

A University of Sussex PhD thesis

Available online via Sussex Research Online:

http://sro.sussex.ac.uk/

This thesis is protected by copyright which belongs to the author.

This thesis cannot be reproduced or quoted extensively from without first
obtaining permission in writing from the Author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the Author

When referring to this work, full bibliographic details including the
author, title, awarding institution and date of the thesis must be given

Please visit Sussex Research Online for more information and further details

Novel Reversible Text Data De-Identification

Techniques based on Native Data Structures

BY

Bayan Al-Abdullah

A thesis submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy at the University of Sussex

School of Engineering and Informatics

Department of Informatics

University of Sussex

Brighton

BN1 9QT

December 2021

ii

Declaration

The work described in this thesis, carried out in the school of Engineering and

Informatics, I hereby declare that this thesis has not been and will not be submitted in

whole or in part to another University for the award of any other degree.

Signature:

 Bayan Al-Abdullah

Copyright © 2021 University of Sussex

iii

Acknowledgements

This brief page will never be able to adequately express my gratitude.

I would like to express my deepest gratitude to my supervisors, Dr. Natalia Beloff and

Prof. Martin White, for their efforts in providing me invaluable guidance, encouragement,

motivation, and continuous support during this work. I was fortunate to have supervisors

concerned about my work and who responded to my questions and queries so promptly.

None of the work in this thesis would have been possible without the support of my

husband, Abdullah, who was willing to put his life on hold for years while I pursued

something I considered ‘’really important.” My parents, who have been an endless source

of great assistance and love to complete my PhD. My kids; Emad, Alhanouf and Reema,

whose patience and love inspired me to achieve my goal, a special thanks for them for

tolerating the long hours being away from them working on my research.

My sincere thanks to Princess Nourah bint Abdulrahman University and the Saudi

Arabian Cultural Bureau for giving me the opportunity to complete my PhD study and

support me financially and morally.

From the outside, a PhD appears to be an impressive individual achievement. From

my own experience, the accomplishment that I have had at least as much to do with the

people that I have been fortunate enough to become involved with than any talent that I

have had.

iv

UNIVERSITY OF SUSSEX

Submitted for the degree of Doctor of Philosophy

Novel Reversible Text Data D-Identification Techniques based on

Native Data Structures

Abstract
Technological development in today's digital world has resulted in the collection and

storage of large amounts of personal data. These data enable both direct services and non-

direct activities, known as secondary use. The secondary use of data can improve

decision-making, service experiences, and healthcare systems. However, the widespread

reuse of personal data raises significant privacy and policy issues, especially for health-

related information; these data may contain sensitive data, leading to privacy breaches if

compromised. Legal systems establish laws to protect the privacy of personal data

disclosed for secondary use. A well-known example is the General Data Protection

Regulation (GDPR), which outlines a specific set of rules for sharing and storing personal

data to protect individual privacy. The GDPR explicitly points to data de-identification,

especially pseudonymization, as one measure that can help meet the requirements for the

processing of personal data.

The literature on privacy preservation approaches has largely been developed in the

field of data anonymization, where personal data are irreversibly removed or obfuscated

and there is no means by which to recover an individual's identity if needed. By contrast,

pseudonymization is a promising technique to protect privacy while enabling the recovery

of de-identified data. Significantly, many existing approaches for pseudonymization were

developed long before the GDPR requirements were established, and so they may fail to

satisfy its provisions. Therefore, it is worthwhile to offer technical solutions to preserve

privacy while supporting the legitimate use of data.

This thesis proposes a novel de-identification system for unstructured textual data,

known as ARTPHIL, that generates de-identified data in compliance with the GDPR

requirement for strong pseudonymization. The system was evaluated using 2014 i2b2

testing data. The proposed system achieved a recall of 96.93% in terms of detecting and

encrypting personal health information, as specified under guidelines provided by the

Health Insurance Portability and Accountability Act (HIPAA). The system used a novel

and lightweight cryptography algorithm E-ART to encrypt personal data cost-effectively

and without compromising security. The main novelty of the E-ART algorithm is the use

of the reflection property of a balanced binary tree data structure as substitution method

instead of complex and multiple iterations. The performance and security of the proposed

algorithm were compared to two symmetric encryption algorithms: The Advanced

Encryption Standard and Data Encryption Standard. The security analysis showed

comparable results, but the performance analysis indicated that E‐ART had the shortest

ciphertext and running time with comparable memory usage, which indicates the

feasibility of using ARTPHIL for delay-sensitive or data-intensive applications

v

List of Publications

Conference Paper

• Alabdullah, Bayan, Beloff, Natalia and White, Martin (2018) Rise of big data –

issues and challenges. SCS-NCC' 2018 Saudi section 21st Saudi Computer

Society National Computer Conference, Riyadh, Saudi Arabia, April 25-26, 2018.

Published in: 2018 21st Saudi Computer Society National Computer Conference

(NCC). 1-6. ISBN 9781538641118

• Alabdullah, B., Beloff, N., & White, M. (2021) ARTPHIL: Reversible de-

identification of free-text using an integrated model. EAI SPNCE 2021 - 4th

EAI International Conference on Security and Privacy in New Computing

Environments. (Accepted EAI SPNCE 2021 - 4th EAI International Conference

on Security and Privacy in New Computing Environments December 10-11,

2021)

Journal Paper

• Alabdullah, Bayan, Beloff, Natalia and White, Martin (2021) E‐ART: a new

encryption algorithm based on the reflection of binary search

tree. Cryptography, 5 (1). a4 1-15. ISSN 2410-387X

vi

List of Abbreviations

E-ART Encryption through ASCII Reflection Tree

GDPR General Data Protection Regulation

ASCII American Standard Code of Information Interchange

PHI Personal Health Information

DES Data Encryption Standard

AES Advanced Encryption Standard

BIC Bit Independence Criteria

HIPAA Health Insurance Portability and Accountability Act

PPDM Privacy Preserving Data Mining

PPDP Privacy Preserving Data Publishing

DSR Design Science Research

SSN Social Security Number

DoB Date of Birth

QID Quasi Identifier

FHE Fully Homomorphic Encryption

NIST National Institute of Standards and Technology

SAC Strict Avalanche Criterion

LWDC Lightweight Dynamic Crypto

CSPRNG Cryptographically Secure Pseudo Random Number Generators

DED Dynamic Encryption Determination

ARTPHIL Anonymized Reflection Tree Philter

SMC Secure multiparty computation

vii

Glossary

Data de-identification Any process that removes the association between data and

the individual with whom the data is initially associated. It

required removing or transforming Personal Identifiable

Information (PII)

Anonymization Anonymization is a data processing technique that removes

or modifies personally identifiable information; it results in

anonymized data.

Linkage attack A linkage attack is an attempt to re-identify individuals in

an anonymized dataset by combining that data with

background information. The linking may use quasi-

identifiers, such as zip or postcode, gender, salary, and so

on that are present in both sets to establish identifying

connections.

Pseudonymization Pseudonymization is a particular type of de-identification in

which the names and other information that directly

identifies an individual are replaced with pseudonyms.

Pseudonym A computed or assigned value that is substituted for one or

more data elements in data subject’s record

viii

Equivalence class An equivalence class is the name that we give to the subset

of S which includes all elements that are equivalent to each

other.

Data controller An entity that, alone or jointly with others, determines how

and why personal data are processed

Re-identification The process by which de-identified personal data is

matched with its true owner

Structured data Structured data consist of clearly defined data types with

patterns that make them easily searchable such as relational

database or spreadsheet

Unstructured data Unstructured data is data that is not formed in a predefined

manner, such as textual note

Homogeneity attack Refer to the knowledge gained by correlating quasi-

identifiers and sensitive attributes.

Background attack Refer to the attack in which an adversary has some

prior knowledge about the data subject.

Spatial crowdsourcing Refer to the type of crowdsourcing in which workers

complete their assigned tasks at a specific location.

Table of Contents

 : Introduction... 1

1.1 Research Background .. 1

1.2 Research Motivation .. 2

1.3 Research Questions ... 4

1.4 Research Objectives .. 5

1.5 Contributions ... 6

1.6 Outline of Thesis Structure .. 7

Chapter 1: Introduction .. 7

Chapter 2: Background and Related Work ... 7

Chapter 3: Methodology .. 7

Chapter 4: E-ART Design .. 7

Chapter 5: E-ART Performance and Security Evaluation 8

Chapter 6: ARTPHIL: De-Identification Model Design and Evaluation 8

Chapter 7: Conclusion and Future Works ... 8

 : Background and Related Work .. 9

2.1 Privacy .. 9

2.1.1 Definition of Privacy ... 10

2.1.2 Personal Data Classification... 12

2.1.3. Privacy Preserving Principle .. 16

2.1.4. Re-identification Risks... 17

2.2 Privacy Preserving Approaches ... 18

2.2.1 Privacy Preserving Data Publishing ... 19

2.2.2. Privacy Preserving Data Mining ... 24

2.3.Data De-identification in GDPR .. 30

2.3.1. GDPR Principles for Processing Personal Data 30

2.3.2. The Three Types of Data in GDPR .. 32

2.3.3. Effectiveness of Data Sanitization Techniques to Mitigate Re-

identification Risk .. 34

2.3.4 Obligations Under the GDPR .. 37

2.4. Cryptography .. 42

x

2.4.1 Cryptography Evaluation and Performance Criteria 43

2.4.2. Security against Attacks ... 46

2.5. Dynamic Key .. 48

2.6. Lightweight Cryptography Discussion .. 49

2.7. Summary and Conclusion toward Research Gap ... 57

 : Methodology .. 60

3.1. Research Methodology ... 60

3.2. Design Science Methodology .. 61

3.2.1. Awareness of the problem .. 64

3.2.2. Suggestion ... 64

3.2.3. Development ... 64

3.2.4. Evaluation ... 65

3.3. Justification of the Research Method .. 67

3.4. Rationale for Research Approach .. 68

3.5. Research Design ... 69

3.6 Dataset .. 71

3.7. Summary .. 73

 : E-ART Design ... 74

4.1. Algorithm Design ... 74

4.1.1. Stage 1: Substitution Method.. 75

4.1.2. Stage 2: Adding offsets .. 79

4.1.3. Stage 3: Dynamic key .. 80

4.2. Encryption Process ... 82

4.3. Decryption Process ... 86

4.4. Proof of Correctness ... 88

4.4.1 Empirical Proof ... 88

4.4.2. Mathematical Proof .. 90

4.5. Summary .. 93

 : E-ART Performance and Security Evaluation..................................... 95

5.1. Introduction .. 95

5.2. Experimental Setup ... 95

5.3. Evaluation Metrics .. 96

5.3.1. Performance Parameters .. 96

xi

5.3.2. Security Parameters ... 97

5.4. Results .. 100

5.4.1. Performance Analysis .. 100

5.4.2. Security Analysis ... 104

5.5. Security against Attacks .. 111

5.5.1. Brute Force Attack ... 111

5.5.2. Chosen and Known Plain-text/Cipher-text Attacks............................... 112

5.5.3. Statistical Attacks .. 112

5.6. Summary .. 113

 : ARTPHIL De-Identification Model Design and Evaluation 115

6.1. Introduction .. 115

6.2. Problem Formulation .. 116

6.3. De-identification of Protected Health Information under HIPAA 118

6.3.1. The HIPAA Expert Determination Method .. 118

6.3.2. The HIPAA Safe Harbor Method ... 119

6.4. De-identification as Named Entity Recognition... 120

6.4.1. Evaluation Matrices ... 123

6.5. Stat-of-the-art Solutions .. 124

6.5.1. Philter .. 125

6.5.2. DE-identification System based on Artificial Neural Networks(ANNs) 127

6.5.3. DE-identification system based on ANNs and CRF 127

6.6. Proposed Method .. 127

6.6.1. PHI Detection .. 127

6.6.2. Replacement strategy ... 128

6.7. Experiment Setup ... 129

6.7.1. Implementation .. 129

6.7.2. Dataset... 130

6.8. Results .. 132

6.8.1. Re-identification Risk .. 135

6.8.2. Execution Time ... 136

6.9. Effectiveness of ARTPHIL ... 137

6.9.1. ARTPHIL and De-identification Systems: ... 137

6.9.2. ARTPHIL and GDPR requirements: .. 139

xii

6.10. Summary ... 140

 : Conclusion and Future Works .. 142

7.1. Thesis Summary ... 142

7.2. Suggestions and future direction ... 146

7.3. Summary .. 148

References ... 149

Appendices .. 163

Appendix I: E-ART Code (Java) ... 163

Appendix II: E-ART Evaluation .. 168

Avalanche effect .. 178

Appendix III: ARTPHIL (Python) ... 180

Appendix IV: Binary Tree Data Structure .. 193

Appendix V: Cryptography ... 194

Advanced Encryption Standard .. 196

Data Encryption Standard .. 200

Security against Attacks ... 203

xiii

List of Figure

Figure 2-1: Aspects of Privacy [23] ... 12

Figure 2-2: Privacy Preserving Approaches ... 20

Figure 2-3: K-Anonymity [39] .. 21

Figure 2-4: Laplace Mechanism [49] ... 25

Figure 2-5: Letter and their Relative Frequency [90] ... 46

Figure 3-1: Design Science Research Processes and Outcomes [148] 62

Figure 3-2: Research design .. 70

Figure 4-1: Algorithm Design Process .. 75

Figure 4-2: Binary Tree of E-ART .. 77

Figure 4-3: Illustration of the Substitution Method (Stage 1) 78

Figure 4-4: Encryption with Different Keys .. 83

Figure 4-5: Conceptual Overview of the Encryption Process 85

Figure 4-6: Conceptual Overview of the Decryption Process 88

Figure 4-7: Example before and after encryption by E-ART algorithm of a) the original

clinical note, b) the encrypted note, and c) the decrypted note 90

Figure 5-1: Snapshot of Implement Algorithm in NetBeans .. 96

Figure 5-2: Performance Analysis Process .. 98

Figure 5-3: Comparison of Memory Consumption of (a) Encryption (b) Decryption for

AES, DES and E-ART Algorithm .. 102

Figure 5-4: Comparison of execution time of (a) Encryption and (b) Decryption for

AES, DES, and E-ART algorithms... 103

Figure 5-5: Histograms of (a) plain-text, (b) E-ART, (c) AES, and (d) DES 106

Figure 5-6: Snapshot of NIST Test .. 109

Figure 6-1: The Process of DE-Identification using Philter [149] 126

Figure 6-2: Integration of E-ART with Philter ... 129

Figure 0-1 Encryption and Decryption Processes in AES [223] 197

xiv

Figure 0-2: Data State Array ... 197

Figure 0-3: Add Round Operation [224] .. 198

Figure 0-4: Substitute Byte Operation [224] .. 198

Figure 0-5: Shift Rows Operation [224] .. 199

Figure 0-6: Mix Columns Operation [224] .. 200

Figure 0-7: DES Encryption Function [225] .. 202

Figure 0-8: DES Function f [226] .. 203

xv

List of Table

Table 2-1: Example of Medical Data ... 14

Table 2-2: Example of Voter Registration Rolls .. 15

Table 2-3: De-identified data.. 15

Table 2-4: Comparison of privacy-preserving approaches in terms of the employed

privacy preserving principle ... 28

Table 2-5: Summary of the De-identified Data under GDPR 34

Table 2-6: Robustness of data sanitisation methods against risks 37

Table 2-7: Summary of different types of data and obligations required 41

Table 4-1: ASCII Table ... 76

Table 4-2: Summary of the Notations .. 79

Table 5-1: Recommended size of Bit-stream for each NIST test 99

Table 5-2: AES Performance .. 100

Table 5-3: DES Performance .. 101

Table 5-4: E-ART Performance .. 101

Table 5-5: Comparison of file size before and after encryption for AES, DES, and E-

ART algorithms ... 103

Table 5-6: Avalanche Effect Performance ... 104

Table 5-7: BIC Performance ... 105

Table 5-8: ASCII Histogram Frequency Value .. 107

Table 5-9: Statistical Test Results ... 111

Table 6-1: Comparison of methods used for PHI Detection 123

Table 6-2: Performance of Current State-of-the-art Models 124

Table 6-3: De-identification and Re-generated of Example Clinical Note 130

Table 6-4: PHI Distributions in the i2b2/UTHealth 2014 DE-Identification Corpus .. 131

Table 6-5: Overall Model Performance ... 133

Table 6-6: Recall by Tag ... 133

Table 6-7: Recall by PHI Category.. 134

xvi

Table 6-8: The Probability of Risk Re-identification ... 135

Table 6-9: The Execution time for E-ART_ Philte .. 136

 : Introduction

1.1 Research Background

Advances in information technology have enabled organisations to store, share, and

analyse a large amount of personal data. This promises to yield new insights into questions

that have been difficult or impossible to answer in the past. However, the storage and

sharing of potentially sensitive data pose serious privacy concerns. For both legal and

ethical reasons, it necessary to preserve individual privacy and confidentiality. Legal

systems establish laws to protect the privacy of individual information disclosed for

secondary use. A well-known example is the General Data Protection Regulation (GDPR),

which outlines a specific set of rules for sharing and storing personal data to protect

individual privacy [1]. Data minimisation is one of the fundamental principles of the

GDPR, which has strict data retention policies. This protection means that an individual's

personal data can be retained for no longer than necessary to carry out the purpose for

which the data was initially processed1 . The GDPR also restricts the use of personal data

beyond the purpose for which the data was originally collected (purpose limitations)2 [1].

However, the new rules and obligations imposed by the GDPR do not prevent the use of

personal data for analytics or other useful secondary applications. They do, however,

require the implementation of new technical and organisational measures to protect that

data. The GDPR explicitly points to data de-identification as a measure that can support

meeting the requirements of several of its provisions [2].

1 (GDPR Article 5(1)(e))
2 (GDPR Article 5(1)(b))

2

Data security and privacy issues become even more critical when data is used in

healthcare environments, which typically deal with sensitive patient information. In the

United States, standards for protecting healthcare information confidentiality were

established in HIPAA’s Privacy Rule [3]. HIPAA specifies 18 data elements that define

Protected Health Information (PHI); these elements must be removed or generalised from

data for it to be considered de-identified. Removing all identifiers that fall into one of the

18 elements is said to provide the required anonymity for health data to satisfy the HIPAA

data sharing regulations, which allows the data to be used for scientific studies.

This dissertation focuses on privacy preservation through de-identification to reduce

the risk of disclosing confidential information associated with collecting, archiving, and

transferring personal information about individuals.

1.2 Research Motivation

Previous work on data de-identification and anonymization techniques has been

developed within the fields of statistical disclosure control [4], privacy-preserving data

publishing (PPDP) [5], and privacy-preserving data mining (PPDM). In these fields,

sensitive data are shared with untrusted third parties for secondary use, but information is

not disclosed that can be linked to specific individuals. This technique primarily focuses

on producing anonymized versions of data by removing, obfuscating, or generalising

identifiable personal data. The drawback of these methods is that they are usually

irreversible; there is no mechanism by which an individual's identification can be

recovered.

In many circumstances, it is essential to refer back to the original data without

revealing it to the end-user. This allows the data to be accessed in emergencies or by

entities with acceptable levels of access. For example, in PPDM, the knowledge obtained

from mining de-identified data cannot be verified from the original data, which might

produce knowledge uncertainty [6], [7]. In research platforms, where documents are

3

shared between different specialists, including scientists, researchers, and physicians,

specific cases are usually chosen for further analysis. For instance, in selected cases where

specialists conduct a blind diagnosis or annotation procedures, the authorised user can

reverse the de-identification process and retrieve the necessary information, leading to a

more accurate assessment [8] [9].

Additionally, situations often occur in clinical trials when some of the research

subjects need to be approached again for further study [10]. Therefore, reversible de-

identification (e.g., encryption and pseudonymization) are often preferred. Several

privacy-preserving approaches have been proposed to address the need for reversible de-

identification, which involve cryptographic approaches that allow the original data to be

requested if needed. For example, Landi and Rao [10] proposed a way to de-identify

patient data so that only the owners of the original data or legally empowered entities can

re-identify it. Their system uses secure public-key encryption technology to generate a

public key based on one or more private keys. Yamac et al [11] proposed privacy

preserving solution that combines a multi-level encryption scheme with compressive

sensing. The approach has the ability to reverse the De-identification so that an authorized

person can recover the degraded part of information using the key. It tried to simplify the

key management issue by watermarking the key into the sensed image. However, the

computationally expensive decompression might be difficult to apply to big data.

Gulcher et al. [12] also highlighted the need for reversible de-identification to protect

genetic research data. The authors proposed an approach for de-identifying biological

samples for genetic research based on a third-party encryption method using the Advanced

Encryption Standar (AES), a 128-bit symmetric encryption algorithm. This approach

would allow later requested access to the research data. However, to enhance security,

existing encryption standards rely on larger key sizes and greater numbers of rounds,

which can be computationally expensive and challenging to apply to a large amount of

data, thus negatively affecting performance. Moreover, low-resourced devices require low

4

resource implementation to secure data in order to ensure a long battery life of the devices

[13]. Therefore, lightweight and practical alternatives must be developed [14]. As a result,

there is a need for a new reversible model for de-identifying unstructured data to address

the conflicting requirements of preserving privacy while supporting the legitimate use of

data.

Based on these considerations, this dissertation focuses mainly on developing a new

reversible de-identification model using a novel and lightweight cryptography algorithm.

This is expected to address the need for a lightweight de-identification system, thus

fulfilling the requirements of data storage and access for primary use by the authenticated

user as well as privacy-preserving secondary use.

1.3 Research Questions

This research aims to investigate the problem of privacy preservation for unstructured

big data through de-identification. The main research question is

“How to reversibly de-identify unstructured data to address the requirements of

preserving privacy while supporting the legitimate use of data?”

This question leads to other sub-questions as follow:

1. What are the issues and challenges with existing privacy-preserving approaches?

2. What are the issues and challenges in existing cryptography approaches?

3. Can the proposed encryption algorithm achieve a trade-off solution between

security and performance compared with the Data Encryption Standard (DES) and

AES?

4. How can the proposed encryption algorithm be used to de-identify unstructured

textual data in order to improve individual privacy?

5

1.4 Research Objectives

To achieve the research aim, the research question and the issues highlighted in

previous sections are addressed in the following objectives:

1. To critically investigate privacy-preserving approaches.

2. To critically investigate cryptography approaches for textual data.

3. To design and develop a lightweight encryption algorithm that can achieve a

satisfactory level of security with shorter execution times and fewer resources,

thereby meeting the requirement of processing a large amount of data.

4. To evaluate and analyse the developed algorithm in relation to evaluation metrics

and benchmark algorithms.

5. To design, develop, and evaluate a reversible de-identification model that uses the

proposed lightweight encryption algorithm as a replacement strategy to reversibly

de-identify unstructured data.

6. To ensure that the develop de-identification model decouples data elements from

re-identifiable linkages to data subjects (by encrypts direct and indirect

identifiers). Hence satisfy the requirements for GDPR Article 4(5)3 compliant

pseudonymized data.

The methodological tool used to achieve the research objectives of this thesis is design

science research (DSR). This is an approach to scientific knowledge creation that includes

the development of novel constructions aimed at solving real-world problems while also

making a prescriptive scientific contribution. [12]. The principal outcome of DSR is an

artefact that solves a domain problem. There are two artefacts created for this work: first,

a novel lightweight encryption algorithm that aims to encrypt textual data in a cost-

3 GDPR Article 4(5) (“information necessary

to attribute personal data to a specific data subject must be kept separately and subject to

technical and organizational measures to ensure that the personal data are not attributed to an

identified or identifiable natural person”).

6

effective manner; and second, a reversible de-identification model, , that aims to de-

identify health data to reduce the privacy risk for the data subject.

1.5 Contributions

The contributions of this research are summarized as follows:

1. Proposing and developing a novel encryption algorithm, E-ART4, that overcomes the

limitations of existing ciphers in terms of multiple rounds and complex computation,

which can undermine performance. The proposed algorithm relies on two key

elements: the reflection property of a balanced binary search tree data structure,

which is applied to minimize the overhead; and a dynamic key, which promotes a

high level of security.

2. Demonstrating the efficiency and security of E-ART by performing empirical

comparisons with AES and DSS, two widely used encryption algorithms. E-ART

outperformed AES and DES in terms of performance and achieved a comparable

level of security

3. Proposing and developing a reversible de-identification system, ARTPHIL 5, to

prevent the unauthorized reidentification of unstructured health data. The system

combines the state of the art in pattern matching and statistical modelling to extract

personal identifiers specified in free-text, and then to encrypt these identifiers using

the E-ART algorithm.

4. Evaluating ARTPHIL’s performance using the i2b2/UTHealth 2014 de-

identification corpus.

5. Helping to bridge the gap between the new GDPR obligations and the legitimate use

of data. This contribution arises from the fact that ARTPHIL can be used to produce

de-identified data that comply with the GDPR’s requirement for strong

pseudonymization.

4 bayan6060/eart1 (github.com)
5 bayan6060/philter_eart (github.com)

https://github.com/bayan6060/eart1
https://github.com/bayan6060/philter_eart

7

1.6 Outline of Thesis Structure

This section presents the order of the thesis chapters and provides a brief description

of each chapter

Chapter 1: Introduction

This chapter introduces privacy-preserving approaches and their limitations. It

outlines the motivation for the proposed solution, the research questions, the research aim

and objectives, and the methodology used to achieve them.

Chapter 2: Background and Related Work

This chapter first reviews related work and presents background information related

to the thesis. It first defines privacy key aspects, privacy-preserving criteria, and

approaches used to reduce privacy risk for the data subject. Then, it reviews and analyses

the new GDPR regulations and obligations for processing personal data. In turn, the

chapter introduces background material on the cryptography field, including encryption

categories, design principles, and attacks. The chapter closes with a discussion of

lightweight cryptography.

Chapter 3: Methodology

This chapter describes the methodology used to achieve the research objectives.

Justification of the research methods is presented alongside the rationale for the research

approach. Details of how the results are tested and analysed are also included.

Chapter 4: E-ART Design

This chapter describes the design phases for the new E-ART algorithm. The design

consists of three phases: Substitution Method, Adding Offsets, and Dynamic Key Phase.

The encryption and decryption processes, along with the proof of algorithm correctness,

are included in this chapter.

8

 Chapter 5: E-ART Performance and Security Evaluation

This chapter presents the validation of the proposed E-ART cryptographic algorithm

through a series of experiments. Comparative performance and security analysis are

conducted to demonstrate the effectiveness of the novel design. The performance analysis

parameters include processing time, memory consumption, and file size. Security was

assessed through the avalanche effect, the bit independence criterion, frequency analysis,

and the NIST statistical test.

Chapter 6: ARTPHIL: De-Identification Model Design and Evaluation

This chapter reviews information extraction techniques used for the detection of

sensitive data (specifically, personal health data). In turn, it presents the development of

an integrated model, ARTPHIL, that integrates state-of-the-art tools for extracting

personal identifiers from free-text, the purpose being to detect confidential information

and encrypt it with the proposed lightweight encryption algorithm E-ART. The chapter

also evaluates the proposed model in terms of precision, recall, and F-measure. Processing

time and the probability of re-identification risk are also measured.

Chapter 7: Conclusion and Future Works

This chapter presents conclusions arising from the thesis and specifies directions for

future research.

9

 : Background and Related Work

The overall goal of privacy-preserving research is to develop techniques that allow to

get the best utility out of a dataset without violating the privacy of the data subject.

Different techniques and different regulations to address this problem have been proposed.

However, there is no universally suitable technique; instead, it will depend on the specific

use case and needs.

This chapter first discuss the privacy concept in section 2.1, privacy preserving

approach in section 2.2 de-identification and GDPR in section 2.3. Section 2.4 gives an

overview of cryptography approaches and their evaluation criteria. Section 2.5 introduced

the concept of dynamic key. Section 2.6 discuss the lightweight cryptography approaches

and finally chapter summary and conclusion toward research gap in section 2.7.

2.1 Privacy

In today’s digital world, the existence of a vast number of databases that store a broad

range of personal information has produced challenges surrounding privacy. Simply by

linking together a subset of the available databases, it is possible to discover relevant facts

and knowledge about a particular person.

The trade-off between privacy and utility of data has been the subject of much research

and debate. Privacy researchers have explored various models and techniques for

preserving privacy. In this section, the privacy-preserving approaches are discussed in a

fine-grained manner to answer the following questions:

• What does privacy mean?

• What personal data need to be removed or obscured to achieve individual

privacy?

• What available methods can be used for privacy preservation?

10

2.1.1 Definition of Privacy

In 1948, the Universal Declaration of Human Rights [15] acknowledged privacy as a

right. Despite this, no standard definition of privacy exists [16]. Over the years, the notion

of privacy has been viewed variously as referring to everything from being alone or

undisturbed to our freedom from intrusion or public scrutiny to the right to anonymity

[17].

The complex nature of the task of defining privacy emerges from the sheer diversity

of domains that are covered by privacy [18][19]. The scope of privacy can be classified

into four types: information, which is associated with the storage and management of

personal data; bodily, which is concerned with physical harms caused by intrusive

procedures such as drug testing; communications, which covers the privacy of any form

of communication; and territorial, which is concerned with establishing boundaries for

intrusion into the home as well as other areas such as the workplace or public spaces [20].

This research focuses on information privacy, which is concerned with systems that store

and share data.

In the information domain, Westin [21] described privacy as “the claim of individuals,

groups, or institutions to determine for themselves when, how, and to what extent

information about them is communicated to other people.” From this standpoint, privacy

amounts to an individual’s right to control and manage their data. Similarly, Bertino et al.

[22] defined privacy as “the right of an individual to be secure from unauthorised

disclosure of information about oneself that is contained in an electronic repository.”

These authors emphasised the risks of privacy violation in addition to the right to control.

Based on the aforementioned views, it is reasonable to conclude that a foundational

concept underpinning privacy is the right to exert control over how one’s personal data is

collected and handled. However, to exploit the advantages associated with recent

developments in big data technology, it is necessary to collect and analyse data, which

11

could result in privacy breaches. For this reason, many approaches have been proposed to

preserve individual privacy while handling personal data.

As shown in Figure 2-1, Stallings and Brown [23] classified privacy criteria into four

main classes: anonymity, pseudonymity, unlinkability, and unobservability. Anonymity

means that users cannot determine the identity of individuals bound to an operation or

subject. It includes anonymity without soliciting information, which requires that the

security function not ask for user identity. Anonymity needs to not conflict with

authorization and access control functions which are bound to computer-based user ID not

to personal user information. Pseudonymity means that users are unable to determine the

identity of individual bound to an operation or subject but that individual still accountable

for its actions.; pseudonymity include two sub criteria; reversible pseudonymity and alias

pseudonymity. Reversible pseudonymity requires the security function to be able to

determine the original user identity based on a provided alias while the alias pseudonymity

requires the security function to follow specific construction rules for the alias to the user

identity. Unlinkability refers to the inability to link data to a specific individual or to verify

if certain specified operations were caused by the same individual. Unobservability refers

to the inability to determine whether an individual's data is included in a shared dataset or

whether an operation is being conducted. Unobservability include three sub-criteria; 1)

allocation of information impacting unobservability which requires the security function

to create a specific safeguard to prevent the concentration of privacy-related information.

2) unobservability without soliciting information which requires that the security function

does not attempt to obtain any privacy-related information that could compromise

unobservability. 3) requires the security function to give one or more authorised users the

ability to see how resources and/or services are used. These criteria should be implemented

in any trusted system to ensure user protection against discovery or misuse of identity

Gavison [24] defined privacy based on three interrelated types of privacy: secrecy,

anonymity, and solitude. Secrecy refers to information that others may collect about us.

12

Anonymity refers to how attentive we are in public. and solitude assesses how much

physical access others have to us.

Figure 2-1: Aspects of Privacy [23]

2.1.2 Personal Data Classification

To understand the meaning and implications of the concept of identifiable

information, it is necessary to focus on Article 4(1)(a) of the GDPR, in which the concept

of personal data is defined as follows:

“Any information relating to an identified or identifiable natural person (‘data

subject’); an identifiable natural person is one who can be identified, directly or indirectly,

in particular by reference to an identifier such as a name, an identification number, location

data, an online identifier or to one or more factors specific to the physical, physiological,

genetic, mental, economic, cultural or social identity of that natural person.”

13

From this definition, a piece of individual data can be classified based on its nature as

one of four types: direct identifier, quasi-identifier, sensitive data, and insensitive

attributes. A brief explanation of each type is given as follows:

•  Direct identifier: These attributes contain pieces of information that uniquely and

directly distinguish individuals (e.g., full name, driver’s license, and social security

number).

• Quasi-identifier (QID): These attributes, when combined and linked with

external data, can re-identify (or reduce uncertainty about) all or some of the

respondents to whom the information refers (e.g., gender, age, date of birth, and

zip code).

• Sensitive attributes: These attributes are private and personal pieces of

information that could substantially influence privacy, and which must not be

linked to the data subject to which they belong (e.g., data relating to previous

illnesses, medical treatments, and income level).

• Insensitive attributes: If disclosed, insensitive attributes will not violate user

privacy. All attributes other than identifier, quasi-identifier, and sensitive attributes

are classified as non-sensitive attributes. Examples of insensitive attributes may

include purchase histories of goods, and mobility traces around sightseeing places

To demonstrate the importance of these attribute classifications, let us consider an

example. The medical histories of a group of people are shown in Table 2-1: Example of

Medical Data. The social security number attribute is a unique identifier that can be used

to explicitly identify an individual. Before publishing a dataset, it is necessary to remove

all direct identifiers. However, quasi-identifiers such as age, gender, and zip code also

have a significant impact on identification. While quasi-identifiers do not directly identify

an individual, they can provide a strong indication when linked with other publicly

14

available datasets. For example, a specific location (e.g., a post code) may contain only

one person of a particular gender, race, and age. According to a study conducted by

Sweeney [25], 87% of the population of the United States can be uniquely identified using

only the tuple (Date of birth, Gender, Post Code).

 Table 2-1: Example of Medical Data

ID Age Post code Gender Disease

12456 87 TW79FG F Ovarian Cancer

65432 65 BR 67FB F Ovarian Cancer

45546 48 BN54WN M Prostate Cancer

32658 55 SW01UB M Flu

76595 54 EW05HG M Heart Disease

87904 35 BS 97KJ F Heart Disease

To elaborate on the impact of quasi-identifiers, consider the sample of the voter

registration roll shown in Table 2-2. Even if the ID number is removed from Table 2-1:

Example of Medical Data before releasing it (as shown in the de-identified table) , it is

possible to link two tables using the quasi-identifier attributes, as shown in Table 2-3. For

each data tuple, this will generate a list of potential matches. In the medical release of

Table 2-1: Example of Medical Data, Charli and David are the only two males on the voter

registration rolls who fit a patient with heart disease. As result, it is possible to say with

50% certainty that Charli and David have heart disease. With background information

about Charli and David, an attacker could increase the probability of unique identification.

Likewise, Bob is the only person with the combination of age, zip code, and gender who

15

has prostate cancer. In this way, an individual can be uniquely identified, and sensitive

information may be fully compromised by combining two sources of information. Many

privacy preserving approaches have been proposed to resist this attack, known as a linking

attack, by generalising quasi-identifiers or transforming the released table to satisfy the K-

anonymity principle, which is discussed in more detail in the following section.

Table 2-2: Example of Voter Registration Rolls

Name Age Gender Post Code

Charli R. 54 Male EW05HG

Bob D. 48 Male BN54WN

Carol F. 55 Male TW80FD

Dan H. 44 Female ED90TR

Ellen M. 65 Female BN54WL

Anna S. 37 Female TW898VT

Sue G. 45 Female Bb65TR

David T. 54 Male EW05HG

Diana G. 34 Female SW01UB

Table 2-3: De-identified data

Age Post code Gender Disease

87 TW79FG F Ovarian Cancer

65 BR 67FB F Ovarian Cancer

48 BN54WN M Prostate Cancer

55 SW01UB M Flu

16

54 EW05HG M Heart Disease

35 BS 97KJ M Heart Disease

2.1.3. Privacy Preserving Principle

Privacy preserving refer to the methods for avoiding the unauthenticated disclosure

of information [26] include restricting access, restricting the data, and restricting the

output. Restricting access by withholding and not releasing data is a relatively simple

solution to the issue of privacy, but it completely eliminates the utility of available data.

This is a crucial limitation because, for example, it is critical in a medical context to share

useful information across research institutions. In the case of restricting the output, this

involves transforming the results of user queries while leaving the data unchanged. Finally,

restricting the data involves removing attributes or modifying the dataset with some form

of generalisation or perturbation of values to protect the identity of the data subject.

Regarding the restricted data method, this allows the sharing and distribution of data. The

available techniques used to restrict the data and the output draw on various approaches to

preserve data privacy, mostly for structured data. These techniques are as follows:

• Generalisation: This involves replacing a specific attribute value with a

general value. In this operation, some values are replaced by a parent value,

which is less specific in the taxonomy of attributes [27]. An example of this is

representing a job attribute of a programmer or software application developer

with the less specific generalised attribute of “Information Technology

Specialist” [26].

• Suppression: This operation involves replacing the value of a piece of data

with special characters (e.g., asterisks), which indicates that the values of an

attribute will not be disclosed[25]. Suppression can be applied at the record

17

level or attribute level. An example of suppression is for the zip codes

“2567459” and “2564435”, which can be suppressed as “256****”.

• Data swapping. Data swapping modifies records by switching a subset of

attributes between pairs of records[26].

• Macro-aggregation. In macro-aggregation, individual records are never

released, but aggregations of statistics over the population in the dataset are

released with some level of perturbation.

• Data redaction: This is a data substitution technique that enables the masking

(i.e., redaction) of data by removing or substituting all or part of the field value

[26].

• Randomization: randomization include noise addition and permutation. it is

a method of adding noise to the original data noise in order to make it hard to

guess original data [26].

2.1.4. Re-identification Risks

In this section, re-identification risks are classified based on the risk identified by

Art.29 WP [28], re-identification risks also known in the literature as disclosure risks [29],

are related to the many methods by which adversaries can identify data subjects within de-

identified data. Art.29 WP’s Opinion on Anonymization Technique suggests [30] that data

controllers should analyse the robustness of their de-identification method by considering

the following three risks:

• Singling out: This refers to the “possibility to isolate some or all records that

identify an individual in the dataset.”

18

• Linkability: Defined as the “ability to link at least two records concerning the

same data subject or a group of data subjects (either in the same database or

in two different databases).”

• Inference: This denotes the “possibility to deduce, with significant

probability, the value of an attribute from the values of other attributes.”

Regarding re-identification through linkability, it is worth mentioning that there are

three scenarios for linking de-identified records to an individual. The first scenario focuses

on a specific dataset with several records relating to the same individual; in this context,

an adversary identifies the data subject by linking the records together using some

additional information. In the second scenario, the individual’s records are contained in

multiple datasets, all of which are all held by the same entity. If an adversary has access

to all of the datasets within the entity (e.g., as in the case of an insider threat), they can link

the records of an individual. The third scenario occurs when the individual’s records are

contained in multiple datasets, but these datasets are held by different entities. Based on

these scenarios, it is possible to summarize the three types [31] of linkability risk:

• Local linkability: Denotes the possibility of linking records belonging to the

same data subject within the same dataset.

• Domain linkability: Refers to the potential to link records related to the same

data subject in two or more datasets that are in the data controller’s possession.

• Global linkability: Defined as the potential to link records that relate to the

same data subject in two or more of any datasets.

2.2 Privacy Preserving Approaches

Privacy preserving approaches are methods and tools used to release useful

information while protecting data privacy. Although various typologies of privacy

19

preserving approaches have been proposed in the literature, this study categorised them as

shown in Figure 2-2: Privacy Preserving Approaches. As indicated, there are two main

categories: Privacy Preserving Data Publishing (PPDP) and Privacy Preserving Data

Mining (PPDM).

2.2.1 Privacy Preserving Data Publishing

Privacy preserving data publishing, also known as non-interactive de-identification,

involves publishing an entire dataset in an anonymized and non-interactive form [32].

PPDP has been studied extensively in recent years and many approaches have been

proposed for different data publishing scenarios. In general, a data publishing-based

privacy preserving approach may consist of the anonymization approach, where identifiers

are irreversibly removed in the dataset, or the pseudonymization approach, where the

identifiers are replaced with pseudonyms that can be reversed.

Anonymization Approaches

Anonymization approaches, also known as group-based approaches, are traditional

techniques for privacy preservation where, to protect individual privacy, databases form

groups of tuples in a way that optimises data utility and/or privacy protection, after which

QID values are transformed to enforce an anonymization principle. The aim of these

approaches is to irreversibly prevent the identification of the subject to whom the

information belongs. This approach combines different methods to preserve data privacy

20

for structured data, including generalisation, suppression, and data swapping [33].

Figure 2-2: Privacy Preserving Approaches

One of the earliest group-based approaches was K-anonymity, which was introduced

by Samarati and Sweeney [34]. Subsequent researchers devised different methods for data

anonymization [35][36]. In the case of K-anonymity, this is defined as the property that

distinguishes each record from K−1 other records based on a quasi-identifier. It means

that at least K records are required in each equivalence class to achieve anonymity as

shown in Figure 2-3: K-Anonymity [39]. For example, if all records in a table satisfy the

requirement of K-anonymity, then for some value of K, a record can be identified with 1/K

confidence if quasi-identifiers are known. K-anonymity focuses on quasi-identifier

attributes and invests no effort in sensitive attributes. Consequently, it is susceptible to

multiple attacks, including homogeneity attacks [37] and background attacks [38].

21

Figure 2-3: K-Anonymity [39]

To overcome the limitations of K-anonymity, different algorithms, models, and

frameworks have been proposed. For example, the l-diversity privacy principle requires

that a sensitive attribute should include at least l well-represented values in each group of

the K-anonymized data to solve the issue of the homogeneity attack within K-

anonymization. To address the background knowledge problem associated with the l-

diversity technique, the idea of t-closeness was proposed [36]. It requires that attributes in

an equivalence class and table have a close distribution that does not exceed a threshold t.

The l-diversity, t-closeness, and other privacy technical models, which focus on the

protection of sensitive values in structured data, typically assume that there is one (or a

few) predefined sensitive attribute, which is not a realistic scenario for text data. Clinical

text documents usually consist of a group of unstructured (not predefined) sensitive

attributes, such as symptoms, conditions, test results, diagnosis, and treatments. Applying

the concept of l-diversity or t-closeness to sensitive attributes in data from medical

documents is difficult, if not impossible [40] [41] [42]. Furthermore, group-based de-

identifications are difficult to apply for structured big data because the reduction of

K = 2

22

information loss depends on the repeated scanning of the data during the anonymization

procedure, which may be complex for big data due to its characteristics [43].

