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ABSTRACT  

This thesis investigates the basis for a novel method of quickly and efficiently assessing 
programming comprehension. It investigates the feasibility of assessing learners’ mental chunk 
structures, and their temporal chunk signals, as a way of measuring their competence. The focus is 
on the Java programming language. The thesis investigates the feasibility of chunk-based measures 
in two different simple transcription tasks: view display, where stimulus is visible at all times; and 
hide and show, where the stimulus is only made visible when a participant presses a special button. 
University computer science students and faculty are the target group. Chunking theory is utilised 
to define three chunking measures of competence and to anticipate how they would vary across 
participants with different degrees of Java competence. The measures are as follows: (1) the 
number of characters transcribed per view (or the number of views) of the Java program code; (2) 
the time spent writing between the views; and (3) the duration of pauses before writing each written 
character. Ninety-six participants participated in the three experiments, transcribing on graphics 
tablets in experimental settings, and evidence of chunking’s essential role in transcription tasks was 
revealed. Significant relationships were discovered between the chunking measures of competence 
and independent measures of Java competence (Java familiarity scores and students’ final test 
marks (for the third experiment)). The third experiment included a longitudinal post-test component 
spanning three months of learning, in which changes to the mean scores in characters per view, 
writing-times, and pauses reflected the students’ amount of learning. 
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Glossary  

Term Definition 

Breaks Refers to the time between stopping writing and starting writing again, which could include 

one or more views. 

CBA Computer-based assessment. 

Char per view The total number of characters per view, calculated by dividing the total number of characters 

of a stimulus by the view-numbers per trial. 

Chunk Collection of concepts in memory that have strong associations to one another and much 

weaker associations to other chunks concurrently in use (Cowan, 2001). 

Complexity 

Analysis 

The stimulus syntactic density (punctuations or text). 

Content Analysis Discovering the identity of each stroke.  

Difficulty factor Different levels of undergraduate Java modules taught to informatics students at Sussex 

University at the beginning and end of the year were considered when designing the stimuli. 

Familiarity scores On a 5-point Likert scale, participants rate their familiarity with each item in the stimulus. 

HS Hide and Show: where the stimulus is only made visible when a participant presses a special 

button. 

Pause Time durations before start writing each stroke. 

PL Programming Language. 

Post-test After learning the Java module.  

Pre-test Before learning the Java module. 

PPA Paper and pen assessment. 

PPCS Participants Preferred Cluster Size. 

VD View Display: where stimuli are shown all the time. 

Views Refers to any time a person presses the special button to display the stimuli (i.e., there could 

be several views without writing). 

View-times The length of each look at the stimulus, obtained by subtracting the time when they release 

the special button from the time when they press the button. 

View-numbers The total number of views of the stimulus in a trial, obtained by counting the number of button 

presses to view the stimulus. 

Writing-times The time spent writing between two consecutive views. 
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1 Introduction 

Chapter content:  

• The overall thesis goals 

• The definition of programming comprehension. 

• Justification for the thesis programming language selection (Java). 

• Examples of common programming comprehension assessment tasks. 

• Justifying the relationships between transcription and temporal chunk signals. 

• Conclusion. 

1.1 Thesis Objectives 

How can we quickly and accurately assess students’ programming knowledge? In the UK, computer 

science is taught in more than 100 institutions. In Saudi Arabia, almost 70% of the 41 government 

and private universities have computing and informatics departments (Ministry of Education, 2017). 

Computer science is taught at A level in both the UK (Department of Education, 2016) and Saudi 

Arabia. The number of computer science students being assessed every year is thus substantial. As 

a result, there are an enormous number of assessments which must be processed throughout the 

academic year, in which huge effort is involved.   

Chunking is a fundamental concept in cognitive science (Miller, 1956; Cowan, 2001). Shneiderman 

(1976, p.131) defined chunking as “a recoding process that human beings seem to do without 

conscious effort”. Cowan (2001, p.144) defines chunks as “collection of concepts that have strong 

associations to one another and much weaker associations to other chunks concurrently in use”. 

Cognitive science recognises that chunking underpins competence in general, and that the number 

and structure of the chunks differ between low- and high-competent individuals. Can the difference 

between the structure of chunks that low- and high-competent have in their memory be used to 

measure competence in programming? Previous work on measuring competence in mathematics 
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and in second language learners by Cheng and Rojas-Anaya (2007), Cheng (2014), Cheng (2015), and 

Zulkifli (2013) shows that behavioural measures based on temporal chunk signals can provide some 

competence measures which may be effective in simple freehand copying tasks. This thesis develops 

those methods and shows how effective they might be in measuring programming competence.  

This thesis focuses on programming learners for several reasons: (1) computer programming is a 

rich knowledge domain that has different skills associated with it, it involves various subtasks, and 

consists of various types of knowledge (Pennington, 1987; Shneiderman, 1976); (2) programming is 

challenging and many students encounter difficulties in learning it, especially at the beginning 

(Martinez & Mead, 1988); (3) as Martinez and Mead (1988) have pointed out, students find 

answering programming questions difficult compared to other aspects of computing; (4) there is a 

great deal of inconsistency in marking programs, especially in those marked by hand, as markers 

usually make their own marking judgments, even if they are experts, with the same programs often 

gaining different marks (Higgins, Gray, Symeonidis, & Tsintsifas, 2005). Current methods for 

assessing programming comprehension commonly involve tasks such as composing or modifying a 

program. Such tasks are limited in various ways (as discussed below).  

