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Abstract

Abnormality detection is one of the most highly anticipated application areas of Molecular Com-

munication (MC) based nanonetworks. �is task entails sensing, detection, and reporting of ab-

normal changes in a �uid medium that may characterize a disease or disorder using a network

of collaborating nanoscale sensors. Such distributed detection (DD) problems are of paramount

interest in applications of nanonetworks. For the �rst time in literature, we proposed to employ

sequential probability ratio test (SPRT) to decision fusion (DF). �e proposed approach yields

considerable gains in the average number of samples required for the decision resulting in sig-

ni�cant improvement in decision delay, which is one of the main challenges encountered in a

molecular communications based sensor network. Existing strategies for such distributed col-

laborative detection problems require a complete statistical characterization of the underlying

communication channel between the sensors and the fusion centre (FC), with the assumption

of perfectly-known or accurately estimated channel parameters. �is assumption is usually im-

practical both due to mathematical intractability of the analytical channel models for MC except

in a few ideal cases, and the slow and dispersive signal propagation characteristics that make

the channel estimation a di�cult task even in these ideal cases. �is work, for the �rst time in

the literature, proposes to employ a machine learning (ML) approach to this task and shows that

http://www.sussex.ac.uk/


vi

this approach provides the robustness and �exibility required for practical implementation. We

focus on detection based on deep learning, speci�cally on a feed-forward neural network and a

recurrent neural network structure that learn the underlying model from data. �is study shows

that the proposed DF strategy can perform well without any knowledge of the communication

channel.
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1

1Introduction

If one day, my words are against science,

choose science.

Mustafa Kemal Ataturk

1.1 Overview

Nanotechnology is the process of creating and implementing physical, chemical, and biological

systems on sizes ranging from individual atoms or molecules to sub-micron dimensions, and the

incorporation of the resulting nanostructures into larger systems capable of performing tasks

for a wide range of engineering applications [3]. Researchers and industry aim to harness the

unique features of nanomaterials and nanomanufacturing technologies for medical and health-

care applications, materials science, computing and electronics, energy applications and envi-

ronmental bene�ts, and so on [4]. �erefore, it has been an a�ractive and promising research

area in recent years, drawing a considerable research e�ort from diverse �elds of science and

engineering. With the progress in science and technology, fabrication of micro/nanodevices and

systems has advanced for a variety of industrial, consumer, and healthcare applications. New

study disciplines such as micro- and nano-electro-mechanical systems (MEMS and NEMS) have

been established to extend nanotechnology into robotics. �e �eld of biomedical (or biological)

microelectromechanical systems (BIOMEMS) is primarily concentrated on mechanical compo-
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nents and microfabrication methods adapted for biological applications such as bio�uidic chips,

biosensors, etc. [5]. Besides man-made machines, the ability to directly reuse biological struc-

tures found in living organisms or to reengineer them is expected to be particularly bene�cial

in biomedical applications, as well as providing the foundation for bio-inspired communications

using bioengineering [6].

Many of the nanotechnology applications envisaged require the cooperation and collabora-

tion of a number of nano-devices. In this regard, nanonetworks, i.e. networks that enable the

information exchange between nano-devices such as sensors and actuators for performing tasks

that require coordination and cooperation, have become an active research area.

Inspired by the largely successful paradigm of the internet of things (IoT) that enables ubiq-

uitous and pervasive connectivity and interaction between devices on the macroscopic scale, the

recently introduced concept of the Internet of Bio-Nano �ings (IoBNT) is expected to enable the

connectivity between nanodevices operating within biological or other systems, complementing

and interfacing with the IoT [7], thus, bridging the gap between the macroscopic and microscopic

worlds and elevating the pervasiveness of the connectivity of things into unprecedented levels.

�e IoBNT has the potential to extend the connectivity to microscopic scales, even to biologi-

cal systems such as the human body or living ecosystems, with an ultimate vision of seamless

integration of the macroscale domain with the microscale biochemical domain into a multiscale

pervasive Internet of Everything (IoE) [8].

Di�erent communication paradigms can be employed in nanonetworks, depending on the

particular application and the type of medium where the nanonetwork is expected to be de-

ployed. In environments where nanonetworks are to be deployed, such as biological systems,

conventional synthetic methodologies for communication, such as radio frequency (RF) trans-

mission, may be unsafe or infeasible such as in a biological system. As previously mentioned,

some of the most highly anticipated applications envisioned for nanonetworks in healthcare,

environmental science and many other �elds require the deployment of nanonetworks within a

biological system. �e environment has a detrimental e�ect on the propagation of electromag-

netic (EM) waves. Also, EM is di�cult at extremely small dimensions, such as between microscale

or nanoscale robots, due to limits such as the antenna size ratio to the electromagnetic signal’s

wavelength [9]. Moreover, the use of high-frequency EM radiation for communication may be

undesirable for applications within a living organism due to health concerns. For such cases,

MC may be bio-compatible alternative to the conventional EM-based wireless communication

paradigm by employing dedicated molecules as information carriers, mimicking the naturally

evolved communication mechanisms between biological entities at this physical scale [1].
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In the Literature, many di�erent mechanisms have been considered for signal propagation in

MC, including chemotactic signalling [10], quorum sensing [11], and propagation through gap

junction [12]. Speci�cally, we focused on the di�usive MC approach as it has garnered consid-

erable interest from the communications research community [13–32]. Di�usive MC relies on

Brownian motion for signal propagation, i.e. the net passive movement of molecules or particles

from high to low concentration areas. �e main advantages of this mechanism are that it requires

no infrastructure and additional external energy [33]. �ere has been a considerable amount of

research in recent years on di�erent elements of MC systems, such as transmi�er and receiver

design [19], [15], [27], network layer [1] and various access protocols [1].

�is thesis investigates the task of abnormality detection, i.e. the detection and reporting

of abnormal changes in a �uid environment that may characterize the presence of a disease or

disorder using a di�usive MC based nanoscale sensor network that is still in its early phases of

development. We encounter such decision fusion (DD) problems in many potential application

areas of nanonetworks, such as health monitoring, disease diagnosis, targeted drug delivery,

environmental sensing and monitoring, contaminant and toxic agent detection. Some of the

anomalies that may be of interest in the context of this task include abnormal changes in the

concentration of an indicator molecule in the medium or in the parameters of the medium itself,

such as the pH value, temperature, pressure, and viscosity [34], [35].

Using a DD approach in which a network of connected sensor nodes collaborates to distin-

guish between hypotheses representing the presence and absence of an abnormality, is a widely

used technique for detection problems requiring a high degree of accuracy, reliability, and ro-

bustness. On macroscopic dimensions, wireless sensor networks utilizing traditional EM-based

wireless communications have a�racted intense research interest for decades and continue to do

so [36]. However, implementing a sensor network at the nanoscale using MC involves novel and

unique obstacles, because of the nature of signal propagation in the di�usive MC channel, which

is signi�cantly di�erent from that of the well-studied conventional wireless communications

channel.

Some processing can be done at the individual sensors in nanoscale sensor networks, while

compressed forms of local sensor decisions are transmi�ed to a fusion centre (FC), where the

incoming signals from various sensors are suitably combined to carry out the �nal global deci-

sion. We particularly focus on the problem of decision fusion (DF) in an MC based nanoscale

sensor network, i.e. the task of merging the sensing decisions transmi�ed by the sensor nodes

via the di�usive MC channel to provide a global inference regarding the presence or absence of

the abnormality of interest.
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1.2 Motivation and Challenges

MC draws a�ention with the rapid and advanced development in nanoscale communication net-

works. Employing non-intrusive MC based nanoscale sensor networks within the human body

in order to sense and report abnormal and unexpected physical and biochemical changes in their

environment has the potential to enable applications such as health monitoring, disease diagno-

sis and targeted drug delivery that could transform healthcare and medical treatments by funda-

mentally changing the ways these services are provided. Real-time health monitoring within the

human body and early diagnosis of diseases or disorders well before symptoms are detectable

from outside the body could lead to earlier treatment with a much higher possibility of success,

contributing to society’s health and well-being and signi�cantly reducing healthcare costs by

avoiding the need for invasive tests and interventions, unnecessary medication or hospital ad-

mission. �is technology has the potential to transform the way the drug treatments are carried

out by enabling precise targeting of the drug delivery to the tissue where a disease or disorder

has been detected, allowing to lower required doses of drugs, limiting the extent of detrimental

side-e�ects to the rest of the body and leading to more cost-e�ective and e�cient drug treat-

ments.

Nanoscale sensor networks can be employed for real-time detection of abnormal physical and

chemical changes, presence of pollution, contaminants, toxic agents or pathogens in ecosystems,

in the air, in freshwater reservoirs, water supply networks, or other physical infrastructure with

an unprecedented level of pervasiveness and connectivity, changing how environmental and

infrastructure monitoring is conducted, an enabling technology for smart city implementations.

Furthermore, this technology also has the potential to lead to groundbreaking security-related

applications, especially against chemical and biological terrorism.

In this thesis, we focus on the DF task in abnormality detection using a sensor network via

MC. DD is a scheme providing some of the advantages such as be�er response to rapid changes,

reduced communication bandwidth, ability to recon�gure in the case of sensor/link failures etc.

[37], [38]. We believe the presented DD strategies lie in the heart of the nanonetworks and can

overcome some limitations of MC such as slow signal propagation, limited power resources,and

highly dispersive nature of the channel while improving detection performance with DF.

We have started our research with the following questions that we believe to be useful to

address.

• Are there any solutions to the unique challenges of MC-based nanoscale sensor network
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MC?

�e signal propagation characteristics in a di�usive MC channel are highly random in

nature and depend heavily on a multitude of factors. We need consider all of these fac-

tors in practical applications to build more robust and �exible systems. However, recent

research in MC has been limited to the development and study of nanonetworks based

on simpli�ying assumptions about nanomachines and the propagation environment. For

instance, ideal sensors are assumed, and simple scenarios in an unbounded environment

are investigated. We should relax these simplifying approximation for the sake of per-

formance of the networks. A critical problem in moving the �eld of MC forward is the

development of robust strategies for creating nanoscale sensor networks that operate in

the real world of practical applications. In practical scenarios where one or more of these

assumptions don’t hold, mathematical descriptions of the channel are evasive. Even if the

channel model known, channel conditions may change over time requiring estimation of

channel state information (CSI).

• How can we overcome the limitations of DD problems in nanonetworks using MC?

One of the main characteristics of di�usive MC is the exceedingly slow signal propagation

speed in the medium and the channel’s high dispersion, which results in long pulse du-

ration and latency resulting in decision delays. �us, performing a reliable DF task with

as few received samples as possible is of paramount interest and also helps to overcome

the low bandwidth problem and limited power sources in nanonetworks. We propose to

employ SPRT leading to signi�cant savings in the average number of samples required for

DF.

• Can ML help to overcome some of the unique challenges speci�c to di�usive MC based

sensor networks ?

As stated in the preceding section, the signal propagation characteristics in a di�usive MC

channel are very stochastic and highly dependent on a variety of parameters. As a result,

we believe that ML algorithms can be a strong tool for overcoming these di�culties, as

data-driven learning algorithms would help to design of more resilient and �exible systems.

Improving the detection performance in highly challenging and changing environments is

crucial. One of the best methods would be using the prior knowledge and incorporating

into algorithms. Also, di�erent input vector dimensions are possible in practical applica-

tions. Recurrent neural networks (RNN) can provide good detection performance along
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with robustness and �exibility required for practical implementations of such MC based

nanoscale sensor networks.

�e above issues are critical for the study of the DF in di�usive MC-based DF, and we believe

that our novel contributions, as discussed in this dissertation, o�er solutions to a variety of these

challenges.

1.3 Roadmap

�is thesis is structured as follows:

Chapter 2 is divided into �ve main sections. We summarize sensor networks, namely dis-

tributed sensor networks, in Section 2.2. A�erwards, in Section 2.3, we describe di�usive MC

using the di�usion mechanism. �e Section 2.4 summarizes the challenges in DD in nanoscale

networks using the di�usive MC. Finally, the system model is discussed in Section 2.5.

Moving forward, we focus on decision-theoretic methods for DF in Chapter 3 starting with

a brief overview of �xed sample Neyman Pearson tests in Section 3.1. A�er that, we propose to

employ a SPRT based method for DF in di�usive MC based DD as well as advantages associated

with the proposed test in Section 3.2. �en we provide a basic background of ML to give the

communication community an idea of the �eld.

�en, we present neural networks (NN) method to detection task for the �rst in the litera-

ture to overcome the most challenging di�culties in MC a�ecting the detection performance in

Chapter 4. We investigate di�erent DNN techniques: Feed-forward (acyclic) NNs and Recurrent

(cyclic) NNs in Section 4.2. A�er that, we provide the results of the proposed NN based detectors

via Monte Carlo simulations using the ideal signal model and compare with the existing LLR de-

tector in Section 4.3.2.2. We conclude the chapter by showing the performance of the ML-based

detector using particle-based MC simulator AcCoRD.

In Chapter 5, we evaluate our ML-based detection algorithm using particle-based simulator

AcCoRD in practical scenarios where an analytical channel model is not mathematically tractable

or is too complex to be useful. In Section 5.3.1, we simulate a basic cell environment in AcCoRD

to detect abnormalities using MC. In the following Section 5.3.2, we address the abnormality

detection problem in a blood vessel using several nanoscale sensors and an absorbent receiver,

inspired by the numerous healthcare uses of MC inside the IoBNT.

Finally, Chapter 6 integrates our conclusions and future view by proposing di�erent ML ap-

proaches, as well as listing unresolved problems that could be an inspiration for future research.
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2Background

�ere’s plenty of room at the bo�om.

Richard P. Feynman

2.1 Overview

�is study is at the intersection of many di�erent research areas, such as nanotechnology, sensor

networks, MC and ML. In this chapter, we provide an overview of the theoretical background

required for the rest of the thesis starting with sensor networks, di�usive MC, challenges in DD

in nanoscale sensor networks via di�usive MC, and the system model used in this thesis.

Feynman’s 1959 lecture is generally regarded as the birth of nanotechnology [39]. It is a

broad vision for manipulating ma�er at the nanoscale, including individual atoms. Nanotech-

nology has a lot of potential to allow breakthrough applications in a variety of technical �elds

which permit the miniaturization and fabrication of electronics on a nanometer scale. Nanoscale

devices can be linked to execute distributed collaborative activities, which necessitates informa-

tion �ow between them. Communication in nanonetworks may be achieved by MC, which is

recognized to be one of the most promising techniques owing to bene�ts such as the necessitat-

ing no infrastructure, considerable energy e�ciency, and biocompatibility, among others[33].

Abnormality detection refers to the problem of �nding pa�erns in data that do not accord
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with expected behaviour. �ese nonconforming pa�erns are o�en referred to as anomalies, out-

liers, peculiarities, or contaminants in di�erent applications [34], [40]. Information theoretic

techniques using information theoretic measures such as Kolomogorov complexity, entropy, rel-

ative entropy, classi�cation-based using algorithms like Support Vector Machines (SVM), Kernel

Fisher Discriminants are some examples of conventional abnormality detection techniques [34].

Abnormality detection requires high accuracy because of its critical and crucial nature in most

applications, such as fault detection in safety-critical systems, and military surveillance for en-

emy operations. In most of the existing applications, this accuracy is a�ained by employing

distributed detection using multiple sensors, where the decision is performed using a network of

sensors and decision devices, which communicate with each other, i.e. sensor networks [37],[38].

For conventional abnormality detection problems, the inherent redundancy possible with multi-

ple sensors, the availability of high-speed wireless or wire-bound communication, and increased

computational capability has led to a considerable research interest in distributed detection [37],

[38]. Many di�erent sensor network architectures possible [37], and many di�erent detection

strategies both at the individual sensors and/or the fusion centre can be employed [38].

�is thesis focuses on the task of abnormality detection, i.e. the detection and reporting of

abnormal events that may characterize the presence of a disorder in a �uid environment, em-

ploying an MC based nanoscale sensor network [17]. Such DD problems lie in the heart of the

most highly anticipated applications of nanoscale networks, such as health monitoring, disease

diagnosis, targeted drug delivery, environmental sensing and monitoring, contaminant and toxic

agent detection, environmental remediation and many more. Depending on the application, the

abnormalities of interest may be quite diverse in nature, e.g. abnormal changes in the concen-

tration of a molecule in the medium, or abnormal changes in the properties of the medium itself,

such as the pH value, temperature, viscosity.

Although the problem of abnormality detection has been studied extensively in di�erent

�elds, only very few previous works exist for the abnormality detection problem in the context

of di�usive MC based DD. [35] investigates the modelling and analysis of abnormality detection

in bio-molecular nanonetworks for the �rst time, where the MC channel has been modelled as

additive white Gaussian noise (AWGN), and a sub-optimal OR fusion rule is employed for the

decision. [41] is similar to [35], the sensing channel is modelled as correlated Gaussian. �e

work in [18] focuses on a similar type of abnormality as in [41], using a more realistic channel

model based on the solution of the di�usion-reaction equations in an unbounded medium, and

provides a sub-optimal DF strategy. In [42], a�er decoding the local decisions using sub-optimal

detectors based on an approximation of the log-likelihood ratio, the FC uses OR and AND logic-
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based fusion rules to make the �nal decision.

�e remainder of this chapter is organised as follows. In Section 2.2, we provide a brief

overview of the sensor networks, namely distributed sensor networks. We explain di�usive MC

via di�usion mechanism in the section 2.3. Challenges in DD in nanoscale networks via the dif-

fusive MC are summarized in section 2.4. In section 2.5, we described the system model. Finally,

we conclude the chapter in conclusion section.

2.2 Distributed Sensor Networks

Wireless sensor networks are composed of a large number of low-cost devices that are linked to-

gether via low-power wireless communications. It is the networking capacity that distinguishes

a sensor network from a conventional collection of sensors, allowing sensor elements to coop-

erate, coordinate, and collaborate [43]. In traditional multi-sensor detection, all local sensors

send their data to a central processor that uses standard statistical algorithms to conduct optimal

detection. On the other hand, in a decentralized approach, instead of transmi�ing raw data to a

central processor, usually called the fusion centre, they employ their processing capabilities to

do simple computations locally and only transfer the required, partially processed data [37].

In this thesis, we speci�cally consider distributed sensor networks due to their advantages

over centralized structures, such as reduced bandwidth, increased reliability and lowered cost.

A distributed system architecture may also provide a faster response to sudden changes in the

environment.

A variety of topological structures can be used to arrange sensor networks. �e three most

commonly employed topologies are the parallel (Fig 2.1), the serial (Fig 2.2) or tandem, and

the tree topologies (Fig 2.3). �e parallel network topology has a�racted the greatest a�ention

among the topologies studied in the literature [36], [44]. In the parallel topology, each sensor

communicates directly with the fusion centre. We show the con�guration of a parallel structure

with M sensors in Fig 2.1.