Although the terms “anonymization” and “de-identification” are often used

interchangeably, there is a significant difference between them. Kushida et al. [44] stated

that the de-identification of data refers to the process of removing or obscuring any

personally identifiable information from individual records in a way that minimises the

risk of disclosure of the data subject’s identity. However, de-identified datasets can contain

encrypted identifiers where only authorised individuals have access to the encryption key.

The existence of a key makes it possible to recover the original data for users with correct

authorisation. Anonymization, on the other hand, refers to a data de-identification process

that produces de-identified data that cannot be reversed back to the original data.

Pseudonymization Approaches

Pseudonymization is a particular type of de-identification in which information that

directly identifies an individual such as (names, phone numbers, Social Security Number)

are replaced with pseudonyms. Pseudonymization enables linking personal data through

various dataset, when all identifiable information is consistently pseudonymized.

pseudonymization process can be reversible or irreversible. In reversible

pseudonymization data can be recovered when the link between original identities and the

pseudonyms is maintained or if the replacement done with an algorithm whose parameters

are known. It provides an option the de-identification process to be reversed at some time

in the future and re-identifying the data subjects. For example, identifiable information can

be encrypted with a secret key to create a pseudonym; decrypting the key reversed the

pseudonymization process, recovering the original identifier. In irreversible, the

pseudonymized data do not contain information that permits the link between the

pseudonymized data and the data subject to be re-established such as using one-way

23

function such as cryptographic hashing. Irreversible pseudonymization might overlap with

anonymization but it keeps the pseudonym consistent all across the resulting data set.

However, a well-known attack against it is the “rainbow attack”, where an adversary

recovers the plaintext using precomputed tables [45].

When the GDPR came into effect in 2018, it introduced the pseudonymization as

privacy preserving concept that is more restrictive than merely removing or masking direct

identifiers. GDPR define pseudonymization as

“The processing of personal data in such a way that the data can no longer be attributed

to a specific data subject without the use of additional information, as long as such

additional information is kept separately and subject to technical and organisational

measures to ensure non-attribution to an identified or identifiable person” [46]

In order to meet GDPR standard for pseudonymization, data controllers should

implement several technical and organizational measures to ensure that pseudonymous

data is disconnected from the key enabling re-identification.

Pseudonymization is encouraged and rewarded throughout the GDPR (will discussed

in more details over next section. For example, it is suggested by GDPR as protective

measure for processing data (e.g., for research or analysis) other than the data subject

consent. However, GDPR restricts a data handler's potential to benefit from

pseudonymized data if re-identification processes are "reasonably likely to be employed,

such as singling out, either by the controller or by another person to identify the natural

person directly or indirectly" [47] As a result, whether or not pseudonymization will result

in exemption from these GDPR obligations will be determined by the strength of the

method and implementation used.

24

2.2.2. Privacy Preserving Data Mining

Privacy preserving data mining refers to a group of methods that enable the extraction

of relevant knowledge from a large amount of data, all the while preventing sensitive data

or information from disclosure. In PPDM[45], data are not shared but are used instead for

statistical processing or machine learning. The calculated results may be released in the

form of statistical tables based on summarisation and aggregation, as well as classifiers

that implement machine learning algorithms. PPDM methods can be broadly classified

into perturbation-based and cryptographic-based approaches.

Perturbation-based Approaches

Perturbation-based approaches are characterised by the use of the e-differential

privacy techniques originally introduced by Dwork [48]. The privacy guarantee provided

by Differential Privacy (DP) is implemented via the addition of noise to the output of

the computation, thereby meaning that curious users cannot infer whether the individual

data was involved in the computation. Differential privacy sanitises the dataset in a way

that the query result cannot be used to infer much about a specific individual. It is defined

as follows:

A randomised function K satisfies e-differential privacy if for any two datasets 𝐷1 and

𝐷2, which differ in only one row for all S ⊆ range K, the following inequality holds:

Pr[𝑘(𝐷1) ⊆ 𝑆]

Pr[𝑘(𝐷2) ⊆ 𝑆]
 ≤ 𝜀 (2.1)

Where the S represents all potential output of K that could be predicted.It specifies

the amount of privacy protection. And parameter 𝜀 bounds the ratio of the probability

distributions of the two datasets 𝐷1 and 𝐷2. where the smaller value of 𝜀 the more difficult

it will be for an attacker to determine an individual’s data. Hence, this leads to better

protection.

25

Differential privacy provides a mechanism for obtaining useful information from

databases containing personal information without revealing the personal identities of the

individuals. This is achieved by adding noise to the query result using the Laplace

mechanism [48]. Analysts in DP are not given direct access to a database containing

personal information. Instead, an intermediary piece of software is introduced between the

database and the analyst called privacy guard to protect the privacy [49] . Figure 2-4

illustrates the process of differential privacy as follow:

1- The analyst can request the database via this intermediary privacy guard.

2- The privacy guard evaluate this request and other earlier request in term of

privacy risk

3- The privacy guard then obtained the result from the database.

4- Add some noise to the result based on the evaluated privacy risk and finally

provide it to the analyst.

The added noise is sufficiently large to protect the privacy and at the same time it is

sufficiently small to ensure that the information provided to the analyst is still useful.

Figure 2-4: Laplace Mechanism [49]

Cryptographic-based Approaches

Cryptographic-based PPDM approaches, also known as secure multiparty

computation (SMC) methods, allow the construction of a data mining model from

26

distributed data using cryptographic approaches that protect the discovery of individual

data items between the parties. [50] . The key component of these methods is the

algorithm, which uses cryptographic computations to duplicate a distributed data mining

algorithm without disclosing data from any site. It aims to produce the same results as

those mined from the original dataset.

The basic task of SMC is to compute functions over inputs provided by multiple

recipients without actually sharing the inputs with one another. To give a common

example, consider a situation where two individuals are interested in knowing who is

wealthier without revealing their net worth to one another. Abstractly, this problem simply

involves comparing two numbers, each held by one party, without either party revealing

its number to the other.

A well-known SMC technique is homomorphic encryption, which allows a set of

calculations to be conducted on ciphertext and subsequently generates an encrypted result

that matches the result of calculations to be conducted on the plaintext when decrypted.

Homomorphic encryption can be categorised as either partial homomorphic encryption or

fully homomorphic encryption. To compute specific purpose functions, partial

homomorphic encryption executes one sort of operation (e.g., addition or multiplication)

[51][52]. Fully homomorphic encryption was proposed by Rivest et al. [53] as a way to

execute a set of homomorphic operations, such as addition and multiplication.

Homomorphic encryption involves computationally expensive public-key procedures,

which scale inefficiently with increasing security parameters [54]. As discussed in [55],

while this technique provides strong privacy guarantees, it does not scale effectively for

large amounts of data due to the usage of heavyweight cryptographic operations between

parties.

To summarise, privacy is preserved in privacy-preserving data publishing by

employing privacy techniques that alter the original table to prevent information

27

disclosure. In contrast, in privacy-preserving data mining, privacy is maintained by using

privacy techniques that alter the result of the queries or the statistical tables. Each model

has both advantages and disadvantages, as summarised in Table 2-4.

Table 2-4: Comparison of privacy-preserving approaches (anonymization based) in terms of the employed privacy preserving

principle

Privacy

Model

Privacy

Preserving

Principle

Description Advantages & Disadvantages Applications and Domains

K-anonymity
Generalization,

Suppression

Anonymity is guaranteed by the

existence of at least other k-1

undistinguishable (with the QID)
records for each record in a

database. This group of k

undistinguishable records is referred

to as equivalence class.

[+] simplicity of definition

[+] great use of existing algorithms

[0-] Assumes each record is unique.

[-] sensitivity attributes are not taken into

consideration for anonymization

Wireless Sensor Network[56];

Location based services[57],

Cloud[58], E-health[28],

Public Transport [59]

l-diversity
Generalization,

Suppression

Expands the k-anonymity model by

requiring every equivalence class to

have at least 1 “well-represented”

value for the sensitive attributes

[+] Consider diversity of attributes

[-] does not consider distribution of sensitive value

that can cause privacy breach in skew distribution.

E-health [28],

Location-based service [60]

t-closeness
Generalization,

Suppression

Solves the l-diversity problem of

skewed sensitive values distribution

by requiring that distribution of the
sensitive values in each equivalence

class to be “close: to the

corresponding distribution in the
original table, where close means

upper bounded by a threshold t.

[+] takes into consideration the distribution of

sensitive values for equivalence class.

[-] the information about the correlation between
QID attributes and sensitive attributes is lost as t

decreases (as privacy increases)

Location-based service [61]

29

Table 2-5: Comparison of privacy-preserving approches in terms of the employed Privacy Preserving Principle

Privacy

Model

Privacy

Preserving

Principle

Description Advantages & Disadvantages Applications and Domains

Pseudonymiza

tion
Data redaction

Achieved by removing the

association between identifiable
data and the data subject and

introduces a new identifier that

establishes a bidirectional-mapping
between that subject and the new

identifier

[+] original data can be recovered by authenticated

user.
[+] easy to implement specifically for structured

data.

[-] weak pseudonym algorithm such as hashing is
vulnerable to rainbow attack.

[-] static pseudonymous is vulnerable to linking

attack.

Healthcare [62],Clinical trial

[12], Location-based service
[63].

e-differential

privacy
Randomization

Ensures that a single record does not

considerably affect the outcome of

the analysis of the dataset

[+] provides a formal privacy guarantee and a solid

privacy loss metric

[+] ensures that the participation of a single
individual does not result to a privacy violation

greater than the obtained from the non-

participation of the same individual.
[-] No guide to establish e as it is dependent on the

dataset.

[-] privacy guarantees can involve heavy data

perturbation for numerical data.

E-health [64], Smart meters

[65], Spatial crowdsourcing

[66], Wireless Sensor Network
[67]

Secure

Multiparty

Computation
Methods

Homomorphic

encryption

 [+] strong privacy guarantee

[-] have a large computational overhead

Cloud work load protection[68]

As mentioned earlier, most of the existing privacy-preserving techniques have been

developed long before GDPR requirements were established and filled to comply with

several of its provisions. In the next section, GDPR requirements for preserving individual

privacy will be discussed in more detail.

2.3.Data De-identification in GDPR

The new GDPR came into effect in 2018 and replaced the old EU data protection

legislation, the Data Protection Directive [69]. In the 1995 Directive, data is either personal

data (and, therefore, is subject to data protection regulations) or it is anonymous (and,

therefore, is not subject to data protection regulations). Unlike the 1995 Directive, the

GDPR recognises an intermediate level of de-identification by explicitly introducing the

concept of pseudonymous data. Furthermore, Article 11 [70] of the GDPR describes

another level of de-identified data. This section first discusses the GDPR principle for de-

identification and then outlines different levels of data de-identification within the GDPR.

2.3.1. GDPR Principles for Processing Personal Data

The GDPR sets out seven key principles relating to the processing of personal

data: lawfulness, fairness, and transparency; purpose limitation; data minimisation;

accuracy; storage limitation; integrity; and confidentiality and accountability.

This section discusses the three principles that are related to privacy preservation

through de-identification, namely:

• Data minimisation: Data processing should be “adequate, relevant, and

limited to what is necessary in relation to the purposes for which they are

processed.”

• Storage limitation: This limitation means that an individual's personal

data can be retained for no longer than is necessary to carry out the purpose

for which the data is processed, as mentioned in principles relating to

31

processing of personal data6 [1] of the GDPR. In particular, data can be

“kept in a form which permits identification of data subjects for no longer

than is necessary for the purposes for which the personal data are

processed; personal data may be stored for longer periods insofar as the

personal data will be processed solely for archiving purposes in the public

interest, scientific or historical research purposes or statistical purposes in

accordance with Article 89(1)” [2]

• Purpose limitation: This limitation restricts the use of personal data

beyond the purpose for which the data was originally collected, as

mentioned in principles relating to processing of personal data7 [1] of the

GDPR. In particular, data can be “collected for specified, explicit and

legitimate purposes and not further processed in a manner that is

incompatible with those purposes; further processing for archiving

purposes in the public interest, scientific or historical research purposes or

statistical purposes shall, in accordance with Article 89(1)” [2]

Article 89(1) specifies the circumstances in which the processing of personal data is

permitted, as well as the safeguards that must be in place, as follows:

“Processing for archiving purposes in the public interest, scientific or historical

research purposes or statistical purposes, shall be subject to appropriate safeguards, in

accordance with this Regulation, for the rights and freedoms of the data subject. Those

safeguards shall ensure that technical and organisational measures are in place in particular

in order to ensure respect for the principle of data minimisation. Those measures may

include pseudonymization provided that those purposes can be fulfilled in that manner.

Where those purposes can be fulfilled by further processing which does not permit or no

6 GDPR Article 5(e)
7 GDPR Article 5(b)

32

longer permits the identification of data subjects, those purposes shall be fulfilled in that

manner.”

The analysis of these new data protection principles indicates that GDPR principles

do not prevent the use of personal data for analytics or other useful secondary applications.

However, they require the implementation of new technical and organisational measures

to protect that data. The GDPR explicitly points to data de-identification as a measure that

can support meeting the requirements of several of its provisions.

2.3.2. The Three Types of Data in GDPR

This section introduces the three types of de-identified data that emerge from GDPR’s

principles analysis, and it interprets their underlying meanings.

Anonymized data: Refers to data that do not relate to “an identified or identifiable

natural person or to personal data rendered anonymous in such a manner that the data

subject is not or no longer identifiable” [47] . For example, the data can be aggregated to

a larger level or transformed into statistics such that the individuals whom the data describe

remain anonymous.

To assess the possibility of identification, all reasonable means for converting the data

back to an identifiable form must be considered. Such singling out can identify the nature

of a person either directly or indirectly. It is necessary to take into account factors such as

the cost and time required for identification, as well as the available technologies.

Anonymized data do not consider personal data, and so are not subject to data protection

regulations.

Pseudonymized data: Refers to data that have been processed in such a way that “the

personal data can no longer be attributed to a specific data subject without the use of

additional information, provided that such additional information is kept separately and is

subject to technical and organisational measures to ensure that the personal data are not

33

attributed to an identified or identifiable natural person” Article 4 [46]. In other words,

Pseudonymized data are de-identified data that relate to an individual but do not reveal the

identity of that individual; these data do not include any identifiers, and they cannot be

directly linked to the data subject. However, there is a known way (algorithm, pseudonym,

or key) to allow the data controller to link or re-link Pseudonymized data with identifying

data.

To understand the GDPR definition, it is important to distinguish between the two

terms “identified” and “identifiable.” A person is generally considered to be identified if

the data can be linked to their true identity. On the other hand, the term “identifiable” refers

to the ability to identify a person who has not been identified but rather is characterised in

the data in such a way that they can be discovered if research is carried out using additional

information (e.g., a key) or background information. This explains why Pseudonymized

data – at least potentially – is still regarded as personal data and, as such, is subject to data

protection regulations. However, pseudonymization is highly encouraged across the

GDPR. For example, under Article 89(1) [2] , pseudonymization is recommended as an

“appropriate safeguard” that must be in place for retaining or processing data for archiving

purposes in the public interest, for scientific or historical research purposes, or for

statistical purposes.

Article 11 data: Refers to de-identified data that meet the standard set out in Article

11, which relates to whether the “controller is able to demonstrate that it is not in a position

to identify the data subject.” First, Article 11(1) [70] states, “If the purposes for which a

controller processes personal data do not or do no longer require the identification of a

data subject by the controller, the controller shall not be obliged to maintain, acquire or

process additional information in order to identify the data subject for the sole purpose of

complying with this Regulation.”

34

Additionally, Article 11(1) [70] specifies that in such cases, if the “controller is able

to demonstrate that it is not in a position to identify the data subject.” Article 11 data are

de-identified data that may include pseudonymized data, which are data related to an

individual but that do not reveal the identity of the individual, do not include any

identifiers, and cannot be directly linked to the data subject. In contrast with

pseudonymized data, there is no known way for the data controller to reverse the

pseudonymization process. An example is when one data controller pseudonymises data

and transfers it to another data controller who does not have access to the additional

information. The GDPR specifies that de-identified data that meet the Article 11 standard

do not need to comply with specific rights of the data subject, including the right of access

[71] , rectification [72], erasure [73], processing restrictions [74], data portability [75] .

The three levels of de-identified data used in this chapter and described above

summarised in Table 2-6 as follows:

Table 2-6: Summary of the De-identified Data under GDPR

 Anonymized

data

Pseudonymized data Article 11

Directly linked to identifying data No No No

Known way to re-identify No Yes No

Considered personal data No Yes Yes

2.3.3. Effectiveness of Data Sanitization Techniques to Mitigate Re-

identification Risk

Article 29 WP [30] classifies data sanitization approaches into randomization,

generalization, and masking direct identifiers. k-anonymization, L-diversity, and t-

closeness are included in generalization. Noise addition, permutation, and differential

privacy are included in randomization, while pseudonymization is included under the

35

masking method. This section discusses the robustness of the sanitization methods in

relation to singling out, inference, local, domain, and global linkability risks.

• k-anonymization: In k-anonymization, an individual record is

distinguished from k−1 other records based on a quasi-identifier. This

method mitigates singling out and local linkability risks because the

possibility of connecting two records to the same data subject is less than

1/k. Significantly, k-anonymization cannot eliminate domain and global

linkability risks, as shown in Section (2.1.2), given that it is possible to

link records from an anonymized medical dataset with records from a voter

registration dataset using an intersection attack.

• L-diversity: The key enhancement of l-diversity over k-anonymity is that

it guarantees that the sensitive attribute in each equivalence class (i.e., the

k group) has a minimum of l different values. As a result, it eliminates the

risk of inference to a probability of no more than 1/l. However, it is similar

to k-anonymity in that it cannot mitigate domain and global linkability

risks; this is because records can still be linked together if they have the

same sensitive attribute values.

• T-closeness: This sanitization procedure requires that attributes in an

equivalence class and table have a close distribution that does not exceed

a threshold t. Similar to the previous techniques, t-closeness can mitigate

singling out and inference attacks, but global linkability is still an issue.

• Randomization: This technique involves adding noise or shuffling the

values of attributes within the dataset, making the values of such attributes

less accurate or imprecise. The method, however, cannot mitigate risks

associated with local, domain, and global linkability. Indeed, this method

36

only reduces the reliability of linking records to the data subject as the

attribute value is inaccurate.

• Differential privacy: This implies that based on the query result, it is

impossible to determine whether a data subject is included in a dataset.

When numerous inquiries on one or more datasets are permitted, the

queries must be monitored and the noise appropriately adjusted to

guarantee that adversaries cannot infer more information based on the

results of multiple queries. Hence, “may not” is assigned to the risks based

on whether queries are monitored.

• Pseudonymization (static pseudonym): This technique uses

cryptographic techniques such as hashing to mask identifiable information

to reduce the linkability between the records and data subjects. However,

if only direct identifiers are masked, it is possible to single out an

individual within the dataset using quasi-identifier attributes. It is also

possible to link the data subjects with records in one or more datasets if

the same pseudonym is used for the same record or attribute. Hence,

pseudonymization using static pseudonyms is susceptible to domain and

global linkability risks.

• Pseudonymization (dynamic): This technique replaces identifiable

information with dynamic pseudonyms that change for the same attributes,

thereby disassociating the attributes from the data subject and preventing

susceptibility to singling out risk. Furthermore, local and global linkability

risks might be eliminated if the direct and indirect identifiers are replaced

with dynamic pseudonyms, as well as if organizational and security

measures are implemented, thereby ensuring that pseudonymous data are

disconnected from the key that enables re-identification. Therefore, “may

37

not” is assigned to the risks depending on whether security measures are

implemented for the re-identification key.

Table 2-7 summarizes the risk assessment for each data sanitization technique in terms

of re-identification risks.

Table 2-7: Robustness of data sanitisation methods against risks

 Singling

out risk

Local

linkability risk

Domain/global

linkability risk

Inference

risk

K-anonymity No No Yes Yes

I-diversity No No Yes No

t-closet No No Yes No

Randomization Yes Yes Yes Yes

Differential privacy May not May not May not May not

Pseudonymization(static) Yes Yes Yes Yes

Pseudonymization(dynamic) May not May not May not May not

2.3.4 Obligations Under the GDPR

The GDPR imposes a variety of obligations. This section examines six key GDPR

obligations to illuminate how pseudonymization and anonymization influence their

applicability.

1. Provide Notice to the Data Subject (Right to be Informed)

Transparency is a fundamental principle of data protection rules, along with the

obligation to inform data subjects about the collection, use, and disclosure of personal

information. The GDPR requires the data controller to provide comprehensive details

to the data subject about their purposes for processing data, the retention period, and

38

who data will be shared with [76] [77] [71]. In its language, the GDPR does not

distinguish between fully identified personal data and pseudonymized personal data.

Consequently, this obligation applies to both pseudonymized data and Article 11 data.

However, the obligation does not apply to anonymized data as it is not considered

personal data.

2. Consent and the Legal Basis for Processing

The GDPR requires the existence of a legal basis for the processing of personal

data, such as explicit consent from the data subject [78]. However, obtaining explicit

consent can be challenging and impractical in some cases, with examples including

big data mining and machine learning research.

Article 89(1) of the GDPR identifies pseudonymization as one of the protective

measures that controllers can use to evaluate the feasibility of further processing of

personal information for a secondary use, specifically where “processing for another

purpose is compatible with the purpose for which the personal data are initially

collected” [2]

Therefore, in some circumstances, pseudonymized data, including Article 11 data,

can be processed on a basis other than the consent of the data subject. Fully

anonymized data are outside the scope of the GDPR and, hence, they are free of these

obligations.

3. Data Subjects’ Rights

The GDPR establishes a new right for data subjects, enabling them to request the

deletion of personal data. This is known as the “right to erasure” or the “right to be

forgotten.” [73] If specific conditions are met, data controllers must react to such

requests and delete personal data “without undue delay.” Implementing such a right

can be difficult, especially if many copies need to be located, mapped, and deleted.

39

For example, in a clinical trial that maintains data only about each patient’s ID,

gender, and age, it would be difficult to find and map a specific record to delete it.

Additional rights given to the data subject under the GDPR include the rights of

access [71], rectification [72], and data portability [75], along with the right to object

to the processing of personal data [74]. Similar to the right to be forgotten, complying

with these rights can be challenging. However, data that is de-identified based on

Article 11 [70], where the “controller is able to demonstrate that it is not in a position

to identify the data subject,” is exempt from this obligation; in such cases, it is not

necessary to comply with the data subject rights such as request of data deletion or

processing restrictions.

4. Data protection by default and by design

The GDPR introduced a new requirement known as data protection by design and

by default. This requires the data controller to “implement technical and

organizational measures such as pseudonymization, which are designed to implement

data-protection principles, such as data minimisation” [79]. The GDPR further states

that this should be undertaken at the earliest stages of the design of the processing

operations. These principles are required for both identified and pseudonymized data.

However, since pseudonymization is mentioned as an organizational measure to

satisfy or to meet the data minimisation requirement, it will at least partially fulfil the

criterion of data protection by default.

5. Data Breach Notification

In the event of personal data breaches, the GDPR adds new rules for informing

supervisory authorities and/or data subjects. The data controller must alert supervisory

authorities to the personal data breach unless it is “unlikely to result in a risk to the

rights and freedoms of natural persons” [80]. It is also necessary for the data controller

40

to inform the data subject, if “the personal data breach is likely to result in a high

risk to the rights and freedoms of natural persons” [81] .

The risk assessment for this obligation depends on the level of de-identification.

For example, fully identified personal data will definitely lead to high risk if it is

breached, and so a notification is required in this case. The GDPR acknowledges that

the use of pseudonymization can “can reduce risks to the data subjects concerned and

help controllers and processors meet their data-protection obligations.” [82]. Thus,

pseudonymization can help data controllers to mitigate their breach notification

obligations. In other words, while the breach notification is required in the case of

identified data, it is less likely to be required in pseudonymized data, and for fully

anonymized data, it is not required at all.

6. Data Retention Limitations

As mentioned in Section 2.3.1 , the imposition of storage limitations is an essential

principle under the GDPR. In particular, data controllers are required to retain data no

longer than is necessary to carry out the purpose for which the data were collected.

However, in some circumstances, data can be retained for a longer period [1] such as

for conducting scientific or statistical research, and also when appropriate safeguard

measures are implemented (e.g., pseudonymization). Once again, fully anonymized

data are not considered personal data and can be retained indefinitely.

 Table 2-8 below highlights the advantages of each type of data and illustrates whether

or not the different obligations under the GDPR apply. To Sum up, pseudonymisation

serves as vehicle to relax certain data controller obligation including: lawful repurposing

‘further processing’ in compliance with GDPR limitation principle, Archiving data for

statistical or scientific research processing and for reduce notification obligation in case

of data breach. It also can be used as technical protective measure to reduce the risk within

the meaning of privacy by design.

Table 2-8: Summary of different types of data and obligations required

Different Obligations under

the GDPR

Anonymized

data

Article 11 Pseudonymized

data

Provide notice to data subject Not required Required Required

Consent and the legal basis for

processing

Not required Potentially

helps

Potentially helps

Some data subject rights Not required Not required Required

Data protection by design Not required Met Met

Data breach notification Not required Less likely

required

Less likely required

Data retention limitation Not required Potentially

helps

Potentially helps

The above discussion and summary table clarify that the new rules and privacy

principles introduced by the GDPR do not restrict the use of personal data for analytics or

other useful secondary applications. However, they do necessitate the implementation of

new technical and organizational safeguards to preserve the privacy of data subjects. One

of these measures is strong pseudonymization, which can involve encrypting identifiable

information to reduce the risk of identifying the data subject. In the next section, an

examination is given of well-known encryption approaches, along with an evaluation of

their feasibility regarding their use in data de-identification.

2.4. Cryptography

Cryptography is a research field in mathematics and computer science that is

concerned with the use of techniques to secure the transfer of messages between two

parties. Cryptography consists of a set of processes or functions that involve the use of

keys to encrypt plain text, ensuring that only the intended recipient of a message can read

and process it. Cryptographic algorithms can be divided to classic and modern cipher.

Classic ciphers are character-oriented ciphers which can only be used to encrypt text.

Modern ciphers on the other hand are bit-oriented ciphers that can be used to encrypt any

form of data. More detail about each type can be found in Appendix V .The most popular

examples of modern ciphers are Advanced Encryption Standard (AES) and Data

Encryption Standard (DES). AES uses permutation-substitution structure , which involves

a series of substitution and permutation processes to produce the encrypted block. DES

uses the Feistel network structure which divides the block into two halves before starting

the encryption steps [83]. Most of the existing encryption algorithms are driven by these

structures. However, the cumbersome key management and distribution of these

approaches do not provide a suitable level of scalability specifically in big data emerging

application [84] . Therefore, more lightweight and practical alternatives need to be

developed [14].

43

More detail about the encryption structure for AES and DES can be found in

Appendix V

2.4.1 Cryptography Evaluation and Performance Criteria

Encryption algorithms are usually measured and evaluated based on the criteria of

security and performance, the latter of which is easier to measure. Typically, performance

is measured by computing the encryption execution time, which can be achieved by

calculating the time taken by an encryption algorithm to processes a file during encryption

and decryption. In addition to speed, encryption algorithms also are evaluated according

to resource requirements (e.g., memory consumption during the encryption process and

the size of the generated ciphertext).

Security, on the other hand, is a comparatively difficult criterion to assess in relation

to encryption algorithms because there is no absolute judgment about whether a certain

algorithm is secure. Usually, the designers of encryption algorithms perform security

analyses when they publish their work, and they generally claim that the design is secure

until successful cryptanalysis is published demonstrating that the algorithm is no longer

secure. Cryptanalysis of this kind often aims to identify weaknesses in the algorithm,

where the intention is to exploit the part/round where the cipher fails to satisfy the diffusion

or confusion properties discussed at the beginning of this chapter. In general, the security

analysis of encryption algorithms is performed by applying statistical and analytical tests

that measure the levels at which confusion and diffusion are satisfied. The next section

describes and explains several of these statistical and analytical tests.

• The Avalanche Effect

The avalanche effect is a desirable feature of any cryptographic algorithm, which

attempts to reflect the idea of high nonlinearity [85]. If a significant level is not

demonstrated during an avalanche test, then the algorithm’s randomisation is inadequate;

44

this can allow a cryptanalyst to make predictions about the plain-text only from the given

cipher-text. For an algorithm to satisfy the avalanche criterion, a slight change in the input

(flipping a single bit in either the plain-text or the key) produces a significant change in

the output (at least half of the bits are flipped) [86]. When the avalanche property is

satisfied for an algorithm then it is said to exhibit a good diffusion.

• Bit Independence Criterion (BIC)

The BIC states that each pair of bits in the cipher-text for a cryptographic algorithm

should be bit-independent. Webster and Tavares [87] defined the BIC for a cryptographic

algorithm as follows: a function satisfies the BIC if any input bit i is inverted in the plain-

text or the key, then the output bits j and k in the cipher-text must change independently.

If the BIC is satisfied, then it is challenging to infer one value of the sequence from the

others. The absolute correlation coefficient can be used to describe the bit independence

(BI) between bits j and k in the cipher-text as follows:

𝐵𝐼 (𝐶(𝑥𝑗), 𝐶(𝑥𝑘)) =

𝑐𝑜𝑟𝑟(𝑥𝑗
1 … … … 𝑥𝑗

𝑖 … … 𝑥𝑗
𝑁), (𝑥𝑘

1 … … … 𝑥𝑘
𝑖 … … 𝑥𝑘

𝑁) (2.2)

 where 𝐶(𝑥𝑗) and 𝐶(𝑥𝑘) denote the 𝑗𝑡ℎ and the 𝑘𝑡ℎ bits in the cipher-text, and 𝑥𝑗
𝑖 and 𝑥𝑘

𝑖

denote the value of 𝑗𝑡ℎ and 𝑘𝑡ℎ bits in the cipher-text when 𝑖𝑡ℎ changes in the plain-text.

To judge the results, according to Cohen [88], the value of the outcome is summarised

as follows:

1. If the result is 0.5, then the relationship between 𝐶(𝑥𝑗) and 𝐶(𝑥𝑘) is strong.

2. If the result is 0.3, then the relationship between 𝐶(𝑥𝑗) and 𝐶(𝑥𝑘) is moderate.

3. If the result is 0.1, then the relationship between 𝐶(𝑥𝑗) and 𝐶(𝑥𝑘) is weak.

45

• Frequency Analysis

In cryptanalysis, frequency analysis refers to the study of the frequency of characters

in a cipher-text. Frequency can be visualized using histograms [89], where the distribution

of the characters in the document is graphically represented. In other word certain letters

and combinations of letters occur with varying frequencies. For example, vowel A, E, I,

O, and U are the most frequently occurring characters in the text while Z, Q and X are

rarely occurring characters. Likewise, TH, ER, ON, and AN are the most common pairs

of letters in the text. Figure 2-5: Letter and their Relative Frequency [90] shows English

letter and their relative frequency. An adversary can use frequency analysis to discern the

key or plain-text; this type of attack is called a statistical attack. To prevent such attacks,

the distribution of each character should differ in both the plain-text and cipher-text. Also,

the histograms for the plain-text and cipher-text should not be statistically similar.

Furthermore, the histogram for the cipher-text should be relatively uniform, meaning that

it will not supply any useful information related to the plain-text under the use of

cryptanalysis. Then the differentiate cryptanalysis be more difficult.

46

Figure 2-5: Letter and their Relative Frequency [90]

In addition to the statistical and analytical tests mentioned above, the encryption

algorithm's strength can be measured by its robustness against attacks. In the next section,

different attacks are discussed.

2.4.2. Security against Attacks

A cryptographic attack is a means of breaking a cryptographic system's security by

identifying a flaw in a code, cipher, or key management mechanism. This procedure is

also known as cryptanalysis. A description of some known attacks is given in the following

section.

Brute Force Attack

A brute force attack, also known as an exhaustive search, is an attack in which

every potential key is tried in an attempt to decrypt the code. Theoretically, brute force

attacks can work against almost every symmetric encryption algorithm, but in practice,

47

these attacks are generally ineffective. This is because as the key size increases, brute

force attacks become time-consuming. For example, if an adversary knows that the key

size involved in a cryptosystem is 10 bits long, they can examine 210 different keys,

which is feasible. By contrast, if the key length is 128 bits, it is necessary to try 2128

potential keys, which is widely considered out of reach even for today’s most advanced

technology. In the latter case, even a computer capable of executing billions of

operations per second would require billions of years to examine every key [91].

Differential Cryptanalysis

Differential cryptanalysis was introduced in 1990 by Biham and Shamir [92]. It is

a chosen-plaintext attack in which the adversary selects plaintexts and then performs

encryption with the same key for each, where the key is unknown to the adversary. The

plaintexts are in pairs in this context, and each plaintext has a specified difference

relative to its paired plaintext.

Consider the two plaintexts 𝑃, 𝑃̌ = 𝑃 ⊕ 𝑋𝑝 with their corresponding

ciphertexts 𝐸𝑛𝑐𝑘(𝑃) = 𝐶, 𝐸𝑛𝑐𝑘(𝑃̌) =𝐶̌ . Let 𝑋𝐶= 𝐶 ⊕ 𝐶̌ . If there exists a value 𝑋𝐶

that occurs with a higher probability than would be if C and P were selected

independently at random and not related through the encryption algorithm, then the

cipher function can be differentiated from a random function. In this scenario, the

differential relation is often used to retrieve part of the secret key.

Pr [𝐸𝑛𝑐𝑘(𝑃) ⊕ 𝐸𝑛𝑐𝑘(𝑃 ⊕ 𝑋𝑝) = 𝑋𝐶] =
1

2
+ 𝛽 𝑤ℎ𝑒𝑟𝑒 𝛽 >

1

2
 (2. 3)

Meet-in-the-Middle Attack

The meet-in-the-middle attack was developed in 1977 by Diffie and Hellman, as

explained in [93]. It is a type of known-plaintext attack in which the adversary knows

some part of the plaintext and its corresponding ciphertext. The adversary tries to go

from both ends (i.e., plaintext and ciphertext) to an intermediate state. Thus, the

48

adversary encrypts the plaintext 𝐸𝑛𝑐(𝑃, 𝑘1) for a number of iterations, after which the

ciphertext 𝐷𝑒𝑐(𝐶, 𝑘2) is decrypted for some iterations, to attain the same middle state

of the cipher. This can be written as follows:

𝐸𝑛𝑐(𝑃, 𝑘1) = 𝐷𝑒𝑐(𝐶, 𝑘2) (2. 4)

Where C is the ciphertext corresponding to the plaintext P, both of which are known

to the adversary.

The initial stage in the attack is to generate a table that contains all potential values

for one side of eq. (2.4). In turn, the values are computed for the opposite side of eq. (2.4),

after which they are compared to the values for the first side of the equation and saved in

the table. The adversary looks for a pair of secret keys, 𝑘1 and 𝑘2, for which the value of

𝐸𝑛𝑐(𝑃, 𝑘1) in the table equals the computed value of 𝐷𝑒𝑐(𝐶, 𝑘2).

2.5. Dynamic Key

Dynamic keys are one-time symmetric cryptographic keys that form a series of keys

[75]. Every plaintext in the system is encrypted using a different cryptographic key, much

like a one-time pad. As a result, any effort to compromise the cryptographic system by

reusing a compromised key will be identified easily. The dynamic keys are created offline

by participating parties rather than being distributed across the parties. Unlike session

keys, which are transferred between parties during each session, there is no key exchange

at every session or transaction. A dynamic key generation system is used to generate a

series of dynamic keys from initial parameters. The initial parameters can be exchanged

only once at the start of the session using the key exchange protocol. A mathematical

representation of a series of dynamic keys is as follows:

𝑛 ∈ 𝑁, 𝑛 > 1, {𝐷𝐾𝑖} = {𝐷𝐾1, 𝐷𝐾2, … . . , 𝐷𝐾𝑛} (2. 5)

Where 𝑛 is the number of dynamic keys in a sequence.

49

The sequence of dynamic keys must be as secure as possible against cryptanalysis

attempts. In other words, recovering one or more cryptographic keys in the sequence

should not recover the entire series and, in this way, undermine the whole system's

security.

The condition that underlies the dynamic generation scheme can be explained

mathematically as follows: for every algorithm A, the highest probability that A can

correctly guess the current dynamic key 𝐷𝐾𝑚 from the previous dynamic keys 𝐷𝐾𝑖 is S,

where 𝑠 denotes the bit length of 𝐷𝐾𝑚.

∀ 𝑖, 𝑚 ∈ 𝑁 1 < 𝑖 < 𝑚, 𝑃(𝐴{𝐷𝐾𝑖}) = 𝐷𝐾𝑚 ≤
1

2𝑆 (2.6)

The produced sequence must have the following characteristics:

1. The dynamic key sequence must be unique to both the sender and the recipient. To

meet this criterion, the scheme must generate the same series of dynamic keys using

the same initial parameters.

2. Compromising prior dynamic keys must not expose current and future dynamic keys

in the sequence to vulnerability. An adversary must not be able to compute any other

dynamic keys 𝐷𝐾𝑛+1 from one or more previous compromised keys 𝐷𝐾𝑖 , 1 ≤ 𝑖 ≤

𝑛. In other word, compromising previous dynamic keys must not create vulnerability

for current or future dynamic kyes

2.6. Lightweight Cryptography Discussion

Several emerging applications have stringent service quality requirements, such as

latency and performance [94]. Conventional symmetric-key encryption algorithms

include DES [95], based on Feistel Networks, and AES [96], based on Substitution

Permutation Networks. These encryptions require a round function that iterates for a

50

relatively large number of rounds to enhance security. For example, AES requires ten

rounds for a key size of 128-bit, 12 rounds for a key size of 192-bit, and 14 rounds for a

key size of 256-bit. Relying on traditional security in these scenarios may cause an

overhead in terms of latency and resources. It also comes with cost utilization. An

empirical study conducted by Masoud et al. [97] demonstrated how the high-power cost

of implementing encryption algorithms like AES, Blowfish, DES, and RC6 is crucial to

developing or modifying a lightweight and low-cost encryption solution. They state that

the MixColumn operation in the AES algorithm is considered the most costly operation

and consumes a vast amount of energy. In some cases, it may be unavailable or expensive

to achieve, leading to low uptake of the solution [98].

Several systems and approaches have been proposed to reduce the required

computational resources and latency to overcome the limitations of big data encryption.

Bansod et al. [99] proposed a new lightweight compact encryption system based on bit

permutation instruction group operation. They developed a new hybrid system with more

compact results in terms of memory space and gate equivalents in embedded security.

The authors frequently noted that conventional algorithms such as DES and AES

consume substantial memory and would be tricky to implement in an embedded system

scheme.

To address key generation and management issues, Aljawarneh et al. [100] proposed

a multithreaded encryption system for securing big data that generates the key from the

plaintext. In this work, the encryption algorithm combined the Feistel network, AES with

substitution boxes, and a genetic algorithm. First, the input file is divided into several

equally sized blocks, and then each block is split into plaintext and key parts. The Feistel

network produces a cipher key that is used in the AES component and the genetic

algorithm. The algorithm was evaluated using medical-based multimedia big data and

compared to existing standard encryption algorithms in terms of runtime and avalanche

effect with promising results. Dawood et al. [101] proposed a new symmetric block cipher

51

model for securing big data. It uses a 512-bit block size and a key length of 128 bits, which

can be expanded to up to 512 bits. The cipher supports high key agility and relatively fast

encryption speed. However, it is designed with the heavy weight of eight degrees of

polynomial equations and three layers of four iterated stages, which makes the encryption

a heavyweight process. Lightweight Dynamic Crypto (LWDC)[102] is another block

cipher that was proposed to address the speed requirements of modern applications.

Encryption and decryption use simple XOR operations followed by substitutions and

transpositions along with Cryptographically Secure Pseudo Random Number Generators

(CSPRNG) to generate and share the shared value. The cipher outperforms AES in

execution time and the CSPRNG puts the cipher on the level of modern symmetric

encryptions. For lightweight encryption, Msolli et al. [90] suggested a 5 rounds AES

encryption algorithm for multimedia and real-time applications in a wireless sensor

network. By reducing the number of encryption rounds, their aim is to reduce the execution

time of encryption process. The security analysis histogram of the method shows good

encryption and randomness. However, there are many reported attacks [103] [104] on 7

rounds of AES-128 which makes this work critical in term of security and cryptanalysis.

Selective data encryption is considered a way of reducing computing cost while

protecting data in clouds. For example, Gai et al. [105] attempt to address the privacy

concern that arises from unencrypted transmissions of large amounts of data. They propose

a new model that aims to maximise the privacy protection scope by using a selective

encryption strategy within the required execution time requirements. To deal with the

computation workload caused by large-volume data, this method gives encryption priority

to data that carry sensitive information. It uses a Dynamic Encryption Determination

(DED) algorithm to dynamically select data packages that can be encrypted under different

timing constraints. An encryption technique known as SEEN was developed by Puthal et

al. [106] to secure big data streams. This technique employs the selective encryption

concept, based on the sensitivity level of the data, to make a trade-off between security,

52

performance, and resource utilization. The technique also enables the adaptation of

different keys based on three levels of data confidentiality, namely, no confidentiality,

partial confidentiality, and strong confidentiality, and employs a standard shared key

initialized and updated by the data stream manager without the need for retransmission.

The method was compared to AES-128 and AES-192 to evaluate its performance and

security. The results indicate that the method is faster than the AES-128 and AES-192

protocols while offering the same level of security. To protect medical images, Khashan

and AlShaikh proposed a lightweight selective encryption scheme [107] incorporating

edge detection, one-time pad, and chaotic map approaches. The approach is based on a

single round of encryption that employs edge detection to determine which edge map from

an image to use. The original image is then classified into non-blocks of pixels, with the

blocks containing the optimal pixel position, based on a threshold value, being considered

for the encryption process. Analysis of this method reveals that it is significantly efficient

in terms of the time required to encrypt the data and robustness against attacks.

Although selective encryption represents one of the most promising solutions for

lowering data protection costs while maintaining adequate data security, the majority of

selective encryption algorithms proposed in the literature use static definitions of

encrypted parts and encryption parameters [108][109][107]. This property restricts the

algorithm's applicability to a small set of applications. It would be ideal to have the

capacity to dynamically define the encrypted portion and encryption parameters in

response to different applications and requirements.

Dynamic keys have been used in several encryption approaches to overcome multi-

round computational complexity [75] [113] [81]. These approaches follow a dynamic

structure where the structure of all cipher primitives, such as substitution and permutation

tables, changes depending on the dynamic key, which allows a reduction in the number

of rounds, leading to a reduction in computational overhead without lowering the security

level [110]. A single-round structure cipher to encrypt two blocks at a time was proposed

53

in [98]. The mode of operation is based on the dynamic key approach, whereby blocks

are selected and mixed according to a dynamic permutation table. A similar approach was

adopted in [114], where a lightweight cipher schema generated a dynamic key for each

input message by hashing the session key.

