

A University of Sussex PhD thesis

Available online via Sussex Research Online:

http://sro.sussex.ac.uk/

This thesis is protected by copyright which belongs to the author.

This thesis cannot be reproduced or quoted extensively from without first
obtaining permission in writing from the Author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the Author

When referring to this work, full bibliographic details including the
author, title, awarding institution and date of the thesis must be given

Please visit Sussex Research Online for more information and further details

A Program Logic For Fresh Name

Generation

Harold Pancho Gordon Eliott

Submitted for the degree of Doctor of Philosophy

University of Sussex

August 2021

ii

Declaration of Authorship

I hereby declare that this thesis has not been and will not be submitted in whole or in part

to another University for the award of any other degree.

Signature:

Harold Pancho Gordon Eliott

iii

Acknowledgements

My primary thanks are to my supervisor, Dr Martin Berger. From the day we met and

discussed the possibility of me doing a PhD in logic, to the day I submit this thesis, Martin

has been all I could ask for in a supervisor. From his patience as I switched gears from

maths and physics and stumbled through the basics of programming languages to the

never-ending process of �nishing the research and thesis, Martin has been invaluable to

my journey as a researcher. This work would not have been possible without his helpful

guidance, words of encouragement and useful insights and ideas. I have been extremely

fortunate to have him as a supervisor and a friend. For all this, Martin, thank you!

Thanks also to my second supervisor Dr Bernhard Reus for his guidance, support and

supervision, and to Dr Ian Mackie for his many words of advice and wisdom over the years.

I am thankful to the Department of Informatics at the University of Sussex for funding

my PhD, without which this undertaking would have been impossible.

To the friends who have been so supportive and motivating over the years, Serena, my

`odd-family', Constantin, Susana, and others, I will forever be grateful. I would like to

thank all my friends and colleagues in the PhD o�ce over the years for their friendship

and interesting discussions, and in general, making work more enjoyable.

To my belated father Gordon, who always encouraged learning and thinking I am

forever grateful. I am thankful to the rest of my family, my mother Elena, and brother

Waby for being supportive of my endeavour through the ups and downs, and in particular

my sister Jara, for also diligently proofreading this thesis for grammatical errors.

An enormous thanks to my partner Gabrielle, who not only put up with me and

supported me throughout the years but gave meaning to life outside of the PhD. Finally,

thanks to our child, whom Gabrielle currently bears, for ultimately providing me with even

more of a reason to �nish the thesis before their birth.

iv

Abstract

This thesis introduces a program logic for an extension of the call-by-value simply typed

λ-calculus (STLC), with a mechanism for the generation of fresh names via gensym, which

is an adaptation of Pitts and Stark's ν-calculus [52]. Names can be compared for equality

and inequality, producing programs with subtle observable properties.

Hidden names, produced by interactions between name generation and λ-abstraction,

are captured logically with a new restricted quanti�cation. The restrictions require only

derived values from previously derived terms, ensuring hidden names are not revealed.

The concept of derivation is extended to type contexts and models, ensuring hidden names

are not revealed at later stages. Type contexts are adapted to include an order and the

ability to represent future extensions. The logic quanti�es over future extensions, using a

second-order quanti�cation over future type contexts. This quanti�cation names the future

context to allow for them to be reasoned about within the logic.

A new model construction is introduced to replicate the order in which names and

values are produced with potentially hidden names. The semantics of the logic in the new

model are used to prove each axiom and rule sound and as such the soundness of the logic.

A proof that the logic is an extension of the STLC logic is given alongside a sketch of the

proof that the extension is conservative.

Usage of the logic is illustrated through reasoning about numerous examples. These ex-

amples range from simple STLC and ν-calculus examples to well-known di�cult programs

from the literature.

v

Preface

This thesis is an extended version of the work presented in [17]. The paper was written

by myself as the lead author, and my supervisor, Dr Martin Berger, as the co-author,

however, the work outlined is substantially my own. The program logic, the model and

the soundness proofs have all been designed and proven by myself under the supervision

of Dr Martin Berger. The text from the paper has primarily been expanded upon and no

longer exists in its original form in this thesis. This thesis extends the paper with some

new axioms and more detailed explanations and reasoning examples, however the core

mathematical concepts remain the same. Unlike the paper, the soundness proofs and all

the requirements for it are included in their entirety in this thesis.

vi

Notation

Notational abbreviations are included here to provide an easy reference for the reader.

The abbreviations F.O.L., M.P. and I.H. are shorthand for First Order Logic, Modus

Ponens and Induction Hypothesis, respectively. When particular de�nitions, semantics,

lemmas and theorems are referred to, these are abbreviated to Def., Sem., Lem.and Thm.

respectively. When chapters and (sub)sections reference a particular part of the text, they

are abbreviated to Chapt. and Sec. respectively.

The base program logic will be written in standard text where needed but when reas-

oning about this base logic, a meta-logic is required and for this a colour coded version

is used i.e. meta− logic . This applies to all logical symbols listed here: ¬ , ∧ , ∨ ,

→ , ← , ↔ , ∀ , ∃ .

Logical formulae or meta logical formulae which extend over the page width are re-

written over multiple lines with the assumption that horizontal alignment is within the

same bracket i.e. A ∧ ∀X.(B → C) is identical to the following.

A

∧∀X. B

→ C

Many soundness proofs and program logic derivations are displayed in the following form.

1 Step 1 remark 1

2 Step 2 remark 2

3 Step 3 remark 3

The line numbers are included to be able to discuss the (meta) logical statement on the

line with the remark on the right explaining how the statement is implied by the line(s)

above using lemmas/tautologies or rules and axioms. Sometimes a → or ↔ is included

before the �Step X� to show that the proof works in a single direction or in both directions.

A summary of the notation used throughout this thesis is introduced in the following

table, with the location of �rst introduction for convenience.

vii

Notation Meaning First De�ned In

→ (→∗) one (multiple) step reduction Def. 4

⇓ conversion relation Def. 4

STLC The simply typed λ-calculus Sec. 2.1.2

νGS-calculus The gensym version of the ν-calculus Sec. 3.1

νPS-calculus The Original version of the ν-calculus Sec. 3.2

λ-logic program logic for the STLC Sec. 2.2.2

ν-logic program logic for the νGS-calculus Chapt. 4

Local-logic program logic for the STLC with local state Sec. 2.2.3

Alias-logic program logic for the STLC with state and aliasing Sec. 2.2.3

{A}M{B} Hoare triples (imperative) Sec. 2.2.1

{A}M :u {B} Hoare triples (functional) Sec. 2.2.2

fv(·) free variables Def. 1

Γ Standard Type Context (STC) Sec. 2.1.2

IΓ Logic Type Context (LTC) Sec. 4.1

δ Type Context Variables (TCV) Sec. 4.1

IΓ\−TCV removal of all TCV from LTC Def. 41

IΓ\x removal of variable x from LTC Def. 41

IΓ ↓−TC convert LTC to STC Def. 41

å(·) all names Def. 20

IΓ ⊩ (Γ ⊢) LTC (STC) typing judgement Def. 4.2 (Def. 36)

ftcv(·) free type context variables Def. 47

[e/x]IΓ logical substitution (ν-logic) Def. 50

[IΓ′/δ]IΓ logical substitution of LTC (ν-logic) Def. 53

ExtIndSyn (Sem) syntactic (semantic) extension independence Def. 54 (Def. 77)

Thin Syn (Sem) syntactic (semantic) thinness Def. 55 (Def. 78)

∼=G
α contextual congruence (νGS-calculus) Def. 29

ξ model Def. 58

[[·]]ξ interpretation in model ξ Def. 13

M
[IΓ, ξ]
⇝ V LTC derived value Def. 68

ξ ≼ ξ′ (≼⋆) single (multi) step model extension Def. 69 (Def. 70)

IΓ ▷ ξ LTC constructed model Def. 71

ξ |= · semantics in model ξ Def. 74

ξ ∼= ξ′ congruent models Def. 106

viii

Contents

Declaration of Authorship ii

Acknowledgements iii

Abstract iv

Preface v

Notation vi

List of Figures 1

1 Introduction 2

1.1 Names . 2

1.2 Program Logics . 5

1.3 Contributions . 6

1.4 Thesis Outline . 7

2 Technical Background 9

2.1 The λ-Calculus . 9

2.1.1 The Untyped λ-Calculus . 10

2.1.2 The STLC . 14

2.1.3 Contextual Equivalence (STLC) . 17

2.2 Program Logics . 18

2.2.1 Hoare Logic for a Simple Imperative Language (While-Logic) 19

2.2.2 Program Logics for the STLC . 23

2.2.3 Program Logic for Higher-Order Functions with Local State 34

2.2.4 Other Logics of Interest . 40

2.3 Summary . 41

ix

3 The ν-Calculus 42

3.1 The νGS-Calculus . 43

3.1.1 The νGS-Calculus Programming Language 43

3.1.2 Programs in the νGS-Calculus . 49

3.2 The νPS-Calculus . 57

3.2.1 The Programming Language . 57

3.3 Relation Between the νGS-Calculus and the νPS-Calculus 59

3.4 Proof Techniques of Contextual Equivalence in the νPS-Calculus 60

3.4.1 Equational Logic . 60

3.4.2 Logical Relations . 61

3.4.3 Kripke Logical Relations . 62

3.4.4 Environmental Bisimulations . 62

3.4.5 Nominal Games . 63

3.4.6 Probabilistic Programming Semantics for Name-Generation 63

3.5 The λν-Calculus . 63

3.6 Relating νPS-Calculus and λν-Calculus . 66

3.7 Summary . 67

4 Logical Language 68

4.1 Logical Syntax . 68

4.1.1 Logical Type Contexts (LTCs) . 69

4.1.2 Standard Formulae . 70

4.1.3 Restricted Universal Quanti�cation 71

4.1.4 Quanti�cation Over LTCs . 71

4.1.5 Notes On the Logical Syntax . 72

4.1.6 Shorthand Notations . 72

4.1.7 Triples . 73

4.2 Typing of Expressions, Formulae and Triples 73

4.3 Advanced Substitutions . 75

4.4 Properties of Logical Formulae . 80

4.5 Logic of Axioms . 82

4.5.1 Axioms for Equality . 83

4.5.2 Axioms for Restricted Quanti�cation 83

4.5.3 Axioms for Freshness . 85

4.5.4 Axioms for Quanti�cation Over LTCs 86

x

4.5.5 Axioms for Evaluation Formulae . 87

4.6 Logic of Rules . 88

4.6.1 Core Rules . 88

4.6.2 Structural Rules . 90

4.6.3 Derived Rules . 92

4.7 Alternative Design Choices . 92

4.7.1 gensym as a Constant in the Logic 92

4.7.2 The Use of LTCs . 93

4.7.3 Separating �Derived� and �Quanti�cation� 93

4.7.4 Syntactic Characterisations of Properties of Formulae 94

4.8 Summary . 94

5 Model 95

5.1 De�ning the Model . 95

5.2 Semantics . 101

5.3 Semantics of Extension Independence and Thinness 104

5.3.1 Semantic Extension Independence 104

5.3.2 Semantic Thinness with Respect to a Variable 105

5.4 General Lemmas Used in Soundness Proofs 105

5.4.1 Lemmas Regarding Function and Nm-Free Types 106

5.4.2 Lemmas Regarding Nm-Free Types 109

5.4.3 Lemmas Regarding Expressions . 112

5.4.4 Lemmas Regarding Derivations . 113

5.4.5 Lemmas Regarding the Revealing of Names 114

5.4.6 Lemmas Regarding Model Extensions 117

5.4.7 Lemmas Regarding Congruent Models 121

5.5 Summary . 126

6 Soundness 127

6.1 Soundness of Properties of Formulae . 127

6.2 Soundness of Axioms . 128

6.2.1 Soundness of Axioms for Equality . 128

6.2.2 Soundness of Axioms for Restricted Quanti�cation 130

6.2.3 Soundness of Axioms for Freshness 136

6.2.4 Soundness of Axioms for Universal Type Context Quanti�cation . . 138

xi

6.2.5 Soundness of Axioms for Evaluation Formulae 142

6.3 Soundness of Rules . 147

6.3.1 Soundness of Core Rules . 147

6.3.2 Soundness of Structural Rules . 152

6.3.3 Soundness of Derived Rules . 156

6.4 Soundness Theorem . 158

6.5 Conservativity . 159

6.5.1 The ν-Logic Extends the λ-Logic . 159

6.5.2 The ν-Logic is a Conservative Extension of the λ-Logic 161

6.6 Summary . 163

7 Reasoning Examples 164

7.1 Summary . 180

8 Conclusion 181

8.1 Directions for Future Work . 182

8.1.1 Generalisations of the Axioms . 182

8.1.2 Related Logics . 183

8.1.3 Mechanisation of Proofs . 184

8.1.4 Full Proof of Conservativity . 184

8.1.5 Applications of Names . 184

Bibliography 186

A Deferred Proofs 193

A.1 Lemmas for Soundness of Syntactic Properties Implying Semantic Properties 193

A.2 Soundness of the Extra Core Rules . 207

A.2.1 Soundness of [Pair]ν . 207

A.2.2 Soundness of [Proj(i)]ν . 209

A.2.3 Soundness of [If]ν . 209

A.2.4 Soundness of [Neg]ν . 209

xii

List of Figures

2.1 Syntax of the untyped λ-calculus. 10

2.2 Reduction relations of the untyped λ-calculus. 11

2.3 CBV small-step operational semantics of the untyped λ-calculus. 13

2.4 CBV big-step operational semantics of the untyped λ-calculus. 13

2.5 CBV evaluation contexts of the untyped λ-calculus. 14

2.6 Syntax of the STLC. 15

2.7 Typing rules of the STLC. 16

2.8 Evaluation contexts of the STLC. 16

2.9 Reduction rules of the STLC. 17

2.10 Single holed contexts of the STLC. 18

2.11 Syntax of the While language. 19

2.12 Syntax of formulae in the While-logic. 20

2.13 Logical axioms (or axiom schemas) of propositional logic. 21

2.14 Hoare (inference) rules of the While-logic (partial correctness). 22

2.15 Syntax of the λ-logic. 24

2.16 Typing rules of the λ-logic. 24

2.17 Axioms for equality of the λ-logic. 26

2.18 Axioms for �rst order logic of the λ-logic. 27

2.19 Axioms for evaluation formulae of the λ-logic. 27

2.20 Inference rules of the λ-logic. 29

2.21 Structural inference rules of the λ-logic. 29

2.22 Syntax of the Local-STLC. 35

2.23 Typing rules of the Local-STLC. 35

2.24 Reduction rules of the Local-STLC. 36

2.25 Syntax of the Local-logic. 36

2.26 Axioms for the new logical constructors in the Local-logic. 38

1

2.27 Key new inference rules of the Local-logic. 39

3.1 Syntax of the νGS-calculus. 44

3.2 Typing rules of the νGS-calculus. 44

3.3 Evaluation contexts of the νGS-calculus. 45

3.4 Reduction rules of the νGS-calculus. 46

3.5 Single holed contexts of the νGS-calculus. 47

3.6 Key new typing rules of the νPS-calculus. 57

3.7 Reduction rules of the νPS-calculus. 58

3.8 Syntax of the λν-calculus. 64

3.9 Typing rules of the λν-calculus. 64

3.10 Evaluation contexts of the λν-calculus. 65

3.11 Reduction rules of the λν-calculus. 65

4.1 Syntax of the ν-logic. 69

4.2 Typing rules of the ν-logic. 74

4.3 Axioms for equality of the ν-logic. 83

4.4 Axioms for universal and existential restricted quanti�cation of the ν-logic. 84

4.5 Axioms for freshness of the ν-logic. 85

4.6 Axioms for universal quanti�cation over LTCs of the ν-logic. 86

4.7 Axioms for evaluation formulae of the ν-logic. 87

4.8 Inference rules of the ν-logic. 89

4.9 Structural inference rules of the ν-logic. 91

4.10 Derived inference rules of the ν-logic. 92

5.1 Diamond property for model extensions. 120

2

Chapter 1

Introduction

This chapter introduces the underlying concepts for the thesis at a level of understanding

for all. The concept of names are introduced alongside the idea of program logics in

Sec. 1.1 and Sec. 1.2 respectively. The overlap of these two concepts form the basis of the

contributions of this thesis which are covered in Sec. 1.3. The outline of the thesis is given

in Sec. 1.4.

1.1 Names

At birth each human is (normally) given a name. Each name uniquely identi�es that single

person however the name itself may not be unique. Consider the name Steve McQueen

which may refer to the king of cool, the actor Terrance Steven McQueen or the Oscar

winning director Steve Rodney McQueen. Now consider the name Pancho Eliott which,

to the best of my knowledge, refers only to the author of this thesis. Names are used

to refer to a wide range of �things� including companies, buildings, pets, ... you name

it. Some names have structure such as the IP address 172.16.254.1, other names do not

such as gobbledygook1234XYZ (or any other random combinations of letters and numbers).

Names may not even be unique to homo-sapiens, signature whistles are thought to be used

by bottlenose dolphins (Tursiops truncatus) to address each other [30, 32] and similar

behaviour has been observed in parrotlets (Forpus passerinus) [3].

Names can be public knowledge, such as the web address www.google.com, whilst others

are known to a select few, for example a secret password. In contrast, anybody can name

any item by any name, this can be taken to their grave or shared with whomever they

care to, but in either case these names are equally valid even if only one person uses such

a name. The sharing of a name can be thought of as a scope, where a name never shared

3

has a small scope, while a name that is widely shared has a large scope. The scope of a

name is fundamental to names themselves, considering that without the ability to share

names they can only be known to one person and hence have very limited use.

One key aspect of names is the ability to distinguish them, i.e. is the king of rock and roll

the same name as Elvis Presley? which is clearly false as they use di�erent combinations

of letters. A secondary aspect of names is the item they represent (or denote) i.e. is the

king of rock and roll the same person as Elvis Presley? which is clearly true given the

wide usage of the former to refer to the latter. The distinguishing of the identi�er used as

a name and the actual item the name denotes has been investigated at length throughout

history [35, 21, 45]. This thesis focusses on the former by abstracting the idea of names

and ignores the latter by not assigning meaning to names.

In many instances the actual name does not play an important role, it is purely the

fact that everybody uses the same name to refer to the same object which is important.

Consider the name George in English, this name can be, and often is, replaced by the name

Jorge in Spanish or Giorgio in Italian, and it isn't the speci�c name which is important

but the fact that everybody uses the same name when referring to the same person (or

item). If the two members of a conversation agree on a common name change for an item

then the exact same meaning is conveyed by using the di�erent name if used in the same

context. This assumes the new name is not used elsewhere, otherwise complications arise.

This same idea applies to programs which use variables. The variables do not have an

inherent meaning so the names of the variables can be swapped if the swapping is done

consistently. This feature is known as α-convertibility and is introduced in more detail

later in Def. 2.

Sometimes systematic methods of producing names are required. Examples of these

include the names of pictures taken by digital cameras. These names may be given by a

human (for instance a descriptive name), or sometimes these will be given by a machine.

The machine may just number the pictures using information such as the date i.e. Pic-

ture1/1/2021at00:00, Picture1/1/2021at00:04, Picture3/1/2021at12:00... Alternatively a

counter system may be used to name the images using some number that increases for each

image i.e. Picture1, Picture2, ... The in�niteness of the number system and the purity of a

counter, which adds one each time, makes this an attractive method to come up with new

names.

Without considering what names represent, the most general idea of names includes a

method to create new names and a method to share names (i.e. scope) and a method to

4

compare whether two names are equal. In common natural language, names are not often

created, due to the learnt dictionary of names instilled in us from a young age, however

any time anything new is created, a new name is often created for said item (including

people).

Names are used in computers and programming languages to introduce identity in a

variety of applications. Take the simple case of naming �les which can be done by the

human user or sometimes by the machine itself. More technical applications of names in

programming languages include references, objects, exceptions, channels and many more

which builds on the idea of names, often by making the name represent something within

the language. For each of these examples the names are of a particular type such that

the names used in one application cannot be used in another. For example a channel-

name cannot be used to refer to an exception-name even if the name itself uses the same

characters in the same position (exceptions to this statement do exist).

Given the importance of names, studying them in the setting of programming lan-

guages in their simplest form, ensures the essence of the concepts described above are

represented in the language and studied without the complications that may arise from

more complicated uses of names. The π-calculus introduced names in their simplest form

using a single constructor for names (the fresh name generator) and a single destructor for

names (the equality of names). However, the π-calculus mixes names with message passing

and parallelism, which is not necessarily the simplest use case. The ν-calculus introduced

names to the minimal sequential programming language of the STLC. This captures the

essence of names without the complexity of the speci�c applications of names (in channels

and parallelism), meaning any work on this simple extension of pure names can be applied

to the more complicated (sequential) uses of names.

In typed programming languages every type has a constructor and a destructor. This

includes the type of names in the ν-calculus (introduced in more detail in Chapt. 3). The

constructor for names is νn.M , which creates a fresh name n which can be used within the

M part of the program. The destructor for names is the equality operator M = M ′, which

compares the two names at M and M ′ for equality and returns true if they are equal and

false otherwise. The dual inequality operator can also be included to mean two names are

not equal. The fresh name n in νn.M may share the name with the outside world if M

shares the name n. For example: νn.n creates a fresh name and outputs that same fresh

name; however, νn.true creates the fresh name n but never shares the name because it only

outputs the value true, so this name is created but lost forever as it is never �shared�. More

5

complicated examples exist which may even use the freshly created name but never share

it.

In day to day life there is nothing to stop names being guessed. If the name is common

or clues (such as a pattern) are given then this guessing becomes easier. However, given

a limited alphabet from which to make names, and given an unlimited number of guesses

there is always a way to systematically work through all possible names, i.e. a, b, ... ,

aa, ab, ... ba, bb, ... and so on. Clearly the longer the name the longer it will take to

guess, however it is just a matter of time before it is guessed. This guessing feature is not

considered in the ν-calculus introduced in Chapt. 3, as the names are de�ned such that

they cannot be guessed. This ensures that the only access to names is through producing

them and sharing them and not some �guess�. The �eld of cryptography studies the ability

for names (or passwords) to be �guessed� in many di�erent forms, however this is not in

the remit of this work.

1.2 Program Logics

The ubiquity of computers in everyday life means life depends more and more on the results

these machines output. De�ning what programs do can be simple in the case of running

the program i.e. run program X in situation Y, or can be tricky if a general property of the

program is required as the de�nition, i.e. program X does not leak credit card information

in any situation. Common practice for programs is to provide documentation (which is

often hand written) stating what each part of the program does. This is useful but does not

guarantee that what the program does will coincide exactly with what the documentation

states.

It is possible to formally de�ne what a program does by stating how the program is

�run� (using reduction semantics) however this requires doing this for each possible initial

state the program is run in. For example if x = 3 in the initial state then y := x+1 returns

y = 4 as the �nal state. However this doesn't hold if x ̸= 3 in the initial state, hence the

whole reduction needs to be performed in each initial state. This may seem trivial for

this example, but given the in�niteness of numbers it is impossible and for more complex

programs this can get even more complicated very quickly.

Ideally for the program y := x+1 it can be stated that for any number x in the initial

state then after running y := x + 1 then y = x + 1 in the �nal state. This abstraction is

captured by Hoare logics (which are often referred to as program logics). They allow for the

reasoning about what programs do in an abstract manner, so that they can be used under

6

any initial starting condition. This is referred to as compositionality. More complicated

properties of the initial and �nal state can be de�ned. Taking the same program y := x+1

with the initial state which contains an odd number at x then in the �nal state clearly y

must be an even number. More complicated properties can be de�ned for more complicated

programs which increases the power of what this method of reasoning can achieve.

Program logics build on a foundational mathematical logic (for example Set theory

or Peano arithmetic) to reason about program behaviours. For terminating (or stateful)

programs, the logical formula and the (initial or �nal) state share variables which must be

compatible. For instance the state with the variable x storing 3 and the formula x = 2 fail

to be compatible as 3 = 2 is false. However the state with x storing 3 and the formulae

x ≤ 4 are compatible as 3 ≤ 4 is true. Peano arithmetic then allows for the manipulation

of these logical formulae, for instance x ≤ 4 and (x ≤ 3 or x = 4) are identical. The

examples introduced here are simple but the formulae can get more complex the larger the

number of variables and the more complex the programs become along with the speci�c

behaviours the program logic is intending to capture.

Hoare logic relates the initial state requirements, a program and the �nal state require-

ments through the use of these logical formulae as follows. The Hoare triple {A}M{B}

states that if the initial state satis�es the pre-condition formula A, and M is a program run

in this state which produces a �nal state, then this �nal state satis�es the post-condition

formula B. If M never terminates then there is no �nal state and the Hoare triple is of

no real use. Rules dictate the derivation of these triples based on the structure of the pre-

and post-conditions, or the structure of the program being reasoned about. The intention

of deriving a Hoare triple using rules is that the triple states something useful (and `true')

regarding the program itself which can also be used in reasoning about applications of the

program in a compositional manner.

This leads to the question:

Can a simple sequential language with names be reasoned about using a Hoare-

style program logic in a simple manner that allows for compositional reasoning?

1.3 Contributions

This thesis aims to answer the question posed above. The programming language reasoned

about is an adaptation of the ν-calculus which separates the scope of names from the

generation of fresh names. The program logic introduces a version of type contexts, into

7

the logic itself, alongside a new higher order quanti�cation over type contexts, which has

the bene�t of being able to name said type context within the logic. A new restricted

quanti�cation over values derived from a type context is also introduced to replace standard

universal quanti�cation such that the possible names that a quanti�er can now range over

are derived only from previous uses of the name, ensuring that hidden names do not

become revealed. The program logic is proven sound and a sketch for the conservativity

of the program logic for the STLC is given. Numerous programs are reasoned about using

the program logic provided to show applications of the logic.

1.4 Thesis Outline

The thesis content is organised as follows.

Chapter 2 introduces the technical background required in the thesis. This includes

the core programming languages, starting with the untyped λ-calculus, then the STLC.

Program logics for a simple imperative programming language and functional programming

language are introduced as the foundation of the work in this thesis in Sec. 2.2.1 and

Sec. 2.2.2 respectively. A programming language with local state, which has clear uses

of names, and an adaptation of the logic for the local state language is introduced in

Sec. 2.2.3.

Chapter 3 introduces the di�erent approaches in the literature, to adding names to the

STLC. Sec. 3.1 introduces the νGS-calculus which generates names via gensym. This will

be reasoned about using the program logic of the future chapters. The original νPS-calculus

is introduced in Sec. 3.2 and comparisons are made between the two versions in Sec. 3.3.

A summary of the di�erent methods to prove equality in the original νPS-calculus is found

in Sec. 3.4. The λν-calculus, which introduces names to the CBN STLC, is introduced in

Sec. 3.5, alongside its relation to the νPS-calculus in Sec. 3.6.

Chapter 4 formally de�nes the ν-logic, the logic used to reason about programs in the

νGS-calculus. This includes formally de�ning the logical syntax, type checking, logical

substitutions, syntactic properties of formulae, the axioms/axiom schemas and the rules

required to reason about programs, in Sec. 4.1 to Sec. 4.6. Discussions on design choices

are also included in Sec. 4.7, to show alternative options in the development process of the

logic.

Chapter 5 provides a mathematical model in which to interpret the ν-logic. The syn-

tactic properties of formulae are given a semantic version of the property in Sec. 5.3. To

make the soundness proof shorter and more readable, various lemmas regarding the model

8

are introduced and proven in Sec. 5.4.

The soundness proof of the ν-logic is provided in Chapter 6. The soundness proof

requires that syntactic properties of formulae imply the semantic properties of the formulae,

for which a proof is provided in Sec. 6.1. The soundness of all axioms (Sec. 6.2) and all

rules (Sec. 6.3) form the basis of the soundness proof of the ν-logic in Sec. 6.4. The ν-logic

is proven to be an extension of the program logic for the STLC in Sec. 6.5, whilst a sketch

is also provided to prove that the extension is a conservative extension.

Key programs in the νGS-calculus are reasoned about in Chapter 7, including most

programs found in the literature.

Chapter 8 concludes with an analysis of the research, with a discussion on possible

future work and related ideas including further generalisations of the axioms, relations to

both nominal logic and hybrid logic, mechanisation of the proofs and further applications

of the ν-logic.

9

Chapter 2

Technical Background

This chapter gives an introduction to the technical background required to understand the

content on this thesis. The basics of λ-calculus are introduced in Sec. 2.1 covering the

untyped λ-calculus and the STLC. The STLC will form the basis of calculus introduced in

Chapt. 3, which adds names to the STLC which in turn is the core language researched in

this thesis.

Program logics are introduced in Sec. 2.2 in detail for three di�erent languages: an

imperative language, the STLC and an extension which adds local state to the STLC in

Sec. 2.2.1, Sec. 2.2.2 and Sec. 2.2.3 respectively.

2.1 The λ-Calculus

The λ-calculus was introduced by Alonzo Church in 1932 [12] as a logical system for the

foundations of mathematics in a time before computers. The theoretical understanding of

computation developed in parallel to, but independently from, the development of physical

machines. At a similar time various attempts at capturing the essence of computation were

also developed:

− Turing Machines: Alan Turing in 1936 [66]

− µ-recursive functions: Kurt Gödel in 1934 [23]

− Rewrite systems: Emil Post in 1936 [54]

− Combinatory Logic: Moses Schön�nkel in 1924 [61], further developed by Haskell

Curry in 1929 [16].

All of these systems model computation in di�ering forms, but all turned out to be com-

putationally equivalent including the λ-calculus, i.e. they could each model each other.

10

Each of these systems has been developed and extended in many di�erent directions, with

works often overlapping and work in one area often inspiring developments in another.

Stephen Kleene and John B. Rosser proved Church's logical system inconsistent using

what is now known as the Kleene-Rosser paradox [33]. This logical system was later �xed

using types in the STLC [13]. The logical system of the λ-calculus is adapted to be used as

a programming language (or calculus), with some alterations made to introduce the ideas

behind term reduction. Both the untyped and typed λ-calculus are introduced below.

2.1.1 The Untyped λ-Calculus

Introducing the untyped λ-calculus as a programming language requires the syntax from

the logical form of λ-calculus introduced by Alonzo Church, however a slightly di�erent

notion of reduction is introduced in the style of computers �running� programs. This

calculus is refered to as the untyped λ-calculus, to distinguish it from the STLC, introduced

in Sec. 2.1.2. Both calculi are introduced here to have a common syntactic basis.

The syntax for the untyped λ-calculus is de�ned recursively as the terms M in Fig. 2.1.

M ::= x || λx.M || MM

Figure 2.1: Syntax of the untyped λ-calculus.

The in�nite set of variables range over x, y, z, ... but are introduced as above for

simplicity. Functions λx.M bind the variable x in the term M , meaning the variable x

may occur freely in M . Functions are applied to other terms as (λx.M)M ′ where the M ′

is substituted (in some form) for the occurrences of x in M . Variables are used as place

holders or binders for where terms will be substituted.

De�nition 1 (Free and bound variables). Bound variables of a term M are those variables

occurring in M that are bound by a λ within M . Variables that occur unbounded are de�ned

as free variables and the set of free variables in a term M is de�ned fv(M) inductively as

follows.

fv(x)
def
= {x}

fv(λx.M)
def
= fv(M)− {x}

fv(MN)
def
= fv(M) ∪ fv(N)

Consider the two terms λx.x and λy.y, the exact name of the binding variable can be

replaced if the uses are also swapped within the bound term, meaning the manner in which

11

the bound name is used is more important than the speci�c variable used. This gives rise

to renaming of bound variables known as α-conversion as follows. Let the terms M(x) and

M(y) be the same term with y replacing all free occurrences of x in the latter.

De�nition 2 (α-equivalence). Two terms are deemed α-equivalent if they di�er only in

the names of bound variables.

Two α-equivalent terms are also α-conversions of one another and vice versa hence the

two notions are often used interchangeably.

The α-equivalence is similar to how names can be swapped if every use of the name is

also swapped for a fresh name (as mentioned in Sec. 1.1).

De�nition 3 (Capture avoiding substitution). Free variables are used to de�ne substitution

of a term N for the free occurrences of the variable x in a term M written M [N/x]. This

is de�ned inductively as follows.

y[N/x]
def
= y if ̸= y

x[N/x]
def
= N

(λx.M)[N/x]
def
= λx.M

(λy.M)[N/x]
def
= λy.(M [N/x]) if x ̸= y and y /∈ fv(N)

(λy.M)[N/x]
def
= (λz.(M [z/y]))[N/x] if x ̸= y and y ∈ fv(N) and z-fresh

(MM ′)[N/x]
def
= (M [N/x])(M ′[N/x])

Line 4 ensures for the substitution (λy.M)[N/x] that the bound variable y does not

occur free in N , without which the free name y appearing in N would become bound by

the λy.-binder, hence the name: capture avoiding substitution.

De�nition 4 (Reduction relation). The untyped λ-calculus reduction relation M → N ,

relates the term on the left M , to the term on the right N , as a reduction from M to N .

The re�exive, transitive closure of the → relation is written →∗. When values are de�ned,

if M →∗ V for some value V then this is written as M ⇓ V .

The common reduction relations are seen in Fig. 2.2.

(λx.M)N →β M [N/x]

λx.M →α λy.M [y/x] y /∈ fv(M)

Figure 2.2: Reduction relations of the untyped λ-calculus.

12

A function λx.M applied to the term N as in (λx.M)N is reduced by the β rule where

the function substitutes in N for the λ-bound variable x occurring inside M . The →α

relation is that of Def. 2 and is often taken for granted as it simply allows for the renaming

of bound variables.

The η relation: λx.(Mx) →η M if x /∈ fv(M) captures the idea of extensionality

meaning functions are the same if they give the same results for each argument. If (λx.Mx)

is applied to any term N , it will β-reduce to MN which is the same as just applying M

to N . So this rule pre-empts the application of terms of the form λx.Mx to another term.

The η-equivalence rule is not always included in reduction relations thus two reductions

are often discussed: β-reduction and βη-reduction, where the former excludes η-equality,

and the latter includes it in the possible reduction rules. From here onwards, calculi will

not include η-reduction, but will freely rename bound variables whenever convenient via

the α-equivalence. If further constructors such as if B then M else M ′ or ⟨M,M ′⟩ are

included then further reduction relations are required.

There is no speci�c order in which to apply reduction relations, meaning there are often

a number of ways to reduce a term. Consider the example (λx.((λy.(xy))a))b→β (λx.xa)b

which holds by reducing the (λy.(xy))a →β xa �rst. However, (λx.((λy.(xy))a))b →β

(λy.by)a also holds as it evaluates the outermost function application �rst. Both reduction

relations are valid and both, in turn, reduce to ba. A term is de�ned as (β-)normal form

(or a value) if no further (β-)reductions are possible.

It is of interest whether the application of these rules results in a term which can or

cannot be reduced further. A program which can always be reduced further is de�ned as

non-terminating. An example of a non-terminating program is Ω
def
= (λx.xx)(λx.xx) as

Ω →β (xx)[(λx.xx)/x]
def
= Ω. Under any reduction strategy Ω reduces to itself hence can

always be reduced again. Strong normalisation is the property of a language that each term

reduces to a single normal form, hence the untyped λ-calculus is not strongly normalizing.

Evaluation strategies are introduced to specify the order of applying the reduction rules.

Although others exist, the most common evaluation strategies are Call-By-Name (CBN)

and Call-By-Value (CBV). In general, evaluation strategies can be expressed in small-step

semantics which describes each step of the reduction, or big-step operational semantics

which describe the �nal result, although other approaches also exist. For example, the

evaluation of (λx.((λy.(xy))a))b via big-step gives (λx.((λy.(xy))a))b ⇓ ba directly, and via

small-step can give the steps of the reduction as (λx.((λy.(xy))a))b→β (λy.(by))a)→β ba.

The example Ω cannot be reduced via big-step operational semantics as it never evaluates

13

to a value, however small-step semantics can show that Ω → Ω and hence express the

non-termination.

The CBV evaluation strategy is introduced here in both big-step and small-step se-

mantics. This �rst requires a de�nition of values.

De�nition 5 (Values). Values consist only of λ functions and variables, as these cannot

be reduced further.

V ::= x || λx.M

De�nition 6 (Call-By-Value (CBV) operational semantics). The semantics of the CBV

evaluation strategy requires the application of a λ-abstraction to be applied to a value, as

opposed to a term.

The small-step operational semantics is found in Fig. 2.3.

M →M ′

MN →M ′N
AppL(CBV)

N → N ′

V N → V N ′
AppR(CBV)

−
(λx.M)V →M [V/x]

β(CBV)

Figure 2.3: CBV small-step operational semantics of the untyped λ-calculus.

The big-step operational semantics is found in Fig. 2.4 consisting of one rule which in

essence combines all the rules of the small-step semantics into one rule and fails to evaluate

any term which does not satisfy the assumptions (unless it is already a value).

−
V ⇓ V

Value

M ⇓ λx.M ′ N ⇓ V ′ M ′[V ′/x] ⇓ C

MN ⇓ V
β∗
(CBV)

Figure 2.4: CBV big-step operational semantics of the untyped λ-calculus.

An alternative method of expressing these reduction strategies is through evaluation

contexts as shall be introduced here for the CBV reduction relation in the style of [15].

De�nition 7 (CBV operational semantics: evaluation contexts). The reduction relation

is de�ned as above with β(CBV) rule in Fig. 2.3, then the order of evaluation is de�ned by

evaluation contexts E [·] which are de�ned in Fig. 2.5.

14

E [·] ::= [·] || E [·]M || V E [·]

Figure 2.5: CBV evaluation contexts of the untyped λ-calculus.

The evaluation contexts de�ne when the reductions can be applied inside a term using

the following rule.

M → N → E [M]→ E [N]

If the language is extended with new terms, the relevant reduction relations are ad-

ded alongside the relevant new evaluation contexts. This thesis will tend to express the

reduction relation through evaluation contexts, hence their introduction here.

2.1.2 The STLC

Although many variations of the untyped λ-calculus exist, one primary development was

the restriction of the untyped λ-calculus via types, introduced by Alonzo Church in 1940

[13]. In the simple case of the STLC described here, types ensure non-termination does not

occur. By de�nition types restrict the number of possible programs the language allows.

Types are an abstraction of programs, in the sense that functions obtain the type

α1 → α2 where α2 is the type the function outputs having accepted the term of type α1.

Constants are added to the language with respective types which ensures types obtain

some �xed type. The types of these constants are called base types. The binary type Bool

(short for Boolean) with the constants true and false, with negation ¬M , are included

with the conditional operator if · then · else · as the destructor. The pair type α1 × α2

represents a 2-tuple with the �rst element being of type α1 and the second element of type

α2. Constructors of pairs are ⟨·, ·⟩ whilst the destructors are π1(·) and π2(·) to obtain the

�rst and second element of the pair respectively. Projections are often written πi(·) to

mean for each i ∈ {1, 2}. The unary type Unit and the respective constant () is included

without a destructor.

The syntax for the STLC de�ned in Fig. 2.6 extends the untyped λ-calculus with the

types α described above and typing contexts Γ mapping variables to types which is used in

typing judgments. Values and terms remain almost unchanged from the untyped λ-calculus

with the exception of a type annotation for the λ-bound variables (which is often dropped)

and including the constants in the values. The pairs and pair projection are also added

15

here to make future extensions more interesting. The common syntactic abbreviation is

included here as let xα = M in N
def
= (λxα.N)M .

(Types) α ::= Unit || Bool || α→ α || α× α

(Typing Context) Γ ::= ∅ || Γ, x : α

(Values) V ::= () || true || false || λxα.M || ⟨V, V ⟩

(Terms) M ::= x || V || ¬M || MM || if M then M else M

|| ⟨M,M⟩ || π1(M) || π2(M) || let xα = M in M

Figure 2.6: Syntax of the STLC.

Further base types such as integers are often included alongside relevant operations on

these base types, however these are not included here.

Terms (and types) are classi�ed as zeroth-order (/ground type/base types) if they are

a constant i.e. contains no functions. A term is of order k if its type is of order k. The

order of a type can be de�ned by the O(·) function of a term as follows.

O(Bool)
def
= O(Unit)

def
= 0

O(α1 → α2)
def
= max(O(α2), 1 + O(α1))

O(α1 × α2)
def
= max(O(α1),O(α2))

Typing judgments are a check on programs prior to evaluation to ensure programs

terminate. The typing rules can be found in Fig. 2.7 where Γ(x) is the type that x maps

to in Γ.

The untyped λ-calculus program Ω
def
= (λx.xx)(λx.xx) is not a STLC program as it

fails to type check. This fails as λxα1→α2 .xx requires Γ, x : α1 → α2 ⊢ x : α1 → α2 whilst

simultaneously requiring Γ, x : α1 → α2 ⊢ x : α1.

Programs such as (λxBool.x)true however are typed correctly as seen below.

Γ, x : Bool ⊢ x : Bool

Γ ⊢ λxBool.x : Bool→ Bool

−
Γ ⊢ true : Bool

Γ ⊢ (λxBool.x)true : α

Hence, reducing (λxBool.x)true will produce a new term of type Bool. This property is

known as type soundness and is often summarized as �well-typed programs cannot go

wrong� [39]. Type soundness ensures that for any program M , if Γ ⊢ M : α then M is

either a value or will reduce to a new term of type α. Hence if a well typed program of

type α terminates it will produce a value of type α.

16

−
Γ ⊢ () : Unit

c ∈ {true, false}
Γ ⊢ c : Bool

Γ(x) = α

Γ ⊢ x : α

Γ, x : α1 ⊢M : α2

Γ ⊢ λxα1 .M : α1 → α2

Γ ⊢M : α1 → α2 Γ ⊢ N : α1

Γ ⊢MN : α2

Γ ⊢M : Bool

Γ ⊢ ¬M : Bool

Γ ⊢M : Bool Γ ⊢Mi : α i ∈ {1, 2}
Γ ⊢ if M then M1 else M2 : α

Γ ⊢M1 : α1 Γ ⊢M2 : α2

Γ ⊢ ⟨M1,M2⟩ : α1 × α2

Γ ⊢M : α1 × α2

Γ ⊢ πi(M) : αi

Γ ⊢M : α1 Γ, x : α1 ⊢ N : α2

Γ ⊢ let xα1 = M in N : α2

Figure 2.7: Typing rules of the STLC.

De�nition 8 (Evaluation of the STLC(evaluation contexts)). Evaluation of STLC terms

builds on that of the CBV untyped λ-calculus in Fig. 2.5 if the type annotations and con-

stants are included. The evaluation contexts are those of Fig. 2.8.

E [·] ::= [·] || E [·]M || V E [·] || E [·] = M || V = E [·] || ¬E [·]

|| if E [·] then M else M ′ || if V then E [·] else M ′ || if V then W else E [·]

|| ⟨E [·],M⟩ || ⟨V, E [·]⟩ || πi(E [·]) || let x = E [·] in M

Figure 2.8: Evaluation contexts of the STLC.

The reduction rules are those of Fig. 2.9.

17

V → V

(λxα.M)V → M [V/x]

b = b → true b ∈ {true, false}

b = b′ → false b ̸= b′, b, b′ ∈ {true, false}

¬true → false

¬false → true

if true then V else V ′ → V

πi(⟨V1, V2⟩) → Vi

let x = V in M → M [V/x]

M →M ′ → E [M]→ E [M ′]

Figure 2.9: Reduction rules of the STLC.

This version of the STLC is strongly normalizing (or terminating) as recursion is not

included and terms must be well typed.

The STLC provides an excellent base to express features in (functional) programming

languages. Numerous extensions are common in the literature including integers with in-

teger arithmetic [13], recursion, a store, parametric polymorphic types, names (introduced

in Chapt. 3), and many more.

2.1.3 Contextual Equivalence (STLC)

The most common method of distinguishing or equating two terms is contextual equival-

ence, �rst introduced by Morris in 1969 [41]. Two programs are considered contextually

equivalent if they cannot be distinguished by any context in the same programming lan-

guage. If two programs are contextually indistinguishable then they can be swapped for

one another in any situation they may occur and produce the same result.

Contextual equivalence is introduced here for the STLC, however extends to most other

languages.

De�nition 9 (Single holed contexts). For the STLC, a single-holed context is de�ned in

Fig. 2.10.

18

C[·]α ::= [·]α || λxα1 .C[·]α || C[·]αM || MC[·]α || ¬C[·]α || C[·]α = M || M = C[·]α

|| if C[·]α then M ′ else M ′′ || if M then C[·]α else M ′′ || if M then M ′ else C[·]α

|| ⟨C[·]α,M⟩ || ⟨M,C[·]α⟩ || πi(C[·]α)

|| let x = C[·]α in M || let x = M in C[·]α

Figure 2.10: Single holed contexts of the STLC.

The hole [·]α, in a single holed context, can be �lled with a term of type α such that

the typing conditions still hold. Any context �lled with an appropriately typed term is

a STLC term and can thus be typed accordingly. Unlike capture free substitution, the

context may capture free variables that occur in the term �lling the hole. For instance

C[·] ≡ λx.[·] binds any free occurrence of the variable x in the term which �lls the hole, i.e.

C[x] becomes λx.x.

Contexts (with an empty hole) can be typed using the typing rules in Fig. 2.7 and the

following rule for holes.
−

Γ ⊢ [·]α : α

De�nition 10 (Contextual equivalence in the STLC). Contextual equivalence of two closed

terms M and N both of type α (written M ∼=STLC
α N) is de�ned as the inability for any

context to distinguish these terms, formally de�ned as follows.

M ∼=STLC
α N

def
= ∀ C[·]α. ∅ ⊢ C[·]α : Bool→ (C[M] ⇓ true↔ C[N] ⇓ true)

The contexts are chosen to evaluate to true, however the de�nition holds identically if

the constant false is chosen.

This de�nition quanti�es over all single-holed contexts which makes it di�cult to reason

about. Some methods of proving more coarse or �ne relations are introduced to make the

task of proving equality or inequality easier. In Sec. 3.4 some of these techniques are

introduced for the νPS-calculus which by extension also hold for the STLC.

2.2 Program Logics

In 1969, Tony Hoare introduced a formal system for reasoning about correctness of pro-

grams [24] based on work by Robert W. Floyd [20]. Hoare logic (or Floyd-Hoare logic)

originally used classical First Order Logic (F.O.L.) as the basis for logical assertions to

19

reason about the state prior and post evaluation of programs in an imperative program-

ming language. A Hoare (logic) triple of the form {P}M{Q} states that if assertion P

(pre-condition) holds, then executing program M establishes assertion Q (post-condition).

Originally this was introduced for the While language introduced in Sec. 2.2.1 and has since

evolved to reason about numerous extensions and other di�erent languages. For example

the triple {Odd(x)}x := x ∗ 2{Even(x)} states that if x is initially odd and the program

x := x ∗ 2 (which assigns x ∗ 2 to x) is evaluated then x is now even. The pre-condition

Odd(x) and post-condition Even(x) are logical formulae in the formal language of Peano

arithmetic.

The name program logic is often interchangeable for the name Hoare logic however in

this thesis the latter will refer only to program logics for imperative languages, whereas the

former will be used for all languages. The Hoare logic for a simple imperative language is

introduced in Sec. 2.2.1 and referred to as the While-logic. The program logic for the STLC

is introduced in Sec. 2.2.2 and referred to as the λ-logic, alongside the program logic for an

extension to the STLC which includes local state in Sec. 2.2.3 referred to as Local-logic.

2.2.1 Hoare Logic for a Simple Imperative Language (While-Logic)

The Hoare logic for the simple, yet useful, While programming language is introduced here.

The While language consists of the syntax in Fig. 2.11.

E ::= n ∈ Z || V || E + E || E − E || E × E || ...

B ::= true || false || E = E || E ≤ E || ...

M ::= V := E || M ;M || if B then M else M || while B do M

Figure 2.11: Syntax of the While language.

The set V of variables range over (uppercase)X, Y , Z, ... Expressions E, range over the

natural numbers n, variables and primitive operations on expressions. Boolean statements

B include the Boolean constants and operations on expressions which return Booleans.

Commands (or programs) M , include assignment of an expression E to a variable in V

in the store, composition of commands, conditionals and a while loop. The execution of

these commands with a state (consisting of non-aliased variables in V mapped to natural

numbers) is as expected and not discussed here.

The logical language of formulae used in the pre- and post-conditions of the Hoare triple

20

is that of F.O.L. (or more precisely Peano arithmetic) with (auxiliary) variables ranging

over (lowercase) a, b, c, ... di�erent to the set of variables V in the programming language.

The formulae are formally de�ned in Fig. 2.12 using an an extension to expressions E from

Fig. 2.11 to include the auxiliary variables a as E.

E ::= n ∈ Z || a || V || E+ E || ...

P ::= T || F || || E ≤ E || ¬P || P ∧ P || ∀a.P ||

Figure 2.12: Syntax of formulae in the While-logic.

The logical expressions E, consist of integers, auxiliary and logical variables and op-

erations on expressions. These logical expressions are a superset of the program lan-

guage expressions. The formula P , consist of the Boolean constants truth and falsity,

predicates on expressions, negation, conjunction and universal quanti�cation which quan-

ti�es over integers. The standard logical de�nitions are normally included as follows:

disjunction A ∨ B
def
= ¬(¬A ∧ ¬B), implication A → B

def
= A ∨ ¬B, if and only if

A↔ B
def
= A→ B ∧B → A, existential quanti�cation ∃a.A def

= ¬∀a.¬A.

Substitution in the logic P [E/X] replaces all occurrences of variable X in P with

expression E, which is de�ned inductively as expected.

The proof rules of propositional rules can be used to reason about these formulae.

These consist of the axioms or axiom schemas (referred to simply as axioms from here

on) of propositional logic and F.O.L., some of which are seen in Fig. 2.13 and Fig. 2.18

respectively, where the formulae are represented by A, B and C instead of P and Q to

coincide with later logics. These axioms are not discussed here but are widely used and

are introduced as they are required in later logics. These are not full lists of axioms and

also not minimal as some axioms are derivable from other axioms.

Partial correctness Hoare triples {P}M{Q}, state that whenever the program M is

executed in a state satisfying the pre-condition P , then if M terminates then the state

in which M terminates satis�es the post-condition Q. Partial correctness states nothing

about the case where M is non-terminating. Total correctness Hoare triples [P]M [Q],

state that whenever the program M is executed in a state satisfying the pre-condition P

then M terminates and the state in which M terminates satis�es the post-condition Q.

The proof rules of Hoare logic are rules of inference that allow for the derivation of

triples. The Hoare rules for the While-logic are introduced in Fig. 2.14.

21

(Truth) T ≡ ¬F

(¬1) (¬¬A) ≡ A (Double negation)

(∧1) A ≡ A ∧A (Idempotency)

(∨1) A ≡ A ∨A (Idempotency)

(∧2) A ∧ ¬A ≡ F (Consistency)

(∨2) A ∨ ¬A ≡ T (Law of Excluded Middle)

(∧3) (A ∧B) ≡ (B ∧A) (Commutativity)

(∨3) (A ∨B) ≡ (B ∨A) (Commutativity)

(↔ 1) (A↔ B) ≡ (B ↔ A) (Commutativity)

(∧4) (A ∧ (B ∧ C)) ≡ ((A ∧B) ∧ C) (Distributivity of ∧)

(∨4) (A ∨ (B ∨ C)) ≡ ((A ∨B) ∨ C) (Distributivity of ∨)

(∧6) A ∨ (B ∧ C) ≡ (A ∨B) ∧ (A ∨ C) (Associativity of ∧)

(∨6) A ∧ (B ∨ C) ≡ (A ∧B) ∨ (A ∧ C) (Associativity of ∨)

(∧T1) A ∧ T ≡ A (Identity for ∧)

(∧F1) A ∧ F ≡ F (Annihilator for ∧)

(∨T1) A ∨ T ≡ T (Annihilator for ∧)

(∨F1) A ∨ F ≡ A (Identity for ∧)

(∧7) (A ∧ (A ∨B)) ≡ A (Absorption)

(∨7) (A ∨ (A ∧B)) ≡ A (Absorption)

(→ 1) (A→ B) ≡ (¬B)→ (¬A) (Contrapositive)

(MP) A ∧ (A→ B) → B (Modus Ponens)

(MT) ¬B ∧ (A→ B) → ¬A (Modus Tollens)

Figure 2.13: Logical axioms (or axiom schemas) of propositional logic.

22

−
{P [E/X]}X := E{P}

[Assign]Imp

{P}M{Q} {Q}M ′{R}
{P}M ;M ′{R}

[Sequence]Imp

{P ∧B}M{Q} {P ∧ ¬B}M ′{Q}
{P}if B then M else M ′{Q}

[If]Imp

{P ∧B}M{P}
{P}while B do M{¬B ∧Q}

[While]Imp

P → P ′ {P ′}M{Q′} Q′ → Q

{P}M{Q}
[Conseq]Imp

Figure 2.14: Hoare (inference) rules of the While-logic (partial correctness).

The logic of axioms is introduced to the logic of triples via the [Conseq]Imp rule. The

other rules are standard and represent the programs in logical form. The [Assign]Imp rule

substitutes the expression E for the variable X in the pre-condition. Consider the simple

example {Y = 1}X := Y {X = 1}, where Y = 1 ≡ (X = 1)[Y/X] which is precisely the

result of applying the [Assign]Imp rule. Both [If]Imp and [While]Imp require the Boolean

B, to be a logical statement that can be used directly in pre-condition and re�ect the

semantics of the program. The sequentially executed commands M and M ′ are reasoned

about in the [Sequence]Imp rule which �rst reasons about M and then M ′.

An alternative, yet similar set of rules to Fig. 2.14 for total correctness exists with a

more restrictive [While]Imp rule which ensures termination, however this is not included

here. Partial and total correctness are equivalent for a language which always terminates.

A Hoare triple derived from the rules and axioms is written as ⊢ {P}M{Q}. The

triples can be given semantics in a mathematical model (similar in idea to the model in

Sec. 2.2.2) and when a Hoare triple is satis�able in every model, it is written ⊨ {P}M{Q}.

Soundness ensures that ⊢ {P}M{Q} implies ⊨ {P}M{Q}, whereas completeness ensures

the opposite i.e. ⊨ {P}M{Q} implies ⊢ {P}M{Q}. Due to the undecidability of the

underlying logical basis (i.e. F.O.L. or Peano arithmetic) the completeness in this form

is not achievable. Hence, the de�nition is weakened to state that: if an oracle is used to

prove the implications in the logic of axioms in each application of the [Conseq]Imp rule,

then the logic is relatively complete.

Extensions of Hoare logic include: separation logic, reasoning about programs that

manipulate pointers in various di�erent ways and settings [59, 29, 48, 58, 11]; incorrectness

logic, the ability to reason about bugs [49]; quantum Hoare logics, to reason about quantum

programs [71, 69]; adding to the imperative language a constructor which generates fresh

23

pointer names [11]; and many more. The next section introduces a program logic for the

functional language (STLC), introduced in Sec. 2.1.2.

2.2.2 Program Logics for the STLC

Since the inception of Hoare logics in 1969 a Hoare logic for functional programming

languages was always a possibility. Although not the �rst attempt, in 2004 such a logic

was introduced for the STLC which succinctly captured the desired aspects for such a

logic [28]. The original paper [28], has been re�ned over time to a more stable syntax and

semantics, introduced (in part) here.

The original Hoare logic reasoned about programs with assignable global variables hence

the logic itself reasons about these variables, this is not the case for the STLC. The Hoare

triple for the STLC is thus extended to contain an anchor variable which allows for the

assignment of values to variables. This results in a judgement of the form {A}M :u {B}.

This is still referenced to as a Hoare triple or just triple even though there are now 4

elements to the triple. The triple states that if A holds, then M terminates to a value

denoted by u then B holds. The variable u is the anchor, which cannot occur in the

pre-condition A, but can occur in the post-condition B.

The program logic for the STLC in Sec. 2.1.2 is referred to here as the λ-logic. It is

introduced here as it will be built upon in future program logics for languages which extend

the STLC. The program logic in [28] reasons about the STLC containing integers (and op-

erations on integers), recursion and more however these are not included here. The common

abbreviation for equality of Booleans is used as M = M ′
def
= if M then M ′ else ¬M ′.

The logical syntax is introduced in Fig. 2.15 such that the types α range over units,

Booleans and function types and pair types with the standard type context Γ, mapping

variables to types. Expressions e range over the Boolean and unit values (constants c ∈

{(), true, false}), variables ranging over a, b, c, ... and pairs and projections. Formulae (or

assertions) A are logical statements using expressions in various manners and are referred

to by any variable A, B, C, Formulae consist of equality, negation, conjunction,

universal quanti�cation and evaluation formulae. Evaluation formulae allow reasoning

regarding functions, as e • e′ = m{A} states that the application of function e to term e′

returns a value which, when denoted by the anchor variable m, satis�es A. From these

logical constructors some shorthand notation is used which is common in other logics i.e.

e ̸= e′, A∨A, A→ A, ∃x.A. The evaluation formula e • e′ = m{m = e′′} can be shortened

as e • e′ = e′′. The shorthand notation {A}e • e′ = m{B}, represents A→ e • e′ = m{B}.

24

The type annotations in formulae are often dropped.

α ::= Unit || Bool || α→ α || α× α

Γ ::= ∅ || Γ, x : α

e ::= () || true || false || x || ⟨e, e⟩ || πi(e)

A ::= e = e || ¬A || A ∧A || ∀xα.A || e • e′ = mα{A}

Figure 2.15: Syntax of the λ-logic.

All expressions and formulae are type checked using typing judgments mimicking the

type checking of STLC terms. The typing judgment for expressions, formulae, and triples

are written Γ ⊢ e : α, Γ ⊢ A, Γ ⊢ {A}M :u {B} respectively. The typing rules for

expressions, formulae and triples are seen in Fig. 2.16. Most logical constructs are typed

as expected. The typing of evaluation formulae ensures the type of the function is that

which: accepts the type of the expression it is applied to, and outputs the type of the

anchor. The typing of triples adds the anchor of the type of the term being reasoned

about, to the type context to type check the post-condition. All other typing rules are

elementary.

b ∈ {true, false}
Γ ⊢ b : Bool

−
Γ ⊢ () : Unit

Γ(x) = α

Γ ⊢ x : α

Γ ⊢ e1 : α1 Γ ⊢ e2 : α2

Γ ⊢ ⟨e1, e2⟩ : α1 × α2

Γ ⊢ e : α1 × α2

Γ ⊢ πi(e) : αi

Γ ⊢ e1 : α Γ ⊢ e2 : α

Γ ⊢ e1 = e2

Γ ⊢ e : α1 → α2 Γ ⊢ e′ : α1 Γ, x : α2 ⊢ A

Γ ⊢ e • e′ = xα2{A}

Γ ⊢ A1 Γ ⊢ A2

Γ ⊢ A1 ∧A2

Γ ⊢ A

Γ ⊢ ¬A
Γ, x : α ⊢ A

Γ ⊢ ∀xα.A
Γ ⊢ A Γ ⊢M : α Γ,m : α ⊢ B

Γ ⊢ {A}M :m {B}

Figure 2.16: Typing rules for expressions, formulae and triples in the λ-logic.

The notion of free variables of terms is extended to de�ne the free variables of expres-

sions and formulae. All variables occurring in expressions and those that are not bound

by a quanti�er or the anchor in an evaluation formulae, are free.

De�nition 11 (Free variables in expressions and formulae). The free variables of an ex-

25

pression e and formula A, written fv(e) and fv(A) respectively, are de�ned as follows.

fv(c)
def
= ∅ c ∈ {(), true, false}

fv(x)
def
= {x}

fv(⟨e1, e2⟩)
def
= fv(e1) ∪ fv(e2)

fv(πi(e)) fv(e)

fv(e1 = e2)
def
= fv(e1) ∪ fv(e2)

fv(¬A)
def
= fv(A)

fv(A ∧B)
def
= fv(A) ∪ fv(B)

fv(e1 • e2 = m{A}) def
= fv(e1) ∪ fv(e2) ∪ (fv(A) \ {m})

fv(∀xα.A) def
= fv(A) \ {x}

A variable x is not in A, written A-x, if x does not occur in the free variables of A.