Let the phenomenon H depicts the physical abnormality to be detected by the sensor net-

work. �e H0 and H1 represent the absence and the presence of the abnormality of interest,

respectively. �e task of the FC is to perform the DF, i.e. to decide for H0 or H1 by observing

the sensor outputs received via the di�usive MC channel.

Each of the M sensors observes one or more sensing variables and produce a quantized so�

output between 0 and 1 that represents its sensing decision, i.e. the output of the m’th sensor.

�en, mth sensor passes the information to xm to the fusion centre. �e fusion centre makes a
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Figure 2.1: Parallel structure with fusion centre.

general decision based on received data that favours eitherH0 orH1.

In the serial (tandem) con�guration, the (m−1)th sensor transmits its quantized information

to the mth sensor, which creates its own quantized information based on its own observation

and the quantized data received from the “previous” sensor as shown in Fig 2.2. �e initial sen-

sor in the network derives its quantized data only from its observation, and the last sensor in

the network chooses which of the two potential hypotheses H0 or H1. When the conditional

independence assumption,i.e. the observations at the sensors are independent, the joint density

of the observations can be represented as the product of the marginal densities, is not viable, the

issue becomes unsolvable.

In Tree topology (Fig 2.3), all of the sensors that are installed in the sensor �eld form a logical

tree. A leaf node transmits data packets to its parent nodes. In response, a receiver node that

receives data from a child node sends data to the receiver’s parent node a�er combining the data

with its own data [45].

For a speci�c application, the choice of the sensor network topology to be employed is de-

termined by many factors, including the requirements of the application of interest, the physical

extent of the sensor network, the medium in which the sensor network is to be deployed, the

power limitations and the processing power capabilities of the individual nodes, and the em-

ployed mode of communications. In this thesis, we focus on a parallel sensor networks struc-

ture. �e reasoning behind this choice will become apparent in the following sections, where the

unique characteristics of di�usive MC and nanoscale sensor networks will be discussed in detail.
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Figure 2.2: Serial structure.

2.2.1 Nanoscale Sensors

Nanoscale sensors are devices with an average diameter in the micrometre range or less and are

composed of nanoscale components with individual diameters ranging between 1 and 100 nm

[46]. �ese are small components made up of an ordered collection of molecules that are capable

of performing simple processing, sensing, and/or actuation activities [47],[33].

�e small size of these systems limits the sensors, actuators, and motion mechanisms, power

sources, computer power, and wireless communication capacity. On a nanometer scale, the

surface-to-volume ratio is reduced, surface forces become more impactful than volume-based

forces. Interatomic forces or surface chemistry play a crucial impact on the mechanism. �us, in-

ertial forces and weight are practically negligible, but micro/nanoscale surface interatomic forces,

�uid dynamics, heat transfer, surface chemistry, adhesion-based contact mechanics, and friction

dominate robot mechanics. Micro/nanoscale forces have a wide variety of features when com-

pared to macroscale forces [46]. It is important to note that these di�erences should also be

considered in mathematical descriptions when designing nanonetworks. It would be almost im-

possible to take into account all of these features and e�ects.

�ere are three distinct methods for the development of nanoscale sensors. Top-down ap-

proaches produce nanomachines by downscaling current microelectronic and MEMS [48]. �e

bo�om-up design begins with molecular components that self-assemble chemically via molecu-

lar recognition principles, organising themselves molecule by molecule [49]. A third approach,

named bio-hybrid, has been proposed recently for the construction. �is strategy is centred on

the utilization of existing biological nano structures, such as molecular motors, bacteria-based
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Figure 2.3: Tree structure.

microrobots, as components or models for developing new nanomachines. �e characteristics of

future nanomachines are currently present in a live cell, which can be regarded as a collection

of self-replicating nanomachines [33], [50], [51].

2.2.2 Nanoscale Sensor Networks

Nanonetworks are made up of very small devices, nanomachines described in previous section,

that connect and cooperate with one another to enable them to operate on more sophisticated

tasks such as drug delivery inside the body or disease therapy [6]. Nanonetworks are a�racting

interest for their potential applications in a wide variety of �elds. �ese applications can be

grouped into four main idea:

• Biomedical Applications: Lab-on-a-chip, drug delivery systems, health monitoring, detec-

tion of infectious agents, etc.
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• Industrial and Consumer Goods Applications: Food and water quality management sys-

tems, manufacturing intelligent materials and fabrics, etc.

• Environmental Applications: Environmental sensing and monitoring, contaminant and

agent detection, etc.

• Military Applications: Nanostructured materials, situational awareness, etc.

Next, we will investigate the communication between nanosensors. Several communication

paradigms have been proposed based on EM, optical, and acoustic communication [6]. Because

of the characteristics and restrictions of nano dimension in environments such as in aqueous

media, these paradigms may not be suitable for nanonetwork applications. Also EM waves show

adverse propagation characteristics causing implementation constraints such being the ratio of

the antenna’s size to the wavelength of signal [52], [6].

2.3 Molecular Communication

Historically, the term ’communication’ is synonymous with the term ’common’. It is derived

from the Latin verb communicare, which meaning ’to share’ or ’to make common,’ and is linked

to the Latin word for common:communis [53]. Communication systems are ubiquitous and com-

munication is critical between biological systems and occurs at all levels of the systems, from

subcellular proteins through organelles, tissues, and organs, and �nally to groups of individuals

[54]. At the molecular level, individual cells require communication to share information [55].

MC is a biologically inspired approach to the challenges of traditional communication for

nanoscale networks [1]. In this thesis, we consider di�usion-based MC as stated in the previ-

ous section. Di�usion-based MC encodes information into some characteristic of the released

molecules, such as the release time, the number, or the kind of molecules, by using specialized

molecules as information carriers.

“Wireless transmission as well as nanoscale transport have existed for at least 3.5 billion

years; ever since magnetic storms and lightning have lit the sky, ever since van der Waals forces

have existed, and ever since the �rst living cells transported nucleotide units such as RNA and

DNA. �e point is that humans do not really “create” anything new; we leverage and �ne-tune

what nature provides.” says Stephan J. Bush [46].

Communications engineers have worked with electromagnetic modes of communication in

the past. However, as nanotechnology is becoming a promising research area for solving many
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challenging problems of humanity, our understanding of communication has to change to in-

clude the restrictions of the nanoscale size, limited energy reserves, and �uid propagation envi-

ronment such as those found within the human body. Finding improved ways to communicate

among smaller nanoscale sensors will improve sensor coverage. Furthermore, as nanotechnology

advances, the necessity for low-cost, robust, and reliable communication among nanomachines

will become evident.

MC presents a promising approach by mimicking the naturally evolved communication mech-

anisms between biological entities at this physical scale. �is approach enables nanoscale entities

to communicate using molecules as information carriers.

When we imagine an abnormality detection system consisting of tiny, blood cell-sized sen-

sors that continuously measure the environment parameters and transmits their signal results

to sense abnormality which might indicate a presence of disease in the human body, we need to

physically enable the communication between the distributed nanoscale sensors and the deci-

sion device under the constraints of nanoscale networks. �ese devices must operate in the body

without disrupting healthy tissues, or being destroyed by the immune system. Microorganisms

and their naturally evolved communication mechanisms have been inspiring and MC emulates

these to enable information exchange between the nodes of a nano or microscale network.

�e past decade has seen a rapid increase in information-theoretic analysis of MC [9]. In

biological systems, various molecular signalling pathways arise (e.g., the transmission of di�usive

molecules, protein-nanomachines, transport of materials by propagating over protein �laments)

[26]. �e information propagation process is usually modelled as discrete Brownian motion as

the number of molecules becomes too large in continuous form for di�usive MC, and we focus

on di�usive MC in this thesis.

2.3.1 Molecular Communication via Di�usion

Di�usive MC employs dedicated molecules as information carriers while relying on the di�u-

sion of these molecules for signal propagation, requiring no infrastructure or additional external

energy [33]. Di�usion is the transfer of particles from areas of higher concentration to areas

of lower concentration by random motion [56]. A generalized model of a di�usive molecular

communications system is depicted in Fig 2.4.

�e general processes of communication are as follows:

• Information is encoded into some aspect of the released molecules by the transmi�er and
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Transmitter
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1. Emission Molecules

Figure 2.4: A model of molecular communication.

the information molecule is sent into the environment,

• �e information molecules propagates through the environment,

• Receiver captures information molecules and decodes .

In the following sections, we �rst explain the mathematical modelling of di�usion. Later, the

transmi�er, the receiver and the channel of the model is brie�y depicted.

2.3.1.1 Mathematical Modelling of Di�usion

It is necessary to have a thorough grasp of the propagation environment to do meaningful com-

munications analysis. Characterizing the channel between a transmi�er and its receiver is crucial

to understand MC systems. Naturally-evolved MC pathways can be imitated synthetically, such

as walk-based mechanisms, �ow-based mechanisms, and di�usion-based mechanisms [57]. �e

one that has garnered a�ention from the scienti�c community for nano-communication net-

works is di�usion-based communication, which refers to the random movement of information-

carrying molecules. No infrastructure or external energy is required for the di�usion of information-

carrying molecules to their intended destination. �is makes MC via di�usion particularly well-
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suited for biocompatible short-range ad-hoc communication between nano or micro-scale ma-

chines that are limited in terms of energy. Conventional radio-wave communication methods

and theoretical results are only partially applicable and must be reassessed. Molecular di�usion

may be investigated at both the microscopic and macroscopic levels. �e macroscopic focus is

on the overall behaviour of a large number of molecules. �e random movement of individual

molecules, known as Brownian motion, is the subject of microscopic study. In classical di�u-

sion, the time-varying molecule concentration is determined by solving Fick’s second law with

boundary and initial conditions determined by the geometry of the bounds of the environment,

the receiver and transmi�er models, their physical extents and geometries, and their relative

positions. �e most general form of Fick’s second law is:

∇2C(r, t) =
1

D

∂

∂t
C(r, t) (2.1)

Where C is the concentration, r represents the spatial coordinates (r = [x, y, z] in cartesian

coordinates), D is the di�usion coe�cient and ∇2 is the Laplace operator, which, in cartesian

coordinates are given as∇2 = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
. Environmental e�ects such as �ow and chemical

reactions in the medium require the addition of further terms to the partial di�erential equation

above, which is then referred to as the di�usion-convection-reaction equation.

Brownian motion, i.e. the random motion caused by collisions with the �uid’s molecules,

leads to the dispersion of free molecules within in a �uid medium. �e Brownian motion is a

random walk process, whose variance depends on the di�usion constant. Einstein demonstrated

in his renowned work in 1905 that the probability density function of a single particle’s position

under Brownian motion (microscopic) satis�es the di�erential equation provided by Fick’s sec-

ond law of di�usion (macroscopic) [56]. Einstein started with assuming the existence of a time

interval δt which, could be considered as in�nitesimally small on a macroscopic scale. On the

other hand it was large enough that a solute molecule typically experiences many collisions with

the solvent molecules in that time. He later introduced a probability density function φ(ξ; δt)dξ

gives the probability that the x coordinate of a solute molecule will change during the next δt

by the amount between δ and δ + dδ. Stochastic change in the position of a solute molecule is

considered to represent the combined e�ects of the many random collisions with many smaller

solvent molecules in time δt . For simplicity let us show the classical one-dimensional di�usion

equation Einstein had
dρ(x, t)

dt
= D

d2ρ(x, t)

dx2
, (2.2)

where D is de�ned by

D =
1

2δt

∫ ∞
−∞

ξ2φ(ξ; δt)dξ. (2.3)
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He reasoned the expected e�ects of the solute molecules collisions from the surrounding solvent

molecules and provided a connection between the macroscopic and microscopic views. It should

be noted that determining the behaviour of a particular di�usive channel requires the solution of

a partial di�erential equation for a given geometry. �is partial di�erential equation may contain

only di�usion, or, in the presence of additional �ow, an additional convection term. An additional

reaction term is included in presence of chemical reactions. Unfortunately, an analytical solution

to such di�erential equations is only available for the most simplest of the cases [56], [17], [27].

For other more complicated se�ings, the use of numerical methods or approximations may be

required for the characterization of the channel [29], [30].

2.3.1.2 Transmitter

We model the transmi�er as a point source of molecules, located at the origin. �is point source

can control the concentration, type and release time of molecules. For example, we encode the

information in concentration by releasing a certain number of molecules for bit 1 and bit 0 de-

pending on the data modulation model. In practice, the transmi�er cannot be considered as

perfect. To model this imperfection, we should use a probability distribution model.

2.3.1.3 Channel

�e physical system of molecular transport between the transmi�er and the receiver has to be

speci�ed for a statistical model for the molecular channel. �is motion of molecules towards the

receiver is categorized in three forms; walk based, �ow-based or di�usion-based [9]. In walk-

based mechanisms, information molecules are encased in cargo, which is subsequently pushed

toward the destination by a motor protein, like as dynein or kinesin, along a pre-de�ned path,

similar to microtubule tracks. On the other hand, in �ow-based mechanisms, the propagation of

molecules is impacted by an external �ow. Because �ow is a one-way phenomena, it cannot be

used for two-way communication. Di�usion-based transport that is considered in this thesis in-

volves molecules randomly propagating in all accessible directions via Brownian motion. Even

tough this results in a larger level of uncertainty at the receiver,di�usion-based mechanism is

fully passive and constantly accessible, requiring no additional energy or infrastructure, and is

best suited to highly dynamic and unpredictable se�ings. In the presence of a dri�, di�usion-

based transport can also be considered, resulting in a hybrid of di�usion and �ow-based pro-

cesses. �e di�usion-based transport mechanism is the focus of the majority of the literature

[57].
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2.3.1.4 Receiver

�e receiver, namely the FC in this thesis, captures information molecules circulating in the en-

vironment. �ere are some options for a receiver nanomachine to obtain information molecules,

such as using a surface permeable to the molecules, or surface channel can be employed to pass

information molecules into a receiver. Another technique is exploiting surface receptors capable

of interacting with a certain type of information molecule and causing reactions at the surface,

which induces reactions within the receiver bio-nanomachine [1].

2.3.1.5 Transmitter and Receiver Models Used in MC Literature

�ere are di�erent models of receiver in the literature, i.e. sampling receiver [36], transparent

receiver [20], [58] absorbing receiver [25], [59], [60], [61] and ligand or reactive receiver [28]. For

a comparison of di�erent receiver models and their transformations into one another, see [21].

Molecule absorption is widespread in nature when di�usion is the primary mode of communica-

tion. As widely used in the MC literature, we consider an absorbing receiver in this thesis. �e

absorbing receiver absorbs any molecules that hit its surface, removing them from the environ-

ment. �ese receivers use the zero boundary condition when solving Ficks’s second law with a

reaction term. In [25], the initial and boundary conditions is de�ned.

�e assumption that a transmi�er is represented as a point source of molecules has been

frequently used in the MC literature [1], [25], [17], [42]. Most of the �rst and foremost papers

in the MC literature considers point transmi�ers. �erefore, we consider the point transmi�er

model in this dissertation. �ere are other transmi�er models in the MC literature, such as a

sphere transmi�er is considered in [62], where the molecules are uniformly distributed within the

sphere before release, and all the molecules are released at the same time. �e sphere disappears

and the molecules are able to di�use freely a�er release. Another transmi�er type is given in

[30], [63]. Molecules are released from a point on a re�ective sphere in this model, and the sphere

serves as a barrier to the molecules’ di�usion a�er emi�ing (i.e. if the released molecules hit the

surface while di�using, molecules bounce o�). As a result, this transmi�er model is directional

(as opposed to the ideal point transmi�er model, which is non-directional) and may be used to

represent a physical transmi�er with a real physical extent that releases molecules from a small

hole on its surface. It may be used to model a molecule-releasing micro- or nanomachine, as

well as a bioengineered cell that employs exocytosis to release molecules. An ion-channel based

spherical transmi�er is presented in [64]. In this paper, modulator model for di�usive MC is

proposed that takes advantage of the regulatory mechanisms seen in natural cells ion channels.
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�e modulator controls the rate of molecule release from the transmi�er acting like ion channels

in the cell membrane.

2.3.1.6 Characteristics of Molecular Communication

In this section, the general characteristics of MC in the basic model are summarized. �ese

characteristics are needed to be considered in designing a detector in a di�usive MC based sensor

network. It is also important to bene�t from the advantages of MC features in our systems. In

terms of devices, signal type, signal propagation speed, range, and medium, a comparison of

certain features of MC with telecommunication is given in Table 2.1. A�er providing a summary

of these characteristics, the challenges of di�usive MC are provided in the following section.

2.3.1.7 Communication via Chemical Signals

�e physical qualities or characteristics of information molecules, such as the concentration of

the molecules, type of information molecules employed, their three-dimensional structure (e.g.,

protein), sequence information (e.g., DNA) can all be used to encode information in MC. A molec-

ular structure may store a high density of information [65]. Furthermore, functional information

can be encoded. A DNA sequence, for example, can be utilized to encode a functioning protein.

As a result of gene expression, a receiving bio-nanomachine may gain additional functionality

(e.g., tolerance to harmful chemicals) [2].

2.3.1.8 Biocompatibility

�e communication between the nodes in an MC network does not use methods that are for-

eign or disturbing to biological systems, such as traditional communication systems may disturb

their functioning, causing pollution or toxicity. Also, by utilizing materials and processes from

biological systems, MC may be an alternative in terms of biocompatibility especially for medical

Table 2.1: Telecommunication and Molecular Communication, adopted from [1], [2]

.

Communication Telecommunication Molecular Communication
Devices Electronic devices Bio-nanomachines
Signal types Optical/electrical Chemical
Propagation speed Speed of light Extremely slow
Propagation range m− km nm− µm

Media Air/cables Aqueous (in this thesis)
Energy consumption High Low
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and healthcare applications. Bio-nanomachines may then utilize encoding and decoding mech-

anisms similar to those used by biological cells in the human body to communicate with them

straightforwardly [1].

2.3.1.9 Energy E�ciency, Low Heat Dissipation

MC employs methods and materials from biological systems, and thus it is predicted to be energy

e�cient and has a low heat dissipation. �e environment in which bio-nanomachines are placed

is intended to provide the chemical energy required for MC, and as such require no external

energy supply [1].

2.3.1.10 Scales of Nanodevices

A nanodevice used in nanonetworks is described as a mechanical or electromechanical device

in nanometer-scale with nanoscale functional components as explained in detail in section 2.2.1.