Chaos theory was recently used in cryptosystem design [112] due to its desirable

features, such as pseudo-randomness, complexity, and sensitivity to initial parameter

changes [115]. The author in [116] proposed a single round chaos-based image encryption

algorithm with orbit perturbation and dynamic state variable selection mechanisms. In

this encryption, the orbit of the chaotic map is continuously perturbed by the previously

processed pixel using an auxiliary variable, and one of two state variables produces the

keystream. Consequently, the keystream relies not only on the chaotic map's initial state

and control parameter but also on the information in the plain and cipher images. Thus,

the technique is sensitive to both images. Jallouli et al. [117] proposed a stream cipher

that uses a combination of multiple chaotic maps for improved robustness, security, and

complexity. However, most of these schemas have various limitations, such as

vulnerability to classical attacks [118] and complexity of floating computation and

hardware implementation [119]. Recently, Ding et al. [120] attempted to overcome the

chaos problem by proposing a chaos-based algorithm that utilises a logistic map alongside

nonlinear feedback shift registers. The algorithm has been analysed using conventional

cryptanalysis as well as a statistics-based experiment and the results were encouraging.

Other studies have attempted to hybridise chaos theory with existing encryption

algorithms, such as AES [121] and S-AES [115] and DNA encoding techniques [122]. In

these studies, chaos theory was used to produce the encryption keys, or the permutation

tables used for encryption. For example, A lightweight encryption algorithm called

LCHAOSAES based on AES and chaotic sequences proposed in [123]. This work aims to

improve efficiency by reducing the number of AES rounds. In addition, Logistic and Tent

chaotic systems are used to generate dynamic keys for encryption in order to make the

54

algorithm more secure. The results showed a significant reduction in execution time when

compared to AES-128. However, there is still a lack of security analysis in this work to

prove its strength.

DNA computing has entered the field of cryptography due to the massive parallelism,

storage, and ultralow power efficiency of DNA molecules. Several encryption algorithms

that combine chaos and DNA computing have been proposed [124] [125]. The core of

these algorithms is DNA encoding and DNA computing and contains algebra and

biological processes, such as the complementary pairing rule, DNA addition, DNA

subtraction, and DNA XOR. In [126], a new encryption algorithm was proposed using

Lorenz and Chen’s chaotic systems [127]to generate chaotic sequences along with DNA

operations. The use of the chaotic system and DNA coding to confuse and diffuse audio

files was presented in [128]. The algorithm uses Piecewise Linear Chaotic Map

(PWLCM) to generate chaotic sequences and SHA-256 to generate the initial values based

on the original audio. To create encrypted audio, the DNA matrix created by dynamic

coding is XORed with the key DNA matrix created by the chaotic sequence. Compared

with the existing algorithms, the algorithm has a large key space, strong key sensitivity

and can resist different attacks.

However, recent cryptanalysis of DNA-based encryption algorithms have revealed

security vulnerabilities in some algorithms. For example, the algorithms developed by

Liu et al. [129]that used DNA encoding and a 1D Logistic map were broken by Ozkaynak

et al. [130] using a chosen-plaintext attack and obtaining the secret key by four chosen

plain images. Liu et al. [131] re-evaluated the algorithm's security and found two flaws:

the encryption scheme's insensitivity to plain images and the inability to withstand

known-plaintext and chosen-plaintext attacks.

Furthermore, the previous DNA-based encryption algorithms have demonstrated that

the DNA encryption and decryption rules are the same for different original texts or

55

images [126] [132] [133]. This situation reduces the algorithm's ability to withstand brute

force attacks and chosen-plaintext attacks.

To overcome those shortcomings, dynamic and more complex DNA coding

algorithms have been proposed [134] [135][136][137] [138]. They first defined various

DNA coding rules before employing chaotic sequences to dynamically select DNA

coding rules. Furthermore, some of these algorithms replaced the typical single-base

complement process with a complement process, based on the base complementation

concept, to increase the complexity of DNA operation [135] [138][137]. These encryption

algorithms produced superior encryption results.

The most difficult task when designing a lightweight algorithm is balancing

performance, security, and cost. In block encryption, the cost-performance trade-off is

given by hardware platforms, the security-cost trade-off is given by the key size of the

algorithm, and the security-performance trade-off is given by the number of rounds. In

conventional encryption algorithms, such as AES and DES, that use a static S-box

utilizing the same S-box in each round, security is ensured by increasing the key size in

the cryptographic systems. However, increasing the size of the encryption key is not the

optimum solution: no matter the size of the key, its cryptography is ultimately breakable

with the proper amount of creativity and persistence [106]. Furthermore, larger keys

frequently necessitate more computational resources [107] [109].

Several attempts have been made to improve the security and the performance of

conventional encryption by replacing the static S-box with the dynamic key-dependent

method [130].

The dynamic key method has been used to propose a set of lightweight cryptographic

algorithms [75] [113] [81]. These methods generate dynamic keys as a function of a secret

56

key and nonce. The encryption structure is varied and unknown to adversaries because of

the dynamic key technique. Consequently, this approach introduces randomness and

complexity that create obstacles for attackers [139].

The influence of a dynamic key-dependent S-box in cryptographic algorithms was

preferred by the authors in [140], leading them to build an algorithm that produces

dynamic S-boxes. Elliptic-curve cryptography technology created 16 different S-boxes

with a good security architecture that will eventually cause a strong avalanche effect.

Nadu [141] also discovered dynamic key-dependent encryption to improve the

algorithm's avalanche effect by using pseudorandom numbers to generate S-boxes.

Similarly, Kazlauskas et al. [142] described a method for creating a block cipher system

with dynamic S-boxes and reverse S-boxes. It was assumed that any change in the key

would result in a fundamental change in the structure of the key-dependent S-box, making

the dynamic key-dependent encryption immune to linear and differential cryptanalysis

[141].

This literature review reveals that researchers improve the performance of the

encryption algorithms by using selective encryptions [105] [106] [107] [108], adding

dynamicity for the key generation, or employing the encryption structure using chaos

theory or a pseudorandom generator [109] [102] [141]. These approaches help increase

security and minimize the overhead or the delay [75] [113] [81]. However, the

aforementioned work still exhibits gaps in terms of addressing the simple and lightweight

cryptography solution. Furthermore, there is no consideration of using lightweight

encryption in privacy-preserving techniques.

57

2.7. Summary and Conclusion toward Research Gap

The aim of this research is to investigate privacy preserving approaches for the

reduction of the privacy risk for data subjects that is associated with collecting, archiving,

and transferring personal information.

In seeking this aim, this chapter addressed the following research questions:

1. What are the issues and challenges with existing privacy-preserving approaches?

2. What are the issues and challenges in existing cryptography approaches?

The answer to the first question is grounded in some of the author's published work,

including Rise of Big Data – Issues and Challenges [43]. This paper focused on the

problem of privacy and the techniques that can be used to handle user anonymity. It

observed that anonymization approaches for unstructured data have been widely studied

in the recent past, and that due to this, various techniques have been developed. However,

anonymising unstructured data, mainly text data, is complex and requires more effort

compared to the anonymization of structured data. The main challenge in anonymising

unstructured data involves finding the sensitive attributes that are dispersed throughout the

text.

In this chapter, a critical review of privacy preserving approaches was conducted. This

involved discussing the concept of privacy, understanding personal data, reviewing and

classifying the existing privacy preserving approaches (based on the purpose of the

research) into Privacy Preserving Data Publishing (PPDP) and Privacy Preserving Data

Mining (PPDM), and outlining the costs and benefits associated with each approach. PPDP

includes anonymization and Pseudonymization.

The review of current privacy preserving approaches for unstructured data through

de-identification shows that previous works have been largely developed within the field

58

of data anonymization, where data are shared with untrusted third parties for secondary

use and there is no mechanism by which an individual's identity can be recovered.

Pseudonymization is a promising technique to fulfil the requirements of recovering de-

identified data while protecting individual privacy. However, existing approaches for

Pseudonymization tend to encrypt or remove direct identifiers from the dataset to achieve

a certain level of privacy. However, data that could indirectly identify a person may be left

in place.

The chapter also reviewed and analysed the new GDPR regulations for processing

personal data. The GDPR provides several regulatory incentives to adopt

pseudonymization. There are, therefore, significant benefits associated with using it,

which include enabling data processing for secondary purposes without the need to obtain

the explicit consent of data subjects. However, for this exemption to apply,

pseudonymization should meet the GDPR standard, and the existing pseudonymization

techniques were developed long before GDPR requirements were established. Many

implementations of pseudonymization approaches use static pseudonyms for data subjects

[143], while others may contain indirect identifiers; in both cases, these fail to protect

against re-identification due to privacy breaches arising from linkage attacks.

To answer the second research question, the chapter examined current cryptography

approaches for text data to evaluate their feasibility for application on large scale data. The

review indicated that most existing cryptographic systems rely on large key sizes and

substantial numbers of rounds to enhance security and reduce the risk of cryptanalysis

attacks; this produces overheads in terms of latency and computational resources for big

data and real-time applications. Hence, the concept of dynamic keys, which was

introduced at the end of this chapter, is notable due to its emphasis on designing an

algorithm that relies on the idea of dynamic encryption rather than increasing the key size

and number of rounds.

59

Taken together, this chapter’s findings indicate that there is a need for new and

lightweight de-identification approaches to detect and encrypt personal data (including

direct and indirect identifiers from unstructured text data) to reduce the risk of data subjects

and comply with GDPR requirements. The next chapter explains the methodology of the

approach that this thesis proposes as a way to achieve the main research objective.

60

 : Methodology

The primary aim of this chapter is to present a description of the research process. It

starts by introducing Design Science Research (DSR) as the methodological basis of

research used to achieve the goal of developing a reversible de-identification model for

unstructured textual data. This chapter will first describe DSR activities, the concept of

creating artefacts and how those DSR activities apply to the activities of the artefacts for

this thesis. A justification and rationale for the research approach will then be presented.

Finally, this chapter will provide a research design and justification for the data set that

was chosen to evaluate the proposed system.

3.1. Research Methodology

Research methodology refers to the process of providing an accurate description of

the given problem through a series of stages and steps. Gordana [144] categorised the

research methodology of computer science into three categories: theoretical, experimental,

and simulation. Whereas Elio et al. [145] classified it into formal, experimental, build,

process and model. A formal methodology is widely used in theoretical research to

mathematically prove the correctness of algorithms and systems while experimental

research methodologies are used to assess new problem-solving solutions.

A build research methodology involves creating an artefact, which may be a physical

object or a software device while a process methodology is used to comprehend

mechanisms used to complete the tasks. A model methodology is focused on designing an

abstract model that is less complex than a real system that it models and is used to gain a

better understanding of the actual system as well as to carry experiments that are

impossible on the actual system due to the cost and accessibility limitations.

The differentiation between exploratory sciences (traditional) and design sciences was

demonstrated by Aline et al [146]. The authors emphasised the significance of creating

61

science dedicated to the study of man-made artefacts and how to build these artefacts to

achieve significant improvements. Over the past few decades, DSR methodology has been

used in engineering and information management research to create new innovation and

artefacts.

3.2. Design Science Methodology

DSR is a collection of analytical methods that can be used to theorise about an

Information System (IS). It aims to enhance the functional performance of the developing

artefacts by focusing on the production process and performance assessment of such

artefacts on a continuous basis [147]. DSR artefact refer to any IS objects that vary from

algorithms, computer interfaces, mathematical models and equations to informal

narratives and descriptions in a natural language. Figure 3-1 summarises the processes and

outcomes involved; these tasks iterate frequently between the creation of an artefact, its

assessment and subsequent feedback to improve the design.

A brief explanation for each process is provided as follows:

1. Awareness of the problem: Researchers should define and comprehend the

problem to identify required specifications for the system that is being

considered. A proposal is the result of this process.

2. Suggestion: This process refers to identifying potential solutions to the

problem. It is an innovative process in which new functionality is designed

using a combination of existing or new and existing components. A tentative

design is the output of this phase.

3. Development: A tentative design is refined and constructed during this step.

The deployment approaches will, of course, differ depending on the objects to

be created. An IS artefact is the outcome of this step.

4. Evaluation: Once implemented, the artefact is assessed according to criteria

defined in a proposal from the awareness of problem phase. Quantitative and

qualitative deviations from defined specifications are carefully recorded and

tentatively explained.

62

Figure 3-1: Design Science Research Processes and Outcomes [148]

In this thesis, a combination of three methodologies from Elio et al are applied [145].

The formal research methodology is used to mathematically proof the correctness of the

proposed artefacts, the build research methodology is used to create the proposed artefacts

and a quantitative experimental approach to evaluate them. There are two artefacts created

for this work: first, a novel lightweight encryption algorithm that aims to encrypt textual

data in a cost-effective manner; and second, a reversible de-identification model

ARTPHIL , that aims to de-identify health data to reduce the privacy risk for the data

subject.

DSR methodology was chosen as an expansion and guide for these combinations

because of the need to iterate more frequently between the development of an artefact, its

evaluation and subsequent feedback to further improvements.

• Objective 1: Critically analyse current privacy-preserving approaches for big

data.

63

A literature review was conducted to understand the privacy concept in the

information domain, privacy concerns, and the state-of-the-art in existing privacy-

preserving techniques. Most importantly, the research identifies the characteristics of the

existing techniques and locate the research gap.

• Objective 2: Critically analyse current cryptography approaches for textual

data.

A literature review was conducted on cryptography approaches, covering well-known

algorithms and their limitations. The criteria for designing a secure cipher and the

performance and security evaluation metrics were also considered.

• Objective 3: Design and develop a lightweight encryption algorithm that can

achieve a satisfactory level of security with shorter execution times and fewer

resources to meet the requirements of delay-sensitive and data-intensive

applications.

• Objective 4: Evaluate the developed algorithm against evaluation measures

and benchmarked algorithms.

• Objective 5: Design and develop a reversible de-identification model using the

developed lightweight encryption algorithm as a replacement strategy to

anonymise unstructured textual data.

Next section will demonstrate how the DSR processes used to attain the goal of this

thesis as follow:

64

3.2.1. Awareness of the problem

This was the initial phase of the thesis. It started with reviewing current and related

literature to establish the state of the art and define any research or knowledge gaps. The

main goal was to investigate current privacy-preserving approaches for big data and

identify their weaknesses. The research conducted a comprehensive literature review of

existing anonymization and de-identification approaches, cryptography algorithms and

their limitations and selection of criteria used to measure the usefulness of the data de-

identification models, as discussed in chapter 2.

3.2.2. Suggestion

After studying the literature, the objectives linked to the fundamental aspects of

security, privacy and performance is formulated. This thesis aims to contribute to the

knowledge by designing a reversible de-identification model that can achieve individual

privacy with shorter execution times and fewer resources. The following research

objectives were suggested to accomplish this goal:

1. Design and implement a lightweight encryption algorithm.

2. Use the latest advanced information extraction algorithm to detect and encrypt

personal information from unstructured textual data.

3.2.3. Development

In this stage, the research designed a proposed algorithm, which was named E-ART,

based on the concept of balanced binary tree and the American Standard Code for

Information Interchange (ASCII) values. The design of the proposed E-ART algorithm

was divided into three phases: substitution method, adding offsets and dynamic key

construction, as discussed in chapter 4 E-ART was implemented on a Java platform using

NetBeans 8.2, an open-source integrated development environment (IDE) with its

65

accuracy empirically proven using 100 unstructured clinical notes, as discussed in chapter

5.

This research also designed and implemented ARTPHIL, a reversible de-

identification for the de-identifying of a free-text model. ARTPHIL consisted of two key

components that are integrated to de-identify unstructured textual data: the core of the

Philter package [149] a state-of-the-art tool for extracting personal identifiers from free-

text to detect confidential information, and the E-ART encryption algorithm [84] for

replacement strategy. ARTPHIL was implemented using Python 3.7 (32 bit) platform due

to the strength of Python libraries for natural language processing (NLP) that helps to

detect PHI entity.

3.2.4. Evaluation

In this phase, the developed artefacts have been evaluated against the relevant security

and performance criteria. The evaluation process was carried out twice, first with the E-

ART algorithm and then with ARTPHIL. A brief explanation for each process in the

following sections

E-ART Evaluation

To evaluate the proposed E-ART algorithm, the research conducted a comparative

analysis of the performance of E-ART algorithm with benchmarked symmetric

encryption algorithms AES‐128 and DES algorithms using different file sizes. AES and

DES are classical and well-known cryptographic algorithms and many encryption

algorithms are driven by their structures [150], [151]. AES is based on the substitution-

permutation network structure and was extensively tested for possible loopholes in

security before its release. So any algorithm compared to its security level is supposed to

be secure. DES is based on the Feistel structure that uses the same code for encryption

and decryption, which could contribute to lower memory usage [83].

66

The parameters used to assess the performance were as follows:

• Processing time: the amount of time consumed during the encryption or

decryption process.

• Memory consumption: the amount of memory consumed during the

encryption or decryption process, measured in Megabytes (MB).

Security parameters used to assess E-ART were as follows:

• Avalanche effect

• Frequency analysis

• Bit Independence Criteria (BIC)

• Randomness verification using the NIST statistical tests.

Performance was compared in terms of processing time and memory consumption

using different file sizes. Security was assessed through the avalanche effect, frequency

analysis and NIST statistical tests.

ARTPHIL Evaluation

The research used the following parameters to evaluate the performance of the de-

identification system, ARTPHIL:

• Precision, recall and F-measure: recall was selected as the primary evaluation

measure since the system was optimised to maintain maximum individual

privacy. The recall represented a percentage of PHI entity that were correctly

identified. The second evaluation measure was precision, which represented

the non-PHI that the proposed model retained since a good de-identification

67

system should retain as much non-PHI as possible. The F2 measure is

calculated in addition to F1, which weighed recall two times higher than

precision, to emphasise on sensitivity.

• Execution time: The run time of the ARTPHIL model is computed using one

batch and 20 batches of 514 notes using the Python Time function, 'time', to

estimate the feasibility of running ARTPHIL on a large scale.

• Re-identification risk: The re-identification risk of ARTPHIL for each PHI

entity is estimated by calculating the conditional probability of a leak in a piece

of identifiable information.

3.3. Justification of the Research Method

This research is adapted from a design science methodology to develop an artefact

that could achieve the research objectives. Research objectives were defined based on

critical literature analysis of existing studies, which provided a justification for the

development of a new reversible de-identification model for unstructured textual data.

Regarding a replacement strategy for the de-identification model, a new lightweight

encryption algorithm was developed and tested. A quantitative experimental approach was

used in accordance with scientific techniques to obtain empirical evidence to prove the

correctness of the proposed algorithm and evaluate the performance of the developed

artefact against defined evaluation measures. This quantitative research approach helped

to interpret statistical performance, security analysis and provided a useful comparison

with existing algorithms. The design cycle (design, build and evaluate loop) within the

design science methodology helped us to improve the performance and strength of the

proposed model.

68

3.4. Rationale for Research Approach

Data security and privacy have been recognised as world-wide problems in new and

emerging technologies. A detailed literature review on privacy and data security in the

domain of unstructured textual data revealed that there is limited research on a reversible

de-identification system that generates an anonymized version of data with options for

reversing the anonymization and recovery of the original data, if needed (objective 5).

Additionally, the operational cost, such as processing time and memory consumption,

should be maintained, particularly for delay-sensitive and data-intensive applications.

However, it can be challenging to maintain a balance between the performance and

reliability of an algorithm [94] [114].

A literature review of current privacy-preserving approaches provided evidence on

the importance of encryption for reversible anonymization while a review of existing

encryption algorithms focused on security concerns without considering the performance

aspect. Many robust cryptography solutions face the limitation of consuming a significant

amount of computing resources, such as a high execution time and large memory usage,

which proved unsuitable for constrained devices or real-time data processing. For

example, the well-known AES encryption algorithm uses a substitution process that

iterates for multiple rounds to hide a relationship between the key and the text called

(Diffusion). However, these iterations are time-consuming and resource-intensive.

Furthermore, the cumbersome key management and distribution of the traditional

encryption algorithm prevent a suitable level of scalability. In this thesis, a more

lightweight and practical alternative (objective 3) is design, developed and then evaluated

and compared its performance to AES and DES encryption algorithms (objective 4). Then,

the proposed E-ART is used as a replacement strategy to develop the reversible de-

identification system, ARTPHIL that overcome some of the limitation of existing privacy

preserving approaches discussed in chapter 2. Regarding the extraction of sensitive data,

the advancement of rule-based and natural language processing (NLP) were used to extract

69

PHI from unstructured textual data. The proposed system was found to be suitable for

protecting individual privacy and reducing information loss caused by irreversible

anonymization.

3.5. Research Design

The research investigated the issue of privacy preservation approaches for

unstructured data in five phases. Phase 1 involved three stages: Stage 1 was a detailed

review on privacy preservation approaches for unstructured big data challenges; Stage 2

was a review of existing cryptography approaches to secure textual data; Stage 3 was

identifying research gaps and setting up the research objectives.

Phase 2 was an iterative phase of E-ART algorithm designing, implementing and

testing. In Phase 3, the performance and security of the proposed algorithm were compared

to benchmarked symmetric encryption algorithms, AES-128 and DES, in terms of

processing time and memory consumption. Security was assessed through the avalanche

effect, frequency analysis and the NIST statistical tests [152].

70

Figure 3-2: Research design

Phase 4 was an iterative phase of the design and implementation of ARTPHIL, a

reversible de-identification system through integration of E-ART with the core of Philter

[149], the state-of-the-art tool for extracting personal identifiers from free-text. Phase 5

was the validation and evaluation phase of ARTPHIL by running an evaluation script that

automatically compared de-identified notes to annotated i2b2/UTHealth 2014 de-

71

identification corpus at the character level to quantify PHI detection performance and re-

identification risks. Figure 3-2 provides further clarification on all five phases.

3.6 Dataset

The main goal of this thesis is to develop a reversible de-identification system that de-

identifies unstructured big data in a cost-effective manner. The healthcare domain was

used as a case study due to several characteristics that made it suitable for performance

evaluation of the proposed system. These characteristics include sensitivity, diversity,

volume and usefulness. A brief explanation for each characteristic is as follows:

• Sensitivity: Health dataset includes confidential information that, if revealed,

may have a negative impact on the data subject. Consequences from disclosure

may include social stigma, financial loss, racism, mental and emotional

distress [153]; thus, privacy is required to create public trust for individuals to

successfully engage in a specific activity,

• Data diversity: Medical data comprises of various data structures such as

unstructured free-form clinical notes, structured and unstructured textual data,

photos, sounds and videos [153]. This makes data protection even more

complicated, especially when using a uniform algorithm across different

structures. Therefore, this research is aimed at anonymising unstructured

textual data.

• Volume: Healthcare is a data-intensive field that generates vast volumes of

data from various sources, including hospitals, primary care practices, clinics

and laboratories [154]. This is due to the existence of non-interoperable

programmes and patients' nomadic nature in seeking treatment from different

medical facilities for various reasons. Furthermore, medical records must be

retained for the duration of an individual's life [154] and unlike data from other

72

fields, healthcare data remain valuable over time. This distinctive

characteristic poses a challenge for the preservation of healthcare data.

• Usefulness: Medical textual data provide plenty of opportunities for a variety

of fields such as research, public health and legislation to learn and generate

new information and insights for managing and enhancing healthcare services.

Employers and insurers require this data to analyse treatment expenses and

pay associated bills. The same knowledge can also be used for personal

economic benefits in areas such as drug promotions, bank lending decisions

and employers’ hiring decisions. However, the usage of textual data puts a

strain on a patient’s privacy, which increases the need for a different de-

identification system to suit various circumstances [155] [156].

This research used the i2b2/UTHealth 2014 de-identification corpus for the NLP

Shared Tasks Challenges that was released by [157] as part of the i2b2 National Centre

for Biomedical Computing, whose de-identification guidelines reported by conformed to

the safe harbour criteria. The PHI in the data set was hand-labelled and obscured and

substituted with the appropriate surrogate before release. The data sets comprised of 1304

longitudinal clinical notes of 296 patients with 2–5 notes chosen per patient and were

officially divided into training and testing sets. The training set consisted of 790 documents

(including 269 for validation) while the testing set contained 514 documents. Each

document is a clinical note in XML format and the PHI entities within the documents are

annotated as text spans with corresponding entity types.

The typical dataset size used in medical research varies depending on the factors that

need to be tested or examined. For example, the study conducted in [158] to investigate

the correlation between Statin use and the risk of cancer examined 25,811 health records

while the research conducted in [159] use free-text clinical records to identify the reason

of retirement use only 5910 records. However, a typical dataset to purchase from a medical

73

repository such as CRPD Gold [160], to run epidemiological studies would be around

15,000-30,000 of patients’ records. Then this set would be spliced in various ways for

different subsets of interest such as gender [161] and age group [162], with around 500-

600 records in each batch.

The goal of developing a de-identification system is to make data available for

research without compromising privacy. Many types of research in de-identification

systems [163][164] have been tested against performance metrics such as precision, recall,

and f-measure, but the execution time is not considered dominantly.

In this research, the execution time was calculated in addition to performances metrics

in order to test the feasibility to run the proposed system on large scale of data. The run

time of the integrated model was calculated using single batch of 514 free text notes and

with 20 batches of the 514 notes, resulting in 10,280 notes overall.

3.7. Summary

This chapter explains how the research was conducted to attain the goal of this thesis

which is to develop a lightweight de-identification model for individual privacy. It

describes a DSR methodology for creating knowledge through the production of artefacts

while explaining how they pertain to the artefacts at the core of this thesis. Two major

design science research artefacts helped achieve the research objectives. ARTPHIL is a

novel de-identification system that anonymises unstructured textual data with an option to

recover the original data. E-ART is a lightweight encryption algorithm that used as a

replacement strategy in ARTPHIL system. Both artefacts have been evaluated against the

defined evaluation metrics.

 This chapter also justifies of choice of the research methodology and a rationale for

the research approach while describing the data set chosen to evaluate the artefacts in this

research and the reasons for that choice.

74

 : E-ART Design

As explained in the previous chapters, data privacy and security have become

significant issues due to the increasing applications and capabilities of big data. Although

robust cryptographic solutions are available, as discussed in chapter 2, their application in

the face of ever-increasing volume, variety, and speed remains challenging [115]. Most

existing cryptographic systems rely on increasing the key size and the number of rounds

to enhance security and reduce the risk of cryptanalysis attacks. However, this effort

causes overheads in terms of latency and computational resources for real-time

applications. For example, the AES [165] requires several iterations over a round function,

which negatively impacts the system's performance. As a result, many current applications

have abandoned data encryption as a mechanism to reach an adoptive performance level

[105]. Therefore, there is a need for an effective cryptographic algorithm that can fulfil big

data requirements, such as speed and security, in a cost-effective manner. This chapter

focuses on designing a new and alternative cipher scheme called E-ART that aims to

overcome the disadvantages of existing ciphers, such as large key and complex

computation. The overall goal is to achieve a satisfactory level of security with shorter

execution times and fewer resources.

The chapter is organised as follows. Section 4.1 describes the stages of designing the

proposed algorithm. Sections 4.2 and 4.3 summarise the encryption and the decryption

process, respectively. Section 4.4 discusses the proof of correctness of E-ART, and section

4.5 summarises the chapter.

4.1. Algorithm Design

The main novelty of the E-ART algorithm is its use of the reflection property of a

balanced binary tree data structure to enhance data search efficiency. The design of the

75

algorithm involved three stages as shown in Figure 4-1. The research first designed a

preliminary function for the Substitution Method. Then added two offsets, via Stages 2

and 3, to solve the issues that occurred in Stage 1.

Figure 4-1: Algorithm Design Process

4.1.1. Stage 1: Substitution Method

In Stage 1, a Novel substitution method was proposed based on the concept of the

reflection of a balanced binary tree along with along with American Standard Code for

Information Interchange (ASCII) values of text characters to encode data. Binary trees

can be explained as follows; The root node has a value X. The left subtree of the main tree

contains all values less than X, while the right subtree includes values greater than X, so

there is no need to visit every node when searching for a specific value. Thus, the binary

tree has a search complexity of O(log(n)) when searching for a particular value. Hence,

the binary tree can enable great efficiency.

76

To explain the proposed method, Table 4-1 presents the ASCII table for the character

from 0 to 127. The table contains three clusters of five columns apiece. The first column

contains the decimal value (Dec.), the second column the hexadecimal value (Hex), the

third column the binary value, the fourth column the octal value, and the fifth column the

character value that displays on the screen. In the proposed substitution method, the focus

was on mapping from the decimal to the character value.

Table 4-1: ASCII Table

Figure 4-2: Binary Tree of E-ART illustrates a partial version of the E-ART balanced

tree; the complete version can be found in Appendix IV. The tree nodes represent the

ASCII Decimal values, ranging from 0 to 127. E-ART supports the English characters

by mapping each ASCII Decimal value from the ART tree to its equivalent character in

the ASCII table. In Figure 4-2 E-ART has five levels. Node 64 is the Root, with children

32 and 96; node 32 has two children, as does node 96, and so on. Each branch of the tree

can be defined as a link between parent-child nodes, e.g. the branch from 64 to 32, or the

branch 88-92.

77

Figure 4-2: Binary Tree of E-ART

Let us consider a text containing the character "P," whose ASCII code is 80. This

character is on level 3 of the binary tree and is located in one right and one left branch

(1R1L) of the root node. Its reflected character is at 1L1R, which is 48, as shown in Figure

4-2 In the ASCII table, 48 is the code for the character "0," so the initial reflected value of

the character "P" is 0. Thus, any character in the plaintext can be encoded using a reflection

tree. As a result, a technique with higher search efficiency is achieved. For a balanced

binary tree, as shown in Figure 4-2: Binary Tree of E-ART, the initial reflected value

𝑉𝑎𝑙𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑟ef can be computed from the original value 𝑉𝑎𝑙𝑜𝑟𝑔 as follows:

 𝑉𝑎𝑙𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑟𝑒𝑓 = (𝐿𝑒𝑛𝑚𝑎𝑥 − 𝑉𝑎𝑙𝑜𝑟𝑔) + 1 (4-1)

The proposed Substitution Method is a bijective mapping in which each element of

the right side of the tree is paired with exactly one element of the left side of the tree. Each

number from the tree has only one equivalent ASCII character which satisfies (𝑥) ≠ (𝑦)

for ∀ 𝑥, 𝑦, 𝑥 ≠ 𝑦.

78

However, there are some issues with this mapping that can be illustrated with an

example. Consider encoding the message "HELLO World" using the above substitution

method. First, each character will convert to its equivalent ASCII value. Then the

reflectance value is computed and mapped to the equivalent ASCII character as shown in

Figure 4-3.

Figure 4-3: Illustration of the Substitution Method (Stage 1)

As demonstrated via the example in Figure 4-3, the following issues occurred and

were addressed in Stage 2:

• The presence of unprintable characters, such as space, carriage return, and

other text formatting characters, which ranged from 0 to 32 in the ASCII table,

was not addressed.

79

• It is vulnerable to cryptanalysis attacks, such as frequency analysis attacks

[121], due to the one-to-one mapping of characters.

4.1.2. Stage 2: Adding offsets

To overcome the issues that occurred in Stage 1, the research proposed a solution of

adding two offsets to the initial reflected value: constant offset 𝑂𝑓𝑓𝑠𝑒𝑡𝑐𝑜𝑛𝑠𝑡 and variable

offset 𝑂𝑓𝑓𝑠𝑒𝑡𝑣𝑎𝑟 . All the notions are shown in Table 4-2: Summary of the Notations.

First, to avoid the appearance of non-printable ASCII characters, a constant offset

value of 32 is added to the initial reflected value. For example, in the previous example

shown in Figure 4-2: Binary Tree of E-ART, the character "o," whose ASCII code is 111

and initial reflected value based on equation (4-1) is (127 – 111) + 1 = 17, represents a

non-printable character. However, the newly calculated reflected value after adding the

constant offset is 17 + 32 = 49, which represents the character '1'. Therefore, the algorithm

does not consider encrypting any unprintable character from 1-to 31 to maintain the

bijective property.

Table 4-2: Summary of the Notations

Symbol Definition

𝐿𝑒𝑛𝑚𝑎𝑥 Maximum ASCII character range (default is 127)

𝑉𝑎𝑙𝑜𝑟𝑔 Original ASCII character value

𝑉𝑎𝑙𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑟𝑒𝑓 Reflected value of the original ASCII character value

𝑂𝑓𝑓𝑠𝑒𝑡𝑐𝑜𝑛𝑠𝑡 Constant offset value used to avoid non-printable characters (32 by

default)

𝑉𝑎𝑙𝑟𝑒𝑓
Reflected value of the original ASCII character value after adding

the offset

𝑂𝑓𝑓𝑠𝑒𝑡𝑣𝑎𝑟 Variable offset computed based on the properties of the tree

R The root node of the tree

80

𝑁𝐿 Adjusted value of N that is within the range of maximum value

𝑁𝑅 Reflection value of 𝑁𝐿

Pseudo
Pseudo-random number generated using character's position in the

text

Variance
An integer number which represents the second part of the secret

key that used to adjusted the Pseudo

𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑣𝑎𝑙𝑢𝑒 Equivalent ASCII character for a given value

Second, to prevent a cryptanalysis attack and add more complexity, the research

proposed adding another offset, which called variable offset 𝑂𝑓𝑓𝑠𝑒𝑡𝑣𝑎𝑟 . It is computed

based on the E-ART tree’s properties and the secret key. It is explained in more detail in

Stage 3. The general equation for the reflected value after adding the two offsets is

𝑉𝑎𝑙𝑅𝑒𝑓 = {
(𝑋 % 𝐿𝑒𝑛𝑚𝑎𝑥) + 𝑂𝑓𝑓𝑠𝑒𝑡𝑐𝑜𝑛𝑠𝑡 , 𝑋 > 𝐿𝑒𝑛𝑚𝑎𝑥

𝑋 , 𝑋 ≤ 𝐿𝑒𝑛𝑚𝑎𝑥
 (4-2)

where X = 𝑉𝑎𝑙𝑖𝑛𝑡𝑖𝑎𝑙 𝑟𝑒𝑓 + 𝑂𝑓𝑓𝑠𝑒𝑡𝑣𝑎𝑟 + 𝑂𝑓𝑓𝑠𝑒𝑡𝑐𝑜𝑛𝑠𝑡.

If the value X is less than the maximum character space 𝐿𝑒𝑛𝑚𝑎𝑥, then it is considered

the reflected value. If the reflected value is greater than 𝐿𝑒𝑛𝑚𝑎𝑥, then it is computed in the

range of {0, 𝐿𝑒𝑛𝑚𝑎𝑥}, and the constant offset is added to avoid the appearance of non-

printable characters.

4.1.3. Stage 3: Dynamic key

In Stage 3, the key derivation process was established. The process involved

incorporating the proposed dynamic offset and improving the variable offset that

suggested in Stage 2. The main objective of Stage 3 was to introduce randomness to the

encryption process to provide adequate protection against classical and modern

cryptanalysis attacks by making the process difficult to breach without increasing the

execution time.

81

The proposed algorithm uses an initial 128-bit symmetric key that used to generates

two offsets, dynamic and static. The static part changes for every session, and the dynamic

part changes for each character. The key derivation process is explained in the next section.

Key derivation

In the key derivation process, the initial key is used to construct two offsets that are

applied during the data encryption process. The first one, called the variable offset, remains

static during the encryption/decryption process. The second one, which is a dynamic

offset, changes with each character value. The inclusion of the dynamic offset ensures

considerable randomness in the key, thus guaranteeing the security of the encryption

process. The construction of the two offsets starts with the initial key.

Initial Key

The initial key is a secret key shared between legal entities that can be renewed after

each session or depending on the system's configuration. However, key management

between legal entities is not the focus of this work. An initial key consists of two values,

N and Variance, both of which are used to generate the offsets. N represents an integer

value that can be set to be 64 or 128 bits. This value is the input to calculate the variable

offset. Variance is used to compute the pseudo-random number value for the dynamic

offset. The offsets used in this case are as follows:

• The variable offset is calculated mathematically using the proposed tree

properties. The left and right nodes are shown in Figure 4-1. It uses the N value

derived from the initial key to calculate 𝑁𝐿 and its reflection node 𝑁𝑅 and then

generate the value of 𝑂𝑓𝑓𝑠𝑒𝑡𝑣𝑎𝑟 . This value is added to the initial reflection

value according to eq. (4.1) and (4.2) to add more complexity and prevent

cryptanalysis attacks that would take advantage of one-to-one mapping. It is

computed as follows:

82

𝑁𝐿 = 𝑁 𝑚𝑜𝑑 𝐿𝑒𝑛𝑚𝑎𝑥

𝑁𝑅 = (𝐿𝑒𝑛𝑚𝑎𝑥 − 𝑁𝐿) + 1

𝑂𝑓𝑓𝑠𝑒𝑡𝑣𝑎𝑟 = {
R × 𝑁𝐿 mod 𝑁𝑅 if 𝑁𝐿 < Root.
R × 𝑁𝑅 mod 𝑁𝐿 if 𝑁𝐿 > Root.

 (4-3)

The Dynamic Offset

It is produced automatically using a pseudo-random number and the second part of

the initial key (Variance). The pseudo-random generator uses each character's position in

the text as a seed to generate a pseudo-random number of 64 or 128 bits. The pseudo-

random number is then adjusted using the Variance value. This offset is added in the last

step to produce the final encrypted characters and is changed for each character. This

results in a high degree of robustness and resistance to known powerful attacks. The

dynamic offset is calculated as follows:

Dynamic offset = (Pseudo) mod Variance. (4-4)

The dynamic offset is produced as a function of the initial key, the character's position,

and the pseudo-random number. The relation between the plaintext and the ciphertext is

therefore more random and complicated, which strengthens protection against

cryptanalytic attacks since the encryption/decryption process in turn becomes dynamic and

different for each character. Combining eq. (4.2) and (4.4) yields eq. (4.5) as follows:

𝑉𝑎𝑙𝑅𝑒𝑓 = 𝑉𝑎𝑙𝑅𝑒𝑓 + 𝑑𝑦𝑛𝑎𝑚𝑖𝑐 𝑜𝑓𝑓𝑠𝑒𝑡 (4-5)

4.2. Encryption Process

E-ART can be classified as a character-oriented cipher where each character is

replaced with another character based on the suggested reflection-balanced tree

substitution method and the three offsets described in the previous section. The

83

substitution incorporated in the algorithm is secret key dependent, non-linear and poly-

alphabetic as shown in Figure 4-4. The character ‘a’ substituted with different characters

at the output data.

Figure 4-4: Encryption with Different Keys

Figure 4-5 shows a conceptual overview of the encryption process and the pseudo-

codes are shown in Algorithm 1 and more details of how the algorithms work can be found

in Appendix I. The main steps of Algorithm 1 is described as follows:

• Initially, the input textual data are stored in an array of characters (plaintext

list).

• Each character in the list is converted into its corresponding ASCII values and

stored in 𝑉𝑎𝑙𝑜𝑟𝑔.

• The variable offset 𝑂𝑓𝑓𝑠𝑒𝑡𝑣𝑎𝑟 is generated using N, the first value of the

initial key, and the properties of the tree – R, 𝑁𝐿, and 𝑁𝑅 – as shown in eq.

(4.3).

• For each character in the list, the initial reflected value 𝑉𝑎𝑙𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑟𝑒𝑓 for each

character is calculated using eq. (4.1).

• For each character in the list, the dynamic offset is generated by a pseudo-

random generator using Variance the second value of the initial key and

characters' positions, as shown in eq. (4.4).

84

• Then, value X is generated by adding the variable offset 𝑂𝑓𝑓𝑠𝑒𝑡𝑣𝑎𝑟 and

constant offsets 𝑂𝑓𝑓𝑠𝑒𝑡𝑐𝑜𝑛𝑠𝑡 to the initial reflected value using eq. (4.2).

• Value X changes based on the maximum length (𝐿𝑒𝑛𝑚𝑎𝑥) and non-printable

character range. If the value of X is greater than 𝐿𝑒𝑛𝑚𝑎𝑥, then apply the mod

operation and then add 𝑂𝑓𝑓𝑠𝑒𝑡𝑐𝑜𝑛𝑠𝑡 , as shown in eq. (4.2).

• Then, the dynamic offset is added to the value of X using eq. (4.5) to generate

the final reflection value 𝑉𝑎𝑙𝑅𝑒𝑓 .

• 𝑉𝑎𝑙𝑅𝑒𝑓 is converted to the equivalent ASCII character to produce the

encrypted character.

• Append the character to encrypted list.

• Once all characters in the plaintext are encrypted, the encrypted text file is

generated.

ALGORITHM 1: E-ART Algorithm

Input: R, 𝑂𝑓𝑓𝑠𝑒𝑡𝑐𝑜𝑛𝑠𝑡 , 𝐿𝑒𝑛𝑚𝑎𝑥 , input_text, N, Variance

Output: Encrypted text

1: Initialisation

2: input_list = Read all words from input file

3: Get the 𝑉𝑎𝑙𝑜𝑟𝑔 for each character

4: Get the 𝑂𝑓𝑓𝑠𝑒𝑡𝑣𝑎𝑟 from eq. (4.3)
5: while all words in input_list are not iterated, do

6: word = pop word from input_list

7: for each character in word do

8: Get 𝑉𝑎𝑙𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑟𝑒𝑓 of character from eq. (4.1)

9: Get Dynamic offset from eq. (4.4) with

 10: Let X = (𝑉𝑎𝑙𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑟𝑒𝑓 + 𝑂𝑓𝑓𝑠𝑒𝑡𝑣𝑎𝑟+ 𝑂𝑓𝑓𝑠𝑒𝑡𝑐𝑜𝑛𝑠𝑡)

 11: if X is greater than 𝐿𝑒𝑛𝑚𝑎𝑥

12: 𝑉𝑎𝑙𝑅𝑒𝑓 = [(X mod 𝐿𝑒𝑛𝑚𝑎𝑥) + 𝑂𝑓𝑓𝑠𝑒𝑡𝑐𝑜𝑛𝑠𝑡 + Dynamic offset]

13: else

14: 𝑉𝑎𝑙𝑅𝑒𝑓= [X + Dynamic offset]

15: end if

16: end for

17: append 𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑣𝑎𝑙𝑢𝑒 of 𝑉𝑎𝑙𝑅𝑒𝑓 to EncryptedWord

18: append word or EncryptedWord to EncryptedList

20: end while

21: Write all values from EncryptedList to output document

85

Figure 4-5: Conceptual Overview of the Encryption Process

86

4.3. Decryption Process

The decryption process can be considered a reversible form of the encryption

algorithm. Figure 4-6 shows a conceptual overview of the decryption process. The main

steps of the decryption process in Algorithm 2 are as follows:

• Initially, the input data are stored in an array of characters (ciphertext list).

• Each character in the list is converted into its corresponding ASCII value and

stored in 𝑉𝑎𝑙𝑜𝑟𝑔.