Logical substitution is de�ned similarly to that of Hoare logic, with the exception that

variables now only appear in expressions, hence substitution is de�ned on expressions and

formulae as follows.

De�nition 12 (Logical substitution). Substitution of an expression e for a variable x in

an expression e′ is written e′[e/x], whilst the same substitution in a formula A is written

A[e/x]. Both are de�ned as follows assuming x ̸= y.

c[e/x]
def
= c

x[e/x]
def
= e

y[e/x]
def
= y (x ̸= y)

(e1 = e2)[e/x]
def
= (e1[e/x]) = (e2[e/x])

⟨e1, e2⟩[e/x]
def
= ⟨e1[e/x], e2[e/x]⟩

πi(e1)[e/x]
def
= πi(e1[e/x])

(¬A)[e/x]
def
= ¬(A[e/x])

(A ∧B)[e/x]
def
= A[e/x] ∧B[e/x]

(∀xα.A)[e/x] def
= ∀xα.A

(∀yα.A)[e/x] def
= ∀yα.(A[e/x]) x ̸= y, y /∈ fv(e)

(∀yα.A)[e/x] def
= (∀zα.(A[z/y]))[e/x] x ̸= y, y ∈ fv(e), z − fresh

(e1 • e2 = m{A})[e/x] def
= e1[e/x] • e2[e/x] = m{A[e/x]} x ̸= m, m /∈ fv(e)

(e1 • e2 = m{A})[e/x] def
= (e1 • e2 = u{A[u/m]})[e/x] x ̸= m, m ∈ fv(e), u− fresh

In a similar fashion to the program logic in Sec. 2.2.1 the logic can be split into the

logic of axioms and the logic of rules. The logic of axioms consisting of the axioms and

26

axiom schemas (referred to simply as axioms) include the axioms of predicate logic seen

in Fig. 2.13, the axioms of equality seen in Fig. 2.17, axioms of F.O.L. which can be

seen in Fig. 2.18, and axioms of evaluation formulae seen in Fig. 2.19. Most axioms are

standard with the axioms of equality representing re�exivity, symmetry and transitivity,

and substitution.

(eq1)λ e = e

(eq2)λ e = e′ ↔ e′ = e

(eq3)λ e = e′ ∧ e′ = e′′ → e = e′′

(eq4)λ x = e ∧A → A[e/x]

Figure 2.17: Axioms for equality of the λ-logic.

An axiom for pairs is often not included, but is the following tautology.

(p1) πi(⟨e1, e2⟩) = ei

The axioms of F.O.L. are standard from [38] in Fig. 2.18. This list is not minimal as

some axioms are derivable from others, but included for convenience. Later the universal

quanti�er will be adapted with the relevant adaptions to these axioms.

Evaluation formula axioms in Fig. 2.19 originate from how functions interact, expressed

in logical form. These axioms are for the terminating STLC language without recur-

sion. Some axioms di�er when non-terminating features are added. Axiom (ext)λ requires

Ext(e, e′)
def
= ∀x.e • x = m{e′ • x = n{m = n}}, and implies extensionality as the functions

e and e′ cannot be distinguished through application. Axioms (e1), (e2) and (e3) show

conjunction, negation and invariance, within the evaluation formulae. Axiom (e4) shows

how evaluation formulae interact with universal quanti�cation under certain restrictions,

these ensure the quanti�ed variable does not interact with the evaluation formula vari-

ables. Axiom (eα) is essentially the idempotency of evaluation formulae combined with

α-equivalence.

27

(u1)λ ∀xα.A → A[e/x] (Instantiation)

(u2)λ x /∈ fv(A) → (A ↔ ∀xα.A) (Vacuous Generalisation/Instantiation)

(u3)λ ∀xα.A ∧ ∀xα.B ↔ ∀xα.A ∧B (Distribution)

(ex1)λ A[e/x] → ∃x.A (Existential Generalization)

(ex2)λ A-x ∧ ∃x.B ↔ ∃x.(A ∧B) (Derivable)

(ud1)λ ∀xα1 .∀yα2 .A ↔ ∀yα2 .∀xα1 .A (Derivable)

(ud2)λ ∃xα1 .∃yα2 .A ↔ ∃yα2 .∃xα1 .A (Derivable)

(ud3)λ ∃xα.A ∨ ∃xα.B ↔ ∃xα.A ∨B (Derivable)

(ud4)λ ∃xα1 .∀yα2 .A → ∀yα2 .∃xα1 .A (Derivable)

(ud5)λ ∀xα.(A→ B) → (∀xα.A)→ (∀xα.B) (Derivable)

Figure 2.18: Axioms for �rst order logic of the λ-logic.

(e1)λ e • e′ = m{A} ∧ e • e′ = m{B} ↔ e • e′ = m{A ∧B}

(e2)λ e • e′ = m{¬A} ↔ ¬e • e′ = m{A}

(e3)λ e • e′ = m{A ∧B} ↔ A ∧ e • e′ = m{B} m /∈ fv(A)

(e4)λ e • e′ = m{∀aα.A} ↔ ∀aα.e • e′ = m{A} a /∈ fv(e, e′,m)

(ext)λ e = e′ ↔ Ext(e, e′) e, e′ : α1 → α2

(eα)λ e • e′ = m{A} ↔ e • e′ = m{e • e′ = a{a = m ∧A}}

a /∈ fv(e, e′), a ∈ fv(A)→ a ≡ m

Figure 2.19: Axioms for evaluation formulae of the λ-logic.

The logic of rules is introduced via rules based on the programming language construct-

ors in Fig. 2.20. The rules intend to represent the behaviour of programs within the logic.

All rules are well typed, with certain formulae containing requirements such as C−m to

mean m /∈ fv(C), which ensures the typing conditions are met.

The [Lam]λ rule states ∀x.(B → u•x = m{C}) in the post-condition of the conclusion,

meaning for any value x such that B holds, if u (i.e. the λx.M value) is applied to x and

denoted by m then C holds. This requires the assumption, which states a similar intention

28

but reasons about the term M and uses the equivalence of M and (λx.M)x.

The [App]λ rule requires M and N to be reasoned about individually, resulting in

m•n = u{C−m,n} where m and n represent M and N , respectively. This states: applying

m to n and denoting the result by u implies C holds, which is precisely the required meaning

in the conclusion of the rule, where MN is denoted by u. Requiring C−m,n ensures m and

n do not occur freely in C, satisfying the type checking of the rule.

The [Var]λ and [Const]λ rules are similar to the [Assign]Imp rule if the assigned

variable is considered as the anchor. They require the substitution in the pre-condition to

ensure the intention is captured correctly.

The [Neg]λ assumes ¬m as an expression and substitutes it for u in the postcondition

of the assumption, ensuring u in the conclusion is the negation of m in the assumption.

The [If]λ rule di�ers from [If]Imp, as the Boolean condition in the λ-logic is not a

formula in the logic, hence must be reasoned about �rst. The substitution of both Boolean

constants for b indicates the two possible cases for the conditional and hence reason about

the two respective programs.

The [Pair]λ and [Proji]λ rules express the idea of pairs and projections in the as-

sumption via their substitution for u, whilst in the conclusion the same pair or projec-

tion programs are represented by u. The [Let]λ rule can be derived from the de�nition

let xα = M in N
def
= (λxα.N)M and the relevant rules, but is included for convenience.

The [Eq]λ rule reasons about M and N , and then requires the result to be in the

form that substitutes m = n for u in C. This implies that the result of equating M and

N can be substituted for u which indicates precisely the conclusion. It is common to

write C[m = n/u] in the [Eq]λ rule, even though m = n is not an expression, but this

is shorthand for substituting u = true for m = n in C. The expression e = e′ could be

included to make this syntax correct but is not included for simplicity and brevity, as is

common in the literature [28, 72, 6]. It is also possible to set the evaluation formula as

an expression, as is done in [28]. However, this transfers some complications from the

axioms to the manipulation of expressions. This balance of where to focus the reasoning is

a matter of preference and fashion, but has no computational bene�ts except readability.

29

−
{A[x/m]} x :m {A}

[Var]λ

{A}M :m {B} {B} N :n {C−m,n[m = n/u]}
{A}M = N :u {C}

[Eq]λ

−
{A[c/m]} c :m {A}

[Const]λ

{A-x ∧B}M :m {C}
{A} λxα.M :u {∀xα.(B → u • x = m{C})}

[Lam]λ

{A}M :m {B} {B} N :n {m • n = u{C−m,n}}
{A}MN :u {C}

[App]λ

{A}M :m {C[¬m/u]}
{A} ¬M :u {C}

[Neg]λ

{A}M :m {B} {B[bi/m]} Ni :u {C−m} b1 = true b2 = false i = 1, 2

{A} if M then N1 else N2 :u {C}
[If]λ

{A}M :m {B} {B} N :n {C−m,n[⟨m,n⟩/u]}
{A} ⟨M,N⟩ :u {C}

[Pair]λ

{A}M :m {C−m[πi(m)/u]}
{A} πi(M) :u {C}

[Proji]λ

{A}M :x {B} {B} N :u {C−x}
{A} let x = M in N :u {C}

[Let]λ

Figure 2.20: Inference rules of the λ-logic.

Structural rules introduced in Fig. 2.21 allow for the manipulation of any triple under

speci�c circumstances. The [Conseq]λ rule introduces the logic of axioms to the triples in

both the pre-condition and post-condition. The other rules allow for combining two triples

of similar form [∧-Post]λ and [∨-Pre]λ or allow certain formulae to be moved from the

pre-condition to the post-condition or vice versa under certain conditions in [∧ →]λ, [→ ∧]λ
and [Invar]λ.

{A}M :u {B} {A}M :u {C}
{A}M :u {B ∧ C}

[∧-Post]λ

{A}M :u {C} {B}M :u {C}
{A ∨B}M :u {C}

[∨-Pre]λ

{A ∧B}M :u {C}
{A}M :u {B → C}

[∧ →]λ

{A}M :u {B−u → C}
{A ∧B}M :u {C}

[→ ∧]λ

{A}M :u {B}
{A ∧ C}M :u {B ∧ C}

[Invar]λ

A→ A′ {A′}M :u {B′} B′ → B

{A}M :u {B}
[Conseq]λ

Figure 2.21: Structural inference rules of the λ-logic.

30

Similar to the While-logic, if a triple {A}M :u {B} can be derived from the rules and

axioms, this is written ⊢ {A}M :u {B}. Well typed terms in this STLC always terminate,

meaning this program logic is partially correct if and only if it is totally correct. However,

the inclusion of non-termination into the language (and rules) means this no longer holds

as in [28] which contains recursion.

Example 1. The simple example of the identity function applied to true which should

clearly output true is proven below, using this logic. The resulting triple in line 6 states

that in any valid initial state (represented by T), if the program (λxBool.x)true is run and

denoted by the variable u then u must be equivalent to true, which is exactly what is

required.

1 {x = x} x :u {u = x} [Var]λ

2 {T} λxBool.x :m {∀xBool.m • x = u{u = x}} [Lam]λ

3 ∀xBool.m • x = u{u = x} → m • true = u{u = true} (u1)λ

4 {T} λxBool.x :m {m • true = u{u = true}} [Conseq]λ, 2, 3

5 {m • true = u{true = u}} true :n {m • n = u{u = true}} [Const]λ

6 {T} (λxBool.x)true :u {u = true} [App]λ, 4, 5

Example 2. Reasoning about the program λxBool.if x then false else true which should

31

essentially return ¬x can be proven as follows.

1 {x = true} x :d {x = true = d} [Var]λ

2 {(x = true = d)[true/d]} false :b {b = false} [Const]λ

3 {(x = true = d)[false/d]} true :b {F} [Const]λ

4 {x = true} if x then false else true :b {b = false} [If]λ, 1, 2, 3

5 {T} if x then false else true :b {x = true→ b = false} [∧ →]λ, 4

6 {x = false} x :d {x = false = d} [Var]λ

7 {(x = false = d)[false/d]} false :b {F} [Const]λ

8 {(x = false = d)[true/d]} true :b {b = true} [Const]λ

9 {x = false} if x then false else true :b {b = true} [If]λ, 6, 7, 8

10 {T} if x then false else true :b {x = false→ b = true} [∧ →]λ, 9

11 {T} if x then false else true :b {x = ¬b} [∧-Post]λ, 5, 10

12 {T} λxBool.if x then false else true :a {∀xBool.a • x = ¬x} [Lam]λ, 11

32

Example 3. The program (λfBool→Bool.ftrue)(λxBool.false) which should return false is

reasoned about as follows.

1 Let B(f) ≡ f • true = false

2 Let D(c) ≡ ∀f.B(f)→ c • f = false

3 {B(f)} f :g {B(g)} [Var]λ

4 {B(g)} true :h {g • h = false} [Const]λ

5 {B(f)} ftrue :a {a = false} [App]λ, 3, 4

6 {T} λf.ftrue :c {D(c)} [Lam]λ, 5

7 {T} false :a {a = false} [Const]λ

8 {T} λxBool.false :f {∀x.f • x = false} [Lam]λ, 7

9 {T} λxBool.false :f {B(f)} [Conseq]λ, (u1)λ, 8

10 {D(c)} λx.false :f {D(c) ∧B(f)} [Invar]λ, 9

11 {D(c)} λx.false :f {c • f = false} [Conseq]λ, (u1)λ, M.P., 10

12 {T} (λfBool→Bool.ftrue)(λxBool.false) :a {a = false} [App]λ, 6, 11

In Chapt. 7 these examples will be reasoned about again using the ν-logic, showing

that an equivalent triple is derivable.

Model

The logic is given semantics by �rst de�ning a model and then de�ning a satisfaction

relation for triples. This requires an interpretation of expressions and the semantics of

formulae in the model. The model and semantics are introduced here for the λ-logic to be

built upon in Chapt. 5 to model the ν-logic.

A model ξ, is de�ned as for the While-logic, as an unordered mapping between variables

and closed values. The value mapped to by x in a model ξ is written ξ(x). The domain of

a model ξ is the list of variables from which the model maps to values, and the codomain

(range) of the model is the list of values to which the model maps, dom(ξ) and cod(ξ)

respectively. A model ξ is typed by Γ (or is a model of type Γ) if Γ and ξ have the same

domains and for each variable x in the domain then ξ(x) : Γ(x). The model is used to

interpret expressions as programs in Def. 13. The semantics (or interpretation) of formulae

33

are given by Def. 14. This leads to the modelling of triples in Def. 16 which are used to

prove soundness of the rules.

De�nition 13 (Interpretation of expressions). The interpretations of the expression e in

the model ξ written [[e]]ξ are de�ned as follows.

[[()]]ξ
def
= ()

[[x]]ξ
def
= ξ(x)

[[⟨e1, e2⟩]]ξ
def
= ⟨[[e1]]ξ, [[e2]]ξ⟩

[[true]]ξ
def
= true

[[false]]ξ
def
= false

[[πi(e)]]ξ
def
= πi([[e]]ξ)

De�nition 14 (Semantics of formulae). A model ξ interprets a formula A written ξ |= A,

also referred to as semantics of formulae or ξ models A, is de�ned as follows.

ξ |= e = e′
def
= [[e]]ξ ∼=STLC

α [[e′]]ξ

ξ |= ¬A def
= ξ ̸|= A

ξ |= A ∧B
def
= ξ |= A ∧ ξ |= B

ξ |= e • e′ = m{A} def
= [[e]]ξ[[e

′]]ξ ⇓ V ∧ ξ ·m : V |= A

ξ |= ∀xα.A def
= ∀ V α.ξ · x : V |= A

The semantics for equivalence requires the interpretation of expressions to be contex-

tually equivalent as per Def. 10. The semantics for the evaluation formulae is for total

correctness as the language is strongly-normalizing, however if non-termination exists in

the language this can be rede�ned for partial correctness. The semantics of universal quan-

ti�cation, quanti�es over all possible values of the correct type and assigns them to the

quanti�ed variable in the model to satisfy the formula A. The semantics of other formulae

are standard.

It is often referenced that an open term (or expression) is evaluated, this is short for

the closure of said term by a model is evaluated. The model must be typed by the same

type context that types the term, ensuring all free variables in the term are mapped in the

model.

De�nition 15 (Closure of terms). Model ξ closes the open program M written Mξ de�ned

as follows, where ξ−x is the model ξ with the mapping for x removed assuming it exists.

()ξ
def
= ()

trueξ
def
= true

falseξ
def
= false

xξ
def
= ξ(x)

(λxα.M)ξ
def
= λxα.(Mξ−x)

(MN)ξ
def
= (Mξ)(Nξ)

⟨M,N⟩ξ def
= ⟨Mξ,Nξ⟩

(πi(M))ξ
def
= πi(Mξ)

(let x = M in N)ξ
def
= let x = Mξ in Nξ−x

34

The previous three de�nitions are required to de�ne the semantics of triples.

De�nition 16 (Semantics of triples). The semantics of triples mimics the description of

the Hoare triples with the model closing the free variables in the term within the triple.

ξ |= {A}M :u {B}
def
= ξ |= A → ∃ V.(Mξ ⇓ V ∧ ξ · u : V |= B)

If Γ ⊢ {A}M :u {B}, write |= {A}M :u {B} if ∀ ξΓ. ξ |= {A}M :u {B}.

De�nition 17 (Soundness and completenesses). The λ-logic is de�ned as:

− Sound if ⊢ {A}M :u {B} implies |= {A}M :u {B}

− Complete if |= {A}M :u {B} implies ⊢ {A}M :u {B}

However as with the While-logic, the incompleteness of F.O.L. [23] makes complete-

ness impossible and hence di�erent notions of completeness are introduced [14, 26].

The λ-logic presented above (and in [28]) is sound, and various notions of completeness

are all proven for extensions to the STLC with recursion [26] and also aliasing and local

state [4], hence these results hold for the smaller STLC presented here.

2.2.3 Program Logic for Higher-Order Functions with Local State

Names are an abstraction of many concepts (see Sec. 1.1), one of which is local state. The

addition of local state to the STLC is reasoned about by a program logic introduced in

[72]. This logic is introduced here due to the similarities of local state to the ν-calculus.

The full language in [72] is complex with a store and the ability to generate fresh

references to the store. The program ref(M) generates and returns a reference, and �lls

it with the value M evaluates to. The references denoted by M can be dereferenced by

!M and assigned a new value M ′ evaluates to written M := M ′. Take for example the

function let x = ref(0) in λ().x :=!x + 1; !x where �ref(0)� produces a new reference (or

location) to the store which contains the value 0. This reference is assigned to the variable

x in let x = ref(0) in ... which allows the reference to be used in the ... part via the use

of x. When the function λ().x :=!x+ 1; !x, is applied (to unit) it will increment the value

stored at the reference x, and return the new value.

The inclusion of a store and fresh reference generation has many useful applications.

However, here the restriction of the logic is to only contain the STLC extended with

the ref() constructor. The syntax is extended from the STLC as seen in Fig. 2.22. The

ref() function produces a fresh reference each time it is evaluated, with no distinguishing

content stored at the location, i.e. (). This is in essence the generation of fresh names. The

35

programming language is referred to here as the Local-STLC. The program logic in [72] is

adapted and introduced here for this very minimal extension to the STLC and described

below. This program logic is referred to here as the Local-logic.

α ::= ... || Ref(Unit)

M ::= ... || ref() || M = M

V ::= ... || l

Figure 2.22: New syntax of the Local-STLC extending the STLC syntax.

The new type Ref(Unit) represents the type of memory location storing () however

this is essentially the type Nm. The ref() term constructor of locations returns a fresh

location (or reference) which ranges over l, l′, l′′, ... (or sometimes li) which cannot be

used directly in the language and whose content cannot be accessed without access to the

speci�c location. The equality constructor is also included as the destructor for references.

The typing rules for the new constructors are those of Fig. 2.23.

−
Γ ⊢ ref() : Ref(Unit)

Γ ⊢M : Ref(Unit) Γ ⊢M ′ : Ref(Unit)

Γ ⊢M = M ′ : Bool

Figure 2.23: Typing rules of the Local-STLC.

Given the locations all store (), the concept of a store is not required and hence is not

included in this version of the language. The reduction relation adds another additional

construct which is that of the hiding of locations as (νl̃), where ν is a (hiding) binder of the

names in the vector l̃, so that the CBV reduction relation is as follows (νl̃)M → (νl̃′)M ′.

The evaluation contexts and reduction rules are those of the STLC in Fig. 2.8 and Fig. 2.9

respectively with the additional reduction rules de�ned in Fig. 2.24.

36

ref() → (νl)(l)

l = l → true

l1 = l2 → false (l1 ̸= l2)

M →M ′ → (νl̃)M → (νl̃)M ′

(νl̃1)M → (νl̃2)M
′ → (νl̃l̃1)E [M]→ (νl̃l̃2)E [M ′]

Figure 2.24: Reduction rules of the Local-STLC.

Contextual equivalence of con�gurations are de�ned as standard, requiring all single-

holed contexts �lled with the terms to evaluate to the same Boolean.

The syntax of the logical expressions and formulae build on the λ-logic in Fig. 2.25.

e ::= x || c

A ::= e = e′ || ¬A || A ∧A || ∀xα.A || νx.A || e • e′ = m{A} || □A || e ↪→ e′

Figure 2.25: Syntax of the Local-logic.

The expressions build on the λ-logic with constants c now including locations l. This

may be a mistake in [72], given the language does not have direct access to locations,

however it is included here.

Formulae are extended from λ-logic by �rst adding the new hiding quanti�er νx.A,

which means for some hidden reference x then A holds, with its dual ν̄x.A
def
= ¬νx.¬A,

meaning for all hidden references x then A holds. The ν quanti�er sits between ∀ and ∃

quanti�ers in quantifying power given ∃x.∀y.A → ∀y.∃x.A and νx.∀y.A → ∀y.νx.A but

∃x.νy.A→ νy.∃x.A.

The modal quanti�ers □A and its dual ♢A def
= ¬□¬A, come from modal logic and

state that A holds in all reachable states and in some reachable state respectively. Finally

e ↪→ e′ states that the reference denoted by e′ can be reached by the datum e, with the

dual e′#e
def
= ¬e ↪→ e′ meaning the reference e′ cannot be reached by (or is fresh from) the

datum e. Substitution of expressions e for the variable x in the formula A, written A[e/x],

is de�ned similarly to the λ-logic.

The model builds on the type context for variables and hidden references hence the

model M def
= (νl̃)ξ hides the names in l̃ and maps variables to values in ξ. This is a

37

simpli�cation of the model in [72].

The free locations of a term M are de�ned as expected and written �(M). The free

plain names of an expression e is the set of references in e which do not occur dereferenced,

which in this limited case is all references. A model M′ is an extension of a model M if

the extension contains all mappings of the extended model (i.e. model equivalence, written

M ≈ M′) and potentially some new mappings, this is written as M ⇝ M′. These are

de�ned as expected. The semantics for formulae is given using these de�nitions of the

models, with the new logical constructor semantics de�ned as follows (adapted from [72]

for this simpler language).

M |= □A def
= ∀M′.M⇝M′→M′ |= A

M |= νx.A
def
= ∃M′.(νl)M′ ≈M ∧M′[x : l] |= A

M |= e1 ↪→ e2
def
= [[e2]]ξ,σ ∈ �([[e1]]ξ,σ) for eachM≈ (νl̃)(ξ, σ)

Properties of formulae are introduced to restrict certain axioms and rules to ensure

soundness (and completeness) proofs hold.

De�nition 18 (Properties of formulae in the Local-logic). Thinness is de�ned for a for-

mula if a particular variable x, can be removed from the model M alongside its map-

ping, written M/x, and still satisfy the formula. Monotonicity of a formula is de�ned

if references can be hidden in the model and still satisfy the formulae. The formula A is

antimonotone if ¬A is monotone. A formula A is stateless if it holds in all future states.

A-thin w.r.t x
def
= ∀M.M |= A→M/x |= A

A-monotone
def
= ∀M, l.M |= A ∧ l /∈ �(A)→ (νl)M |= A.

A-stateless
def
= A→ □A

The paper proposes that monotonicity and antimonotonicity are not required but in-

clude them for the soundness proofs. Thinness is a development of A−x, meaning x

is not in the free variables of A but covers this more complex model which cannot re-

move variables in a formula even when not used in the formula. For example the model

M ≡ x : l, y : λz.if z = l then true else false and the formula ∃x′.y • x′ = true{} is not

satis�ed byM/x as l is only derivable from x and is the only input to y that returns true.

Syntactic de�nitions of each of these properties are de�ned, allowing for syntactic checks

on whether these properties hold for certain formulae. These syntactic de�nitions cover all

formulae that are required to obtain certain properties in the reasoning, however may not

cover all formulae that obey the property.

The axioms from [72] are extensive, however the related axioms to the logic introduced

here are introduced below. Many of these axioms will be replicated in essence in the ν-logic

38

in Sec. 4.5, hence their introduction here. Axioms of note are (v5) which states how the

ν-quanti�er interacts with the ∀-quanti�er, (r4) states how freshness proves inequality of

references, the axioms for modality are standard, apart from the 2 introduced below, which

de�ne how modality interact with the ν-quanti�er(s).

(u1) A → ∀x.A x /∈ fv(A) ∧A-thin w.r.t x

(v1) A → νx.A x /∈ fv(A) (v2) νx.A ↔ A x /∈ fv(A) ∧A−monotone

(v3) νx.(A ∧A′) → νx.A ∧ νx.A′ (v4) νx.(A ∨A′) ↔ νx.A ∨ νx.A′

(v5) νx.∀y.A → ∀y.νx.A (v6) ∃y.νx.A → νx.∃y.A

(v7) νx.ν̄y.A → ν̄y.νx.A (v8) νx.νy.A ↔ νy.νx.A

(r1) x ↪→ x (r2) x ↪→ y ∧ y ↪→ z → x ↪→ z

(r3) x#yα α ∈ {Unit,Bool} (r4) x#y → x ̸= y

(r5) x#y ∧ y ↪→ z → x#z

(n1) □ν̄x.A ↔ ν̄x.□A (n2) νx.□A → □νx.A

Figure 2.26: Axioms for the new logical constructors in the Local-logic.

The rules of inference for triples build o� the λ-logic and some key extensions are seen

in Fig. 2.27. The rules di�er from the λ-logic in various ways, primarily the inclusion of the

auxiliary variable i. This variable i is used to reference any datum that already exists in the

state. The [Lam]Local rule includes a quanti�cation over ∀i which is a quanti�cation over

arbitrary variables (of arbitrary type). The i is used in [Ref]Local to represent this freshness

alongside the ν-binder to ensure x is hidden. The i can be quanti�ed over in: [Aux∀V]Local

if the program is a value; [Aux∀]Local if the type of i is a base type; or [Lam]Local if

applicable. The i can also be replaced by an expression using [Subs]Local which allows this

variable to be seen as a quanti�cation over all possible locations (or expressions) in the

initial state and hence it should not be possible to obtain the contradiction u#u, however

it is not entirely obvious or easy to use this variable i.

The [Ref()]Local rule is the only rule that introduces the ν-binder to hide the name

that the reference represents within the logic. This rule can be used to reason about νn.n

by letting ref(())
def
= νn.n, then the resulting triple would be {T} ref(()) :u {νx.(u =

x∧u#i)} meaning the reference is hidden but in this case can be accessed by u, and is fresh

from all other references which can be accessed in the initial state. The de�nition of the

39

initial state comes from the [Subs]Local rule instantiation forbidding [u/i] as u /∈ fpn(e).

For the example λ().ref() (which will be thought of as a translation of gensym in the

νGS-calculus), the triple {T} λ().ref() :m {∀i.m•() = u{νx.(u = x∧u#i)}} can be derived.

This means i can be instantiated as any reference except that of x and u and hence this

means x (and u) are fresh from any previously generated reference.

Finally the [Cons-Eval]Local rule is included here in this simpli�ed version of the logic.

The rule is a strengthened version of the standard consequence rule which represents the

compositionality of the language alongside the chosen method of expressing freshness of

references.

{C ∧A−xĩ}M :m {C ′}
{A} λx.M :u {∀xĩ.C → u • x = m{C ′}}

[Lam]Local

i− auxiliary

{C} ref() :u {νx.(C ∧ u#iX ∧ u = x}
[Ref()]Local

{C−i} V :u {C ′}
{C} V :u {∀i.C ′}

[Aux∀V]Local

{C−i}M :u {C ′} α - base type

{C}M :u {∀iα.C ′}
[Aux∀]Local

{A}M :u {B} u /∈ fpn(e)

{A[e/i]}M :u {B[e/i]}
[Subs]Local

{C0}M :m {C ′0} x fresh; ĩ auxiliary

□∀ĩ.{C0}x • () = m{C ′0} → □∀ĩ.{C}x • () = m{C ′}
{C}M :m {C ′}

[Cons-Eval]Local

Figure 2.27: Key new inference rules of the Local-logic.

The [LetOpen]Local rule below does not occur directly in [72] but as a rule for an

extension of the logic which contains a similar rule. This rule allows for the temporary

revealing of a reference within a let x = M in N constructor. This rule does not seem to

exist in this exact form in the paper, but is expected to be sound.

{A}M :x {νỹ.C} {C} N :u {B} B-thin w.r.t x

{A} let x = M in N :u {νỹ.B}
[LetOpen]Local

The Local-logic is proven sound and three completeness results are proven in [4] however

the [LetOpen]Local is not included in this proof.

40

Compared to the original program logic in [72], the Local-logic above ignores all the

elements of state that are not related to the naming of fresh locations. The original logic is

complex, as it builds on the program logic for state with aliasing [5], referred to here as the

Alias-logic. The Alias-logic is for a language which uses locations directly, and does not

include the fresh generation of locations, ref(M). In both logics with memory, a new logical

substitution is introduced to deal with aliasing in memory. A new logical constructor to

ensure (in)dependence of a particular location in the state is also required.

The quanti�ers νx.A or ν̄x.A are not required in the Alias-logic, as these are used

purely for the fresh reference generation. Similarly, the modalities □A and ♢A are also

not required when simply discussing non-fresh references as all references exist at initiation,

and hence reasoning about future references (or states) is not required. Both logics are

proven sound, alongside di�erent notions of completeness [4].

The extra complications of the logic, which are originally introduced due to the values

stored in the state, encouraged the search for a simpler logic speci�cally for the ν-calculus.

2.2.4 Other Logics of Interest

This thesis builds upon the Hoare logic introduced in Sec. 2.2.2 for the STLC [28]. Al-

ternative approaches to Hoare logic and their relation to names (or their applications) are

brie�y introduced here.

Separation Logic

Reynolds' separation logic [59] is an extension of Hoare logic which allows for reasoning

about states consisting of the store and heap. The primary concept is the separation of

the heap memory into disjoint heaps and reasoning about these disjointly. The frame rule

introduced enables local reasoning about component programs and their e�ect on a portion

of memory whilst not a�ecting another disjoint part of the heap.

Extensions to separation logic in [7] do allow for reasoning about fresh name generation

via the standard use of Ref() as the name generator, alongside equality of references.

Further work is required to extract the essence of the logic required for reasoning purely

about fresh names and identify any issues which may arise. It is not clear whether key

examples such as the �hard� example introduced later in Ex. 19 can be reasoned about

using this logic.

41

A Hoare Logic For CBV Functional Languages

Re�gis-Gianas and Pottier introduced a higher-order typed Hoare logic for CBV functional

languages in [57] similar to [28] with some technical di�erences. Crucially, equality is only

considered for values and hence function applications (and other non-value terms) are not

considered in the formulae. This simpli�cation of the logic does have the added bene�t that

veri�cation conditions can be proven interactively in Coq or with an automated theorem

prover. Names or local state are not explicitly considered in this paper.

Hoare Type Theory

Hoare Type Theory combines Hoare triples with dependent types, formalizing the generat-

ing process of veri�cation conditions for e�ectful computations using monadic judgments

[44, 43]. This combines standard static checking techniques with logical veri�cations. The

introduction of local state to the former work can be seen in [42].

2.3 Summary

The underlying principles have been introduced in this chapter that will form the basis of

the rest of the thesis. The untyped λ-calculus and the STLC introduced with the common

syntax that will be used throughout the rest of the thesis alongside important ideas such

as types and equivalence. The basics of program logics are covered for an imperative

language and a functional language. The extension to the STLC which includes local

state, is introduced with the program logic for the case where the state only stores (),

which draws parallels to the study of names.

In the next chapter the STLC will be built upon via the introduction of names in

programming languages referred too as the νGS-calculus and λν-calculus, alongside an

analysis of relations between these languages and methods to prove equivalence, all from the

literature. The program logic for the νGS-calculus extends that of the λ-logic introduced in

this chapter. The standard technique of proving soundness in this chapter is then extended

to prove soundness of the ν-logic.

42

Chapter 3

The ν-Calculus

The π-calculus introduced the concept of scope of names with fresh (channel) name gener-

ation which was one of its fundamental developments over previous attempts at developing

process calculi [40]. In 1993 Andrew Pitts and Ian Stark developed the idea of scope and

name generation from the π-calculus to the STLC [52]. The addition of names to a simple

programming language such as the STLC comes in the form of the ν-calculus, referred

to here as the νPS-calculus. The simple method of generating names (constructor) and

equating names (destructor) are introduced which captures the essence of names without

any complications of what the names represent.

In the following two sections, two versions of the νPS-calculus are introduced. In Sec. 3.1

the �rst version uses the fresh name constructor gensym in the programming language which

shall be referred to as νGS-calculus. The following chapters will develop a program logic

for νGS-calculus hence its introduction here. The original νPS-calculus, which combines

the creation of the fresh name with a scope of the name, is introduced in Sec. 3.2. A

translation between the νGS-calculus and νPS-calculus is provided in Sec. 3.3, showing the

two languages are essentially equivalent.

Previous work on the νPS-calculus focuses primarily on the method of proving equality

of programs in the νPS-calculus and the various methods are summarised in Sec. 3.4. These

methods consist of: an equational logic in Sec. 3.4.1, logical relations (and predicated logical

relations) in Sec. 3.4.2, Kripke logical relations in Sec. 3.4.3, environmental bisimulations

in Sec. 3.4.4, nominal games in Sec. 3.4.5 and probabilistic programming in Sec. 3.4.6.

In 1993 Martin Odersky introduced a CBN version of the STLC with names and equal-

ity known as the λν-calculus, which is introduced in Sec. 3.5 [46]. The relation between the

νPS-calculus and the λν-calculus were discussed and formalised in [36] which is summarised

in Sec. 3.6.

43

3.1 The νGS-Calculus

The gensym function (short for generate symbol) is used in the LISP programming lan-

guage and is de�ned in LISP 1.5 Programmer's Manual [37] as follows:

�The function gensym has no arguments. Its value is a new, distinct, and

freshly created atomic symbol with a print name of the form G00001, G00002,

. . . , G99999.

This function is useful for creating atomic symbols when one is needed; each

one is guaranteed unique. gensym names are not permanent and will not be

recognized if read back in. � [37]

In essence, gensym produces fresh names (or atoms) which have useful applications within

the language (LISP). In LISP, gensym can be used to create hygienic macros so that

variables in the macro are guaranteed to be distinct from any other variable outside of the

macro.

The νGS-calculus introduces gensym to the STLC as a method of generating fresh

names. In this case, names do not attach any additional meaning such as the store or vari-

able names. The only operation on names is that of equating them. This simple addition

of names captures the essence of names as described in the introduction (Sec. 1.1). The

νGS-calculus is introduced formally in the Sec. 3.1.1, and some key examples of programs

in the νGS-calculus introduced in Sec. 3.1.2.

3.1.1 The νGS-Calculus Programming Language

Syntax

The types of νGS-calculus extend the STLC types in Sec. 2.1.2 with the single new type

for names, Nm.

The terms are extended from the STLC in Sec. 2.1.2 with three constructs: gensym to

produce fresh names, = to equate names (similar to the equality of Booleans) and names

themselves ranging over n, n′, n1, ... A possibly empty set of names is written G.

The equality operator could be split into an equality on names and an equality on

Booleans, however for simplicity they are combined into one operator.

44

α ::= Unit || Bool || Nm || α→ α || α× α

Γ ::= ∅ || Γ, x : α

V ::= () || true || false || λxα.M || n || gensym || ⟨V, V ⟩

M ::= V || x || ¬M || MM || M = M || if M then M else M

|| ⟨M,M⟩ || π1(M) || π2(M) || let x = M in M

G ::= Set of names

Figure 3.1: Syntax of the νGS-calculus.

Typing rules

A type check in this format does not require a secondary check as this will be done separ-

ately, hence the typing judgment is as in the STLC, i.e. Γ ⊢M : α

De�nition 19 (Typing rules for the νGS-calculus). The typing rules for the νGS-calculus

are those of Fig. 3.2 and only require that names are indeed names.

−
Γ ⊢ () : Unit

b ∈ {true, false}
Γ ⊢ b : Bool

n− name

Γ ⊢ n : Nm

−
Γ ⊢ gensym : Unit→ Nm

Γ, x : α ⊢M : α′

Γ ⊢ λxα.M : α→ α′
Γ ⊢M : α→ α′ Γ ⊢ N : α

Γ ⊢MN : α′
Γ ⊢M : Bool

Γ ⊢ ¬M : Bool

Γ ⊢M : αx Γ ⊢ N : αx αx ∈ {Bool,Nm}
Γ ⊢M = N : Bool

Γ ⊢M : Bool Γ ⊢M1 : α Γ ⊢M2 : α

Γ ⊢ if M then M1 else M2 : α

Γ ⊢M : α Γ ⊢ N : α′

Γ ⊢ ⟨M,N⟩ : α× α′
Γ ⊢M : α1 × α2 i = 1, 2

Γ ⊢ πi(M) : αi

Γ ⊢M : α Γ, x : α ⊢ N : α′

Γ ⊢ let x = M in N : α′

Figure 3.2: Typing rules of the νGS-calculus.

Unlike LISP, the type of gensym is Unit → Nm, this is because the STLC does not

execute commands but reduces them, hence this clari�es that the function is called when

it is applied to (). The typing rules ensure that gensym will always be applied to a () and

hence these two forms of gensym are equivalent.

45

Operational Semantics

There are no binders for names and thus the idea of bound or free names of a term becomes

simply all names in a term. A set of names is de�ned as a nameset.

De�nition 20 (All names in terms). All names of a term M written å(M) are de�ned as

follows.

å(())
def
= ∅

å(true)
def
= ∅

å(false)
def
= ∅

å(n)
def
= {n}

å(gensym)
def
= ∅

å(x)
def
= ∅

å(λxα.M)
def
= å(M)

å(M = N)
def
= å(M) ∪ å(N)

å(¬M)
def
= å(M)

å(if M then M1 else M2)
def
= å(M) ∪ å(M1) ∪ å(M2)

å(⟨M,N⟩) def
= å(M) ∪ å(N)

å(πi(M))
def
= å(M)

å(let x = M in N)
def
= å(M) ∪ å(N)

The abbreviation å(M,N) is used to mean å(M) ∪ å(N).

De�nition 21 (Con�gurations). A nameset G (stands for Generated) and a term M are

combined into a con�guration of the form (G, M).

A con�guration is valid if the nameset contains all the names in the term

(G, M) is valid
def
= å(M) ⊆ G

All con�gurations will be considered valid from here on.

De�nition 22 (Reduction relation). The reduction relation for the νGS-calculus,→ relates

two con�gurations (G, M) and (G′, M ′), as (G, M)→ (G′, M ′). The re�exive transitive

closure of → is written →∗. If (G, M)→∗ (G′, V) for some value V , then this is written

(G, M) ⇓ (G′, V).

De�nition 23 (νGS-calculus CBV operational semantics (evaluation contexts)). The CBV

operational semantics of the STLC in Def. 8 are extended to the νGS-calculus as follows.

The evaluation contexts for the νGS-calculus are those of Fig. 3.3 which only di�er from

those of Def. 8 through the introduction of = for names.

E [·] ::= [·] || E [·]M || V E [·] || ¬E [·] || E [·] = M || V = E [·]

|| if E [·] then M else M ′ || if V then E [·] else M ′ || if V then W else E [·]

|| ⟨E [·],M⟩ || ⟨V, E [·]⟩ || πi(E [·]) || let x = E [·] in M

Figure 3.3: Evaluation contexts of the νGS-calculus.

46

The reduction rules of the νGS-calculus are introduced in Fig. 3.4. The application of

gensym to () is the only manner of creating a new name which must be added to the original

nameset. All other rules are standard, except the �nal rule which allows for the addition

or removal of unused names to the nameset in the con�guration.

(G, V) → (G, V)

(G, (λxα.M)V) → (G, M [V/x])

(G, gensym()) → (G ∪ {n}, n) n /∈ G

(G, v = v) → (G, true) v ∈ {true, false} ∪G

(G, v = v′) → (G, false) v ̸= v′, v, v′ ∈ {true, false} ∪G

(G, ¬true) → (G, false)

(G, ¬false) → (G, true)

(G, if true then V else V ′) → (G, V)

(G, if false then V else V ′) → (G, V ′)

(G, πi(⟨V1, V2⟩)) → (G, Vi)

(G, let x = V in M) → (G, M [V/x])

(G, M)→ (G′, M ′) → (G, E [M])→ (G′, E [M ′])

(G, M)→ (G′, M ′) ↔ (G ∪G0, M)→ (G′ ∪G0, M ′) G′ ∩G0 = ∅

Figure 3.4: Reduction rules of the νGS-calculus.

De�nition 24 (Static syntax). A term is classi�ed as static syntax if it contains no names

i.e. å(M) = ∅.

Static syntax is required in the initial state of the reduction relation, hence (∅, M) is

the initial con�guration if å(M) = ∅.

Static syntax guarantees that any name produced is freshly produced by an application

of gensym. The program logic for the νGS-calculus introduced in Chapt. 4, only allows

reasoning about static syntax programs.

Some properties of the νGS-calculus are introduced here. The function (a b) ·X is the

swapping function from nominal logic [50], which swaps the names a and b in X uniformly,

where in this case X is a con�guration.

De�nition 25 (Properties of reduction relation). These are all proven in [68, 62, 22] and

are assumed as de�nitions here.

47

Weakening If (G, M)→∗ (G′, M ′) then ∀ G′′. G′∩G′′ = ∅ → (G∪G′′, M)→∗ (G′∪G′′, M ′)

Equivariance If (G, M)→∗ (G′, M ′) then ∀ a, b. (a b) · (G, M)→∗ (a b) · (G′, M ′)

Nominal Determinancy If (G, M)→∗ (G′, M ′) and (G, M)→∗ (G′′, M ′′)

then ∃ a1, b1, ..., an, bn /∈ G. (G′, M ′) is identical to (a1 b1) · ... · (an bn) · (G′′, M ′′).

This means (G′, M ′) and (G′′, M ′′) are identical up to permutation of fresh names.

Strong Normalisation Every well-typed valid con�guration terminates.

Contextual Congruence

Contextual equivalence in the νGS-calculus is de�ned with similar intentions to the STLC

in Def. 34 now with the new syntax, but �rst some standard de�nitions are re-introduced.

De�nition 26 (Single holed contexts). Single-holed contexts are formally de�ned in Fig. 3.5,

with the hole being �lled with a term of type α0 in the context C[·]α0.

C[·]α0 ::= [·]α0 || λxα.C[·]α0 || C[·]α0M || MC[·]α0 || ¬C[·]α0

|| if C[·]α0 then M else N || if M then C[·]α0 else N || if M then N else C[·]α0

|| ⟨C[·]α0 ,M⟩ || ⟨M,C[·]α0⟩ || πi(C[·]α0)

|| C[·]α0 = M || M = C[·]α0 || let x = C[·]α0 in N || let x = M in C[·]α0

Figure 3.5: Single holed contexts of the νGS-calculus.

De�nition 27 (All names in a single-holed context). The function å(·) is extended to

single-holed context from Def. 20 by including the de�nition å([·]) = ∅.

De�nition 28 (Typing single-holed contexts). Contexts are typed using the rules in Fig. 3.2

extended with the obvious rule for the typed hole as follows.

−

Γ ⊢ [·]α : α

De�nition 29 (Contextual equivalence (νGS-calculus)). Contextual equivalence is de�ned

for two closed terms M and N such that ∅ ⊢M : α and ∅ ⊢ N : α with å(M) ∪ å(N) ⊆ G,

written M ∼=G
α N . Contextual equivalence holds if all contexts with names in G and holes

48

�lled with the two terms evaluate to the same Boolean constant as follows.

M ∼=G
α N

def
= ∀ C[·]α. ∅ ⊢ C[·]α : Bool ∧ å(C[·]) ⊆ G

→


(∃ G′.(G, C[M]) ⇓ (G′, true)

↔

(∃ G′′.(G, C[N]) ⇓ (G′′, true)


Contextual congruence compares two closed terms with the same nameset. Clearly for

any equivalent programs M ∼=G
α N then (G, M) ⇓ (G′, W) and (G, N) ⇓ (G′′, V) with

G′ ∩G′′ = G does not imply W ∼=G′∪G′′
α W as the simple counter example of gensym() ∼=∅α

gensym() fails this property.

To show how the namesets G′ and G′′ may di�er, consider the example M ≡ gensym()

and N ≡ π1(⟨gensym(), gensym()⟩). Although the result of the outputted Boolean constant

true is not a�ected, the nameset G′ would contain one less name than the nameset G′′ due

to the production of two fresh names by N .

The following lemma states that unused Let assignments (including those pointing to

gensym()) can be removed if unused.

Lemma 30 (Let removal).

∀ G,M, x,N. (x /∈ fv(M) ∧ å(N,M) ⊆ G) → (G, M) ∼=G
α (G, let x = N in M)

Proof. Clearly holds given x does not occur free in M meaning any term N cannot a�ect

M . For case where N is gensym() see [52, Corollary 6].

The following lemma shows names can be regenerated assuming (V (x̃))[ñ/x̃] is identical

to V (ñ) and å(V (x)) ∩ {ñ} = ∅.

Lemma 31 (Name regeneration).

∀ G,M, x̃, ñ, V (x̃), V (ñ). (V (x̃))[ñ/x̃] is syntactically identical to V (ñ)

→

(G, M) ⇓ (G ∪ {ñ}, V (ñ)) → M ∼=G
α let x̃ = gensym() in V (x)

Proof. See [52, Corollary 6].

The following lemma show that namesets can be added or removed if the names are

unused in both terms in a contextual congruence.

Lemma 32 (Adding/removing excess names maintains contextual congruence).

∀ G,G′. å(M,N) ∩ å(G′) = ∅ → (M ∼=G
α N ↔M ∼=G∪G′

α N)

49

Proof. Clearly holds by Def. 29 and the �nal rule of Def. 23 which allows for unused names

to be added and removed freely from namesets in con�guration reductions.

It is unknown whether contextual equivalence is decidable above �rst-order [62].

3.1.2 Programs in the νGS-Calculus

This section gives simple examples of νGS-calculus programs which will later be reasoned

about using the program logic in Chapt. 7. Many of these examples are not original and

appear in the literature [52, 62, 2, 68].

Before these examples are introduced, the idea of reachable and unreachable (hidden)

names are introduced. Names can occur in a term but get trapped inside with no escape,

meaning there is no method to use the term that allows for the name as output, i.e. hidden.

This typically occurs when names are bound outside a λ-binder but are used inside the

λ-binder under a destructor (in this case equality). For example the name n is reachable

from the terms n, ⟨n, n′⟩ and λy.n but is unreachable from n′, λx.π1(⟨n′, n⟩) and λx.(x = n).

This concept extends to a set of terms M̃ , such that the term N is reachable by M̃ if there

exists some M0 such that å(M0) = ∅ and (å(M̃), M0M̃) ⇓ (G′, N), and is de�ned as

unreachable otherwise.

The following abbreviation is used when numerous fresh names are generated using

let x = gensym() in Sometimes the set of variables x1, x2, ..., xk is abbreviated further

to x̃.

let x1, ..., xk = gensym() in M
def
= let x1 = gensym() in

...

let xk = gensym in M

Example 4 (STLC programs). All STLC programs evaluate identically in the νGS-calculus

in any nameset con�guration as follows.

M ⇓λ V → (∅, M) ⇓ (∅, V)

Example 5 ((∅, gensym())). The core example of generating a fresh name clearly holds

directly from the reduction rules in Fig. 3.4.

(∅, gensym()) ⇓ ({n}, n)

Example 6 ((∅, (λxNm.x)(gensym()))). The identity function applied to a fresh name

50

produces the same fresh name as follows.

1 (∅, gensym()) ⇓ ({n}, n)

2 ({n}, (λxNm.x)n) ⇓ ({n}, n)

3 (∅, (λxNm.x)(gensym())) ⇓ ({n}, n)

Example 7 ((∅, gensym() = gensym())). The equating of one fresh name with another

fresh name evaluates as follows.

1 (∅, gensym()) ⇓ ({n}, n)

2 ({n}, gensym()) ⇓ ({n, n′}, n′)

3 ({n, n′}, n = n′) ⇓ ({n, n′}, false)

4 (∅, gensym() = gensym()) ⇓ ({n, n′}, false)

Example 8 ((∅, (λxNm.x = x)(gensym()))). Comparing a fresh name with itself is clearly

true as follows.

1 (∅, gensym()) ⇓ ({n}, n)

2 ({n}, (λxNm.x = x)n)→ ({n}, n = n)

3 ({n}, n = n)→ ({n}, true)

4 (∅, (λxNm.x = x)(gensym())) ⇓ ({n}, true)

Example 9 ((∅, λxNm.(λyNm.x = y)(gensym())(gensym()))). The equating of one fresh

name with another fresh name after being passed through a function, evaluates as follows.

1 (∅, gensym()) ⇓ ({n}, n)

2 ({n}, (λxNm.(λyNm.x = y)(gensym()))n)→ ({n}, (λyNm.n = y)(gensym()))

3 ({n}, gensym()) ⇓ ({n, n′}, n′)

4 ({n, n′}, (λxNm.n = x)n′)→ ({n, n′}, n = n′)

5 ({n, n′}, n = n′) ⇓ ({n, n′}, false)

6 (∅, λxNm.(λyNm.x = y)(gensym())(gensym())) ⇓ ({n, n′}, false)

Example 10 ((∅, let x = gensym() in x)). Using let x = M in x in the case below is

identical to using the identity function on M in Ex. 6.

(∅, let x = gensym() in x) ⇓ ({n}, n)

51

Example 11 ((∅, let x = gensym in x() = x())). Using gensym prior to application

to () and as a function that will create fresh names gives an example that shows how

extensionality fails for gensym.

1 (∅, gensym) ⇓ (∅, gensym)

2 (∅, let x = gensym in x() = x())→ (∅, gensym() = gensym())

3 (∅, let x = gensym in x() = x()) ⇓ ({n, n′}, false) See Ex. 7

Example 12 (let x = gensym() in let y = gensym() in x = y). Producing the two fresh

name prior to comparing them in let x = gensym() in let y = gensym() in x = y reduces as

follows to false.

1 (∅, gensym()) ⇓ ({n}, n)

2 ({n}, gensym()) ⇓ ({n, n′}, n′)

3 ({n, n′}, n = n′) ⇓ ({n, n′}, false)

4 (∅, let x = gensym() in let y = gensym() in x = y) ⇓ ({n, n′}, false)

Example 13 (let x = gensym() in λyNm.(x = y)). A key example of a hidden name is

let x = gensym() in λyNm.(x = y), reduced below. This function can never reveal the name

stored at x, no matter how the function is used, as it is produced outside the λ-binder but

only occurs deconstructed by equality inside the λ-binder.

1 (∅, gensym()) ⇓ ({n}, n)

2 (∅, let x = gensym() in λyNm.(x = y)) ⇓ ({n}, λyNm.(n = y))

Any application of this function should always output false, as it must be applied to a

name which can never be equivalent to n.

Example 14 (let x = gensym() in ⟨λyNm.(x = y), x⟩). In contrast to Ex. 13, the following

example let x = gensym() in ⟨λyNm.(x = y), x⟩ outputs a pair where the �rst element is

the function above and the second element is the name at x. This is reduced below. This

output does reveal the name stored at x, so the function in the �rst element of the pair

can now potentially return true.

1 (∅, gensym()) ⇓ ({n}, n)

2 ({n}, let x = n in ⟨λyNm.(x = y), x⟩) ⇓ ({n}, ⟨λyNm.(n = y), n⟩)

3 (∅, let x = gensym() in ⟨λyNm.(x = y), x⟩) ⇓ ({n}, ⟨λyNm.(n = y), n⟩)

52

Example 15 (let x = gensym() in λyNm.x). In contrast to Ex. 13, a simple example which

reveals a name inside a λ-binder is let x = gensym() in λyNm.x, reasoned about below.

Once evaluated the value will be a function that always returns the same name.

1 (∅, gensym()) ⇓ ({n}, n)

2 (∅, let x = gensym() in λyNm.x) ⇓ ({n}, λyNm.n)

Example 16 (The �chain� example [68]). A set of functions that are indexed by some

integer p, which creates p fresh names and cyclically permutes the names depending on

the input name, can be de�ned by the functions Chainp of type Nm→ Nm as follows.

Chainp
def
= let x0, ..., xp = gensym() in λxNm. if x = x0 then x1 else

if x = x1 then x2 else

...

if x = xp then x0 else x0

As an example let p = 2 then:

− (∅, Chain2)→ ({n0, n1, n2}, Vp)

− (∅, let f = Chain2 in f(gensym()))→ ({n0, n1, n2, n}, n0)

− (∅, let f = Chain2 in ff(gensym()))→ ({n0, n1, n2, n}, n1)

− (∅, let f = Chain2 in fff(gensym()))→ ({n0, n1, n2, n}, n2)

− (∅, let f = Chain2 in ffff(gensym()))→ ({n0, n1, n2, n}, n0)

− ...

Clearly if p ̸= p′ then Chainp ̸∼=∅Nm→Nm Chainp′ .

Example 17 (The �inaccessible chain� example). This example is adapted from Ex. 16

but itself does not seem to appear in the literature. An adaptation to Ex. 16 that creates

p + 1 names with a cyclic dependency on p of these names but never gives access to any

part of the cycle can be seen as follows. The function only gives access to a single name

not in the cyclical chain part.

InaccessChainp
def
= let x0, ..., xp, y = gensym() in λxNm. if x = x0 then x1 else

if x = x1 then x2 else

...

if x = xp then x0 else y

53

For each p clearly InaccessChainp can access the name y but it needs access to some

name at xk with 0 ≤ k ≤ p to output another name in xk with 0 ≤ k ≤ p so this circular

dependency ensures that none of the names in xk with 0 ≤ k ≤ p are actually accessible

and only the name at y is accessible. For this reason InaccessChainp ∼=∅Nm→Nm (gensym())

should hold for any p.

Example 18 (The �lasso� example [68]). Another adaption of Ex. 16 is lasso(i,p) de�ned

below. lasso(i,p) changes the �nal if-case name in chainp to some ni for 0 < i ≤ n forming

a loop of names that starts after i number of calls to the function. If i = 0 then Chainp ≡

lasso(0,p).

lasso(i,p)
def
= let x0, ..., xp = gensym() in λxNm. if x = x0 then x1 else

if x = x1 then x2 else

...

if x = xp then xi else x0

As an example let Gl ≡ {n0, n1, n2, n3, n} then:

− (∅, let f = lasso(1,3) in f(gensym()))→ (Gl, n0)

− (∅, let f = lasso(1,3) in ff(gensym()))→ (Gl, n1)

− (∅, let f = lasso(1,3) in fff(gensym()))→ (Gl, n2)

− (∅, let f = lasso(1,3) in ffff(gensym()))→ (Gl, n3)

− (∅, let f = lasso(1,3) in fffff(gensym()))→ (Gl, n1)

− (∅, let f = lasso(1,3) in ffffff(gensym()))→ (Gl, n2)

− ...

Example 19 (The �hard� example). An example that deserves some discussion is the

�hard� example which has been discussed in [2, 52, 68] and is a recurring problem in many

of these papers. The program is MH below, which is simple but highlights the nuances of

the ν-calculus.

MH
def
= let x, x′ = gensym() in λfNm→Bool.fx = fx′

Assume (∅, MH) → ({n, n′}, λfNm→Bool.fn = fn′
def
= VH). One might expect VH to

hide the names n and n′ under the λf -binder and hence the returning function should be

equivalent to λf.true. One could verbally argue that �MH cannot reveal n or n′ and hence

54

any function of type Nm→ Bool to which this is applied should not be able to distinguish

n from n′ so must treat them equally and hence returning true�, however this is not entirely

true. Although the names cannot be revealed from the function, the function itself can be

used to internally compare the names. Consider the context CH [·] de�ned as follows.

CH [·] def= let F = [·] in let G = λyNm.F (λzNm.y = z) in FG

The reduction of CH [MH] is introduced below, where the outermost application of VH

returns true, but within the evaluation there are applications of VH in lines 7-10 and lines

11-14 such that the applied VH returns false. However, the two occurrences of applied VH

returning false are equated to each other in line 15 and hence the outermost application

of VH does return true as expected.

1 Let Gn
def
= {n, n′}

2 Let: VH ≡ λfNm→Bool.fn = fn′ and WH ≡ λxNm.VH(λyNm.x = y)

3 (∅, MH)→ (Gn, VH)

4 (∅, CH [MH])→ (Gn, CH [VH]) Line.3

5 → (Gn, let G = WH in VHG)→ (Gn, VHWH)

6 → (Gn, WHn = WHn′)

7 (Gn, WHn)→ (Gn, VH(λyNm.n = y)))

8 → (Gn, (λyNm.n = y)n = (λyNm.n = y)n′)

9 → (Gn, (n = n) = (n = n′))

10 → (Gn, true = false)→ (Gn, false)

11 (Gn, WHn′)→ (Gn, VH(λyNm.n′ = y)))

12 → (Gn, (λyNm.n′ = y)n = (λyNm.n′ = y)n′)

13 → (Gn, (n′ = n) = (n′ = n′))

14 → (Gn, false = true)→ (Gn, false)

15 (Gn, WHn = WHn′)→ (Gn, false = false)→ (Gn, true) Lines.10, 14

16 (∅, CH [MH])→ (Gn, true) Lines.4-6, 15

55

Because the outermost application of VH does return true the contextual equivalence

MH
∼=PS

Nm→Bool λf
Nm→Bool.true holds. Proving this equality was one of the key aims of

several papers discussed in Sec. 3.4 [52, 68, 2].

Example 20 (The alternative �hard� example). If Ex. 19 is altered by generating the

second fresh name under the λ-binder then the result is the following function M ′H .

M ′H
def
= let z′ = gensym() in λfNm→Bool.let z = gensym() in fz = fz′

This clearly will not be contextually congruent to λfNm→Bool.true as the context CH′

below, distinguishes these two programs as it applies the function twice to �re-use� the

name n. The evaluation for CH′ [M ′H] is seen below to show how it di�ers from Ex. 19. The

two applications of V ′H returning di�erent results in lines 12 and 17 alongside the �nal

comparison of these two results in line 18.

