced

0" harmonic coef-

response amplitude and the resonance frequency is overestimated. The
ficients are required to capture the contact separation on the shroud contact interfaces.
Moreover, not including the even harmonics leads to underestimated forced response amp-
litudes. In Fig. 7.11b, the forced response calculated for 0", odd and even harmonics show
a very fast convergence.

In order to confirm the assumption that the 0" harmonic coefficient is required for the
dynamic systems where contact-separation occurs, the contact status over the period at

resonance frequency is studied for this mode of the bladed disk. Compared to the results

shown for the mode 1 excited with low EO excitation, shown in Fig. 7.10, for this mode
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Figure 7.13: Under-platform damper with springs for stage B

the more nonlinear contact elements are in contact over the whole period of vibration.
The relative normal displacements in Fig. 7.12 show that time intervals of separation are
reduced and the number of contact pairs in contact over the entire period increase to 8.
It is worth noting that the from the 38 nodes on the contact interfaces, 30 contact node
pairs separate at least at one time instant during the period.

The forced response calculation for this mode, despite that less separation occurs on the
blade shrouds compared to the bladed disk in configuration #3, requires the 0*" harmonic

for the accurate calculation.

Configuration #6, stage B excited by high EO with root, shroud and UPD

damping

The effect of the number of harmonics is studied for the bladed disk in configuration #6.
The bladed disk is excited with the same harmonic forces on the same frequency range as
for configuration #4, but here an under-platform damper is included in the assembly see
Fig. 7.13. In the study for the harmonics included in the forced response calculation for the
bladed disk mode for configuration #4, it has been shown that the 0*" harmonics are need
to be included in the FRF calculation due to the separation on the blade outer shrouds.
With the introduction of the under-platform damper, the forced response amplitudes are
expected to decrease and through that the separation on the outer shrouds are also expected
to reduce. Which would mean that the error in the calculated forced response amplitudes
by not including the 0" harmonic coefficients are is expected to reduce. The relative
displacements in surface normal direction, shown in Fig. 7.14 shows that the number of
contact elements in separation decreases. The focus of this study has been the modeling
of bladed disks with under-platform dampers including the 0*® harmonic coefficients in the
FRF calculation.

The mode shapes and the flexibility matrix of the under-platform damper is calculated

separately from the rest of the bladed disk structure. In order not to detune the natural
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uration #3

frequencies of the damper, its boundary conditions are modeled as close to free-free bound-
aries as possible. If free-free boundary conditions are applied, the first six modes of the
damper are rigid body modes. If the 0'" harmonic coefficients are included in the FRF
calculation for a dynamic system with rigid body modes, the forced response amplitudes
become infinite. In order to achieve sensible results the following work-around is proposed:

the underplatform damper is placed on soft spring, as shown in Fig. 7.13.

7.1.4 Effect of variation of contact stiffness and friction coefficients

During the lifetime of the turbine blades, the contact surfaces are prone to fretting wear
and in certain cases to hammering on shroud contact interfaces. This leads to changing
contact parameters as the jet engine accumulates cycles, such as contact stiffness and
friction coefficients. Another reason for the study of the effect of the contact parameters
on the nonlinear forced response is the difficulty when measuring the stiffness of the micro-
asperity layer of the rough contact surfaces.

The sensitivity studies for the friction coefficients and for the contact stiffness are
presented for the bladed disks and for the modes described in configurations #3 and
#4. The bladed disks have contact interfaces on the blade shrouds and blade roots, for
which an initial value of contact stiffness and friction coefficient are assigned: knormar =
Etangentiat = ko5 Hshroud = ,ug and froor = ,ug. In this sensitivity study, the value of the
contact parameters are increased and decreased to account for the uncertainties.

The forced response functions for the varying contact parameters are shown in Figs.
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uration #4

7.16 and 7.17. The friction coefficients for the blade root and for the blade shrouds are
varied together in 0.1 steps. As for the contact stiffness, by decreasing the stiffness value
the system becomes softer resulting in lower resonance frequency and higher amplitudes.
For kg and above forced response function converges and increasing the contact stiffness
has negligible effect on the forced response. It is worth mentioning here, that setting the
contact stiffness to a large value may lead to difficulty to converge and to longer calculation
times.

The effect of the change of friction coefficients on the nonlinear forced response is similar
for both modes. By increasing the friction coefficient the split limit wF;, is increased,
therefore reducing the damping effect of the contact interfaces. It is also worth noting that
for configuration #3 (Fig. 7.16) the reduction of the friction coefficient values leads to a

more sharp-edged forced response function.

7.1.5 Effect of multi-point-constraints between blade and disk

The mode shapes used for the FRF matrix calculation need to be mode shapes of the bladed
disk structure with free boundary conditions for the degrees of freedom where the nonlinear
contact elements are to be applied. Therefore, the contact elements of the nonlinear friction
joints are removed in the modal analysis. For some bladed disk assemblies the removal of
the the contact elements lead to rigid body modes. Moreover, because modes are calculated
in the rotating reference frame, the rigid body modes have complex natural frequencies
attributed to them. For these reasons, it is beneficial to include additional multi-point-

constraints (MPC) in the modeling, in order to remove the rigid body modes. The MPCs
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are applied to a very small number of FE nodes so it does not change dynamic behavior.

Here, the effect of the choice of nodes used for the application of MPCs was performed.

Two different setups for the MPCs are used: see Figs. 7.18 and 7.19. The node pairs
shown in red and blue are coupled for all 3 degrees of freedom at each pair of nodes. Setup
1 has 8 pairs of nodes coupled by MPCs, which is stiffer. This setup restricts motion near
the edge of the contact interfaces. On the other hand, MPC setup 2 has only 3 pairs of
nodes coupled, which results in mode shapes that are closer to the mode shapes with fully

free contact interfaces.

The nonlinear forced response has been calculated for two difference excitation levels
(low and high) and with varying number of contact elements used for the root damping
discretization, see Fig. 7.20 The forced responses calculated for the two different MPC
setups show little difference when detailed contact description is applied using large number
of nonlinear contact elements. When small number of friction contact nodes (e.g. 7 and
15) is applied, then the additional stiffness introduced in MPC setup 1 has a noticeably

effect on the forced response: maximum amplitudes are higher (about 10%) and resonance
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Figure 7.20: Nonlinear forced response of tuned bladed disk with different number of nodes

on the contact interfaces and MPC setups

frequency is slightly higher (about 1%).

7.2 Modeling strategies for mistuned bladed disks

The nonlinear forced response calculations require more computational efforts than of the
simulations for their tuned counterparts. Therefore it is important to have an assessment on
the influence of the parameters that also affect the computational efforts. The effect of the
number of contact elements, number of mode shapes and number of harmonic coefficients
are considered on the nonlinear forced response of mistuned bladed disks. For some bladed

disks measurement data is available according to Table 7.

7.2.1 Effect of contact pressure variation on shroud contact interfaces

The dynamic change of contact status is, among other factors, dependent on the static pre-
stress state of the contact interfaces. For mistuned bladed disks with contact interfaces,
the static contact pressures vary from one sector to another. In order to accurately capture
the change in the normal pressure values of the contact joints, a sufficiently detailed FE
discretization needs to be used. The desired accuracy can easily be achieved on the blade
root contact patches. The contact stresses on the fir-tree interfaces are generally evenly
distributed and their value is large. On the other hand, the contact interfaces on the outer
shroud transfer the contact forces on a small surface area and the contact forces are an
order of magnitude lower than the normal contact forces on the blade root contact surfaces.
The relatively low value of the contact pressures on the shroud contact surfaces function
as an effective damping device, but the accurate calculation of the contact pressures with

the FE models of mistuned bladed disks is challenging.
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In order to illustrate the effect of the shroud contact pressure variation on the nonlinear
forced response a tuned and a mistuned bladed disk with 75 blades are used. The damping
on the root is not considered for the analyses, the blade root - disk contact is modeled
with linear multi-point-constraints. There are two contact patches between each blade
on the shrouds, one near the leading edge and another one near the trailing edge. First,
the nonlinear contact interfaces are discretized by 5 contact elements per contact patch,
which results in 10 contact elements per blade and in 450 nonlinear contact elements in
the mistuned bladed disk. The calculations are done for one mistuned bladed with random
anisotropy orientation distribution. For the nonlinear static calculation, surface-to-surface
contact elements are applied on the two shroud contact interfaces for every blade. For the
static pre-stress state of the nonlinear contact elements of the forced response analysis, the
nodal normal pressure values of the converged nonlinear static solution is used. Due to the
variation of the anisotropy parameters from one blade to another, the contact pressures, and
potential contact gaps, are changing from one blade to another. The natural frequencies
and modal shapes calculated for the anisotropy mistuned blade disks are included in the

reduced order model.

In the model for the nonlinear forced response calculation there are two kinds of mis-
tuning included: modal mistuning through the mistuned modal basis and static mistuning
through the mistuned pre-stress field of the contact elements. On the bladed disk EO28
harmonic force is applied that excites the first mode (1F). The excitation amplitude is kept
contact for all analyses. For the calculation of the FRF harmonic numbers 1 and 3 are

included.

The envelope of the nonlinear forced response for tuned and mistuned bladed disks are
shown in Fig. 7.21. The normal stresses on the contact patches for the tuned and for the
modal mistuned bladed disks are the same. The envelope of the forced response shows
that the modal mistuned bladed disk has an amplification factor higher than 1. On the
other hand, the maximum forced response of the bladed disk with both static and modal
mistuning, is lower than the maximum forced response of the tuned bladed disk. For
mistuned bladed disks, amplification factor of smaller than 1 is against the expectations.
According to general observations vibration amplitude reduction of the mistuned bladed
disks are only obtained if aeroelastic effects are included in the analysis [73]. The variation
of the static contact condition on the shroud interfaces causes an increase in the damping
and results in reduction of forced response amplitudes for all blades. Such behavior, while

is worth studying in further detail, due to the relatively coarse FE mesh on the contact
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Figure 7.21: Nonlinear forced response of mistuned bladed disks with modal mistuning

and with combined modal and static mistuning

interfaces, the accurate evaluation of the contact pressure values on the shroud contact
interfaces are not possible.

Therefore, the effect of the contact pressure values on the nonlinear forced response of
the mistuned bladed disk are studied for tuned static pre-stress states on the shrouds. The
same value of the contact pressure is applied for every nonlinear contact element and the
value of contact pressure is changed in gradual steps. For the tuned bladed disk the normal
pressure value of 18 MPa is chosen. The contact pressure of the mistuned bladed disks
is varied between 2 and 20 MPa. The contact pressures applied for the shroud contact
interfaces are in the range that is realistic for turbine bladed disks.

The envelope of the nonlinear forced response of the mistuned bladed disks and the
forced response amplitudes of the tuned bladed disk is shown in Fig. 7.22. The results show
that small differences in the contact pressure values on the shroud interfaces have significant
influence on the forced response amplitudes on the midspan of the bladed disk. The
amplitudes of the mistuned bladed disk for contact pressure values of 16 MPa or more are
higher than the amplitudes of the tuned bladed disk with 18 MPa contact pressures applied.
For lower contact pressure values, the stick-slip transition occurs for lower amplitudes and
results in increased damping. This study shows that for the assessment of the amplification
factors of mistuned bladed disks with friction joints on shroud interfaces, the accurate
assessment of the static contact status including contact pressure values is essential.

It is important to note here, that the contact pressure values not only influence max-
imum forced response amplitudes, but also the distribution and the variance of the max-

imum forced response along the circumference of the bladed disk. The results of the studies
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Figure 7.22: Nonlinear forced response of mistuned bladed disks with varying tuned contact

pressures

are summarized in chapter 8.

7.2.2 Effect of contact pressure variation on root contact interfaces

The effect of the static contact pressure variation due to anisotropy mistuning is studied
for a bladed disk with 75 blades, root damping and free shrouds. The contact pressure
values are obtained from the nonlinear static calculation. The static calculation is obtained
under centrifugal loading at the rotation speed of the EO14/1F crossing, see excitation B
in Fig. 6.3. The structural mesh on the root contact interfaces and the relatively high
contact pressure values allow for a reliable contact calculation using surface to surface
contact elements. Similarly to the analysis for the shrouds, the effect of the separate modal
mistuning and the combined effect of the modal and static mistuning on the nonlinear
forced response is studied. Under the modal mistuning here the mistuning of natural
frequencies, mode shapes and flexibility matrix are considered.

The reduced order model of the nonlinear forced response analysis is discretized by 6
nonlinear contact elements on the 4 contact patches of each blade root. The total number
of nonlinear contact elements in the bladed disk is 1800.

In order to quantify the effect of the static mistuning on the nonlinear forced response
two types of simulations were done: (i) mistuned modal properties and flexibilities but
applying the contact pressure values calculated for the tuned bladed disk model on the
nonlinear contact elements (ii) mistuned modal properties, flexibilities and contact pressure
values on the blade root interfaces.

In Fig. 7.23 the envelope of the forced response is shown for two mistuning patterns
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Figure 7.23: Maximum nonlinear forced response with separate and combined mistuning

effects for excitation frequency B

using both simulation input parameters. Both calculations resolve the resonance on the
same frequency range of 0.97 to 1. Nevertheless, it is worth noting that the frequency
of the highest response is different for the two forced response functions. For mistuning
pattern 6 the maximum amplitude of the fully mistuned bladed disk is higher by 6.5%, but
for mistuning pattern 7 the maximum amplification factor of the fully mistuned bladed
disk resulted in 3% lower value compared to the model where only modal mistuning was

introduced.

As described earlier, the envelope for the static and combined static and model mistun-
ing is similar. To see the differences between the forced responses amplitudes calculated
with the two modeling methods, the maximum forced response distribution for all the
blades is shown in Fig. 7.24 for pattern 7. In this figure the maximum amplitude of the
blades significantly differ if the mistuning is only introduced in the modal characteristics

or in the static pressure values as well.