• The 𝑂𝑓𝑓𝑠𝑒𝑡𝑣𝑎𝑟 is generated using N, the first value of the initial key, and the

properties of the tree – R, 𝑁𝐿, and 𝑁𝑅 – as shown in eq. (4.3).

• For each character in the list, the dynamic offset is regenerated by a pseudo-

random generator using the same parameters, Variance, the second value of

the initial key and the characters’ positions as shown in eq. (4.4).

• Value X is generated by subtracting the dynamic offset from 𝑉𝑎𝑙𝑜𝑟𝑔.

• Then, we check: if subtraction of variable offset 𝑂𝑓𝑓𝑠𝑒𝑡𝑣𝑎𝑟 and constant

offset 𝑂𝑓𝑓𝑠𝑒𝑡𝑐𝑜𝑛𝑠𝑡 from X is less than 0, then set Quotient to be equal to 1;

otherwise, set Quotient value to be equal to 0.

• Generate the 𝑉𝑎𝑙𝑅𝑒𝑓 by multiplying 𝐿𝑒𝑛𝑚𝑎𝑥 and Quotient and then subtract

X, variable offset 𝑂𝑓𝑓𝑠𝑒𝑡𝑣𝑎𝑟and constant offset 𝑂𝑓𝑓𝑠𝑒𝑡𝑐𝑜𝑛𝑠𝑡 .

• Generate decrypted value by subtracting 𝑉𝑎𝑙𝑅𝑒𝑓 from 𝐿𝑒𝑛𝑚𝑎𝑥 plus 1.

• Decrypted value is converted to the equivalent ASCII character to produce the

decrypted character.

• Append the character to the decrypted list.

• Once all characters in the ciphertext are decrypted, the decrypted text file is

generated.

87

ALGORITHM 2: Data Decryption Algorithm

Input: R, 𝑂𝑓𝑓𝑠𝑒𝑡𝑐𝑜𝑛𝑠𝑡 , 𝐿𝑒𝑛𝑚𝑎𝑥 , Encrypted Text, N, Variance

Output: decrypted text

1: Initialisation

2: input_list = Read all word from input file

3: Get the 𝑉𝑎𝑙𝑜𝑟𝑔 for each character

4: Get the 𝑂𝑓𝑓𝑠𝑒𝑡𝑣𝑎𝑟 from eq. (4.3)
5: while all words in input_list are not iterated, do

6: word = pop word from input_list

7: for each character in word do

8: Get Dynamic offset from eq. (4.4)

9: Let X = 𝑉𝑎𝑙𝑜𝑟𝑔 – Dynamic offset

10: if (X – 𝑂𝑓𝑓𝑠𝑒𝑡𝑣𝑎𝑟 – 𝑂𝑓𝑓𝑠𝑒𝑡𝑐𝑜𝑛𝑠𝑡) < 0
11: Quotient = 1

12: else

13: Quotient = 0

14: 𝑉𝑎𝑙𝑅𝑒𝑓 = [(𝐿𝑒𝑛𝑚𝑎𝑥x Quotient + X) – 𝑂𝑓𝑓𝑠𝑒𝑡𝑣𝑎𝑟- 𝑂𝑓𝑓𝑠𝑒𝑡𝑐𝑜𝑛𝑠𝑡]

15: decrypted_value = (𝐿𝑒𝑛𝑚𝑎𝑥 – 𝑉𝑎𝑙𝑅𝑒𝑓) + 1

16: If (decrypted_value >= 0 && decrypted_value <= 32)

17: decrypted_value= decrypted_value + 𝑂𝑓𝑓𝑠𝑒𝑡𝑐𝑜𝑛𝑠𝑡

18: end if

19: end for

20: append 𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑣𝑎𝑙𝑢𝑒 of decrypted_value to decryptedWord

21: append word or decryptedWord to decryptedList

22: end while

23: Write all values from decryptedList to output document

88

Figure 4-6: Conceptual Overview of the Decryption Process

4.4. Proof of Correctness

In this section, a proof of the proposed algorithm’s correctness is provided from an

empirical and mathematical perspective. The correctness of encryption requires that

decryption of an encrypted message under corresponding keys produces the original

message. The correctness of E-ART has been proven mathematically and empirically as

shown in the following sub-sections.

4.4.1 Empirical Proof

For the empirical test, a 100 documents has been used from i2b2 clinical notes [157]

written in an unstructured, informal format. In total in all files, there are 56,054 encrypted

89

words. All the words were regenerated successfully. The process of encrypting and

decrypting E-ART is shown in Figure 4-7. Figure 4-7(a) shows a sample of clinical notes

as input data. Figure 4-7(b) shows encrypted data after applying Algorithm 1, and Figure

4-7 (c) shows decrypted data using Algorithm 2.

(a)

(b)

90

(c)

Figure 4-7: Example before and after encryption by E-ART algorithm of a) the

original clinical note, b) the encrypted note, and c) the decrypted note

4.4.2. Mathematical Proof

The research proves that the combined process of encrypting and decrypting a

message correctly results in the original message. The proof shows that the decryption

function basically reverses the encryption steps. The statement of correctness is as follows:

∀ 𝑚, 𝑘 (𝐸𝐾(𝑚)) =ENC 𝐷𝐾 (𝐸𝑁𝐶) = 𝑚

Where m ϵ M, 𝑘 ϵ Z, m is the character to be encrypted, M represents the ASCII table

value from 0 to 127, k is the key, Z represents the natural number, and ENC is the

encrypted character.

 Recall the following:

• 𝑜𝑓𝑓𝑠𝑒𝑡 𝑣𝑎𝑟 is generated using N as shown in eq. (4.3), and 𝑜𝑓𝑓𝑠𝑒𝑡𝑑𝑦𝑛𝑎𝑚𝑖𝑐 is

generated using Variance where N and Variance ⊆ K as shown in eq. (4.4).

• Every character will be converted to its ASCII value equivalent so 𝑚 =

𝑉𝑎𝑙𝑜𝑟𝑔.

91

There are two cases in the encryption and decryption process. In Case 1, X is greater

than 𝐿𝑒𝑛𝑚𝑎𝑥. In Case 2, X is less than the Lenmax as shown in eq. (4.2).

Case 1

Case 1 is when X is less than 𝐿𝑒𝑛𝑚𝑎𝑥 as shown in eq. (4.2). In this case the Quotient

= 0 and the encryption algorithm and decryption as follow:

𝐸 (𝑛, 𝑘) = 𝑋 + 𝑜𝑓𝑓𝑠𝑒𝑡𝑑𝑦𝑛𝑎𝑚𝑖𝑐 (4-6)

𝐷(𝐸 (𝑛, 𝑘)) = [𝐿𝑒𝑛𝑚𝑎𝑥 − [(𝐿𝑒𝑛𝑚𝑎𝑥 𝑥 𝑄𝑢𝑜𝑡𝑖𝑒𝑛𝑡 + 𝐸𝑁𝐶 − 𝑂𝑓𝑓𝑠𝑒𝑡𝑑𝑦𝑛𝑎𝑚𝑖𝑐) −

 𝑂𝑓𝑓𝑠𝑒𝑡𝑣𝑎𝑟 − 𝑂𝑓𝑓𝑠𝑒𝑡𝑐𝑜𝑛𝑠𝑡]] + 1 (4-7)

In this case, Quotient =0 in the decryption algorithm. The following proof shows that

that the combined process of encrypting and decrypting a message correctly results in the

plaintext.

Proof:

Given that

𝑋 = 𝑉𝑎𝑙𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑟𝑒𝑓 +𝑜𝑓𝑓𝑠𝑒𝑡 𝑣𝑎𝑟 + 𝑜𝑓𝑓𝑠𝑒𝑡𝑐𝑜𝑛𝑠𝑡

𝑉𝑎𝑙𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑟𝑒𝑓 = (𝐿𝑒𝑛𝑚𝑎𝑥 − 𝑉𝑎𝑙𝑜𝑟𝑔) + 1

Expanding the value of 𝑋 from the above definitions

𝐸 (𝑛, 𝑘) = ((𝐿𝑒𝑛𝑚𝑎𝑥 − 𝑉𝑎𝑙𝑜𝑟𝑔) + 1) + 𝑜𝑓𝑓𝑠𝑒𝑡 𝑣𝑎𝑟 + 𝑜𝑓𝑓𝑠𝑒𝑡𝑐𝑜𝑛𝑠𝑡 +

𝑜𝑓𝑓𝑠𝑒𝑡𝑑𝑦𝑛𝑎𝑚𝑖𝑐 (4-8)

Replacing the value of ENC from eq. (4.7) to (4.6)

⇒𝐷(𝐸 (𝑛, 𝑘)) = [𝐿𝑒𝑛𝑚𝑎𝑥 − [(𝐿𝑒𝑛𝑚𝑎𝑥 𝑥 𝑄𝑢𝑜𝑡𝑖𝑒𝑛𝑡 + (((𝐿𝑒𝑛𝑚𝑎𝑥 − 𝑉𝑎𝑙𝑜𝑟𝑔) + 1) +

𝑜𝑓𝑓𝑠𝑒𝑡 𝑣𝑎𝑟 + 𝑜𝑓𝑓𝑠𝑒𝑡𝑐𝑜𝑛𝑠𝑡 + 𝑜𝑓𝑓𝑠𝑒𝑡𝑑𝑦𝑛𝑎𝑚𝑖𝑐) − 𝑂𝑓𝑓𝑠𝑒𝑡𝑑𝑦𝑛𝑎𝑚𝑖𝑐) − 𝑂𝑓𝑓𝑠𝑒𝑡𝑣𝑎𝑟 −

𝑂𝑓𝑓𝑠𝑒𝑡𝑐𝑜𝑛𝑠𝑡]] + 1

⇒ 𝐷(𝐸 (𝑛, 𝑘)) = [𝐿𝑒𝑛𝑚𝑎𝑥 − 𝐿𝑒𝑛𝑚𝑎𝑥 + 𝑉𝑎𝑙𝑜𝑟𝑔 − 1 − 𝑜𝑓𝑓𝑠𝑒𝑡 𝑣𝑎𝑟 −

𝑜𝑓𝑓𝑠𝑒𝑡𝑐𝑜𝑛𝑠𝑡 − 𝑜𝑓𝑓𝑠𝑒𝑡𝑑𝑦𝑛𝑎𝑚𝑖𝑐 + 𝑂𝑓𝑓𝑠𝑒𝑡𝑑𝑦𝑛𝑎𝑚𝑖𝑐 + 𝑂𝑓𝑓𝑠𝑒𝑡𝑣𝑎𝑟 − 𝑂𝑓𝑓𝑠𝑒𝑡𝑐𝑜𝑛𝑠𝑡] + 1

92

Solving for 𝑉𝑎𝑙𝑜𝑟𝑔,

⇒ 𝑫(𝑬 (𝒏, 𝒌)) = 𝑽𝒂𝒍𝒐𝒓𝒈

 𝑽𝒂𝒍𝒐𝒓𝒈 = 𝒎

𝑫(𝑬 (𝒏, 𝒌)) = 𝒎

Case 2:

Case 2 is when X is greater than 𝐿𝑒𝑛𝑚𝑎𝑥 as shown in eq. (4.2). In this case, an

𝑜𝑓𝑓𝑠𝑒𝑡𝑐𝑜𝑛𝑠𝑡 added to the encryption and decryption process and set Quotient = 1 as

follow:

𝐸 (𝑛, 𝑘) = 𝑋 + 𝑜𝑓𝑓𝑠𝑒𝑡𝑐𝑜𝑛𝑠𝑡 + 𝑜𝑓𝑓𝑠𝑒𝑡𝑑𝑦𝑛𝑎𝑚𝑖𝑐 (4-9)

𝐷(𝐸 (𝑛, 𝑘)) = [𝐿𝑒𝑛𝑚𝑎𝑥 − [(𝐿𝑒𝑛𝑚𝑎𝑥 𝑥 𝑄𝑢𝑜𝑡𝑖𝑒𝑛𝑡 + 𝐸𝑁𝐶 − 𝑂𝑓𝑓𝑠𝑒𝑡𝑑𝑦𝑛𝑎𝑚𝑖𝑐) −

 𝑂𝑓𝑓𝑠𝑒𝑡𝑣𝑎𝑟 − 𝑂𝑓𝑓𝑠𝑒𝑡𝑐𝑜𝑛𝑠𝑡]] + 1 + 𝑜𝑓𝑓𝑠𝑒𝑡𝑐𝑜𝑛𝑠𝑡 (4-10)

Expanding the value of 𝑋 from the previous definitions

𝐸 (𝑛, 𝑘) = (((𝐿𝑒𝑛𝑚𝑎𝑥 − 𝑉𝑎𝑙𝑜𝑟𝑔) + 1) + 𝑜𝑓𝑓𝑠𝑒𝑡 𝑣𝑎𝑟 + 𝑜𝑓𝑓𝑠𝑒𝑡𝑐𝑜𝑛𝑠𝑡) 𝑚𝑜𝑑 𝐿𝑒𝑛𝑚𝑎𝑥) +

𝑜𝑓𝑓𝑠𝑒𝑡𝑐𝑜𝑛𝑠𝑡 + 𝑜𝑓𝑓𝑠𝑒𝑡𝑑𝑦𝑛𝑎𝑚𝑖𝑐 (4-11)

Replacing the value of ENC from equation (4-12) to (4-9)

⇒ 𝐷(𝐸 (𝑛, 𝑘)) = [𝐿𝑒𝑛𝑚𝑎𝑥 − [(𝐿𝑒𝑛𝑚𝑎𝑥 𝑥 𝑄𝑢𝑜𝑡𝑖𝑒𝑛𝑡 + ((((𝐿𝑒𝑛𝑚𝑎𝑥 − 𝑉𝑎𝑙𝑜𝑟𝑔) +

1) + 𝑜𝑓𝑓𝑠𝑒𝑡 𝑣𝑎𝑟 + 𝑜𝑓𝑓𝑠𝑒𝑡𝑐𝑜𝑛𝑠𝑡)%𝐿𝑒𝑛𝑚𝑎𝑥) + 𝑜𝑓𝑓𝑠𝑒𝑡𝑐𝑜𝑛𝑠𝑡 + 𝑜𝑓𝑓𝑠𝑒𝑡𝑑𝑦𝑛𝑎𝑚𝑖𝑐) −

 𝑂𝑓𝑓𝑠𝑒𝑡𝑑𝑦𝑛𝑎𝑚𝑖𝑐) − 𝑂𝑓𝑓𝑠𝑒𝑡𝑣𝑎𝑟 − 𝑂𝑓𝑓𝑠𝑒𝑡𝑐𝑜𝑛𝑠𝑡]] + 1 + 𝑜𝑓𝑓𝑠𝑒𝑡𝑐𝑜𝑛𝑠𝑡

⇒ 𝐷(𝐸 (𝑛, 𝑘)) = [𝐿𝑒𝑛𝑚𝑎𝑥 − 𝐿𝑒𝑛𝑚𝑎𝑥 − 𝐿𝑒𝑛𝑚𝑎𝑥 + 𝑉𝑎𝑙𝑜𝑟𝑔 − 1 − 𝑜𝑓𝑓𝑠𝑒𝑡 𝑣𝑎𝑟 −

𝑜𝑓𝑓𝑠𝑒𝑡𝑐𝑜𝑛𝑠𝑡 𝑚𝑜𝑑 𝐿𝑒𝑛𝑚𝑎𝑥 − 𝑜𝑓𝑓𝑠𝑒𝑡𝑐𝑜𝑛𝑠𝑡 − 𝑜𝑓𝑓𝑠𝑒𝑡𝑑𝑦𝑛𝑎𝑚𝑖𝑐 + 𝑜𝑓𝑓𝑠𝑒𝑡𝑑𝑦𝑛𝑎𝑚𝑖𝑐 +

𝑜𝑓𝑓𝑠𝑒𝑡 𝑣𝑎𝑟 + 𝑜𝑓𝑓𝑠𝑒𝑡𝑐𝑜𝑛𝑠𝑡] + 1 + 𝑜𝑓𝑓𝑠𝑒𝑡𝑐𝑜𝑛𝑠𝑡

Solving for equal and opposite terms,

⇒ 𝐷(𝐸 (𝑛, 𝑘)) = [− 𝐿𝑒𝑛𝑚𝑎𝑥𝑚𝑜𝑑−𝐿𝑒𝑛𝑚𝑎𝑥 + 𝑉𝑎𝑙𝑜𝑟𝑔]

93

Knowing that ⇒ −(𝐿𝑒𝑛𝑚𝑎𝑥%𝐿𝑒𝑛𝑚𝑎𝑥) = 0

⇒ 𝑫(𝑬 (𝒏, 𝒌)) = 𝑽𝒂𝒍𝒐𝒓𝒈

𝑽𝒂𝒍𝒐𝒓𝒈 = 𝒎

𝑫(𝑬 (𝒏, 𝒌)) = 𝒎

The proof of correctness starts by expanding the definition of 𝐸 (𝑛, 𝑘) by replacing

the value of 𝑋 with its definition and then combined 𝐸 (𝑛, 𝑘) and 𝐷(𝐸 (𝑛, 𝑘)) by

replacing the value of ENC. Solving the equation proof that t the decryption function

basically reverses these steps of the encryption.

4.5. Summary

This chapter has addressed the challenge of ensuring transmission and storage security

of sensitive data while maintaining low computational and latency overheads. The new

lightweight, flexible, and secure encryption algorithm E-ART has been proposed for this

purpose. It adopts the dynamic key concept along with a balanced binary search tree data

structure and ASCII. The algorithm encrypts the ASCII characters from 32 to 127 which

includes all the printable characters plus space.

E-ART’s design passed through three stages. In Stage 1, the subtitled method was

designed based on the concept of a reflection-balanced binary tree and the ASCII value.

In Stage 2, two offsets were added to the algorithm design and tested in order to overcome

the issues in Stage 1. In Stage 3, the complexity and randomness were increased by adding

a dynamic offset generated from the secret key. Finally, a simple proof methodology has

been used to support the functional correctness of the proposed algorithm.

The proposed algorithm uses a single round, which requires few processes and ensures

good cryptographic performance. E-ART adopts several operations during the encryption

process to achieve a high level of efficiency and security. Those operations include the

94

concept of balanced tree data structure and ASCII values of text characters to encode data.

In addition, it adopts dynamic keys based on a pseudo-random generator where each

character in the text document is encrypted with a different cryptographic key. The

character's position is used as a seed in the random number generation function to produce

the pseudo-random number. This ensures a high level of security against classical and

modern powerful attacks. Such security is traditionally guaranteed by increasing the key

size without sacrificing performance as is illustrated in Chapter 5.

Chapter 6 uses the outcome of this chapter to design and implement a new de-

identification model to de-identify health textual file.

95

 : E-ART Performance and

Security Evaluation

5.1. Introduction

This chapter presents the validation of the proposed E-ART cryptographic algorithm

through a series of experiments. An experiment methodology was adopted to evaluate the

proposed algorithm.

The performance and security of E-ART were compared to the benchmarked

symmetric encryption algorithms AES-128 and DES. Performance was compared in terms

of processing time and memory usage. Security was assessed through the avalanche effect,

BIC, frequency analysis, and the NIST test.

The chapter is organised as follows: Section 5.2 presents the experimental setup;

Section 5.3 describes the evaluation metrics, including the performance and security

parameters; Section 5.4 presents the results including performance and security analysis;

Section 5.5 presents the security against attacks and Section 5.6 summarises the chapter.

5.2. Experimental Setup

The proposed E-ART algorithm was experimentally evaluated and compared with the

widely used encryption algorithms AES and DES. The algorithms were implemented

using the Java programming language in console mode to minimize the load from a user

interface and other libraries, contributing to more realistic results. All experiments were

conducted on the same platform using Windows machine equipped with 32 GB of memory

and an Intel i7 3.4 GHz CPU.

NetBeans, an open-source integrated development environment (IDE), was installed

to compile and run Java programs. NetBeans enables applications to be developed from a

set of modular software components known as modules. Each module provides a well-

96

defined function. Figure 5-1 shows snapshoot of the developed algorithm on NetBeans.

The results from the Java programs were then copied to the MATLAB software for

graphical representation and comparison.

Figure 5-1: Snapshot of Implement Algorithm in NetBeans

5.3. Evaluation Metrics

This section presents the evaluation metrics used to assess E-ART algorithm in term

of performance and security as follow:

5.3.1. Performance Parameters

After security, processing time is the most critical criterion for an encryption

algorithm, especially in large-sized and real-time applications such as health data [166].

In such applications, heavy processing and long runtimes are undesirable, which is why

execution time (encryption/decryption) and memory usage metrics were considered in this

performance evaluation. A brief explanation of the parameters considered is given as

follows:

1. Memory consumption: The amount of memory consumed during the encryption

or decryption processes, measured in megabytes MB. The experiment used

getRuntime() and totalMemory() function provided by Java library to calculate

memory consumption as explained in Appendix II

97

2. Encryption and decryption time: The amount of time consumed during the

encryption or decryption processes, measured in MS. The experiment used

currentTimeMillis() function provided by Java library to calculate the time before

and after the encryption.as explained Appendix II

3. File size: The size of the encryption file before and after encryption, measured in

KB.

The results for the proposed algorithm were compared with those of two well-known

symmetric encryption algorithms, AES-128 and DES. File sizes were used ranging from

200 to 2000 KB. Figure 5-2 illustrates the performance analysis process.

5.3.2. Security Parameters

Security analysis is an essential aspect to consider when assessing the quality of any

encryption scheme. To resist well-known statistical attacks, the most basic requirement of

a cipher is that the input plaintext and generated ciphertext should be statistically

independent. The security of the proposed cipher can be assessed using various security

tests, including the following:

• Avalanche effect test: The avalanche effect criterion is met if all output bits

change with a probability of 50% when a single input bit is altered [86], as

explained in more detail in section 2.4.1.

• Autocorrelation test: This test is met if two output bits change independently

of each other when a single input bit change [87]. The weaker the correlation

between the input and outputs, the greater the immunity of the algorithm to

differential cryptanalysis, as described in section 2.4.1.

• Frequency analysis: To resist the frequency analysis attack, the frequency

histogram should be distributed in a relatively uniform way, and it should

differ significantly from that of the plaintext [89] as explain in section 2.4.1.

98

Figure 5-2: Performance Analysis Process

• Randomness Verification

Randomness refers to the degree of difficulty in predicting the next element in a

sequence of numbers. It is an essential aspect underlying the security of cryptographic

algorithms. Several encryption algorithms use pseudo-random number generators

(PRNGs) to construct the encryption key; their security is based on the statistical

characteristics of these PRNGs. Thus, suitable metrics are needed to investigate the degree

of randomness for the binary sequences produced by PRNGs.

In practice, statistical testing is used to gather evidence that a PRNG indeed produces

numbers that appear to be random. These tests address how the observed statistics of the

analysed feature fit the expected statistics. There are numerous statistical tests available

to measure the randomness of the outputs of a PRNG, including those grouped in the

99

batteries of NIST [152], Diehard [167], and TestU01[168]. This thesis selected the NIST

test because it is one of the most frequently used in the literature and it was published

as a NIST standard and used to prepare many formal certifications and approvals.

Furthermore, unlike TestU01, which requires integrating the pseudo-random generator

into the test suite [168], NIST does not require building the generator into the program;

it can simply pip the raw binary output from this pseudo random generator into NIST

suit.

The tests focus on the randomness of data according to various statistics relating to

bits, including the proportion of bits, frequency of bit change (runs), and cumulative sums.

All tests are parameterised by n, which denotes the bit length of a binary sequence to be

tested. Table 5-1 summarises suitable values of n for each test recommended by NIST

[152].

Table 5-1: Recommended size of Bit-stream for each NIST test

Test Name Recommended size of n Subtest

Frequency n ≥ 100 1

Frequency within a block n ≥ 100 1

Runs n ≥ 100 1

Longest run of ones n ≥ 1128 1

Rank n > 38 912 1

Spectral n > 1000 1

Non-overlapping T. M. n ≥ 8m − 8 148

Overlapping T.M. n ≥ 106 1

Maurer’s universal n > 387 840 1

Linear complexity n ≥ 106 1

Serial 2

100

Approximate entropy 1

Cumulative sums n ≥ 100 21

Random excursions n ≥ 106 8

Random excursions variant n ≥ 106 18

5.4. Results

This section presents the result of the performance and security analysis conducted on

E-ART algorithm and compared it with AES and DES algorithms. The Performance

analysis including processing time, memory usage and the size of the ciphertext file.

Security was assessed through the avalanche effect, BIC, frequency analysis, and the NIST

test.

5.4.1. Performance Analysis

To maintain high performance during encryption and decryption of large datasets, the

parameters of memory consumption, time consumed, and file size were tested and

measured. The results in Table 5-2: AES Performance, Table 5-3: DES Performance and

Table 5-4: E-ART Performance indicate that the proposed algorithm outperformed AES

and DES in terms of processing time, with comparable memory usage for file sizes

between 200 and 1000 KB, and slightly higher memory usage for 2000 KB.

Table 5-2: AES Performance

File size (KB)

Encryption Decryption

Processing Time

(MS)

Memory

(MB)

Processing Time

(MS)

Memory

(MB)

200 1433 17 1378 17

400 1956 21 1363 18

600 2118 27 1637 25
800 2335 30 1645 31

1000 2528 33 1995 35

2000 3616 55 1754 56
Average 2331 30 1628 30

101

 Table 5-3: DES Performance

File Size (KB)

Encryption Decryption

Processing Time

(MS)
Memory (MB)

Processing Time

(MS)
Memory (MB)

200 1838 18 1992 19
400 2067 22 2444 25

600 2190 27 2750 29

800 2575 31 3183 37
1000 3034 34 3658 41

2000 4537 55 5500 49

Average 2706 31 3254 33

Table 5-4: E-ART Performance

File Size (KB)

Encryption Decryption

Processing Time

(MS)
Memory (MB)

Processing Time

(MS)
Memory (MB)

200 123 14 162 7
400 189 23 250 15

600 253 23 320 20

800 413 29 385 29

1000 479 32 460 36
2000 1854 65 775 68

Average 551 31 392 29

Figure 5-3 illustrate the memory consumed by encryption and decryption in E-ART

compared to AES and DES for different files size. As the figures indicate, all three

algorithms consumed nearly the same amount of memory for small file sizes ranging from

200 KB to 1000 KB, while E-ART consumed slightly higher for file sizes greater than 200

KB.

102

(a)

(b)

Figure 5-3: Comparison of Memory Consumption of (a) Encryption (b) Decryption

for AES, DES and E-ART Algorithm

Figure 5-4 shows a comparison of the execution time to encrypt and decrypt different-

sized text files for E-ART compared to AES and DES. E‐ART had the shortest running

time with the highest level of 1854 MS for file sizes of 2000 KB compared to 4537 MS

and 3616 MS for DES and AES, respectively. Therefore, it can be concluded that the

implementation of the reflection of the balanced tree, along with the dynamic offset,

achieves high computational speed with minimal memory usage.

103

(a)

 (b)

Figure 5-4: Comparison of execution time of (a) Encryption and (b) Decryption for

AES, DES, and E-ART algorithms

Table 5-5: Comparison of file size before and after encryption for AES, DES, and

E-ART algorithms shows the file size before and after encryption for each encryption

algorithm. File size increased by approximately 31% compared to the plain-text file under

the AES and DES algorithms, but it increased only by around 5% for files encrypted using

E-ART. This illustrates that using E-ART does not have as large an influence on file size

compared to AES and DES. Hence, it is suitable for encrypting large amounts of data and

thus holds promise in the domain of data encryption strategies for big data.

Table 5-5: Comparison of file size before and after encryption for AES, DES, and

E-ART algorithms

Plain-text File Size (KB)

 File Size after Encryption

AES DES E-ART

200 264 264 211
400 527 527 422

600 790 790 633

800 1053 1053 843
1000 1316 1316 1054

2000 2632 2632 2107

Average increase (%) ˜ 31% ˜ 31% ˜ 5%

104

5.4.2. Security Analysis

In this section, the proposed algorithm is evaluated and tested against popular crypto-

analysis and statistical attacks.

Avalanche Effect

The avalanche effect is measured using the Hamming distance. The Hamming distance

between two texts of equal length refers to the number of positions at which corresponding

characters are different. To measure the avalanche effect, the research used 10 pair keys

that differed only in one bit to encrypt 10 pair files with each encryption technique. In turn,

the Hamming distance is calculated to obtain the number of bits that differed between each

pair of files. The avalanche effect is calculated as

𝐴𝑣𝑎𝑙𝑎𝑛𝑐ℎ𝑒𝐸𝑓𝑓𝑒𝑐𝑡 =
𝐻𝑎𝑚𝑚𝑖𝑛𝑔𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑇𝑜𝑡𝑎𝑙𝑁𝑜𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑠
 × 100 (5-1)

The experiment used python script that convert the files to binary form then compare

each avalanche pairs in bit level to calculate the hamming distance and the avalanche effect

as shown in Appendix II. Table 5-6 shows the average Hamming distance and the

avalanche effect for 10 pairs of files encrypted using E-ART, AES, and DES. The average

avalanche effect of the proposed algorithm was 50.11% compared to 49.2% for AES and

49.3% for DES. These results indicate that the proposed encryption system satisfies the

avalanche effect criterion and thus provides strong protection against differential

cryptanalysis.

Table 5-6: Avalanche Effect Performance

Technique Hamming distance Avalanche effect

E-ART 57852 50.1%

AES 39345 49.2%

DES 39425 49.3%

105

Bit independent criteria

To measure the degree of independence between the pair’s j and k of avalanche

variables, the avalanche variables were first created by changing a single bit in the input

key. In turn, the avalanche variables were converted to binary representation. Following

this, the correlation coefficient between j and k was calculated. Table 5-7: BIC

Performance shows a comparison of the BIC result for the proposed algorithm, AES, and

DES. E-ART yielded a correlation value of 0.1863 compared to 0.1818 for AES and

0.1847 for DES.

Table 5-7: BIC Performance

Technique Bit Independence

E-ART 0.1863

AES 0.1818

DES 0.1847

The results indicate very low dependence between the two avalanche variables. Hence,

the proposed algorithm satisfies the BIC, which means that it is difficult to predict one bit

based on the other bits, thereby increasing the difficulty of cryptanalysis.

Frequency Analysis

The generated histograms of the plain-text file that contains 31513 words and its

corresponding cipher-text are shown in Figure 5-5. The histogram of the encrypted text is

distributed in a relatively uniform way and differs significantly from that of the plain-text

106

(a)

(b)

(c)

(d)

Figure 5-5: Histograms of (a) plain-text, (b) E-ART, (c) AES, and (d) DES

107

Table 5-8: ASCII Histogram Frequency Value

Character

value

(Decimal)

Equivalent

character

Frequency

(Plain-text)

(%)

Frequency

(AES) (%)

Frequency

(DES)(%)

Frequency (E-

ART)(%)

40 (0.136 0 0 1.805

45 - 0.409 0 0 0

50 2 0.409 1.547 1.523 0.416

55 7 0.1820 1.577 1.551 0.602

60 < 0 0 0 0.416

65 A 0.910 1.615 1.566 0.416

70 F 0.182 1.551 1.562 0.416

75 K 0.068 1.559 1.529 0.416

80 P 0.796 1.599 1.575 1.791

85 U 0.295 1.559 1.553 2.214

90 Z 0.045 1.571 1.572 2.136

95 _ 0 0 0 2.304

100 d 2.594 1.602 1.565 1.601

105 i 4.756 1.602 1.579 0.323

110 n 4.005 1.570 1.497 0.416

115 s 4.528 1.580 1.557 0.534

120 x 0.136 1.565 1.572 0.716

125 } 0 0 0 0.415

Table 5-8 describes and Figure 5-5: Histograms of (a) plain-text, (b) E-ART, (c) AES,

and (d) DES(a-d) illustrates the values in the histograms. It shows the frequency for some

characters with their decimal value for the plain-text and cipher-text, which was encrypted

by AES, DES, and E-ART. Frequency refers to the average number of times that a given

108

character is repeated in the text. Table 5-8 indicates that good confusion was achieved for

all of the tested encryption algorithms. For example, the character value 105 (105 Dec = i

character) has a frequency of 4.75% in the plain-text while it has a frequency of 0.323%

in the E-ART cipher-text. Also, the character value 90 (90 Dec = Z character) has 0.045

% frequency in the plain-text with 2.136% frequency in the E-ART cipher-text. As such,

almost all of the frequency values are significantly different compared to the plain-text,

which will confuse the adversary and secure the cipher-text against cryptanalysis.

Randomness Analysis: NIST Test

NIST Statistical Test Suite [152] is a statistical package consisting of 15 tests designed

to assess the degree of randomness for binary sequences produced by cryptographic

random number generators as shown in Figure 5-6. These tests compute the P-value to

determine the strength of the evidence against the null hypothesis. In each test, the P-value

is the probability that an ideal random number generator generates a sequence that is less

arbitrary than the series tested according to the types of non-randomness evaluated by the

test. The significance level α, which typically ranges from 0.001 to 0.01, can be set at 0.01.

If P ≥ α, then the null hypothesis is accepted and the sequence appears to be random.

109

Figure 5-6: Snapshot of NIST Test

To evaluate the quality of the dynamic offset, the research used NIST statistical tests

[152] with 1000 sequences, where each series was 128 bits. For this research’s experiment,

selected five tests to determine the randomness and non-uniformity of the dynamic key.

The selection was based on the input size recommendation given by the NIST user guide

[152], which is explained in Table 5-1, as the key restricted to 128 bits. In the next sections,

a brief explanation is given of the five tests that are applicable to the proposed key length.

• Frequency (Monobit) Test

The test aims to calculate the number of zeros and ones in the sequence. If the

number of zeros is almost the same as the number of ones in the entire sequence,

then the sequence is considered truly random.

110

• Frequency Test within a Block

The test aims to check if the frequency of ones within an M-bit block is

approximately M/2, as expected under the randomness assumption.

• Runs Test

The focus of this test is to assess the expected total number of runs within the

sequence, where a run is a consecutive sequence of identical bits. It aims to

determine whether the fluctuation between such zeros and ones is too fast or too

slow.

• Cumulative Sums Forward Test

The test aims to determine whether the cumulative sums at the early stage of the

measured sequence is too large or too small in contrast to the expected behaviour

of that cumulative sum for random sequences.

• Cumulative Sums Backward Test

The test aims to determine whether the cumulative sums at the early stage of the

measured sequence is too large or too small in contrast to the expected behaviour

of that cumulative sum for random sequences.

Using the proposed pseudorandom generator as mentioned on section 4.1.3, 1000

sequences have been produced. The results of the five statistical tests are presented in Table

5-9. The P-value of ≥ 0.01 in each test, as shown in Table 5-9, indicates that the proposed

algorithm generates dynamic offsets that are truly random and infeasible to predict.

111

Table 5-9: Statistical Test Results

Test P-value Remarks

Frequency test 0.7399 Random

Block frequency test 0.7399 Random

Runs test 0.0668 Random

Cumulative sums forward test 0.1223 Random

Cumulative sums backward test 0.5341 Random

5.5. Security against Attacks

The experiments were undertaken to prove that the proposed cipher is secure and

efficient. In this section, a brief discussion of cryptanalysis is given to validate the security

of the proposed algorithm and to prove that it can resist various well-known attacks.

5.5.1. Brute Force Attack

To resist brute-force attacks, the key space should be sufficiently large. Alvarez and

Li [169] stated that for an encryption algorithm to resist brute-force attacks, its key space

must be at least 2100. The attacker rely on factors such as key length and calculation speed

[170]. One way to calculate the brute-force attack time [171] [170] is as follows:

𝑬𝒔𝒕𝒊𝒎𝒂𝒕𝒆𝒅 𝒔𝒑𝒆𝒆𝒅 =
𝟐𝒌𝒆𝒚 𝒍𝒆𝒏𝒕𝒉

𝒔𝒑𝒆𝒆𝒅
 (5-2)

In the E-ART algorithm, the initial key can be set to be 64 or 128 bits. This makes the

search space for the initial key with 64 bits involve 264 possible solutions, and for 128

bits, the number of solutions is 2128 .

 Table 5-10 displays the estimated time to find the key under a brute-force attack.

Considering a typical desktop computer with a speed of 2,000,000,000 Hz, equation (5-2)

can be used to estimate the time needed to search the key. To resist brute-force attacks, the

encryption system must have at minimum 2100 key pools [169]. This is achieved if the key

112

is set to 128 bits, but not with a 64-bit key. However, Section 4.2.3 indicates that the E-

ART relies on the three parameters of R, Pseudo, and Variance to generate dynamic

offsets of 128 bits, which makes the key pool 2192 in total (in the case of an initial key of

64 bits) or 2256 in total (in the case of an initial key of 128 bits), which is a wide range.

Thus, the cipher is computationally secure against brute-force attacks.

Table 5-10: Time Complexity for Brute-force Attack

5.5.2. Chosen and Known Plain-text/Cipher-text Attacks

The proposed cipher includes a dynamic key structure that varies for each character.

Therefore, no critical information can be captured from the collected encrypted messages

since they are encrypted with different dynamic keys. The obtained cipher-text is also

significantly different from the original message, as shown in Figure 5-5: Histograms of

(a) plain-text, (b) E-ART, (c) AES, and (d) DES. Thus, the adversary cannot establish any

relationships among received encrypted messages. Consequently, the proposed scheme

can be considered secure against chosen and known plain-text/cipher-text attacks.

5.5.3. Statistical Attacks

In addition to the high random outcomes of the pseudorandom generator, as measured

by the NIST test, a high degree of randomness is ensured based on a BIC test by having a

Key

space

Possible combinations Approximate time (in seconds)

𝟐𝟔𝟒 18,446,744,073,709,551,616 9,223,372,036.854775808

𝟐𝟏𝟐𝟖 3.4028236692093846346337460743177e+38 170,141,183,460,469,231,731,687,303,715.89

𝟐𝟏𝟗𝟐 6.2771017353866807638357894232077e+57 3.1385508676933403819178947116039e+48

𝟐𝟐𝟓𝟔 1.1579208923731619542357098500869e+77 5.7896044618658097711785492504345e+67

113

correlation coefficient that is close to zero. Furthermore, the key sensitivity to any bit of

the secret key is achieved according to an avalanche effect test. The frequency values of

the cipher-text are significantly different compared to those of the plain-text, which will

confuse adversaries and secure the cipher-text against cryptanalysis. Consequently, the

proposed scheme can be considered secure against statistical attacks.

5.6. Summary

Existing symmetric encryption algorithms depend on static keys and multi‐round

functions to reach the required security levels. This entails a trade‐off between security

and performance. The objective of this thesis was to propose a simple and efficient

algorithm that reduces the required latency and resources without compromising security.

For this purpose, the E-ART algorithm was proposed in Chapter 4 using the concept of the

reflection of a balanced binary tree and the ASCII representation.

This chapter focused on addressing the following research question:

• Can the proposed encryption algorithm achieve a trade-off solution between

security and performance compared with the standard AES and DES?

To answer this question, an empirical evaluation of the proposed algorithm based on

a series of experiments was presented. The performance of the E-ART algorithm was

compared to the widely used encryption algorithms, AES and DSS, in terms of processing

time and memory usage. Security was assessed through the avalanche effect, frequency

analysis, and the Randomness test.

In terms of performance, the results indicate that E‐ART had the shortest running time

and comparable memory usage for file sizes between 200 and 1000 KB, and slightly higher

for 2000 KB (see Table 5-2: AES Performance Table 5-3: DES Performance, Table 5-4:

E-ART Performance . Table 5-5: Comparison of file size before and after encryption for

AES, DES, and E-ART algorithms shows that ciphertext increased by only 5% compared

114

to the plain-text file under E-ART, while it increased by around 31% for files encrypted

using AES and DES. This makes E-ART a promising solution for big data, delay-sensitive,

and real-time applications.

For security analysis, the avalanche effect analysis showed that E‐ART changed half

of the bits on average in the cipher-text when a single bit was changed in the initial keys.

This demonstrates that the algorithm is sufficiently sensitive to any change in the key and

satisfies the avalanche effect criterion, making key-related attacks considerably more

difficult to perform successfully. The BIC analysis performed on two avalanche variables

showed a satisfactory bit independence criterion (i.e., the obtained correlation value was

close to 0 as shown on Table 5-7). Therefore, it is difficult to predict one bit from the other

bits, which heightens the difficulty of cryptanalysis. Furthermore, the size of the initial key

can be set to 64 or 128 bits, whereas the size of the proposed pseudorandom can be set to

64 or 128 bits. These sizes are sufficiently large to make brute force attacks unfeasible.

The histogram of the encrypted text is relatively uniformly distributed and differs

significantly from that of the plain-text, as shown in Figure 5-5: Histograms of (a) plain-

text, (b) E-ART, (c) AES, and (d) DES..

The performed NIST tests showed that the dynamic offset has a satisfactory level of

randomness and uniformity. Given that the dynamic offset changes for every character, it

is also considerably more difficult to perform algebraic [172], linear, and differential

attacks [173] successfully. Overall, the results show that the proposed cipher is a good

candidate for lightweight modern text data encryption.

115

 : ARTPHIL De-Identification

Model Design and Evaluation

6.1. Introduction

Privacy-preserving of data has become a significant issue, while the applications and

capabilities of big data are expanding dramatically fast. There is no doubt that this

expansion creates enormous opportunities and avenues to understand and solve big

problems over varying domains. However, the privacy and security concerns about Big

Data are also growing. Legal systems establish laws to protect the privacy of individual

information disclosed for secondary use. A typical example is the GDPR [46] which

outlines a specific set of rules for sharing and storing personal data to protect individual

privacy. It states that individuals' explicit consent is required before sharing their data for

secondary purposes [77]. However, obtaining explicit consent can be difficult or

impractical in some scenarios (e.g. research, Big Data analytics and machine learning).

Data minimization also is one of the fundamental principles of GDPR and has strict data

retention policies. This implies that personal data can be kept for no longer than necessary

to carry out the purpose of processing the data [1]. GDPR points to the pseudonymization

as a protective measure for processing personal without obtaining data subject consent or

retaining data for a longer period, such as for conducting scientific or statistical research.

However, for this exemption to apply, pseudonymization should meet the GDPR standard,

and the existing pseudonymization techniques were developed long before GDPR

requirements were established. Many implementations of pseudonymization approaches

use static pseudonyms for data subjects [143], while others may contain indirect

identifiers; in both cases, these fail to protect against re-identification due to privacy

breaches arising from linkage attacks.

116

This chapter is organized as follows: in section 6.2, the problem formulation was

stated. In section 6.3, the de-identification of protected health information was briefly

presented. In section 6.4, the use of named entity recognition in the de-identification

system was described. Section 6.5 presents the state-of-the-art solution. A formulation of

the proposed de-identification approach for unstructured data in section 6.6. The

experiment that was used for evaluation was presented and discussed in section 6.7. The

result was discussed 6.8 and finally, the chapter was summarised in section 6.9.