Two different freehand transcription tasks were used: view display (VD), in which the stimulus is 

visible at all times, and hide and show (HS), in which the stimulus is only made visible when a 

participant presses a button. Why use these two different transcription tasks? VD provides a 

temporal chunk measure (pauses) that has been established before in the previous work listed 

earlier, whereas HS provides the characters per view, view-numbers, writing-times, and view-times 

measures. HS measures were introduced and tried in this thesis because of the success of pauses in 

measuring competence in previous studies.   
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In brief, using the temporal chunk signals in the context of a freehand transcription task is a 

pioneering approach to measuring programming competence. It is made possible by obtaining rich 

data on the cognitive processes that take place when writing. 

Chunking theory, within a simple transcription task, therefore, is used in this research in order to 

develop an approach to programming assessment. Thus, this thesis aims to answer the following 

question: 

Can programming competence be measured by analysing patterns of chunking behaviour and 

temporal chunk signals in the task of program code transcription? 

1.2 What is programming comprehension? 

Pea and Kurland (1984, p.149) define programming as a “set of activities involved in developing a 

reusable product consisting of a series of written instructions that make a computer accomplish 

some task”. Studies of programming comprehension have improved enormously over the last two 

decades. Programming comprehension studies the cognitive processes involved in programming, 

which help in different things such as assessing students’ competence, and improving programming 

tools and training courses.  

Shneiderman (1977, p.467) defined programming comprehension as “the recognition of the overall 

function of the program, an understanding of intermediate level processes including program 

organization and comprehension of the function of each statement in a program”. Shneiderman 

focused on three essential features of programming comprehension: a program’s overall function, 

intermediate processes, and understanding each statement. In addition to these programming 

features, this thesis emphasises the chunk structures feature (illustrated in section 2.2). Chunk 

structure is considered a critical aspect of programming comprehension, thus measuring 

manifestations of it may be a good general measure. This motivated the selection of this thesis’s 
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approach of measuring programming comprehension by assessing cognitive chunk structures and 

temporal chunk signals.  

 

1.3 Why choose the Java programming language? 

A programming language (PL) is used to write sets of instructions (i.e., code statements) to 

accomplish specific functions, such as calculating factorials or converting Celsius to Fahrenheit and 

vice versa. While there are over 2,000 PLs, few of them are commonly used (Hemmendinger, 2017). 

Grocevs and Prokofjeva (2016) indicate that previously the C and PASCAL PLs were utilized in 

programming education, particularly to explain fundamental programming concepts; however, 

nowadays, Java and other high-level PLs are used.  

Java was used in this research because: (1) Java is widely used; it is utilized in various domains such 

as education and industry. Especially relevant to this study is the fact that Java is the primary 

programming language taught to undergraduate students at the University of Sussex (i.e., many of 

this study’s participants). (2) I needed to select a language representative of the kinds of knowledge 

that is presented in the literature review (section 2.2.1), which are generally considered important 

for programming – for example, a language that includes the main programming knowledge 

features such as controls, iterations, and functions. Consequently, there are many PLs which I 

decided not to employ, for instance HTML. HTML was considered, but rejected, because there are 

not enough control flow notions, notions of variables, or conditionals.  
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1.4 Typical tasks for measuring programming comprehension 

Regarding traditional educational assessments, there are many tasks which are currently used in 

order to determine students’ level of competence and to measure their programming 

comprehension. These tasks can be presented to students in diverse contexts, such as composing, 

debugging, fill-in-the-blanks, and multiple choice. It is important to discuss these tasks in order to 

gain an overview of programming assessments in the educational environment, and to show that 

these typical assessments are limited and time- and effort-consuming. For instance, with regards to 

the disadvantages of multiple choice, even if it is electronically marked: (1) it is a shallow 

measurement of students’ knowledge; (2) the ratio of guessed answers is high (Ye & Salvendy, 

1996).   

Table 1.1 below consists of four rows which show the main programming assessment tasks 

(composing/modifying, debugging, fill-in-the-blanks, multiple choice), presenting each task’s 

advantages and disadvantages in terms of the test-takers and makers, derived from the literature 

review and the researcher’s own experience in programming marking.   

Because of their nature, there is no single correct solution in programming assignments 

(Sitthiworachart & Joy, 2004). Tasks commonly used to measure programming comprehension 

include: (1) compose a statement (or more). For example, code for a particular function (i.e., method 

declaration or definition). (2) Modify a program. (3) Provide students with a program which includes 

errors but seems correct at first glance, and ask them to explain the errors and rewrite the program 

in the correct executable form. (4) Fill-in-the-blanks: present students with a program which has 

gaps and ask them to fill them in. (5) Multiple choice, where the questions are varied, such as: which 

of the choices is the correct output of the program; choose the number of the lines that include 

errors; give the value of a specific variable at a specific point in the code.   
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Table 1.1 Pros and cons of typical assessment tasks 
 

 

1.4.1  Computer-Based Assessment (CBA) 

 

Table 1.2 Paper and pen assessment (PPA) and computer-based assessment (CBA) pros and cons 
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There are two typical response media assessments which are paper and pen assessment (PPA) and 

computer-based assessment (CBA). The advantages and disadvantages of PPA and CBA are 

presented in Table 1.2 above. Kalogeropoulos, Tzigounakis, Pavlatou, and Boudouvis (2013) found 

that students achieved greater programming scores in CBA compared to PPA. Using PPA is prone to 

errors, as markers may, for instance, forget to add a mark or subtract one by mistake (i.e., human 

error), and furthermore PPA leads to inconsistencies in students’ marks because different markers 

correct programs using different schemes (Higgins et al., 2005; Romli, Sulaiman, & Zamli, 2015). 