The study showed, accounting for the mistuning of the static pressure values is essen-
tial for the accurate calculation of the forced response. If only the modal mistuning is
considered, there is an error in the maximum forced response amplitude and resonance
frequency. On the contrary to the analyses with shroud contact only, the contact pressure
on the root friction interfaces can be reliably obtained with FE simulations using surface to
surface contact elements. Accounting for the combined effect of modal and static mistuning
is essential for obtaining correct distribution of the maximum forced response amplitude

distribution along the blades.
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Figure 7.24: Blade maximum forced response distribution with separate and combine mis-

tuning effects for excitation frequency B and pattern 7

7.2.3 Number of contact elements

The computational effort associated with the calculation of the nonlinear forced response
for mistuned bladed disks is highly dependent on the number of nonlinear contact elements
used for the discretization of the friction contact interfaces. The effect of the number of
contact elements was studied by varying the number of contact elements on the outer
shrouds. Where on the one contact interface between neighboring shrouds of the 84 blades
are discretized by 4, 9 and 12 contact elements for each blade. The studies were done
for the modes in configuration #4, #5 and #6, see Table 7. The envelope of the forced
response for the modes under analysis are shown in Figs. 7.25-7.27.

For forced response of the mistuned bladed disk with UPD shown in Fig. 7.26 and 7.27,
the studies with varying contact elements show an expected behavior. By increasing the
number of contact elements, the stiffness of the dynamic system increases. The increased
stiffness shifts the resonance frequencies higher and decreases the vibratory amplitudes.
For the bladed disk with UPD and excited with low EO excitation (configuration #35),
the difference in the maximum amplitudes between the calculations with 9 and 12 contact
elements is approximately 10 %. For the bladed disk excited with high EQO, the difference
in amplitudes between discretizing the contact interfaces with 9 or 12 elements is negligible.

For the tuned bladed disk without UPD and for high engine order excitation of the
1F mode, it has been shown that at resonance majority of the contact elements separate
at least at one time point during the period, see Fig. 7.12. Therefore, to achieve accur-

ate forced response calculations that can capture strong nonlinearities, the high spatial
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Figure 7.25: Envelope of nonlinear forced response of mistuned bladed disks (configuration

#4) for varying number of contact nodes for each blade sector
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Figure 7.26: Envelope of nonlinear forced response of mistuned bladed disks (configuration

#5) for varying number of contact nodes for each blade sector
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Figure 7.27: Envelope of nonlinear forced response of mistuned bladed disks (configuration

#6) for varying number of contact nodes for each blade sector

discretization is required. For this mode, the maximum forced response amplitudes show
significant variation depending on the number of contact elements applied. The maximum
amplitudes along the bladed disk circumference are dominated by mode localization that
leads to separation in the current analyses. To prove the validity of such behavior more

finely modeled calculation would be required.

7.2.4 Number of mode shapes considered

While the number of mode shapes included in the modal basis for the nonlinear forced re-
sponse calculations does not noticeably influence the calculation effort, in the FE programs
the modal analysis is a very computationally intensive procedure. Therefore, it is recom-
mended to only include as many modes in the basis as required for the forced response

calculations. The studies have been done with different bladed disk structures.

Mistuned bladed disks with shroud damping

The study of the number of mode shapes included in the FRF calculation is done for the
bladed disk with 75 blades. The analyses are for mistuned bladed disks (i) with stuck root
contact and 3 contact elements on each of the two shroud contact interfaces for each blade
and (ii) with nonlinear root contact discretized by 28 contact elements on the fir-tree and
free shroud. The bladed disk with closed shroud is excited EO28 excitation, the bladed
disk with open shroud with EO14 excitation. The bladed disk with root damping has
mistuned static contact pressure, for the bladed disk with closed shrouds 8§ MPa surface

normal pressure is applied.
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Figure 7.28: Nonlinear forced response of mistuned bladed disks with shroud damping for

varying number of modes included

The effect of the number of modes included in the forced response function calculation
was studied first for the mistuned bladed disk with shroud damping. The number of modes
included were varied on the range of 150 to 500 modes, which is equivalent to approximately
1.5 to 5 mode families. The envelope of the nonlinear forced response in Fig. 7.28, show
that with less than 200 modes included, the resonance cannot be captured. Using 300
modes, the resonance can be captured, but due inaccuracies the maximum forced response
amplitude is not yet converged. For a practically converged solution, 400 modes, about 4

mode families are required.

Mistuned bladed disks with under-platform damper

The effect of the number of mode shapes on the forced response of mistuned bladed disks
with under-platform dampers have also been studied. To this end, the first bending mode
of a mistuned bladed disk with open shrouds under EO14 excitation was studied, see A
in Fig. 8.1. The blade root contact interfaces are considered to be fully stuck, and the
under-platform damper has a cottage roof design. On two upper surfaces of the UPD,
where the friction forces appear, three nonlinear contact elements are applied. For the
forced response function calculation harmonics 1,2,3 and 4 were included. In 3.4.4 it has
been described that the input of the model description of the nonlinear forced response
calculation for bladed disks assemblies with UPD are provided separately for the bladed
disk structure and for the damper structure. This means that the effect of the change in
the number of mode shapes can be studied independently in regard of the bladed disk and

the under-platform damper modes.
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The nonlinear forced response calculations were done for the number of bladed disk
structure modes, on the range 40-500. Because the system does not include any friction
damping elements in the bladed disk structure, the convergence can be achieved faster
than for the bladed disks with root or shroud damping. This is due to the fact, that the
linear mode shapes of the bladed disk assembly are calculated for the FE model, where
multi-point constraints are applied between the blade roots and the disk. This results in
a very fast convergence over the mode shapes: with 80 mistuned bladed disk modes the
converged forced response function can be obtained, see the forced response envelope in

Fig. 7.29. Here, 20 UPD modes were included.

0.1 r

Number of modes
0.09 - 40

60 ——
0.08 - 80 ——

100
0.07 150 ——

200 —
0.06 - 300
0.05 - 400 ——

500

Forced response

0.04
0.03
0.02
0.01
0 | 1 1 | | | ]
0.98 1 1.02 1.04 1.06 1.08 1.1 1.12
Frequency

Figure 7.29: Nonlinear forced response of mistuned bladed disks with under-platform

damper for varying number of bladed disk modes included
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Figure 7.30: Nonlinear forced response of mistuned bladed disks with under-platform

damper for varying number of UPD modes included
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In the subsequent analyses, the forced response with varying number of under-platform
damper modes were done, using 500 bladed disk modes. The damper model does not
include any boundary condition, which results in the first six modes of rigid body modes.
The forced response envelope curves in Fig. 7.30, show that there is no change in the
forced response of the bladed disk when the number of UPD modes are varied. The forced
response analysis does not include the 0 harmonic component, which means that no energy
is transferred to the rigid body modes of the dampers. The higher damper modes, with
non-zero eigenvalues, have at least 20 times higher natural frequency than the bladed disk

mode excited.

Mistuned bladed disk with shroud damping and UPD

For the mistuned bladed disk calculated with the parameters of configuration #b5, the ef-
fect of the number of modes included in the forced response calculation was studied. The
envelope of the forced response, shown in 7.31, shows that with 500 modes (approximately
5 mode families) convergence is reached. The excited mode is from the first mode family,
therefore 200 modes (more than 2 mode families) are sufficient for capturing the reson-
ance. By including 300 modes in the forced response calculation, the resonance frequency
is showing a converging tendency and the maximum amplitude fluctuates around the con-
verged amplitude. It is also worth noting that for the calculation with 400 modes, some
overhanging branches are calculated at f = 1.035 and at f = 1.048. The phenomena is as-
sumed to be due to energy transferred into higher modes. It is assumed that for 400 modes
the mode family where the energy is transferred to is only partially included. Therefore,
the energy transfer takes place but there are not all modes included to accurately cap-
ture it. For the calculation with 500 modes, the forced response function smoothens out
on these frequency ranges, showing that including more modes can stabilize the forced

response calculation.
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Figure 7.31: Nonlinear forced response of mistuned bladed disks (configuration #5) with
shroud damping and under-platform damper for varying number of bladed disk modes

included

Mistuned bladed disks with root damping

Similarly, for the blade disk with free shrouds and root damping, the effect of number of
modes included on the nonlinear forced response amplitudes was studied. The envelope
of the forced response for mistuned bladed disk to EO14 excitation of mode 1, see A in
Fig. 8.1 is shown in Fig. 7.32 for modes ranging 100 to 400. With low number of modes,
100-150, the resonance cannot accurately be captured. By including at least two mode

families, the resonance is accurately calculated.
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Figure 7.32: Nonlinear forced response of mistuned bladed disks with root damping for

varying number of modes included
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Figure 7.33: Nonlinear forced response of mistuned bladed disks (configuration #5) with

shroud damping and under-platform damper for varying harmonic numbers included

7.2.5 Number of harmonic coefficients

The computation effort of the nonlinear forced response, apart from the number of nonlin-
ear contact elements, is greatly dependent on the number of harmonic coefficients included.
In order to find a balance between the computation effort and the accuracy of the nonlinear
forced respounse it is worth looking at the harmonic numbers included.

For this study, the production models of turbine bladed disks with UPD are used. In
the earlier section, it has already been shown that by including the underplatform damper,
the separation on the outer shrouds are significantly reduced. This allows for not including
the 0'" harmonic numbers for the calculations.

For the coupled-disk mode excited by low EO excitation, see Fig. 7.33, the already
monoharmonic calculation gives a relatively good approximation. Converged solution can
be reached by including the first 6 harmonics. The noticeable difference between calcula-
tions with harmonics 1, 2, 3 and 1, 2, 3, 4 indicates that both even and odd harmonics
need to be included. The difference in forced response amplitudes between including the
first four and first six harmonics is negligible, therefore, to save on the computation efforts,
including the first four harmonic numbers are sufficient.

For the 1F mode excited by high EO excitation, see Fig. 7.34, the monoharmonic
calculation gives an inaccurate approximation for the forced response amplitudes. The
difference in the maximum forced response for the calculation with the first four and first
six harmonics is noticeable. On the contrary for the previous analysis, here by including
more harmonic numbers as the forced response calculation converges, maximum amplitudes

decrease. It is worth noting that the calculations show that including the even harmonics
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Figure 7.34: Nonlinear forced response of mistuned bladed disks (configuration #6) with

shroud damping and under-platform damper for varying harmonic numbers included

only has limited influence on the forced response amplitudes.

7.3 Validation of the forced response amplitudes for mis-

tuned bladed disks

For the validation of the nonlinear forced response for mistuned bladed disks the config-
urations 4 and 6 for stage B have been chosen. The modal basis for the FRF calculation
includes 800 modes, about 9 mode families, and the harmonics 0, 1, 2 and 3 were included.
The blade root interfaces are considered to be completely stuck, and the major source
of energy dissipation through friction forces is on the shrouds, which is discretized by 12
nonlinear contact elements on each blade. Based on the learnings from the analyses for
the tuned bladed disks, the number of modes and harmonics will be sufficient for accurate
calculation. The modal properties, flexibility, stiffness and mass matrices were calculated

using the anisotropy mistuned whole bladed disk FE model.

Comparison of calculated and measured forced response amplitudes for config-

uration 4

For configuration 4, the nonlinear forced response has been calculated two different config-
urations for the shroud contact pressures. First, tuned contact pressure is applied, i.e. for
all blade shroud contact interfaces the contact force in normal direction is the same. The
mistuned contact pressure distribution of the normal forces has been calculated based on

the mistuned bladed disk FE model and are shown in Fig. 7.35.
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Figure 7.36: Envelope of the mistuned forced response for configuration 4

The nonlinear forced response for the mistuned bladed disk and using the tuned contact
pressures has been directly obtained from the reduced order model for one node along the
trailing edge of each blade. The maximum forced response along over all blades for every
excitation frequency, i.e. the envelope of the forced response, is shown in Fig. 7.36. For
the calculation of the nonlinear forced response, the 0" harmonics were included in for all
three spatial directions for all nonlinear degrees of freedom. When the maximum forced
response amplitudes over the period are evaluated, the 0'" harmonics are considered, see
Eq. 3.44. In general, if the acceleration rate is slow enough, the contactless measurement
techniques do not measure the static components of the vibration, which is generally due
to change of equilibrium on the nonlinear contact interfaces.

Therefore, it is worth visualizing the maximum forced response amplitudes over the

period (i) with accounting for static components (i.e. 0" harmonic components) and (ii)
with considering only the dynamic components. The two envelopes in Fig. 7.36, show that

when only the dynamic displacements are included in the calculation of maximum forced
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Figure 7.37: Measured and calculated dynamic forced response amplitude distributions for

anisotropy mistuned bladed disk of configuration 4 using tuned contact pressures

response amplitudes, the maximum forced response is higher than the measured mean
and lower than the measured maximum value. The envelope for the maximum amplitude
considering the static component of the vibration, is significantly larger than the maximum

measured forced response amplitude for the main resonance at w = 1.046.

The forces response has also been calculated for mistuned contact pressure conditions.
A direct comparison of the maximum blade (i) combined static and dynamic and (ii) only
dynamic amplitudes is shown in Fig. 7.38. For all practical reason, there is no difference
in dynamic amplitudes for the two calculations. A limited effect of the mistuned contact
pressures can be seen in Fig. 7.38a, where the forced response amplitude considering both
static and dynamic response is plotted. By the introduction of the contact mistuning, the
maximum forced response amplitude slightly increases. The results show that the effect
of anisotropy orientation on the blade stiffness has a greater influence on the nonlinear
forced response than the contact pressure distribution introduced through the anisotropy

orientation scatter.

The BSSM-T measurement technique allows to capture the maximum dynamic forced
response amplitudes around the resonance measured. This offers the opportunity to do
a blade-to-blade comparison between the measured and calculated forced response amp-
litudes. In Fig. 7.37 the individual blade maximum forced response amplitudes are plotted
for six different vibration survey runs and for the dynamic displacements calculated with
ContaDyn. In these figures it can be seen that the characteristics of the distribution for the
vibration amplitudes along the bladed disk circumference are captured. The mean value
over the amplitudes is in good agreement with the measured data and the high nodal dia-

meter pattern with local amplitude increases is also reproduced. The agreement between
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Figure 7.38: Dynamic only and combined static and dynamic forced response distribution

for configuration 4 calculated with tuned and mistuned normal contact forces

the measured and calculated forced response is especially noteworthy considering that the
only source of mistuned included in the calculations were the crystal orientation variation
of the single crystal blades. The range of variation of the maximum forced response amp-
litudes is not fully captured, see Table 7.1, where the variation for the calculated forced
response is 30% lower compared to the measurements. This discrepancy is considered to
be due other sources of mistuning that are not modeled here e.g. variation of contact

parameters, airfoil geometry variation, etc.