CH′ [·] def= (λF (Nm→Bool)→Bool.F (λxNm.F (λyNm.x = y)))[·]

56

1 Let G1
def
= {n}, G2

def
= {n, n′}, G3

def
= {n, n′, n′′}, G4

def
= {n, n′, n′′, n′′′}

2 Let: V ′H ≡ λfNm→Bool.let z = gensym() in fn = fz and W ′H ≡ λxNm.V ′H(λyNm.x = y)

3 (∅, M ′H)→ (G1, V ′H)

4 (∅, CH′ [M ′H])→ (G1, CH′ [V ′H]) Line.3

5 → (G1, V ′HW ′H)

6 → (G1, let z = gensym() in W ′Hn = W ′Hz)

7 → (G2, W ′Hn = W ′Hn′)

8 (G2, W ′Hn)→ (G2, V ′H(λyNm.n = y))

9 → (G2, let z = gensym() in ((λyNm.n = y)n) = ((λyNm.n = y)z))

10 → (G3, ((λyNm.n = y)n) = ((λyNm.n = y)n′′))

11 → (G3, (n = n) = (n = n′′))

12 → (G3, true = false)→ (Gn, false)

13 (G3, W ′Hn′)→ (G3, V ′H(λyNm.n′ = y))

14 → (G3, let z = gensym() in ((λyNm.n′ = y)n) = ((λyNm.n′ = y)z))

15 → (G4, ((λyNm.n′ = y)n) = ((λyNm.n′ = y)n′′′))

16 → (G4, (n′ = n) = (n′ = n′′′))

17 → (G4, false = false)→ (G4, true)

18 (Gn, W ′Hn = W ′Hn′)→ (Gn, false = true)→ (Gn, false) Lines.7, 8-12, 13-17

19 (∅, CH′ [M ′H])→ (Gn, false) Lines.4-7, 18

Clearly (∅, CH′ [λf.true]) ⇓ (∅, true) hence this context proves by counterexample that

M ′H ̸∼=∅(Nm→Bool)→Bool λf.true as expected.

57

3.2 The νPS-Calculus

The νGS-calculus is an adaptation of what is referred to here as the νPS-calculus introduced

by Andrew Pitts and Ian Stark in 1993 [52]. The ideas originated from π-calculus which

uses similar notation and concepts in creating fresh channels using a νn.P constructor. The

introduction of the νPS-calculus lead to a �urry of research, e.g. [22, 19, 25, 51, 50, 70].

The language is brie�y and informally introduced in Sec. 3.2.1 alongside the de�nition

of contextual congruence. The similarities between the νPS-calculus and the νGS-calculus

are intentional and the translations between the two versions are introduced in Sec. 3.3.

3.2.1 The Programming Language

The syntax of the νPS-calculus extends that of the STLC with the type Nm, and a con-

structor for names now in the form νn.M , which binds a new name to n in M . The

destructor of type Nm is again the equality operator =. Pairs and pair projection are not

originally included; however, they are not expected to introduce any new issues.

Unlike the νGS-calculus, the binding of names now requires the de�nition of free names,

similar to the de�nition of free variables. Free Names in the νPS-calculus are similar to

the �all-names� function in the νGS-calculus. The key de�nition is that of fn(νn.M)
def
=

fn(M) \ {n}.

Type checking for the νPS-calculus follows that of the STLC but adds a nameset (a

list of generated names) s, to the typing judgment as s,Γ ⊢ν M : α. This means M has

type α in the type context Γ, with names occurring freely in M contained in the nameset

s. Adding name n to the nameset s is written s ⊕ {n} and adding two namesets s and s′

is written similarly as s⊕ s′.

The key new typing rules are those including names provided in Fig. 3.6.

(n ∈ s)

s,Γ ⊢ν n : Nm

s⊕ {n},Γ ⊢ν M : α

s,Γ ⊢ν νn.M : α

s,Γ ⊢ν M : Nm s,Γ ⊢ν N : Nm

s,Γ ⊢ν M = N : Bool

Figure 3.6: Key new typing rules of the νPS-calculus.

This type check performs two checks. Firstly that the free names used are part of the

nameset, secondly that the variables are correctly typed by the type context. This di�ers

from the νGS-calculus, which splits the two checks by using valid con�gurations to check

the names in the term exist in the nameset and the classic type check for a check on the

58

variables. The two approaches are equivalent.

As with the typing rules, the reduction relation is also extended from the STLC with

a nameset s. The reduction relation becomes s ⊢ M → (s′) M ′ and states that the term

M with the fn(M) ∈ s reduces to a term M ′ with free names in s ⊕ s′. Substitution also

builds on the STLC de�nition (Def. 3) to now include names in the terms and values being

substituted, as M [V/x] substitutes V for the free occurrences of variable x in M whilst

avoiding capturing free variables and names in V .

The operational semantics for the νPS-calculus is de�ned using the same evaluation

contexts as those of the STLC in Def. 8. The key new reduction rules are those involving

names seen in Fig. 3.7.

s ⊢ n = n→ (∅) true

s ⊢ n = n′ → (∅) false n ̸= n′

s ⊢ νn.M → ({n}) M

Figure 3.7: Reduction rules of the νPS-calculus.

Bound names can be �α-converted� if required which replaces one of the binding names

and any occurrence of that name in a term for another unused name. For any M with fresh

names n an n′ not occurring bound or free in M , then νn.M [n/y] ≡α νn′.M [n′/y]. This

removes the focus on the precise name being used and emphasises the binding relationship

and when names are generated similar to the α-equivalence for variables.

Contextual Equivalence in the νPS-calculus

The de�nition of contextual equivalence for the νPS-calculus is the standard de�nition for

the STLC in Def. 10 with an adaption to include the names.

De�nition 33 (Single holed contexts νPS-calculus). The single-holed contexts of the STLC

in Sec. 2.1.3 are extended to include the new constructors of the νPS-calculus as follows.

The equality context is included as this now equates names as well as Booleans.

C[·]α ::= ... || νn.C[·]α || C[·]α = M || M = C[·]α

Any context �lled with an appropriately typed term is a νPS-calculus term and can

thus be typed accordingly. Contexts can be typed using the typing rules in Fig. 3.6 and

59

the following rule to type holes.
−

s,Γ ⊢ν [·]α : α

A context C[·] is M closing if it binds all free variables in a term M , hence s, ∅ ⊢

C[M] : α. Contextual equivalence can now be de�ned as follows.

De�nition 34 (Contextual equivalence (νPS-calculus)). Two possibly open terms M and

N of type α, that are both typed by s,Γ (i.e. s,Γ ⊢M : α and s,Γ ⊢ N : α) are de�ned as

contextually equivalent, written s,Γ ⊢ M ∼=PS
α N , if any closing context of both M and N

is unable to distinguish these terms and is formally de�ned as follows.

s,Γ ⊢M ∼=PS
α N

def
= ∀ C[·]α. s, ∅ ⊢ν C[M]α : Bool ∧ s, ∅ ⊢ν C[N]α : Bool

→


(∃ s′. s ⊢ C[M] ⇓ (s′) true)

↔

(∃ s′′. s ⊢ C[N] ⇓ (s′′) true)


3.3 Relation Between the νGS-Calculus and the νPS-Calculus

The formulations of νGS-calculus and νPS-calculus are equivalent [68]. The νPS-calculus

combines the fresh name generation with the scope of the name, whereas the νGS-calculus

separates these two aspects and uses the λ-abstraction as the basis for the scope of the

names. These di�erences can help in thought processes depending on the application. The

term gensym() is sometimes replaced by the term new [68, 2], however in this thesis the

gensym version is used.

One slight di�erence between the two formulations is that the νPS-calculus allows for

the binding of names within a single-holed context, i.e. C[·] ≡ νn.C′[·] is permitted whereas

νGS-calculus cannot bind speci�c names. However, it seems these contexts are not intended

by the de�nition, or used in practice [68, 62].

A translation from νGS-calculus to νPS-calculus, written ⟨⟨·⟩⟩GS→PS can be de�ned in-

ductively with the key translation being ⟨⟨gensym⟩⟩GS→PS
def
= λ().νn.n. The reverse trans-

lation from νPS-calculus to νGS-calculus, written ⟨⟨·⟩⟩PS→GS , can be de�ned inductively

with the key case being ⟨⟨νn.M⟩⟩PS→GS
def
= let n = gensym() in ⟨⟨M⟩⟩PS→GS . Ignoring

pairs and projections from the νGS-calculus, the other cases to both these translations are

trivial.

This leads to the following statements for any terms M and N in the respective lan-

60

guages (denoted by the X ∈ {PS, GS} in MX) .

MGS
∼=G

α ⟨⟨⟨⟨MGS⟩⟩GS→PS⟩⟩PS→GS

G ⊢MPS
∼=PS

α ⟨⟨⟨⟨MPS⟩⟩PS→GS⟩⟩GS→PS

MGS
∼=G

α NGS ↔ G ⊢ ⟨⟨MGS⟩⟩GS→PS
∼=PS

α ⟨⟨NGS⟩⟩GS→PS

G ⊢MPS
∼=PS

α NPS ↔ ⟨⟨MPS⟩⟩PS→GS
∼=G

α ⟨⟨NPS⟩⟩PS→GS

The proof of these statements are trivial.

Hence all programs (and equivalences) in Sec. 3.1.2 can be directly translated to ex-

amples in the νPS-calculus, and vice versa.

3.4 Proof Techniques of Contextual Equivalence in the νPS-

Calculus

Reasoning about programs often means proving contextual equivalence. Proof techniques

are introduced to prove certain classes of contextual equivalence for the νPS-calculus. A

key sticking point in many of the contextual equivalence proofs is the �hard� example

equivalence (Ex. 19) de�ned as follows.

∅, ∅ ⊢ νn1.νn2.λf
Nm→Bool.(fn1 = fn2) ∼=PS

(Nm→Bool)→Bool λf.true

This needs special attention due to the reuse of hidden names as seen in Ex. 19.

Alternative proof techniques to prove contextual equivalence are sought after, which

allow for smaller, more manageable proofs. It is still not known if contextual equivalence is

decidable in the νPS-calculus for all terms [52, 68, 2], however, it is proven that contextual

equivalence is decidable for �rst order types [52]. A simpler proof of contextual equivalence

would be useful, and various attempts at more manageable de�nitions are introduced in

[62, 52, 74, 2, 68] these are introduced and discussed in the following subsections.

Given most of the research is focused on the νPS-calculus variant the rest of this sub-

section will focus only on this variant. All proof techniques here for the νPS-calculus are

expected to hold in the νGS-calculus, given the equivalence of the languages.

3.4.1 Equational Logic

In 1998 Ian Stark introduced an equational logic using the CBV β-equivalence, η-equivalence

and various other rules to construct the equivalence relation using derivation rules [63]. In

equational logics, assertions are of the form s,Γ ⊢ M ∼=EqLog(α) N . Equational assertions

can be derived using inductive rules

61

This equational reasoning of two terms implies contextual equivalence and corresponds

exactly with contextual equivalence at �rst order types and ground types. i.e. deriving

s,Γ ⊢ M ∼=EqLog(α) N implies s,Γ ⊢ M ∼=PS
α N , with the opposite direction holding for α

a �rst order or ground type.

This logic is sound, however it cannot distinguish between public and private names,

hence fails to prove certain equivalences such as (νn.λx.x = n) ∼=PS
Nm→Bool λx.false meaning

it is not complete. This is extended to a more powerful relational logic in [63], similar to

the logical relations introduced in Sec. 3.4.2 but with a set of rules to derive these relations.

3.4.2 Logical Relations

In general, logical relations allow for the reasoning of properties such as termination, type

safety and contextual equivalence by introducing an intermediate layer of reasoning. A

logical relation is a unary, binary or n-ary, type-indexed relation between terms in a lan-

guage, with suitable closure properties. Termination for the STLC was proven using logical

relations [65], and its applications have steadily grown (in number and complexity) over

time. Logical relations are typically used for proofs regarding the STLC and its exten-

sions, and have been adapted to the νPS-calculus in [52, 63]. The νPS-calculus was proven

to terminate using logical relations in [52].

To prove contextual equivalence in the νPS-calculus, a binary logical relationRα between

two νPS-calculus values of type α, written V1 Rα V2, is de�ned. The relation Rα has a

span written as Rα : s1 ⇋ s2, which is an injective partial map from the nameset s1 to the

nameset s2. The span states which names are public (and hence which are private), and

states how the names are related from one value to the other.

The identity partial bijection id∗α for any nameset, is a logical relation which implies

contextual equivalence. However, the contextual equivalence is only proven to imply the

identity relation at �rst order.

Logical relations fail to prove the hard example equivalence, hence an extension to

logical relations: predicated logical relations was introduced for this speci�c form of equi-

valence. Predicated logical relations introduce an extra symmetry of names for each term

being related. The identity partial bijection in this new relation is proven to imply contex-

tual equivalence. This can now be used to derive the �hard� example equivalence above.

Predicated logical relations are also only complete up to �rst order.

Further extensions to logical relations are possible and may provide extra insight in this

context, but it is suggested the complexity and lack of completeness makes these possible

62

extensions unworthy of further research [62].

3.4.3 Kripke Logical Relations

A Kripke logical relations derived from the categorical model of the νPS-calculus and the

general notion of Kripke logical relations is equally powerful to Pitts and Starks logical

relations in [52] at �rst order types [74].

�The failure of the equivalence for high-order function types is due to the non-

fully abstract categorical model, while a similar Kripke logical relation de�ned

directly on the computational metalanguage has been shown to be equivalent

to the operational logical relation for any type [73]� [74]

This is not discussed any further here.

3.4.4 Environmental Bisimulations

Pitts and Starks' predicated logical relations [63] are derived precisely for examples such

as the �hard� example equivalence. A more general approach is introduced in [2, 68], using

environmental bisimulations to prove the `hard� example equivalence and more complex

equivalences.

A bisimulation for the extension of the νPS-calculus which includes assignment was in-

troduced and proven complete but not sound [31], however the �hard� example equivalence

fails to hold as the context can distinguish these functions with side-e�ects.

Environmental bisimulations [64, 34], extend bisimulations as a set of relations as op-

posed to a single relation. The set of relations grows as the environment of the terms being

equated changes.

A sound and complete theory for reasoning about (contextual) equivalence in the νPS-

calculus (without assignment) is provided in [2]. A theory of adequate sets of relations

is developed, such that the largest adequate set of relations coincides with contextual

equivalence. A set of proof obligations are given, which need to be satis�ed to ensure a set

is adequate. The resulting proofs of equivalence are simpler compared to other methods.

All examples in [62] are provable using this technique, including the hard example,

which uses two applications of this technique, establishing the equivalence through the

proof of another equivalence. The proofs in [2] are all proven in Coq, providing a cast iron

level of certainty that these hold.

63

3.4.5 Nominal Games

Call-by-value games provide a semantics for the STLC [27]. Call-by-value games are gener-

alised to nominal games, giving the �rst fully-abstract model for the νPS-calculus was �rst

proposed in [1], but there was a bug which was then �xed in [68]. The contextual equival-

ence coincides with the equational theory provided by the model. A further extension to

a fully-abstract model for a language with nominal general references was introduced in

[67]. Discrepancies in the proof for the hard example from [1], were discussed and recti�ed

in [68]. This model, although fully abstract, is complicated to use and does not provide a

general method for deriving equivalences.

3.4.6 Probabilistic Programming Semantics for Name-Generation

In [60], a model of probabilistic programming called quasi-Borel spaces is used to model

the ν-calculus. This takes the idea that each name produced in the νPS-calculus can be

thought of as a random number from the reals (R), and hence to all intents and purposes

will always be distinct. These semantics are sound and also fully abstract up to �rst order-

types meaning any two νPS-calculus programs are observationally equivalent if and only if

their interpretations are observationally equivalent in the quasi-Borel spaces.

3.5 The λν-Calculus

In 1993 Martin Odersky introduced a call-by-name variation of the νPS-calculus, called the

λν-calculus [46] (later [47]). The λν-calculus does not contain state (i.e. the namesets in

the νPS-calculus and νGS-calculus), however does allow λ and ν to commute unlike in the

νPS-calculus.

De�nition 35 (Syntax (λν-calculus)). The λν-calculus types are identical to the νPS-

calculus extending the STLC types with that of Nm. The typing context maps variables

to types and names to type Nm which simpli�es the typing judgment for the language

somewhat.

The λν-calculus syntax of terms is identical to that of the νPS-calculus with the same

ν-binder, an in�nite set of names, and the same equating operator =. The values however

are di�erent, the λν-calculus does not allow νn.n or n (a name) as values but instead

requires all programs to be of Boolean type. This ensures all names are always compared

within the scope of a ν-binder, meaning the programs νn.n and (νn.n) = (νn′.n′) (which are

both common in νPS-calculus) are terms which get �stuck� in the original λν-calculus. This

64

re�ects that the identity of the name is known only within its scope. A reduced version of

the syntax is introduced in Fig. 3.8.

α ::= Bool || Nm || α→ α

Γ ::= ∅ || Γ, x : α || Γ, n : Nm

M ::= c || n || x || λx.M || MM || νn.M || M = M

V ::= c || n || x || λx.M

Figure 3.8: Syntax of the λν-calculus.

Although pairs, and various primitive operations on pairs are included in the original

paper [46], they are not included here for brevity. The operator name? which checks if a

term is a name is also not included here but performs a check on a term to see if it is a

name.

De�nition 36 (Typing rules (λν-calculus)). λν-calculus terms are typed using the STLC

typing judgment Γ ⊢ M : α, not including the nameset in the typing judgement as in the

νPS-calculus. The typing context maps variables to types and names to type Nm. The

typing rules are introduced in Fig. 3.9.

−
Γ, x : α ⊢ x : α

Var

Γ, x : α ⊢M : α′

Γ ⊢ λx.M : α→ α′
Lam

Γ ⊢M : α′ → α Γ ⊢ N : α′

Γ ⊢MN : α
App

−
Γ, n : Nm ⊢ n : Nm

Name

Γ, n : Nm ⊢M : α

Γ ⊢ νn.M : α
Nu

Γ ⊢M : Nm Γ ⊢ N : Nm

Γ ⊢M = N : Bool
Eq

Figure 3.9: Typing rules of the λν-calculus.

The reduction relation for the λν-calculus is based on the CBN STLC reduction rela-

tion, relating two terms M and M ′ as M →λν M ′. A nameset is not required because the

name binder is never deconstructed to create names as in the νPS-calculus.

De�nition 37 (Evaluation contexts (λν-calculus)). Evaluation contexts (of the Felleisen-

Heib style [18]) are de�ned below in Fig. 3.10.

65

E [·] ::= [·] || E [·] M || νn. E [·]

Figure 3.10: Evaluation contexts of the λν-calculus.

The �rst three cases above are as expected for evaluation contexts for the CBN λ-

calculus and the �nal case νn.E [·], ensures evaluations occur inside ν-binders which does

not occur in the νPS-calculus.

De�nition 38 (Reduction rules (λν-calculus)). The reduction rules are introduced in

Fig. 3.11.

(λx.M)N →λν [N/x]M

n = n →λν true

n = n′ →λν false (n ̸= n′)

νn.λx.M →λν λx.νn.M

νn.n′ →λν n′

νn.n ̸→λν

M →λν N → E [M]→λν E [N]

Figure 3.11: Reduction rules of the λν-calculus.

The �rst three rules are standard Call-By-Name lambda calculus rules with equality

(adapted to include names). The λ-binder and ν-binder commute in only one direction

via the fourth rule, which is not permitted in the νPS-calculus. The �fth rule shows the

absorption of the ν-binder by a distinct name. The penultimate rule states that νn.n

cannot be reduced further, hence λν-calculus with this rule �fails to satisfy the progress

part type soundness� [36]. Similar to α-convertibility for bound variables α-convertibility

for names ensures bound names can be swapped and speci�c names are not important.

The �nal rule states the reduction via evaluation contexts.

The λν-calculus can be extended to model local state with mutable local variables via

an extension of the type Nm to Nm(α), for some type α, allowing the name to map to a

term of type α.

Contextual equivalence in the λν-calculus is de�ned as for the νPS-calculus. The

66

primary di�erence when compared to νPS-calculus is that in this case because νn.n = νn′.n′

gets �stuck� then the de�nition clearly falters in some aspects.

De�nition 39 (Contextual equivalence (λν-calculus)). Contextual equivalence of two terms

M and N is de�ned if for all contexts C[·] such that C[M] and C[N] are both closed, then

C[M]→∗λν true i� C[N]→∗λν true.

The λν-calculus is proven to be a conservative observational extension of the λ-calculus.

There is a syntactic embedding of the λν-calculus in the λ-calculus, which uses a de Bruijn

indices style translation to maintain the number of �levels� between the name and ν-binder.

This assumes some form of integers in the λ-calculus and the embedding. Although simple,

this translation requires a lengthy proof to show the semantics are preserved [47].

3.6 Relating νPS-Calculus and λν-Calculus

The two languages νPS-calculus and λν-calculus are compared in [36], with the νPS-calculus

being translated using a Continuation Passing Style (CPS) translation into the λν-calculus.

To make the formalities easier, both calculi are rewritten in an equivalent big-step

operational semantics and various syntactic alterations are made.

The only alteration to the language in Löschs λν-calculus [36] compared to Oderskys

λν-calculus [47] is that the former now de�nes νn.n to be a canonical value and similarly

(νn.n) = (νn.n) is chosen to evaluate to true, ensuring type soundness and totality of this

variant of λν-calculus. The later choice of (νn.n) = (νn.n)→λν true, must presumably be

matched with a similar choice of (νn.(n = (νn′.n′))→λν false, however this is not clari�ed.

A translation from the νPS-calculus to the λν-calculus is introduced using CPS, a

common extension to the standard CBV to CBN translation [53]. This translation is

proven computationally adequate, de�ned as:

(i) All Boolean typed terms in νPS-calculus and their translation to the λν-calculus

evaluate to the same Boolean constant.

(ii) Two terms of any type that are observationally equivalent (in the νPS-calculus) must

translate to two terms in the λν-calculus that are observationally equivalent (in the

λν-calculus).

The opposite direction translation from the λν-calculus to the νPS-calculus is sketched

(in a similar CPS-form) but not covered in detail in the paper.

67

The translations used between νPS-calculus and λν-calculus fails to satisfy full abstrac-

tion, that is: �the target language must not be able to observe more about a translated

term than is possible in the source language�. The two contextually congruent νPS-calculus

programs λf.(λx.true)(ftrue) and λf.true do not translate to contextually congruent terms

in the λν-calculus as the translation can be distinguished by a context, �this failure of full

abstraction has more to do with the nature of continuation-passing transformations than

with locally scoped names� [36].

3.7 Summary

The rest of the thesis will be work based on the νGS-calculus, which has been introduced

here. The original νPS-calculus is introduced as the primary language discussed in the

literature, however the two languages νGS-calculus and νPS-calculus are proven equivalent.

Numerous proof techniques for proving contextual equivalence in the νPS-calculus are sum-

marised, showing the di�culty that the simple language with names presents. The syntax,

typing, reduction relation, and contextual equivalence are introduced for both of these

languages. Numerous example programs in the νGS-calculus are introduced and reduced

to show the intricacies of the language. Many of these programs will be reasoned about

using the ν-logic.

A summary of the λν-calculus is provided which extends the CBN version fo the STLC

with fresh name generation. The relation between the λν-calculus and the νPS-calculus,

as summarised in the literature, is also introduced.

68

Chapter 4

Logical Language

The νGS-calculus extends the STLC, hence the program logic for the νGS-calculus (or the

ν-logic), is inspired by the λ-logic, with the relevant changes to reason about names.

In this chapter the logical language is introduced. The logical syntax is introduced in

Sec. 4.1, with typing of the logical constructs introduced in Sec. 4.2. Two versions of sub-

stitution in the ν-logic are introduced in Sec. 4.3, these are inspired by logical substitution

in the λ-logic. Two properties of logical formulae are (syntactically) introduced in Sec. 4.4

those are: extension independence and thinness with respect to variables.

The axioms for the logic (also referred to as the the logic of axioms) are introduced in

Sec. 4.5. The axioms are split into their primary logical constructors i.e. equality, restricted

quanti�cation, freshness, quanti�cation over LTCs and evaluation formulae, in that order.

The rules for the logic allow for the reasoning of programs and are introduced in Sec. 4.6.

This logic of rules introduces classes of rules: core language rules based on the programming

language constructors, structural rules and derived rules.

Finally, in Sec. 4.7, a summary of the alternative options regarding the design of this

logic is provided.

4.1 Logical Syntax

The logical syntax for the νGS-calculus builds on the λ-logic, with an adaptation of univer-

sal quanti�cation and a new logical operator to quantify over future states with the added

bene�t of naming the future state. Expressions, ranged over by e,e′, ..., formulae, ranged

over by A, B, C, ... and Logical Type Contexts (LTCs), ranged over by IΓ, IΓ′, IΓi, ... , are

de�ned in Fig. 4.1. The extensions over the λ-logic are those of LTCs and the �nal two

logical operators.

69

e ::= xα || c || ⟨e, e⟩ || πi(e)

IΓ ::= ∅ || IΓ+x : α || IΓ+δ : TC

A ::= e = e || ¬A || A ∧A || e • e = xα{A} || ∀xα ∈ (IΓ).A || ∀δ.A

Figure 4.1: Syntax of expressions, LTCs and formulae of the ν-logic.

Expressions, e, are standard as in Sec. 2.2.2, where constants, c, range over Boolean

constants true and false and unit constant (). Names are not included directly in the

expressions and can only be referenced via use of variables. For reasons explained in

Sec. 2.2.2 there is no expression e = e′; however, it is sometimes treated as an expression

for brevity (see [Eq]ν). The new logical constructs are now explained in detail.

4.1.1 Logical Type Contexts (LTCs)

LTCs extend standard type contexts (STCs) which map variables to types in two ways:

LTCs are ordered, and LTCs also map type context variables (TCVs) to the type TC

(meaning Type Context). TCVs range over δ, δ′, δi, ... and are always mapped to the

new type TC. This type TC is normally dropped as it only applies to TCVs.

A key concept is derivable expressions from an LTC. Syntactically, an expression is

derivable from an LTC if it is typed by the LTC. Derivations ensure names are not revealed

when previously hidden.

Consider the function λx.⟨x, n⟩, the name n is derivable from this function. Now con-

sider the function λx.x = n, the name n can never be derived from this function as it is

deconstructed under a λ-binder. Hence, if an LTC contains a variable which represents

one of these functions (and no other occurrence of n), then the values derived from that

function must use n in the form the function provides it as. This means n may occur freely

in the former case, but only in the form λx.x = n in the latter. In the next chapter, a

semantic de�nition of a value derivable from an LTC (and a model) will be introduced,

which has a more concrete meaning.

The shorthand notation IΓ+IΓ′ represents the LTC IΓ′ added to the LTC IΓ such that

the order is maintained if IΓ and IΓ′ have disjoint domains, formally de�ned as follows.

IΓ+∅ def
= IΓ

IΓ+(x : α+IΓ′)
def
= (IΓ+x : α)+IΓ′

IΓ+(δ+IΓ′)
def
= (IΓ+δ)+IΓ′

70

De�nition 40 (Syntactic LTC extensions). De�ne the LTC IΓ′ as an extension of IΓ if

there exists some IΓ′′ such that IΓ′ ≡ IΓ+IΓ′′. The LTC IΓ is then a contraction of IΓ′.

LTCs are the basis for typing expressions, formulae, triples and LTCs themselves. The

ordering in LTCs is essential because of the new TCVs. The LTC IΓ+x : α, means that

x is a value of type α, derived from the LTC to its left i.e. IΓ. Hence the �+� for LTCs is

not commutative. In a similar fashion, the LTC IΓ+δ, implies that the δ represents some

extension of the LTC to its left i.e. IΓ, hence again the �+� for LTCs is not commutative.

This will become more apparent when the model is introduced in Chapt. 5.

De�nition 41 (Actions on LTCs). The following actions on LTCs are de�ned as expected.

− Mapping variable x to its type in IΓ written IΓ(x). The same applies to TCVs, IΓ(δ)

which always return TC.

− Obtaining the domain of an LTC IΓ written dom(IΓ), de�ned as all variables and

TCVs mapped by the LTC. The codomain is de�ned similarly and written cod(IΓ).

− Removal of a variable x from an LTC IΓ written IΓ\x maintains the order of the

original LTC. Similarly IΓ\δ removes the TCV δ from the mapping IΓ.

− It is common to require the removal of all TCV from an LTC IΓ written IΓ\−TCV ,

which maintains the order element of the LTC .

− The removal of TCVs to produce an STC is written IΓ ↓−TC and formally de�ned as

follows.

∅ ↓−TC
def
= ∅

(IΓ+x : α) ↓−TC
def
= IΓ ↓−TC , x : α

(IΓ+δ : TC) ↓−TC
def
= IΓ ↓−TC

4.1.2 Standard Formulae

Formulae are constructed similarly to those of Sec. 2.2.2 with the standard equality e = e′,

negation ¬A, conjunction A ∧ B and evaluation formulae e • e′ = m{A}. Evaluation

formulae internalise triples and express that if the program denoted by e is executed with

an argument denoted by e′, then the result, denoted by m, satis�es A. Since the ν-calculus

is strongly normalizing, partial and total correctness are not distinguished. The shorthand

notation from the λ-logic in Sec. 2.2.2, also applies here.

71

4.1.3 Restricted Universal Quanti�cation

The meaning of ∀xα ∈ (IΓ).A is intuitively simple: A must be true for all x that range

only over values of type α, derived from IΓ. Deriving the values from IΓ ensures hidden

names in IΓ are not revealed in x. This is achieved logically by ensuring that the restricting

LTC types each expression quanti�ed over. Logical instantiation of a restricted universal

quanti�cation must be an expression which is typed by the restricting LTC (or constructed

out of the variables in the LTC), and hence unlike standard universal quanti�cation which

would quantify over all names (including those which are hidden), the restricted quanti�c-

ation cannot quantify over hidden names. The name restricted quanti�cation comes from

the fact that the quanti�cation restricts the possible names and terms that the variable

may obtain to those only derivable from the LTC.

Consider the example (x : Nm+y : Nm × Bool+z : Nm) ⊩ ∀pNm ∈ (x+y).A. Then it

is required that p can be instantiated as x or as π1(y) but not as z or π2(y) due to the

restricting LTC: (x : Nm+y : Nm × Bool) typing the former two expressions and not the

latter.

As will be shown later, if the variables in an LTC IΓ, map to values and the name n

only occurs in the mapping to λy.y = n then n is hidden from these mappings and hence

∀xNm ∈ (IΓ).A cannot quantify over the name n at x. Formalising this requirement is

subtle.

The quanti�cation ∀xNm ∈ (∅).A ensures that x is a fresh name, however this is the only

way of expressing the introduction of a fresh name and thus this cannot be instantiated.

Hence any formula of the form ∀xNm ∈ (IΓ).A quanti�es over x being a fresh name and

any value derivable from IΓ. The formula ∀xNm ∈ (∅).A draws comparison to the nominal

logic constructor � Nx.A�, as both ensure that x is a fresh name in A.

4.1.4 Quanti�cation Over LTCs

The gensym function needs to be reasoned about such that each application of gensym in

any state will produce a name which is fresh with respect to that future state, hence the

requirement to name the state. The modal operator □A, is often used to expresses �for

all future extensions�, but fails to allow for the naming of the future state. The purpose

of ∀δ.A is to name the future (or current) state using the TCV δ. This TCV can then be

used in LTCs in A. The use of these TCVs must be in the LTCs in restricted quanti�ers,

which allows expressions to be derived from the future state.

Quanti�cation over LTCs is similar to modal logic in the sense that it quanti�es over

72

all future possible states which are now represented by the LTCs (through typing of the

state), but di�ers from modal logic by assigning the future state to a variable TCV. The

quanti�er ∀δ.A is similar in essence to the hybrid logic formula �□ ↓δ A� which quanti�es

over all future states (in time) using the □ modality and assigns that state to a variable δ

using ↓δ [9, 55]. The LTCs introduced here contain more information than the states used

in hybrid logic, as they can be used to restrict quanti�cation.

4.1.5 Notes On the Logical Syntax

In this logical language, names can never be referred to directly. Names can only be

reasoned about through variables which represent those names. This is similar to how the

νGS-calculus does not allow the programmer to state speci�c names, only speci�c variables

that names are assigned to i.e. in let x = gensym() in M the fresh name cannot be referred

to directly, instead the variable x is used to refer to the name.

As a motivation for LTCs, consider the example program let y = gensym() in λxNm.x =

y. The name assigned to the variable y will be fresh and can only ever be used in the

returned function in the comparison to x. For example, every future possible application

of the resulting function from (∅, let y = gensym() in λxNm.x = y) ⇓ ({n}, λxNm.x = n)

will never be applied to n itself as it is in a sense �lost� or �hidden� under the equality and

λ-binder. Hence the unrestricted universal quanti�cation, if used naively, cannot su�ce

to reason about the νGS-calculus as the [Lam]λ -rule from Fig. 2.20 (seen below). fails

to hold. This is because the post-condition {∀xα.(B → u • x = m{C})} would include

quanti�cation over all names including hidden names, such as n.

{A-x ∧B}M :m {C}

{A} λxα.M :u {∀xα.(B → u • x = m{C})}
[Lam]λ

Hence the restriction placed on quanti�ers in this logic to allow us to reason about which

values can be quanti�ed over by introducing LTCs as a list of variables which can be used

to derive a value.

It may be possible that a more abstract or complex notion of LTCs could be used with

a more mathematically based set of operations to manipulate them, however this was not

required in this case.

4.1.6 Shorthand Notations

The restricted existential quanti�cation is de�ned using the standard de�nition as follows.

∃xα ∈ (IΓ).A
def
= ¬∀xα ∈ (IΓ).¬A

73

This reads as: there exists a value x derived from the LTC IΓ, such that A holds. This

behaves similarly to the unrestricted existential quanti�cation.

Fresh names are produced by gensym but freshness is not an absolute notion, instead

a name is fresh with respect to something. In the case of programs a fresh name produced

by gensym() is fresh from the nameset in the con�guration (see Fig. 3.4). However, in the

logic, freshness is with respect to an LTC (or the names derivable from an LTC). Thus

freshness of the name x relative to the LTC IΓ is written e#IΓ and de�ned below. Freshness

is used pervasively, hence this shorthand notation.

e#IΓ
def
= ∀zNm ∈ (IΓ).e ̸= z.

Intuitively, e#IΓ states that the name denoted by e is not derivable, directly or in-

directly, from the LTC IΓ. Freshness is a variant of a similar predicate in [72] seen in

Sec. 2.2.3, which only states freshness from another expression i.e. e#e′.

The typing in LTCs is often dropped for brevity such that where α is obvious, IΓ+y : α

becomes IΓ+y. A further reduction in notation writes IΓ+δ+IΓ′ as just δ+IΓ′ because

δ represents an LTC which is an extension of IΓ and thus will contain all mappings in

IΓ, but δ does not include any mapping in IΓ′ as IΓ′ is an extension of δ. If types are

obvious in formulae they will often be dropped i.e. e • e′ = mα{A} def
= e • e′ = m{A} and

∀xα ∈ (IΓ).A
def
= ∀x ∈ (IΓ).A.

4.1.7 Triples

Triples are introduced for the ν-logic as they are for the λ-logic and Local-logic. The triple

{A} M :u {B} has the standard meaning: if the pre-condition A holds and the value

derived from program M is denoted by the anchor u, then the post-condition B holds.

In this case the program M must now be static syntax, meaning the program contains

no names (å(M) = ∅), and hence can only reference names via gensym. If names are

included in the programs then they would also be required in the logic, which requires a

more complicated logic.

4.2 Typing of Expressions, Formulae and Triples

New type judgments are introduced to type expressions, LTCs, formulae and triples using

the LTCs as a basis and written IΓ ⊩ e : α, IΓ ⊩ IΓ′, IΓ ⊩ A and IΓ ⊩ {A}M :u {B}

respectively. The LTC doing the typing (i.e. IΓ in IΓ ⊩) is referred to as the global LTC.

74

LTCs are required to be typed by a global LTC, to ensure all LTCs used in formulae (i.e.

∀x ∈ (IΓ).A and x#IΓ), are ordered subsets of the global LTC.

De�nition 42 (Typing of LTCs, expressions, formulae). The rules for typing expressions,

LTC and formulae can be seen in Fig. 4.2. In all cases the LTC doing the typing (in these

cases IΓ) is referred to as the global LTC.

Expressions:
b ∈ {true, false}
IΓ ⊩ b : Bool

−
IΓ ⊩ () : Unit

IΓ(x) = α

IΓ ⊩ x : α

IΓ ⊩ e : α1 IΓ ⊩ e′ : α2

IΓ ⊩ ⟨e, e′⟩ : α1 × α2

IΓ ⊩ e : α1 × α2

IΓ ⊩ πi(e) : αi

LTCs:
−

IΓ ⊩ ∅
IΓ ⊩ IΓ0

IΓ+x : α ⊩ IΓ0+x : α

IΓ ⊩ IΓ0

IΓ+δ ⊩ IΓ0+δ

IΓ ⊩ IΓ0

IΓ+IΓ′ ⊩ IΓ0

Formulae:
IΓ ⊩ e1 : α IΓ ⊩ e2 : α

IΓ ⊩ e1 = e2

IΓ ⊩ A1 IΓ ⊩ A2

IΓ ⊩ A1 ∧A2

IΓ ⊩ A

IΓ ⊩ ¬A

IΓ ⊩ e : α1 → α2 IΓ ⊩ e′ : α1 IΓ+x : α2 ⊩ A

IΓ ⊩ e • e′ = xα2{A}

IΓ ⊩ IΓ′ IΓ+x : α ⊩ A

IΓ ⊩ ∀xα ∈ (IΓ′).A

IΓ ⊩ e : Nm IΓ ⊩ IΓ′

IΓ ⊩ e#IΓ′
IΓ+δ : TC ⊩ A

IΓ ⊩ ∀δ.A

Triples:
IΓ ⊩ A IΓ ↓−TC⊢M : α IΓ+m : α ⊩ B

IΓ ⊩ {A}M :m {B}

Figure 4.2: Typing rules for expressions, LTCs, formulae and triples in the ν-logic. In the

last rule for triples, M is static syntax.

The primary novelties are the typing rules for restricted quanti�cation and quanti�c-

ation over LTCs. Each addition to the global LTC IΓ must add the variable or TCV as

an extension to the global LTC IΓ, ensuring the order is maintained. This extended LTC

then types the sub-formula which may now use the variables or TCV in LTCs with the

75

assurance they occur in the correct order. For example the following type check fails if

IΓ0 ≡ IΓ+x+δ, as this implies δ is an extension of IΓ+x, which is not the case as x is

derived from δ. Hence the type check holds if IΓ0 ≡ IΓ+δ+x or any LTC typed by this

LTC (referred to as sub-LTCs).

IΓ ⊩ ∀δ.∀x ∈ (δ).∀y ∈ (IΓ0).A

De�nition 43 (Typing of triples). Typing rules for expressions, and LTC are used in

the typing rules for formulae which in turn are used in the typing rules for triples written

IΓ ⊩ {A}M :u {B}. Programs are typed as in Fig. 3.2 which require an STC to type the

programs, hence the use of IΓ ↓−TC , which removes TCV and converts the LTC to an STC,

in the typing rule for triples in Fig. 4.2.

From now on it is assumed all LTCs, expressions, formulae and triples are well-typed,

and typing will mostly be omitted unless explicitly required.

4.3 Advanced Substitutions

Reasoning with quanti�ers requires quanti�er instantiation. This is subtle with the two new

logical quanti�ers. Substitution of an expression e for a variable x in a formula A requires

a global LTC IΓ to ensure that substitutions of formulae with LTCs (which contain x) are

well typed by the global LTC, this substitution is written A[e/x]IΓ. Quanti�cation over

LTCs requires the substitution of an LTC IΓ0 for TCV δ in a formula A written A[IΓ0/δ]IΓ

where IΓ is the global LTC required to maintain the order of any substitution. If the global

LTC is obvious or not required then it is often dropped i.e. [e/x]IΓ
def
= [e/x].

The free variables and TCV of expressions, LTCs and formulae are �rst de�ned as

follows.

De�nition 44 (Free variables of expressions). The free variables of expression e, written

fv(e), are simply the variables occurring in the expression.

fv(())
def
= ∅

fv(true)
def
= ∅

fv(false)
def
= ∅

fv(x)
def
= {x}

fv(⟨e, e′⟩) def
= fv(e) ∪ fv(e′)

fv(πi(e))
def
= fv(e)

De�nition 45 (Free variables of LTCs). Free variables of an LTC IΓ written fv(IΓ), are

de�ned as all the variables of the domain i.e. fv(IΓ)
def
= dom(IΓ ↓−TC)

def
= dom(IΓ\−TCV).

For brevity, if x /∈ fv(IΓ) then write IΓ-x.

76

De�nition 46 (Free variables of Formulae). The free variables of formulae are de�ned

as those occurring unbound by the anchors in evaluation formulae or quanti�ers, with the

formal de�nition as follows.

fv(e = e′)
def
= fv(e) ∪ fv(e′)

fv(¬A)
def
= fv(A)

fv(A ∧B)
def
= fv(A) ∪ fv(B)

fv(∀δ.A)
def
= fv(A)

fv(e • e′ = m{A}) def
= fv(e) ∪ fv(e′) ∪ (fv(A) \ {m})

fv(∀x ∈ (IΓ).A)
def
= (fv(A)\{x}) ∪ fv(IΓ)

fv(x#IΓ)
def
= fv(IΓ) ∪ {x}

Similar to free variables, a function on LTC and formulae are de�ned on the free TCVs

as follows.

De�nition 47 (Free TCVs of LTCs). The free TCVs of an LTC IΓ written ftcv(IΓ), are

simply the TCVs occurring in the LTC as follows.

ftcv(∅) def
= ∅

ftcv(IΓ+x : α)
def
= ftcv(IΓ)

ftcv(IΓ+δ : TC) def
= ftcv(IΓ) ∪ {δ}

ftcv(IΓ+IΓ′)
def
= ftcv(IΓ) ∪ ftcv(IΓ′)

An LTC IΓ is closed or TCV-free if ftcv(IΓ) = ∅.

The same function is used to de�ne free TCV of formulae.

De�nition 48 (Free TCVs of formulae). The free TCVs of formulae are those occurring

unbound by a quanti�er over LTCs with the formal de�nition as follows.

ftcv(e = e′)
def
= ∅

ftcv(¬A)
def
= ftcv(A)

ftcv(A ∧B)
def
= ftcv(A) ∪ ftcv(B)

ftcv(e • e′ = m{A}) def
= ftcv(A)

ftcv(x#IΓ)
def
= ftcv(IΓ)

ftcv(∀x ∈ (IΓ).A)
def
= ftcv(A) ∪ ftcv(IΓ)

ftcv(∀δ.A)
def
= ftcv(A) \ {δ}

A formula A is TCV-free if ftcv(A) = ∅.

Before substitutions are de�ned, it is necessary to de�ne when substitutions can occur

safely. This extends the check in [38], which check that no variable being introduced is

bound by a binder (assuming the typing holds) as follows.

De�nition 49 (Expressions free for variables in formula).

De�ne an expression e-free for xα in A in some LTC IΓ if the following hold.

77

− e is of type α (IΓ ⊩ e : α)

− For all occurrences of x in A all variables in fv(e) do not become bound in A.

− If e contains destructors i.e. πi() or =, then all free occurrences of x occurring in

any LTC (say IΓ0) itself occurring in the formula A must imply IΓ0 ⊩ e : α.

The extension to [38] is the �nal case above, which is introduced to ensure no complic-

ations arise from substituting the expressions containing πi() or = into terms with LTCs

in restricted quanti�cation.

Consider the substitution of the expression π1(y) for some variable x in a formula, such

that the x occurs in an LTC IΓ0 which occurs in the formula. If y occurs in IΓ0 then no

new variables are introduced by this substitution. However, if y does not occur in IΓ0 then

via the construction of the logic, substituting in the expression π1(y) is not permitted as

it is not a variable, but substituting in the variable y may introduce the other side of y i.e.

π2(y) to the LTC, which extends the LTC beyond its intended reach and has the potential

to introduce previously inaccessible names. Hence the introduction of the de�nition above

to restrict these forms of substitutions.

Similarly, consider the substitution of the expression y = z for some variable x in the

formula ∀p ∈ (IΓ0).A, such that the x occurs in an LTC IΓ0. Then two options for the

substitution exist. Either y and z both already occur in IΓ0 or not. In the former case

then the substitution results in the same formula. In the latter case this cannot be a valid

substitution as the expression y = z cannot be introduced into the LTC IΓ0 due to the

construction of LTCs. However, adding both y and z to IΓ0 then allows for names derivable

from these variables to be quanti�ed over for p but these same names are not accessible

from the expression y = z. This substitution however is not permitted as y = z is not free

for x in ∀p ∈ (IΓ0).A as IΓ0 ̸⊢ y = z hence the justi�cation for the new case is introduced

in Def. 49.

The expressions of the form πi(e) and e = e′ are de�ned as destructors, as they take

larger typed expressions e and e′ and produce a smaller typed expression either αi or Bool

which means information (primarily about names) is lost. If further extensions to the

programming language are considered the list of destructors may need to be altered.

De�nition 50 (Logical substitution of expressions in expressions). The logical substitu-

tion e[e′/x], of expression e′ for variable x in expression e, is inductively de�ned on e as

78

follows which has no restrictions, and no global LTC to type the substitution.

()[e/x]
def
= ()

true[e/x]
def
= true

false[e/x]
def
= false

x[e/x]
def
= e

y[e/x]
def
= y

⟨e1, e2⟩[e/x]
def
= ⟨e1[e/x], e2[e/x]⟩

πi(e
′)[e/x]

def
= πi(e

′[e/x])

De�nition 51 (Logical substitution of expressions in formulae). Logical substitution of e

for x in A in the context of IΓ , written A[e/x]IΓ, assumes e-free for x in A , and is de�ned

as follows. The �rst line introduces logical substitution of e for x in IΓ′ in context of IΓ.

IΓ′[e/x]IΓ
def
=


IΓ′e s.t. dom(IΓ′e) = fv(e) ∪ dom(IΓ′\x), IΓ ⊩ IΓ′e x ∈ fv(IΓ′)

IΓ′ x /∈ fv(IΓ′)

T[e/x]IΓ
def
= T

F[e/x]IΓ
def
= F

e1 = e2[e/x]IΓ
def
= e1[e/x] = e2[e/x]

(¬A)[e/x]IΓ
def
= ¬(A[e/x]IΓ)

(A ∧B)[e/x]IΓ
def
= (A[e/x]IΓ) ∧ (B[e/x]IΓ)

(e1 • e2 = m{A})[e/x]IΓ
def
= e1[e/x] • e2[e/x] = m{A[e/x]IΓ+m} (x ̸= m, m /∈ fv(IΓ))

(e′#IΓ′)[e/x]IΓ
def
= e′[e/x]#(IΓ′[e/x]IΓ)

(∀m ∈ (IΓ′).A)[e/x]IΓ
def
= ∀m ∈ (IΓ′[e/x]IΓ).(A[e/x]IΓ+m) (x ̸= m, m /∈ fv(IΓ))

(∀δ.A)[e/x]IΓ
def
= ∀δ.(A[e/x]IΓ+δ)

For IΓ′[e/x]IΓ, Def. 49 guarantees that if x is in IΓ and e contains a destructor such as

πi(·) or = then every free variable in e must occur in LTC IΓ′. So this substitution returns

IΓ′\x as fv(e) ⊆ fv(IΓ′\x) is implied by the assumption. However, if e is destructor-free

and x occurs in IΓ′ then a new LTC is returned, consisting of the original LTC IΓ′ with x

removed and the addition of all free variables in e mapped to their respective types de�ned

and ordered by IΓ. Clearly if x does not occur in IΓ′ then no substitution is required.

Cases which use LTCs i.e. freshness and restricted quanti�cation both require substitu-

tion of expressions in LTCs as described above, whilst all other substitutions are standard.

The de�nition of type context substitution of LTCs for TCVs in both LTCs and formulae

are introduced in Def. 53, but �rst requires �rst de�ning when an LTC is free for an LTC

in a formula similar to Def. 49.

79

De�nition 52 (LTCs free for TCVs in formula). The LTC IΓ0 is free for δ in A in a global

LTC IΓ if no free occurrence of any TCV in IΓ0 becomes a bound occurrence of the TCV if

IΓ0 is substituted for δ in A. This requires IΓ0 to be a sub-LTC of IΓ.

De�nition 53 (Type context substitutions). The substitution of IΓ0 for δ in IΓ′ in the

global LTC IΓ requires that IΓ0 is free for δ in IΓ′. This requires IΓ0 and IΓ′ to be sub-LTCs

of IΓ. The LTC substitutions are as expected where TCVs can only appear in freshness

and restricted quanti�cation formulae, and are de�ned inductively for the other logical

constructors as expected. The �rst line de�nes the substitution on LTCs.

IΓ′[IΓ0/δ]IΓ
def
=


IΓ1 s.t. dom(IΓ1) = dom(IΓ0, IΓ

′\δ), IΓ ⊩ IΓ1 δ ∈ ftcv(IΓ′)

IΓ′ δ /∈ ftcv(IΓ′)

T[IΓ0/δ]IΓ
def
= T

F[IΓ0/δ]IΓ
def
= F

e = e′[IΓ0/δ]IΓ
def
= e = e′

(¬A)[IΓ0/δ]IΓ
def
= ¬(A[IΓ0/δ]IΓ)

(A ∧B)[IΓ0/δ]IΓ
def
= A[IΓ0/δ]IΓ ∧B[IΓ0/δ]IΓ

(e1 • e2 = m{A})[IΓ0/δ]IΓ
def
= e1 • e2 = m{A[IΓ0/δ]IΓ+m} (m /∈ fv(IΓ0))

(e#IΓ′)[IΓ0/δ]IΓ
def
= e#(IΓ′[IΓ0/δ]IΓ)

(∀m ∈ (IΓ′).A)[IΓ0/δ]IΓ
def
= ∀m ∈ (IΓ′[IΓ0/δ]IΓ).(A[IΓ0/δ]IΓ+x) (m /∈ fv(IΓ0))

(∀δ′.A)[IΓ0/δ]IΓ
def
=


(∀δ′.A[IΓ0/δ]IΓ+δ′) δ ̸= δ′

∀δ.A otherwise

(δ′ /∈ ftcv(IΓ0))

In IΓ′[IΓ0/δ]IΓ if δ occurs in IΓ′ then the result is the union of IΓ′\δ and IΓ0 with the

order de�ned by IΓ. If δ does not occur in IΓ′ then that LTC is una�ected by the change

in δ and hence the same LTC is returned. The ∀δ.A case requires the cases to guarantee

capture avoiding substitution for LTCs. If δ = δ′, then δ will never occur free in A, hence

can never be substituted for. Otherwise, the substitution occurs as expected with the

condition that δ′ does not occur in IΓ0, meaning this is a capture avoiding substitution for

type contexts.

In both substitutions, the evaluation formulae and the two new quanti�ers (i.e. fresh-

ness and restricted quanti�cation) require the addition of a binding variable/TCV to

the LTC IΓ to ensure the correct order is maintained in subsequent substitutions i.e.

A[e/x]IΓ+m and A[e/x]IΓ+δ. These additions to the LTC unsurprisingly match the addi-

80

tions in the typing rules seen in Fig. 3.2. The global LTC is often dropped for brevity i.e.

A[e/x]IΓ
def
= A[e/x] and [IΓ0/δ]IΓ

def
= [IΓ0/δ], as the LTC IΓ is only used for ordering and

types, which can be obtained from the global LTC that types the triple/formula.

4.4 Properties of Logical Formulae

In �rst-order logic, if a formula is satis�ed by a model, then it is also satis�ed by extensions

of that model, and vice-versa (assuming all free variables of the formula remain in the

model). This can no longer be taken for granted in this logic.

Consider the formula ∀δ.∃z ∈ (δ).(z#IΓ ∧ ¬z#δ) typed by IΓ0 ≡ IΓ+IΓ′0. This states

that there exists a name z which is fresh from IΓ but not fresh from any extension i.e.

δ, essentially meaning there is a reachable name in the IΓ′0 part which is not in IΓ. The

quanti�cation over LTCs requires this must hold for δ representing the current state IΓ0

(and all its extensions). Hence if IΓ′0 has a new variable mapped to a fresh name then

this holds, however IΓ′0 ≡ ∅ is a clear contradiction as no name exists in IΓ′0. Hence the

formula may hold for IΓ′0 ̸≡ ∅, but fail if IΓ′0 ≡ ∅. The negation of the formula fails for

LTC extensions and this shows how some formulae may become invalid under contracting

or extension of the LTC in which it is typed.

Fortunately, such formulae are rarely needed when reasoning about programs. However,

in order to satisfy the soundness proofs, a restriction on formulae referred to as extension

independence is introduced, ensuring the formulae are stable under LTC extension and

contractions. This is �rst introduced as a syntactic de�nition however the formal de�nition

is introduced later using models.

Sometimes a weaker property is required to ensure formulae preserve their validity

when a speci�c variable is removed from the general typing LTC. The example IΓ+x :

Nm+IΓ0 ⊩ ∀δ.∃z ∈ (δ).(z#IΓ ∧ ¬z#δ) is an example where the x is required if IΓ0 is all

Nm-free for the same reason as above. This property is referred to as thinness with respect

to a variable.

Syntactic de�nitions of sets of formulae which obtain these respective properties are

introduced as follows.

De�nition 54 (Syntactic classi�cation of extension independent formulae). De�ne a set

ExtIndSyn, of formulae that are syntactically extension independent, using the following

set of inductive rules. A formula A is de�ned as ExtIndSyn, written A-ExtIndSyn, if it

is in ExtIndSyn.

81

1. T, F, e = e′ are all ExtIndSyn.

2. If A1-ExtIndSyn and A2-ExtIndSyn

then ¬A1, A1∧A2, A1∨A2, A1 → A2, u• e = mα{A1}, ∃x ∈ (IΓ′).A1, ∀x ∈ (IΓ′).A1

are all in ExtIndSyn.

3. If A1-ExtIndSyn and δ /∈ ftcv(A1)

then ∀δ.A1-ExtIndSyn

and x /∈ fv(A1) implies ∀δ.∀x ∈ (δ).A1-ExtIndSyn

4. Two extra speci�c cases are:

∀δ.f • () = b{b#δ}-ExtIndSyn

and ∀δ.∀x ∈ (δ).f • x = b{b#δ+x}-ExtIndSyn

This can be used to show e#IΓ′(
def
= ∀z ∈ (IΓ′).z ̸= e)-ExtIndSyn as follows:

(1.) implies z = e′-ExtIndSyn

(2.) and the above implies ¬z = e′-ExtIndSyn

(3.) and the above line implies ∀z ∈ (IΓ′).¬z = e′-ExtIndSyn

This is an incomplete characterisation of all extension independent formulae, but

provides a simple method for checking whether a formula is ExtIndSyn and hence this

will later be shown to prove it is also ExtIndSem. Given the incomplete characterisation,

this cannot be used to prove non-extension independence. Case 3. could be generalised

further but was not required in any of the reasoning examples.

The ExtIndSyn de�nition is similar to the syntactic de�nition for monotonicity in the

Local-logic in [72], however the meaning is more similar to statelessness from the same

paper. Statelessness implies A ≡ □A which only ever looks forward however ExtIndSyn

requires a more complex version of A ≡ □A to look at previous states.

In Sec. 5.3 extension independent formulae are given a semantic formalisation, and a

proof that ExtIndSyn formulae are indeed extension independent is given.

De�nition 55 (Syntactic classi�cation of thin formulae). De�ne a set ThinSyn(x), of

formulae that are syntactically thin with respect to the variable x, using the following set

of inductive rules. A formula A is de�ned as ThinSyn(x), written A-ThinSyn(x), if it is

in ThinSyn(x).

1. If IΓ ⊩ A and IΓ ⊩ x : α -(Nm,→) then A-ThinSyn(x)

2. If A ≡ T,F, e = e′, e ̸= e′ and x /∈ fv(A) then A-ThinSyn(x)

82

3. If A1-ThinSyn(x) and A2-ThinSyn(x) then A1 ∧ A2, A1 ∨ A2, e • e′ = m{A1},

∀y ∈ (IΓ1).A1, ∃yα -(Nm,→) ∈ (IΓ1).A1, ∃y ∈ (IΓ1 ↓−TC).A1 are all ThinSyn(x).

4. If A1-ThinSyn(x) and δ /∈ ftcv(A1) then ∀δ.A1-ThinSyn(x)

5. If A1-ThinSyn(x) then ∀δ.∀yαy ∈ (IΓ+δ).A−δ1 -ThinSyn(x)

Thus e#IΓ0-ThinSyn(x) given e#IΓ0
def
= ∀z ∈ (IΓ0).z ̸= e-ThinSyn(x) as follows:

(2.) proves z ̸= e-ThinSyn(x) given x /∈ fv(e),

(2.) again and the above implies ∀z ∈ (IΓ0).z ̸= e-ThinSyn(x)

This is an incomplete characterisation of all thin formulae and hence cannot be used to

prove non-thinness, but covers all formulae required for the proofs. This de�nition follows

that of the thinness of formulae in Local-logic in Sec. 2.2.3, adapted to the new logic [5, 72].

In Sec. 5.3.2 the thinness property is formally de�ned in the model and a proof that

ThinSyn(x) formulae are indeed thin with respect to the semantics is given.

The following lemma is required in the soundness proofs, but included here for con-

venience (proximity to the previous de�nition). For variables x : α1 → α2 and y : α1,

the types ensure x is not of α -(Nm,→) type as it contains a function and hence cannot be

formed from the �rst case of Def. 55.

Lemma 56 (ThinSyn(x) implies ThinSyn(y) under certain type conditions).

∀ IΓ, xα1→α2 , yα1 , A. IΓ\x, y ⊩ A → A-ThinSyn(x) → A-ThinSyn(y)

Proof. If α1 ∈ α -(Nm,→) then this clearly holds as A-ThinSyn(y) clearly holds by Def. 55.

Otherwise, α1 → α2 /∈ α -(Nm,→) implies the �rst case in Def. 55 cannot be used and

thus the de�nitions are identical if xα1→α2 or yα1 are used as IΓ\x, y ⊩ A meaning clearly

A ThinSyn(x) → A ThinSyn(y) holds.

This fails to hold in the opposite direction as α1 ∈ α -(Nm,→) causes issues in the �rst

case of Def. 55 in proving A ThinSyn(x), but does hold if α1 /∈ α -(Nm,→).

4.5 Logic of Axioms

Axioms and axiom schemas are similar in intention to those of the λ-logic seen in Sec. 2.2.2,

but expressed within the constraints of the new logic. Axiom schemas are indexed by the

LTC that types them and the explicit types where noted. The axioms and axiom schemas

are referred to simply as axioms and are introduced here. This is neither a maximal nor

83

minimal list, but contains the axioms which are interesting and useful, i.e. those used in

the reasoning examples seen in Chapt. 7.

Some axioms only hold for the types in the STLC, i.e. Nm-free types, written α-Nm.

Other axioms use the type α -(Nm,→) which are the function free types of the STLC. These

two types are de�ned as follows.

De�nition 57 (Nm free types and Nm and function free types). De�ne two subsets of

types as follows.

α -(Nm,→) ::= Unit || Bool || α -(Nm,→) × α -(Nm,→)

α-Nm ::= Unit || Bool || α-Nm × α-Nm || α-Nm → α-Nm

A term which is of type α-Nm may contain names for instance λxBool.n = n′, however

it will be shown that all α-Nm typed terms are equivalent to a nameless term.

4.5.1 Axioms for Equality

Axioms for equality are standard and found in Fig. 4.3, the three axioms (eq1), (eq2)

and (eq3) are re�exivity, symmetry and transitivity respectively. Axiom (eq4) allows for

substitution, however there are constraints that e-free for x in A must hold.

(eq1) IΓ ⊩ e = e

(eq2) IΓ ⊩ e = e′ ↔ e′ = e

(eq3) IΓ ⊩ e = e′ ∧ e′ = e′′ ↔ e = e′′

(eq4) IΓ ⊩ A ∧ x = e ↔ A[e/x]IΓ

Figure 4.3: Axioms for equality of the ν-logic.

4.5.2 Axioms for Restricted Quanti�cation

The axioms for universal restricted quanti�cation alongside the axioms for existential re-

stricted quanti�cation are found in Fig. 4.4.

The axioms (u1), (u2) and (u3) are instantiation, vacuous generalisation (and instan-

tiation), and distribution respectively. These are inspired by (u1)λ, (u2)λ, (u3)λ which are

axioms of �rst order logic.