Moreover, feedback is slow for students using PPA (Tremblay, Gu´erin, Pons, & Salah, 2008; Truong, 

Bancroft, & Roe, 2005). Markers, although proficient, will have their own understanding of the 

marking system (Higgins et al., 2005). These issues may lead to unreliable, inconsistent, and 

inaccurate marking. 

Kalogeropoulos et al. (2013) indicate that the use of CBA aids students in decoding a program as the 

compiler automatically highlights any syntax mistakes, making them obvious to the user. Regarding 

markers, it helps them execute, examine, and debug students’ solutions.  

As the amount of data is quite large, these methods are time-consuming. On the whole, a method 

that could save time and effort in reliably assessing programming competence is desirable. In brief, 

because of the above-mentioned disadvantages, this thesis focuses on the following question in the 

literature review chapter: What computer-based methodologies can be used to measure 

programming comprehension reliably, rapidly and efficiently? 

 

1.5 Why transcription and temporal chunk signals? 

In this thesis, transcription means that participants transcribe chunks of Java computer code 

presented on the screen by hand using a special pen and paper (attached to a graphics tablet). Why 
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transcription as a task? The main reason that a transcription task is used to measure programming 

competence in this thesis is that there has been previous success in applying this approach to 

measuring competence in various areas (Cheng & Rojas-Anaya, 2007; Cheng, 2014; Cheng, 2015; 

Zulkifli, 2013). Transcription can be done quickly and easily, because participants copy exactly the 

same code statements (i.e., the stimulus), which makes the cognitive process simple. Thus, their 

amount of knowledge is apparent. They do not need to compose a program themselves, which 

would involve editing the code (i.e., delete, write, rewrite, debug, run, rerun, etc.), which would 

produce noise; this noise would negatively affect the measurement. Any influence the participants’ 

knowledge has may be hidden, and it will be difficult to precisely spot different chunk structures. 

Measures based on transcription can be extracted more easily. Transcription tasks might also be 

more reliable, because what I am trying to do is investigate the chunks which are held in the 

memory. Chunks in memory are mainly built whilst individuals are developing competence (Miller, 

1956; Cowan, 2001). 

Participants will only be asked to copy a portion of a Java program by hand. It may be surprising that 

I am proposing this, but there are good theoretical justifications for this method. Participants will 

be asked to transcribe a block of Java program code that consists of several lines.  

Matsuhashi (1981, 1987) used real-time testing techniques in the writing domain. Matsuhashi used 

videotaping, timing, and think-aloud protocols to measure cognitive processes in writing. With 

regards to pause lengths, Schilperoord (1996) differentiated long pauses from short pauses, in that 

the former indicate a high effort process, whereas the latter indicate the opposite. Chase and Simon 

(1973, p.59) define short and long pauses as “long pauses would correspond to boundaries between 

successive chunks, while short time intervals between pieces would indicate that the pieces 

belonged to the same chunk in memory”. Thus, pauses were used to symbolize cognitive processes 

that occur when writing. 
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It is important to note that what I mean by Pause analysis in this thesis is the analysis of the time 

durations before start writing each stroke. A shorter Q3 pause signifies participants processing a 

familiar stimulus (i.e., program statements), because when they look at the stimulus, they will grasp 

larger chunks, which indicates their level of familiarity. They will not pause for a long time while 

writing, which can be used as a signal that they have a higher level of expertise (i.e., they are 

experts). Meanwhile, a longer pause implies that participants are processing an unfamiliar program, 

as they will have smaller chunks, and they will pause for a longer time. As a result, this is an 

indication of a lower level of expertise. 

In terms of the VD measure (i.e., pauses) and the ‘pause analysis’ technique, many studies, such as 

Cheng (2014), Cheng and Rojas-Anaya (2006, 2007), Cheng and Obaidellah (2009), van Genuchten, 

Cheng, Leseman and Messer (2009), and Zulkifli (2013) have shown that cognitive processes are 

apparent while using a copying task within the context of pause analysis. The pause analysis 

technique has been successfully used in various domains such as mathematics (Cheng, 2014) and 

with second language learners (Zulkifli, 2013), but has not been used before to measure 

competence in the programming domain. Such previous research thus motivated the idea of trying 

the method to measure programming comprehension.  

In regards to the HS measures, response durations have been used in some studies to assess 

programming comprehension in a whole task, such as sets of multiple-choice questions, lasting for 

several minutes (e.g., Adelson, 1981, 1984; Ye & Salvendy, 1996). Here, the focus is on the time 

required for component activities within a task, rather than overall task time, and the examination 

of process durations that may be directly related to the chunks possessed by participants. 