In Fig. 7.38a, it can clearly be seen that some blades have significantly larger vibratory
amplitudes than others due to static component of the nonlinear vibration. The static
components describe the change of equilibrium state on the contact interfaces due to the
nonlinear vibration. It is worth investigating the contact status of the nonlinear contact
elements for the individual blade shrouds, see Fig. 7.39.

The contact status "fully stuck contact with positive/negative shift" is to be understood
that the 0'" harmonic coefficient is non-zero and depending on the definition of surface

normal it defines either a positive or negative shift of the static equilibrium. The "slip-stick
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Table 7.1: Statistical parameters for maximum forced response amplitudes along the bladed

disk circumference for configurations 4 and 6

Mean Standard deviation
Configuration
Calcu- | Measure- | Calcu- | Measure-
lation ment lation ment
4 0.94 1.0 0.2 0.28
6 1.18 1.0 0.13 0.29
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Figure 7.39: Contact status distribution for shroud contact interfaces along the bladed

disk circumference at resonance frequency w = 1.046

transition with full contact" means that there is at least one time instant in the vibration
period when contact pairs of the element is slipping, nevertheless there is no separation at
any time instant. Similarly, the "contact-separation with friction" means that during the
period there is at least one time instant when the contact pairs are separating.

In Fig. 7.39, it can be seen that for the blades that have a high static component in the
vibration of the airfoil, also have a large proportion of the nonlinear contact elements on
the shroud separating. As an example blade numbers 11, 30, 34 and 51 can be mentioned.
Therefore, the separation of the contact elements on blade shrouds results in shift of
equilibrium point of the vibration. Due to the mistuning in the bladed disk, such effects

occur locally, only for a few blades.

Comparison of calculated and measured forced response amplitudes for config-

uration 6

The mistuned bladed disk in configuration 4 is extended with under-platform dampers, see
Fig. 7.13 where the red nodes denote the location nonlinear contact elements applied in

forced response analysis.
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Figure 7.40: Envelope of the mistuned forced response for configuration 6
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Figure 7.41: Measured and calculated forced response amplitude distributions for mistuned

bladed disk of configuration 6

The envelope of the forced response shown in Fig. 7.41 show that the maximum forced
response amplitudes are in good agreement with the measured amplitudes. On the contrary
to the anisotropy mistuned bladed disk in configuration 4., here the static component of
the nonlinear forced response is significantly lower: the difference between the envelopes
for dynamic only and dynamic and static amplitudes are small. The contact status along
the individual blades in the bladed disk assembly, see Fig. 7.41, also give a confirmation
that there is no blade shroud contact interface where significantly high portion of contact
elements are in separation.

The distribution of the forced response amplitudes along bladed disk circumference is
shown in Fig. 7.41. The calculated forced response amplitudes are conservatively estim-

ated compared to the measured amplitudes: the calculated mean is 20% higher than the



13th April 2022 156

Node count

i | JAAKEED

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

Blade number
mmm Fully stuck contact =3 Slip-stick transitions with full contact

mmmm Fully stuck contact with positive shift 1 Contact-separation with friction
== Fully stuck contact with negative shift

Figure 7.42: Contact status distribution for shroud contact interfaces along the bladed

disk circumference at resonance frequency w = 1.069

measured one. For this configuration, the characteristics of amplitude distribution is well
reproduced, i.e. the EO pattern is visible and the trend of higher and lower amplitudes for
some blades are in agreement.

The full range of variation compared to the maximum measured forced response amp-
litudes are not captured, see Table 7.1 where the normalized standard deviation of the
maximum amplitudes from the measurement is 0.29 and for the calculation 0.13. The
reason for calculating low standard deviation for the simulation results clearly lies within
the lack of capturing the low vibratory amplitudes. For this configuration it may be pos-
sible that the UPD works significantly better for some blades as to others. Together with
the learnings that for configuration 4 the amplitude variation was only 30% higher than
for the calculated results, a possible reason for not capturing the variation lies in the UPD

mistuning.

7.4 Conclusions

In this chapter, the modeling methods for the calculation of the nonlinear forced response
and its validation against measurement data has been done.

The numerical and physical parameters for the nonlinear forced response calculation of
structures with friction joints were done. During this validation, the effects of modeling and
friction interface parameters on the accuracy of forced response predictions are assessed
including: (i) the number of mode shapes included in the bladed disk FRF matrices, (ii)
the number of harmonics included in multiharmonic periodic forced response representa-
tion, (iii) the values of contact parameters: friction coefficients and contact stiffness and

(iv) number of nonlinear contact elements used for the discretization of friction joints. By
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changing the mentioned numerical parameters the accuracy of the forced response and the
computational efforts are changing. Because the forced response analyses for the whole
model of mistuned bladed disks require significant computational efforts, the appropri-
ate selections of theses parameters are required. Depending on the expected behavior of
the structure, recommendations have been formulated regarding the number of modes,
harmonic and contact elements required for the analyses.

The studies regarding the contact pressure variation on the shroud contact interfaces
have been done, highlighting the effect on the nonlinear forced response amplitudes.

The calculated nonlinear forced responses are compared with the experimental values
obtained for different bladed disk configurations for tuned and mistuned bladed disks
including cases of: (i) blade root damping only; (ii) blade root and shroud damping and
(iii) blade root, shroud and under-platform damper damping. The cases of lower and higher
order excitations of bladed disk vibrations by traveling wave excitations are considered.
The comparison shows sufficient accuracy of the predicted results. The calculated forced
response amplitudes are within the scatter of blade amplitudes observed in the experiments:
slightly higher than the measured mean amplitudes and lower than the maximum measured
values.

The new facility of ContaDyn and InterDyn for the calculation of nonlinear forced re-
sponse for anisotropy-mistuned bladed disks, where the differences in the crystal orientation
of the single- crystal blades are considered, have been validated for two configurations. The
comparison of the calculated and measured maximum amplitudes obtained for all blades
in the anisotropy-mistuned show a general agreement for the configuration with shroud
friction contacts. This indicates that when the nonlinear forced response for anisotropy-
mistuned bladed disks is considered, the mean amplitude over all blades is accurately
obtained and part of blade-to-blade variation is captured. Moreover, to some extent the
characteristics of the blade-to-blade variation along the circumference, e.g. localizations are
captured. For the mistuned bladed disk with under-platform dampers, the mean response

level is conservatively calculated but the variation of amplitudes is underestimated.
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Chapter 8

Nonlinear forced response and its

sensitivity for the anisotropy

mistuned bladed disks

Until now, the tools for the calculation of the nonlinear forced response and its sensitivities
have been validated. This chapter is on the nonlinear forced response of the mistuned
bladed disks and their sensitivities with respect to the anisotropy orientation of the single

crystal turbine blades.

The studies are first are focused on the nonlinear forced response of the nonlinear forced
response. The variance of the maximum forced response amplitude distribution along the
circumference of the mistuned bladed disk has been analyzed. The studies have considered
varying input parameters, such as the level of harmonic excitation, multiharmonic excita-

tion, engine order and mistuning pattern.

The sensitivity of the nonlinear forced response is studied for a pair of blades and

realistic bladed disks with and without under-platform damper.

8.1 Nonlinear forced response of mistuned bladed disks

Parametric studies were done for mistuned bladed disks regarding the harmonic excitation
levels and the value of contact pressure on the friction contact interfaces. For tuned and
mistuned bladed disk the damping efficiency of an UPD design was studied for varying

engine order excitation.
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8.1.1 Effect of harmonic excitation level on the nonlinear forced re-

sponse of mistuned bladed disks

The level of harmonic excitation can vary within a certain range during the engine oper-
ation. A robust friction damper design is effective on a wide range of excitation levels.
The effect of the harmonic excitation level was studied for a mistuned bladed disk with
root damping and for a mistuned bladed disk with shroud damping and under-platform

damper.

Mistuned bladed disk with root damping

First, the forced response of the bladed disk is analyzed for a model where the nonlinear
contact interfaces are only on the root and the shrouds are considered to be free. Using
this model the effect of the root damping can be assessed for the anisotropy mistuned
bladed disks. For each blade root 24 contact elements are applied, resulting in 1800 non-
linear contact elements for the whole bladed disk. The static pre-stress of the contact
elements, in the form of contact pressure are obtained from a nonlinear static calculation
with surface-to-surface penalty contact. For the static calculation the actual anisotropy-
mistuning pattern is used, meaning that the contact pressure values on the blade root are
inherently mistuned.

For the FRF calculation the harmonic numbers 1,3 and 5 are included, as there are
not separations expected on the blade roots which would require the use of 0*" and even
harmonics.

The harmonic excitation forces are applied on the pressure side of each blade and
excitation force is equally distributed over 8 nodes. The forced response amplitudes are
studied for each blade on the same node on the trailing edge. For the radial location of
the node of interest, the blade tip is chosen where the maximum forced response of the
bladed disk is. To investigate the nonlinear forced response for different excitation levels,
the normalized harmonic loading is changed between the values of 0.2, 0.6 and 1. The
studied harmonic excitation engine order is the 8" and 35™ and it excites the first family
of modes, denoted with A and B in Fig. 8.1. The two engine order excitations are assumed
to be at the same rotation speed, meaning that the rotation speed dependency of the modal
properties and the static contact pressures is not included.

The 500 modes, equivalent to approximately 6 mode families, included in the forced
response function calculation are sufficient for accurately capturing the nonlinear forced

response of the 15* mode.
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Figure 8.1: Natural frequency-nodal diameter diagram of the cyclic symmetric model with

stuck and free shroud interfaces

For the studies, five different anisotropy mistuning patterns are generated using random
sampling from the realistic statistical distributions defined for each of the anisotropy angles
(o, and () of the single crystal turbine blades. To be able to assess the amplification
factors due to mistuning, the forced response of the tuned bladed disk is calculated. For
the tuned bladed disk, the material axis [001] of all blades is coinciding with the stacking
axis of the blade, meaning that o = 0.

The forced response for all blades at the same node of the blade tip is shown for
mistuning pattern 1 in Fig. 8.2. This figure shown different maximum forced response
amplitude and the frequency of the maximum forced response amplitude also varies for
each blade. Here, the largest ||p|| = 1 excitation amplitude is applied, which initiate high
vibratory response on the airfoil and also on the blade roots which results in high frictional
damping. The high frictional damping results in wider and reduced resonance peaks.

For the mistuned bladed disks, the maximum forced response over all blades is higher
than the maximum forced response of the tuned blade disk. This means, that the ampli-
fication factor larger than 1 amplification factor can be observed in Figs. 8.3 an8.4, where
the envelope of the forced response is shown for bladed disks with 5 mistuned patterns.

The amplification factor is different for harmonic excitation level. Nevertheless, for all
mistuning patterns it follows the same tendency, namely that for higher excitation levels,

the amplification factor decreases.
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Normalized forced response

Figure 8.2: Forced response of all blades of the mistuned bladed disk with root damping

for pattern 1 using excitation level ||p|| = 1 at excitation frequency A (EOS)

The Figs. 8.3 and 8.4, apart from the forced response envelopes also include the mean
value of maximum forced response amplitudes and their frequency averaged over all blades
in the five different mistuned bladed disks.

In case of EO8 the mean value of the forced response for each bladed disk is lower than
the maximum forced response of the tuned bladed disk: it is between 91% and 99% of the
tuned forced response. This value for EO35 is larger than calculated for the tuned forced
response: between 107% and 117% compared to the tuned forced response to EO35. It is
worth noting that the mean value of the forced response is lower, as the damping increases
through the increased excitation level.

The bladed disk only includes damping of the blade root interfaces and the shrouds
are free. Therefore, the coupling between the blades is small and only happens via the
disk. This results in a noticeable variation of the frequency of maximum forced response
amplitude for each blade in the mistuned bladed disk. This variation is noticeable in the
three-dimensional plot of Fig. 8.2 and also in the wide resonance peaks in the forced
response envelopes, see Figs. 8.3 and 8.4.

The effect of the excitation level on the amplification factor of the mistuned bladed
disks averaged over the bladed disks with the five different mistuning patterns is shown
in Fig. 8.5. In this Figure, the mean value of the amplification factors to both EO8 and
EO35 excitation of the first bending mode is shown for varying excitation levels. The
results show that for both engine orders the amplification factor monotonously decreases
as the excitation amplitude increases.

Furthermore, the maximum forced response distribution along the blades has been
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Figure 8.3: Forced response envelope of anisotropy-mistuning bladed disks with root damp-

ing for 5 different mistuning patterns to excitation frequency A
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ing for 5 different mistuning patterns to excitation frequency B (EO35)
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A (EO8) and B (EO35) in the case of mistuned bladed disks with root damping
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Figure 8.6: Averaged mean and standard deviation of maximum forced response for all
blades along the circumference of the mistuned bladed disk with root damping for varying

excitation level for excitation frequency A (EO8) and B (EO35)

studied for the five excitation levels. As an overview, the mean value and the standard
deviation of the maximum forced response amplitudes along the circumference of the bladed
disk is shown in Fig. 8.6, for EO8 and EO35 considering varying levels of excitation
amplitude. Similarly to the averaged amplification factors, the averaged standard deviation
of the maximum blade amplitudes for the mistuned bladed disks monotonously decrease

as the excitation amplitude increases.

The maximum forced response distribution along the blades has been visualized in
Fig. 8.7 for the frequency range 0.9-1.04 of interest. The plots show the forced response
amplitudes for the anisotropy mistuning pattern 1 and for three excitation amplitudes,

llp|| = 0.2, ||p|| = 0.6 and ||p|| = 1. The similarity between the maximum forced response
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Figure 8.7: Blade maximum forced response distribution for different excitation levels for

mistuned bladed disk with root damping

values for all the blades can be seen for ||p|| = 1 and ||p|| = 0.6. For these excitation
levels the nonlinear friction forces appear on the blade roots. The maximum amplitude
distribution of the blades is significantly different for excitation level ||p|| = 0.2. It can be
seen that the excitation level influences the maximum blade response distribution and as

shown earlier, the variation of the maximum forced response over the blades.