6.2. Problem Formulation

As discussed in the chapter 2, pseudonymization of data suggested by GDPR [2] as

one of the protective measures that controllers can use to “evaluate the feasibility of further

processing of personal information for archiving purposes in the public interest, scientific

or historical research purposes, or statistical purposes by processing data that do not enable

or no longer enable the identification of data subjects”. However, GDPR restricts a data

handler's potential to benefit from Pseudonymized data if re-identification processes are

“reasonably likely to be employed, such as singling out, either by the controller or by

another person to identify the natural person directly or indirectly” [47]. Hence, data

controllers should implement several technical and organisational measures to ensure that

pseudonymous data is disconnected from the key enabling re-identification. Furthermore,

the risks of re-identification are dynamic and evolve over time, and this implies that data

controllers should evaluate these risks on a regular basis and take necessary action when

they become significant. For example, changing pseudonyms over time for each use or

each type of use as a way to reduce the risk of re-identification through linkability [143].

In other words, the GDPR provides several regulatory incentives to adopt

pseudonymization. There are, therefore, significant benefits associated with using it,

which include enabling data processing for secondary purposes without the need to obtain

the explicit consent of data subjects. However, for this exemption to apply,

117

pseudonymization should meet the GDPR standard, and the existing pseudonymization

techniques were developed long before GDPR requirements were established [143]. Many

implementations of pseudonymization approaches use static pseudonyms for data subjects,

while others may contain indirect identifiers; in both cases, these fail to protect against re-

identification due to privacy breaches arising from linkage attacks [174][175].

Moreover, previous works in the field of data de-identification including

anonymization and pseudonymization have mainly focused on highly-structured data,

such as group-based methods (𝑘 − 𝑎𝑛𝑜𝑛𝑦𝑚𝑖𝑡𝑦 and 𝑙 − 𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦); however, these

methods are inefficient for textual data with highly variable structure [43]. Even with the

availability of de-identification techniques for unstructured data [176]–[179], these

techniques tend to remove or generalize sensitive attributes, which makes it difficult to

reproduce the original data if needed and authenticate. Encryption is also considered as an

efficient method to obtain reversible anonymization and allow later request access to the

research data [10]. However, the cumbersome key management and distribution of

symmetric encryption algorithm prevent a suitable level of scalability from being

provided. In addition, more lightweight and practical alternatives need to be developed

[180].

As a result, there is a need for a new reversible model for de-identifying unstructured

data in order to address the conflicting requirements of preserving privacy while

supporting the legitimate use of data. This chapter addresses this need by integrating

Philter [149], the information extracting tool, with the lightweight encryption algorithm

EART proposed in chapter 4. The chapter main contributions are as follow

• The proposal of reversible, fast de-identification model ARTPHIL to de-identify

unstructured textual health data cost-effectively without compromising security.

118

• The implementation and evaluation of the proposed model using 2014 i2b2

testing data that annotated to comply with the HIPAA guidelines.

ARTPHIL detects all personal data specified by HIPAA guidelines which include

direct and indirect identifiers. Therefore, reduces the risk of re-identification via

linkage attacks and helps to comply with GDPR requirements for the lawful processing

of personal data.

6.3. De-identification of Protected Health Information

under HIPAA

Data security and privacy issues become even more critical when used in a healthcare

environment, which typically deals with patient sensitive information. The Health

Insurance Portability and Accountability Act of 1996 (HIPAA) Privacy Rule [3] establish

two approaches for de-identifying Protected Health Information: The Expert

Determination Method and the Safe Harbor method. Neither method guarantees a reliable

de-identification method with no risk of re-identification. Instead, the methods are

designed to be practical approaches for creating and sharing de-identified healthcare

information with a minimum risk of re-identification [26].

6.3.1. The HIPAA Expert Determination Method

The Expert Determination process requires an expert examining the data and

determining an appropriate method of de-identification that minimizes the risk of re-

identification. It states that the expert must know and use "generally accepted statistical

and scientific principles and methods," [3] This would necessitate familiarity with the

relevant literature on statistical disclosure control and de-identification methods. There are

strong precedents for de-identification and risk levels that should be used in a suitable de-

identification approach.

119

6.3.2. The HIPAA Safe Harbor Method

The Safe Harbor method specifies 18 data elements [3] that consider identifiable

health information. These elements need to be removed or generalized from data to

consider anonymized or de-identified. “The 18 types are:

1. Names

2. All geographic subdivisions smaller than a state, including street address, city,

county, precinct, ZIP code,

3. All elements of dates (except year) for dates that are directly related to an

individual, including birth date, admission date, discharge date, death date,

and all ages over 89 and all elements of dates (including year) indicative of

such age, except that such ages and elements may be aggregated into a single

category of age 90 or older

4. Telephone numbers

5. Fax numbers

6. Email addresses

7. Social security numbers

8. Medical record numbers

9. Health plan beneficiary numbers

10. Account numbers

11. Certificate/license numbers

12. Vehicle identifiers and serial numbers, including license plate numbers

13. Device identifiers and serial numbers

14. Web Universal Resource Locators (URLs)

15. Internet Protocol (IP) addresses

16. Biometric identifiers, including finger and voiceprints

17. Full-face photographs and any comparable images

120

18. Any other characteristic that could uniquely identify the individual”

6.4. De-identification as Named Entity Recognition

The de-identification of structured data is widely studied in the recent past, and there

are variety of techniques for this purpose [12],[181], [182]. However, de-identifying

unstructured data, mainly text data, is difficult and requires researchers' manual

intervention. The main challenge in de-identifying unstructured data is finding the

sensitive attributes that spread throughout the text document.

Several techniques have been proposed to extract the sensitive attributes of

unstructured data. Most of them can be seen as an application of Named Entity

Recognition (NER). NER is a technique that finds and categorize important words inside

the text [183]. Many different natural language processing (NLP) applications are taking

benefit of the NER technique. These applications include questioning answering

applications [184], [185] tweet analysis [186], [187] automatic text extraction [181],

[182] and data mining applications [188].

In de-identification techniques, NER considers a useful tool to extract identifying and

sensitive attributes from unstructured text. NER techniques can be classified into five

categories which are lexicon-based, rule-based, machine learning, deep learning and

hybrid techniques [183]. A brief description of each of the method is provided as follows:

• Lexicon-based: This technique is based on a pre-defined list of keywords that

match explicit NER to extract the keyword, a matching algorithm is used to

compare words by words in the dictionary [189], [190]. A major limitation of

this approach is to keep an up-to-date list of keywords in the dictionary that

could be a challenging task. Also, a word having multiple synonyms cannot

be detected even it matches with the target keyword in the dictionary. To

overcome this limitation, a method based on augmented search and replace

technique is proposed in [191]. This technique used a dictionary of 1.8 million

121

names and a list of clinical and common usage words. Similarly, Fuzzy gezzatr

approach is adopted to find mistyped instance and stemmed recognition

approach to match the stem of each word, not only the actual word.

• Rule-based technique consists of a set of rules such as pattern matching

approach, hand-crafted rules, heuristics and grammatical rules to recognize

NER from unstructured text. A rule-based method using heuristics and

grammatical rules is proposed in [192]. This technique is applied to drug-

related crime news documents and able to detect type, price and amount of the

drugs and nationality of the suspect with 87% accuracy. Rule-based systems'

advantages are that they require little or no annotated training data, and that

they can be easily modified or updated to improve performance [190]. It also

considers an effective method for detecting complex name entity structures

that are difficult to detected using other learning models. However, it is quite

expensive, domain-specific and lacks the ability of robustness and portability

[193].

• Machine Learning: these techniques can be categorized into two categories

that are supervised learning-based techniques and conditional random fields-

based methods. Supervised techniques mainly consist of a support vector

machine (SVM) classifier. The results obtained through supervised machine

learning techniques are promising. However, these techniques need annotated

data for training. Creating annotated data is an expensive task as it requires a

lot of time and effort with domain experts' support. Because annotated data is

not always available, it is more difficult to use supervised machine learning

techniques in NER applications than unsupervised ones.

• Hybrid model: this approach combines lexicon and rule-based approaches to

take the benefits of both approaches and overcome the limitations of both

approaches [12]. A techniques called SPOT is proposed in [194] based on a

hybrid model. SPOT is used to identify drug names from large clinical corpora

and add it as new dictionary entries to keep the dictionary up to date. It also

suggests a phrase that was misplaying. HMS Scrubber [195] is a good example

122

of combined rule-based and pattern matching methods. It uses 50 regular

expressions to detect PHI and replace it with tags indicating its category.

• Deep learning: Deep Learning algorithms present a new framework that

overcomes drawbacks in earlier methods. These models take vector

representations for the inputs (i.e., word embedding) and use multiple ANN

layers to automatically learn the relevant features. Several techniques have

been proposed in the field, mainly using recurrent neural networks (RNNs)

and Long Short-Term Memory networks (LSTMs) [196]. Traditional RNN

uses a loop to allow information to persist. It can be thought of as multiple

copies of the same network, with each network passing a message to a

successor. This chain-like nature of RNN leads to short-term memory issues -

the longer the chain is, the more probable that the information is lost along the

chain [197]. LSTM overcomes the short-term memory problems by using

special units that selectively remember or forget information. Therefore it

enables better preservation of long-range dependencies [198]. However, both

RNN and LSTM suffer from the problem of uni-directionality. These models

only preserve the information from the inputs that have already been passed

through the models. This uni-directionality can hinder the model's ability to

learn the exact meaning of a word since the model cannot incorporate later

parts of a sentence into context. Several papers introduced Bi-directional Long

Short-Term Memory Network (Bi-LSTM) to solve this uni-directionality

problem [179]. Bi-LSTM takes the inputs and runs LSTM in two ways -

forward from left to right and backward from right to left. The model then

concatenates the two results. However, such representations cannot take

advantage of both the left and right context simultaneously [179].

Table 6-1 compares the three popular PHI detection approaches regarding different

requirements such as crafted knowledge, annotated training data, and the need to know all

data variety. The major drawback of the rule-based method is that it necessitates the use

of qualified experts to encode each rule manually. However, it does not require a large

amount of annotated data like the machine learning and deep learning approach

123

 Table 6-1: Comparison of methods used for PHI Detection

Characteristics Rule-based Machine learning Deep learning

Manually crafted

knowledge
Required Not required Not required

Manually annotated

training data
Required Large amount Required

Need to know all data

variety
Required Not required Not Required

Modification Simple Difficult Difficult

Examples
Regular

expressions,

dictionaries, rules

Support vector

machines, conditional
random fields,

decision trees, Naïve

Bayes

recurrent neural

networks, Long

Short-Term
Memory networks

Types of PHI
commonly detected

Dates, ages, phone
numbers

Addresses, names Age, data, contact

6.4.1. Evaluation Matrices

For NER, the different evaluation metrics are precision, recall and their harmonic

mean, i.e. the F-measure. The F-measure was created to make comparing and

contrasting different systems easier. Comparing numerous systems with a single

value is easier than comparing them with two values [199]

Precision, also called positive predictive value, is the fraction of the relevant tokens

(correctly classified) among the retrieved tokens. recall, also called sensitivity, is the

fraction of relevant tokens (correctly classified) that were retrieved. The output of a

classifier can be presented in a confusion matrix that shows the number of true-

positive annotations (TP), true-negatives annotations (TN), false-positive annotations

(FP), and the number of false-negative annotations (FN). Precision eq. 6.2 and recall

eq. 6.1 can be computed from such a matrix. F-measure eq. 6.3 is the weighted mean

of precision and recall. Recall answers the question; "Did we find all that we were

looking for?" and precision answers the question; "Did we only label what we were

looking for?". A high recall is generally preferred over high precision, as it measures

the percentage of PHI that is correctly identified, and the privacy of the data subjects

124

is prioritized over a potential loss of document interpretability. To emphasize the

sensitivity, F2 measure is calculated in addition to the F1 measure, which weighs

recall (twice) higher than precision, as defined in eq. 6.4:

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
=

𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝑒𝑛𝑡𝑖𝑡𝑒𝑠

𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛
 (6-1)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
=

𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝑒𝑛𝑡𝑖𝑡𝑒𝑠

𝑜𝑓 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛
 (6-2)

𝐹 1 =
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (6-3)

𝐹2 =
(𝛽2+1)×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙

(𝛽2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 , 𝛽 = 2 (6-4)

6.5. Stat-of-the-art Solutions

This section presents the current best performance model for data de-identification as

follow; 1) Philter model [149] which based on rule-based and statistical models. 2)

Dernoncourt et al model [200] based on based on Artificial Neural Networks (ANNs). 3)

Liu et al. model [201] based on Conditional Random Field (CRF) and ANNs. Table 6-2

reports the performance of the three models trained on the i2b2 2014 training corpus and

evaluated on the i2b2 2014 test corpus.

Table 6-2: Performance of Current State-of-the-art Models

Model Recall Precision F1

Philter model [149] 99.92 78.58 94.77

Dernoncourt et al model [200] 97.83 97.92 97.88

Liu et al. model [201] 97.28 99.30 98.28

125

6.5.1. Philter

An example of recent text identification application Philter presented in [149] is a

customizable open-source de-identification software was developed and evaluated with an

extensive collection of unstructured clinical note from UCSF and 2014 i2b2. The

algorithm is based on rule-based and statistical natural language processing (NLP)

approaches. To identify PHI in free-text documents, the algorithm utilizes an overlapping

pipeline of methods that are state-of-the-art in each application, including regular

expressions, statistical modelling, blacklists, and whitelists, as shown in Figure 6-1. The

entity identified as PHI will be replaced with an obfuscated string of precisely the same

length (e.g., "David Smith" becomes "**** *****").

The algorithm compared to the two strongest real-world competitors [149], Physionet

[40] and Scrubber [202], on the basis of recall. Philter demonstrated the highest overall

recall on both corpora and had the highest recall in each PHI category on both corpora. A

major drawback of this approach is that this is irreversible. The removed PHI data cannot

be re-generated if an authenticated user later needs full access to the data.

126

Figure 6-1: The Process of DE-Identification using Philter [149]

127

6.5.2. DE-identification System based on Artificial Neural

Networks(ANNs)

Dernoncourt et al. [200] proposed the first de-identification system based on ANNs,

which requires no hand-crafted features or rules. The system is constituted of three layers:

1. character-enhanced token embedding layer, 2. label prediction layer, and 3. label

sequence optimization layer. The system compared with the state-of-the-art CRF models

on two datasets: the i2b2 2014 corpus with a recall of 97.38 and a precision of 98.32, and

an F1-score of 99.23, and the MIMIC corpus with a recall of 99.25 and a precision of 99.21

It demonstrated that combining RNNs with CRFs and training the model from end-

to-end can achieve promising recall performance. The general shortcoming of such

approaches in this context is that they depend heavily on labelled training data.

6.5.3. DE-identification system based on ANNs and CRF

Liu et al. model, detailed in [179], extended Dernoncourt et al [200] model by adding

additional context features to the neural network. Liu et al. proposed a hybrid method that

used an ensemble classifier to combine different methods: a CRF-based method, a

bidirectional LSTM with hand-crafted features, a regular bidirectional LSTM, and a rule-

based method. The system achieved a state-of-the-art F1 score of 98.28%.

6.6. Proposed Method

The proposed system consists of two key components that are integrated to de-identify

unstructured textual data: 1) the core of Philter package [149] for PHI detection and 2) E-

ART encryption algorithm [84] for replacement strategy. Figure 6-1 presents an

illustration of the method. The steps and dataset details are provided in the following

sections.

6.6.1. PHI Detection

To tackle the task of locating PHI, an overlapping pipeline of multiple state-of-the-art

methods provided by Philter is used [149]. The pipeline includes pattern matching,

128

statistical modelling, blacklist, and whitelist, to detect PHI from free-text clinical notes.

The detection process involves scanning the unstructured text line by line and dividing

them into individual words. First, common words with a high probability of not being PHI

are detected using pattern matching with a custom library of 133 "safe" regular

expressions. Second, a customized library of 171 regular expressions is used to locate

known PHI entities such as salutations, ID number, phone numbers, dates of birth, email

address, and zip codes. In both scenarios, the regular expressions look for exact terms,

phrases, and/or numbers to recognize matches using the immediate context surrounding

each word. The algorithm used statistical modelling to determine the structure of each

sentence and document in order to address the challenge of dealing with words that could

be either safe or PHI such as White might be a name or an adjective. To exclude name that

are proper noun, customized blacklist is used. And whitelist is used to preserve all the

medical terms and common English word. At the end of the pipeline, a token has one of

three potential labels: PHI, Non-PHI or unmarked.

6.6.2. Replacement strategy

To achieve the goal of developing reversible de-identification, all tokens marked as

PHI, and unmarked tokens will be replaced with generated strings that can be retrieved.

For this purpose, E-ART [84] the lightweight encryption algorithm proposed in chapter 4

has been used. The system will look for PHI entities labelled in the PHI detection phase

and use the E-ART algorithm to encrypt them. E-ART uses the entity’s characters' index

as a seed to generate a pseudo-random value as explain in chapter 4. This value will be

used as a key to generate an encrypted string to replace the PHI entity. The encrypted PHI

entity's start and end will be marked with asterisks to be recognised if recovery of the

original data is needed, as shown in the de-identified text in Figure 6-2.

During the regeneration process of the original text, the de-identified text will be first

scanned line by line, and all words that start and end with asterisks will be labelled as

129

encrypted PHI. Then all encrypted PHI will be decrypted by reversing the process of E-

ART encryption as described in section 4.3.

Figure 6-2: Integration of E-ART with Philter

6.7. Experiment Setup

This Section describes the experiments conducted to validate the proposed system. In

particular, the Implementation setup is presented in Section 6.7.1, the dataset in Section

6.7.2 and the evaluation metrics are outlined in Section 6.7.3.

6.7.1. Implementation

The ARTPHIL package is written in Python 3.7 (32 bit) using Anaconda platform.

The implementation used the core of Philter package and integrated it with E-ART

130

algorithm. The correctness of de-identification and regeneration has been tested on free

text clinical note as shown in Table 6-3. The first column shows a made-up note for a

doctor to one of his colleagues, second column shows de-identified of the note using

ARTPHIL, and the third column shows the re-generated note.

Table 6-3: De-identification and Re-generated of Example Clinical Note

De-identification and Re-generation of Sample Clinical note

Original note De-identified note Re-generated note

MS Evelyn 58 years old

female, who has admitted
in the Goulds Hospital on

date 05-06-2018 with a

complaint of eye irritation

and fever, She has been
followed by Dr. Quirk for

her regular

ophthalmological visits for

her eyes.

You can reach her via email

(her address is
Evelyn@gmail.com) or via

phone: 998 785 6756.

Sincerely, Elijah Hunt, MD

MS **|L[UIR+E+** 58 years old female ,

who has admitted in the
zSKU^MH+HJ+ Hospital on date

1'!5+!xx70zz+GC+ with a complaint

of eye irritation and fever , She has been

followed by Dr. **qKXPUBJH+FC+**
for her regular ophthalmological visits for

her eyes . You can reach her via email (her

address is **GhJkJ]7YTaWU+5]RU**)
or via phone **+yy+

[$!+*+zz+'U!+0%+T'M+ R**. Sincerely ,

|VWWaXDIC **zKSNDJI** ,

**s} **

MS Evelyn 58 years old

female, who has admitted
in the Goulds Hospital on

date 05-06-2018 with a

complaint of eye

irritation and fever , She
has been followed by Dr.

Quirk for her regular

ophthalmological visits
for her eyes. You can

reach her via email (her

address is Evelyn @
gmail.com) or via phone

998 785 6756 .

Sincerely, Elijah Hunt ,

MD

6.7.2. Dataset

The research used the i2b2/UTHealth 2014 de-identification corpus that was released

by [157] as a part of the i2b2 National Center for Biomedical Computing for the NLP

Shared Tasks Challenges, whose de-identification guidelines reported by [155] conform

to the Safe Harbor criteria. All the PHI in the data set were hand labeled and obfuscated

and replaced with realistic surrogated before the release. The data sets comprise 1304

longitudinal medical records of 296 patients with 2–5 records selected per patient and are

officially divided into training and testing set. The training set contains 790 documents

(including 269 for validation), while the testing set contains 514 documents. Each

131

document is a medical record in xml format, and the named entities within the documents

are annotated as text spans with corresponding entity types. Table 6-4 presents a list of

PHI distributions in the i2b2/UTHealth 2014 de-identification corpus. The data set is

publicly available after the respective data use agreement is signed.

Table 6-4: PHI Distributions in the i2b2/UTHealth 2014 DE-Identification Corpus

PHI category: Subcategory Training Data Test Data Total No. in Corpus

Name: Patient 1316 879 2195

Name: Doctor 2885 1912 4797

Name: Username 264 92 356

Profession 234 179 413

Location: hospital 1437 875 2312

Location: organisation 124 82 206

Location: Street 216 136 352

Location: City 394 260 654

Location: State 314 190 504

Location: Country 66 117 183

Location: Zip code 212 140 352

Location: Others 4 13 17

Age 1233 764 1997

Date 7507 4980 12487

Contact: Phone 309 215 524

Contact: Fax 8 2 10

Contact: email 4 1 5

Contact: URL 2 0 2

Contact: IP address: SSN 0 0 0

Id: Medical record 611 422 1033

Id: Health plan 1 0 1

Id: Account 0 0 0

Id:: Licence 0 0 0

132

 , 𝛽 = 2 (6-5)

6.8. Results

Since the proposed de-identification system in this research and most existing de-

identification system treat the PHI identification as a named entity recognition problem,

the evaluation of the identification should be with the same metrics used in the named

entity recognition and information retrieval literature [203]. In particular, the research used

i2b2 annotated testing data set with all PHI categories discussed in detail in Section 6.7.2

and report performance primarily using three metrics: precision, recall, and f-measure. The

evaluation started by removing all the annotation from the testing data and then de-

identified it using the ARTPHIL model. after that, an evaluation script 8 that automatically

compares the de-identified data with the annotated testing notes at the character level to

quantify the PHI detection performance according to the evaluation matrices

Recall answers the question; "Did we find all that we were looking for?" and precision

answers the question; "Did we only label what we were looking for?". A high recall is

generally preferred over high precision, as it measures the percentage of PHI that is

correctly identified, and the privacy of the data subjects is prioritized over a potential loss

of document interpretability. To emphasize the sensitivity, F2 measure is calculated in

addition to the F1 measure, which weighs recall (twice) higher than precision, as defined

in eq. 6.4:

The overall recall and precision are computed as shown in Table 6-5, recall per tag as

shown in Table 6-6 and Per-PHI-category recall as shown in Table 6-7 across the publicly

available 514 notes 2014 i2b2 test corpus. In the six main categories, name, date, age,

contact, and IDs received a high recall of above 0.9, but location others achieved recall

below 90, as shown in Table 6-7. This category does not belong to the HIPAA PHI

8 bayan6060/philter_eart (github.com)

https://github.com/bayan6060/philter_eart

133

categories. Consequently, the i2b2 PHI categories' overall result is worse than that of the

HIPAA PHI categories [204]. However, the performance in several PHI types was good.

For example, the recall of medical record, phone, email, fax and zip code achieved 100%.

From Table 6-5, it can be seen that the de-identification method achieves generally

good results, with recall of 96.93%, a precision of 79.76%, F1-score of 87.45% and F2-

score of 92.92%. The recall of the method shows how likely it is for a PHI to be missed,

and thus how likely it is for re-identification to occur, while the precision measures the

number of false positives, thereby estimating the amount of information loss that is a result

of applying the method. These results are in line with recent research as shown in Table

6-10 (see section 6.9.1). More importantly, patient names achieved 99.86% as only two

names are missed out of 1447 names and for contact, medical record and zip code, which

is the most directly identifying PHI, a good recall of 100% was achieved, while none of

them was missed.

Table 6-5: Overall Model Performance

Metrics Result

Precision 79.76%

Recall 96.93%

F1 87.45%

F2 92.92%

Table 6-6: Recall by Tag

Tags Recall (%) TPs FNs

Medical record 100 721 0

Device 100 12 0

Username 98.91 91 1

134

Email 100 3 0

Fax 100 6 0

Zip code 100 143 0

Street 100 160 0

Location-Other 60 12 8

Patient 99.86 1445 2

Doctor 99.24 3272 25

City 98.54 338 2

Phone 100 407 0

State 96.10 197 8

Date 100 11880 0

Age 100 7 0

IDNUM 98.42 374 6

Table 6-7: Recall by PHI Category

Category Recall (%) TPs FNs

Name 99.44 4718 27

Contact 100 416 0

ID 99.45 1113 6

Date 100 11880 0

Location 90.92 850 18

Age 100 7 0

135

6.8.1. Re-identification Risk

To estimate the re-identification risk of the proposed de-identification system, the

conditional probability of a leak in identifiable information [203] is calculated as follow:

𝑃𝑟 (𝑅𝑒𝑖𝑑, 𝑙𝑒𝑎𝑘) = 𝑃𝑟(re − identification|𝑙𝑒𝑎𝑘) × 𝑃𝑟(𝑙𝑒𝑎𝑘) (6-6)

For a de-identification tool, a leak can occur if a PHI entity is not detected as it can be

used to re-identify the individual whom data describe. So, it is assumed that:

𝑃(𝑅𝑒𝑖𝑑|𝑙𝑒𝑎𝑘) = 1 (.6-7)

 Recall measuring the percentage of PHIs that were correctly identified. Thus, the

probability of a leak in a set of documents is directly related to recall, given by:

𝑃𝑟(𝑙𝑒𝑎𝑘) = 1 − 𝑅𝑒𝑐𝑎𝑙𝑙 (6-8)

Table 6-8 lists the probability of risk re-identification for each PHI using this

approach.

Table 6-8: The Probability of Risk Re-identification

Tags Recall (%) Probability of Re-Identification

Medical record 100 0

Device 100 0

Username 98.91 0.0109

Email 100 0

Fax 100 0

Zip 100 0

Street 100 0

Location-Other 60 0.40

136

Patient 99.86 0.0041

Doctor 99.24 0.0076

City 98.54 0.0146

Phone 100 0

State 96.10 0.039

Date 100 0

IDNUM 98.42 0.0158

Age 100 0

Average 0.0307

6.8.2. Execution Time

The run time of the integrated model is calculated using batches of 514 notes (3.2

MB) on a 4 core windows machine with 16 GB of RAM using the Python Time function,

'time', to estimate the feasibility of running ARTPHIL at a large scale data is conducted.

Two experiments are conducted as follow; first, a single batch with a total size of 514 notes

with a total size of 3.2MB, was run as single process and timed. Second, 20 batches of the

514 notes were run as single processes and timed. The amount of time necessary to run

514 notes as a single process was 2.5147seconds. The amount of real time necessary to

run 20 batches of 514 notes, 10,280 notes total, was 54.675 seconds as shown in Table

6-9.

Table 6-9: The Execution time for ARTPHIL

Experiments Time/ seconds

1- Single batch with 514 notes 2.5147

2- 20 batch with 514 notes 54.675

137

6.9. Effectiveness of ARTPHIL

This section demonstrates the effectiveness of ARTPHIL de-identification system.

First, by comparing ARTPHIL results with the well-known and recent de-identification

systems. Second by explaining how ARTHIL generates de-identified data that comply

with the GDPR requirement for strong pseudonymization.

6.9.1. ARTPHIL and De-identification Systems:

The de-identification field has been dominated by two different approaches to

designing de-identification models [149]. The first approach detects PHI using a rule-

based system, while the second approach assigns probabilities of PHI words using

statistics. Rule-based approaches mostly use regular expressions, whitelists, and blacklists

to label PHI words, while statistical approaches use machine learning to learn patterns

based on word context, traditionally using CRF and – more recently – using RNN. Rule-

based approaches have higher recall, while statistical approaches have higher precision.

To evaluate the effectiveness of the ARTPHIL de-identification system, the

researcher compared the model’s performance with the following models: first, the two

strongest rule-based de-identification competitors, Physionet [40] and Scrubber [202];

second, the Philter model [149] which combined rule-based and statistical approaches; and

third, the state-of-the-art machine learning-based de-identification systems of Dernoncourt

et al. [200] and Liu et al. [201], both of which are built on RNN architectures as shown in

Error! Reference source not found..

All six de-identification systems were trained on the i2b2 2014 training dataset and

evaluated on the i2b2 2014 test dataset. In terms of recall, ARTPHIL outperformed

Physionet with 69.84 % and Scrubber with 87.80 %, and achieved comparable results

with other techniques. In terms of precision, ARTPHIL achieved a comparable result to

Physionet of 89.49 %, Scrubber of 76.26%, and Philter of 78.58%. However, it achieved

138

a lower result compared to the machine learning-based models of Dernoncourt et al. model

with 97.83% and Liu et al. model with 97.28%.

Table 6-10: Comparison of different de-identification models using I2b2 corpus

Model Precision Recall F-measure

Rule-based Model

Physionet [40] 89.49 69.84 73.05

Scrubber [202] 76.26 87.80 85.22

Hybrid Model

Philter model [149] 78.58 99.92 94.77

ARTPHIL [205] 79.76 96.93 87.45

Machine Learning Model

Dernoncourt et al.’s model

[200]

97.83 97.92
97.88

Liu et al.’s model [201] 97.28 99.30 98.28

In summary, compared with existing rule-based models, ARTPHIL achieved higher

recall and comparable precision. Compared with machine and deep learning models,

ARTPHIL achieved comparable recall and lower precision. However, in de-identification

systems, high recall is generally preferred over high precision because it measures the

percentage of PHI that has been correctly identified, and the privacy of the data subject is

prioritized over the potential loss of document utility. In addition, with machine learning

approaches, it is difficult to determine why the model is committing errors, and additional

training is needed when these approaches are applied for new datasets [193]. Furthermore,

unlike existing techniques, which do not recover the PHI word after de-identification,

139

ARTPHIL replaces the PHI word with a dynamic pseudonym that can be recovered. The

pseudonym changes for the same attribute, thereby disassociating the attribute from the

data subject and preventing singling out and global linkability. This is an important

advantage of ARTPHIL over existing de-identification models.

6.9.2. ARTPHIL and GDPR requirements:

The ARTPHIL system generates de-identified data that comply with the GDPR

requirement for strong pseudonymization as follows:

• Other techniques used static pseudonymous for the identifiers which make them

vulnerable to the mosaic effect . ARTPHIL uses dynamic encryption to de-identify

the personal data. This dynamism helps reduce risk of re-identification via linkage

attacks as it is difficult correlating data across available datasets

• ARTPHIL de-identifies all direct and indirect identifiers with a recall of 96.93%.

This decreases the possibility of retaining any personal data that could re-identify

the data subject, thus decreasing the potential violation of data subject privacy.

Data de-identification systems that meet the GDPR standard for data

pseudonymization help to comply with GDPR as follows:

• They help of satisfy GDPR Article 5 [1] requirements as explained in chapter 2

for processing personal data so they comply with data minimisation, purpose and

storage limitation principles.

• Using ARTPHIL to de-identify data helps to satisfy GDPR Article 6

[78]requirements for the lawful processing of personal data as an alternative for

data subject consent.

140

• The processing of data de-identified using ARTPHIL helps organisations benefit

from provisions under GDPR Articles 11(2) and 12(2) [70]. Controllers that do

not control or have access to the key for re-identification can exempt subject rights

for specific data, as mention in chapter 2.

6.10. Summary

The research objective of this thesis is to develop a reversible de-identification system

to secure and prevent the unauthorized re-identification of unstructured health data. De-

identification approaches include different forms of pseudonymization, which typically

involves the removal or replacement of direct identifiers from the data set. However, data

that could indirectly identify a person (quasi-identifiers) may be left in place. HIPAA

privacy rules addressed this issue by specifying 18 data elements (include direct and

indirect identifiers) that must be removed from data sets to be considered de-identified.

This chapter focused on addressing the following research question:

• How can the proposed encryption algorithm be used to de-identify

unstructured textual data in order to improve individual privacy?

In this chapter, the stat-of-the-art of NER to extract personal identifying information

from the unstructured text are used. To answer that question, Philter [149], the state-of-

the-art tool for extracting personal identifiers from free-text is integrated with the

encryption algorithm E-ART proposed in the previous chapter to detect and de-identify

PHI specified under HIPAA guidelines. The i2b2/UTHealth 2014 de-identification corpus

is used to evaluate the hybrid model. First, the correctness of de-identify and re-generate

data is tested. Then, the performance is assessed using the NER evaluation metrics and the

results are in line with recent research with recall of 96.93%, a precision of 79.76%, F1-

score of 87.45% and F2-score of 92.92%. More importantly, patient names achieved

141

%99.86 as only two names are missed out of 1447 names and for contact, medical record

and zip code, which is the most directly identifying PHI, a good recall of 100% was

achieved, while none of them was missed. Further, the probability of re-identification risk

is estimated for each PHI category. Finally, the execution time for a large scale of data is

calculated. The amount of time needed to de-identify 10,280 notes with (64 MB) note

under is 54.675 seconds which indicate the suitability for ARTPHIL to be used with large

data or delay-sensitive applications.

142

 : Conclusion and Future Works

This chapter summarises the thesis contributions, discusses the significant benefits of

the proposed integrated de-identification system ARTPHIL, and discusses possible future

research directions based on the current work.

7.1. Thesis Summary

The research was initiated because of privacy and security concerns triggered by the

emergence of big data applications and technology and the fact that an increasing number

of organisations rely on sharing, storing and analysing big data to fulfil their daily

operations. The research investigates current privacy-preserving approaches and the new

obligations imposed by GDPR to process personal data. The research aims to bridge the

gap between (privacy regulations) GDPR obligations and the legitimate use of data

through data de-identification to reduce the risk of disclosing data on subjects’ identities.

The review shows that existing privacy-preserving approaches were developed long

before GDPR requirements were established. For example, privacy-preserving data

publishing (e.g., k-anonymity, l-diversity, and differential privacy) was developed

primarily for structured data to release or share information with untrusted parties (e.g.,

aggregated data, statistical results or synthetic data). These approaches protect individual

privacy by irreversibly removing identifiable information. However, they are not suitable

for data processing within organisations to satisfy GDPR requirements and obligations.

For example, for data protection by default that must be applied at the earliest opportunity

(e.g., by pseudonymising data) to limit data use to the minimum extent to support each

product or service. In addition, encrypting or masking the direct identifiers may fall short

because of the risk of linkage re-identification. The gap in knowledge that resulted from

this review was the need for a way to encrypt both direct and direct identifiers from

unstructured text.

143

Further, standard encryption algorithms such as AES and DES may be robust

pseudonymization techniques. However, these approaches rely on increasing the key size

and the number of rounds to enhance security, which could negatively affect performance,

especially for big data, or delay-sensitive applications. Section 2.6 discusses the new

efforts that are being directed towards the design of new alternatives. The dynamic key

theory introduced at the end of chapter 2, with an emphasis on the designing algorithm,

relies on the idea of dynamic encryption rather than increasing the round and key size. The

gap in knowledge that resulted from this review was the need to design a new cipher

scheme that can overcome the disadvantages of existing ciphers, such as large keys and

complex computations, to meet the requirement of processing large amounts of data

rapidly. And support the design reversible de-identification model that satisfy GDPR

requirement for strong

 In this thesis, this issue is addressed by developing a reversible, fast model that use

novel encryption algorithm to de-identify direct and indirect identifiers from unstructured

textual data cost-effectively without compromising security.

The contributions of this research are summarized as follows:

1- a simple and novel encryption algorithm E-ART was proposed in chapter 4. The

algorithm used the concept of the reflection balanced binary tree data structure and the

ASCII table as a substitution method. The secret key is used to generate: 1) variable

offset that is computed based on the E-ART tree’s properties. 2) a dynamic key based

on pseudo random number generators, character position and the secret key. The

dynamic key varies for each character to reach the required confusion and diffusion

features to prevent statistical attacks.

2- Chapter 5 evaluates the proposed algorithm against benchmark algorithms AES and

DES and against defined criteria. The main objectives have been achieved by reducing

144

the execution time and the resources needed for the encryption process compared with

the benchmark’s algorithm and also to maintain its security level, to get high

performance with high security. The chapter combined a series of experiments to

evaluate security and performance. The results showed the following:

• The average encryption speed of E-ART is four times faster than AES and five

times faster DES.

• The average memory consumption is comparable for all algorithms. However,

the results indicate that E-ART consumes higher memory for large files.

• File size increased by only 5% compared to the plain-text file under E-ART,

while it increased by around 31% for files encrypted using AES and DES.

• E-ART satisfies the avalanche effect criterion. The average avalanche effect

of E-ART was 50.11% compared to 49.2% for AES and 49.3% for DES when

a single bit changed in the key.

• E-ART satisfies the BIC criteria. The results indicate very low dependence

between the two avalanche variables. E-ART yielded a correlation value of

0.1863 compared to 0.1818 for AES and 0.1847 for DES.

• The histogram analysis performed on the plaintext and ciphertext showed a

higher level of uniform distribution for AES and DES than E-ART. However,

the histogram of the E-ART is distributed in a relatively uniform way, and it

differs significantly from that of the plain-text histogram.

• The analysis of the dynamic key produced by pseudo-random number

generators using the character position and secret key indicates that the

sequences are truly random.

145

3- The algorithm proposed in chapter 4 and validated in chapter 5 has been used as a

replacement strategy to develop a fast and reversible de-identification system to de-

identify all PHI specified by HIPAA from unstructured text in chapter 6. The de-

identification system used the overlapping pipeline provided by Philter [149]. It

includes pattern matching, statistical modelling, blacklisting and whitelisting to detect

all personal data (including direct and indirect identifiers) from free-text and encrypted

using the E-ART algorithm.

4- The system was evaluated using the i2b2 2014 testing corpus annotated to comply with

HIPAA guidelines. ARTPHIL achieved an overall F2 score of 92.92%, with recall of

96.93% and the precision of 79% recall of 96.93%, to detect and encrypt all personal

information specified under HIPAA guidelines. As the main goal of the research is to

reduce the privacy risk of data subjects, high recall is prioritised over high precision.

The amount of time needed to de-identify 10,280 patient records was 54.675 seconds,

which indicates the suitability of using ARTPHIL with large-scale data. Comparing

with existing rule-based models, ARTPHIL achieved higher recall and comparable

precision. Compared with machine and deep learning models, ARTPHIL achieved

comparable recall and lower precision

5- Pseudonymization that satisfy GDPR requirements helps to relax certain data

controller obligations as mentioned in section () . The ARTPHIL system generates

de-identified data that comply with the GDPR requirement for strong

pseudonymization as follows:

• ARTPHIL uses dynamic encryption to de-identify the personal data. This

dynamism helps reduce risk of re-identification via linkage attacks as it is

difficult correlating data across available datasets. Unlike other techniques

used static pseudonymous for the identifiers which make them vulnerable to

the mosaic effect .

146

• ARTPHIL de-identifies all direct and indirect identifiers with a recall of

96.93%. This decreases the possibility of retaining any personal data that

could re-identify the data subject, thus decreasing the potential violation of

data subject privacy.

7.2. Suggestions and future direction

Several important issues regarding the design of privacy-preserving techniques have

been addressed by this research. The research provides both theoretical and empirical

research on the domain. The main contribution is the proposed new de-identification

system that de-identifies data subjects, thus reducing risk to the privacy of data subject

while making beneficial use of data. In the process, several challenges were encountered

and addressed. This section highlights some of the remaining challenges, which suggest

directions for future research.

This research can be extended in different directions, including:

E-ART:

Further development of the E-ART algorithm can be performed as follow:

• Extending the E-ART algorithm to encrypt other types of data.

The proposed E-ART algorithm encrypts unstructured textual data using a reflection

balanced binary tree along with an ASCII table. Extending the algorithm so that it can

encrypt other types of data, including images, sounds and videos, will be of great

importance. This could be done by adding a binary conversion step to the encryption

processes.

• Code optimization

147

The performance of E-ART (in terms of speed and memory consumption) could be

further improved by optimizing the algorithm code. For example, by trying different data

programming structures.

ARTPHIL:

• Improving recall

The PHI removal can be further optimised using a crowd-sourcing approach with lots

of exposure to many hospitals and notes.

• Extending the implementation to other domains

The ARTPHIL de-identification system is highly customisable, so it can be used not

only in the healthcare domain but also in other domains, such as finance and education.

This can be achieved by customising its implementation (e.g. adding a custom library),

depending on the quasi-identifiers to be encrypted on the specific domain.

• Reducing information loss by applying partial de-identification

Partial de-identification to reduce information loss could be an interesting direction in

future research. By partial de-identification, it means that only a part of the PHI is

encrypted, leaving the remaining corresponding tokens to be changed from PHI to safe.

For example, consider part of the date. (e.g. 30/9/2021 → X/X/2021) or most of a name

(e.g. David A Smith → XXX A XXXX).

• Introducing different levels of de-identification

Instead of de-identifying data based on HIPAA guidelines, the data could be identified

based on the user processing the data. For example, the same data could represent one

level of de-identification to one user and another level to another user.

148

7.3. Summary

This chapter has summarised the research done in this thesis, explained the main

contributions, identified significant and exciting new directions for further investigation.

More specifically, this research has reviewed relevant literature to find a knowledge gap

in privacy-preservation approaches and proposed a novel and lightweight encryption

algorithm. Then, the proposed algorithm was used to develop a new de-identification

system for unstructured textual data for minimizing the risk of re-identification and

allowing legitimate use of data

The author hopes that future research comes from this thesis, and this chapter makes

some suggestions in that regard. Indeed, E- ART encryption algorithm9 and ARTPHIL de-

identification system10 are obvious candidates for further study and so that they made

available in the GitHub repository.

9 bayan6060/eart1 (github.com)
10 bayan6060/philter_eart (github.com)

https://github.com/bayan6060/eart1
https://github.com/bayan6060/philter_eart

149

References

[1] “Art. 5 GDPR – Principles relating to processing of personal data - General Data

Protection Regulation (GDPR).” [Online]. Available: https://gdpr-info.eu/art-5-gdpr/.

[Accessed: 27-Sep-2021].

[2] “Art. 89 GDPR – Safeguards and derogations relating to processing for archiving
purposes in the public interest, scientific or historical research purposes or statistical

purposes - General Data Protection Regulation (GDPR).” [Online]. Available:

https://gdpr-info.eu/art-89-gdpr/. [Accessed: 27-Sep-2021].

[3] Office of the Secretary, “Standards for Privacy of Individually Identifiable Health

Information; Final Rule,” Fed. Regist., vol. 67, no. 157, pp. 1–93, 2002.

[4] A. Hundepool et al., Statistical disclosure control, vol. 2. Wiley New York, 2012.

[5] B. C. M. Fung, K. E. Wang, R. U. I. Chen, and P. S. Yu, “Privacy-Preserving Data
Publishing : A Survey of Recent Developments,” ACM Comput. Surv., vol. 42, no. 4, pp.

1–53, 2010.