With regards to the use of the chunk signals in the current thesis, cognitive processes become visible 

via pause lengths between chunks, response durations, number of views of the stimulus, and/or the 
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number of characters per stimulus view. The chunk in this context might be, for a low-competence 

participant, a Java keyword such as CLASS, INT, or FLOAT. For a high-competence participant, it 

might be a line of code or a block of code. For example, a block (i.e., statements, more than one line 

of code) may be lines of a specific method, such as println(), max(), and random(), or lines of 

loop/iteration blocks, for instance ‘for’, ‘do…while’, and ‘while’. In any case, it is possible to tailor 

the difficulty of the test items to the level of the test-takers. For example, the examiner may design 

a stimulus with a basic syntactic level and understandable key words such as PUBLIC and SYSTEM, 

or introduce programs that include sophisticated syntax in order to be able to differentiate test-

takers’ competence levels. Therefore, participants may be unfamiliar with some program 

statements, but at the same time they can still copy them. 

Measuring participants’ differing levels of programming expertise is still applicable despite the fact 

that the participants are copying the same stimulus. Because participants with varying degrees of 

expertise do not all have the same level of familiarity with the stimulus, the transcription process is 

not easy for everyone. Participants’ familiarity with the stimulus will cause them to see the stimulus 

differently, thus they will process it in different ways depending on their competence level. 

Throughout this thesis, the design of alternative stimuli is intended to improve test accuracy, i.e., 

produce better correlations or R-squared values (i.e., maximise the disparity in participants’ levels 

of programming competence), and this is done by considering stimulus design factors such as the 

level of syntax density. 

In summary, transcription is considered a sufficient, efficient, quick, and simple writing task that can 

be utilized to examine cognitive processes, because of the quality and consistency of data it 

provides. In addition to these advantages, transcription was chosen as the main task in this thesis 

because it is a novel approach that has not previously been applied to measure programming 

comprehension.  
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1.6 Conclusion 

The specialised approach used to assessing programming competence in this thesis has previously 

been used in a variety of disciplines, such as writing sentences and sequences of numbers and 

drawing diagrams (Cheng & Obaidellah, 2009; Cheng & Rojas-Anaya, 2005, 2006, 2008; van 

Genuchten & Cheng, 2010; van Genuchten, Cheng, Leseman, & Messer, 2009), copying 

mathematical equations (Cheng & Rojas-Anaya, 2007; Cheng, 2014, 2015), and copying second 

language sentences (Zulkifli, 2013). These studies have shown that the analysis of chunk signals 

might be used to measure competence in these domains. The goal of this thesis is to determine 

whether or not this approach can be applied to the programming domain. As programming requires 

considerable mental effort for both students and examiners, developing a novel tool that quickly 

and efficiently – but reliably and accurately – assesses programming competence would be highly 

worthwhile. 

To conclude, program code transcription, within the context of freehand writing, is adopted in this 

thesis. The overall question is: can programming competence be measured by analysing temporal 

chunk signals in the task of program code transcription? 

The general objective of this thesis is:  

To investigate a potential novel method that quickly and efficiently – but reliably and accurately 

– assesses programming comprehension by analysing cognitive chunk structures using 

behavioural measures during the activity of Java code transcription. 

This thesis investigates various factors, including:  

a. The freehand transcription technique.  

b. The two stimulus display techniques: view display (VD) and hide and show (HS). 
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c. The design of the stimuli to be transcribed, with the aim that they are able to effectively, 

reliably, and accurately differentiate levels of competence. The factors considered include: 

programming language, size and length of the stimulus, and different features of the 

stimulus design, such as whether indentation is included and whether standardisation of 

font and colour is applied.  

d. The possible cognitive process measures that can be used to access Java programming 

competence. These are independent measures, such as education level, general 

programming competence, Java competence, stimuli familiarity scores, and students’ final 

exam marks. And dependent measures, such as characters per view (i.e., view-numbers), 

writing-times, view-times, and 𝑝𝑎𝑢𝑠𝑒𝑄3.  

e. The normalization process, in order to eliminate the effect of participants’ different working 

memory capacities (if any) on the behavioural measures used to measure programming 

comprehension.  

f. The impact of the longitudinal post-test study (i.e., a complementary approach to testing 

the effectiveness of the thesis approach) on participants’ behaviour. 

 

This thesis has five further chapters, the first of which is a review of the literature. Three 

experiments were carried out and are addressed in Chapters 3, 4, and 5. The first experiment uses 

HS measures to assess Java programming comprehension. The second experiment makes use of a 

better stimulus design. The third experiment is a longitudinal post-test study. Finally, Chapter 6 

provides an overview of the thesis and discussion of the findings. 
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2 Literature review: Studies of programming knowledge, 

programming tasks, and chunk structures & signals 

Chapter content: 

• Critical analysis to the concept of chunking and how it relates to programming: 

o Various programming knowledge categories. 

o Chunking in programming. 

o Programming knowledge at various levels of expertise.  

• Critical analysis to various programming tasks: 

o Programming comprehension assessments tasks. 

o Assessment equipment.  