Mistuned bladed disk with shroud and under-platform damping

The effect of the change in excitation amplitude on the nonlinear forced response of mis-
tuned bladed disks was studied for an anisotropy-mistuned bladed disk with nonlinear
contact interfaces on one shroud surface and on two blade to under-platform damper con-
tact interfaces for each blade. The contact interfaces between the blade-root and disk is
considered to be fully stuck, therefore it is modeled by linear multi-point-constraints. This
also means that the modal properties can be calculated with fully stuck blade-root contact
interfaces, requiring to calculate less bladed disk modes. For the FRF calculations 400
bladed disk and 20 UPD modes are included. The calculation uses all harmonic numbers
from 0 to 5. Because the FRF calculation includes the 0" harmonic number, the UPD
needs to be constrained to avoid the rigid body modes. The under-platform damper is
placed on soft springs in the four lower corners of the UPD body, see Fig. 8.8. In all
four positions there are three springs in the three spatial directions. One end of the spring
has fixed BCs and the other end is connected to the damper. In order, not to detune the
higher modes and not to include noticeable additional stiffness, the spring stiffness is set
low: ks = 1072 N/mm. The natural frequency of the first six modes of the UPD is between

5 and 13 Hz, which is sufficiently far from the rigid body modes and from the excitation
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Figure 8.8: Under-platform damper placed on soft springs
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Figure 8.9: Envelope of forced response for different excitation levels for mistuned bladed

disk with shroud and UPD damping

frequency.

For the contact interfaces on the shrouds a fine discretization is used, with 14 nonlin-
ear contact elements for every sector. There are 3-3 contact elements on both sides of the
cottage-roof style under-platform damper. In the whole bladed disk there are 15,000 non-
linear contact elements included. There is no static mistuning introduced: for the contact
elements the same contact pressure is used for every sector. Moreover, the contact pressure
for all contact elements on the shrouds are the equal. Similarly, the contact pressure for
all UPD contact elements are the same.

The bladed disk is anisotropy-mistuned, where the blades have random anisotropy
angles sampled from their realistic statistical distribution. The harmonic excitation is
applied on the trailing edge of each blade with the phase shift of EO20. The effect of
the amplitude of the harmonic excitation on the nonlinear forced response amplitudes is

studied on the normalized range of 1 to 10.

The envelope of the nonlinear forced response is shown for the varying excitation amp-
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Figure 8.10: Forced response of the blade with maximum amplitude on the frequency range

for different excitation levels for mistuned bladed disks with shroud and UPD damping

litudes in Fig. 8.9. In order to illustrate the change of the forced response amplitudes over
the excitation frequency, the forced response of the blade with the maximum displacements
are shown in Fig. 8.10. The figures show that forced response function for excitation level
1 is asymmetric around the resonance and there are two distinct resonance peaks. For
excitation level 1 the forced response does not have any overhanging branches. By increas-
ing the level of excitation the relative displacements between the contact interfaces of the
neighboring blades increase, resulting in partial contact separation. Due to the change in
the bladed disk stiffness results in multi-valued forced response functions for the excitation
levels 2 and above. In Fig. 8.10 the blade number of the maximum forced response is
also shown for every excitation level. The blade number for the maximum forced response
amplitude is different for every excitation amplitude. This shows that for mistuned bladed
disks with strong nonlinearities, the distribution of the maximum forced response amp-
litudes along the bladed disk circumference are significantly influenced by the excitation

amplitude.

8.1.2 [Effect of contact pressure level on the nonlinear forced response

of mistuned bladed disks with shroud contact interfaces

The analysis of the effect of contact pressure level at the outer shroud contact patches
on the nonlinear forced response was studied for the mistuned bladed disk studied in

subsection 7.2.1. The input parameters of mistuning pattern, harmonic excitation etc. are
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Figure 8.11: Nonlinear forced response of mistuned bladed disks with varying tuned contact

pressures

kept the same as before.

For this study, the maximum forced response distribution was analyzed for different
contact pressure values in two comparisons: (i) for contact pressure values 16, 18 and 20
MPa (ii) for contact pressure values 6,12 and 30 MPa. In order to be able to compare the
forced response amplitudes, the maximum forced response of each blade on the frequency
range has been normalized by the mean forced response amplitude of the bladed disk. The
forced response amplitudes were normalized for different contact pressure values separately.

For contact pressure values 16 to 20 MPa, the maximum forced response amplitude
is for blade number 15. In relation to the maximum forced response in the bladed disk,
there is a small change in the amplitude distribution, see Fig. 8.12. For some blades,
the difference is negligible, e.g. blade number 26. For some other blades, such as blades
number 12 and 15, the relation to the mean forced response amplitude differs. For these
blades the deviation from mean is larger in the bladed disks where higher contact pressure
was applied.

When the analysis is extended for a larger contact pressure range, i.e. 6, 12 and 30 MPa
in Fig 8.13, one can see that the distribution of the maximum amplitudes along the bladed
disk circumference significantly changes. As an example: for blade 62 the forced response
amplitude obtained with 6 MPa is smaller than the mean amplitude, while for contact
pressures 12 and 30 it is larger. The results demonstrate that for the same mistuning
pattern, the response of the individual blades and the distribution of the forced response
amplitudes significantly impacted by the coupling between the blades. The static contact

pressure influences the contact status and the nonlinear friction forces, which in turn affect
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Figure 8.12: Nonlinear forced response amplitude distribution for mistuned bladed disks

with contact pressures values varied between 16 and 20 MPa
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Figure 8.13: Nonlinear forced response amplitude distribution for mistuned bladed disks

with contact pressures values varied between 6 and 30 MPa

the coupling between the neighboring blades.

The change in the contact pressure on the outer shroud contact interfaces, results in
a change of the distribution of the maximum forced response amplitude of the mistuned
bladed disk. The change in the amplitude distribution also results in change of the blade
for which maximum forced response amplitudes are observed. This is shown, in Fig. 8.14,
where it can be seen that for contact pressures above 70 MPa, the maximum forced response
amplitude is for blade 36. For low contact pressure values, the amplitude distribution is
sensitive to the contact pressure variation: the blade of maximum forced response amp-
litudes changes as the contact pressure is increased. For contact pressure values between
12 and 25 MPa, blade #15 and for contact pressure between 30 and 60 MPa, blade #2
has maximum forced response amplitude.

To further investigate the phenomena of the dependence of variation of the forced
response amplitudes of mistuned bladed disk on the shroud contact pressure, the minimum
and maximum forced response amplitudes along the circumference have been observed for
the same mistuned bladed disk as the contact pressure on the shroud interfaces were varied
on the range of 4 to 400 MPa. The minimum and maximum amplitudes for all calculations

have been divided by the mean amplitude along the circumference of the bladed disk for the
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Figure 8.16: Standard deviation of the forced response amplitudes along the circumference

of the mistuned bladed disk

respective calculation. The results plotted in Fig. 8.15, show that the difference between
the minimum and the maximum forced response increases as the contact pressure increases.
It is worth noting that the up to 150 MPa, the difference of minimum and maximum
value from the mean value (1.0) is symmetric. The figure shows that the minimum forced
response amplitude normalized by the mean amplitude levels off above 200 MPa, leading to
an asymmetry when considering the difference of minimum and maximum forced response
amplitudes from the mean value. The maximum forced response monotonously increasing

until 400 MPa, at which point all blades are fully stuck and the forced response is linear.

For the maximum amplitudes of the 75 blades over the frequency range under con-
sideration, the standard deviation normalized by the mean value for each forced response
calculation has been obtained. The standard deviation plotted over the contact pressure
range of [4,400] MPa, in Fig. 8.16, is showing 4.5-fold decrease in standard deviation for
the calculation with low contact pressure when the compared for the fully linear analysis.
It is also worth noting that the gradient of the standard deviation over the contact pressure
curve is the largest for low contact pressure values.

The results show that the lower contact pressure values on the shroud interfaces res-
ult in smaller variance of the forced response amplitudes along the circumference of the
mistuned bladed disk. This behavior can be explained by considering that the blades with
localized, high-energy vibrations get damped and therefore those resonance peaks get sig-
nificantly reduced. The increase in damping does not only reduce the mean forced response
amplitudes, but also reduces the standard deviation of the individual blade amplitudes and

the through that the mistuning amplification factors.
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8.1.3 Effect of rotation speed on nonlinear forced response of mistuned

bladed disks with under-platform dampers

Under-platform dampers have been essential part of the design of turbine bladed disks. The
small damper parts are placed under the blade platform and under the centrifugal loading
they are pressed again the blade under-platforms. Due to the relative motion between the
blades and on the damper cottage roof contact interfaces friction forces appear and kinetic
energy is dissipated. The normal forces on the under-platform damper contact interfaces
are dependent on the damper geometry, friction coefficient of the rough surfaces and the

centrifugal forces, as shown in [79].

The design of the dampers is carefully selected to be the most effective for a certain
mode in a certain rotation speed range. The most important design parameters of the
damper are its mass, the cottage roof surface angle and the surface area. When the
damper parameters are already known, the contact pressures can be calculated for any
rotation speed. The contact pressures play an essential role in the onset for the slip-stick

transition and in the resulting damping ratio.

In the current work, an already available bladed disk and under-platform damper was
used. In this study, it has been studied that how this damper design performs for 1F blade
mode with open shrouds and with stuck root contact interfaces. To see how the damper
performs for different rotation speeds, the rotation speeds at crossings of EO6 to EO34 and
mode 1 has been considered, see the schematic Campbell diagram Fig. 2.1. The 1F mode
with open shrouds, see Fig. 8.1, is a great candidate for this study, because the mode is
disk dominated nodal diameter 5 and above, therefore the change of operational deflection
shape through the disk stiffening can be neglected. The modal properties are calculated
for the pre-stress state at the rotation speed of the crossing of EO14 line and mode 1. To
save computational efforts, the rotation speed dependency of the modal properties is not
included.

First, the forced response of the tuned bladed disk has been calculated with varying
engine order excitations. As a reference the linear forced response is calculated without
UPD and fully stuck UPD. For the nonlinear forced response calculations the contact
pressure values are applied on the 3 contact elements on each side of the UPD. The pressure
values are calculated for the respective engine order crossings.

The forced response functions, shown selected EO excitations in Fig. 8.17, are nor-
malized with respect to the maximum forced response amplitude and resonance frequency

to EO14 excitation of the bladed disk without UPD. The resonance frequency of the non-
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Figure 8.17: Nonlinear forced response of tuned bladed disks with and without UPD

showing the damper effectiveness for different centrifugal forces
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Figure 8.18: Tuned forced response amplitude reduction factors with UPDs for different

EO excitations

linear forced responses are between the bladed disk with stuck and without any damper.
For lower rotation speed and therefore lower contact pressures, e.g. EO34 in Fig. 8.17a,
the forced response function is nearing the solution calculated for the blade disk without
UPD. For higher rotation speeds, the resonance frequency increases. For very high contact
pressures, as for EO8 in Fig. 8.17f, the resonance frequency approaches the bladed disk
with stuck under-platform dampers. For this engine order excitation, the forced response
function shows that the slip-stick transition only happens in the narrow frequency band
near the resonance frequency of the bladed disk with stuck dampers. On the other hand,
for higher engine order excitations the stick-slip motion dominates the forced response on
a large frequency band.

The forced response functions in Fig. 8.17 show different damping for the different
nonlinear forced responses due to the change in the rotation speed. In order to identify, for
which engine order excitation is the damping the most effective, amplitude reduction factors
have been calculated. The amplitude reduction factors have been calculated separately for
each engine order excitation by dividing the maximum nonlinear forced response amplitude
by the maximum forced response amplitude of the linear bladed disk without UPD.

The amplitude reduction factors in Fig. 8.18 show that low EO excitation, the damping
is low. On the other hand, for high EO excitation, EO30-EO34, the damping is higher
than for EO6 and EOS8. For medium engine order excitation values, the reduction factor

fluctuates between 0.07 and 0.08. The lowest reduction factor is for EO19.

The forced response has been calculated similarly for a mistuned bladed disk using

varying engine order excitations. The forced response for bladed disks without UPD, with
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Figure 8.19: Nonlinear forced response of mistuned bladed disks with and without UPD

for different EO excitations

stuck and nonlinear UPD has been plotted in Fig. 8.19. The forced response envelopes
for the mistuned bladed disks show a similarity with the tuned bladed disks, with respect
to the effect of change in engine order excitation. The excitation frequency of the peak
amplitudes for the mistuned bladed disk with nonlinear dampers are lower than for the
bladed disk with stuck damper and higher than the bladed disk without UPD. Due to the
mistuning and the limited coupling between the blades resonance conditions is on a wider

frequency range than for the tuned systems.

For mistuned bladed disks, the amplitude reduction factors were calculated similarly
as for tuned bladed disks: the ratio of maximum forced response amplitude for bladed disk
with nonlinear UPD and maximum forced response of bladed disk without damper. To
calculate the ratio, the maximum amplitudes from all blades along the frequency range

studied is selected.

By looking at the forced response amplitudes reduction factors over the engine order
number, in Fig. 8.20, it shows a significant sensitivity to engine order excitation. The
largest forced response amplitude reduction is for EO 14-22. For higher and lower engine

order excitations the forced response amplitudes are reduced to a lesser extent for the
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nonlinear systems.

It has been studied, how the range of variation of forced response amplitude over the
blades is affected by changing the engine order excitations. To this end, the maximum
forced response of each blade over the frequency range for the mistuned bladed disk have
been stored. The amplitudes for each engine order excitation were normalized by the
maximum forced response of the tuned bladed disk with nonlinear UPD and with the
respective engine order excitation. For the normalized maximum blade amplitudes, the

minimum, maximum and the mean value has been calculated.

The Figure 8.21 shows for engine order 6 to 26 the minimum, maximum and mean
values. The mean values are shown with a filled circle symbol and minimum and max-
imum values are denoted by the two ends of the error bars. The amplification factor (the
maximum values) is the highest for EO 24 and 26, but a local maxima can be observed
for EO 10 and 12, for which engine orders the amplitude reduction factors showed little
damping. On the other hand, forced response amplification factor is the lowest to EO 16
and 18 excitations, for which conditions the under-platform damper proved to performing
well. While for the amplification factors a significant variation can be seen, the mean

values of forced response vary only on the limited range of 0.8-1.0.