Axiom (u4) uses IΓ0 ⊩ IΓ1 which ensures that IΓ1 is a subset of IΓ0. Hence, if y

quanti�es over all expressions derived from IΓ0, then clearly this implies quanti�cation over

84

(u1) IΓ ⊩ ∀xα ∈ (IΓ0).A → A[e/x]IΓ IΓ0 ⊢ e : α

(u2) A−x ↔ ∀x ∈ (IΓ0).A
−x A-ExtIndSyn

(u3) ∀x ∈ (IΓ0).(A ∧B) ↔ (∀x ∈ (IΓ0).A) ∧ (∀x ∈ (IΓ0).B)

(u4) ∀x ∈ (IΓ0).A → ∀x ∈ (IΓ1).A IΓ0 ⊩ IΓ1

(u5) ∀xα ∈ (IΓ0).A ↔ ∀xα ∈ (∅).A α ∈ α-Nm

(u6) IΓ+x+y ⊩ x#IΓ ∧ y#IΓ+x → ∀fNm→Nm ∈ (IΓ).f • x = m{m ̸= y}

(u7) IΓ+x+y ⊩ x#IΓ ∧ y#IΓ+x → ∀fNm→Bool ∈ (IΓ).f • x = m{f • y = n{m = n}}

(u8) IΓ ⊩ ∀xNm ∈ (∅). x#IΓ ∧A ↔ ∀xNm ∈ (∅). A

(u9) IΓ ⊩ ∀xNm ∈ (IΓ1).a • x = e → ∀xNm ∈ (IΓ1+a).a • x = e IΓ1 ⊩ e : Nm

(u10) IΓ+a : α→ Bool ⊩ ∀fα ∈ (IΓ).a • f = c → ∀fα ∈ (IΓ+a).a • f = c

(ex1) IΓ ⊩ A[e/x]IΓ → ∃x ∈ (IΓ0).x = e ∧A IΓ ⊩ IΓ0 and IΓ0 ⊢ e : α

(ex2) A ∧ ∃x ∈ (IΓ0).B ↔ ∃x ∈ (IΓ0).(A ∧B) A-ExtIndSyn ∧ x /∈ fv(A)

(ex3) IΓ+x+IΓ0 ⊩ a • b = c{c = x} → ∃x′ ∈ (IΓ0).x = x′ {a, b} ⊆ fv(IΓ0)

(ex4) IΓ+x ⊩ ∀y ∈ (∅).∃zNm ∈ (IΓ0+y).x = z → ∃z ∈ (IΓ0).x = z

Figure 4.4: Axioms for universal and existential restricted quanti�cation of the ν-logic.

all expression derived from IΓ1 given IΓ1 is a subset of IΓ0. This allows for the reduction of

LTCs in the restricted quanti�er. Critically, (u4) is not ↔ as IΓ0 may quantify over more

expressions than IΓ1, hence the ← direction fails.

Axiom (u5) shows how α-Nm types can be derived from any LTC as the values of α-Nm

type are always equivalent to an STLC value.

Axioms (u6) and (u7) state that if x and y are fresh from IΓ and each other, then any

function derived from IΓ cannot contain x or y and hence the right hand side holds, given

these restrictions on f . The axiom (u8) states that the x in ∀xNm ∈ (∅).A is indeed always

fresh from any global LTC which types the formula.

Axioms (u9) and (u10) are both used in speci�c cases where the quantifying LTC needs

to be expanded. The axioms hold in speci�c circumstances. Axiom (u9) requires that every

output of a is some name e allowing the quantifying LTC to be extended with a. Axiom

(u10) requires a to be of type α→ Bool meaning it can never be used to output a name, at

best a can be used to compare names, however because the output is always the Boolean

constant c, a can be added to the quantifying LTC.

85

Axioms for existential restricted quanti�cation contain two standard axioms (ex1) (the

dual of (u1)) and (ex2) which are inspired by (ex1)λ and (ex2)λ respectively with the addi-

tional requirement that A-ExtIndSyn in (ex2) to ensure it holds when x is added/removed

from the model satisfying A.

The new axiom (ex3) allows for the introduction of the existential quanti�er restricted

to IΓ0 given the evaluation of ab evaluates to some constant x, then if a and b are in IΓ0

an existential quanti�er can be introduced. It makes sense, that if a substitution of e for x

in A holds and IΓ0 types e then there exists an expression derived from the LTC IΓ0 such

that A holds. Axiom (ex3) is a speci�c axiom, introducing the existential quanti�cation

from evaluation formulae of two variables in IΓ0 which evaluate to a �xed result x which

cannot be a fresh name.

Reducing IΓ in ∃x ∈ (IΓ).A is possible via (ex4) for a speci�c structure where y is any

expression derived from an empty LTC which equates to either a constant or a fresh name,

however knowing that z = x and x is a previously generated name means even if y is a

fresh name then it is not required in the existential quanti�er for z.

4.5.3 Axioms for Freshness

Axioms for the derived freshness constructor are found in Fig. 4.5. The (f1) axiom states

when freshness implies equality, whereas (f2) show instances LTCs can be reduced. The

axioms (f3) and (f4) show instances LTCs can be extended under speci�c circumstances.

(f1) e#IΓ0 → e ̸= e′ IΓ0 ⊢ e′ : Nm

(f2) e#IΓ0 → e#IΓ1 IΓ0 ⊩ IΓ1

(f3) IΓ+x+f : α→ α -(Nm,→) ⊩ x#IΓ → x#IΓ+f : α→ α -(Nm,→)

(f4) IΓ ⊩ e#IΓ0 ∧ ∀yα ∈ (IΓ0).A ↔ ∀yα ∈ (IΓ0).(e#(IΓ0+y) ∧A) y /∈ fv(e)

Figure 4.5: Axioms for freshness of the ν-logic.

To deconstruct freshness, axiom (f1) states that any expression e′, which can be typed

by the LTC IΓ0 to be of type Nm, is guaranteed not to be equivalent to the name at e.

This can be derived from the syntactic de�nition of e#IΓ0
def
= ∀zNm ∈ (IΓ0).z ̸= e and the

axiom (u1) instantiating z with e′.

Axiom (u4) and the syntactic de�nition of freshness gives rise to the Axiom (f2) i.e. if

e cannot be derived from IΓ0, then clearly any sub-LTC IΓ1 of IΓ0 cannot derive e either.

86

Clearly (f2) fails to be ↔ as IΓ0 is larger than IΓ1 and hence may reveal the name e.

Axiom (f3) holds due to f being derived from IΓ+x, meaning no name can be derived

using f and hence neither can the name x. Interactions between freshness and universal

restricted quanti�cation in axiom (f4) states for an LTC IΓ0 which the name x is fresh

from, then any y derived from IΓ0 by de�nition cannot reveal the name at e, hence the

right hand side of (f4) is obtained. The ← direction of (f4) is derivable from the axioms

(u3) and (u2).

4.5.4 Axioms for Quanti�cation Over LTCs

Axioms for universal quanti�cation over logical type contexts are also similar to those

for the classical universal quanti�er except (utc4) and (utc5) which extends the restricted

quanti�er to any future LTC in two speci�c cases.

(utc1) IΓ ⊩ ∀δ.A → A[IΓ/δ]IΓ

(utc2) A−δ ↔ ∀δ.A−δ A-ExtIndSyn

(utc3) ∀δ.(A ∧B) ↔ (∀δ.A) ∧ (∀δ.B)

(utc4) IΓ ⊩ ∀xNm ∈ (IΓ).A−δ ↔ ∀δ.∀xNm ∈ (IΓ+δ).A A-ExtIndSyn

(utc5) IΓ ⊩ ∀fα ∈ (IΓ).a • f = c → ∀δ.∀fα ∈ (δ).a • f = c c ∈ {true, false}

Figure 4.6: Axioms for universal quanti�cation over LTCs of the ν-logic.

Axioms (utc1), (utc2) and (utc3) are instantiation, vacuous generalisation (and instan-

tiation), and distribution, respectively, inspired by (u1)λ, (u2)λ, (u3)λ which are those of

�rst order logic.

Instantiation is given by (utc1) taking the global LTC IΓ, which types the formula,

as the LTC to replace the TCV δ in A. Axiom (utc2) mimics (u2) where δ does not

occur in ftcv(A) (written A−δ) hence the quanti�er can be introduced/removed assuming

A-ExtIndSyn. The axiom (utc3) allows the quanti�er over LTCs to be merged and split

over conjunction ∧, similar to (u3) but for quanti�cation over LTC.

In the special case where a name x is derived from the global LTC IΓ then this is

equivalent to introducing a �∀δ.� and deriving a name from δ as can be seen in axiom

(utc4). The reasoning behind (utc4), is that on the left hand side, the name x can either

be derivable from IΓ or be completely fresh and hence on the right hand side, x will be

derivable from δ which includes IΓ and any new name which will be fresh from the extension

87

to IΓ i.e. δ.

The axiom (utc5) is similar to (utc4). It states that if all terms f , derived from the

global LTC, satisfy a • f = c for some Boolean c, then any f derived from a future state

also satis�es a • f = c. This axiom is not dependent on the actual Boolean result c, only

the fact that af always returns the same Boolean constant. The axiom (utc5) allows for

the LTC in a universal quanti�cation to be extended to all future LTCs, if the formula is

of this speci�c form.

4.5.5 Axioms for Evaluation Formulae

The axioms for the evaluation formulae are similar to those of the λ-logic and are introduced

in Fig. 4.7. The axiom (ext) maintains extensionality in this logic for the α-Nm typed

expressions and requires the following de�nition for Ext(e1, e2).

Ext(e1, e2)
def
= ∀x ∈ (∅).e1 • x = m1{e2 • x = m2{m1 = m2}}

The (ext) axiom fails on non-α-Nm types. The simple counter example with e1 and e2

being the gensym function, then clearly gensym = gensym, however e1 • () = m1{e2 • () =

m2{m1 ̸= m2}} holds by de�nition as m1 and m2 are fresh from each other.

(ext) Ext(e1, e2) ↔ e1 =
α1→α2 e2 (α1 → α2) ∈ α-Nm

(eα) e • e′ = m{e • e′ = a{a = m ∧A}} ↔ e • e′ = mα{A} α ∈ α-Nm, a /∈ fv(e, e′, A)

(e1) e1 • e2 = mα{A} ∧ e1 • e2 = mα{B} ↔ e1 • e2 = mα{A ∧B}

(e2) e1 • e2 = mα{¬A} ↔ ¬e1 • e2 = mα{A}

(e3) e1 • e2 = m{A ∧B} ↔ A ∧ e1 • e2 = m{B} A-ExtIndSyn, m /∈ fv(A)

(e4) e1 • e2 = m{∀x ∈ (IΓ).A} ↔ ∀x ∈ (IΓ).e1 • e2 = m{A} m /∈ fv(IΓ), x /∈ fv(e1, e2,m)

(e5) e1 • e2 = mα -(Nm,→){∀δ.A} ↔ ∀δ.e1 • e2 = mα -(Nm,→){A} A-ExtIndSyn

Figure 4.7: Axioms for evaluation formulae of the ν-logic.

All STLC values are included in the variables of α-Nm type as stated previously. The

axioms (ext) and (eα) require α-Nm types as these are direct copies of λ-logic axioms, thus

ensuring the logic is a conservative extension of the λ-logic(See Sec. 6.5). These axioms

may hold for other types but are not required in the reasoning examples.

Axioms (e1), (e2) and (e3) are standard axioms from the λ-logic with the constraint

that A-ExtIndSyn in (e3) to ensure the formula holds if m is added or removed from the

global LTC (or model).

88

The interaction between evaluation formulae and restricted quanti�cation, and quan-

ti�cation over LTCs, are shown in (e4) and (e5) respectively. These behave as the λ-logic

axiom (e4)λ, but with more constraints due to the LTC. A clear comparison of (e5) and

(e4)λ is apparent, with a swap in variable/TCV. In (e4) the restrictions on IΓ not containing

m ensures the LTC is not interfering with the anchor in the evaluation formula, similarly

x not occurring in e1, e2 or m ensures no interference with the quantifying variable with

the evaluation formula.

The additional constraints of ExtIndSyn in (e3) and (e5) ensures A holds when vari-

ables/TCVs are added and removed from the global LTC (or model) which is a book

keeping requirement in the soundness proof.

4.6 Logic of Rules

The logic of rules is now introduced for the ν-logic. This allows for the reasoning about

static-syntax νGS-calculus programs using the triples introduced in Sec. 4.1.7. This requires

the logic of axioms introduced in the previous section.

The use of ⊢ν {A} M :m {B} indicates that {A} M :m {B} can be derived from

these rules and the previously introduced axioms, however this notation is dropped where

obvious (i.e. in the rules themselves). These rules are similar to those of the λ-logic and

the Local-logic, but suitably adapted to the e�ectful nature of the ν-logic.

All rules are typed following the corresponding typing of the programs occurring in the

triples, but with additions to account for auxiliary variables. These types can be included

or dropped where needed.

4.6.1 Core Rules

The core rules of inference can be found in Fig. 4.8.

One primary di�erence with these ν-logic rules is the logical substitution introduced

in Sec. 4.3 which has no e�ect on the rules [Var]ν , [Const]ν , [If]ν and [Pair]ν , and a

minor e�ect on [Eq]ν and [Proj(i)]ν . The latter two rules substitute for a variable u, the

expressions m = n and πi(m), both of which cannot add their constituent variables (m,n)

to an LTC without potentially introducing hidden names. Hence, e-free for u in A ensures

all LTCs containing u must also type m = n or πi(u) respectively.

The other di�erence from the λ-logic is the need for thinness to replace the standard

�free from� in the λ-logic often denoted A-x. Thinness is introduced in the Local-logic and

is also required here for the soundness proof. For example [App]ν , which produces u from

89

−
{A[x/m]} x :m {A}

[Var]ν

−
{T} gensym :u {∀δ.u • () = m{m#δ}}

[Gensym]ν

−
{A[c/m]} c :m {A}

[Const]ν

{A}M :m {B} {B} N :n {C[m = n/u]}
{A}M = N :u {C}

[Eq]ν

IΓ+δ+x : α ⊩ {A ∧B}M :m {C} A-ExtIndSyn

IΓ ⊩ {A} λxα.M :u {∀δ.∀xα ∈ (δ).(B → u • x = m{C})}
[Lam]ν

{A}M :m {B} {B} N :n {m • n = u{C}}
{A}MN :u {C}

[App]ν

{A}M :m {C[¬m/u]}
{A} ¬M :u {C}

[Neg]ν

{A}M :m {B} {B[true/m]} N1 :u {C} {B[false/m]} N2 :u {C}
{A} if M then N1 else N2 :u {C}

[If]ν

{A}M :m {B} {B} N :n {C[⟨m,n⟩/u]}
{A} ⟨M,N⟩ :u {C}

[Pair]ν

{A}M :m {C[πi(m)/u]}
{A} πi(M) :u {C}

[Proj(i)]ν

Figure 4.8: Inference rules of the ν-logic. The rule [Proj(i)]ν requires C-ThinSyn(m) and

[Eq]ν , [App]ν , [Pair]ν require C-ThinSyn(m,n). The non-essential LTCs are omitted in

typing and substitutions.

m and n, hence IΓ+m+n+u ⊩ C implies that ExtIndSyn is insu�cient, given u is still

required and IΓ+u is not a contraction of IΓ+m+n+u as u introduced after m and n.

This will be discussed more when the model has been introduced in Sec. 5.3.2 and the

soundness proofs in Sec. 6.3.

The rules [Var]ν , [Const]ν , [Eq]ν , [App]ν , [Neg]ν , [If]ν , [Pair]ν and [Proj(i)]ν are

those of the Local-logic with the changes discussed above regarding logical substitution

and syntactic-thinness and are not discussed further.

In the post-condition of the [Gensym]ν rule, u • () = m{m#δ} indicates that the

name produced by u() and stored at m is not derivable from the LTC δ. If there were

no quanti�cations over LTCs prior to the evaluation, m could at most, only be fresh from

the global LTC which types the formula. However, the freshness of the name produced by

u() must hold in every future typing context in which the evaluation occurs. To ensure

freshness in future LTCs (or states) quanti�cation over LTCs, �∀δ.�, is introduced, thus

quantifying over all future names derivable from the future state. Placing he quanti�cation

over LTCs prior to the evaluation of u() ensures that instantiating the δ cannot include

90

the anchor of u() which ensures m#m cannot be derived. Elsewhere in reasoning it is key

that the post-condition of [Gensym]ν is ExtIndSyn and hence holds in all future and past

LTCs assuming the anchor for gensym is present. This ensures application of gensym in

any context produces a fresh name each time it is applied.

Rules for λ-abstraction [Lam]λ in the λ-logic universally quanti�es over all possible

arguments. This needs to be restricted in this logic as hidden names should not be quan-

ti�ed over. The corresponding ν-logic rule [Lam]ν , re�nes this and quanti�es only over

current or future values that do not reveal hidden names. A key example for this is the

term let x = gensym() in λy.x = y, which contains the name stored at x, but can never

use the name as it is hidden under an equality. Hence reasoning about this program (See

Ex. 29), initially quanti�es over all future LTCs which includes x. However, in removing

the quanti�cation over x, this allows for the derivation that the function always outputs

false.

Comparing the two LTCs typing the assumption and conclusion of the [Lam]λ rule,

implies δ is an extension of IΓ and x is derived from IΓ+ δ. Hence the typing implies

precisely what is conveyed in the post-condition of the conclusion: �∀δ.∀x ∈ (δ).�. The

introduction of the formula B allows for the introduction of constraints on δ and x. Re-

quiring A-ExtIndSyn implies A still holds in all extensions of IΓ including IΓ+δ+x. The

evaluation formula part is trivial when ((λx.M)x) ∼=G
α M is considered.

4.6.2 Structural Rules

The structural rules are found in Fig. 4.9.

91

A→ A′ {A′}M :m {B′} B′ → B

{A}M :m {B}
[Conseq]ν

{A}M :m {B} C-ExtIndSyn

{A ∧ C}M :m {B ∧ C}
[Invar]ν

{A ∧B}M :m {C} B-ExtIndSyn

{A}M :m {B → C}
[∧ →]ν

{A}M :m {B → C} B-ExtIndSyn

{A ∧B}M :m {C}
[→ ∧]ν

{A}M :m {B} {A′}M :m {B}
{A ∨A′}M :m {B}

[∨-Pre]ν

{A}M :m {B} {A}M :m {B′}
{A}M :m {B ∧B′}

[∧-Post]ν

IΓ ⊩ {A}M :m {B} A,B-ExtIndSyn

IΓ+x ⊩ {A}M−x :m {B}
[Weak(x)]ν

IΓ+IΓ′ ⊩ {A}M :m {B} A,B-ExtIndSyn

IΓ+δ+IΓ′ ⊩ {A}M :m {B}
[Weak(δ)]ν

Figure 4.9: Structural inference rules of the ν-logic.

The [Conseq]ν rule introduces the logic of axioms to the logic of rules. This rule is

identical to [Invar]λ.

The [Invar]ν rule extends the [Invar]λ rule with the constraint that C-ExtIndSyn to

ensure C holds in the extension wherem has been assigned. The [∧ →]ν , [→ ∧]ν , [∨-Pre]ν

and [∧-Post]ν rules are lifted directly from the λ-logic, with the addition of B-ExtIndSyn

required in the �rst two. These are standard rules and allow for the manipulation of

standard predicate logic constructors via rules.

The [Weak(x)]ν and [Weak(δ)]ν rules are only used in the soundness proof of the

derived [Let]ν rule and hence also the [LetFresh]ν rule introduced in the next section.

The [Weak(x)]ν rule allows for the addition (or removal depending on perspective) of

variables as an extension to the LTC that types the triple assuming both pre- and post-

conditions are ExtIndSyn and do not contain the variable being added. The [Weak(δ)]ν

rule allows for the addition (or removal) of a TCV to the LTC that types the triple in any

location, assuming the pre- and post-conditions are ExtIndSyn and do not contain the

TCV in an unbound state. Both rules are introduced speci�cally for the derived rules in

the following section and no applications in any reasoning examples have been found yet.

92

4.6.3 Derived Rules

Two rules are introduced that are useful in reasoning about examples but are derived from

the previous rules, these are introduced in Fig. 4.10.

{A}M :m {B} {B} N :u {C} A,B,C − ExtIndSyn

{A} let m = M in N :u {C}
[Let]ν

{A ∧m#IΓ}M :u {C} A,C-ExtIndSyn

{A} let m = gensym() in M :u {C}
[LetFresh]ν

Figure 4.10: Derived inference rules of the ν-logic. In both [Let]ν and [LetFresh]ν the

requirement that C-ThinSyn(m) is required.

The STLC's [Let]λ rule can be written to introduce x in the post-condition by means of

an �∃x.C�. This fails here as xmay be unreachable, hence not derivable from any extending

or contracting LTC. The requirement that C-ThinSyn(x) ensures x is not critical to C so

can either be derived from the current LTC or is hidden. Thinness ensures no reference to

the variable m is somehow hidden under quanti�cation over LTCs.

The [LetFresh]ν rule is commonly used and hence included for convenience, but it is

entirely derivable from the other rules ([Let]ν [Gensym]ν , [Const]ν and [App]ν) given

the triple IΓ ⊩ {T} gensym() :m {m#IΓ} proven in Ex. 24 in Chapt. 7.

Given the translation in Sec. 3.3, ⟨⟨νn.M⟩⟩Pitts→GS
def
= let n = gensym() in ⟨⟨M⟩⟩Pitts→GS ,

then [LetFresh]ν is essentially the inference rule for νn.M .

4.7 Alternative Design Choices

Some alternative design choices for the construction of the program logic are introduced

here and discussed brie�y.

4.7.1 gensym as a Constant in the Logic

When designing a program logic there is a balance between what is placed in the logic of

axioms and what is placed in the logic of rules. For instance the expressions πi(e) and

⟨e, e′⟩ could be placed into the formulae in a form of pair constructors and pair destructors

which would require axioms and rules which allow for manipulation of these formulae.

93

Similarly the evaluation formulae could be expressed as an expression with a di�erent,

more complicated, yet equally powerful, set of axioms.

When considering the construction of this logic, various alternatives were considered.

The primary alternative involved including gensym as a constant in the expressions and

then letting the derivation of freshness stem from the axioms. Primarily the axiom of the

form �∀δ.gensym• () = m{m#δ}� would allow for the derivation of [Gensym]ν , harnessing

the power of the [App]ν rule. However, this made the other de�nitions more complex

such as substitution and requirements on some of the other axioms to be more restricted

to account for the expression gensym. Using gensym as a constant is not expected to

strengthen or weaken the logic, but it is expected to make the applications and proofs less

intuitive.

4.7.2 The Use of LTCs

The reason for the introduction of LTCs is not obvious. A list of names in place of LTCs

is insu�cient, as it fails to quantify over hidden names. A list of expressions in place

of LTCs contains no structure, hence reasoning is di�cult, in particular substitution and

instantiation. In both these cases, the concept of extensions also becomes less apparent, as

extensions cannot be referenced within them so clearly. The need to quantify over future

states, means the LTC must be able to refer to the future states by name (or TCV). This

ensures LTCs must include TCVs and the ordering of the LTC ensures this happens in a

formulaic manner. This accumulates to a single form of LTC with a dual purpose, both

typing the logic and used within the logical formulae.

4.7.3 Separating �Derived� and �Quanti�cation�

The common use of the mathematical symbol �∈� is used to mean an element of a set.

Universal quanti�cation often uses this by default as �∀x ∈ S.A� to mean for all elements x

in the set S then A holds. This can be separated to mean �∀x.x ∈ S → A� where �x ∈ S�

checks whether x is in the set S. A similar separation could be introduced in the ν-logic

such that ∀x ∈ (IΓ).A becomes �∀x.x ∈ IΓ→ A� where �x ∈ IΓ� does not represent �element

of� but instead �derived from�. It is not known if the logic for splitting the �derived from�

can be generalised in a succinct form. However, the full power of this generalisation was

not required for reasoning about names in this logic.

94

4.7.4 Syntactic Characterisations of Properties of Formulae

The de�nition of ThinSyn(x) is not a complete list of all thin formulae however it covers

all cases required in the examples reasoned about. A more complete de�nition would be

useful such that the syntactically thin and semantically thin formulae, introduced in the

next chapter in Def. 78, match precisely. However, this seemed to be a complicated task as

the non-thin formulae are not common and no pattern was found when constructing these

non-thin formulae.

4.8 Summary

This chapter introduced ν-logic. The logical syntax is introduced with the primary novelty

being the introduction of the ordered LTC, with a new mapping of TCVs representing

extensions of type contexts. LTCs are used in the logical syntax to restrict the expres-

sions (and thus names) which can be quanti�ed over in the new restricted quanti�cation

constructor. This new constructor builds on the inability for the language to reintroduce

hidden names, which do not have a reference, out of thin air. The quanti�cation needs to

derive values from a set of other values, i.e. the LTCs. A new quanti�er over all future

type contexts is introduced, with the ability to name the future state using TCVs.

Relevant changes are made to substitution to satisfy the new constructors. Syntactic

properties of formulae are introduced to ensure the certain requirements are held in the

soundness proofs in later sections. The logic of axioms and rules are introduced to allow

for the reasoning about νGS-calculus programs.

Certain choices made throughout the construction of the logic are introduced and dis-

cussed to show the motivation behind certain aspects of the logic.

95

Chapter 5

Model

The soundness proof for the λ-logic requires a model which maps variables from the typing

context to closed values, as seen in Sec. 2.2.2. This approach is built upon here for the

program logic for the νGS-calculus, introduced in Chapt. 4, which will be used for the proof

of soundness in Chapt. 6.

The model is de�ned in Sec. 5.1 with the interpretation of expressions introduced in

Sec. 5.2 and the semantics of formulae and triples introduced in Sec. 5.2. The de�nitions of

syntactic extension independence and syntactic thinness of formulae introduced in Sec. 4.4

are given semantic de�nitions in Sec. 5.3. These are speci�cally required to ensure that

the soundness proofs hold.

Using these de�nitions, core lemmas are introduced in Sec. 5.4 which are used through-

out the soundness proof in the next chapter.

5.1 De�ning the Model

The model required to prove the λ-logic sound is typed by the standard type contexts

(STC), which are unordered maps from variables to closed values, of the type given by

the STC. Whereas any closed value in the STLC can be written by the programmer, the

νGS-calculus does not have this luxury. Consider the simple example of a particular fresh

name n, the programmer cannot mention this name directly as the only tool to reference

names is the gensym operator which by de�nition will not produce the desired fresh name n

if it is in the nameset. If the name n appears in the model then using the relevant variable

could allow this name to be accessed. However the name may appear in the model in

an unreachable form, for instance if the name only appears in the term λx.x = n, then

without any other access to the name n, the name n cannot be reproduced. This means

96

this function will never be applied to n, meaning the function is equivalent to λx.false, this

is not the case if n is accessible as (λx.x = n)n returns true.

In the ν-logic, future states are mentioned using ∀δ.A which could be modelled naively

as the addition of any mappings to the model. However, consider the example above:

(λx.x = n). Where n does not appear elsewhere in the model, this means the function is

equivalent to λx.false. If the name n is added to the model in some extension, then this

equivalence no longer holds. For this reason the model is now based on the Logical Type

Contexts which now contain Type Context Variables (TCVs) and an inherent order. This

now places a restriction on the possible model extensions, by stating that for any value

added to a model, it must have been derived from the model it is being added to. By

de�nition, this restricts the example above where n cannot be added to a model if it only

appears hidden in the model, for example in λx.x = n. This is formally de�ned as follows.

Models now map variables to closed values, and TCVs to closed LTCs, i.e. TCV-free

LTCs. If TCV were to map to an open LTC, then a secondary(or more) call to the model

would be required to close the LTC. This is similar to the requirement of models mapping

to closed values

De�nition 58 (Model). A model is a map from variables to closed values and TCVs to

closed LTCs.

ξ ::= ∅ || ξ · x : V || ξ · δ : IΓ

where V and IΓ are closed

Key functions on models are as expected and de�ned as follows. The domain of the

model ξ written dom(ξ) contains all variables and TCVs that are mapped by the model.

De�nition 59 (Model assignment). Use ξ ·x : V as the assigning of a value V to variable

x in the model ξ, where x /∈ dom(ξ). Similarly ξ · δ : IΓ0 means the assignment of LTC IΓ0

to TCV δ in the model ξ assuming δ doesn't occur in ξ

De�nition 60 (Model mapping). De�ne the value obtained by variable x in a model, ξ, as

ξ(x) or by a TCV, δ, in model ξ as ξ(δ). The result is either a closed value (i.e. contains

no free variables), or a closed LTC, IΓ (i.e. contains no TCVs).

Whereas in most formalisations, the removal of a variable, x, from a model, ξ, is simply

�the removal of that variable�, this needs clari�cation in this logic due to the TCVs.

De�nition 61 (Model variable removal). Removing the variable x from the model ξ written

ξ\x: removes x from the mapping of variables, and from any LTC IΓ, mapped to by a TCV

97

in the model, written IΓ\x. Both ξ\x and IΓ\x are formally de�ned as follows.

∅\x def
= ∅

(ξ · x : Vx)\x
def
= ξ\x

(ξ · y : Vy)\x
def
= (ξ\x) · y : Vy

(ξ · δ : IΓ1)\x
def
= (ξ\x) · δ : (IΓ1\x)

∅\x def
= ∅

(IΓ1+x : αx)\x
def
= IΓ1

(IΓ1+y : αy)\x
def
= (IΓ1\x)+y : αy

(IΓ1+δ : TC)\x def
= (IΓ1\x)+δ : TC

The �nal case above, (IΓ1+δ : TC)\x should never be used as ξ · δ : IΓ1 requires IΓ1 to

be closed and thus TCV-free, however it is included here for completeness.

The standard Γ\x holds as the standard removal of the variable x from the STC Γ.

De�nition 62 (Term closure).

The closure of a term M , by a model ξ, written Mξ, assuming fv(M) ⊆ dom(ξ) is de�ned

as standard with the additions, gensymξ
def
= gensym and nξ

def
= n . This is de�ned in full as

follows.

xξ
def
= ξ(x)

cξ
def
= c c ∈ {(), true, false}

(λx.M)ξ
def
= λx.(M(ξ\x))

(MN)ξ
def
= (Mξ)(Nξ)

(let x = M in N)ξ
def
= let x = Mξ in Nξ\x

(M = N)ξ
def
= Mξ = Nξ

(πi(M))ξ
def
= πi(Mξ)

(⟨M,N⟩)ξ def
= ⟨Mξ,Nξ⟩

(if M then N1 else N2)ξ
def
= if Mξ then N1ξ else N2ξ

(gensym)ξ
def
= gensym

nξ
def
= n where n is a name.

Clearly TCV are not required for term closure hence: Mξ\−TCV ≡ Mξ ≡ M(ξ · δ : IΓ′)

holds for all δ and IΓ′.

Term closure can be thought of as the environment in which terms are run. Term

closure replaces the free variables by values that have previously been produced and stored

in the model, hence the following lemma holds trivially.

Lemma 63 (Closure equivalent to substitution). Closure can be interchanged with substi-

tution: M(ξ · x : V) ≡ (M [V/x])ξ

Proof by induction on the structure of M .

Similar to the operation on LTCs to remove all TCVs \−TCV a similar operation on

models is de�ned.

98

De�nition 64 (Removing TCVs from a model). The removal of all TCVs from a model

ξ, written ξ\−TCV is de�ned as follows.

∅\−TCV
def
= ∅

(ξ · x : V)\−TCV
def
= (ξ\−TCV) · x : V

(ξ · δ : IΓ′)\−TCV
def
= ξ\−TCV

The å(·) function for terms in Def. 20, is extended to models.

De�nition 65 (All names in an environment). All names that appear in a model ξ written

å(ξ), is a function de�ned as the union of all names in the codomain of the model as follows.

Here X ranges over variables and TCVs.

å(ξ)
def
=

⋃
X∈dom(X)

å(ξ(X))

For all LTCs, å(IΓ) = ∅ ensures å(ξ\−TCV)
def
= å(ξ).

In the λ-logic in Sec. 2.2.2 a model was typed by a type context. This required every

variable in the type context to be mapped by the model to a closed value of the type given by

the type context for that variable, i.e. ξΓ
def
= dom(Γ) = dom(ξ) ∧ ∀x ∈ dom(Γ).ξ(x) : Γ(x).

This new model for the νGS-calculus extends this idea to use LTCs as a basis. Conceptually

a model is typed by an LTC if the model values match the LTC types for each variable

and for any TCV in the LTC which appears as IΓ0+δ, then the model maps δ to an LTC,

which is a subset of IΓ0. This if formally de�ned as follows.

De�nition 66 (Typed model). A model ξ is typed by an LTC IΓ, written IΓ ⊩ ξ if it can

be typed using the following rules. If IΓ ⊩ ξ then for brevity this is written as ξIΓ.

−
∅ ⊩ ∅

IΓ ⊩ ξ ∅ ⊢ V : α

IΓ+x : α ⊩ ξ · x : V

IΓ ⊩ ξ IΓ ⊩ IΓd

IΓ+δ ⊩ ξ · δ : IΓd

It is important to note, in a model ξIΓ, that all variables in dom(IΓ) are mapped in the

model. This de�nition of typing ensures that for any model ξIΓ+δ+x:α then x /∈ dom(ξ(δ))

which guarantees that the order of the LTC is �maintained� in the model.

In a similar fashion to the interpretation of expressions by a model in the λ-logic

(Def. 13), the LTCs in the ν-logic are interpreted by a model.

De�nition 67 (Interpretation of LTCs). The interpretation of an LTC, IΓ0 in a model

ξIΓ, written [[IΓ0]]ξ, outputs an (unordered) STC which is used to type programs. This is

de�ned as follows, assuming IΓ ⊩ IΓ0.

99

[[∅]]ξ
def
= ∅

[[x : α]]ξ
def
= x : α

[[IΓ0+x : α]]ξ
def
= [[IΓ0]]ξ, x : α

[[IΓ0+δ : TC]]ξ
def
= [[IΓ0]]ξ ∪ [[ξ(δ)]]ξ

Interpretations of LTCs produce STCs which can be used to type terms, hence the

typing judgment [[IΓ]]ξ ⊢M : α is often used.

Given a particular LTC and a model, it is desirable to consider which values can

be derived from these without the external introduction of names, in particular which

names are present and from those which are reachable or hidden. Consider the model

ξ1 ≡ x : λz.z = n, and the values which can be derived from ξ1. Clearly the derived values

from ξ1 cannot contain the value n directly, as any use of x will never return n. However,

it is possible that a value λf.(fn′ = (λz.z = n)n′) is derived from ξ1. This value uses n

but only under the λz.z = ·, i.e. the manner in which it occurs in ξ1. It is precisely for

this reason the concept of derivation is introduced. A more complicated example is the

model ξ2 ≡ x : λz.if z = n then n1 else n2 · y : V Nm
y , which has two possibilities when it

comes to the use of name n1. If Vy = n then clearly the term xy evaluates to n1, however

if Vy ̸= n then clearly no combination of x and y can possibly return n1 and hence n1 is

hidden. Hence it is the combination of the LTC and the model which allows us to de�ne

derivation of a term as follows.

De�nition 68 (Value derived from an LTC and model). Deriving a value V from a term

M typed by an LTC IΓ and model ξ is written M
[IΓ, ξ]
⇝ V

M
[IΓ, ξ]
⇝ V

def
= å(M) = ∅ ∧ [[IΓ]]ξ ⊢M : α ∧ (å(ξ),Mξ) ⇓ (å(ξ), G′, V)

The values which an LTC can derive are called the reach of the LTC in a given model.

Derivations of values from LTCs take inspiration from programs which cannot access

names without prior generation and using only the variables and names which are accessible

to them and not those which are hidden. For example, ⟨M0, let x = Mx in let y = My in M⟩

can use the Mx and My using x and y in M , but cannot use the M0 in M , as there is

no connection between the two elements of the pair. This idea is extended to models

in the next de�nition. Consider the program let x = Mx in let y = My in M , where

let y = My in M may use x in the term, then consider that M may now use both x and y,

where now it is clear that My is derived from x.

100

De�nition 69 (Singleton model extension). The model ξ′ is a single point extension to the

model ξIΓ, written ξ ≼ ξ′, if it is an addition to ξ at a single: variable mapped to a value

derived from ξ, or TCV mapped to an LTC, which is a subset or equal to IΓ. Formally

ξIΓ ≼ ξ′ is de�ned as follows.

ξIΓ ≼ ξ′
def
= ∃ y,Mα

y . My
[IΓ, ξ]
⇝ Vy ∧ ξ′IΓ+y:α ≡ ξ · y : Vy

∨ ∃ δ, IΓ0. IΓ ⊩ IΓ0 ∧ IΓ0 ≡ IΓ0\−TCV ∧ ξ′ ≡ ξ · δ : IΓ0

In the de�nition above, the �rst case ensures that values are derived from the previous

model, ensuring that no names which appear hidden in ξ appear reachable in ξ′. The latter

case ensures the LTC added is an ordered subset of the initial type context meaning no

new mappings are introduced and ensures the LTC is closed so cannot contain TCVs. By

de�nition δ /∈ dom(IΓ) is guaranteed.

De�nition 70 (Model extension). The transitive re�exive closure of the singleton model

extension ≼ is written ≼⋆ such that the model ξIΓ0
0 is extended to the model ξIΓk

k is written

ξ0 ≼⋆ ξk and is de�ned as follows.

ξ0 ≼⋆ ξk
def
= ξ0 ≡ ξk ∨ ξ0 ≼ ξk ∨ ∃ ξk−1. ξ0 ≼⋆ ξk−1 ≼ ξk

The model ξ is de�ned as a contraction of ξ′ if ξ ≼⋆ ξ′. Contractions are the dual of

extensions.

Although a typed model ξIΓ means the domain of both the model and the LTC are

identical, the LTCs used in the logic of the form IΓ0+δ are intended to express that δ

is any future extension of IΓ0. This motivates the next de�nition which is introduced to

construct a model from the LTCs used in the logic.

De�nition 71 (Well constructed model). A model ξ is constructed by an LTC IΓ, written

IΓ ▷ ξ, if any TCV represents a model extension, formally de�ned by the rules that follow.

−
∅ ▷ ∅

IΓ ▷ ξ ∃Mα.M
[IΓ, ξ]
⇝ V

IΓ+x : α ▷ ξ · x : V

∃ ξ0.IΓ ▷ ξ0 ∧ ξ0 ≼
⋆ ξIΓ2 ∧ IΓ1 ≡ IΓ2\−TCV

IΓ+δ ▷ ξ · δ : IΓ1

A model ξIΓ is de�ned as well constructed if there exists an LTC IΓ′ such that IΓ′ ▷ ξ.

Well constructed models relate the LTCs used in the logic to a model and ensure that

all TCVs in the LTC (from the logic) map to type contexts which represent a future LTC.

Well constructed models ensure all names in values are either fresh, or occur in the

form in which they were accessible in the previous model. This restricts the reintroduction

of a previously hidden name, yet allows them to be used in their hidden form. Consider

101

the example above in the context of models: let ξ1 ≡ x : λz.if z = n then n1 else n2 then

n1 would become reachable if y : n were a valid extension to ξ1 however the requirement

of well constructed models ensures that ξ1 ̸≼⋆ ξ1 ·x : n in this case. It is worth noting that

even though ξ1 ̸≼⋆ ξ1 · x : n, it is the case that y : n ≼⋆ y : n · x : λz.if z = n then n1 else n2.

For any model ξ, constructed by an LTC IΓ, the type of the model always types the

LTC which constructed it, hence the following lemma is introduced.

Lemma 72 (LTC model construction implies sub-LTC).

∀ IΓ, ξIΓd . IΓ ▷ ξ → IΓd ⊩ IΓ

Proof. Trivial given the manner in which models are constructed in Def. 71

All future models in this thesis are assumed to be well constructed unless otherwise

stated.

5.2 Semantics

To interpret the triples in the model it is �rst necessary to interpret the formulae in the

model which in turn requires the interpretation of LTCs de�ned in Def. 67 and expressions.

These are all de�ned in the following de�nitions.

The expressions in the ν-logic are a subset of the terms of the ν-calculus in Fig. 3.1. As

such, expressions could be interpreted by the model simply by the closure of the expression

by the model as in Def. 62 (i.e. [[e]]ξ ≡ eξ). However, to maintain the style presented in

the literature, interpretation of expressions is formally de�ned below.

De�nition 73 (Interpretation of expressions). The interpretation of expression e in a

model ξIΓ, written [[e]]ξ, is given by the following clauses, assuming IΓ ⊩ e : α.

[[c]]ξ
def
= c c ∈ {(), true, false}

[[x]]ξ
def
= ξ(x)

[[⟨e, e′⟩]]ξ
def
= ⟨[[e]]ξ, [[e′]]ξ⟩

[[πi(e)]]ξ
def
= πi([[e]]ξ)

Formulae are given semantics using the well constructed models based on the semantics

of the λ-logic and the new concept of models.

De�nition 74 (Semantics of formulae).

The semantics of a formula A in a well constructed model ξIΓ, written ξ |= A, is de�ned

inductively on the structure of A as follows. The derived formulae are also de�ned for

convenience.

102

− ξ |= e = e′
def
= [[e]]ξ ∼=

å(ξ)
α [[e′]]ξ

− ξ |= ¬A def
= ξ ̸|= A.

− ξ |= A ∧B
def
= ξ |= A ∧ ξ |= B.

− ξ |= e • e′ = m{A} def
= ∃ V. ee′

[IΓ, ξ]
⇝ V ∧ ξ ·m : V |= A

− ξIΓ |= ∀xα ∈ (IΓ′).A
def
= ∀Mα, V α. M

[IΓ′, ξ]
⇝ V → ξ · x : V |= A

− ξIΓ |= ∀δ.A def
= ∀ ξ′IΓ

′
. ξ ≼⋆ ξ′ → ξ′ · δ : (IΓ′\−TCV) |= A

Derived semantics:

− ξ |= x#IΓ0
def
= ¬ ∃Mx. Mx

[IΓ0, ξ]
⇝ [[x]]ξ

− ξIΓ |= ∃xα ∈ (IΓ′).A
def
= ∃Mα, V α. M

[IΓ′, ξ]
⇝ V ∧ ξ · x : V |= A

− ξ |= A−x(x)[e/x]IΓ
def
= x /∈ dom(ξ) ∧ ∃ V. e

[IΓ, ξ]
⇝ V ∧ ξ · x : V |= A(x)

− ξ |= A−x(x)[e/x]IΓ
def
= x ∈ dom(ξ) ∧ ∀ x′.x′ /∈ dom(ξ)→ ξ |= A(x′)[e/x′]IΓ

By de�nition, all models on the right hand side of Def. 74 are well constructed models, as

all additions are closed values or closed LTCs derived from the initial model, and extensions

of the model ξ, as de�ned in Def. 70.

The semantics of the previous de�nition are discussed in more detail here.

e = e′ Uses the contextual congruence from Def. 29, to equate the interpreted expressions

using any names in the model, including the hidden names.

¬A and A ∧B These are both standard de�nitions.

e • e′ = m{A} Given å(ee′) = ∅ (see Def. 20) and IΓ ⊩ ee′ : α by the typing rules in Fig. 2.16 then

ee′
[IΓ, ξ]
⇝ V ↔ (å(ξ), [[e]]ξ[[e

′]]ξ) ⇓ (G′, V) hence this is the standard semantics for

evaluation formulae. Termination is guaranteed, hence the existence of such a V is

guaranteed, meaning this condition is often dropped.

∀xα ∈ (IΓ′).A This quanti�es over all values of type α which are derived from the LTC IΓ′ and

the model used to satisfy the formula. This de�nition ensures ξ · x : V is a well

constructed model of ξ by de�nition.

∀δ.A This quanti�es over all possible extensions of the initial model. The LTC which types

the extension is then assigned to the TCV. Models must map TCVs to closed LTCs

hence the TCV-mappings are removed prior to assigning the LTC in the model.

103

The derived semantics:

x#IΓ0 The freshness formula is syntactic sugar for ∀zNm ∈ (IΓ0).z ̸= x, and the semantics

of the two formulae are equivalent.

∃xα ∈ (IΓ′).A This is dual to ∀xα ∈ (IΓ′).A i.e. equivalent to ¬∀xα ∈ (IΓ′).¬A and this can be

proven using the semantics using the F.O.L. axioms in the meta-logic.

A−x(x)[e/x]IΓ This case splits into two, dependant on whether x occurs in dom(ξ) or not.

If x /∈ dom(ξ), then evaluating e and assigning the value to the substituting variable

must satisfy A.

If x ∈ dom(ξ), then the x variable is α-converted to an unused variable then proceed

as above.

Finally the semantics of triples can be de�ned.

De�nition 75 (Semantics of triples). A triple is modelled by a well constructed model ξIΓ

as follows.

ξIΓ |= {A}M :m {B}
def
= ξ |= A → ∃ V. (M

[IΓ, ξ]
⇝ V ∧ ξ ·m : V |= B)

Programs in Hoare triples must be static syntax, meaning for any triple {A}M :u {B}

then å(M) = ∅ and the typing requirements ensure [[IΓ]]ξ ⊢ M : α hence by Def. 68 then

M
[IΓ, ξ]
⇝ V ↔ (å(ξ), Mξ) ⇓ (å(ξ), G, V). All well typed terms are terminating in the

νGS-calculus so the existence of such a value V is guaranteed and is often dropped in the

soundness proofs for brevity.

Triples must be well typed by an LTC which can be used to construct a model via

Def. 71 and if the triple is satis�ed under all such models then this is de�ned as being a

valid triple.

De�nition 76 (Valid triple). Let IΓ ⊩ {A}M :m {B}, then the triple {A} M :m {B} is

valid, written |= {A}M :m {B} if the following holds.

(IΓ ⊩ {A}M :m {B} →)

|= {A}M :m {B}
def
= ∀ IΓ0, ξ

IΓ0
0 . IΓ ▷ ξ0 → ξ0 |= {A}M :m {B}

In the de�nition above, variables occurring in dom(ξ0)−dom(IΓ) cannot occur directly in

the triple, but they may still be used in the semantics of the formula via the ∀δ.-constructor.

104

5.3 Semantics of Extension Independence and Thinness

The de�nitions of syntactic extension independence (ExtIndSyn), and syntactic thinness

with respect to a variable (ThinSyn(x)), are introduced in Sec. 4.4. Semantic versions

of these de�nitions are now introduced with the intention of representing these properties

within the semantics. It will later be required to prove that the syntactic de�nition implies

the semantic de�nition for each. These properties are clearer when de�ned using the model

as they originate speci�cally from the requirements of the soundness proofs. The semantics

and idea of extension independence and thinness are similar respectively to statelessness

and thinness found in the Local-logic in Def. 18 with slight di�erences to be discussed.

5.3.1 Semantic Extension Independence

To prove the ν-logic sound it is often required that certain formulae that are satis�ed by

one model are satis�ed under any extension or contraction to that model, de�ned below

as semantic extension independence.

De�nition 77 (Semantic extension-independent formulae). Formulae that are semantic-

ally independent of extensions, written ExtIndSem, are de�ned as follows.

A-ExtIndSem
def
= ∀ IΓ. IΓ ⊩ A

→ ∀ ξ, ξ′. IΓ ▷ ξ ∧ ξ ≼⋆ ξ′

→ (ξ |= A ↔ ξ′ |= A)

The dual of ExtIndSem is that the semantics of the formulae do depend on the extensions.

The requirement that ξ and ξ′ are well constructed models by virtue of being extensions

of one another, ensures that if a formula holds for a model, it also holds for all extensions

and contractions, assuming the typing holds. This di�ers from the statelessness property

in Def. 18 for the Local-logic which only proves the formula must hold in future states. The

contraction part of the de�nition is required in the soundness of rules such as [Weak(x)]ν

and [Weak(δ)]ν .

Although all formulae used in the reasoning proof are ExtIndSem, there are formulae

which are not. An example of a formula that does not maintain its validity under model

extensions/contractions is one which depends on how many names exist in the current

model, e.g. ∀δ.∃xNm ∈ (IΓ+δ).(x#IΓ ∧ ¬x#IΓ+δ) for some IΓ. This example intends to

capture the existence of a name at x which is derived from the extension δ but fresh from

IΓ but not fresh from δ itself. Consider the simple model ξ′ ≡ z : n then the following

105

holds as x can always be instantiated as z : n.

ξ′ |= ∀δ.∃xNm ∈ (δ).(x#∅ ∧ ¬x#δ)

However, ∅∅ ≼⋆ ξ′ holds, as do the type checks, but the model fails to satisfy the formula.

∅ ̸|= ∀δ.∃xNm ∈ (δ).(x#∅ ∧ ¬x#δ)

This is because the instantiation of ∀δ. via (utc1), with the empty LTC ∅, results in the

formula ∃xNm ∈ (∅).(x#∅ ∧ ¬x#∅) which is clearly a contradiction.

More complicated examples of non-ExtIndSem formulae exist, however it is not clear

if these formulae can be constructed from the axioms and rules hence the requirement

that all formulae are indeed ExtIndSem in the soundness proof. To prove ExtIndSem

of formulae, a subset of all possible ExtIndSem formulae are de�ned in Def. 55, and in

Lem. 112 it is proven that these ExtIndSyn formulae are indeed ExtIndSem.

5.3.2 Semantic Thinness with Respect to a Variable

Certain proofs in Chapt. 6 require the ability to remove a variable from the model and still

satisfy a formula. In this case it is assumed that the model is well constructed both before

and after the variable is removed. The syntactically thin formulae de�ned in Def. 55 are

a subset of all thin formulae if thinness is considered with respect to a speci�c variable

de�ned as follows.

De�nition 78 (Thin formulae with respect to a variable).

De�ne a formula A, as thin with respect to the variable x, written A-ThinSem(x), as the

potential to remove the variable x from the model and still satisfy A. Formally de�ned as

follows.

∀ IΓ. IΓ\x ⊩ A ∧ xα ∈ dom(IΓ)

→

A ThinSem(xα) ↔ ∀ ξ. IΓ ▷ ξ → ξ |= A → ξ\x |= A

(Assuming ξ\x is a well constructed model)

Lem. 113 proves syntactic thinness implies thinness from Def. 55 and Def. 78 respect-

ively with respect to the same variable.

5.4 General Lemmas Used in Soundness Proofs

General lemmas are introduced here to simplify the later proofs in Chapt. 6. For brevity,

sometime M ⇓ V is used in place of (å(M), M) ⇓ (G′, V).

106

5.4.1 Lemmas Regarding Function and Nm-Free Types

The following lemmas are regarding α -(Nm,→) (name and function free) types introduced

in Def. 57.

The following lemma con�rms α -(Nm,→) typed values contain no names.

Lemma 79 (Function and name free typed values are name free).

∀ V -value. ∅ ⊢ V : α -(Nm,→) → å(V) = ∅

Proof. Assume some value V such that ∅ ⊢ V : α -(Nm,→) and prove that å(V) = ∅ by

induction on the structure of values of type α -(Nm,→), as follows.

− α = Unit implies V = Unit so this clearly holds.

− α = Bool implies V = true or V = false so this clearly holds.

− α = α -(Nm,→)1
× α -(Nm,→)2

then V = ⟨V1, V2⟩ and by I.H. assuming

∀ V1-value.∅ ⊢ V1 : α -(Nm,→)1
→ å(V1) = ∅

∀ V2-value.∅ ⊢ V2 : α -(Nm,→)2
→ å(V2) = ∅

then clearly å(⟨V1, V2⟩) = å(V1) ∪ å(V2) = ∅

The previous lemma implies that the closed function and name free type values are

also terms which can be typed by any type context, hence the following lemma. Let ≡sy

mean syntactically equivalent (which by de�nition implies contextual congruence).

Lemma 80 (Function and name free typed values can be derived equally from any LTC).

∀ IΓ, ξIΓ, IΓ1, V
α -(Nm,→) . IΓ ⊩ IΓ1 → (∃M

α -(Nm,→)

0 . M0
[∅, ξ]
⇝ V ↔ ∃M

α -(Nm,→)

1 . M1
[IΓ1, ξ]
⇝ V)

Proof. Holds as V is always a suitable name free closed term i.e. M0 ≡sy V ≡sy M1 always

holds as å(V) = ∅ ∧ ∅ ⊢ V : α -(Nm,→).

From the previous lemma it is clear that when deriving a value from an LTC, that

function and name free typed values can be included or excluded from an LTC as the

variable in the term can be replaced by the function and name free typed value mapped

by the model to produce the same value.

Lemma 81 (Function and name free typed values don't extend reach of an LTC).

∀ IΓ0, ξ
IΓ0 , n. IΓ0 ⊩ IΓ+y : α -(Nm,→) → (∃MNm.M

[IΓ, ξ]
⇝ n ↔ ∃MNm.M

[IΓ+y:α -(Nm,→), ξ]
⇝ n)

107

Proof. Clearly holds from Lem. 79 and Lem. 80 so no names are added to the LTC.

Lemma 82 (Function and name free typed values can be added and removed from the

TCV mappings and model equivalent formulae).

∀ IΓ, ξIΓ, A. IΓ(x) = α -(Nm,→) → (ξ · δ : IΓ′ |= A ↔ ξ · δ : (IΓ′\x) |= A)

Proof. Assume some IΓ, ξIΓ, A such that x ∈ dom(IΓ) and IΓ(x) = α -(Nm,→) and prove

(ξ · δ : IΓ′ |= A ↔ ξ · δ : (IΓ′\x) |= A) by induction on the structure of A considering the

possible occurrences of TCVs in formulae as follows.

The only two occurrences of δ possible in assertions are in IΓ0 in the constructors ∀x ∈ (IΓ0).

and x#IΓ0.

If A contains ∀x ∈ (IΓ0).A
′ and IΓ0 contains δ then it is una�ected by the addition (or

removal) of x : α -(Nm,→) as M
[IΓ0, ξ]
⇝ V ↔M

[IΓ0+y:α -(Nm,→), ξ]
⇝ V from Lem. 81

If A contains x#IΓ0 and IΓ0 contains δ then it is una�ected by the addition (or removal)

of x : α -(Nm,→) as M
[IΓ0, ξ]
⇝ V ↔M

[IΓ0+y:α -(Nm,→), ξ]
⇝ V from Lem. 81.

Any occurrence of ∀δ′.A′ in A extends some model equivalently if x is present in δ′ or not,

and all other cases are trivial, hence the Lemma holds.

Lemma 83 (Function and name free typed values can be added or removed and maintain

extensions).

∀ IΓ, ξIΓ, V
α -(Nm,→)
m , IΓ′, ξ′IΓ

′
. ξ ≼⋆ ξ′ ↔ ξ ·m : Vm ≼

⋆ ξ′ ·m : Vm

Proof. Assume some IΓ, ξIΓ, V
α -(Nm,→)
m , IΓ′, ξ′IΓ

′
and prove that ξ ≼⋆ ξ′ ↔ ξ ·m : Vm ≼⋆

ξ′ ·m : Vm by proving the two directions individually as follows.

→ : Clearly holds given Lem. 80 and Lem. 82 ensure Vm is name free and does not a�ect

the derivation of terms in the extension.

← : The proof by induction on the structure of ≼⋆ is satis�ed by the following cases.

If ξ ≡ ξ′ then this clearly holds.

Lem. 80 ensures any value derived from IΓx, ξx can equally be derived from IΓx\m, ξx\m

for any LTC IΓx and model ξx.

Lem. 82 ensures all TCV mapping extensions can add/remove function and name free

typed values with equivalent results.

The next lemma is used to prove axiom (f3) which is restricted to only functions of

type α→ α -(Nm,→) where α can be any type. A more general axiom than (f3) may exist,

108

but a use hasn't been required yet. The lemma ensures that any function of this type can

never reveal any names in the function in any context which does not contain the name

itself.

Lemma 84 (Functions that map to function and name free types cannot reveal names in

that function).

∀MNm, V (α→α -(Nm,→)), nNmx . (G ≡ å(M) ∪ å(V))
nx /∈ å(M)

∧ f : α→ α -(Nm,→) ⊢M : Nm

∧ nx ∈ å(V)

∧ ∅ ⊢ V : (α→ α -(Nm,→))

 → ¬ (G, M [V/f]) ⇓ (G,G′, nx)

Proof. Assuming some MNm, V (α→α -(Nm,→)), and some nNmx such that nx /∈ å(M) and

f : α→ α -(Nm,→) ⊢M : Nm and nx ∈ å(V) and ∅ ⊢ V : (α→ α -(Nm,→)). Then prove that

¬ (G, M [V/f]) ⇓ (G,G′, nx) by contradiction by �rst assuming a smallest such term M

for which this holds, then showing a smaller case must exist as follows.

Given nx /∈ å(M) then it is clear M ̸= nx and given ∅ ⊢ V : (α → α -(Nm,→)) then it

is clear V ̸= nx, hence nx must be derived from terms M and V . Assume there exists at

least one such M for which this holds, then take the smallest one M , then by de�nition

there exists an Mk such that

(G, M [V/f]) ⇓ (G,G′, nx) ↔ (G, M [V/f])→∗ (G,G′, Mk)→ (G,G′, nx)

Then each possible case of Mk is accounted for as follows:

− Mk ≡ π1(⟨nx, V ′⟩): hence M [V/f] ≡ E [π1(⟨M1,M2⟩)][V/f] where E [M2][V/f] ⇓ nx

so this E [M2] is smaller than M hence contradiction.

− Mk ≡ π2(⟨V ′, nx⟩): hence M [V/f] ≡ E [π2(⟨M1,M2⟩)][V/f] where E [M2][V/f] ⇓ nx

so this E [M2] is smaller than M hence contradiction.

− Mk ≡ if true then nx else V ′: hence M [V/f] ≡ E [if Mb then M1 else M2][V/f] where

E [M1][V/f] ⇓ nx so this E [M1] is smaller than M hence contradiction.

− Mk ≡ if false then V ′ else nx: hence M [V/f] ≡ E [if Mb then M1 else M2][V/f] where

E [M2][V/f] ⇓ nx so this E [M2] is smaller than M hence contradiction.

− Mk ≡ (λa.nx)V
′: hence M [V/f] ≡ E [(λa.M1)M2][V/f] where E [M1][V/f] ⇓ nx so

this E [M1] is smaller than M hence contradiction.

− Mk ≡ (λa.a)nx: hence M [V/f] ≡ E [(λa.M1)M2][V/f] where E [M2][V/f] ⇓ nx so this

E [M2] is smaller than M hence contradiction.

109

− Mk ≡ let x = V ′ in M : Similar for let x = V ′ in M

− There are no other possible terms that reduce to nx.

− Mk ≡ gensym(): fails to produce nx as nx ∈ G

i.e. Assuming a smallest M such that M ⇓ nx (which is assumed to exist), for each term

Mk which is just one →-step away from nx then it can be proven that a smaller M can be

found which produces nx hence a contradiction exists.

5.4.2 Lemmas Regarding Nm-Free Types

The following lemmas will be de�ned for types which are α-Nm. These represent the STLC

types although there are νGS-calculus programs that are of this α-Nm type which do contain

names e.g. λx.(n = n). It is shown that α-Nm typed terms can be equated to a name-free

term i.e. a STLC term. One of the key assumptions to make the proof simple is that the

initial STLC is simple enough to not contain in�nite values of a single type i.e. there are

no integers and no recursion, however proving these harder extensions would be harder.

To prove a �nite number of values of any particular α-Nm type (up to equivalence), it

is �rst proven that it is possible to de�ne when two functions of α-Nm type are equal, this

is essentially through comparing each of the �nite values of the input type.

De�nition 85 (The equating formula). For α ∈ α-Nm , inductively de�ne EQα(M,N) on

the type α as the program that equates two functions of type α as follows.

EQUnit(M,N)
def
= true

EQBool(M,N)
def
= M = N

EQα→Unit(M,N)
def
= true

EQα1×α2(M,N)
def
= if ¬EQα1(π1(M), π1(N)) then false else

if ¬EQα2(π2(M), π2(N)) then false else true

EQα1→α2(M,N)
def
= if ¬EQα2(MṼ0, NṼ0) then false else

if ¬EQα2(MṼ1, NṼ1) then false else

...

if ¬EQα2(MṼk, NṼk) then false else true

s.t. Ṽk are all �nite-k number of values of type α1 (Lem. 86)

Note the program ¬M def
= if M then false else true is used for brevity.