• Chunk structure and pause analysis as techniques for measuring cognitive processes: 

o Chunking as a cognitive process. 

o Pauses analysis discovery. 

o Transcription and working memory. 

o Chunk structures signals and measures. 

o Micro-behavioural temporal measure as reflection of chunk structures. 

• Thesis design space: 

o Design aspects that may affect programmers’ cognitive processes. 

• Summary.  

 

2.1 Introduction 

This thesis uses a freehand transcription task, involving VD and HS transcription, to measure 

participants’ Java programming competence. Employing chunking theory and the use of temporal 

chunk signals in the context of a freehand transcription task is a pioneering technique in regards to 

assessing programming comprehension. It is made feasible by collecting extensive data on the 

cognitive processes that occur throughout the writing process. In brief, this research employs 
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chunking theory via a simple transcription task to build a method for assessing programming. This 

approach was motivated by the successful use of this technique in prior studies to evaluate 

participants’ competence in other areas, particularly mathematics and learning a second language 

(Cheng & Rojas-Anaya, 2007; Cheng, 2014, 2015; Zulkifli, 2013). When compared to other 

approaches that have been used to measure programming competence (presented in 2.3.1), this 

approach is easier and faster, thus it saves both students and examiners time and effort.  

This chapter covers the three main areas of research in the literature upon which this thesis builds 

and that motivated the research. These areas are (2.2) studies of programming knowledge, (2.3) 

programming tasks, and (2.4) chunk structure and pause analysis. These three areas are relevant to 

the research because they involve the main features of this study.  

The overall research question for this thesis is: 

Can programming competence be measured by analysing patterns of chunk behaviour and 

temporal chunk signals in the task of program code transcription? 

Thus, the focus in this chapter is on the various types of programming knowledge, the various kinds 

of task that have been used to measure programming comprehension, clarifying the meaning of 

chunk structures and temporal chunk signals, and the importance of the latter in measuring 

competence in various domains, all of which address particular aspects of this overall research 

question. 

2.2 Programming knowledge 

In this thesis, the phrase ‘programming knowledge’ encompasses programming organization 

(Barfield, 1986; McKeithen, Reitman, Rueter, & Hirtle, 1981), programming structure (Shneiderman, 

1977; Wiedenbeck, 1991), and programming mental representations (Adelson, 1981; Ye & Salvendy, 
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1996) – the latter refers to the way in which programming information is represented in the 

programmer’s mind. 

Computer programming involves different aspects, as presented in Pennington (1987), 

Shneiderman (1976), Soloway and Ehrlich (1984), and Shneiderman and Mayer (1979). In order to 

do any programming activities, such as composing a program’s source code, or debugging it, 

programming knowledge needs to be acquired. The aspect that will be focused on in this study is 

knowledge about program structure. Programming knowledge in this thesis is defined as the 

structure (i.e., organization) of learners’ programming chunks or schemas. Chunks and schemas are 

both considered collections of components. A chunk consists of various elements (i.e., components) 

of knowledge that are tightly associated with each other, and the elements within a chunk are 

weakly associated with elements in other chunks (Cowan, 2001). But a schema is another, wider 

knowledge type; it is a special and richer kind of chunk with more sophisticated structures, 

considered as a set of slots which are related to each other, each of which a human can fill with 

information (Anderson, 2000).  

In this thesis, it is assumed that participants have already acquired their various amounts of 

knowledge, thus each participant’s existing amount of programming knowledge will be measured. 

Accordingly, answering the question ‘how do programmers acquire their programming 

knowledge?’, as explained in Anderson’s (2000) work, is outside the scope of this thesis. 
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2.2.1 Different kinds of programming knowledge 

 

Table 2.1 Kinds of programming knowledge 
 
 

Most research in this area studies kinds of programming knowledge, as presented in Table 2.1 

above. Each column in the table represents a programming knowledge type and each row signifies 

a research study. The symbols * and ** are included in the table where a particular kind of 

programming knowledge is focused on in a particular research study: * is added when this particular 

kind of knowledge, e.g., logical, is referred to by the meaning only; for example, the phrase “dealing 

with objects in a logical way” refers to the logical type of knowledge, as in Shneiderman’s (1977) 

study, without using the term logical as a particular name for a particular kind of programming 

knowledge. Conversely, ** is applied to studies where a specific kind of knowledge is referred to 

using the same terminology; for example, objective in Ye and Salvendy (1996). Each programming 

knowledge category presented in Table 2.1 above will be clarified in the following paragraphs. 

Apparent

Concrete

Physical

Basic  

(Shneiderman, 

1977) ** ** * * * * *
(Shneiderman & 

Mayer, 1979) ** ** * * * * *
(McKeithen et 

al., 1981) * * ** ** * * *

(Adelson, 1981) * * ** ** * * *

(Adelson, 1984) * * ** ** * * *
(Soloway & 

Ehrlich, 1984) * * ** **

(Barfield, 1986) * * ** ** * * *
(Pennington, 

1987) * * * * ** ** *
(Ye & Salvendy, 

1996) * * ** ** * * ** ** **

THIS THESIS * * ** ** * * *

Abstract

Advance

Classifications of Programming Knowledge Representations 

STUDIES Semantic Syntactic
Text-

Structure

Plan 

Knowledge

Discourse 

Rules
Logical Conceptual Objective
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First, the semantic and syntactic classification of programming knowledge was developed by 