�ese machines may be synthetically designed such as modi�ed cells, arti�cial cells, electronic

devices developed in the research �elds of MEMS and NEMS [66], or may be nature-made bi-

ological forms such as proteins, cells, deoxyribonucleic acid (DNA) and ribonucleic acid (RNA)

referred to as bionanomachines [67],[68]. �ese are small-scale devices made out of biological

molecules that react chemically such as carbohydrates, lipids, proteins, and nucleic acids, which

are abundant in living organisms. Input signals may cause a bio-nanomachine to transmit out-

put signals, change its internal state, or adjust its functioning. For example, A DNA molecule,

which stores genetic information, changes its state in response to molecular signals in the cell

by turning on and o� speci�c genes [1]. Energy reserves may be a major problem at nanoscale

[69]. Nanodevices may face some practical limitations as a result of their con�ned processing

capacities and power management limitations. �ese devices are supposed to perform basic tasks

that necessitate novel and innovative approaches [70]. One of the areas in which MC research

has great potential is the use of materials and processes from biological systems to achieve en-

ergy e�ciency. Yet, in this thesis, some techniques are presented to perform even be�er energy

e�ciency. In the following chapters, these approaches are given in detail.

2.3.1.11 Uncertainties in the Channel Model

Due to the highly random nature of di�usion based propagation of information carrying molecules,

the received signal in a di�usive MC system is highly random as well. �e information molecules’

unpredictable motion distorts the received signal, making the detection a very challenging task.
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�e detection methodologies existing in the literature usually rely on the presence of accurate

a-priori information on system parameters at the detector, such as sensor-FC distances, di�usion

coe�cient etc. Also, molecules may degrade over time in the environment and fail to reach a bio-

nanomachine receiver. Additionally, bio-nanomachines’ reaction with information molecules is

probabilistic. �is highly probabilistic behaviour is one of the main points needed to be consid-

ered in designing a MC system. Also, the channel conditions may change over time which may

a�ect the performance of the system [9].

2.3.1.12 Slow Communication Speed

�e speed of MC is extremely slow and the range is limited. �ey di�er based on the biological

materials, processes, and environment. �e slowest mode of MC is through free di�usion. �e

time t required to propagate a molecule over a distance L is denoted by the formula t ≈ L2

D (i.e.

the time required increases with the square of the distance), where D is the molecule’s di�usion

coe�cient [71]. In the following section, more detailed explanation is provided with plots re-

garding the distance and di�usion coe�cient. Also, the molecule’s size and shape, temperature

and viscosity of the medium may impact the di�usion coe�cient. �is characteristic of MC lead-

ing to long pulse intervals and long latency. A faster and be�er DF method would increase the

speed of the communication network while retaining the detection performance.

2.4 Challenges in Distributed Detection via Di�usive MC

From a communications and signal processing perspective, two of the most challenging issues are

investigated in this thesis. First of the issues is the slow speed of propagation and the dispersive

nature of the channel that leads to high decision delay. Let us consider a simple con�guration

with a point transmi�er and a spherical absorbing receiver with the radius 3µm. A single pulse

of molecules is transmi�ed by a point transmi�er and di�uses in the environment with a typical

di�usion coe�cient (500µm2/s). �e transmi�er releases the information carrying molecules

to FC starting at the time instant t = 0 and only release one pulse in this example. It has been

shown in [25] that for a molecule released by a point transmi�er located at a distance of r1 from

the centre of a perfectly absorbing spherical receiver of radius r2, the probability of hi�ing the

surface of the receiver within a time interval [kT, (k + 1)T ] seconds a�er release is given as:
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Figure 2.5: Hi�ing rate considering di�erent di�usion coe�cient, where distance between transmi�er and
receiver is 3µm.

pk =


r2
r1

erfc
(
r1−r2√
4DT

)
, for k = 0

r2
r1

(
erfc

(
r1−r2√
4(k+1)DT

− erfc
(
r1−r2√
4kDT

))
, for k ≥ 1,

(2.4)

where T is the duration of a time slot, D is the di�usion coe�cient of the transmi�ed molecule

in the medium and erfc(·) is the complementary error function. By using the hi�ing probability

function, the probability of a single pulse of molecules hi�ing the receiver is calculated. �e e�ect

of the di�usion coe�cient considering �ve di�erent values of D illustrated in Fig 2.5. �e e�ect

of the the distance between the transmi�er and receiver (transmission distance) on the number

of molecules absorbed by the receiver is shown are in Fig 2.6. We consider �ve di�erent values to

observe the e�ect of the transmission distance T − dist. �ese results illustrate the slow signal

propagation speed and the highly dispersive nature of the di�usive molecular communications

channel. �e time required for the peak of the pulse to arrive gives an interpretation of how long

the signal will take to travel from the transmi�er to the receiver. Inter-symbol interference (ISI)

occurs when a new pulse is emi�ed before the previously transmi�ed molecules have vanished
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from the receiving area. As shown in �gures 2.5, 2.6, the signal is an in�nite-duration signal that

does not vanish entirely from the receiving area in a short period of time [23]. �e in�uence of

the ISI can be minimized if the transmi�er waits long enough to deliver a subsequent pulse but

the information transmission rate then becomes very low.

�e slow speed of signal propagation and the dispersive nature of the channel leads to the

following consequences for the task of abnormality detection via a di�usive molecular commu-

nication based sensor network:

1. �e sensor network layout should be chosen considering these factors. A parallel struc-

ture with a fusion centre is preferred in our scenario to overcome the issue of the slow

speed of signal propagation. Transmission distance may also be crucial depending on the

application in which the algorithm would be implemented. �ere may be cases in which

a serial sensor network may be most suitable. For instance, in a case in which sensors are

spread out over a wide area and multi-hop communication is preferred to achieve e�cient

and reliable communication performance, each sensor node also performs as a repeater, re-

ceiving a signal from another sensor node, fusing it with its own sensing data, and sending
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the resulting signal to the next node. However, the serial structure would require sensor

nodes capable of sensing, receiving, decoding, processing, and transmi�ing, resulting in

a more sophisticated sensor structure. In the parallel structure described in this thesis,

however, the sensors are just required to detect the abnormality and transmit a signal. �e

parallel structure is more suited for circumstances where the nodes are close to one an-

other, i.e. communication is short-range, and the sensors are placed uniformly or regularly

throughout the medium.

2. Due to the very slow speed of propagation, decision delay is a considerably more important

concern in comparison to typical wireless sensor networks where the signal propagates at

the speed of light. When compared to a wireless communications channel, high dispersiv-

ity indicates a limited bandwidth, i.e. poor channel capacity (i.e. low symbol rates), which

means you can only use a few signals for detection.

We propose sequential decision fusion approaches in Chapter 3 because, when compared to an

existing �xed-sample-size Neyman-Pearson benchmark test, this approach provides signi�cant

reductions in the number of samples required for decision.

�e other major constraint is that the channel characteristics in practical scenarios where

these sensor networks are to be implemented may contain a lot of uncertainties (parameters

unknown to the fusion centre, which may change over time and are di�cult to predict). In most

cases, it cannot be analytically determined, since the partial di�erential equation characterizing

the channel does have an analytical solution only in some geometrically very simple scenarios.

Even the di�usion process itself may be an anomalous type of di�usion that cannot be explained

by simple Brownian motion in some instances. Although the channel model exists, the channel

may be dynamically changing, the network geometry may be changing ( because everything is

�oating around in a �uid environment), there may be �ow, and other activities going on. As a

result, characterizing the channel is challenging, and techniques that are robust to changes in

channel conditions and/or do not require an analytical model of the channel are needed. �is

study propose to use an ML method to this task for the �rst time in the literature, and shows

that this technique o�ers the resilience and �exibility necessary for practical implementation to

overcome these issues.

2.5 �e System Model

A sensor network with M identical nanosensors transmi�ing their so� decisions via di�usive

MC to a spherical FC in an unbounded 3D environment is considered in this dissertation as
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Figure 2.7: Nanonetwork consisting of M nanosensors and a fusion centre.

depicted in Fig 2.7. Let the hypothesesH0 andH1 represent the absence and the presence of the

abnormality of interest, respectively. �e task of the FC is to perform the DF, i.e. to decide for

H0 or H1 by observing the sensor outputs received via the di�usive MC channel. To provide a

fair comparison with the �xed sample size strategy in [17] chosen as a benchmark, we employ

the same abstract sensing model and the same communication model between the sensors and

the FC, which will be described in the rest of this section.

2.5.1 �e Sensing Model

Due to the broad spectrum of potential applications envisioned for nanoscale sensor networks,

a wide range of abnormalities representing diverse physical or biochemical phenomena may

become of practical interest, which requires di�erent sensing mechanisms. While some of the

existing works have been focusing on a speci�c type of abnormality and sensing model (e.g.

[41], [18]), others, such as [17], and [42], have employed abstract sensing models to achieve

more general results. In this thesis, we chose to focus on the la�er approach for the sake of

generality. Each of the M nanosensors is assumed to measure one or more sensing variables,

i.e. inputs, and generates a quantized so� output between 0 and 1 representing the sensing

decision, Xm ∈ {0, 1/(L− 1), 2/(L− 1), ...1} where L is the number of quantization levels
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and m ∈ {1, 2, . . . ,M}. Clearly, this model can accommodate both hard decisions (for L = 2)

and so� decisions (for L > 2) at the sensors. �e uncertainties in the sensor outputs due to

measurement imperfections associated with the sensing mechanism, e.g. due to sensor noise are

accounted for by modelling the sensor outputs Xm as random variables (RV) with a conditional

probability mass function (pmf) qi(xm):.

qi (xm) = P (Xm = xm | Hi) , for i = 0, 1. (2.5)

Here, we use distributions of the form biexp(cix) which satisfy the imperfections associated with

the sensing mechanism with appropriately chosen values for the constants bi and ci , i.e.

q0 (xm) =
exp (−c0xm)∑
x∈X exp (−c0x)

(2.6)

q1 (xm) =
exp (c1xm)∑
x∈X exp (c1x)

(2.7)

where bi is an normalization constant assures that
∑

xm∈X qi (xm) = 1. Larger values for c1
would result in implementing more reliable sensors under hypothesis H0, larger values for c0
would result in more reliable the sensor decisions underH1.

2.5.2 �e Reporting Model

Perfect point transmi�ers at the sensors, a perfectly absorbing spherical receiver model at the

FC, and an unbounded medium for di�usion is considered as in [17]. �e hi�ing probability func-

tion given in [25] and presented in the section 2.4 is used to calculate the fraction of molecules

absorbed by the receiver as a function of time. Sensors are assumed to be point sources release in-

formation molecule impulses. Each of theM sensors transmits its output to the FC starting at the

time instant t = 0 by releasing N consecutive pulses of XmA information-carrying molecules,

each T seconds apart, where A is the maximum number of molecules that a sensor can release

for each pulse. Hence, the sensor outputXm modulates the amplitude of the transmit pulse train

of the corresponding sensor. In this thesis, one case is considered, where a single molecule type

is employed for communication by all sensors, allowing the use of a simpler receiver in practice.

�e sensors are assumed to be equidistant to the FC with statistically independent sensing mea-

surements. �e received signal at the FC, Yn, is de�ned as the random sequence representing the

number of molecules absorbed by the FC within the time slot [(n− 1)T, nT ]. In such a case, for

a given realization of the sensor outputs Xm = xm m = 1, . . . ,M, Yn can be modelled as an
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independent Poisson distributed random sequence with a time-varying mean:

Yn|Xm=xm ∼ Pois

(
J +

M∑
m=1

n∑
k=0

pkxmA

)
, (2.8)

where J is the expected value of the received Poisson distributed additive noise molecules[17].

Note that the independence of the sequence Yn is easily veri�ed, assuming regular Brownian dif-

fusion, a large number of molecules, and a perfectly absorbing receiver that irreversibly removes

all the molecules crossing across its surface. �e task of the FC is to perform the DF, i.e. to decide

for the hypotheses H0 and H1 by observing yn, a realisation of the sequence Yn, which will be

investigated in the following sections with di�erent methods:

• Sequential Decision Fusion

• Neural Network Based Decision Fusion.

�e �rst proposed method, which we will be referring to as the sequential average probability

ratio test (SAPRT), is based on the SPRT proposed by Wald in [72]. Because of its generality,

�exibility, and practical relevance, the �xed sample size test was chosen as a benchmark for

performance comparison. �e suggested sequential technique reduces the average number of

samples required for DF and, as a result, the decision delay, while maintaining the same average

detection performance without depending on an independent and identically distributed (i.i.d.)

assumption, which may result in extra decision delays in practice.

ML is one of the powerful approaches for making decisions under uncertainty, and it can

be used in a variety of ways, such as predicting the future based on previous data, �nding the

best model to explain existing data, and so on. We use DNN type of ML in our research. DNN

comprises multiple hidden layers to model complex non-linear relationships.

2.5.3 Conclusion

In this chapter, we introduce a brief overview of di�erent research areas starting with the sen-

sor networks overview and possible structures of sensor networks in section 2.2. �eoretical

background regarding DD using sensor networks via MC is provided in 2.3. Later, we present

a general overview of the features and challenges of MC, and we explain the major challenges

of the DD task the di�usive MC methods in section 2.4. First, we show the slow speed of prop-

agation and the dispersive character of the channel, which leads to signi�cant decision delays.
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Second, we point out that in practice, channel characteristics will be uncertain (unknown param-

eters) and may change over time. It cannot be calculated analytically in most situations, since

the partial di�erential equation that characterizes the channel only has an analytical solution

in a few basic scenarios. In the last section 2.5, the system model considered throughout the

dissertation is de�ned providing the sensing model and the reporting model.
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My brain is only a receiver, in the Universe

there is a core from which we obtain

knowledge, strength and inspiration.

Nikola Tesla

�e DD strategies existing in the literature, aforementioned in Chapter 2, approach the task

of DF by employing �xed sample size tests within the conventional Neyman-Pearson frame-

work, with the detection probability for a speci�c false alarm rate for a given �xed number of

channel observations as the main performance criterion. However, one of the main characteris-

tics of di�usive MC is the extremely slow signal propagation speed in the medium [33] and the

highly dispersive nature of the channel, leading to long pulse intervals and long latency. �us,

DF schemes that require a large number of channel observations (i.e samples) at the FC, and/or

rely on assumptions that may result in additional latency in practice, may lead to excessive de-

cision delays. Consequently, performing a reliable DF with as few receive samples as possible

is of paramount interest. �is makes the use of sequential tests, which allow the use of variable

observation window lengths in order to minimize the average number of observations required

for decision, while retaining a prescribed detection performance, promising and e�cient alter-

native to �xed sample size based approaches for DF investigated in the literature. In this thesis,

for the �rst time in the literature, to employ a SPRT based method is proposed for DF in di�usive
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MC based DD. Note that an SPRT based approach is employed in a point-to point MC system for

increasing the robustness of data demodulation in [73], i.e. in a distinctly di�erent context with

a di�erent purpose. �e proposed approach, which we refer to as the SAPRT, is based on the

SPRT proposed by Wald in [72]. �e �xed sample size test in [17] is chosen as a benchmark for

performance comparison due to its generality, �exibility and practical relevance. �e proposed

sequential approach leads to signi�cant savings in the average number of samples required for

DF, and, consequently, a considerable reduction in the decision delay, while achieving the same

average detection performance without relying on an independent and i.i.d. assumption, that

may lead to additional decision delays in practice. A brief overview of �xed sample Neyman

Pearson tests, proposed SAPRT and performance evaluation is given in the following sections,

respectively.

3.1 Decision Fusion Based on Fixed Sample Size Tests

�e statistical basis for the design of detectors of signals in the presence of noise follows from

the theory of the theory of statistical hypothesis testing. �e classical approach based on the

Neyman-Pearson theorem is one of the primary approaches to simple binary hypothesis testing.

Let us consider a statistical model X ∼ f(x | θ), θ ∈ Ω where θ represents the parameter

value of the statistical model of choice and Ω is the set of all possible values of the parameter

θ. �e likelihood function lik(x; θ)(also known as the likelihood) de�nes the joint probability

density of statistically independent observed data X = x as a function of the parameters:

lik(x; θ) = f (x1 | θ)× . . .× f (xn | θ) . (3.1)

�e maximum likelihood (MLL) estimates the parameter θ ∈ Ω that maximizes the lik(θ) func-

tion [74]. In applying the Neyman-Pearson approach to detection task using the idea of MLL, the

goal is to choose among given hypotheses based on an observed data meaning a mapping from

each possible data set into a decision.

Two hypotheses are testedH0 : θ = θ0,H1 : θ = θ1 for the binary hypothesis test considered

in this thesis. In case of our detection problem de�ned in previous chapter, hypotheses H1 and

H0 represent the presence and the absence of the abnormality of interest, respectively. When the

data is observed, we can compare two hypotheses by considering the ratio lik (x; θ0) / lik (x; θ1)

to understand the probability to be observed under two hypotheses. A prede�ned threshold can

be used to compare the probability of observed data belonging to the hypotheses. As a result,

two types of errors are presented in the task. P (H0;H1) represents the probability of deciding
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H0 when H1 is true and P (H1;H0) is vice versa. Trying to minimize the chosen type of error

while �xing the other type of error is a typical approach as it is not possible to reduce both of

them. �e Neyman-Pearson criterion de�nes the optimal detector as the solution to the following

optimization problem: max {PD} , such that PF ≤ α, where PD is probability of detection, PF
is probability of false alarm, and α is a prede�ned value considering the decision rule Γτ . In case

of our detection problem, the probability of decidingH1 whenH0 is true de�ned as PF and the

probability of deciding H1 when H1 is true de�ned as PD . �e detector that maximizes the PD
for a given probability of PF considering two hypotheses is given [75]

L(x) =
lik (x; H1)

lik (x;H0)
(3.2)

where the γ is de�ned

PF =

∫
{x:L(x)>γ}

lik (x;H0) dx = α. (3.3)

As stated in the section 2.5.2, existing DD strategies in the literature approaches the task of DF

by employing �xed sample size tests within the conventional Neyman-Pearson framework. In

the theory of testing hypotheses, the number of observations, i.e. the size of the sample on which

the test is based, is usually treated as a constant for any particular problem [75]. In the following

section, the benchmark �xed sample size method is summarized.

3.1.1 Average Log-likelihood Ratio Test

Detection rules for this method is derived as comparing the log- likelihood ratio (LLR) with a

threshold denoted by γ [17]. If LLR(y) 6 γ, detector selects H0, otherwise selects H1. Let

y be the realization of RV Y in equation (2.8). Using equation (2.8) the conditional pmf of an

observation is given as:

P (Yn = yn | X = x,Hi) =
e−J−x

∑n
k=0 pkA (J + x

∑n
k=0 pkA)yn

yn!
, (3.4)

where X =
∑M

m=1Xm is the sum of the sensor outputs and x ∈ X = {0, 1/(L − 1), 2/(L −

1), . . . ,M} is a realization of X .