110

In the following lemmas Mν represents standard νGS-calculus terms and Mλ represents

a νGS-calculus term constructed only from STLC terms (i.e. no names and no gensym).

The let x = M in N term constructor is ignored for simplicity.

Lemma 86 (Finite STLC values for each α-Nm type). Write a list of STLC values of type

α as W̃α
λ�nite.

∀ α ∈ α-Nm. ∃ W̃α
λ�nite. ∀Mα

λ . ∃ V α
λ ∈ W̃λ.Mλ

∼= Vλ

Proof. Assume some α ∈ α-Nm, then it must be shown that there exists a �nite list of

STLC values of that type, written W̃α
λ�nite. Then prove for any ν-term there exists an

equivalent value in W̃α
λ�nite. This is proven by induction on the structure of α and by

creating a complete list of values of type α written W̃α ≡ V [α] as follows.

− α ≡ Unit then this clearly holds as (G, M) ⇓ (G′, ()) must always hold and so

V [Unit] ≡ () holds.

− α ≡ Bool then this clearly holds as (G, M) ⇓ (G′, true)must always hold or (G, M) ⇓

(G′, false) must always hold and so V [Bool] ≡ true || false holds.

− α ≡ α1 × α2 then clearly V [α1 × α1] ≡ ⟨V [α1], V [α2]⟩ where the right hand side

V [α1] represents every possible value of type α1, hence the right hand side is the list

of every possible combination between V [α1] and V [α2].

− α ≡ α1 → α2 then by induction on α1 it can be assumed there are �nite values of

this type i.e. let W̃ ≡ V [α1], this is used to state the values of type α1 → α2 as

V [α1 → α2] ≡ λxα1 . if EQα1(x, W̃0) then V [α2] else

if EQα1(x, W̃1) then V [α2] else

...

if EQα1(x, W̃k) then V [α2] else V [α2]

hence the right hand side is the list of every possible combination between W̃ , and

V [α2] in each instance.

The number of values grow exponentially with the size of the type but there are always

�nite number of values for each type. These values cover all possible cases by de�nition as

no other possible inputs or outputs exist to a function of the given type.

The next lemma proves that for any term of type α-Nm, there is an equivalent term

which contains no names and is a subset of the STLC syntax. The proof relies on the

111

language containing a �nite number of values of any particular α-Nm type as seen in the

previous lemma.

Lemma 87 (α-Nm typed terms are equivalent to a name free STLC term). Let α ∈ α-Nm

∀Mα
ν . ∃ Nλ.Mν

∼=å(Mν)
α Nλ

I.e. for each term in the νGS-calculus of a type which in α-Nm then there exists a contex-

tually congruent term constructed only of core STLC constructors.

Proof. This is proven by induction on the type α ∈ α-Nm as follows.

All ν-terms that are of type Unit and Bool are equivalent to a constant of that type.

The case for α ≡ α1 × α2 holds trivially by induction on π1(Mν)
α1 and π2(Mν)

α2 .

The case for α ≡ α1 → α2 holds as follows:

1 I.H.(α)
def
= ∀Mα. ∃ Nα

λ . M
∼=å(M)

α N I.H.(α)

2 Assume I.H.(α1) ∧ I.H.(α2) for α1, α2 in α-Nm

3 Prove: I.H.(α1 → α2) for α1 → α2 in α-Nm

4 ∀ α. ∃ W̃α
�nite

. ∀Mα
λ . ∃ V α ∈ W̃ .M ∼= V α ∈ α-Nm Lem. 86

5 I.H.(α1) implies for each ν-term of type α1 there exists an equi-

valent λ-term(which must mean there are �nite ones of these). Let

W̃ be this term

I.H.(α1)

6 ∀Mα1
1ν . ∃ Nα1

1λ . M1ν
∼=å(M1ν)

α1 N1λ I.H.(α1)

7 For each value in W̃ , then MW̃i is a term of type α2 which by

I.H.(α2) implies there is an equivalent λ-term. Let Ũi be this

term i.e. MṼi
∼= Ũi

I.H.(α2)

8 ∀ W̃α1
i ∈ W̃α1 . ∀Mα1→α2

ν . ∃ Nα2
λ . MW̃i

∼=å(M)
α2 N I.H.(α2)

9 Using lines 5-8 an equivalent formula to M can be constructed

by brute force such that for each input case there is an equivalent

output case i.e.

Nλ ≡ λxα1 . if EQα1(x, Ṽ0) then Ũ0 else

...

if EQα1(x, Ṽk−1) then Ũk−1 else Ũk

10 By de�nition Mν
∼=å(Mν)

α1→α2
Nλ as any use of Nλ behaves identically

to Mν in any application it is used in.

112

5.4.3 Lemmas Regarding Expressions

As discussed in Sec. 5.2, the following lemmas treat expressions as terms in the language.

Each expression constructor, c, x, πi(e), and ⟨e, e⟩ is also a syntactic constructor in the

language, hence [[e]]ξ ≡ eξ (closure) implies the expression e is treated as a term.

The next lemma guarantees that no new names are ever generated by evaluation of

expressions (represented by the lack of new names in the �nal con�guration). Expressions

contain no gensym and no application of functions, hence the subset of the language is

guaranteed to produce no fresh names.

Lemma 88 (Expressions cannot create new names).

∀ IΓ, ξIΓ, e. IΓ ⊩ e : α → ∃ V. (å(ξ), [[e]]ξ) ⇓ (å(ξ), V)

Clearly guaranteed termination implies ∃ V ′.(å(ξ), [[e]]ξ) ⇓ (å(ξ), G′, V ′), however this

lemma proves that no new names are produced in such an evaluation.

Proof. Trivial by induction on the structure of e noting that gensym cannot occur naturally,

and can only occur under a λ-binder which cannot be applied.

The next two lemmas prove that expressions are name free when considered as terms

and when evaluating expressions closed by a model then all names in the value produced

are contained within the model.

Lemma 89 (Expressions are name free).

∀ IΓ, e. IΓ ⊩ e : α → å(e) = ∅

Proof. Assuming some IΓ and some e such that IΓ ⊩ e : α, then å(e) = ∅ is proven by

induction on the structure of e, knowing that e ∈ {c, x, πi(e), ⟨e1, e2⟩}, i.e. no built-in

names. Hence names in e only come from closing with a model via the semantics of

[[e]]ξ.

Lemma 90 (Expressions are fresh name free).

∀ IΓ, ξIΓ, e, Ve. IΓ ⊩ e : α ∧ e
[IΓ, ξ]
⇝ Ve → å(Ve) ⊆ å(ξ)

Proof. Assuming some IΓ, ξIΓ, e and some Ve such that IΓ ⊩ e : α and e
[IΓ, ξ]
⇝ Ve then

å(Ve) ⊆ å(ξ) is proven by induction on the structure of e. Given e ∈ {c, x, πi(e), ⟨e1, e2⟩}

contains no built in names, names only come from closing with a model via the semantics

of closure eξ, and hence no evaluation of gensym() can occur, and only old names occur in

the value produced.

113

The previous lemma ensures that any evaluation of an expression closed by a model

will be contextually congruent to the value it evaluated to, due to no fresh names being

introduced. This is formalized in the next lemma.

Lemma 91 (Expressions are congruent to their evaluation).

∀ IΓ, ξIΓ, e, Ve.IΓ ⊩ e : α ∧ e
[IΓ, ξ]
⇝ Ve→ eξ ∼=å(ξ)

α Ve

Proof. Lem. 90 implies all values Ve only contain names in the model.

Assuming some IΓ, ξIΓ, e and some Ve such that IΓ ⊩ e : α and e
[IΓ, ξ]
⇝ Ve then eξ ∼=å(ξ)

α Ve

can be proven by induction on the structure of e as follows.

e ≡ c: clearly holds for c ∈ {(), true, false}.

e ≡ x: clearly holds as xξ ≡ ξ(x) ≡ Ve

e ≡ πi(e
′): holds as by induction e′,

i.e. IΓ ⊩ e′ : α1 × α2 ∧ e′
[IΓ, ξ]
⇝ ⟨V1, V2⟩→ e′ξ ∼=å(ξ)

α1×α2
⟨V1, V2⟩

hence πi(e
′)ξ ∼=å(ξ)

αi Vi

e ≡ ⟨e1, e2⟩: holds by I.H. on e1 and e2

i.e. IΓ ⊩ e1 : α1 ∧ e1
[IΓ, ξ]
⇝ V1→ e1ξ ∼=å(ξ)

α1 V1

and IΓ ⊩ e2 : α2 ∧ e2
[IΓ, ξ]
⇝ V2→ e2ξ ∼=å(ξ)

α2 V2

implies ⟨e1, e2⟩ξ ∼=å(ξ)
α1×α2

⟨V1, V2⟩

5.4.4 Lemmas Regarding Derivations

LTCs typing other LTCs can be seen as an ordered subset, as the order is ensured by the

typing and the subset is seen when the LTC is interpreted into an STC by a model, as

follows.

Lemma 92 (Typed LTC's implies sub-type-contexts).

∀ IΓ, IΓ0, ξ
IΓ. IΓ ⊩ IΓ0 → [[IΓ0]]ξ ⊆ [[IΓ]]ξ

Proof: clearly holds through induction on structure of IΓ and IΓ0 and using the typing rules

for LTCs in Fig. 3.2.

An LTC derived value can always be derived from any extension to the LTC as it will

always contain the original LTC, as seen in the following lemma.

114

Lemma 93 (Values derivable from one LTC are also derivable from an extension of the

LTC).

∀ IΓ, ξIΓ, IΓ0+IΓ1,M, V. IΓ ⊩ IΓ0 ∧ IΓ0 ⊩ IΓ1 ∧ M
[IΓ1, ξ]
⇝ V → M

[IΓ0, ξ]
⇝ V

Proof. Assuming some IΓ, ξIΓ, IΓ0, IΓ1, M , V such that IΓ ⊩ IΓ0 and IΓ0 ⊩ IΓ1 and

M
[IΓ1, ξ]
⇝ V then prove M

[IΓ0, ξ]
⇝ V using Lem. 92 i.e. [[IΓ1]]ξ ⊆ [[IΓ1]]ξ. This then holds

trivially as all requirements of LTC derived values are satis�ed trivially.

5.4.5 Lemmas Regarding the Revealing of Names

If a name can be derived from a model but when added to the model it cannot be derived,

then this name must be fresh, which is proven in the following lemma.

Lemma 94 (Adding a name to the model but not to the context means it is fresh).

∀ IΓ, ξIΓ, nx. (∃Mx.Mx
[IΓ, ξ]
⇝ nx ∧ ¬ ∃ Nx.Nx

[IΓ, ξ·x:nx]
⇝ nx) → nx /∈ å(ξ)

Proof. Assuming some IΓ, ξIΓ and some nNmx such that ∃Mx.Mx
[IΓ, ξ]
⇝ nx and

¬ ∃ Nx.Nx
[IΓ, ξ·x:nx]
⇝ nx then nx /∈ å(ξ) is proven by contradiction. Assume nx ∈ å(ξ) then

clearly there would be a direct contradiction in the assumption as ∃ Nx.Nx
[IΓ, ξ·x:nx]
⇝ nx

as å(ξ · x : nx) ≡ å(ξ). Hence nx /∈ å(ξ).

Any value derived from an LTC and model cannot reveal previously accessible names

from that same LTC and model when added. Hence any name occurring in a model derived

from an LTC and the model can also be derived from the LTC and model with the addition

of a value derived from said model. This is formally de�ned by the following lemma.

Lemma 95 (LTC derived terms cannot reveal old names).

∀ IΓ, ξIΓ, IΓ0,M
αy
y , nNm.


IΓ ⊩ IΓ0

∧ My
[IΓ0, ξ]
⇝ Vy

∧ n ∈ å(ξ)

 →


∃M1.M1

[IΓ0+y, ξ·y:Vy]
⇝ n

↔

∃M0.M0
[IΓ0, ξ]
⇝ n


Essentially Vy cannot reveal any names in ξ that are not already available to IΓ0.

115

Proof.

1 Proof by contradiction:

2 Assume some IΓ, ξIΓ, IΓ0,M
αy
y , nNm with IΓ ⊩ IΓ0 ∧ My

[IΓ0, ξ]
⇝ Vy ∧ n ∈ å(ξ)

3 Clearly a contradiction ¬ ∃M1.M1
[IΓ0+y, ξ·y:Vy]
⇝ n ∧ ∃M0.M0

[IΓ0, ξ]
⇝ n Def. 68

4 Letting IΓ0y ≡ IΓ0+y and ξy ≡ ξ · y : Vy then:

5 Prove the following is a contradiction as follows:

6 ∃ n. ∃M1.M1
[IΓ0y , ξ·y:Vy]
⇝ n ∧ ¬ ∃M0.M0

[IΓ0, ξ]
⇝ n

7 ↔ ∃ n. ∃M1(y).M1(y)
[IΓ0y , ξ·y:Vy]
⇝ n ∧ ¬ ∃M0.M0

[IΓ0, ξ]
⇝ n

8 ↔ ∃ n. ∃M1(y).M1(y)
[IΓ0y , ξ·y:Vy]
⇝ n ∧ ¬ ∃M0 ≡ let y = My in M1(y).M0

[IΓ0, ξ]
⇝ n

9 Contradiction given the name derived by (M1(y))ξy can also be derived by

(let y = My in M1(y))ξ given the semantics of the evaluation of

(let y = My in M1(y))ξ → (let y = Vy in M1(y))ξ →M1(y)(ξ · y : Vy).

As My
[IΓ0, ξ]
⇝ Vy then this holds given any fresh names in Vy has no a�ect on

the name produced by M0 and M1 as n ∈ å(ξ).

10 This works because n ∈ å(ξ) hence the name cannot be fresh (derived from Vy

and any fresh names in Vy can be replicated by a new generation via My and

will be treated equally.

Similar to the previous lemma, any name that occurs in a model can be derived from

said model if and only if it can be derived from any extension of said model. This is de�ned

in the next lemma and uses the previous lemma for one of the extension cases.

Lemma 96 (Extensions cannot reveal old names).

∀ IΓ, ξIΓ, IΓ′, ξIΓ
′
, nNm.

 ξ ≼⋆ ξ′

∧ n ∈ å(ξ)

 →

∃M ′.M ′
[IΓ′, ξ′]
⇝ n

↔

∃M.M
[IΓ, ξ]
⇝ n

Essentially ξ′ cannot reveal any names in ξ that are not already available to ξ.

Proof. Assuming some IΓ, ξIΓ, IΓ′, ξ′ and some nNm such that ξ ≼⋆ ξ′ and n ∈ å(ξ) then

∃M ′.M ′
[IΓ′, ξ′]
⇝ n ↔ ∃M.M

[IΓ, ξ]
⇝ n holds by proving both directions of the ↔ indi-

vidually as follows.

116

←: this clearly holds as the same M can be used i.e. ∃M.M
[IΓ, ξ]
⇝ n→M

[IΓ′, ξ′]
⇝ n

→: Proof by induction on the structure of ξ′:

− ξ′ ≡ ξ: This clearly holds.

− ξ′ ≡ ξ′0 · δ : IΓ0\−TCV : then this holds as no new names are reachable by the

introduction of δ as [[IΓ′]]ξ′ ≡ [[IΓ′+δ]]ξ′·δ:IΓ′ and I.H. on ξ′0.

− ξ′ ≡ ξ
IΓ′

0
0 · y : Vy: then ∃My.My

[IΓ′
0, ξ

′
0]⇝ Vy and using Lem. 95 and I.H. on ξ′0 this

clearly holds.

In a reduction evaluation, if a name occurs in the initial nameset but not in the term

then it can never occur in the produced value, as proven in the following lemma.

Lemma 97 (Names fresh in term imply name fresh in value).

∀ IΓ, ξIΓ,M, n, V. n /∈ å(M) ∧ (å(M), n, G0, M) ⇓ (å(ξ), n, G0, G
′, V) → n /∈ å(V)

Proof. Assume some IΓ, ξIΓ, M , n, V such that n /∈ å(M) and (å(M), n, G0, M) ⇓

(å(ξ), n, G0, G
′, V) and prove n /∈ å(V) by induction on the structure of M . Most cases

are trivial, the only non-trivial case is as follows.

M ≡M1M2:

By I.H. (G, M1) ⇓ (G,G1, V1) and (G,G1, M2) ⇓ (G,G1, G2, V2) with n /∈ V1V2 hence 2

cases occur:

V1 ≡ λx.M ′1 then this evaluates to M ′1[V2/x] which by assumptions and the operational

semantics implies n /∈M ′1[V2/x], hence by induction n /∈ å(V).

V1 ≡ gensym and V2 ≡ () then by the operational semantics this generates a fresh name

(̸= n) hence n /∈ å(V).

The previous lemma extends to LTC derived values as the impossibility of deriving a

fresh name from a model with the fresh name but the LTC without the name as follows.

Lemma 98 (Fresh names are not derivable from an LTC of a model where the name is

added to the model).

∀ IΓ, ξIΓ, n. n /∈ å(ξ) → ¬ ∃MNm.M
[IΓ, ξ·m:n]
⇝ n

117

Proof. This holds as n must be a freshly generated name not appearing in ξ. Hence, no

term can be derived from the model ξ to generate such a name.

1 Assume IΓ, ξIΓ then prove by contradiction:

2 i.e. assume ¬ (n /∈ å(ξ) → ¬ ∃MNm.M
[IΓ, ξ·m:n]
⇝ n)

3 ↔ (n /∈ å(ξ) ∧ ∃MNm.M
[IΓ, ξ·m:n]
⇝ n) F.O.L.

4 ↔ n /∈ å(ξ) ∧ ∃MNm. å(M) = ∅ ∧ IΓ ⊢M : α

∧ (å(ξ), n, M(ξ ·m : n)) ⇓ (å(ξ), n, G′, n)

Sem.
[,]
⇝

5 ↔ n /∈ å(ξ) ∧ ∃MNm. å(M) = ∅ ∧ IΓ ⊢M : α

∧ (å(ξ), n, Mξ) ⇓ (å(ξ), n, G′, n)

m /∈ dom(IΓ)

∧ IΓ ⊢M : α

6 → n /∈ å(ξ) ∧ ∃MNm. å(M) = ∅ ∧ IΓ ⊢M : α

∧ n /∈ å(Mξ) ∧ n /∈ n

∧ (å(ξ), n, Mξ) ⇓ (å(ξ), n, G′, n)

n /∈ å(Mξ) and

Lem. 97

implies contradiction

7 → n /∈ å(ξ) → ¬ ∃MNm.M
[IΓ, ξ·m:n]
⇝ n by contradiction

5.4.6 Lemmas Regarding Model Extensions

The following two lemmas prove interpretations of LTCs and closure of terms are equivalent

under model extensions/contractions.

Lemma 99 (Semantics of LTC is equal in model extensions).

∀ IΓ1, IΓ2, ξ
IΓ1
1 , ξIΓ2

2 . (ξ1 ≼
⋆ ξ2 ∧ IΓ1 ⊩ IΓ0) → [[IΓ0]]ξ1 = [[IΓ0]]ξ2

Proof. Assume some IΓ1, ξ
IΓ1
1 , IΓ2, ξ

IΓ2
2 such that ξ1 ≼⋆ ξ2 and IΓ1 ⊩ IΓ0 and prove [[IΓ0]]ξ1 =

[[IΓ0]]ξ2 by induction on the structure of IΓ0 as follows.

IΓ0 ≡ ∅: Clearly [[∅]]ξ1 = ∅ = [[∅]]ξ2 .

IΓ0 ≡ IΓ′0+x : α: By I.H. [[IΓ′0]]ξ1 = [[IΓ′0]]ξ2 and also by Def.≼⋆, IΓ1(x) = α = IΓ2(x).

IΓ0 ≡ IΓ′0+δ : TC: By I.H. [[IΓ′0]]ξ1 = [[IΓ′0]]ξ2 and also by Def.≼⋆, IΓ1(δ) = TC = IΓ2(δ) and ξ1(δ) = ξ2(δ)

this case holds.

IΓ0 ≡ IΓ′0+IΓ′′0: by I.H. on both IΓ′0 and IΓ′′0 this clearly holds.

118

A model extension adds variable and TCV mappings to the base model and hence

interpretations of expressions are equivalent under both base and extension models.

Lemma 100 (Extensions give equal semantics of expressions).

∀ IΓ1, ξ
IΓ1
1 , IΓ2, ξ

IΓ2
2 , e. ξ1 ≼

⋆ ξ2 ∧ IΓ1 ⊩ e : α → [[e]]ξ1 ≡sy [[e]]ξ2

Proof. Trivial given IΓ1 ⊩ e : α and ∀ x ∈ dom(IΓ1). ξ1(x) ≡sy ξ2(x).

Lemma 101 (Model extensions close terms equally).

∀ IΓ1, ξ
IΓ1
1 , IΓ2, ξ

IΓ2
2 .(ξ1 ≼

⋆ ξ2 ∧ [[IΓ1]]ξ1 ⊢M : α) → Mξ1 ≡Mξ2

Proof. Trivial given [[IΓ1]]ξ1 ⊩M : α and ∀ x ∈ dom([[IΓ1]]ξ1). ξ1(x) ≡sy ξ2(x).

Derivations are shown to be equivalent under model extensions assuming the same

typing LTC as follows.

Lemma 102 (Evaluation under model extensions are equivalent).

∀ IΓ1, ξ
IΓ1
1 , IΓ2, ξ

IΓ2
2 , IΓ0,M, V.

(ξ1 ≼⋆ ξ2 ∧ IΓ1 ⊩ IΓ0 ∧ å(V) ∩ å(ξ2) ⊆ å(ξ1))

→ (M
[IΓ0, ξ1]
⇝ V ↔ M

[IΓ0, ξ2]
⇝ V)

Proof. Lem. 101 (Mξ1 ≡ Mξ2) and Sem. → prove this in both directions of the ↔

assuming (ξ1 ≼⋆ ξ2 ∧ IΓ1 ⊩ IΓ0 ∧ å(V) ∩ å(ξ2) ⊆ å(ξ1)).

1 Assume IΓ1, IΓ2, ξ
IΓ1
1 , ξIΓ2

2 , IΓ0 s.t

2 ξ1 ≼⋆ ξ2 ∧ IΓ1 ⊩ IΓ0 ∧ M
[IΓ0, ξ1]
⇝ V ∧ å(V) ∩ å(ξ2) ⊆ å(ξ1) Assume

3 ξ1 ≼⋆ ξ2 ∧ IΓ1 ⊩ IΓ0

∧ å(M) = ∅ ∧ [[IΓ0]]ξ1 ⊢M : α

∧ (å(ξ1),Mξ1) ⇓ (å(ξ1), G
′, V) ↔ (å(ξ1),Mξ2) ⇓ (å(ξ1), G

′, V)

Lem. 101

(Mξ1 ≡Mξ2)

4 ξ1 ≼⋆ ξ2 ∧ IΓ1 ⊩ IΓ0

∧ å(M) = ∅ ∧ [[IΓ0]]ξ1 ⊢M : α

∧ (å(ξ1),Mξ2) ⇓ (å(ξ1), G
′, V) ↔ (å(ξ2),Mξ2) ⇓ (å(ξ2), G

′, V)

Sem.→

(å(V) ∩ å(ξ2) ⊆ å(ξ1))

5 hence: ∀ IΓ1, ξ
IΓ1
1 , IΓ2, ξ

IΓ2
2 , IΓ0,M.

(ξ1 ≼⋆ ξ2 ∧ IΓ1 ⊩ IΓ0)

→ (M
[IΓ0, ξ1]
⇝ V ↔ M

[IΓ0, ξ2]
⇝ V)

Lem. 99,

[[IΓ0]]ξ1 ≡ [[IΓ0]]ξ2

Sem.
[,]
⇝

119

This includes the case where ξ ≼⋆ ξ · δ : IΓ0 for any IΓ0.

Extensions are often needed to maintain the extensional property when an LTC derived

value is added to both models. This is proven by �rst proving this for the single step

extension in the following lemma, then the re�exive, transitive closure extension in the

following lemma after that.

Lemma 103 (Values derived from IΓ maintain extension (single) when added to models

which are extensions).

∀ IΓ, ξIΓ, IΓ′, ξ′IΓ
′
,Mα, V. ξ ≼ ξ′ ∧ M

[IΓ, ξ]
⇝ V ∧ å(V)∩å(ξ′) ⊆ å(ξ) → ξ·x : V ≼ ξ′·x : V

Proof. This is proven by proving the two cases of single step extension individually as

follows.

1 Assume IΓ, ξIΓ, IΓ′, ξIΓ
′
,Mα, V s.t. ξ ≼ ξ′ ∧ M

[IΓ, ξ]
⇝ V

2 The case for ξ′ ≡ ξ · δ : IΓ0\−TCV is proven below:

3 assume some IΓ0 s.t. IΓ ⊩ IΓ0 with ξ ≼ ξ · δ : IΓ0\−TCV

then IΓ+x ⊩ IΓ0 and hence ξ · x : V ≼ ξ · δ : IΓ0\−TCV · x : V

as adding δ doesn't extend the number of values that can be derived.

Sem.≼

4 The case for ξ′ ≡ ξ · y : V ′ is proven below:

5 Assume (ξ ≼ ξ′ ∧ M
[IΓ, ξ]
⇝ V) (Sem. ≼ implies ξ ≼ ξ · x : V)

6 → ∃M ′. M ′
[IΓ, ξ]
⇝ V ′ ∧ ξ′ ≡ ξ · y′ : V ′ ∧ M

[IΓ, ξ]
⇝ V Sem.≼

7 → ∃M ′. M ′
[IΓ, ξ·x:V]
⇝ V ′ ∧ ξ′ · x : V ≡ ξ · x : V · y′ : V ′ Lem. 102

8 → ∃M ′. M ′
[IΓ+x:αx, ξ·x:V]

⇝ V ′ ∧ ξ′ · x : V ≡ ξ · x : V · y′ : V ′ Lem. 93

9 → ξ · x : V ≼ ξ′ · x : V Sem.≼

If a base model and two extensions of the base model are considered, then Lem. 104

ensures the extensions can be combined and still maintain the extension property under

certain conditions. This can be thought of as the diamond property for model extensions

as seen in Fig. 5.1.

120

∀ ξ, ξ1, ξ2. å(ξ1) ∩ å(ξ2) ⊆ å(ξ) →

ξ · ξ1

≼
⋆ ≼ ⋆

ξ ξ · ξ1 · ξ2
≼ ⋆

≼
⋆

ξ · ξ2

Figure 5.1: Diamond property for model extensions.

Lemma 104 (Two extensions combine to make extensions of each other (diamond property

for model extensions)).

∀ IΓ, IΓ1, IΓ2, ξ
IΓ, ξIΓ1

1 , ξIΓ2
2 .

ξ ≼⋆ ξ · ξ1 ∧ ξ ≼⋆ ξ · ξ2 ∧ å(ξ1) ∩ å(ξ2) ⊆ å(ξ)

→ (ξ · ξ1 ≼⋆ ξ · ξ1 · ξ2 ↔ ξ · ξ2 ≼⋆ ξ · ξ1 · ξ2)

Proof. By induction on the structure of ξ1 the following cases hold.

ξ1 ≡ ∅ Holds trivially.

ξ1 ≡ δ : IΓi Clearly ξ · ξ1 · ξ2 ≼⋆ ξ · ξ1 · ξ2 · δ : IΓi holds as IΓ+IΓ1 ⊩ IΓi implies IΓ+IΓ1+IΓ2 ⊩ IΓi.

ξ1 ≡ x : V Holds via Lem. 103.

ξ1 ≡ ξ′1 · ξ′′1 Holds by I.H. on both ξ′1 and ξ′′1 .

If a TCV does not appear in a formulae then the TCV can be removed or added to the

model in any position and still satisfy the formula.

Lemma 105 (Extending the model by δ maintains models). (A -ExtIndSyn not required)

∀ IΓ, ξIΓ, IΓ′, ξ′IΓ
′
, IΓa, A

−δ. IΓ ⊩ IΓa → (ξ · ξ′ |= A−δ ↔ ξ · δ : IΓa\−TCV · ξ′ |= A−δ)

where A−δ means δ does not occur syntactically in A.

Proof. By de�nition of ≼, ξ ≼ ξ · δ : IΓa\−TCV holds and implies via Def.≼⋆ that

ξ · ξ′ ≼⋆ ξ · δ : IΓa\−TCV · ξ′ which allows the use of Lem. 100 and Lem. 102 (å(ξ · ξ′) ≡

å(ξ · δ : IΓa\−TCV · ξ′)).

The proof follows by I.H. on structure of A:

121

− e1 = e2 proven by noting that [[ei]]ξ·ξ′ ≡ [[ei]]ξ·δ:IΓa\−TCV ·ξ′ (Lem. 100).

− A1 ∧A2, A1 ∨A2, A1 → A2: I.H. on A1 and A2.

− ¬A1, proof by I.H. on A1, assume ξ · δ : IΓa\−TCV · ξ′ |= ¬A1 then clearly ξ · δ :

IΓa\−TCV · ξ′ ̸|= A1 and by I.H. on A1 then ξ · ξ′ ̸|= A1 i.e. ξ · ξ′ |= ¬A1.

− x#IΓ′ holds by Lem. 100 and Lem. 102 (å(ξ · ξ′) ≡ å(ξ · δ : IΓa\−TCV · ξ′)) which

ensure [[x]]ξ·ξ′ ≡ [[x]]ξ·δ:IΓa\−TCV ·ξ′ and

∃Mx. Mx
[IΓ′, ξ·ξ′]
⇝ V ↔ ∃Mx. Mx

[IΓ′, ξ·δ:IΓa\−TCV ·ξ′]
⇝ V respectively, hence clearly

¬ ∃Mx. Mx
[IΓ′, ξ·ξ′]
⇝ [[x]]ξ·ξ′ ↔ ¬ ∃Mx. Mx

[IΓ′, ξ·δ:IΓa\−TCV ·ξ′]
⇝ [[x]]ξ·δ:IΓa\−TCV ·ξ′ .

− e • e′ = m{A1} by I.H. on A1 with [[e]]ξ·ξ′ ≡ [[e]]ξ·δ:IΓa\−TCV ·ξ′

and [[e′]]ξ·ξ′ ≡ [[e′]]ξ·δ:IΓa\−TCV ·ξ′ (Lem. 100) hence evaluation is equivalent and this

holds.

− ∀x ∈ (IΓ′).A1 knowing that δ /∈ IΓ′ then the same possible terms are quanti�ed over

given Lem. 102 (Mx
[IΓ′, ξ·ξ′]
⇝ V ↔Mx

[IΓ′, ξ·δ:IΓa\−TCV ·ξ′]
⇝ V) and by I.H. on A1 the

case holds.

− ∀δ′.A1 by I.H. on A1 this holds for any model containing δ and δ′ then by the

semantics the lemma holds.

5.4.7 Lemmas Regarding Congruent Models

Congruent values should be interchangeable in models, assuming the models are well con-

structed, hence the introduction of congruent models in Def. 106, ensuring the two models

are point-wise contextually congruent. Congruent models are proven to satisfy the exact

same formulae in Lem. 108 using Lem. 107 which states that any term used to derive a

value from one model produces a contextually congruent value using congruent models.

These proofs assume that any fresh name produced by one model can be swapped for the

same names as those produced by another model. This is valid under injective-renaming

of fresh names (nominal determinacy Def. 25).

De�nition 106 (Congruent models). Two models ξ1 and ξ2 are congruent models (ξ1 ∼=

ξ2) i� the values are contextually congruent and the LTC are identical in both models as

122

follows.

∀ IΓ1, IΓ2, ξ
IΓ1
1 , ξIΓ2

2 .

ξIΓ1
1
∼= ξIΓ2

2 ↔ å(ξ1) ∪ å(ξ2) ≡ G

∧ dom(IΓ1) ≡ dom(IΓ2) ∧ [[IΓ1]]ξ1 ≡ [[IΓ2]]ξ2

∧ ∀ δTC ∈ dom(IΓ1). ξ1(δ) ≡ ξ2(δ)

∧ ∀ xα ∈ dom(IΓ1\−TCV). ξ1(x) ∼=G
α ξ2(x)

The TCVs in IΓ1 are equated in the second to last line and the standard variables are

equated in the �nal line, hence the use of IΓ1\−TCV in the bottom line. This de�nition

requires ξ1 and ξ2 to be well constructed models. The LTCs in ξIΓ1
1
∼= ξIΓ2

2 can be di�erent

but must contain the same domain, the LTCs are often dropped for brevity.

Lemma 107 (Values derived from equivalent terms extend congruent models).

∀Mα, IΓ1, IΓ2, ξ
IΓ1
1 , ξIΓ2

2 . ξ1 ∼= ξ2 ∧ M
[IΓi, ξi]
⇝ Vi → ξ1 · x : V1

∼= ξ2 · x : V2

Assuming the names produced in V1 are the same as those in V2 which can be written more

formally as follows.

∀Mα, IΓ1, IΓ2, ξ
IΓ1
1 , ξIΓ2

2 . ξ1 ∼= ξ2

∧ ∀ V1. M
[IΓ1, ξ1]
⇝ V1

→ ∃ V2. M
[IΓ2, ξ2]
⇝ V2 → ξ1 · x : V1

∼= ξ2 · x : V2

Proof. The requirement for the names to be the same in both V1 and V2 is possible under

injective renaming as the fresh names produced in V2 can be selected to be the fresh names

produced in V1. The proof that this holds is simply a case of proving that because the

values that close M in ξ1 are congruent to those that close M in ξ2 then Mξ1 ∼=å(ξ1,ξ2)
α Mξ2

the values produced are by de�nition congruent up to the renaming of certain fresh names

(nominal determinacy Def. 25).

Lemma 108 (Congruent extensions implies their evaluation added to a model, model

equivalently).

∀ IΓ1, IΓ2, ξ
IΓ1
1 , ξIΓ2

2 , A. ξ1 ∼= ξ2 ∧ IΓ1 ⊩ A ∧ IΓ2 ⊩ A

→

ξ1 |= A ↔ ξ2 |= A

Use I.H. as the additions are all of the same form when proving A:

123

Proof. Proof by I.H. on the structure of A:

1 Assume IΓ1, IΓ2, ξ
IΓ1
1 , V α

1 , V α
2 s.t. ξ · x : V1

∼= ξ · x : V2 ∧ IΓi ⊩ A

2 Let G ≡ å(ξ1) ∪ å(ξ2)

3 Assume ξ1 |= A to prove ξ2 |= A

4 Where ξ2 |= A → ξ1 |= A by symmetry

Prove the �nal step in line 2 by I.H. on the structure of A as follows.

A ≡ e = e′ This holds trivially via Lem. 107 as the models ξi have contextually congruent values

hence [[e]]ξ1
∼=G

α [[e]]ξ2 and [[e′]]ξ1
∼=G

α [[e′]]ξ2 .

A ≡ ¬A′ By I.H. on A′.

A ≡ A1 ∧A2 By I.H. on A1 and A2.

A ≡ A1 ∨A2 By I.H. on A1 and A2.

A ≡ A1 → A2 By I.H. on A1 and A2.

A ≡ e • e′ = mα{A′} Assuming ξ1 |= e • e′ = mα{A′} i� ∃ Vm. ee′
[IΓ1, ξ1]
⇝ Vm ∧ ξ1 ·m : Vm |= A′

then it is clear that for all Wm s.t. ee′
[IΓ2, ξ2]
⇝ Wm

assuming the same critical names are produced in both Vm and Wm then Lem. 107

ensures Vm
∼=G∪å(Vm,Wm)

α Wm

thus ξ1 ·m : Vm
∼= ξ2 ·m : Wm

hence by I.H. on A′: ξ2 ·m : Wm |= A′

hence ξ2 |= e • e′ = mα{A′}

A ≡ ∀uα ∈ (IΓ0).A
′ Assume ξ1 |= ∀uα ∈ (IΓ0).A

′ i� ∀Mα
u .Mu

[IΓ0, ξ1]
⇝ Vu→ ξ1 · u : Vu |= A′

Prove ξ2 |= ∀uα ∈ (IΓ0).A
′ i� ∀Mα

u .Mu
[IΓ0, ξ2]
⇝ Wu→ ξ2 · u : Wu |= A′

Assume some Mu such that Mu
[IΓ0, ξ2]
⇝ Wu then given [[IΓ0]]ξ2 ≡ [[IΓ0]]ξ1

the assumption implies Mu
[IΓ0, ξ1]
⇝ Vu and ξ1 · u : Vu |= A′

and as Wu and Vu are derived from Mu then Lem. 107 ensures Vu
∼=G∪å(Vu,Wu)

α Wu

hence ξ1 · u : Vu
∼= ξ2 · u : Wu

by induction on A′ this implies ξ2 · u : Wu |= A′.

Hence ∀Mu.Mu
[IΓ0, ξ2]
⇝ Wu→ ξ2 · u : Wu |= A′ hence ξ2 |= ∀u ∈ (IΓ0).A

′

A ≡ ∃u ∈ (IΓ0).A
′ Proof holds as ∃u ∈ (IΓ0).A

′ def= ¬∀u ∈ (IΓ0).¬A′ which can be proven using the cases

above.

124

A ≡ ∀δ.A′ Assume ξ1 |= ∀δ.A′ i� ∀ IΓ′1, ξ
′IΓ′

1
1 .ξ1 ≼⋆ ξ′1→ ξ′1 · δ : IΓ′1\−TCV |= A′

Prove ξ2 |= ∀δ.A′ i� ∀ IΓ′2, ξ
′IΓ′

2
2 .ξ2 ≼⋆ ξ′2→ ξ′2 · δ : IΓ′2\−TCV |= A′

Assume some IΓ′2 and ξ
′IΓ′

2
2 such that ξ2 ≼⋆ ξ′2

then derivation (terms and LTCs) required to derive ξ′2 from ξ2 derives a model ξ′1

from ξ1 such that ξ′1 ∼= ξ′2 (using Lem. 107)

and hence ξ′1 · δ : IΓ′1\−TCV
∼= ξ′2 · δ : IΓ′2\−TCV (Def. 106)

and I.H. on A′ can now be used to show that given ξ′1 · δ : IΓ′1\−TCV |= A′ then

ξ′2 · δ : IΓ′2\−TCV |= A′ hence the case holds.

A ≡ e#IΓ0 Proof holds by de�nition of e#IΓ0
def
= ∀zNm ∈ (IΓ0).z ̸= e whose cases are covered

above.

The next 3 lemmas are introduced to prove axiom (utc1) which requires that model

extensions are maintained when a derivable name is added to both models, proven in

Lem. 111. To prove this the single-point extension version in Lem. 110 uses Lem. 109

which states that for any IΓ, ξ derived value W , a contextually congruent value can be

derived from IΓ+x : Nm, ξ · x : n where n is any name derived using the original value W .

Lemma 109 (Derivable names can be added to the model to maintain extensions).

∀ IΓ, ξIΓ,Wα,M, n. n /∈ å(ξ) ∧ n ∈ å(W)

∧ M
[IΓ+z:α, ξ·z:W]

⇝ n

→ ∀ Nα.N
[IΓ, ξ]
⇝ W → ∃ Nα

x ,W
α
x . Nx

[IΓ+x:Nm, ξ·x:n]
⇝ Wx

∧ W ∼=å(W,Wx)
α Wx

The essence of the proof is that the value Wx can be derived in the same way W is derived

but with a swap of names. The name swapping can occur because both names are accessible

(through x and through M) and a name swapping function is provided.

Proof. Using Nx ≡ N would produce W with a fresh name n# where n should be and n /∈

å(W). De�ne a set of functions that allows for the replacement of one name n′ by another

name n, in an outputted value V as Replaceα(n for n′ in V). Then Replaceα(n for n′ in V)

reduces to a value which is clearly contextually congruent to V , except any occurrence of

the name n in V would be swapped for the name n′. This function is de�ned inductively

125

on the type of V as follows.

ReplaceUnit(x for x′ in V) = V

ReplaceBool(x for x′ in V) = V

ReplaceNm(x for x′ in V) = let v = V in if v = x′ then x else v

Replaceα1×α2
(x for x′ in V) = let v = V in

⟨Replaceα1
(x for x′ in π1(v)),Replaceα2

(x for x′ in π2(v))⟩

Replaceα1→α2
(x for x′ in V) = let v = V in λzα1 .Replaceα2

(x for x′ in vz)

Clearly ∀ V (n)α, n′. n′ /∈ å(V (n)) → V (n) ∼=å(V (n),n′)
α Replaceα(n for n′ in V (n′)) holds by

de�nition. This function is used to prove that the value W can be obtained from Nx by

de�ning the Nx given that N
[IΓ, ξ]
⇝ W and M

[IΓ+z:α, ξ·z:W]
⇝ n.

Nx ≡ let z = N in produces W with di�erent n

let xnew = M in extracts new n from new W

Replaceα(xnew for x in z) swap xnew for x in the W produced

This produces the value Wx which, assuming all other fresh names are equivalent (nominal

determinacy Def. 25), satis�es W ∼=å(W,Wx)
α Wx by de�nition, as required.

Lemma 110 (Derivable names can be added to the model to maintain extensions).

∀ IΓ, ξIΓ,Wα,M, n.


n /∈ å(ξ) ∧ n ∈ å(W)

∧ M
[IΓ+z:α, ξ·z:W]

⇝ n

∧ ξ ≼ ξ · z : W

 → ∃Wα
x . W

∼=å(W)∪å(Wx)
α Wx

→ ξ · x : n ≼ ξ · z : Wx · x : n

Proof. This is as a direct consequence of Lem. 109 and the semantics of extensions ≼.

Lemma 111 (Names produced from an extension can be added to an extension and still

hold).

∀ IΓ, ξIΓ, IΓ′, ξ′IΓ
′
,M, n. M

[IΓ′, ξ′]
⇝ n ∧ ξ ≼⋆ ξ′ → ∃ ξ′′. ξ′ · x : n ∼= ξ′′ · x : n

∧ ξ · x : n ≼⋆ ξ′′ · x : n

Proof. Proof by induction on the structure of ξ ≼⋆ ξ′ as follows.

ξ ≡ ξ′ The proof is trivial given ξ′′ ≡ ξ′ ≡ ξ.

ξ ≼ ξ′ Then ξ′ ≡ ξ · δ : IΓ0 holds trivially with some IΓ′0 such that [[IΓ0]]ξ ≡ [[IΓ′0]]ξ′ via

ξ′′ ≡ ξ · δ : IΓ0.

Then ξ′ ≡ ξ · z : W holds by Lem. 110.

ξ ≼⋆ ξ′′ ∧ ξ′ ≼⋆ ξ′ Then this holds by induction.

126

5.5 Summary

A model for the ν-logic has been introduced, based on the LTC from the logic. Derivations

of values from a model and LTC are introduced to ensure hidden names in the model can

be used, but are not revealed. The derivations are used to de�ne models being extensions of

one another, which, again, maintains the hidden property of names within the model. These

two concepts provide the key novelties in the semantics introduced for the expressions,

formulae and triples of the ν-logic.

Semantic de�nitions of properties of formulae are introduced for the two syntactic

properties of extension independence and thinness. These semantic de�nitions model what

the syntactic de�nitions were initially intending.

As a precursor to proving soundness, numerous lemmas regarding the model are intro-

duced and proven. These lemmas facilitate the soundness proofs in the next chapter.

127

Chapter 6

Soundness

Soundness of a Hoare logic ensures that for any triple derivable from the rules and axioms (⊢

{A}M :u {B}) then the triple is logically valid with respect to the semantics (|= {A}M :u

{B}). The converse, completeness ensures that any logically valid triple with respect to the

model can be proven via the rules. In this section the ν-logic is proven sound with respect

to the semantics provided in Chapt. 5. This is achieved through proving all axioms sound

in Sec. 6.2 and then proving all the rules sound in Sec. 6.3. The lemmas in Sec. 5.4 provide

a basis from which to prove soundness of the axioms and rules introduced in Chapt. 4. The

de�nitions of syntactic extension independence and syntactic thinness introduced in Sec. 4.4

are proven to classify formulae which are indeed semantically extension independent and

thin in the model in Sec. 6.1.

In Sec. 6.5 a de�nition of what it means for a program logic to be a conservative exten-

sion is de�ned alongside a sketch of the νGS-calculus program logic being a conservative

extension of the STLC program logic seen in Sec. 2.2.2.

6.1 Soundness of Properties of Formulae

Syntactic de�nitions of extension independence and thinness introduced in Def. 54 and

Def. 55, respectively, can now be proven to be so by the model under Def. 77 and Def. 78

respectively. The proof of these properties is not essential to the understanding of the

logic, but is key to the soundness of the logic. These are represented in the following two

lemmas.

The ExtIndSem property of formulae is used throughout the soundness proofs in

Chapt. 6 to ensure speci�c formulae modelled by one model are also modelled by any

extensions and contractions of that model, assuming the typing condition holds.

128

The syntactic de�nition of ExtIndSyn in Def. 54 provides a syntactic check on formulae

which is proven to imply satisfaction of the ExtIndSem property from Def. 77 in the

Lem. 112.

Lemma 112 (ExtIndSyn implies ExtIndSem).

A-ExtIndSyn → A-ExtIndSem

Proof. This is proven in Ap. A.1, Lem. 122.

The syntactic de�nition is designed to capture all formulae in the reasoning examples

yet still satisfy this property, hence this result is not unexpected.

As with the ExtIndSem property of formulae, the semantic thinness property of for-

mulae is formally de�ned in Def. 78. The property is used throughout the soundness proofs

to ensure certain variables can be removed from a model whilst maintaining satisfaction

of the formulae.

In Def. 55 a syntactic check is introduced which guarantees a formulae is thin with

respect to a certain variable. A proof that each syntactically thin formulae is indeed

semantically thin is as follows.

Lemma 113 (Syntactically thin formulae implies semantically thin).

∀ IΓ, A, x. IΓ\x ⊩ A → (A-ThinSyn(x) → A-ThinSem(x))

Proof. This is proven in Ap. A.1 in Lem. 123.

The syntactic de�nition is designed to capture all formulae in the reasoning examples

yet still satisfy this property.

6.2 Soundness of Axioms

The axioms introduced in Sec. 4.5 are proven sound in the following sections, categorised

into primary logical constructors used as follows. The axioms for equality are proven in

Sec. 6.2.1. The axioms for universal restricted quanti�cation (and existential) are proven

sound in Sec. 6.2.2. The axioms for the freshness constructor are proven sound in Sec. 6.2.3.

The axioms for universal quanti�cation over TCV are proven sound in Sec. 6.2.4. Finally,

the axioms for evaluation formulae are proven sound in Sec. 6.2.5.

6.2.1 Soundness of Axioms for Equality

The following axioms are proven trivially:

(eq1) ≡ e = e, (eq2) ≡ e = e′ ↔ e′ = e, (eq3) ≡ e = e′ ∧ e′ = e′′ → e = e′′

129

Soundness Proof of Axiom (eq4)

This axiom is critical to allow us to deconstruct the logical constructor of equality. The

primary idea is that because x and e are congruent they can be substituted in the model

for one another using Lem. 108.

IΓ ⊩ A ∧ x = e→ A[e/x]IΓ

Proof.

1 Assume IΓ, ξIΓd s.t. IΓ ▷ ξ ∧ IΓ ⊩ A ∧ x = e→ A[e/x]IΓ then:

2 ξIΓd |= A ∧ x = e and e free for x in A Assume

3 ξ |= A ∧ ξ |= x = e Sem. ∧

4 ξ |= A ∧ [[x]]ξ ∼=
å(ξ)
α [[e]]ξ Sem.=

5 ∃ Ve. ξ |= A ∧ [[x]]ξ ∼=
å(ξ)
α [[e]]ξ ∧ e

[IΓ, ξ]
⇝ Ve Lem. 88

6 ∃ Ve. ξ |= A ∧ [[x]]ξ ∼=
å(ξ)
α [[e]]ξ ∧ [[e]]ξ ∼=

å(ξ)
α Ve ∧ e

[IΓ, ξ]
⇝ Ve Lem. 91

7 ∃ Ve. ξ |= A ∧ [[x]]ξ ∼=
å(ξ)
α Ve ∧ e

[IΓ, ξ]
⇝ Ve Transitivity of ∼=

8 → ∃ Ve. ξ |= A ∧ e
[IΓ, ξ]
⇝ Ve

∧ ∀ x′, A0. x
′ /∈ dom(IΓ) ∧ IΓ · x′ : IΓ(x) ⊩ A0

→ (ξ · x′ : ξ(x) |= A0[x
′/x]↔ ξ · x′ : Ve |= A0[x

′/x])

Lem. 108

9 ↔ ∃ Ve. ξ |= A ∧ e
[IΓ, ξ]
⇝ Ve

∧ ∀ x′. x′ /∈ dom(IΓ)

→ (ξ |= A↔ ξ · x′ : Ve |= A[x′/x])

ξ · x′ : ξ(x) |= A[x′/x]↔ ξ |= A

Let A0 ≡ A

10 → ∃ Ve. e
[IΓ, ξ]
⇝ Ve ∧ ∀ x′.x′ /∈ dom(IΓ)→ ξ · x′ : Ve |= A[x′/x] M.P.

11 → ∀ x′.x′ /∈ dom(IΓ) → ∃ Ve. e
[IΓ, ξ]
⇝ Ve ∧ ξ · x′ : Ve |= A[x′/x]) F.O.L.

12 ↔ ∀ x′.x′ /∈ dom(IΓ) → ξ |= (A[x′/x])[e/x′] Sem.A[e/x′] (x′ /∈ fv(ξ))

13 ↔ ξ |= A[e/x] Sem.A[e/x] (x ∈ fv(ξ))

14 Hence: ∀ ξIΓ.IΓ ⊩ A ∧ x = e→ A[e/x]→ ξ |= A ∧ x = e→ A[e/x] Lines.1-13

130

6.2.2 Soundness of Axioms for Restricted Quanti�cation

Soundness Proof of Axiom (u1)

IΓ0 ⊩ e : α → IΓ ⊩ ∀xα ∈ (IΓ0).A → A[e/x]IΓ

Proof.

1 Let: (u1) ≡ ∀xα ∈ (IΓ0).A → A[e/x]

2 Assume IΓ, ξIΓd s.t. IΓ ▷ ξ ∧ IΓ ⊩ (u1) and IΓ0 ⊩ e : α

3 Assume ξ |= ∀xα ∈ (IΓ0).A and IΓ0 ⊢ e : α

4 ∀Mx, Vx.Mx
[IΓ0, ξ]
⇝ Vx → ξ · x : Vx |= A Sem.∀ ∈ ().

5 e− expression → e− term → å(e) = ∅ Lem. 89

6 IΓ ⊩ IΓ0 → ([[IΓ0]]ξ ⊩ e : α → [[IΓ]]ξ ⊩ e : α) Lem. 92

7 IΓ0 ⊩ e : α → ∃ Ve. e
[IΓ0, ξ]
⇝ Ve Lem. 88

8 ∃ Ve. e
[IΓ0, ξ]
⇝ Ve ∧ ξ · x : Ve |= A Instant. Line.3 Mx, Vx to e, Ve, M.P.

9 ξ |= A[e/x] Sem.[e/x], x /∈ dom(ξ)

10 Hence ξ |= ∀xα ∈ (IΓ0).A and IΓ0 ⊢ e : α implies ξ |= A[e/x] Lines.3-9

11 Hence ∀ IΓ, IΓ0, A, e. IΓ ⊩ (u1) ∧ IΓ0 ⊩ e : α

→ ∀ ξ.IΓ ▷ ξ → ξ |= (u1)

Lines.1-10

Soundness Proof of Axiom (u2)

A-ExtIndSyn → A−x ↔ ∀xα ∈ (IΓ0).A

Proof. Given Lem. 112 ensures A-ExtIndSyn implies A-ExtIndSem, then clearly it is only

required to show that for any V derived from IΓ0 and ξ then ξ ≼⋆ ξ · x : V which is easily

proven by Lem. 93 and Def. 70 and hence this holds.

Soundness Proof of Axiom (u3)

(∀xα ∈ (IΓ0).(A ∧B))↔ (∀xα ∈ (IΓ0).A) ∧ (∀xα ∈ (IΓ0).B)

Proof. This clearly holds given the F.O.L. axiom in the meta-logic: (∀ x.A ∧ B)↔ (∀ x.A∧

∀ x.B) and the use of ∀ in the semantics of ∀x ∈ (IΓ0)..

131

Soundness Proof of Axiom (u4)

IΓ0 ⊩ IΓ1 → ∀xα ∈ (IΓ0).A → ∀xα ∈ (IΓ1).A

Proof. Clearly holds by Lem. 93 and the semantics of ∀x ∈ (IΓi)..

Soundness Proof of Axiom (u5)

α ∈ α-Nm → ∀xα ∈ (IΓ0).A ↔ ∀xα ∈ (∅).A

Proof. Both ∀x ∈ (IΓ0). and ∀x ∈ (∅). quantify over the same set of values as the values

are all of type α-Nm hence Lem. 87 applies. The essence is that every value of type α-Nm

is contextually equivalent to a value without a name (i.e. an STLC term) which can be

derived from ∅.

Soundness Proof of Axiom (u6)

IΓ+x+y ⊩ x#IΓ ∧ y#IΓ+x→ ∀fNm→Nm ∈ (IΓ).f • x = m{m ̸= y}

Proof. Trivial given some model IΓ+x+y ▷ξ such that ξ |= x#IΓ∧y#IΓ+x then for any Mf

s.t. Mf
[IΓ, ξ]
⇝ Vf then fx

[IΓ+x+y+f, ξ·f :Vf]
⇝ V . Given ξ(y) /∈ å(Mf , Vf , x) then ξ(y) /∈ å((fx)ξ)

and ξ(y) /∈ å(V) = V hence V ̸= ξ(y) and the axiom holds.

Soundness Proof of Axiom (u7)

IΓ+x+y ⊩ x#IΓ ∧ y#IΓ+x → ∀fNm→Bool ∈ (IΓ).f • x = m{f • y = n{m = n}}

Proof. Clearly f is derived from IΓ which does not contain the names x or y given well

constructed models and x#IΓ and y#IΓ+x. Hence the function f cannot distinguish

names x and y or any other fresh name meaning the output of fx is a Boolean and the

same Boolean is outputted by fy (and also f(gensym())). This is holds given the nominal

determinacy property Def. 25.

This is used in Ex. 36 where ideally the axiom would have the form

IΓ+x+y+a : (Nm→ Bool)→ Bool ⊩ x#IΓ ∧ y#IΓ+x

→ ∀fNm→Bool ∈ (IΓ+a).f • x = m{f • y = n{m = n}}

However this fails for some cases of a for instance if a : λzNm→Bool.zx

and f : λmNm.(a(λnNm.n = m)) hence this version of the axiom does not hold.

132

Soundness Proof of Axiom (u8)

IΓ ⊩ (∀xNm ∈ (∅). x#IΓ ∧A) ↔ ∀xNm ∈ (∅). A

Proof. Clearly the only name derivable from the LTC ∅ is a fresh name produced by a

term equivalent to gensym() hence the name stored at x must be fresh from all other

names derived from the nameset from which it is fresh which is represented by IΓ hence

x#IΓ is guaranteed.

Soundness Proof of Axiom (u9)

IΓ1 ⊩ e : Nm → IΓ ⊩ ∀xNm ∈ (IΓ1).a • x = e → ∀xNm ∈ (IΓ1+a).a • x = e

Proof. Clearly any application of a to a name derivable from IΓ1 is another name derivable

from IΓ1, however there is a possibility that a can be applied to a name derivable from

IΓ1+a yet not derivable from IΓ1 hence producing a name not equivalent to e. Assume some

model IΓ ▷ ξ such that IΓ ⊩ IΓ1+a, and IΓ1+a ⊩ e : Nm and ξ |= ∀xNm ∈ (IΓ1).a • x = e it

is required to prove ξ |= ∀xNm ∈ (IΓ1+a).a • x = e.

For example consider the case where ξ(b) ≡ λfNm→Nmif fn1 = n2 then n3 else n0 where

n1, n2, n3 are not derivable from ξ\a, with ξ(a) ≡ λxNm.if x = n1 then n2 else n0. The

evaluation of ba returns n3 which was not previously derivable from ξ\a, however this is

impossible by the fact that ξ is a well constructed model hence cannot reveal previously

hidden names and thus the names n1 and n2 cannot appear in a unless they are already

derivable from ξ\a or are fresh which is known not to be the case.

The general case is satis�ed by the fact that ξ is a well constructed model ensuring

that any name n′ derivable from ξ ensures an′ does not return e. By de�nition n′ must be

in å(ξ(a)) (otherwise an′ ∼=...
Nm a(gensym())(∼=...

Nm e)), hence n′ cannot be derived from ξ.

This means n′ isn't quanti�ed over by ∀x ∈ (IΓ1+a). and hence this axiom holds.

Soundness Proof of Axiom (u10)

IΓ+a : α→ Bool ⊩ ∀fα ∈ (IΓ).a • f = c → ∀fα ∈ (IΓ+a).a • f = c

Consider the simple case where α ≡ Nm then M(a) uses a : Nm → Bool. However by

de�nition of a well constructed model, the name at f cannot be the fresh name hidden in

a as this is not revealed by a. Hence f must be fresh (in which case a cannot distinguish

it), or derivable from ξ and hence no new terms are derivable from IΓ+a which were not

already derivable from IΓ.

133

Proof.

1 Assume ξ · a : Va s.t. IΓ+a : α→ Bool ▷ ξ · a : Va

2 Assume ξ · a : Va |= ∀fα ∈ (IΓ).a • f = c

3 ↔ ∀Mα
f .Mf

[IΓ, ξ·a:Va]
⇝ Vf → ξ · a : Va · f : Vf |= a • f = c

4 Prove ξ · a : Va |= ∀fα ∈ (IΓ+a).a • f = c

5 ↔ ∀M ′αf .M ′f
[IΓ+a, ξ·a:Va]
⇝ V ′f → ξ · a : Va · f : V ′f |= a • f = c

6 Proof by contradiction:

7 Assume ξ · a : Va |= ∀fα ∈ (IΓ).a • f = c ∧ ∃fα ∈ (IΓ+a).a • f = ¬c

8 → ∃M ′αf .M ′f
[IΓ, ξ·a:Va]
⇝ V ′f ∧ ξ · a : Va · f : V ′f |= a • f = c

9 Select smallest M ′f for which this is the case, and show a contradiction exists

10 [[IΓ+a]]ξ·a:Va ⊢M ′f : α ∧ ∅ ⊢ Va : α→ Bool

11 Hence M ′f must apply (or discard) every use of a

12 Each application of a in M ′f must be to a term smaller than M ′f hence will return c

13 Hence each application of Va in (M ′f [Va/a])ξ is equivalent to λz.c

14 Hence (M ′f [Va/a])ξ is equivalent to (M ′f [λz.c/a])ξ

15 Given IΓ ⊢M ′f [λz.c/a] : α then by line 3 implies (M ′f [λz.c/a])
[IΓ, ξ·a:Va]
⇝ c

16 Hence a contradiction with line 9 meaning no such term exists

17 Hence contradiction with the original assumption in line 7 and the axiom holds

Soundness Proof of Axiom (ex1)

(IΓ ⊩ IΓ0 ∧ IΓ0 ⊩ e : α) → IΓ ⊩ A[e/x]IΓ → ∃x ∈ (IΓ0).x = e ∧A

Proof. Assume IΓ−x, ξIΓd , IΓ−x0 , e, A

such that IΓ ⊩ A[e/x]→ ∃x ∈ (IΓ).A, IΓ ⊩ IΓ0 and IΓ0 ⊩ e : α

134

1 Assume IΓ s.t. IΓ ⊩ A[e/x]→ ∃x ∈ (IΓ0).x = e ∧A

2 Assume IΓ0, e s.t. IΓ ⊩ IΓ0 and IΓ0 ⊩ e : α

3 Assume ξIΓd s.t. IΓ ▷ ξ and ξ |= A[e/x]

4 ↔ ∃ V. e
[IΓ, ξ]
⇝ V ∧ ξ · x : V |= A Sem.A[e/x], x /∈ dom(ξ)

5 ↔ ∃ V. e
[IΓ0, ξ]
⇝ V ∧ ξ · x : V |= A ∧ e(ξ · x : V) ∼=å(ξ·x:V)

α x(ξ · x : V) Lem. 91

6 ↔ ∃ V. e
[IΓ0, ξ]
⇝ V ∧ ξ · x : V |= x = e ∧A Sem.=, ∧

7 → ∃Me, V.Me
[IΓ0, ξ]
⇝ V ∧ ξ · x : V |= x = e ∧A Clearly holds for Me = e

8 ↔ ξ |= ∃x ∈ (IΓ0).x = e ∧A Sem.∃x ∈ (IΓ0).

