

A University of Sussex PhD thesis

Available online via Sussex Research Online:

http://sro.sussex.ac.uk/

This thesis is protected by copyright which belongs to the author.

This thesis cannot be reproduced or quoted extensively from without first
obtaining permission in writing from the Author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the Author

When referring to this work, full bibliographic details including the
author, title, awarding institution and date of the thesis must be given

Please visit Sussex Research Online for more information and further details

Applications and Hardware

Considerations for Quantum Computing

Mark Webber

Submitted for the degree of Doctor of Philosophy

University of Sussex

September 2021

Declaration

I hereby declare that this thesis has not been and will not be submitted in whole or in

part to another University for the award of any other degree.

Signature:

Mark Webber

UNIVERSITY OF SUSSEX

Mark Webber, Doctor of Philosophy

Applications and Hardware Considerations for Quantum Computing

iii

Abstract

Quantum computers are expected to one day be able to solve a set of problems which are

practically impossible with classical super computers, even with their projected continued

improvement. As the field of quantum computing has continued to evolve the somewhat

disparate research areas of algorithms and hardware have improved in their integration.

Fully optimizing quantum algorithms requires a solid understanding of the quantum hard-

ware, and metering experimental hardware priorities requires an understanding of the

general algorithm requirements. This thesis initially provides an overview of quantum

hardware and applications and discusses their interplay in both the near term and fault

tolerant regime. A greater focus is placed on trapped ion architectures in this thesis and

in particular the shuttling based approach of the Ion Quantum Technology group at the

University of Sussex.

A routing algorithm is provided which can efficiently enable all to all connectivity for

the shuttling based trapped ion design without positional swaps. A simulation tool was

created and used to develop and characterize routing algorithms. The cost of enabling

connectivity in Noisy-Intermediate-Scale-Quantum devices is an important factor in de-

termining computational power. The core ideas of this routing algorithm are currently

being integrated into a software compiler stack that will control real quantum hardware.

An error model for the shuttling based design is presented which makes use of the time

cost for connectivity results from the simulation tool. The error model is used to estimate

the computational power (quantum volume) of the design as a function of experimental

parameters. The error model can be used to help meter experimental priorities by identi-

fying the most impactful parameters across particular regimes. A comparison is performed

using metrics such as Quantum Volume, between the shuttling based trapped ion design

and a superconducting grid which uses logical swaps to enable connectivity, and it is found

that the trapped ion design has a substantially lower cost associated with connectivity.

Large scale trapped ion devices are considered and the total time required to enable all to

all connectivity is estimated for both the modular shuttling approach and for the approach

that uses small scale modules connected via photonic interconnects.

iv

A review of fault tolerant methods for quantum chemistry is presented. Resource es-

timations are provided all the way down to the required wall-clock time and number of

physical qubits, for ground state energy calculations for molecules across different basis

set sizes. The basis set size at which a quantum computer can meaningfully outperform

a classical supercomputer is estimated. Determining the point at which a quantum ad-

vantage may be realised can help the field progress by setting realistic expectations and

by having a device size to aim for. The impact of hardware considerations such as the

code cycle time is investigated by including a wider range of possible surface code error

correction configurations. Two distinct methods are investigated which allow one to in-

crementally speed up the rate of computation until the time optimal limit is reached by

introducing additional qubits. The number of physical qubits required to reach a desirable

run time is estimated as a function of the hardware’s code cycle time, for problems such

as the ground state estimation of the FeMoco molecule, and for breaking the encryption

of the Bitcoin network. It is found that for the quantum advantage problems investigated

in this work, hardware with considerably slower code cycle times than the more usually

considered 1µs of superconducting qubits, will still be able to reach desirable run times

provided enough physical qubits are available.

v

Publications

Articles

M. Webber, V. Elfving, S. Weidt and W.K. Hensinger, The Impact of Hardware Spe-

cifications on Reaching Quantum Advantage in the Fault Tolerant Regime. In journal

submission process. ArXiv ID: 2108.12371. 2021

V. Elfving, B.W Broer, M. Webber, J. Gavartin, M.D. Halls, K.P. Lorton and A. Boche-

varov, How will quantum computers provide an industrially relevant computational ad-

vantage in quantum chemistry? Available on ArXiv, ID: 2009.12472. 2020

M. Webber, S. Herbert, S. Weidt and W.K. Hensinger, Efficient Qubit Routing for a

Globally Connected Trapped Ion Quantum Computer. Advanced Quantum Technologies,

vol. 3, p. 2000027, 2020

Conference contributions

M. Webber, S. Herbert, S. Weidt, and W.K. Hensinger, Efficient qubit routing for a

globally connected trapped ion quantum computer. Quantum Technology International

Conference 2020 (Virtual conference presentation)

M. Webber, S. Herbert, S. Weidt, and W.K. Hensinger, Enabling global connectivity

in a shuttling based trapped ion quantum computer with efficient routing. IEEE Inter-

national Conference on Quantum Computing and Engineering 2020 (Virtual conference

poster presentation)

M. Webber, S. Herbert, S. Weidt, and W.K. Hensinger, Enabling global connectivity

in a shuttling based trapped ion quantum computer with efficient routing. Conference on

vi

Quantum Machine Learning Plus 2018 (Conference poster and flash talk)

M. Webber, S. Weidt, B. Lekitsch, J. Randall, S.C. Webster, E.D. Standing, A.E. Webb,

T. Navickas, I. Cohen, K. Lake, N. Johnson, R. LeBrun-Ricalens, A.G. Fowler, K. Molmer,

S.J. Devitt, Ch. Wunderlich, A. Retzker, and W.K. Hensinger, Roadmap for the construc-

tion of a large-scale trapped ion quantum computer. Quantum Machine Learning and

Biomimetic Quantum Technologies 2018 (Conference poster)

vii

Acknowledgements

A deep thank you to my supervisor, Professor ‘Winni’ Hensinger, for the advice and

direction you have given me throughout my PhD, and for your can-do attitude which has

influenced me greatly. Thank you to Dr. ‘Seb’ Weidt for setting high expectations from the

beginning, especially with the external collaborations and outreach. Our regular meetings

kept me on track and grounded. Thank you to Dr. Steven Herbert for our discussions

on the routing algorithm which eventually resulted in my first published work. I’d like

to thank Dr. Vincent Elfving for our long lasting collaboration, it has been a pleasure

working with you and I’m glad to have now expanded my knowledge base to include the

fault-tolerant side of things. Thank you to Jansen, whom I met at my first international

conference; I fondly remember our conversations and the following adventures. A big

thank you to Mitch for our meaningful friendship throughout our PhD, if were it not for

the recent disruption, I bet we would be enjoying a plate of nachos at the moment - and

maybe even a bubble tea. Thanks to Zak for all of your help with outreach, and our

continued work together. Thank you David for your help with gate decomposition and

for shooting me with your gun. Thank you to all my IQT colleagues past and present for

making work such a great place to be, I wish I could have been around more over the final

year. Thank you to all of my new UQ colleagues, I’m looking forward to what we will

build together. Thanks to my grandparents whom are no longer with us for their love and

support. Thanks to my Nan for providing me with an office space when I needed it, and

for our games of scrabble. I am deeply grateful to my mother for the unconditional love

she has always shown me and for teaching me how to use a spoon. Thank you Robert for

all of the support you have given to me and mum over the years. Dad, a deep thank you

for always tending my curiosity and for our meaningful adventures. Thank you to Edyta

for always being so welcoming both here and in Poland. I really appreciate my little sister

Matilda, for bringing so much fun into my life. I am grateful to Ginny’s family for making

me feel so at home whenever I visit. Finally, thank you Ginny for being my partner in

life, I don’t think I would have got this far without you.

viii

Contents

List of Tables xiii

List of Figures xv

1 Introduction 1

1.1 Classical computing . 1

1.2 Quantum computing . 3

1.2.1 The qubit . 3

1.2.2 Superposition . 3

1.2.3 Entanglement . 5

1.2.4 Universal quantum computation . 6

1.2.5 The DiVincenzo criteria . 6

1.3 Summary of thesis . 7

1.4 Contributions . 9

2 An overview of hardware and applications 10

2.1 NISQ and fault tolerance . 10

2.1.1 NISQ and computational power . 11

2.1.2 Fault tolerance and error correction 11

2.1.3 Repetition code example . 14

2.2 Overview of hardware types . 15

2.2.1 Superconducting devices . 16

2.2.2 Photonics . 17

2.3 Trapped ions . 18

2.3.1 Optical and hyperfine qubits . 19

2.3.2 Laser based gates and laser free gates 20

2.3.3 Scaling beyond a single ion string . 20

2.3.4 Shuttling . 21

ix

2.3.5 Blueprint for a microwave trapped-ion quantum computer 22

2.4 NISQ algorithms and applications . 23

2.4.1 Variational Quantum Eigensolver . 24

2.4.2 Quantum Approximate Optimization Algorithm 25

2.5 Fault tolerant algorithms and applications 25

2.5.1 Quantum Fourier Transform . 26

2.5.2 Quantum Phase estimation . 26

2.5.3 Shor’s factoring algorithm . 27

2.5.4 Grover’s search algorithm and amplitude amplification 27

2.5.5 HHL and solving systems of linear equations 28

2.6 Applications in Finance . 29

3 Trapped Ion Connectivity and Routing 32

3.1 Global connectivity . 32

3.2 Simulation tool . 34

3.3 Routing Algorithm logic . 36

3.4 Characterising the routing algorithm . 39

3.4.1 Time taken to route . 39

3.4.2 Counting passes through X-Junction centres 42

3.4.3 Increasing ion density . 44

3.4.4 Positional swaps . 47

3.4.5 Justifying iteration number choice 48

3.5 Concluding remarks . 48

4 Prediction of Computational Power for Near Term Devices 51

4.1 Achievable depth and quantum volume . 51

4.1.1 The latest Quantum Volume definition 52

4.1.2 How we use Quantum Volume . 54

4.1.3 Gate requirements of Quantum Volume 55

4.2 Error model . 58

4.3 Using Quantum Volume to compare architectures 59

4.3.1 Quantum volume comparison with recent experimental results . . . 62

4.4 Using quantum volume to meter experimental priorities 64

4.4.1 The dependence on ion loss . 65

4.4.2 The dependence on coherence time 66

x

4.4.3 The dependence on ion density . 67

4.5 Single qubit gate fidelity as a function of experimental parameters 69

4.6 Comparing photonic interconnects and shuttling 71

4.6.1 Connectivity for large scale devices 71

4.6.2 The time cost for global connectivity 72

4.7 Summary . 74

5 Fault Tolerant Resource Estimation for Quantum Chemistry 76

5.1 Classical quantum chemistry . 76

5.1.1 Precision vs accuracy . 77

5.2 NISQ and fault tolerant techniques . 78

5.2.1 NISQ and VQE . 79

5.2.2 Fault tolerance and QPE . 80

5.3 Hamiltonian simulation . 80

5.3.1 Trotterization . 81

5.3.2 Qubitization . 82

5.4 Q# and resource estimation . 82

5.4.1 Methodology . 82

5.4.2 Oracle costs for small molecules . 83

5.5 Optimizing gate count and error budgets . 86

5.5.1 Phase estimation variants . 87

5.5.2 Motivating which molecules to investigate 88

5.5.3 Trotterization . 89

5.5.4 Qubitization . 91

5.6 Error correction and physical resource estimation 92

5.6.1 Detailed estimate for Cr2 CASCI(26,26) and methodology 95

6 The Impact of Hardware Specifications on Reaching Quantum Advant-

age in the Fault Tolerant Regime 102

6.1 Introduction . 103

6.1.1 Fault tolerant quantum chemistry 106

6.1.2 Breaking Bitcoin’s encryption . 107

6.2 Space and time optimizations in the surface code 108

6.2.1 The available gate set . 108

6.2.2 Error correction and logical error rate 109

xi

6.2.3 Code cycle, reaction time and measurement depth 110

6.2.4 Distillation and topological errors . 112

6.2.5 Routing at the error corrected level 113

6.2.6 Considering physical mid-range connectivity 113

6.2.7 Game of Surface Codes . 115

6.2.8 AutoCCZ factories . 117

6.2.9 Problem specification . 118

6.3 Results . 119

6.3.1 Simulating FeMoco as a function of the code cycle time 121

6.3.2 Breaking Bitcoin’s EC encryption . 123

6.3.3 Finding the optimal measurement depth 127

6.4 Summary . 132

7 Conclusion 134

7.1 Summary and future work . 134

7.2 Outlook . 137

Bibliography 138

xii

List of Tables

5.1 Error correction strategy and resource estimates for Cr2 (26,26) 98

xiii

List of Figures

1.1 Bloch sphere representation for a single qubit 4

1.2 Circuit for preparing a two qubit superposition state 5

1.3 Circuit for preparing an entangled state . 5

2.1 Circuit for the three qubit error correcting repetition code 15

2.2 A single X-Junction within the QCCD array 23

3.1 3D representation of a single X-Junction . 33

3.2 A 4 by 4 X-Junction device with lane priority of movement 34

3.3 Decongesting X-Junction centers . 35

3.4 2D output of the simulation tool . 36

3.5 Shuttling time for the lane priority routing algorithm 40

3.6 Shuttling time for the lane priority routing algorithm 41

3.7 The mean number of X-Junction passes . 43

3.8 Break down of the number of X-Junction passes 44

3.9 Shuttling time for routing with varied ion density 45

3.10 Shuttling time for routing with varied ion density with reduced gate density 46

3.11 Shuttling time for routing with a positional swap based algorithm 47

3.12 Convergence rate for mean and standard deviation 49

4.1 Depiction of the quantum volume circuit . 52

4.2 Circuit for arbitrary two qubit gate decomposition with CNOT gates 55

4.3 Circuit for arbitrary two qubit gate decomposition with MS gates 56

4.4 Arbitrary two qubit gate decomposition fidelity 57

4.5 Square circuit depth for trapped ion and superconducting devices 60

4.6 Quantum volume for trapped ion and superconducting devices 63

4.7 Achievable depth as a function of qubit number 64

4.8 Square circuit depth for trapped ion and varying ion loss rate 65

xiv

4.9 Square circuit depth for trapped ion and varying the coherence time for

shuttling . 66

4.10 Quantum volume for trapped ions for different ion densities as a function

of the two qubit gate fidelity . 67

4.11 Quantum volume for trapped ions for different ion densities as a function

of the two qubit gate time . 68

4.12 Single qubit error from time resolution 1 . 69

4.13 Single qubit error from time resolution 2 . 70

4.14 Time cost for global connectivity comparison between shuttling and photonic

interconnects . 73

5.1 Precision vs accuracy in quantum chemistry 79

5.2 T gate cost for small molecules . 84

5.3 CNOT gate cost for small molecules . 85

5.4 Qubit count required for small molecules . 86

5.5 T gate count required as a function of the number of orbitals for a single

oracle application . 87

5.6 T gate requirement for energy estimation with Trotterization 89

5.7 Toffoli gate requirement for energy estimation with Qubitization 92

5.8 Logical qubit requirement for energy estimation 93

5.9 Wall-clock time and physical qubit requirement for energy estimation 94

5.10 Wall-clock time requirement for energy estimation as a function of base

physical error . 100

5.11 Physical qubit requirement for energy estimation as a function of base phys-

ical error . 101

6.1 Simulating FeMoco with different error correction strategies 120

6.2 Breaking Bitcoin’s encryption as a function of the code cycle time 124

6.3 Breaking Bitcoin’s encryption as a function of the base physical error 125

6.4 The impact of measurement depth on parallelization efficiency for FeMoco . 128

6.5 The impact of measurement depth on parallelization efficiency for an ab-

stract algorithm . 129

6.6 The optimal measurement depth as a function of the number of logical

qubits in the algorithm . 130

xv

Chapter 1

Introduction

Before the advent of electronic computing technology, a “computer” generally referred to

a person whose profession involved routine calculations. In the last 50 years our world

has been revolutionized by digital computing. Computers have been used to produce rich

models of the physical universe and were instrumental to the creation of the internet, which

has provided unprecedented connectivity between humans. The free flow of information

between individuals and the ability to self navigate the near-entirety of human knowledge

can be seen as a magnifying force upon our underlying tendencies, for better and for worse.

Quantum computers are expected to one day drastically push forward the boundaries of

what is possible for us to simulate and investigate through computation.

1.1 Classical computing

In the broadest sense, a computer transforms information from one state to another by

the use of a physical process. Modern computers use transistors to represent a binary

state (bit). Any general function which defines a transformation of information (input to

output) can be decomposed into a set of simple logical operations, or gates. An example

universal set of logic gates for irreversible classical computation is the AND, OR, and NOT

gate. The NAND gate alone represents a universal gate set, it takes two inputs and gives

a single output, and therefore is a clear example of irreversible logic. The additional bit is

effectively erased, which has an associated change in entropy of ln 2. This corresponds to

an energy increase of kT ln 2 where k is the Boltzman’s constant and T is the temperature,

although this degree of heating pales in comparison to the actual dissipation of a transistor

at ∼ 1010kT [1]. Despite this, in the 1970s there was was a strong motivation to identify

whether computation can be done in a reversible manner. The Toffoli gate [2] is a three bit

1

reversible logical operation capable of universal computation, which is a property that no

classical two bit operation can have. The Toffoli gate is able to condense the information

of two bits into one without erasing information because of the additional bit.

Moore’s law predicts the exponential rate of improvement of classical computing; it

started as a forecast by Gordon Moore in 1965 and has since proved itself accurate. The

prediction was originally motivated as an economic argument, where the “the cost per

component is nearly inversely proportional to the number of components” (per chip) [3].

Some of the first computers developed utilized vacuum tubes, 1000’s of which would fill

an entire room. The Intel 4004 is considered the world’s first microprocessor and it was

released in 1971 with transistor width of 10 µm. Now in 2021, transistors have a width of

∼ 10nm. It is possible to physically produce smaller sizes with silicon, however, below a

size of 7nm the transistors are so close together that electrons may regularly experience

quantum tunneling, which introduces errors. The end of Moore’s law has been proclaimed

numerous times over the last 20 years, but at each instance new developments have en-

abled progress. A proof of concept has been demonstrated using carbon nanotubes and

molybdenum disulfide for transistor sizes of ∼ 1nm but further development is required

for mass production. We must imagine that eventually a point will be reached where

transistors can no longer be made smaller, with the size of atoms at ∼ 0.1nm. Managing

heat build up is also a primary concern for the continued improvement of classical com-

puting, for example, increasing the clock cycle time leads to a cubic increase in power

consumption for the chip. In part due to this, clock cycle times have entirely plateaued

in recent years, where instead speedups are sought by increasing the number of cores and

utilizing parallelization.

There are classes of problems which may be extremely academically or commercially

interesting, but that have an unfavourable run time scaling with a classical computer.

For example, factoring large numbers scales superpolynomially with problem size for clas-

sical computers, and encryption techniques such as RSA rely upon this. In many areas

of computing, from simulating chemistry to big data analysis, there is an upper limit

to the problem size that can be feasibly tackled with classical computers. There exist

quantum algorithms which for some problems, such as the ones listed above, can provide

an exponential or near-exponential improvement in the scaling with problem size.

2

1.2 Quantum computing

Richard Feynman was perhaps the first to clearly envisage a quantum computer and its

application to the simulation of physics and chemistry [4]. The first major work towards

a quantum model for computation was published by Deutsch in 1985 [5] and in 1994 Shor

presented a quantum algorithm for factoring large numbers with an exponential speed

up relative to classical computing [6]. Quantum computing is an extension to classical

computing and a quantum algorithm can be simulated by a classical computer albeit with

an exponential overhead.

1.2.1 The qubit

The quantum bit, or qubit, can have numerous physical implementations. The spin of an

electron, the energy levels of a fabricated superconducting circuit, and the polarization

of a photon to name a few. Superposition is the archetypal property that qubits possess

that distinguishes them from a classical bit. The classical bit can only be in one of its two

states at any moment in time, whereas in contrast a qubit can be in any superposition

(linear combination) of those two states. A general single qubit state can be expressed in

the form |ψ〉 = a |0〉+ b |1〉, where a and b are probability amplitudes, and the probability

of observing the qubit in the |0〉 state is equal to |a|2, with |a|2 + |b|2 = 1. The probability

amplitudes can be complex numbers, and this notation is an efficient way of capturing the

wave like nature of quantum mechanics, such as constructive and destructive interference.

A single qubit can be helpfully visualized with the Bloch sphere representation where its

state is described by a point on the surface of a unit sphere, see figure 1.1.

1.2.2 Superposition

In the Bloch sphere model the north pole represents the |0〉 state, and the south pole

represents the |1〉 state, but at one moment in time the state can exist anywhere on the

surface. The only valid single qubit operations in this picture correspond to rotations of

the sphere. In classical computing we can measure the state of any qubit freely without

affecting anything, whereas in quantum computing the measurement process is destructive

and collapses the single qubit superposition into one of the basis states. For example, a

state described by a point on the equator, 1/
√

2 (|0〉 + |1〉) of the sphere is in an equal

superposition, and if a measurement is performed in the standard basis then the state

will collapse with equal probability into either the |0〉 or |1〉 state. Following the Bloch

sphere representation we can define an arbitrary single qubit state as |Ψ〉 = cos (θ/2) |0〉+

3

Figure 1.1: The Bloch sphere representation for a qubit with basis states |0〉 and |1〉, the

three rotational axes, X, Y and Z. The arbitrary state |Ψ〉 can be described by two angles,

the angle from the Z axis, θ, and the angle from the X axis, φ.

(cosφ+ i sinφ) sin (θ/2) |1〉 where 0 ≤ θ ≤ π and 0 ≤ φ < 2π. An n qubit state defines a

vector space that can be described via a column vector of length 2n upon which quantum

gates operate. A quantum gate that operates on n qubits is described by a 2n×2n unitary

matrix. The single qubit Pauli X, Y, and Z matrices correspond to π rotation around the

respective axis shown in figure 1.1 and are listed below:

X =

0 1

1 0

 , Y =

0 −i

i 0

 , Z =

1 0

0 −1

 . (1.1)

Another two important quantum gates are the Hadamard (H) and the controlled not

(CNOT). The H gate takes the |0〉 state to a superposition state 1/
√

2 (|0〉+ |1〉), and the

CNOT gate is a two qubit gate where the operation (NOT) is dependent on the state of

the controlling qubit. Their corresponding matrices are:

H =
1√
2

1 1

1 −1

 , CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 . (1.2)

A two qubit state in superposition can be generated by applying the Hadamard gate

on each qubit as shown in figure 1.2:

4

|0〉 H

|0〉 H

Figure 1.2: Circuit for preparing a two qubit superposition state

The state space of a quantum system with n qubits can be represented as the tensor

product, ⊗, of the respective state spaces of all of the individual qubits. We can abbreviate:

|0〉 ⊗ |1〉 as |01〉. This circuit has an output with a combined description of both qubits,

|ψ〉 = 1/2 (|00〉 + |01〉 + |10〉 + |11〉), but one can also consider the separable (tensor

product) description where each qubit is in the state 1/
√

2 (|0〉 + |1〉). This will be a

relevant consideration when comparing against an entangled state.

1.2.3 Entanglement

Entanglement follows as a consequence of superposition, and was described as “spooky

action at a distance” by Einstein. Entanglement is sometimes mistakenly prescribed to

enabled faster than light communication, and while the correlation between two particles

can be independent of distance, knowledge of the correlation requires ordinary information

transfer. We can generate a Bell pair, which is an entangled two qubit state, with a simple

circuit consisting of just a H gate, and a CNOT, as shown in figure 1.3:

|0〉 H •

|0〉

Figure 1.3: Circuit for preparing an entangled state with a Hadamard gate followed by a

CNOT where the black dot represents the control.

Just as qubits can be in superposition, so can the application of logical operations.

After the H gate the first qubit is in superposition, and following the controlled operation

the output state is |ψ〉 = 1/
√

2 (|00〉 + |11〉). There is no separable (tensor product)

description for this state, i.e. there is no valid description for the individual qubit states

that also satisfies the combined description. This is contrary to the previous example of

two qubit superposition and the lack of a separable description is one of the fundamental

indicators of entanglement.

5

1.2.4 Universal quantum computation

The CNOT gate in combination with arbitrary single qubit rotations are sufficient for

universal quantum computation, and so any arbitrary algorithm could be decomposed

into such a fixed gate set. Any arbitrary algorithm on n qubits may be described by

a unitary matrix of size 2n × 2n. Quantum gates are implemented via the action of a

Hamiltonian over a specific time which results in a unitary time evolution according to

the Schrödinger equation. Valid quantum gates are always unitary as it is this property

which ensures that the sum of probabilities for all possible outcomes of a quantum state

remains exactly 1. The Clifford gates are those that map Pauli operators onto other Pauli

operators, and the set can be generated by various combinations of the set {H,CNOT, S}

where the S gate is Z1/2. The Gottesman-Knill theorem [7] states that any Clifford circuit

of finite size can be simulated in polynomial time with a classical computer. The Clifford

gate set in combination with any non-Clifford gate is sufficient for universal quantum

computation; two of the most commonly considered non-Clifford gates are the T gate

(Z1/4) and the Toffoli gate. This restricted gate set is more often considered in the

context of fault tolerant quantum computing. For example, the surface code has easy

(low-overhead) access to the Clifford gate set, but more costly methods are necessary to

get access to a non-Clifford gate, such as magic state distillation. The Clifford S gate is

not available transversely in the surface code but may be made available with relatively

low overhead code manipulation techniques [8]. The Toffoli gate can be decomposed in

terms of Clifford gates and T gates, and any arbitrary angle single qubit rotation can be

decomposed into sequences of T gates and H gates, as per the Solovay-Kitaev theorem [9].

1.2.5 The DiVincenzo criteria

In 2000 David DiVincenzo proposed a list of criteria that are necessary for the construction

of a functional quantum computer [10].

1. A scalable physical system with well characterized qubit.

The current state of the art involves using 10s of qubits, and it will be necessary

to increase the size of these devices to tackle larger problems. Error correction

techniques incur a large physical qubit overhead and so an architecture must indeed

be very scalable to realise a fault tolerant device.

2. The ability to initialize the state of the qubits to a simple fiducial state

For example we must be able to prepare the state |0...0〉 to enable a consistent

6

starting point for algorithms.

3. Long relevant decoherence times

The decoherence times will need to be long relative to the time duration required

for gates, so that multiple gates can be applied before coherency is lost.

4. A universal set of quantum gates

The available gate set for a particular architecture may be quite restricted at the

physical level, but with a universal set (such as CNOT and arbitrary single qubit

rotations) any arbitrary algorithm can be performed with an appropriate decompos-

ition.

5. A qubit-specific measurement capability

In the case of multi qubit measurement we must be able to identify which measure-

ment result corresponds to which qubit.

Two further criteria were later added by DiVincenzo which are necessary for quantum

communication. Quantum communication may be a necessary feature for particular mod-

ular quantum computing designs, such as the use of photonic-interconnects between small

modules of trapped ion processors.

1. The ability to inter-convert stationary and flying qubits

2. The ability to faithfully transmit flying qubits between specified locations

The following chapter provides an overview for some of the leading quantum computing

platforms with a focus on trapped ion architectures. The chapter also introduces many of

the most prominent quantum algorithms and characterizes them by their required stage

of hardware development, near term or fault tolerant.

1.3 Summary of thesis

The aim of this thesis is to help bridge together quantum hardware and applications. As a

theoretical research student within an experimental ion trapping group, I initially focused

on problems relevant to our shuttling based design. This included developing a routing

algorithm to enable global connectivity, and developing error models to assess the design

and meter experimental priorities. The latter half of my work was more hardware agnostic,

and I investigated fault tolerant quantum chemistry algorithms and resource estimation

within the surface code. I then brought in broader hardware considerations, such as the

7

how the clock rate (code cycle time) of the hardware can influence the ability to achieve

a quantum advantage.

Chapter 2 provides an overview of quantum computing applications and hardware. The

NISQ and fault tolerant regime are distinguished, and relevant hardware considerations

for each are introduced.

In chapter 3 we present a routing algorithm for enabling global connectivity in a shut-

tling based trapped ion architecture, and quantify its properties against device considera-

tions using a developed simulation tool. We compare the routing algorithm, which uses no

positional swaps, against a positional swap based routing algorithm, and also investigate

the effect of increasing the ion density for a given device.

Chapter 4 will introduce an error model which uses the cost of connectivity results of

the previous chapter. The error model is used to estimate the achievable circuit depth

as a function of experimental parameters such as gate fidelity. We use the Quantum

Volume metric to assess the shuttling based design, and focus on the cost of enabling global

connectivity. We compare the shuttling based design against a model for a superconducting

device which enables global connectivity through sequences of nearest neighbour swap

interactions.

Chapter 5 presents methods for calculating the logical resource requirements for fault

tolerant quantum chemistry algorithms. We use quantum algorithm construction tools,

such as Microsoft’s SDK, Q#, and compare the resources for different Hamiltonian sim-

ulation techniques. We present physical qubit and run time requirements for threshold

quantum advantage chemistry applications by defining the characteristics of a fault tol-

erant device, and briefly investigate some space and time optimization choices that are

available.

Chapter 6 thoroughly investigates the available time optimization choices available

within a surface code error corrected quantum computer. The code cycle time (base

unit of operation in the surface code) may vary by orders of magnitude between different

architectures, and so we investigate to what extent slower code cycle times can be mitigated

by utilizing additional qubits. We parallelize layers of T gates which enables one to linearly

trade physical qubits for run time. We investigate the physical resource requirements of

applications in chemistry and cryptography which have strong commercial incentives.

8

1.4 Contributions

Chapter 3 and 4 follow the results and narrative of the paper titled “Efficient Qubit Rout-

ing for a Globally Connected Trapped Ion Quantum computer” [11] which was published

in Advanced Quantum Technologies in August 2020. The simulation tool used to invest-

igate routing and the overarching form of the routing algorithm were created by myself.

Dr Steven Herbert provided helpful early discussions on the routing and later provided

a unique routing feature for ions assigned to interior gate zones. I wrote the manuscript

with the aid of invaluable feedback, provided by the co-authors Dr Steven Herbert, Dr

Sebastian Weidt, and Prof. Winfried Hensinger. The two chapters also include the results

of some investigations that were performed after the publication of the paper.

Chapter 5 follows the paper “How will quantum computers provide an industrially

relevant computational advantage in quantum chemistry?” [12]. The paper is of a broad

perspective type and involved collaboration with experienced classical-quantum chemists.

I contributed by using Microsoft’s Q# software to calculate the resources required for

ground state energy calculations of particular molecules. The work involved adapting

existing Q# code for our purposes and using the chemistry software NWCHEM to gen-

erate the electron integrals for particular molecules. I contributed small sections to the

manuscript, mostly relating to methodology as opposed to the perspective, and provided

multiple rounds of feedback. The results provided by Q# were used by lead author Dr.

Vincent Elfving to calculate the final resource estimations. The final results presented for

the Qubitization method made use of alternative analysis which was performed by Dr.

Vincent Elfving.

Chapter 6 follows the paper ”The Impact of Hardware Specifications on Reaching

Quantum Advantage in the Fault Tolerant Regime” [13], which at the time of writing is

in the journal submission process. I developed the general resource calculator tool which

utilizes the error correction methods as laid out by Litinski [14]. I used the tool to assess

a wide range of considerations, including the code cycle time of the hardware, and the

measurement depth of the logical algorithm. I wrote the manuscript and was aided by

multiple rounds of feedback from co-authors, Dr Vincent Elfving, Dr Sebastian Weidt, and

Prof. Winfried Hensinger.

9

Chapter 2

An overview of hardware and

applications

This chapter provides an overview of the available hardware types, and introduces a vari-

ety of quantum algorithms and their applications. Considerations for running quantum

algorithms on realistic hardware are discussed.

2.1 NISQ and fault tolerance

The quality of logical operations in a near term device sets an upper limit on the achievable

circuit depth (the number of sequential logical operations). Many of the original quantum

algorithm proposals require a circuit depth which greatly exceeds the capabilities of a

noisy device, and so error correction techniques must be utilized to enable their use.

The quantum threshold theorem states that a quantum computer using error correction

schemes, and a physical error below a certain threshold, can suppress the logical error

rate to arbitrarily low levels and therefore could run an algorithm with an arbitrarily

long circuit depth provided enough physical qubits are available [15, 16, 17]. There is a

large overhead of physical qubits associated with error correction, and depending on the

degree of error suppression, the ratio of logical qubits to physical qubits may be of the

order of 1:1000. The number of qubits in state-of-the-art quantum computers is in the

range of 10-100 at the moment, and it will be many years before a quantum computer

has sufficient qubits to be fully fault tolerant. This long estimated timeframe motivated

researchers to ask whether there is anything useful that can be done with small scale noisy

quantum computers, and in 2018 Preskill coined the term “NISQ” (noisy intermediate

scale quantum) [18]. Algorithms have now been designed specifically for NISQ quantum

10

computers, and they generally consist of a low circuit depth which must be iterated many

times. In this chapter we will provide an overview of the prominent algorithms for these

two regimes and their potential applications.

2.1.1 NISQ and computational power

Numerous research teams and companies are developing quantum platforms and it is of

interest to compare the strengths and weaknesses of the different approaches. When as-

sessing near term quantum computers, the concept of “quantity hype” is helpful. Quantity

hype refers to the occasional over emphasis on the number of qubits within a NISQ device,

and while this is an important figure of merit, when stated alone it fails to reflect on the

quality of the control over the qubits. The computational power of a NISQ device will

be a function of both the number of qubits, and the achievable circuit depth. A higher

degree of control on the qubits, which can relate to the coherence time, or the fidelity of

logical operations, implies the ability to reach longer circuit depths. The metric quantum

volume was proposed by IBM [19, 20]. Quantum volume is a hardware agnostic measure

of computational power for NISQ devices and it achieves this by defining a standardized

random circuit to benchmark against. The metric places equal importance between the

number of physical qubits and the achievable circuit depth. It includes many relevant

factors such as the power of the native logical gate set, the cost of enabling connectivity

between qubits, the fidelity of operations. We will cover quantum volume in greater detail

in chapter 4.

2.1.2 Fault tolerance and error correction

The most prominent error correction technique is the surface code which relies only on

nearest neighbour interactions at the physical level, and has one of the most favourable

threshold error rates at ∼ 1% [21]. This threshold error implies that if the base physical

error can be kept below 1% then the device would be able to run algorithms with arbitrary

circuit depth as long as the sufficient number of physical qubits can be reached to encode

the problem and cover the associated overhead. The error rates here refer to a depol-

arizing error channel where there is a probability (error rate) of introducing a random

Pauli error per operation, in addition to the desired operation. One cannot confidently

convert experimentally achieved gate fidelities into error rates of this form without further

characterization procedures, and we expand on this issue in more detail in chapter 6.

There is a well developed theory of classical error correction; the underlying principle

11

is redundancy, where the degree of protection can be increased by increasing the number

of bits used to represent a single bit. There is no straightforward method for adapting the

classical error correction techniques over to a quantum system, and the clearest challenge

is the no-cloning theorem [22]. The no-cloning theorem states that it is impossible to con-

struct a general unitary operator Uclone which can perform the operation (for an arbitrary

unknown state):

Uclone(|ψ〉 ⊗ |0〉)→ |ψ〉 ⊗ |ψ〉 . (2.1)

An additional complication for quantum error correction is that there is more than one

potential error type, in additional to the standard bit flip error (X-error in our Bloch sphere

picture) there is also the potential for phase flip errors (Z-errors). Finally, a quantum error

correction code must be very careful in its use of measurement operations for the detec-

tion, because a general quantum measurement collapses the quantum information into the

logical basis. These issues were originally feared to be insurmountable but in 1995 Shor

proposed the first quantum error correction scheme [23]. Following this, the arbitrary sup-

pression of error was shown in the threshold theorem and these results strongly motivated

continued research into physically realising a quantum computer.

The quantum error correction codes introduce redundancy by distributing the quantum

information of the initial state into an entangled multi-qubit logical state, effectively ex-

panding the Hilbert space. An example of a two-qubit encoder is [24]:

|ψ〉 = α |0〉+ β |1〉 → |ψ〉L = α |00〉+ β |11〉 = α |0〉L + β |1〉L (2.2)

Note that the above procedure is not equivalent to cloning the initial state. An ancillary

qubit can be used to control particular operators on the logical qubit and it can then be

measured without disturbing the encoded information to identify errors. This process is

called syndrome extraction. The redundancy of this two qubit encoding is sufficient to

detect the existence of an error but does not reveal which qubit the error occurred on

and therefore is insufficient for correcting errors. The three qubit repetition code is the

smallest instance of an error correction code. The code distance, d, is defined as equal to

the numbers of errors that would convert one logical state to another, in the case of the

three qubit repetition code this is 3, and it can be related to the number of errors that can

be corrected, t, by t = b((d − 1)/2)c. Generally, the greater the redundancy in the error

correction code the more errors that can be corrected. In the surface code the number

of physical qubits per logical qubit scales as 2d2. The surface code is estimated to have

an approximate threshold of 1%, and the logical error rate per logical qubit pL, per code

12

cycle, as a function of the base physical error rate, p, can be approximated by [25]

pL = 0.1(100p)(d+1)/2. (2.3)

Equation 2.3 defines a functional form but the specific coefficients (here 0.1 and 100)

are determined through numerics with inherent assumptions which include the type of

error model and the efficiency of the decoder. The act of encoding qubits in an error

correction scheme can often make the available logical gate set more restricted. In the

case of the surface code, only the Clifford gates can be applied transversally (or with

low overhead), where transversal pragmatically means easy or cheap to apply. More

specifically, a transversal gate implies that each qubit in a code block is acted on by at most

a single physical gate and each code block is corrected independently when an error occurs.

The Clifford S gate is not available transversely in the surface code but may be made

available with relatively low overhead code manipulation techniques [8]. As mentioned

previously, the Clifford gate set is insufficient for universal quantum computation, and

so a non-Clifford gate must be introduced by more costly methods. The T gate can be

constructed by consuming a magic state, |m〉 = (|0〉 + eiπ/4 |1〉)/
√

2 [26], which can be

produced with an error proportional to the physical error, independent of the code distance

[27]. To create a sufficiently high quality magic state, a distillation protocol [28, 29] can be

used which essentially involves converting many low fidelity states into fewer higher fidelity

states. The time cost for a logical operation on an error corrected quantum computer will

be many orders of magnitude greater than the cost for a logical operation on a classical

computer. The first instances of a quantum advantage are likely to come from problems

for which there exists an exponential speed up as opposed to a merely polynomial one.

When choosing an error correction protocol, perhaps the most important figure of

merit is the threshold of the code, i.e. the error rate below which it is desirable to increase

the degree of encoding. If experimental effective error rates are above the threshold of the

code, then no benefit can be gained by using the encoding. The most well studied error

correction scheme is perhaps the surface code which benefits from the highest threshold

found so far at approximately 1% [25] (this value comes with many assumptions on the

error model and decoder performance). Color codes are another well studied family, in

short they have a more favourable encoding rate as a function of code distance, but suffer

from a worse threshold than the surface code. Most codes require only nearest neighbour

stabilizer measurements (for syndrome extraction), but hardware which has a low cost

associated with physical connectivity may be suitable for codes with more demanding

stabilizer measurements. Error correction codes which rely on global interactions at the

13

physical level have favourable encoding rates as a function of code distance [30] but to

determine their effective thresholds more research is needed, and it must include the

effective cost of enabling that connectivity for a particular hardware.