When deriving the DF rules, the benchmark �xed sample size method in [17] approximates

the
∑n

k=0 pkA in (3.4) with its limit as n → ∞, with the assumption that a large number of

pulses are transmi�ed, and number of the samples received at the FC at the beginning of an ob-

servation window are discarded until a steady state is achieved. While these assumptions make

Yn stationary and independent and identically distributed (i.i.d.), simplifying the derivation and

the analysis of the DF rule, they imply the presence of an additional decision delay beyond the
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�xed observation window length parameter N that does not account for the discarded samples,

and also an ine�cient utilisation of the molecules available for transmission. Since our primary

focus is the decision delay, we chose to employ the exact non stationary conditional distribution

in the derivation of the average likelihood function of the observations. Let Y(l) represent the

random vector containing l consecutive samples of Yn, i.e. Y(l) = [Y1, Y2, . . . , Yl]
T , correspond-

ing to an observation window length of (l− 1)T . Using (3.4) and the independence of sequence

Yn, the conditional pmf of Y(l) for a given realization of X = x and the hypothesis (Hi) can be

expressed as:

P
(
Y(l) = y(l) | X = x,Hi

)
= exp

(
−Jl −

l∑
n=1

xBn

)
l∏

n=1

(J + xBn)yn

yn!
, (3.5)

where y(l) = [y1, y2, . . . , yl]
T a realization of Y(l) and Bn =

∑n
k=0 pkA. Clearly, during detec-

tion, it is not possible for the FC to have any a-priori information on the current realization of

X . �us, X is treated as a nuisance parameter by averaging equation (3.5) over its conditional

pmf.

P
(
Y(l) = y(l) | Hi

)
=
∑
x∈X

P
(
Y(l) = y(l) | X = x

)
P (X = x | Hi) . (3.6)

Hence, the average likelihood function (over X) of a received signal vector y(l) of length l is

calculated as:

P
(
Y(l) = y(l) | Hi

)
=
∑
x∈X

(
Q

(M)
i (x) exp

(
−Jl −

l∑
n=1

xBn

)

×
l∏

n=1

(J + xBn)yn

yn!

) , (3.7)

where Q(M)
i (x) is the conditional pmf of X , the aggregated sensor output and can be calculated

as:

Q
(M)
i (x) = P (X = x | Hi) = qi(x) ∗ qi(x) ∗ . . . qi(x)︸ ︷︷ ︸

M−1 times

, (3.8)

i.e. by convolving qi(x) in (2.5) M − 1 times with itself, due due to the statistical independence

of the individual sensor outputs Xm. Hence, the average log-likelihood ratio (ALLR) of y(l) for

this binary detection problem, is given as:

Λ̃Y (l) = log

{
P
(
Y(l) = y(l) | H1

)
P
(
Y(l) = y(l) | H0

)} , (3.9)

with P
(
Y(l) = y(l) | Hi

)
calculated as in 3.7
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Figure 3.1: �e ROC curve of �xed sample size test based DF with M = 4, T = 500µs, (c0, c1) =
(6.5, 7.5), and N = 10 under varying A/J ratios.

Before moving to SPRT details, it would be helpful to provide benchmark test results for the

same simulation setup. Parameters used in the Monte Carlo simulations are given in Table 3.1.

�e simulations have been performed with M = 4, T = 500 µs, and (c0, c1) = (6.5, 7.5). Fig

3.1 displays receiver operating characteristic (ROC) curve (Pd vs. Pf ) for di�erent ratio A/J

referring signal to ratio (SNR) of the �xed sample size test in [17] chosen as a benchmark for

Monte Carlo simulations. Please note that the test requires N = 10 to achieve this detection

performance.

3.2 Sequential Test for Decision Fusion

�e most important feature of the sequential test is that the number of observations required by

the sequential test depends on the outcome of the observations. �e number of the observation

required is not deterministic, but a random variable [72], [76].

Sequential tests are equipped with a stopping rule that decides, at each time epoch, whether

to wait and collect one more sample or to terminate and chose one of the hypotheses, and a
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decision rule that decides forH0 orH1 based on the samples available up to the stopping time.

A decision rule is given for making one of the following three decisions at any stage of

the detection procedure: (1) to accept the hypothesis H1, (2) is to reject the hypothesis H0 ,

(3) to continue the detection procedure by making an additional observation. �us, such a test

procedure is carried out sequentially. De�ning Λ(l) as LLR of a vector of l samples of the received

signal, l = 1, 2, . . ., the SPRT proposed by Wald in [72] is given as:

τ = inf(l > 0 : Λ(l) /∈ (S,U)) (3.10)

Γτ ,

 ChoseH0, if Λ(τ) ≤ S

ChoseH1, if Λ(τ) ≥ U
(3.11)

where τ is the stopping time of the test and Γτ is the decision rule. In other words, at each time

epoch l, the running LLR Λ(l) is compared with a lower and upper threshold S and U , S < U . If

Λ(l) remains within the interval (S < U), the test decides to collect one more sample, updates

the LLR and repeats the procedure for l + 1. �e stopping time τ of the SPRT is de�ned as

the time instant where the value of the LLR exits the interval (S < U) for the �rst time. At the

stopping time l = τ the test terminates, and decides forH0 if Λ(τ) ≤ S, and forH1 if Λ(τ) ≥ U .

Clearly, the stopping time τ is a random variable, since its value depends on the random input

sequence, and its expected value Eτ characterizes the average sample number (ASN) of the test.

Wald has shown that, for a binary hypothesis test with i.i.d observations, the SPRT minimizes

the ASN over both hypotheses for a given false alarm probability Pf = P
{
Ĥ = H1 | H0

}
and

probability of detectionPd = P
{
Ĥ = H1 | H1

}
pair [77]. For the DF scenario considered in this

thesis, we propose to use the ALLR Λ̃Y (l) of the observation sequence given in (3.9) in the SPRT

described in equations (3.10) and (3.11), resulting in a test which we will refer to as the sequential

average probability ratio test (SAPRT), where, in contrast to the usual LLR based SPRT model,

the running ALLR function Λ̃Y (l) of the observations cannot be expressed as a running sum of

the log likelihood ratios of the individual samples due to the averaging operation over the pmf of

the nuisance parameter X performed in (3.6), despite the fact that Yn is an independent (albeit

not i.i.d.) sequence.

�e performance of a SPRT is characterized by its operating characteristics (OC) and the

ASN. While Wald’s approximation [72] provides expressions for bounds of S and U in terms of

the Pf and Pd, which can be used to �nd approximate values for S and U , exact calculations

of these parameters, and analytical derivation of the OC and the ASN is only possible for some

special cases. [78] shows that OC and ASN functions obey the Fredholm integral equations of the

second kind for the i.i.d. case which may be evaluated numerically, (and for some simple cases,
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analytically). For the case of independent but not identically distributed (i.e. non-stationary)

observations, [79] demonstrates a methodology for numerically approximating the OC and the

ASN for some simple input distributions, which relies on recursively solving the governing in-

tegral equations. For the case of the SAPRT in the DF scenario considered in this thesis, the

observation sequence Yn is not i.i.d., and neither can the average LLR Λ̃Y (l) be expressed as a

running sum of independent random variables as the LLR functions in [78], [79] and [72] as dis-

cussed above. �us, an analytical derivation of the OC and ASN functions for this case remains

mathematically intractable. However, the simulation results provided in the next section show

that the proposed SAPRT based DF provides signi�cant improvements in the average number

of samples required for detection, and, subsequently, considerably less average decision delay

compared to its �xed-sample-size counterpart in [17].

3.3 Performance Evaluation

In this section, the performance of the proposed SAPRT based sequential DF strategy is evaluated

via both Monte Carlo simulations using the ideal signal model in equation (2.8) and equation (3.4),

and particle based simulations. �e particle based molecular communication simulator AcCoRD

has been employed in the signal generation which is a sandbox reaction-di�usion solver designed

by Dr. Adam Noel from the University of Warwick for the study of molecular communication

systems [31].

AcCORD uses a hybrid of microscopic and mesoscopic simulation models that enables scala-

bility via user control of local accuracy. Each molecule in microscopic regions is examined sepa-

rately, and the evolution of each is recorded using a global microscopic time step gts. Mesoscopic

areas keep track of the number of each type of molecule in each subvolume. �e simulation’s

overall work�ow can be divided into three main stages: preparation of the con�guration �le for

running AcCoRD, execution of the so�ware, and post-processing with MATLAB. A con�gura-

tion �le contains information about the se�ing’s geometry, which is the physical space in which

molecules may travel or shape, as well as information about the region’s model, which may be

microscopic or mesoscopic. Additionally, the con�guration �le de�nes actors. �ey serve as the

simulation’s interface by allowing for the input of molecules or the observation of molecules as

output. Chemical properties such as absorption and desorption should be de�ned in the con�g-

uration �le. All post-processing utilities were developed in MATLAB. Particle-based simulator

AcCoRD is investigated further in Chapter 5 to simulate di�erent scenarios. Because there are

cases where there are no analytical models or di�cult to de�ne. We evaluate our NN algorithms
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with the data produced with the AcCoRD simulator in Chapter 5 to evaluate DF task for such

cases.

System parameters used in the simulation setup are presented in Table 3.1. Simulations are

the average of 4× 105 realizations and gts = 5 µs. In all cases, the di�usion coe�cient D = 500

µm2/s, in the same order of magnitude as the di�usion coe�cients of small to medium sized

biomolecules in blood plasma [80]. �e size of the FC, r2 = 3 µm has been chosen within

the same range as a bacterial cell and the sensor-FC distance is r1 = 6 µm. For the sensors,

the number of quantization levels for the so� decision is chosen as L = 4 and the sensing

imperfections are modeled with the following conditonal pmfs;

q0 (xm) =
exp (−c0xm)∑
x∈S exp (−c0x)

(3.12)

q1 (xm) =
exp (c1xm)∑
x∈S exp (c1x)

(3.13)

�e coe�cents c0 and c1 determine the sensing uncertainty of the individual sensors. �e higher

the coe�cients, the less uncertainty there is in the sensing decisions under each hypothesis, and

vice versa, allowing for the modelling of a wide range of sensor situations. We use the ratioA/J ,

i.e. the ratio of the maximum number of molecules available for a pulse to the expected number

of noise molecules received at each time slot, as our SNR ratio. �e e�ciency of the proposed

sequential test compared to the benchmark �xed sample size test in terms of decision delay is

measured by the quantity Average Percentage Saving (APS) [81], which quanti�es the saving in

the average number of samples required for the decision achieved by the proposed test relative

Table 3.1: List of parameters used in the simulation setup.

Parameter Con�guration 1

A (�e maximum number of molecules that a sensor can release for each pulse) 40
T (Time slot duration) 500, 600, 700 µs

N (Number of time slots) 10
M (Number or nano-sensors) 2, 3, 4, 5

L (Number of quantization levels) 4
r1 (Sensor-FC distance) 6 µm

r2 (FC radius) 3 µm

D (Di�usion coe�cient) 500 µm2/s
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Figure 3.2: APS vs. A/J of the proposed SAPRT based DF, compared to the �xed sample size test for
M = 4, Pd = 0.999 with Pf = 0.001, T = 500, 600 and 700 µs, (c0, c1) = (6.5, 7.5),N = 10.

to the benchmark �xed sample size test in [17], i.e:

APS =
N −ASN

N
× 100% (3.14)

where N is the sample size that the benchmark test requires to reach a decision for a given (Pf
, Pd) pair, and the ASN is the average number of samples required by the proposed SAPRT to

achieve the same detection performance, under the same conditions.

Fig 3.2 displays the APS of the SAPRT compared to the �xed sample size test in [17] chosen

as a benchmark vs. A/J , both for the Monte Carlo simulations based on the ideal model, and

for particle based simulations. �e simulations have been performed with M = 4 sensors, Pd =

0.999, Pf = 0.001, and T = 500, 600 and 700 µs, (c0, c1) = (6.5, 7.5), N = 10. Clearly, the

APS results for the ideal Monte Carlo and particle-based simulations agree well, ca. within one

percentage point across the board, where the particle-based case slightly under performs due

to the likelihood mismatch between the ideal model and the signal generated by the particle

based simulations, caused by the slightly lower signal mean achieved in the la�er. Compared to

the �xed sample size benchmark, the SAPRT achieves a considerable reduction in the average
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Figure 3.3: �e ASN of the SAPRT based DF for M = 4, Pd = 0.999 with Pf = 0.001 and Pf = 0.0005,
with M = 4, T = 600 µs under varying levels of sensor uncertainty. Only particle based
simulations are considered.

number of samples required for detection, leading to a signi�cant decrease in the average decision

delay. �e results show that, as expected, the APS increases both with the ratio A/J and T .

In the rest of this chapter, particle based di�usion simulations have been employed exclu-

sively in the results. Fig 3.3 illustrates the e�ect of the sensor uncertainties on the performance of

the SAPRT in terms of the average sample size ASN (in samples) required to achieve Pd = 0.999

with Pf = 0.001 and Pf = 0.0005 respectively, for the same network with M = 4, T = 600

µs. Here, four (c0, c1) pairs are chosen to model di�erent sensing conditions, from excellent to

moderate, in that order: (c0, c1) = (6.5, 7.5), (5.5, 6.5), (4.5, 5.5) and (3.5, 4.5). As expected,

the SAPRT requires more samples to decide in order to achieve the required performance, as the

sensor uncertainty increases. Furthermore, increasing Pf leads to a decrease in the ASN in all

cases, which is also within expectations (see [81] for details).

Finally, Fig 3.4 displays the e�ect of the number of sensors on the ASN for T = 600 µs,
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Figure 3.4: �e ASN of the proposed SAPRT based DF for Pd = 0.999 with Pf = 0.001, T = 600 µs, and
700 µs, (c0, c1) = (6.5, 7.5), M = 2, 3, 4, 5. Only particle based simulations are considered.

and 700 µs, Pd = 0.999 with Pf = 0.001 and M = 2, 3, 4, 5 respectively, where the detection

performance increases (i.e. the ASN decreases ) with increasing number of sensors M .

3.4 Conclusion

�e use of a SPRT based test for the DF in a DD problem employing an MC based nanoscale sen-

sor network is investigated in this chapter. �e results show that the proposed SAPRT achieves

considerable savings in the number of samples required for decision compared to an existing

�xed-sample-size Neyman-Pearson benchmark test based on a maximum likelihood approach,

while a�aining the same detection performance. Furthermore, the proposed method does not

rely on a simplifying approximation that, in practice, may lead to additional decision delays.

�is signi�cant reduction in the decision delay makes the proposed strategy especially suitable

for MC based DD problems, where the decision delay may become a major performance pa-

rameter. �e proposed methodology is general, in the sense that it can be employed under any
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type of di�usion dynamics (i,e, �ow, reactions, anomalous di�usion, etc.), as long as the com-

plete likelihood function of the receive signal is available at the FC, which, however, requires the

knowledge of the all relevant system parameters. Note that, for practical cases, where some of

the system parameters are unknown, and have to be estimated, the performance of the proposed

DF methodology provides an upper performance bound.
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4Machine Learning for

Decision Fusion

Reserve your right to think, for even to think

wrongly is be�er than not to think at all.

Hypatia

In this thesis, we propose to use ML methods to detection task for the �rst time in the lit-

erature and show that this technique o�ers the resilience and �exibility necessary for practical

implementation to overcome the main issues in DD in nanoscale sensor networks via di�usive

MC.

One of the most challenging di�culties in MC and signal processing is the slow pace of

propagation and the dispersive character of the channel, which results in signi�cant decision

delays. Secondly, channel characteristics will be highly unpredictable (unknown parameters) in

practice. In most circumstances, it cannot be computed analytically since the partial di�erential

equation that characterizes the channel has an analytical solution only in select geometrically

very simple scenarios as stated in section 2.4.

We apply DNN techniques, namely two di�erent NN structures, the FF- NN and the RNN.

�e RNN-based technique has proven to be be�er suitable for the suggested task, as expected,

due to the sequential pa�ern of the data encountered in MC and its temporal structure, which

the RNN can exploit. In both algorithms, high performance is possible alongside the resilience

and �exibility necessary for practical implementation.
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4.1 Machine Learning Basics

�e de�nition of ML by Murphy [82] is

“A set of methods that can automatically detect pa�erns in data, and then use the uncovered

pa�erns to predict future data, or to perform other kinds of decision making under uncertainty.”

ML is one of the best promising methods to perform decision making under uncertainty

which comes in many forms such as prediction about the future learning from past data, selecting

the best model explaining available data etc. �e past decades have seen rapid growth of di�erent

ML techniques. Speci�cally, deep learning has a�racted researchers as a consequence of the

advent of big data. Deep learning has emerged as a sub-�eld of Arti�cial Neural Networks (ANN)

which is inspired by biological systems’ information processing and distributed communication

neurons. ANNs, simply called NNs, consist of interconnected nodes, referred to as neurons,

each of which performs non-linear activation or transfer function. DNN comprises of NNs with

multiple layers to model complex non-linear relationships. In recent years, DNNs have a�racted

widespread a�ention by outperforming alternative machine learning methods [83], [84]. �is

section is not intended to provide a comprehensive overview of ML but rather focus on a brief

overview of NN techniques. Readers are referred to [85] for a detailed overview on the basic

concepts of machine learning algorithms.

ML algorithms are discussed in this chapter whose goal is to predict the response variable

given a su�cient amount of labelled data; this is referred to as supervised machine learning.

However, machine learning algorithms are available in a variety of con�gurations, including

reinforcement and unsupervised learning. Before going into more details of machine learning,

basic terminologies of the �eld is explained in the following section.

A perceptron is a basic unit (an arti�cial neuron) that performs speci�c calculations to dis-

cover features or business intelligence in input data. A single layer perceptron is a one-layer

neural network, while a multi-layer perceptron (feedforward NNs) consists of two or more lay-

ers referred as hidden layers. �e networks comprise of four major components: input values,

weights and bias, net sum, and an activation function as shown in Fig 4.1. �e predicted vari-

able ŷ is modelled as a composite of nonlinear functions of input x where g(.) is the activation

function, w are the weights and b0 is the bias term.

ŷ = g

(
b0 +

m∑
i=1

xiwi

)
(4.1)

�e process commences by multiplying all of the input values by their weights. �e weighted sum

is then calculated by multiplying all of the multiplied values and bias together. �e weighted total
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Figure 4.1: Schematic illustration of a perceptron.

is then applied to the activation function, yielding the output of the perceptron. �e activation

function is critical in ensuring that the output is mapped between required values.

4.1.1 Supervised Learning

Supervised Learning method enables the solution of statistical problems using examples of inputs

and desired outputs. In contrast to conventional hypothesis testing, it is usually used where the

underlying distributions are uncertain and are described using sample examples.