[6] T. S. Chen, W. Bin Lee, J. Chen, Y. H. Kao, and P. W. Hou, “Reversible privacy

preserving data mining: A combination of difference expansion and privacy preserving,”

J. Supercomput., vol. 66, no. 2, pp. 907–917, 2013.

[7] T. P. Hong, L. H. Tseng, and B. C. Chien, “Mining from incomplete quantitative data by

fuzzy rough sets,” Expert Syst. Appl., vol. 37, no. 3, pp. 2644–2653, 2010.

[8] J. F. J. M. Silva, E. Pinho, E. Monteiro, J. F. J. M. Silva, and C. Costa, “Controlled

searching in reversibly de-identified medical imaging archives,” J. Biomed. Inform., vol.

77, no. November 2017, pp. 81–90, 2018.

[9] M. Verhenneman, G., Claes, K., Derèze, J.J., Herijgers, P., Mathieu, C., Rademakers,
F.E., Reyda, R., & Vanautgaerden, “How GDPR Enhances Transparency and Fosters

Pseudonymisation in Academic Medical Research,” Eur. J. Health Law, vol. 27, no. 1,

pp. 35–75, 2020.

[10] W. Landi and R. B. Rao, “Secure De-identification and Re-identification,” in AMIA

Annual Symposium Proceedings, 2003, vol. 65, no. 250, p. 905.

[11] M. Yamac, M. Ahishali, N. Passalis, J. Raitoharju, B. Sankur, and M. Gabbouj,
“Reversible Privacy Preservation using Multi-level Encryption and Compressive

Sensing.”

[12] J. R. Gulcher and K. Kristj, “Protection of privacy by third-party encryption in genetic

research in Iceland,” pp. 739–742, 2000.

[13] I. Kuzminykh, A. Carlsson, M. Yevdokymenko, and V. Sokolov, “Investigation of the
IoT Device Lifetime with Secure Data Transmission,” Lect. Notes Comput. Sci.

(including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 11660

LNCS, no. November, pp. 16–27, 2019.

[14] J. L. Hernández-Ramos et al., “Protecting Personal Data in IoT Platform Scenarios

150

Through Encryption-based Selective Disclosure,” Comput. Commun., vol. 130, no. July,

pp. 20–37, 2018.

[15] J. Zandy, “Universal declaration of human rights,” Radic. Teach., vol. 113, no.

December, pp. 54–55, 2019.

[16] M. Langheinrich, “Privacy in Ubiquitous Computing,” Ubiquitous Comput. Fundam.,

pp. 95–159, 2009.

[17] T. Wright, “Security, privacy, and anonymity,” XRDS Crossroads, ACM Mag. Students,

vol. 11, no. 2, pp. 5–5, 2004.

[18] G. L. Alessandro. Acquisti, Laura Brandimarte, “Privacy and human behavior in the age

of information,” New Electron., vol. 40, no. 16, pp. 49–50, 2015.

[19] S. Yu and S. Member, “Big Privacy : Challenges and Opportunities of Privacy Study in

the Age of Big Data,” IEEE Access, vol. 4, pp. 2751–2763, 2016.

[20] D. Banisar and S. Davies, “Global trends in privacy protection : An international survey

of privacy, data protection, and surveillance laws and developments,” John Marshall J.

Comput. Inf. Law, vol. 18, no. 1, pp. 1–111, 1999.

[21] T. C. Clark and A. F. Westin, “Privacy and Freedom,” Calif. Law Rev., vol. 56, no. 3, p.

911, 1968.

[22] E. Bertino, D. Lin, and W. Jiang, “A Survey of Quantification of Privacy Preserving

Data Mining Algorithms,” pp. 183–205, 2008.

[23] W. Stallings, Computer Security Principles and Practices. Upper Saddle River, NJ,

USA, 2014.

[24] R. Gavison, “Privacy and the Limits of Law,” Yale Law J., vol. 89, no. 3, p. 51, 1980.

[25] L. Sweeney, “Uniqueness of Simple Demographics in the U.S. Population, LIDAP-

WP4,” Forthcom. B. entitled, Identifiability Data., pp. 1–34, 2000.

[26] S. L. Garfinkel, “De-Identification of Personal Information,” Nistir 8053, pp. 1–46,

2015.

[27] F. Deldar and M. Abadi, “PDP-SAG: Personalized Privacy Protection in Moving Objects

Databases by Combining Differential Privacy and Sensitive Attribute Generalization,”

IEEE Access, vol. 7, pp. 85887–85902, 2019.

[28] Y. N. Fakeeroodeen and Y. Beeharry, “Hybrid Data Privacy and Anonymization
Algorithms for Smart Health Applications,” SN Comput. Sci., vol. 2, no. 2, pp. 1–10,

2021.

[29] D. Lambert, “Measures of disclosure risk and harm,” J. Off. Stat., vol. 9, no. 2, pp. 313–

331, 1993.

[30] Article 29 Data Protection Working Party, “Opinion 05/2014 on Anonymisation

Techniques,” Work. Party Opin., no. April, pp. 1–37, 2014.

[31] R. Hu, S. Stalla-Bourdillon, M. Yang, V. Schiavo, and V. Sassone, “Bridging Policy,
Regulation and Practice? A techno-legal Analysis of Three Types of Data in the GDPR

Runshan Hu, Sophie Stalla-Bourdillon, Mu Yang, Valeria Schiavo and Vladimiro

Sassone,” Data Prot. Priv. Age Intell. Mach., p. 39, 2017.

151

[32] B. C. M. Fung, K. Wang, R. Chen, and P. S. Yu, “Privacy-preserving data publishing,”

ACM Comput. Surv., vol. 42, no. 4, 2010.

[33] A. Mehmood, I. Natgunanathan, Y. Xiang, G. Hua, S. Guo, and S. Member, “Protection

of big data privacy,” IEEE Access, vol. 4, pp. 1821–1834, 2016.

[34] P. Samarati and L. Sweeney, “Protecting Privacy when Disclosing Information : k -

Anonymity and Its Enforcement through Generalization and Suppression 1

Introduction,” pp. 1–19.

[35] E. T. Kun Liu, “Towards Identity Anonymization on Graphs,” Proc. 2008 ACM

SIGMOD Int., vol. 36, no. 20, pp. 1627–1638, 2008.

[36] N. Li, T. Li, and S. Venkatasubramanian, “t-Closeness: Privacy Beyond k-Anonymity

and L-Diversity,” Data Eng. 2007. ICDE 2007. IEEE 23rd Int. Conf., pp. 106–115,

2007.

[37] Q. Wang, Z. Xu, and S. Qu, “An enhanced k-anonymity model against homogeneity

attack,” J. Softw., vol. 6, no. 10, pp. 1945–1952, 2011.

[38] T. Li, N. Li, and J. Zhang, “Modeling and integrating background knowledge in data

anonymization,” Proc. - Int. Conf. Data Eng., pp. 6–17, 2009.

[39] L. S. Pierangela Samarati, “Generalizing Data to Provide Anonymity when Disclosing

Information,” PODS, vol. 23, no. 3, pp. 27–28, 1998.

[40] I. Neamatullah et al., “Automated De-identification of Free-text Medical Records,” BMC

Med. Inform. Decis. Mak., vol. 8, pp. 1–17, 2008.

[41] X. B. Li and J. Qin, “Anonymizing and sharing medical text records,” Inf. Syst. Res., vol.

28, no. 2, pp. 332–352, 2017.

[42] N. Memon, “Anonymizing Large Transaction Data Using MapReduce,” no. January.

School of Computer Science & Informatics Cardiff University, Cardiff, 2016.

[43] B. Alabdullah, “Rise of Big Data; Issues and Challenges,” 2018 21st Saudi Comput. Soc.

Natl. Comput. Conf., pp. 1–6, 2018.

[44] C. A. Kushida, D. A. Nichols, R. Jadrnicek, R. Miller, J. K. Walsh, and K. Griffin,

“Strategies for de-identification and anonymization of electronic health record data for

use in multicenter research studies,” Med Care, vol. 50, no. July, 2012.

[45] UiO, “Personal Data, Anonymisation & Pseudonymisation under European Data

Protection Law A Comparison of the DPD and the GDPR on the Example of Cloud

Computing,” Univ. Oslo Fac. Law, p. 63, 2016.

[46] “Art. 4 GDPR – Definitions - General Data Protection Regulation (GDPR).” [Online].

Available: https://gdpr-info.eu/art-4-gdpr/. [Accessed: 27-Sep-2021].

[47] “Recital 26 - Not Applicable to Anonymous Data - General Data Protection Regulation
(GDPR).” [Online]. Available: https://gdpr-info.eu/recitals/no-26/. [Accessed: 27-Sep-

2021].

[48] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise to sensitivity in

private data analysis,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif.

Intell. Lect. Notes Bioinformatics), vol. 3876 LNCS, pp. 265–284, 2006.

152

[49] P. Jain, M. Gyanchandani, and N. Khare, “Big Data Privacy : A Technological

Perspective and Review,” J. Big Data, vol. 3, no. 1, 2016.

[50] H. Vaghashia, A. Ganatra, and P. U. Patel, “A Survey: Privacy Preservation Techniques

in Data Mining,” Int. J. Comput. Appl., vol. 119, no. 4, pp. 975–8887, 2015.

[51] M. Osadchy, B. Pinkas, A. Jarrous, and B. Moskovich, “SCiFI - A system for secure

face identification,” Proc. - IEEE Symp. Secur. Priv., pp. 239–254, 2010.

[52] M. L. D. Ronal L. Rivest, Len Adleman, “ON DATA BANKS AND PRIVACY

HOMOMORPHISMS,” Found. Secur. Comput., vol. 4, no. 3, pp. 169–180, 1978.

[53] P. Venkateswarlu, B. Manasa, and K. Srikanth, “An Expensive Study of Homomorphic
Encryption to Secure Cloud Data,” Int. J. Comput. Sci. Eng., vol. 7, no. 4, pp. 765–770,

2019.

[54] J. Bringer, H. Chabanne, M. Favre, A. Patey, T. Schneider, and M. Zohner, “GSHADE:

Faster privacy-preserving distance computation and biometric identification,” IH MMSec

2014 - Proc. 2014 ACM Inf. Hiding Multimed. Secur. Work., pp. 187–198, 2014.

[55] M. Sepehri, S. Cimato, and E. Damiani, “Privacy-preserving query processing by multi-

party computation,” Comput. J., vol. 58, no. 10, pp. 2195–2212, 2015.

[56] M. M. Groat, W. He, and S. Forrest, “KIPDA: k-Indistinguishable Privacy-preserving

Data Aggregation in Wireless Sensor Networks,” in Proceedings IEEE INFOCOM,

2011, pp. 2024–2032.

[57] Z. Yang, M. Yang, and B. Ning, “User relationship privacy protection on trajectory

data,” in Lecture Notes in Electrical Engineering, 2020, vol. 517, pp. 1038–1045.

[58] J. V. Bibal Benifa and G. Venifa Mini, “Privacy Based Data Publishing Model for Cloud

Computing Environment,” Wirel. Pers. Commun., vol. 113, no. 4, pp. 2215–2241, 2020.

[59] B. S. Bhati, J. Ivanchev, I. Bojic, A. Datta, and D. Eckhoff, “Utility-Driven k-

Anonymization of Public Transport User Data,” IEEE Access, vol. 9, pp. 23608–23623,

2021.

[60] B. Bamba, L. Liu, P. Pesti, and T. Wang, “Supporting Anonymous Location Queries in
Mobile Environments with PrivacyGrid,” Proceeding 17th Int. Conf. World Wide Web

2008, WWW’08, pp. 237–246, 2008.

[61] A. M. Olawoyin, C. K. L. B, and R. Choudhury, “Privacy-Preserving Spatio-Temporal

Patient Data Publishing,” 2020, pp. 407–416.

[62] Corporatefinanceinstitute.com, Data Pseudonymisation Techniques: Advanced

Techniques & Technical analysis of cybersecurity measures in data, no. January. 2021.

[63] P. Jagwani, S. Tiwari, and S. Kaushik, “Using middleware as a certifying authority in
LBS applications,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell.

Lect. Notes Bioinformatics), vol. 7108 LNCS, no. December, pp. 242–255, 2011.

[64] M. B. Hossain, I. Natgunanathan, Y. Xiang, and Y. Zhang, “Cost-Friendly Differential

Privacy of Smart Meters Using Energy Storage and Harvesting Devices,” IEEE Trans.

Serv. Comput., no. May, 2021.

[65] R. Mendes and J. P. Vilela, “Privacy-Preserving Data Mining: Methods, Metrics, and

153

Applications,” IEEE Access, vol. 5, pp. 10562–10582, 2017.

[66] T. Zhu, G. Li, W. Zhou, and P. S. Yu, “Differentially Private Spatial Crowdsourcing,”

Adv. Inf. Secur., vol. 69, pp. 173–189, 2017.

[67] R. ji Huang, Q. Ye, and M. C. Li, “Clustering-Anonymization-Based Differential

Location Privacy Preserving Protocol in WSN,” Commun. Comput. Inf. Sci., vol. 1120

CCIS, pp. 177–193, 2019.

[68] K. Aulakh and R. K. Ramachandran, “A Detailed Survey of Fully Homomorphic

Encryption Standards to Preserve Privacy over Cloud Communications,” Indo - Taiwan
2nd Int. Conf. Comput. Anal. Networks, Indo-Taiwan ICAN 2020 - Proc., pp. 207–211,

2020.

[69] G. Bréart et al., “Letters to the editor: Directive of the european parliament and of the

council on the protection of individuals with regard to the processing of personal data
and on the free movement of such data,” Int. J. Epidemiol., vol. 24, no. 2, pp. 462–463,

1995.

[70] “Art. 11 GDPR – Processing which does not require identification - General Data

Protection Regulation (GDPR).” [Online]. Available: https://gdpr-info.eu/art-11-gdpr/.

[Accessed: 27-Sep-2021].

[71] “Art. 15 GDPR – Right of access by the data subject - General Data Protection
Regulation (GDPR).” [Online]. Available: https://gdpr-info.eu/art-15-gdpr/. [Accessed:

27-Sep-2021].

[72] “Art. 16 GDPR – Right to rectification - General Data Protection Regulation (GDPR).”

[Online]. Available: https://gdpr-info.eu/art-16-gdpr/. [Accessed: 27-Sep-2021].

[73] “Art. 17 GDPR – Right to erasure (‘right to be forgotten’) - General Data Protection

Regulation (GDPR).” [Online]. Available: https://gdpr-info.eu/art-17-gdpr/. [Accessed:

27-Sep-2021].

[74] “Art. 18 GDPR – Right to restriction of processing - General Data Protection Regulation

(GDPR).” [Online]. Available: https://gdpr-info.eu/art-18-gdpr/. [Accessed: 27-Sep-

2021].

[75] “Art. 20 GDPR – Right to data portability - General Data Protection Regulation
(GDPR).” [Online]. Available: https://gdpr-info.eu/art-20-gdpr/. [Accessed: 27-Sep-

2021].

[76] “Art. 13 GDPR – Information to be provided where personal data are collected from the

data subject - General Data Protection Regulation (GDPR).” [Online]. Available:

https://gdpr-info.eu/art-13-gdpr/. [Accessed: 27-Sep-2021].

[77] “Art. 14 GDPR – Information to be provided where personal data have not been obtained
from the data subject - General Data Protection Regulation (GDPR).” [Online].

Available: https://gdpr-info.eu/art-14-gdpr/. [Accessed: 27-Sep-2021].

[78] “Art. 6 GDPR – Lawfulness of processing - General Data Protection Regulation

(GDPR).” [Online]. Available: https://gdpr-info.eu/art-6-gdpr/. [Accessed: 27-Sep-

2021].

[79] “Art. 25 GDPR – Data protection by design and by default - General Data Protection
Regulation (GDPR).” [Online]. Available: https://gdpr-info.eu/art-25-gdpr/. [Accessed:

154

27-Sep-2021].

[80] “Art. 33 GDPR – Notification of a personal data breach to the supervisory authority -
General Data Protection Regulation (GDPR).” [Online]. Available: https://gdpr-

info.eu/art-33-gdpr/. [Accessed: 27-Sep-2021].

[81] “Art. 34 GDPR – Communication of a personal data breach to the data subject - General

Data Protection Regulation (GDPR).” [Online]. Available: https://gdpr-info.eu/art-34-

gdpr/. [Accessed: 27-Sep-2021].

[82] “Recital 28 - Introduction of Pseudonymisation - General Data Protection Regulation
(GDPR).” [Online]. Available: https://gdpr-info.eu/recitals/no-28/. [Accessed: 27-Sep-

2021].

[83] B. A. Forouzan, Cryptography and Network Security, vol. 1025, no. 1. McGraw-Hill,

Inc.., 2007.

[84] B. Alabdullah, N. Beloff, and M. White, “E-ART: A New Encryption Algorithm Based

on the Reflection of Binary Search Tree,” Cryptography, vol. 5, no. 1, p. 4, 2021.

[85] Y. Zheng and X. M. Zhang, “On Relationships Among Avalanche, Nonlinearity, and
Correlation Immunity,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif.

Intell. Lect. Notes Bioinformatics), vol. 1976, pp. 470–482, 2000.

[86] J. Lee, N. Sultana, F. Yi, and I. Moon, “Avalanche and Bit Independence Properties of

Photon-Counting Double Random Phase Encoding in Gyrator Domain,” Curr. Opt.

Photonics, vol. 2, no. 4, pp. 368–377, 2018.

[87] A. F. W. S.E.Tavares, “On the Design of S-Boxes,” Proc. IRE, vol. 42, no. 8, pp. 1262–

1267, 1954.

[88] J. Cohen, Statistical Power Analysis for the Behavioral Sciences. 2013.

[89] S. S. Omran, A. S. Al-Khalid, and D. M. Al-Saady, “A Cryptanalytic Attack on

Vigenère Cipher using Genetic Algorithm,” 2011 IEEE Conf. Open Syst. ICOS 2011, no.

September, pp. 59–64, 2011.

[90] O. Calin, “Statistics and Machine Learning Experiments in English and Romanian

Poetry,” Sci, vol. 2, no. 4, p. 92, 2020.

[91] Z. Hercigonja, “Comparative Analysis of Cryptographic Algorithms,” Int. J. Digit.

Technol. Econ., vol. 1, no. 2, pp. 127–134, 2016.

[92] D. Cryptosystems and E. Biham, “Differential Crypt Analysis of DES-Like

Cryptosystems,” J. Cryptol., vol. 4, no. 1, pp. 2–72, 1993.

[93] A. Bogdanov and C. Rechberger, “A 3-Subset Meet-in-the-Middle Attack: Cryptanalysis

of the Lightweight Block Cipher KTANTAN,” Lect. Notes Comput. Sci. (including
Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 6544 LNCS, pp. 229–

240, 2011.

[94] H. Noura, L. Sleem, M. Noura, M. M. Mansour, A. Chehab, and R. Couturier, “A new

Efficient Lghtweight and Secure Image Cipher Scheme,” Multimed. Tools Appl., vol. 77,

no. 12, pp. 15457–15484, 2018.

[95] Biryukov Alex and C. De Cannière, “DATA ENCRYPTION STANDARD (DES),”

155

Encycl. Cryptogr. Secur., pp. 295–301, 2011.

[96] J. Daemen and V. Rijmen, “AES proposal: Rijndael,” 1999.

[97] M. Masoud, I. Jannoud, A. Ahmad, and H. Al-Shobaky, “The power consumption cost
of data encryption in smartphones,” 2015 Int. Conf. Open Source Softw. Comput.

OSSCOM 2015, no. August 2017, 2016.

[98] H. N. Noura, A. Chehab, and R. Couturier, “Efficient & Secure Cipher Scheme with

Dynamic key-Dependent Mode of Operation,” Signal Process. Image Commun., vol. 78,

no. January, pp. 448–464, 2019.

[99] G. Bansod, N. Raval, and N. Pisharoty, “Implementation of a new lightweight
encryption design for embedded security,” IEEE Trans. Inf. Forensics Secur., vol. 10,

no. 1, pp. 142–151, 2015.

[100] S. Aljawarneh, M. B. Yassein, and W. A. Talafha, “A Multithreaded Programming

Approach for Multimedia Big Data: Encryption System,” Multimed. Tools Appl., vol. 77,

no. 9, pp. 10997–11016, 2018.

[101] O. A. Dawood, A. M. Sagheer, and S. S. Al-Rawi, “Design Large Symmetric Algorithm
for Securing Big Data,” Proc. - Int. Conf. Dev. eSystems Eng. DeSE, vol. 2018-Septe,

pp. 123–128, 2019.

[102] A. H. Al-Omari, “Lightweight Dynamic Crypto Algorithm for Next Internet

Generation,” Eng. Technol. Appl. Sci. Res., vol. 9, no. 3, pp. 4203–4208, 2019.

[103] P. Derbez, P. A. Fouque, and J. Jean, “Improved Key Recovery Attacks on Reduced-
Round AES in the Single-key Setting,” Lect. Notes Comput. Sci. (including Subser. Lect.

Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 7881 LNCS, pp. 371–387, 2013.

[104] H. Mala, M. Dakhilalian, V. Rijmen, and M. Modarres-Hashemi, “Improved Impossible

Differential Cryptanalysis of 7-round AES-128,” Lect. Notes Comput. Sci. (including

Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 6498 LNCS, pp. 282–

291, 2010.

[105] K. Gai, M. Qiu, H. Zhao, and J. Xiong, “Privacy-Aware Adaptive Data Encryption

Strategy of Big Data in Cloud Computing,” in In 2016 IEEE 3rd International

Conference on Cyber Security and Cloud Computing (CSCloud), 2016, pp. 273–278.

[106] D. Puthal, X. Wu, N. Surya, R. Ranjan, and J. Chen, “SEEN: A selective encryption
method to ensure confidentiality for big sensing data streams,” IEEE Trans. Big Data,

vol. 5, no. 3, pp. 379–392, 2019.

[107] O. A. Khashan and M. AlShaikh, “Edge-based lightweight selective encryption scheme

for digital medical images,” Multimed. Tools Appl., no. September, 2020.

[108] D. Engel, T. Stütz, and A. Uhl, “Format-compliant JPEG2000 encryption with combined

packet header and packet body protection,” MM Sec’07 - Proc. Multimed. Secur. Work.

2007, pp. 87–96, 2007.

[109] M. C. Alipour, B. D. Gerardo, and R. P. Medina, “A secure image encryption

architecture based on pseudorandom number generator and chaotic logistic map,” ACM

Int. Conf. Proceeding Ser., pp. 154–159, 2019.

[110] H. H. Ngo, X. Wu, P. D. Le, C. Wilson, and B. Srinivasan, “Dynamic Key Cryptography

156

and Applications,” Int. J. Netw. Secur., vol. 10, no. 3, pp. 161–174, 2010.

[111] D. C. Hassan NOURA, “Implementation and Practical Problems of Chaos-based

Cryptography Revisited,” 2017.

[112] J. Sen Teh, M. Alawida, and Y. C. Sii, “Implementation and practical Problems of

Chaos-based Cryptography Revisited,” J. Inf. Secur. Appl., vol. 50, no. August 2019,

2020.

[113] C. Chunka, R. S. Goswami, and S. Banerjee, “An Efficient Mechanism to Generate

Dynamic keys Based on Genetic Algorithm,” Secur. Priv., p. e37, 2018.

[114] H. Noura, A. Chehab, and R. Couturier, “Lightweight Dynamic Key-Dependent and
Flexible Cipher Scheme for IoT Devices,” IEEE Wirel. Commun. Netw. Conf. WCNC,

vol. 2019-April, pp. 1–8, 2019.

[115] Ü. Çavuşoğlu, S. Kaçar, A. Zengin, and I. Pehlivan, “A novel Hybrid Encryption

Algorithm Based on Chaos and S-AES Algorithm,” Nonlinear Dyn., vol. 92, no. 4, pp.

1745–1759, 2018.

[116] X. Chai, K. Yang, and Z. Gan, “A new chaos-based image encryption algorithm with
dynamic key selection mechanisms,” Multimed. Tools Appl., vol. 76, no. 7, pp. 9907–

9927, 2017.

[117] O. Jallouli, S. El Assad, M. Chetto, and R. Lozi, “Design and Analysis of Two Stream

Ciphers Based on Chaotic Coupling and Multiplexing Techniques,” Multimed. Tools

Appl., vol. 77, no. 11, pp. 13391–13417, 2018.

[118] W. Wen, Y. Zhang, M. Su, R. Zhang, J. xin Chen, and M. Li, “Differential Attack on A

hyper-Chaos-based Image Cryptosystem with A classic bi-Modular Architecture,”

Nonlinear Dyn., vol. 87, no. 1, pp. 383–390, 2017.

[119] J. Sen Teh, M. Alawida, and Y. C. Sii, “Implementation and Practical Problems of

Chaos-based Cryptography Revisited,” J. Inf. Secur. Appl., vol. 50, no. November, 2020.

[120] L. Ding, C. Liu, Y. Zhang, and Q. Ding, “A new Lightweight Stream Cipher Based on

Chaos,” Symmetry (Basel)., vol. 11, no. 7, pp. 1–12, 2019.

[121] A. Arab, M. J. Rostami, and B. Ghavami, “An image encryption method based on chaos

system and AES algorithm,” J. Supercomput., vol. 75, no. 10, pp. 6663–6682, 2019.

[122] X. Chai, X. Fu, Z. Gan, Y. Lu, and Y. Chen, “A color Image Cryptosystem Based on

Dynamic DNA Encryption and Chaos,” Signal Processing, vol. 155, pp. 44–62, 2019.

[123] L. Shi, Y. Wang, R. Jia, T. Peng, J. Jiang, and S. Zhu, “Research of Lightweight

Encryption Algorithm Based on AES and Chaotic Sequences for Narrow-Band Internet
of Things,” in Lecture Notes of the Institute for Computer Sciences, Social-Informatics

and Telecommunications Engineering, LNICST, 2019, vol. 294 LNCIST, pp. 267–280.

[124] S. O. Tuam, “Text Encryption Approach using DNA Computation and Chaotic

Indexing,” Int. J. Emerg. Trends Eng. Res., vol. 8, no. 8, pp. 4654–4658, 2020.

[125] M. Babaei, “A novel text and image encryption method based on chaos theory and DNA

computing,” Nat. Comput., vol. 12, no. 1, pp. 101–107, 2013.

[126] Q. Zhang, L. Guo, and X. Wei, “A novel image fusion encryption algorithm based on

157

DNA sequence operation and hyper-chaotic system,” Optik (Stuttg)., vol. 124, no. 18,

pp. 3596–3600, 2013.

[127] J. Lü, G. Chen, D. Cheng, and S. Celikovsky, “Bridge the gap between the Lorenz

system and the Chen system,” Int. J. Bifurcat. Chaos, vol. 12, no. 12, pp. 2917–2926,

2002.

[128] X. Wang and Y. Su, “An Audio Encryption Algorithm Based on DNA Coding and

Chaotic System,” IEEE Access, vol. 8, pp. 9260–9270, 2020.

[129] L. Liu, Q. Zhang, and X. Wei, “A RGB image encryption algorithm based on DNA

encoding and chaos map,” Comput. Electr. Eng., vol. 38, no. 5, pp. 1240–1248, 2012.

[130] F. Özkaynak, A. B. Özer, and S. Yavuz, “Security Analysis of An Image Encryption

Algorithm Based on Chaos and DNA Encoding,” 2013 21st Signal Process. Commun.

Appl. Conf. SIU 2013, no. l, pp. 3–6, 2013.

[131] Y. Liu, J. Tang, and T. Xie, “Cryptanalyzing a RGB image encryption algorithm based

on DNA encoding and chaos map,” Opt. Laser Technol., vol. 60, pp. 111–115, 2014.

[132] X. Huang and G. Ye, “An image encryption algorithm based on hyper-chaos and DNA

sequence,” Multimed. Tools Appl., vol. 72, no. 1, pp. 57–70, 2014.

[133] Q. Zhang, L. Guo, and X. Wei, “Image encryption using DNA addition combining with

chaotic maps,” Math. Comput. Model., vol. 52, no. 11–12, pp. 2028–2035, 2010.

[134] V. R. Folifack Signing, T. Fozin Fonzin, M. Kountchou, J. Kengne, and Z. T. Njitacke,

Chaotic Jerk System with Hump Structure for Text and Image Encryption Using DNA

Coding, vol. 40, no. 9. Springer US, 2021.

[135] B. Akiwate and L. Parthiban, “A DNA Cryptographic Solution for Secured Image and

Text Encryption,” Int. J. Adv. Comput. Sci. Appl., vol. 12, no. 2, pp. 397–407, 2021.

[136] A. Kadhim and R. S. Ali, “Enhancement AES based on 3D chaos theory and DNA

operations addition,” Karbala Int. J. Mod. Sci., vol. 5, no. 2, 2019.

[137] A. Belazi, M. Talha, S. Kharbech, and W. Xiang, “Novel Medical Image Encryption

Scheme Based on Chaos and DNA Encoding,” IEEE Access, vol. 7, pp. 36667–36681,

2019.

[138] A. Jain and N. Rajpal, “A robust image encryption algorithm resistant to attacks using

DNA and chaotic logistic maps,” Multimed. Tools Appl., vol. 75, no. 10, pp. 5455–5472,

2016.

[139] J. Juremi, R. Mahmod, and S. Sulaiman, “A proposal for improving AES S-box with

rotation and key-dependent,” Proc. 2012 Int. Conf. Cyber Secur. Cyber Warf. Digit.

Forensic, CyberSec 2012, pp. 38–42, 2012.

[140] T. Ara, P. G. Shah, and M. Prabhakar, “Dynamic key Dependent S-Box for Symmetric

Encryption for IoT Devices,” Proc. 2018 2nd Int. Conf. Adv. Electron. Comput.

Commun. ICAECC 2018, pp. 1–5, 2018.

[141] B. Maram and J. M. Gnanasekar, “A Block Cipher Algorithm to Enhance the Avalanche
Effect Using Dynamic Key-Dependent S-Box and Genetic Operations,” Int. J. Pure

Appl. Math., vol. 119, no. 10, pp. 399–418, 2018.

158

[142] K. Kazlauskas, G. Vaicekauskas, and R. Smaliukas, “An Algorithm for Key-Dependent

S-Box Generation in Block Cipher System,” Inform., vol. 26, no. 1, pp. 51–65, 2015.

[143] M. Hintze and G. LaFever, “Meeting Upcoming GDPR Requirements While

Maximizing the Full Value of Data Analytics,” SSRN Electron. J., 2017.

[144] G. Dodig-crnkovic, “Scientific Methods in Computer Science,” no. October, 2012.

[145] R. Elio, J. Hoover, I. Nikolaidis, M. Salavatipour, L. Stewart, and K. Wong, “About

Computing Science Research Methodology.”

[146] A. Dresch, D. P. Lacerda, and J. A. V. Antunes, “Design science research,” in Design

science research, Springer, 2015, pp. 67–102.

[147] A. Elragal and M. Haddara, “Design Science Research: Evaluation in the Lens of Big

Data Analytics,” Systems, vol. 7, no. 2, p. 27, 2019.

[148] N. Manson, “Is operations research really research?,” ORiON, vol. 22, no. 2, pp. 155–

180, 2006.

[149] B. Norgeot et al., “Protected Health Information filter (Philter): Accurately and Securely

De-identifying Free-text Clinical Notes,” npj Digit. Med., vol. 3, no. 1, pp. 1–8, 2020.

[150] W. Yihan and L. Yongzhen, “Improved Design of des Algorithm Based on Symmetric

Encryption Algorithm,” Proc. 2021 IEEE Int. Conf. Power Electron. Comput. Appl.

ICPECA 2021, pp. 220–223, 2021.

[151] J. H. Anajemba, C. Iwendi, M. Mittal, and T. Yue, “Improved advance encryption

standard with a privacy database structure for IoT nodes,” Proc. - 2020 IEEE 9th Int.

Conf. Commun. Syst. Netw. Technol. CSNT 2020, pp. 201–206, 2020.

[152] A. Rukhin, J. Soto, and J. Nechvatal, “A Statistical Test Suite for Random and

Pseudorandom Number Generators for Cryptographic Applications,” Nist Spec. Publ.,

vol. 22, no. April, pp. 1/1----G/1, 2010.

[153] P. S. Appelbaum, “Privacy in psychiatric treatment: Threats and responses,” Am. J.

Psychiatry, vol. 159, no. 11, pp. 1809–1818, 2002.

[154] J. Grimson, W. Grimson, and W. Hasselbring, “The SI challenge in health care,”

Commun. ACM, vol. 43, no. 6, pp. 48–55, 2000.

[155] A. Stubbs and Ö. Uzuner, “Annotating Longitudinal Clinical Narratives for De-
identification: The 2014 i2b2/UTHealth Corpus,” J. Biomed. Inform., vol. 58, pp. S20--

S29, 2015.

[156] J. Gardner and L. Xiong, “HIDE : An Integrated System for Health Information DE-

identification HIDE : An Integrated System for Health Information DE-identification ∗,”

no. July 2008, 2014.

[157] A. Stubbs, C. Kotfila, and Ö. Uzuner, “Automated Systems for the De-identification of
Longitudinal Clinical narratives: Overview of 2014 i2b2/UTHealth shared task Track 1,”

J. Biomed. Inform., vol. 58, pp. S11--S19, 2015.

[158] G. Ibáñez-Sanz et al., “Statin Use and the Risk of Colorectal Cancer in a Population-

based Electronic HealthRecords Study,” Sci. Rep., vol. 9, no. 1, pp. 1–8, 2019.

[159] K. Lam, T. Parkin, C. Riggs, and K. Morgan, “Use of Free Text Clinical Records in

159

Identifying Syndromes and Analysing Health Data,” Vet. Rec., vol. 161, no. 16, pp. 547–

551, 2007.

[160] “Primary care data for public health researche,” Medicines & Healthcare products

Regulatory Agency. [Online]. Available: https://cprd.com/primary-care-data-public-

health-research. [Accessed: 23-Apr-2022].

[161] R. Leone et al., “Identifying Adverse Drug Reactions Associated with Drug-drug

Interactions: Data Mining of A spontaneous Reporting Database in Italy,” Drug Saf., vol.

33, no. 8, pp. 667–675, 2010.

[162] L. Baril et al., “Risk of Spontaneous Abortion and Other Pregnancy Outcomes in 15-25

Year Old Women Exposed to Human Papillomavirus-16/18 AS04-Adjuvanted Vaccine

in the United Kingdom,” Vaccine, vol. 33, no. 48, pp. 6884–6891, 2015.

[163] D. Heredia-Ductram, M. Nunez-Del-Prado, and H. Alatrista-Salas, “Toward a

Comparison of Classical and New Privacy Mechanism,” Entropy, vol. 23, no. 4, 2021.

[164] T. Ahmed, M. M. Al Aziz, and N. Mohammed, “De-identification of Electronic Health

Record using Neural Network,” Sci. Rep., vol. 10, no. 1, pp. 1–11, 2020.

[165] S. Editors and A. Editors, The Design of Rijndael, 2nd ed. New York: Springer-verlag.

[166] A. R. Tate et al., “Exploiting the potential of large databases of electronic health records

for research using rapid search algorithms and an intuitive query interface,” J. Am. Med.

Informatics Assoc., vol. 21, no. 2, pp. 292–298, 2014.

[167] R. G. Brown, “DieHarder: A Gnu Public License Random Number Tester,” Duke Univ.

Phys. Dep. Durham, 2018.

[168] P. L’ecuyer and R. Simard, “TestU01: A C library for empirical testing of random

number generators,” ACM Trans. Math. Softw., vol. 33, no. 4, 2007.

[169] G. Alvarez and S. Li, “Some basic cryptographic requirements for chaos-based

cryptosystems,” Int. J. Bifurc. Chaos, vol. 16, no. 8, pp. 2129–2151, 2006.

[170] J. B. Alimpia, “An Enhanced Hash-based Message Authentication Code using BCrypt,”

Int. J. Res. Appl. Sci. Eng. Technol., vol. 6, no. 4, pp. 1429–1432, 2018.

[171] R. M. Marzan and A. M. Sison, “An enhanced key security of playfair cipher algorithm,”

ACM Int. Conf. Proceeding Ser., vol. Part F1479, no. February, pp. 457–461, 2019.

[172] V. Roman’kov, “Two General Schemes of Algebraic Cryptography,” Groups,

Complexity, Cryptol., vol. 10, no. 2, pp. 83–98, 2018.

[173] C. Blondeau, G. Leander, and K. Nyberg, “Differential-Linear Cryptanalysis Revisited,”

J. Cryptol., vol. 30, no. 3, pp. 859–888, 2017.

[174] H. Aamot, C. D. Kohl, D. Richter, and P. Knaup-Gregori, “Pseudonymization of Patient

Identifiers for Translational Research,” BMC Med. Inform. Decis. Mak., vol. 13, no. 1,

pp. 1–15, 2013.

[175] T. Neubauer and J. Heurix, “A methodology for the Pseudonymization of Medical

Data,” Int. J. Med. Inform., vol. 80, no. 3, pp. 190–204, 2011.

[176] P. Geetha, C. Naikodi, and S. L. N. Setty, Design of big data privacy framework—a

balancing act, vol. 612. Springer Singapore, 2020.

160

[177] J. Aberdeen et al., “The MITRE Identification Scrubber Toolkit: Design, training, and

assessment,” Int. J. Med. Inform., vol. 79, no. 12, pp. 849–859, 2010.

[178] A. E. W. Johnson et al., “MIMIC-CXR, a de-identified publicly available database of

chest radiographs with free-text reports,” Sci. Data, vol. 6, no. 1, pp. 1–8, 2019.

[179] Z. Liu, B. Tang, X. Wang, and Q. Chen, “De-identification of clinical notes via recurrent

neural network and conditional random field,” J. Biomed. Inform., vol. 75, pp. S34--S42,

2017.

[180] J. L. Hernández-Ramos et al., “Protecting Personal Data in IoT Platform Scenarios
Through Encryption-based Selective Disclosure,” Comput. Commun., vol. 130, no. July,

pp. 20–37, 2018.

[181] Y. Wu, M. Jiang, J. Lei, and H. Xu, “Named Entity Recognition in Chinese Clinical Text

Using Deep Neural Network.,” Stud. Health Technol. Inform., vol. 216, pp. 624–8, 2015.

[182] M. Allahyari, E. D. Trippe, and J. B. Gutierrez, “A Brief Survey of Text Mining:

Classification , Clustering and Extraction Techniques,” arXiv, 2017.

[183] S. Keretna, C. P. Lim, and D. Creighton, “A hybrid Model for Named Entity
Recognition using Unstructured Medical Text,” Proc. 9th Int. Conf. Syst. Syst. Eng.

Socio-Technical Perspect. SoSE 2014, pp. 85–90, 2014.

[184] A. Mishra and S. K. Jain, “A survey on Question Answering Systems with

Classification,” J. King Saud Univ. - Comput. Inf. Sci., vol. 28, no. 3, pp. 345–361, 2016.

[185] K. Xu, S. Reddy, Y. Feng, S. Huang, and D. Zhao, “Question Answering on Freebase

via Relation Extraction and Textual Evidence,” 2016.

[186] F. Dugas and E. Nichols, “DeepNNNER : Applying BLSTM-CNNs and Extended

Lexicons to Named Entity Recognition in Tweets,” pp. 178–187, 2016.

[187] L. Derczynski et al., “Analysis of Named Entity Recognition and Linking for Tweets,”

Inf. Process. Manag., vol. 51, no. 2, pp. 32–49, 2015.

[188] Q. Shi and M. Abdel-Aty, “Big Data applications in real-time traffic operation and safety

monitoring and improvement on urban expressways,” Transp. Res. Part C Emerg.

Technol., vol. 58, pp. 380–394, 2015.

[189] T. Baldwin, M.-C. de Marneffe, B. Han, Y.-B. Kim, A. Ritter, and W. Xu, “Shared

Tasks of the 2015 Workshop on Noisy User-generated Text: Twitter Lexical

Normalization and Named Entity Recognition,” pp. 126–135, 2015.

[190] A. McCallum and W. Li, “Early results for named entity recognition with conditional

random fields, feature induction and web-enhanced lexicons,” Comput. Sci. Dep. Fac.

Publ. Ser., 2003.

[191] S. M. Thomas, B. Mamlin, G. Schadow, and C. McDonald, “A successful Technique for

Removing Names in Pathology Reports using an Augmented Search and Replace

Method.,” Proceedings. AMIA Symp., pp. 777–81, 2002.

[192] H. Gali, A. Surana, P. Vaidya, Shishtla, and D. M.Sharma, “Aggregating Machine
Learning and Rule Based Heuristic for Named EntityRecognition,” Proc. IJCNLP-08

Work. NER South South East Asian Lang., no. January, pp. 25–32, 2008.

161

[193] O. Ferrández, B. R. South, S. Shen, F. J. Friedlin, M. H. Samore, and S. M. Meystre,
“Evaluating current automatic de-identification methods with Veterans health

administration clinical documents,” BMC Med. Res. Methodol., vol. 12, 2012.

[194] A. Coden, D. Gruhl, N. Lewis, M. Tanenblatt, and J. Terdiman, “SPOT the Drug! An

Unsupervised Pattern Matching Method to Extract Drug Names from Very large Clinical

Corpora,” Proc. - 2012 IEEE 2nd Conf. Healthc. Informatics, Imaging Syst. Biol. HISB

2012, pp. 33–39, 2012.

[195] B. A. Beckwith, R. Mahaadevan, U. J. Balis, and F. Kuo, “Development and evaluation

of an open source software tool for deidentification of pathology reports,” BMC Med.

Inform. Decis. Mak., vol. 6, pp. 1–10, 2006.

[196] A. Ekbal, S. Saha, and P. Bhattacharyya, “Deep Learning Architecture for Patient Data
De-identification in Clinical Records,” Proc. Clin. Nat. Lang. Process. Work., pp. 32–

41, 2016.

[197] Z. C. Lipton, J. Berkowitz, and C. Elkan, “A Critical Review of Recurrent Neural

Networks for Sequence Learning,” pp. 1–38, 2015.

[198] S. Hochreiter and J. Urgen Schmidhuber, “Long Shortterm Memory,” Neural Comput.,

vol. 9, no. 8, p. 17351780, 1997.

[199] D. Nouvel, M. Ehrmann, and S. Rosset, “Evaluating Named Entity Recognition,” in
Named Entities for Computational Linguistics, Hoboken, NJ, USA: John Wiley & Sons,

Inc., 2016, pp. 111–129.

[200] F. Dernoncourt, J. Y. Lee, O. Uzuner, and P. Szolovits, “De-identification of Patient

Notes with Recurrent Neural Networks,” J. Am. Med. Informatics Assoc., vol. 24, no.

December 2016, pp. 596–606, 2017.

[201] Z. Liu, B. Tang, X. Wang, and Q. Chen, “De-identification of Clinical Notes via
Recurrent Neural Network and Conditional Random Field,” J. Biomed. Inform., vol. 75,

pp. S34--S42, 2017.