2.1.3 Repetition code example

In this section we will demonstrate perhaps the simplest example of error correction, the

three qubit repetition code. In this code the logical qubit is distributed across three en-

tangled physical (data) qubits, and error information is extracted via interactions between

the data qubits and two additional ancilla qubits. The ancilla qubits can then be meas-

ured “mid-circuit”, and this “syndrome” is used to determine which corrections should

be applied, if any. When measuring these syndromes we are measuring multi-qubit sym-

metries (the parity of stabiliser operators) that are common for both logical basis states,

hence measuring these symmetries does not collapse the computational wave function and

yet can still be used to detect errors. For this code the logical 0 is defined as |000〉 and

the logical 1 is defined as |111〉; this repetition code can only protect against bit flip type

errors (not phase) and therefore is not truly functional. Shor’s first code to correct both

phase and bit type errors involves concatenating this bit flip repetition code with itself in

the conjugate basis, i.e. an alternative version which instead only protects against phase

flips, requiring a total of 9 data qubits. Using figure 2.1 we can see how the repetition

code protects against X type errors.

This repetition code uses 2 ancilla qubits to extract error information. When the

qubits are pictured as arranged in a linear string of D1, A1, D2, A2, D3, (this is a different

orientation to figure 2.1 but it is functionally equivalent) each ancilla qubit interacts with

the two neighbouring data qubits via a CNOT interaction. If the two data qubits are

both in the |1〉 state, then both CNOTs are applied, if they are both in the |0〉 state, then

neither CNOTs are applied, and therefore in both situations the middle ancilla qubit will

be measured as 0. When the data qubits do not agree, i.e. 01 or 10, then only one CNOT

is applied and the ancilla qubit will be measured as 1. The ancilla qubits then measure the

parity of the two neighbouring data qubits, and by considering the value of both ancilla

qubits after the syndrome extraction we can identify the most likely location of error. 00

implies no error, 01 implies D1 = D2 6= D3 therefore D3 is the most likely source of error,

and so on. Error correction codes can account for continuous errors as well (it does not

have to be a pauli X (bit flip) error). When the data qubit is in superposition between |0〉

and |1〉 then the CNOT would be applied in superposition, but this combined state would

14

Encoding Syndrome extraction

|ψ〉D1 •

E

•

|0〉D2 • |ψ〉L • •

|0〉D3 •

|0〉A1

|0〉A2

Figure 2.1: The circuit diagram for the three (data) qubit repetition code. First in the

encoding stage, the arbitrary single qubit state |ψ〉 is entangled across three data qubits.

Next the error block is applied, which for the code to be successful, will consist of a single

arbitrary angle X rotation on any single data qubit. Next CNOTs with control on the

data qubits and target on the ancilla qubits are used to extract error information. Finally

the ancilla qubits can be measured mid-circuit, which can then be used to determine the

necessary corrections.

then collapse upon ancillary measurement, effectively collapsing a continuous X error into

either having occurred (full bit flip error) or not, with probability proportional to the

magnitude of the error. When an error is introduced on two qubits, the 3 qubit repetition

code will correct towards the majority and therefore fail. We can increase the distance of

the code by increasing the redundancy, the 5 data qubit (4 ancilla) repetition code can

correct errors on up to 2 qubits. The general repetition code of N qubits can correct for

b(N − 1)/2c errors.

2.2 Overview of hardware types

There are numerous physical systems being used to realize qubits, among them include:

superconducting devices [31], trapped ions [32], neutral atoms [33], quantum dots [34],

nuclear magnetic resonance [35], linear and nonlinear optical devices [36], and diamond

NV centres [37]. In this section and in section 2.3 we provide an overview of some of the

most developed hardware platforms, with a particular focus on trapped ions. The primary

characteristics that determine the potential for a given hardware type include, gate times,

coherence times, gate fidelities, scalability, and the cost for connectivity.

15

2.2.1 Superconducting devices

In 1999 the first superconducting qubit was developed [38] and now superconducting

devices are one of the leading platforms; they are the primary focus of giants such as

IBM and Google. Superconducting devices have high designability and rely on existing

semiconductor micro-fabrication processing techniques. Each qubit must be fabricated

with a non-perfect process which necessitates individual qubit calibration and character-

ization for near term devices. There are many types of superconducting qubits, but they

all use a Josephson junction which is a break of weak connection between an otherwise

continuous wire where current flows by quantum tunneling. This element introduces a non-

linear inductance which transforms the otherwise harmonic oscillator into an an-harmonic

oscillator. The an-harmonic oscillator has a non-constant gap between energy levels which

allows a two level system to be defined. Charge, flux, and phase qubits are the three

major archetypes of qubit type. Each uses a different feature as the qubit energy levels,

but hybridisation between these three types exists. The transmon qubit was proposed in

2007 [39] and it is now one of the most popular categories of superconducting qubits. The

transmon qubit benefits from a reduced sensitivity to charge noise as compared to other

approaches. The qubits are generally designed to be compatible with microwave control

which again leverages an existing mature technology. Superconducting devices must be

operated at the ∼ 10mK level [40] which is a stringent cooling requirement for which

a dilution refrigerator must be used . Dilution refrigerators generally require He-3 for

this degree of cooling which in recent years is becoming increasingly scarce [41]. The re-

quirement of a dilution refrigerator also presents serious engineering challenges for scaling

superconducting devices, such as the co-location of the control and readout electronics

which generally cannot withstand the low temperature. It is an active area of research to

enable the control electronics to exist within the dilution refrigerator [42].

The lifetime of superconducting qubits has improved greatly since their inception.

In 2010 the T1 (depolarisation/relaxation) time of a transmon qubit was demonstrated

to be 1.2µs [43], whereas in 2020 a T1 time of 84µs was shown [44]. For more exotic

superconducting qubit types even higher T1 times have been demonstrated, such as 240µs

for a 3D transmon [45], and 1600µs for a 0− π qubit [46].

There are numerous methods of effectuating a two qubit interaction in superconducting

devices, and the options will depend on the superconducting qubit type. One of the more

commonly used two qubit interactions is the iSWAP gate which when combined with

arbitrary single qubit gates constitutes a universal gate set [47]. The CNOT gate can

16

be constructed with two applications of the iSWAP gate with additional single qubit

operations. The two qubit gate interactions for superconducting devices are very fast

(in comparison to trapped ion gates), which is a necessity due to the considerably lower

coherence times. In 2016 McKay demonstrated a
√
iSWAP gate with 98.2% fidelity taking

183ns [48]. More recently, in 2020, a two qubit gate fidelity of 99.5% was demonstrated

with superconducting qubits [49].

Qubits within a superconducting device generally exist on a two dimensional grid.

The qubits are static, and the two qubit interaction can be realized only between nearest

neighbours. Long distance interactions between qubits must be decomposed into sequences

of swap operations, for which the routing and scheduling can be optimized [50]. The costs

for enabling global connectivity between a shuttling based trapped ion architecture and a

superconducting square grid are compared in chapter 4 [11].

2.2.2 Photonics

A qubit can be defined within two modes of some degree of freedom of the optical field,

which includes: orthogonal polarizations, propagation paths, frequency modes, and tem-

poral bins. The numerous number of modes within a particular degree of freedom can

be used to define qudits (a quantum state with greater than 2 levels), and in principle a

single photon with many modes can represent multiple qubits. The scheme for performing

n-dimensional unitary transformations on the mode space was originally outlined by Reck

et al [51], but encoding multiple qubits into a single photon leads to an exponential num-

ber of optical components and therefore it is not a viable method for a scalable quantum

computer [36]. A dual rail qubit is more often considered where each photon has two

modes, with one photon per qubit.

Single qubit operations are easily implemented with interferometry but conditional two

qubit operations are more challenging since they involve a nonlinear optical interaction.

Early proposals for two qubit interactions simulate the nonlinear operations with linear

optics and measurements which results in a probabilistic gate. In 2001 Knill, Laflamme

and Milburn (KLM) proposed a scalable photonic scheme that enables non-deterministic

two qubit interactions requiring only linear optical components [52]. There is a large

overhead of ancilla qubits with the KLM scheme but the scaling of total components is

linear in contrast to the exponential scaling of encoding a single photon across many modes

[36].

Measurement-based quantum computing (MBQC) [53, 54], aka cluster state quantum

17

computing, is an alternative method to the circuit model. It first prepares an entangled

resource state and then the specifics of the computation are performed by single qubit

measurements, which is a one-way process in contrast to quantum logical operations.

There is a polynomial overhead associated with MBQC relative to the circuit model where

the size of the cluster state scales with the circuit size (qubits x depth), and the number of

single qubit measurement time steps scales with the depth of the circuit based approach.

The MBQC approach is very appealing for photonic quantum computers because there are

efficient means to generate the initial cluster state, such as with entangled photon sources,

without the need for deterministic two qubit interactions. The cluster state is prepared

first, which can be done probabilistically (with non-deterministic gates), and it is then

consumed with measurements specific to the desired algorithm. The MBQC method may

be the most reasonable path forward for photonic devices [55].

For a more detailed review of photonic devices and their history of development see

the review [36].

2.3 Trapped ions

Trapped ions have many features which make them an appealing choice for a quantum

computing platform, such as the fact that each ion of the same species is naturally identical,

in contrast to the manufactured approaches such as superconducting qubits. Ions are

trapped with electric fields inside an utlra-high vacuum environment and so they can be

well isolated from sources of noise. The laser cooling of ions was first demonstrated in

1978 [56] which was soon followed by the trapping of a single ion [57]. Examples of now

commonly used ions include 43Ca+, 171Yb+, 137Ba+, and 25Mg+. The first proposal of

a quantum computer consisting of trapped ions was in 1995 by Cirac and Zoller [58].

Multiple ions can exist within a single potential well and individual addressability can be

accomplished with lasers. Entanglement can be enabled by mapping the logical state onto

the motional mode that the ions share in the harmonic potential. Following the original

proposal, an experimental realisation of the CNOT was demonstrated [59], but the gate

scheme required the ions to be in the motional ground state and the cooling required for

this is experimentally difficult. A new gate scheme was proposed by Mølmer and Sørensen

[60] which requires considerably less cooling for high fidelity gates.

It is not possible to create a static electric field which can trap an ion in three dimen-

sions, which is a result of Gauss’ law which states the divergence of an electric field in free

space must be zero. There are two common trapping schemes that get around this issue,

18

the Penning trap uses both a static electric field and a magnetic field, and the Paul trap

uses a time-dependent electric field [61]. In the case of the Paul trap, a saddle shaped

potential can be generated which is then oscillated effectively forming a confining bowl

potential [61].

There is a great deal of variation between different trapped ion platforms. In this

section some of the main differing themes will be covered in addition to how they can

impact upon applications and feasibility.

2.3.1 Optical and hyperfine qubits

There are two main approaches of transition type for trapped ion quantum computers,

optical and hyperfine. The logical states of optical qubits are energy levels separated by an

amount corresponding to a photon in the optical band. The transitions (logical operations)

are driven by lasers, and stabilising these lasers to a sufficient line width is challenging.

The number of highly stabilized lasers required for a device is linearly proportional the

number of qubits, and therefore this may limit the ability to scale to large devices. The

logical states of a hyperfine qubit corresponds to otherwise degenerate energy levels which

undergo small shifts due to an interaction between the nucleus and electron clouds. The

transition can be then be driven by a field in the microwave frequency (generally a few

GHz), which can be emitted across a wide area which potentially makes scaling to larger

devices easier. Hyperfine qubits benefit from extremely long lifetimes and high fidelity

single qubit gates. The trapped ion two qubit gate requires the qubit internal state to

be coupled to the shared motional mode of the ion string in the potential well, and the

strength of this coupling is characterized by the Lamb-Dicke parameter. The microwave

frequencies associated with the hyperfine qubits results in a Lamb-Dicke paramater which

is orders of magnitude lower than for optical qubits which would result in the necessary

gate times exceeding that of the coherence time. This issue with the hyperfine qubits can

be alleviated by making use of a two photon Raman transition which necessitates two laser

beams. High two qubit gate fidelities have been achieved using this scheme [62], but the

requirement of lasers may make scaling to large devices more challenging. Another method

of using the hyperfine qubits was proposed in 2001 which relies only on the microwave

field to drive the transition [63]. The scheme is enabled by making use of a static magnetic

field gradient which creates a greater coupling between the qubit states and the associated

motional states and has been experimentally demonstrated [64, 65, 66, 67].

19

2.3.2 Laser based gates and laser free gates

Laser based entangling gates can generally be performed more quickly than laser free gates

and historically have achieved higher two qubit gate fidelities. However, an architecture

with access to logical gates that do not require lasers may be easier to scale to large device

sizes. Laser free gates have been demonstrated with a time cost of 3400 µs [68], 3250 µs

(99.7% fidelity) [65] and 2938 µs [69] and laser based gates have been demonstrated in 30

µs [70] and 115 µs (99.9% fidelity) [71]. A two qubit gate has been enabled with lasers

as fast as 1.6 µs with a fidelity of 99.8% [72]. A recent work has demonstrated laser free

gates that reach a comparable fidelity to the laser based approaches with a time cost of

740 µs [73]. The speed of the laser free gates is dependent on the strength of the magnetic

field gradient, and in the Sussex blueprint for a trapped ion architecture the two qubit

gate is estimated to require only 10 µs [74].

2.3.3 Scaling beyond a single ion string

Arbitrary connectivity can be accomplished between a string of ions in a single trap

with particular gate schemes but this design has a practical upper limit to the size of

the device (approximately 50-100). As the ion count within a single trap increases, the

inter-ion spacing reduces which increases the difficulty of targeting particular qubits with

laser controllers. An additional difficulty is related to implementations of the two qubit

gate, where the coupling strength between a pair of ions scales with distance, d, as 1/dα,

where α ranges from 1 to 3 [75, 76, 77], which results in the required time to perform

gates increasing with larger chains. Finally, the density of the motional modes increases

with chain length which increases the chance of cross-talk for the two qubit gate thereby

lowering fidelity. This is because the motional modes of the chain are used within the two

qubit interaction.

Beyond increasing the size of a single trap, there are alternative methods to scale.

The Quantum Charge Coupled Device (QCCD) was proposed by Wineland et al [78] and

expanded by Kielpinski et al [79]; the scheme involves 2D arrays of linear traps connected

by junctions in which the ions can move around. In this design the ions are physically

transported (shuttled) between specialized regions for storage and logical operations. A

device can have numerous traps dedicated to logical operations (gate-zones) which avoids

the downsides of performing logical operations on large ion strings. The ion traps are

produced from a silicon wafer, with manufacturing difficulties setting an upper limit on

their possible size. Thus, to continue to scale it is necessary to connect multiple modules

20

of finite size.

There are two primary methods of connecting trapped ion modules, the first which we

will discuss is the use of photonic interconnects which was proposed by Monroe et al [80].

The photonic interconnects can be used to connect modules which are in separate vacuum

chambers. These optical connections are probabilistic but heralded which contributes to

defining the connection rate. The protocol relies on entangling the ion with a photon

which can be transported via a fiber. Two photons from separate modules interfere at a

50/50 beam splitter which effectuates entanglement between the respective ions. The ions

typically chosen for quantum computing do not have favourable wavelengths for transmis-

sion along the fiber. An additional ion species can be introduced to improve transmission,

and this would necessitate further interactions between the data ions and transmitting

ions [81]. In 2020 Stephenson et al generated Bell pairs between modules at a rate of

182Hz with a fidelity of 94% [82]. Entanglement distillation can be used to increase the ef-

fective fidelity of this process which would reduce the rate of interaction, and it essentially

involves combining many poor quality states into fewer higher quality states. The process

of distillation is itself probabilistic and hence the required number of rounds is not always

the same and this can cause further slow-down [83]. The rate of 182Hz is of a comparable

order to the rate of microwave based gates, but considerably slower than state-of-the-art

laser based local two qubit interactions.

The alternative approach was proposed by our group and outlined in Lekitsch et al

[74]; it involves constructing a larger device by aligning modules together within a single

vacuum system. The edges of each module are carefully designed so that the modules can

be brought together in such a way that the electric field lines connect, thereby allowing

ions to be shuttled across the gap.

2.3.4 Shuttling

Within the QCCD design, ion traps are segmented by individually controllable electrodes

and the ions can be moved by changing the applied electric field. In 2012 Walther et

al demonstrated fast ion shuttling with very low levels of motional heating [84] and in

2018 high state fidelity shuttling [85] was demonstrated where a distance of 280µm was

traversed in 12.8µs with a state fidelity of 99.9994%. The associated state fidelity of shut-

tling is expected to be very high relative to two qubit gate fidelities. This implies that

distant connectivity can be enabled efficiently relative to architectures which require two

qubit logical operations to enable beyond nearest neighbour connectivity, such as super-

21

conducting devices. The cost of connectivity is compared between these two architecture

types in chapter 4. Junctions are necessary to construct a connected trapping array, and

shuttling across junctions is generally a more difficult task than linear shuttling. The first

successful junction shuttling was demonstrated in 2006 by Hensinger et al through a T

shaped device [86]. It has since been demonstrated in both Y [87] and X [88, 89] junctions.

Separation and combination are necessary operations for the QCCD scheme, where ions

are individuated away from a string, or merged into a string within a single potential well

respectively. Ion separation and combination have been experimentally demonstrated in

a fast manner and with low motional heating [90]. Ion string rearrangement can be ac-

complished with positional swaps which have been demonstrated within 25µs and fidelity

of 99.8% [91]. The degree to which swaps will be favorable to utilize will depend on the

underlying design of the QCCD architecture. If the ion string is within a gate zone then

logical swap operations can also be used for reordering but the associated cost may be

higher than positional swaps. The effectiveness of ion routing algorithms both with and

without positional swaps is compared in chapter 3.

2.3.5 Blueprint for a microwave trapped-ion quantum computer

This section concentrates on the modular design of our research group [74] which is the

primary focus of chapter 3 and 4. As discussed in the previous section, the design uses

QCCD modules which consist of a 2D array built up by an iterated X-Junction (shown in

figure 2.2). The limitation of the maximum micro-fabrication size of modules is overcome

by carefully aligning modules with piezoelectric actuators so that shuttling across modules

is possible. The primary consideration behind this design was scalability, with an aim to

be able to one day reach the very large number of physical qubits necessary for fault

tolerant computation (which with the surface code may be in excess of 1 million qubits).

Under each gate zone is a high-current carrying wire which generates a local magnetic

field gradient enabling laser free gates. The static magnetic field and microwave based

scheme has been demonstrated experimentally by the group [64]. The magnetic field

subjects the ion (171Y b+) to a Zeeman splitting within which a qubit can be defined,

and the degree of the splitting is dependent on the magnitude of the field. Therefore in

this scheme the magnetic field gradient enables one to choose the microwave transition

frequency by positioning it within specific locations in the gatezone. The microwave fields

can be broadcast over a large 2D array which compares favourably (in scalability terms)

to the alternative of requiring precisely aligned lasers for each gate zone.

22

Figure 2.2: A single X-Junction within the QCCD array presented by Lekitsch et al [74].

Each X-Junction contains 3 specialized regions which ions can be transported (shuttled)

between. The gate zone in which either one or two qubit logical operations can be per-

formed, the readout zone for measurement, and the loading zone where new ions enter the

device (for initialization or to replace a lost ion).

In the NISQ regime global range interactions can be mediated by shuttling operations.

Shuttling cannot be performed concurrently with gates and so a near term algorithm would

be decomposed into an alternating sequence of shuttling and gates. The ions experience

a certain degree of motional heating while in the trap. Shuttling process fidelities reduce

with total accumulated heating, as can the quality of two qubit interactions. Cooling

techniques which are routinely used for ion initialization, such as Doppler cooling, and

sideband cooling, remove quantum information and so they cannot be used mid-circuit.

Sympathetic cooling is a technique that preserves quantum information; an alternative

ion species is introduced which does not store quantum information and can be directly

cooled. The cooling can then be passed onto the data ions when they are stored in the

same potential well.

2.4 NISQ algorithms and applications

State of the art quantum computers have around 10-100 noisy qubits, where noisy implies

imperfect logical operations and coherence times which limit the achievable circuit depth.

A fault tolerant quantum computer with physical qubit numbers in excess of a million

would be able to run algorithms with proven exponential or near exponential speedups,

but the realization of such a device may be 5-10 years away. Researchers, motivated to

23

make use of the hardware that is currently available, have developed algorithms which

are designed specifically with noisy qubits in mind. The most common and general form

of a near term algorithm are variational in nature, meaning the parameters associated

with a quantum circuit are updated over the course of the algorithm. These Variational

Quantum Algorithms (VQA) are sometimes called hybrid algorithms, because they also

make use of a classical computer. The algorithm consists of a parameterized low depth

circuit (low enough for noisy qubits), the results of which are fed into a classical optimizer

which updates the relevant parameters. This process is then iterated to converge towards

a desired solution. The workflow for a VQA can be broken into four steps [92]:

1. The objective function encodes the problem to be solved

2. The parameterized quantum circuit is run, with parameters which are later tuned

to minimize the objective function

3. A measurement scheme computes expectation values used to evaluate the objective

function

4. The classical optimizer proposes new parameters to minimize the objective function

There are many possible methods that could be used for the classical optimizer, but the

most generally considered is gradient descent where one moves in the opposite direction

to the steepest gradient in search of the global minimum. Variational quantum algorithms

can suffer from barren plateaus, i.e. a vanishing gradient and this problem is more likely

to arise as more qubits are used [93]. Wang et al found that noise induced barren plateaus

are guaranteed to occur given a sufficiently high circuit depth, and importance is placed

on identifying viable low depth circuit ansatzes (aka hardware inspired) for VQAs [93].

2.4.1 Variational Quantum Eigensolver

The Variational Quantum Eigensolver (VQE) [94, 95, 96] is a type of VQA used in the

context of quantum chemistry, such as estimating the ground state energy of a molecule.

In general the objective function is the expectation value of the energy of the Hamiltonian,

which is guaranteed by the Rayleigh-Ritz variational principle to be upper-bounded by

the true ground state energy [94, 95]. The VQE algorithm requires O(1/ε2) iterations

of the O(1) depth paramaterized circuit for an accuracy ε which is in contrast to the

exponential scaling of exact classical methods and the O(1/ε) circuit depth for the fault

tolerant quantum phase estimation algorithm. The accelerated VQE algorithm interpol-

ates between the near-term and fault tolerant runtime scaling by utilizing the maximum

24

achievable circuit depth [97]. The quality of the initial state starting guess (ansatz) will

determine the rate of convergence; in quantum chemistry a usual choice is the Hartree-

Fock approximation [98]. The capabilities of the hardware often limits the available ansatz

either by the achievable circuit depth or by the cost associated with connectivity [99]. In

superconducting architectures, distant connectivity between qubits is very costly relative

to nearest neighbour interactions, which leads to a balancing act between the benefits

of a higher quality ansatz and the feasibility of its implementation on noisy hardware.

The VQE algorithm has been demonstrated for small molecules on various architectures

[100, 101] but serious development will be required on both the algorithmic and hardware

capability side for hopes of a quantum advantage.

2.4.2 Quantum Approximate Optimization Algorithm

The Quantum Approximate Optimization Algorithm (QAOA), another VQA algorithm,

potentially provides approximate solutions to combinatorial optimization problems in

polynomial time. The QAOA was first constructed and implemented by Farhi et al and

used for MaxCut problems [102], which was one of the first problems ever found to be

NP-Complete. Following the initial work of Farhi, QAOA was used on a similar problem

type (MAX-3XOR) and was found to outperform the state of the art classical alternative

[102]. The result motivated an improvement to the classical algorithm which enabled it to

outperform the QAOA approach. This highlights the fact that the goalposts of quantum

advantage are non-static; classical approaches can often benefit from quantum inspiration

[103]. Methods now exist for extending the applicability of the QAOA algorithm to a

wider class of problems, such as graph colouring, and the travelling salesman problem

[104]. As with all of the variational type algorithms it is challenging to concretely determ-

ine their effective speed up and therefore the size at which they can outcompete classical

alternatives. Problems that can be cast as a Quadratic Unconstrained Binary Optimiz-

ation (QUBO), which includes a wide range of applications from finance, economics and

machine learning, can be addressed with the QAOA algorithm [105]. A recent work es-

timated that several hundreds of qubits will be necessary for a speed up on representative

combinatorial problems [106].

2.5 Fault tolerant algorithms and applications

Most of the initial quantum algorithm development was designed with a fault tolerant

quantum computer in mind which implies there is no limit on the achievable circuit depth.

25

In this section an overview of some of the most prominent quantum algorithms and sub-

routines is provided.

2.5.1 Quantum Fourier Transform

The Quantum Fourier Transform (QFT) is the quantum analogue of the discrete Fourier

transform. The Fast Fourier transform (FFT) [107] enables a discrete Fourier transform of

a vector of size N in O(N logN) which is in contrast to the brute force calculation requir-

ing O(N2) operations (involving direct matrix multiplication). The scaling improvement

of the FFT enabled a wider range of applications such as signal processing and data

compression, and furthermore increased the maximum viable problem size. By using a

quantum computer and the QFT algorithm, the computational complexity can be reduced

to O((logN)2) [108, 109] which is an instance of a near-exponential speedup. Although

the QFT can be implemented efficiently on a quantum computer, the final result of the

transform is encoded within the probability amplitudes of the basis states which is not eas-

ily accessible. To build up an accurate picture of the probability amplitudes the quantum

speedup would be lost, and so the QFT cannot be generally used as direct replacement for

the classical FFT. Having said that, the QFT is a core subroutine within many quantum

algorithms and so it is indeed possible to make use of the exponential speed up in certain

situations.

2.5.2 Quantum Phase estimation

The Quantum Phase estimation (QPE) algorithm is a prominent subroutine used in many

quantum algorithms including, Shor’s algorithm, quantum chemistry algorithms, and al-

gorithms for solving systems of linear equations. Given a unitary operator U , the QPE

algorithm estimates the value θ from U |ψ〉 = e2πiθ |ψ〉, where ψ is an eigenvector of U

and e2πiθ is an eigenvalue with magnitude 1. The standard circuit for the QPE algorithm

requires two qubit registers, the first register is prepared in the state |ψ〉 and the second

register will be used to store the phase. The first step involves applying the Hadamard

gate on all qubits in the second register which creates a uniform superposition. Next the

qubits within the second register are used as controls for successive powers of U opera-

tions on the |ψ〉 register. The combination of the initial Hadamard gates and the following

controlled operations result in a phase kickback on the second register, which effectively

encodes θ onto the second register in the Fourier basis. Finally the inverse QFT is used

to translate the second register back into the computational basis which can be meas-

26

ured. In this scheme each additional ancilla qubit within the second register adds another

binary digit of accuracy on the captured phase. There are now numerous variants of

the Quantum Phase estimation algorithm, for example, in the iterative phase estimation

algorithm [110] the ancillary register is replaced with a single qubit which is measured

repetitively throughout the algorithm while maintaining the same precision. Chapter 5

provides more details on the QPE algorithm and some of its variants in the context of

fault tolerant quantum chemistry.

2.5.3 Shor’s factoring algorithm

The hardness of factoring large numbers is the backbone of many encryption techniques,

such as RSA. In 1994 Shor proposed a quantum algorithm for factoring primes in polyno-

mial time [111], which is in contrast to the best classical method, the General Number Field

Sieve with superpolynomial scaling with the size of the prime, n, O(exp [(c(lnn
1
3 (ln lnn)

2
3])

[112]. A key insight used in Shor’s algorithm is to recast the problem of factoring as a

period finding problem. In particular, finding the period of the modular exponential func-

tion, where the aim is to find the smallest positive integer r such that ar − 1 is a multiple

of N, or recast in modular arithmetic, the smallest r such that ar = 1 (mod N). Shor’s

algorithm constructs a modular multiplication function x→ ax (mod N), the eigenvalues

of which are closely related to the period of a and can be extracted using the quantum

phase estimation algorithm. To use Shor’s algorithm on problem sizes that are classically

difficult will require a circuit depth that greatly exceeds the capabilities of NISQ devices,

and so a fault tolerant quantum computer would be required. In the work of Gidney et al,

it was estimated that a quantum computer using the surface code with 20 million physical

qubits, and a base physical error of 10−3 could break RSA encryption in 8 hours [113]. In

chapter 6 we perform fault tolerant resource estimation for a related problem, breaking

Elliptic Curve encryption, which is used to secure the Bitcoin network.

2.5.4 Grover’s search algorithm and amplitude amplification

Grover devised an algorithm for unstructured search problems in 1996 which provides a

quadratic speedup as compared to classical alternatives [114]. Grover’s algorithm, along-

side Shor’s, has become one of the most well known quantum algorithms. Amplitude amp-

lification [115, 116, 117] is a generalisation of they key method behind Grover’s algorithm,

and it has now seen wide ranging use as a subroutine for many quantum algorithms. The

original context of the algorithm was to find the unique input to a black box function that

27

produces a specified output value which can be considered similar (with some caveats) to

the classical search of an unstructured database for a particular unique item. A classical

algorithm for unstructured search of a database of size N requires on average N/2 eval-

uations whereas Grover’s algorithm (with the appropriate oracle) requires just O(
√
N)

evaluations. Grover’s algorithm assumes access to a function, Uw, that can be applied

in superposition to all possible inputs that only applies a negative phase to the desired

state, w, and otherwise applies nothing. The following step is the Grover diffusion oper-

ator, which acts to invert the probability amplitude of each basis state around the mean

of every probability amplitude. The diffusion operator amplifies the amplitude of the

marked state while minimising the amplitudes for all other states, and this combination

of operators must be repeated O(
√
N) times to reach the optimal probability (i.e. 50%)

of measuring the correct state.

A wide range of NP-complete problems contain a subroutine of exhaustive search, for

which amplitude amplification can provide a quadratic speed up [118]. Symmetric-key

cryptography is not vulnerable to Shor’s algorithm [119] because it does not contain the

same type of exploitable structure as in factoring primes, but amplitude amplification

would be able to provide a quadratic speedup [119]. The required circuit depth for such

applications is likely to be too large for quantum computers without error correction,

however low-depth variational alternatives have been proposed [120]. The time cost per

logical operation (at the error corrected level) for a fault tolerant quantum computer will

likely be many orders of magnitude larger than classical logical operations [121]. Therefore

it will be challenging (require larger problem instances) to achieve a quantum advantage

with only a quadratic algorithmic speed up, relative to problems with exponential speed

ups.

2.5.5 HHL and solving systems of linear equations

Linear algebra is a core component of many machine learning tasks and the HHL algorithm

(named after the authors Harrow, Hassidim and Lloyd) was proposed in 2008 to solve

systems of linear equations with an exponential speed up [122] (with some caveats). The

development of the HHL algorithm catalyzed the then nascent field of quantum machine

learning and numerous extensions have been proposed which apply similar methods to

a wider range of machine learning problems, such as classification [123], clustering [124],

and pattern finding. The goal of the HHL algorithm is to solve the following equation

Ax = b (2.4)

28

for x in log n steps, where n is the number of unknowns and equations in the system. With

a classical computer tackling this problem one would assume that it would scale as at best

n2, corresponding to the number of entries in A that must be evaluated. To achieve this

impressive degree of speedup, the HHL algorithm comes with some caveats (see [125] for

more details), perhaps the most important of which is the form of the output answer of x.

The HHL algorithm does not output x = (x1..., xn) but rather, a quantum state |x〉 across

log2 n qubits where each xi is encoded into the probability amplitudes of the corresponding

quantum basis state, i.e. |x〉 =
∑n

i=1 xi |i〉. To produce the value of a specific xi from the

state |x〉 will in general require O(n) preparations of |x〉, each involving a fresh iteration

of the entire algorithm, and therefore would nullify the exponential speedup. There is

still interesting information that can be efficiently extracted from |x〉, such as the value

of the inner product 〈x|z〉 for some vector z. The aforementioned extensions to the HHL

algorithm make functional use of the output state |x〉.

Another important caveat behind the logarithmic run time scaling of the HHL al-

gorithm is known as the data input problem. The HHL algorithm requires that it is

possible to quickly (logarithmic in n) load the vector b = (b1, ..., bn) into the quantum

computer in the form of a state |b〉, where again each bi is encoded as a probability amp-

litude of the respective basis state. It may be possible to efficiently perform this data

input problem when b has a special structure, such as when it is described by an explicit

formula. For more general instances of b, QRAM (Quantum Random Access Memory)

is the primary proposed solution, but assessing (and improving) its feasibility is still an

active area of research. In a recent work, Matteo et al estimated that an 8 GB QRAM,

requiring fault tolerant quantum error correction, would need quadrillions of qubits to

achieve fast (milliseconds) query times [126]. Alternative error correction schemes (in this

work the surface code was considered) could offer considerable improvements to the qubit

overhead, in addition to the possible improvements to the QRAM procedure.

2.6 Applications in Finance

There are three main categories of computational problems regularly used in the finance

industry, optimization, simulation, and machine learning. Optimization problems in fin-

ance involve decision making subject to particular constraints, and a canonical example is

portfolio optimization, where the goal is to find the best investment strategies with some

capital and a set of assets to choose from. Portfolio optimization can be reduced to a

Quadratic unconstrained binary optimization (QUBO) problem and the feasibility of the

29

QAOA algorithm has been investigated [105, 127]. A core component of portfolio optim-

ization is linear algebra, and so the HHL algorithm could potentially provide a substantial

speed up. The usual caveats to the HHL algorithm still apply here which we covered in the

previous section and so it is unclear whether an exponential speed up would be achievable.

Rigorous performance guarantees of a polynomial speedup have been derived for convex

portfolio optimization [128] but again, the required effective error rate will necessitate

quantum error correction.

Simulation problems deal with predicting potential outcomes and typical examples

include derivatives pricing and risk management. Monte Carlo methods are often utilized

for these problems which are based on randomized sampling. For example, one starts

with a stochastic model of the market and estimates the desired quantity by taking an

empirical average over many random starting seeds. It requires O(1/ε2) samples to achieve

an accuracy, ε with classical methods and it was shown by Montanaro that there is a

quantum algorithm which instead requires O(1/ε), leading to a quadratic speed up [129].

The quantum algorithm is based on amplitude amplification [117], which is a generalisation

of Grover’s algorithm [114] for searching an unstructured database. The required circuit

depth of these methods is greatly in excess of what will be possible with noisy (not error

corrected) qubits, suggesting that its full realisation will require a fault tolerant device

with physical qubits numbers potentially greater than a million. A method of interpolating

between the speedup of the classical and full depth quantum algorithms while lowering the

required circuit depth has been proposed [130]. This new method opens up the possibility

of speed ups for Monte Carlo on NISQ devices because of the tunable circuit depth.

In practice one must consider more than just the operational speed up, in this case the

number of required samples, because the rate of logical operations can vary greatly between

classical and quantum approaches. Classical computers operate at roughly 1GHz which

is approximately a factor 20× faster than superconducting devices, which can perform

2-qubit gates in ∼ 20ns. The quality of the qubits and the cost for distant connectivity

will determine the maximum circuit depth that can be utilized, which in turn determines

the operational speedup. A fault tolerant quantum computer could reap the full quadratic

speedup but the overheads associated with quantum error correction further reduce the

effective clock rate.

Machine learning based problems in finance include predicting future events from his-

torical data, pattern detection and classification of samples into categories. Fraud de-

tection is one of the canonical examples and variational quantum approaches have been

30

investigated [131]. Machine learning problems often reduce to solving systems of linear

equations for which we again come back to the HHL algorithm and its potential for a

substantial speed up, albeit in the fault tolerant regime.

31

Chapter 3

Trapped Ion Connectivity and

Routing

The following two chapters follow the paper titled “Efficient Qubit Routing for a Glob-

ally Connected Trapped Ion Quantum computer” [11] which was published in Advanced

Quantum Technologies in August 2020. The primary aim of this work was to find an

effective routing algorithm to enable global connectivity between ions within an arbitrary

sized device following the framework outlined by Lekitsch et al [74] for a scalable trapped-

ion quantum computer. This was a necessary component of the second aim, which we

cover in chapter 4, to estimate the quantum computational power of devices as a function

of experimental parameters. In this chapter the focus is the connectivity problem itself,

the developed routing algorithm, and the characterisation of our solution.

3.1 Global connectivity

Connectivity here refers to enabling interactions between the qubits of a given device, and

the method by which this is accomplished varies a lot between architecture types. In the

shuttling based trapped ion design which we focus on in this chapter, connectivity between

distant qubits involves physically shuttling the respective ions (qubits) into the same region

of space for local logical operations. For contrast, a superconducting device has stationary

qubits which can only interact with their nearest neighbours, and so distant connectivity

must be enabled via sequences of logical swap operations (between the physical qubits).

Global connectivity refers to enabling interactions between all qubits (where the pairing

may be chosen at random for bench-marking purposes) and it is a requirement for the

metric Quantum Volume [20]. The cost for enabling global connectivity is an important

32

Figure 3.1: A depiction of a single X-Junction which is repeated to form a grid which the

ions are restricted to, with zones dedicated to specific tasks.

factor in determining the computational power of near term devices. The most researched

error correction technique, the surface code [132, 25, 14] relies only on nearest neighbour

interactions. We provided a brief overview of fault tolerant error correction in chapter

2 and in chapter 5 and 6 we show detailed resource estimates using the surface code.

Some low-density parity-check codes (LDPC is a family of codes in which the surface

code is a member) rely on global connectivity [30] at the physical level but hardware

considerations need to be taken into account to determine any practical gain arising from

their implementation. The shuttling based architecture we examine here is particularly

well suited in enabling mid-range connectivity and we hope to motivate research into

error correction codes which would make use of this mid-range connectivity. By mid-

range connectivity we intend greater than nearest neighbour but not necessarily global

(depending on device size); the larger the device the greater the overhead of movement

associated with enabling global connectivity.

In this chapter we present a routing algorithm which efficiently enables global con-

nectivity for a shuttling based trapped ion design [74] and we focus on NISQ-sized devices

where it should be feasible to enable global connectivity without error correction. Many

of the features within our routing algorithm will be relevant for developing new meth-

ods which specialise in enabling nearest-neighbour and mid-range connectivity for error

correction.

33

Figure 3.2: 3D representation of a quantum computing device using our proposed routing

algorithm, where the yellow grid represents the X-Junctions, which the ions (red spheres)

are restricted to move within, and the blue squares represent gate zones. The digitisation of

the simulation can be seen with a resolution of 7 positions between adjacent X-Junctions.

Arrows represent the lane priority of the routing algorithm. Here there are 4 by 4 X-

Junctions (M by M) and 2 ions initialized per X-Junction for a total of 32 (N), where

N = 2M2.