Soundness Proof of Axiom (ex2)

A-ExtIndSyn ∧ x /∈ fv(A) → A ∧ ∃x ∈ (IΓ0).B ↔ ∃x ∈ (IΓ0).(A ∧B)

This is inspired by a similar axiom in F.O.L. and is proven using this axiom in the meta-

F.O.L..

Proof. Clearly A-ExtIndSyn implies A-ExtIndSem via Lem. 112.

1 Let: (ex2) ≡ A ∧ ∃x ∈ (IΓ0).B ↔ ∃x ∈ (IΓ0).(A ∧B)

2 Assume IΓ s.t. IΓ ⊩ (ex2) and ξIΓd s.t. IΓ ▷ ξ

3 Assume ξ |= A ∧ ∃x ∈ (IΓ0).B

4 ↔ ξ |= A ∧ ∃M,V. M
[IΓ0, ξ]
⇝ V ∧ ξ · x : V |= B Sem.∧, ∃ ∈ ().

5 ↔ ∃M,V. M
[IΓ0, ξ]
⇝ V ∧ ξ |= A ∧ ξ · x : V |= B F.O.L.

6 ↔ ∃M,V. M
[IΓ0, ξ]
⇝ V ∧ ξ · x : V |= A ∧ ξ · x : V |= B A-ExtIndSem

7 ↔ ξ |= ∃x ∈ (IΓ0).(A ∧B) Sem.∧, ∃ ∈ ().

8 Hence: ∀ IΓ. IΓ ⊩ (ex2) → ∀ ξIΓd . IΓ ▷ ξ → ξ |= (ex2) Lines.1-7

135

Soundness Proof of Axiom (ex3)

{a, b} ⊆ fv(IΓ0) → IΓ+x+IΓ0 ⊩ a • b = c{c = x} → ∃x′ ∈ (IΓ0).x = x′

Proof.

1 Let: (ex3) ≡ a • b = c{c = x} → ∃x′ ∈ (IΓ0).x = x′

2 Assume ξIΓd s.t. IΓ+x+IΓ0 ▷ ξ and ξ |= a • b = c{c = x}

3 → ∃ Vc. ab
[IΓ0, ξ]
⇝ Vc ∧ ξ · c : Vc |= x = c Sem.• = {}

4 → ∃M ′x, Vc. M
′
x

[IΓ0, ξ]
⇝ Vc ∧ ξ · c : Vc |= x = c M ′x ≡ ab, {a, b} ⊆ fv(IΓ0)

5 → ξ |= ∃x′ ∈ (IΓ0).x = x′ Sem.∃ ∈ ().

6 Hence: ∀ IΓ+x+IΓ0. IΓ+x+IΓ0 ⊩ (ex3) → ∀ ξIΓd . IΓ+x+IΓ0 ▷ ξ → ξ |= (ex3)

Soundness Proof of Axiom (ex4)

IΓ+x ⊩ ∀yNm ∈ (∅).∃zNm ∈ (IΓ0+y).x = z → ∃z ∈ (IΓ0).x = z

Proof.

1 Assume some model ξIΓd s.t. IΓ+x ▷ ξ and ξ |= ∀yNm ∈ (∅).∃zNm ∈ (IΓ0+y).x = z

2 Let: ξy ≡ ξ · y : Vy, ξyz ≡ ξy · z : Vz, ξz ≡ ξ · z : Vz

3 → ∀MNm
y , Vy. My

[∅, ξ]
⇝ Vy → ∃MNm

z , Vz. Mz
[IΓ0+y, ξy]
⇝ Vz ∧ ξyz |= x = z

4 → ∀MNm
y , Vy. My

[∅, ξ]
⇝ Vy → ∃MNm

z , Vz. Mz
[IΓ0, ξy]
⇝ Vz ∧ ξyz |= x = z Lem. 32

5 → ∀MNm
y , Vy. My

[∅, ξ]
⇝ Vy → ∃MNm

z , Vz. Mz
[IΓ0, ξ]
⇝ Vz ∧ [[x]]ξyz

∼=å(ξyz)
Nm [[z]]ξyz Sem. =

6 → ∀MNm
y , Vy. My

[∅, ξ]
⇝ Vy

→ ∃MNm
z , Vz. Mz

[IΓ0, ξ]
⇝ Vz ∧ [[x]]ξz

∼=å(ξyz)
Nm [[z]]ξz

[[x]]ξyz = [[x]]ξz

7 → ∀MNm
y , Vy. My

[∅, ξ]
⇝ Vy → ∃MNm

z , Vz. Mz
[IΓ0, ξ]
⇝ Vz ∧ [[x]]ξz

∼=å(ξz)
Nm [[z]]ξz Lem. 32

8 → ∃MNm
z , Vz. Mz

[IΓ0, ξ]
⇝ Vz ∧ [[x]]ξz

∼=å(ξz)
Nm [[z]]ξz F.O.L.

9 → ξ |= ∃z ∈ (IΓ0).x = z Sem.∃ ∈ ().

10 Hence: ∀ ξIΓd . IΓ+x ▷ ξ

→ ξ |= ∀yNm ∈ (∅).∃zNm ∈ (IΓ0+y).x = z → ∃z ∈ (IΓ0).x = z

Lines.1-9

136

6.2.3 Soundness of Axioms for Freshness

Soundness Proof of Axiom (f1)

IΓ0 ⊩ e′ : Nm → e#IΓ0 → e ̸= e′

Proof. Proven directly from syntactic de�nition of e#IΓ0 and (u1).

Soundness Proof of Axiom (f2)

IΓ0 ⊩ IΓ1 → e#IΓ0 → e#IΓ1

Proof. Proven directly from syntactic de�nition of e#IΓ0, and (u4).

137

Soundness Proof of Axiom (f3)

IΓ+x : Nm+f : α→ α -(Nm,→) ⊩ x#IΓ→ x#IΓ+f : α→ α -(Nm,→)

Proof. Use Lem. 84 to so show that f cannot help produce x if f : α→ α -(Nm,→).

1 Let: IΓxf ≡ IΓ+x : Nm+f : α→ α -(Nm,→) and IΓ0xf ≡ IΓ0+x+f

2 Assume ξxf s.t. IΓxf ▷ (ξIΓ0 · x : nx · f : Vf)
IΓ0xf ≡ ξxf

3 IΓxf ▷ ξxf → ∃Mx.Mx
[IΓ, ξ]
⇝ nx ∧ ∃Mf .Mf

[IΓ+x, ξ·x:nx]
⇝ Vf

4 Assume ξxf |= x#IΓ Assumption

5 Hence: ∃Mx.Mx
[IΓ, ξ]
⇝ nx ∧ ¬ ∃ Nx.Nx

[IΓ, ξxf]
⇝ nx Sem.x#IΓ, Lines.3, 4

6 Hence: ∃Mx.Mx
[IΓ, ξ]
⇝ nx ∧ ¬ ∃ Nx.Nx

[IΓ, ξ·x:nx]
⇝ nx Lem. 102

7 → nx /∈ å(ξ) Lem. 94

8 Assume nx /∈ å(Vf) → ¬ ∃ Px.Px
[IΓ+f, ξxf]
⇝ nx Trivial Lem. 97

9 Assume nx ∈ å(Vf) (proof by contradiction, Lines.10-15)

10 Assume ∃ Px.Px
[IΓ+f, ξxf]
⇝ nx

11 ↔ ∃ Px. å(Px) = ∅ ∧ [[IΓ]]ξ, f ⊢ Px : Nm

∧ (å(ξxf), Pxξxf) ⇓ (å(ξxf), G
′, nx)

Sem.
[,]
⇝

12 ↔ ∃ Px. å(Px) = ∅ ∧ [[IΓ]]ξ, f ⊢ Px : Nm

∧ (å(ξxf), Px[Vf/f]ξ) ⇓ (å(ξxf), G
′, nx)

Lem. 63, P−xx

13 ↔ ∃ Px. å(Px) = ∅ ∧ [[IΓ]]ξ, f ⊢ Px : Nm

∧ (å(ξxf), (Pxξ)[Vf/f]) ⇓ (å(ξxf), G
′, nx)

Def.closure, Vf -value

14 ↔ ∃ Px. å(Px) = ∅ ∧ [[IΓ]]ξ, f ⊢ Px : Nm

∧ (å(ξxf), (Pxξ)[Vf/f]) ⇓ (å(ξxf), G
′, nx)

∧ ¬ (å(ξxf), (Pxξ)[Vf/f]) ⇓ (å(ξxf), G
′, nx)

nx /∈ ξ→ nx /∈ å(Pxξ),

nx ∈ å(Vf)

Lem. 84 →

¬ (... ⇓ nx)

15 Contradiction, hence: ¬ ∃ Px.Px
[IΓ+f, ξxf]
⇝ nx

16 → ξxf |= x#IΓ+f for both nx cases, Sem.#

17 Hence: ∀ ξxf .IΓ+x+f ▷ ξxf → ξxf |= x#IΓ→ x#IΓ+f Lines.1-16

138

Soundness Proof of Axiom (f4)

y /∈ fv(e) → (e#IΓ0 ∧ ∀yαy ∈ (IΓ0).A) ↔ ∀yαy ∈ (IΓ0).(e#(IΓ0+y : αy) ∧A)

Proof. The ← direction is elementary given (f2), (u2) and (u3).

The → direction is proven as follows.

1 Let: (f4) ≡ (e#IΓ0 ∧ ∀yαy ∈ (IΓ0).A) → ∀yαy ∈ (IΓ0).(e#(IΓ0+y : αy) ∧A)

2 Assume some IΓ1, ξ
IΓ1 s.t. IΓ1 ⊩ (f4)

3 Assume ξ |= e#IΓ0 ∧ (∀y ∈ (IΓ0).A)

4 ¬ ∃Me.Me
[IΓ0, ξ]
⇝ [[e]]ξ

∧ ∀My, Vy. My
[IΓ0, ξ]
⇝ Vy → ξ · y : Vy |= A

Sem.e#IΓ0

Sem.∀y ∈ (IΓ0).

5 ∀My, Vy. My
[IΓ0, ξ]
⇝ Vy

→ ¬ ∃Me.Me
[IΓ0, ξ]
⇝ [[e]]ξ

∧ ξ · y : Vy |= A

F.O.L.

A−x ∧ ∀ x. B→ C

→ ∀ x.B→ (A ∧ C)

6 ∀My, Vy. My
[IΓ0, ξ]
⇝ Vy

→ ¬ ∃Me.Me
[IΓ0+y, ξ·y:Vy]
⇝ [[e]]ξ·y:Vy

∧ ξ · y : Vy |= A

Lem. 95
[IΓ0, ξ]
⇝ s ↔

[IΓ0+y, ξy]
⇝ s,

Lem. 100, [[e]]ξ ≡ [[e]]ξ·y:Vy

7 ∀My, Vy. My
[IΓ0, ξ]
⇝ Vy → ξ · y : Vy |= e#IΓ+y∧ |= A Sem.#, ∧

8 ξ |= ∀y ∈ (IΓ0).e#(IΓ0+y) ∧A Sem.∀ ∈ ().

9 Hence: ∀ IΓ1.IΓ1 ⊩ (f4)→ ∀ ξ.IΓ1 ▷ ξ→ ξ |= (f4) Lines.1-8

6.2.4 Soundness of Axioms for Universal Type Context Quanti�cation

Soundness Proof of Axiom (utc1)

IΓ ⊩ (∀δ.A) → A[IΓ/δ]IΓ

139

Proof.

1 Assume IΓ s.t. IΓ ⊩ (∀δ.A) → A[IΓ/δ]

2 Assume ξIΓd s.t. IΓ ▷ ξ and ξ |= ∀δ.A

3 ↔ ∀ ξIΓ0
0 . ξ ≼⋆ ξ0 → ξ0 · δ : IΓ0 |= A Sem.∀δ.

4 → ξ ≼⋆ ξ → ξ · δ : IΓd |= A Instantiate ∀ ξIΓ0
0 with ξ

5 → ξ · δ : IΓd |= A F.O.L. (ξ ≼⋆ ξ) (≡ T)

6 → ξ · δ : IΓ |= A IΓ ▷ ξIΓd → [[IΓ]]ξ ≡ [[IΓd]]ξ

7 → ξ |= A[IΓ/δ] Sem.[IΓ/δ]

8 Hence: ∀ IΓ. IΓ ⊩ (∀δ.A) → A[IΓ/δ]

→ ∀ ξIΓd . IΓ ▷ ξ → ξ |= (∀δ.A) → A[IΓ/δ]

Lines.1-7

Soundness Proof of Axiom (utc2)

A− ExtIndSyn → A−δ ↔ ∀δ.A

This holds trivially given A-ExtIndSyn implies A-ExtIndSem via Lem. 112. The full

proof is included here.

Proof. Assume: IΓ, ξIΓd s.t. IΓ▷ξ then assume IΓ ⊩ A−δ ↔ ∀δ.A for someA−δ-ExtIndSem,

then:

← : Use (utc1) knowing that A−δ[IΓ/δ] ≡ A.

→ :

1 Assume ξ |= A−δ

2 Prove: ξ |= ∀δ.A

3 ξ |= A−δ → ∀ ξ′IΓ
′
. ξ ≼⋆ ξ′ → ξ |= A−δ Tautology

4 ξ |= A−δ → ∀ ξ′IΓ
′
. ξ ≼⋆ ξ′ → ξ′ |= A−δ A -ExtIndSem

5 ξ |= A−δ → ∀ ξ′IΓ
′
.ξ ≼⋆ ξ′ ∧ ξ′ · δ : IΓ′ |= A−δ Lem. 105

6 ξ |= A−δ → ξ |= ∀δ.A Sem.∀δ.

Hence ∀ ξIΓd , A. A-ExtIndSyn → ξ |= A−δ ↔ ∀δ.A.

140

Soundness Proof of Axiom (utc3)

∀δ.(A ∧B) ↔ (∀δ.A) ∧ (∀δ.B)

This holds trivially given F.O.L. but the full proof is included here.

Proof. Assume ξIΓd then:

→:

1 Assume ξ |= ∀δ.(A ∧B)

2 ∀ ξ′IΓ
′
. ξ ≼⋆ ξ′ → ξ′ · δ : IΓ′ |= A ∧B Sem.∀δ.

3 ↔ ∀ ξ′IΓ
′
. ξ ≼⋆ ξ′ → ξ′ · δ : IΓ′ |= A ∧B

∧ ∀ ξ′IΓ
′
. ξ ≼⋆ ξ′ → ξ′ · δ : IΓ′ |= A ∧B

F.O.L. A↔ (A ∧ A)

4 → ∀ ξ′IΓ
′
. ξ ≼⋆ ξ′ → ξ′ · δ : IΓ′ |= A

∧ ∀ ξ′IΓ
′
. ξ ≼⋆ ξ′ → ξ′ · δ : IΓ′ |= B

∧-elim

5 ↔ ξ |= (∀δ.A) ∧ (∀δ.B) Sem.∀δ., ∧

←:

1 Assume ξ |= (∀δ.A) ∧ (∀δ.B)

2 ↔ ∀ ξ′IΓ
′
. ξ ≼⋆ ξ′ → ξ′ · δ : IΓ′ |= A

∧ ∀ ξ′IΓ
′
. ξ ≼⋆ ξ′ → ξ′ · δ : IΓ′ |= B

Sem. ∧ ,∀.

3 → ∀ ξ′IΓ
′
. ξ ≼⋆ ξ′ →

 ξ′ · δ : IΓ′ |= A

∧ ξ′ · δ : IΓ′ |= B

 ∀ ξ′ uni�ng

4 ↔ ξ |= ∀δ.(A ∧B) Sem.∧, ∀δ.

Hence ∀ ξIΓd . ξ |= ∀δ.(A ∧B)↔ (∀δ.A) ∧ (∀δ.B).

Soundness Proof of Axiom (utc4)

A-ExtIndSyn → IΓ ⊩ ∀xNm ∈ (IΓ).A−δ ↔ ∀δ.∀xNm ∈ (IΓ+δ).A−δ

Proof. Clearly A-ExtIndSyn implies A-ExtIndSem via Lem. 112.

←: Holds through (utc1).

141

→:

1 Let: (utc4)→ ≡ ∀xNm ∈ (IΓ).A−δ → ∀δ.∀xNm ∈ (IΓ+δ).A−δ

2 Assume IΓ s.t. IΓ ⊩ (utc4)←

3 Assume ξIΓd s.t. IΓ ▷ ξ and ξ |= ∀xNm ∈ (IΓ).A

4 ↔ ∀M, n0. M
[IΓ, ξ]
⇝ n0 → ξ · x : n0 |= A

5 Assume ξ′IΓ
′
, M ′, n1 s.t. ξ ≼⋆ ξ′ and M ′

[IΓ+δ, ξ′·δ:IΓ′\−TCV]
⇝ n1 � ∀δ.∀x ∈ (δ).�

6 ↔ M ′
[IΓ′, ξ′]
⇝ n1 [[IΓ+δ]]ξ′·δ:IΓ′\−TCV

≡ IΓ′, Lem. 102

7 n1 ∈ å(ξ)→ n0 ≡ n1→ ξ · x : n1 |= A Lem. 96 → n0 ≡ n1 obtainable

8 n1 /∈ å(ξ)→ fresh-n0 ≡ n1→ ξ · x : n1 |= A Let n0 ≡ n1 as n1 /∈ å(ξ)

(fresh names can be swapped)

9 → ξ′ · x : n1 |= A Lem. 111, Lem. 108, A-ExtIndSem

10 → ξ′ · δ : IΓ′\−TCV · x : n1 |= A Lem. 105, A−δ

11 → ξ |= ∀δ.∀xNm ∈ (IΓ+δ).A−δ Lines.4-9

12 Hence: ∀ IΓ. IΓ ⊩ (utc4)→ → ∀ ξIΓd .IΓ ▷ ξ → ξ |= (utc4)→

(Assuming A-ExtIndSem)

Lines.1-10

Essentially in line 7: if n1 is in å(ξ) then it can be derived from ξ, and in line 8 if n1 is

not in å(ξ) then instantiating M ≡ gensym() produces a fresh name which can easily be

set as (or swapped for) n1 using Lem. 111 and Lem. 108.

142

Soundness Proof of Axiom (utc5)

IΓ ⊩ ∀fα ∈ (IΓ).a • f = c → ∀δ.∀fα ∈ (δ).a • f = c c ∈ {true, false}

Proof. This is the proof for c ≡ false, however the proof holds for c ≡ true via symmetry.

1 Assume ξIΓd . IΓ ▷ ξ ∧ ξ |= ∀fα ∈ (IΓ).a • f = false

2 Assume ξ′IΓ
′
s.t. ξ ≼⋆ ξ′ then prove ξ′ |= ∀fα ∈ (IΓ′).a • f = false

3 Assume false then proof by contradiction ξ′ |= ∃fα ∈ (IΓ′).a • f = true

4 i.e. ∃Mf . Mf
[IΓ′, ξ′]
⇝ Vf ∧ af

[IΓ′+f, ξ′·f :Vf]
⇝ true

5 → ∃Mf . Mf [M1/x1]
[IΓ′′, ξ′′]
⇝ Vf ∧ af

[IΓ′′+f, ξ′′·f :Vf]
⇝ true ξ′ ≡ ξ′′IΓ

′′ · x1 : V1

M1
[IΓ′′, ξ′′]
⇝ V1

6 → ... The TCV mappings have no e�ect on the evaluation of af

7 → ∃Mf . Mf [M1/x1]...[Mk/xk]
[IΓ, ξ]
⇝ Vf ∧ af

[IΓ+f, ξ′·f :Vf]
⇝ true ξ′ ≡ ξ · x̃ : Ṽ

Mk
[IΓ+..., ξ, ...]
⇝ Vk

8 → ∃ Nf . Nf
[IΓ, ξ]
⇝ Vf ∧ af

[IΓ+f, ξ′·f :Vf]
⇝ true Nf ≡Mf [M1/x1][Mk/xk]

9 Hence contradiction with Line.2

10 Hence axiom holds

This works due to ξ ≼⋆ ξ′ requiring the values in ξ′ \ ξ being derived from ξ in an

orderly manner. Each value being derived from a term ensures that term can be used to

reconstruct Vf from ξ.

The axiom fails to hold in a more general form i.e. IΓ ⊩ ∀fα ∈ (IΓ).A → ∀δ.∀fα ∈

(δ).A even if A-ExtIndSyn but the restricted form of A in this case provides enough

constraints to ensure this holds. There may be more general forms of this axiom that hold

but are not currently needed in the reasoning examples.

6.2.5 Soundness of Axioms for Evaluation Formulae

Many of these axioms are adapted from the program logic for the STLC as seen in Sec. 2.2.2,

and the soundness proofs are included to show their validity under the new model con-

struction and semantics.

143

Soundness Proof of Axiom (ext)

For all e1, e2 : α1 → α2 s.t. α1 and α2 in α-Nm:

(∀xα1 ∈ (∅).e1 • x = mα2
1 {e2 • x = mα2

2 {m1 = m2}}) ↔ e1 =
α1→α2 e2

Proof. Use Lem. 87 to see that any νGS-calculus term of type α-Nm has an equivalent

STLC (name-free) term hence the proof for (ext) in the STLC holds here too.

Soundness Proof of Axiom (eα)

e • e′ = m{e • e′ = a{a = m ∧A}} ↔ e • e′ = mα{A} α ∈ α-Nm,

a /∈ fv(e, e′), a /∈ fv(A)

Proof. Given α ∈ α-Nm and Lem. 87 clearly the value at m is equivalent to a name-free

value equivalent to the value at a hence this holds.

This fails to hold for all types given ee′ equivalent to gensym() producing two fresh

names at m1 and m2 which are not congruent.

Soundness Proof of Axiom (e1)

e • e′ = m{A ∧B} ↔ e • e′ = m{A} ∧ e • e′ = m{B}

Proof.

1 Let: (e1) ≡ e • e′ = m{A ∧B} ↔ e • e′ = m{A} ∧ e • e′ = m{B}

2 Assume ξIΓd

3 ξ |= e • e′ = m{A ∧B}

4 ↔ ∃ V. ee′
[IΓ, ξ]
⇝ V ∧ ξ ·m : V |= A ∧ ξ ·m : V |= B Sem., • = {}, ∧

5 ↔ ∃ V. ee′
[IΓ, ξ]
⇝ V ∧ ξ ·m : V |= A

∧ ∃ V. ee′
[IΓ, ξ]
⇝ V ∧ ξ ·m : V |= B

F.O.L., nominal determinacy Def. 25

6 ↔ ξ |= e • e′ = m{A} ∧ ξ |= e • e′ = m{A} Sem.• = {}, ∧

7 Hence: ∀ ξIΓd . ξ |= (e1)

The line 5 is guaranteed as termination is guaranteed and the fresh names can be chosen

to be identical.

144

Soundness Proof of Axiom (e2)

e • e′ = m{¬A} ↔ ¬e • e′ = m{A}

Proof.

1 Assume ξIΓd s.t.

2 ξ |= e • e′ = m{¬A}

3 ↔ ∃ V. ee′
[IΓ, ξ]
⇝ V ∧ ξ ·m : V |= ¬A Sem • = {}

4 ↔ ∃ V. ee′
[IΓ, ξ]
⇝ V ∧ ¬ ξ ·m : V |= A Sem ¬

5 ↔ ¬ ∃ V. ee′
[IΓ, ξ]
⇝ V ∧ ξ ·m : V |= A Termination Guaranteed

6 ↔ ξ |= ¬e • e′ = m{A} Sem.• = {}, ¬

7 Hence: ∀ ξIΓd . ξ |= (e2)

Soundness Proof of Axiom (e3)

m /∈ fv(A) ∧ A-ExtIndSyn → e1 • e2 = m{A−m ∧B} ↔ (A ∧ e1 • e2 = m{B})

Proof. Clearly A-ExtIndSyn implies A-ExtIndSem via Lem. 112.

1 Let: (e3) ≡ e1 • e2 = m{A−m ∧B} ↔ (A ∧ e1 • e2 = m{B})

2 Assume ξIΓd s.t.

3 ξ |= e1 • e2 = m{A−m ∧B} m /∈ dom(IΓ)

4 ↔ ∃ V. e1e2
[IΓ, ξ]
⇝ V ∧ ξ ·m : V |= A ∧ ξ ·m : V |= B Sem.• = {}, ∧

5 ↔ ∃ V. e1e2
[IΓ, ξ]
⇝ V ∧ ξ |= A ∧ ξ ·m : V |= B Sem.≼⋆, Lem. 93, A-ExtIndSem

6 ↔ ξ |= (A ∧ e1 • e2 = m{B}) Sem.• = {}, ∧

7 Hence: ∀ ξIΓd . A-ExtIndSyn ∧ m /∈ fv(A) → ξ |= (e3)

145

Soundness Proof of Axiom (e4)

m /∈ fv(IΓ) ∧ x /∈ fv(e1, e2,m) → e1•e2 = m{∀x ∈ (IΓ).A} ↔ ∀x ∈ (IΓ).e1•e2 = m{A}

The typing of this axiom implies x /∈ fv(e1, e2,m) and m /∈ fv(IΓ).

Proof.

1 Assume ξIΓd

2 ξ |= ∀x ∈ (IΓ).e1 • e2 = m{A}

3 ↔ ∀Mx, Vx. Mx
[IΓ, ξ]
⇝ Vx

→ ∃ Vm. (e1e2
[IΓ, ξ·x:Vx]
⇝ Vm ∧ ξ ·m : Vm · x : Vx |= A)

Sem.∀ ∈ ()., • = {}

4 ↔ ∀Mx, Vx. Mx
[IΓ, ξ]
⇝ Vx

→ ∃ Vm. (e1e2
[IΓ, ξ]
⇝ Vm ∧ ξ ·m : Vm · x : Vx |= A)

x /∈ fv(e1, e2,m),

Lem. 102

(å(Vx) ∩ å(Vm) ⊆ å(ξ\x))

5 ↔ ∃ V ′m. e1e2
[IΓ, ξ]
⇝ V ′m

∧ ∀Mx, Vx. Mx
[IΓ, ξ]
⇝ Vx

→ ∃ Vm. e1e2
[IΓ, ξ]
⇝ Vm

∧ Vm
∼=å(ξ,Vm,V ′

m)
α V ′m

∧ ξ ·m : Vm · x : Vx |= A

Vm
∼=...

α V ′m

6 ↔ ∃ V ′m. e1e2
[IΓ, ξ]
⇝ V ′m

∧ ∀Mx, Vx. Mx
[IΓ, ξ]
⇝ Vx

→ ∃ Vm. e1e2
[IΓ, ξ]
⇝ Vm

∧ Vm
∼=å(ξ,Vm,V ′

m)
α V ′m

∧ ξ ·m : V ′m · x : Vx |= A

Lem. 108

7 ↔ ∃ V ′m. e1e2
[IΓ, ξ]
⇝ V ′m

∧ ∀Mx, Vx. Mx
[IΓ, ξ]
⇝ Vx → ξ ·m : V ′m · x : Vx |= A

Vm
∼=...

α V ′m

8 ξ |= e1 • e2 = m{∀x ∈ (IΓ).A} Sem.∀ ∈ ()., • = {}

146

Soundness Proof of Axiom (e5)

A-ExtIndSyn → e1 • e2 = mα -(Nm,→){∀δ.A} ↔ ∀δ.e1 • e2 = mα -(Nm,→){A}

Proof. Clearly A-ExtIndSyn implies A-ExtIndSem via Lem. 112.

1 Assume ξIΓd

2 Assume ξ |= e1 • e2 = mα -(Nm,→){∀δ.A}

3 ↔ ∃ Vm. e1e2
[IΓ, ξ]
⇝ Vm

∧ ∀ ξ
′IΓ′

m
m . ξ ·m : Vm ≼⋆ ξ′m → ξ′m · δ : IΓ′m\−TCV |= A

Sem.• = {}, ∀δ.

4 ↔ ∃ Vm. e1e2
[IΓ, ξ]
⇝ Vm

∧ ∀ ξ′IΓ
′
. ξ ·m : Vm ≼⋆ ξ′ ·m : Vm

→ ξ′ ·m : Vm · δ : IΓ′\−TCV |= A

Rewrite ξ′m

Lem. 82

5 ↔ ∃ Vm. e1e2
[IΓ, ξ]
⇝ Vm

∧ ∀ ξ′IΓ
′
. ξ ≼⋆ ξ′ → ξ′ ·m : Vm · δ : IΓ′\−TCV |= A

Lem. 83

6 ↔ ∃ Vm. e1e2
[IΓ, ξ]
⇝ Vm

∧ ∀ ξ′IΓ
′
. ξ ≼⋆ ξ′ → ∃ V ′m. e1e2

[IΓ, ξ]
⇝ V ′m ∧ Vm

∼=å(ξ)
α -(Nm,→)

V ′m

∧ ξ′ ·m : Vm · δ : IΓ′\−TCV |= A

Vm
∼=...

α -(Nm,→)
V ′m

7 ↔ ∃ Vm. e1e2
[IΓ, ξ]
⇝ Vm

∧ ∀ ξ′IΓ
′
. ξ ≼⋆ ξ′ → ∃ V ′m. e1e2

[IΓ, ξ]
⇝ V ′m ∧ Vm

∼=å(ξ)
α -(Nm,→)

V ′m

∧ ξ′ ·m : V ′m · δ : IΓ′\−TCV |= A

Lem. 108

8 ↔ ∀ ξ′IΓ
′
. ξ ≼⋆ ξ′

→ ∃ V ′m. e1e2
[IΓ, ξ]
⇝ V ′m ∧ ξ′ ·m : V ′m · δ : IΓ′\−TCV |= A

Vm
∼=...

α -(Nm,→)
V ′m

9 ↔ ∀ ξ′IΓ
′
. ξ ≼⋆ ξ′

→ ∃ V ′m. (e1e2
[IΓ, ξ′·δ:IΓ′\−TCV]

⇝ V ′m ∧ ξ′ · δ : IΓ′\−TCV ·m : V ′m |= A)

Lem. 102

10 ↔ ∀ ξ′IΓ
′
. ξ ≼⋆ ξ′

→ ∃ V ′m. (e1e2
[IΓ′+δ, ξ′·δ:IΓ′\−TCV]

⇝ V ′m ∧ ξ′ · δ : IΓ′\−TCV ·m : V ′m |= A)

IΓ ⊩ e1e2 : α -(Nm,→)

11 ↔ ξ |= ∀δ.e1 • e2 = mα -(Nm,→){A} Sem.• = {}, ∀δ.

147

6.3 Soundness of Rules

In this section, the soundness of the rules is proven.

Given the logic is limited to static syntax, the condition then for any term s.t. IΓ ⊢

M : α where å(M) = ∅ is implied then clearly (å(ξ),Mξ) ⇓ (å(ξ), G′, V) ↔ M
[IΓ, ξ]
⇝ V

hence this will be used equivalently for brevity. Throughout the proofs it is assumed that

there exists a value Vi that a term Mi reduces to given the guaranteed termination of well

typed terms in the language hence this ∃ Vi. ... is often dropped for brevity.

Both Lem. 113 and Lem. 112 ensure that for anyA thenA-ThinSyn(x) impliesA-ThinSem(x)

and A-ExtIndSyn implies A-ExtIndSem respectively and are both used at each time the

syntactic de�nition is used.

The soundness proofs are split into the three separate sections in which they are in-

troduced. The core rules are proven sound in Sec. 6.3.1, with the structural rules proven

in Sec. 6.3.2, and �nally a derivation from these rules proves the Derived rules sound in

Sec. 6.3.3. Let �Op. Sem.� refer to operational semantics of the νGS-calculus in Sec. 3.1.1.

6.3.1 Soundness of Core Rules

Soundness of [Var]ν

−

{A[x/m]} x :m {A}
[Var]ν

Proof.

1 Assume IΓ s.t. IΓ ⊩ {A[x/m]} x :m {A} s.t.

2 Assume ξ s.t. IΓ ▷ ξ and ξ |= A[x/m]

3 ξ |= A[x/m] ↔ ξ ·m : ξ(x) |= A Sem.[x/m], m-fresh

4 ξ |= A[x/m] → x
[IΓ, ξ]
⇝ ξ(x) ∧ ξ ·m : ξ(x) |= A ξ(x) a value

5 ∀ ξ.IΓ ▷ ξ→ ξ |= A[x/m]→ x
[IΓ, ξ]
⇝ ξ(x) ∧ ξ ·m : ξ(x) |= A Lines.2, 4

6 ∀ IΓ. IΓ ⊩ {A[x/m]} x :m {A} → ∀ ξ.IΓ ▷ ξ→ ξ |= {A[x/m]} x :m {A} Lines.1,5

7 Hence:
−

|= {A[x/m]} x :m {A}

148

Soundness of [Const]ν

−

{A[c/m]} c :m {A}
[Const]ν

Proof. See proof for [Var]ν and replace x with c.

Soundness of [Eq]ν

{A}M :m {B} {B} N :n {C[m = n/u]} C ThinSyn(m,n)

{A}M = N :u {C}
[Eq]ν

Proof. Clearly Lem. 113 ensures A-ThinSyn(x) implies A-ThinSem(x).

1 Assume I.H.(1) : ∀ IΓ0, ξ
IΓ1
1 . IΓ0 ⊩ {A}M :m {B} ∧ IΓ0 ▷ ξ1

→ ξ1 |= {A}M :m {B}

2 Assume I.H.(2) : ∀ IΓ0, ξ
IΓ1
1 . IΓ0 ⊩ {B} N :n {C[m = n/u]} ∧ IΓ0 ▷ ξ1

→ ξ1 |= {B} N :n {C[m = n/u]}

3 Assume IΓ s.t. IΓ ⊩ {A}M = N :u {C}

4 Assume ξ s,t, IΓ ▷ ξ ∧ ξ |= A

5 → (å(ξ), Mξ) ⇓ (å(ξ), Gm, Vm) ∧ ξ ·m : Vm |= B I.H.(1)

6 → M
[IΓ, ξ]
⇝ Vm ∧ N

[IΓ, ξ·m:Vm]
⇝ Vn

∧ ξ ·m : Vm · n : Vn |= C[m = n/u]

I.H.(2)

7 → M
[IΓ, ξ]
⇝ Vm ∧ N

[IΓ, ξ·m:Vm]
⇝ Vn

∧ (m = n)
[IΓ+m+n, ξ·m:Vm·n:Vn]

⇝ Vu

∧ ξmn · u : Vu |= C

Sem.C[m = n/u]

8 → M
[IΓ, ξ]
⇝ Vm ∧ N

[IΓ, ξ·m:Vm]
⇝ Vn

∧ (m = n)
[IΓ+m+n, ξ·m:Vm·n:Vn]

⇝ Vu

∧ ξ · u : Vu |= C

C ThinSem(m,n)

9 → (M = N)
[IΓ+m+n, ξ·m:Vm·n:Vn]

⇝ Vu ∧ ξ · u : Vu |= C Op. Sem.(=)

10 → ∀ ξ.IΓ ▷ ξ → ξ |= {A}M = N :u {C} Lines.4-9

11 Hence:

C ThinSyn(m,n)

|= {A}M :m {B} |= {B} N :n {C−m,n[m = n/u]}
|= {A}M = N :u {C}

Lines.1-10

A common shorthand abbreviation is used here in the form of m = n as an expression

which is substituted for the variable u in C[m = n/u]. Although this isn't strictly legal

149

it is obvious this means where m = n appears in a formula it is substituted for u = true.

A formalisation of this has not been written out in full but is often used in the literature

without explicit formalisation [28, 72, 5].

Soundness of [GenSym]ν

−

{T} gensym :u {∀δ.u • () = m{m#δ}}
[GenSym]ν

Proof.

1 Assume IΓ s.t. IΓ ⊩ {T} gensym :u {∀δ.u • () = m{m#δ}}

2 Assume ξ s.t. IΓ ▷ ξ ∧ ξ |= T

3 Let: ξIΓu
u ≡ ξ · u : gensym ∧ ξ1d ≡ ξ1 · δ : IΓ1\−TCV gensym-value and u /∈ dom(ξ)

4 ∀ ξIΓx
x , n. (å(ξx), gensym()) ⇓ ((å(ξx), n), n) ∧ n /∈ å(ξx) Op. Sem.gensym()

5 → ∀ ξIΓ1
1 . ξu ≼⋆ ξ1 → ∃ n. u()

[IΓ+u, ξ1]
⇝ n ∧ n /∈ å(ξ1) restrict ∀ ξx to ξu ≼⋆ ξx

6 ∀ ξIΓ1
1 . ξu ≼⋆ ξ1 → ∃ n.u()

[IΓ+u, ξ1]
⇝ n ∧ ¬ ∃MNm

m .Mm
[IΓ1, ξ1·m:n]
⇝ n Lem. 98

7 ∀ ξIΓ1
1 . ξu ≼⋆ ξ1

→ ∃ n. u()
[IΓ+u, ξ1]
⇝ n ∧ ¬ ∃MNm

m .Mm
[IΓ1, ξ1·m:n]
⇝ [[m]]ξ1d·m:n

n ≡ [[m]]ξ1d·m:n

8 ∀ ξIΓ1
1 . ξu ≼⋆ ξ1

→ ∃ n. u()
[IΓ+u, ξ1]
⇝ n ∧ ¬ ∃MNm

m .Mm
[IΓ1, ξ1d·m:n]
⇝ [[m]]ξ1d·m:n

Lem. 102

9 ∀ ξIΓ1
1 . ξu ≼⋆ ξ1

→ ∃ n. u()
[IΓ+u, ξ1]
⇝ n ∧ ¬ ∃MNm

m .Mm
[IΓ1+δ, ξ1d·m:n]

⇝ [[m]]ξ1d·m:n

[[IΓ1]]ξ1d ≡ [[IΓ1+δ]]ξ1d

10 ∀ ξIΓ1
1 . ξu ≼⋆ ξ1 → ∃ n. u()

[IΓ+u, ξ1]
⇝ n ∧ ξ1d ·m : n |= m#δ Sem.#δ

11 ∀ ξIΓ1
1 . ξu ≼⋆ ξ1 → ∃ n. u()

[IΓ+u, ξ1d]⇝ n → ξ1d ·m : n |= m#δ Lem. 102

12 ξ · u : gensym |= ∀δ.u • () = m{m#δ} Sem.∀δ.u • () = m{m#δ}

13 ∀ ξIΓ.IΓ ▷ ξ → ξ |= T→ gensym
[IΓ, ξ]
⇝ gensym

∧ ξ · u : gensym |= ∀δ.u • () = m{m#IΓ+u+δ}

Lines.2-12

14 Hence:
−

|= {T} gensym :u {∀δ.u • () = m{m#δ}}
Lines.1-13

150

Soundness of [Lam]ν

(IΓ+δ+x : α) ⊩ {A ∧B}M :m {C} A-ExtIndSyn

IΓ ⊩ {A} λxα.M :u {∀δ.∀xα ∈ (δ).(B → u • x = m{C})}
[Lam]ν

Proof. Clearly Lem. 112 ensures A-ExtIndSyn implies A-ExtIndSem.

1 Assume IΓ s.t. IΓ ⊩ {A} λxα.M :u {∀δ.∀xα ∈ (δ).(B → u • x = m{C})}

2 and IΓ+δ+x ⊩ {A ∧B}M :m {C}

3

Assume I.H.(1) :

∀ ξIΓ1+δ+x
0 . IΓ+δ+x ▷ ξ0

∧ ξ0 |= A ∧B → ∃ Vm. (å(ξ0), Mξ0) ⇓ (G′, Vm) ∧ ξ0 ·m : Vm |= C

4 Assume ξIΓ1 s.t. IΓ ▷ ξ ∧ ξ |= A

5 → (å(ξ), (λx.M)ξ) ⇓ (å(ξ), λx.(Mξ\x)) Op. Sem.λx.M

6 Let: Vu ≡ λx.M(ξ\x) & ξu ≡ ξ · u : Vu

ξIΓ1
1 ≡ ξud · δ : IΓud\−TCV & ξIΓ2

2 ≡ ξud · δ : IΓud\−TCV · x : Vx

7 → ∀ ξIΓud
ud . ξu ≼⋆ ξud

∧ ∀ Px, Vx. Px
[IΓ1, ξ1]
⇝ Vx ∧ ξ2 |= B → ξ2 |= B

Tautology (B → B)

8 → ∀ ξIΓud
ud .ξu ≼⋆ ξud

∧ ∀ Px, Vx. Px
[IΓ1, ξ1]
⇝ Vx ∧ ξ2 |= B → ξ2 |= A ∧ B

Line.4, A−ExtIndSem, Sem.∧

9 → ∀ ξIΓud
ud .ξu ≼⋆ ξud

∧ ∀ Px, Vx. Px
[IΓ1, ξ1]
⇝ Vx

∧ ξ2 |= B → ∃ Vm. M
[IΓ2, ξ2]
⇝ Vm ∧ ξ2 ·m : Vm |= C

I.H.(1)

IΓ+u+δ+x ▷ ξ2

10 → ∀ ξIΓud
ud .ξu ≼⋆ ξud

∧ ∀ Px, Vx. Px
[IΓ1, ξ1]
⇝ Vx

∧ ξ2 |= B → ∃ Vm. ux
[IΓ2, ξ2]
⇝ Vm ∧ ξ2 ·m : Vm |= C

Mξ ≡ ((λx.M)x)ξ ≡ [[u]]ξ2 [[x]]ξ2

[[IΓ1]]ξ1 ≡ [[IΓud+δ]]ξ1

11 → ∀ ξIΓud
ud . ξu ≼⋆ ξud

∧ ∀ Px, Vx. Px
[IΓ1, ξ1]
⇝ Vx → ξ2 |= B → u • x = m{C}

Sem.B → u • x = m{C}

12 → (å(ξ), (λx.M)ξ) ⇓ (å(ξ), Vu)

∧ ξ · u : Vu |= ∀δ.∀x ∈ (δ).B → u • x = m{C}

Line.5 & Sem.∀δ.∀x ∈ (δ).

13 → |= {A} λx.M :u {∀δ.∀x ∈ (IΓ+u+δ).(B → u • x = m{C})} Lines.1, 4-12

14 Hence:
A-ExtIndSyn |= {A ∧ B}M :m {C}

|= {A} λx.M :u {∀δ.∀x ∈ (IΓ+u+δ).(B → u • x = m{C})}
Lines.1-13

151

Soundness of [App]ν

{A}M :m {B} {B} N :n {m • n = u{C}} C-ThinSyn(m,n)

{A}MN :u {C}
[App]ν

Proof. Clearly Lem. 113 ensures A-ThinSyn(x) implies A-ThinSem(x).

1 Let: ξm ≡ ξ ·m : Vm and ξmn ≡ ξm · n : Vn

2 Assume IΓ s.t. IΓ ⊩ {A}MN :u {C}

3 → IΓ ⊩ {A}M :m {B} ∧ IΓ+m ⊩ {B} N :n {m • n = u{C}}

4 IΓ ↓−TC⊢MN : α2 → IΓ ↓−TC⊢M : α1 → α2 ∧ IΓ ↓−TC⊢ N : α1

5 I.H.(1) : ∀ ξIΓ1
1 .IΓ ▷ ξ1 → ξ1 |= A→M

[IΓ1, ξ1]
⇝ Vm ∧ ξm |= B

6 I.H.(2) : ∀ ξIΓ2
2 .IΓ+m ▷ ξ2 → ξ2 |= B→ N

[IΓ2, ξ2]
⇝ Vn

∧ ξ2 · n : Vn |= m • n = u{C}

7 Assume ξIΓ0 s.t. IΓ ▷ ξ ∧ ξ |= A

8 → M
[IΓ, ξ]
⇝ Vm ∧ ξ ·m : Vm |= B I.H.(1)

9 → M
[IΓ, ξ]
⇝ Vm ∧ N

[IΓm, ξm]
⇝ Vn ∧ ξmn |= m • n = u{C} I.H.(2)

10 → M
[IΓ, ξ]
⇝ Vm ∧ N

[IΓm, ξm]
⇝ Vn

∧ ∃ Vu. mn
[IΓ+m+n, ξmn]
⇝ Vu ∧ ξmn · u : Vu |= C

Sem.• = {}

11 → M
[IΓ, ξ]
⇝ Vm ∧ N

[IΓm, ξm]
⇝ Vn

∧ ∃ Vu. (å(ξmn), VmVn) ⇓ (G′′′, Vu) ∧ ξmn · u : Vu |= C

Sem.[[x]]ξ

12 → M
[IΓ, ξ]
⇝ Vm ∧ N

[IΓm, ξm]
⇝ Vn

∧ ∃ Vu. (å(ξmn), VmVn) ⇓ (G′′′, Vu) ∧ ξ · u : Vu |= C

C-ThinSem(m,n)

13 → ∃ Vu. MN
[IΓ, ξ]
⇝ Vu ∧ ξ · u : Vu |= C Op. Sem.(App)

14 → ∀ ξIΓ0 . IΓ ▷ ξ → ξ |= A → ∃ Vu. MN
[IΓ, ξ]
⇝ Vu

∧ ξ · u : Vu |= C

Lines.7-13

15 Hence:

C-ThinSyn(m,n)

|= {A}M :m {B} |= {B} N :n {m • n = u{C}}
|= {A}MN :u {C}

Lines.1-13

152

Soundness of Other Key Rules

The soundness proof of the rules [Pair]ν , [Proji]ν , [Neg]ν and [If]ν follow closely those

of the STLC. They are not included here but are proven in Ap. A.2.

6.3.2 Soundness of Structural Rules

The structural rules from Fig. 4.9 are similar to those that are seen in the literature

[28, 5, 72] with adaptations to the alternative logical constructors. They are proven sound

in the following subsections.

Soundness of Structural Rules [∧ →]ν, [→ ∧]ν, [∨-Pre]ν, [∧-Post]ν
{A ∧B}M :m {C} B-ExtIndSyn

{A}M :m {B → C}
[∧ →]ν

{A}M :m {B → C} B-ExtIndSyn

{A ∧B}M :m {C}
[→ ∧]ν

{A}M :m {B} {A′}M :m {B}
{A ∨A′}M :m {B}

[∨-Pre]ν

{A}M :m {B} {A}M :m {B′}
{A}M :m {B ∧B′}

[∧-Post]ν

Clearly Lem. 112 ensures A-ExtIndSyn implies A-ExtIndSem, hence the proofs for

these rules follow the equivalent proof of the λ-logic rule with the addition ofB-ExtIndSem,

ensuring these hold trivially.

153

Soundness of Structural Rule [Conseq]ν

The [Conseq]ν rule allows for the use of the logic of axioms in Sec. 4.5 in the logic of

rules. The proof is trivial and follows the proof of [Conseq]λ as follows.

A→ A′ {A′}M :m {B′} B′ → B

{A}M :m {B}
[Conseq]ν

Proof. By application of the assumptions.

1 Assume IΓ, s.t. IΓ ⊩ {A}M :m {B}

2 Assume typing holds for assumptions i.e.

IΓ ⊩ A→ A′ ∧ IΓ ⊩ {A′}Mα :m {B′} ∧ IΓ+m : α ⊩ B′ → B

3 Assume I.H.(1): ∀ ξIΓ0
0 . IΓ ▷ ξ0 → ξ0 |= A→ A′

4 Assume I.H.(2): ∀ ξIΓ0
0 . IΓ ▷ ξ0 → ξ0 |= {A′}M :m {B′}

5 Assume I.H.(3): ∀ ξIΓ1
1 . IΓ+m ▷ ξ1 → ξ1 |= B′ → B

6 Assume ξIΓ
′
s.t. IΓ ▷ ξ ∧ ξ |= A

7 → ξ |= A′ M.P., I.H.(1)

8 → M
[IΓ, ξ]
⇝ V ∧ ξ ·m : V |= B′ M.P., I.H.(2)

9 → M
[IΓ, ξ]
⇝ V ∧ ξ ·m : V |= B M.P., I.H.(3)

10 → ξ |= A → M
[IΓ, ξ]
⇝ V ∧ ξ ·m : V |= B Lines.6-9

11 → ∀ ξIΓ
′
.IΓ ▷ ξ → ξ |= {A}M :m {B} Lines.3-10

12 Hence:
A→ A′ |= {A′}M :m {B′} B′ → B

|= {A}M :m {B}
Lines.1-11

154

Soundness of Structural Rule [Invar]ν

The [Invar]ν rule is similar to the STLC program logic [Invar]λ rule with the additional

requirement that C-ExtIndSyn to ensure C is satis�ed when the resulting value derived

from M extend the model in the proof.

C-ExtIndSyn {A}M :m {B}

{A ∧ C}M :m {B ∧ C}
[Invar]ν

Proof. Clearly Lem. 112 ensures A-ExtIndSyn implies A-ExtIndSem.

1 Assume IΓ s.t. IΓ ⊩ {A ∧ C}M :m {B ∧ C}

2 → IΓ ⊩ {A}M :m {B}

3 Assume I.H.(1) : ∀ ξIΓ0 .IΓ ▷ ξ → ξ |= A→ M
[IΓ, ξ]
⇝ V

∧ ξ ·m : V |= B

4 Assume for some model ξIΓ0 s.t. IΓ ▷ ξ ∧ ξ |= A ∧ C

5 ξ |= A ∧ ξ |= C Sem.∧

6 M
[IΓ, ξ]
⇝ V ∧ ξ ·m : V |= B ∧ ξ |= C I.H.(1)

7 M
[IΓ, ξ]
⇝ V ∧ ξ ·m : V |= B ∧ ξ ·m : V |= C C-ExtIndSem

ξ ≼⋆ ξ ·m : V

8 M
[IΓ, ξ]
⇝ V ∧ ξ ·m : V |= B ∧ C Sem.∧

9 ∀ ξIΓ0 .IΓ ▷ ξ → ξ |= {A ∧ C}M :m {B ∧ C} Lines.5-8

10 Hence:
C-ExtIndSyn |= {A}M :m {B}
|= {A ∧ C}M :m {B ∧ C}

Lines.1-9

155

Soundness of structural rule [Weak(x)]ν

IΓ ⊩ {A}M :m {B} A,B-ExtIndSyn

IΓ+x ⊩ {A−x}M−x :m {B−x}
[Weak(x)]ν

Proof. Clearly Lem. 112 ensures A-ExtIndSyn implies A-ExtIndSem.

1 Assume IΓ s.t. IΓ+x ⊩ {A−x}M :m {B−x}

2 → IΓ ↓−TC⊢M : α ↔ (IΓ+x) ↓−TC⊢M−x : α Def. 43, M−x

3 Assume I.H.(1) : ∀ ξIΓ+d. IΓ ▷ ξ → ξ |= A → M
[IΓ, ξ]
⇝ V ∧ ξ · u : V |= B

4 Assume IΓ+x ▷ ξIΓ+xx ≡ (ξ · x : Vx) i.e. IΓ ▷ ξ and ξ ≼⋆ ξ · x : Vx

5 Assume ξx |= A

6 ↔ ξ |= A ξ ≼⋆ ξx, A -ExtIndSem

7 → M
[IΓ, ξ]
⇝ V ∧ ξ · u : V |= B I.H.(1)

8 ↔ M
[IΓ, ξx]
⇝ V ∧ ξ · u : V |= B Lem. 102 (å(V) ∩ å(Vx) ⊆ å(ξ))

9 → M
[IΓ+x, ξx]
⇝ V ∧ ξ · u : V |= B Lem. 93

10 (Lem. 104 ∧ (å(V) ∩ å(Vx) ⊆ å(ξ)) → ξ · u : V ≼⋆ ξx · u : V)

→ M
[IΓ+x, ξx]
⇝ V ∧ ξx · u : V |= B

B-ExtIndSem

11 ξ · x : Vx |= A → M
[IΓ+x, ξx]
⇝ V ∧ ξx · u : V |= B Lines.7-12

12 ∀ ξx. IΓ+x ▷ ξx ξx |= A → M
[IΓ+x, ξx]
⇝ V ∧ ξx · u : V |= B Lines.6-13

13 → |= {A−x}M :m {B−x}

14 →
A,B-ExtIndSyn IΓ ⊩ {A}M :m {B}

IΓ+x ⊩ {A−x}M :m {B−x}
Lines.3, 7, 10, 13

156

Soundness of structural rule [Weak(δ)]ν

IΓ+IΓ′ ⊩ {A}M :m {B} A,B-ExtIndSyn

IΓ+δ+IΓ′ ⊩ {A−δ}M :m {B−δ}
[Weak(δ)]ν

Proof. Clearly Lem. 112 ensures A-ExtIndSyn implies A-ExtIndSem.

1 Assume IΓ+IΓ′ s.t. IΓ+δ+IΓ′ ⊩ {A−δ}M :m {B−δ}

2 → (IΓ+IΓ′)\−TCV ⊢M : α ↔ (IΓ+δ+IΓ′)\−TCV ⊢M : α Fig. 2.16

3 Assume I.H.(1) : ∀ ξ. IΓ+IΓ′ ▷ ξ → ξ |= A → M
[IΓ, ξ]
⇝ V ∧ ξ · u : V |= B

4 Assume ξ2 ≡ (ξ0 · ξd · δ : IΓx · ξ1) s.t. IΓ+δ+IΓ′ ▷ ξ2

i.e. IΓ ▷ ξ0, IΓ+δ ▷ (ξ0 · ξd)IΓx · δ : IΓx\−TCV

5 Assume IΓ+IΓ′ ▷ ξ0 · ξ1 hence ξ0 ≼⋆ ξ0 · ξ1

6 Assume ξ0 · ξd · δ : IΓx · ξ1 |= A Assumption

7 ↔ ξ0 · ξd · ξ1 |= A ↔ ξ0 · ξ1 · ξd |= A Lem. 105, Lem. 108

8 ↔ ξ0 · ξ1 |= A (Lem. 104 → ξ0 · ξ1 ≼⋆ ξ0 · ξ1 · ξd) A-ExtIndSem

9 → M
[IΓ+IΓ′, ξ0·ξ1]
⇝ V ∧ ξ0 · ξ1 · u : V |= B I.H.(1)

10 → M
[IΓ+IΓ′, ξ0·ξ1·ξd]⇝ V ∧ ξ0 · ξ1 · u : V · ξd |= B

Lem. 102 ∧ Lem. 104

B-ExtIndSem

11 → M
[IΓ+IΓ′, ξ0·ξd·ξ1]⇝ V ∧ ξ0 · ξd · ξ1 · u : V |= B Lem. 107 ∧ Lem. 108

12 → M
[IΓ+IΓ′, ξ2]
⇝ V ∧ ξ2 · u : V |= B Lem. 102 ∧ Lem. 105

13 → M
[IΓ+δ+IΓ′, ξ2]
⇝ V ∧ ξ2 · u : V |= B Lem. 93

14 ξ2 |= A → M
[IΓ+δ+IΓ′, ξ2]
⇝ V ∧ ξ2 · u : V |= B Lines.6-13

15 → |= (IΓ+δ+IΓ′ ⊩){A−δ}M :m {B−δ} Lines.4-14

16 →
|= (IΓ+IΓ′ ⊩){A}M :m {B}

|= (IΓ+δ+IΓ′ ⊩){A−δ}M :m {B−δ}
Lines.3, 8, 10, 15

6.3.3 Soundness of Derived Rules

The proof that the derived rules [Let]ν and [LetFresh]ν are introduced in the following

sections.

157

Soundness of [Let]ν

{A}M :x {B} {B} N :u {C} C ThinSyn(x) A,B,C − ExtIndSyn

{A} let x = M in N :u {C}
[Let]ν

Proof. The abbreviation let x = M in N
def
= (λx.N)(M) is used as follows.

1 Let: D
def
= ∀δ.∀y ∈ (δ).(B → p • x = u{C})[y/x] which is ExtIndSyn Def. 54

2 Assume IΓ s.t. IΓ ⊩ {A} let x = M in N :u {C}

3 Assume I.H.(2) : IΓ+x ⊩ {B} N :u {C}

4 IΓ+δ+x ⊩ {B−δ} N :u {C−δ} B,C-ExtIndSyn [Weak(δ)]ν

5 IΓ ⊩ {T} λx.N :p {∀δ.∀x ∈ (δ).B → p • x = u{C}} [Lam]ν

6 IΓ ⊩ {A} λx.N :p {A ∧D} [Invar]ν , A -ExtIndSyn

7 Assume I.H.(1) : IΓ ⊩ {A}M :x {B−δ}

8 IΓ+p ⊩ {A}M :x {B} A,B -ExtIndSyn, [Weak(x)]ν

9 IΓ+p ⊩ {A ∧D}M :x {B ∧D} D-ExtIndSyn [Invar]ν

10 IΓ+p+x ⊩ B ∧D

→ B ∧ ∀y ∈ (IΓ+p+x).(B → p • x = u{C})[y/x] (utc1), B−δ and C−δ

→ B ∧ (B → p • x = u{C}) (A[y/x][x/y] ≡ A) (u1)

→ p • x = u{C} M.P.

11 IΓ+p ⊩ {A ∧D}M :x {p • x = u{C}} [Conseq]ν , Lines.9, 10

12 C ThinSyn(x) → C ThinSyn(p) Lem. 56

13 IΓ ⊩ {A} (λx.N)(M) :u {C} [App]ν , Lines.6, 11, 12

14

C ThinSyn(x) A,B,C − ExtIndSyn

{A}M :x {B} {B} N :u {C}
{A} (λx.N)M :u {C}

Lines.3, 4, 6, 11, 12 → Line.13

15

C ThinSyn(x) A,B,C − ExtIndSyn

{A}M :x {B} {B} N :u {C}
{A} let x = M in N :u {C}

let x = M in N
def
= (λx.N)M

158

Soundness of the Derived Rule [LetFresh]ν

The [LetFresh]ν rule can be derived from the [Let]ν rule and the derivation for gensym()

which can be seen in Ex. 24 in Chapt. 7. This rule is introduced as the let x = gensym() in ·

construction is commonly used in the reasoning.

IΓ+x ⊩ {A ∧ x#IΓ}M :m {C} C ThinSyn(x) A,C-ExtIndSyn

IΓ ⊩ {A} let x = gensym () in M :m {C}
[LetFresh]ν

Proof.

1 Assume IΓ s.t. IΓ ⊩ {A} let x = gensym() in N :u {C}

2 IΓ ⊩ {T} gensym() :x {x#IΓ} See Ex. 24

3 IΓ ⊩ {A} gensym() :x {A ∧ x#IΓ} [Invar]ν , 7, A-ExtIndSyn

4 IΓ+x ⊩ {A ∧ x#IΓ}M :m {C} Assumption

5 C-ThinSyn(x) Assumption

6 A,C-ExtIndSyn→ (A ∧ x#IΓ)-ExtIndSyn Assumption, Def. 54

7 IΓ ⊩ {A} let x = gensym() in M :m {C} [Let]ν , Lines.3, 4, 5, 6

8 Hence:
{A ∧ x#IΓ} N :u {C} C ThinSyn(x) A,C-ExtIndSyn

{A} let x = M in N :u {C}
Lines.1-7

6.4 Soundness Theorem

The individual soundness proofs of each axiom and rule in Sec. 6.2 and Sec. 6.3 can now

be used to prove the soundness of the logic in Thm. 114, below.