It is also worth noting that with the increased damping the range of amplitude variation
defined by the minimum and maximum forced response amplitudes decreases. The same

effect has been identified for bladed disks with shroud damping in subsection 8.1.2.
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Figure 8.21: Minimum, maximum and mean forced response of mistuned bladed disk with

UPDs for different EO excitations

8.2 Nonlinear forced response and its sensitivities with re-
spect to anisotropy orientation angle for mistuned bladed

disks

The sensitivities of forced response amplitudes were studied for industrial size bladed disks
with friction contact interfaces. The first analyses were done for two-blade structure with
stepwise varying anisotropy orientation. As for mistuned bladed disks, structures with (i)
blade root damping, (ii) shroud damping and (iii) shroud damping together with UPD

were considered.

8.2.1 Sensitivity of forced response of a two-blade structure

The effect of variation of the material anisotropy orientation on the forced response have
been studied for the model consisting of two anisotropy mistuned blades, shown in Fig.
8.22. For this analysis the anisotropy angle a of blade 1 (blade on the left-hand side
in Fig. 8.22) has been gradually increased from «j to ajg within the realistic range of
this angle variation, while all other anisotropy angles are kept constant. This allows for
easily understanding how the change in crystal orientation influences the nonlinear forced
response and how that change is reflected in the sensitivities. The nonlinear reduced order
model includes 18 contact elements on each root interface and 10 nonlinear nodes on the
shroud interfaces, which results in 164 nonlinear nodes applied in total. A small initial
gap is set between the two blade shroud interfaces which may close during the vibration

period for certain excitation frequencies.
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Figure 8.23: Forced response and its sensitivity of blade 1 with varying a anisotropy angle

The forced response amplitude of blade 1 is obtained at the midspan of the trailing
edge and shown in Fig. 8.23a. The response for the primary angle valued at «; shows
two resonance peaks. By increasing the primary anisotropy angle, the first resonance peak
reduces and the second resonance peak increases. The frequency of both resonance peaks

increases as higher the value of a increases.

The sensitivity of the forced response amplitude of the first blade is shown in Fig.
8.23b for the different primary anisotropy angle crystal orientations. The reduction of the
first resonance peak by increase of « is visualized by the negative sensitivities for as-asg.
The sensitivities show the shift of the second resonance peak by the negative sensitivities
before and positive sensitivities after the resonance peak. The increase in amplitude for
this resonance peak can be seen in the sensitivities as the sensitivity is positive at the

frequency of the resonance peak.
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Figure 8.25: Sensitivity of forced response of two blades with respect to « anisotropy angle

of selected blades for excitation frequency A

8.2.2 Sensitivity of forced response of bladed disks with root damping

The sensitivity of the forced response has been calculated for the anisotropy mistuned
bladed disk with only root contact, already presented in subsection 8.1.1. Here, the mis-
tuning pattern 1 has been used for the sensitivity analyses and the normalized harmonic
excitation level is ||p|| = 1 with EO8. The forced response of a few selected blades that
have high displacement magnitude are shown in Fig. 8.24.

Because the primary anisotropy angles « are the most influential on the forced response,
the seunsitivities are calculated with respect to the primary anisotropy angles of seven
different blades. Five of them have high displacements on this frequency range (blade
numbers 1, 28, 37, 40 and 58) and two of them have lower amplification than 1 (blade
number 13 and 25). The sensitivities of the forced response are calculated at two blades

that have high displacements, these are blade number 58 and 28. In Fig. 8.25a the
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sensitivities of the displacement at the mid-span of the blade 58 is shown with respect to
the primary anisotropy angle « of selected blades. The sensitivities are only significant
with respect blade 13 and 28. The sensitivity with respect to the « of blade 28 is large at
the frequency of the maximum forced response amplitude of blade 58 at w = 0.97, therefore
the crystal orientation of this blade can influence the maximum amplification factor of the
bladed disk. The sensitivity of the forced response of this blade is higher with respect to
the « anisotropy angle of blade 13, but at this frequency the response is low.

The sensitivities of the nonlinear forced response of blade 28 with respect to the selected
primary anisotropy angles are shown in Fig. 8.25b, that has high amplitudes at w = 0.98.
The sensitivity with respect to this blade show positive value at the w = 0.98, moreover the
sensitivity has the maximum value at 0.99 and the minimum value 0.9. This indicates, that
with the increase of a primary angle of blade 28 the frequency of the maximum response

displacement will shift to higher frequencies.

8.2.3 Effect of contact pressure level on the sensitivity of forced response

of bladed disks with shroud damping

The study for the effect of the contact pressure level on the forced response amplitudes of
the anisotropy-mistuned bladed disk with shroud dampers, see subsection 7.2.1, is extended
with the analysis of the local sensitivities.

During the calculation of the nonlinear forced response, for every frequency step the
sensitivity of the forced response for all blades is calculated with respect to all anisotropy
angles. For this bladed disk with 75 blades, the sum of all design parameters is 225.

In general, the interest for the sensitivities lies in the amplitude of the blade which
has the highest forced response amplitudes over the frequency range under investigation.
In the earlier subsection (subsection 7.2.1), the blade number of the maximum forced
response has already been identified. Here, the sensitivity of the forced response for this
blade at resonance has been in focus for mistuned bladed disks varying contact pressures
on the shrouds. The sensitivities have been normalized with the maximum forced response
amplitude of the mistuned bladed disk calculated for the respective shroud contact pressure
value.

Fig. 8.26 shows the maximum value of the sensitivity of the forced response amplitude
of the blade with the maximum amplitude, broken down to anisotropy angle categories.
The figure shows that the sensitivities are largest for all contact pressure values with respect

to a angles. The sensitivities with respect to 8 are the second largest for all contact pressure
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Figure 8.26: Maximum sensitivity value for each anisotropy angle for the maximum forced

response of the mistuned bladed disk with varying contact pressure on blade shrouds

values, except for the range of [20,40] MPa.

In Fig 8.26 a clear tendency can be observed for the maximum sensitivities with the
change of contact pressure. The maximum value of the sensitivities is for contact pressure
400 MPa, when all contact interfaces are fully stuck resulting in a fully linear model. This
shows that the mistuning for linear bladed disks has the greatest influence on the forced
response amplitudes. As the contact pressure decreases, friction forces appear on the
contact patches of the blades with large vibration amplitudes. The increased damping for
these blades noticeable decreases the sensitivities, as shown in Fig 8.26 on contact pressure
range [400:125 | MPa. The maximum forced response sensitivity reaches local minimum at
125 MPa, from here by further decreasing the contact pressures to 70 MPa, the sensitivity
increases.

In order to draw conclusions from this behavior, it is worth looking at maximum forced
response distribution along the bladed disk circumference and especially at the maximum
blade number shown in Fig. 8.27.

It can be seen that for contact pressures 70 to 400 MPa, the maximum forced response
amplitude is for blade #36. The maximum forced response amplitude distribution, nor-
malized by the mean value of the maximum forced response for each calculation, is shown
in 8.28 for contact pressures 70,125,250 and 400 MPa. The distribution of the maximum
response amplitudes shows that for contact pressures 350 and 400 MPa, there is significant
change of the amplitudes only for blades with large amplitudes, e.g. blade numbers 15, 36,
59 and 63. For the lower contact pressures, the amplitude distribution changes for more

blades, e.g. blade numbers 2, 6 and 10.
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The sensitivities for the forced response amplitude of blade #36 are shown with respect
to all « anisotropy angles in Fig. 8.29 for the earlier studied contact pressure values. The
sensitivities shown in this figure confirms the trend that for contact pressure 70 and 400
MPa the sensitivities are larger, and for 125 MPa the sensitivities are small with respect
to all anisotropy angles. This study shows that for 125 MPa is solution for the forced
response amplitudes the most robust, and the amplification factor is the least affected by
changes in anisotropy angles.

Observing the maximum values of the sensitivities in Fig. 8.26 and the maximum blade
number for each calculation with varying contact pressures in Fig. 8.27 it can be concluded
that on a contact pressure range where a certain blade has the maximum forced response
amplitude, the sensitivities change in a specific manner. At the middle of the specific
contact pressure range, e.g. 50 MPa and 125-250 MPa, the sensitivities are the lowest and
pattern of the forced response amplitudes are robust. With the forced response amplitude
distribution changing, e.g. on the contact pressure ranges 70-90 MPa and 25-35 MPa.

It is also with noting that the maximum value of the sensitivities is with respect to the
anisotropy angle of a blade that is located near the blade of the maximum forced response

amplitude.

8.2.4 Sensitivity analysis of the nonlinear forced response of mistuned

bladed disks with shroud damping and under-platform dampers

The forced response amplitudes and its sensitivities of the mistuned bladed disks with
UPD and shroud damping was studied, see configuration #6 in Table 7. The 1F mode of
the bladed disk is excited with high EO excitation. In the Chapter 7, see Fig. 7.27, it has
been shown that for this bladed disk at this resonance, the number of contact elements
applied do not significantly influence the forced response amplitudes: the difference in
forced response amplitudes between using 9 or 12 contact elements on the blade shrouds is
negligible. Therefore, it is sufficient to include 9 contact elements for each shroud contact
interface for the sensitivity studies. For the forced response function calculation, the first
3 harmonic numbers are included.

The amplitudes for all blades are shown in Fig. 8.30, which shows that the maximum
forced response amplitude is achieved for this mistuned bladed disk at blade no. 1 at
wp = 1.067. The second and third highest bladed disk forced response amplitudes are
obtained at blades #81 and #27. The forced response curves have a very wide resonance

peaks, which indicates that significant energy is dissipated at the friction contact interface
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Figure 8.30: Forces response of all blades around the resonance for mistuned bladed disk

with shroud and under-platform damping

of the under-platform damper and the blade shrouds. The second high resonance peak at
w = 1.097 is a resonance of a low nodal diameter mode shapes.

The blade maximum amplitude distribution searched over the whole excitation fre-
quency range is shown in Fig. 8.31. The obtained blade amplitude distribution is typical
for cases of excitation by high EO travelling wave loads. The operational deflection shape
localized for limited number of blades, moreover there is significant variation in the amp-
litudes of the neighboring blades. The blade #1 and #81 can be considered to be part
of the same localization and blade #27 is in another localized range. The forced response
amplitudes at blades #1,#27 and #81 are shown with larger filled circle symbols in Fig.
8.31.

A clear correspondence between the value of the primary angles and the nonlinear forced
response amplitudes, see Fig. 8.32, cannot be found for this anisotropy mistuned bladed
disk. The primary anisotropy angle of the blade with the maximum forces response is at
78% of the maximum allowable range. The primary anisotropy angle of the for blades #27
and #81 are significantly lower at 46% and 19%. The lack of correspondence between amp-
litudes and primary angles is assumed to be due to the strong dynamic coupling between
the blades through shrouds, the disk and under-platform dampers, which overcomes the
effects of the primary anisotropy scatter.

Because the maximum forced response amplitude is found for blade no. 1, the sensitiv-
ities have been studied with respect to the nodal forced response amplitude of this blade.
The sensitivities of the amplitude of blade #1 around the resonance peak have been calcu-

lated with respect to all anisotropy angles. The sensitivities are normalized with respect to



13th April 2022

Normalized forced response

1.05

0.95
0.9
0.85
0.8
0.75
0.7
0.65
0.6
0.55
0.5

185

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

Blade number

Figure 8.31: Maximum forced response for all blades around the resonance, with the highest

three amplitudes denoted with colored circles

Normalized forced response

0.95

09

0.85

08

0.75

0.7

0.65

0.6

0.55

0.5

#1@®
#31@ #2270 :
- B ; - ° o
° . ° °
( ] { ] ® ®
. ° e ° ® g
)
) ° o8 o° ° e
) L °
° Py ° °
° °
o9 ° )
° ® e ®
° o ©
° ®
e ® ® PY . ]
L4 °
(X J
I o o % N
° o o o
o . -
L L L | |
0.2 0.4 0.6 0.8 1

Primary anistropy angle

Figure 8.32: Maximum forced response for all blades as the function of primary anisotropy

angle, with the highest three amplitudes denoted with colored circles



13th April 2022

Sensitivity of forced response [1/deg]

Sensitivity of forced response [1/deg]

186

o

=1

@
1

o

Q

N
T

©
2

-0.01

-0.02 - Y

-0.03 -

L L L |
1.09 1.095 11 1.105

0.04 I I I I I I
1.055 1.06 1.065 1.07 1.075 1.08 1.085

Normalized frequency

(a) Sensitivity w.r.t. all primary angles

0.004 -
0.003
0.002

0.001

-0.001
-0.002

-0.003

-0.004
1.055

1.06

1.065

1.07

1.075

1.08

1.085

1.09

Normalized frequency

(b) Sensitivity w.r.t. all secondary angles

0.002
0.0015
0.001

0.0005

-0.0005

Sensitivity of forced response [1/deg]

-0.001

-0.0015 L L L 1 L 1

1.055 1.06 1.065 1.07 1075 1.08 108 109 1.095 1.1 1.105

Normalized frequency

(c) Sensitivity w.r.t. all circular angles

Figure 8.33: Sensitivity of forced response amplitude of blade #1 w.r.t. all anisotropy

angles around the resonance



13th April 2022

Sensitivity of forced response amplitude [1/deg] Sensitivity of forced response amplitude [1/deg]

Sensitivity of forced response amplitude [1/deg]

Figure 8.34: Sensitivity of forced response amplitude of blade #1 w.r.t.

angles at w; = 1.067

0.015
0.01

0.005

-0.005
-0.01

-0.015
0

0.001
0.0008
0.0006
0.0004
0.0002

0
-0.0002
-0.0004
-0.0006
-0.0008

-0.001

0.0012

0.001
0.0008
0.0006
0.0004

0.0002

-0.0002

-0.0004

187

LIl
e e e e e e e e L
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
Blade number
(a) Sensitivity w.r.t. all primary angles
LOC e e e b P e P e P P P P P P P P LR

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
Blade number

(b) [Sensitivity w.r.t. all secondary angles

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
Blade number

(c) Sensitivity w.r.t. all circular angles

all anisotropy



13th April 2022 188

the peak amplitude of blade #1 and the anisotropy angles are measured for the sensitivity
calculations in degrees. The sensitivities for the whole considered range are shown in Fig.
8.33. The local sensitivities with respect to « are an order of magnitude higher than for 3
and (. It is worth noting that the sensitivities are particularly high with respect to a few
blades. The values of the sensitivities are large for the whole frequency range of interest,
but not the largest at the excitation frequency where blade no.1 has the maximum forced
response, shown with a vertical line for all plots in Fig. 8.33.