3.2 Simulation tool

In the design being investigated here, ions (each encoding a single qubit) are restricted

to a square grid (see Figure 3.2) which consists of an array of repeated X-Junctions (see

Figure 3.1), each containing a single gate zone. Ions must first be shuttled (physically

moved) into the gate zones for gates to be performed. The X-Junctions have a defined

spatial resolution, which arises from the fixed number of electrodes on each arm but ions

may be moved continuously, i.e. an ion may be shuttled across multiple electrodes in a

smooth manner as opposed to only moving one step at a time. The gate zones enable

both single and two qubit gates. A hardware-agnostic quantum algorithm must first be

decomposed into the native gate set of the device, and this process can be optimised,

such as the work by Maslov [133] which focuses on a trapped-ion gate set. A decomposed

quantum algorithm is defined by multiple rounds (the circuit depth) of gates. Ideally

all the required gates of an individual round will be applied in parallel, however the

qubit number, gate density of the algorithm, and the number of gate zones will dictate

the gate round overhead (i.e. how many rounds of gate applications are required for a

depth-1 circuit). In this architecture, each gate round is further broken into two parts, a

34

Figure 3.3: A close up of an X-Junction from figure 3.2. The routing logic used to

decongest X-Junction centres involves occasionally ignoring the lane priority shown by

white arrows. Ions assigned to interior gate zones (blue square labelled D) have the closest

X-Junction centre (labelled B) as their destination (one space off the centre because it is

an area of lower trap stability (labelled A and C)). The ion in square A has been assigned

to the local gate zone and it will travel back and forth between positions A and C directly,

by ignoring the lane priority, to decongest for ions still travelling to their destination.

routing sequence, where ions are shuttled into gate zones, which is then followed by the

application of gates. We use the terminology “shuttling” to refer to the act of moving ions

in the device, and “routing” to refer to the higher order logic of the reconfiguration. In this

design, gates cannot be applied concurrently with shuttling. When the required number

of gates in an individual round exceeds the number of available gate zones it is necessary

to have multiple rounds of shuttling and gates, e.g. a gate round overhead of 2 would

imply the need for: shuttle, apply gates, shuttle, apply gates. The shuttling round, which

enables the connectivity, is our focus for now. When designing the routing algorithm, we

optimized for the total time taken to enable global connectivity.

To investigate how to enable connectivity in this quantum computing design, we have

created a simulation tool [134] which represents the devices as a square grid consisting of

iterated X-Junctions (see Figure 3.2). The simulation tool was developed using python and

visualized using the pygame package (see figure 3.4). The visualisation was particularly

useful during the developmental stage of the routing algorithm. The simulation is digitized

to a variable resolution, where each position may either be empty or contain an ion (or

ion pair). The ions are distributed evenly across the grid near the centre of each X-

Junction and a quantum circuit (list of required two-qubit gates, i.e., ions that must be

connected) defines the routing problem. Ions which are assigned to the same gate zone

35

Figure 3.4: The direct visualisation output of the routing simulation through the pygame

module. Here the X-Junction is shown as the background green squares, the gate-zones

are shown as the blue squares, and ions as the red squares.

are able to combine as a pair. Naive routing algorithms would not converge on a solution

(i.e. all desired interactions enabled) as ions with opposite travelling directions meet

and cause permanent blockages. Positional swaps between ions have been demonstrated

experimentally [135] and their usage would simplify the required routing algorithm. Here

we present a solution that does not use positional swaps, and in section 3 we compare

the effectiveness of routing both with and without swap operations. Positional swaps are

distinct to that of logical swaps (both here between physical qubits), for example a trapped

ion device may have access to both operations (but one may have a preferable fidelity or

time-cost), in contrast, superconducting devices only have access to logical swaps (which

are performed using sequences of the native gate set). When bench-marking the routing

algorithms, a randomly generated and globally connected, quantum circuit was used.

3.3 Routing Algorithm logic

In order to assign ion (qubit) pairs to gate zones, we employ a greedy approach (i.e. the

method begins optimal but does not necessarily end optimal), assigning each pair to the

nearest available gate zone (i.e. minimum combined distance of travel for the two ions),

and addressing the pairs in an arbitrary order. This greedy approach is sufficient for a

proof of principle using this prototype ion-routing algorithm, however we note that it may

36

not yield the optimum gate-zone designations overall. To this end, a more sophisticated

optimisation may be considered in future work, but we note that such combinatorial

optimizations are generally hard problems themselves.

Alternating lane priority

At each time step in the simulation, each ion is evaluated and moved sequentially ac-

cording to the routing algorithm, which involves assessing its location, local environment

and destination. The routing algorithm we have developed assigns alternating direction

priorities to each lane of the square grid. The top-most horizontal lane is a right-only lane,

the lane below it is left-only, and so on, and this also applies to vertical lanes (see Figure

3.2). We ensure that the outer perimeter of the device is a clockwise loop regardless of

the number of lanes, so that all gate zones can be reached, which means that odd size

devices, e.g. one which consists of 3 by 3 X-Junctions, will not have fully alternating lane

directions and instead will have right, left, left, and up, down, down.

Perimeter considerations

We define a square grid device formed from M by M X-Junctions to be of device size

M. We preferentially position gate zones on the exterior of the device where possible (on

the outer arms of the perimeter X-junctions). Exterior gate zones are more favourable

for routing as ions waiting for their gate do not block the movement of other ions. For

square devices the number of interior gate zones scales with device size as (M − 2)2 and

the number of exterior gate zones scale as 4M − 4, which results in a cross over point at

device size 7 (98 qubits at 2 per X-Junction).

Decision process

The centres of X-Junctions are decision points, where an ion will follow the lane priority

towards its destination. Ions can enter the outer arms into the exterior gate zones only

when it allows them to reach their assigned destination. Ions which are not destined to a

gate zone during a given shuttling round have their destination set to their current location,

and therefore only move to decongest. During development of the routing algorithm, a

major bottleneck identified was congestion at interior gate zones. Devices larger than 2

by 2 have interior gate zones, and the ions waiting there can cause permanent blockages

or unnecessary movement depending on how they are handled. To remedy this problem

an additional feature was included, in which ions assigned to interior gate zones wait at

37

the closest available X-Junction centre, where they are able to decongest efficiently by

temporarily ignoring the lane priority (see Figure 3.3). Depending on the ion density, the

gate round overhead may be greater than 1, to illustrate an example, if there are twice as

many ion-pairs as gate zones, a depth-1 algorithm is broken into two rounds of shuttling

and gates. In the first round of shuttling, half of the ions have a gate-destination while the

other half have no destination and only move to decongest. For the following round their

roles switch over so that now the ions which have already performed their interaction will

only move to decongest and the remaining ions proceed towards their assigned gate zone.

The movements available to each ion are dependent on multiple assigned parameters. The

following binary questions determine these parameters: Does this ion have a destination

for this round of gates? Is this a single ion or pair? Is this a waiting ion assigned to

interior X-Junctions? The valid moves are then determined by using these parameters in

combination with the location and local environment of the ion. At any particular time

step an ion may have multiple valid moves available to it, hence there is a hierarchical list

of decisions which are explained in the following pseudo code.

Pseudo code

Initialize device with size, resolution, number of ions

Pair all ions randomly

Calculate the number_of_rounds required (from number of ions and gate zones)

Until all pairs have visited a gate-zone:

Loop over number_of_rounds:

Loop over pairs:

Assign destination of each pair in this round to closest

combined-distance available gate zone

Loop over all ions Until round complete:

if current_ion is a single move from it’s assigned pair:

Combine as a pair

else-if current_ion has a destination and is not there yet:

suggested_move = Identify single step move that is

unoccupied and minimises the distance to

the destination and follows the lane-priority (see fig 3.2)

if suggested_move has a valid result:

Move

else:

Be stationary this round

else-if current_ion has a destination and is already there and

38

the assigned destination is an interior gate zone:

if current_ion is currently blocking another ion:

Perform lane-priority ignoring move to the other arm

of the X-junction (see fig 3.3)

else:

Be stationary this round

else-if current_ion has a destination and is already there

and the assigned destination is an exterior gate zone:

Be stationary this round

else-if current_ion has no destination:

if current_ion is currently blocking another ion:

Move following lane priority

else:

Be stationary this round

3.4 Characterising the routing algorithm

In this section we characterize the performance and flexibility of our routing algorithm,

which we refer to as lane priority routing, within the framework of our abstract simulation

tool. In chapter 4 we will introduce more practical considerations, allowing us to quantify

the expected fidelity associated with enabling connectivity.

3.4.1 Time taken to route

Randomly generated depth 1 circuits on N qubits consisting of N/2 two qubit gates were

iterated sufficiently to represent the requirement of global connectivity (we investigate the

choice of iteration number in figure 3.12). After each iteration we count the total number

of time steps (τ) required to enable the global connectivity, which can be converted into

a total time (in seconds (s)) by considering the estimated speed at which one can shuttle

between adjacent X-Junctions. The number of time steps (τ) is scaled to the resolution

of the model so that τ = 1 can be considered equivalent to the time it takes to shuttle

between adjacent X-Junctions. We include experimentally achieved shuttling speeds later

in this chapter. As a brief aside, it is important to note that increasing the speed of an

individual shuttling operation may not always lead to an increase in the final fidelity, as

the quality of the shuttling operation may impact on subsequent operations by factors

39

Figure 3.5: Shuttling time, τ (scaled by the resolution of the model so that a time of 1 is

equal to the time it takes to shuttle between two adjacent X-Junctions), taken to enable

connectivity as a function of device size (defined as a square grid consisting of M by M

X-Junctions where M is the device size). There are two qubits initialized per X-Junction

(plotted here for a range of 8 to 512 qubits). Red squares: Shuttling time for the routing

algorithm. Green triangles: The lower bound (shortest route) shuttling time. The trend

lines were generated using linear regression analysis and they both have a gradient of

1.82. Vertical lines represent one standard deviation. The results are the average value

over 300 iterations of randomly selected pairings. The iteration number was chosen after

investigating the mean and standard deviation convergence rate.

such as accumulated heating or ion loss. At each iteration, a lower bound is calculated for

that particular set of pairings, which is equal to the minimum number of time steps that

will enable connectivity. To calculate the lower bound it is assumed that, qubits (ions)

take the shortest path towards their destination and swap with no time penalty (i.e. the

time required for an ion to move one discrete step is independent of whether a swap is

performed or not). For a particular iteration, the ion with the greatest distance to travel is

identified, and the number of spatial steps between its starting location and its destination

is equal to the lower bound.

40

Figure 3.6: Shuttling time as a function of qubit number. Two qubits are sequentially

added to a given device and the device size increases when the device can no longer

accommodate two qubits per X-Junction. Red squares: Shuttling time for our routing

algorithm. Green triangles: The lower bound (shortest route) shuttling time. Vertical

lines represent one standard deviation and the dashed lines mark where the device size is

increased to accommodate the additional qubits. The results are the average value over

300 iterations of randomly selected pairings.

The average number of time steps (τ) required to enable the global connectivity can

then be compared to the lower bound as shown in figure 3.5. These results are for devices

with perfect two qubit gate parallelizability, i.e. there are two qubits initialized per X

Junction. We conjecture that the total shuttling time would at best scale linearly with

device size, M , because randomly selected distances in a square scales linearly with the

length of the square. Our lane priority routing and the lower bound scale linearly with the

device size and with an equal gradient of 1.82. There is a constant overhead (independent

of device size) associated with the lane priority routing. The minimal distance path

length should have the same scaling with device size when following the lane priority as

compared to taking a direct route but certain journeys will result in an overhead of at

most 4τ to conform to the lane movement directions (ignoring congestion). The distance

41

between two particular X-Junction centers is the Manhattan distance (distance in the first

dimension plus the distance in the second dimension, which is in contrast to a straight line

in Euclidean space), and there can be numerous unique paths with equal lengths between

two points. Using a simple numerical model for choosing M2 random positions within a

square grid we find that the average maximum Manhattan distance per iteration scales

with square size (comparable to device size M) as 1.94M − 2, which is similar to the lower

bound scaling within our simulation tool, and the difference will be due to the process

within the simulation tool of choosing the closest available gate-zones for each pair. For

these results there are two ions per X-Junction (per gate zone) and so the scaling for

total shuttling time of our lane priority routing, τ, as a function of qubits, N , where

N = 2×M2 is τ = 1.3 (3)
√
N+2 (5), and the fit and standard error were calculated using

linear regression. An oscillating pattern on the lane priority routing is noticeable with

its relative magnitude decreasing with device size, which results from even sized devices

outperforming odd sized devices. Odd sized devices (for example a device of 3 by 3 X-

Junctions) cannot fully realize the alternating lane priority because we ensure that the

outer perimeter lane is always a clockwise path.

The routing algorithm can function for a wide range of qubit numbers for a given device

size. Figure 3.6 shows the shuttling dependence on qubit number for qubit densities less

than or equal to 2 per X-Junction, i.e. with full gate parallelizability. The oscillating pat-

tern resulting from odd and even device sizes is more notable because here we investigate

a smaller range of device sizes than in figure 3.5. Shuttling time increases for both the

lane priority routing and lower bound as more qubits are added to a device of static size,

and peaks at a density of two qubits per X-Junction.

3.4.2 Counting passes through X-Junction centres

The main criteria we optimized for when creating the routing algorithm was the total

time. However, to calculate the achievable circuit depth at which a device can run, the

total error will not just be a function of the total time, but will also include factors such

as gate fidelity and ion loss. Traversing an X-Junction will have a corresponding ion loss

rate which may be higher than the loss associated with linear shuttling or idling. In

order to quantify the associated error we have used our simulation to count the number

of times qubits are expected to move through an X-Junction centre. The implications

of these results for achievable depth will be explored in the following chapter. In figure

3.7 the mean number of passes through an X-Junction, Xcount, is plotted as a function

42

Figure 3.7: The mean number of passes through an X-Junction centre per ion as a

function of qubit number for square devices with two qubits per X-Junction. Vertical lines

represent a single standard deviation. The results are the average value over 300 iterations

of randomly selected pairings.

of qubit number with vertical lines corresponding to a single standard deviation, and the

dependence is well described by the following equation, Xcount = 0.4 (1)
√
N + 2 (2). The

distribution of passes is investigated in 3.8 for four different device sizes, 4, 6, 8 and 10.

The qubits are separated into two data sets, according to whether they are assigned to an

interior or exterior gate zone. Across all device sizes investigated the maximum passes did

not exceed 4× the stated mean. As expected we can see that ions assigned to interior gate

zones pass through X-Junction centres more frequently which is because they must move

out of the way of other passing ions (see Figure 3.3). As the device size increases the ratio

of interior gate zones to exterior gate zones increases, so it may be worth investigating

rectangular shaped devices to minimise the number of interior gate zones (although this

would be at the cost of a longer average travel distance). The simulation tool is flexible

enough to allow for rectangular shaped devices and a brief investigation was performed into

the relevant performance but is not included here. To determine the actual performance

benefit it would require introducing the experimentally realistic costs of X-Junction center

43

Figure 3.8: The relative frequency distribution of passes through X-Junction centres for

four different device sizes, 4x4 (N=32), 6x6 (N=72), 8x8 (N=128), 10x10 (N=200). Red

bars: Qubits assigned to exterior gate zones. Green bars: Qubits assigned to interior gate

zones. 300 iterations of the globally connected depth-1 algorithm were used to generate a

representative sample, and the frequency is scaled accordingly.

crosses relative to total time required.

3.4.3 Increasing ion density

It may be desirable to increase the qubit density beyond 2 per X-Junction despite the

potential loss of gate parallelizability as additional X-Junctions are experimentally costly

to implement. Figure 3.9 shows the efficiency of the routing protocol for three different

qubit densities. We can see that the total shuttling time increases substantially with

44

Figure 3.9: Required shuttling time as a function of qubit number for three different

qubit densities. Red squares: 2 qubits per X-Junction. Green triangles: 4 qubits per

X-Junction. Blue circles: 6 qubits per X-Junction. Vertical lines represent one standard

deviation. Gate density is set to 100% meaning that qubit densities higher than 2 per

X-Junction are decomposed into multiple rounds of shuttling and gates. The results are

the average value over 300 iterations of randomly selected pairings.

increasing ion density. The increase in shuttling time is predominantly attributed to

the multiple rounds of shuttling (and gates) which are required for the 100% gate density

(where gate density is the percentage of qubits involved in gates per algorithm step (layer))

algorithm which we are assessing against. With a density of four qubits per X-Junction, a

100% two qubit gate density algorithm would be completed by two full rounds of shuttling

and gate applications. The oscillating pattern attributed to odd and even devices becomes

more apparent with increasing qubit density. The total shuttling time defined here only

includes the additional time associated with the multiple rounds of shuttling and does not

include the gate time. The overall cost of increasing qubit density will depend on the gate

density of the desired algorithm.

We also investigated the effect of increasing qubit density while equally reducing the

gate density of the required algorithm as can be seen in figure 3.10. For each device size

45

Figure 3.10: Required shuttling time as a function of device size for four different qubit

densities for even-sized devices where red squares represent 2 qubits per X-Junction, green

triangles 4 qubits per X-Junction, blue circles 6 qubits per X-Junction, and magenta

diamonds 8 qubits per X-Junction. In each case the gate density is reduced accordingly

so that the algorithm is performed in one round of shuttling. For example with a qubit

density of 2 per X-Junction, the gate density is 100%, with 4 per X-Junction, the gate

density is 50%, because each X-Junction has one gate zone.

the numbers of qubit pairs required to visit a gate zone was equal to the total number of

gate zones, regardless of the total number of ions initialized on the device. The shuttling

time for densities 2, 4, and 6 are nearly identical, highlighting the effectiveness of the

lane priority routing. A density of 8 sees an approximately 5% increase as compared to

a density of 2 (ions per X-Junction). Through comparison of figure 3.9 and 3.10 we can

determine that the large differences noted in figure 3.9 are almost entirely due to the

additional rounds of shuttling that are required for the 100% gate density algorithm as

opposed to the congestion that may result from the increased ion density.

46

Figure 3.11: Required shuttling time as a function of device size (defined as a square grid

consisting of M by M X-Junctions where M is device size), with 2 ions per X-Junction,

comparing swap based routing to our lane priority routing algorithm. Red squares: Lane

priority routing. Green Triangles: Swap based routing with a swap time penalty equivalent

to half the time it takes to shuttle between two adjacent X-Junctions. Blue Circles: Swap

based routing with a swap time penalty equivalent to the time it takes to shuttle between

two adjacent X-Junctions. Vertical lines represent one standard deviation and trend lines

are fit using linear regression.

3.4.4 Positional swaps

We created a second routing algorithm which relies on positional swaps where qubits

take the shortest available route (ignoring the previously mentioned lane priority routing)

and swap to decongest. We have compared the total shuttling time of the swap routing

against the lane priority routing, for two different swap time penalties, shown in figure

3.11. The time penalties were chosen based on early experimental results. H, Kaufmann

et al demonstrated fast ion swapping of 42µs at a process fidelity of 99.5% [135]. Van

Mourik et al demonstrated positional ion swapping in 25µs with an associated coherence

loss of 0.2(2)% [91]. For ion shuttling speed, Walther et al demonstrated fast shuttling of

cold ions, over a distance of 280µm in 3.6µs [84] and P. Kaufmann et al demonstrated a

47

state fidelity of 99.9994%, for shuttling over a distance of 280µm in 12.8µs [85]. For a wide

range of device sizes the lane priority routing outperforms the swap based routing on total

time taken, for the swap time penalties used here. The swap routing would be equivalent

to the lower bound of figure 3.5 when there is no time penalty on the swap, i.e. when the

time cost of a swap is equal to shuttling the same distance. We characterized the average

number of swaps, nswap, per qubit for each connectivity run and found that for 18 qubits,

the average was 1 swap, and for 50 qubits the average was 1.7 swaps. The dependence

was well described by the following equation, nswap = 0.23(2)
√
N + 0.1(2), where the fit

and standard error were calculated using linear regression. The average number of swaps

per ion which was required to enable connectivity was found to be only weakly dependent

on the swap time cost penalty, therefore doubling the time penalty results in minimal

change to the number of swaps. The analysis associated with figure 3.11 suggests that for

efficient routing in this 2D trap design, it will not be necessary to perform positional swap

operations. However some combination of the lane priority routing and positional swaps

may be favorable, depending on the expected costs associated with these operations. In

the following chapter we will bring in more practical considerations to define the expected

fidelity of a globally connected algorithm using our lane priority routing algorithm.

3.4.5 Justifying iteration number choice

For all of the graphs plotted in this chapter an iteration number of 300 was chosen to

average over. In each iteration a new set of random pairings of qubits was chosen. To

justify that this iteration number is large enough to well represent the requirement of global

connectivity, we plot the dependence of the mean and standard deviation as a function of

iteration number. In figure 3.12 A we show the convergence of both for a device size of

8 and in figure 3.12 B we show for a device size of 12 where at each iteration the mean

and standard deviation are recalculated. In both scenarios it appears that an iteration

number of approximately 200 would be sufficient. The early shot behaviour varies from

run to run of a data set such as this due to the inherent randomness, but each converges

to the same value for high enough shot counts.

3.5 Concluding remarks

We have created a routing algorithm to enable global connectivity for a shuttling based

architecture. The relevance of this work is independent of the specific choice of gate oper-

ation, ion species and transition. Finding the optimum instruction set for each individual

48

Figure 3.12: The convergence rate of the mean (red) and standard deviation (blue) for

shuttling time for a device of size (A) 8 (128 qubits) and size (B) 12 (288 qubits). At each

iteration the mean and standard deviation were recalculated.

ion in real time is intractable and so we have solved the problem in a heuristic man-

ner. We have assessed the effectiveness of our routing algorithm by quantifying the total

time to enable connectivity, and compared against a strict lower-bound and an alternat-

ive positional-swap based routing algorithm. In the following chapter we will introduce

49

practical considerations and produce an error model which enables one to estimate the

computational power of near term devices following this shuttling based design.

50

Chapter 4

Prediction of Computational

Power for Near Term Devices

The following chapter continues to follow the paper titled “Efficient Qubit Routing for a

Globally Connected Trapped Ion Quantum computer” [11]. The aim of this chapter is

to predict the computational power of near term devices as a function of experimental

parameters. This analysis can then be used to determine experimental priorities. We

develop an error model for the shuttling based trapped ion design and utilize the routing

results of the previous chapter to estimate the computational power as defined by the

quantum volume. We compare the quantum volume of the shuttling based design to a

superconducting architecture as a function of the two qubit gate fidelity.

4.1 Achievable depth and quantum volume

For comparison between near term quantum computers, one must consider more than

just the number of qubits. Quantum volume (QV) is a conceived metric for quantum

computational power designed to enable sincere comparison between architectures [19, 20].

QV includes factors such as gate fidelity, qubit number, connectivity and the available gate

set. Below we present the definition as given by Moll et al [19] (which has some differences

to the definition given by Cross et al [20], which is provided later in this section).

QV = max
N

[
min

[
N,

1

N × εeff (N)

]]2
, (4.1)

for the number of qubits within the device N , and effective error rate εeff , which

typically depends on N . QV reflects the limiting factor of the device, which is either the

qubit number or the achievable depth D, where

51

Figure 4.1: An example circuit for calculating quantum volume in an architecture with

linear string connectivity. In step 1 the qubit pairing selection conforms to the device’s

natural connectivity, whereas in the case of step 2, the desired connectivity requires swap

gates. Many randomly generated depth-1 circuits should be used and averaged over to

calculate the effective error. Image by Moll et al [19]

D = 1/(N × εeff (N)) (4.2)

To compute QV, a randomly generated depth-1 circuit on N qubits with N/2 arbitrary

(SU(4)) two qubit gates is used. The achievable depth represents the circuit depth at which

the device can run before coherence is lost, specifically, the depth at which at least one

qubit error is statistically likely. A greater number of qubits requires a lower effective error

to reach the same circuit depth because each additional qubit increases the likelihood of at

least one error occurring across the device, which is captured by the 1/N dependence. The

achievable depth is a useful concept which can be used separately from QV to estimate

the feasibility of running an algorithm on a NISQ device.

4.1.1 The latest Quantum Volume definition

The latest definition for Quantum Volume was proposed by Cross et al [20], and the

metric has received a greater adoption in the community since the first iteration [19]. In

this section we will provide an overview of the new definition.

The aim of the metric remains the same, to provide a single value number that rep-

resents the computational power of near term devices by considering the qubit number,

the qubit quality, and the available connectivity. This aim is different to some other com-

52

monly used metrics, which generally specialise in assessing the quality of operations on

small numbers of qubits, such as, randomized benchmarking [136], state process tomo-

graphy, and gateset tomography [137].

The new definition for quantum volume has many similarities to the previous one, and

can be seen below.

log2 QV = argmax
N

[
min

[
N,D(N)

]]
, (4.3)

In the new metric the heavy output generation problem [138] is used to quantify the

quality of the implementation of the randomly generated model circuit U , which can then

be used to define the achievable depth. The main advantage of the first definition by Moll

[19], which directly defines the achievable depth as a function of the effective error and

qubit number, is that it enables one to begin estimating the quantum volume without

the need for a real device or a a full quantum state simulation. In either situation, a full

quantum state simulation should provide greater insights than the estimations generated

using effective errors and it will be worthwhile to develop. The routing logic of the previous

chapter would then be one layer within this larger simulation. In the following we highlight

the method by which the new version of quantum volume is calculated [20].

The perfect output distribution of the circuit U , such as the one shown in figure 4.1,

is

pU (x) = | 〈x |U | 0〉 |2 (4.4)

where x is the observable bit-string for the N qubit device. The heavy outputs for

this distribution are HU and are defined as those which are greater than the median of

the distribution. To calculate the median, the set of output probabilities are sorted in

ascending order and then pmed = (p2(N−1) + p2(N−1)−1)/2. The output probabilities of

an arbitrary quantum circuit should be exponentially distributed random variables which

implies that approximately 85% (1+ln(2)2) of them should exceed the median value [138].

If the device is completely depolarized this percentage will fall to 50%.

The device implementation of U is U ′, the observed distribution is qU (x) and the

probability of sampling a heavy output is

hU =
∑
x∈HU

qU (x) (4.5)

The heavy output probability for the device implementation can then be calculated

(by performing numerous iterations of the device implementation) as a function of the

53

depth of the circuit, and then the achievable depth is defined as the largest value such

that the probability remains greater than 2/3. The set HU must be calculated classically,

directly from U which scales exponentially with the depth. The output shot distribution

of the noisy circuit (U ′) are collected and compared to the ideal case to define the heavy

output probability. For large enough circuits computing the set HU classically will not

be possible and at this point the metric will need to be redesigned so that the classical

simulations are not necessary. QV is now defined to scale exponentially with the (quality)

qubit number as opposed to quadratically so as to better represent the relative power of

quantum computers to classical computers.

4.1.2 How we use Quantum Volume

In the results presented in this chapter and the associated paper, we estimate the achievable

depth directly as defined in equation 4.2, by calculating the effective error as a function of

hardware parameters, e.g. gate error, coherence time, time taken to enable connectivity.

We provide more details on this process and on the specifics of our error model in section

4.2. We will often present the results in the form “Square circuit depth” by which we mean

the largest achievable square circuit depth, which is equivalent to log2(QV) as per equation

4.3. The square circuit depth is a more tangible quantity than quantum volume, i.e. it

directly communicates the circuit depth and the number of qubits utilized. The reason

this quantity is exponentiated to define quantum volume is to represent the potential for

quantum computers to be exponentially more powerful than their classical counterpart

(for a fixed circuit volume).

For some of the results presented in this chapter we have altered the circuit require-

ment of the quantum volume metric to instead be just the native two qubit gate of the

architecture, which focuses the analysis entirely on the cost of enabling global connectiv-

ity. The arbitrary two qubit gate requirement of quantum volume can be very functional

for comparing architectures, particularly for those with drastically differing gate sets. For

example, some trapped ion architectures have access to global entangling operations [139].

For architectures with similar gate sets, a large difference in the final fidelity can still arise

due to differing decomposition methods. Approximate decomposition methods (which

we cover in the following section) can considerably improve the final fidelity, particularly

when starting with low two qubit gate fidelities. In the following section we provide more

details on the gate requirement for quantum volume and provide a circuit for performing

arbitrary two qubit gates for a Mølmer-Sørensen (MS) (trapped-ion) native gate set.

54

4.1.3 Gate requirements of Quantum Volume

The QV metric requires application of arbitrary, randomly generated SU(4) two qubit

gates. The purpose of this requirement is to capture the power of the architecture’s native

gate set. There is an upper bound circuit which can express any arbitrary U(4) using 3

CNOTs and 15 elementary single qubit gates [140], with a native gate set consisting of

Rx(θ), Rz(θ), and the CNOT. We have translated this upper bound circuit into the native

gate set of the shuttling based architecture analysed in chapter 3, which is Rx(θ), Ry(θ) and

the Mølmer-Sørensen (MS) two qubit gate [60]. The gate count of the new upper bound

circuit is 3 MS gates and 18 elementary single qubit gates. We reduced the initial single

qubit gate count from 29 to 18 by utilising basic commutation relations and the degrees

of freedom which are available [133]. The upper bound circuit represents a worst case

and optimal circuits can be found for particular SU(4)s using analytical techniques [141].

Most exact decompositions of arbitrary two-qubit gates will require the three native two

qubit gates of the upper bound. A new technique demonstrated by IBM can considerably

improve the fidelity of decomposing these gates [20]; Cross et al instead start with an

allowable error on the decomposition, which allows one to identify cases which require

less than the upper bound of three two-qubit gates. This can result in a considerable

improvement to the final fidelity, particularly when working with lower two qubit gate

fidelities.

Decomposing arbitrary two qubit gates

An upper bound circuit for expressing arbitrary two qubit gates in terms of Rx(θ), Rz(θ),

and the CNOT, was found by Vatan et al [140].

A1 Rz • A3

A2 • Ry Ry • A4

Figure 4.2: A circuit for implementing any transform in U(4) with a gate set consisting of

Rx(θ), Rz(θ), and the CNOT, where the gate Ai here represents an arbitrary single qubit

transform, for a total gate count of 15 elementary single qubit gates and 3 CNOTs.

An arbitrary single qubit gate U1, can be expressed in the form,

U1 = eiαRn̂(β)Rm̂(γ)Rn̂(δ) (4.6)

55

for appropriate choices of α, β, γ, σ, where n̂, and m̂ are non-parallel real unit vectors in

three dimensions [142]. We have converted the circuit of figure 4.2 into the native gate

set of the architecture investigated here, which is, Rx(θ), Ry(θ) and the Mølmer-Sørensen

gate UMS(χ) [60] which has the form,

UMS(χ) =


cos(χ) 0 0 −isin(χ)

0 cos(χ) −isin(χ) 0

0 −isin(χ) cos(χ) 0

−isin(χ) 0 0 cos(χ)

 (4.7)

where χ can be set between −π/4 and π/4. The new converted circuit is shown in figure

4.3, and has a gate count of 3 MS gates and 18 single qubit gates. The single qubit

gate count was reduced by combining superfluous sequences of single qubit gates, utilising

commutation relations and the available degrees of freedom. The MS gate commutes with

any Rx(θ). When decomposing the CNOT and Rz(θ) gate, there is an available degree of

freedom where one may choose the direction of rotation on certain Ry gates, which can

then be used to eliminate some Ry gates from the circuit [133].

RyRxRy
MS

RyRx
MS

Ry
MS

RyRxRy

RyRxRy RyRx Ry RyRxRy

Figure 4.3: A circuit for implementing any transform in U(4) with a gate set consisting of

Rx(θ), Ry(θ), and the Mølmer–Sørensen gate [140], for a total gate count of 18 elementary

single qubit gates and 3 MS gates.

After the publication of the paper that this chapter is primarily based upon, we invest-

igated the approximate decomposition techniques [20] for the MS gate using the Qiskit

python libraries. We compare three methods, first the exact decomposition for which

virtually all randomly generated two qubit gates require the upper bound of three native

two qubit gates. Next we performed approximate decompositions for which the native two

qubit gate fidelity is an input; the final circuit error is estimated for decompositions using

1, 2, and 3 native gates, and the optimal circuit is chosen. The final method uses the

approximate decompositions in addition to considering the decomposition of the target

two qubit gate multiplied by the SWAP gate. This increases the frequency at which a

high quality decomposition can be found using less than three native gates, and the SWAP

can easily be undone in the back-end by switching the qubit indices following the gate.

56

Figure 4.4: The total approximation fidelity as a function of the native (MS) two qubit

gate fidelity for different decomposition methods. In red the exact decomposition is used

where every randomly generated two qubit gate requires the upper bound of three applica-

tions of the native two qubit gate. In cyan the approximate decomposition method is used

where that native two qubit gate fidelity is considered and when desirable a decomposition

using fewer than three applications of the native gate is used. In black the approximate

decomposition is again used but it also considers the option of combining the target two

qubit gate with a logical swap which increases the frequency that a desirable approximate

solution can be found.

In figure 4.4 we plot the three methods as a function of the base native two qubit gate

fidelity. As expected we can see that these techniques are most powerful when the native

two qubit gate fidelity is low, and converge towards no discernible benefit as the native

two qubit gate approaches 100%. With a native two qubit gate fidelity of 95%, the average

fidelity of a random two qubit gate decomposition is 86% with the exact decomposition,

whereas it is 90% with the approximate decomposition with optional swaps. With two

qubit gate fidelities close to or exceeding 99.9%, which is a fidelity that has already been

demonstrated by some trapped ion systems, the benefit of this approximate decomposition

method is negligible.

57

4.2 Error model

The effective error εeff for each depth-1 circuit includes gate error, and errors associated

with gate decomposition, connectivity and parallelizability. The effective error can be

used to calculate the achievable depth. Many iterations of the randomly generated circuit

should be used to best capture the properties of the device. In this section we present an

error model for the quantum computing design analysed in chapter 3 and present results

for a range of experimental parameters that may be achievable. In the following analysis

we assume linear propagation of errors, which represents a worst-case outcome, as it does

not account for the possibility of a new error reducing a previous error. We combine

the errors associated with connectivity and gates, as opposed to a full simulation of the

quantum states and associated noise model. The advantage of this methodology is that

we are able to make estimations on effective error (and therefore achievable depth) for

a wide range of qubit numbers and device sizes, without a full state simulation. A full

stack quantum state simulation is something we are working towards and it may be able

to provide greater insights. The effective error εeff for this design and circuit requirement

is, εeff = εgate + εconn, where εgate is the two qubit gate error and εconn is the error

associated with enabling the required global connectivity. We decompose εconn into two

components εconn = εdeco + εloss where εdeco is the quantum decoherence associated with

the total time taken to enable connectivity where εdeco = 1−e−t/c for time t and coherence

time c. Recent work by Kaufmann et al [85] demonstrated high state fidelity shuttling

(99.9994%), where the coherence time associated with shuttling was extrapolated to be

2.13s. A coherence time of 50s has been demonstrated for stationary ions in the atomic

clock states of calcium [143]. In figure 3.5 we quantify the average time required to enable

connectivity as a function of device size (qubit number). The stated dimensionless time

τ can be converted to a real time by multiplying it with the expected time to shuttle

an ion between two adjacent X-Junctions. For ion shuttling speed, a distance of 280µm

has been demonstrated with adiabatic techniques in 3.6µs [84] and 12.8µs [85]. Diabatic

techniques [144, 145, 146] can enable much greater shuttling speeds, and ∼ 80 ms−1 has

been demonstrated [145]. Lau and James calculate that the maximum speed a 40Ca+ ion

can be transported across a 100 µm trap without excessive error is 10,000 ms−1 [147].

There will be an additional time cost associated with performing a single combination and

a separation of ions, per iteration of the depth-1 circuit, which have been performed in

80µs [148, 149]. εloss represents the likelihood for an ion to be lost to the vacuum per

iteration of the depth-1 circuit. Investigations of ion loss for routing across X-Junction

58

centres [89] found continuously Doppler cooled ion survive more than 105 round trips

whereas uncooled ions survive at least 65 round trips. This experimental demonstration

was for corner X-Junction crosses in contrast to linear X-Junction crosses. We may expect

that linear X-Junction crosses would result in lower ion-loss rates due to the simpler wave-

forms that are required, but in this analysis we treat them as identical capturing a worst

case situation. Ion loss can occur when its motional energy exceeds the trap depth,

which can be remedied by increasing the trapping potentials and by cooling techniques.

Ion loss may also result from temperature independent collisions which instead directly

related to the quality of the vacuum. Significant work is carried out in order to allow the

application of large trapping voltages in order to increase the effective trapping potential;

recently trapping voltages as large as 1000V have been demonstrated [150]. In figure 3.7

we quantify the average number of X-Junction crosses, Xcount, as a function of device size

(qubit number), which can be combined with an ion loss per shuttle rate, Xloss, for εloss.

This can all be combined into a single equation defining the effective error in this design

εeff = εgate + (1− e−t/c) + (Xcount ×Xloss) (4.8)

This error model can be used to estimate the achievable depth for a wide variety of

device sizes and experimental parameters for devices following this design. Ion loss is

indeed a very different class of error as compared to the state fidelity errors associated

with gates and decoherence. Here we are making the simplifying assumption for the sake

of analysis that ion loss results in a complete computational failure and so can be combined

into a single figure of merit (total error). The gate error will depend on the requirement

of the algorithm we are assessing against, which in the case of QV is the arbitrary two

qubit gate, but at times we will consider the native two qubit gate to focus on the cost of

enabling global connectivity.

4.3 Using Quantum Volume to compare architectures

We use our error model to quantify the largest achievable square circuit depth, equivalent

to log2(QV) as per equation 4.3 as a function of the native two qubit gate fidelity for this

architecture with two different assumptions on experimental shuttling parameters, shown

in figure 4.5. These can be compared to the upper bound of this metric which corresponds

to a hypothetical architecture with free, all to all connectivity. To demonstrate an example,

a device with free all to all connectivity and a two qubit gate fidelity of 99.9% has a square

circuit depth of 32. This implies that one could effectively run a globally connected native

59

Figure 4.5: The largest achievable square circuit depth, equivalent to log2(QV) but with

a native two qubit gate requirement, as a function of inverse gate error, 1/ε. Red: An

architecture with all to all connectivity where the square circuit depth is solely defined

by the native two qubit gate fidelity using equation 4.2; this represents the upper bound.

Green: The shuttling based trapped ion architecture with our proposed error model and

the routing results of the previous chapter. The coherence time and the time taken to

shuttle between adjacent X-Junctions is extrapolated from work by Kaufmann et al [85].

We assume a distance between adjacent X-Junctions of 2500µm [74] which implies a shut-

tling time, t, of 114µs, and we use the demonstrated state fidelity of shuttling [85] to

infer a coherence time, c, of 2.13s, and so t/c ≈ 5 × 10−5. We assume an ion loss rate of

10−5 per X-Junction pass [89]. We assume each iteration of the depth-1 circuit requires

one combination and one separation operation, each of which have a duration of 80µs

[148, 149], and we assume the state fidelity of the operation can be inferred from the co-

herence time. Blue: All the assumptions are identical to the above except for the coherence

time (for shuttling) which has been increased by a factor 10 [143]. Yellow: A model of a

square grid superconducting architecture where connectivity is enabled through sequences

of nearest neighbour swap operations which require 3 native two qubit gates (the CNOT).