Shneiderman (1977) and Shneiderman and Mayer (1979). Although the semantic/syntactic 

classification is used in all studies presented in Table 2.1 above, only Shneiderman (1977) and 

Shneiderman, Mayer, McKay, and Heller (1977) use the exact terms semantic/syntactic in their 

studies. Semantic is specifically related to the meaning of a particular PL’s concepts, such as iteration 

and conditional. As a result, it is considered to be independent, as it is learned through meaningful 

learning and is not dependent on one specific PL. The semantic category proposed by Shneiderman 

and Mayer (1979) is split into three levels: (1) low-level notions of what a line of code does, such as 

what the data types are; (2) intermediate notions, for instance multiplying the array content, or 

developing a technique for finding the smaller of five values; and (3) high-level notions, for example 

binary searching and sorting strategies.  Syntactic, on the other hand, is another form of information 

stored in long-term memory; it is related to the arrangement of elements within a language that 

make up well-formed sentences. It is more specific and detailed than semantic (Shneiderman & 

Mayer, 1979). In concrete terms, syntactic deals with features related to a specific PL, for instance 

Java-specific libraries, such as java.net (networking library), javax.swing.* and java.awt.* (graphics 

libraries), and java.lang.Math (maths library) (Deitel & Deitel, 2017). This thesis utilizes the general 

idea of a semantic/syntactic model, as it measures semantic knowledge, explained above, in terms 

of the general programming notions which are part of specific PLs (in this case Java), as well as 

syntactic programming knowledge, which is particularly dependent on Java. 

The second category is concrete and abstract. Concrete relates to the understanding of an object’s 

appearance, such as a specific device or program code. Abstract refer to the comprehension of the 

framework functionality, thus computer programming knowledge in this level may include, for 

example, algorithms, data structures such as lists and stacks, and object-oriented modules. 

Understanding these functionalities creates the functionality level of computer programming 
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knowledge. Regarding different levels of expertise, low-competent individuals focus on superficial 

characteristics (i.e., concrete) such as simple syntactic differences, whereas high-competent focus 

more on meaningful things such as underlying functions (i.e., abstract) (Adelson, 1981). Thus, the 

perceptions of people with distinguished levels of expertise are quite different, hence they will have 

different structures of chunks, which might give different durations of pauses and other temporal 

chunk signals.  

Different studies differentiate concrete from abstract knowledge in distinct ways (Adelson, 1981, 

1984; Barfield, 1986; McKeithen et al., 1981). For instance, program semantics, task plans, and 

algorithm plans are regularly considered abstract knowledge, whereas different languages’ syntax, 

such as SWITCH structure, are commonly considered concrete knowledge (Ye & Salvendy, 1996).  

Third, Pennington (1987) suggested that text-structure and plan-knowledge are fundamental in 

programming knowledge organizations. They differ in terms of the associations between program 

statements. Text-structure consists of three main types of program structure, each of which is a 

potential schema: (1) sequence (the control passes line-by-line in the program), (2) iteration 

(looping), and (3) conditional (if-then-else). Plan-knowledge is defined as different lines of code that 

should be grouped together in one block in order to achieve a specific aim (Pennington, 1987; 

Soloway & Ehrlich, 1984); it is mostly based on data flow relations. Pennington (1987) indicates that 

mental representations in computer programming are (1) procedural, which shows the flow of 

control in the program, or (2) functional, which demonstrates the hierarchical aim of the program.  

Next, the programming plans and discourse rules categories were developed by Soloway and Ehrlich 

(1984), who second experiment focused on experts only. These are sources of chunk structure for 

high competent but are absent for low competent (Soloway and Ehrlich, 1984). Programming plans 

show any sequence of actions in the program; this category is pointed to by Soloway and Ehrlich 
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(1984) and Pennington (1987). Rules of programming discourse refer to programming conventions 

such as the name of a specific variable, which usually matches its function. Rules of discourse will 

not be focused on in this thesis, not only because they are not used in other studies as a 

programming knowledge category, but also because they are outside the scope of this project.   

Lastly, the logical, conceptual, and objective programming knowledge classifications suggest 

another basis for different groups of concepts. The logic concept involves the significance and 

purpose of the presence of an object and deals with it in a logical process (Ye & Salvendy, 1996). 

Semantics of programming code are considered at the logical level. For instance, if a for loop is 

exploited in a Java program, the loop control will be comprehended at the logical level. The logical 

classification is indicated by most researchers, such as Adelson (1981, 1984), Barfield (1986), 

Mckeithen et al. (1981), and Pennington (1987), because it is a fundamental concept in computer 

programming. But only Ye and Salvendy (1996) use the term ‘logical’ in their programming 

knowledge classification. Finally, conceptual and objective programming knowledge classifications 

were also classified by Ye and Salvendy (1996). Programming knowledge is considered to be 

conceptual when it receives, converts, and produces information. That information is area-

independent, in that it can be used to represent objects in diverse areas such as telecommunication. 