Although there are many approaches to automatic learning, the majority of popular ap-

proaches fall into the gradient-based learning category [86]. In the simplest cases, the learning

procedure entails determining the value of the parameter that produces the least error rate that is

de�ned as the percentage of instances where the prediction is incorrect. Classi�cation accuracy

is achieved by �rst applying a model to predict each sample in a test dataset. �e predictions are

then compared to the known labels for the test set examples. Accuracy is then calculated as the

proportion of accurately predicted cases in the test set divided by all predictions made on the

test set. �e error rate, on the other hand, can be calculated as the total number of wrong predic-

tions divided by the total number of predictions on the test set. An o�-line training procedure is

shown in Fig 4.2.

Each input x in the network is weighted with an optimum value of w; the sum of weighted
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Figure 4.2: Schematic illustration of the training process.

inputs and the bias b creates the input of a activation function h(j)i that represents the function of

neuron i in layer j in hidden layers. From the input layer to the output layer, the transformation

and nonlinear activation are calculated layer by layer.

In machine learning terminology, there are two sorts of parameters: model parameters and

hyper-parameters. A model parameter is a con�guration variable particular to the model, the

value of which can be inferred from the data, such as the weights in a NN, the coe�cients in a

logistic regression. On the other hand, a hyper-parameter is an external se�ing to the model, the

value of which cannot be estimated from the data. �e optimal value for a model hyperparameter

cannot be known. We can apply general rules, copy values from other networks we designed for

similar problems, or utilize trial and error to get the optimal solution. Using a grid search or a

random search, these parameters can be tuned to determine the model parameters that provide

the best reliable estimates. Some examples of the hyperparameters are:

• Number of hidden layers and neurons: Between the algorithm’s input and output are hid-

den layers in which the function applies weights to the inputs and directs them through

an activation function as the output.

• Learning rate : It sets the step size for each learning iteration while aiming to minimize

the loss calculated by loss function.

• Number of epochs: �is hyperparameter speci�es the number of full runs over the training

data.

• Batch size: �is states the number of training samples that must be processed before the
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model’s internal parameters are changed.

• Activation Function : In a neural network, the activation function speci�es how the weighted

sum of the input is turned into an output from a neuron or neurons within a layer.

�e discrepancy between the output of the network and the desired output is measured by a

cost function (�e loss function calculates the error for a particular training example; the cost

function is the sum of all training set’s loss functions). In its most basic form, the learning problem

entails determining the value that minimizes the cost function. By calculating the e�ect of minor

changes in parameter values on the loss function, this function can be minimized. �e gradient of

the loss function with respect to the parameters is employed for quantifying the e�ect of these

changes. �is determines the error rate that is back-propagated [87] through the network to

obtain a new set of updated parameters. �is process called back-propagation is repeated until

the training has completed. Once all the parameters are learned, data previously unseen can be

predicted e�ciently.

�e general formula for the loss function for a given ground truth y and predicted output ŷ

in supervised learning is stated as

L(y, ŷ) = min
f

N∑
i=1

η (yi, f (xi;w)) (4.2)

where f(.) is the system that we want to extract information from, η denotes the underlying loss

function that quanti�es the penalty of deviating from the ground-truth. Two main types of loss

function are;

• Cross-entropy for classi�cation problems:

Cross-entropy measures the di�erence between two probability distributions p and q for a

given random variable or set of incidents. �e cross-entropy of a distribution q relative to

a distribution p is de�ned as follows:

H(p, q) = −Ep[log q] (4.3)

where Ep[·] is the expected value function with respect to the distribution p.

• Mean-square-error for regression problems:

�e loss is calculated as the mean of the squared discrepancies between true and predicted

values

L(y, ŷ) =
1

N

N∑
i=0

(yi − ŷi)2 (4.4)

where yi is the true value and ŷi is the predicted value.
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�ere are other examples of loss functions can be applied to empower the algorithm depending

on the application, such as Hinge loss, squared-Hinge loss, Chebyshev loss, [88].

4.1.2 Reinforcement Learning

�e system communicates with its environment through the production of actions that have

an impact on the state of the environment, resulting in earning scalar rewards (or penalties).

�e system’s objective is to learn to behave in such a way that it maximizes future rewards (or

minimizes future punishments) over its lifetime.

4.1.3 Unsupervised learning

�is is a process in which the system receives inputs but does not receive supervised goal out-

puts or rewards from its environment. In other words, unsupervised learning is a form of self-

organized learning that enables the discovery of previously unknown pa�erns in a data set in

the absence of pre-de�ned labels.

4.2 Deep Neural Networks

Deep learning is a subset of ML approaches based on ANN and representation learning. �is form

of ML technique called DNN employs multiple layers of neurons to extract high-level information

from the input data. Learning can take place in a supervised, semi-supervised, or unsupervised

environment.

In this thesis two main DNN techniques have been considered:

1. Feed-forward (acyclic) NNs

2. Recurrent (cyclic) NNs

In the following sections, both DNN techniques are explained brie�y.

4.2.1 Deep Feed Forward Neural Networks

Deep Feed-forward NNs, also called multilayer perceptrons (MLPs), are the most well-known

deep learning models (Fig 4.3b). �ese models are referred as feed-forward since information

�ows from input to the function being evaluated, through the intermediate computations, and
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Figure 4.3: Di�erent deed-forward neural network architectures.

�nally to the output. �ere are no feedback connections in which the model’s outputs are fed

back into the model. �e single layer of neural networks is called Perceptron (Fig 4.3a). �e

network aims to map an input x to a category y in a classi�cation problem which is the approach

of abnormality detection scheme in this thesis. Feed-forward NNs are referred to as networks

because they are usually represented as a set of several functions. �e predicted output Ŷ is

modelled as a composite of nonlinear functions of input as

Ŷ = f(x;w) = fwk
◦ fwk−1

◦ . . . ◦ fw0(x), (4.5)

where each composite is described as a function of previous variables (neurons) in each layer

and their related parameters (weights)

fwk−1
(k) = p(wT

k−1k + bk−1), (4.6)

where p is an activation function, k is the hidden variables (neurons), wk−1 are the learned

parameters, bk−1 is the bias term. �e number of the layers indicates the model’s depth. Due to

the fact that the training data does not reveal the desired output on any of these layers, they are

referred to as hidden layers. �e output layer is the �nal layer of the network that is responsible

to produce the �nal result.

4.2.2 Recurrent Neural Networks

When FF-NNs are expanded to provide feedback connections, they are called RNN [86]. RNN is

a type of neural network that is used to process time-series data and sequential data such as text,

video, language, and genomes [89]. �e basic architecture is depicted in Fig 4.4. Transitioning
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Figure 4.4: Recurrent neural network (a) architecture and (b) cell.

from FF-NN to RNN is conceptually straightforward. Traditionally, feed-forward networks have

been used to map �xed-size inputs to �xed-size outputs. On the contrary, RNN operates natu-

rally on variable-length input sequences and map to variable-length output sequences, such as

mapping from an image to various sentences that de�ne it. �is functionality is accomplished

through the gradual exchange of parameters and transformations [90]. Also, RNN can handle far

longer sequences than networks that do not use sequence-based specialization.

When a RNN is equipped to perform a task that allows it to forecast the future from the past,

it learns to use hidden state h as a lossy summary of the task-relevant aspects of the previous

sequence of inputs up to t. In Fig 4.4b both folded and unfolded representations are shown.

Folded representation contains one neuron with a backward arrow representing the delay of a

single time step as shown in the le� of the �gure. While unfolded version contains separate

neurons for each variable for each time step as in the right of the �gure. Let x = [x1, x2, ..., xN ]
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be the sequence of examinations of inputs where N is the number of time steps. Simple RNN

maps the sequence of inputs to a sequence of hidden states h = [h1, h2, ..., hN ] though a set of

parameters θ.

ht = g (ht−1,xt;θ) (4.7)

where g should not be interpreted as a simple activation function, e.g., tanh or sigmoid. For

instance, in this thesis we prefer a special architecture of RNN called Long short-term memory

(LSTM), where g is a composition of several gates and nonlinearities. �e range of contextual

information that ordinary RNN can acquire is fairly limited in practice because of the issue is

that as an input data cycles across the network’s recurrent connections, its in�uence on the hid-

den layer, and therefore on the network output, either decays or explodes exponentially. �is

law is known as the vanishing gradient problem in the literature. LSTM is an RNN architecture

that was created expressly to overcome the vanishing gradient problem [86]. Rather than a unit

that just applies element wise nonlinearity to the a�ne translation of inputs and recurrent units,

LSTM have memory cells and corresponding gate units to apply internal recurrence in addition

to the RNN’s outer reference. Because LSTMs are e�ective at capturing long-term temporal de-

pendencies, they have been utilized to improve the state of the art for a wide range of tough tasks.

�is encompasses handwriting recognition and generation, language modeling and translation,

acoustic modeling of speech, voice synthesis, protein secondary structure prediction, audio and

video data analysis, and so on.

RNN, by applying equation (4.7) multiple times, lets us build rich, complex models that can

be trained in an end-to-end approach. To begin, inputs are feed into an input layer, resulting in a

series of hidden states; these hidden states are then used as inputs to another RNN, and so forth.

RNN can be generalized as

Ŷt = f(xt;w) = gy (whyht + by) . (4.8)

where Ŷt is the output of the network, w and b are coe�cients that are shared temporally and

gy is the activation function. �e fact that we are doing the same task at each step is re�ected in

parameter sharing; therefore, we do not need to relearn the rules at each point in the network.

4.2.3 Evaluation of the Algorithm

�e major constraint in machine learning is that the algorithm must perform well on new, previ-

ously unknown inputs not only those used to train our model. �e capacity to do well when con-

fronted by previously unobserved data is referred to as generalization [91]. What distinguishes
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machine learning from optimization is acquiring low generalization error which is de�ned as the

error’s expected value on new input. �e prediction error can be classi�ed into two main com-

ponents: bias and variance. Bias error is mainly due to the improper choice of model complexity

usually approximating complex problems by a simple model. In comparison, the variance error

occurs as a result of the training set’s small size [92]. �e purpose of machine learning is to create

models that generalize well. However, the major problem is the over��ing problem, i.e. when a

model learns too much detail and noise in the training data (the known data). Since one can only

control what one can see, it’s important to be able to consistently quantify the model’s general-

izability. �e performance of the model must be evaluated on the new-unseen data that’s why

it is strongly recommended that the data set be subdivided into independent training, test, and

validation sets. �e model is trained using the training data and is evaluated using the test data.

Once the model is ready for release, it can be evaluated on the validation data one �nal time. �e

reason behind testing the model on two separate data a�er training is tuning its con�guration,

namely its parameters. During the tuning process, feedback signal from the test data is used to

improve the performance. �erefore tuning is also a part of the learning process and can result

in over��ing to test data set. In the following section, a brief overview of classi�cation metrics

is presented.

4.2.3.1 Classi�cation Metrics

Rather than predicting classes directly, it may be more �exible to predict the probability of an

observation belonging to each class in a classi�cation problem. �is �exibility stems from the

way probabilities can be interpreted using a number of di�erent thresholds, which enables the

model’s user to trade o� concerns about the model’s errors, such as the number of false positives

versus false negatives. For instance, a default approach would be to use a threshold of 0.5, which

indicates that a probability in the range [0.0, 0.49] is a negative outcome H0 and a probability

in the range [0.5, 1.0] is a positive outcome H1. �is threshold can be modi�ed to �ne-tune the

model’s actions for a given challenge. ROC Curves and Precision-Recall curves are two diagnostic

tools that aid in the interpretation of probabilistic predictions for binary (two-class) classi�cation

problems. ROC analysis has been extensively used in signal processing and communications to

evaluate the e�ectiveness of a detection algorithm [40]. �e following metrics can be computed

given a confusion matrix (Table 4.1) where true positive (TP), false positive (FP), false negative

(FN), true negative (TN) rates are given.
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Table 4.1: Decision Matrix

True Condition
Prediction Positive Negative Total
Positive TP FP T+

Negative FN TN T−

Total D+ D−

Accuracy and Error rate: Accuracy is commonly used to evaluate a classi�er performance

which is the ratio of the number of correct predictions, both correct positive and correct neg-

ative, to the total number of input samples. Accuracy rate performs well when the number of

samples of each class is evenly distributed. But, for problems with unbalanced categorization,

accuracy is an ine�ective performance metric. Precision and recall metrics provide an alternative

to classi�cation accuracy for this kind of problems.

Accuracy =
TP + TN

TP + TN + FP + FN
, ErrorRate = 1 - Accuracy (4.9)

Precision: It is the ratio of cases that the classi�er correctly classi�ed as positive (it is used

as the probability of detection (Pd) in previous sections referring to Neyman-Pearson detection

framework); it is also referred to as positive predictive value. �erefore, precision measures the

accuracy of the minority class. �is term is de�ned as;

Precision =
TP

TP + FP
=
TP

T+
(4.10)

Recall: It is the ratio of positive cases that the classi�er labels as positive, it is known as TP

rate. Unlike precision, which only considers the accurate positive predictions out of all posi-

tive predictions, recall considers the positive predictions that were missed. Recall states some

indication of the positive class’s coverage. �is term is de�ned as;

Recall =
TP

TP + FN
=
TP

D+
(4.11)

Speci�city: It is the ratio of negative cases that the classi�er did label as negative (it is used as

the probability of false alarm (Pf ) in previous sections referring to Neyman-Pearson detection

framework), it is also referred to as TN rate. �is term is de�ned as

Speci�city =
TN

TN + FP
=
TN

D−
(4.12)
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Figure 4.5: Confusion Matrix.

F-Measure: It is the harmonic mean of precision and recall and provides additional insight into

the classi�er’s functionality. As a result, it is more e�ective than accuracy, especially in cases of

class imbalance.

Fβ =
(
1 + β2

) precision · recall
β2 · precision + recall (4.13)

where the balance between precision and recall is controlled by β. 1 or 2 are the common values

of the score. �e be�er the total performance, the higher the F-score.

4.2.3.2 Confusion Matrix

A confusion matrix is a way of analyzing a classi�cation algorithm’s performance (Fig 4.5). If

there are an uneven amount of observations in each class or if the dataset has more than two

classes, classi�cation accuracy alone might be deceptive as explained in previous section. �e

number of true and wrong predictions is summed and split down by class using count values

then �lled into the matrix. TP and FN values can be used to measure the accuracy and error.

�e values of recall, speci�city, F-measure can be calculated with the rates given in the matrix.

Confusion matrix gives a summary to understand what the classi�cation model is ge�ing right

and where it is going wrong.
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4.2.3.3 Receiver Operating Characteristic (ROC)

As previously mentioned, ROC analysis is a highly e�ective and fundamental technique for eval-

uating model results. It is useful to explain the ROC analysis in machine learning terminology

with its speci�c terms. It is known as a plot of the model’s sensitivity, or TP rate (Pd), against its

speci�city, or FP rate (Pf ), as the x-coordinate, where both TP rate and FP rate are computed at

each possible threshold.

4.3 Decision Fusion Based on Neural Networks

�e signal propagation characteristics in a di�usive MC channel are highly random in nature

and depend heavily on a multitude of factors such as the geometry (i.e. the physical bounds)

of the �uid medium of propagation, its chemical properties, the chemical characteristics and

the physical extent of the transmi�ers and the receivers, the geometry of the network (i.e. the

relative positions of the transmi�ers and the receivers), and the environmental conditions, such

as �ow, temperature, viscosity, physical obstacles, etc. Existing decision theory based strategies

for abnormality detection via di�usive MC based nanoscale sensor networks require a complete

statistical characterization of the underlying communication channel between the sensors and

the FC, with the assumption of perfectly known or accurately estimated channel parameters. �is

assumption is usually impractical both due to the mathematical intractability of the analytical

channel models for MC except in a few ideal cases, and the slow and dispersive signal propagation

characteristics that make the channel estimation a di�cult task even in these ideal cases. �is

was also the case in Chapter 3, where we have employed decision theoretical methods for DF.

In this thesis, for the �rst time in the literature we propose a detector based on deep learning,

speci�cally on aN FF-NN and an RNN structure that learn the underlying model from data. �is

study shows that the proposed decision fusion strategy can perform well without any knowledge

of the communication channel that learn from the data providing a more pragmatic and practi-

cal approach to DF as the living organisms do in nature. Algorithm can perform well where an

analytical channel model is not mathematically tractable, or too complex to be of practical use,

and for cases where a channel model exists but an accurate estimation of its parameters is im-

practical. �is approach provides the robustness and �exibility required for practical implemen-

tation. Recent works such as [93] propose the use of an end to end approach for demodulation

of sequences of data symbols in point to point optical and molecular communications systems

employing RNN. A deep learning-based end-to-end approach is proposed to DF in a di�usive MC
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based nanoscale sensor network. In particular, the use of FF-NN and RNN structures is investi-

gated to perform the DF. �e algorithm proposed in [17] which is based on an approximation of

the LLR of the sensor outputs received at the FC is employed as a benchmark for the performance

evaluation. We show that our approach can be used to design DF algorithms achieving higher

probability of detection and show more robust detection performance under di�erent channel

conditions and/or without any CSI and the statistical characteristics of the sensing model of the

participating sensor nodes. In the following section, FF-NN based and RNN based approaches

are presented and compared. Both approaches outperform the simpli�ed-LLR test while RNN

based approach performs be�er than FF-NN based one. Accordingly, RNN based approach has

been further investigated in the rest of the thesis.

4.3.1 Decision Fusion based on a Feed-Forward Neural Network

To provide a fair comparison between the proposed machine learning-based methodology and

the existing model-based approaches, the same general and abstract sensing model is employed

at the participating sensor nodes and the same communication model between the sensors and

the FC as the method proposed in section 2.5. Performing the DF at the FC by using a NN based

ML approach through supervised learning is proposed. As the �rst phase of the approach, the

detector is trained by using a training dataset. Once the training phase is completed o�ine,

it is no longer a part of the detection procedure. A general FF-NN architecture is shown in

Fig 4.3b. An architecture comprises of a FF-NN with one input layer consisting of 16 neurons,

one fully connected hidden layer consisting of 16 neurons, and one dense layer as an output layer

is considered.

4.3.2 Decision Fusion based on a Recurrent Neural Network

As explained in previous sections, RNN processes an input sequence one element at a time, keep-

ing a state vector in their hidden units that indirectly contains details about the history of all the

sequence’s previous elements [94]. RNN is an extremely e�cient dynamic system, but training

them has proven di�cult because back-propagated gradients expand or shrink with each time

stage, causing them to burst or vanishing over a long period [95]. LSTM was developed to solve

the problem of vanishing gradients, and it has since become one of the most common RNN archi-

tectures [96] as explained in previous sections. For this reason, one of the special kind of RNN,

LSTM architecture is considered in this thesis. Speci�cally, one of the RNN applications called

the many-to-one model is used as shown in Fig 4.6. A RNN with one LSTM layer consisting of
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Figure 4.6: Recurrent LSTM neural network many-to-one architecture.