[202] A. J. McMurry, B. Fitch, G. Savova, I. S. Kohane, and B. Y. Reis, “Improved De-

identification of Physician Notes Through Integrative Modeling of both Public and

Private Medical Text,” BMC Med. Inform. Decis. Mak., vol. 13, no. 1, 2013.

[203] M. Scaiano et al., “A unified Framework for Evaluating the Risk of Re-identification of

Text De-identification Tools,” J. Biomed. Inform., 2016.

[204] B. He, Y. Guan, J. Cheng, K. Cen, and W. Hua, “CRFs based de-identification of

medical records,” J. Biomed. Inform., vol. 58, pp. S39–S46, 2015.

[205] B. Alabdullah, N. Beloff, and M. White, ARTPHIL: Reversible De-identification of Free

Text Using an Integrated Model, no. March. Springer International Publishing, 2022.

[206] N. R. Al-Kazaz and W. J. Teahan, “An Automatic Cryptanalysis of Arabic Transposition
Ciphers using Compression,” Int. J. Adv. Comput. Sci. Appl., vol. 9, no. 11, pp. 738–745,

2018.

[207] S. Agustini, W. M. Rahmawati, and M. Kurniawan, “Modified Vegenere Cipher to

Enhance Data Security Using Monoalphabetic Cipher,” Int. J. Artif. Intell. Robot., vol. 1,

no. 1, p. 25, 2019.

162

[208] Amalia, M. A. Budiman, and R. Sitepu, “File Text Security using Hybrid Cryptosystem
with Playfair Cipher Algorithm and Knapsack Naccache-Stern Algorithm,” J. Phys.

Conf. Ser., vol. 978, no. 1, 2018.

[209] R. M. Marzan, A. M. Sison, and R. P. Medina, “An Enhanced Key Security of Playfair

Cipher Algorithm,” Int. J. Adv. Trends Comput. Sci. Eng., vol. 8, no. 4, pp. 1248–1253,

2019.

[210] T. M. Aung and N. N. Hla, “A Complex Polyalphabetic Cipher Technique Myanmar
Polyalphabetic Cipher,” 2019 Int. Conf. Comput. Commun. Informatics, ICCCI 2019,

2019.

[211] A. Elmogy, Y. Bouteraa, R. Alshabanat, and W. Alghaslan, “A New Cryptography

Algorithm Based on ASCII Code,” 19th Int. Conf. Sci. Tech. Autom. Control Comput.

Eng. STA 2019, pp. 626–631, 2019.

[212] N. Yadav, R. K. Kapoor, and M. A. Rizvi, “A Novel Symmetric Key Cryptography

using Dynamic Matrix Approach,” Adv. Intell. Syst. Comput., vol. 439, pp. 51–60, 2016.

[213] A. Biryukov, Encyclopedia of Cryptography and Security. Boston, MA: Springer US,

2005.

[214] A. Sciences, Springer Encyclopedia of Cryptography and Security, no. March. 2016.

[215] C. E. Shannon and W. Weaver, The Mathematical Theory of Communication, vol. 8, no.

11. 1964.

[216] T. Nie and T. Zhang, “A study of DES and Blowfish Encryption Algorithm,” IEEE Reg.

10 Annu. Int. Conf. Proceedings/TENCON, pp. 1–4, 2009.

[217] N. Aleisa, “A Comparison of the 3DES and AES Encryption Standards,” Int. J. Secur. its

Appl., vol. 9, no. 7, pp. 241–246, 2015.

[218] V. R. Joan Daemen, “AES Proposal: Rijndael Joan,” pp. ix–xii, 2003.

[219] S. Manku and K. Vasanth, “Blowfish Encryption Algorithm for Information Security,”

ARPN J. Eng. Appl. Sci., vol. 10, no. 10, pp. 4717–4719, 2015.

[220] C. S. Lamba, “Design and Analysis of Stream Cipher for Network Security,” in 2010

Second International Conference on Communication Software and Networks, 2010, vol.

76, pp. 526–567.

[221] S. Rajesh, V. Paul, V. G. Menon, and M. R. Khosravi, “A Secure and Efficient

Lightweight Symmetric Encryption Scheme for Transfer of Text Files Between

Embedded IoT Devices,” Symmetry (Basel)., vol. 11, no. 2, 2019.

[222] B. Rothke, “A look at the Advanced Encryption Standard (AES),” in Information

Security Management Handbook, Sixth Edition, 2007, pp. 1151–1158.

[223] S. Arrag, “Design and Implementation A different Architectures of mixcolumn in

FPGA,” Int. J. VLSI Des. Commun. Syst., vol. 3, no. 4, pp. 11–22, 2012.

[224] N. B. Abdulwahed, “Chaos-Based Advanced Encryption Standard,” Master Diss., 2013.

[225] and C. D. C. Biryukov, Alex, “DATA ENCRYPTION STANDARD (DES),” Encycl.

Cryptogr. Secur., pp. 295–301, 2011.

163

[226] B. De Decker, “Introduction to Computer Security,” Lect. Notes Comput. Sci. (including
Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 1528, pp. 377–393,

1998.

Appendices

Appendix I: E-ART Code (Java)

Below is the java source code for E-ART encryption and decryption algorithms

developed in Chapter 4

/*

 * This code created to test the encryption and decryption of E-ART algorithm. it read document from the

 local path then encrypt it and upload it as new encrypted document. then it read the encrypt document and decrypt itand upload it

 as new decrypted document

 */

package eart;

import org.apache.commons.io.FileUtils;

import org.apache.commons.io.IOUtils;

import java.io.UnsupportedEncodingException;

import java.security.MessageDigest;

import java.security.NoSuchAlgorithmException;

import java.util.Arrays;

import java.util.Arrays;

import java.io.File;

import java.nio.charset.StandardCharsets;

import java.util.Random;

/**

 *

 * @author bayan

 */

public class Eart {

 // declarition of variables

 private boolean find = false;

 private int Low = 0;

 private int High = 9;

164

 private int max_length = 127;

 private int delta = 32;

 int pos_offset = 3;

 int N = 80000000;

 // declartion of string of array that will be used to represent the escap secuence charecters in the ascii table between 33 and 47.

 private String[] str_const = {"+!+", "", "+#+", "+$+", "+%+", "+&+", "+'+", "+yy+", "+zz+", "+*+", "+++", "+''+", "+ww+", "+.+",

"+xx+"};

/**this function read the text document, get the Variable offset (var-offset) and dynamic offset (psudo)

 * and then encrypt each characters and append to the encrypt list and generate the encrypted file

 * @param localPath

 */

 public void Encrypt_data_art(String localPath) {

 try {

 File myfile = new File(localPath);

 // read file

 String str = FileUtils.readFileToString(myfile, StandardCharsets.UTF_8); // read file

 // convert the text document into array of string and Separate each character

 String[] string_array = str.split("");

 System.out.println(" E-ART encrption in progress");

 // Declared an array of integer and store the result of getVarOffset() function on it

 int [] ans = getVarOffset();

 // an offset that will be used in replaceCharAt () function

 int var_offset = ans[0];

 // an offset that will be used in replaceCharAt () function

 int const_offset = ans[1];

 // create instance of Random class

 Random r = new Random();

 // This loop ietrated over the the array of string, send the charecter postition i and random integer r to create

 // pesudo random nubmer for each charecters in the document

 long pseudo = 0;

 for (int i = 0; i < string_array.length; i++) {

 pseudo = pseudorandom(i, r); //call function

 // send all the offsets needed to encrypt single charecter

 string_array[i] = replaceCharAt(string_array[i], pseudo, var_offset,const_offset);

 }

 // Once all characters in the plaintext are encrypted, the encrypted text file is generated.

 FileUtils.writeStringToFile(new File("C://test/encrypted.txt"), convertArrayToStringMethod(string_array), "UTF-8");

 System.out.println(" E-ART encrption is completed");

 decrypt_art (string_array); // call the dcryption function

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

 /**

 * @param value which represent the character from the array of string

 * @param index which represent the The pseudo-random number

 * @param var_offset

 * @param const_offset

 * @return str which represent the encrypted character

 */

 private String replaceCharAt(String value, Long index, int var_offset, int const_offset) {

 int org_value = value.charAt(0);// the character is converted into its corresponding ASCII value and stored in org_value.

 int reflected_value = (max_length - org_value) + 1; // generate the initial reflected value by substracting the org_value from the

max_lenth

 int lap_off = (int) (index % pos_offset); // The pseudo-random number is then adjusted using the pos_offset which is part of the

seceret key

 // create a StringBuilder object

 // usind StringBuilder() constructor

 String str = "";

 StringBuilder sb = new StringBuilder();

 if ((reflected_value + var_offset + const_offset) > max_length) {

 // avoid unpreintable charecters from 0 to 32 by adding delta

 if (((reflected_value + var_offset + const_offset) % max_length) < 32) {

 reflected_value = ((reflected_value + var_offset + const_offset) % max_length) + delta + lap_off;

 // avoid the are escape-sequence characters that cannot be printed. chaecters between 33 and 47.

 if (reflected_value >= 33 && reflected_value <= 47) {

165

 str = str_const[reflected_value - delta - 1];

 } else {

 str = sb.append((char) (reflected_value)).toString(); // convert the ascii number to the equlivant charecters

 }

 } else {

 reflected_value = ((reflected_value + var_offset + const_offset) % max_length) + lap_off;

 str = sb.append((char) (reflected_value)).toString();

 }

 } else {

 reflected_value = reflected_value + var_offset + const_offset + lap_off;// reflected value is converted to is converted to the

equivalent ASCII character to produce the encrypted character.

 str = sb.append((char) (reflected_value)).toString(); // append it to decrypt list

 }

 return str;

 }

 /**

 * @param strArray

 * @return string

 */

 public static String convertArrayToStringMethod(String[] strArray) {

 StringBuilder stringBuilder = new StringBuilder();

 for (int i = 0; i < strArray.length; i++) {

 stringBuilder.append(strArray[i]);

 // stringBuilder.append(",");

 }

 return stringBuilder.toString();

 }

 /**

 * This function use uses each character’s position in the text as a seed to generate a pseudo-random number

 * @param seed which is the character position within the document

 * @param r which is random number

 * @return pseudorandom number

 */

 public long pseudorandom(int seed, Random r) {

 // setting seed

 // long s = 24;

 r.setSeed(seed);

 // value after setting seed

 // return Math.abs(r.nextInt());

 return Math.abs(r.nextLong());

 }

 /**

 * This function used to generate the var_offset using N, the first value of the initial key, and the properties of the tree—R, NL, and

NR

 * the constant_offset is modified based on the value of Var_offset to keep characters within the range

 * @return an array that contain var_offset and constant offset

 */

 public int[] getVarOffset()

 {

 int ans [] = new int [2];

 //int N = 80000000;

 int sub = 0;

 int var_offset1;

 int const_offset1= 32;

 int offset_L = N % max_length;

 int offset_R = (max_length - offset_L)+1;

 int root = max_length /2 ;

 if (offset_L < root)

 var_offset1 = (root * offset_L) % offset_R;

 else

166

 var_offset1 = (root * offset_R) % offset_L;

 // keep the var_offset within the range

 if (var_offset1> 64){

 var_offset1 = (var_offset1% 64);}

 // modify the contant offset to keep the charecters within the range

 // var-offset have to be less than 39, otherwise the constant offset have to bre modify

 if (var_offset1 > 39){

 sub = var_offset1 - const_offset1;

 const_offset1 = const_offset1 + sub;}

 // modify the contant offset to keep the charecters within the range

 // var-offset have to be more than 31, otherwise the constant offset have to bre modify

 else if (var_offset1 < 31){

 //System.out.println ("var offset is > 31");

 sub = const_offset1 - var_offset1;

 const_offset1 = const_offset1 + sub;}

 ans [0] = var_offset1;

 ans [1] = const_offset1;

 return ans;

 }

 /**

 *this function read the encrypted document, get the Variable offset (var-offset) and dynamic offset (psudo)

 * and then decrypt each characters and append to the decrypt list and generate the decrypted file

 * @param string_array

 */

 public void decrypt_art(String[] string_array) {

 try {

 System.out.println(" E-ART decrption in progress");

 StringBuilder stringBuilder = new StringBuilder();

 // create instance of Random class

 Random r = new Random();

 long pseudo = 0;

 // This loop ietrated over the the array of string, send the charecter postition i and random integer r to create

 // pesudo random nubmer for each charecters in the document

 for (int i = 0; i < string_array.length; i++) {

 // System.out.println(string_array[i]);

 pseudo = pseudorandom(i, r);

 stringBuilder.append(deidentify(string_array[i], pseudo));

 }

 // convert it to string

 String str_converted = stringBuilder.toString();

 // remove all extra charecters

 str_converted = str_converted.replace("@", " ");

 str_converted = str_converted.replace("*", " ");

 System.out.println(str_converted);

 // The decrypted text file is generated.

 System.out.println(" E-ART decrption is completed");

 FileUtils.writeStringToFile(new File("C://test/decrypted.txt"), str_converted, "UTF-8");

 } catch (Exception e) {

 e.printStackTrace();

 }

 // disconnect();

 }

 /**

 * this function take an an encrypted character and the psudo offset, it adject the psudo offset and check if the characters

 * from the str array and then send the character to be decrypted by replaceChar(int_value_anonymized) function

 * then append the decrypted to the decrypted list and generate the decrypted file

 *

 * @param word which represent the encrypted character

 * @param index which represent the pusedo offset

 * @return

 */

 public char deidentify(String word, long index) {

167

 int int_value_anonymized = 0;

 char org_word = ' ';

 int lap_off = (int) (index % pos_offset);// The pseudo-random number is adjusted using the pos_offset which is part of the seceret

k

 if (word.length() > 1) {

 word = word.substring(1, word.length() - 1);

 // check if the word is from the the str_consts array that represent the escap charecters range of 33 - 47

 if (word.length() == 2) {

 if (word.equals("xx")) {

 int_value_anonymized = 47 - delta - lap_off;

 org_word = replaceChar(int_value_anonymized);

 } else if (word.equals("ww")) {

 int_value_anonymized = 45 - delta - lap_off;

 org_word = replaceChar(int_value_anonymized);

 } else if (word.equals("yy")) {

 int_value_anonymized = 40 - delta - lap_off;

 org_word = replaceChar(int_value_anonymized);

 } else if (word.equals("zz")) {

 int_value_anonymized = 41 - delta - lap_off;

 org_word = replaceChar(int_value_anonymized);

 } else if (word.equals("''")) {

 int_value_anonymized = 44 - delta - lap_off;

 org_word = replaceChar(int_value_anonymized);

 } else if (word.equals("uu")) {

 org_word = 'D';

 }

 } else {

// if the charecters is not from the str array then the charecters converted into its corresponding ASCII value and stored in

value_anonymized

 int_value_anonymized = (int) (word.charAt(0)) - delta - lap_off;

 // call replacechar function with prammeter value of anonymized to complete the decryption process

 org_word = replaceChar(int_value_anonymized);

 }

 } else if (word.length() > 0) {

 int_value_anonymized = (int) (word.charAt(0)) - lap_off;

// convert the charecter to its its corresponding ASCII value and subtract the lap_off which represent the dynamic offset and then

stored it in value_anonymized

 org_word = replaceChar(int_value_anonymized); //send the charecter for decyption

 }

 org_word = replaceChar(int_value_anonymized);// send the charecter for decyption

 return org_word;

 }

 /**

 * this function take the encrypted character and decrypted by reversing the encryption process and using the same prameters

 * which constant offset psudo offset and variable offset

 *

 * @param int_value_anonymized which is the Ascii value of the decrypted character

 * @return

 */

 private char replaceChar(int int_value_anonymized) {

 // the var_offset and contant offset are genenrated using getVaroffset() function and stored in array ans[]

 int [] ans = getVarOffset();

 int var_offset = ans[0];

 int const_offset = ans[1];

 // use quotient to determain weather to multply by max_length or not (reverse the mod operation)

 int quotient = 0;

 if ((int_value_anonymized - (const_offset + var_offset)) <= 0) {

 quotient = 1; // multiply by max_lengh

 } else {

 quotient = 0; // not multiply it by max_lengh

 }

 int_value_anonymized = (max_length * quotient + int_value_anonymized) - const_offset - var_offset;

 int org_value = (max_length - int_value_anonymized) + 1;

168

 if (org_value == 44) { // ???

 org_value = org_value + 14;

 }

 // the value was from the unprintable charechters so we subtract delta as to reverse the process

 if (org_value >= 0 && org_value <= 32) {

 org_value = org_value + delta;

 }

 return (char) (org_value); // Decrypted value is converted to the equivalent ASCII character to produce the decrypted character

 }

 public static void main(String[] args) {

 String localPath = "C://test/";

 Eart ftp = new Eart ();

 ftp.Encrypt_data_art(localPath + "plaintext.txt");

 }

}

Appendix II: E-ART Evaluation

Below is the Java source code for evaluating the performance of the proposed

encryption algorithm E-ART against AES and DES that is used in chapter 5. The code is

developed to measure the effect of the changing data size for each cryptography algorithm.

It measures the processing time and memory consumption for different sizes of textual

files ranging from 200 to 2000 KB. The processing time is considered the time that an

encryption algorithm takes to produce a ciphertext from a plaintext. It is computed by

using System.currentTimeMillis() to get the start time and the end time and calculate the

difference.

Memory consumption is the amount of memory consumed during the encryption or

decryption processes. It is computed as follow; the memory used before your code

execution is calculated. Next, the memory used after your code execution is calculated

and then the difference is calculated to get the actual memory consumption.

/*
 * This code was created to evaluate the performance of E-ART against AES and DES in terms of execution time and
memory consumption.

 */
package evaluation;
import java.io.BufferedInputStream;
import java.io.BufferedOutputStream;

169

import java.io.File;
import java.io.FileWriter;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.OutputStream;

import java.io.InputStream;
import java.io.ByteArrayInputStream;
import java.nio.charset.StandardCharsets;
import com.jcraft.jsch.Channel;
import com.jcraft.jsch.ChannelSftp;
import com.jcraft.jsch.JSch;
import com.jcraft.jsch.JSchException;
import com.jcraft.jsch.Session;

import java.util.*;
import org.apache.commons.io.FileUtils;
import org.apache.commons.io.IOUtils;
import java.io.UnsupportedEncodingException;
import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;
import java.util.Arrays;
import java.util.Base64; // THis Base64 will be enabled for AES

import java.math.BigInteger;
import javax.crypto.Cipher;
import javax.crypto.spec.SecretKeySpec;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.security.Key;
import javax.crypto.Cipher;
import javax.crypto.CipherOutputStream;

import javax.crypto.KeyGenerator;
import java.security.MessageDigest;
import java.util.Arrays;
import javax.crypto.Cipher;
import javax.crypto.SecretKey;
import javax.crypto.spec.IvParameterSpec;
import javax.crypto.spec.SecretKeySpec;

//import org.apache.commons.codec.binary.Base64; // ENabled for DES

//import org.apache.commons.codec.binary.Base64;

public class Evaluation {

 private boolean find = false;
 private int max_length = 127;
 private int delta = 32;

 int pos_offset = 3;
 int N = 80000000;
 // declartion of string of array that will be used to represent the escap secuence charecters in the ascii table between
33 and 47.
 private String[] str_const = {"+!+", "", "+#+", "+$+", "+%+", "+&+", "+'+", "+yy+", "+zz+", "+*+", "+++", "+''+",
"+ww+", "+.+", "+xx+"};
 private static SecretKeySpec secretKey;
 private static byte[] key;

 static long MEGABYTE = 1024L * 1024L;

/**this function read the text document, get the Variable offset (var-offset) and dynamic offset (psudo)
 * and then encrypt each characters and append to the encrypt list and generate the encrypted file
 * @param localPath
 */
 public void Encrypt_data_art(String localPath) {
 try {

170

 File myfile = new File(localPath);
 // read file
 String str = FileUtils.readFileToString(myfile, StandardCharsets.UTF_8); // read file
 // convert the text document into array of string and Separate each character
 String[] string_array = str.split("");

 System.out.println(" E-ART encrption in progress");
 // Declared an array of integer and store the result of getVarOffset() function on it
 int [] ans = getVarOffset();
 // an offset that will be used in replaceCharAt () function
 int var_offset = ans[0];
 // an offset that will be used in replaceCharAt () function
 int const_offset = ans[1];
 // create instance of Random class

 Random r = new Random();
 // This loop ietrated over the the array of string, send the charecter postition i and random integer r to create
 // pesudo random nubmer for each charecters in the document
 long pseudo = 0;
 for (int i = 0; i < string_array.length; i++) {
 pseudo = pseudorandom(i, r); //call function
 // send all the offsets needed to encrypt single charecter
 string_array[i] = replaceCharAt(string_array[i], pseudo, var_offset,const_offset);

 }
 // Once all characters in the plaintext are encrypted, the encrypted text file is generated.
 FileUtils.writeStringToFile(new File("C://test/encrypted.txt"), convertArrayToStringMethod(string_array),
"UTF-8");
 System.out.println(" E-ART encrption is completed");

 //decrypt_art (string_array); // call the dcryption function
 } catch (Exception e) {

 e.printStackTrace();
 }
 }
 /**
 * @param value which represent the character from the array of string
 * @param index which represent the The pseudo-random number
 * @param var_offset
 * @param const_offset
 * @return str which represent the encrypted character

 */
 private String replaceCharAt(String value, Long index, int var_offset, int const_offset) {

 int org_value = value.charAt(0);// the character is converted into its corresponding ASCII value and stored in
org_value.
 int reflected_value = (max_length - org_value) + 1; // generate the initial reflected value by substracting the
org_value from the max_lenth
 int lap_off = (int) (index % pos_offset); // The pseudo-random number is then adjusted using the pos_offset which

is part of the seceret key
 // create a StringBuilder object
 // usind StringBuilder() constructor
 String str = "";
 StringBuilder sb = new StringBuilder();

 if ((reflected_value + var_offset + const_offset) > max_length) {
 // avoid unpreintable charecters from 0 to 32 by adding delta

 if (((reflected_value + var_offset + const_offset) % max_length) < 32) {
 reflected_value = ((reflected_value + var_offset + const_offset) % max_length) + delta + lap_off;
 // avoid the are escape-sequence characters that cannot be printed. chaecters between 33 and 47.
 if (reflected_value >= 33 && reflected_value <= 47) {
 str = str_const[reflected_value - delta - 1];
 } else {
 str = sb.append((char) (reflected_value)).toString(); // convert the ascii number to the equlivant charecters
 }

171

 } else {
 reflected_value = ((reflected_value + var_offset + const_offset) % max_length) + lap_off;
 str = sb.append((char) (reflected_value)).toString();
 }
 } else {

 reflected_value = reflected_value + var_offset + const_offset + lap_off;// reflected value is converted to is
converted to the equivalent ASCII character to produce the encrypted character.
 str = sb.append((char) (reflected_value)).toString(); // append it to decrypt list
 }
 return str;
 }
 /**
 * @param strArray

 * @return string
 */
 public static String convertArrayToStringMethod(String[] strArray) {

 StringBuilder stringBuilder = new StringBuilder();

 for (int i = 0; i < strArray.length; i++) {

 stringBuilder.append(strArray[i]);
 // stringBuilder.append(",");
 }

 return stringBuilder.toString();
 }

 /**

 * This function use uses each character’s position in the text as a seed to generate a pseudo-random number
 * @param seed which is the character position within the document
 * @param r which is random number
 * @return pseudorandom number
 */
 public long pseudorandom(int seed, Random r) {
 // setting seed
 // long s = 24;
 r.setSeed(seed);

 // value after setting seed
 // return Math.abs(r.nextInt());
 return Math.abs(r.nextLong());

 }
 /**
 * This function used to generate the var_offset using N, the first value of the initial key, and the properties of the
tree—R, NL, and NR

 * the constant_offset is modified based on the value of Var_offset to keep characters within the range
 * @return an array that contain var_offset and constant offset
 */

 public int[] getVarOffset()
 {
 int ans [] = new int [2];
 //int N = 80000000;

 int sub = 0;
 int var_offset1;
 int const_offset1= 32;
 int offset_L = N % max_length;
 int offset_R = (max_length - offset_L)+1;
 int root = max_length /2 ;

172

 if (offset_L < root)

 var_offset1 = (root * offset_L) % offset_R;

 else

 var_offset1 = (root * offset_R) % offset_L;

 // keep the var_offset within the range
 if (var_offset1> 64){
 var_offset1 = (var_offset1% 64);}
 // modify the contant offset to keep the charecters within the range
 // var-offset have to be less than 39, otherwise the constant offset have to bre modify

 if (var_offset1 > 39){
 sub = var_offset1 - const_offset1;
 const_offset1 = const_offset1 + sub;}
 // modify the contant offset to keep the charecters within the range
 // var-offset have to be more than 31, otherwise the constant offset have to bre modify
 else if (var_offset1 < 31){
 //System.out.println ("var offset is > 31");
 sub = const_offset1 - var_offset1;

 const_offset1 = const_offset1 + sub;}

 ans [0] = var_offset1;
 ans [1] = const_offset1;
 return ans;

 }

 /**
 *this function read the encrypted document, get the Variable offset (var-offset) and dynamic offset (psudo)
 * and then decrypt each characters and append to the decrypt list and generate the decrypted file
 * @param string_array
 */

 public void decrypt_art(String localPath) {

 try {

 System.out.println(" E-ART decryption in progress");
 String str = FileUtils.readFileToString(new File(localPath), StandardCharsets.UTF_8.name());
 StringBuilder stringBuilder = new StringBuilder();
 String[] string_array = str.split(",");
 // create instance of Random class
 Random r = new Random();
 long pseudo = 0;
 // This loop ietrated over the the array of string, send the charecter postition i and random integer r to create

 // pesudo random nubmer for each charecters in the document
 for (int i = 0; i < string_array.length; i++) {
 // System.out.println(string_array[i]);
 pseudo = pseudorandom(i, r);
 stringBuilder.append(deidentify(string_array[i], pseudo));
 }

 // convert it to string

 String str_converted = stringBuilder.toString();
 // remove all extra charecters
 str_converted = str_converted.replace("@", " ");
 str_converted = str_converted.replace("*", " ");

 System.out.println(str_converted);
 // The decrypted text file is generated.
 System.out.println(" E-ART decrption is completed");

173

 FileUtils.writeStringToFile(new File("C://test/decrypted.txt"), str_converted, "UTF-8");

 } catch (Exception e) {
 e.printStackTrace();
 }

 }

 /**
 * this function take an an encrypted character and the psudo offset, it adject the psudo offset and check if the
characters
 * from the str array and then send the character to be decrypted by replaceChar(int_value_anonymized) function
 * then append the decrypted to the decrypted list and generate the decrypted file

 * @param word which represent the encrypted character
 * @param index which represent the pusedo offset
 * @return
 */
 public char deidentify(String word, long index) {

 int int_value_anonymized = 0;
 char org_word = ' ';

 int lap_off = (int) (index % pos_offset);// The pseudo-random number is adjusted using the pos_offset which is
part of the seceret k

 if (word.length() > 1) {
 word = word.substring(1, word.length() - 1);

 // check if the word is from the the str_consts array that represent the escap charecters range of 33 - 47
 if (word.length() == 2) {

 if (word.equals("xx")) {
 int_value_anonymized = 47 - delta - lap_off;
 org_word = replaceChar(int_value_anonymized);
 } else if (word.equals("ww")) {
 int_value_anonymized = 45 - delta - lap_off;
 org_word = replaceChar(int_value_anonymized);
 } else if (word.equals("yy")) {
 int_value_anonymized = 40 - delta - lap_off;

 org_word = replaceChar(int_value_anonymized);
 } else if (word.equals("zz")) {
 int_value_anonymized = 41 - delta - lap_off;
 org_word = replaceChar(int_value_anonymized);
 } else if (word.equals("''")) {
 int_value_anonymized = 44 - delta - lap_off;
 org_word = replaceChar(int_value_anonymized);
 } else if (word.equals("uu")) {

 org_word = 'D';
 }
 } else {
// if the charecters is not from the str array then the charecters converted into its corresponding ASCII value and stored
in value_anonymized
 int_value_anonymized = (int) (word.charAt(0)) - delta - lap_off;
 // call replacechar function with prammeter value of anonymized to complete the decryption process
 org_word = replaceChar(int_value_anonymized);

 }

 } else if (word.length() > 0) {
 int_value_anonymized = (int) (word.charAt(0)) - lap_off;
// convert the charecter to its its corresponding ASCII value and subtract the lap_off which represent the dynamic offset
and then stored it in value_anonymized
 org_word = replaceChar(int_value_anonymized); //send the charecter for decyption
 }

174

 org_word = replaceChar(int_value_anonymized);// send the charecter for decyption
 return org_word;
 }

 /**
 * this function take the encrypted character and decrypted by reversing the encryption process and using the same
prameters
 * which constant offset psudo offset and variable offset
 *
 * @param int_value_anonymized which is the Ascii value of the decrypted character
 * @return
 */

 private char replaceChar(int int_value_anonymized) {

 // the var_offset and contant offset are genenrated using getVaroffset() function and stored in array ans[]
 int [] ans = getVarOffset();
 int var_offset = ans[0];
 int const_offset = ans[1];

 // use quotient to determain weather to multply by max_length or not (reverse the mod operation)

 int quotient = 0;

 if ((int_value_anonymized - (const_offset + var_offset)) <= 0) {
 quotient = 1; // multiply by max_lengh
 } else {
 quotient = 0; // not multiply it by max_lengh
 }

 int_value_anonymized = (max_length * quotient + int_value_anonymized) - const_offset - var_offset;
 int org_value = (max_length - int_value_anonymized) + 1;

 if (org_value == 44) { // ???
 org_value = org_value + 14;
 }
 // the value was from the unprintable charechters so we subtract delta as to reverse the process
 if (org_value >= 0 && org_value <= 32) {
 org_value = org_value + delta;

 }

 return (char) (org_value); // Decrypted value is converted to the equivalent ASCII character to produce the
decrypted character
 }
 /**
 * @param localPath which is the text file that contain the plaintext
 * @param secretKey

 * This function take the plaintext file and encrypted using AES encryption algorithm and upload it to the given path
 */

 public void encrypt_AES(String localPath, String secretKey) {
 try {
 System.out.println ("encryption in progress");

 File myfile = new File(localPath);

 String str = FileUtils.readFileToString(myfile, StandardCharsets.UTF_8.name());// read text and convert it to
byte
 String encryptedString = encrypt(str, secretKey);
 System.out.println(encryptedString);
 FileUtils.writeStringToFile(new File("C:/test//sample_aes_enc.txt"), encryptedString, "UTF-8");

 } catch (Exception ex) {
 System.out.print(ex);

175

 }
 }
 /**
 * @param strToEncrypt
 * @param secret

 * @return encrypted string
 */
 public static String encrypt(String strToEncrypt, String secret) {
 try {
 setKey(secret);
 Cipher cipher = Cipher.getInstance("AES/ECB/PKCS5Padding");
 cipher.init(Cipher.ENCRYPT_MODE, secretKey);
 // Retruns encrypted value

 return Base64.getEncoder().encodeToString(cipher.doFinal(strToEncrypt.getBytes("UTF-8")));
 //return null;
 } catch (Exception e) {
 System.out.println("Error while encrypting: " + e.toString());
 }
 return null;
 }

 /* @param remoteFilePath
 * @param localPath
 * @param secretKey
 */

 /**
 *
 * @param localPath which represent the encrypted file

 * @param secretKey
 * This function take the encrypted file and decrypted using AES decryption algorithm and upload it to the given
path
 */
 public void decrypt_AES(String localPath, String secretKey) {

 try {

 File file = new File(localPath);
 String str = FileUtils.readFileToString(file, StandardCharsets.UTF_8.name());// read the encryption text from
file

 String decryptedString = decrypt(str, secretKey);// call AES decryption function
 System.out.println (decryptedString);
 FileUtils.writeStringToFile(new File("C:/test/sample_aes_dec.txt"), decryptedString, "UTF-8");// write the

decryption text to file

 } catch (Exception e) {
 e.printStackTrace();
 }
 // disconnect();
 }

 /**
 *
 * @param strToDecrypt
 * @param secret
 * @return
 */
 public static String decrypt(String strToDecrypt, String secret) {

176

 try {
 setKey(secret);
 Cipher cipher = Cipher.getInstance("AES/ECB/PKCS5PADDING");
 cipher.init(Cipher.DECRYPT_MODE, secretKey);

 return new String(cipher.doFinal(Base64.getDecoder().decode(strToDecrypt)));
 //return null;
 } catch (Exception e) {
 System.out.println("Error while decrypting: " + e.toString());
 }
 return null;
 }

 public static void setKey(String myKey) {
 MessageDigest sha = null;
 try {
 key = myKey.getBytes("UTF-8");
 sha = MessageDigest.getInstance("SHA-1");
 key = sha.digest(key);
 key = Arrays.copyOf(key, 16);

 secretKey = new SecretKeySpec(key, "AES");

 } catch (NoSuchAlgorithmException e) {
 e.printStackTrace();
 } catch (UnsupportedEncodingException e) {
 e.printStackTrace();
 }
 }

 /*
 * @param localPath which represent the plaintext file
 * @param secretKey
 * This function take the plaintext file and encrypted using AES encryption algorithm and upload it to the given path
 */
 public void Des_Encryption (String localPath, String secretKey) {

 try{

 File myfile = new File(localPath);
 String str = FileUtils.readFileToString(myfile, StandardCharsets.UTF_8.name());
 String encrypted_des = encrypt_des(str, secretKey);
 System.out.println(encrypted_des);
 FileUtils.writeStringToFile(new File("C:/test//sample_des_enc.txt"), encrypted_des, "UTF-8");

 }
 catch (Exception ex) {

 System.out.print(ex);
 }
}

 /**
 *
 * @param localPath
 * @param secretKey

 * This function take the encrypted file and decrypted using DES decryption algorithm and upload it to the given
path
 */
 public void Des_decryption (String localPath, String secretKey) {

 try{
 File myfile = new File(localPath);
 String str = FileUtils.readFileToString(myfile, StandardCharsets.UTF_8.name());

177

 String encrypted_des = decrypt_des(str, secretKey);
 System.out.println(encrypted_des);
 FileUtils.writeStringToFile(new File("C:/test//sample_des_dec.txt"), encrypted_des, "UTF-8");

 }

 catch (Exception ex) {
 System.out.print(ex);
 }
}

 /**
 *
 * @param message

 * @param SECRET_KEY
 * @return
 */
 public String encrypt_des(String message, String SECRET_KEY) {
 try {
 final MessageDigest md = MessageDigest.getInstance("md5");
 final byte[] digestOfPassword = md.digest(SECRET_KEY.getBytes());
 final byte[] keyBytes = Arrays.copyOf(digestOfPassword, 24);

 for (int j = 0, k = 16; j < 8;) {
 keyBytes[k++] = keyBytes[j++];
 }

 final SecretKey key = new SecretKeySpec(keyBytes, "DESede");
 final IvParameterSpec iv = new IvParameterSpec(new byte[8]);
 final Cipher cipher = Cipher.getInstance("DESede/CBC/PKCS5Padding");

 cipher.init(Cipher.ENCRYPT_MODE, key, iv);
 final byte[] plainTextBytes = message.getBytes();
 final byte[] cipherText = cipher.doFinal(plainTextBytes);
 return new String(Base64.encodeBase64(cipherText));

 } catch (Exception ex) {
 System.out.print(ex);
 }

 return null;

 }

 /**
 *
 * @param message
 * @param SECRET_KEY

 * @return decrypted string
 */
 public String decrypt_des(String message, String SECRET_KEY) {
 try {
 final MessageDigest md = MessageDigest.getInstance("md5");
 final byte[] digestOfPassword = md.digest(SECRET_KEY.getBytes());
 final byte[] keyBytes = Arrays.copyOf(digestOfPassword, 24);

 for (int j = 0, k = 16; j < 8;) {
 keyBytes[k++] = keyBytes[j++];
 }

 final SecretKey key = new SecretKeySpec(keyBytes, "DESede");
 final IvParameterSpec iv = new IvParameterSpec(new byte[8]);
 final Cipher decipher = Cipher.getInstance("DESede/CBC/PKCS5Padding");
 decipher.init(Cipher.DECRYPT_MODE, key, iv);

178

 final byte[] plainText = decipher.doFinal(Base64.decodeBase64(message.getBytes()));
 return new String(plainText, "UTF-8");

 } catch (Exception ex) {
 System.out.print(ex);

 }
 return null;
 }

 public static void main(String[] args) {

 String localPath = "C://test/";

 final String secretKey = "abc";

 long startTime = System.currentTimeMillis();
 long beforeUsedMem = Runtime.getRuntime().totalMemory() - Runtime.getRuntime().freeMemory();
 Evaluation ftp = new Evaluation ();
 //ftp.Encrypt_data_art(localPath + "plaintext.txt");
 //ftp.decrypt_art(localPath + "encrypted.txt");
 ftp.encrypt_AES (localPath + "plaintext.txt", secretKey);

 //ftp.decrypt_AES (localPath + "sample_aes_enc.txt", secretKey);
 //ftp.Des_decryption (localPath + "sample_des_enc.txt", secretKey);
 //ftp.Des_Encryption(localPath + "plaintext.txt", secretKey);
 // claclulate the the time consumed for encyption
 long stopTime = System.currentTimeMillis();
 long elapsedTime = stopTime - startTime;
 System.out.println(" ");
 System.out.println("Time in milliseconds:--- " + elapsedTime);

 // calculate the the memory consumption
 long afterUsedMem = Runtime.getRuntime().totalMemory() - Runtime.getRuntime().freeMemory();
 long actualMemUsed = afterUsedMem - beforeUsedMem;
 System.out.println("Memory consumed in Mega Bytes: --- " + actualMemUsed / MEGABYTE);
 }

}

Avalanche effect

import hashlib

def hamming_distance(chaine1, chaine2):

 return sum(c1 != c2 for c1, c2 in zip(chaine1, chaine2))

def hamming_distance2(chaine1, chaine2):

 return len(list(filter(lambda x : ord(x[0])^ord(x[1]), zip(chaine1, chaine2))))

if __name__=="__main__":

179

 fh = open('sample_des_enc1.txt' , encoding='utf-8')

 chaine1 = fh.read()

 fh.close()

 fh = open('sample_des_enc2.txt', encoding='utf-8')

 chaine2 = fh.read()

 fh.close()

 # chaine1 = hashlib.md5("chaine1".encode()).hexdigest()

 # chaine2 = hashlib.md5("chaine2".encode()).hexdigest()

 # chaine1 = "6fb17381822a6ca9b02153d031d5d3da"

 # chaine2 = "a242eace2c57f7a16e8e872ed2f2287d"

 #chaine1="6e29201190152df4ee058139def610bb"

 #chaine2="b363bb16dd0a17b903ed4decba9223b8"

 # chaine1="c3b44b95d9d2f25670eee9a0de099fa3"

 # chaine2="4a901843a730165d716f4018074a11d5"

 res1 = ''.join(format(ord(i), 'b') for i in chaine1)

 res2 = ''.join(format(ord(i), 'b') for i in chaine2)

 # assert len(chaine1) == len(chaine2)

 print(hamming_distance(res1, res2)/len(res1) * 100)

 print(hamming_distance(res1, res2))

180

 print ((len(chaine1)))

 print ((len(res1)))

Appendix III: ARTPHIL (Python)

Below is the python source code for ARTPHIL de-identification system in Chapter

(). It is a command line de-identification software that provide an end-to-end pipeline to

detect and encrypt PHI from any plain text file. It is pull each text file from the directory,

detect all PHI word and replace with encrypted string that can be regenerated and then

write it to the output file with the same text file name appended with phi_reduced. It also

generates additional output files containing meta data from the run: number of files

processed, number of instances of PHI that were filtered, list of filtered words.

De-id script
import modules
from __future__ import print_function
import os
import sys

import pickle
import glob
import string
import re

import time
import argparse
import multiprocess
import multiprocessing

from multiprocessing import Pool
import NLP packages
import nltk
from nltk import sent_tokenize
from nltk import word_tokenize
from nltk.tree import Tree
from nltk import pos_tag_sents
from nltk import pos_tag

from nltk import ne_chunk
import spacy
from pkg_resources import resource_filename
from nltk.tag.perceptron import AveragedPerceptron
from nltk.tag import SennaTagger
from nltk.tag import HunposTagger
import array
import csv

import random

"""
detect PHI word and replace it with encrypted string

181

Does:
1. regex to search for salutations (must be done prior to splitting into sentences b/c of '.' present in most salutations)
2. split document into sentences.
3.Run regex patterns to identify PHI considering only 1 word at a time:emails, phone numbers, DOB, SSN, Postal
codes, or any word containing 5 or more consecutive digits or

 8 or more characters that begins and ends with digits.

4. Split sentences into words

5. Run regex patterns to identify PHI looking at the context for each word. For example DOB checks the preceding
words for 'age' or 'years' etc.
addresses which include [streets, rooms, states, etc],age over 90.

6. Use nltk to label POS.

7. Identify names: We run 2 separate methods to check if a word is a name based on it's context at the chunk/phrase
level. To do this:
First: Spacy nlp() is run on the sentence level and outputs NER labels at the chunk/phrase level.
Second: For chunks/phrases that spacy thinks are 'person', get a second opinion by running nltk ne_chunck which uses
nltk POS
to assign an NER label to the chunk/phrases.

*If both spacy and nltk provide a 'person' NER label for a chunk/phrase: check the in the chunk 1-by-1 with nltk to
determine if
 the word's POS tag is a proper noun.
 - sometimes the label 'person' may be applied to more than 1 word, and occassionally 1 of those words is just a
normal noun, not a name.
 - If word is a proper noun, flag the word and add it to name_set
*If spacy labels word as person but nltk does not label person but labels word as another category of NER, use spacy
on the all UPPERCASE version words

in the chunk 1-by-1 to see if spacy still believes that the uppercase word is NER of any category
 - If it is, add word to name_set;
 - If spacy thinks the uppercase version of the word no longer has an NER label, then treat word as any other noun
and send to be filtered through the whitelist.

8. If word is noun, send it on to check it against the whitelist. If word is not noun,
consider it safe and pass it on to output.For nouns, if word is in whitelist,
 check if word is in name_set, if so -> filter.
 If not in name_set,

 use spacy to check if word is a name based on the single word's meaning and format.
 Spacy does a per-word look up and assigns most frequent use of that word as a flag
 (eg'HUNT':-organization, 'Hunt'-name, 'hunt':verb).
 If the flags is name -> filter
 If flag is not name pass word through as safe
 if word not in whitelist -> filter
9. Search for middle initials by checking if single Uppercase letter is between PHI infos, if so, consider the letter as a
middle initial and filter it. e.g. Ane H Berry.