On the contrary, programming knowledge is supposed to be objective when it deals with matters 

like the usability of a specific interface, execution effectiveness, or framework restrictions. The 

conceptual and objective levels will not be utilized in this thesis, for reasons which are illustrated in 

next subsection.  
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 Thesis design/classification of programming knowledge 

 

Table 2.2 Thesis programming knowledge classification  
 
 

It is not easy to formulate precise and consistent programming metrics that demonstrate 

programmers’ mental representations. This is because programming is a very complex process and 

programmers comprehend programs at various levels based on their experience. In order to manage 

all of the complexity of the different kinds of knowledge associated with programming, rather than 

dealing with all of those sophisticated individual programming knowledge types as presented in 

Table 2.1, this project focuses on two programming knowledge classifications, as shown in Table 2.2 

above. Firstly, basic (low/intermediate-level), which refers to the apparent (i.e., visible) 

programming characters of any object in the program, such as variables’ and objects’ names, 

different data types, and program controls (such as looping and (i.e., for), and conditioning (i.e., 

if..else)). Program controls considered vital as it affects the ability to divide the program into 

functional chunks (Curtis et al., 1984). This classification is referred to as text-structure in 

Pennington’s (1987) work, logical in Ye and Salvendy (1996), apparent in McKeithen et al. (1981), 

concrete in Adelson (1981, 1984) and Barfield (1986), and physical in Ye and Salvendy (1996). 

Secondly, advanced (high-level) refers to invisible programming features and how basic characters 

function, e.g., what is the function of a specific for loop in this particular program? Usually, functions 

can be developed via more than one (explicit) method. When participants understand the function, 

No. Category Description

Low/intermediate level.

Variable definition, data types, Java syntax

Control flows (procedural/sequential – 

looping/iteration – conditional).

High level.

Data flow – functional.

Basic 

(concrete/ 

physical/ 

apparent)

Advanced 

(function/ 

abstract)

1

2
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they will comprehend it as a whole chunk. For instance, to develop a calculator program, a for, while, 

or switch loop can be manipulated. Also, advanced points to data flow, comprehension, and 

functionality such as algorithms and data structures. This category is covered by the same term in 

McKeithen et al. (1981), and Ye and Salvendy (1996), and is called plan-knowledge in Pennington 

(1987). It is referred to as abstract in Adelson (1984) and Barfield (1986).  

Ultimately, the basic and advanced categorization was considered to be enough for this thesis, as it 

is the first attempt to use transcription as a method of measuring programming comprehension. 

Also, it is considered general as it covers different abilities from low-level to high-level. High-

competent understand programs as functional schemas (i.e., when there is a program which 

consists of declaring variables, declaring constructors and the main method, experts understand it 

as three blocks (1- variable declaration, 2- constructor, 3- main)). Low-competent, on the other 

hand, comprehend a program line-by-line, as demonstrated in previous studies. As this thesis deals 

with the two levels of programming knowledge. basic and advanced, the stimuli for this thesis’s 

experiments were designed in terms of basic and advanced programming knowledge classification 

as well. 

Summing up, most previous studies, such as Adelson (1984), Barfield (1986), and McKeithen et al. 

(1981), as presented in Table 2.1 above, classify programming knowledge into concrete and 

abstract. Hence, it was decided to follow their classification, but in this thesis these are indicated 

using the terms basic and advanced, which are also used in the experiments’ stimuli design. Further, 

the details of Ye and Salvendy’s (1996) scheme, such as conceptual and objective knowledge (as 

illustrated in section 2.2.1), are avoided in this project because they are beyond this thesis’s scope.  
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2.2.2 Chunking in programming domains 

Let us consider studies that use chunking in programming, as this supports the feasibility of utilizing 

temporal chunk signals (i.e., patterns of pauses and other temporal signals caused by chunk 

processes) in this thesis. Barfield and LeBold (1983, p.647) asserted that “Cognitive Skills, as 

measured by standard cognitive ability tests, are not shown to be helpful in predicting programming 

proficiency, whereas chunking appears to be a useful method for determining computer 

proficiency”. This emphasizes the feasibility of using chunking, and hence pause analysis and other 

temporal chunk signals generally, as a technique to measure programming comprehension. Davis 

(1984) points out that the chunks act together in order to achieve the complete program function. 

Therefore, the relationship between the chunks might indicate the program structure. 

It was asserted by Curtis et al. (1984, p.83) that the concept of chunking is important in computer 

programming comprehension, specifically as an indicator of programming competence: “The nature 

of the concepts that a programmer has been able to build into a chunk provides one indication of 

ability”. The concept of chunking in programming was originally suggested by Atwood, Turner, 

Ramsey, and Hooper (1978), Brooks (1983), Curtis et al. (1984), and Davis (1984) as particular 

configurations of information in memory that are highly associated. These organisations are 

constructed in a hierarchical way (Atwood & Ramsey, 1978; Curtis et al., 1984). Brooks (1983) and 

Davis (1984) pointed out that programming learners study program code as blocks related to its 

function, and not statement-by-statement (Barfield, 1986).  

The studies by Atwood and Ramsey (1978), Curtis et al. (1984), Brooks (1983), and Davis (1984) have 

clearly answered this thesis’s question ‘Can learners’ memory chunk organizations be used to 

measure programming competence?’ Hence, because of the demonstrated viability of utilizing 
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chunking as a cognitive method to discriminate between different levels of programming 

competence, it will be utilized in this research.  