16 neurons and one dense layer as an output layer is applied.

4.3.2.1 Training the Neural Network Detectors

�e training data can be generated by various means, e.g. from in vivo measurements, from

in vitro experimental data, from particle-based di�usion/reaction simulations of the sensor net-

work, or by generating the corresponding signal sequences using the existing statistical system

and channel models, such as the one described in Chapter 2. �is makes the proposed approach

applicable even if no tractable analytical description is available for the statistical characteristics

of the channel. For the sake of a fair comparison between existing model-based approaches based

on the Poisson channel model, we have chosen to generate the training data set employing the

Poisson model from Chapter 2, using various values for the parameter set ζNN = [J, r1, r2, D],

(see Table 4.2). �is makes the resulting DF algorithms robust to possible changes in the system

parameters while allowing DF without requiring parameter estimation, provided that the system

parameters remain within the boundaries of the training set. Let y(w) = [y
(w)
1 , y

(w)
2 , ..., y

(w)
N ] rep-

resent a known signal sequence of length N observed at the FC for the corresponding known

hypothesisH(w)
i . �e training data consists of W samples of (y(w),Hwi ) pairs.

{(y(1),H(1)
i ), (y(2),H(2)

i ), . . . , (y(W ),H(W )
i )} (4.14)

�e data set consisting of 100k samples is used to train the proposed FF-NN and RNN detectors

that map the received signal y(w) to a hypothesis Ĥ ∈ {H0,H1}. During the training, the
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known (y(w),H(w)
i ) pairs are used to �nd the optimal set of parameters for the corresponding

NN structure. Both for the FF-NN and RNN training, we apply back-propagation with binary

cross-entropy to minimize the loss between the actual hypothesisHi, and estimated hypothesis

Ĥ. Adam optimizer is applied with a learning rate of 10−3 to calculate the FF-NN parameters

without over-learning [97]. �is optimizer maintains the learning rate for each network weight

and makes use of the average of the second moments of the gradients. �e number of epochs

used during training is 100 and the batch size is 10. For the RNN, the RMSprop optimizer is

employed with a learning rate of 10−3 which is the gradient descent algorithm with momentum

which helps to calculate the RNN parameters without over-learning [98]. For the RNN, the same

number of training epochs and the same batch size has been employed as for the FF-NN case.

4.3.2.2 Performance Evaluation

In the following, the performance of the proposed NN based detectors via simulations and the

existing LLR detector from [18] used as a benchmark is proposed. �e detection probability is

employed Pd = P (Ĥ = H1|H1) and the false alarm rate Pf = P (Ĥ = H1|H0) as our main

performance criteria whereH0 andH1 represent the absence and the presence of the abnormality

of interest, respectively. System parameters used in the con�guration-1 simulation setup are

presented in Table 4.2. In the training and test data, we use N = 4, and J varies depending on

the SNR level, which we de�ne as SNR = A/J . �e conditional pmf’s of the sensors used on

the simulations are given as:

g0(xm) =
exp (−6.5xm)∑

xm∈X exp (−6.5xm)
, (4.15)

g1(xm) =
exp (7.5xm)∑

xm∈X exp (7.5xm)
. (4.16)

Table 4.2: List of parameters used in the training and the simulations

Parameter Con�guration 1

A (�e maximum number of molecules that a sensor can release for each pulse) 100
T (Time slot duration) 70 ms

N (Number of time slots) 4
Number or sensors in the nanonetwork 4
L (Number of quantization levels) 4

r1 (Distance between the nanosensors and the receiver) 4,5,6,7,8,9 µm

r2 (�e receiver radius) 4 µm

A/J(SNR) levels 2-5
D (�e molecules di�usion coe�cient) 50, 79.4 µm2/s
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Figure 4.7: Pd vs SNR for Pf = 0.05 (a) and Pf = 0.075 (b).
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Figure 4.8: ROC curve of RNN and simpli�ed- LLR detector for di�erent SNR levels.

for xm ∈ X = {0, 1/(L− 1), 2/(L− 1), ..., 1} with L = 4. Figs 4.7 (a) and (b) exhibit the de-

tection performance of the proposed RNN and FF-NN detectors, and of the existing LLR detector

from [17] for a �xed false alarm rate Pf = 0.05 and 0.075 respectively. Clearly, both of the

proposed NN based detectors outperform the LLR detector, which is due to the fact that the LLR

employs only an approximation of the likelihood function, whereas the proposed detectors both

learn from actual data resulting in a be�er approximation to the impractical optimal detector.

It can be seen from Fig 4.7 that, between both of the proposed detectors, the RNN approach

outperforms the FF-NN. �erefore, in the rest of the thesis, we focus on the evaluation of the

RNN detector. �is is due to the well-known capability of this type of neural networks for taking

into account the temporal structure of the data, which makes RNN especially suitable for this DF

task. Fig 4.8 compares the ROC of the RNN and the LLR detectors for two di�erent SNR levels.

As in the previous case, the RNN detector performs be�er than the LLR detector in each case.

Note that the proposed detector is robust enough to changes in noise level since the training data

set includes data with di�erent SNR levels.

Next, the e�ect of the sensor to FC distance r1 is studied, which is a crucial parameter for

the channel characteristics, on the detection performance of the proposed RNN detector, and

compare it to that of the benchmark LLR. �ree di�erent values for the Pf is considered for

SNR = 2. Figs 4.9, 4.10, 4.11 clearly shows that the proposed RNN detector for DF outperforms
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Figure 4.9: �e Pd performance of the RNN detector considering di�erent r1 values for Pf = 0.05
(SNR = 2).
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Figure 4.10: �e Pd performance of the RNN detector considering di�erent r1 values for Pf = 0.01
(SNR = 2).
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Figure 4.11: �e Pd performance of the RNN detector considering di�erent r1 values for Pf = 0.005
(SNR = 2).
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Figure 4.12: RNN performance for di�erent D values (SNR = 2).
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the LLR, without requiring any prior knowledge, or estimation, of the parameter r1 for Pf =

0.05, 0.01, 0.005 .

A similar e�ect is observed in Fig 4.12, where the e�ect of another key factor in signal prop-

agation is investigated, which is the di�usion coe�cient, D. �e performance of RNN detector is

presented for D= 50 µm2/s and D= 79.4 µm2/s representing the di�usion coe�cient of ionic

calcium in cytoplasm and the di�usion coe�cient of human insulin hormone-like molecules in

a blood-like �uid, respectively [99], [100].

�e simulation results indicate that the RNN detector performs well and outperforms the

LLR detector for di�erent CSI parameters, SNR, r1, D. Note that in MC these parameters may

change rapidly due to the nature of the environment. �erefore, robustness is a key feature in

MC applications besides good detection performance. Training the RNN detector using a data set

containing data produced under di�erent channel conditions provides robustness to the detector

that is a key requirement in actual practical applications. As expected, the RNN based approach

has proven to be more suitable for the proposed task due to the sequential nature of the data

encountered in MC and its temporal structure, which the RNN can make use of. In the following

section, RNN based approach is investigated further with di�erent scenarios and particle-based

simulations.

4.3.3 Further Analysis of Recurrent Neural Networks

In the existing literature on MC based sensor networks [17, 41, 101], the distances between the

FC and the NSs are assumed to be identical and constant. While this assumption considerably

simpli�es the derivation and the analysis of the detectors proposed in these studies, it is rather

unrealistic in practice, due to the fact that the sensors and the FC in such a network �oat freely

within a 3D �uid medium. Hence, during the operation of a network in practice, both the sen-

sors and FC may dri� randomly in the �uid, either away from- or towards each other, which

will result in non-identical sensor-FC distances that also change over time [59]. We investigate

the algorithm further in this section to take this e�ect into account. �e distance rm, between

the m’th NS and the surface of FC for m = 1, ...,M is modelled as independent and identi-

cally distributed (i.i.d.) Gaussian RVs with mean µrm and variance σ2rm , where the particle-based

molecular communication simulator AcCoRD [31] has been employed in the signal generation.

�e nanonetwork considered in this section is shown in Fig 4.13. In each detection cycle, the

distance of the m’th NS from the FC, rm, is determined by drawing a new realisation of the RV

Rm ∼ N(µrm , σ
2
rm). Without loss of generality, the Poisson channel model for training and



62 4.3 Decision Fusion Based on Neural Networks

Figure 4.13: Nanonetwork consisting of M nanosensors and a fusion Centre with non-identical sensor-FC
distances.

evaluation of the RNN-based algorithm is considered, which is a commonly employed model in

di�usive MC [24]. �is approach enables a fair comparison between the proposed methods and

the LLR algorithm in [17] employing this channel model, which is used as a benchmark. In this

section, an RNN with one LSTM layer consisting of 32 neurons and one Dense layer as an output

layer is applied. Observations from previous time steps are summarized as the state of RNN,

which is represented by a hidden state, h. In the training phase of the algorithm as explained

in the section 4.3.2.1 , the data-set is divided into two subsets as 80% for training and 20% for

validation. Training data-set is employed to train the proposed RNN detector that estimates the

Table 4.3: List of parameters used in the training and the simulations

Parameter Con�guration 2

A (�e maximum number of molecules that a sensor can release for each pulse) 500
T (Time slot duration) 70 ms

N (Number of time slots) 6
Number or sensors in the nanonetwork 4
L (Number of quantization levels) 4

µrm ( mean of the distance between the nanosensors and the receiver) 6,7,8,9,10 µm

σ2rm (Variance of the distance between the nanosensors and the receiver) 1 µm2

rr (�e receiver radius) 1 µm

SNR levels 3-20
D (�e molecules di�usion coe�cient) 50, 79.4 µm2/s
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Figure 4.14: �ePd performance of the RNN and simpli�ed-LLR detector considering di�erentSNR levels
(µrm=8 , σ2

rm=1 µm2).

desired hypothesis for given inputs by �nding the optimal set of parameters of the algorithm. �e

validation data-set is then used to validate the trained algorithm presenting the preliminary per-

formance results. For the performance evaluation of the algorithm, a test data-set is generated,

where each of the hypotheses is distributed evenly over the data. �e training data-set includes

various values for the parameter set ζNN = [J, µrm , σ
2
rm , D], (see Table 4.3). �is makes the

resulting DF algorithms robust to possible changes in the system parameters while allowing DF

without requiring parameter estimation, provided that the system parameters remain within the

boundaries of the training set. In Fig 4.14, the detection performance of the proposed RNN detec-

tor and of simpli�ed-LLR detector from [17] for a �xed false alarm rate Pf = 0.01 and 0.005 are

plo�ed. In both cases, the proposed detector outperforms the LLR detector, as the LLR employs

only an approximation of the likelihood function, whereas the proposed detectors both learn

from actual data, which results in a be�er approximation to the impractical optimal detector.

�e ROC of the proposed RNN and the LLR detectors for two di�erent SNR levels are presented

in Fig 4.15. As in the previous case, the RNN detector performs be�er than LLR detector in each

case. Next, the e�ect of the expected value of the distance between sensors and FC, µrm , on

the detection performance of the proposed RNN detector is evaluated with a �xed false alarm

rate Pf = 0.01, 0.005 and two di�erent SNR levels to show the Pd performance of detector con-

sidering di�erent µrm which is the mean of rm. Figs 4.16 clearly shows that the proposed RNN
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Figure 4.15: ROC curve of RNN and simpli�ed-LLR detector for di�erent SNR levels(rr=1 µm, µrm=8 µm,
σ2
rm=1 µm2).

method for DF outperforms the LLR for both SNR levels. In Fig 4.17, the Pd performance of RNN

is presented considering di�erent σ2rm values, the variance of rm. It can be seen from these results

that RNN performs well without requiring any prior knowledge, or estimation of the parameters

µrm and σ2rm . A similar e�ect is observed in Figs 4.18, where the e�ect of another key factor

in signal propagation is analysed, which is the di�usion coe�cient, D. �e performance of the

RNN detector is presented for D=50 µm2/s and D=79.4 µm2/s for Pf = 0.01, 0.005, and 0.001

representing the di�usion coe�cient of gamma globulin, one of the antibodies in human blood,

and the di�usion coe�cient of human insulin hormone-like molecules in a blood-like �uid, re-

spectively [102], [103]. It can be seen from the �gures that the proposed detector provides good

performance in each case.

�e simulation results indicate that the RNN detector performs well and outperforms the LLR

detector for di�erent CSI parameters, SNR, µrm , σ2rm and D. Note that in MC these parameters

may change rapidly due to the nature of the environment. �erefore, robustness is a key feature

in MC applications besides good detection performance. Clearly, training the RNN detector using

data produced under di�erent channel conditions provides robustness to the detector that is a

key requirement in actual practical applications.
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Figure 4.16: �e Pd performance of the RNN detector and LLR detector considering di�erent µrm values
with σ2

rm=1 µm2.



66 4.4 Conclusion

1 1.5 2 2.5 3 3.5 4 4.5 5

2

r
m

 ( m
2
)

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

P
d

RNN ( P
f
=0.01)

RNN (P
f
=0.005)

Figure 4.17: �e Pd performance of the RNN detector for di�erent Pf considering di�erent σ2
rm values

(µrm=8 µm, SNR = 10).

4.4 Conclusion

In this chapter, a novel ML-based technique, namely DNN to design DF algorithms for detecting

abnormalities in a �uid environment using MC is developed. �e use of RNN structures for ab-

normality detection using a network of collaborating NSs is proposed. �e proposed RNN based

approach is suitable for the proposed task considering the extremely complex and dynamic na-

ture of the data encountered in MC. �e RNN structure makes use of information from the history

of all past time steps which is more realistic considering the nature of the detection task. �e

proposed detectors can be trained directly with data obtained from mathematical models, or from

in vivo measurements, in vitro experiments, particle-based di�usion simulators, etc., without re-

quiring an analytical statistical description of the channel model. Hence, this approach leads to

DF methods that don’t require any analytical channel model, instantaneous CSI or knowledge of

other system parameters such as the statistical characteristics of the sensors, even the number

of sensors. �e presented results indicate that the novel ML-based DF approach proposed in this

dissertation provides good detection performance along with robustness and �exibility required

for practical implementations of such MC based nanoscale sensor networks.
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5Decision Fusion in

Practical Geometries

I am one of those who think, like Nobel, that

humanity will draw more good than evil from

new discoveries.

Marie Curie

With the increasing interest in designing new alternative approaches like MC to conventional

(i.e. radio frequency) wireless communication technologies, researchers need to model realistic

scenarios where the usual approach of analytical modelling of the channel characteristics hits its

limitations. In Chapter 4, a novel machine learning-based technique is developed for designing

DF algorithms for identifying abnormalities in a �uid environment via MC. Given the exceedingly

complex and dynamic nature of the data encountered in MC, the proposed RNN-based technique

is appropriate for the required task as presented in section 4.3.2.2. We consider systems where

the analytical channel model exists, and in the formulation of the analytical models for di�usive

MC channels proposed in the existing literature, a series of simplifying assumptions is used. In

practical scenarios, there will be circumstances when an analytical channel model is not mathe-

matically tractable or is too complex to be useful. In such cases, the use of decision-theory based

methods will be impractical. �erefore, in this chapter, we investigate several sensor network

architectures and scenarios that are di�cult or impossible to represent analytically to explore

the ML approaches, namely NNs further. �e NNs require information to learn the environment

and perform detection task, hence realization of signals under these channel conditions of the

scenarios discussed above are acquired. Particle based simulators are preferred in such situations
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to obtain the data that represents the scenarios most properly.

5.1 Introduction to Particle Based Di�usion Solvers

With these limitations, simulation tools for di�usive MC have been developed to overcome the

issues of the gap between theoretical models and experiments of these models in MC. Wet lab

testing is required to validate these models for many of the applications. �e simulation data is

the best data available as the wet-lab data is not widely available. Also, communication engi-

neers rarely have access to wet labs, and these studies can only be carried out with the help of

bioengineers, biologists, and chemical engineers [9]. Di�usion solvers seem to be the best op-

tion until experimental studies become widely available. Molecular communication appears to

be more amenable to closed-form analysis and optimization than conventional communication;

as a result, simulations are a signi�cant tool for replacing physical experiments in order to collect

the data needed for training and for assessing the system’s performance [1].

Particle based di�usion simulators must be able to track the behaviour of information-carrying

particles in a realistic environment. �ere are di�erent models for molecular behaviour such as

molecular dynamics models (like used in LAMMPS [104]), continuum models ( like used in COM-

SOL Multiphysics [105]). In this thesis, we employ the particle based di�usion simulator AcCoRD,

which is a reaction-di�usion solver designed for the study of molecular communications sys-

tems [106]. �is simulator has been chosen because it is designed as a generic reaction-di�usion

solver (i.e. sandbox simulator) and can release molecules according to the modulation of a data

sequence. It uses a hybrid of microscopic and mesoscopic simulation models that enables scalabil-

ity via user control of local accuracy. AcCoRD is developed in C as an open-source command-line

tool and includes utilities to process simulation output in MATLAB. For the comparison of other

simulation tools with AcCoRD see [31].

�e simulation’s overall work�ow can be divided into three parts: preparing a con�guration

�le to run the AcCoRD, running the program, and post-processing with MATLAB. A con�gu-

ration �le contains information about the geometry of the se�ing, which is the physical space

in which molecules can move or be created, as well as information about the model that de-

�nes the region, which can be microscopic or mesoscopic. Each molecule in microscopic regions

is observed individually, and its evolution is tracked using a global microscopic time step gts.

Mesoscopic regions keep track of how many of each molecule type is present in each subvolume.

Actors are also speci�ed in the con�guration �le. �ey act as a simulation’s interface, allowing

molecules to be input or observed as output. Chemical features like absorption and desorption
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are also be included in the con�guration �le. �e AcCoRD simulator is compiled as a single

executable �le. �e executable can be called directly from a command-line interface. All post-

processing utilities were developed in MATLAB and simulation output can be loaded with an

import function [107].

5.2 Methodology

In this chapter, we use the AcCoRD simulator to simulate the di�erent sensor network struc-

tures that are di�cult or impossible to be represented analytically. Simulation data is the best

accessible data for training and evaluating the machine learning based algorithms at the mo-

ment because wet-lab data is not widely available for MC applications. In Chapter 3, we evaluate

our SAPRT based sequential DF strategy via both for the Monte Carlo simulations based on the

ideal model, and for particle-based simulator AcCoRD. �e objective of the setups presented in

this chapter is to evaluate the functionality of the entire proposed RNN approach with the only

available realistic data produced in particle-based simulation considering scenarios for practical

applications. A�er, the simulation process, MATLAB based post-processing is applied to pass

the data to proposed detection algorithms developed with Python [108]. A�er acquiring the

simulation data and preparing it for the training process, a strong optimization technique called

grid-search optimization is applied to the NN algorithm �rstly. It is most frequently used to �ne-

tune hyper-parameters in machine learning models [109], [110]. �is technique automates the

’trial-and-error’ process by allowing to �nd the optimal neural network hyper-parameters from

a list of neural network hyper-parameter alternatives that are given. �ey can be chosen from

all parameters for a given estimator. We can investigate a variety of hyper-parameters in this

chapter but we choose three main of them that are generally the most e�ective ones; the type

of optimizer, number of epochs, i.e. the number of full runs over the training data, number of

batches, i.e the number of training samples that must be processed before the model’s internal

parameters are changed.