The depth overhead was found to scale as a function of qubit number N as 2.77
√
N −4.53

using the publicly available quantum compiling software, CQC’s t |ket〉; improvements to

the connectivity compiler would reduce this overhead.

60

two qubit gate algorithm with 32 qubits at depth 32. We investigate up to a two qubit gate

fidelity of 99.99%; this analysis indicates that without error correction techniques, chasing

high qubit numbers will be futile even with considerable improvement to the current state

of the art two qubit gate fidelities. The trapped ion plots of figure 4.5 have an ion loss

rate of 10−5 [89]; we found that increasing this rate substantially decreases the square

circuit depth, which seriously emphasises the importance of achieving an ion loss rate of

this order. The ion loss rate can be decreased by improving the vacuum quality (which

reduces collisions), deeper trapping potentials and by techniques such as sympathetic

cooling [151]. Ions may also be automatically reloaded from a filled reservoir trap section.

We investigate the impact of the rate of ion loss in section 4.4.1.

We also quantify this metric for a model of a superconducting architecture, which is a

square grid with only nearest neighbour interactions. In superconducting square grid sys-

tems, connectivity is enabled by sequences of swap operations, and the best known method

has an overhead of Θ(N0.5) [152] for the random complete graph (global connectivity).

IBM provide an equation to estimate the depth overhead, of the form (a
√
N + b), for a

square grid but it includes their gate decomposition costs of arbitrary two qubit gates

[20]. Cowtan et al developed a compiler to map quantum circuits to devices with restric-

ted qubit connectivity and provides results on the depth overhead for nearest neighbour

square devices [50]. Using the publicly available software, CQC’s t |ket〉 and its recently

improved connectivity compiler, the depth overhead was found to scale with qubit number

N as, 2.77
√
N − 4.53. This overhead corresponds to a depth-1, 100% gate density, native

two qubit gate (CNOT) algorithm with 10N iterations. A SWAP gate is implemented

with three CNOTs and no advantageous initial qubit mapping was utilised.

The native two qubit gate of this trapped ion design is the Mølmer-Sørensen [60]

and although it does not directly depend on the motional state, it is affected by the

heating rate and experimental offsets whereby it is favourable to begin in a low motional

state. Therefore to reach the high two qubit gate fidelities used in figure 4.5, it will be

necessary to use cooling techniques. Techniques such as Doppler and sideband cooling are

only suitable for the beginning of a quantum algorithm as they do not preserve quantum

information. Sympathetic cooling is a way of actively cooling throughout a quantum

algorithm, whereby the qubit is sympathetically cooled via a different laser cooled ion

species. It is likely to be a critical technique for the use of trapped ion devices, particularly

in the fault tolerant regime [74]. Shuttling based designs may benefit from multi-species

shuttling. The relative difference between the upper bound of free all to all connectivity,

61

and the plots for trapped ions, increases with the two qubit fidelity due to the independent

cost associated with shuttling. We find a substantial difference in the achievable square

circuit depth between the superconducting plot and the all to all, particularly at higher

two qubit gate fidelities. Superconducting square grids have a slower growth rate with

two qubit gate fidelity because the associated depth overhead of swaps increases with the

number of qubits (the size of the grid). The trapped ion plots can be seen to plateau

with increasing two qubit gate fidelity which is due to the static (independent of gate-

fidelity) error contributions associated with connectivity, which transition to becoming

the dominating error source as the gate fidelity increases. In this model, the trapped ion

design outperforms the superconducting square grid for this set of experimental shuttling

parameters. The total shuttling time required to enable global connectivity, τ, scales as

τ = 1.3 (3)
√
N + 2 (5), where τ = 1 is the shuttling time between adjacent X-Junctions.

This scaling is comparable to the depth overhead for swapping on the superconducting

square grid. Extrapolating from the high state fidelity shuttling of Kaufmann et al [85], it

implies a fidelity per shuttling operation (2500µm) of 99.995% which is significantly higher

than the two qubit gate fidelities achieved so far by superconducting systems. In order

to facilitate further work with our error model by others, we have made it open access

[134]. To experimentally implement the work presented here, a key challenge is to build

and operate such a trap as shown in Figure 3.2. A trap needs to be fabricated for which

a number of approaches are being perused [153].

4.3.1 Quantum volume comparison with recent experimental results

The quantum volume metric has seen a wider adoption in the community in recent years

and now various teams are announcing their best achievements in the spirit of constructive

competition. In figure 4.6 we have recast figure 4.5 using quantum volume as opposed to

square circuit depth. Here we have also amended the circuit requirement back to the ori-

ginal arbitrary two qubit gate requirement for which we make the simplifying assumption

that for these architectures the arbitrary two qubit gate is achieved with three applications

of the native gate. We include recently achieved quantum volume values from IBM, of 64

(6 qubits square depth circuit) and Honeywell 128 (7 qubits square depth circuit). We

can see that the exponential scaling of the quantum volume can lead to very large values

for sufficiently high two qubit gate fidelities. IonQ recently announced that they expect

a quantum volume of ∼ 4 million on their 32 qubit chip which has a 99.93% two qubit

gate fidelity, but this claim has not yet been substantiated. The IonQ architecture does

62

Figure 4.6: Quantum volume as a function of inverse gate error, 1/ε with the same

error model assumptions as described previously. Red: An architecture with all to all

connectivity where the square circuit depth is solely defined by the native two qubit

gate fidelity using equation 4.2; this represents the upper bound. Blue: The trapped

ion architecture investigated in this manuscript using our proposed error model and the

routing results of the previous section, with the ratio of shuttling time to coherence time

equal to 5 × 10−5. Green: All the assumptions are identical to the red plot except for

the coherence time which has been increased by a factor 10 [143]. Yellow: A model of a

square grid superconducting architecture where connectivity is enabled through sequences

of nearest neighbour swap operations. The depth overhead was found to scale as a function

of qubit number N as 2.77
√
N − 4.53. Black star: IBM achieved a quantum volume of

64 in 2020 with 6 qubits (square circuit depth). Magnenta star: Honeywell achieved a

quantum volume of 128 in 2020 with 7 qubits (square circuit depth).

have access to arbitrary connectivity two qubit gates without the need for shuttling and

their claimed result would fit within the free-all-to-all model of figure 4.6; some questions

for this architecture type would be whether the high two qubit gate fidelity can be main-

tained while performing the maximum number of gates in parallel (in this case 16), and

the general vision for continuing to scale to higher qubit numbers.

63

Figure 4.7: Achievable depth for a globally connected native two qubit gate circuit as a

function of qubit number with a fixed two qubit gate fidelity of 99.9%. All other compon-

ents of the error model are the same as described in the caption of figure 4.5 such as an

ion loss rate of 10−5 and a coherence time of 2.13s.

4.4 Using quantum volume to meter experimental priorities

In this section we present results that can be used to understand the relative importance

of various experimental parameters.

Quantum volume (and largest square circuit depth) is an obviously useful metric but

some information is lost in the calculation. In figure 4.7 we plot achievable depth as a

function of qubit number. The depth on low numbers of qubits starts high (for 2 qubits

it is equal to 500 for the all to all case with the two qubit gate fidelity of 99.9%) and then

falls rapidly with qubit number because of the 1/N factor, and for realistic architectures

the effective error term will also depend on N. The intersection of the achievable depth

with the dashed qubit number line is equal to the quantum volume when exponentiated,

as defined by equation 4.3.

64

Figure 4.8: The largest achievable square circuit depth, equivalent to log2(QV) but with

a native two qubit gate requirement, as a function of the ion loss rate with a fixed two

qubit gate fidelity of 99.9%. All other components of the error model are the same as

described in the caption of figure 4.5 such as a coherence time of 2.13s associated with

shuttling operations.

4.4.1 The dependence on ion loss

We now resort back to using the quantum volume metric as in figure 4.5 but instead fix

the two qubit gate fidelity (here to 99.9%) and vary the ion loss rate. Within the error

model this parameter is the rate at which ions are lost to the vacuum per journey past

the centre of an X-Junction.

Investigations of ion loss for routing across X-Junction centres [89] found continuously

Doppler cooled ion survive more than 105 round trips whereas uncooled ions survive at

least 65 round trips. Ion loss occurs when its motional energy exceeds the trap depth,

which can be remedied by increasing the trapping potentials and by cooling techniques.

The large difference of the ion loss rate between cooled and uncooled ions places importance

on cooling techniques which do not disturb the quantum information, such as sympathetic

cooling (explained in more detail in section 4.3). In figure 4.8 we plot the dependence of

quantum volume versus ion loss across a range of 10−6 − 10−1. Using this graph we can

65

Figure 4.9: The largest achievable square circuit depth, equivalent to log2(QV) but with

a native two qubit gate requirement, as a function of the coherence time with a fixed two

qubit gate fidelity of 99.9%. All other components of the error model are the same as

described in the caption of figure 4.5 such as an ion loss rate of 10−5.

see that when the ion loss rate is kept below approximately 10−4 then the fidelity loss

from the upper bound (all to all) is dominated by the decoherence associated with the

time spent shuttling and the 0.1% gate error.

4.4.2 The dependence on coherence time

In this section we use our model to assess the importance of the coherence time with a

two qubit gate fidelity of 99.9%. In figure 4.9 we can see that once the coherence time

reaches values of approximately 10s there are diminishing returns and the fidelity starts

to be dominated by the two qubit gate fidelity. In our error model the coherence time

corresponds to both static and moving ions which is corroborated by the high state fidelity

shuttling results of the Siegen group [85] where the coherence time was 2.13s.

66

Figure 4.10: The largest achievable square circuit depth, equivalent to log2(QV) but

with a native two qubit gate requirement, as a function of inverse gate error and a fixed

two qubit gate time of 1000µs. All other components of the error model are the same as

described in the caption of figure 4.5 such as an ion loss rate of 10−5.

4.4.3 The dependence on ion density

So far this chapter has assumed that there are always two ions initialized per available

gate zone which enables the 100% gate density algorithm to be executed in one round.

Increasing the number X-Junctions will be experimentally expensive and it will therefore

be desirable to increase the ion density at the various stages of development. In figure 3.9

we characterize the effect of increasing the ion density on the time taken to route. When

considering the effective error we must define the total time taken which will now include

the additional rounds of shuttling and gates. Now the gate time will also be a parameter

of the error model where previously it was only considered by the abstraction of the two

qubit gate error. Laser free gates have been demonstrated with a time cost of 3400 µs

[68], 3250 µs [65] and 2938 µs [69] and laser based gates have been demonstrated as fast

as 30 µs [70] and 115 µs [71].

In figure 4.10 we fix the gate time to 1000 µs and compare the QVnative for three

different ion densities, 2, 4 and 6. The relative difference between the plots is increased as

67

Figure 4.11: The largest achievable square circuit depth, equivalent to log2(QV) but with

a native two qubit gate requirement, as a function of gate time and a fixed two qubit gate

fidelity of 99.9%. All other components of the error model are the same as described in

the caption of figure 4.5 such as an ion loss rate of 10−5.

we increase the two qubit gate fidelity, as it transitions away from being the dominating

error. The relative importance of ion density with a constant coherence time is dependent

on the gate time, and therefore laser-based gates (which are generally considerably faster)

may be more suitable for near-term, high ion-density devices. In figure 4.11 we fix the

two qubit gate fidelity to be 99.9% and vary the gate time instead. For this gate fidelity

the improvement to the square circuit depth begins to plateau once the gate time reaches

approximately 500µs and below. This analysis will be helpful in determining the appro-

priate ion density to use in a given device, and can help meter experimental priorities,

such as how urgently should one rush to larger devices, as opposed to loading more ions

onto a smaller device.

68

Figure 4.12: The average single qubit gate error with a fixed Rabi frequency of 50KHz,

as a function of the FPGA frequency and the uncertainty in the Rabi frequency ωε. The

Rabi frequency was chosen from a normal distribution with mean = 50KHz and 3σ =

ωε × 50KHz.

4.5 Single qubit gate fidelity as a function of experimental

parameters

There is a resolution of control on the fields that perform the logical operations. The angle

of rotation, θ, for the single qubit gate is determined by the duration of the applied field,

T , and its associated Rabi frequency, ωR, where θ = 2πωRT . The frequency of the FPGA,

FFPGA, determines the time resolution of the microwave field application duration so that

the maximum error on the duration of the application is equal to Terror = 1/FFPGA.

This finite resolution will lead to over or under rotations, φ relative to the desired angles.

We can define the operational error that evaluates the distance between a target unitary

Utarget and an error affected unitary Uerr as

ε = 1−
∣∣∣∣ 1

D

〈
Utarget, Uerr

〉
F

∣∣∣∣2 (4.9)

where D is the dimension of the Hilbert space, 2 for single qubit gates, and 〈·, ·〉F is

69

Figure 4.13: The average single qubit gate error with a fixed Rabi frequency of 25KHz,

as a function of the FPGA frequency and the uncertainty in the Rabi frequency ωε. The

Rabi frequency was chosen from a normal distribution with mean = 25KHz and 3σ =

ωε × 25KHz.

the Frobenius inner product which can be calculated with

〈A,B〉F =
∑
i,j

A∗ijBij = Tr
(
A†B

)
(4.10)

There is an additional error source associated with an uncertainty in the produced

Rabi frequency ωε, which may result from background noise or from distortions on the

original production of the field. We calculate the average expected rotation error φ by

sampling from normal distributions set by 3σ = Terror and 3σ = ωε respectively, where ωε

is defined as a fractional error on the Rabi frequency. For example, ωε = 0.05 implies the

applied field may be at most ∼ 1.05ωR. We then convert the expected rotation error φ into

an error using equation 4.9 and plot for a fixed Rabi frequency, as a function of the FPGA

frequency, and the uncertainty on the Rabi frequency. In figure 4.12 we plot the average

error for a Rabi frequency of 50KHz which is a value that is regularly used within the lab,

and across a wide range of FPGA frequencies, the centre of which, 40MHz, is currently

used within our lab. We can see that a large Rabi error, e.g. 10%, dominates the average

error relative to the time resolution of the FPGA. It will be necessary to have a Rabi error

70

of around 3% or less to achieve single qubit gate fidelities of at least 99.99%. In figure

4.13 we instead plot with a Rabi frequency of 25KHz, which results in a lower error for a

given time resolution. The time resolution and Rabi frequency are not the only sources of

error in the single qubit gate however, for example, the total time duration of the gate will

determine the error from decoherence (for a given coherence time). Although lowering the

Rabi frequency may reduce the error associated with the time resolution of the FPGA, it

will increase the total duration of the gate, and so increase the error from decoherence.

The Rabi frequency uncertainty may be greater for larger devices with conflicting fields,

and varied distances between gate zones and emitters. This preliminary analysis serves as

a best case error analysis for a given FPGA frequency and Rabi frequency uncertainty (i.e.

the analysis only includes these contributions). Provided the FPGA frequency is of around

16-40MHz or greater, the associated timing error is unlikely to represent a bottleneck in

achievable fidelities. In future work, a more detailed error model should be able to meter

experimental priorities.

4.6 Comparing photonic interconnects and shuttling

In this section we will compare photonic interconnects and shuttling, by quantifying the

time to enable global connectivity for large devices.

As described in chapter 2, there is a large variety within the category of trapped ion

architectures. One of the main ways in which they vary is in how connectivity is enabled.

The connectivity graph that can be enabled with photonic interconnects is highly flexible

as the cost of the connectivity operation is independent of any spatial distance, and each

module may be connected to numerous other modules. In this section we focus on a

particular design consisting of modules containing a small number of data qubits (e.g. 1

data qubit) which are connected via photonic interconnects.

4.6.1 Connectivity for large scale devices

Large scale devices will need to use error correction in order to run at a functional circuit

depth, and it will incur a potentially large physical qubit to logical qubit overhead. The

surface code is the most researched error correction technique, particularly in regards to

end to end physical resource estimation. There are many other error correction techniques

available and the best choice will likely depend on the underlying architecture’s character-

istics, such as it’s available connectivity. The surface code relies only on nearest neighbour

interactions and so it is well suited to superconducting architectures. Higher dimensional

71

error correction codes can have access to a greater range of transverse (cheap to apply)

gates [154, 155] which may considerably improve final run-times but few architecture types

will be able to realise this 3D (or greater) connectivity; photonic-interconnected modules

may be the most flexible architecture with regards to it’s possible connectivity graph. Er-

ror correction codes which rely on global interactions at the physical level have favourable

encoding rates as a function of code distance [30] but enabling this global connectivity on

large devices may be challenging, or the connectivity overheads may outweigh the benefits

relative to closer-range-connectivity codes.

These alternative error correction techniques should motivate investigation into the

cost of enabling global connectivity for large scale devices.

4.6.2 The time cost for global connectivity

For the shuttling based design we use the routing results of chapter 3, paired with achieved

experimental results for high state fidelity shuttling [85]. For a photonic interconnected

based design consisting of many modules each containing one data qubit [83], we rely on

the butterfly network routing results of Brierley [156] and Herbert [157]. Herbert defines

the number of operations required for a single round of global connectivity as a function

of the number of connections per module; his results represent a best case, in that the

scaling is strictly bounded below, but not above, and so the actual operation overhead

may be greater than estimated here. In this analysis we abstract away the details of

communication ions required for the photonic interconnects. The assumption is that each

module contains one data ion and the necessary number of communication ions required

to enable the stated number of photonic interconnects.

For the time cost of an individual photonic interconnect operation we use a recent

experimental result which represents the state of the art, where remote Bell pairs are

generated at a rate of 182Hz and fidelity of 94% [82]. We assume that to reach a satisfactory

gate fidelity, entanglement distillation will be utilized and we rely on the purification

protocols presented by Nigmatullin et al [83]. In this referenced work each module is

assumed to have a total of 5 ions, which includes 1 application (data) ion (Ca+), 2 ions to

generate ion-photon entanglement (Sr+), 1 shuttling envoy ion (Ca+), and 1 final Ca+ ion

to mediate the interaction between the data ion and the ion-photon entanglement ions.

There are three stages of purification presented with each stage further improving the

output fidelity, and the number of stages would be chosen based on the raw entanglement

fidelity and the desired output fidelity. Assuming a raw entanglement fidelity of 94%, stage

72

Figure 4.14: The total time for global connectivity as a function of the number of qubits

in the device for different architectures. The shuttling based approach (red) uses the

lane priority routing algorithm of chapter 3 with shuttling speeds motivated by recent

experimental results [85]. The photonic based approach uses the butterfly network with

different numbers of connections per module [157], here listed with 4 (magenta), 12 (blue),

100 (cyan). Horizontal dashed lines correspond to the time required for a 1% error with

a coherence time of 1 second (green) and 10 seconds (black). The time for an individual

photonic interconnect operation is motivated by the recent state of the art, where entan-

glement was generated at a frequency of 182Hz and fidelity of 94% [82], and we assume

that to reach a satisfactory gate fidelity, entanglement distillation will be utilized which

would reduce the rate by a factor 6 with 3 stage purification [83].

three purification would improve the output fidelity to 99.7% and reduce the effective rate

by a factor 6 [83]. When an accurate error model is known for all operations in the device,

distillation protocols can be further specialized to improve performance.

Commercially available switches offer 1-12 branching with a loss of 0.9dB and al-

ternative micro-mechanical mirror arrays can offer higher levels of switching at the cost

of a greater loss [83]. Greater switching can be achieved by combining the switches in

73

series, but the associated loss compounds. The usual technique to deal with loss in a

classical network is to utilize amplifiers, however this is not currently possible for single

photon transmission as is required in quantum networks. Due to this, the total loss in

the quantum network should be considered as an effective slow-down factor, where the

signal will have to be resent a number of times to account for the loss. The most effective

switches are designed for telecom wavelengths and so down conversion may be necessary

for their use, alternatively an additional ion species may be utilized for the transmission,

but the mixed species ion interactions are in themselves difficult to mediate. In figure

4.14 we plot the total time required to enable a single round of global connectivity as a

function of the number of qubits within the device. We investigate a wide range of physical

qubit numbers, up to 107; fault tolerant applications using the surface code often require

in excess of 106 qubits [113]. We can see that for device sizes smaller than 105 physical

qubits, the shuttling based design can enable global connectivity more quickly than the

photonic based design with 12 connections per module. We include horizontal lines cor-

responding to the time required for a 1% error with coherence times corresponding to 1

and 10 seconds, which may be useful for estimating the upper bound device size at which

it is reasonable to consider global connectivity. With a coherence time of 10 seconds this

upper-bound is the same for both the shuttling design and the photonic design with 12

connections, at approximately 105. This work constitutes a preliminary investigation, to

make it more rigorous for the shuttling model, one should consider the costs associated

with mid-circuit sympathetic cooling. For the photonic interconnects model one should

include the costs of switches and further research is needed to more concretely define the

operation overhead for a given network structure. Furthermore, for future-looking com-

parisons such as these, one should consider the relative potential for improvements of the

shuttling speed and photonic interconnect rate.

4.7 Summary

In this chapter we have proposed an error model for a shuttling based trapped ion quantum

computer that incorporates the results of the routing simulations of the previous chapter.

Using the model we have estimated the computational power (quantum volume) of near

term devices as a function of experimental parameters. We have found that the shuttling

based design will have a low cost associated with enabling distant connectivity relative

to superconducting devices, and that the major bottleneck to quantum volume will be

the two qubit gate fidelity. We have investigated the impact of ion density (number of

74

ions initialized per X-Junction) by considering the reduction in gate parallelizability as a

function of the two qubit gate duration and fidelity. We have estimated the expected error

on single qubit gates that results from the time resolution of control on the microwave

fields and local amplitude variation. Finally, we investigated the time cost for global

connectivity for the shuttling based trapped ion design and for a trapped ion design using

small modules connected via photonic interconnects. We used the state of the art rates

for photonic interconnects and high fidelity shuttling and consider a wide range of device

sizes from 10 to 10 million; we found that the shuttling based approach can enable global

connectivity more quickly for device sizes with fewer than 105 qubits.

In the future we intend to develop more detailed error models which can be incor-

porated into a state simulator; such a tool could be used to investigate the suitability of

error correction protocols or for near term algorithm optimization. The following chapter

focuses on fault tolerant resource estimation for quantum chemistry.

75

Chapter 5

Fault Tolerant Resource

Estimation for Quantum

Chemistry

In this chapter we provide an overview of quantum algorithms for quantum chemistry,

differentiate NISQ and fault tolerant techniques, and provide gate count resource estim-

ates for estimating ground state energies for a variety of small molecules. We use some

of the latest surface code developments to translate these gate counts into physical qubit

number requirements and clock time estimates. The work presented in this chapter origin-

ally contributed towards the paper “How will quantum computers provide an industrially

relevant computational advantage in quantum chemistry?” [12]. The paper is of a broad

perspective type and involved collaboration with experienced classical-quantum chemists;

in this chapter we take a pedagogical approach and focus more upon the work that I

was personally involved with. This chapter will be a change of pace from the previous

one, chapter 4, which was very hardware centric. In the following chapter, chapter 6,

we will bring in a wider set of hardware considerations by investigating how the rate of

physical-logical operations can impact the feasibility of reaching a quantum advantage.

5.1 Classical quantum chemistry

One of the fundamental goals of quantum chemistry is to solve the time-independent,

non-relativistic Schrodinger equation for molecular systems. Classical computation power

becomes more and more available every year and the algorithms for chemistry are improv-

ing rapidly, and yet on the fundamental level all classical techniques involve some degree

76

of approximation to avoid the two prohibitively expensive features. These are: (i) storing

the full many-body quantum wave function with 2N entries and (ii) propagating the wave

function in time by general matrix-vector multiplication. These features require exponen-

tial scaling in time and space on a classical computer and therefore approximations are

inevitable.

To numerically simulate quantum chemistry problems a set of independent functions,

known as a basis set, is introduced to describe the physical wave function of the system.

This introduction does not remedy the exponential increase of parameters with system

size but enables one to balance the achievable accuracy against the required computational

resources. Richard Feynman was perhaps the first to envisage a quantum computer and

its application to the simulation of physics and chemistry [4]. It is now expected that

quantum computers will eventually be able to perform electronic structure calculations

with the accuracy typical of rigorous classical methods and the run time associated with

approximate methods.

A common simplifying assumption in both classical and quantum methods is the Born-

Oppenheimer approximation (BOA) which treats nuclei as stationary point charges due

to their relative size. Relativistic effects are also often neglected, particularly for small-

medium sized molecules. The classical technique of exact diagonalization can provide an

exact answer for the wave function and energy (i.e. the full configuration interaction (FCI)

answer). However, the exact method comes at the cost of storing an exponential number

of coefficients which means that it is prohibitive for even medium sized molecules and it is

instead used mostly as a bench-marking method. The self-consistent field method (SCF),

aka Hartree-Fock method, assumes that the exact wave function of the system can be

approximated by a single Slater determinant and the method is often used as an ansatz

for quantum algorithms. The coupled cluster technique extends the Hartree-Fock method

by accounting for electron correlation by constructing multi-electron wave functions with

an exponential cluster operator. The coupled cluster has been used to generate some of

the most accurate calculations to date for small molecules. Density functional theory is a

low accuracy, high speed method in which all of the degrees of freedom of the electronic

system are integrated out, except for the density.

5.1.1 Precision vs accuracy

A commonly used standard of accuracy within the quantum chemistry field is known

simply as chemical accuracy, for which the error must be no greater than 1 kcal/mol relative

77

to the hypothetical exact energy or an experimental measurement [158]. This concept

is distinct to that of precision which in this context is instead the computational error

relative to a computational reference. For example, one can achieve chemical precision

within a minimal basis set for a particular molecule, but even the exact answer within

the minimal basis set would not necessarily be sufficient to achieve chemical accuracy.

This misconception between accuracy and precision has appeared in several papers over

the last few years [159, 160, 94, 161, 162, 163, 164, 165] within the quantum computing

quantum chemistry field (as opposed to the classical computing quantum chemistry field).

Chemical accuracy has been claimed at times when in reality the achievement is instead

chemical precision relative to the FCI method within a very small basis set. The distinction

is important because achieving chemical precision does not at all guarantee any useful

predictive power, such as chemical reactivity.

In figure 5.1 we plot the number of spin-orbitals mapped to qubits (the size of the

used basis set) for a number of actual quantum computing calculations done to date. The

figure makes it clear that for these quantum computing demonstrations, the number of

qubits used is considerably smaller than would be necessary to achieve chemical accuracy.

The limited quantum computational resources are certainly a reason for this but the

subsequent claims should reflect the achievements with regards to the meaning of accuracy

and precision.

5.2 NISQ and fault tolerant techniques

In this section we highlight the differences between NISQ and fault tolerant approaches to

quantum chemistry. As described in more detail in chapter 2, NISQ devices correspond to

devices in which each physical qubit corresponds to a logical qubit. The limited coherence

times imply a maximum achievable circuit depth, which can define the feasibility of running

a particular algorithm. Fault tolerant devices have not yet been built and their realization

is expected to take several years. There are large resource overheads associated with error

correction techniques which means that a fault tolerant device will likely require upwards

of 100,000 physical qubits for useful applications.

We will focus on the calculations of ground state energies because extensions to ex-

cited state energies and Hamiltonian dynamics follow directly from similar principles, for

examples see Refs [166, 167, 168]. There are two main paradigms for performing energy

estimation, Hamiltonian averaging (tomography), and Quantum Phase estimation.

78

Figure 5.1: A comparison of the number of spin-orbitals required to achieve chemical

accuracy for ground state energy calculations (red line) and the number of spin-orbitals

which have been utilized in some actual quantum computing calculations conducted to

date [12]. Here it is assumed that the cc-pVTZ basis set would be sufficient for chemical

accuracy if used within an extrapolation scheme.

5.2.1 NISQ and VQE

The primary method of performing quantum chemistry on a NISQ device involves Hamilto-

nian averaging. In Hamiltonian averaging, first a quantum state is prepared over a qubit

register and the Hamiltonian operator’s expectation value is measured by sampling the

qubits many times. The value can then be determined by averaging over all measure-

ments. For an accuracy ε this procedure needs to be repeated as O(1/ε2) [166]. This

results in an expectation value for a single operator within the Hamiltonian. To acquire

the expectation value of the entire Hamiltonian this procedure needs to be repeated for

every operator. Due to the linearity of the expectation operator the final answer is a sum

of each individual result. In the second quantization, the general chemistry Hamiltonian

has O(N4) terms which plays a big part in defining the final run time [166]. There are

some techniques to reduce this dependence [169, 170]. To acquire the ground state energy

using this procedure it is necessary for the initial prepared quantum state (ansatz) to have

sufficient overlap with the ground state. The variational principle [171] can be used to

consistently produce the ground state, it states that the expectation value of the Hamilto-

79

nian for a prepared trial state is always an upper bound to the ground state energy. Using

the variational principle in combination with Hamiltonian tomography is known as the

Variational Quantum Eigensolver (VQE) [94] and it is the primary technique for chem-

istry simulation on NISQ devices. For more details on the NISQ-variational approach see

section 2.4.

5.2.2 Fault tolerance and QPE

The Quantum Phase Estimation (QPE) algorithm generates eigenvalues for a general

unitary operator and it can be applied to quantum chemistry to find the eigenenergies

of chemistry Hamiltonians to FCI precision. Unlike VQE which involves many iterations

(O(1/ε2) with accuracy ε) of low depth circuits, the QPE algorithm requires a O(1) iter-

ations of a circuit with a depth scaling as O(1/ε). The large depth required in the QPE

algorithm means that it will only be possible with error corrected devices, because NISQ

devices would lose their coherence long before the end of the circuit. For a given unitary

operator Û , the eigenvalues can be represented as a phase λj = eiφj , and phase estima-

tion can be used to extract the eigenvalues in an efficient manner. To utilize the QPE

algorithm for quantum chemistry, Hamiltonian simulation is used as a subroutine, where

for a Hamiltonian Ĥ, the operator Û = e−iĤt is constructed. When using the standard

QPE algorithm, the eigenenergy is stored as a binary approximation in a secondary qubit

register where each ancilla qubit adds another digit of accuracy. The phase (which can

be converted into an energy) is imprinted (via phase-kickback) onto the ancilla register

by using the ancilla qubits for controlled operations onto the state preparation register

repeatedly. To calculate the ground state energy it is necessary for there to be sufficient

overlap with the state preparation register. If there is a superposition of multiple states

in the preparation register then the measurement procedure will collapse it into a single

eigenstate with probability corresponding to its overlap with the prepared state. The

simple Hartree-Fock product state typically provides sufficient overlap for most systems,

but unitary variants of the coupled-cluster methods offer a more accurate (and classically

costly) alternative.

5.3 Hamiltonian simulation

Hamiltonian simulation involves constructing a quantum circuit which approximates the

evolution of the input state with respect to a Hamiltonian Ĥ, which corresponds to the

action of the operator e−iĤt. For arbitrary Hamiltonians the number of elementary gates

80

needed to construct the time evolution operator grows exponentially with the number of

qubits. In the pioneering work of Lloyd [172], a method for polynomial scaling simula-

tion is shown for Hamiltonians with a special structure (ones which describe only local

interactions), which laid the foundation for further research into Hamiltonian simula-

tion [173, 174, 175]. Cao et al provide a detailed review of quantum computing and

quantum chemistry including the sequential development of Hamiltonian simulation tech-

niques [166]. A major research focus since Lloyd’s work has been to identify special struc-

ture within quantum chemistry Hamiltonians to enable efficient simulation. There are two

main paradigms for Hamiltonian simulation: product formula algorithms (Trotterization),

and quantum signal processing algorithms (Qubitization).

5.3.1 Trotterization

There have been numerous developments on the theory of Trotter decompositions and the

resulting error [176, 177, 178, 179]. One of the most favoured decompositions of this form

are now known as the Trotter-Suzuki (TS) formulas [180]. The general idea behind using

Trotter-Suzuki formulas is to first express the Hamiltonian as a sum of easier to simulate

Hamiltonians and then the total evolution is approximated by the combination of these

simpler evolutions [181], i.e. let Ĥ =
∑m

j=1 Ĥj then the first order TS formula is

e−i
∑m

j=1 Ĥjt =
m∏
j=1

e−iĤjt +O(m2t2), (5.1)

The error here results from the fact that the exponential is actually an operator expo-

nential and in general the Ĥj terms do not commute. The above formula has a negligible

error for t << 1. To accurately simulate for larger times it is necessary to further break

up the dynamics into a number (r) of shorter time steps i.e. each time step would run for

a time t/r

e−i
∑m

j=1 Ĥjt =

(m∏
j=1

e−iĤjt

)r
+O(m2t2/r), (5.2)

Higher-order formulas can be constructed and generally provide a more favourable

approximation error at the cost of larger gate counts. The methods above rely on being able

to efficiently simulate e−iĤjt terms, which can be accomplished by defining the Hamiltonian

as a sum of Pauli operators and the method to perform this is known as the Jordan-Wigner

decomposition.

81

5.3.2 Qubitization

Qubitization [182, 183] is perhaps the most favored method for simulating quantum chem-

istry Hamiltonian dynamics. It achieves the provably optimal scaling in query complexity

and approximation error albeit while requiring more logical qubits than other methods.

Using a pair of reflection operations, the qubitization method first constructs an operator

W = e± cos−1(Ĥ / |h|1), (5.3)

from a Hamiltonian of the form Ĥ =
∑

j hjĤj . In the case of calculating the ground

state energy and other static quantities, it is sufficient to apply phase estimation directly

to the W operator and take the cosine of the result to convert it into the appropriate

form. The reflection subroutines within Qubitization rely on each Ĥj being Hermitian

and unitary, which fortunately applies to Pauli operators, making this method a good fit

for quantum chemistry simulation.

5.4 Q# and resource estimation

Q# is Microsoft’s software development kit for quantum computing, and its ultimate goal

is to manage execution on large-scale quantum hardware. In the meantime it supports

simulation on both short-term “NISQ” scale as well as large-scale fault tolerant devices. As

complete simulation of large-scale devices is unachievable for classical computers, Q# offers

resource estimation features, which allow for detailed constructions of various algorithms

and the following gate counts. We used Q# to calculate the required number of logical

operations to perform the Hamiltonian simulation with various methods, and we explain

our methodology in the following section.

5.4.1 Methodology

The first step to use Q# for resource estimation in quantum chemistry [184] is to acquire

a .YAML file (a human-readable data-serialization language comparable to XML) which

contains information on the ansatz to be used within the QPE algorithm. There are some

sample YAMLs provided by Microsoft and there are multiple methods to generate new

ones. The Q# documentation recommends NWChem [185] which is most easily utilized

through the docker image provided by PNNL (Pacific Northwest National Laboratory).

We had some success using NWChem but eventually moved onto Python’s Pyscf module

to produce the one and two electron integrals with the self-consistent field method. We

82

converted the integral data using the Broombridge schema 2.0 (YAML-based schema for

Q#), resulting in a YAML file with sufficient information to perform resource estimation.

There are numerous provided example programs within the Q# documentation. We

predominantly used (and adapted) the “GetGateCount” file for this investigation. The

YAML starts with the Hamiltonian in the second quantization formulation, which is then

converted into a qubit Hamiltonian once it is passed into “GetGateCount” using the op-

timized Jordan-Wigner representation. The target machine of Q# is set to “CreateAnd-

ConfigureTraceSim” which functions as a resource estimator which we use to calculate the

costs of a single oracle application. The “GetGateCount” program enables three oracle

types for Hamiltonian simulation, which are Trotterization, Qubitization and Optimized

Qubitization. By default the program provides resource estimation for T gates, Rotations,

and CNOTs, as well as calculating the 1-Norm for the Qubitization oracles. To acquire

information regarding the number of qubits utilized, the width counter must be enabled

and called. Inputs to the Trotterization oracle are the trotter order, for which the or-

acle cost scales with exponentially, and the Trotter step size, for which the oracle cost is

independent.

The program can be further altered to perform resource estimation on the full energy

calculation by using a phase estimation algorithm such as robust phase estimation. The

final gate count and accuracy are determined by the input parameter “bits of precision”.

This in turn sets the standard deviation on the calculated phase as σ ≤ 2π/2bitsPrec and

it effectively determines the number of applications (# of queries) of the oracle where the

standard deviation satisfies σ ≥ 2π/# of queries. There are more detailed optimizations

that can be performed to determine the optimal number of queries which are specific to

the type of oracle used and we will highlight this in more detail later.

5.4.2 Oracle costs for small molecules

In figures 6.2-6.4 we demonstrate the use of Q# for resource estimation. We plot the

dependence of T gate count, CNOT count and logical qubit count for the three available

Hamiltonian simulation oracle types, Trotterization, Qubitization, and Optimized Qubit-

ization. These resource estimates correspond to a single application of the Hamiltonian

simulation oracle as opposed to a full energy estimation which will come later. In fig-

ure 5.2 it can be seen that the T gate count of oracles from best to worst is Optimized

Qubitization, Trotterization, and Qubitization. It is only when the ’Qubitization’ oracle is

optimized for chemistry with the techniques of Ref. [186], denoted as ’Optimized Qubit-

83

Figure 5.2: T gate cost for a single application of three different oracle types (Trotteriz-

ation, Qubitization, and Optimized Qubitization), for 6 different small molecules within

the minimal STO-3G basis set with orbital and electron number denoted in brackets by

(orbitals,electrons).

ization’, that the T gate costs are lower than that of Trotterization. In the surface code

the T gate count is considered to be the determining factor of the algorithm length. This

is because it must be produced via costly techniques such as magic state distillation as

opposed to the natively available Clifford gate set. The Trotterization oracle does not

directly use any T gates, it instead requires rotation gates which within the surface code

need to be synthesized. Long sequences of the Hadamard gate and T gate can be used

to synthesize an arbitrary angle rotation, where the chain length scales with the desired

accuracy. Several efficient proposals exist and they typically have an upper bound on the

cost of S in terms of the number of T gates of the form

S = γ1 log2(1/∆synth) + γ2 (5.4)

for a single rotation with error ∆synth, and Ref. [187] found γ1 = 4 and γ2 = 11. In

Q# the default value for ∆synth is 0.001/R, with number of rotations R, which is what

we used to define the T gate cost for the Trotterization oracle.

Trotterization benefits from the lowest logical qubit requirement, which is equal to the

spin orbital number of the molecule investigated. Optimized Qubitization has the highest

logical qubit requirement which is in part a result of the T-gate optimization process for

84

Figure 5.3: CNOT gate cost for a single application of three different oracle types (Trotter-

ization, Qubitization, and Optimized Qubitization), for 6 different small molecules within

the minimal STO-3G basis set with orbital and electron number denoted in brackets by

(orbitals, electrons).

chemistry.

In figure 5.5 we plot the T cost dependence on orbital number for the H2O molecule

in the def2-TZVP basis (which has a maximum of 48 orbitals) for Trotterization and

Optimized Qubitization. We can see that regardless of the orbital number the Optimized

Qubitization has a T-gate count approximately an order of magnitude lower than that of

Trotterization. Without rigorous circuit optimization and at larger system sizes the T-

gate oracle costs are directly proportional to the number of Jordan-Wigner terms, which

scales as O(N4). The fits in figure 5.5 were calculated using the first 7 data points (up to

orbital number 17) with a fixed form of AN4 and show good correspondence to the final

two data points at orbital number 48. This plot indicates that extrapolation schemes to

higher orbital numbers can be reliable for resource estimation.