For the structural engineer, the maximum forced response amplitudes of the mistuned
bladed disks are of interest. Therefore, the sensitivities of the maximum forced response are
studied at excitation frequency where the maximum forced response is obtained. Figs. in
8.34, show the sensitivity of the amplification factor with respect to all anisotropy angles.
As the earlier studies showed, the sensitivities of the blade with the maximum forced
response amplitudes are the largest with respect to the anisotropy angles of the blade itself
and the neighboring blades. For this bladed disk system with coupling through the UPDs
and the shrouds, the sensitivities are large with respect to up to five neighboring blades.
The sensitivities of the forced response amplitudes of blade #1 is largest with respect to
its own anisotropy angles o and (. It is worth noting that because the anisotropy angle «

is large for blade no. 1, the sensitivity with respect to ( is large too.

8.3 Conclusions

In this chapter, the effect of anisotropy mistuning in combination with the friction damping
has been studied. The non-linear relationship between excitation and response has been
studied for different excitation levels. The amplification factors have been determined for
higher and lower friction damping. In general, it can be stated that higher friction damping
reduces the value of amplification factors and the variation of amplitudes around the blades
in the bladed disk assembly.

For bladed disks with UPD, the damping effectiveness was studied for different engine
order excitations. For mistuned bladed disks, the range of rotation speeds (i.e. EO crossing)
where the damper is the most effective was more localized than for tuned bladed disks.

In this chapter, the forced response and its sensitivities have been calculated for a two-
blade model for which the anisotropy orientation was gradually changed. The sensitivities
could accurately depict the two characteristics changing in the forced response: (i) change
in resonance frequency and (ii) change in peak forced response amplitude.

The studies for sensitivities done for mistuned bladed disks came to similar conclu-
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sions than for the linear forced response: sensitivities for localized operational deflection
shapes are large with respect to blades that have high amplitudes. With increased friction
damping, the sensitivities generally tend to decrease, which is in good agreement with the
behavior seen for the standard deviation of amplitudes over all blades for changing friction

damping.



13th April 2022 190

Chapter 9

Conclusions and outlook

In this work, the dynamics characteristics of anisotropy mistuned bladed disks and their
sensitivities were studied. The presented approach uses high-fidelity and direct modeling of
the mistuning for the crystal orientation blade-to-blade variation. The developed methodo-
logy and implemented framework includes the local sensitivity calculation for the dynamic
characteristics. The developed tools allowed for the calculation of the modal properties

and the nonlinear forced response for several industrial anisotropy mistuned bladed disks.

1. In this work a new methodology for the calculation of the sensitivity of modal prop-

erties have been developed, implemented and validated.

In cooperation with the CalculiX developers, a semi-analytic formulation for the
calculation of the derivative of distinct natural frequencies and the classical modal
expansion formula for the calculation of the mode shape sensitivity has been imple-

mented in CalculiX CrunchiX.

For industrial size FE models of mistuned bladed disks it is computationally expensive
to calculate large number of mode shapes. Therefore, the classical modal method for
the calculation of mode shape sensitivity cannot be applied. In order to improve on
the convergence characteristics of the mode shape sensitivity calculation two different

approaches were implemented and studied.

e The enhanced modal method is an improvement on the classical method using a
modal expansion representation. This new formulation accounts for the modal
terms that are not included in the series expansion. The effect of the value for
Ao parameter used in the formulation was studied. The analysis resulted the
finding that the Ao = (A\; — Aj—1)/2, where \; is the eigenvalue of the mode j,

for which the sensitivity is calculated for. In case of the mistuned bladed disk,
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the studies have shown that in order to reach convergence for a specific mode,

then at least an additional 20 modes need to be included in the series expansion.

e The algebraic method using a bordering algorithm allows for the exact cal-
culation of the sensitivities. For the optimal placement of the regularization
coefficient a methodology ideal for bladed disk structures with localization has
been found: the regularization coefficient is placed into position on the main
diagonal of matrix A where for each mode the DOF with the largest modal

displacement is calculated.

e Both methods for the calculation of the mode shape sensitivities have been
studied using high-fidelity FE models for comparing them. The major advantage
of the new algebraic method is that the mode shape sensitivities are calculated
accurately for all modes and no additional modes need to be calculated to
achieve accurate mode shape sensitivity values. Moreover, the calculation times
for industrial FE models where the sensitivity of many modes are calculated is

less for the algebraic method.

The implementation of the calculation for the flexibility matrix and its sensitivity in

CalculiX was supported and thoroughly tested.

In CalculiX, the sensitivities are calculated with respect to rotation vector compon-
ents. In CalculiX, the rotation vector components have been chosen as the paramet-
ers describing the anisotropy orientation, because it is a general description and not
specific to mistuned bladed disks with single crystal blade materials. The rotation
vectors are defined in the global coordinate system of the FE model. The aniso-
tropy orientations, the actual parameter of interest, is defined in the local coordinate
system of the individual blades. A method using the equality of the infinitesimal
rotations has been implemented for calculating the sensitivity of any parameter of
interest (static displacements, stresses, modal properties and flexibility matrix) in
the local blade coordinate system with respect to the anisotropy angles used by the

manufacturer.

An integrator-interface tool, InterDyn, has been developed to perform all pre- and
post-processor operations for interaction between CalculiX and the nonlinear forced
response solver, ContaDyn. Among other functions, the tool facilitates the prepar-
ation of finite element models of mistuned bladed disks, condensation of the model,
application of the nonlinear contact elements, different types of the visualization of

the forced response on the full finite element models.
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The validation of the sensitivity calculation for natural frequency, mode shapes, flex-
ibility matrix and forced response amplitudes has been done. The sensitivities calcu-
lated with the fast sensitivity calculation method have been compared with sensitiv-
ities obtained by using finite differences. The discrepancies in the sensitivities have
been negligible although theoretically the accuracy of the finite difference method is
less than for the new methods. The validation has been done for simple models and

for large scale FE models of industrial bladed disks.

2. The developed capabilities have been tested and used in a large scope of studies,
where the effect of the anisotropy mistuning on the modal properties and linear, non-
linear forced response for realistic anisotropy mistuned bladed disk are considered.
The anisotropy angles describing the crystal orientation of the blades are random
sampled from their statistic distribution obtained by the industrial partner for pro-

duction bladed disks from experimental measurements.

The analysis of modal properties of blades shows that the blade-alone natural fre-
quency variation can reach 14% due to scatter in the blade material crystal orient-
ation. The range of the natural frequency scatter is dependent on the mean value
of the blade stacking axis direction. The natural frequencies can be increased or

decreased.

The effect of the anisotropy mistuning on the mode shapes for disk dominated modes
are negligible. For blade dominated and localized modes the maximum modal dis-
placement amplitude and its location along the circumference of the bladed disk is

strongly dependent on the anisotropy mistuning pattern.

The sensitivities of the natural frequencies and the mode shapes were studied for disk
dominated, blade dominated modes and for transitional modes where disk and blade
both contribute significantly to system vibrations. The largest value of sensitivities
were observed for blade dominated modes with localization concentrating to 6-7
blades. The sensitivity of the natural frequencies of such modes were large with
respect to the anisotropy angles of the few blades where the localization occurs.
The sensitivities of the modal properties are the largest with respect to the primary
material anisotropy angle and the sensitivities with respect the other two angles

characterizing the crystal orientation are significantly smaller.

The sensitivities of natural frequencies were studied for different boundary conditions

on the blade shrouds. The analyses show that the sensitivity of the natural frequen-
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cies with respect to the anisotropy parameters increase as the coupling between the

neighboring blades is reduces.

The commonly used method for mistuning quantification by blade frequency, which
is usually applied through changing the modulus of elasticity of individual blades
to match the blade-alone frequencies in the mistuning pattern, cannot be used for
anisotropy mistuned bladed disks. The forced response amplitudes of the individual
blades obtained in this thesis are significantly different by description of the aniso-

tropic orientation scatters.

The linear forced response of mistuned bladed disks and its sensitivity have been
studied for several modes and engine order excitations. The observed amplification
factors vary between 1.1 and 2.7, depending on the excited mode and the engine order
of the excitation. The study of the sensitivities of the forced response amplitudes
for disk dominated modes showed that the change in anisotropy orientation leads
primarily to change in resonance frequency and to negligible change in forced response
amplitudes. On the other hand, for blade dominated modes the maximum amplitude
and the resonance frequency are sensitive to the changes of the anisotropy orientation
of the blades. The maximum amplitude in the anisotropy mistuned bladed disks is
the most sensitive to the anisotropy orientation variation of its own blade and the

neighboring blades.

3. The modeling approaches for the calculation of the nonlinear forced response for

tuned and mistuned bladed disks were studied.

For the nonlinear forced response calculation, the number of nonlinear friction contact
elements strongly influences the accuracy of the calculated vibration amplitudes and
the computational effort. The studies have showed that at least 10 contact elements
are required for each friction contact interface in the bladed disk for capturing the

nonlinear interactions accurately enough.

The nonlinear forced response solver, ContaDyn, offers fast convergence over the
number of modes included in the FRF calculation. For bladed disks where through
contact-separation strong nonlinear effects appear and energy is transferred to the
higher modes, it is recommended to include 10 mode families in the reduced order

model of the mistuned bladed disks.

For bladed disks where the only contact interface is on the blade roots, it is sufficient

to include only odd harmonic numbers. The friction contact interfaces that partially
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or fully separate during the vibration period, it is required to include 0*, odd and
even harmonics. The convergence over the number of harmonics is fast, by including
the first 6 harmonic coefficients, the forced response amplitudes are obtained with

high accuracy.

For some analyses it is beneficial to remove the rigid body modes from the modal
basis. In such cases, multi-point-constraints are applied between blades and the
disk. For reduced order models with sufficiently large number of contact elements on
the blade root friction joints, the multi-point-constraints do not influence the forced

response amplitudes.

The calculated forced response amplitudes are sensitive to the value of the friction
coefficient. By decreasing the value of the friction coefficient for the applications in

stick-slip state, the slip threshold amplitudes decrease resulting in increased damping.

When the value of contact stiffness describing the elasticity of the contact of the
rough surfaces is varied in its realistic range, the forced response amplitudes show

negligible changes.

The static pre-stress state of the friction contact elements significantly influences
the forced response amplitudes. For mistuned bladed disks it is recommended to
calculate the contact pressure on the shroud contact interfaces with high accuracy
when both modal and static mistuning is included in the nonlinear forced response

analysis.

4. The nonlinear forced response has been successfully validated for tuned and mistuned
bladed disk. The validation campaign was done for bladed disks with (i) only root
damping, (ii) root and shroud damping and (iii) for bladed disks with nonlinear
friction contact on blade roots, shrouds and under-platform dampers. The calculated
forced response amplitudes for all modes, when the variation of the friction coefficient
value was considered, were obtained within maximum and minimum measured forced

response amplitudes.

The tip-timing measurements allowed the comparison of the calculated and measured
forced response amplitude distribution along the circumference of the bladed disk.
The range of the blade amplitudes scatter is larger for the measured bladed disks,
which meets the expectation as the calculated mistuned forced response only included
anisotropy mistuning. For the measured and for the calculated amplitudes similar

characteristics can be observed: (i) for low engine order excitation the forced response
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amplitude distribution takes a sinusoidal wave with low nodal diameter (ii) for high

engine order excitation the amplitude distribution shows two to three localizations.

Studies included the range of scatter for forced response amplitudes and resonance

frequencies of mistuned bladed disks for varying levels of forced response excitation.

For bladed disks with under-platform damper, studies were done considering the
contact pressure variation due to the change of engine order excitation and thereby
the change of rotation speed of the resonance crossing. The engine order crossing
for which the UPD the optimal damping efficiency has had been identified for tuned
and mistuned bladed disks.

The sensitivities with respect to anisotropy orientations has been studied for mis-
tuned bladed disks with only root damping and with shroud damping and under-
platform damper. For mistuned bladed disks with friction contact interfaces, blade
dominated modes were studied. The maximum nonlinear forced response amplitudes

are sensitive to anisotropy parameters of the neighboring blades.

5. The developed capabilities offer a large scope of possibilities for further studies.
The capabilities for the calculation of linear forced response sensitivities have been
exploited in this project in the work of R. Rajasekharan Nair in [63]. The gradient
information for the forced response amplitudes allowed for implementing the gradient
based chaos expansion for uncertainty and global sensitivity studies. For the possible

future research the following directions can be suggested:

e Applying the methodology of gradient based polynomial chaos for bladed disks

with nonlinear friction contact interfaces could be of interest.

e Extending the analyses by modeling other sources of mistuning, e.g. blade-
to-blade variation in geometry, static and contact parameters would allow the
calculation of the forced response of mistuned bladed disks more comprehens-
ively.

e The developed capabilities offer a foundation to facilitate the sensitivity calcu-
lation of the nonlinear forced response with respect to additional parameters.
When the seunsitivities with respect to many parameters are available, then it
allows for effective robustness study and in assessing which parameters have the
largest influence on the forced response amplitudes. Additionally, by finding
the most important mistuning parameters, an efficient optimization tools can

be developed based on the calculated gradient information.