5.3 Investigated Sensor Network Setups

We focus on two di�erent systems with di�erent con�gurations de�ned in detail in the follow-

ing sections. Namely, we simulate a simpli�ed animal cell environment and a simpli�ed blood

vessel environment in AcCoRD. Chemical signals are utilised in nature for inter-cellular and

intra-cellular communication at the micro and nanoscales. In the literature, MC is commonly
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studied at intra-cellular level both using experiments and simulators [9]. It is crucial to investi-

gate communication mechanisms in the complex environment of cells considering that cells as

the fundamental structural and functional units of life. Recently, considerable research e�orts

([42], [41], [111], [112]) have been devoted to detecting abnormalities such as tumours, cancer,

and so on. Abnormality detection using di�usive MC is studied in a basic blood vessel environ-

ment in this chapter with recent developments and the motivation of these studies.

We can investigate a variety of system parameters in this chapter and there are many possible

combinations of joint parameter investigation, but we take into consideration the main parame-

ters in the training phase, such as sensor-FC distances and noise level. �ese system parameters

may change over time in the MC environment a�ecting the detection performance signi�cantly.

All of the simulation �ndings shown in this section were averaged across 104 separate simula-

tions for each case unless it is speci�ed otherwise.

5.3.1 Abnormality Detection Within a Cell-like Environment

�e processes of MC occur at all levels of biological systems, including the molecule, cell, tissue,

and organ levels. MC within a cell (up to the size of a cell about 100 µm) called intracellular MC.

At the intracellular level, several sub-cellular bio-nanomachines within a cell communicate to

sustain the life of the cell [1]. �e interaction may be directly through physical contact or indi-

rectly with di�usive molecules. �ere’s no denying that the live cell has a complicated structure,

and that this structure is at the root of the cell’s complex operations. Considering the limitations

in the simulations of MC, we are only able to simulate a simpli�ed version of a cell environment.

A cell is made up of three parts: the cell membrane, the nucleus, and the cytoplasm, which sits

between the two. �e cytoplasm contains elaborate arrangements of many tiny yet unique struc-

tures known as organelles. We need to consider the di�usion coe�cient of these structures in

cytoplasm. In our simulations, we only de�ne obstacles which represent other agents in the cell

environment such as small organelles like lysosomes as we are limited de�ning all kind of struc-

tures in the cell environment in the MC simulation environments. A cell membrane surrounds

every cell in the body. �e cell membrane is responsible for separating external and intracellular

substances. We de�ne a bounded environment as the cell environment as realistic di�usive en-

vironments are usually constrained. Researchers would be able to include the nucleus and other

agents in the cell environments in light of new developments of MC simulators.

In System 1, we investigate abnormality detection using MC within a cell-like environment.

A simple representation of the cell environment and the AcCoRD setup is presented in Fig 5.1



72 5.3 Investigated Sensor Network Setups

Figure 5.1: Simulation setup mimicking a basic animal cell environment.

and Fig 5.2 respectively.

When selecting parameters for numerical analysis and simulation, it is critical to have a feel-

ing of realistic parameter values. A typical animal cell has a diameter of 5−20 µm [55], [113]. �e

receiver is chosen as the ER (endoplasmic reticulum) in the cell with the size of 2−3 µm. �e ER

is considered as receiver because �e ER is the cell’s biggest organelle and is involved in protein

synthesis and transport, protein folding, lipid and steroid production, glucose metabolism, and

calcium storage [114]. �e obstacles represent other agents in the cell environment such as small

organelles like lysosomes with the size of 0.5 µm , A is the maximum number of molecules for

each pulse, is chosen according to the number of small messenger molecules, such as AMP, dif-

fuse to act on signalling process. �ese molecules called second messengers, such as molecules

cyclic AMP, cyclic GMP, inositol triphosphate, diacylglycerol, and calcium ([55], Ch. 16). �e

di�usion coe�cient of the second messengers in the cytosol is in the range of 100− 500 µm2/s

[115]. Di�usion timestep is chosen as 5 µm in the signal generation using particle-based sim-

ulator AcCoRD. �e symbol duration values are set such that they are su�ciently longer than

the period when the proportion of absorbed molecules reaches its highest value to have fewer

le�over molecules causing ISI. �e simulation parameters are summarized in Table 5.1.
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Figure 5.2: Representation of a basic animal cell in AcCoRD.

We consider two di�erent scenarios to simulate detection of an abnormality via MC in the

cell environment. In the �rst con�guration, the distances between sensors and FC are assumed to

be equal represented with r1 = 6, 7, 8, 9, 10, 11 µm, where in the second con�guration, sensors

are positioned in a line along the y-axis 1 µm distant each other. �ere are three sensors in

Table 5.1: List of parameters used in the simulations of System-1

Parameter Con�guration-1 Con�guration-2
A (�e maximum number of molecules that a sensor can release for each pulse) 400 400

gts (Global microscopic time step) 5 µs 5 µs

T (Time slot duration) 1 ms 2 ms

N (Number of time slots) 10 50
M (Number or nano-sensors) 3 3

L (Number of quantization levels) 4 4
Sensor-FC distances equal unequal
rc (Radius of cell) 8 µm 7 µm

r1 (Sensor-FC distance) 6:1:10 µm di�erent for each sensor
r2 (FC radius) 2 µm 1 µm

ro (Obstacles radius) 0.5 µm 0.5 µm

D (Di�usion coe�cient) 500 µm2/s 100 µm2/s
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the con�guration, and the distance between FC and the middle sensor is r1 = 6, 7, 8, 9, 10, 11

µm, while the �rst one 1 µm distant in the -y-axis from the middle sensor, and the third one

is 1 µm distant in the y-axis from the middle sensor in all iterations as shown in Fig 5.3. �e

placements of receiver, obstacles and transmi�er can be seen from the �gures of representation

of cells. A region’s position is determined by its anchor coordinate, which is the centre of a

sphere or the bo�om corner [x, y, z] coordinates of a box in AcCoRD. �e coordinate of the centre

of cells in both con�gurations is [5, 5, 10] . �e di�usion coe�cient is chosen higher than the

second con�guration meaning that molecules di�use faster in the cell. It would be important to

evaluate the algorithm with di�erent di�usion coe�cients to consider di�erent factors a�ecting

the di�usion coe�cient such as the molecule size and shape, temperature and viscosity of the

medium. To show that our algorithm performs well even in the cases that some parameters are

unknown or including them in the analytical channel model almost is impossible, we have chosen

the sensor-FC distances di�erent from each other in the second scenario.

�e process of acquiring the training and test data is as follows: a�er �xing the sensors

and FC locations, measurements are conducted in AcCoRD, which means that the number of

absorbed molecules in the FC are recorded for each time step. For the hypothesis H1 denoting

the presence of the abnormality, we add noise J , which is the expected value of the received

Poisson distributed additive noise molecule. For the hypothesisH0, which indicates the absence

of the abnormality, only noise J is applied. Each of the assumptions is spread uniformly over the

data, implying that we obtain the same amount of independent simulations for each hypotheses.

A NN model is typically trained with the stochastic gradient descent optimization technique,

and weights are updated with the backpropagation of the error algorithm. �e gradient descent

algorithm a�empts to adjust the weights thereby the next iteration decreases the error, implying

that the optimization process is reducing the error gradient. A loss function must be chosen

to calculate the model’s error throughout the optimization phase. By maximizing a likelihood

function obtained from the training data, a maximum likelihood framework is used to discover

the most ��ing values for the parameters. In classi�cation problems, we can represent the task

as predicting the likelihood of belonging to each class. �e accuracy and loss functions are used

to consider all optimization process factors such as over��ing, under��ing, and convergence

helping to assess the learning process. We train the RNN algorithm with the training dataset

that contains di�erent parameters to demonstrate that our RNN algorithm leads to more robust

and �exible detection requiring no knowledge of the channel. A RNN with one LSTM layer

consisting of 16 neurons and one dense layer as an output layer is used in this algorithm.

�e dataset is separated into two subsets during the training phase of the algorithm: 80% for
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Figure 5.3: Second AcCoRD setup to simulate MC in the cell environment.

training and 20% for validation. �e training data-set is used to train the proposed RNN detector,

which estimates the desired hypothesis for given inputs by �nding the best set of algorithm

parameters. �e validation dataset is then utilized to test the trained algorithm. To assess the

algorithm’s performance, we create a test dataset in which each of the assumptions is evenly

distributed over the data. Also, it is crucial to evaluate the detector with the test dataset, because

the validation dataset is involved in the tuning process as explained in detail in section 4.2.3.

�e performance evaluation of the RNN-based detector is presented according to classi�ca-

tion metrics explained in section 4.2.3.1. We �rst apply the grid-search optimization technique

to �nd the best combination of hyper-parameters. �e best values to get the best results is high-

lighted in bold in Table 5.2 for each setup. A�er �nding the best parameter values with the

grid-search technique, we continue to evaluate the RNN algorithm by plo�ing the confusion

matrix and ROC curve using di�erent threshold values.

First training dataset consists signals for r1 = 6, 7, 8, 9, 10 µm for J = 5 . Other parameters

are chosen as in Table 5.1 from the con�guration-1. �e histograms of the number of absorbed

molecules at the FC acquired in the �nal time slot is presented in Fig 5.4. �ese histogram graphs
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(a) Histogram for J = 5 (b) Histogram for r1 = 10 µm

(c) Histogram for r1 = 9 µm (d) Histogram for r1 = 8 µm

(e) Histogram for r1 = 7 µm (f) Histogram for r1 = 6 µm

Figure 5.4: Histograms of number of absorbed molecules for system-1, con�guration 1.

are important to have a grasp of signal to noise ratio. �e number of molecules observed at the

FC is displayed for each scenario.

Overall performance is evaluated with the test data, which is randomly chosen from the gen-

eral dataset generated with the particle-based simulator AcCoRD considering the combinations

of �ve di�erent sensor-FC distances. �e results representing the overall performance of the al-

gorithm trained with all sensor-FC distances are illustrated in Figs 5.5, 5.6. �e report shows that
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RNN algorithm performs well for changing sensor-FC distances r1 with the TP = 0.872 and

TN = 0.977 . �e classi�cation report is shown in Table 5.3. Precision, recall and f1-score are

utilized generally in imbalanced datasets because a 99% percent accuracy can be meaningless in

such dataset. In this thesis, we try to balance datasets for each hypothesis to be able to compare

our results with existing studies. However, we believe that it would provide a useful insight to

show the classi�cation matrix as there would be cases where unbalanced dataset may be subject

to research.

We evaluate the algorithm further for each sensor-FC distance r1 by assessing the algorithm

with the unseen data. �e previously trained algorithm performs well for r1 = 6, 7, 8, 9, 10 µm

for J = 5 considering various Pf . Pd for each sensor-FC distance considering Pf = 0.05, 0.01

is illustrated in Fig 5.7.

It is also important to evaluate the RNN-based detector for changing noise levels. In the

following results, it is shown that our proposed ML-based algorithm can adapt to changing

channel conditions. Second training dataset consists signals from di�erent SNR (A/J ) levels

(SNR= 8, 10, 16, 25, 40) for r1 = 8 µm . Other parameters are chosen as in Table 5.1 from the

con�guration-1. �e results representing the overall performance of the algorithm trained with

all noise levels are illustrated in Figs 5.8, 5.9 for this case. Overall performance is calculated

with the test data which is randomly chosen from the general dataset including signals from

all di�erent SNR levels. �e classi�cation report is demonstrated in Table 5.4. It can be seen

from the results that the performance of the RNN algorithm is high with the TP = 0.995 and

TN = 0.996.

We investigate the algorithm further for each SNR level by evaluating the algorithm with the

unseen data (each validation data has one noise level). �e previously trained algorithm performs

Table 5.2: List of parameters used in grid-search optimization algorithm

Optimizer Number of epochs Number of batches
Con�guration-1 RMSprop, Adam 50, 100, 150 5, 10, 20
Con�guration-2 RMSprop, Adam 50, 100, 150 5, 10, 20

Table 5.3: Classi�cation report System-1, Con�guration-1

Hypothesis Precision Recall f1-score
H0 0.8917 0.9625 0.9257
H1 0.9600 0.8849 0.9209
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Figure 5.5: Normalized confusion matrix of the proposed RNN algorithm trained with the dataset consist-
ing signals for r1 = 6, 7, 8, 9, 10 µm, with M = 3, T = 1 ms, J = 5, and N = 10.
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Figure 5.6: ROC Curve of the proposed RNN algorithm trained with the dataset consisting signals for
r1 = 6, 7, 8, 9, 10 µm, with M = 3, T = 1 ms, J = 5, and N = 10.
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Figure 5.7: Pd of the proposed RNN-based detector for M = 3, T = 1 ms, J = 5, N = 10 considering
di�erent sensor-FC distances for Pf = 0.05, 0.01.
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Figure 5.8: Normalized confusion matrix of the proposed RNN algorithm trained with the dataset con-
sisting signals with di�erent SNR= 8, 10, 16, 25, 40 for r1 = 8 µm, M = 3, T = 1 ms, and
N = 10.
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Figure 5.9: ROC Curve of the proposed RNN-based detector trained with the dataset consisting signals
with di�erent SNR= 8, 10, 16, 25, 40 with r1 = 8 µm, M = 3, T = 1 ms, and N = 10.

well for di�erent SNR levels considering various Pf . Pd for di�erent SNR levels considering

Pf = 0.05, 0.01, 0.005, 0.001 is illustrated in Fig 5.10.

In the following, we present the results of the second con�guration of the �rst system shown

in Table 5.1. In this scenario, we average across 103 separate simulations for each of the hypothe-

ses. Please note that it is one-tenth of the �rst scenario because it is critical to execute a reliable

DF using as few receive samples as achievable, especially for the applications where the power

resources are limited while training process of the NN algorithms.

We proceed to analyze the RNN method by visualizing the confusion matrix and ROC curve.

�e model is learned on the dataset acquired from the AcCoRD simulator for di�erent range of

sensor-FC distances ranging from r1 = 6, 7, 8, 9, 10, 11 µm for the middle sensor while the �rst

sensor is 1 µm distant in the -y-axis from the middle sensor, and the third one is 1 µm distant

Table 5.4: Classi�cation report System-1, Con�guration-1 considering di�erent SNR levels

Hypothesis Precision Recall f1-score
H0 0.9920 0.9982 0.9951
H1 0.9982 0.9920 0.9951
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Figure 5.10: Pd of the proposed RNN-based detector for di�erent SNR levels with M = 3, T = 1 ms,
J = 5, and N = 10 considering Pf = 0.05, 0.01, 0.005, 0.001.

in the y-axis in all iterations as shown in Fig 5.3. �e training dataset consists of signals from

di�erent sensor-FC distances for J = 5. Other parameters are chosen as in Table 5.1 from the

con�guration-2. �e histogram of the number of absorbed molecules at the FC acquired in the

�nal time slot is presented in Fig 5.11. We apply the grid-search optimization technique to �nd

the best combination of hyper-parameters. �e best values to get the best results is highlighted

in bold in Table 5.2 for the second con�guration of System-1.

�e results representing the overall performance of the algorithm trained with di�erent range

of sensor-FC distances are demonstrated in Figs 5.12, 5.13. Overall performance is calculated

with the test data which is randomly chosen from the general dataset including signals from all

sensor-FC distances. �e classi�cation report of the RNN-based detector is given in Table 5.5. It

can be seen from the results that the RNN-based detector performs well with the TP = 0.989

and TN = 0.949 .

By assessing the method using unseen data, we examine the RNN detector further for di�er-

ent SNR levels (each validation data has one noise level). We train the algorithm with the training

data contains signals for di�erent SNR levels for r1 = 10 µm for the middle sensor, while the

�rst one 1 µm distant in the -y-axis from the middle sensor, and the third one is 1 µm distant

in the y-axis in all iterations. For varied SNR levels considering Pf = 0.01, 0.05, the previously
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(a) Histogram for r1 = 11 µm (b) Histogram for r1 = 10 µm

(c) Histogram for r1 = 9 µm (d) Histogram for r1 = 8 µm

(e) Histogram for r1 = 7 µm (f) Histogram for r1 = 6 µm

Figure 5.11: Histograms of number of absorbed molecules for System-1, Con�guration 2.

trained algorithm functions well as can be seen in Fig 5.14.

�e scenarios we investigate in this chapter can not be described using analytical models.

However, we compare our RNN based detector with the simpli�ed-LLR detector proposed in the

paper [17] with both Monte Carlo simulations using the ideal signal model and particle-based

simulations in previous chapters. As we stated in previous chapters, a series of simplifying as-

sumptions is employed in the derivation of analytical models for di�usive MC channels suggested
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Figure 5.12: Normalized confusion matrix of the proposed RNN algorithm trained with the dataset con-
sisting signals with di�erent range of sensor-FC distances r1 = 6, 7, 8, 9, 10, 11 µm for the
middle sensor, with M = 3, T = 2 ms, J = 5, and N = 50.
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Figure 5.13: ROC Curve of the proposed RNN-based detector trained with the dataset consisting signals
with di�erent range of sensor-FC distances r1 = 6, 7, 8, 9, 10, 11 µm for the middle sensor,
with M = 3, T = 2 ms, J = 5, and N = 50.
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Figure 5.14: Pd of the proposed RNN-based detector for di�erent SNR levels with M = 3, T = 2 ms,
J = 5, and N = 50 considering Pf = 0.05, 0.01.
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Figure 5.15: ROC curves of RNN and simpli�ed- LLR detector for di�erent SNR levels System-1,
Con�guration-2.
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in the literature. Also, they assume an unbounded medium whose physical and chemical prop-

erties remain constant. A more pragmatic and practical approach to DF as the living organisms

do in nature is required. We model the cell environment and a blood vessel using particle-based

simulator AcCoRD where the analytical model of the channel is not valid.

�e model-based method proposed in [17] conducts the DF at the FC using a simpli�ed ver-

sion of the LLR test as an approximation of (2.8). While MLL methods may be used to perform

optimal DF at the FC, this approach needs previous knowledge of a set of channel character-

istics and sensor distributions, which may be di�cult owing to the high number of potentially

unknown parameters. Still, it would be useful to compare the proposed RNN based detector and

the simpli�ed-LLR test using the same dataset produced with particle-based simulator AcCoRD.