While the resource estimations using Q# presented so far may be qualitatively use-

ful, they do not directly entail a wall-clock time (aka elapsed real time) or the required

physical qubit numbers for energy estimation. There are three main reasons for this: first,

the overall cost is determined not only by the oracle cost, but also by the number of its

applications, the state-preparation, and the particular phase estimation scheme that is

used. Second, the oracle construction input parameters are critical to the final estimates,

85

Figure 5.4: Qubit count required for a single application of three different oracle types

(Trotterization, Qubitization, and Optimized Qubitization) for 6 different small molecules

within the minimal STO-3G basis set with orbital and electron number denoted in brackets

by (orbitals,electrons).

but they can not be determined trivially and they depend significantly on the specific

simulated system Hamiltonian. For Trotterization these include the Trotter step size and

Trotter order [188], and for Qubitization the optimal parameters depend on the Hamilto-

nian 1-norm and sparsity. Third, the impact of fault-tolerant error-correcting codes on

the resource estimate is significant, i.e. orders of magnitude, and needs to be incorporated

or added to the calculation. In the following two sections we fill in these gaps and then

provide more rigorous resource estimates in terms of physical wall-clock time and qubit

number.

5.5 Optimizing gate count and error budgets

In this section we will detail the process of optimizing gate counts for full energy estimation,

and the methods unique to each oracle type. First we will briefly overview the variants of

the phase estimation algorithm and their advantages. We will also motivate the choices of

molecules and basis sets within the context of the limits of classical quantum chemistry.

86

Figure 5.5: The number of T gates required for a single application of an oracle as a

function of the number of orbitals in the basis set for H2O in the def2-TZVP basis set

(which has a maximum of 48). Blue circles correspond to the Trotterization oracle with

results calculated using Q#. Red circles correspond to the Optimized Qubitization oracle

and were also calculated using Q#. The fits were calculated using the first 7 data points

for each oracle with a fixed form of AN4 and show good correspondence to the final data

points at 48 orbitals.

5.5.1 Phase estimation variants

We gave a high level description of the phase estimation algorithm earlier in this chapter,

corresponding to one of the initial proposals in which a register of k ancillary qubits is

required to store the phase with precision dependent on k. In the iterative phase estimation

algorithm [110] the ancillary register is replaced with a single qubit which is measured

repetitively throughout the algorithm while maintaining the same precision. Bayesian

inference techniques [189, 190] can be used to improve the query complexity of the QPE

algorithm by extracting the maximum amount of information from each measurement

(with the measurement procedure of the iterative approach). The classical processing

associated with Bayesian inference has a large computational cost dependent on the desired

accuracy, so that exact inference is in practice intractable. The limited accuracy required

in quantum chemistry applications means that Bayesian inference methods are an available

option. Unlike Bayesian inference methods, the Robust Phase estimation algorithm [191]

87

uses classical post-processing that scales polynomially with the number of measurements

making it a more feasible choice for many applications. Robust phase estimation uses

only one qubit in the ancilla register and the procedure is non-adaptive, meaning the

required sequence of gates is independent of the intermediate measurement outcomes.

These features enables confident resource estimation through circuit construction (without

execution).

5.5.2 Motivating which molecules to investigate

In following sections we provide resource estimates for two particular molecules. First

we consider the ground state energy for the hydrogen molecule H2 to chemical accuracy.

Much of the quantum computing resource estimation work of recent years has focused on

Hydrogen and at times the achievement of chemical accuracy has been claimed, when in

reality it was chemical precision within the small basis sets (e.g. STO-3G), see figure 5.1.

‘STO-nG’ are the minimal basis sets where n Gaussian functions are fitted to represent

the behaviour of each electron orbital. We aim towards actual chemical accuracy by

investigating a successively increasing basis set size for Hydrogen, in the order of STO-3G,

3-21G, 6-31G, cc-pVTZ and cc-pVQZ which have a corresponding orbital numbers of 2,

4, 10, 28, 60. ‘cc-p’ stands for correlation-consistent polarized and this basis set type is

considered the current state of the art for post-Hartree-Fock calculations, the following ‘V’

indicates they are valence-only basis sets, and the following ‘DZ’, ‘TZ’, ‘QZ’ correspond to

double, triple, and quadruple -Zeta and indicate the number of basis functions in increasing

order.

We also consider the ground state energy of the chromium dimer, Cr2, which represents

a serious challenge for classical many-body electronic structure methods. We expect the

chromium dimer to be a good candidate for a quantum algorithm to achieve a higher

accuracy than has been possible with classical algorithms, because of its size and the

significant non-dynamic correlation. Instead of increasing the basis set size we use a so-

called Complete Active Space (CAS) approach, where the number of active orbitals and

active electrons within the large cc-PVTZ basis are sequentially increased. In both the

case of Hydorgen and the CAS Chromium dimer, the Hamiltonian matrix elements were

calculated with the RHF-SCF method [192]. For further comparison using the Chromium

dimer we constructed a denser starting Hamiltonian by performing CASSCF and using the

final rotated-basis. This is a better indicator of the final CI steps of a CASSCF calculation.

88

Figure 5.6: The number of T gates required for ground state energy calculations using

the Trotterization method, for Cr2 in increasing CAS size and H2 in increasing basis set

size to chemical accuracy within that basis, as a function of the number of orbitals [12].

The cost has been optimized individually for each data point. The space-time cost as a

function of the number of T gates is shown, where we assume a space-time complexity of

14 qubit-seconds per T gate [121]. Qubit-seconds refers to the space-time volume cost, in

the form of number of physical qubits required × seconds.

5.5.3 Trotterization

In this section we provide resource estimates for ground state energy calculation for hy-

drogen and the chromium dimer. We detail the optimization process that was performed

to arrive at these results, which was led by co-author Dr. Vincent Elfving and involved

utilizing the oracle cost results from Q# in combination with the methods of Ref. [188].

We consider the class of iterative phase estimation techniques which only require a single

ancilla logical qubit in addition to the 2N logical qubits required by the Trotterization

oracle. We aim to minimize the total T gate count because this effectively determines

the wall-clock time (aka elapsed real time) within the surface code paradigm [193], and

we will explain the overheads associated with the surface code in more detail in a follow-

ing section. As mentioned previously the Trotterization oracle is decomposed into only

rotation gates and CNOT gates, and the total T gate count arises from the synthesis of

those rotation gates. We use the same derivation for Trotter resource costs as in Ref [188]

89

(for more details see their Supplementary material), in combination with the oracle costs

generated from Q#. There are three additive sources of error within this scheme, and we

desire their sum εt to be less than the value of chemical accuracy (0.1 mHartree),

εP + εTS + εS ≤ εt := 10−4Ha (5.5)

with the error from phase estimation, εP , the error from the Trotter-Suzuki decom-

position, εTS , and the error from rotation gate synthesis, εS . The total T-gate cost, C, as

a function of these errors is drived in Ref. [188] and is,

C = 2M
[α
εP

][
β

√
εt
εTS

](
γ1 log2

(2M

εS

[
β

√
εt
εTS

])
+ γ2

)
. (5.6)

The minimal T-gate count can then be found by solving the constrained optimization

problem. As in equation 5.4, γ1 and γ2 relate to the T cost scaling for rotation gate

synthesis as a function of error per rotation gate, and we choose γ1 = 4 and γ1 = 11

as found in Ref. [187]. As in [188] we let α = π/2 which relates to the scaling of the

phase estimation with the desired accuracy. The Trotter number, β, would ideally be

calculated by a full extrapolation simulation to determine the threshold Trotter number

given a desired error on the Trotter-Suzuki decomposition but we use the same factor as

Ref. [188] β ≈ 0.0178N2.5 for a calibration error equal to chemical accuracy. The factor

of 2M comes from the number of exponentials in the Trotter-Suzuki decomposition. We

found that in most cases the relative ratios of the errors in equation 6.5 are approximately

20 : 10 : 1 corresponding to the following errors respectively, εP , εTS , εS . This hierarchy

is due to the differing costs to reduce these errors as a function of the increase in T gate

count. For example the T-cost of gate synthesis has only a logarithmic dependence on the

synthesis error, therefore it can be suppressed more cheaply.

In figure 5.6 we plot the T gate cost as a function of the number of orbitals for H2

and Cr2. We also show the resulting space-time cost from a surface code error correction

perspective, of 14 qubit-seconds per T gate. Qubit-seconds refers to the space-time volume

cost, in the form of number of physical qubits required × seconds, which is applicable

due to the flexible space-time trades that can be made through parallelization. In a

following section we will provide more rigorous error correction scheme optimizations for

determining the wall-clock time and the required number of physical qubits. In this figure

we can see that the total T gate count (which is directly related to the wall-clock time)

scales polynomially with orbital number. Comparable accuracy methods on a classical

computer scale exponentially with orbital number.

90

5.5.4 Qubitization

In this section we describe the method that was performed to acquire the logical algorithm

requirements for ground state estimation with Qubitization, which was carried out by co-

author Dr. Vincent Elfving, using the methods from Ref. [183] and applying them to the

particular molecules in question. In Ref. [183] an efficient molecular chemistry simulation

method was proposed, which involves performing phase estimation on a quantum walk

generated using qubitization oracles [182]. The qubitization paper presents several variants

on the method, but in this work we focus on the sparse method. The sparse method

includes a large overhead in the number of logical qubits, but it is optimized for the T

gate complexity.

The sparse method relies first on reducing the number of contributing terms in the

Coulomb operator within the Hamiltonian, down from the normal assumption of L =

N4. This is done by setting a cutoff threshold c, meaning that if an element within the

Coulomb operator is smaller than c then it is set to 0. The aim is to set c as large

as possible while maintaining a sufficient representation accuracy, which can be done by

incrementally increasing c from zero and classically calculating the ground state error, until

the error surpasses chemical accuracy. For the small basis sets (N < 10) we performed FCI

calculations, while for the larger basis sets we chose the more computationally efficient

Møller-Plesset second order perturbation theory method (MP2). Once the best value

of c is ascertained one must recalculate the Hamiltonian 1-norm which is an important

parameter for the qubitization method. The qubitization method relies mostly on Toffoli

gates (which can be synthesized from T gates). We follow the methods of Ref. [183] and

give our results for the Toffoli gate dependence on orbital number in figure 5.7. We include

the space-time estimation as well and by comparing figure 5.6 and figure 5.7 we can see

that the Qubitization method has a considerably lower space-time cost (approximately

4 orders of magnitude). In figure 5.8 we plot the logical qubit requirement for both

Trotterization and Qubitization, and we can see that the Qubitization method does indeed

require significantly more logical qubits (upwards of an order of magnitude).

In the following section we will provide more details on the error correction techniques,

and the choices and optimizations that need to be made for rigorous estimates.

91

Figure 5.7: The number of Toffoli gates required for ground state energy calculations,

using the Qubitization method, for Cr2 in increasing CAS size and H2 in increasing basis

set size to chemical accuracy within that basis, as a function of the number of orbitals [12].

The cost has been optimized individually for each data point. The space-time cost as a

function of the number of Toffoli gates is shown, where we assume a space-time complexity

of 24 qubit-seconds per T gate [121]

.

5.6 Error correction and physical resource estimation

The quantum algorithms we have investigated above have a favourable scaling with the

chemical system size. However there is still a significant pre-factor which makes the total

gate count large even for small-medium systems. To compare these methods to classical

run times, there is an even larger overhead associated with quantum error correction that

must be taken into account. There is a substantial body of work covering various fault-

tolerant strategies, here we have considered the lattice surgery method within the surface

code paradigm [193, 121, 14].

The surface code relies on 2D nearest-neighbour qubit connectivity, which is well suited

to the superconducting qubit quantum-processors which have a relatively high cost for

performing distant two qubit gates.

An important universal gate set is the Clifford + T set (T = diag(1, eiπ/4)). The

Clifford gates are generated by the Hadamard (H), CNOT, and S = diag(1, eiπ/2) gates.

92

Figure 5.8: The number of logical qubits required for ground state energy calculations

as a function of the number of orbitals [12]. For Cr2 in increasing CAS size and for H2

in increasing basis set size, calculated to chemical accuracy (precision) within that basis.

The cost has been optimized individually for each data point. The Trotter oracle qubit

requirement is solely dependent on the orbital number (2N+1) and is shown in black.

The surface code has transversal (or low-overhead) access to the Clifford gate set but not

the T gate, where transversal pragmatically means easy or cheap to apply. A transversal

gate implies that each qubit in a code block is acted on by at most a single physical gate

and each code block is corrected independently when an error occurs. The Clifford S gate

is not available transversely in the surface code but may be made available with relatively

low overhead code manipulation techniques [8]. As the T-gate is not transversal it has to

be generated with other (more costly) methods, the best known of which is magic state

distillation. The high cost associated with magic state distillation means that the T-gate

count alone effectively determines the final run time of an algorithm. To produce the

following physical resource estimates we use lattice surgery based methods, which among

other improvements reduces the space-time cost of distillation protocols by up to 90% in

comparison to braiding-based implementations [14].

The error corrected quantum computer is partitioned into two sections: the data

blocks, the purpose of which is to effectuate T gates by consuming magic states, and,

93

Figure 5.9: Wall-clock time scaling (top) and total physical qubit requirements (bottom)

as a function of the number of orbitals for ground state energy calculations on the chro-

mium dimer CR2 CASCI (N,N), using both sparse Qubitization and Trotterization [12].

Classical run time is included for comparison with the full red line corresponding to a an

Intel i9-10980XE with ∼1.2 TFLOPS, and dashed red line corresponding to a 105× faster

extrapolation (a top-5 HPC at ∼125PFLOPS). Lines represent curve fitting while markers

represent numerical instance-specific data.

the distillation blocks, which produce the high fidelity magic states. One generally wants

to match the rate at which the T gates are effectuated to the rate of magic state produc-

tion. This can be performed by varying the number of distillation blocks, or the type of

data block.

We first focus on a minimal physical qubit scenario (i.e. space optimized at the cost

94

of time), and evaluate the total run time for performing a CASCI (Complete Active space

Configuration Interaction) (N,N) simulation of the chromium dimer. For Qubitization we

use the same sparse protocol discussed above, and fix the code distance at d = 31 (which

should be sufficient for hardware error rates up to 10−3). Note that this code distance

should be fine tuned given a non-Clifford gate count requirement, which we do perform

later in this section. We assume a CCZ factory [121] (which produces a magic state that

can be consumed to effectuate Toffoli gates) produces a state every 5.5d cycles. This would

correspond to about 170µs when we assume a 1µs code cycle (which may correspond to

future superconducting devices). For the Trotterization protocol we assume the same code

distance, and a C2T catalyzed T gate factory from Ref. [121] which produces T states in

6.5d code cycles.

In figure 5.9 we plot wall-cock time and physical qubit estimates for performing CASCI

(N,N) simulation of the chromium dimer for both the Trotterization and Qubitization

approaches. We include an estimation for classical run times with processing speeds at

1.2 TFLOPS (corresponding to a desktop PC) and 125PFLOPS (corresponding to a top-5

HPC). The quantum computing approach begins to outperform the classical approach at a

CAS size of around N = 19−32, which corresponds to a physical qubit count of ∼ 105 for

Trotterization and ∼ 3 ×106 for Qubitization. In the case of the Trotterization algorithm,

the crossover point occurs at a total run-time approaching a thousand years. The T gate

complexity of the Trotterization approach make it an unappealing choice relative to the

Qubitization method here, but further algorithmic improvements may be possible.

5.6.1 Detailed estimate for Cr2 CASCI(26,26) and methodology

In this section we will provide a more rigorous estimate for Cr2 CASCI(26,26), which

appears to be on the threshold for staying infeasible for the foreseeable future on classical

supercomputers. We will first explain some of the available choices to make with regards

to the error correction and distillation schemes. The following represents a practical

summary of the key takeaways for performing resource estimation from Litinski’s Game of

Surface Codes [14]. We do not motivate the size, speed, and quality of the various objects

presented (data blocks and distillation blocks), for more information on this see Ref. [14].

In section 6.2.7 we provide a more detailed overview of the Game of Surface Codes method

and how to optimize for time beyond what is presented in this chapter.

The code distance d, refers to the number of errors that are required to convert one

logical state into another and it is a measure of the degree of protection provided by the

95

code. In the surface code each logical qubit consists of d2 data qubits and d2 ancilla qubits,

for a total of 2d2 physical qubits per logical qubit, and this square arrangement of physical

qubits is sometimes referred to as a tile. Larger constructions like distillation blocks and

data blocks can be constructed from a certain number of tiles arranged in a particular way.

The base operation in the surface code is referred to as the code cycle, and it involves

measuring all of the stabilizers via 4 controlled operations between the nearest neighbour

data and ancilla qubits. The syndrome (error information) extraction process is imperfect

because it consists of error prone physical operations, and so it must be repeated a number

of times before one can be confident on the likely locations of errors. For a tile with code

distance d, the code cycle must be repeated d times before corrections can be applied, and

this quantity, d code cycles, is referred to as a time step, or sometimes as a “beat”.

Data blocks

There are different data block types that we can choose based on our priorities with

regards to time or space optimization [14]. The first quantum computers to have the

required number of physical qubits to run fault tolerant algorithms will presumably be

space limited at first, but depending on the scalability of the design, it may quickly become

preferable to trade space (physical qubits) for time optimizations.

The Compact data block encodes N qubits in 1.5N + 3 tiles. The compact data block

can consume a magic state every 9 time steps, where each individual time step, requires

d, code cycles. The code cycle is the basic operation of the surface code and its duration

is determined by sum of the required quantum hardware operations, which includes single

and two qubit gates, and quantum measurements. The code cycle may vary by orders of

magnitudes between different quantum computing platforms.

The Fast data block encodes N qubits in 2N +
√

8N + 1 and can consume a magic

state every 1 time step. There are other data block types available, but for our purposes

we will only consider these two.

Distillation schemes

Magic state distillation involves converting many low fidelity magic states into fewer higher

fidelity states. There are numerous distillation protocols, each of which varies with regards

to the output fidelity, required number of tiles, and rate of production. We will cover three

distillation protocols here but it is to be noted that many more exist, and they can also be

combined to form new strategies. Each high fidelity magic state can be consumed within

96

the data blocks to effectuate one T gate.

The 15-1 distillation block outputs a magic state with an error of leading order 35p3,

as a function of the base physical error rate p. It requires 11 tiles and 11 time steps per

produced magic state. The 116-12 outputs a higher fidelity state at the cost of more tiles,

with an error of 41.25p4, 57 tiles and 8.25 time steps per magic state. The 225-1 block

is a two level approach and it is constructed by using 15 instances of the 15-1 bock as

the input into a final 15-1 block, and outputs a state with error 1500625p9, requiring 176

tiles and 15 time steps. One must consider the probability of success P which is equal to

(1−p)N , which effectively reduces the rate of production by a factor 1/P (where N here is

the number of input states, e.g. 15, 116). The code distance associated to the distillation

factories may be calibrated separately to the data blocks, this is a technique we make use

of in chapter 6, furthermore this method and a range of distillation factories are presented

in Ref. [27].

Steps for determining the error correction overhead

Using the results of figures 5.6-5.8 we estimate that for a CAS size of N=26 on Cr2, the

Trotterization protocol requires 53 logical qubits and 1.3 · 1014 T gates, and the sparse

Qubitization protocol (assuming 4 T gates can synthesize a single Toffoli gate) requires

1366 logical qubits and 1.2 · 1010 T gates.

The first step to determine the error correction overhead for these algorithms is to

choose a distillation protocol which is capable of producing a magic state with a satis-

factory error. This is the case when the error is some degree lower than (1/Tcount), with

Tcount being the total number of T gates in the algorithm. We set the acceptable error

to 1/(Tcount × 100) which implies that the probability of a T error throughout the entire

algorithm is 1%.

The minimal qubit setup will then consist of the compact data block in combination

with the appropriate (single) distillation block. The bottleneck in T gate production

should be identified between the data and distillation blocks, which will define how long

the algorithm takes to run. We can optimize for time rather than space by choosing the

fast data block and running multiple distillation blocks in parallel, enough to match the

1 T gate per time step rate of the fast block.

The next step is to determine the appropriate code distance. The logical error rate

per logical qubit per code cycle can be approximated [25] as :

97

Table 5.1: Error correction strategy and resource estimates for Cr2 (26,26)

pL(p, d) = 0.1(100p)(d+1)/2 . (5.7)

To keep the probability of a single logical error below 1% we need a code distance, d,

that satisfies the following equation

NL · TST · Tcount · d · pL(p, d) ≤ 0.01 (5.8)

with NL, the number of logical qubits (data blocks and distillation blocks), TST , the

number of time steps per effectuated T gate. Finally, the physical resource estimates can

be calculated: the number of physical qubits is equal to NL · 2d2 and the number of code

cycles is equal to d ·TST ·Tcount. In this section we assume a code cycle time of 1µs, which

is an estimate for a future superconducting architecture [14].

Results for Cr2 CASCI(26,26)

We aggregate our results in table 5.1 for Cr2 (26,26) for both Qubitization and Trot-

terization and follow either a time optimization or a space optimization strategy. For a

physical error of 10−3 the qubitization protocol finishes ∼ 104 faster while requiring a

comparable number of physical qubits. We showed previously that at the logical level,

98

the Qubitization protocol requires both considerably less T gates and considerably more

logical qubits. However the difference in the required number of physical qubits between

the two approaches is minimized at the error corrected level, due to the lower T-gate cost

of the Qubitization approach, allowing for a lower code distance.

We plot the required time as a function of inverse physical gate error in figure 5.10

for the Qubitization protocol. We include the classical run time for a top 5 classical HPC

(125PFLOPS) for comparison which was estimated using the same extrapolation technique

of figure 5.9. For a physical error of 10−3 the time-optimized protocol finishes by a factor

∼ 20× faster than the space-optimized protocol, while for the other error values it is by a

factor ∼ 10×. We also plot in figure 5.11 the required number of physical qubits for the

same scenario as above. We can see that the relative reduction in qubit number is most

notable for low error rates. At an error of 10−3 the space-optimized approach uses a factor

2.5× less physical qubits, while at an error of 10−6 the factor is only 1.07× less. Using

both of these figures we can conclude that the time optimized approach generally has a

lower (∼ 8×) space-time volume , and should be the favoured protocol when the number of

physical qubits is not strictly limited. The degree of scalability of the underlying physical

architecture may play a role in determining whether it is feasible to run the time-optimized

approach.

In the following chapter we will focus in more detail on the surface code physical

resource estimation process and investigate the extent to which slower hardware code

cycle times can be mitigated by utilizing additional qubits.

99

Figure 5.10: The required time (in days) for a ground state energy calculation, for Cr2

at a CAS size of (26,26) to chemical accuracy with the sparse Qubitization algorithm, all

as a function of inverse physical gate error. We include the required time to solve this

problem on a top 5 HPC with ∼125PFLOPS (using the same extrapolation from figure

5.9)

100

Figure 5.11: The required number of physical qubits for a ground state energy calcula-

tion, for Cr2 at a CAS size of (26,26) to chemical accuracy with the sparse Qubitization

algorithm, all as a function of inverse physical gate error.

101

Chapter 6

The Impact of Hardware

Specifications on Reaching

Quantum Advantage in the Fault

Tolerant Regime

The following chapter closely follows the paper titled “The Impact of Hardware Specific-

ations on Reaching Quantum Advantage in the Fault Tolerant Regime” [13] which at the

time of writing is in the process of journal submission.

We investigate how hardware specifications can impact the final run time and the re-

quired number of physical qubits to achieve a quantum advantage in the fault tolerant

regime. Within a particular time frame, both the code cycle time and the number of

achievable physical qubits may vary by orders of magnitude between different quantum

hardware designs. We start with logical resource requirements corresponding to a quantum

advantage for a particular chemistry application, simulating the FeMoco molecule, and ex-

plore to what extent slower code cycle times can be mitigated by using additional qubits.

We show that in certain situations architectures with considerably slower code cycle times

will still be able to reach desirable run times, provided enough physical qubits are avail-

able. We utilize various space and time optimization strategies that have been previously

considered within the field of error-correcting surface codes. In particular, we compare

two distinct methods of parallelization, Game of Surface Code’s Units, and AutoCCZ

factories, both of which enable one to incrementally speed up the computation until the

reaction limited rate is reached. Finally we calculate the number of physical qubits which

102

would be required to break the 256 bit elliptic curve encryption of keys in the Bitcoin

network, within the small available time frame in which it would actually pose a threat to

do so. It would require approximately 317 million physical qubits to break the encryption

within one hour using the surface code, a code cycle time of 1 µs, a reaction time of 10

µs, and physical gate error of 10−3. To break the encryption instead within one day it

would require 13 million physical qubits.

6.1 Introduction

With the advent of quantum computers, the race to a quantum computational advant-

age has gained serious traction in both the academic and commercial sectors. Recently,

quantum supremacy has been claimed [194, 195] on quantum devices with tens of qubits.

However, the targeted problems solved were theoretical in nature, and not relevant indus-

trial applications. Quantum advantage, conversely, is a stronger form of supremacy that

shows an industrially relevant computational problem solved in a reasonable time-frame

that would be practically impossible to do using any classical supercomputer. There is a

large physical qubit overhead associated with quantum error correction, which is required

to run some of the most powerful algorithms. There are many factors which will determine

the ability for different quantum computing architectures to scale. Consequently, within

a given time frame the maximum size (qubit count) of a device could vary by orders

of magnitude. The code cycle time (base unit of operation in the surface code) will also

vary considerably between platforms. Therefore it is of interest to investigate the interplay

between the code cycle time and the number of achievable qubits, and the resulting impact

on the feasibility for a particular device to achieve a quantum advantage. We calculate

the physical qubit and run time requirement for relevant problems in chemistry and cryp-

tography with a surface code error corrected quantum computer, comparing parameters

typical to various types of hardware realizations.

Algorithms which are tailored to NISQ devices generally consist of a hybrid approach,

where a low depth circuit is parameterized, and iterated through a classical optimizer.

These NISQ algorithms are more often heuristic in nature than their fault tolerant coun-

terparts and so providing rigorous resource estimates can be more challenging. Many of

the most powerful quantum algorithms require a circuit depth which greatly exceeds the

capabilities of NISQ era devices, and for some applications the number of required logical

qubits and operations are known. The quantum threshold theorem states that a quantum

computer using error correction schemes, and a physical error below a certain threshold,

103

can suppress the logical error rate to arbitrarily low levels [15, 17, 16]. Therefore one could

run an algorithm with an arbitrarily long circuit depth provided enough qubits are avail-

able to perform the required level of error correction. There is a large time overhead for

performing logical operations at the error corrected level relative to operations performed

on physical qubits. For the foreseeable future, classical computers will have a clock rate

that is orders of magnitude faster than error corrected quantum computers. To determine

the problem size at which a quantum computer will outperform a classical computer one

must consider both the algorithmic speed up as well as the relative difference between their

associated clock rates. By making use of parallelization schemes, quantum computers can

speed up the effective rate of logical operations at the cost of additional qubits, and so

the ability to scale to large enough device sizes will also play a role in determining the

feasibility of reaching desirable run times.

The surface code [196, 197, 198] is the most researched error correction technique,

particularly in regards to end-to-end physical resource estimation. There are many other

error correction techniques available and the best choice will likely depend on the under-

lying architecture’s characteristics, such as the available physical qubit-qubit connectivity.

Superconducting qubits are one of the leading quantum computing platforms and these

devices generally consist of static qubits arranged on a grid where only nearest neigh-

bour interactions are natively available. Long distance connections must be enabled by

sequences of nearest neighbour swap operations, which in the context of a NISQ device

may limit their computational power [20, 11]. The limited connectivity of superconducting

qubits in part motivated the continued research into the surface code which relies only

on nearest neighbour interactions between physical qubits arranged on a 2D grid. In the

following we briefly introduce some of the alternative error correction techniques to the 2D

surface code. Error correction codes which rely on global interactions at the physical level

have favourable encoding rates as a function of code distance [30] but enabling this global

connectivity on large devices may be challenging, or the connectivity overheads may out-

weigh the benefits relative to closer-range-connectivity codes. Entanglement distribution

may be a viable method of enabling distant connectivity for large scale devices with lim-

ited physical connectivity in the limit of large reserves of quantum memory [199]. Higher

dimensional error correction codes can have access to a greater range of transversal gates

[154, 155] which may considerably improve final run-times, where transversal implies that

each qubit in a code block is acted on by at most a single physical gate and each code block

is corrected independently when an error occurs. Realising this 3D (or greater) physical

104

connectivity could be challenging for many of the current quantum platforms; photonic-

interconnected modules may be the most flexible architecture with regards to its possible

connectivity graph [200], however, currently achieved connection speeds would present a

considerable bottleneck [82]. A variant of the 3D surface code may still be realisable with

hardware that is only scalable in two dimensions because the thickness (extra dimension)

can be made relatively small and independent of code distance [201]. In section 6.2 we

highlight the surface code in more detail and include relevant considerations for physical

resource estimation.

Here we highlight some of the leading quantum computing platforms, their relevant

error correction strategies, and contrast their rate of operations. The surface code is the

front-running proposal for error correction in superconducting devices and their associated

code cycle times (the base sequence of hardware operations) have been estimated to be in

the range of 0.2 µs-10 µs [193, 14]. There is a great variety within different implement-

ations of trapped ion architectures, particularly with regards to the method of enabling

connectivity. A proposed scalable trapped ion design that relies on shuttling to enable

connectivity, and microwave based gates has estimated the code cycle time to be 235 µs

[74]. For this shuttling based design alternative error correction protocols may be more

effective than the surface code due to the variable-mid range connectivity that is possible,

but in this work we constrain ourselves to the surface code. Small trapped ion mod-

ules connected via photonic interconnects have been envisaged with the surface code [83],

but due to their extremely flexible connectivity, higher dimensional error correction codes

may one day be utilized. The code cycle time for trapped ions with photonic interconnects

would depend on how the physical qubits are distributed across modules; one approach

advocates for two tiers of encoding to minimize the use of the slower interconnects [202].

A fault tolerant Silicon based architecture has been proposed using the surface code with

code cycles estimated to be 1.2 ms [203]. The error correction choice for photonic devices

will depend on the underlying design; the primary candidate for a particular fault tolerant

proposal [204] is the RHG lattice [205, 206]. The degree to which an architecture is scalable

will vary greatly between architecture types and within particular stages of development.

In this work we provide physical resource estimates to achieve a quantum advantage

with a quantum computer using the surface code. Using some of the latest time optim-

ization strategies [14, 113, 207], we investigate the interplay between the code cycle time

and the number of achievable physical qubits in the underlying architecture. In the fol-

lowing sections, we focus on quantum algorithms which have been hypothesized to offer

105

a disruptive quantum advantage for industry-relevant applications. We first provide a

brief overview of quantum computing for chemistry, and highlight the logical resource re-

quirements for a quantum advantage use case, simulating the ground state of the FeMoco

molecule, which we use as the starting point for our investigation. We then calculate

the number of physical qubits that are required to break the elliptic curve encryption of

Bitcoin keys within the time frame that it actually poses a threat to do, as a function of

the code cycle time.

6.1.1 Fault tolerant quantum chemistry

When numerically simulating quantum chemistry problems, typically a set of independent

functions, known as a basis set, are introduced to describe the physical wave function of

the system. This introduction does not remedy the exponential increase of parameters

with system size but enables one to balance the achievable accuracy against the required

computational resources. Richard Feynman was perhaps the first to envisage a quantum

computer and its application to the simulation of physics and chemistry [4]. It is now

expected that quantum computers will eventually be able to perform electronic structure

calculations with a quality of solution typical to the most accurate classical methods but

with run times comparable to the approximate techniques, such as density functional

theory.

The Quantum Phase Estimation (QPE) algorithm generates eigenvalues for a general

unitary operator and it can be applied to quantum chemistry to find the eigenenergies of

chemistry Hamiltonians to FCI (full configuration interaction, i.e., exact) precision. Unlike

the Variational Quantum Eigensolver (VQE) [94] which involves many iterations (O(1/ε2)

with accuracy ε) of low depth circuits, the QPE algorithm requires O(1) iterations of a

circuit with a depth scaling as O(1/ε). The large depth required in the QPE algorithm

means that it will only be possible with error corrected devices, because NISQ devices

would lose their coherence long before the end of the circuit.

Hamiltonian simulation is used as a subroutine in the quantum phase estimation al-

gorithm, and it involves constructing a quantum circuit which approximates the evolution

of the input state according to the Hamiltonian. Two of the main paradigms for Hamilto-

nian simulation are Trotterization and Qubitization. Qubitization [182, 183] can be used

to simulate the Hamiltonian evolution by using quantum signal processing [208] but more

commonly it is used to generate a quantum walk [209] upon which one can directly per-

form phase estimation. Qubitization is perhaps the most favored method for simulating

106

chemistry Hamiltonian dynamics because it achieves the provably optimal scaling in query

complexity and approximation error albeit while requiring more logical qubits than other

methods.

Previous work has investigated the potential for quantum computers to provide a

quantum advantage by performing ground state energy estimations on the catalytic com-

plex known as FeMo-co [188, 210, 211, 212]. FeMo-Co is a large molecule expressed in

biology which reduces N2 from the atmosphere, and a better understanding of this process

could provide a significant commercial advantage by improving the efficiency of nitrogen

fixation for the production of ammonia for fertilizer. In this work we start our investig-

ation with the latest logical resource requirements for simulating FeMo-co and calculate

the number of physical qubits required to reach a desirable run time as a function of the

code cycle time of the hardware.

6.1.2 Breaking Bitcoin’s encryption

Bitcoin, the first decentralized cryptocurrency is continuing to grow in popularity. Bitcoin

has properties which make it desirable as a hedge against inflation, for example, the rate

of supply is known, decreases with time, and is entirely independent of demand. The

decentralized nature of the blockchain makes it censor resistant and it can operate in a

trustless manner. There are two main ways in which a quantum computer may pose a

threat to the Bitcoin network [213, 214]. The first and least likely is the threat to the

proof of work mechanism (mining) for which a quantum computer may achieve a quadratic

speedup on the hashing of the SHA256 protocol with Grover’s algorithm [114]. The

algorithmic speedup is unlikely to make up for the considerably slower clock cycle times

relative to state of the art classical computing for the foreseeable future [214]. The second

and more serious threat would be an attack on the elliptic curve encryption of signatures.

Bitcoin uses the Elliptic Curve Digital Signature Algorithm (ECDSA) which relies on the

hardness of the Elliptic Curve Discrete Log Problem (ECDLP) and a modified version

of Shor’s algorithm [111, 215, 216] can provide an exponential speedup using a quantum

computer for solving this problem. Bitcoin uses ECDSA to convert between the public

and private keys which are used when performing transactions. With best practices (using

new addresses for each transaction), the only point at which a public key is available and

relevant to an eavesdropper, is after a transaction has been broadcast to the network but

prior to its acceptance within the blockchain. In this window, transactions wait in the

“mem pool” for an amount of time dependent on the fee paid, the time taken for this

107

process is on average 10 minutes but it can often take much longer. Gidney and Eker̊a

estimated that it would require 20 million noisy qubits and 8 hours to break the 2048 RSA

encryption [113] which is of a comparable difficulty to the EC encryption of Bitcoin. The

maximum acceptable run time for breaking Bitcoin’s encryption makes it particularly well

suited to our investigation into the cost of parallelization and the interplay between the

code cycle time and scalability, which we present in section 6.3.

In the following section we introduce considerations for error correction and provide

an overview of the space and time optimizations within the surface code that we make use

of in this work.

6.2 Space and time optimizations in the surface code

In this section we briefly introduce quantum error correction in the context of resource

estimation and explain some of the available strategies within a surface code setup which

are selected based upon a preference for space (physical qubit requirement) or time (final

run time of the algorithm).

6.2.1 The available gate set

An important consideration for quantum error correction is the available logical gate set

which is generally more restricted than the underlying physical gate set. The Clifford

gates are those that map Pauli operators onto other Pauli operators, and the set can

be generated by various combinations of the set {H,CNOT, S} where the S gate is the

Pauli Z1/2. The Gottesman-Knill theorem [7] states that any Clifford circuit of finite size

can be simulated in polynomial time (efficiently) with a classical computer. The Clifford

gate set in combination with any non-Clifford gate is sufficient for universal quantum

computation, and two of the most commonly considered non-Clifford gates are the T gate

(Z1/4) and the Toffoli gate (control-control-not). Any arbitrary angle single qubit gate

can be decomposed into long sequences of the fixed angle H and T gates with chain length

scaling with desired precision, as per the Solovay-Kitaev theorem [9].

T =

1 0

0 eiπ/4

 , S =

1 0

0 i

 , H =
1√
2

1 1

1 −1

 , CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 . (6.1)

108

The surface code has transversal access to the CNOT, and the H and S gates can be

realized with a low overhead using other techniques [8]. The T-gate is not transversal in

the surface code and it must be effectuated using methods which incur a large space-time

volume overhead relative to the other gates listed here. The T gate can be constructed

by consuming a magic state, |m〉 = (|0〉+ eiπ/4 |1〉 /
√

2 [26], where the magic state can be

produced with an error proportional to the physical error, independent of the code distance

[27]. To create a sufficiently high quality magic state, a distillation protocol [28, 29]

can be used which essentially involves converting multiple low fidelity states into fewer

higher fidelity states. Due to the high time cost associated with magic state distillation

(the production and consumption), we can make a simplifying assumption that the time

required to perform the T-gates effectively determines the final run time of an algorithm,

as the relative cost of performing the Clifford gates fault-tolerantly is negligible. Some

algorithms more naturally lend themselves to being expressed in terms of Toffoli gates, and

there exist distinct specialized distillation factories to produce the magic states required

to effectuate both of these non-Clifford operations. A Toffoli gate can be decomposed

using 4 T gates [217], whereas the CCZ states normally produced for the Toffoli gate can

be efficiently catalyzed into two T states [121].

6.2.2 Error correction and logical error rate

A logical qubit in the surface code consists of data qubits, which store the quantum

information, and ancillary qubits, which are used for stabilizer measurements that non-

destructively extract error information from the data qubits. The distance, d, of a code

represents the minimum size of physical error that can lead to a logical error and in the

surface code the number of physical qubits per logical qubit scales as 2d2. The logical

error rate per logical qubit, pL, per code cycle as a function of the base physical error rate,

p, can be approximated by [25]

pL = 0.1(100p)(d+1)/2. (6.2)

The efficiency of the error protection decreases as the base physical error rate ap-

proaches from below the threshold of the code (here assumed to be 1%). For feasible final

resource estimates the base physical error rate will need to be close to or below 10−3, where

the necessary code distance is chosen based upon both the base physical error rate and

the length of the desired computation. The physical error model here is the assumption

that each physical operation has a probability p of also introducing a random Pauli error.