NOTE: All of the above numbered steps happen in filter_task(). Other functions either support filter task or simply
involve
dealing with I/O and multiprocessing

"""

#nlp = spacy.load('en') # load spacy english library

nlp=spacy.load("en_core_web_sm")
pretrain = SennaTagger('senna')

configure the regex patterns
we're going to want to remove all special characters
pattern_word = re.compile(r"[^\w+]")

Find numbers like SSN/PHONE/FAX

182

3 patterns: 1. 6 or more digits will be filtered 2. digit followed by - followed by digit. 3. Ignore case of characters
pattern_number = re.compile(r"""\b(
(\d[\(\)\-\']?\s?){6}([\(\)\-\']?\d)+ # SSN/PHONE/FAX XXX-XX-XXXX, XXX-XXX-XXXX, XXX-XXXXXXXX,
etc.
|(\d[\(\)\-.\']?){7}([\(\)\-.\']?\d)+ # test

)\b""", re.X)

pattern_4digits = re.compile(r"""\b(
\d{5}[A-Z0-9]*
)\b""", re.X)

pattern_devid = re.compile(r"""\b(
[A-Z0-9\-/]{6}[A-Z0-9\-/]*

)\b""", re.X)
postal code
5 digits or, 5 digits followed dash and 4 digits
pattern_postal = re.compile(r"""\b(
\d{5}(-\d{4})? # postal code XXXXX, XXXXX-XXXX
)\b""", re.X)

match DOB

pattern_dob = re.compile(r"""\b(
.*?(?=\b(\d{1,2}[-./\s]\d{1,2}[-./\s]\d{2} # X/X/XX
|\d{1,2}[-./\s]\d{1,2}[-./\s]\d{4} # XX/XX/XXXX
|\d{2}[-./\s]\d{1,2}[-./\s]\d{1,2} # xx/xx/xx
|\d{4}[-./\s]\d{1,2}[-./\s]\d{1,2} # xxxx/xx/xx
)\b)
)\b""", re.X | re.I)

match emails
pattern_email = re.compile(r"""\b(
[a-zA-Z0-9_.+-@\"]+@[a-zA-Z0-9-\:\]\[]+[a-zA-Z0-9-.]*
)\b""", re.X | re.I)

match date, similar to DOB but does not include any words
month_name =
"Jan(uary)?|Feb(ruary)?|Mar(ch)?|Apr(il)?|May|Jun(e)?|Jul(y)?|Aug(ust)?|Sep(tember)?|Oct(ober)?|Nov(ember)?|Dec(
ember)?"

pattern_date = re.compile(r"""\b(
\d{4}[\-/](0?[1-9]|1[0-2]|"""+month_name+r""")\-\d{4}[\-/](0?[1-9]|1[0-2]|"""+month_name+r""") # YYYY/MM-
YYYY/MM
|(0?[1-9]|1[0-2]|"""+month_name+r""")[\-/]\d{4}\-(0?[1-9]|1[0-2]|"""+month_name+r""")[\-/]\d{4} # MM/YYYY-
MM/YYYY
|(0?[1-9]|1[0-2]|"""+month_name+r""")/\d{2}\-(0?[1-9]|1[0-2]|"""+month_name+r""")/\d{2} # MM/YY-MM/YY
|(0?[1-9]|1[0-2]|"""+month_name+r""")/\d{2}\-(0?[1-9]|1[0-2]|"""+month_name+r""")/\d{4} # MM/YYYY-
MM/YYYY

|(0?[1-9]|1[0-2]|"""+month_name+r""")/([1-2][0-9]|3[0-1]|0?[1-9])\-(0?[1-9]|1[0-2]|"""+month_name+r""")/([1-2][0-
9]|3[0-1]|0?[1-9]) #MM/DD-MM/DD
|([1-2][0-9]|3[0-1]|0?[1-9])/(0?[1-9]|1[0-2]|"""+month_name+r""")\-([1-2][0-9]|3[0-1]|0?[1-9])/(0?[1-9]|1[0-
2]|"""+month_name+r""") #DD/MM-DD/MM
|(0?[1-9]|1[0-2]|"""+month_name+r""")[\-/\s]([1-2][0-9]|3[0-1]|0?[1-9])[\-/\s]\d{2} # MM/DD/YY
|(0?[1-9]|1[0-2]|"""+month_name+r""")[\-/\s]([1-2][0-9]|3[0-1]|0?[1-9])[\-/\s]\d{4} # MM/DD/YYYY
|([1-2][0-9]|3[0-1]|0?[1-9])[\-/\s](0?[1-9]|1[0-2]|"""+month_name+r""")[\-/\s]\d{2} # DD/MM/YY
|([1-2][0-9]|3[0-1]|0?[1-9])[\-/\s](0?[1-9]|1[0-2]|"""+month_name+r""")[\-/\s]\d{4} # DD/MM/YYYY

|\d{2}[\-./\s](0?[1-9]|1[0-2]|"""+month_name+r""")[\-\./\s]([1-2][0-9]|3[0-1]|0?[1-9]) # YY/MM/DD
|\d{4}[\-./\s](0?[1-9]|1[0-2]|"""+month_name+r""")[\-\./\s]([1-2][0-9]|3[0-1]|0?[1-9]) # YYYY/MM/DD

|\d{4}[\-/](0?[1-9]|1[0-2]|"""+month_name+r""") # YYYY/MM
|(0?[1-9]|1[0-2]|"""+month_name+r""")[\-/]\d{4} # MM/YYYY
|(0?[1-9]|1[0-2]|"""+month_name+r""")/\d{2} # MM/YY
|(0?[1-9]|1[0-2]|"""+month_name+r""")/\d{2} # MM/YYYY
|(0?[1-9]|1[0-2]|"""+month_name+r""")/([1-2][0-9]|3[0-1]|0?[1-9]) #MM/DD

183

|([1-2][0-9]|3[0-1]|0?[1-9])/(0?[1-9]|1[0-2]|"""+month_name+r""") #DD/MM
)\b""", re.X | re.I)
pattern_mname = re.compile(r'\b(' + month_name + r')\b')

match names, A'Bsfs, Absssfs, A-Bsfsfs

pattern_name = re.compile(r"""^[A-Z]\'?[-a-zA-Z]+$""")

match age
pattern_age = re.compile(r"""\b(
age|year[s-]?\s?old|y.o[.]?
)\b""", re.X | re.I)

match salutation

pattern_salutation = re.compile(r"""
(Dr\.|Mr\.|Mrs\.|Ms\.|Miss|Sir|Madam)\s
(([A-Z]\'?[A-Z]?[\-a-z]+(\s[A-Z]\'?[A-Z]?[\-a-z]+)*)
)""", re.X)

match middle initial
if single char or Jr is surround by 2 phi words, filter.
pattern_middle = re.compile(r"""**PHI**,? (([A-CE-LN-Z][Rr]?|[DM])\.?) | (([A-CE-LN-Z][Rr]?|[DM])\.?),?

PHI""")

match url
pattern_url = re.compile(r'\b((http[s]?://)?([a-zA-Z0-9$-_@.&+:!*\(\),])*[\.\/]([a-zA-Z0-9$-_@.&+:\!*\(\),])*)\b',
re.I)

find = False

Low = 0;
High = 9;
max_length = 127;
delta = 32

#array('i');
ascii = array.array('i',(0 for i in range(0,max_length)))
#BinaryTree tree;
#const_offset = 32;

#var_offset = ((root_node * left_node) % right_node)
#var_offset = 32;

pos_offset = 3;

char_array = ["!","","#","$","%","&","'","yy","zz","*","+","bb","ww",".","xx"]

ch_array = ["A","B","C","D","E","F","G","H","I","J"]
int_array= ["0","1","2","3","4","5","6","7","8","9"]

check if the folder exists
def is_valid_file(parser, arg):
 if not os.path.exists(arg):

 parser.error("The folder %s does not exist. Please input a new folder or create one." % arg)
 else:
 return arg

def namecheck(word_output, name_set, screened_words, safe):
 # check if the word is in the name list
 if word_output.title() in name_set:
 # with open("name.txt", 'a') as fout:

184

 # fout.write(word_output + '\n')
 # print('Name:', word_output)
 screened_words.append(word_output)
 # word_output = "**PHI**"
 safe = False

 else:
 # check spacy, and add the word to the name list if it is a name
 # check the word's title version and its uppercase version
 word_title = nlp(word_output.title())
 # search Title or UPPER version of word in the english dictionary: nlp()
 # nlp() returns the most likely NER tag (word.ents) for the word
 # If word_title has NER = person AND word_upper has ANY NER tag, filter

 word_upper = nlp(word_output.upper())
 if (word_title.ents != () and word_title.ents[0].label_ == 'PERSON' and
 word_upper.ents != () and word_upper.ents[0].label_ is not None):
 # with open("name.txt", 'a') as fout:
 # fout.write(word_output + '\n')
 # print('Name:', word_output)
 screened_words.append(word_output)
 name_set.add(word_output.title())

 # word_output = "**PHI**"
 safe = False

 return word_output, name_set, screened_words, safe

def applyReflection(word, index):

 random.seed(index)
 posit = random.randint(1, 50) % pos_offset
 # print (posit)
 ascii_value = 0;
 str_reflected ='';
 # var_offset = (root_node * left_node) % right_node
 length = len(word);

 for pos in range(0, length):
 ascii_value = ord(word[pos]);
 if (posit > 0):
 lap_off = (index + pos) % (posit);
 else:
 lap_off = 0; #(index + pos)
 # lap_off = 0
 # print (ascii_value)

 str_reflected = replaceCharAt(str_reflected, ascii_value, lap_off);
 #word = 'YES'
 # return str_reflected + append_index(index)+"|";'
 return str_reflected + "+"+append_index(index)+"+";

def append_index(index):

 output_string="";
 int_string = str(index)

 # Iterate over the string
 for element in int_string:
 # print(ch_array[int(element)])
 output_string = output_string + ch_array[int(element)]

185

 return output_string

def replaceCharAt(str_reflected, org_value, lap_off):

 reflected_value = (max_length - org_value) + 1;
 const_offset, var_offset = get_Varoffset();
 if ((reflected_value + var_offset + const_offset) > max_length):
 if (((reflected_value + var_offset + const_offset) % max_length) < 32):
 reflected_value = ((reflected_value + var_offset + const_offset) % max_length)+ delta + lap_off;
 if reflected_value >= 33 and reflected_value <= 47:
 # str_reflected = str_reflected + '+'+ char_array[reflected_value-delta-1] +'+|';
 str_reflected = str_reflected + '+'+ char_array[reflected_value-delta-1] + '+';

 else:
 # str_reflected = str_reflected + '+'+ chr(reflected_value) +'+|';
 str_reflected = str_reflected + '+'+ chr(reflected_value) + '+';

 else:
 reflected_value = ((reflected_value + var_offset + const_offset) % max_length) + lap_off;
 # str_reflected = str_reflected + chr(reflected_value) +'|';

 str_reflected = str_reflected + chr(reflected_value);
 else:
 reflected_value = reflected_value + var_offset + const_offset + lap_off;
 # str_reflected = str_reflected + chr(reflected_value) +'|';
 str_reflected = str_reflected + chr(reflected_value);
 return str_reflected;

def get_Varoffset ():

 N = 70000000;
 sub = 0;
 #var_offset1;
 const_offset1= 32;
 offset_L = N % max_length;
 offset_R = (max_length - offset_L)+1;
 root = 65
 # root = (max_length +1) /2 ;

 var_offset1= 32

 if (offset_L < root):

 var_offset1 = (root * offset_L) % offset_R;

 else:
 var_offset1 = (root * offset_R) % offset_L;

 #keep the var_offset within the range
 if (var_offset1> 64):
 var_offset1 = (var_offset1% 64);
 # modify the contant offset to keep the charecters within the range
 # # var-offset have to be less than 39, otherwise the constant offset have to bre modify
 if (var_offset1 > 39):
 sub = var_offset1 - const_offset1;

 const_offset1 = const_offset1 + sub;
 # modify the contant offset to keep the charecters within the range
 # # var-offset have to be more than 31, otherwise the constant offset have to bre modify
 else:

 if (var_offset1 < 31):
 print ("var offset is > 31");
 sub = const_offset1 - var_offset1;

186

 const_offset1 = const_offset1 + sub;
 return const_offset1, var_offset1

def filter_task(f, whitelist_dict, foutpath, key_name):

 # pretrain = HunposTagger('hunpos.model', 'hunpos-1.0-linux/hunpos-tag')
 pretrain = SennaTagger('senna')

 """
 Uses: namecheck() to check if word that has been tagged as name by either nltk or spacy. namecheck() first searches
 nameset which is generated by checking words at the sentence level and tagging names. If word is not in nameset,
 namecheck() uses spacy.nlp() to check if word is likely to be a name at the word level.

 """
 with open(f, encoding='utf-8', errors='ignore') as fin:
 # define intial variables
 head, tail = os.path.split(f)
 #f_name = re.findall(r'[\w\d]+', tail)[0] # get the file number
 print(tail)
 start_time_single = time.time()

 total_records = 1
 phi_containing_records = 0
 safe = True
 screened_words = []
 name_set = set()
 phi_reduced = ''
 '''
 address_indictor = ['street', 'avenue', 'road', 'boulevard',

 'drive', 'trail', 'way', 'lane', 'ave',
 'blvd', 'st', 'rd', 'trl', 'wy', 'ln',
 'court', 'ct', 'place', 'plc', 'terrace', 'ter']
 '''
 address_indictor = ['street', 'avenue', 'road', 'boulevard',
 'drive', 'trail', 'way', 'lane', 'ave',
 'blvd', 'st', 'rd', 'trl', 'wy', 'ln',
 'court', 'ct', 'place', 'plc', 'terrace', 'ter',
 'highway', 'freeway', 'autoroute', 'autobahn', 'expressway',

 'autostrasse', 'autostrada', 'byway', 'auto-estrada', 'motorway',
 'avenue', 'boulevard', 'road', 'street', 'alley', 'bay', 'drive',
 'gardens', 'gate', 'grove', 'heights', 'highlands', 'lane', 'mews',
 'pathway', 'terrace', 'trail', 'vale', 'view', 'walk', 'way', 'close',
 'court', 'place', 'cove', 'circle', 'crescent', 'square', 'loop', 'hill',
 'causeway', 'canyon', 'parkway', 'esplanade', 'approach', 'parade', 'park',
 'plaza', 'promenade', 'quay', 'bypass']

 note = fin.read()
 note = re.sub(r'=', ' = ', note)
 # Begin Step 1: saluation check
 re_list = pattern_salutation.findall(note)
 for i in re_list:
 name_set = name_set | set(i[1].split(' '))

 # note_length = len(word_tokenize(note))
 # Begin step 2: split document into sentences
 note = sent_tokenize(note)

 for sent in note: # Begin Step 3: Pattern checking
 # postal code check
 # print(sent)
 if pattern_postal.findall(sent) != []:

187

 safe = False
 for item in pattern_postal.findall(sent):
 screened_words.append(item[0])
 # sent = str(pattern_postal.sub('**PHIPostal**', sent))

 if pattern_devid.findall(sent) != []:
 safe = False
 for item in pattern_devid.findall(sent):
 if (re.search(r'\d', item) is not None and
 re.search(r'[A-Z]',item) is not None):
 screened_words.append(item)
 # sent = sent.replace(item, '**PHI**')

 # number check
 if pattern_number.findall(sent) != []:
 safe = False
 for item in pattern_number.findall(sent):
 # print(item)
 #if pattern_date.match(item[0]) is None:
 # sent = sent.replace(item[0], '**PHI**')
 screened_words.append(item[0])

 #print(item[0])
 #sent = str(pattern_number.sub('**PHI**', sent))

 data_list = []
 if pattern_date.findall(sent) != []:
 safe = False
 for item in pattern_date.findall(sent):
 if '-' in item[0]:

 if (len(set(re.findall(r'[^\w\-]',item[0]))) <= 1):
 #screened_words.append(item[0])
 #print(item[0])
 data_list.append(item[0])
 #sent = sent.replace(item[0], '**PHIDate**')
 else:
 if len(set(re.findall(r'[^\w]',item[0]))) == 1:
 #screened_words.append(item[0])
 #print(item[0])

 data_list.append(item[0])
 #sent = sent.replace(item[0], '**PHIDate**')
 data_list.sort(key=len, reverse=True)
 #for item in data_list:
 # sent = sent.replace(item, '**PHIDate**')

 #sent = str(pattern_date.sub('**PHI**', sent))
 #print(sent)

 if pattern_4digits.findall(sent) != []:
 safe = False
 for item in pattern_4digits.findall(sent):
 screened_words.append(item)
 # sent = str(pattern_4digits.sub('**PHI**', sent))
 # email check
 if pattern_email.findall(sent) != []:
 safe = False

 for item in pattern_email.findall(sent):
 screened_words.append(item)
 # sent = str(pattern_email.sub('**PHI**', sent))
 # url check
 if pattern_url.findall(sent) != []:
 safe = False
 for item in pattern_url.findall(sent):
 #print(item[0])

188

 if (re.search(r'[a-z]', item[0]) is not None and
 '.' in item[0] and
 re.search(r'[A-Z]', item[0]) is None and
 len(item[0])>10):
 print(item[0])

 screened_words.append(item[0])
 # sent = sent.replace(item[0], '**PHI**')
 #print(item[0])
 #sent = str(pattern_url.sub('**PHI**', sent))
 # dob check
 '''
 re_list = pattern_dob.findall(sent)
 i = 0

 while True:
 if i >= len(re_list):
 break
 else:
 text = ' '.join(re_list[i][0].split(' ')[-6:])
 if re.findall(r'\b(birth|dob)\b', text, re.I) != []:
 safe = False
 sent = sent.replace(re_list[i][1], '**PHI**')

 screened_words.append(re_list[i][1])
 i += 2
 '''

 # Begin Step 4
 # substitute spaces for special characters
 sent = re.sub(r'[\/\-\:\~_]', ' ', sent)
 # label all words for NER using the sentence level context.

 spcy_sent_output = nlp(sent)
 # split sentences into words
 sent = [word_tokenize(sent)]
 #print(sent)
 # Begin Step 5: context level pattern matching with regex
 for position in range(0, len(sent[0])):
 word = sent[0][position]
 # age check
 if word.isdigit() and int(word) > 90:

 if position <= 2: # check the words before age
 word_previous = ' '.join(sent[0][:position])
 else:
 word_previous = ' '.join(sent[0][position - 2:position])
 if position >= len(sent[0]) - 2: # check the words after age
 word_after = ' '.join(sent[0][position+1:])
 else:
 word_after = ' '.join(sent[0][position+1:position +3])

 age_string = str(word_previous) + str(word_after)
 if pattern_age.findall(age_string) != []:
 screened_words.append(sent[0][position])
 # sent[0][position] = '**PHI**'
 safe = False

 # address check

 elif (position >= 1 and position < len(sent[0])-1 and
 (word.lower() in address_indictor or
 (word.lower() == 'dr' and sent[0][position+1] != '.')) and
 (word.istitle() or word.isupper())):

 if sent[0][position - 1].istitle() or sent[0][position-1].isupper():
 screened_words.append(sent[0][position - 1])
 # sent[0][position - 1] = '**PHI**'

189

 i = position - 1
 # find the closet number, should be the number of street
 while True:
 if re.findall(r'^[\d-]+$', sent[0][i]) != []:
 begin_position = i

 break
 elif i == 0 or position - i > 5:
 begin_position = position
 break
 else:
 i -= 1
 i = position + 1
 # block the info of city, state, apt number, etc.

 while True:
 if '**PHIPostal**' in sent[0][i]:
 end_position = i
 break
 elif i == len(sent[0]) - 1:
 end_position = position
 break
 else:

 i += 1
 if end_position <= position:
 end_position = position

 for i in range(begin_position, end_position):
 #if sent[0][i] != '**PHIPostal**':
 # screened_words.append(sent[0][i])
 # sent[0][i] = '**PHI**'

 safe = False

 # Begin Step 6: NLTK POS tagging
 sent_tag = nltk.pos_tag_sents(sent)
 #try:
 # senna cannot handle long sentence.
 #sent_tag = [[]]
 #length_100 = len(sent[0])//100
 #for j in range(0, length_100+1):

 #[sent_tag[0].append(j) for j in pretrain.tag(sent[0][100*j:100*(j+1)])]
 # hunpos needs to change the type from bytes to string
 #print(sent_tag[0])
 #sent_tag = [pretrain.tag(sent[0])]
 #for j in range(len(sent_tag[0])):
 #sent_tag[0][j] = list(sent_tag[0][j])
 #sent_tag[0][j][1] = sent_tag[0][j][1].decode('utf-8')
 #except:

 #print('POS error:', tail, sent[0])
 #sent_tag = nltk.pos_tag_sents(sent)
 # Begin Step 7: Use both NLTK and Spacy to check if the word is a name based on sentence level NER label
for the word.
 for ent in spcy_sent_output.ents: # spcy_sent_output contains a dict with each word in the sentence and its NLP
labels
 #spcy_sent_ouput.ents is a list of dictionaries containing chunks of words (phrases) that spacy believes are
Named Entities

 # Each ent has 2 properties: text which is the raw word, and label_ which is the NER category for the word
 if ent.label_ == 'PERSON':
 #print(ent.text)
 # if word is person, recheck that spacy still thinks word is person at the word level
 spcy_chunk_output = nlp(ent.text)
 if spcy_chunk_output.ents != () and spcy_chunk_output.ents[0].label_ == 'PERSON':
 # Now check to see what labels NLTK provides for the word
 name_tag = word_tokenize(ent.text)

190

 # senna & hunpos
 #name_tag = pretrain.tag(name_tag)
 # hunpos needs to change the type from bytes to string
 #for j in range(len(name_tag)):
 #name_tag[j] = list(name_tag[j])

 #name_tag[j][1] = name_tag[j][1].decode('utf-8')
 #chunked = ne_chunk(name_tag)
 # default
 name_tag = pos_tag_sents([name_tag])
 chunked = ne_chunk(name_tag[0])
 for i in chunked:
 if type(i) == Tree: # if ne_chunck thinks chunk is NER, creates a tree structure were leaves are the
words in the chunk (and their POS labels) and the trunk is the single NER label for the chunk

 if i.label() == 'PERSON':
 for token, pos in i.leaves():
 if pos == 'NNP':
 name_set.add(token)

 else:
 for token, pos in i.leaves():
 spcy_upper_output = nlp(token.upper())

 if spcy_upper_output.ents != ():
 name_set.add(token)

 # BEGIN STEP 8: whitelist check
 # sent_tag is the nltk POS tagging for each word at the sentence level.
 for i in range(len(sent_tag[0])):
 # word contains the i-th word and it's POS tag
 word = sent_tag[0][i]

 # print(word)
 # word_output is just the raw word itself
 word_output = word[0]

 if word_output not in string.punctuation:
 word_check = str(pattern_word.sub('', word_output))
 #if word_check.title() in ['Dr', 'Mr', 'Mrs', 'Ms']:
 #print(word_check)
 # remove the speical chars

 try:
 # word[1] is the pos tag of the word

 if (((word[1] == 'NN' or word[1] == 'NNP') or
 ((word[1] == 'NNS' or word[1] == 'NNPS') and word_check.istitle()))):
 if word_check.lower() not in whitelist_dict:
 screened_words.append(word_output)
 # word_output = "**"+applyReflection(word_output)+"**"# "**PHI9**"

 safe = False
 else:
 # For words that are in whitelist, check to make sure that we have not identified them as names
 if ((word_output.istitle() or word_output.isupper()) and
 pattern_name.findall(word_output) != [] and
 re.search(r'\b([A-Z])\b', word_check) is None):
 word_output, name_set, screened_words, safe = namecheck(word_output, name_set,
screened_words, safe)

 # check day/year according to the month name
 elif word[1] == 'CD':
 if i > 2:
 context_before = sent_tag[0][i-3:i]
 else:
 context_before = sent_tag[0][0:i]
 if i <= len(sent_tag[0]) - 4:

191

 context_after = sent_tag[0][i+1:i+4]
 else:
 context_after = sent_tag[0][i+1:]
 #print(word_output, context_before+context_after)
 for j in (context_before + context_after):

 if pattern_mname.search(j[0]) is not None:
 screened_words.append(word_output)
 #print(word_output)
 #word_output = "**PHI**"
 safe = False
 break
 else:
 word_output, name_set, screened_words, safe = namecheck(word_output, name_set,

screened_words, safe)

 except:
 print(word_output, sys.exc_info())
 if word_output.lower()[0] == '\'s':
 if phi_reduced[-7:] != '**PHI**':
 phi_reduced = phi_reduced + word_output

 #print(word_output)
 else:
 phi_reduced = phi_reduced + ' ' + word_output
 # Format output for later use by eval.py
 else:
 if (i > 0 and sent_tag[0][i-1][0][-1] in string.punctuation and
 sent_tag[0][i-1][0][-1] != '*'):
 phi_reduced = phi_reduced + word_output

 elif word_output == '.' and sent_tag[0][i-1][0] in ['Dr', 'Mr', 'Mrs', 'Ms']:
 phi_reduced = phi_reduced + word_output
 else:
 phi_reduced = phi_reduced + ' ' + word_output
 #print(phi_reduced)

 # Begin Step 8: check middle initial and month name
 if pattern_mname.findall(phi_reduced) != []:
 for item in pattern_mname.findall(phi_reduced):

 screened_words.append(item[0])
 # phi_reduced = pattern_mname.sub('**PHI**', phi_reduced)

 if pattern_middle.findall(phi_reduced) != []:
 for item in pattern_middle.findall(phi_reduced):
 # print(item[0])
 screened_words.append(item[0])
 # phi_reduced = pattern_middle.sub('**PHI** **PHI** ', phi_reduced)

 # print(phi_reduced)

 if not safe:
 phi_containing_records = 1

 # with open('indexing.csv', 'w', newline='') as writeFile:
 # writer = csv.writer(writeFile)

 for x in screened_words:
 # n = String.count(word)
 matches = re.finditer(x, phi_reduced)
 matches_positions = [match.start() for match in matches]
 for index in matches_positions:
 # start_index = phi_reduced.find(x)

 if (index > 0):

192

 #if ("/" in x or "-" in x):
 # x = x.replace ("/", " ")
 #x = x.replace ("-", " ")
 phi_reduced = phi_reduced.replace(x, " **"+applyReflection(x, index)+"** ",1)
 # writer.writerow ([x, " **"+applyReflection(x, index)+"** ", str(index),str(len(x))])

 else:
 phi_reduced = phi_reduced.replace(x, " **"+applyReflection(x, index)+"** ",1)
 # writer.writerow ([x, " **"+applyReflection(x, index)+"** ", str(index),str(len(x))])
 # writeFile.close()
 #save phi_reduced file
 filename = '.'.join(tail.split('.')[:-1])+"_" + key_name + ".txt"
 filepath = os.path.join(foutpath, filename)
 with open(filepath, "w") as phi_reduced_note:

 print (filepath)
 phi_reduced_note.write(phi_reduced)

 filepath = os.path.join(foutpath,'filter_summary.txt')
 #print(filepath)
 screened_words = list(filter(lambda a: '**PHI' not in a, screened_words))
 #screened_words = list(filter(lambda a: a != '**PHI**', screened_words))

 with open(filepath, 'a') as fout:
 fout.write('.'.join(tail.split('.')[:-1])+' ' + str(len(screened_words)) +
 ' ' + ' '.join(screened_words)+'\n')
 # fout.write(' '.join(screened_words))

 print(total_records, f, "--- %s seconds ---" % (time.time() - start_time_single))
 # hunpos needs to close session

 #pretrain.close()
 return total_records, phi_containing_records

def main():
 # get input/output/filename

 ap = argparse.ArgumentParser()
 ap.add_argument("-i", "--input", default="input_test/",
 help="Path to the directory or the file that contains the PHI note, the default is ./input_test/.",

 type=lambda x: is_valid_file(ap, x))
 ap.add_argument("-r", "--recursive", action = 'store_true', default = False,
 help="whether to read files in the input folder recursively.")
 ap.add_argument("-o", "--output", default="output_test/",
 help="Path to the directory to save the PHI-reduced notes in, the default is ./output_test/.",
 type=lambda x: is_valid_file(ap, x))
 ap.add_argument("-w", "--whitelist",
 #default=os.path.join(os.path.dirname(__file__), 'whitelist.pkl'),

 default=resource_filename(__name__, 'whitelist.pkl'),
 help="Path to the whitelist, the default is phireducer/whitelist.pkl")
 ap.add_argument("-n", "--name", default="phi_reduced",
 help="The key word of the output file name, the default is *_phi_reduced.txt.")
 ap.add_argument("-p", "--process", default=1, type=int,
 help="The number of processes to run simultaneously, the default is 1.")
 args = ap.parse_args()
 finpath = args.input

 foutpath = args.output
 key_name = args.name
 whitelist_file = args.whitelist
 process_number = args.process
 if_dir = os.path.isdir(finpath)
 start_time_all = time.time()
 if if_dir:
 print('input folder:', finpath)

193

 print('recursive?:', args.recursive)
 else:
 print('input file:', finpath)
 head, tail = os.path.split(finpath)
 # f_name = re.findall(r'[\w\d]+', tail)[0]

 print('output folder:', foutpath)
 print('Using whitelist:', whitelist_file)
 try:
 with open(whitelist_file, "rb") as fin:
 whitelist = pickle.load(fin)
 print('length of whitelist: {}'.format(len(whitelist)))
 if if_dir:
 print('phi_reduced file\'s name would be:', "*_"+key_name+".txt")

 else:
 print('phi_reduced file\'s name would be:', '.'.join(tail.split('.')[:-1])+"_"+key_name+".txt")
 print('run in {} process(es)'.format(process_number))
 except FileNotFoundError:
 print("No whitelist is found. The script will stop.")
 os._exit(0)
 filepath = os.path.join(foutpath,'filter_summary.txt')
 with open(filepath, 'w') as fout:

 fout.write("")
 # start multiprocess
 pool = Pool(processes=process_number)

 results_list = []
 filter_time = time.time()
 # apply_async() allows a worker to begin a new task before other works have completed their current task
 if os.path.isdir(finpath):

 if args.recursive:
 results = [pool.apply_async(filter_task, (f,)+(whitelist, foutpath, key_name)) for f in glob.glob
(finpath+"/**/*.txt", recursive=True)]
 else:
 results = [pool.apply_async(filter_task, (f,)+(whitelist, foutpath, key_name)) for f in glob.glob
(finpath+"/*.txt")]
 else:
 results = [pool.apply_async(filter_task, (f,)+(whitelist, foutpath, key_name)) for f in glob.glob(finpath)]
 try:

 results_list = [r.get() for r in results]
 total_records, phi_containing_records = zip(*results_list)
 total_records = sum(total_records)
 phi_containing_records = sum(phi_containing_records)
 print("total records:", total_records, "--- %s seconds ---" % (time.time() - start_time_all))
 print('filter_time', "--- %s seconds ---" % (time.time() - filter_time))
 print('total records processed: {}'.format(total_records))
 print('num records with phi: {}'.format(phi_containing_records))

 except ValueError:
 print("No txt file in the input folder.")
 pass
 pool.close()
 pool.join()
 # close multiprocess
if __name__ == "__main__":
 multiprocessing.freeze_support() # must run for windows

 main()

Appendix IV: Binary Tree Data Structure

194

Appendix V: Cryptography

This section first explores early and developmental work in the area of cryptography.

In particular, symmetric key ciphers and popular encryption standards such as the DES

and AES are discussed. Standard references for classical cryptanalysis are also indicated.

Cryptographic algorithms can be divided to classic and modern cipher. Classic ciphers

are character-oriented ciphers which can only be used to encrypt text. These can be divided

into substitution ciphers and transposition ciphers. In a substitution cipher, each plaintext

character is replaced by another character, either using a fixed replacement structure

(monoalphabetic ciphers) or variable replacement structure (polyalphabetic ciphers). In

transposition ciphers, plaintext characters are shifted depending on a given mapping key

[83].These ciphers are highly susceptible to a cryptanalysis attack [206]. However, there

have been some recent enhancements[207][208] to these ciphers to overcome these attacks

and to increase security and maintain performance. For example, Marzan and Sison

[209]enhanced the key security of the Playfair Cipher Algorithm using a combination of a

195

16 × 16 matrix, XOR, two’s complement, and bit swapping. Aung and Hal [210] combined

a Vigenère cipher with an Affine cipher to increase the level diffusion and confusion

properties. Elmogy et al. [211] have proposed a new character-oriented cipher based on

ASCII Code and the relationship between plaintext characters. The cipher uses simple

operations like addition and subtraction and each character is encrypted differently based

on the position of the previous character to avoid a frequency analysis attack. However,

the cipher can be further improved by adding a random key generator. Similarly, Yadav et

al. [212] propose a new symmetric algorithm to use ASCII conversion and the length of

the plaintext to create a square matrix. The key is randomly generated based on the order

of the square matrix.

Modern ciphers on the other hand are bit-oriented ciphers that can be used to encrypt

any form of data. Simple examples of these ciphers are XOR ciphers, rotation ciphers and

S-boxes. Simple modern ciphers have led to a new form of cipher called a product cipher

or round cipher [213]. Product ciphers combine two or more transformations such as S-

box, permutation and modular arithmetic[214]. The concept of product ciphers introduced

by Shanoun[215] establish two main properties for the design of cryptographic algorithms:

confusion and diffusion. Confusion obscures the relationship between the plaintext and

ciphertext, whereas diffusion dissipates the statistical structure of plaintext over the bulk

of ciphertext. These two properties can be achieved by producing a product cipher with

multiple iterations. Each iteration works by combining different transformations to

construct a complex encryption function. There are various implementations of these

techniques, such as DES [216], 3DES[217], AES[218] and BLOWFISH [219].

Modern encryption algorithms can be divided into two main categories according to

the encryption scheme: symmetric and asymmetric key encryption. Symmetric key

encryption uses one secret key to encrypt and decrypt data, whereas asymmetric key

encryption requires two different keys (public and private keys).

196

Symmetric encryption algorithms can also be subcategorized into two groups block

and stream ciphers. Block ciphers encrypt a fixed size of n-bits of plaintext at once (e.g.,

64 bits) while stream ciphers encrypt 1 bit or byte of plaintext at a time [220]. The block

cipher algorithm is preferred to the stream cipher for faster computations [221]. While

symmetric key algorithms have been considered a cryptographic solution for emerging big

data applications, the cumbersome key management and distribution of this approach does

not provide a suitable level of scalability. Therefore, more lightweight and practical

alternatives need to be developed [14].

Advanced Encryption Standard

AES, also known as Rijndael, is a symmetric key block encryption algorithm that can

encrypt data blocks of 128 bits using symmetric keys of 128, 192, or 256 bits. The cipher

was designed by Joan Daemen and Vincent Rijmen [96], who submitted the proposal for

evaluation by the U.S. National Institute of Standards and Technology (NIST). In 2010,

NIST declared AES as the successor of the Triple Data Encryption System (3DES), which

was broadly applied previously [222].

The AES cipher is based on the substitution-permutation network principle, in which

the plaintext bytes are substituted and permuted at each round. Each round of

transformation consists of four different operations: Add Round Key, Substitute Byte, Mix

Columns, and Shift Rows. The number of rounds (Nr) applied to the plaintext depends on

the key size, where there are 10 rounds for 128-bit keys, 12 rounds for 192-bit keys, and

14 rounds for 256-bit keys. Each round requires a separate 128-bit round key that is

generated from the master key using the AES key schedule. Error! Reference source not

found. provides an overview of the structure of the AES algorithm.

197

Figure 0-1 Encryption and Decryption Processes in AES [223]

Round Operations

As mentioned above, the AES encryption process consists of several operations

that are repeated until the number of required rounds is reached. Before the round

operations begin, the plaintext consisting of 128 bits is transformed into 16 bytes and

stored in a 4×4 matrix, as shown in Figure 0-2. The resulting structure is known as a

state array.

Figure 0-2: Data State Array

Add Round Key

In the Add Round Key operation, the state (or the plaintext) is added with the

corresponding round key using exclusive OR (XOR), as illustrated in Figure 0-3. At

198

the start of the encryption process, and before the algorithm proceeds with the regular

round operations, Add Round Key is performed once with the secret key.

Figure 0-3: Add Round Operation [224]

Substitute Byte

In Substitute Byte, every byte in the state is mapped to a new byte based on the

Substitution Box (S-Box). The S-Box is used to ensure Shannon’s property of

confusion by obscuring the relationship between the key and the ciphertext. The AES

S-Box is often represented as a 16×16 hexadecimal matrix in which the rows

represent the leftmost 4 bits and the columns represent the rightmost bits. The new

mapped value is an intersection between the row and column. Figure 0-4 illustrates

the process involved in Substitute Byte.

Figure 0-4: Substitute Byte Operation [224]

199

Shift Rows

This operation merely shifts bytes in the current state. The first row is left

untouched while the second, third, and fourth rows are shifted with an offset of 1, 2,

and 3 bytes, respectively, as illustrated in Figure 0-5.

Figure 0-5: Shift Rows Operation [224]

Mix Columns

In Mix Columns, each column in the state is multiplied by a row of 5 4×4 matrices,

as shown in Figure 0-6. The multiplication is performed over a Galois Field (GF), in

which multiplying by 1 means doing nothing, multiplying by 2 means shifting to the

left, and multiplying by 3 means shifting to the left and XORing with the operand.

Taken together, the aforementioned operations – namely, Add Round Key, Substitute

Byte, Mix Columns, and Shift Rows – provide the required diffusion for the AES

encryption process.

200

Figure 0-6: Mix Columns Operation [224]

Data Encryption Standard

DES is a symmetric key block encryption algorithm that can encrypt data blocks of

64 bits. It was created in the early 1970s by an IBM team and subsequently adopted by the

NIST. It is based on a 56-bit secret key and 16 Feistel iterations surrounded by two

permutation layers: initial permutation (IP) and final permutation (FP). The encryption

process is illustrated in Figure 0-7 and can be summarised as follows:

1) The encryption process begins with the IP, which takes a 64-bit input and

permutes it according to a predefined rule.

2) The IP generates two halves of the permuted block: 32-bit left (L) and 32-bit

right (R).

3) Each half goes through 16 Feistel function iterations of the encryption process.

4) Finally, both the L and R bits are joined and the FP (i.e., the inverse of IP) is

performed.

Figure 0-7: DES Encryption Function [225] shows the elements of the DES cipher at

the encryption site. The Feistel function shown in Figure 0-8 is key-dependent and operates

on 32 bits. It consists of four stages, which are described in the following subsections.

201

Expansion

The 32-bit input is expanded to a 48-bit input by redistributing and ordering the

bits. The bits are selected from a pre-defined table. The rows in the table correspond

to bits in the data, and the last bits of the data are taken from the input bits of the table.

Key Mixing

The bits generated in the first step are XORed with a round key that is constructed

from 48 bits of a 56-bit input key. A different key is chosen for each round.

Substitution

The 48-bit result of the previous step is separated into 8 S-boxes and 6 bits words.

Each of these 6-bit words is further substituted into 8 parallel 6×4 S-boxes. Each box

is different but has the same structure, and the specifications are provided in a pre-

defined table.

Permutation

A 32-bit word results from the previous step. These bits are reordered to a fixed

permutation given in a predefined table. As before, the first row of the table refers to

the first 4 bits of the output.

202

Figure 0-7: DES Encryption Function [225]

203

Figure 0-8: DES Function f [226]

Security against Attacks

A cryptographic attack is a means of breaking a cryptographic system's security by

identifying a flaw in a code, cipher, or key management mechanism. This procedure is

also known as cryptanalysis. A description of some known attacks is given in the following

section.

Brute Force Attack

A brute force attack, also known as an exhaustive search, is an attack in which

every potential key is tried in an attempt to decrypt the code. Theoretically, brute force

attacks can work against almost every symmetric encryption algorithm, but in practice,

these attacks are generally ineffective. This is because as the key size increases, brute

force attacks become time-consuming. For example, if an adversary knows that the key

size involved in a cryptosystem is 10 bits long, they can examine 210 different keys,

which is feasible. By contrast, if the key length is 128 bits, it is necessary to try 2128

potential keys, which is widely considered out of reach even for today’s most advanced

204

technology. In the latter case, even a computer capable of executing billions of

operations per second would require billions of years to examine every key [91].

Differential Cryptanalysis

Differential cryptanalysis was introduced in 1990 by Biham and Shamir [92]. It is

a chosen-plaintext attack in which the adversary selects plaintexts and then performs

encryption with the same key for each, where the key is unknown to the adversary. The

plaintexts are in pairs in this context, and each plaintext has a specified difference

relative to its paired plaintext.

Consider the two plaintexts 𝑃, 𝑃̌ = 𝑃 ⊕ 𝑋𝑝 with their corresponding

ciphertexts 𝐸𝑛𝑐𝑘(𝑃) = 𝐶, 𝐸𝑛𝑐𝑘(𝑃̌) =𝐶̌ . Let 𝑋𝐶= 𝐶 ⊕ 𝐶̌ . If there exists a value 𝑋𝐶

that occurs with a higher probability than would be if C and P were selected

independently at random and not related through the encryption algorithm, then the

cipher function can be differentiated from a random function. In this scenario, the

differential relation is often used to retrieve part of the secret key.

Pr [𝐸𝑛𝑐𝑘(𝑃) ⊕ 𝐸𝑛𝑐𝑘(𝑃 ⊕ 𝑋𝑝) = 𝑋𝐶] =
1

2
+ 𝛽 𝑤ℎ𝑒𝑟𝑒 𝛽 >

1

2
 (0. 3)

Meet-in-the-Middle Attack

The meet-in-the-middle attack was developed in 1977 by Diffie and Hellman, as

explained in [93]. It is a type of known-plaintext attack in which the adversary knows

some part of the plaintext and its corresponding ciphertext. The adversary tries to go

from both ends (i.e., plaintext and ciphertext) to an intermediate state. Thus, the

adversary encrypts the plaintext 𝐸𝑛𝑐(𝑃, 𝑘1) for a number of iterations, after which the

ciphertext 𝐷𝑒𝑐(𝐶, 𝑘2) is decrypted for some iterations, to attain the same middle state

of the cipher. This can be written as follows:

𝐸𝑛𝑐(𝑃, 𝑘1) = 𝐷𝑒𝑐(𝐶, 𝑘2) (0. 4)

205

Where C is the ciphertext corresponding to the plaintext P, both of which are known

to the adversary.

The initial stage in the attack is to generate a table that contains all potential values

for one side of eq. (2.4). In turn, the values are computed for the opposite side of eq. (2.4),

after which they are compared to the values for the first side of the equation and saved in

the table. The adversary looks for a pair of secret keys, 𝑘1 and 𝑘2, for which the value of

𝐸𝑛𝑐(𝑃, 𝑘1) in the table equals the computed value of 𝐷𝑒𝑐(𝐶, 𝑘2).

206

	PhD Coversheet
	PhD Coversheet

	Al-Abdullah, Bayan