�e SNR (A/J ) of the data has to be known in the simpli�ed LLR test while RNN-based detector

can function with data with di�erent SNR values as the training data contains this information.

�e ROC curves of RNN and simpli�ed -LLR detector is illustrated in Fig 5.15. �is �gure can be

interpreted as RNN based detector not only performs well but also can be used in applications

where the channel conditions change over time. �is dataset consists of signals from di�erent

SNR levels (SNR = 16, 40, 80) for r1 = 8 µm for the second sensor to FC distance while the �rst

one 1 µm distant in the -y-axis from the middle sensor, and the third one is 1 µm distant in the

y-axis in all iterations as shown in Fig 5.3. Other parameters are chosen from the con�guration-2

in table 5.1. Please note that the training data consist signals for SNR = 16, 40, 80 to show the

�exibility and robustness of RNN based DF strategy, while simpli�ed-LLR test applied individu-

ally for each SNR level as the test is obliged to know the SNR information.

5.3.2 Abnormality Detection Within a Blood Vessel Environment

In this section, inspired by the numerous healthcare applications of MC within the IoBNT, we

aim to address the problem of blood vessel abnormality detection using multiple nanoscale sen-

sors and an absorbing receiver. Certain scienti�c e�orts have been focused to the identi�cation

of abnormalities such as tumors and cancer [42], [41], [111], [112]. We investigate the abnor-

mality detection in blood vessels, which can be utilized in various applications. With the ad-

Table 5.5: Classi�cation report of System-1, Con�guration-2

Hypothesis Precision Recall f1-score
H0 0.9404 0.9937 0.9663
H1 0.9934 0.9380 0.9649
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vancement of nanorobots to detect critical diseases in the cardiocirculatory system [50], [116],

we believe that the detection performance would be critical. For example, we can assume that

the nanosensors, pushed by the blood �ow, can detect cells with the CD47 protein, one of the

critical cancer-biomarker, or other biomarkers on their surface, as it has been linked to a variety

of malignancies. Nanosensors release information carrier molecules to the bloodstream. �ese

molecules propagate through the blood and a receiver with absorbing boundaries absorbs and

counts them to make the �nal decision. According to this decision, an engineered liposome can

release the drug directly to the tumour site [112].

�e cardiovascular system has �ve di�erent types of blood vessels: the arteries, which trans-

port blood away from the heart; the arterioles and the capillaries, which facilitate the exchange

of water and chemicals between the blood and the tissues; the venules and the veins carry blood

from the capillaries back to the heart. �e aorta’s diameter ranges from 2 − 25 mm while the

diameter of an artery ranges from 2 − 4 mm and arterioles from 2 − 30 µm. �e veins have a

diameter of 0.5− 5 mm while venules’ diameters may range from 1− 29 µm. Capillaries are the

body’s tiniest blood vessels, linking the smallest arteries to the smallest veins. �e term ”micro-

circulation” refers to these vessels. �ey have a diameter of 0.5− 10 µm. Flow properties of the

blood vary depending on the type of blood vessels [117]. We consider blood vessels to be at a

substantial distance from the heart so that the bloodstream may be modelled without turbulence.

In this thesis, we consider a uniform �ow with constant velocity v.

To model the above scenario, we consider cooperative abnormality detection with several

nanosensors and an FC inside a blood vessel, i.e. three-dimensional (3-D) �ow-induced rectan-

gular pipe form, where the propagation length is greater than the width dimensions. For the

simulation in AcCoRD, the parameters are set similar to recent studies like to simulate the blood

vessels of a human body [26], [42]. �e illustration of a blood vessel with 100 µm length, 10 µm

height, 10 µm width and re�ective boundaries is shown in Fig 5.16 [42]. Di�usion coe�cient

and the �ow velocity are set similar to the values de�ned in the paper [26].

�e parameters of the �rst scenario are: the di�usion coe�cient D = 248.78 µm2/s, the

number of time slots N = 9 , the number of nano-sensors M = 3 with distances r1a = 70 µm,

r1b = 65 µm, r1c = 60 µm from the FC with radius of rfc = 3 µm and the other distances are

shown in Fig 5.17. Each of theM sensors transmits its output to the FC starting at the time instant

t = 0 by releasingN consecutive pulses transmi�ed of 400 information-carrying molecules. �e

list of the parameters used in the simulations is given in Table 5.6. �e histogram of absorbed

number of molecules at the FC acquired in the �nal time slot for the case r1a = 70 µm, r1b = 65

µm, r1c = 60 µm from the FC is presented in Fig 5.18-(a).
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Figure 5.16: Representation of a blood vessel in AcCoRD.

Figure 5.17: Representation of blood vessel from di�erent angles.

To begin, we use the grid-search optimization approach to determine the optimum combi-

nation of hyper-parameters. In Table 5.7, the optimal values for producing the desired outcomes

are underlined in bold for the con�guration-1. We proceed to analyze the RNN algorithm a�er

�nding the optimum parameter values using the grid-search approach by showing the confusion

matrix and ROC curve using di�erent threshold se�ings. �e training dataset consists signals

from di�erent SNR levels for J = 10, 20, 50, 100, 150. �e results representing the overall per-

formance of the RNN algorithm trained with di�erent SNR levels for J = 10, 20, 50, 100, 150 are

illustrated in Figs 5.19, 5.20.

We examine the RNN detector further for di�erent SNR levels by evaluating the approach

with unseen data (each validation data has one noise level). �e previously trained method

performs well for varying SNR levels considering Pf = 0.01, 0, 05, 0.005, 0.001 as shown in

Fig 5.21.

Another dataset is prepared with a di�erent con�guration for System-2 to evaluate the per-

formance of the detector for changing sensor-FC distances. In this con�guration the noise level
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is constant and it is chosen as J = 5 while �ve di�erent sensor-FC distances are considered.

�e FC’s location is �xed but transmi�ers’s location are changing as shown in the parameters

column of Table 5.9. A�er having acquired the data and de�ned the network model, the algo-

rithm is ready to be trained and tested. �e training data consist of 5.104 separate simulations

containing all measurements for con�guration-2. �e training dataset consists of signals from

di�erent sensor-FC distances for J = 5. Other parameters are chosen the same as in Table 5.6.

Histograms of the number of absorbed molecules for di�erent sensor-FC distances acquired in

the �nal time slot are plo�ed in Fig 5.18. We employ the grid-search optimization approach to

determine the optimum combination of hyper-parameters. In Table 5.7, the optimal values for

producing the desired outcomes are underlined in bold for con�guration-2.

Overall performance of the algorithm trained with di�erent range of sensor-FC distances is

shown in Figs 5.22, 5.23 tested with the data which is randomly chosen from the general dataset

including signals from all sensor-FC distances. It can be seen from the results that the perfor-

mance of the RNN algorithm is high with the TP = 0.996 and TN = 0.968. �e classi�cation

report is given in the Table 5.8.

Furthermore, we show the performance of the RNN-based detector for di�erent sensor-FC

Table 5.6: List of parameters used in the simulations of System-2

Parameter Con�guration

A (�e maximum number of molecules that a sensor can release for each pulse) 400
gts (Global microscopic time step) 50 µs

T (Time slot duration) 15 ms

N (Number of time slots) 9
M (Number or nano-sensors) 3

L (Number of quantization levels) 4
lv (Length of blood vessel) 100 µm

wv (Width of blood vessel) 10 µm

hv (height of blood vessel) 10 µm

rfc (FC radius) 3 µm

v (�ow velocity along the length of blood vessel) 0.04 cm/s

D (Di�usion coe�cient) 248.78 µm2/s

Table 5.7: List of parameters used in grid-search optimization algorithm

Optimizer Number of epochs Number of batches
Con�guration-1 Adam, RMSprop 50, 100, 150 5, 10, 20
Con�guration-2 Adam, RMSprop 50, 100, 150 5, 10, 20
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(a) Histogram for r1a = 70µm, r1b = 65 µm, r1c = 60
µm

(b) Histogram forr1a = 65 µm, r1b = 60 µm, r1c = 55
µm

(c) Histogram for r1a = 60 µm, r1b = 55 µm, r1c = 50
µm

(d) Histogram for r1a = 55 µm, r1b = 50 µm, r1c = 45
µm

(e) Histogram for r1a = 50 µm, r1b = 45 µm, r1c = 40
µm

Figure 5.18: Histograms for System-2, Con�guration 2 for each sensor-FC distances.

distances (validation data has is acquired for each sensor-FC distance ). �e previously trained

algorithm is validated with unseen validation data. Classi�cation report of each case is shown

in Table 5.9.
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Figure 5.19: Normalized confusion matrix of the proposed RNN algorithm trained with the dataset con-
sisting signals from SNR levels for J = 10, 20, 50, 100, 150, with r1a = 70 µm, r1b = 65 µm,
r1c = 60 µm distanced from the FC, and N = 9.
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Figure 5.20: ROC Curve of the proposed RNN algorithm trained with the dataset consisting signals from
SNR levels for J = 10, 20, 50, 100, 150, with r1a = 70 µm, r1b = 65 µm, r1c = 60 µm
distanced from the FC, and N = 9.
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Figure 5.21: Pd values for di�erent SNR levels for System-2 for Pf = 0.01, 0, 05, 0.005, 0.001.
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Figure 5.22: Normalized confusion Matrix.
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Figure 5.23: ROC Curve of the proposed RNN algorithm trained with the dataset consisting signals from
�ve di�erent sensor-FC distances with J = 5, and N = 9.

5.3.3 Conclusion

In this chapter, we look at two biological systems with various se�ings that will be helpful for

healthcare applications. In AcCoRD, we model a cell environment and a blood vessel to detect

abnormalities in these environments. A unique machine learning-based approach for designing

DF algorithms for identifying anomalies in a �uid environment utilizing MC is developed in

this chapter using the particle-based simulator AcCoRD for generating data that is required for

training of the algorithms in the investigated scenarios. We propose to employ RNN structures

for anomaly detection in a network of collaborating NSs. Given the very complex and dynamic

nature of the data encountered in MC, the suggested RNN-based method is appropriate for the

intended job. We demonstrate that our NN-based approach for designing DF algorithms for

Table 5.8: Classi�cation report of System-2, Con�guration-2

Hypothesis Precision Recall f1-score
H0 0.9744 0.9916 0.9663
H1 0.9915 0.9741 0.9827
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abnormality detection using a di�usive MC based sensor network perform well with the dataset

acquired via simulator enabling us to simulate realistic scenarios. We believe that due to wet-lab

data is not generally available, simulation data is the best available. We demonstrate that the

proposed algorithm performs well for the cases mimicking the cell environment and the blood

vessel considering di�erent con�gurations. We show that the proposed approach is well suited

for the applications requiring robustness and �exibility. �e results show that the proposed

approach is suitable for practical applications performing be�er than simpli�ed LLR. Machine

learning based DF techniques are developed that do not require any analytical channel model,

instantaneous CSI, or knowledge of other system factors such as the statistical features of the

sensors, or even the number of sensors and obstacles in the environment.

Table 5.9: Classi�cation report of System-2 with validation data

Parameters Hypothesis Precision Recall f1-score

r1a = 70 µm, r1b = 65 µm, r1c = 60 µm
0 1.000 0.9840 0.9919
1 0.9843 1.000 0.9921

r1a = 65 µm, r1b = 60 µm, r1c = 55 µm
0 1.000 0.9850 0.9924
1 0.9852 1.000 0.9926

r1a = 60 µm, r1b = 55 µm, r1c = 50 µm
0 1.000 0.9880 0.9940
1 0.9881 1.000 0.9940

r1a = 55 µm, r1b = 50 µm, r1c = 45 µm
0 1.000 0.9920 0.9960
1 0.9921 1.000 0.9960

r1a = 50 µm, r1b = 45 µm, r1c = 40 µm
0 1.000 0.9840 0.9924
1 0.9852 1.000 0.9926
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6Conclusions and Future

Work

�e eyes of others our prisons; their thoughts

our cages.

Virginia Woolf

�is chapter concludes the dissertation and proposes opportunities for future research. Sec-

tion 6.1 summarizes our �ndings and draws broad conclusions. Section 6.2 contains comments

on the direction of this �eld, including topics for future relevant research.

6.1 Conclusions

In this section, we review the key results from each chapter and then outline the dissertation’s

conclusions.

�e signal propagation characteristics in a di�usive MC channel are highly random in nature

and depend heavily on a multitude of factors. We need consider all of these factors in practical

applications. However, recent research in molecular communication has been limited to the de-

velopment and study of nanonetworks based on basic assumptions about bionanomachines and

their environment. A critical problem in moving the �eld of molecular communication forward

is the development of robust DF strategies for creating nanoscale sensor networks that operate

in the real world of practical applications.

One of the most important tasks of the most highly anticipated applications of nanoscale



95 6.1 Conclusions

networks, such as health monitoring, disease diagnosis, targeted drug delivery, environmen-

tal sensing and monitoring, contaminant and toxic agent detection, environmental remediation,

and many others, are DD problems. In comparison to the existing literature in wireless sen-

sor networks-based DD, MC-based DD research is still in its development. We believe that our

research give valuable insights into the abnormality detection with sensor network literature.

�e extremely slow signal propagation speed in the medium and the highly dispersive nature

of the channel, resulting in long pulse intervals and signi�cant latency, are two of the key fea-

tures of di�usive MC. In this context, we have presented a novel concept for the decision fusion

in di�usive MC based DD. For the �rst time in the literature, we propose to employ a sequential

test to this critical task which we refer to as SAPRT. Our results presented in Chapter 3 con-

�rm that the suggested approach results in signi�cant gains in the average number of samples

required for the decision compared to �xed- sample size alternatives. We observe savings of up

to 80% reducing the average decision delay signi�cantly. We obtain the same average detection

performance without making an i.i.d assumption, which may result in extra decision delays in

reality.

Over the last years, DNNs have go�en a lot of a�ention for their unique ability to solve prob-

lems even when there isn’t an explicit mathematical model. Existing approaches for DD problems

can only be used on the assumption that the channel model and its parameters are known at the

receiver side which is usually impractical. It is due to mathematically intractable channel models

for MC and channel estimation requirements, which are challenging even in ideal conditions. In

this thesis, we propose for the �rst time in the literature to use machine learning techniques to

design robust and reliable DF algorithms for practical applications. We investigate two di�er-

ent NN structures for DF, the FF-NN and RNN. While both type of DF algorithms perform well,

the RNN-based solution has shown to be be�er suited for the given job, as predicted, due to the

sequential pa�ern of the data encountered in MC and its temporal structure, which the RNN

can exploit. NN detectors can be trained directly using data collected from mathematical mod-

els, simulators or, alternatively, from in vivo measurements and in vitro experiments. Analytical

channel models, instantaneous CSI or knowledge of other system parameters are not required

for our proposed approach. �e results show that the innovative ML-based DF method described

in this dissertation provides high detection performance as well as the robustness and �exibility

necessary for realistic implementations of such MC-based nanoscale sensor networks.

In systems where the underlying physical models of the channel are unclear or incorrect,

these algorithms have a lot of potential. Our results demonstrates that deep learning based de-

tectors has a great potential in the future designing promising communication systems as shown
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in Chapter 4. �e overall detection performance can be improved with proposed approach while

providing resilience to changing channel conditions. A great advantage of the approach is that

no CSI is needed to perform the DF task. NN detectors are trained directly using data collected

from mathematical models in the section 2 and section 3 to demonstrate the results. In Chap-

ter 5, the performance of the proposed NN-based DF method is assessed using particle-based

simulations using the particle-based molecular communication simulator AcCoRD in the signal

generation. Whereas mathematical models have limits, we simulate practical circumstances in

AcCoRD . Because wet-lab data is not generally available for di�usive MC, simulation data is the

best alternative. In AcCoRD, we primarily model a cell environment and a blood vessel which we

believe to be useful for applications in healthcare , medicine, and many more. We show that NN-

detectors provides good detection performance in changing channel conditions and can adapt

itself during the detection process.

6.2 Future Work

�e following are some intriguing open challenges that can be investigated more in the future.

First, hyper-parameter tuning with di�erent parameters and di�erent parameter con�guration

can be studied further to discover be�er performing detectors for DF task.

Much of what is we refer to as ”machine learning” in this research is actually ”supervised”

machine learning, which is reliant on manual human feedback. We utilize ground-truth labels

for the training of the algorithm and let it predict the true labels for unseen data. On the other

hand, unsupervised learning does not require a training data to be labelled. It doesn’t require a

training process and can be fast for classi�cation problem.

Other deep learning architecture can be applied to DF task is reinforcement learning which

is, along with supervised and unsupervised learning, one of the three main machine learning

paradigms.

Another approach would be combining NN and other techniques such as Support Vector

Machine (SVM), Iterative Dichotomiser 3 (ID3), K-Nearest-Neighbour(KNN). �e combination of

these di�erent technique may perform relatively higher than the conventional models like in the

studies [118], [119].

A learning model supplied with enough high-quality data is more likely to produce correct

outcomes. Gathering enough data to improve the models’ accuracy might be hard practically

in the MC applications. �is would be mainly because of the restrictions of the nanoscale size,
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limited energy reserves. A type of ML technique, namely few-shot learning algorithms where

a classi�er must generalize quickly a�er seeing only a few instances from each class can be

applied to DF task using MC. �is technique have been successfully used to �nd pa�erns in data

and generate successful predictions in such limited-data and challenging environments. Even

further, an LSTM-based meta-learner model proposed in [120] to learn the particular optimization

strategy employed to train another learner neural network classi�er in the few-shot regime.

�e experimental veri�cation of di�usive MC models is critical for the progression of the

state-of-the-art towards practical applications. Other approach can be enhancing the existing

di�usive MC models to use more realistic physical phenomena, allowing them to be easily com-

pared to experimental data. Further development in particle based simulation techniques will

help realizing the full potential of molecular communication to implement more realistic scenar-

ios for practical applications until wet-lab based implementations become extensive. We may

develop the system model, and keep drawing inspiration for network design from biological

mechanisms for adaptability. An advanced simulator should scale well to big scenarios with a

high background concentration because there would be cases that we must compute the motion

and interactions of every single particle in the simulation environment. As a result, in order to

build higher-level protocols for complicated scenarios, there may be a need for a higher-level

simulator with improved scalability. De�ning heterogeneous environments where the di�usion

coe�cient can be di�erent at various locations in the propagation channel can be an important

improvement. Most MC research assumed laminar �ow from transmi�er to receiver but time-

varying �ows and turbulent �ows should be explored as part of future studies.

It takes a long time to establish oneself as a scientist. �e most risky part is �guring out what

a good scientist is and then taking the �rst steps down that rocky path. It then turned into a

journey, which will hopefully take me home one day.
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