109

The achieved gate fidelity (the go-to metric for experimentalists) cannot be directly con-

verted with confidence to the physical error rate, without further information. The cause

of the gate infidelity, and where it exists on the spectrum between the two extremes of

depolarizing error (decoherent noise) and unitary error (coherent noise) will determine the

corresponding gate error rate. The best case situation is the one to one mapping between

gate error (1-fidelity) and depolarizing error rate, and this has often been an assumption in

the experimentally-focused literature. A measure of gate fidelity alone cannot determine

the unitarity of the noise, i.e. the relative contribution of coherent and decoherent errors.

Coherent errors, such as an over rotation of an intended gate, can positively interfere with

each other and therefore cause worse case errors than those that are decoherent. The

worst case scaling of the physical error rate, p, with gate fidelity F , and dimension of gate

D, is p =
√
D(D + 1)(1− F) [218]. To illustrate an example of this worst case scenario

on noise quality, to guarantee an error rate of below 1%, a gate fidelity of 99.9995% would

be required [218]. To determine where on the unitarity spectrum the actual hardware

noise exists, protocols based on randomized bench marking can be used [219, 220]. This

information can then be used to estimate the base physical error rate with confidence

[218, 221].

6.2.3 Code cycle, reaction time and measurement depth

The code cycle is the base unit of operation in the surface code and it involves performing

a full round of stabilizer measurements. As all operations in the computer are assumed to

be subject to errors, including the stabilizer measurement process, the code cycle needs to

be repeated d times before corrections can be applied. We will refer to the time it takes

to perform these d rounds of code cycles as a “beat”, where many surface code operations

will have a time cost measured in beats. A fault tolerant quantum computer using the

surface code can be envisaged as partitioned into two sections, data-blocks which consume

magic states to effectuate T gates for the desired algorithm, and distillation-blocks which

produce high fidelity magic states. Each of these constructs in the surface code consist

of a number of logical qubits, sometimes referred to as tiles, and each tile contains 2d2

physical qubits. The data block has a size scaling with the number of abstract qubits

required for the algorithm and this then sets the minimum required number of physical

qubits when paired with a single magic state factory and given the code distance.

The T (or Toffoli) gates of an algorithm can be arranged into layers of gates (meas-

urement layers), where all of the gates within a layer could potentially be executed sim-

110

ultaneously. Measurement layers are sometimes instead referred to as T layers when the

relevant non-Clifford gate is the T gate, and the measurement (T) depth is the number

of measurement layers in the algorithm. When a magic state is consumed by the data

block, a Pauli product measurement is performed to determine whether an error has oc-

curred so that a (Clifford) correction can be applied if required. The algorithm cannot

proceed to the next measurement layer until all of the necessary corrections have been

applied in the current layer, and this process requires a classical computation (decoding

and feed-forward). The characteristic time cost that includes the quantum measurement,

classical communication, and classical computation is referred to as the “reaction time”.

It is conjectured that the fastest an error corrected quantum algorithm can run, i.e. the

time optimal limit [222], is by spending only one reaction time per measurement layer,

independent of code distance, and we will refer to this as reaction limited. In the case

of superconducting devices which have relatively fast physical gates and measurements,

the reaction time may be dominated by the classical communication and computation. A

reaction time of 10 µs has been used in recent resource estimation work [113], as com-

pared to the 1 µs code cycle time, which requires both physical two qubit operations and

measurements. In this work we have defined the reaction time (RT) as a function of the

code cycle time (CC) with RT = (CC/4)+10µs unless otherwise stated. This assumption

is motivated by the fact that generally the quantum measurement within the code cycle

represents a fraction of the total time, for example with the shuttling based trapped ion

architecture with a code cycle time of 235 µs, the quantum measurement is estimated to

represent ∼ 10% of that total time. We include a code cycle independent additional cost

of 10µs to represent the (somewhat) hardware independent classical processing. With our

resource estimation tool, which is available upon request, one could recreate the results of

this chapter with a different relationship between the code cycle time and reaction time.

If particular surface code set up contained only a single distillation factory, then the rate

of computation would likely not be limited by the reaction time but instead by the rate of

magic state production. We refer to the regime of being limited by magic state produc-

tion as “tick” limited. There are then three relevant regimes for surface code strategies

which are separated by the limiting factor of computation rate. Beat limited implies the

limiting factor is the rate of magic state consumption by the data block, tick limited, the

rate of magic state production by the distillation blocks, and reaction limited, where the

conjectured time-optimal limit is reached and one reaction time is spent per measurement

layer.

111

In this work we utilize and compare two distinct strategies of incrementally trading

qubits for run-time up to the reaction limit, and introduce them later in this section.

6.2.4 Distillation and topological errors

When choosing a surface code set up one must decide upon the acceptable final success

probability, where in principle a success probability greater than 50% would be sufficient

to reach the desired precision by repeating the computation. The acceptable success

probability then allows one an additional method of trading space for time, as the lower

the acceptable success probability, the lower the various code distances would need to be.

There are two contributions to the probability of failure, the topological error associated

with the data block, and the total distillation error. The topological error is the chance

for at least a single logical error within the data block across the entirety of the algorithm,

which can be calculated with the product of the number of logical qubits, the number of

code cycles required for the algorithm, and the logical error rate. Where the logical error

rate is defined in equation 6.2 by the base physical error rate and the code distance on

the data block. The total distillation error corresponds to the probability of at least a

single faulty magic state which is calculated by the product of the total required number of

required magic states and the error rate per state. The error rate per state is determined

by the particular factory chosen and its associated code distances. We can then consider

the final failure probability as the linear sum of the topological error and total distillation

error.

In this work we set the allowable total distillation error at 5% implying that across

the entire algorithm the probability that a magic state is generated with an error is 5%.

We choose the appropriate distillation protocol to achieve this error rate, by selecting

between T factory protocols of Litinski [27], and by adjusting the level 1 and level 2

code distances of the AutoCCZ factory. The choice of 5% is in part motivated by the

capacity of the AutoCCZ factory to reach a sufficient fidelity given the number of magic

states required in the quantum advantage cases we address in this work. We set the final

topological error to be 1% and choose the appropriate code distance to achieve this by

considering the total number of code cycles that the algorithm must run for. This leads

to a total final error (failure probability) of ∼ 6%. In Litinski’s work a final error of 2%

is chosen [14], whereas in Gidney and Eker̊a’s work of breaking RSA encryption the final

error is 33.4%. The best choice of final error tolerance will depend on the type of problem

being solved, in the case where the result being correct is heralded (e.g. factoring), one

112

can accept large probabilities of failure, leading to a flexible trade-off between space and

effective run time (including retries). Therefore in this case the choice should be framed

as an optimization problem as opposed to an arbitrary threshold decision. Algorithms

which require statistical accumulation from multiple runs may need the failure rate to be

considerably lower than in the heralded type algorithms. Using our resource estimation

tool, one could investigate the impact of different final failure probabilities.

6.2.5 Routing at the error corrected level

It is necessary to move logical information from one area of the device to another, and

perhaps the most common requirement is the transport of magic states from the distillation

factories to the data blocks. Analogous to physical qubits in superconducting devices which

use logical operations to perform swaps, one can imagine performing swap operations

between logical qubits in the surface code. However, alternative techniques are more often

considered for enabling long range interactions with topological error correcting codes.

Using lattice surgery based methods, long range interactions (CNOTs) can be enabled in

d code cycles (1 beat), essentially independent of the distance between the two points, so

long as there is a chain of free ancillary qubits between them. We refer to this method

as entanglement swapping. An ancillary logical qubit can only contribute to one routing

chain at a time (per beat). When defining the layout of an error correction set up, which

involves choosing the number of distillation factories and orienting them with respect to

the data blocks, one must also ensure there is sufficient ancillary routing space to enable the

required degree of data transfer between the relevant areas. The degree of data transfer, or

alternatively stated the degree of parallelization in the execution of the algorithm, is often

characterized by the number of magic states consumed per beat across the entire data

block. With a data block arranged into rows with an access hallway between each row

(consisting of ancillary logical qubits), there are two unique ways of touching each data

qubit, if this is deemed insufficient, entangled copies of the data rows can be created to

ensure there are enough unique paths between the factories and the data qubits. In section

6.2.8 we present our choice of the routing overhead factor for entanglement swapping as a

function of the degree of parallelization using AutoCCZ factories.

6.2.6 Considering physical mid-range connectivity

In this section we briefly consider the potential impacts on the required resources when

the underlying architecture has access to flexible mid-range connectivity between physical

113

qubits. For superconducting devices two qubit operations can only be performed between

nearest neighbour physical qubits, and so long range interactions must be enabled by

sequences of costly logical swap operations. Alternative hardware may have access to

low overhead long range interactions between physical qubits, for example, photons are

readily transported long distances which is relevant to both photon-only hardware, and for

connecting small modules of trapped ions with photonic interconnects. In the blueprint

for a shuttling based trapped ion architecture [74], a single system is envisaged, comprised

of iterable micro-fabricated chips, connected via electric fields, which allow for physical

shuttling between modules. High state fidelity adiabatic shuttling has been demonstrated

with a speed of ∼ 20 ms−1 [85]; diabatic techniques [144, 145, 146] can enable much greater

shuttling speeds, and ∼ 80 ms−1 has been demonstrated [145]. Lau and James calculate

that the maximum speed a 40Ca+ ion can be transported across a 100 µm trap without

excessive error is 10,000 ms−1 [147]. For NISQ size devices all to all connectivity should

be achievable with high fidelity (relative to two qubit operations) using the shuttling-only

approach [11], but physically shuttling completely across a device with over a million

physical qubits is unlikely to be feasible due to the associated time cost. Utilization of

mid-range connectivity may still enable a reduction in the routing overhead associated

with entanglement swapping.

While very long range shuttling operations may be protected from error by periodic

cooling operations and mid-circuit syndrome extraction and correction, the total time cost

must be considered. With entanglement swapping, long range interactions can be enabled

between logical qubits in the surface code in a single beat, provided there are sufficient

available ancilla qubits between the locations. To contrast this capability we estimate the

range at which physical shuttling may remain competitive with entanglement swapping.

Assuming a code distance of 30, and logical qubits distributed across a 2D square grid, we

estimate that a logical qubit qubit could interact via physical shuttling with another logical

qubit in the range of 3-30 grid spaces away within a single beat (d code cycles), depending

on physical ion density and shuttling speed. While this is indeed unlikely to be sufficient

for mediating all long range interactions between logical qubits, the capability of low cost

mid-range physical connectivity could make the transversal CNOT preferable to the more

usually considered lattice surgery based methods. Gutiérrez et al have investigated the

experimental regimes at which the transversal CNOT may outperform the lattice surgery

based methods for trapped ions [223], and for particular values of error contributions,

the transversal CNOT may be performed a factor 10× faster. If the transversal CNOT

114

is expected to require less time than the lattice surgery based CNOT, then this would

directly impact the rate of magic state production of distillation factories and therefore

could reduce the total qubit overhead in the highly parallelized regime. Furthermore, mid

range physical connectivity could considerably reduce the qubit footprint of distillation

factories by eliminating the need for interior ancillary routing space for entanglement

swapping. Alternative error correction strategies to the 2D surface code [30, 201] may be

achievable on hardware with flexible mid-range connectivity. We leave a more detailed

analysis of the potential benefit of mid-range connectivity as future work.

In the next subsection we introduce the Game of Surface Codes method of trading space

for time [14], and following that, the AutoCCZ method [113] where we also include some

more detailed assumptions on the necessary routing overhead for entanglement swapping.

6.2.7 Game of Surface Codes

In the work of Litinski [14], various data blocks are presented which vary in their rate of

T-gate effectuation (magic state consumption) and the number of required physical qubits.

There are numerous distillation protocols each of which varies with regard to the output

fidelity, required number of physical qubits, and the rate of production. Distillation blocks

can be parallelized and this enables further space-time trade-offs.

We make use of distillation strategies presented by Litinski [27] where the distance

associated with the distillation blocks is fine tuned and separate from the distance associ-

ated with the data blocks. The data blocks have a required code distance set by the total

number of logical qubits and the total number of code cycles required to run the entire

algorithm. With the total number of T gates in the algorithm, Tcount, the distillation

blocks only need a code distance sufficient to produce magic states with an error at least

lower than 1/Tcount. In this chapter we choose to set the acceptable error at 1/(20×Tcount,

corresponding to a ∼ 5% probability of distillation error across the algorithm. The distil-

lation blocks use a certain number of qubits and only need to be protected for a certain

number of code cycles (corresponding to one full round of distillation), and these are gener-

ally both small relative to the requirements of the data blocks. This method of individual

calibration of distance for the data and distillation blocks is in contrast to a prior method

[14] where both block types are attributed the same code distance.

In the GoSC scheme, Clifford gates are addressed explicitly via Clifford tracking, i.e.

all Clifford gates are commuted to the end of the circuit and absorbed into measurements.

This turns T gates into Pauli product rotations, and measurements into Pauli product

115

measurements. In general these Pauli product rotations can be big multi-qubit operations.

To account for the generalized worst-case algorithm, which may have these multi-qubit

operations, the maximum rate at which the data block can consume a magic state is

defined as one state per beat (d code cycles). If the input circuit is known then it will

sometimes be possible to arrange the data blocks in such a way so that more than one

state can be consumed per beat. In this investigation we do not consider the details of

the input circuit and instead rely only meta details such as, abstract qubit count, total

T count, and the measurement depth. Our utilization of the GoSC method should then

be considered an upper-bound configuration, i.e., guaranteed to be able to support any

algorithm configuration given the meta details. The number of distillation factories can be

chosen to match the production rate to the consumption rate of the data block, at which

point we may describe the strategy as beat limited.

In the work of Litinski [14] further time optimizations are presented, which can be

utilized to reach reaction limit where one reaction time is spent per measurement (T)

layer. The reaction limited strategy is set by the total number of measurement layers,

i.e. the measurement depth (Tdepth), as opposed to the total T gate count (Tcount) of

the beat limited strategy. The average number of parallel-executable T gates per layer

(Tlayer = Tcount/Tdepth) varies across particular algorithms and there exist methods to

optimize circuits to minimize either the Tcount, Tdepth, or the circuit width [224, 225].

Litinski’s method of speeding computation up beyond the beat limited case utilizes “units”

which combine the previous constructions of data and distillation blocks. The number of

units can be increased until the time optimal limit (henceforth reaction-limit) is reached,

where each unit can work in parallel to address a set of measurement layers. This does not

contradict the previously provided definition of measurement layers, as although the units

can parallelize aspects of the work, the layers must still be stitched back together requiring

one reaction time per measurement layer for corrections. The reaction limit then defines

the maximum number of units that can be utilized. For an algorithm requiring n abstract

(logical) qubits, with an average of, Tlayer, T gates per measurement layer, a single unit

will consist of 4n+ 4
√
n+ 1 tiles (logical qubits) for the data block, and 2 Tlayer storage

tiles. Each unit requires an amount of time, tu, to process a single measurement layer,

where it is measured in beats and scales as Tlayer +
√
n+ 3. Each unit will need a number

of distillation factories to match the required production rate, which is Tlayer magic states

per unit completion time, tu. With a linear arrangement of units as is considered here,

and a reaction time, RT , the reaction (time-optimal) limit is reached with a number of

116

units nu equal to tu/RT + 1. The GoSC scheme of going beyond the beat limited rate

initially incurs a space-time overhead but then allows one to trade linearly (by increasing

the number of units) until the reaction limit is reached.

6.2.8 AutoCCZ factories

In the work of Gidney and Eker̊a [113] detailed surface code layouts along with the logical

algorithmic developments for breaking RSA encryption are provided. The surface code

strategy utilizes AutoCCZ factories [207] which create a magic state (the CCZ state) that

can be consumed to effectuate the non-Clifford Toffoli gate. The “Auto” refers to the

fact that these factories create auto corrected CCZ states, meaning that the potential

correction operation associated with magic state consumption is decoupled and can be

performed far away from the data block.

Using this scheme with the AutoCCZ factories, the beat limited rate can be surpassed

without introducing units as is performed in GoSC. Provided the routing overhead is

accounted for, one can continue to add AutoCCZ factories until the production rate is

equal to the number of Toffoli gates per measurement layer per reaction time, at which

point the reaction limit is reached.

The AutoCCZ factory is characterized by two code distances, corresponding to the

two levels of the protocol. The factory is a tiered distillation scheme where the output

magic states of the first level are the input states to the second level. We calculate the

final output fidelity following the ancillary files of Gidney and Eker̊a [113] as a function

of the two code distances and base physical error rate. To choose the optimal two code

distances we assess a wide range of possible values and select the setup that reaches the

desired final distillation error rate while minimizing the space-time volume of the factory.

While technically possible to maintain a reasonably low distillation error rate with base

physical error rates near the threshold of the code, 10−2, the associated code distances

required would result in an infeasible physical qubit overhead. Assuming any code distance

is acceptable, the final distillation error per state, pD, can be described as a function of

the base logical error, p, by pD = 34300p6, until the threshold of the code is reached.

This relationship was found by numerical fitting. A limit on the allowable code distance

breaks away from this trend before the threshold, and the lower the limit the sooner it

breaks upwards. In figure 6.3 we investigate the impact of the base physical error rate

for the final qubit overhead to reach a desirable run time with the AutoCCZ method. If

the final output fidelity of the AutoCCZ factory is insufficient given the desired length of

117

an algorithm and base physical error rate, then alternative T gate factories may still be

viable [27].

To reach a particular desired run time, assuming it is below the reaction limit, the

number of AutoCCZ factories are chosen as necessary. Once this footprint arrangement is

settled (the combination of the data block and the number of factories), the last stage of

the calculation is to determine the necessary routing overhead to account for the degree

of parallelization. As described in section 6.2.5, long distance interactions between the

distillation block and data block can be enabled in one beat provided there is an available

chain of ancillary logical qubits (routing space) between them. As each ancillary logical

qubit can only contribute to one routing chain per beat, there may need to be additional

unique paths to account for the degree of parallelization. All of the necessary routing

overhead is strictly accounted for in GoSC, with the construction and arrangement of the

data blocks, which are then duplicated and distributed across units. In our utilization of

AutoCCZ factories we define the degree of parallelization as the number of magic states

consumed across the data block per beat. We then ensure there is a routing hallway per

data block row for every state consumed per beat, to exceed two hallways per data row,

entangled copies of the data block can be made (which is comparable to the entangled

copies across Units in GoSC). Finally we multiply the entire area (number of logical qubits)

by a factor of 1.2 to ensure the distillation factories are surrounded by hallways and for

some work space around the data block for arranging routing-chains. Our utilization

of AutoCCZ factories should not be considered a true upper bound for any generalized

circuit, unlike GoSC Units. In the following section we contrast the two methods further

and state our relative contribution.

6.2.9 Problem specification

We start our investigation with the logical resource requirement set out by Lee et al [212]

to simulate FeMoco to chemical accuracy, and assess the feasibility of reaching desirable

run times as a function of the code cycle time and number of achievable physical qubits.

In the work of Lee et al, a detailed surface code strategy is presented with algorithm

specific optimizations, such as minimizing the number of data qubits that are stored for

working. In contrast, the surface code strategies we utilize, do not necessarily require

detailed knowledge of the input circuit, and are instead only a function of the logical

qubit count, the T (or Toffoli) count and the measurement depth. This approach may

not yield optimal results for specific algorithms but it enables one to effectively estimate

118

physical resource requirements for a particular algorithm as a function of strategy (the

time-space optimization spectrum) and the code cycle time. We contrast two strategies,

the first which can be considered to provide upper-bound resource estimates for any general

circuit input, and closely follows the work of Litinski’s Game of Surface Codes (GoSC)

[14]. We go beyond the pedagogical examples provided by Litinski [14] by creating an

automatic tool that calculates the physical resources across the space-time optimization

spectrum and apply it to the algorithmic requirements of quantum advantage use cases.

Furthermore we use the tool to calculate the number of physical qubits required to reach

a specified run time as a function of the code cycle time of the hardware by utilizing the

necessary degree of parallelization. We investigate the impact of varying the measurement

depth with a fixed total T count, on the efficiency of the GoSC unit approach and identify

the optimal value in particular regimes. In addition to the Game of Surface Codes method

of parallelization, we incorporate a method which uses AutoCCZ factories [207]. For this

method we relied upon the ancillary files of Gidney and Eker̊a [113] and adapted them to

be flexible enough for our broader (circuit agnostic) considerations. Our intention with the

routing overhead with the AutoCCZ factories is to cover a wide range of possible circuit

characteristics, while it may be an over estimation for some specific circuits, it may also

represent an under estimation for some worst-case situations. We accomplish our aim of

quick and general resource estimation as a function of algorithm meta information, and

hardware characteristics, by contrasting the upper-bound scenario of GoSC units, with

a more heuristic utilization of AutoCCZ factories. With detailed knowledge of the input

circuit, further optimizations of the footprint configuration are possible, but generally

these must be performed on a case by case basis and are non trivial to automate. The tool

used to generate the results presented in this paper (chapter) is available upon request. We

use the latest logical resource requirements for breaking elliptic curve encryption [215, 216]

and estimate the number of physical qubits required to break the encryption of Bitcoin

keys in the small amount of time it would actually pose a threat to do so, all as a function

of both the code cycle time and base physical error rate.

6.3 Results

To calculate the results presented in this section we use various surface code strategies

including the Game of Surface Codes scheme which uses units to parallelize layers of T

gates [14], and AutoCCZ factories [207, 113], which are both highlighted in the previous

section.

119

Figure 6.1: Physical resource estimates for a ground state energy calculation of the

FeMoco molecule to chemical accuracy as per the logical resource requirements of Lee et

al [212]. The associated logical resources required are 2196 logical qubits and 6.7 billion

Toffoli gates. The run time and associated physical qubit count is plotted for different

surface code strategies and code cycle times. A code cycle time of 1 µs and reaction

time of 10 µs is considered, which may correspond to future superconducting devices, in

addition to a code cycle time of 235 µs with reaction time of 70 µs which may correspond

to a future shuttling based trapped ion architecture [74]. The base physical error rate is

set to 10−3, the final distillation error probability is at most 5%, and the final topological

error probability is at most 1%. The method from A Game of Surface Codes (GoSC)

[14] is utilized where layers of T gates are parallelized using “Units” and is shown for the

code cycle time of 235 µs. The three distinct trends all with dashed lines correspond to

different measurement depths given as a fraction of total non-Clifford gate count, Tcount.

A beat limited approach (i.e. limited by the magic state consumption rate of the single

data block) through the GoSC lens are plotted as a square and diamond. With the GoSC

approach the improved distance T gate factories of Litinski [14] were used, where their

distance is calibrated separately to the data blocks. A distinct method of parallelization

is utilized here, which uses AutoCCZ factories [207, 113], enabling all of the Toffoli gates

within a given measurement layer to be potentially performed in parallel. The AutoCCZ

approach is plotted for the two code cycle times of 1 µs and 235 µs as joined markers where

the trend starts with 1 AutoCCZ factory and sequentially adds factories, each represented

by a data point, up until the reaction limit is reached.

120

6.3.1 Simulating FeMoco as a function of the code cycle time

There has been extensive research into both algorithmic development and resource es-

timation in the field of fault tolerant quantum chemistry, and one of the focus points

has been the FeMo-co catalyst [188, 210, 211, 212]. An improved understanding of the

FeMo-co catalyst could provide considerable efficiency improvements to nitrogen fixation

which currently represents around 2% of the worlds energy usage. We start with some

of the latest algorithmic developments by Lee et al [212] and investigate the feasibility of

achieving a reasonable run time for different code cycle times and different surface code

strategies. The associated logical resources required are 2196 logical qubits and 6.7 billion

Toffoli gates.

In figure 6.1 we compare two distinct methods of trading space for run time up to the

reaction limit (the conjectured time optimal limit [222]). The two scatter trends utilize

AutoCCZ factories with different code cycle times of 1 µs, corresponding to a future

superconducting device, and 235 µs, corresponding to a future shuttling based trapped

ion device [74]. Each trend starts with one AutoCCZ factory, from there the number of

factories is incremented and at each step the code distance is calibrated and the resulting

run time and physical qubits are plotted. Initially the total qubit footprint is dominated

by the data blocks whereas the run time is bottle necked by the magic state production,

i.e. going from one factory to two halves the expected run time. Therefore while this

is the case, adding factories results in an improvement to the space-time volume and

this can sometimes allow for a reduction in code distance, which may result in an actual

reduction in total qubit count. Each time a factory is added, the magic state consumption

rate per beat is defined to determine whether the routing overhead needs to be increased

as described in section 6.2.8. What is considered to be a desirable run time will largely

depend on the importance of the problem being solved and by the speed and quality of the

classical alternatives. With one AutoCCZ factory the superconducting device completes in

around 10 days with 7.5 million qubits, whereas the trapped ion device requires 2450 days

and the same number of qubits. Where 10 days may be considered a quantum advantage

for this use case where classical computers stand no chance of providing a meaningful

answer, perhaps 2450 days would not. By parallelizing the magic state production the

trapped ion device can reach the run time of 10 days requiring 600 million qubits. The

factor difference between the physical qubit count here is less than the factor difference

between the code cycle time, because initially adding factories is a favourable space time

trade until the total qubit footprint becomes dominated by the factories at which point the

121

trade becomes linear. The good news for hardware with slower code-cycle times is that it

will often be possible to still reach desirable run times provided enough physical qubits are

available. However, the associated qubit overhead may appear daunting, and implies that

hardware with slower code cycle times will have to be more scalable to compete, assuming

equal error rates and physical connectivity. We plot for a range of possible measurement

depths, labeled as a fraction of the total Toffoli count, as this was not provided along

with the other logical requirements [212]. In the AutoCCZ scheme the measurement

depth does not directly impact the efficiency of the approach, instead it only determines

in combination with the reaction time, what the time optimal (reaction) limit is. The

labels then indicate the reaction limit, the point at which the trend would end, given that

measurement depth.

In figure 6.1 we also include the Game of Surface Codes (GoSC) approach to trad-

ing space for time [14], where measurement layers are parallelized with constructs called

“Units”. Each unit contains its own copy of the data block and enough factories to pro-

duce the number of magic states within the measurement layer within the time it takes

to prepare the unit, which scales with both the number of magic states per layer and the

number of abstract qubits. Units can be incrementally added, each one added reduces the

final run time up until the reaction limit is reached. The dashed lines in figure 6.1 use

units along with improved T gate factories [27] where it is assumed 4 T gates are required

to decompose a Toffoli gate [217, 14]. The GoSC approach is plotted only for the code

cycle time of 235 µs but three trends are included for the different measurement depths

as a fraction of the total Toffoli count. The efficiency of the GoSC approach (in addition

to the reaction limit) is dependent on the measurement depth as can be seen. In section

6.3.3 we investigate the impact of the measurement depth on the final qubit requirement

to reach a fixed run time for the GoSC approach.

It can be seen in the figure that the AutoCCZ approach provides more favourable final

resource estimates than GoSC units in this scenario. The largest contributing factor to

this difference appears to be the initial set up cost for the unit approach, which is nearly

an order of magnitude increase in qubits for no appreciable speed up (with measurement

depth = Tcount/10). This is in stark contrast to the AutoCCZ approach which initially

takes very favourable space-time trades by increasing the number of factories. As the rate

of parallelization increases in the AutoCCZ approach, eventually entangled copies of the

data block are made to maintain sufficient access hallways between the data block and

distillation blocks. Both the AutoCCZ and GoSC approach converge towards an equal

122

linear trade between space and time. It should be restated that the GoSC approach can

be considered a true upper-bound estimate, functional for any general circuit, whereas our

utilization of the AutoCCZ factories is more heuristic and may represent an underestim-

ation for some specific circuit inputs, see section 6.2.9 for more discussion on this.

In figure 6.1 a beat limited method is included for both code cycle times as diamond

and square points i.e. no units and the computation rate is limited by the data blocks

magic state consumption rate. These points use T gate factories and the fast data blocks

from GoSC, which have size scaling as 2n+
√

8n+1 for n logical qubits, and can effectuate

T gates at a maximum rate of one per beat (d code cycles). The number of T factories

is chosen to match the rate of magic state consumption of the fast data blocks. The

beat limited situation provides comparable run times to the single AutoCCZ factory and

requires a similar number of physical qubits.

To conclude this section, it appears that the AutoCCZ factories are the favourable ap-

proach to trade space for time up to the reaction limit, but a more detailed investigation

into the underlying assumptions of both methods is warranted. These resource estimates

are solely a function of algorithm meta information such as total T count, measurement

depth, and the number of logical qubits. The surface code configuration can be optimized

when paired with detailed knowledge of the input algorithm, but this process is non trivial

to automate, as we have done in this work as a function of code cycle time. Future hard-

ware that expects to have considerably slower code cycle times than the superconducting

devices may still be able to reach desirable run times provided enough physical qubits are

available, which further emphasises the importance of scalability. The associated qubit

overhead factor will range between less than 1 (here ∼ 0.3), to 1, times the difference in

the code cycle time depending on the relative degree of parallelization in the comparison.

Algorithms should be optimized by minimizing the measurement depth if the reaction limit

is restrictive. The physical qubit requirement may be reduced if the underlying hardware

has access to low overhead mid-range physical connectivity, as discussed in section 6.2.6

6.3.2 Breaking Bitcoin’s EC encryption

Breaking encryption has received a lot of attention in the quantum computing community

since Shor’s breakthrough algorithm [6] which provides a near exponential speedup for

prime factoring which has direct implications for breaking RSA encryption. Gidney and

Eker̊a provide algorithmic improvements in addition to the surface code strategies for

breaking RSA encryption and they estimate that 20 million qubits running for 8 hours

123

Figure 6.2: The number of physical qubits required to break Bitcoin’s 256 elliptic curve

encryption with a fixed maximum run time as a function of the code cycle time for max-

imum run times of 10 minutes, 1 hour, and 1 day. Using the latest algorithmic development

for quantum circuits for elliptic curve encryption [215]; the depth optimized approach is

chosen requiring 5.76 · 109 T gates, 2871 logical qubits, and a T (measurement) depth of

1.88 · 107. These trends utilize AutoCCZ factories to trade space for time to reach the

desired run time and assume that a CCZ state can be efficiently traded for 2 T gates

[121]. Assuming the relationship between reaction time (RT) and code cycle time (CC)

of RT = CC/4 + 10 µs which is motivated in section 6.2. The trends start from the

chosen code cycle time of 10−8 and end at the right due to reaching the reaction limit

before reaching the desired run time. We use a base physical error rate of 10−3 and a final

output error of ∼ 6%. .

could break it with a code cycle time of 1 µs [113]. In a blueprint for a shuttling based

trapped ion device, which estimated the code cycle time to be 235 µs [74], it was originally

estimated that breaking RSA encryption would require 110 days and 2 billion qubits with

a base error of 10−3, implying a device occupying an area of 103.5× 103.5 m2. With the

latest algorithmic and surface code strategy improvements we can reduce this estimate

to requiring instead a run time of 10 days (a factor 10× faster) and 650 million qubits,

which would imply a device size of area 60 × 60 m2. With a base physical error of 10−4

the device size would reduce to 18× 18 m2 and further reductions may be possible if one

were to make use of the flexible mid-range connectivity that is available. Using the same

relative improvement factor from mid-range connectivity as in the design blueprint [74],

124

Figure 6.3: The number of physical qubits required to break Bitcoin’s 256 elliptic curve

encryption with a fixed maximum run time as a function base physical error rate for a

maximum run time of 1 hour and code cycle time of both 1 µs and 100 µs. Using the

latest algorithmic development for quantum circuits for elliptic curve encryption [215];

the depth optimized approach is chosen requiring 5.76 · 109 T gates, 2871 logical qubits,

and a T (measurement) depth of 1.88 · 107. These trends utilize AutoCCZ factories to

trade space for time to reach the desired run time and assume that a CCZ state can be

efficiently traded for 2 T gates [121]. Assuming the relationship between reaction time

(RT) and code cycle time (CC) of RT = CC/4 + 10 µs which is motivated in section 6.2.

The trends start from the chosen base physical error rate of 10−5 and end at the right

due to the AutoCCZ factory being no longer able to reach the desired distillation fidelity

given the base physical error and number of required states.

starting from the 10−4 case, we might expect a device of size 2.5× 2.5 m2 to be sufficient.

This is indeed a rough estimate and a more rigorous understanding of how to best make

use of mid-range connectivity would be required to confidently provide the performance

improvements relative to a nearest neighbour approach.

Bitcoin uses the Elliptic Curve Digital Signature Algorithm (ECDSA) which relies on

the hardness of the Elliptic Curve Discrete Log Problem (ECDLP) and a modified version

of Shor’s algorithm [111, 215, 216] can provide an exponential speedup using a quantum

computer for solving this problem. The encryption of keys in the Bitcoin network are

only vulnerable for a short window of time, around 10 minutes to an hour depending on

the fee paid, as described in more detail in section 6.1.2, and this makes it a well suited

125

problem for our investigation. In figure 6.2 we plot the number of physical qubits required

to break the elliptic curve encryption of Bitcoin within a run time of 1 day, 1 hour and 10

minutes, as a function of the code cycle time. We use the logical resources of the depth

optimized approach provided by Haner et al [215] for 256 bit encryption, which corresponds

to 5.76 · 109 T gates, 2871 logical qubits, and a measurement depth (Tdepth) of 1.88 · 107.

The measurement depth of this algorithm is low relative to the Tcount, at ∼ Tcount/300,

implying that there is a lot of room for parallelization before the reaction limit is reached.

In figure 6.2 it can be seen that it would require 317 million physical qubits to break the

encryption within one hour with a code cycle time of 1 µs. To break it within 10 minutes

with the same code cycle time it would require 1.9 billion physical qubits whereas to break

it in 1 day would require only 13 million physical qubits. The horizontal period most

evident in the dash-dotted black trend for a run time of 1 day is because the desirable run

time can reached for those code cycle times with only 1 AutoCCZ factory. Once the code

cycle time increases sufficiently it is then necessary to begin adding AutoCCZ factories

to maintain the desired run time. Hardware with considerably slower code cycle times

than 1 µs will need to be able to reach larger device sizes to break the encryption within

the allotted time. Even for code cycle times of 1 µs, this large physical qubit requirement

implies that the Bitcoin network will be secure from quantum computing attacks for many

years. High value transactions are likely to pay high fees ensuring they are processed with

higher priority, and therefore would require considerably more physical qubits to break

the encryption in time. The Bitcoin network could nullify this threat by performing a soft

fork onto an encryption method that is quantum secure, where Lamport signatures [226]

are the front-running candidate, but such a scheme would require much more memory per

key. The bandwidth of Bitcoin is one of the main limiting factors in scaling the network

and so changing the encryption method in this way could have serious drawbacks.

In figure 6.3 we plot the required number of physical qubits to break the 256 bit elliptic

curve encryption within 1 hour as a function of the base physical error rate. In section

6.2.2 the relationship between the base physical error rate and an experimentally achieved

gate fidelity is explained in more detail. We plot two trends for code cycle times equal to 1

µs and 100 µs which begin at the selected error rate of 10−5. The trends end at the right

at a physical error rate of ∼ 2.8 · 10−3 when the AutoCCZ factory can no longer produce

a state with sufficient fidelity given the error rate and number of required states. High

code distance and multi tiered T gate factories would be able to continue further, but at a

value of 1% error rate the (approximate) threshold of the surface code is reached. With a

126

physical error rate higher than this threshold, increasing the code distance actually results

in a larger logical error. Three distinct distances are calibrated according to the base

physical error rate, first the final topological error is maintained below 1% by adjusting

the code distance associated with the data block. Next there is a level 1 code distance and

a level 2 code distance associated with the AutoCCZ factory that are calibrated to ensure

the final distillation error is maintained below 5%, as per the ancillary files of Gidney

and Eker̊a [207]. We assess a wide range of code distances for the AutoCCZ factory and

choose the set that minimizes the factory volume (i.e. number of qubits × duration per

cycle) while maintaining the desired error rate. With a code cycle time of 1 µs it requires

317 million physical qubits to reach the 1 hour run time with a base error of 10−3, this is

reduced down to 33 million for a base error of 10−4, i.e. a factor 10 reduction. The relative

reduction in the qubit overhead, associated with an order of magnitude improvement in

the base error, is greater when the comparison is performed closer to the threshold of the

code. For example from 2.8 · 10−3 to 2.8 · 10−4 the qubit reduction is instead a factor 30

(in contrast to the factor 10 of the previous comparison). This highlights the importance

of reaching base physical error rates of 10−3 and lower.

6.3.3 Finding the optimal measurement depth

Logical algorithms may be optimized for particular properties, for example, either the total

T gate count, Tcount, the number of measurement layers, Tdepth, or logical qubit count may

be minimized [224, 225]. In the elliptic curve encryption breaking algorithm of Haner et al

[215] logical requirements are stated for each of these three possible optimizations, where

in the previous section the measurement depth minimized approach was chosen. The

reaction limit (conjectured to be the fastest an algorithm can be run) is determined solely

by the measurement depth and reaction time (i.e. independent of total gate count and

code distance), and so the depth optimized approaches are the most suitable when room

for parallelization is desired. The ratio of the measurement depth to total gate count is the

inverse of the number of T gates per layer, Tlayer (when considering T gates as opposed to

some other non Clifford operation). In the GoSC method of parallelization with units, all

aspects of the cost depend on the number of T gates per layer, including the footprint of

the unit, the time it takes to prepare a unit, and the number T gates that are effectuated

within the preparation time.

In figure 6.4 we plot the efficiency of the GoSC method as a function of this meas-

urement depth with a fixed total gate count, and it can be seen that there is a measure-

127

Figure 6.4: Investigating the efficiency of the Game of Surface Code Units approach [14]

as a function of the ratio of the measurement depth to total gate count. The total qubit

footprint is plotted for a particular desirable run time and code cycle time, with a base

error of 10−3 and final output error of 6%. The trends start at the chosen measurement

depth ratio of 10−4 and end when the reaction limit is reached before the desired run time.

Plotting the required number of physical qubits for a ground state energy calculation of

FeMoCo with the THC Qubitization method of Lee et al [212] to have a maximum run

time as stated for code cycle times of 10 µs and 1 µs.

ment depth that leads to a minimum physical qubit footprint. This is in contrast to the

AutoCCZ method where instead the measurement depth only plays a role in determining

the reaction limit, and it would appear in these figures as a horizontal line. In figure 6.4

we plot the required number of physical qubits to reach a desired run time for the logical

resources required to simulate FeMoco [212]. We include three plots for different code cycle

times and maximum run times. As expected in this regime prior to reaction-limited, it can

be seen that it is the ratio of the code cycle time and maximum run time that determines

the physical qubit requirements. We show that the optimal measurement depth ratio is

not necessarily “as small as possible”, and for this situation it lies between 10−3 and 10−2.

The discontinuous movements result from an increase in the required number of units as

the measurement depth ratio becomes larger. A less demanding run time requirement

necessitates fewer units for a given measurement depth which results in less frequent and

larger relative downward movements. The two distinct discontinuous movements on the

blue trend (for a code cycle time of 10 µs and run time of 1 day) are due to the topological

128

Figure 6.5: Investigating the efficiency of the Game of Surface Code Units approach [14]

as a function of the ratio of the measurement depth to total gate count. The total qubit

footprint is plotted for a particular desirable run time and code cycle time, with a base

error of 10−3 and final output error of 6%. The trends start at the chosen measurement

depth ratio of 10−4 and end when the reaction limit is reached before the desired run time.