13th April 2022 196

Bibliography

1]
2]

7]

The Effects of Blade Mistuning on Vibration Response - A Survey, 1991. 8, 9

H.M. Adelman and R.T. Haftka. Sensitivity analysis of discrete structural systems.
ATAA Journal, 24(5):823-832, 1986. 17, 29

S. Adhikari and M.I. Friswell. Eigenderivative analysis of asymmetric non-

conservative systems. International Journal for Numerical Methods in Engineering,

51(6):709-733, 2001. 17

M. Allara. A model for the characterization of friction contacts in turbine blades.

Journal of Sound and Vibration, 320(3):527 — 544, 2009. 12

José Luis Amor6s, Martin J. Buerger, and Marisa Canut de Amorés. The Laue

Method. Academic Press, New York, 1975. 24

N. K. Arakere and G. Swanson. Effect of crystal orientation on fatigue failure of
single crystal nickel base turbine blade superalloys. Journal of Engineering for Gas

Turbines and Power-Transactions of the Asme, 124(1):161-176, January 2002. 13

Seunghun Baek and Bogdan Epureanu. Reduced-Order Modeling of Bladed Disks
With Friction Ring Dampers. Journal of Vibration and Acoustics, 139(6), 08 2017.
061011. 11

P. Basu and J.H. Griffin. Effect of Limiting Aerodynamic and Structural Coupling in
Models of Mistuned Bladed Disk Vibration. Journal of vibration, acoustics, stress,

and reliability in design, 108(2):132-139, 1986. 18

Bernd Beirow, Thomas Giersch, Arnold Kiihhorn, and Jens Nipkau. Optimization-
Aided Forced Response Analysis of a Mistuned Compressor Blisk. Journal of En-
gineering for Gas Turbines and Power, 137(1):012504-012504-10, August 2014. 12
19



13th April 2022 197

[10]

[11]

[12]

[13]

[14]

[16]

[17]

Y. Bhartiya and A. Sinha. Reduced order model of a bladed rotor with geometric
mistuning: Comparison between modified modal domain analysis and frequency mis-
tuning approach. In Proceedings of the ASME Turbo Expo, volume 6, pages 981-992,
2011. 10

E. Capiez-Lernout, C. Soize, and M. Mbaye. Computational geometrically nonlinear
vibration analysis of uncertain mistuned bladed disks. In Proceedings of the ASME
Turbo Ezpo, volume 7B, 2014. 18

A. Cardona and M. Geradin. A beam finite element non-linear theory with finite
rotations. International Journal for Numerical Methods in Engineering, 26(11):2403~

2438, 1988. 40

Pierre Caron and Tasadduq Khan. Evolution of Ni-based superalloys for single crystal
gas turbine blade applications. Aerospace Science and Technology, 3(8):513-523,
December 1999. 13

M. P. Castanier, G. Ottarsson, and C. Pierre. A Reduced Order Modeling Technique
for Mistuned Bladed Disks. Journal of Vibration and Acoustics, 119(3):439-447, July
1997. 10

M.P. Castanier and C. Pierre. Modeling and analysis of mistuned bladed disk vibra-
tion: Status and emerging directions. Journal of Propulsion and Power, 22(2):384—

396, 2006. 9

A.D. Celel and D.N. Duhl. Second-generation nickel-base single crystal superalloy.
The Metallurgical Society Inc, United States, 1988. 13

D. Charleux, C. Gibert, F. Thouverez, and J. Dupeux. Numerical and experimental
study of friction damping blade attachments of rotating bladed disks. International
Journal of Rotating Machinery, 2006, 2006. 12

Guido Dhondt. Linear Mechanical Applications, chapter 2, pages 63—-142. John Wiley
& Sons, Ltd, 2004. 26

Guido Dhondt. CalculiX CrunchiX USER’S MANUAL version 2.12, 2017. 15

D. J. Ewins. Vibration modes of mistuned bladed disks. Journal of Engineering for

Power, 15:165-173, 1973. 6



13th April 2022 198

[21]

[24]

[27]

28]

[30]

[31]

D. J. Ewins. Vibration characteristics of bladed disc assemblies. Journal of Mech-

anical Engineering Science, 114:349-355, 1975. 6, 7, 8

D.J. Ewins. The effects of detuning upon the forced vibrations of bladed disks.
Journal of Sound and Vibration, 9(1):65-79, January 1969. 8, 18

D.J. Ewins and Z.S. Han. Resonant Vibration Levels of a Mistuned Bladed Disk.
Journal of Vibration, Acoustics, Stress, and Reliability in Design, 106(2):211-217,
1984. 18

D. M. Feiner and J. H. Griffin. A Fundamental Model of Mistuning for a Single
Family of Modes. Journal of Turbomachinery, 124(4):597-605, November 2002. 10,
12,15

Christian Firrone and I. Bertino. Experimental investigation on the damping effect-

iveness of blade root joints. Experimental Mechanics, 55:981-988, 06 2015. 12

C.M. Firrone, S. Zucca, and M.M. Gola. The effect of underplatform dampers on
the forced response of bladed disks by a coupled static/dynamic harmonic balance

method. International Journal of Non-Linear Mechanics, 46(2):363-375, 2011. 9

R.L. Fox and M.P. Kapoor. Rates of change of eigenvalues and eigenvectors. ATAA
Journal, 6(12):2426-2429, 1968. 16, 28

J.H. Griffin. A Review of Friction Damping of Turbine Blade Vibration. International
Journal of Turbo and Jet Engines, 7(3-4):297-308, 1990. 20

Najeh Guedria, Hichem Smaoui, and Mnaouar Chouchane. A direct algebraic method
for eigensolution sensitivity computation of damped asymmetric systems. Interna-
tional Journal for Numerical Methods in Engineering, 68(6):674-689, November 2006.
17

J Han. Identifikation der elastischen kennwerte anisotroper hochtemperaturlegier-

ungen mittels resonanzmessungen und finite-elemente-simulation, 1995. 13, 23

A. Hartung and H.-P. Hackenberg. A practical approach for evaluation of equivalent
linear damping from measurements of mistuned and/or non-linear stages and forced
response validation. In Proceedings of the ASME Turbo Expo, volume 7TA-2016, 2016.
17,99, 118



13th April 2022 199

[32]

[33]

[34]

[36]

[40]

[41]

A. Hartung, H.-P. Hackenberg, M. Krack, J. Gross, T. Heinze, and L.P.-V. Scheidt.
Rig and engine validation of the nonlinear forced response analysis performed by the
tool oragl. Journal of Engineering for Gas Turbines and Power, 141(2), 2019. 12,
118

A. Hartung, U. Retze, and H.-P. Hackenberg. Impulse mistuning of blades and vanes.
In Proceedings of the ASME Turbo Ezpo, volume 7A-2016, 2016. 2

Andreas Hartung, Ulrich Retze, and Hans-Peter Hackenberg. Impulse Mistuning of
Blades and Vanes. Journal of Engineering for Gas Turbines and Power, 139(7), 02
2017. 072502, xviii, 118

Tadashi Hasebe, Masao Sakane, and Masateru Ohnami. High Temperature Low
Cycle Fatigue and Cyclic Constitutive Relation of MAR-M247 Directionally Solidified
Superalloy. Journal of Engineering Materials and Technology, 114(2):162-167, April
1992. 14

A. Hohl, B. Kriegesmann, J. Wallaschek, and L. Panning. The influence of blade
properties on the forced response of mistuned bladed disks. In Proceedings of the

ASME Turbo Ezpo, volume 6, pages 1159-1170, 2011. 10

Jie Hong, Lulu Chen, Yanhong Ma, and Xin Yang. Design Methods of Friction
Damping at Blade-Disk Joints. In Proceedings of the ASME Turbo Expo, volume
Volume 6: Structures and Dynamics, Parts A and B, pages 315-322, 06 2009. 11

N.X. Hou, W.X. Gou, and Z.F. Yue Z.X. Wen. The influence of crystal orientations on
fatigue life of single crystal cooled turbine blades. Materials Science and Engineering

A, 492:413-418, 2008. 13

H. Trretier. Spectral Analysis of Mistuned Bladed Disk Assemblies by Component
Mode Synthesis. In ASME, New York, NY, USA, Design Engineering Div, pages
115-125, 1983. 10

P. Jean, C. Gibert, C. Dupont, and J.-P. Lombard. Test-Model Correlation of Dry-
Friction Damping Phenomena in Aero-Engines. In Proceedings of the ASME Turbo
Ezpo, volume Volume 5: Structures and Dynamics, Parts A and B, pages 481491,
06 2008. 12

A.G.S. Joshi and B.1. Epureanu. Reduced order models for blade-to-blade damping



13th April 2022 200

[42]

[43]

[44]

[49]

[50]

variability in mistuned blisks. In Proceedings of the ASME Turbo Ezpo, volume 6,
pages 1033-1045, 2011. 10, 12

Y. Kaneko. Study on vibration characteristics of single crystal blade and directionally
solidified blade. In Proceedings of the ASME Turbo Fxpo, volume 6, pages 931-940,
2011. 14

Y. Kaneko, K. Mori, and H. Ooyama. Resonant response and random response
analysis of mistuned bladed disk consisting of directionally solidified blade. In Pro-
ceedings of the ASME Turbo Expo, volume 7B, 2015. 15, 20

Y. Kaneko, H. Yamashita, K. Mori, and K. Sato. Analysis of variation of natural
frequency and resonant stress of blade. In Proceedings of the ASME Turbo Ezxpo,
volume 5 PART B, pages 801-807, 2006. 15

Herbert B. Keller. The bordering algorithm and path following near singular points
of higher nullity. STAM J. Sci. Stat. Comput., 4(4):573-582, December 1983. 31

A. Koscso. Extension of capabilities of the finite element software calculix for analysis
of anisotropic bladed disks. Master thesis, Technische Universitdt Miinchen, Munich,

Germany, 2016. xiv, 7, 39, 43, 52

A. Koscso and E.P. Petrov. Sensitivity and Forced Response Analysis of Anisotropy-
Mistuned Bladed Disks With Nonlinear Contact Interfaces. Journal of Engineering
for Gas Turbines and Power, 141(10), 09 2019. 101025. 11

M. Krack, L. Panning, J. Wallaschek, C. Siewert, and A. Hartung. Robust design
of friction interfaces of bladed disks with respect to parameter uncertainties. In

Proceedings of the ASME Turbo Fxpo, volume 7, pages 1193-1204, 2012. 20

M. Krack, L. Salles, and F. Thouverez. Vibration prediction of bladed disks coupled
by friction joints. Archives of Computational Methods in Engineering, 24(3):589-636,
2017. 9

Krzysztof Kubiak, Dariusz Szeliga, Jan Sieniawski, and Arkadiusz Onyszko. 11 - the
unidirectional crystallization of metals and alloys (turbine blades). In Peter Rudolph,
editor, Handbook of Crystal Growth (Second Edition), Handbook of Crystal Growth,
pages 413-457. Elsevier, Boston, second edition edition, 2015. 24



13th April 2022 201

[51]

[54]

[55]

[56]

[57]

[58]

D. Laxalde, F. Thouverez, J.-J. Sinou, and J.-P. Lombard. Qualitative analysis of
forced response of blisks with friction ring dampers. Furopean Journal of Mechanics

- A/Solids, 26(4):676-687, July 2007. 9

[.-W. Lee and G.-H. Jung. An efficient algebraic method for the computation of
natural frequency and mode shape sensitivities - Part I. Distinct natural frequencies.

Computers and Structures, 62(3):429-435, 1997. 17

[-W. Lee and G.-H. Jung. An efficient algebraic method for the computation of
natural frequency and mode shape sensitivities - Part II. Multiple natural frequencies.

Computers and Structures, 62(3):437-443, 1997. 17

Li Li, Yujin Hu, Xuelin Wang, and Ling Ling. Eigensensitivity analysis of damped
systems with distinct and repeated eigenvalues. Finite Elements in Analysis and

Design, 72:21-34, September 2013. 17

Z. Li, S.K. Lai, and B. Wu. A new method for computation of eigenvector derivatives
with distinct and repeated eigenvalues in structural dynamic analysis. Mechanical

Systems and Signal Processing, 107:78-92, 2018. 17

Z.-S. Liu, S.-H. Chen, M. Yu, and Y.-Q. Zhao. Contribution of the truncated modes
to eigenvector derivatives. AIAA Journal, 32(7):1551-1553, 1994. 16

M. Manetti, I. Giovannetti, N. Pieroni, H. Horculescu, G. Peano, G. Zonfrillo, and
M. Giannozzi. The dynamic influence of crystal orientation on a second generation
single crystal material for turbine buckets. In Proceedings of the ASME Turbo Ezpo,
volume 6, pages 125-133, 2009. 14

J.G. Marshall and M. Imregun. A review of aeroelasticity methods with emphasis
on turbomachinery applications. Journal of Fluids and Structures, 10(3):237 — 267,
1996. 7

Larry A. Moss and Todd E. Smith. Ssme single crystal turbine blade dynamics, 1987.
14

M. Myhre, F. Moyroud, and T.H. Fransson. Numerical investigation of the sensitivity
of forced response characteristics of bladed disks to mistuning. In American Society of

Mechanical Engineers, International Gas Turbine Institute, Turbo Expo (Publication)

IGTI, volume 4, pages 171-182, 2003. 12, 17



13th April 2022 202

[61]

[63]

[68]

[69]

[70]

L. Méric, P. Poubanne, and G. Cailletaud. Single Crystal Modeling for Structural
Calculations: Part 1—Model Presentation. Journal of Engineering Materials and

Technology, 113(1):162-170, January 1991. 13

R. Miicke and P. Woratat. A cyclic life prediction approach for directionally solidified
nickel superalloys. Journal of Engineering for Gas Turbines and Power, 132(5), 2010.
14

Rahul Rajasekharan Nair. Uncertainty and sensitivity analysis for bladed disks with
random blade anisotropy orientations. PhD thesis, University of Sussex, August 2019.

4, 195

R.B. Nelson. Simplified calculation of eigenvector derivatives. ATAA Journal,

14(9):1201-1205, 1976. 16, 63

I. U. Ojalvo. Efficient computation of mode-shape derivatives for large dynamic

systems. ATAA Journal, 25(10):1386-1390, 1987. 17

L.U. Ojalvo. Efficient computation of modal sensitivities for systems with repeated

frequencies. AIAA Journal, 26(3):361-366, 1988. 17

L. Pesaresi, J. Armand, C.W. Schwingshackl, L. Salles, and C. Wong. An advanced
underplatform damper modelling approach based on a microslip contact model.