Theorem 114 (The ν-logic is Sound). The soundness of the logic is de�ned as follows.

∀ IΓ, {A}M :u {B}. IΓ ⊩ {A}M :u {B} → ⊢ {A}M :u {B}→ ⊨ {A}M :u {B}

Proof. Trivial given all axioms and rules are proven sound in Sec. 6.2 and Sec. 6.3 respect-

ively.

159

6.5 Conservativity

The νGS-calculus is a direct extension of the STLC with a simple addition of names (in

types and syntax constructor/destructor). Thus the ν-logic can reason about STLC terms.

If the ν-logic cannot prove anything about an STLC term which the λ-logic cannot prove

then the ν-logic is de�ned as a conservative extension of the λ-logic (or conservativity for

brevity).

First a proof that every triple derivable in the λ-logic can indeed be derived in the

ν-logic is introduced in Sec. 6.5.1. A sketch that the ν-logic is a conservative extension of

the λ-logic is provided in Sec. 6.5.2. For convenience the λ-logic axioms from Sec. 2.2.2, are

written (·)λ, and the ν-logic axioms from Sec. 4.5 are written (·)ν . Similarly Hoare triples

from the λ-logic and ν-logic are written {A} M :u {B}λ and {A} M :u {B}ν respectively

with their respective derivation symbols ⊢λ and ⊢ν .

6.5.1 The ν-Logic Extends the λ-Logic

A translation from triples in the λ-logic to triples in the ν-logic written ⟨⟨·⟩⟩λ→ν , primarily

translates ∀xα. to ∀xα ∈ (∅).. as this is the only discrepancy between the two syntaxes and

it is guaranteed that α ∈ α-Nm.

De�nition 115 (Translation from λ-logic to ν-logic). De�ne the translation of λ-logic

formulae and triples into ν-logic formulae and triples as follows.

⟨⟨e = e′⟩⟩λ→ν
def
= e = e′

⟨⟨¬A⟩⟩λ→ν
def
= ¬⟨⟨A⟩⟩λ→ν

⟨⟨A ∧B⟩⟩λ→ν
def
= ⟨⟨A⟩⟩λ→ν ∧ ⟨⟨B⟩⟩λ→ν

⟨⟨e • e′ = m{A}⟩⟩λ→ν
def
= e • e′ = m{⟨⟨A⟩⟩λ→ν}

⟨⟨∀xα.A⟩⟩λ→ν
def
= ∀xα ∈ (∅).⟨⟨A⟩⟩λ→ν

⟨⟨{A}M :m {B}λ⟩⟩λ→ν
def
= {⟨⟨A⟩⟩λ→ν}M :m {⟨⟨B⟩⟩λ→ν}ν

This leads to the �rst lemma that if {A}M :u {B}λ is derivable in the λ-logic then its

translation is derivable in the ν-logic.

Lemma 116.

∀ {A}M :u {B}λ. ⊢λ {A}M :u {B}λ → ⊢ν ⟨⟨{A}M :u {B}λ⟩⟩λ→ν

Meaning, if the rules and axioms of the λ-logic allows for the derivation of {A}M :u {B}λ
then the translation can of {A}M :u {B}λ into the ν-logic can be derived in the ν-logic.

160

Proof. This holds through noting that each axiom in the λ-logic translates to an axiom in

the ν-logic, and each rule in the λ-logic also translates to a rule in the ν-logic. The key

axiom used for this proof is (u5) which allows for the removal and addition of LTCs to any

restricted quanti�cation of α-Nm (i.e. all STLC types).

The key axioms are discussed here.

− Axioms of F.O.L. from Fig. 2.18 are identical given the α-Nm types.

− Equality axioms are identical in both Fig. 2.17 and Fig. 4.3 where substitution of

α-Nm types is identical in both.

− Translated axioms of the F.O.L. from STLC Fig. 2.18 exist in the exact forms in the

axioms for the ν-logic Fig. 4.4 given the restriction of name-free types and axiom

(u5)ν which allows the LTC to be extended in any universal restricted quanti�cation

over α-Nm types.

− The axioms for evaluation formulae are identical in both λ-logic Fig. 2.19 and the

ν-logic Fig. 4.7 on α-Nm types excluding (e5) in the ν-logic which does not a�ect

α-Nm quanti�ers.

The λ-logic rules introduced in Fig. 2.20 and Fig. 2.21 are all discussed here.

− [Const]λ, [Var]λ These clearly are identical to the ν-logic equivalent given substi-

tution is equivalent in both logics for constants and variables.

− [Lam]λ This clearly translates to the [Lam]ν with the same post-condition of the

conclusion given (u3) and (utc3) which can introduce δ and to the restricted quanti�er

∀x ∈ (δ). via (u5)ν .

− [App]λ This rule is identical given all constituents are identical aside from the

ExtIndSyn condition which can be guaranteed given all axioms and rules introduce

δ-free formulae which implies all formulae are ExtIndSyn.

− [If]λ This is identical to the the ν-logic version hence holds.

− [Pair]λ This is identical to the the ν-logic version except the substitution which is

identical for pairs.

− [Proji]λ This is identical to the the ν-logic version except the substitution. Given

all LTCs used in universal restricted quanti�cation introduced are of types which are

α-Nm types then the substitution is also identical.

161

− The structural rules in Fig. 2.21 are all identical aside from the ExtIndSyn which

can be guaranteed given all axioms and rules introduce δ-free formulae which implies

all formulae are ExtIndSyn.

Hence all rules and axioms in the λ-logic have a direct translation to the ν-logic, hence the

translation of derived λ-logic triples can be derived in the ν-logic by using the corresponding

translated rule or axiom.

6.5.2 The ν-Logic is a Conservative Extension of the λ-Logic

Conservativity requires the opposite direction of Lem. 116, but for this the opposite dir-

ection of translation is required. Clearly ∀xNm ∈ (IΓ).A has no direct translation into the

λ-logic hence a check on which expressions, formulae and triples are translatable from the

ν-logic to λ-logic is introduced as ·-Nm-free which requires α-Nm
def
= {Unit,Bool, α-Nm ×

α-Nm, α-Nm → α-Nm} as follows.

De�nition 117 (Nameless expressions, formulae and triples).

c-Nm-free
def
= true

x-Nm-free
def
= IΓ ⊩ x : α-Nm

πi(e
′)-Nm-free

def
= e′-Nm-free

⟨e′, e′′⟩-Nm-free def
= e′-Nm-free ∧ e′′-Nm-free

e = e′-Nm-free
def
= e-Nm-free ∧ e′-Nm-free

¬A1-Nm-free
def
= A1-Nm-free

A1 ∧A2-Nm-free
def
= A1-Nm-free ∧ A2-Nm-free

e • e′ = m{A1}-Nm-free
def
= e-Nm-free ∧ e′-Nm-free ∧ A-Nm-free

∀xα1 ∈ (IΓ).A1-Nm-free
def
= A1-Nm-free ∧ α1 ∈ α-Nm

eNm#IΓ-Nm-free
def
= false

∀δ.A1-Nm-free
def
= A1-Nm-free

{A}M :u {B}ν-Nm-free
def
= A-Nm-free ∧ M ∈ STLC-syntax ∧ B-Nm-free

The translation from ν-logic formulae and triples to λ-logic formulae and triples, written

⟨⟨·⟩⟩ν→λ is de�ned as follows assuming ·-Nm-free holds. A translation of expressions is not

required as the ·-Nm-free check ensures all expressions are name free and hence do not

need translating.

162

De�nition 118 (Translation from ν-logic to λ-logic). Given IΓ ⊩ A and A-Nm-free then

⟨⟨A⟩⟩ν→λ is de�ned inductively on A as below. Given IΓ ⊩ {A}M :u {B}ν and {A} M :u

{B}ν-Nm-free then ⟨⟨{A} M :u {B}ν⟩⟩ν→λ is de�ned inductively on {A} M :u {B}ν as

follows.

⟨⟨e = e′⟩⟩ν→λ
def
= e = e′

⟨⟨¬A1⟩⟩ν→λ
def
= ¬⟨⟨A1⟩⟩ν→λ

⟨⟨A1 ∧A2⟩⟩ν→λ
def
= ⟨⟨A1⟩⟩ν→λ ∧ ⟨⟨A2⟩⟩ν→λ

⟨⟨e • e′ = m{A1}⟩⟩ν→λ
def
= e • e′ = m{⟨⟨A1⟩⟩ν→λ}

⟨⟨∀xα1 ∈ (IΓ).A1⟩⟩ν→λ
def
= ∀xα1 .⟨⟨A1⟩⟩ν→λ

⟨⟨∀δ.A1⟩⟩ν→λ
def
= ⟨⟨A1⟩⟩ν→λ

⟨⟨{A}M :u {B}ν⟩⟩ν→λ
def
= {⟨⟨A⟩⟩ν→λ}M :u {⟨⟨B⟩⟩ν→λ}λ

As described in the chapter introduction, the νGS-calculus is an extension of the STLC

hence the ν-logic should conserve λ-logic ensuring that the logics agree on validity on STLC

terms. This is formalised as follows.

Theorem 119 (The ν-logic is a conservative extension of the λ-logic). This is formally

de�ned as follows.

∀ {A}M :u {B}ν . ({A}M :u {B}ν)-Nm-free

→ (⊢ν {A}M :u {B}ν → ⊢λ ⟨⟨{A}M :u {B}λ⟩⟩ν→λ)

Proof. A general sketch of the why this holds is introduced here.

The logic of axioms. All ν-logic axioms either have a direct translation to the λ-logic

or cannot derive any new formulae about Nm-free variables that are not derivable in the

λ-logic.

The logic of rules. The {A}M :u {B}ν-Nm-free condition ensure that M is gensym-free

(and clearly å(M) = ∅ ensures M contains no names either) hence [Gensym]ν can never

be used hence this rule is ignored. The other rules translate directly to the λ-logic rules

with [Lam]ν using axiom (utc1)ν and (u5)ν to be a direct translation. The [Conseq]ν rule

uses the statement above that no new formulae about Nm-free variables can be derived in

the ν-logic.

A more detailed proof is left for future work.

163

6.6 Summary

The soundness of the ν-logic is proven in this chapter. This consists of a proof that

syntactic extension independence and thinness imply their respective semantic de�nition.

Each axiom and rule is then proven sound using the numerous lemmas in Sec. 5.4 and the

semantic properties of formulae, thus proving the ν-logic sound.

A proof is provided that the ν-logic extends the λ-logic. A sketch is given of the proof

that the extension mentioned is a conservative extension.

164

Chapter 7

Reasoning Examples

The purpose of introducing a program logic is to allow programs to be reasoned about,

hence in this chapter a variety of programs in the ν-calculus are reasoned about to show the

application of the program logic. Simple example programs from the STLC are introduced

in examples Ex. 21-23. Example programs from Sec. 3.1.2 are introduced in Ex. 24-34.

Finally Ex. 36 reasons about the �hard� example and the hard example in the critical

context discussed in Ex. 19 [2, 52, 68]. A table of the examples reasoned about and where

(if) they are reduced in Sec. 3.1.2 alongside the program itself is included for convenience.

Reasoning Reduction Program

Ex. 21 (λxBool.x)true

Ex. 22 λxBool.if x then false else true

Ex. 23 (λfBool→Bool.ftrue)(λxBool.false)

Ex. 24 Ex. 5 gensym()

Ex. 25 Ex. 7 gensym() = gensym()

Ex. 26 λy.gensym()

Ex. 27 Ex. 15 let x = gensym() in λy.x

Ex. 28 λxNm.x = x

Ex. 29 Ex. 13 let x = gensym() in λy.x = y

Ex. 30 λx.x = gensym()

Ex. 31 Ex. 14 let x = gensym() in ⟨x, λy.x = y⟩

Ex. 32 let x, y = gensym() in λfNm→Nm.((fx = y) ∧ (x = fy))

Ex. 33 Ex. 16 Chainp

Ex. 34 Ex. 17 InaccessChainp

Ex. 35 Ex. 20 let x = gensym() in λfNm→Bool.let y = gensym() in fx = fy

Ex. 36 Ex. 19 let x = gensym() in let y = gensym() in λfNm→Bool.fx = fy

165

Example 21. The simple application of the identity function to the Boolean constant

true clearly returns true. The program (λxBool.x)true is reasoned about as follows and

guarantees the expected result.

1 IΓ+δ+x ⊩ {T} x :a {x = a} [Var]ν

2 IΓ ⊩ {T} λxBool.x :c {∀δ.∀x ∈ (δ).c • x = a{a = x}} [Lam]ν , 1

3 IΓ ⊩ {T} λxBool.x :c {c • true = a{a = true}} [Conseq]ν , (utc1), (u1), 2

4 IΓ+c ⊩ {c • true = a{a = true}} true :d {c • d = a{a = true}} [Const]ν

5 IΓ ⊩ {T} (λxBool.x)true :a {a = true} [App]ν , 3, 4

This proof is very similar to Ex. 1 in the λ-logic. The same rules are applied along with

similar axioms (except (utc1)).

Example 22. The STLC program which takes a Boolean and returns the negation of it

as follows M22

def
= λxBool.if x then false else true as follows.

1 IΓ+x ⊩ {x = true} x :d {x = true = d} [Var]ν

2 IΓ+x ⊩ {(x = true = d)[true/d]} false :b {b = false} [Const]ν

3 IΓ+x ⊩ {(x = true = d)[false/d]} true :b {F} [Const]ν

4 IΓ+x ⊩ {x = true} if x then false else true :b {b = false} [If]ν , 1, 2, 3

5 IΓ+x ⊩ {T} if x then false else true :b {x = true→ b = false} [∧ →]ν , 4

6 IΓ+x ⊩ {x = false} x :d {x = false = d} [Var]ν

7 IΓ+x ⊩ {(x = false = d)[false/d]} false :b {F} [Const]ν

8 IΓ+x ⊩ {(x = false = d)[true/d]} true :b {b = true} [Const]ν

9 IΓ+x ⊩ {x = false} if x then false else true :b {b = true} [If]ν , 6, 7, 8

10 IΓ+x ⊩ {T} if x then false else true :b {x = false→ b = true} [∧ →]ν , 9

11 IΓ+x ⊩ {T} if x then false else true :b {x = ¬x} [∧-Post]ν , 5, 10

12 IΓ ⊩ {T}M22 :a {∀δ.∀xBool ∈ (δ).a • x = ¬x} [Lam]ν , 11

13 IΓ ⊩ {T}M22 :a {∀xBool ∈ (∅).a • x = ¬x} [Conseq]ν , (utc1), (u1), 12

The last line is not necessary but is equivalent to the line 12 via (utc2) and (u5) which

allows quanti�cation over Bool types to add/remove the LTCs freely from the quanti�er.

166

This proof is very similar to Ex. 2 in the λ-logic. The same rules are applied along

with similar axioms (except (utc1)).

Example 23. The STLC program (λfBool→Bool.ftrue)(λxBool.false) which should clearly

return false is reasoned about as follows.

1 Let A23(f) ≡ f • true = false

2 Let B23(c) ≡ ∀δ.∀f ∈ (δ).A23(f)→ c • f = false

3 IΓ+δ+f ⊩ {A23(f)} f :g {A23(g)} [Var]ν

4 IΓ+δ+f+g ⊩ {A23(g)} true :h {g • h = false} [Const]ν

5 IΓ+δ+f ⊩ {A23(f)} ftrue :a {a = false} [App]ν , 3, 4

6 IΓ ⊩ {T} λf.ftrue :c {B23(c)} [Lam]ν , 5

7 IΓ+c+δ′+x ⊩ {T} false :a {a = false} [Const]ν

8 IΓ+c ⊩ {T} λxBool.false :d {∀δ.∀x ∈ (δ′).d • x = false} [Lam]ν , 7

9 IΓ+c ⊩ {T} λxBool.false :d {A23(d)} [Conseq]ν , (utc1), (u1), 8

10 IΓ+c ⊩ {B23(c)} λx.false :d {B23(c) ∧ A23(f)} [Invar]ν , 9

11 IΓ+c ⊩ {B23(c)} λx.false :d {c • d = false} [Conseq]ν , M.P., 10

12 IΓ ⊩ {T} (λfBool→Bool.ftrue)(λxBool.false) :a {a = false} [App]ν , 6, 11

This proof is very similar to Ex. 3, and has a similar result.

Example 24. The important program gensym() is reasoned about in an LTC IΓ, as follows.

In line 2, (utc1) instantiates the post-condition to b • () = a{a#IΓ+b} and in line 3

(f2) removes the b from the LTC to ensure the post-condition satis�es the ThinSyn(b)

requirement in [App]ν . This proof holds under any LTC IΓ and will be used throughout

future examples under many di�erent LTCs.

1 IΓ ⊩ {T} gensym :b {∀δ.b • () = a{a#δ}} [Gensym]ν

2 IΓ ⊩ {T} gensym :b {b • () = a{a#IΓ+b}} [Conseq]ν , (utc1), 1

3 IΓ ⊩ {T} gensym :b {b • () = a{a#IΓ}} [Conseq]ν , (f2), 2

4 IΓ+b ⊩ {b • () = a{a#IΓ}} () :c {b • c = a{a#IΓ}} [Const]ν

5 IΓ ⊩ {T} gensym() :a {a#IΓ} [App]ν , 3, 4

167

Example 25. The following program compares gensym() with another gensym(), clearly

this returns false. This is reasoned about by applying Ex. 24 twice with di�erent LTCs

such that the second LTC contains the anchor of the �rst, as follows. In line 3, the axiom

(f1) allows the a ̸= b inequality to be derived from line 2 given a ∈ IΓ+a.

1 IΓ ⊩ {T} gensym() :a {a#IΓ} See Ex. 24

2 IΓ+a ⊩ {T} gensym() :b {b#IΓ+a} See Ex. 24

3 IΓ+a ⊩ {a#IΓ} gensym() :b {a ̸= b} [Conseq]ν , (f1), 2

4 IΓ ⊩ {T} gensym() = gensym() :u {u = false} [Eq]ν , 3

Example 26. Placing name generation inside an abstraction halts the production of fresh

names until the function is applied.

1 IΓ+δ+y ⊩ {T} gensym() :m {m#IΓ+δ+y} See Ex. 24

2 IΓ ⊩ {T} λy.gensym() :u {∀δ.∀y ∈ (δ).u • y = m{m#IΓ+δ+y}} [Lam]ν , 1

If y is of type Unit then this speci�cation is identical to that of gensym, given (utc1) and

(u1) and (f2) imply (∀δ.∀y ∈ (δ).u • y = m{m#IΓ+δ+y}) → (u • () = m{m#IΓ}), the

post-condition of [Gensym]ν . If y : α ̸= Unit then applying this function to a value of

type α ensures ∀δ.∀y ∈ (δ). are instantiated at the point of application, making m fresh

from any name derivable from the LTC at the point of application.

Example 27. Generating a name outside an abstraction and returning that same name

in the function is often compared to Ex. 26 [2, 62]. The di�erence is that Ex. 26 returns

a fresh name each time it is applied, whereas once let x = gensym() in λy.x has been

evaluated it will always return the same name when applied.

1 LetA27(p)
def
= ∀δ.∀y ∈ (δ).u • y = m{m#IΓ ∧ p = m}

2 {x#IΓ} x :m {m#IΓ ∧ x = m} [Var]ν

3 {x#IΓ} λy.x :u {A27(x)} [Lam]ν , 2

4 {x#IΓ} λy.x :u {∃x′ ∈ (u).A27(x
′)} [Conseq]ν , 3

5 IΓ ⊩ {T} let x = gensym() in λy.x :u {∃x′ ∈ (u).A27(x
′)} [LetFresh]ν , 4

Proof of line 4 above is shown below. Essentially this proves x is derivable from u and

henceA27(x) can be written as ∃x′ ∈ (u).A27(x
′), such that now ∃x′ ∈ (u).A27(x

′)-ThinSyn(x)

168

holds which ensures [LetFresh]ν can be used.

6 A27(x)

7 A27(x) ∧A27(x) F.O.L.

8 A27(x) ∧ ∀y ∈ (∅).u • y = m{x = m} (utc1), (u4)

9 A27(x) ∧ ∀y ∈ (∅).∃x′ ∈ (u+y).x = x′ (ex3)

10 A27(x) ∧ ∃x′ ∈ (u).x = x′ (ex4)

11 ∃x′ ∈ (u).(A27(x) ∧ x = x′) (ex2)

12 ∃x′ ∈ (u).A27(x
′) (eq4)

Example 28. The function that takes in a name and compares it to itself is as follows.

M28

def
= λxNm.x = x

This clearly returns true and can be reasoned about as such as follows.

1 {T} x :b {x = b} [Var]ν

2 {x = b} x :c {b = c} [Var]ν

3 {T} x = x :c {d = true} [Eq]ν , 1, 2

4 IΓ ⊩ {T}M28 :a {∀δ.∀xNm ∈ (δ).a • x = true} [Lam]ν , 3

Example 29. Ex. 10 introduces the following program in order to demonstrate the subtlety

of hidden names. The subtlety arises from the name being generated outside the λ-binder,

but then being equated (= destructor) inside the λ-binder, hence the name can never be

retrieved from the function, meaning it is hidden. Hence, any application of this function

will always be to other names, meaning this function always returns false.

M29

def
= let x = gensym() in λy.x = y

The ν-logic is used to reason about M29 as follows.

169

1 {T} x = y :m {m = (x = y)} [Eq]ν

2 {T} λy.x = y :u {∀δ.∀y ∈ (δ).u • y = (x = y)} [Lam]ν , 1

3 IΓ+x ⊩ {x#IΓ} λy.x = y :u {x#IΓ ∧ ∀δ.∀y ∈ (δ).u • y = (x = y)} [Invar]ν , 2

4 IΓ+x ⊩ {x#IΓ} λy.x = y :u {∀y ∈ (IΓ+u).u • y = false} [Conseq]ν , 3

5 IΓ ⊩ {T}M29 :u {∀y ∈ (IΓ+u).u • y = false} [LetFresh]ν , 4

6 IΓ ⊩ {T}M29 :u {∀δ.∀yNm ∈ (δ).u • y = false} [Conseq]ν , (utc4), 5

To prove line 4 above the axioms are applied as follows.

7 IΓ+x+u ⊩ x#IΓ ∧ ∀δ.∀y ∈ (δ).u • y = (x = y)

8 x#IΓ ∧ ∀y ∈ (IΓ+x+u).u • y = (x = y) (utc1)

9 x#IΓ+u ∧ ∀y ∈ (IΓ+x+u). u • y = (x = y) (f3)

10 x#IΓ+u ∧ ∀y ∈ (IΓ+u). u • y = (x = y) (u4)

11 ∀y ∈ (IΓ+u). x#IΓ+u+y ∧ u • y = (x = y) (f4)

12 ∀y ∈ (IΓ+u). x ̸= y ∧ u • y = (x = y) (f1)

13 ∀y ∈ (IΓ+u).u • y = false (e3)

In lines 9 and 10, the freshness of x and the quanti�er of y range over the same LTC,

meaning y cannot quantify over x. Then using (f4) this implies x is fresh from IΓ+x+y

and hence (f4) implies x ̸= y in lines 11 and 12, which then obtains the result required.

Example 30. The function which takes a name and compares it to a fresh name clearly

also returns false.

M30

def
= λxNm.x = gensym()

The reasoning about M30 is as follows.

170

1 IΓ+δ+x ⊩ {T} x :b {x = b} [Var]ν

2 IΓ+δ+x+b ⊩ {x = b} gensym() :c {c#IΓ+δ+x+b} See Example 24

3 IΓ+δ+x+b ⊩ {x = b} gensym() :c {b ̸= c} [Conseq]ν , (f1), 2

4 IΓ+δ+x ⊩ {T} x = gensym() :c {c = false} [Eq]ν , 1, 3

5 IΓ ⊩ {T}M30 :a {∀δ.∀xNm ∈ (δ).a • x = false} [Lam]ν , 4

The �nal triple in line 5 contains the same pre/post-conditions as Ex. 29.

Example 31. To demonstrate the release of a hidden variable similar to Ex. 29 above but

with the output being a pair with the function and the name as seen in Ex. 14:

M31

def
= let x = gensym() in ⟨x, λy.x = y⟩

The reasoning regarding M31 is as follows.

1 Let A31(p, q)
def
= p#IΓ ∧ ∀δ.∀y ∈ (δ).q • y = (p = y)

2 {x#IΓ} x :b {x = b ∧ x#IΓ} [Var]ν

3 {T} λy.x = y :c {∀δ.∀y ∈ (δ).c • y = (x = y)} See Example 29, Lines.1-2

4 {x = b ∧ x#IΓ} λy.x = y :c {x = b ∧A31(x, c)} [Invar]ν , 3

5 {x = b ∧ x#IΓ} λy.x = y :c {(A31(π1(a), π2(a))) [⟨b, c⟩/a]} [Conseq]ν , See Below

6 {x#IΓ} ⟨x, λy.x = y⟩ :a {A31(π1(a), π2(a))} [Pair]ν , 2, 5

7 IΓ ⊩ {T}M31 :a {A31(π1(a), π2(a))} [LetFresh]ν , 6

The post-condition of line 6 is ThinSyn(x) ensuring the conditions of [LetFresh]ν in

line 7 are satis�ed. The detailed proof of line 5 above is provided below.

8 x = b ∧A31(x, c)

9 A31(b, c) (eq4)

10 A31(π1(⟨b, c⟩), π2(⟨b, c⟩)) (p1), b = π1(⟨b, c⟩), c = π2(⟨b, c⟩)

11 (A31(π1(a), π2(a))) [⟨b, c⟩/a] Def. 51

Example 32. An example from [68]:

M32

def
= let x, y = gensym() in λfNm→Nm.(fx = y) ∧ (x = fy)

171

Where (fx = y) ∧ (x = fy)
def
= if fx = y then fx = y else false. This should be equivalent

to λf.false as one might expect because the function f cannot distinguish x and y and

so (fx = y) and (x = fy) must always return false. The program is reasoned about as

follows.

1 Let: G32 ≡ if fx = y then fx = y else false

2 Let: Fx,y,IΓ0 ≡ x#IΓ0 ∧ y#IΓ0+x

3 Let: Bf ≡ Fx,y,δ → f • x = m{f • y = n{n ̸= x ∨m ̸= y}}

4 {Fx,y,IΓ ∧Bf} fx :m {f • y = n{n ̸= x ∨m ̸= y}} [App]ν , [Var]ν

5 {f • y = n{n ̸= x ∨m ̸= y}} y :e {f • y = n{n ̸= x ∨m ̸= e}} [Var]ν

6 {Fx,y,IΓ ∧Bf} fx = y :p {f • y = n{n ̸= x ∨ p = false}} [Eq]ν , 4, 5

7 {f • y = n{n ̸= x}} fy :n {n ̸= x} [App]ν , [Var]ν

8 {n ̸= x} x :k {n ̸= k} [Var]ν

9 {(f • y = n{n ̸= x ∨ p = false})[true/p]} fy = x :b {b = false} [Eq]ν , 7, 8

10 {(f • y = n{n ̸= x ∨ p = false})[false/p]} false :b {b = false} [Const]ν

11 {Fx,y,IΓ ∧Bf} G32 :b {b = false} [If]ν , 6, 9, 10

12 {Fx,y,IΓ} λf.G32 :a {∀δ.∀f ∈ (δ).Bf → a • f = false} [Lam]ν , 11

13 {Fx,y,IΓ} λf.G32 :a {∀f ∈ (IΓ).a • f = false} [Conseq]ν , (u6), 12

14 {x#IΓ} let y = gensym() in λf.G32 :a {∀f ∈ (IΓ).a • f = false} [Let]ν , 13

15 {T}M32 :a {∀f ∈ (IΓ).a • f = false} [Let]ν , 14

16 {T}M32 :a {∀f ∈ (IΓ+a).a • f = false} [Conseq]ν , (u10), 15

17 {T}M32 :a {∀δ.∀f ∈ (δ).a • f = false} [Conseq]ν , (utc5), 16

The �rst part of the conditional is reasoned about in lines 4-6 where the true case is

reasoned about in lines 7-9 and the false in line 10. The following lines 11-17 reason about

the context the conditional occurs in. line 13 is proven by axiom (u6) by construction of

the axiom applied twice with the second application using symmetry of x and y as follows.

172

18 IΓ+x+y+a ⊩ ∀δ.∀f ∈ (δ).Bf → a • f = false

19 → ∀f ∈ (IΓ).Bf → a • f = false (utc1), (u4)

20 → ∀f ∈ (IΓ).Bf → a • f = false

∧ x#IΓ ∧ y#IΓ+x→ ∀f ∈ (IΓ).f • x = m{m ̸= y} (u6)

∧ x#IΓ ∧ y#IΓ+x→ ∀f ∈ (IΓ).f • y = n{n ̸= x} (u6)

Hold in IΓ+x+y+a

as ExtIndSyn

21 → ∀f ∈ (IΓ).Bf → a • f = false

∧ x#IΓ ∧ y#IΓ+x → ∀f ∈ (IΓ). f • x = m{f • y = n{m ̸= y ∧ n ̸= x}}

(u3), (e3), F.O.L.

22 → ∀f ∈ (IΓ).(Bf → a • f = false) ∧ Bf (ex2), F.O.L., (u3)

Example 33. The �Chain� example introduced in Ex. 16 [68] is a program that creates p

number of fresh names and outputs a function which takes in name number x and outputs

name number x+1 with the pth name looping back to the �rst name. The program Chainp

is de�ned as follows.

Chainp
def
= let x0, ..., xp = gensym() in λxNm. if x = x0 then x1 else

if x = x1 then x2 else

...

if x = xp then x0 else x0

The �nal conditional if x = xp then x0 else x0 is clearly equivalent to x0, hence the

simplest informative example Chain1 is equivalent to Chain′1
def
= let x0, x1 = gensym() in λx.if x =

x0 then x1 else x0 and is reasoned about below.

173

1 Let: N33

def
= λx.if x = x0 then x1 else x0

2 Let: F#
p

def
= x0#IΓ ∧ x1#IΓ+x0 ∧ ... ∧ xp#IΓ+x0+...+xp−1

3 Let: A33(a)
def
= ∃x′0 ∈ (a).∃x′1 ∈ (a+x′0).∀δ.∀x ∈ (δ). x ̸= x′0 → a • x = x′0

∧x = x′0 → a • x = x′1

4 {F#
1 ∧ x = x0} x = x0 :b {b = true} [Eq]ν

5 {(b = true)[true/b]} x1 :c {c = x1} [Var]ν

6 {(b = true)[false/b]} x0 :c {c = x1} [Var]ν

7 {F#
1 ∧ x = x0} if x = x0 then x1 else x0 :c {c = x1} [If]ν , 4, 5, 6

8 {F#
1 } N33 :a {∀δ.∀x ∈ (δ).x = x0 → a • x = x1} [Lam]ν , 7

9 {F#
1 ∧ x ̸= x0} x = x0 :b {b = false} [Eq]ν

10 {(b = false)[true/b]} x1 :c {c = x0} [Var]ν

11 {(b = false)[false/b]} x0 :c {c = x0} [Var]ν

12 {F#
1 ∧ x ̸= x0} if x = x0 then x1 else x0 :c {c = x0} [If]ν , 9, 10, 11

13 {F#
1 } N33 :a {∀δ.∀x ∈ (δ).x ̸= x0 → a • x = x0} [Lam]ν , 12

14 {F#
1 } N33 :a { ∀δ.∀x ∈ (δ).x ̸= x0 → a • x = x0

∧∀δ.∀x ∈ (δ).x = x0 → a • x = x1

} [∧-Post]ν , 8, 13

15 {F#
1 } N33 :a {A33(a)} [Conseq]ν , See Below

16 {F#
0 } let x1 = gensym() in N33 :a {A33(a)} [LetFresh]ν , 15

17 {T} Chain′1 :a {A33(a)} [LetFresh]ν , 16

The case where x = x0 is reasoned about in lines 4-8 such that the function outputs x1,

whilst the case where x ̸= x0 is reasoned about in lines 9-13 such that the output is x0.

These are combined in line 14 which are then manipulated into the correct form in lines

14-17. Proof of line 15 is seen below. The proof manipulates the initial post-condition in

line 14 into A33(a), such that A33(a)-ThinSyn(x1) and A33(a)-ThinSyn(x0) to satisfy the

[LetFresh]ν rules on lines 16 and 17 respectively.

174

18 ∀δ.∀x ∈ (δ).x ̸= x0 → a • x = x0

∧∀δ.∀x ∈ (δ).x = x0 → a • x = x1

19 ∀δ.∀x ∈ (δ). x ̸= x0 → a • x = x0 ∧ x = x0 → a • x = x1 (utc3), (u3)

20 ∀δ.∀x ∈ (δ). x ̸= x0 → a • x = x0 ∧ x = x0 → a • x = x1

∧ ∀δ.∀x ∈ (δ). x ̸= x0 → a • x = x0 ∧ x = x0 → a • x = x1

∧ ∀δ.∀x ∈ (δ). x ̸= x0 → a • x = x0 ∧ x = x0 → a • x = x1

F.O.L.

21 ∀δ.∀x ∈ (δ). x ̸= x0 → a • x = x0 ∧ x = x0 → a • x = x1

∧ ∀x ∈ (∅). x ̸= x0 → a • x = x0 ∧ x = x0 → a • x = x1

∧ a • x0 = x1

(utc1), (u4)

22 ∀δ.∀x ∈ (δ). x ̸= x0 → a • x = x0 ∧ x = x0 → a • x = x1

∧ ∀x ∈ (∅). a • x = x0

∧ a • x0 = x1

(u8), M.P.

23 ∀δ.∀x ∈ (δ). x ̸= x0 → a • x = x0 ∧ x = x0 → a • x = x1

∧ (∀x ∈ (∅). ∃x′0 ∈ (a+x).a • x = x′0) ∧ ∃x′1 ∈ (a+x0).x
′
1 = x1

(ex3)

24 ∀δ.∀x ∈ (δ). x ̸= x0 → a • x = x0 ∧ x = x0 → a • x = x1

∧ ∃x′0 ∈ (a).x0 = x′0 ∧ ∃x′1 ∈ (a+x0).x
′
1 = x1

(ex4)

25 ∃x′0 ∈ (a).∃x′1 ∈ (a+x′0). ∀δ.∀x ∈ (δ). x ̸= x0 → a • x = x0

∧x = x0 → a • x = x1

∧ x0 = x′0 ∧ x1 = x′1

(ex2)

26 ∃x′0 ∈ (a).∃x′1 ∈ (a+x′0). ∀δ.∀x ∈ (δ). x ̸= x′0 → a • x = x′0

∧x = x′0 → a • x = x′1

(eq4)

In essence this proves that x0 and x1 can be derived from a and a+x0 respectively and

hence the axiom (eq4) can be used to state ∃x′0 ∈ (a).∃x′1 ∈ (a).... to ensure that the

formula is now ThinSyn(x0, x1). Although line 26 su�ces in the proof above, ideally

line 26 would read ∃x′0 ∈ (a).∃x′1 ∈ (a).... however further development of the axioms is

required for this and is not introduced here.

A similar but more complex derivation for the program Chainp for p > 1 is not discussed

here. The �lasso� example from Ex. 18 is also expected to hold similarly without any

complications.

175

Example 34. The inaccessible chain is introduced in Ex. 17. The program InaccessChainp

is de�ned for a general p such that it produces a chain of names similar to Chainp without

access to any name in the chain, hence the output is equivalent to simply outputting a

fresh name.

For simplicity, the program with p = 1 is reasoned about below but a similar reasoning

strategy is expected to hold for p ≥ 2.

InaccessChain1
def
= let x0, x1 = gensym() in λxNm.if x = x0 then x0 else x1

Given let x1, x0 = gensym() in M ∼=å(M)
ξ let x0, x1 = gensym() in M due to Nominal

determinacy, this ensures InaccessChain1 is identical to the example reasoned about below.

1 Let: N34 ≡ if x = x0 then x0 else x1

2 Let: F# ≡ x1#IΓ ∧ x0#IΓ+x1

3 Let: A34 ≡ ∃x′1 ∈ (a).∀x ∈ (IΓ+a+x′1).a • x = m{x1#IΓ ∧m = x′1}

4 Let: B34 ≡ ∃x′1 ∈ (a).∀δ.∀x ∈ (δ).a • x = m{x′1#IΓ ∧m = x′1}

5 {T} x = x0 :b {b = (x = x0)} [Eq]ν

6 {x = x0} x0 :c {c = x0} [Var]ν

7 {T} x0 :c {x = x0 → c = x0} [∧ →]ν , 6

8 {x ̸= x0} x1 :c {x ̸= x0 → c = x1} [Var]ν

9 {T} x1 :c {x ̸= x0 → c = x1} [∧ →]ν , 8

10 {T} if x = x0 then x0 else x1 :c

 x = x0 → c = x0

∧x ̸= x0 → c = x1

 [If]ν , 5, 7, 9

11 {T} λxNm.N34 :a

∀δ.∀x ∈ (δ).a • x = c

x = x0 → c = x0

∧x ̸= x0 → c = x1


 [Lam]ν , 10

12 {F#} λxNm.N34 :a

F# ∧ ∀δ.∀x ∈ (δ).a • x = c

x = x0 → c = x0

∧x ̸= x0 → c = x1


 [Invar]ν , 11

13 {F#} λxNm.N34 :a {A34} [Conseq]ν , See Below

14 {x1#IΓ} let x0 = gensym() in λxNm.N34 :a {A34} [LetFresh]ν , 13

15 {T} let x1, x0 = gensym() in λxNm.N34 :a {A34} [LetFresh]ν , 14

16 {T} let x1, x0 = gensym() in λxNm.N34 :a {B34} [Conseq]ν , (utc4)

176

The conditional is reasoned about in line 10, producing two outputs dependant on whether

the name at x0 is the input. line 13 above is proven below. The two cases x = x0 and

x ̸= x0 are forced into the latter case when the quanti�cation for x is restricted to just

the LTC IΓ+x1 in line 19, which is then taken advantage of to show that all names

derived from IΓ+x1 are fresh from x0 and hence the output of ax is always x1. The second

half of this proof, lines 21-26, takes advantage of the fact that x1 can be derived from

a to manipulate the formula to a ThinSyn(x0, x1) form. This manipulation is required

to ensure the thinness requirement of the [LetFresh]ν rules used in lines 10 and 11 are

satis�ed.

17 F# ∧ ∀δ.∀x ∈ (δ).a • x = c

x = x0 → c = x0

∧x ̸= x0 → c = x1


18 F# ∧ ∀δ.∀x ∈ (δ).x ̸= x0 → a • x = x1 F.O.L.

19 x1#IΓ ∧ x0#IΓ+x1 ∧ ∀x ∈ (IΓ+x1).x ̸= x0 → a • x = x1 (utc1), (u4)

20 x1#IΓ ∧ ∀x ∈ (IΓ+x1).x0#IΓ+x1+x ∧ x ̸= x0 → a • x = x1 (f4)

21 x1#IΓ ∧ ∀x ∈ (IΓ+x1).a • x = x1 (f1), M.P.

22 x1#IΓ ∧ ∀x ∈ (IΓ+x1).a • x = x1

∧∀x ∈ (∅).∃x′1 ∈ (a+x).x1 = x′1

F.O.L., (utc1), (u4), (ex3)

23 x1#IΓ ∧ ∀x ∈ (IΓ+x1+a).a • x = x1

∧∀x ∈ (∅).∃x′1 ∈ (a+x).x1 = x′1

(u9)

24 x1#IΓ ∧ ∀x ∈ (IΓ+x1+a).a • x = x1 ∧ ∃x′1 ∈ (a).x1 = x′1 (ex4)

25 ∃x′1 ∈ (a).x′1#IΓ ∧ ∀x ∈ (IΓ+a+x′1).a • x = x′1 (u4), (ex2), (eq4)

26 ∃x′1 ∈ (a).∀x ∈ (IΓ+a+x′1).a • x = m{x′1#IΓ ∧m = x′1} (u2), (u3), (e3)

177

Example 35. The alternative �Hard' 'example introduced in Ex. 20 is the program M ′H

as follows.

M ′H
def
= let x = gensym() in λfNm→ Bool.let y = gensym() in fx = fy

1 Let: G35

def
= λfNm→ Bool.let y = gensym() in fx = fy

2 Let: Fx ≡ x#IΓ and Fx,y ≡ Fx ∧ y#IΓ+x+f

3 Let: Bf (D) ≡ ∀δx.∀x ∈ (δx).x#IΓ→ f • x = c{∀δy.∀y ∈ (δy).y#IΓ+x→ D}

4 Let: A35(a)
def
= ∀δ.∀f ∈ (δ). Bf (f • y = d{c = d})→ a • f = true

∧ Bf (f • y = d{c ̸= d})→ a • f = false

5 {f • x = c{f • y = d{c = d}}} fx :c {f • y = d{c = d}} [App]ν , [Var]ν

6 {f • y = d{c = d}} fy :d {c = d} [App]ν , [Var]ν

7 {f • x = c{f • y = d{c = d}}} fx = fy :b {b = true} [Eq]ν , 5, 6

8 {Fx,y ∧Bf (f • y = d{c = d})} fx = fy :b {b = true} [Conseq]ν , (utc1), (u1), M.P.

9 {Fx ∧Bf1(f • y = d{c = d})} let y = gensym() in fx = fy :b {b = true} [Let]ν , 8

10 {Fx} G35 :a {∀δ.∀f ∈ (δ).Bf (f • y = d{c = d})→ a • f = true} [Lam]ν , 9

11 {Fx} G35 :a {∀δ.∀f ∈ (δ).Bf (f • y = d{c ̸= d})→ a • f = false} See 5-10 above

12 {Fx} G35 :a {A35(a)} [∧-Post]ν , 10, 11

13 IΓ ⊩ {T}M ′H :a {A35(a)} [Let]ν , 12

The �nal line 13, states that for any function f when applied to the fresh names x and y

and the results are equated, such that: if the equating always returns true then this clearly

implies a • f = true, and if the equating always returns false then this clearly implies

a • f = false. This doesn't cover the case where some equating fx and fy return true

whilst others return false, however if more information is known about the function f then

this can be used, but in this general case this is the most general informative statement

possible.

178

Example 36. The �Hard� example from the literature is the program that creates two

fresh names and applies some function to these names, such that the function should not

be able to distinguish these names as it has no access to them, as follows.

MH
def
= let x = gensym() in let y = gensym() in λfNm→ Bool.fx = fy

One may typically assume that this function is equivalent to λfNm→Bool.true, as the

function f never has access to the names at x and y and so can never distinguish such

names. Applying the function f to the two names must then output the same Boolean

constant and hence the equality must return true. Typically this is the case, however there

is a context introduced below as CH [·], in which MH �lls the hole and at some point in the

evaluation MH (or its derived value) is applied to a function and the output is actually

false. This does not mean the equality MH
∼=∅(Nm→Bool)→Bool λf

Nm→Bool.true is false, but

that in some situations the output of the function does not equate true and hence this

should be represented as such in the logic. The logical reasoning about this program can

be seen as follows.

1 Let: Fx,y ≡ x#IΓ ∧ y#IΓ+x

2 Let: Bf ≡ f • x = c{f • y = d{c = d}}

3 {Bf} fx :c {f • y = d{c = d}} [App]ν , [Var]ν

4 {f • y = d{c = d}} fy :d {c = d} [App]ν , [Var]ν

5 {Fx,y ∧ Fx,y → Bf} fx = fy :b {b = true} [Eq]ν , 3, 4

6 {Fx,y} λf.fx = fy :a {∀δ.∀f ∈ (δ).(Fx,y → Bf)→ a • f = true} [Lam]ν , 5

7 {Fx,y} λf.fx = fy :a {∀f ∈ (IΓ).(Fx,y → Bf)→ a • f = true} [Conseq]ν , (utc1), (u4)

8 {Fx,y} λf.fx = fy :a {∀f ∈ (IΓ). a • f = true} [Conseq]ν , (u7)

9 {x#IΓ} let y = gensym() in λf.fx = fy :a {∀f ∈ (IΓ).a • f = true} [Let]ν

10 IΓ ⊩ {T}MH :a {∀fNm→ Bool ∈ (IΓ).a • f = true} [Let]ν

11 IΓ ⊩ {T}MH :a {∀fNm→ Bool ∈ (IΓ+a).a • f = true} [Conseq]ν , (u10)

12 IΓ ⊩ {T}MH :a {∀δ.∀fNm→ Bool ∈ (δ).a • f = true} [Conseq]ν , (utc5)

The post-condition in line 6 is not ThinSyn(x or y) (or ThinSem(x or y)) and hence

179

cannot be used in the [Let]ν rule and hence lines 7 and 8 remove the x and y dependence.

However the post-condition in line 10 only quanti�es over the functions f derivable from

the LTC IΓ, which cannot be used to reason about the program CH [MH]. This requires

quanti�cation derived from the LTC IΓ+a or preferably any future LTC δ. Axiom (u10)

extends the restricting LTC in the f quanti�er and hence (utc5) can now be used to intro-

duce the ∀δ. from which f is now derived. This triple ensures that any future application

of a to some future derived f returns true.

The reduction evaluation of CH [MH] (de�ned below), can be seen in Ex. 19.

CH [·] def= let g = [·] in let h = λyNm.g(λzNm.y = z) in gh

In the case of CH [MH], if MH evaluates to VH , then two internal applications of VH return

false, however the most external application returns true. This is not captured in the

reasoning for CH [MH] which uses the reasoning above in lines 1-12 as follows.

13 Let: C(g) ≡ ∀δ.∀fNm→ Bool ∈ (δ).g • f = true

14 {T}MH :g {C(g)} See Line.12 above

15 {T} λv.g(λw.v = w) :h {T} [Lam]ν , Trivial

16 {C(g)} λv.g(λw.v = w) :h {g • h = true} [Invar]ν , [Conseq]ν , (utc1), (u1), 15

17 {g • h = true} gh :a {a = true} [App]ν , [Var]ν

18 {C(g)} let h = λv.g(λw.v = w) in gh :a {a = true} [Let]ν , 16, 17

19 {T} CH [MH] :a {a = true} [Let]ν , 14, 18

180

7.1 Summary

Numerous examples have been reasoned about using the ν-logic. Programs in the STLC

can be reasoned about using this logic as seen in Ex. 21-23, with the results that one would

expect. All interesting programs introduced in Sec. 3.1.2 are reasoned about e�ectively;

including the �Chain� example and the �Hard� example with the expected results. Some

programs which were not reasoned about include the more complicated versions of Chainp,

Lassop and InaccessChain(p,i), although these are expected to hold similarly to the smaller p

cases that were reasoned about. This covers most key programs in the literature and some

new programs that have caused issue over the construction of the logic. Many axioms are

introduced for speci�c examples, thus a more general set of axioms that allow for reasoning

about more complicated examples, is of course desirable.

181

Chapter 8

Conclusion

In the introduction the question was posed:

Can a simple sequential language with names be reasoned about using a Hoare-

style program logic in a simple manner that allows for compositional reasoning?

This thesis has a�rmatively answered this question. A program logic for the νGS-

calculus is introduced to reason compositionally about this simple program language with

fresh name generation and name comparison.

The program logic introduced in Chapt. 4 builds on the idea that names are generated

and used in a sequential manner such that if a name only appears hidden in a function,

then any future use of the name must be derived from the function and hence cannot reveal

the hidden name. This motivates the introduction of a new logical quanti�er which does

not quantify over all values, but instead quanti�es over all values derivable from a set of

variables. This ensures that names that have been previously generated and appear in the

�state� can be used only in the form they are created. The state is represented by LTCs,

which are introduced to de�ne the variables from which quanti�cation restricts over.

The application of gensym produces a name which is fresh from the current nameset,

however future applications of gensym need to produce a name which is fresh from that

future state's nameset. Similarly, quanti�cation restricted to only the current set of vari-

ables (or state) is insu�cient. A new quanti�cation over all future states (which extend the

current state) is introduced which denotes the future state by a TCV. The TCV allows for

the naming of the future state, which can be used within the LTC to restrict quanti�cation.

Deriving values from future states maintains the hidden names but allows access to future

derived values (which themselves cannot reveal hidden names).

The LTCs re�ect the extension element of TCVs and variables through the requirement

of order. The ordering implies that if a variable is added to an LTC then it must have

182

been derived from the LTC, and for a TCV to be added to an LTC it must represent an

extension of the LTC.

These concepts are formally introduced in the logic in Chapt. 4, which includes the

syntax for these new constructors. The logic is typed using LTCs, inspired by the typ-

ing rules of the λ-logic. The logical formulae are reasoned about via axioms and axiom

schemas that convey the intentions described above, often inspired by their traditional

F.O.L. counterparts. Some new axioms are introduced regarding the restricting LTC.

Hoare triples for the ν-calculus are restricted to static syntax, which ensures names

are not used directly in the logic, but referred to only via variables. The logic of triples is

introduced through rules which capture the operational semantics of the new name-related

operators, yet also maintain the reasoning about the STLC operators.

A model based on the ordered LTC is introduced such that semantics of logical formulae

and Hoare triples match the intended de�nitions. The soundness proof of the ν-logic with

respect to the model and semantics introduced is provided. No claim or proof of any form

of completeness for this logic is made.

Most interesting examples found in the literature [52, 62, 2, 68] are reasoned about

compositionally using the ν-logic. The properties of these programs match the derived

triples for each program.

8.1 Directions for Future Work

The work in this thesis has various directions in which it could be extended or developed.

These are discussed in the following sections.

8.1.1 Generalisations of the Axioms

The logical axioms in Sec. 4.5 cover the cases required in the reasoning examples in

Chapt. 7. However this logic for axioms may be further abstracted to a more complete set

of axioms. For instance, axioms (u9) and (u10) represent similar cases of extending the

LTC in a universal restricted quanti�cation, and axioms (u6) and (u7) also obtain similar

forms, taking fresh names x and y and a function that accepts names. A more general

form of these axioms may exist which prove these axioms but also capture more cases.

The axioms inspired by the F.O.L. axioms such as (u1), (u2), (u3), (ex1), (ex2) are most

likely in their most general form. However it is expected that many of the other axioms

may have potential to be generalised.

It is possible that the separation of ∀x ∈ (IΓ).A into ∀x. x ∈ IΓ → A may facilitate

183

the search for a more general set of axioms for the ν-logic, where x ∈ IΓ is a separate

logical formulae meaning �derived�. The splitting of quanti�cation and �derived� may

prove fruitful if a more general set of axioms are found for �derived� alongside the standard

F.O.L. axioms.

The ν-logic presented here holds only for static syntax. Extending this logic to all

programs (i.e. those which include names directly) would be of interest. Complications

are likely to arise through the introduction of names into the logical expressions which are

not currently considered here.

8.1.2 Related Logics

It would be interesting to investigate hybrid logic and nominal logic in the context of the

ν-logic. There are clear similarities in both logics which may give further insights into the

ν-logic and vice-versa.

Hybrid Logics

The quanti�cation over LTCs in the ν-logic, is essentially the model operator □ in modal

(or temporal) logic with the additional ability to name the future state. This idea is not

new. Hybrid logics extend modal and temporal logic with the idea of naming states and

the ability to revert back to these states [10, 9, 8]. The original ideas for temporal hybrid

logic are ascribed to Arthur N. Prior [55, 56] and more recent developments to hybrid logics

are ascribed to Peter Blackburn, et al. [10, 9, 8].

Hybrid logic builds on standard modal logic including the operator □. The extension

includes the ↓δ A logical operator, which names the current state δ (or any variable)

which may be used in A. Hybrid logic also has the ability to revert back to particular

(already de�ned) states in the form of the logical operator @δA, meaning at state δ, then

A holds. Originally, hybrid logic does not do much with these states except evaluate them

for validity.

A similarity between the ν-logic and the hybrid logic may exist. The obvious starting

point for a translation is ∀δ.A ∼ □ ↓δ A, stating for any future state □, if the state is

named δ via ↓δ, then A holds using the variable δ. Similarly the translation ∀x ∈ (IΓ).A ∼

@IΓ∀x.A states that reverting back to state IΓ via @IΓ then quantifying over all values in this

state ∀x, then A holds. This later translation requires care for the de�nition of universal

quanti�cation, as normally the universal quanti�er would quantify over all names available,

which is not the intended result as hidden names still need to remain hidden.

184

The ν-calculus has the ability to extend and remove TCVs and variables from the LTCs.

A more fundamental approach to LTCs may exist. This cannot be represented in original

versions of hybrid logics but with further research this may be a possibility.

Nominal Logic

In 2019 Andrew Pitts and Murdoch Gabbay were awarded the Alonzo Church Award for

their introduction of nominal techniques in [50, 22, 51]. Nominal techniques use nominal

sets to provide a mathematical theory and logic for most key concepts regarding names.

The nominal logic [50], bears many similarities to the ν-logic and ideas from nominal logic

are likely to progress the ν-logic further. In nominal logic the new logical quanti�er Nx.A

states that for any fresh name x the logical formula A holds. This resembles the ν-logic

formula ∀xNm ∈ (∅).A, which states that for any fresh name x, A holds. Further work

could explore the axioms of nominal logic in the setting of the ν-calculus, or alternatively

introducing aspect of the ν-logic (such as �derived� x ∈ IΓ) to nominal logic.

8.1.3 Mechanisation of Proofs

Although the soundness proof of the ν-logic can be seen in Chapt. 6, proving this in

an automated theorem prover, such as Coq or Isabelle/HOL, would provide a cast iron

guarantee of the proof.

8.1.4 Full Proof of Conservativity

A sketch of the proof of conservativity has been provided in Lem. 119, however a full proof

would clarify that the ν-logic is a conservative extension of the λ-logic. Although this is

expected to hold, this is left for future work.

8.1.5 Applications of Names

My initial reason for studying names was their use in meta-programming, although this is

not the only application of names. The ν-logic could be adapted and applied to other pro-

gramming language constructs which use names. The use of names in meta-programming

could be reasoned about using ν-logic and the combination with other logical constructors

would be an interesting avenue of research.

Applying the ν-logic to uses of names such as references to a local state may be of

interest. Comparing the result to the Local-logic introduced in Sec. 2.2.3 would also be

of interest. Other applications of names include objects (as in Java), exceptions, channels

185

(as in the π-calculus), cryptographic keys (as in the cryptographic lambda calculus) and

more. These are all potential applications of the ν-logic with unknown consequences.

186

Bibliography

[1] S. Abramsky, D. R. Ghica, A. S. Murawski, C.-H. L. Ong, and I. D. B. Stark. Nominal

Games and Full Abstraction for the Nu�Calculus. In Proc. LICS, pages 150�159, 2004.

63

[2] Nick Benton and Vasileios Koutavas. A Mechanized Bisimulation for the Nu-Calculus.

Technical Report MSR-TR-2008-129, Microsoft, 2008. 49, 53, 55, 59, 60, 62, 164, 167,

182

[3] Karl S Berg, Soraya Delgado, Rae Okawa, Steven R Beissinger, and Jack W Bradbury.

Contact calls are used for individual mate recognition in free-ranging green-rumped

parrotlets, forpus passerinus. Animal Behaviour, 81(1):241�248, 2011. 2

[4] Martin Berger, Kohei Honda, and Nobuko Yoshida. Logics for imperative higher-order

functions with aliasing and local state: Thee completeness results. 34, 39, 40

[5] Martin Berger, Kohei Honda, and Nobuko Yoshida. A Logical Analysis of Aliasing

for Higher-Order Imperative Functions. In Proc. ICFP, pages 280�293, 2005. 40, 82,

149, 152

[6] Martin Berger and Laurence Tratt. Program Logics for Homogeneous Generative Run-

Time Meta-Programming. Logical Methods in Computer Science (LMCS), 11(1:5),

2015. 28

[7] Lars Birkedal and Ale² Bizjak. Lecture notes on IRIS: Higher-order concurrent sep-

aration logic. Aarhus University, 2020. 40

[8] Patrick Blackburn. Representation, reasoning, and relational structures: a hybrid

logic manifesto. Logic Journal of the IGPL, 8(3):339�365, 2000. 183

[9] Patrick Blackburn and Jerry Seligman. Hybrid languages. Journal of Logic, Language

and Information, 4(3):251�272, 1995. 72, 183

187

[10] Patrick Blackburn and Miroslava Tzakova. Hybrid languages and temporal logic. Logic

journal of IGPL, 7(1), 1999. 183

[11] Cristiano Calcagno. Semantic and logical properties of stateful programming. PhD

thesis, University of Genoa, 2002. 22, 23

[12] Alonzo Church. A set of postulates for the foundation of logic. Annals of mathematics,

pages 346�366, 1932. 9

[13] Alonzo Church. A formulation of the simple theory of types. Journal of Symbolic

Logic, 5(2):56�68, 1940. 10, 14, 17

[14] Stephen A. Cook. Soundness and completeness of an axiom system for program

veri�cation. SIAM J. Comput., 7(1):70�90, 1978. 34

[15] Erik Crank and Matthias Felleisen. Parameter-passing and the lambda calculus. In

Proceedings of the 18th ACM SIGPLAN-SIGACT symposium on Principles of pro-

gramming languages, pages 233�244, 1991. 13

[16] Haskell B Curry. An analysis of logical substitution. American journal of mathematics,

51(3):363�384, 1929. 9

[17] Harold Pancho Eliott and Martin Berger. A Program Logic for Fresh Name Genera-

tion. In Proc. FSEN, page TBC, 2021. v

[18] Matthias Felleisen and Robert Hieb. The Revised Report on the Syntactic Theories

of Sequential Control State. TCS, 103:235�271, 1992. 64

[19] Maribel Fernandez, Murdoch J Gabbay, and Ian Mackie. Nominal rewriting systems.

In Proceedings of the 6th ACM SIGPLAN international conference on Principles and

practice of declarative programming, pages 108�119, 2004. 57

[20] Robert W. Floyd. Assigning Meaning to Programs. In Proc. Symposia in Applied

Mathematics, pages 19�32, 1967. 18

[21] Gottlob Frege. Über sinn und bedeutung (translated as �sense and reference�). Zeits-

chrift für Philosophie und philosophische Kritik, 100:25�50, 1892. 3

[22] Murdoch J Gabbay and Andrew M Pitts. A new approach to abstract syntax with

variable binding. Formal aspects of computing, 13(3):341�363, 2002. 46, 57, 184

[23] Kurt Gödel. On undecidable propositions of formal mathematics systems. Institute

for Advanced Study, 1934. 9, 34

188

[24] C. A. R. Hoare. An Axiomatic Basis of Computer Programming. CACM, 12(10),

1969. 18

[25] Kohei Honda. Elementary structures in process theory (1): Sets with renaming.

Mathematical Structures in Computer Science, 10(5):617�663, 2000. 57

[26] Kohei Honda, Martin Berger, and Nobuko Yoshida. Descriptive and Relative Com-

pleteness of Logics for Higher-Order Functions. In Proc. ICALP, pages 360�371, 2006.

34

[27] Kohei Honda and Nobuko Yoshida. Game theoretic analysis of call-by-value computa-

tion. In International Colloquium on Automata, Languages, and Programming, pages

225�236. Springer, 1997. 63

[28] Kohei Honda and Nobuko Yoshida. A compositional logic for polymorphic higher-

order functions. In Proc. PPDP'04, pages 191�202. ACM Press, 2004. 23, 28, 30, 34,

40, 41, 149, 152

[29] Samin S Ishtiaq and Peter W O'hearn. BI as an assertion language for mutable

data structures. In Proceedings of the 28th ACM SIGPLAN-SIGACT symposium on

Principles of programming languages, pages 14�26, 2001. 22

[30] Vincent M Janik. Whistle matching in wild bottlenose dolphins (tursiops truncatus).

Science, 289(5483):1355�1357, 2000. 2

[31] Alan Je�rey and Julian Rathke. Towards a theory of bisimulation for local names.

In Proceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158),

pages 56�66. IEEE, 1999. 62

[32] Stephanie L King and Vincent M Janik. Bottlenose dolphins can use learned vo-

cal labels to address each other. Proceedings of the National Academy of Sciences,

110(32):13216�13221, 2013. 2

[33] Stephen C Kleene and J Barkley Rosser. The inconsistency of certain formal logics.

Annals of Mathematics, pages 630�636, 1935. 10

[34] Vasileios Koutavas. Reasoning about imperative and higher-order programs. PhD

thesis, Northeastern University, 2008. 62

[35] Saul A Kripke. Naming and necessity. In Semantics of natural language, pages 253�

355. Springer, 1972. 3

189

[36] Ste�en Lösch and Andrew M. Pitts. Relating two semantics of locally scoped names.

In CSL, 2011. 42, 65, 66, 67

[37] John McCarthy, Michael I Levin, Paul W Abrahams, Daniel J Edwards, and

Timothy P Hart. LISP 1.5 programmer's manual. MIT press, 1965. 43

[38] Elliot Mendelson. Introduction to Mathematical Logic. Wadsworth Inc., 1987. 26, 76,

77

[39] Robin Milner. A theory of type polymorphism in programming. Journal of Computer

and System Sciences, 17(3):348�375, 1978. 15

[40] Robin Milner. Functions As Processes. In Proc. ICALP, pages 167�180, New York,

NY, USA, 1990. Springer-Verlag New York, Inc. 42

[41] James Hiram Morris Jr. Lambda-calculus models of programming languages. PhD

thesis, Massachusetts Institute of Technology, 1969. 17

[42] Aleksandar Nanevski, Amal Ahmed, Greg Morrisett, and Lars Birkedal. Abstract

predicates and mutable adts in hoare type theory. In European Symposium on Pro-

gramming, pages 189�204. Springer, 2007. 41

[43] Aleksandar Nanevski, Greg Morrisett, and Lars Birkedal. Hoare type theory, poly-

morphism and separation1. Journal of Functional Programming, 18(5-6):865�911,

2008. 41

[44] Aleksandar Nanevski and Greg Gregory Morrisett. Dependent type theory of stateful

higher-order functions. 2005. 41

[45] Roger M Needham and Sape J Mullender. Names. Distributed systems, 2:315�327,

1989. 3

[46] Martin Odersky. A syntactic theory of local names. Yale University. Department of

Computer Science, 1993. 42, 63, 64

[47] Martin Odersky. A Functional Theory of Local Names. In Proc. POPL, pages 48�59,

1994. 63, 66

[48] Peter O'Hearn, John Reynolds, and Hongseok Yang. Local reasoning about programs

that alter data structures. In International Workshop on Computer Science Logic,

pages 1�19. Springer, 2001. 22

190

[49] Peter W O'Hearn. Incorrectness logic. Proceedings of the ACM on Programming

Languages, 4(POPL):1�32, 2019. 22

[50] A. M. Pitts. Nominal logic, a �rst order theory of names and binding. Information

and Computation, 186:165�193, 2003. 46, 57, 184

[51] A. M. Pitts. Nominal Sets: Names and Symmetry in Computer Science. CUP, 2013.

57, 184

[52] Andrew M. Pitts and Ian David Bede Stark. Observable Properties of Higher Order

Functions that Dynamically Create Local Names, or What's new? In MFCS, 1993.

iv, 42, 48, 49, 53, 55, 57, 60, 61, 62, 164, 182

[53] Gordon Plotkin. Call-By-Name, Call-By-Value, and the λ-Calculus. TCS, 1(2):125�

159, 1975. 66

[54] Emil L Post. Finite combinatory processes-formulation 1. The journal of symbolic

logic, 1(3):103�105, 1936. 9

[55] Arthur Prior. Past, present and future. Revue Philosophique de la France Et de

l'Etranger, 157:476�476, 1967. 72, 183

[56] Arthur Prior. Papers on Time and Tense. Oxford University Press UK, 1968. 183

[57] Yann Régis-Gianas and François Pottier. A hoare logic for call-by-value functional

programs. In International Conference on Mathematics of Program Construction,

pages 305�335. Springer, 2008. 41

[58] John C Reynolds. Intuitionistic reasoning about shared mutable data structure. Mil-

lennial perspectives in computer science, 2(1):303�321, 2000. 22

[59] John C. Reynolds. Separation logic: a logic for shared mutable data structures. In

Proc. LICS'02, pages 55�74, 2002. 22, 40

[60] Marcin Sabok, Sam Staton, Dario Stein, and Michael Wolman. Probabilistic pro-

gramming semantics for name generation. arXiv preprint arXiv:2007.08638, 2020.

63

[61] Moses Schön�nkel. Über die bausteine der mathematischen logik. Mathematische

annalen, 92(3):305�316, 1924. 9

191

[62] Ian Stark. Names and Higher Order Functions. PhD thesis, University of Cambridge,

1994. Technical report 363, Univ. of Cambridge Computer Laboratory. 46, 49, 59, 60,

62, 167, 182

[63] Ian Stark. Names, equations, relations: Practical ways to reason about new. Funda-

menta Informaticae, 33(4):369�396, 1998. 60, 61, 62

[64] Eijiro Sumii and Benjamin C Pierce. A bisimulation for type abstraction and recursion.

ACM SIGPLAN Notices, 40(1):63�74, 2005. 62

[65] W. W. Tait. Intensional interpretations of functionals of �nite type i. The Journal of

Symbolic Logic, 32(2):198�212, 1967. 61

[66] Alan Mathison Turing. On computable numbers, with an application to the

entscheidungsproblem. Proceedings of the London mathematical society, 2(1):230�265,

1937. 9

[67] Nikos Tzevelekos. Full abstraction for nominal general references. In 22nd Annual

IEEE Symposium on Logic in Computer Science (LICS 2007), pages 399�410. IEEE,

2007. 63

[68] Nikos Tzevelekos. Program equivalence in a simple language with state. Computer

Languages, Systems and Structures, 38:181�198, 2012. 46, 49, 52, 53, 55, 59, 60, 62,

63, 164, 170, 172, 182

[69] Dominique Unruh. Quantum relational Hoare logic. Proceedings of the ACM on

Programming Languages, 3(POPL):1�31, 2019. 22

[70] Christian Urban and Christine Tasson. Nominal techniques in isabelle/hol. In Inter-

national Conference on Automated Deduction, pages 38�53. Springer, 2005. 57

[71] Mingsheng Ying. Floyd�Hoare logic for quantum programs. ACM Transactions on

Programming Languages and Systems (TOPLAS), 33(6):1�49, 2012. 22

[72] Nobuko Yoshida, Kohei Honda, and Martin Berger. Logical reasoning for higher-order

functions with local state. In Proc. Fossacs, LNCS, pages 361�377, 2007. 28, 34, 35,

36, 37, 39, 40, 73, 81, 82, 149, 152

[73] Yu Zhang. Logical relations for names. PhD thesis, Masters thesis, University of Paris,

2002. 62

192

[74] Yu Zhang and David Nowak. Logical relations for dynamic name creation. In Inter-

national Workshop on Computer Science Logic, pages 575�588. Springer, 2003. 60,

62

193

Appendix A

Deferred Proofs

A.1 Lemmas for Soundness of Syntactic Properties Implying

Semantic Properties

To prove that A-ExtIndSyn implies A-ExtIndSem, two lemmas are �rst introduced to

factor out the two most complicated cases: A−δ − ExtIndSyn → ∀δ.∀x ∈ (δ).A−δ −

ExtIndSyn and

Lemma 120 (Constructing ExtIndSynformulae from ∀δ.∀x ∈ (δ).).

∀ A. A−δ − ExtIndSyn → ∀δ.∀x ∈ (δ).A−δ − ExtIndSyn

Proof.

1 Assume A−δ -ExtIndSyn

2 ↔ ∀ IΓ, ξIΓ+x:αx , ξ′IΓ
′,x:α

x . (IΓ+x : α ⊩ A ∧ ξx ≼⋆ ξ′x) → (ξx |= A ↔ ξ′x |= A)

3 Show: ∀ IΓ, ξIΓ, ξ′IΓ
′
. IΓ ⊩ ∀δ.∀x ∈ (δ).A−δ ∧ ξ ≼⋆ ξ′

→

 ξ |= ∀δ.∀x ∈ (δ).A

↔ ξ′ |= ∀δ.∀x ∈ (δ).A


4 Hence assume: IΓ, ξIΓ, ξ′IΓ

′
s.t. IΓ ⊩ ∀δ.∀x ∈ (δ).A ∧ ξ ≼⋆ ξ′

5 → : Show that: ξ |= ∀δ.∀x ∈ (δ).A → ξ′ |= ∀δ.∀x ∈ (δ).A Line.7 below

6 ← : Show that: ξ′ |= ∀δ.∀x ∈ (δ).A → ξ |= ∀δ.∀x ∈ (δ).A Line.13 below

194

→ :

7 Let: ξ1d ≡ ξ1 · δ : IΓ1\−TCV and ξ′2d ≡ ξ′2 · δ : IΓ2\−TCV

8 ξ ≼⋆ ξ′ ∧ ξ |= ∀δ.∀x ∈ (δ).A

9 ↔ ξ ≼⋆ ξ′ ∧ ∀ ξIΓ1
1 . ξ ≼⋆ ξ1 → ∀M,V. M

[δ, ξ1d]⇝ V

→ ξ1d · x : V |= A

Sem.∀δ.∀x ∈ (δ).

10 ↔ ξ ≼⋆ ξ′ ∧ ∀ ξIΓ1
1 . ξ ≼⋆ ξ1 → ∀M,V. M

[δ, ξ1d]⇝ V

→ ξ1 · x : V |= A

Lem. 105

11 → ξ ≼⋆ ξ′ ∧ ∀ ξ
′IΓ′

2
2 . ξ′ ≼⋆ ξ′2 → ∀M,V. M

[δ, ξ′2d]⇝ V

→ ξ′2 · x : V |= A

select ξ′2 s.t. ξ′ ≼⋆ ξ′2

12 ↔ ξ′ |= ∀δ.∀x ∈ (δ).A Lem. 105, Sem.∀δ.∀x ∈ (δ).

195

← :

13 Let: ξ′2d ≡ ξ′2 · δ : IΓ2\−TCV and ξ1d ≡ ξ1 · δ : IΓ1\−TCV and ξ′1d ≡ ξ1 · δ : IΓ′1\−TCV

14 ξ ≼⋆ ξ′ ∧ ξ′ |= ∀δ.∀x ∈ (δ).A

15 ↔ ∀ ξ
′IΓ′

2
2 . ξ′ ≼⋆ ξ′2 → ∀M,V. M

[δ, ξ′2d]⇝ V → ξ′2d · x : V |= A Sem.∀δ.∀x ∈ (δ).

16 ↔ ∀ ξ
′IΓ′

2
2 . ξ′ ≼⋆ ξ′2 → ∀M. M

[δ, ξ′2d]⇝ V → ξ′2 · x : V |= A Lem. 105

17 ↔ ∀ ξIΓ1
1 . ξ ≼⋆ ξ1

→ ∀ ξ
′IΓ′

2
2 .ξ′ ≼⋆ ξ′2 → ∀M,V. M

[δ, ξ′2d]⇝ V → ξ′2 · x : V |= A

Intro ξ1

18 ↔ ∀ (ξ · ξ̃1)IΓ1 . ξ ≼⋆ ξ · ξ̃1

→ ∀ (ξ · ξ̃′ · ξ̃′2)IΓ
′
2 . ξ · ξ̃′ ≼⋆ ξ · ξ̃′ · ξ̃′2
→ ∀M,V. M

[δ, ξ′2d]⇝ V → ξ′2d · x : V |= A

write

ξ′ ≡ ξ · ξ̃′

ξ1 ≡ ξ · ξ̃1

ξ′2 ≡ ξ′ · ξ̃′2
19 ↔ ∀ ξ̃1. ξ ≼⋆ (ξ · ξ̃1)IΓ1 ∧ ξ · ξ̃′ ≼⋆ (ξ · ξ̃′ · ξ̃1)IΓ

′
1

→ ∀M,V. M
[δ, ξ′1d]⇝ V → ξ · ξ̃′ · ξ̃1 · x : V |= A

Select ξ̃′2 as ξ̃1

IΓ′2 ≡ IΓ′1 F.O.L.

20 → ∀ ξ̃1. å(ξ̃1) ∩ å(ξ̃′) ⊆ å(ξ)

∧ ξ ≼⋆ (ξ · ξ̃1)IΓ1 ∧ ξ · ξ̃′ ≼⋆ (ξ · ξ̃′ · ξ̃1)IΓ
′
1

→ ∀M,V.M
[δ, ξ′1d]⇝ V → ξ · ξ̃′ · ξ̃1 · x : V |= A

Subset of ∀ ξ̃1

21 ↔ ∀ ξ̃1. å(ξ̃1) ∩ å(ξ̃′) ⊆ å(ξ)

∧ ξ ≼⋆ (ξ · ξ̃1)IΓ1 ∧ ξ · ξ̃1 ≼⋆ (ξ · ξ̃1 · ξ̃′)IΓ
′
1

→ ∀M,V. M
[δ, ξ′1d]⇝ V → ξ · ξ̃1 · ξ̃′ · x : V |= A

Lem. 104

22 → ∀ ξ̃1. å(ξ̃1) ∩ å(ξ̃′) ⊆ å(ξ)

∧ ξ ≼⋆ (ξ · ξ̃1)IΓ1 ∧ ξ · ξ̃1 ≼⋆ (ξ · ξ̃1 · ξ̃′)IΓ
′
1

→ ∀M,V.M
[δ, ξ1d]⇝ V → ξ · ξ̃1 · ξ̃′ · x : V |= A

Subset of possible M 's

IΓ′1 ⊩ IΓ1

Lem. 102

23 → ∀ ξ1. å(ξ1) ∩ å(ξ̃′) ⊆ å(ξ)

∧ ξ ≼⋆ ξIΓ1
1 ∧ ξ1 ≼⋆ (ξ1 · ξ̃′)IΓ

′
1

→ ∀M,V.M
[δ, ξ1d]⇝ V → ξ1 · x : V |= A

Lem. 104 A -ExtIndSyn

24 → ∀ ξ1. ξ ≼⋆ ξIΓ1
1 → ∀M,V. M

[δ, ξ1d]⇝ V → ξ1 · x : V |= A Nominal Det. Def. 25

25 ↔ ∀ ξ1. ξ ≼⋆ ξIΓ1
1 → ∀M,V. M

[δ, ξ1d]⇝ V → ξ1d · x : V |= A Lem. 105, A−δ

26 ↔ ξ |= ∀δ.∀x ∈ (δ).A Sem.∀δ.∀x ∈ (IΓ+δ).

line 24 holds as any name appearing in ξ1 in line 24 which doesn't appear in ξ1 in line

23 can be introduced through a fresh name in ξ1 from line 23 and swapping the names for

196

the required fresh name.

Lemma 121 (The formula used in the reasoning for λx.gensym() is ExtIndSem).

∀δ.∀x ∈ (δ).f • x = b{b#δ+x}-ExtIndSem

Proof.

∀ ξIΓ, ξ′.ξ ≼⋆ ξ′→ ξ |= ∀δ.∀x ∈ (δ).f•x = b{b#δ+x} ↔ ξ′ |= ∀δ.∀x ∈ (δ).f•x = b{b#δ+x}

Assume some IΓ such that IΓ ⊩ ∀δ.∀x ∈ (δ).f • x = b{b#δ+x}. Assume some ξIΓd , ξ′ such

that IΓ ▷ ξ and ξ ≼⋆ ξ′ then prove the ↔ as follows.

Extending (ξ |= ∀δ.∀x ∈ (δ).f •x = b{b#δ+x} → ξ′ |= ∀δ.∀x ∈ (δ).f •x = b{b#δ+x}):

1 Assume ξ |= ∀δ.∀x ∈ (δ).f • x = b{b#δ+x}

2 ↔ ∀ ξIΓ1
1 .ξ ≼⋆ ξ1→ ξ1 · δ : IΓ1\−TCV |= ∀x ∈ (δ).f • x = b{b#δ+x} Sem.∀δ.

3 → ∀ ξIΓ1
1 .ξ ≼⋆ ξ′ ≼⋆ ξ1→ ξ1 · δ : IΓ1\−TCV |= ∀x ∈ (δ).f • x = b{b#δ+x} Subset ∀ ξ1

4 → ∀ ξIΓ1
1 .ξ′ ≼⋆ ξ1→ ξ1 · δ : IΓ1\−TCV |= ∀x ∈ (δ).f • x = b{b#δ+x} Remove ξ ≼⋆

5 → ξ′ |= ∀δ.∀x ∈ (δ).f • x = b{b#δ+x}

197

Contracting (ξ |= ∀δ.∀x ∈ (δ).f•x = b{b#δ+x} ← ξ′ |= ∀δ.∀x ∈ (δ).f•x = b{b#δ+x}):

6 Assume ξ′ |= ∀δ.∀x ∈ (δ).f • x = b{b#δ+x}

7 Let: ξ′1d ≡ ξIΓ1
1 · δ : IΓ1\−TCV (≡ ξ · ξ̃′ · ξ̃1 · δ : (IΓ+ĨΓ

′
+ĨΓ1)\−TCV) and ξ′1d

8 ↔ ∀ ξIΓ1
1 . ξ′ ≼⋆ ξ1

→ ∀Mx, Vx.Mx
[δ, ξ′1d]⇝ Vx → ξ′1d · x : Vx |= f • x = b{b#δ+x}

Sem.∀δ., ∀x ∈ (δ).

9 ↔ ∀ ξ̃ ĨΓ1
1 . ξ · ξ̃′ ≼⋆ ξ · ξ̃′ · ξ̃1

→ ∀Mx, Vx. Mx
[δ, ξ′1d]⇝ Vx

→ ξ′1d · x : Vx |= f • x = b{b#δ+x}

ξ′IΓ
′ ≡ ξIΓ · ξ̃′ĨΓ

′

ξIΓ1
1 ≡ ξIΓ·ξ̃′ĨΓ

′
·ξ̃ ĨΓ1
1

10 → ∀ ξ̃ ĨΓ1
1 . ξ · ξ̃′ ≼⋆ ξ · ξ̃′ · ξ̃1 ∧ ξ ≼⋆ ξ · ξ̃1

∧ å(ξ̃1) ∩ å(ξ̃′) ⊆ å(ξ)

→ ∀Mx, Vx. Mx
[δ, ξ′1d]⇝ Vx

→ ξ′1d · x : Vx |= f • x = b{b#δ+x}

Subset ∀ ξ̃1

only ξ̃1 s.t.

ξ ≼⋆ ξ · ξ̃1

11 → ∀ ξ̃ ĨΓ1
1 . ξ · ξ̃′ ≼⋆ ξ · ξ̃′ · ξ̃1 ∧ ξ ≼⋆ ξ · ξ̃1

∧ å(ξ̃1) ∩ å(ξ̃′) ⊆ å(ξ)

→ ∀Mx, Vx. Mx
[IΓ+ĨΓ

′
+ĨΓ1, ξ′1d\δ]⇝ Vx

→ ξ′1d · x : Vx |= f • x = b{b#δ+x}

Lem. 102

[[δ]]ξ1d ≡ IΓ+ĨΓ
′
+ĨΓ1

12 Let: ξ2 ≡ ξ · ξ̃1 · δ : (IΓ+ĨΓ1)\−TCV

13 → ∀ ξ̃ ĨΓ1
1 . ξ · ξ̃′ ≼⋆ ξ · ξ̃′ · ξ̃1 ∧ ξ ≼⋆ ξ · ξ̃1

∧ å(ξ̃1) ∩ å(ξ̃′) ⊆ å(ξ)

→ ∀Mx, Vx.Mx
[δ, ξ2]
⇝ Vx → ξ′1d · x : Vx |= f • x = b{b#δ+x}

Subset ∀Mx

ξ2\δ ⊆ ξ1d\δ

14 → ∀ ξ̃ ĨΓ1
1 . ξ · ξ̃′ ≼⋆ ξ · ξ̃′ · ξ̃1 ∧ ξ ≼⋆ ξ · ξ̃1

∧ å(ξ̃1) ∩ å(ξ̃′) ⊆ å(ξ)

→ ∀Mx, Vx.Mx
[δ, ξ2]
⇝ Vx → ξ2 · x : Vx |= f • x = b{b#δ+x}

See below, Line.18

15 → ∀ ξ̃ ĨΓ1
1 . ξ ≼⋆ ξ · ξ̃1 → ξ′1d |= ∀x ∈ (δ).f • x = b{b#δ+x} Nominal Det. Def. 25

16 → ∀ ξIΓ1
1 .ξ ≼⋆ ξ1 → ξ′1d |= f • x = b{b#δ+x} ξIΓ1

1 ≡ ξIΓ · ξ̃ ĨΓ1
1

17 → ξ |= ∀δ.f • x = b{b#δ+x} Sem.∀δ.

198

Proof of

∀ ξIΓ, ξ̃′IΓ
′
, ξ̃ ĨΓ1

1 . ξ · ξ̃′ ≼⋆ ξ · ξ̃′ · ξ̃1 ∧ ξ ≼⋆ ξ · ξ̃1

∧ å(ξ̃1) ∩ å(ξ̃′) ⊆ å(ξ)

→ ξ1d ≡ ξ · ξ̃′ · ξ̃1 · δ : (IΓ+ĨΓ
′
+ĨΓ1)\−TCV

∧ ξ2 ≡ ξ · ξ̃1 · δ : (IΓ+ĨΓ1)\−TCV

∧ ∀Mx, Vx. Mx
[IΓ+ĨΓ1, ξ·ξ̃1]
⇝ Vx

→ ξ1d · x : Vx |= f • x = b{b#δ+x}

→ ξ2 · x : Vx |= f • x = b{b#δ+x}

18 Assume some ξIΓ, ξ̃′IΓ
′
, ξ̃ ĨΓ1

1 s.t. ξ · ξ̃′ ≼⋆ ξ · ξ̃′ · ξ̃1,

ξ ≼⋆ ξ · ξ̃1 and å(ξ̃1) ∩ å(ξ̃′) ⊆ å(ξ) then:

19 Assume some Mx, Vx s.t. Mx
[IΓ+ĨΓd, ξ·ξ̃1]⇝ Vx then:

20 å(ξ̃1) ∩ å(ξ̃′) ⊆ å(ξ) → ξ · ξ̃′ ≼⋆ ξ · ξ̃′ · ξ̃1 ↔ ξ · ξ̃1 ≼⋆ ξ · ξ̃′ · ξ̃1 Lem. 104

21 → ξ · ξ̃1 · b : nb ≼⋆ ξ · ξ̃′ · ξ̃1 · b : nb Lem. 104 nb /∈ å(ξ · ξ̃′ · ξ̃1)

22 Let ξIΓ3x
3x ≡ ξ · ξ̃′ · ξ̃1 · δ : (IΓ+ĨΓ

′
+ĨΓ1)\−TCV · x : Vx and ξ3xb ≡ (ξ3x\δ) · b : nb

23 Let ξIΓ2x
2x ≡ ξIΓ · ξ̃1 · δ : (IΓ+ĨΓ1)\−TCV · x : Vx

24 Assume: ξ ≼⋆ ξ · ξ̃′ ∧ ξ · ξ̃′ ≼⋆ ξ · ξ̃′ · ξ̃1 ∧ ξ ≼⋆ ξ · ξ̃1

25 Assume: ξ3x |= f • x = b{b#δ+x}

26 ↔ ∃ nb. fx
[IΓ3x, ξ3x]
⇝ nb ∧ ¬ ∃Mb.Mb

[δ+x, ξ3x·b:nb]⇝ nb Sem.• = {}, #

27 ↔ ∃ nb. fx
[IΓ2x, ξ2x]
⇝ nb ∧ ¬ ∃Mb.Mb

[δ+x, ξ3x·b:nb]⇝ nb f, x ∈ [[IΓ2x]]ξ2x ⊆ [[IΓ3x]]ξ3x ,

Lem. 102

28 ↔ ∃ nb. fx
[IΓ2x, ξ2x]
⇝ nb ∧ ¬ ∃Mb.Mb

[IΓ3x, ξ3xb]⇝ nb [[δ+x]]ξ3x = IΓ3x, Lem. 102

29 → ∃ nb. fx
[IΓ2x, ξ2x]
⇝ nb ∧ ¬ ∃Mb.Mb

[IΓ2x, ξ3xb]⇝ nb Subset, IΓ3x ⊩ IΓ2x

30 → ∃ nb. fx
[IΓ2x, ξ2x]
⇝ nb ∧ ¬ ∃Mb.Mb

[IΓ2x, (ξ2x\δ)·b:nb]⇝ nb Lem. 96, Line.20

31 → ∃ nb. fx
[IΓ2x, ξ2x]
⇝ nb ∧ ¬ ∃Mb.Mb

[δ+x, ξ2x·b:nb]⇝ nb [[δ+x]]ξ2x = IΓ2x, Lem. 102

32 → ξ2x |= f • x = b{b#δ+x}

199

Lemma 122 (ExtIndSyn implies ExtIndSem).

A-ExtIndSyn → A-ExtIndSem

Proof. Proof by induction on the structure of A, knowing that A is constructed using the

de�nition of ExtIndSyn in Def. 54. Using Lem. 99 (i.e. IΓ0 ⊆ IΓ → [[IΓ0]]ξ ≡ [[IΓ0]]ξ′) and

Lem. 100 (i.e. [[e]]ξ ≡ [[e]]ξ′) the proof builds on the structure of Def. 54 as follows.

1. Base Formulas:

A ≡ T,F Clearly hold.

A ≡ e#IΓ0 IΓ ⊩ e#IΓ0 implies IΓ ⊩ e : Nm and IΓ ⊩ IΓ0.

Lem. 100 implies [[e]]ξ ≡ [[e]]ξ′ .

Lem. 99 implies [[IΓ0]]ξ ≡ [[IΓ0]]ξ′ .

Lem. 102 implies ∃M. M
[IΓ0, ξ]
⇝ [[e]]ξ ↔ ∃M. M

[IΓ0, ξ′]
⇝ [[e]]ξ′

2. Core Inductive Cases:

A ≡ ¬A1 Holds from I.H. on A1 as ξ |= A1 ↔ ξ′ |= A1

hence ξ ̸|= A1 ↔ ξ′ ̸|= A1, hence ξ |= ¬A1 ↔ ξ′ |= ¬A1.

A ≡ A1 ∧A2 Holds from I.H. on A1 and A2, as ξ |= Ai ↔ ξ′ |= Ai implies

ξ |= A1 ∧A2 ↔ ξ |= A1 ∧ ξ |= A2 ↔ ξ′ |= A1 ∧ ξ′ |= A2 ↔ ξ′ |= A1 ∧A2.

A ≡ A1 ∨A2 Derivable given A ∨B ≡ ¬(¬A ∧ ¬B)

A ≡ A1 → A2 Derivable given A→ B ≡ ¬(A ∧ ¬B)

A ≡ e • e′ = m{A1} Given å(Vx) ∩ å(ξ′) ⊆ å(ξ):

Lem. 102 implies ee′
[IΓ, ξ]
⇝ Vm ↔ ee′

[IΓ, ξ′]
⇝ Vm.

Lem. 104 implies ξ ≼⋆ ξ′ ∧ ee′
[IΓ, ξ]
⇝ Vm→ ξ ·m : Vm ≼⋆ ξ′ ·m : Vm

Induction on A1 implies ξ ·m : Vm |= A1 ↔ ξ′ ·m : Vm |= A1.

Hence ξ |= e • e′ = m{A1}

↔ ∃ Vm. ee′
[IΓ, ξ]
⇝ Vm ∧ ξ ·m : Vm |= A1

↔ ∃ Vm. ee′
[IΓ, ξ′]
⇝ Vm ∧ ξ′ ·m : Vm |= A1

↔ ξ′ |= e • e′ = m{A1}

.

A ≡ ∀x ∈ (IΓ0).A1 Lem. 99 implies [[IΓ0]]ξ ≡ [[IΓ0]]ξ′

Given å(Vx) ∩ å(ξ′) ⊆ å(ξ):

Lem. 102 implies M
[IΓ0, ξ]
⇝ Vx ↔ M

[IΓ0, ξ′]
⇝ Vx

Lem. 104 implies ξ ≼⋆ ξ′ ∧Mx
[IΓ0, ξ]
⇝ Vx→ ξ · x : Vx ≼⋆ ξ′ · x : Vx

Induction on A1 implies ξ · x : Vx |= A1 ↔ ξ′ · x : Vx |= A1

200

Hence

ξ |= ∀x ∈ (IΓ0).A1

↔ ∀M,V.M
[IΓ0, ξ]
⇝ V → ξ · x : V |= A1 Sem.∀x ∈ (IΓ0).

↔ ∀M,V.M
[IΓ0, ξ′]
⇝ V → ξ · x : V |= A1

[[IΓ0]]ξ ≡ [[IΓ0]]ξ′

Lem. 102

↔ ∀M,V.M
[IΓ0, ξ′]
⇝ V → ξ′ · x : V |= A1 I.H. on A1

↔ ξ′ |= ∀x ∈ (IΓ0).A1 Sem.∀x ∈ (IΓ0).

A ≡ ∃x ∈ (IΓ0).A1 Derivable from ∃x ∈ (IΓ0).A1 ≡ ¬∀x ∈ (IΓ0).¬A1

3. ∀δ.-Inductive Cases:

A ≡ ∀δ.A1 holds by I.H. on A1, Knowing that A1 is δ-free then:

ξ |= ∀δ.A1→ ξ′ |= ∀δ.A1 clearly holds through the semantics.

ξ′ |= ∀δ.A1

↔ ∀ ξIΓ1
1 .ξ′ ≼⋆ ξ1→ ξ1 · δ : IΓ1 |= A1 Sem.∀δ.

→ ∀ ξIΓ1
1 .ξ′ ≼⋆ ξ1→ ξ1 |= A1 Lem. 105 A−δ1

→ ξ′ |= A1 ∀ ξ1 → ξ′

→ ξ |= A1 I.H.

→ ∀ ξIΓ2
2 .ξ ≼⋆ ξ2 → ξ2 |= A1 I.H.

→ ∀ ξIΓ2
2 .ξ ≼⋆ ξ2 → ξ2 · δ : IΓ2 |= A1 Lem. 105 A−δ1

→ ξ |= ∀δ.A1 Sem.∀δ.

A ≡ ∀δ.∀x ∈ (δ).A1 holds by I.H. on A−δ1 , Lem. 120

Let: ξIΓ1d
1d ≡ ξ1 · δ : IΓ1 and ξIΓ1x

1x ≡ ξ1 · x : Vx and ξIΓ1dx
1dx ≡ ξ1dx · x : Vx

ξ |= ∀δ.∀x ∈ (δ).A1

↔ ∀ ξIΓ1
1 .ξ ≼⋆ ξ1→ ∀M,Vx.M

[δ, ξ1d]⇝ Vx→ ξ1dx |= A1 Sem.∀δ.∀x ∈ (δ).

→ ∀ ξIΓ1
1 .ξ ≼⋆ ξ′ ≼⋆ ξ1→ ∀M,Vx.M

[δ, ξ1d]⇝ Vx→ ξ1dx |= A1 Subset ∀ ξ1

↔ ξ′ |= ∀δ.∀x ∈ (δ).A1 Sem.∀δ.∀x ∈ (δ).

For any j or ′ version of these then let:

ξ
IΓjd

jd ≡ ξ
IΓj

j · δ : IΓj\−TCV and ξ
IΓjx

jx ≡ ξj · x : Vx and ξ
IΓjdx

jdx ≡ ξjd · x : Vx

Let: ξ
′IΓ′

d
d ≡ ξ′2 · δ : IΓ2\−TCV and ξ

′IΓ′
2d

2d ≡ ξ′2 · δ : IΓ′1\−TCV and ξ′2x ≡ ξ′2 · x : Vx

and ξ′1 ≡ ξ′2 · x : Vx

Write ξ′ ≡ ξ · ξ̃′, ξ1 ≡ ξ · ξ̃1, ξ′2 ≡ ξ′ · ξ̃′2, ξ
′IΓ′

1
1 ≡ ξ · ξ̃1 · ξ̃′

201

ξ′ |= ∀δ.∀x ∈ (δ).A1

↔ ∀ ξ
′IΓ′

2
2 .ξ′ ≼⋆ ξ′2→ ∀M,Vx.M

[δ, ξ′2d]⇝ Vx→ ξ′2dx |= A1 Sem.∀δ.∀x ∈ (δ).

↔ ∀ ξ
′IΓ′

2
2 .ξ′ ≼⋆ ξ′2→ ∀M,Vx.M

[δ, ξ′2d]⇝ Vx→ ξ′2x |= A1 Lem. 105 A−δ1

↔ ∀ ξIΓ1
1 .ξ ≼⋆ ξ1→

∀ ξ
′IΓ′

2
2 .ξ′ ≼⋆ ξ′2→ ∀M,Vx.M

[δ, ξ′2d]⇝ Vx→ ξ′2x |= A1

Introduce ξ1

→ ∀ ξ̃ ĨΓ1
1 . ξ ≼⋆ ξ1 ∧ ξ′ ≼⋆ ξ′1

→ ∀M,Vx.M
[δ, ξ′1d]⇝ Vx→ ξ′1dx |= A1

Select ξ̃′2 ≡ ξ̃1

→ ∀ ξ̃ ĨΓ1
1 . ξ ≼⋆ ξ1 ∧ ξ′ ≼⋆ ξ′1 ∧ å(ξ1) ∩ å(ξ′) ⊆ å(ξ)

→ ∀M,Vx.M
[δ, ξ′1d]⇝ Vx→ ξ′1dx |= A1

Subset of ∀ ξ′1

→ ∀ ξ̃ ĨΓ1
1 . ξ ≼⋆ ξ1 ∧ ξ1 ≼⋆ ξ′1 ∧ å(ξ1) ∩ å(ξ′) ⊆ å(ξ)

→ ∀M,Vx.M
[δ, ξ′1d]⇝ Vx→ ξ′1dx |= A1

Lem. 104

→ ∀ ξ̃ ĨΓ1
1 . ξ ≼⋆ ξ1 ∧ ξ1 ≼⋆ ξ′1 ∧ å(ξ1) ∩ å(ξ′) ⊆ å(ξ)

→ ∀M,Vx. M
[δ, ξ1d]⇝ Vx ∧ å(Vx) ∩ å(ξ′1) ⊆ å(ξ1)

→ ξ′1dx |= A1

Subset of possible

M 's & Vx's

→ ∀ ξ̃ ĨΓ1
1 . ξ ≼⋆ ξ1 ∧ ξ1 ≼⋆ ξ′1 ∧ å(ξ1) ∩ å(ξ′) ⊆ å(ξ)

→ ∀M,Vx. M
[δ, ξ1d]⇝ Vx ∧ å(Vx) ∩ å(ξ′1) ⊆ å(ξ1)

→ ξ1dx |= A1

Lem. 104,

A1 -ExtIndSem

Lem. 105, A−δ1

→ ∀ ξIΓ1
1 . ξ ≼⋆ ξ1 → ∀M,Vx. M

[δ, ξ1d]⇝ Vx→ ξ1dx |= A1 Nominal determinacy

Def. 25
→ ξ |= ∀δ.∀x ∈ (δ).A1 Sem.∀δ.∀x ∈ (δ).

4. Two speci�c cases:

∀δ.f • () = b{b#δ} This holds given Lem. 121 as simply stating x : Unit ensures this holds. The full

proof follows a similar reasoning as the proof for Lem. 121 but with the slight

simpli�cation without the ∀x ∈ (δ).-complication.

∀δ.∀x ∈ (δ).f • x = b{b#δ+x} Proven in Lem. 121.

Lemma 123 (Syntactically thin formulae implies semantically thin).

∀ IΓ, A, x. IΓ\x ⊩ A → (A-ThinSyn(x) → A-ThinSem(x))

202

Proof. This proof assumes that all models ξ and ξ\x are well-constructed models.

1. If IΓ\x ⊩ A and IΓ ⊩ x : α -(Nm,→) then A ThinSem(x):

Given [[e]]ξ ≡ [[e]]
ξ·x:V

α -(Nm,→)
x

and [[IΓ1]]ξ ≡ [[IΓ1]]ξ·x:V
α -(Nm,→)
x

the proof holds easily.

Lem. 81, Lem. 82, Lem. 83.

2. The assertions A ≡ T,F, e = e′, e ̸= e′ are all free from x (x /∈ fv(A)) then A ThinSem(x):

− T,F: clearly hold.

− e = e′: hold as follows.

1 ξ |= e = e′

2 ↔ [[e]]ξ ∼=
å(ξ)
α [[e′]]ξ Sem.=

3 ↔ [[e]]ξ\x ∼=
å(ξ)
α [[e′]]ξ\x IΓ\x ⊩ e : α→ [[e]]ξ ≡ [[e]]ξ\x

4 ↔ [[e]]ξ\x ∼=
å(ξ\x)
α [[e′]]ξ\x Lem. 32

5 ↔ ξ\x |= e = e′

− e ̸= e′: Same proof as above as proof is ↔ .

3. If A1 ThinSyn(x) and A2 ThinSyn(x) then by I.H. A1 ThinSem(x) and A2 ThinSem(x)

Then it is necessary to prove that A1 ∧ A2, A1 ∨ A2, e • e′ = m{A1}, ∀y ∈ (IΓ1).A1,

∃yα -(Nm,→) ∈ (IΓ1).A1, ∃y ∈ (IΓ1\−TCV).A1

are all ThinSem(x)

− A1 ∧A2, A1 ∨A2: The proofs are trivial by induction and hence are omitted.

− e • e′ = m{A1}: holds by I.H. on A1 as follows.

1 ξ |= e • e′ = m{A1}

2 ↔ ∃ Vm. ee′
[IΓ, ξ]
⇝ Vm ∧ ξ ·m : Vm |= A1 I.H.

3 → ∃ Vm. ee′
[IΓ, ξ\x]
⇝ Vm

∧ ξ\x ·m : Vm |= A1

[[ee′]]ξ ≡ [[ee′]]ξ\x, Sem.→

(å(Vm) ∩ å(Vx) ⊆ å(ξ\x))

4 → ξ\x |= e • e′ = m{A1}

203

− ∀y ∈ (IΓ1).A1: holds assuming A1 ThinSyn(x) as follows.

1 ξ |= ∀y ∈ (IΓ1).A1

2 ↔ ∀My, Vy.My
[IΓ1, ξ]
⇝ Vy → ξ · y : Vy |= A1 Sem.∀y ∈ (IΓ1).A1

3 → ∀My, Vy. å(My) = ∅ ∧ [[IΓ1]]ξ ⊢My : α

∧ (å(ξ),Myξ) ⇓ (å(ξ), G′, Vy)

→ ξ · y : Vy |= A1

Sem.
[,]
⇝

4 → ∀My, Vy. å(My) = ∅ ∧ [[IΓ1]]ξ\x ⊢My : α

∧ (å(ξ),Myξ) ⇓ (å(ξ), G′, Vy)

→ ξ · y : Vy |= A1

[[IΓ1]]ξ\x ⊆ [[IΓ1]]ξ

5 → ∀My, Vy. å(My) = ∅ ∧ [[IΓ1]]ξ\x ⊢My : α

∧ (å(ξ\x),Myξ\x) ⇓ (å(ξ\x), G′, Vy)

→ ξ · y : Vy |= A1

x /∈ fv([[IΓ1]]ξ\x),

Sem.→

(å(Vy)∩å(Vx) ⊆ å(ξ\x))

6 → ∀My, Vy.My
[IΓ1, ξ\x]
⇝ Vy → (ξ · y : Vy) |= A1 Sem.

[,]
⇝

7 → ∀My, Vy.My
[IΓ1, ξ\x]
⇝ Vy → (ξ · y : Vy)\x |= A1 I.H.

8 → ∀My, Vy.My
[IΓ1, ξ\x]
⇝ Vy → ξ\x · y : Vy |= A1 Def.ξ\x

9 → ξ\x |= ∀y ∈ (IΓ1).A1 Sem.∀y ∈ (IΓ1).A1

204

− ∃yα -(Nm,→) ∈ (IΓ1).A1: holds as follows.

1 ξ |= ∃yα -(Nm,→) ∈ (IΓ1).A1

2 ↔ ∃My, Vy.My
[IΓ1, ξ]
⇝ Vy ∧ ξ · y : Vy |= A1 Sem.∃y ∈ (IΓ1).A1

3 → ∃My, Vy. å(My) = ∅ ∧ [[IΓ1]]ξ ⊢My : α

∧ (å(ξ),Myξ) ⇓ (å(ξ), G′, Vy)

∧ ξ · y : Vy |= A1

Sem.
[,]
⇝

4 → ∃My, Vy. å(My) = ∅ ∧ [[IΓ1]]ξ\x ⊢My : α

∧ (å(ξ),Myξ) ⇓ (å(ξ), G′, Vy)

∧ ξ · y : Vy |= A1

V
α -(Nm,→)
y equally derivable

from any TC, Lem. 80

5 → ∃My, Vy. å(My) = ∅ ∧ [[IΓ1]]ξ\x ⊢My : α

∧ (å(ξ\x),Myξ\x) ⇓ (å(ξ\x), G′, Vy)

∧ ξ · y : Vy |= A1

x /∈ fv([[IΓ1]]ξ\x),

Sem.→

(å(Vy) ∩ å(Vx) ⊆ å(ξ\x))

6 → ∃My, Vy.My
[IΓ1, ξ\x]
⇝ Vy ∧ ξ · y : Vy |= A1 Sem.

[,]
⇝

7 → ∃My, Vy.My
[IΓ1, ξ\x]
⇝ Vy ∧ (ξ · y : Vy)\x |= A1 I.H.

8 → ∃My, Vy.My
[IΓ1, ξ\x]
⇝ Vy ∧ ξ\x · y : Vy |= A1 Def.ξ\x

9 → ξ\x |= ∃y ∈ (IΓ1).A1 Sem.∃y ∈ (IΓ1).A1

205

− ∃y ∈ (IΓ1\−TCV).A1: holds as follows.

1 ξ |= ∃y ∈ (IΓ1\−TCV).A1

2 ↔ ∃My, Vy.My
[IΓ1\−TCV , ξ]
⇝ Vy ∧ ξ · y : Vy |= A1 Sem.∃y ∈ (IΓ1\−TCV).A1

3 → ∃My, Vy. å(My) = ∅ ∧ [[IΓ1\−TCV]]ξ ⊢My : α

∧ (å(ξ),Myξ) ⇓ (å(ξ), G′, Vy)

∧ ξ · y : Vy |= A1

Sem.
[,]
⇝

4 → ∃My, Vy. å(My) = ∅ ∧ [[IΓ1\−TCV]]ξ\x ⊢My : α

∧ (å(ξ),Myξ) ⇓ (å(ξ), G′, Vy)

∧ ξ · y : Vy |= A1

[[IΓ0]]ξ\x ≡ [[IΓ0]]ξ

5 → ∃My, Vy. å(My) = ∅ ∧ [[IΓ1\−TCV]]ξ\x ⊢My : α

∧ (å(ξ\x),Myξ\x) ⇓ (å(ξ\x), G′, Vy)

∧ ξ · y : Vy |= A1

x /∈ fv([[IΓ1]]ξ\x),

Sem.→

(å(Vy) ∩ å(Vx) ⊆ å(ξ\x))

6 → ∃My, Vy.My
[IΓ1\−TCV , ξ\x]

⇝ Vy ∧ (ξ · y : Vy)\x |= A1 I.H.

7 → ∃My, Vy.My
[IΓ1\−TCV , ξ\x]

⇝ Vy ∧ ξ\x · y : Vy |= A1 Def.ξ\x

8 → ∃My, Vy.My
[IΓ1\−TCV , ξ\x]

⇝ Vy ∧ (ξ · y : Vy)\x |= A1 Sem.
[,]
⇝

9 → ξ\x |= ∃y ∈ (IΓ1\−TCV).A1 Sem.∃y ∈ (IΓ1\−TCV).A1

The formula ∃y ∈ (IΓ1).A1 is not ThinSyn(x) for all cases of IΓ0 as IΓ0 may contain a

TCV δ which could be used in My hence be explicitly dependant on x. This means the

two previous cases state two clear cases for IΓ (or the type of y) where formulae of this

form are guaranteed to be ThinSyn(x).

206

4: If A1 ThinSyn(x) and δ /∈ ftcv(A1) then ∀δ.A1 ThinSem(x):

Holds by I.H. on A1 as follows

1 ξ |= ∀δ.A1

2 ↔ ∀ ξ′IΓ
′
. ξ ≼⋆ ξ′ → ξ′ · δ : IΓ′ |= A1 Sem.∀δ.

3 ↔ ∀ ξ′IΓ
′
. ξ ≼⋆ ξ′ → ξ′ |= A−δ1 Lem. 105

4 ↔ ∀ ξ′IΓ
′
. ξ ≼⋆ ξ′ → ξ′\x |= A−δ1 I.H.

5 → ∀ ξ′\xIΓ′\x. ξ\x ≼⋆ ξ′\x → ξ′\x |= A−δ1 Subset of ∀ ξ′IΓ
′

as [[IΓ\x]]ξ\x ⊆ [[IΓ]]ξ and ξ\x ⊆ ξ

6 → ∀ ξ′′ IΓ
′′
. ξ\x ≼⋆ ξ′′ → ξ′′ |= A−δ1 Rename ξ′′ ≡ ξ′\x

7 → ∀ ξ′′ IΓ
′′
. ξ\x ≼⋆ ξ′′ → ξ′′ · δ : IΓ′′ |= A−δ1 Lem. 105

8 → ξ\x |= ∀δ.A−δ1 Sem.∀δ.

207

5: If A1 ThinSyn(x) then ∀δ.∀yαy ∈ (δ).A−δ1 ThinSem(x): Holds by I.H. on A1 as follows.

1 Assume A1 ThinSyn(x)

2 i.e. assume ∀ IΓ, δ, yαy . δ+y : αy\x ⊩ A1 → ∀ ξ
δ+y:αy

iy . ξiy |= A1 → ξiy\x |= A1

3 Assume IΓ, ξIΓ s.t. IΓ\x ⊩ ∀δ.∀y ∈ (δ).A1 and ξ |= ∀δ.∀y ∈ (δ).A1

4 → IΓ\x+δ+y : αy ⊩ A1

∧ ∀ ξIΓ1
1 .ξ ≼⋆ ξ1 → ∀ M

αy
y , Vy. My

[δ, ξ1·δ:IΓ1]
⇝ Vy

→ ξ1 · δ : IΓ1 · y : Vy |= A1

Typing rules,

Sem.∀., ∀ ∈ ().

5 → ∀ ξIΓ1
1 .ξ ≼⋆ ξ1 → ∀ M

αy
y , Vy. My

[δ, ξ1·δ:IΓ1]
⇝ Vy

→ ξ1 · y : Vy |= A1

A−δ
1 , Lem. 105

6 → ∀ ξIΓ1
1 .ξ ≼⋆ ξ1 → ∀ M

αy
y , Vy. My

[δ, ξ1·δ:IΓ1]
⇝ Vy

→ (ξ1 · y : Vy)\x |= A1

I.H., Line.2

7 → ∀ ξIΓ1
1 .ξ ≼⋆ ξ1 → ∀ M

αy
y , Vy. My

[δ, ξ1·δ:IΓ1]
⇝ Vy

→ (ξ1 · δ : IΓ1 · y : Vy)\x |= A1

A−δ
1 , Lem. 105

8 → ∀ ξIΓ1
1 .ξ ≼⋆ ξ1 → ∀ M

αy
y , Vy. ξ1d ≡ ξ1 · δ : IΓ1

My
[δ, ξ1d\x]
⇝ Vy

→ (ξd · y : Vy)\x |= A1

[[δ]]ξ1d\x ⊆ [[δ]]ξ1d

x /∈ fv(M)→ Mξ ≡M(ξ\x)

Sem.→

9 → ∀ ξIΓ1
1 .ξ ≼⋆ ξ1 → (ξ1 · δ : IΓ1)\x |= ∀y ∈ (δ).A1 Sem.∀ ∈ ().

10 → ∀ ξIΓ2
2 . ξ ≼⋆ ξ2 · x : Vx → (ξ2 · x : Vx · δ : IΓ1)\x |= ∀y ∈ (δ).A1 ξ1 ≡ ξ2 · x : Vx

11 → ∀ ξIΓ3
3 . ξ\x ≼⋆ ξ3 → ξ3 · δ : IΓ3 |= ∀y ∈ (δ).A1 Subset of ∀ ξ2 extending ξ\x

12 → ξ\x |= ∀δ.∀y ∈ (δ).A1 Sem.∀δ.

13 Hence: ∀ IΓ. IΓ\x ⊩ ∀δ.∀y ∈ (δ).A1

→ ∀ ξIΓ. ξ |= ∀δ.∀y ∈ (δ).A1 → ξ\x |= ∀δ.∀y ∈ (δ).A1

Lines.3-12

14 Hence: ∀δ.∀y ∈ (δ).A1 ThinSem(x)

Hence all cases from Def. 55 are satis�ed and hence the lemma holds.

Again it is emphasised that y#IΓ1 is ThinSyn(x) given y#IΓ1
def
= ∀zNm ∈ (IΓ1).z ̸= y

and this is ThinSyn(x) hence also ThinSem(x).

A.2 Soundness of the Extra Core Rules

Here are the proofs for the core derivation rules of the ν-logic not included in Sec. 6.3.

A.2.1 Soundness of [Pair]ν

{A}M :m {B} {B} N :n {C[⟨m,n⟩/u]IΓ+m+n} C ThinSyn(x)

{A} ⟨M,N⟩ :u {C}
[Pair]ν

208

Proof. Clearly Lem. 113 ensures A-ThinSyn(x) implies A-ThinSem(x).

1 Let: ξIΓ+mm ≡ ξ ·m : Vm and ξIΓ+m+n
mn ≡ ξm · n : Vn

2 Assume IΓ s.t. IΓ ⊩ {A} ⟨M,N⟩ :u {C[⟨m,n⟩/u]IΓ+m+n}

3 → IΓ ⊩ {A}M :m {B} ∧ IΓ+m ⊩ {B} N :n {C[⟨m,n⟩/u]IΓ+m+n} ∧ IΓ ⊢ N : α

4 ∀ IΓ′, ξ′IΓ0 .IΓ′ ▷ ξ′ → ξ′ |= A→M
[IΓ′, ξ′]
⇝ Vm ∧ ξ′ ·m : Vm |= B I.H.(1)

5 ∀ IΓ′, ξ′IΓ0+m
m .IΓ′+m ▷ ξ′m → ξ′m |= B→ N

[IΓ′+m, ξ′m]
⇝ Vn

∧ ξ′m · n : Vn |= C[⟨m,n⟩/u]IΓ′+m+n

I.H.(2)

6 Assume ξIΓ0 s.t. IΓ ▷ ξ ∧ ξ |= A

7 → M
[IΓ, ξ]
⇝ Vm ∧ ξ ·m : Vm |= B I.H.(1)

8 → M
[IΓ, ξ]
⇝ Vm ∧ N

[IΓ+m, ξm]
⇝ Vn ∧ ξmn |= C[⟨m,n⟩/u]IΓmn I.H.(2)

9 → M
[IΓ, ξ]
⇝ Vm ∧ N

[IΓ+m, ξm]
⇝ Vn

∧ ∃ Vu. ⟨m,n⟩ [IΓ+m+n, ξmn]
⇝ Vu ∧ ξmn · u : Vu |= C

Sem.[e/x],

u /∈ dom(ξmn)

10 → M
[IΓ, ξ]
⇝ Vm ∧ N

[IΓ+m, ξm]
⇝ Vn

∧ ⟨M,N⟩ [IΓ, ξ]⇝ Vu ∧ ξmn · u : Vu |= C

Op. Sem.(Pair)

11 → M
[IΓ, ξ]
⇝ Vm ∧ N

[IΓ+m, ξm]
⇝ Vn

∧ ⟨M,N⟩ [IΓ, ξ]⇝ Vu ∧ ξ · u : Vu |= C

C ThinSem (m,n)

12 → ⟨M,N⟩ [IΓ, ξ]⇝ Vu ∧ ξ · u : Vu |= C Remove Excess

13 → ∀ ξIΓ0 . IΓ ▷ ξ → ξ |= A → ⟨M,N⟩ [IΓ, ξ]⇝ Vu

∧ ξ · u : Vu |= C

Assumption, Line.5

14 Hence:

C-ThinSyn(m,n)

|= {A}M :m {B} |= {B} N :n {C[⟨m,n⟩/u]IΓmn}
|= {A} ⟨M,N⟩ :u {C}

Lines.1-12

209

A.2.2 Soundness of [Proj(i)]ν

{A}M :m {C[πi(m)/u]IΓ+m} C ThinSyn(m)

{A} πi(M) :u {C}
[Proj(i)]ν

Proof. Clearly Lem. 113 ensures A-ThinSyn(x) implies A-ThinSem(x).

1 Assume IΓ s.t. IΓ ⊩ {A} πi(M) :u {C}

2 → IΓ ⊩ {A}M :m {C[πi(m)/u]IΓ+m} Typing rules

3 ∀ ξIΓ0 .IΓ ▷ ξ → ξ |= A→M
[IΓ, ξ]
⇝ Vm ∧ ξ ·m : Vm |= C[πi(m)/u]IΓ+m I.H.(1)

4 Assume ξIΓ0 s.t. IΓ ▷ ξ ∧ ξ |= A

5 →M
[IΓ, ξ]
⇝ Vm ∧ ξ ·m : Vm |= C[πi(m)/u]IΓ+m I.H.(1)

6 → M
[IΓ, ξ]
⇝ Vm ∧ πi(m)

[IΓ+m, ξ·m:Vm]
⇝ Vu

∧ ξ ·m : Vm · u : Vu |= C

Sem.[e/x],

u /∈ dom(ξ ·m · n)

7 → M
[IΓ, ξ]
⇝ Vm ∧ πi(m)

[IΓ+m, ξ·m:Vm]
⇝ Vu

∧ ξ · u : Vu |= C

C ThinSem (m)

8 → πi(M)
[IΓ, ξ]
⇝ Vu ∧ ξ · u : Vu |= C Op. Sem.(Pair)

9 → ∀ ξIΓ0 . IΓ ▷ ξ → ξ |= A → πi(M)
[IΓ, ξ]
⇝ Vu

∧ ξ · u : Vu |= C

Assumption, Line.4

10 Hence:
|= {A}M :m {C[πi(m)/u]IΓ+m} C ThinSyn(m)

|= {A} πi(M) :u {C}
Lines.1-10

A.2.3 Soundness of [If]ν

{A}M :m {B} {B[true/m]} N1 :u {C} {B[false/m]} N2 :u {C}

{A} if M then N1 else N2 :u {C}
[If]ν

Proof. The proof is standard, given that substitution is equivalent to standard substitu-

tion for bi-values of type Bool. It holds trivially through the operational semantics of

if M then N1 else N2 and the semantics of substitution in the logic.

A.2.4 Soundness of [Neg]ν

{A}M :m {C[¬m/u]}

{A} ¬M :u {C}
[Neg]ν

210

Proof. The proof is standard, given that substitution is equivalent to substituting the

negation of u for u. It holds trivially through the operational semantics of ¬M and the

semantics of substitution in the logic.

	PhD Coversheet
	PhD Coversheet

	Eliott, Harold Pancho Gordon
	Declaration of Authorship
	Acknowledgements
	Abstract
	Preface
	Notation
	Contents
	List of Figures
	1 Introduction
	1.1 Names
	1.2 Program Logics
	1.3 Contributions
	1.4 Thesis Outline

	2 Technical Background
	2.1 The -Calculus
	2.1.1 The Untyped -Calculus
	2.1.2 The STLC
	2.1.3 Contextual Equivalence (STLC)

	2.2 Program Logics
	2.2.1 Hoare Logic for a Simple Imperative Language (While-Logic)
	2.2.2 Program Logics for the STLC
	2.2.3 Program Logic for Higher-Order Functions with Local State
	2.2.4 Other Logics of Interest

	2.3 Summary

	3 The -Calculus
	3.1 The GS-Calculus
	3.1.1 The GS-Calculus Programming Language
	3.1.2 Programs in the GS-Calculus

	3.2 The PS-Calculus
	3.2.1 The Programming Language

	3.3 Relation Between the GS-Calculus and the PS-Calculus
	3.4 Proof Techniques of Contextual Equivalence in the PS-Calculus
	3.4.1 Equational Logic
	3.4.2 Logical Relations
	3.4.3 Kripke Logical Relations
	3.4.4 Environmental Bisimulations
	3.4.5 Nominal Games
	3.4.6 Probabilistic Programming Semantics for Name-Generation

	3.5 The -Calculus
	3.6 Relating PS-Calculus and -Calculus
	3.7 Summary

	4 Logical Language
	4.1 Logical Syntax
	4.1.1 Logical Type Contexts (LTCs)
	4.1.2 Standard Formulae
	4.1.3 Restricted Universal Quantification
	4.1.4 Quantification Over LTCs
	4.1.5 Notes On the Logical Syntax
	4.1.6 Shorthand Notations
	4.1.7 Triples

	4.2 Typing of Expressions, Formulae and Triples
	4.3 Advanced Substitutions
	4.4 Properties of Logical Formulae
	4.5 Logic of Axioms
	4.5.1 Axioms for Equality
	4.5.2 Axioms for Restricted Quantification
	4.5.3 Axioms for Freshness
	4.5.4 Axioms for Quantification Over LTCs
	4.5.5 Axioms for Evaluation Formulae

	4.6 Logic of Rules
	4.6.1 Core Rules
	4.6.2 Structural Rules
	4.6.3 Derived Rules

	4.7 Alternative Design Choices
	4.7.1 gensym as a Constant in the Logic
	4.7.2 The Use of LTCs
	4.7.3 Separating ``Derived'' and ``Quantification''
	4.7.4 Syntactic Characterisations of Properties of Formulae

	4.8 Summary

	5 Model
	5.1 Defining the Model
	5.2 Semantics
	5.3 Semantics of Extension Independence and Thinness
	5.3.1 Semantic Extension Independence
	5.3.2 Semantic Thinness with Respect to a Variable

	5.4 General Lemmas Used in Soundness Proofs
	5.4.1 Lemmas Regarding Function and Nm-Free Types
	5.4.2 Lemmas Regarding Nm-Free Types
	5.4.3 Lemmas Regarding Expressions
	5.4.4 Lemmas Regarding Derivations
	5.4.5 Lemmas Regarding the Revealing of Names
	5.4.6 Lemmas Regarding Model Extensions
	5.4.7 Lemmas Regarding Congruent Models

	5.5 Summary

	6 Soundness
	6.1 Soundness of Properties of Formulae
	6.2 Soundness of Axioms
	6.2.1 Soundness of Axioms for Equality
	6.2.2 Soundness of Axioms for Restricted Quantification
	6.2.3 Soundness of Axioms for Freshness
	6.2.4 Soundness of Axioms for Universal Type Context Quantification
	6.2.5 Soundness of Axioms for Evaluation Formulae

	6.3 Soundness of Rules
	6.3.1 Soundness of Core Rules
	6.3.2 Soundness of Structural Rules
	6.3.3 Soundness of Derived Rules

	6.4 Soundness Theorem
	6.5 Conservativity
	6.5.1 The -Logic Extends the -Logic
	6.5.2 The -Logic is a Conservative Extension of the -Logic

	6.6 Summary

	7 Reasoning Examples
	7.1 Summary

	8 Conclusion
	8.1 Directions for Future Work
	8.1.1 Generalisations of the Axioms
	8.1.2 Related Logics
	8.1.3 Mechanisation of Proofs
	8.1.4 Full Proof of Conservativity
	8.1.5 Applications of Names

	Bibliography
	A Deferred Proofs
	A.1 Lemmas for Soundness of Syntactic Properties Implying Semantic Properties
	A.2 Soundness of the Extra Core Rules
	A.2.1 Soundness of [Pair]
	A.2.2 Soundness of [Proj(i)]
	A.2.3 Soundness of [If]
	A.2.4 Soundness of [Neg]