Plotting the required number of physical qubits for an algorithm with fixed space-time

volume of 5 · 1013, where the number of logical qubits is labeled and the total T gate

count is varied to maintain the stated volume. The space-time volume was chosen to be

representative of the quantum advantage cases assessed in this work.

code distance changing as the space time volume changes. The black trend with a run

time of 10 days can maintain the desired run time for larger measurement depths than the

dotted orange line because the proportional difference in the desired run time (a factor

10) is greater than the proportional difference in their associated reaction times. The

relationship between the code cycle time and reaction time that we assume in this work

is explained in section 6.2.3.

In figure 6.5 we again investigate the efficiency of the parallelization but now for an

abstract algorithmic requirement with fixed space-time volume. Three trends are shown

with logical qubits, n, corresponding to 500, 1000, and 2000, where the total T gate of the

algorithm is set to maintain the fixed space time volume (n×Tcount) of 5 ·1013. The trends

end at the right when the reaction limit is reached where 2000 is the last to end because it

has the lowest total T gate count, which in turn relates to a lower reaction limit for a fixed

measurement depth ratio. The optimal measurement depth ratio is larger for lower logical

129

Figure 6.6: The optimal value of the number of T gates per measurement layer, shown

as a fraction of the number of logical qubits, plotted as a function of the T gate count of

the algorithm. Base physical error of 10−3 and code cycle time of 1µs. Different plots for

varied desired run times and logical qubit count. The maximum value of T gates per layer

is limited to the number of logical qubits for each trend. For logical qubit numbers (N)

in excess of 100, the equilibrium value of the optimal number of T gates per layer is well

described by the following equation Tlayer = 1.9(5)N0.70(5). The final phase starts when

the algorithmic requirement becomes too demanding for the minimum run time and so the

Tlayer rises despite the loss in efficiency until the number of logical qubits is reached which

here we define as the cut off point, where finally even the reaction limit (one reaction time

per T layer) is not sufficient.

qubit counts; for 500 the optimal is 0.6 · 10−3, whereas for 2000 the optimal is 0.3 · 10−3.

In the following we investigate the relationship between the optimal measurement depth

and logical qubit requirement of the algorithm in more detail.

Optimal measurement depth and logical qubit requirement

We have shown that the optimal measurement depth given a fixed total gate count for the

GoSC approach is non trivial and can be a function of both the number of logical qubits,

and on how demanding the desired run time is (i.e. the number of units needed). In

this section we investigate the relationship between the optimal measurement depth and

the number of logical (abstract) qubits of the algorithm. The average number of T gates

per measurement layer, Tlayer is the inverse of the previously stated ratio of measurement

130

depth to total gate count, i.e. Tlayer = Tcount/Tdepth. In figure 6.6, for a particular value

of the total T gate count, Tcount, we calculate the optimal value of T gates per layer,

Tlayer, which is then converted into a ratio of the number of logical qubits. We include

multiple trends for different numbers of logical qubits and plot as a function of the total

T gate count. This involves identifying the value of Tlayer at which the physical qubit

requirement is minimized as in figure 6.4, for each particular logical resource requirement.

We choose different qubit numbers and minimum run time values to highlight the various

dependencies. We can see 4 distinct behavioural phases for each trend, first at low T

gate counts the minimum run time can be reached with no parallelization and so we state

the optimal T per layer as 0 (whereas truly it is independent). The next phase is an

oscillating pattern where the optimal T per layer ratio varies widely with a decreasing

amplitude as the T gate count increases. The beginning of this phase is determined by

the end of the previous one, where the no-parallelization (beat limited) method can no

longer reach the desired run time, which is determined by the ratio of the code cycle

time and minimum run time. The amplitude of the oscillation is largest at the start of

parallelization because only a small number of units are initially required and an increase

in T count requirement can mean the number of required units increases, for example

the optimal number of units may change from 3 to 4, but the associated Tlayer for this

minimum can vary widely, and the magnitude of that variation reduces as the overall

number of required units increases. The large variation in the optimal ratio does not

imply a large variation in the required number of physical qubits. In the next phase the

optimal T per layer ratio is relatively constant at an equilibrium value which is solely

determined by the number of logical (abstract) qubits in the algorithm, where the greater

the number of logical qubits, the fewer T gates per layer (as a percentage of the logical

qubits) are required for the optimal physical qubit overhead. For logical qubit numbers

(N) in excess of 100, the equilibrium value of the optimal number of T gates per layer

is well described by the following equation Tlayer = 1.9(5)N0.70(5) which we estimated by

taking an average of the points within the equilibrium phase and fit with linear regression.

The final phase starts when the algorithmic requirement becomes too demanding for the

minimum run time and so the Tlayer rises despite the loss in efficiency until the number of

logical qubits is reached which here we define as the cut off point, where finally even the

reaction limit (one reaction time per T layer) is not sufficient.

The potential degree of control over the average number of T gates per layer during

algorithm construction and optimization will determine whether it is beneficial to con-

131

sider the optimal value as calculated with the techniques used in figure 6.6. There are

optimization techniques that can minimize either the Tdepth and Tcount [224, 225], but they

generally trade off with one another, where minimizing one may increase the other. Fur-

thermore, this analysis is specific to the GoSC approach of parallelization with units, and

earlier we have shown that the AutoCCZ method of parallelization produces considerably

more favourable final resource estimates. As mentioned, the AutoCCZ method does not

display this rich behaviour with the efficiency dependence on the measurement depth, and

we believe further research is warranted to compare the underlying assumptions of these

two methods of parallelization.

6.4 Summary

Within a particular time frame, the code cycle time and the number of achievable physical

qubits may vary by orders of magnitude between hardware types. When envisaging a fault

tolerant implementation, there are numerous decisions to be made based on a preference

for either space or time. In this work we compare surface code strategies of parallelization

that allow one to speed up the computation until the reaction limit is reached. Most

of the fault tolerant resource estimation work has focused on code cycle times corres-

ponding to superconducting architectures. A space optimized quantum advantage case

study translated for hardware with slower code cycle times may lead to run times in ex-

cess of 1000 days, and so parallelization would have to be performed to reach desirable

run times. In this work we have calculated the required number of physical qubits to

reach a given desirable run time for two representative quantum advantage cases (chem-

istry and encryption) across a range of code cycle times. The feasibility of using these

time optimization strategies will depend upon the number of physical qubits achievable

within a device, therefore the scalability of an architecture will play an important role

in determining whether a quantum advantage is achievable. We contrast two methods of

parallelization to simulate the FeMo-Co cataylst, first a Game of Surface Codes approach

which should be considered an upperbound, and second a more heuristic utilization of

AutoCCZ factories. We find in this situation that the AutoCCZ factories produces more

favourable resource estimates and the difference is mostly due to the high initial set up

cost of parallelization with Game of Surface Code Units. With a single AutoCCZ factory

a superconducting device with a 1 µs code cycle time would require 7.5 million qubits

to simulate FeMo-co in ∼10 days, whereas a shuttling based trapped ion device with a

235 µs code cycle time would take 2450 days. By increasing the number of factories the

132

space-time trade is initially favourable (as opposed to linear), and the trapped ion device

can reach the same 10 day run-time with 600 million qubits. In this comparison the factor

difference between the physical qubit requirement is ∼ 3× less than the factor difference

in the code cycle time.

We have investigated the effect of varying the ratio of the T gate count and T depth

(the average T gates per layer) and identified the optimal value for a constrained run time

against general algorithmic requirements. Here we focused on the GoSC Unit method of

parallelization as it was unique in displaying rich T depth dependence.

We apply our methods to the logical resources required to break 256 elliptic curve

encryption, which is used to secure public keys in the Bitcoin network. We use the lo-

gical resource requirements of the latest algorithmic developments which improve on the

previous state of the art by ∼ 2 orders of magnitude. There is a small window of time,

approximately 10-60 minutes, in which the public keys are available and vulnerable after

the initiation of a transaction. We quantify the number of physical qubits required to

break the encryption in one hour as a function of code cycle time, and base physical error

rate. It would require approximately 317 million physical qubits to break the encryption

within one hour using the surface code and a code cycle time of 1 µs, a reaction time of

10µs, and physical gate error of 10−3. To instead break the encryption within one day, it

would require only 13 million physical qubits. If the base physical error rate was instead

the more optimistic value of 10−4, 33 million physical qubits would be required to break

the encryption in 1 hour. This large physical qubit requirement implies that the Bitcoin

network will be secure from quantum computing attacks for many years (potentially over

a decade). Alternative error correction techniques, in particular those which benefit from

a more flexible physical qubit connectivity as often found in trapped ion based quantum

computers, could potentially offer considerable improvements to the requirements but the

slower rate of logical operations must also be factored in. The Bitcoin network could

nullify this threat by performing a soft fork onto an encryption method that is quantum

secure, but there may be serious scaling concerns associated with the switch. We hope

to motivate continued research into end-to-end resource estimation for alternative error

correction schemes to the surface code, and to determine how best to make use of the

available physical connectivity of different quantum hardware platforms.

133

Chapter 7

Conclusion

7.1 Summary and future work

Over the years the research areas of quantum algorithms, applications, and hardware have

to some extent been disparate. As the field as a whole has continued to evolve, so too

have these areas continued to integrate. The work described in this thesis is a contribution

towards this integration.

A routing algorithm for a shuttling based trapped ion design was presented which

can effectively enable global connectivity without the use of positional swaps. A simu-

lation tool was created to represent devices of variable size following this design, and it

was used to aid in the development and characterization of the routing algorithms. The

routing algorithm was thoroughly characterized by quantifying the time requirement for

connectivity as a function of device size and ion density, and by quantifying the distribu-

tion of X-Junction center passes. The routing algorithm was found to compare favourably

to an alternative method which instead made extensive use of positional swaps; the ana-

lysis incorporated state of the art experimental shuttling and positional swap speeds. The

device sizes considered during this work were in general much larger than those that were

experimentally available within the research group at the time. Now some years later, the

core principles of the routing algorithm are being incorporated into a compiler which will

control real quantum hardware. The creation of a full stack compiler that takes a high level

quantum algorithm and decomposes it into machine level instructions is a monumental

task that will require collaboration between a wide range of skill sets. Alternative optim-

ization methods for routing may be investigated, such as machine learning techniques, but

our simulation results show that there is not a large scope for improvement relative to the

lower bound.

134

An error model for the shuttling based design was proposed that incorporates the cost

for connectivity results of the routing simulation. The error model was then used to es-

timate the computational power (quantum volume) of near term devices as a function

of experimental parameters. Quantum volume was used to compare the shuttling based

design to a superconducting device as a function of two qubit gate fidelities. Across the

range investigated the shuttling based design had a higher quantum volume due to the

lower cost associated with enabling connectivity as compared to logical swap operations.

Arbitrary two qubit gate decompositions into a native gate set were discussed and an ap-

proximate decomposition technique was investigated as a function of native two qubit gate

fidelity. Quantum volume (actually log2(QV), i.e. the maximum achievable square circuit

depth) was used to meter experimental priorities by considering the impact of parameters

such as ion loss, ion density, and coherence time. Single qubit gate fidelities were estimated

as a function of the FPGA frequency (which determines the time resolution of control on

the field), and the amplitude variation. The total time required to enable a single round

of a globally connected algorithm was assessed across a wide range of device sizes (up

to 107 physical qubits) for the shuttling based design, and for an alternative trapped ion

design that uses small modules which are connected by a photonic interconnect. State of

the art rates for photonic interconnects and high fidelity shuttling were used as well as

favourable assumptions on the nature of the network of modules. Due to the high time

cost for a single photonic interconnect operation, the shuttling based design was found to

enable global connectivity in less time for devices of size up to 105 physical qubits, and

over an order of magnitude faster for physical qubit numbers less than 1000. The metric

quantum volume has gained in popularity since the original publication of this work and

it is now being used by several commercial endeavours to compare experimental progress.

In parallel with the continued advancement of the experimental hardware it would be

desirable to develop a state simulator with a hardware inspired error model. Such a tool

could be used to estimate the quantum volume of the design in a more rigorous manner,

or to investigate the feasibility of small scale error correction techniques, or to optimize

quantum algorithms for the hardware. Although some gate decomposition techniques were

explored in this chapter, it will be necessary to develop automated gate decomposition and

circuit optimization tools that can be applied to any arbitrary quantum circuit and which

are specialized for this shuttling based design.

A pedagogical review for quantum chemistry was provided with the aim of answering

the question “How will quantum computers provide an industrially relevant computational

135

advantage in quantum chemistry?”. In this work the focus was on algorithms which would

require a fault tolerant quantum computer. The two primary Hamiltonian simulation tech-

niques were compared for estimating the ground state energy for molecules of various sizes.

The software development kit, Q#, was used to calculate the logical resource requirements

for a single oracle application. Classical computing techniques were utilized to generate

the initial starting guess for particular molecules for the quantum algorithm. End to end

resource estimation was performed by considering the overheads associated with surface

code error correction, which involved comparing different configurations of data blocks

and distillation blocks. The approximate basis set size at which a quantum computer is

expected to outperform a classical computer was identified for the molecule Cr2. For this

molecule, the physical resource requirements as a function of the base physical error were

estimated. The physical resource estimations in this work required choosing hardware code

cycle times; in this work 1µs was used which may correspond to future superconducting

devices.

In the following chapter a broader range of hardware considerations were investigated.

With the same error correction configurations a lower code cycle time will linearly increase

the final run time requirement. The code cycle time of trapped ion devices may be on

the order of 200× slower than superconducting devices. By setting an upper limit to the

desirable final run time and varying the error correction configuration we estimate the

final physical qubit requirement as a function of the code cycle time. The focus was on

problems with a strong commercial narrative such as ground state estimation of FeMoco

and breaking the encryption of private keys in the Bitcoin network. Two distinct methods

of parallelization in the surface code were compared, Game of Surface Code Units and

AutoCCZ factories. The dependence of the T gate parallelization method on the ratio of

the T gate depth and T gate count was investigated. Some of the latest developments in

the surface code were utilized, such as improving the efficiency of distillation blocks by

separately calibrating their required code distance. The potential for quantum computers

to threaten the Bitcoin network was discussed. In the future it will be desirable to perform

full stack resource requirements for alternative error correction techniques, such as Bacon-

Shor, higher dimensional codes, or codes which require longer range physical interaction.

For the shuttling based design of the research group, it will be important to consider the

strengths of the hardware and how that may best align with the available error correction

codes.

136

7.2 Outlook

The commercial interest behind quantum computing has radically increased since the start

of my PhD. It remains to be seen whether a commercially relevant quantum advantage can

be achieved with a NISQ type device, but as the hardware continues to develop so too will

the understanding behind their potential computational power. It seems clear that a fault

tolerant device with over a million physical qubits could run quantum algorithms that

provide a serious advantage in areas such as quantum chemistry and machine learning.

There are numerous platforms being pursued for quantum computing and it appears that

each will have its own strengths and weaknesses relevant at different time scales. To

achieve a fault tolerant device, the scalability of the underlying hardware is of primary

importance, and this has been the main focus of the shuttling based trapped ion design of

our research group. Trapped ion quantum computers are now seen as a major contending

platform in the race to a powerful quantum computer, with several commercial endeavours

including Honeywell, IonQ and Universal Quantum. A full stack compiler for the shuttling

based design would take a high level quantum circuit, decompose (and optimize) into

the native gate set, manage the ion’s routing, cooling, and phase, all the way down to

machine level instructions. This full stack compiler represents a significant undertaking

and I look forward to contributing towards it in the future. I hope to help the field

continue to develop by providing an algorithmic perspective to the hardware specialists

and a hardware perspective to the algorithm specialists.

137

Bibliography

[1] R. P. Feynman, “Quantum mechanical computers,” Foundations of Physics, vol. 16,

pp. 507–531, 6 1986. 1

[2] T. Toffoli, “Reversible computing,” in Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformat-

ics), vol. 85 LNCS, pp. 632–644, Springer Verlag, 1980. 1

[3] G. Moore, “Cramming more components onto integrated circuits,” Electronics,

vol. 38, 4 1965. 2

[4] R. P. Feynman, “Simulating physics with computers,” International Journal of The-

oretical Physics, vol. 21, pp. 467–488, 6 1982. 3, 77, 106

[5] D. Deutsch, “Quantum Theory, The Church-Turing Princinple and the Universal

Quantum Computer,” Proceedings of The Royal Society of London, Series A: Math-

ematical and Physical Sciences, vol. 400, pp. 97–117, 7 1985. 3

[6] P. Shor, “Algorithms for quantum computation: discrete logarithms and factoring,”

pp. 124–134, Institute of Electrical and Electronics Engineers (IEEE), 12 2002. 3,

123

[7] D. Gottesman, “The Heisenberg Representation of Quantum Computers,” 7 1998.

6, 108

[8] D. Litinski and F. von Oppen, “Lattice surgery with a twist: Simplifying clifford

gates of surface codes,” Quantum, vol. 2, 2018. 6, 13, 93, 109

[9] C. M. Dawson and M. A. Nielsen, “The Solovay-Kitaev algorithm,” Quantum In-

formation and Computation, vol. 6, pp. 081–095, 1 2006. 6, 108

[10] D. P. DiVincenzo and IBM, “The Physical Implementation of Quantum Computa-

tion,” Fortschritte der Physik, vol. 48, pp. 771–783, 2 2000. 6

138

[11] M. Webber, S. Herbert, S. Weidt, and W. K. Hensinger, “Efficient Qubit Routing

for a Globally Connected Trapped Ion Quantum Computer,” Advanced Quantum

Technologies, vol. 3, p. 2000027, 8 2020. 9, 17, 32, 51, 104, 114

[12] V. E. Elfving, B. W. Broer, M. Webber, J. Gavartin, M. D. Halls, K. P. Lorton,

and A. Bochevarov, “How will quantum computers provide an industrially relevant

computational advantage in quantum chemistry?,” 9 2020. 9, 76, 79, 89, 92, 93, 94

[13] M. Webber, V. Elfving, S. Weidt, and W. K. Hensinger, “The impact of hardware

specifications on reaching quantum advantage in the fault tolerant regime,” AVS

Quantum Science, vol. 4, p. 013801, 8 2022. 9, 102

[14] D. Litinski, “A game of surface codes: Large-scale quantum computing with lattice

surgery,” Quantum, vol. 3, 2019. 9, 33, 92, 93, 95, 96, 98, 105, 112, 115, 116, 119,

120, 122, 128, 129

[15] D. Aharonov and M. Ben-Or, “Fault-tolerant quantum computation with constant

error rate,” SIAM Journal on Computing, vol. 38, pp. 1207–1282, 7 2008. 10, 104

[16] A. Y. Kitaev, “Fault-tolerant quantum computation by anyons,” Annals of Physics,

vol. 303, pp. 2–30, 1 2003. 10, 104

[17] E. Knill, R. Laflamme, and W. H. Zurek, “Resilient Quantum Computation: Error

Models and Thresholds,” Proceedings of the Royal Society A: Mathematical, Physical

and Engineering Sciences, vol. 454, pp. 365–384, 2 1997. 10, 104

[18] J. Preskill, “Quantum computing in the NISQ era and beyond,” Quantum, vol. 2,

p. 79, 8 2018. 10

[19] N. Moll, P. Barkoutsos, L. S. Bishop, J. M. Chow, A. Cross, D. J. Egger, S. Filipp,

A. Fuhrer, J. M. Gambetta, M. Ganzhorn, A. Kandala, A. Mezzacapo, P. Müller,

W. Riess, G. Salis, J. Smolin, I. Tavernelli, and K. Temme, “Quantum optimization

using variational algorithms on near-term quantum devices,” Quantum Science and

Technology, vol. 3, 10 2018. 11, 51, 52, 53

[20] A. W. Cross, L. S. Bishop, S. Sheldon, P. D. Nation, and J. M. Gambetta, “Val-

idating quantum computers using randomized model circuits,” Physical Review A,

vol. 100, no. 3, 2019. 11, 32, 51, 52, 53, 55, 56, 61, 104

139

[21] D. S. Wang, A. G. Fowler, and L. C. Hollenberg, “Surface code quantum computing

with error rates over 1%,” Physical Review A - Atomic, Molecular, and Optical

Physics, vol. 83, p. 020302, 2 2011. 11

[22] W. K. Wootters and W. H. Zurek, “A single quantum cannot be cloned,” Nature,

vol. 299, no. 5886, pp. 802–803, 1982. 12

[23] P. W. Shor, “Scheme for reducing decoherence in quantum computer memory,”

Physical Review A, vol. 52, p. R2493, 10 1995. 12

[24] J. Roffe, “Quantum error correction: an introductory guide,” Contemporary Physics,

vol. 60, no. 3, pp. 226–245, 2019. 12

[25] A. G. Fowler and C. Gidney, “Low overhead quantum computation using lattice

surgery,” arXiv: 1808.06709, 8 2018. 13, 33, 97, 109

[26] S. Bravyi and A. Kitaev, “Universal quantum computation with ideal Clifford gates

and noisy ancillas,” Physical Review A - Atomic, Molecular, and Optical Physics,

vol. 71, p. 022316, 2 2005. 13, 109

[27] D. Litinski, “Magic State Distillation: Not as Costly as You Think,” Quantum,

vol. 3, 5 2019. 13, 97, 109, 112, 115, 118, 122

[28] S. Bravyi and J. Haah, “Magic-state distillation with low overhead,” Physical Review

A - Atomic, Molecular, and Optical Physics, vol. 86, p. 052329, 11 2012. 13, 109

[29] A. G. Fowler, S. J. Devitt, and C. Jones, “Surface code implementation of block

code state distillation,” Scientific Reports, vol. 3, pp. 1–6, 6 2013. 13, 109

[30] J. Roffe, D. R. White, S. Burton, and E. T. Campbell, “Decoding Across the

Quantum LDPC Code Landscape,” Physical Review Research, vol. 2, p. 043423,

5 2020. 14, 33, 72, 104, 115

[31] G. Wendin, “Quantum information processing with superconducting circuits: A

review,” Reports on Progress in Physics, vol. 80, 9 2017. 15

[32] C. D. Bruzewicz, J. Chiaverini, R. McConnell, and J. M. Sage, “Trapped-ion

quantum computing: Progress and challenges,” Applied Physics Reviews, vol. 6,

p. 021314, 6 2019. 15

[33] M. Saffman, “Quantum computing with neutral atoms,” National Science Review,

vol. 6, pp. 24–25, 1 2019. 15

140

[34] C. Kloeffel and D. Loss, “Prospects for spin-based quantum computing in quantum

dots,” Annual Review of Condensed Matter Physics, vol. 4, pp. 51–81, 4 2013. 15

[35] T. Xin, B. X. Wang, K. R. Li, X. Y. Kong, S. J. Wei, T. Wang, D. Ruan, and G. L.

Long, “Nuclear magnetic resonance for quantum computing: Techniques and recent

achievements,” Chinese Physics B, vol. 27, p. 020308, 2 2018. 15

[36] S. Slussarenko and G. J. Pryde, “Photonic quantum information processing: A

concise review,” 2019. 15, 17, 18

[37] L. Childress and R. Hanson, “Diamond NV centers for quantum computing and

quantum networks,” MRS Bulletin, vol. 38, pp. 134–138, 2 2013. 15

[38] Y. Nakamura, Y. A. Pashkin, and J. S. Tsai, “Coherent control of macroscopic

quantum states in a single-Cooper-pair box,” Nature, vol. 398, pp. 786–788, 3 1999.

16

[39] J. Koch, T. M. Yu, J. Gambetta, A. A. Houck, D. I. Schuster, J. Majer, A. Blais,

M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, “Charge-insensitive qubit design

derived from the Cooper pair box,” Physical Review A - Atomic, Molecular, and

Optical Physics, vol. 76, no. 4, 2007. 16

[40] E. Il’ichev and G. Oelsner, “Superconducting Qubits,” in Wiley Encyclopedia of

Electrical and Electronics Engineering, pp. 1–13, 2018. 16

[41] H. Zu, W. Dai, and A. T. de Waele, “Development of dilution refrigerators—A

review,” Cryogenics, vol. 121, p. 103390, 1 2022. 16

[42] L. Geck, A. Kruth, H. Bluhm, S. van Waasen, and S. Heinen, “Control Electronics

For Semiconductor Spin Qubits,” Quantum Science and Technology, vol. 5, 3 2019.

16

[43] L. Dicarlo, M. D. Reed, L. Sun, B. R. Johnson, J. M. Chow, J. M. Gambetta,

L. Frunzio, S. M. Girvin, M. H. Devoret, and R. J. Schoelkopf, “Preparation and

measurement of three-qubit entanglement in a superconducting circuit,” Nature,

vol. 467, no. 7315, pp. 574–578, 2010. 16

[44] G. Park, G. Choi, J. Choi, J. Choi, S. G. Lee, K. W. Lee, W. Song, and Y. Chong,

“Observation of a Strongly Enhanced Relaxation Time of an In-situ Tunable Trans-

mon on a Silicon Substrate up to the Purcell Limit Approaching 100 µs,” Journal

of the Korean Physical Society, vol. 76, pp. 1029–1034, 6 2020. 16

141

[45] I. Tsioutsios, K. Serniak, S. Diamond, V. V. Sivak, Z. Wang, S. Shankar, L. Frun-

zio, R. J. Schoelkopf, and M. H. Devoret, “Free-standing silicon shadow masks for

transmon qubit fabrication,” AIP Advances, vol. 10, no. 6, 2020. 16

[46] A. Gyenis, P. S. Mundada, A. Di Paolo, T. M. Hazard, X. You, D. I. Schuster,

J. Koch, A. Blais, and A. A. Houck, “Experimental Realization of a Protected

Superconducting Circuit Derived from the 0 – π Qubit,” PRX Quantum, vol. 2,

no. 1, 2021. 16

[47] E. Ferraro, D. Rei, M. Paris, and M. De Michielis, “Universal set of quantum gates

for the flip-flop qubit in the presence of 1/f noise,” EPJ Quantum Technology, vol. 9,

no. 1, 2022. 16

[48] D. C. McKay, S. Filipp, A. Mezzacapo, E. Magesan, J. M. Chow, and J. M. Gam-

betta, “Universal Gate for Fixed-Frequency Qubits via a Tunable Bus,” Physical

Review Applied, vol. 6, no. 6, 2016. 17

[49] Y. Xu, J. Chu, J. Yuan, J. Qiu, Y. Zhou, L. Zhang, X. Tan, Y. Yu, S. Liu, J. Li,

F. Yan, and D. Yu, “High-Fidelity, High-Scalability Two-Qubit Gate Scheme for

Superconducting Qubits,” Physical Review Letters, vol. 125, p. 240503, 12 2020. 17

[50] A. Cowtan, S. Dilkes, R. Duncan, A. Krajenbrink, W. Simmons, and S. Sivarajah,

“On the qubit routing problem,” in Leibniz International Proceedings in Informatics,

LIPIcs (W. van Dam and L. Mancinska, eds.), vol. 135, (Maryland, USA), p. /, 6

2019. 17, 61

[51] M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, “Experimental realization of

any discrete unitary operator,” Physical Review Letters, vol. 73, pp. 58–61, 7 1994.

17

[52] E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum compu-

tation with linear optics,” Nature, vol. 409, pp. 46–52, 1 2001. 17

[53] R. Raussendorf and H. J. Briegel, “A one-way quantum computer,” Physical Review

Letters, vol. 86, pp. 5188–5191, 5 2001. 17

[54] M. A. Nielsen, “Optical quantum computation using cluster states,” Physical Review

Letters, vol. 93, p. 040503, 7 2004. 17

[55] T. Rudolph, “Why i am optimistic about the silicon-photonic route to quantum

computing,” APL Photonics, vol. 2, p. 30901, 3 2017. 18

142

[56] D. J. Wineland, R. E. Drullinger, and F. L. Walls, “Radiation-pressure cooling of

bound resonant absorbers,” Physical Review Letters, vol. 40, pp. 1639–1642, 6 1978.

18

[57] W. Neuhauser, M. Hohenstatt, P. E. Toschek, and H. Dehmelt, “Localized visible

Ba+ mono-ion oscillator,” Physical Review A, vol. 22, pp. 1137–1140, 9 1980. 18

[58] J. I. Cirac and P. Zoller, “Quantum computations with cold trapped ions,” Physical

Review Letters, vol. 74, pp. 4091–4094, 5 1995. 18

[59] C. Monroe, D. M. Meekhof, B. E. King, W. M. Itano, and D. J. Wineland, “Demon-

stration of a fundamental quantum logic gate,” Physical Review Letters, vol. 75,

pp. 4714–4717, 12 1995. 18

[60] K. Mølmer and A. Sørensen, “Multiparticle entanglement of hot trapped ions,”

Physical Review Letters, vol. 82, pp. 1835–1838, 10 1999. 18, 55, 56, 61

[61] R. Brédy, J. Bernard, L. Chen, G. Montagne, B. Li, and S. Martin, “An introduction

to the trapping of clusters with ion traps and electrostatic storage devices,” Journal

of Physics B: Atomic, Molecular and Optical Physics, vol. 42, p. 154023, 7 2009. 19

[62] C. J. Ballance, T. P. Harty, N. M. Linke, and D. M. Lucas, “High-fidelity two-

qubit quantum logic gates using trapped calcium-43 ions,” Physical Review Letters,

vol. 117, 6 2014. 19

[63] F. Mintert and C. Wunderlich, “Ion-trap quantum logic using long-wavelength ra-

diation,” Physical Review Letters, vol. 87, pp. 257904–1, 4 2001. 19

[64] S. Weidt, J. Randall, S. C. Webster, K. Lake, A. E. Webb, I. Cohen, T. Navickas,

B. Lekitsch, A. Retzker, and W. K. Hensinger, “Trapped-Ion Quantum Logic with

Global Radiation Fields,” Physical Review Letters, vol. 117, 3 2016. 19, 22

[65] T. P. Harty, M. A. Sepiol, D. T. Allcock, C. J. Ballance, J. E. Tarlton, and D. M.

Lucas, “High-Fidelity Trapped-Ion Quantum Logic Using Near-Field Microwaves,”

Physical Review Letters, vol. 117, p. 140501, 9 2016. 19, 20, 67

[66] C. Piltz, T. Sriarunothai, S. S. Ivanov, S. Wölk, and C. Wunderlich, “Versatile

microwave-driven trapped ion spin system for quantum information processing,”

Science Advances, vol. 2, 9 2016. 19

143

[67] R. Srinivas, S. C. Burd, R. T. Sutherland, A. C. Wilson, D. J. Wineland, D. Leib-

fried, D. T. Allcock, and D. H. Slichter, “Trapped-Ion Spin-Motion Coupling with

Microwaves and a Near-Motional Oscillating Magnetic Field Gradient,” Physical

Review Letters, vol. 122, p. 163201, 4 2019. 19

[68] A. E. Webb, S. C. Webster, S. Collingbourne, D. Bretaud, A. M. Lawrence, S. Weidt,

F. Mintert, and W. K. Hensinger, “Resilient Entangling Gates for Trapped Ions,”

Physical Review Letters, vol. 121, no. 18, 2018. 20, 67

[69] G. Zarantonello, H. Hahn, J. Morgner, M. Schulte, A. Bautista-Salvador, R. F.

Werner, K. Hammerer, and C. Ospelkaus, “Robust and Resource-Efficient Mi-

crowave Near-Field Entangling Be+ 9 Gate,” Physical Review Letters, vol. 123,

p. 260503, 12 2019. 20, 67

[70] J. P. Gaebler, T. R. Tan, Y. Lin, Y. Wan, R. Bowler, A. C. Keith, S. Glancy,

K. Coakley, E. Knill, D. Leibfried, and D. J. Wineland, “High-Fidelity Universal

Gate Set for Be 9 + Ion Qubits,” Physical Review Letters, vol. 117, p. 060505, 8

2016. 20, 67

[71] C. J. Ballance, T. P. Harty, N. M. Linke, M. A. Sepiol, and D. M. Lucas, “High-

Fidelity Quantum Logic Gates Using Trapped-Ion Hyperfine Qubits,” Physical Re-

view Letters, vol. 117, p. 060504, 8 2016. 20, 67

[72] V. M. Schäfer, C. J. Ballance, K. Thirumalai, L. J. Stephenson, T. G. Ballance,

A. M. Steane, and D. M. Lucas, “Fast quantum logic gates with trapped-ion qubits,”

Nature 2018 555:7694, vol. 555, pp. 75–78, 3 2018. 20

[73] R. Srinivas, S. C. Burd, H. M. Knaack, R. T. Sutherland, A. Kwiatkowski, S. Glancy,

E. Knill, D. J. Wineland, D. Leibfried, A. C. Wilson, D. T. C. Allcock, and D. H.

Slichter, “High-fidelity laser-free universal control of two trapped ion qubits,” 2021.

20

[74] B. Lekitsch, S. Weidt, A. G. Fowler, K. Mølmer, S. J. Devitt, C. Wunderlich, and

W. K. Hensinger, “Blueprint for a microwave trapped ion quantum computer,” Sci-

ence Advances, vol. 3, 2 2017. 20, 21, 22, 23, 32, 33, 60, 61, 105, 114, 120, 121,

124

[75] P. Murali, D. M. Debroy, K. R. Brown, and M. Martonosi, “Architecting Noisy

Intermediate-Scale Trapped Ion Quantum Computers,” in Proceedings - Interna-

tional Symposium on Computer Architecture, vol. 2020-May, pp. 529–542, 2020. 20

144

[76] J. Zhang, G. Pagano, P. W. Hess, A. Kyprianidis, P. Becker, H. Kaplan, A. V.

Gorshkov, Z. X. Gong, and C. Monroe, “Observation of a Many-Body Dynamical

Phase Transition with a 53-Qubit Quantum Simulator,” Nature, vol. 551, pp. 601–

604, 8 2017. 20

[77] P. H. Leung and K. R. Brown, “Entangling an arbitrary pair of qubits in a long ion

crystal,” Physical Review A, vol. 98, 8 2018. 20

[78] D. J. Wineland, C. Monroe, W. M. Itano, D. Leibfried, B. E. King, and D. M. Meek-

hof, “Experimental issues in coherent quantum-state manipulation of trapped atomic

ions,” Journal of Research of the National Institute of Standards and Technology,

vol. 103, pp. 259–328, 10 1997. 20

[79] D. Kielpinski, C. Monroe, and D. J. Wineland, “Architecture for a large-scale ion-

trap quantum computer,” Nature, vol. 417, pp. 709–711, 6 2002. 20

[80] C. Monroe and J. Kim, “Scaling the ion trap quantum processor,” Science, vol. 339,

pp. 1164–1169, 3 2013. 21

[81] S. Kasture, F. Lenzini, B. Haylock, A. Boes, A. Mitchell, E. W. Streed, and

M. Lobino, “Frequency conversion between UV and telecom wavelengths in a lithium

niobate waveguide for quantum communication with Yb+ trapped ions,” Journal of

Optics (United Kingdom), vol. 18, p. 104007, 9 2016. 21

[82] L. J. Stephenson, D. P. Nadlinger, B. C. Nichol, S. An, P. Drmota, T. G. Ballance,

K. Thirumalai, J. F. Goodwin, D. M. Lucas, and C. J. Ballance, “High-Rate, High-

Fidelity Entanglement of Qubits Across an Elementary Quantum Network,” Physical

Review Letters, vol. 124, no. 11, 2020. 21, 72, 73, 105

[83] R. Nigmatullin, C. J. Ballance, N. D. Beaudrap, and S. C. Benjamin, “Minimally

complex ion traps as modules for quantum communication and computing,” New

Journal of Physics, vol. 18, p. 103028, 10 2016. 21, 72, 73, 105

[84] A. Walther, F. Ziesel, T. Ruster, S. T. Dawkins, K. Ott, M. Hettrich, K. Singer,

F. Schmidt-Kaler, and U. Poschinger, “Controlling fast transport of cold trapped

ions,” Physical Review Letters, vol. 109, p. 080501, 8 2012. 21, 47, 58

[85] P. Kaufmann, T. F. Gloger, D. Kaufmann, M. Johanning, and C. Wunderlich,

“High-Fidelity Preservation of Quantum Information during Trapped-Ion Trans-

145

port,” Physical Review Letters, vol. 120, no. 1, 2018. 21, 48, 58, 60, 62, 66, 72,

73, 114

[86] W. K. Hensinger, S. Olmschenk, D. Stick, D. Hucul, M. Yeo, M. Acton, L. Deslaur-

iers, C. Monroe, and J. Rabchuk, “T-junction ion trap array for two-dimensional

ion shuttling, storage, and manipulation,” Applied Physics Letters, vol. 88, no. 3,

pp. 1–3, 2006. 22

[87] J. M. Amini, H. Uys, J. H. Wesenberg, S. Seidelin, J. Britton, J. J. Bollinger,

D. Leibfried, C. Ospelkaus, A. P. VanDevender, and D. J. Wineland, “Scalable ion

traps for quantum information processing,” New Journal of Physics, vol. 12, 9 2009.

22

[88] R. B. Blakestad, C. Ospelkaus, A. P. Vandevender, J. M. Amini, J. Britton, D. Leib-

fried, and D. J. Wineland, “High-fidelity transport of trapped-ion qubits through an

X-junction trap array,” Physical Review Letters, vol. 102, 4 2009. 22

[89] K. Wright, J. M. Amini, D. L. Faircloth, C. Volin, S. Charles Doret, H. Hayden, C. S.

Pai, D. W. Landgren, D. Denison, T. Killian, R. E. Slusher, and A. W. Harter, “Re-

liable transport through a microfabricated X-junction surface-electrode ion trap,”

New Journal of Physics, vol. 15, p. 033004, 3 2013. 22, 59, 60, 61, 65

[90] M. Palmero, S. Mart́ınez-Garaot, U. G. Poschinger, A. Ruschhaupt, and J. G. Muga,

“Fast separation of two trapped ions,” New Journal of Physics, vol. 17, no. 9,

p. 93031, 2015. 22

[91] M. W. Van Mourik, E. A. Martinez, L. Gerster, P. Hrmo, T. Monz, P. Schind-

ler, and R. Blatt, “Coherent rotations of qubits within a surface ion-trap quantum

computer,” Physical Review A, vol. 102, no. 2, 2020. 22, 47

[92] K. Bharti, A. Cervera-Lierta, T. H. Kyaw, T. Haug, S. Alperin-Lea, A. Anand,

M. Degroote, H. Heimonen, J. S. Kottmann, T. Menke, W.-K. Mok, S. Sim, L.-

C. Kwek, and A. Aspuru-Guzik, “Noisy intermediate-scale quantum (NISQ) al-

gorithms,” 2021. 24

[93] S. Wang, E. Fontana, M. Cerezo, K. Sharma, A. Sone, L. Cincio, and P. J.