Journal of Sound and Vibration, 436:327 — 340, 2018. 11

E. Petrov and M. Geradin. Finite element theory for curved and twisted beams
based on exact solutions for three-dimensional solids. Part 1: Beam concept and
geometrically exact nonlinear formulation. Computer Methods in Applied Mechanics

and Engineering, 165(1-4):43-92, 1998. 40

E. P. Petrov. A Method for Use of Cyclic Symmetry Properties in Analysis of
Nonlinear Multiharmonic Vibrations of Bladed Disks . Journal of Turbomachinery,

126(1):175-183, 03 2004. 32

E. P. Petrov. A Method for Use of Cyclic Symmetry Properties in Analysis of
Nonlinear Multiharmonic Vibrations of Bladed Disks. Journal of Turbomachinery,

126(1):175-183, March 2004. 36

E. P. Petrov. Method for Sensitivity Analysis of Resonance Forced Response of
Bladed Disks With Nonlinear Contact Interfaces. Journal of Engineering for Gas
Turbines and Power, 131(2):022510-022510-9, December 2008. 20, 21



13th April 2022 203

[72]

[73]

[74]

[77]

[78]

[79]

[80]

[81]

E. P. Petrov. A Sensitivity-Based Method for Direct Stochastic Analysis of Nonlinear
Forced Response for Bladed Disks With Friction Interfaces. Journal of Engineering
for Gas Turbines and Power, 130(2):022503-022503-9, February 2008. 12, 17

E. P. Petrov. Reduction of Forced Response Levels for Bladed Disks by Mistuning:
Overview of the Phenomenon. Journal of Engineering for Gas Turbines and Power,

133(7):072501-072501-10, March 2011. 19, 138

E. P. Petrov. Analytical Formulation of Friction Contact Elements for Frequency-
Domain Analysis of Nonlinear Vibrations of Structures With High-Energy Rubs.
Journal of Engineering for Gas Turbines and Power, 141(12), 11 2019. 121006. 33

E. P. Petrov and D. J. Ewins. Analysis of the Worst Mistuning Patterns in Bladed
Disk Assemblies. Journal of Turbomachinery, 125(4):623-631, December 2003. 19

E. P. Petrov and D. J. Ewins. Analytical Formulation of Friction Interface Elements
for Analysis of Nonlinear Multi-Harmonic Vibrations of Bladed Disks. Journal of
Turbomachinery, 125(2):364-371, April 2003. 9, 20, 21, 32, 33, 35

E. P. Petrov and D. J. Ewins. Effects of Damping and Varying Contact Area at
Blade-Disk Joints in Forced Response Analysis of Bladed Disk Assemblies. Journal
of Turbomachinery, 128(2):403-410, 09 2005. 11

E. P. Petrov and D. J. Ewins. Method for Analysis of Nonlinear Multiharmonic Vi-
brations of Mistuned Bladed Disks With Scatter of Contact Interface Characteristics.
Journal of Turbomachinery, 127(1):128-136, February 2005. 10, 32

E. P. Petrov and D. J. Ewins. Advanced Modeling of Underplatform Friction Dampers
for Analysis of Bladed Disk Vibration. Journal of Turbomachinery, 129(1):143-150,
February 2006. 172

E. P. Petrov, K. Y. Sanliturk, and D. J. Ewins. A New Method for Dynamic Analysis
of Mistuned Bladed Disks Based on the Exact Relationship Between Tuned and

Mistuned Systems. Journal of Engineering for Gas Turbines and Power, 124(3):586—
597, June 2002. 10, 12

E P Petrov, R Vitali, and R T Haftka. Optimization of mistuned bladed discs
using gradient-based response surface approximations. In 41st Structures, Structural
Dynamics, and Materials Conference and Ezhibit, pages 1129-1139, 2000. Atlanta,
GA, USA. 18



13th April 2022 204

[82]
[83]

[84]

[85]

[87]

E.P. Petrov. personal communication. 29, 47, 78
E.P. Petrov. personal communication. 30, 47, 78

E.P. Petrov. Method for sensitivity analysis of resonance forced response of bladed
disks with nonlinear contact interfaces. Journal of Engineering for Gas Turbines and

Power, 131(2), 2009. 20

E.P. Petrov. A high-accuracy model reduction for analysis of nonlinear vibrations
in structures with contact interfaces. Journal of Engineering for Gas Turbines and

Power, 133(10), 2011. 21, 32, 34, 35

William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery.
Numerical Recipes: The Art of Scientific Computing. Cambridge University Press,
Cambridge, UK, third edition edition, 2007. 52

Rahul Rajasekharan and Evgeny Petrov. Uncertainty and global sensitivity ana-
lysis of bladed disk statics with material anisotropy and root geometry variations.

Engineering Reports, 1(3):e12043, 2019. 12043 eng2.12043. 12

V. Ramamurti and P. Seshu. On the principle of cyclic symmetry in machine dy-

namics. Communications in Applied Numerical Methods, 6(4):259-268, May 1990.

Rolls-Royce. The Jet Engine. John Wiley & Sons, Chichester, England, UK, 5th
edition edition, 2015. 12

C.S. Rudisill and Y.-Y. Chu. Numerical methods for evaluating the derivatives of
eigenvalues and eigenvectors. AIAA Journal, 13(6):834-837, 1975. 17

Michael W. R. Savage. The Influence of Crystal Orientation on the Elastic Stresses
of a Single Crystal Nickel-Based Turbine Blade. Journal of Engineering for Gas
Turbines and Power, 134(1):012501-012501-7, October 2011. 15

H. Schoenenborn, M. Junge, and U. Retze. Contribution to Free and Forced Vibration
Analysis of an Intentionally Mistuned Blisk. In Turbo Fzpo: Power for Land, Sea,
and Air, volume Volume 7: Structures and Dynamics, Parts A and B, pages 1111-

1120, 06 2012. 26

C. W. Schwingshackl and E. P. Petrov. Modeling of flange joints for the nonlinear
dynamic analysis of gas turbine engine casings. Journal of Engineering for Gas

Turbines and Power, 134(12), 10 2012. 122504. 12



13th April 2022 205

[94]

[97]

[100]

[101]

[102]

[103]

C. W. Schwingshackl, E. P. Petrov, and D. J. Ewins. Effects of Contact Interface
Parameters on Vibration of Turbine Bladed Disks With Underplatform Dampers.
Journal of Engineering for Gas Turbines and Power, 134(3), 01 2012. 032507. 11

A. V. Srinivasan. Flutter and Resonant Vibration Characteristics of Engine Blades.

Journal of Engineering for Gas Turbines and Power, 119(4):742-775, 10 1997. 7

Yuangiu Tan, Chaoping Zang, and E.P. Petrov. Mistuning sensitivity and optim-
ization for bladed disks using high-fidelity models. Mechanical Systems and Signal
Processing, 124:502-523, 2019. 19

N. A. Valero and O. O. Bendiksen. Vibration Characteristics of Mistuned Shrouded
Blade Assemblies. Journal of Engineering for Gas Turbines and Power, 108(2):293—
299, April 1986. 8

B.P. Wang. Improved approximate methods for computing eigenvector derivatives

in structural dynamics. AIAA Journal, 29(6):1018-1020, 1991. 16, 59, 60

D. S. Whitehead. Effect of Mistuning on the Vibration of Turbo-Machine Blades
Induced by Wakes. Journal of Mechanical Engineering Science, 8(1):15-21, March
1966. 2, 18

B. Wu, Z. Xu, and Z. Li. A note on computing eigenvector derivatives with distinct
and repeated eigenvalues. Communications in Numerical Methods in Engineering,

23(3):241-251, 2007. 17

Yutaka Yamashita, Koki Shiohata, and Takeshi Kudo. Analysis of Vibration Char-
acteristics for Last Stage Blade With Friction Contact Surfaces of Steam Turbine.
In Proceedings of the ASME Turbo FEzpo, volume Volume 7: Dynamic Systems and
Control; Mechatronics and Intelligent Machines, Parts A and B, pages 405-412, 11
2011. 11

M.-T. Yang and J. H. Griffin. A Reduced-Order Model of Mistuning Using a Subset
of Nominal System Modes . Journal of Engineering for Gas Turbines and Power,

123(4):893-900, 03 1999. 10

Liu Zhong-sheng, Chen Su-huan, and Zhao You-qun. An accurate method for com-
puting eigenvector derivatives for free-free structures. Computers & Structures,

52(6):1135 — 1143, 1994. 16



13th April 2022 206

|104] Stefano Zucca, Christian Firrone, and Muzio Gola. Numerical assessment of friction
damping at turbine blade root joints by simultaneous calculation of the static and

dynamic contact loads. Nonlinear Dynamics, 67:1943-1955, 02 2012. 11



	PhD Coversheet
	PhD Coversheet

	Koscso, Adam (revised)
	Contents
	List of Tables
	List of Figures
	1 Introduction
	2 Literature review
	2.1 Fundamentals of the dynamic behavior of tuned and mistuned bladed disks
	2.2 Methods for the calculation of nonlinear forced response
	2.3 Influence of material anisotropy angle on the modal properties and the forced response
	2.4 Sensitivity and statistical methods for the dynamic properties of bladed disks
	2.4.1 Numerical methods for sensitivity of mode shapes
	2.4.2 Application of statistical methods
	2.4.3 Optimization problems for finding extreme amplification factors and patterns
	2.4.4 Investigations regarding damping assessment and contact conditions
	2.4.5 Conclusions


	3 Methods of the nonlinear forced response and its sensitivities with respect to material anisotropy angles
	3.1 Modeling of the material properties of single crystal blades
	3.2 Modal properties of bladed disks
	3.2.1 Modal properties of tuned bladed disks with cyclic symmetric conditions
	3.2.2 Modal properties of mistuned bladed disks

	3.3 Sensitivity of modal characteristics
	3.3.1 Enhanced modal method
	3.3.2 Algebraic method

	3.4 Forced response and its sensitivity for bladed disks
	3.4.1 Forced response and its sensitivity for linear mistuned bladed disks
	3.4.2 Nonlinear forced response and its sensitivity for mistuned bladed disks with friction joints
	3.4.3 Nonlinear forced response of tuned bladed disks
	3.4.4 Modeling of additional parts of the bladed disk assembly for nonlinear forced response
	3.4.5 Calculation of the sensitivities with respect to material anisotropy angles described in the local coordinate system of the blades

	3.5 Calculation of the transformation matrix between global and blade coordinate systems
	3.6 Visualization of forced response in time domain
	3.6.1 Recovery of forced response in time domain for asymmetric systems
	3.6.2 Recovery of forced response in time domain for symmetric systems
	3.6.3 Recovery of sensitivity of forced response in time domain for asymmetric systems

	3.7 Development of integrator-interface code InterDyn and its use for the analysis of nonlinear forced response and sensitivities
	3.8 Conclusions

	4 Validation of the methods for the calculation of the sensitivity of forced response
	4.1 Validation of the calculation of linear forced response
	4.2 Optimal finite difference step size for the calculation of the derivative of the stiffness matrix
	4.3 Validation of the sensitivity of natural frequencies
	4.4 Validation and optimal parameters for the calculation of the sensitivity of mode shapes
	4.4.1 Optimal value of parameter for the enhanced modal method
	4.4.2 Studies for the ideal placement of the regularization coefficient
	4.4.3 Comparison of the two methods presented for the calculation of the mode shape sensitivities
	4.4.4 Study of the convergence characteristics of the modal method for high-fidelity bladed disk models
	4.4.5 Comparison of the computational efforts

	4.5 Validation of the sensitivity calculation of forced response
	4.5.1 Validation for the calculation of sensitivity for linear forced response
	4.5.2 Validation for the calculation of sensitivity for nonlinear forced response

	4.6 Validation of the calculation of the forced response displacement recovery in time domain
	4.6.1 Asymmetric bladed disk structure
	4.6.2 Symmetric bladed disk structure

	4.7 Conclusions

	5 Sensitivity analysis of the modal characteristics of the anisotropy mistuned bladed disks
	5.1 Effect of anisotropy orientation axis scatter on the single blade natural frequencies
	5.2 Effect of anisotropy orientation axis scatter on the mistuned bladed disk mode shapes
	5.3 Investigation of the sensitivity of modal characteristics for disk
	5.3.1 Disk dominated modes
	5.3.2 Blade dominated modes
	5.3.3 Transition modes

	5.4 Maximum value of sensitivity of natural frequencies for the first family of modes with analysis for the effect of shroud boundary conditions on the sensitivity of natural frequencies
	5.5 Conclusions

	6 Linear forced response and its sensitivity for the anisotropy mistuned bladed disks
	6.1 Comparison of the modeling methods of frequency mistuning and anisotropy mistuning for linear forced response of monocrystalline mistuned bladed disks
	6.2 Effect of anisotropy orientation scatter on the forced response of mistuned bladed disks
	6.3 Sensitivity analysis of the forced response of the anisotropy mistuned bladed disk
	6.3.1 Disk dominated modes
	6.3.2 Disk dominated mode coupling with blade dominated mode
	6.3.3 Blade dominated mode
	6.3.4 Conclusions


	7 Validation and modeling of the nonlinear forced response calculation
	7.1 Modeling strategies for tuned bladed disks
	7.1.1 Effect of number and distribution of contact elements
	7.1.2 Number of mode shapes considered
	7.1.3 Number of harmonic coefficients
	7.1.4 Effect of variation of contact stiffness and friction coefficients
	7.1.5 Effect of multi-point-constraints between blade and disk

	7.2 Modeling strategies for mistuned bladed disks
	7.2.1 Effect of contact pressure variation on shroud contact interfaces
	7.2.2 Effect of contact pressure variation on root contact interfaces
	7.2.3 Number of contact elements
	7.2.4 Number of mode shapes considered
	7.2.5 Number of harmonic coefficients

	7.3 Validation of the forced response amplitudes for mistuned bladed disks
	7.4 Conclusions

	8 Nonlinear forced response and its sensitivity for the anisotropy mistuned bladed disks
	8.1 Nonlinear forced response of mistuned bladed disks
	8.1.1 Effect of harmonic excitation level on the nonlinear forced response of mistuned bladed disks
	8.1.2 Effect of contact pressure level on the nonlinear forced response of mistuned bladed disks with shroud contact interfaces
	8.1.3 Effect of rotation speed on nonlinear forced response of mistuned bladed disks with underplatform dampers

	8.2 Nonlinear forced response and its sensitivities with respect to anisotropy orientation angle for mistuned bladed disks
	8.2.1 Sensitivity of forced response of a two-blade structure
	8.2.2 Sensitivity of forced response of bladed disks with root damping
	8.2.3 Effect of contact pressure level on the sensitivity of forced response of bladed disks with shroud damping
	8.2.4 Sensitivity analysis of the nonlinear forced response of mistuned bladed disks with shroud damping and under-platform dampers

	8.3 Conclusions

	9 Conclusions and outlook
	Bibliography