Coles, “Noise-Induced Barren Plateaus in Variational Quantum Algorithms,” Arxiv:

2007.14384, 2020. 24

146

[94] A. Peruzzo, J. McClean, P. Shadbolt, M. H. Yung, X. Q. Zhou, P. J. Love, A. Aspuru-

Guzik, and J. L. O’Brien, “A variational eigenvalue solver on a photonic quantum

processor,” Nature Communications, vol. 5, pp. 1–7, 4 2014. 24, 78, 80, 106

[95] J. R. McClean, J. Romero, R. Babbush, and A. Aspuru-Guzik, “The theory of

variational hybrid quantum-classical algorithms,” New Journal of Physics, vol. 18,

p. 23023, 2 2016. 24

[96] D. Wecker, M. B. Hastings, and M. Troyer, “Progress towards practical quantum

variational algorithms,” Physical Review A - Atomic, Molecular, and Optical Phys-

ics, vol. 92, p. 042303, 10 2015. 24

[97] D. Wang, O. Higgott, and S. Brierley, “Accelerated variational quantum eigen-

solver,” Physical Review Letters, vol. 122, no. 14, 2019. 25

[98] C. Froese Fischer, “General Hartree-Fock program,” Computer Physics Communic-

ations, vol. 43, no. 3, pp. 355–365, 1987. 25

[99] D. A. Fedorov, B. Peng, N. Govind, and Y. Alexeev, “VQE Method: A Short Survey

and Recent Developments,” arXiv: 2103.08505, 2021. 25

[100] Y. Nam, J. S. Chen, N. C. Pisenti, K. Wright, C. Delaney, D. Maslov, K. R.

Brown, S. Allen, J. M. Amini, J. Apisdorf, K. M. Beck, A. Blinov, V. Chaplin,

M. Chmielewski, C. Collins, S. Debnath, K. M. Hudek, A. M. Ducore, M. Keesan,

S. M. Kreikemeier, J. Mizrahi, P. Solomon, M. Williams, J. D. Wong-Campos,

D. Moehring, C. Monroe, and J. Kim, “Ground-state energy estimation of the water

molecule on a trapped-ion quantum computer,” npj Quantum Information, vol. 6, 2

2020. 25

[101] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends, S. Boixo,

M. Broughton, B. B. Buckley, D. A. Buell, B. Burkett, N. Bushnell, Y. Chen,

Z. Chen, B. Chiaro, R. Collins, W. Courtney, S. Demura, A. Dunsworth, D. Ep-

pens, E. Farhi, A. Fowler, B. Foxen, C. Gidney, M. Giustina, R. Graff, S. Habegger,

M. P. Harrigan, A. Ho, S. Hong, T. Huang, W. J. Huggins, L. Ioffe, S. V. Isakov,

E. Jeffrey, Z. Jiang, C. Jones, D. Kafri, K. Kechedzhi, J. Kelly, S. Kim, P. V. Klimov,

A. Korotkov, F. Kostritsa, D. Landhuis, P. Laptev, M. Lindmark, E. Lucero, O. Mar-

tin, J. M. Martinis, J. R. McClean, M. McEwen, A. Megrant, X. Mi, M. Mohseni,

W. Mruczkiewicz, J. Mutus, O. Naaman, M. Neeley, C. Neill, H. Neven, M. Y. Niu,

T. E. O’Brien, E. Ostby, A. Petukhov, H. Putterman, C. Quintana, P. Roushan,

147

N. C. Rubin, D. Sank, K. J. Satzinger, V. Smelyanskiy, D. Strain, K. J. Sung,

M. Szalay, T. Y. Takeshita, A. Vainsencher, T. White, N. Wiebe, Z. J. Yao, P. Yeh,

and A. Zalcman, “Hartree-Fock on a superconducting qubit quantum computer,”

Science, vol. 369, pp. 1084–1089, 4 2020. 25

[102] E. Farhi, J. Goldstone, and S. Gutmann, “A Quantum Approximate Optimization

Algorithm,” ArXiv: 1411.4028, 11 2014. 25

[103] B. Barak, A. Moitra, R. O’Donnell, P. Raghavendra, O. Regev, D. Steurer, L. Tre-

visan, A. Vijayaraghavan, D. Witmer, and J. Wright, “Beating the random assign-

ment on constraint satisfaction problems of bounded degree,” Leibniz International

Proceedings in Informatics, LIPIcs, vol. 40, pp. 110–123, 5 2015. 25

[104] S. Hadfield, Z. Wang, B. O’Gorman, E. G. Rieffel, D. Venturelli, and R. Biswas,

“From the Quantum Approximate Optimization Algorithm to a Quantum Altern-

ating Operator Ansatz,” Algorithms, vol. 12, 9 2017. 25

[105] A. Bouland, W. van Dam, H. Joorati, I. Kerenidis, and A. Prakash, “Prospects and

challenges of quantum finance,” ArXiv: 2011.06492, 2020. 25, 30

[106] G. G. Guerreschi and A. Y. Matsuura, “QAOA for Max-Cut requires hundreds of

qubits for quantum speed-up,” Scientific Reports, vol. 9, pp. 1–7, 12 2019. 25

[107] J. W. Cooley and J. W. Tukey, “An Algorithm for the Machine Calculation of

Complex Fourier Series,” Mathematics of Computation, vol. 19, p. 297, 4 1965. 26

[108] D. Coppersmith, “An approximate Fourier transform useful in quantum factoring,”

ArXiv: quant-ph/0201067, 1 2002. 26

[109] D. Camps, R. Van Beeumen, and C. Yang, “Quantum Fourier transform revisited,”

Numerical Linear Algebra with Applications, vol. 28, no. 1, 2021. 26

[110] M. Dobš́ıček, G. Johansson, V. Shumeiko, and G. Wendin, “Arbitrary accuracy

iterative quantum phase estimation algorithm using a single ancillary qubit: A two-

qubit benchmark,” Physical Review A - Atomic, Molecular, and Optical Physics,

vol. 76, no. 3, 2007. 27, 87

[111] P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete log-

arithms on a quantum computer,” SIAM Journal on Computing, vol. 26, pp. 1484–

1509, 7 1997. 27, 107, 125

148

[112] C. Pomerance, “A Tale of Two Sieves,” in Biscuits of Number Theory, pp. 85–104,

2009. 27

[113] C. Gidney and M. Eker̊a, “How to factor 2048 bit RSA integers in 8 hours using 20

million noisy qubits,” Quantum, vol. 5, pp. 1–31, 5 2021. 27, 74, 105, 108, 111, 115,

117, 119, 120, 124

[114] L. K. Grover, “A fast quantum mechanical algorithm for database search,” Pro-

ceedings of the Annual ACM Symposium on Theory of Computing, vol. Part F1294,

pp. 212–219, 5 1996. 27, 30, 107

[115] G. Brassard, “An Exact Quantum Polynomial-Time Algorithm for Simon’s Prob-

lem,” arXiv: 9704027, pp. 12–23, 1997. 27

[116] L. K. Grover, “Quantum computers can search rapidly by using almost any trans-

formation,” Physical Review Letters, vol. 80, pp. 4329–4332, 12 1997. 27

[117] G. Brassard, P. Høyer, M. Mosca, and A. Tapp, “Quantum amplitude amplification

and estimation,” pp. 53–74, 5 2002. 27, 30

[118] A. Montanaro, “Quantum algorithms: An overview,” npj Quantum Information,

vol. 2, no. 1, 2016. 28

[119] W. Buchanan and A. Woodward, “Will quantum computers be the end of public key

encryption?,” Journal of Cyber Security Technology, vol. 1, no. 1, pp. 1–22, 2017. 28

[120] K. Plekhanov, M. Rosenkranz, M. Fiorentini, and M. Lubasch, “Variational quantum

amplitude estimation,” 2021. 28

[121] C. Gidney and A. G. Fowler, “Efficient magic state factories with a catalyzed —CCZi

? 2—Ti transformation,” Quantum, vol. 3, 12 2019. 28, 89, 92, 95, 109, 124, 125

[122] A. W. Harrow, A. Hassidim, and S. Lloyd, “Quantum algorithm for solving linear

systems of equations,” Physical Review Letters, vol. 103, 11 2008. 28

[123] P. Rebentrost, M. Mohseni, and S. Lloyd, “Quantum support vector machine for big

data classification,” Physical Review Letters, vol. 113, p. 130503, 9 2014. 28

[124] S. Lloyd, M. Mohseni, and P. Rebentrost, “Quantum algorithms for supervised and

unsupervised machine learning,” arXiv: 1307.0411, 7 2013. 28

[125] S. Aaronson, “Read the fine print,” Nature Physics, vol. 11, pp. 291–293, 4 2015. 29

149

[126] O. D. Matteo, V. Gheorghiu, and M. Mosca, “Fault-Tolerant Resource Estimation of

Quantum Random-Access Memories,” IEEE Transactions on Quantum Engineering,

vol. 1, pp. 1–13, 2 2021. 29

[127] M. Hodson, B. Ruck, H. Ong, D. Garvin, and S. Dulman, “Portfolio rebalancing

experiments using the Quantum Alternating Operator Ansatz,” arXiv: 1911.05296,

11 2019. 30

[128] I. Kerenidis, A. Prakash, and D. Szilágyi, “Quantum algorithms for portfolio op-

timization,” in AFT 2019 - Proceedings of the 1st ACM Conference on Advances in

Financial Technologies, pp. 147–155, 2019. 30

[129] A. Montanaro, “Quantum speedup of Monte Carlo methods,” in Proceedings of the

Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 471, Royal

Society of London, 9 2015. 30

[130] T. Giurgica-Tiron, I. Kerenidis, F. Labib, A. Prakash, and W. Zeng, “Low depth

algorithms for quantum amplitude estimation,” arXiv: 2012.03348, 12 2020. 30

[131] D. J. Egger, C. Gambella, J. Marecek, S. McFaddin, M. Mevissen, R. Raymond,

A. Simonetto, S. Woerner, and E. Yndurain, “Quantum Computing for Finance:

State-of-the-Art and Future Prospects,” IEEE Transactions on Quantum Engineer-

ing, vol. 1, pp. 1–24, 2021. 31

[132] A. G. Fowler, A. M. Stephens, and P. Groszkowski, “High-threshold universal

quantum computation on the surface code,” Physical Review A - Atomic, Molecular,

and Optical Physics, vol. 80, p. 052312, 11 2009. 33

[133] D. Maslov, “Basic circuit compilation techniques for an ion-trap quantum machine,”

New Journal of Physics, vol. 19, no. 2, 2017. 34, 55, 56

[134] M. Webber, “Depth model - Available at: https://github.com/mawebber1/Calculataing-

achievable-depth-for-Trapped-Ions.” 35, 62

[135] H. Kaufmann, T. Ruster, C. T. Schmiegelow, M. A. Luda, V. Kaushal, J. Schulz,

D. Von Lindenfels, F. Schmidt-Kaler, and U. G. Poschinger, “Fast ion swapping for

quantum-information processing,” Physical Review A, vol. 95, p. 052319, 5 2017. 36,

47

150

[136] E. Magesan, J. M. Gambetta, and J. Emerson, “Characterizing quantum gates via

randomized benchmarking,” Physical Review A - Atomic, Molecular, and Optical

Physics, vol. 85, p. 042311, 4 2012. 53

[137] S. T. Merkel, J. M. Gambetta, J. A. Smolin, S. Poletto, A. D. Córcoles, B. R. John-

son, C. A. Ryan, and M. Steffen, “Self-consistent quantum process tomography,”

Physical Review A - Atomic, Molecular, and Optical Physics, vol. 87, p. 062119, 6

2013. 53

[138] S. Aaronson and L. Chen, “Complexity-theoretic foundations of quantum supremacy

experiments,” Leibniz International Proceedings in Informatics, LIPIcs, vol. 79, 12

2017. 53

[139] D. Maslov and Y. Nam, “Use of global interactions in efficient quantum circuit

constructions,” New Journal of Physics, vol. 20, 7 2017. 54

[140] F. Vatan and C. Williams, “Optimal quantum circuits for general two-qubit gates,”

Physical Review A - Atomic, Molecular, and Optical Physics, vol. 69, p. 032315, 3

2004. 55, 56

[141] M. Blaauboer and R. L. De Visser, “An analytical decomposition protocol for op-

timal implementation of two-qubit entangling gates,” Journal of Physics A: Math-

ematical and Theoretical, vol. 41, 9 2008. 55

[142] M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information.

Cambridge University Press, 2000. 56

[143] T. P. Harty, D. T. Allcock, C. J. Ballance, L. Guidoni, H. A. Janacek, N. M. Linke,

D. N. Stacey, and D. M. Lucas, “High-fidelity preparation, gates, memory, and

readout of a trapped-ion quantum bit,” Physical Review Letters, vol. 113, no. 22,

2014. 58, 60, 63

[144] E. Torrontegui, S. Ibáñez, X. Chen, A. Ruschhaupt, D. Guéry-Odelin, and J. G.

Muga, “Fast atomic transport without vibrational heating,” Physical Review A -

Atomic, Molecular, and Optical Physics, vol. 83, no. 1, 2011. 58, 114

[145] A. Walther, F. Ziesel, T. Ruster, S. T. Dawkins, K. Ott, M. Hettrich, K. Singer,

F. Schmidt-Kaler, and U. Poschinger, “Controlling fast transport of cold trapped

ions,” Physical Review Letters, vol. 109, no. 8, 2012. 58, 114

151

[146] R. Bowler, J. Gaebler, Y. Lin, T. R. Tan, D. Hanneke, J. D. Jost, J. P. Home,

D. Leibfried, and D. J. Wineland, “Coherent diabatic ion transport and separation

in a multizone trap array,” Physical Review Letters, vol. 109, no. 8, 2012. 58, 114

[147] H. K. Lau and D. F. James, “Decoherence and dephasing errors caused by the dc

Stark effect in rapid ion transport,” Physical Review A - Atomic, Molecular, and

Optical Physics, vol. 83, no. 6, 2011. 58, 114

[148] T. Ruster, C. Warschburger, H. Kaufmann, C. T. Schmiegelow, A. Walther,

M. Hettrich, A. Pfister, V. Kaushal, F. Schmidt-Kaler, and U. G. Poschinger, “Ex-

perimental realization of fast ion separation in segmented Paul traps,” Physical

Review A - Atomic, Molecular, and Optical Physics, vol. 90, 5 2014. 58, 60

[149] A. Bermudez, X. Xu, R. Nigmatullin, J. O’Gorman, V. Negnevitsky, P. Schindler,

T. Monz, U. G. Poschinger, C. Hempel, J. Home, F. Schmidt-Kaler, M. Biercuk,

R. Blatt, S. Benjamin, and M. Müller, “Assessing the progress of trapped-ion pro-

cessors towards fault-tolerant quantum computation,” Physical Review X, vol. 7, 5

2017. 58, 60

[150] R. C. Sterling, H. Rattanasonti, S. Weidt, K. Lake, P. Srinivasan, S. C. Webster,

M. Kraft, and W. K. Hensinger, “Fabrication and operation of a two-dimensional

ion-trap lattice on a high-voltage microchip,” Nature Communications, vol. 5, pp. 1–

6, 4 2014. 59

[151] T. Sriarunothai, G. S. Giri, S. Wölk, and C. Wunderlich, “Radio frequency sideband

cooling and sympathetic cooling of trapped ions in a static magnetic field gradient,”

Journal of Modern Optics, vol. 65, pp. 560–567, 3 2018. 61

[152] D. Cheung, D. Maslov, and S. Severini, “Translation Techniques Between Quantum

Circuit Architectures,” Workshop on Quantum Information Processing, pp. 1–3,

2007. 61

[153] Z. D. Romaszko, S. Hong, M. Siegele, R. K. Puddy, F. R. Lebrun-Gallagher,

S. Weidt, and W. K. Hensinger, “Engineering of microfabricated ion traps and

integration of advanced on-chip features,” Nature Reviews Physics, vol. 2, no. 6,

pp. 285–299, 2020. 62

[154] E. T. Campbell, B. M. Terhal, and C. Vuillot, “Roads towards fault-tolerant uni-

versal quantum computation,” Nature, vol. 549, pp. 172–179, 9 2017. 72, 104

152

[155] M. Vasmer and D. E. Browne, “Three-dimensional surface codes: Transversal gates

and fault-tolerant architectures,” Physical Review A, vol. 100, no. 1, 2019. 72, 104

[156] S. Brierley, “Efficient implementation of Quantum circuits with limited qubit inter-

actions,” ArXiv: 1507.04263, 7 2015. 72

[157] S. Herbert, “On the depth overhead incurred when running quantum algorithms on

near-term quantum computers with limited qubit connectivity,” Quantum Informa-

tion and Computation, vol. 20, pp. 787–806, 5 2020. 72, 73

[158] S. McArdle, S. Endo, A. Aspuru-Guzik, S. C. Benjamin, and X. Yuan, “Quantum

computational chemistry,” Reviews of Modern Physics, vol. 92, no. 1, 2020. 78

[159] A. Kandala, A. Mezzacapo, K. Temme, M. Takita, M. Brink, J. M. Chow, and J. M.

Gambetta, “Hardware-efficient variational quantum eigensolver for small molecules

and quantum magnets,” Nature, vol. 549, no. 7671, pp. 242–246, 2017. 78

[160] G. AI Quantum, “Hartree-Fock on a superconducting qubit quantum computer,”

Science, vol. 369, pp. 1084–1089, 4 2020. 78

[161] P. J. O’Malley, R. Babbush, I. D. Kivlichan, J. Romero, J. R. McClean, R. Bar-

ends, J. Kelly, P. Roushan, A. Tranter, N. Ding, B. Campbell, Y. Chen, Z. Chen,

B. Chiaro, A. Dunsworth, A. G. Fowler, E. Jeffrey, E. Lucero, A. Megrant, J. Y.

Mutus, M. Neeley, C. Neill, C. Quintana, D. Sank, A. Vainsencher, J. Wenner, T. C.

White, P. V. Coveney, P. J. Love, H. Neven, A. Aspuru-Guzik, and J. M. Martinis,

“Scalable quantum simulation of molecular energies,” Physical Review X, vol. 6,

no. 3, 2016. 78

[162] J. I. Colless, V. V. Ramasesh, D. Dahlen, M. S. Blok, M. E. Kimchi-Schwartz, J. R.

McClean, J. Carter, W. A. De Jong, and I. Siddiqi, “Computation of Molecular Spec-

tra on a Quantum Processor with an Error-Resilient Algorithm,” Physical Review

X, vol. 8, no. 1, 2018. 78

[163] I. G. Ryabinkin, T. C. Yen, S. N. Genin, and A. F. Izmaylov, “Qubit Coupled

Cluster Method: A Systematic Approach to Quantum Chemistry on a Quantum

Computer,” Journal of Chemical Theory and Computation, vol. 14, pp. 6317–6326,

9 2018. 78

[164] V. Armaos, D. A. Badounas, and P. Deligiannis, “Computational chemistry on

quantum computers: Ground state estimation,” arXiv: 1907.00362, 2019. 78

153

[165] V. E. Elfving, M. Millaruelo, J. A. Gámez, and C. Gogolin, “Simulating quantum

chemistry in the seniority-zero space on qubit-based quantum computers,” Physical

Review A, vol. 103, 1 2021. 78

[166] Y. Cao, J. Romero, J. P. Olson, M. Degroote, P. D. Johnson, M. Kieferová, I. D.

Kivlichan, T. Menke, B. Peropadre, N. P. Sawaya, S. Sim, L. Veis, and A. Aspuru-

Guzik, “Quantum Chemistry in the Age of Quantum Computing,” Chemical Re-

views, vol. 119, pp. 10856–10915, 10 2019. 78, 79, 81

[167] P. J. Ollitrault, A. Kandala, C.-F. Chen, P. K. Barkoutsos, A. Mezzacapo, M. Pis-

toia, S. Sheldon, S. Woerner, J. M. Gambetta, and I. Tavernelli, “Quantum equa-

tion of motion for computing molecular excitation energies on a noisy quantum

processor,” Physical Review Research, vol. 2, 10 2020. 78

[168] O. Higgott, D. Wang, and S. Brierley, “Variational quantum computation of excited

states,” Quantum, vol. 3, p. 156, 7 2019. 78

[169] V. Verteletskyi, T. C. Yen, and A. F. Izmaylov, “Measurement optimization in the

variational quantum eigensolver using a minimum clique cover,” Journal of Chemical

Physics, vol. 152, 7 2020. 79

[170] W. J. Huggins, J. R. McClean, N. C. Rubin, Z. Jiang, N. Wiebe, K. B. Whaley, and

R. Babbush, “Efficient and noise resilient measurements for quantum chemistry on

near-term quantum computers,” npj Quantum Information, vol. 7, 7 2021. 79

[171] S. T. Epstein, The Variation Method in Quantum Chemistry. Elsevier Science, 1974.

79

[172] S. Lloyd, “Universal quantum simulators,” Science, vol. 273, pp. 1073–1078, 8 1996.

81

[173] D. Aharonov and A. Ta-Shma, “Adiabatic quantum state generation and statistical

zero knowledge,” Conference Proceedings of the Annual ACM Symposium on Theory

of Computing, pp. 20–29, 1 2003. 81

[174] D. W. Berry, G. Ahokas, R. Cleve, and B. C. Sanders, “Efficient quantum al-

gorithms for simulating sparse hamiltonians,” Communications in Mathematical

Physics, vol. 270, pp. 359–371, 8 2007. 81

154

[175] D. W. Berry, A. M. Childs, R. Cleve, R. Kothari, and R. D. Somma, “Exponential

improvement in precision for simulating sparse Hamiltonians,” Proceedings of the

Annual ACM Symposium on Theory of Computing, pp. 283–292, 12 2014. 81

[176] S. Descombes and M. Thalhammer, “An exact local error representation of exponen-

tial operator splitting methods for evolutionary problems and applications to linear

Schrödinger equations in the semi-classical regime,” BIT Numerical Mathematics,

vol. 50, pp. 729–749, 12 2010. 81

[177] I. D. Kivlichan, C. Gidney, D. W. Berry, N. Wiebe, J. McClean, W. Sun, Z. Ji-

ang, N. Rubin, A. Fowler, A. Aspuru-Guzik, H. Neven, and R. Babbush, “Improved

fault-tolerant quantum simulation of condensed-phase correlated electrons via trot-

terization,” Quantum, vol. 4, 2 2020. 81

[178] J. Huyghebaert and H. De Raedt, “Product formula methods for time-dependent

Schrodinger problems,” Journal of Physics A: General Physics, vol. 23, no. 24,

pp. 5777–5793, 1990. 81

[179] A. M. Childs, Y. Su, M. C. Tran, N. Wiebe, and S. Zhu, “Theory of Trotter Error

with Commutator Scaling,” Physical Review X, vol. 11, no. 1, 2021. 81

[180] M. Suzuki, “General theory of fractal path integrals with applications to many-body

theories and statistical physics,” Journal of Mathematical Physics, vol. 32, pp. 400–

407, 2 1991. 81

[181] “Simulating Hamiltonian Dynamics - Microsoft Quantum —

Microsoft Docs - www.docs.microsoft.com/en-us/quantum/user-

guide/libraries/chemistry/concepts/algorithms.” 81

[182] G. H. Low and I. L. Chuang, “Hamiltonian simulation by qubitization,” Quantum,

vol. 3, 10 2019. 82, 91, 106

[183] D. W. Berry, C. Gidney, M. Motta, J. R. McClean, and R. Babbush, “Qubitization of

arbitrary basis quantum chemistry leveraging sparsity and low rank factorization,”

Quantum, vol. 3, 2019. 82, 91, 106

[184] Microsoft Quantum, “Simulating nature with the new Mi-

crosoft Quantum Development Kit chemistry library -

www.cloudblogs.microsoft.com/quantum/2018/12/04/simulating-nature-with-

the-new-microsoft-quantum-development-kit-chemistry-library/,” 2018. 82

155

[185] “NWChem - High performance computational chemistry software - www.nwchem-

sw.org/index-php/Compiling NWChem.html.” 82

[186] R. Babbush, C. Gidney, D. W. Berry, N. Wiebe, J. McClean, A. Paler, A. Fowler,

and H. Neven, “Encoding Electronic Spectra in Quantum Circuits with Linear T

Complexity,” Physical Review X, vol. 8, no. 4, 2018. 83

[187] P. Selinger, “Efficient Clifford+T approximation of single-qubit operators,”

Quantum Information and Computation, vol. 15, pp. 159–180, 12 2014. 84, 90

[188] M. Reiher, N. Wiebe, K. M. Svore, D. Wecker, and M. Troyer, “Elucidating reac-

tion mechanisms on quantum computers,” Proceedings of the National Academy of

Sciences of the United States of America, vol. 114, pp. 7555–7560, 7 2017. 86, 89,

90, 107, 121

[189] K. M. Svore, M. B. Hastings, and M. Freedman, “Faster phase estimation,” Quantum

Information and Computation, vol. 14, no. 3-4, pp. 306–328, 2014. 87

[190] N. Wiebe and C. Granade, “Efficient Bayesian Phase Estimation,” Physical Review

Letters, vol. 117, 8 2016. 87

[191] S. Kimmel, G. H. Low, and T. J. Yoder, “Robust calibration of a universal single-

qubit gate set via robust phase estimation,” Physical Review A - Atomic, Molecular,

and Optical Physics, vol. 92, 12 2015. 87

[192] Q. Sun, T. C. Berkelbach, N. S. Blunt, G. H. Booth, S. Guo, Z. Li, J. Liu, J. D.

McClain, E. R. Sayfutyarova, S. Sharma, S. Wouters, and G. K. L. Chan, “PySCF:

the Python-based simulations of chemistry framework,” Wiley Interdisciplinary Re-

views: Computational Molecular Science, vol. 8, 1 2018. 88

[193] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland, “Surface codes:

Towards practical large-scale quantum computation,” Physical Review A - Atomic,

Molecular, and Optical Physics, vol. 86, 8 2012. 89, 92, 105

[194] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends, R. Biswas,

S. Boixo, F. G. Brandao, D. A. Buell, B. Burkett, Y. Chen, Z. Chen, B. Chiaro,

R. Collins, W. Courtney, A. Dunsworth, E. Farhi, B. Foxen, A. Fowler, C. Gidney,

M. Giustina, R. Graff, K. Guerin, S. Habegger, M. P. Harrigan, M. J. Hartmann,

A. Ho, M. Hoffmann, T. Huang, T. S. Humble, S. V. Isakov, E. Jeffrey, Z. Jiang,

D. Kafri, K. Kechedzhi, J. Kelly, P. V. Klimov, S. Knysh, A. Korotkov, F. Kostritsa,

156

D. Landhuis, M. Lindmark, E. Lucero, D. Lyakh, S. Mandrà, J. R. McClean,

M. McEwen, A. Megrant, X. Mi, K. Michielsen, M. Mohseni, J. Mutus, O. Naaman,

M. Neeley, C. Neill, M. Y. Niu, E. Ostby, A. Petukhov, J. C. Platt, C. Quintana,

E. G. Rieffel, P. Roushan, N. C. Rubin, D. Sank, K. J. Satzinger, V. Smelyanskiy,

K. J. Sung, M. D. Trevithick, A. Vainsencher, B. Villalonga, T. White, Z. J. Yao,

P. Yeh, A. Zalcman, H. Neven, and J. M. Martinis, “Quantum supremacy using a

programmable superconducting processor,” Nature, vol. 574, pp. 505–510, 10 2019.

103

[195] A. Deshpande, A. Mehta, T. Vincent, N. Quesada, M. Hinsche, M. Ioannou, L. Mad-

sen, J. Lavoie, H. Qi, J. Eisert, D. Hangleiter, B. Fefferman, and I. Dhand, “Quantum

Computational Supremacy via High-Dimensional Gaussian Boson Sampling,” 2

2021. 103

[196] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland, “Surface codes:

Towards practical large-scale quantum computation,” Physical Review A - Atomic,

Molecular, and Optical Physics, vol. 86, no. 3, p. 32324, 2012. 104

[197] S. B. Bravyi and A. Y. Kitaev, “Quantum codes on a lattice with boundary,” 11

1998. 104

[198] E. Dennis, A. Kitaev, A. Landahl, and J. Preskill, “Topological quantum memory,”

Journal of Mathematical Physics, vol. 43, p. 4452, 8 2002. 104

[199] N. de Beaudrap and S. Herbert, “Quantum linear network coding for entanglement

distribution in restricted architectures,” Quantum, vol. 4, pp. 1–38, 10 2019. 104

[200] C. Monroe, R. Raussendorf, A. Ruthven, K. R. Brown, P. Maunz, L. M. Duan, and

J. Kim, “Large-scale modular quantum-computer architecture with atomic memory

and photonic interconnects,” Physical Review A - Atomic, Molecular, and Optical

Physics, vol. 89, 8 2014. 105

[201] T. R. Scruby, D. E. Browne, P. Webster, and M. Vasmer, “Numerical Imple-

mentation of Just-In-Time Decoding in Novel Lattice Slices Through the Three-

Dimensional Surface Code,” arXiv: 2012.08536, 2020. 105, 115

[202] Y. Li and S. C. Benjamin, “Hierarchical surface code for network quantum com-

puting with modules of arbitrary size,” PHYSICAL REVIEW A, vol. 94, p. 42303,

2016. 105

157

[203] J. O’gorman, N. H. Nickerson, P. Ross, J. J. Morton, and S. C. Benjamin, “A silicon-

based surface code quantum computer,” npj Quantum Information, vol. 2, pp. 1–14,

2 2016. 105

[204] J. Eli Bourassa, R. N. Alexander, M. Vasmer, A. Patil, I. Tzitrin, T. Matsuura,

D. Su, B. Q. Baragiola, S. Guha, G. Dauphinais, K. K. Sabapathy, N. C. Menicucci,

and I. Dhand, “Blueprint for a scalable photonic fault-tolerant quantum computer,”

tech. rep., 2021. 105

[205] R. Raussendorf, S. Bravyi, and J. Harrington, “Long-range quantum entanglement

in noisy cluster states,” Physical Review A - Atomic, Molecular, and Optical Physics,

vol. 71, 7 2004. 105

[206] R. Raussendorf, J. Harrington, and K. Goyal, “A fault-tolerant one-way quantum

computer,” Annals of Physics, vol. 321, pp. 2242–2270, 9 2006. 105

[207] C. Gidney and A. G. Fowler, “Flexible layout of surface code computations using

AutoCCZ states,” arXiv: 1905.08916, 5 2019. 105, 117, 119, 120, 127

[208] G. H. Low and I. L. Chuang, “Optimal Hamiltonian Simulation by Quantum Signal

Processing,” Physical Review Letters, vol. 118, 6 2016. 106

[209] D. Poulin, A. Kitaev, D. S. Steiger, M. B. Hastings, and M. Troyer, “Quantum

Algorithm for Spectral Measurement with a Lower Gate Count,” Physical Review

Letters, vol. 121, no. 1, 2018. 106

[210] Z. Li, J. Li, N. S. Dattani, C. J. Umrigar, and G. K.-L. Chan, “The electronic

complexity of the ground-state of the FeMo cofactor of nitrogenase as relevant to

quantum simulations,” Journal of Chemical Physics, vol. 150, 9 2018. 107, 121

[211] V. von Burg, G. H. Low, T. Häner, D. S. Steiger, M. Reiher, M. Roetteler, and

M. Troyer, “Quantum computing enhanced computational catalysis,” Physical Re-

view Research, vol. 3, no. 3, 2021. 107, 121

[212] J. Lee, D. W. Berry, C. Gidney, W. J. Huggins, J. R. McClean, N. Wiebe, and

R. Babbush, “Even More Efficient Quantum Computations of Chemistry Through

Tensor Hypercontraction,” PRX Quantum, vol. 2, no. 3, 2021. 107, 118, 120, 121,

122, 128

[213] D. Aggarwal, G. Brennen, T. Lee, M. Santha, and M. Tomamichel, “Quantum

Attacks on Bitcoin, and How to Protect Against Them,” tech. rep., 2018. 107

158

[214] L. Tessler and T. Byrnes, “Bitcoin and quantum computing,” arXiv:1711.04235,

2017. 107

[215] T. Häner, S. Jaques, M. Naehrig, M. Roetteler, and M. Soeken, “Improved Quantum

Circuits for Elliptic Curve Discrete Logarithms,” in Lecture Notes in Computer Sci-

ence (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes

in Bioinformatics), vol. 12100 LNCS, pp. 425–444, 2020. 107, 119, 124, 125, 126,

127

[216] M. Roetteler, M. Naehrig, K. M. Svore, and K. Lauter, “Quantum resource estimates

for computing elliptic curve discrete logarithms,” Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), vol. 10625 LNCS, pp. 241–270, 2017. 107, 119, 125

[217] C. Jones, “Low-overhead constructions for the fault-tolerant Toffoli gate,” Physical

Review A - Atomic, Molecular, and Optical Physics, vol. 87, p. 022328, 2 2013. 109,

122

[218] Y. R. Sanders, J. J. Wallman, and B. C. Sanders, “Bounding quantum gate error

rate based on reported average fidelity,” New Journal of Physics, vol. 18, no. 1,

2016. 110

[219] J. Wallman, C. Granade, R. Harper, and S. T. Flammia, “Estimating the coherence

of noise,” New Journal of Physics, vol. 17, no. 11, 2015. 110

[220] S. T. Flammia and J. J. Wallman, “Efficient Estimation of Pauli Channels,” ACM

Transactions on Quantum Computing, vol. 1, no. 1, pp. 1–32, 2020. 110

[221] R. Kueng, D. M. Long, A. C. Doherty, and S. T. Flammia, “Comparing Experiments

to the Fault-Tolerance Threshold,” Physical Review Letters, vol. 117, no. 17, 2016.

110

[222] A. G. Fowler, “Time-optimal quantum computation,” arXiv: 1210.4626, 2012. 111,

121

[223] M. Gutiérrez, M. Müller, and A. Bermúdez, “Transversality and lattice surgery:

Exploring realistic routes toward coupled logical qubits with trapped-ion quantum

processors,” Physical Review A, vol. 99, no. 2, 2019. 114

[224] M. Amy, D. Maslov, and M. Mosca, “Polynomial-time T-depth optimization of Clif-

ford+T circuits via matroid partitioning,” IEEE Transactions on Computer-Aided

159

Design of Integrated Circuits and Systems, vol. 33, no. 10, pp. 1476–1489, 2014. 116,

127, 132

[225] N. Abdessaied, M. Amy, M. Soeken, and R. Drechsler, “Technology mapping of

reversible circuits to Clifford+T quantum circuits,” 2016. 116, 127, 132

[226] G. M. Abdullah, Q. Mehmood, and C. B. A. Khan, “Adoption of Lamport signa-

ture scheme to implement digital signatures in IoT,” 2018 International Conference

on Computing, Mathematics and Engineering Technologies: Invent, Innovate and

Integrate for Socioeconomic Development, iCoMET 2018 - Proceedings, vol. 2018-

January, pp. 1–4, 4 2018. 126

160

	PhD Coversheet
	PhD Coversheet

	Webber, Mark
	Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Classical computing
	1.2 Quantum computing
	1.2.1 The qubit
	1.2.2 Superposition
	1.2.3 Entanglement
	1.2.4 Universal quantum computation
	1.2.5 The DiVincenzo criteria

	1.3 Summary of thesis
	1.4 Contributions

	2 An overview of hardware and applications
	2.1 NISQ and fault tolerance
	2.1.1 NISQ and computational power
	2.1.2 Fault tolerance and error correction
	2.1.3 Repetition code example

	2.2 Overview of hardware types
	2.2.1 Superconducting devices
	2.2.2 Photonics

	2.3 Trapped ions
	2.3.1 Optical and hyperfine qubits
	2.3.2 Laser based gates and laser free gates
	2.3.3 Scaling beyond a single ion string
	2.3.4 Shuttling
	2.3.5 Blueprint for a microwave trapped-ion quantum computer

	2.4 NISQ algorithms and applications
	2.4.1 Variational Quantum Eigensolver
	2.4.2 Quantum Approximate Optimization Algorithm

	2.5 Fault tolerant algorithms and applications
	2.5.1 Quantum Fourier Transform
	2.5.2 Quantum Phase estimation
	2.5.3 Shor's factoring algorithm
	2.5.4 Grover's search algorithm and amplitude amplification
	2.5.5 HHL and solving systems of linear equations

	2.6 Applications in Finance

	3 Trapped Ion Connectivity and Routing
	3.1 Global connectivity
	3.2 Simulation tool
	3.3 Routing Algorithm logic
	3.4 Characterising the routing algorithm
	3.4.1 Time taken to route
	3.4.2 Counting passes through X-Junction centres
	3.4.3 Increasing ion density
	3.4.4 Positional swaps
	3.4.5 Justifying iteration number choice

	3.5 Concluding remarks

	4 Prediction of Computational Power for Near Term Devices
	4.1 Achievable depth and quantum volume
	4.1.1 The latest Quantum Volume definition
	4.1.2 How we use Quantum Volume
	4.1.3 Gate requirements of Quantum Volume

	4.2 Error model
	4.3 Using Quantum Volume to compare architectures
	4.3.1 Quantum volume comparison with recent experimental results

	4.4 Using quantum volume to meter experimental priorities
	4.4.1 The dependence on ion loss
	4.4.2 The dependence on coherence time
	4.4.3 The dependence on ion density

	4.5 Single qubit gate fidelity as a function of experimental parameters
	4.6 Comparing photonic interconnects and shuttling
	4.6.1 Connectivity for large scale devices
	4.6.2 The time cost for global connectivity

	4.7 Summary

	5 Fault Tolerant Resource Estimation for Quantum Chemistry
	5.1 Classical quantum chemistry
	5.1.1 Precision vs accuracy

	5.2 NISQ and fault tolerant techniques
	5.2.1 NISQ and VQE
	5.2.2 Fault tolerance and QPE

	5.3 Hamiltonian simulation
	5.3.1 Trotterization
	5.3.2 Qubitization

	5.4 Q# and resource estimation
	5.4.1 Methodology
	5.4.2 Oracle costs for small molecules

	5.5 Optimizing gate count and error budgets
	5.5.1 Phase estimation variants
	5.5.2 Motivating which molecules to investigate
	5.5.3 Trotterization
	5.5.4 Qubitization

	5.6 Error correction and physical resource estimation
	5.6.1 Detailed estimate for Cr2 CASCI(26,26) and methodology

	6 The Impact of Hardware Specifications on Reaching Quantum Advantage in the Fault Tolerant Regime
	6.1 Introduction
	6.1.1 Fault tolerant quantum chemistry
	6.1.2 Breaking Bitcoin's encryption

	6.2 Space and time optimizations in the surface code
	6.2.1 The available gate set
	6.2.2 Error correction and logical error rate
	6.2.3 Code cycle, reaction time and measurement depth
	6.2.4 Distillation and topological errors
	6.2.5 Routing at the error corrected level
	6.2.6 Considering physical mid-range connectivity
	6.2.7 Game of Surface Codes
	6.2.8 AutoCCZ factories
	6.2.9 Problem specification

	6.3 Results
	6.3.1 Simulating FeMoco as a function of the code cycle time
	6.3.2 Breaking Bitcoin's EC encryption
	6.3.3 Finding the optimal measurement depth

	6.4 Summary

	7 Conclusion
	7.1 Summary and future work
	7.2 Outlook

	Bibliography