2.2.3 Low- and High-competent programming knowledge structure differences  

The categories of basic and advanced are used in this thesis (Table 2.2) because these two main 

parts are considered crucial for programming knowledge. The majority of studies classify 

programming knowledge according to apparent and functional knowledge, as presented in Table 

2.1 above. And even other studies that do not follow exactly the same classification have these two 

categories imbedded in their other classifications, as illustrated throughout the literature 

(subsection 2.2.1). Furthermore, this categorization is more suited to the kind of test used in this 

thesis. Furthermore, Atwood et al. (1978), Adelson (1984), and Ye and Salvendy (1996) have pointed 

to different kinds of programming knowledge and varying levels of programming expertise. Thus, it 

is fundamental to state the different organization of programming knowledge between low- and 

high-competent, as knowing these differences will help us in distinguishing the level of programming 

expertise.  

There are three major differences between low- and high competent in terms of programming 

knowledge: abstract/concrete; chunk size and structure; and hierarchical structure. Firstly, 

according to my classification (Table 2.1), basic and advanced, it is assumed that experts have both 

basic and advanced knowledge, while low-competent have only basic knowledge. This is based on 

several studies which support this suggestion. McKeithen et al. (1981), Adelson (1981, 1984), and 

Ye and Salvendy (1996) agree that low-competent have apparent knowledge, whereas high-

competent have functional knowledge. These studies are considered the base for the programming 

knowledge categorization used in this thesis, as illustrated in section 2.2.1.1. 
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Secondly, according to the idea of chunk size and structures, it is presumed that experts will 

comprehend a program as separate chunks with a size larger than one line of code. Low-competent 

will understand the program as separate lines, or even separate chunks of each line of code. This 

has been demonstrated by several researchers, such as Adelson (1981), Barfield (1986), Pea and 

Kurland (1984), Shneiderman (1976), and Soloway and Ehrlich (1984). High-competent have larger 

chunk sizes than the low-competent, and this is a significant indication of programming 

competence.  

Lastly, another difference between high- and low-competent  concerns the hierarchical structure of 

the program code (Atwood et al., 1978; McKay & Shneiderman, 1976; Shneiderman et al., 1977). In 

terms of memorization tasks, Adelson (1981) and Barfield (1986) indicate that high-competent can 

not only recall much more information than low-competent, but also they have better structure of 

chunks, which is also useful for answering this thesis’s research question. In addition, it is assumed 

that high-competent understand the program better, which corresponds to a shallower hierarchical 

chunk structure. Put another way, the hierarchy of the more competent participants will tend to be 

shallower than lower competence participants for the same content (i.e., program code). This was 

concluded by Curtis et al. (1984) and Atwood et al. (1978), who recognized that high-competent 

programmers can recall information in greater depth of understanding than low-competent. Thus, 

low-competent individuals have smaller chunk sizes and a greater number of hierarchy layers, 

whereas high-competent have larger chunk sizes with a smaller number of hierarchy layers. This is 

of considerable value in this work because the measures of programming competence used in this 

thesis attempt to assess the differences between low- and high-competent hierarchical chunk 

structures.  
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To conclude, there are various perspectives on programming knowledge classifications, as 

illustrated earlier in this section; however, this thesis focuses on programming knowledge classified 

into basic and advanced. 

 

2.3 Programming tasks 

It is important to consider which tasks have previously been given to test-takers in order to assess 

their programming comprehension. Different programming tasks are used in order to measure 

programming comprehension, whether in educational assessments or empirical studies. Also, it is 

crucial to examine which measures have previously been used in the assessment of programming 

comprehension. This section considers approaches used in the literature in order to guide the design 

of my own approach, and to demonstrate the novelty of this thesis’s methodology. These include 

methods using automated programming assessment systems and those used in research. 
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2.3.1 Kinds of task that have been used to measure programming comprehension 

 

Table 2.3 Kinds of programming comprehension task  
 
Researchers have used various types of programming task. In this section, different task types, for 

instance comprehension, modification, multiple choice, and recall, are outlined and considered. 

Table 2.3 above presents tasks that were used to assess programming comprehension in sixteen 

different studies. The rows represent the studies, while the columns denote task types. The symbol 

* is used to indicate that a specific task (e.g., modification) was considered in that specific study 

(e.g., Shneiderman (1977)). To sum up the table, comprehension studies have been more frequently 

applied than recall studies, and it is noteworthy that some of the recall studies applied 

comprehension tasks as well. No previous study has utilized transcription as a task to measure 

programming comprehension. 
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The measures which were used in the studies are presented in the following subsections, 2.3.1.1 

(comprehension studies), 2.3.1.2 (recall studies), and 2.3.1.3 (combined comprehension and recall 

studies), and assessment equipment is discussed in section 2.3.2 (measures of programming 

comprehension). 

Shneiderman (1976) specified four tasks which can be used to measure programming 

comprehension: 

• Comprehension: measuring participants’ understanding of an executable program 

• Composition: giving participants specifications and asking them to write a program 

• Debugging: giving them a program which contains errors and asking them to locate the 

errors 

• Modification: in which participants are given a program written in an executable way and 

asked them to modify it 

Different measurement techniques are required for each type of tasks, because of the specific 

differences in the character of the tasks (Shneiderman, 1976).  

Pea and Kurland (1984) and Pennington (1987) outline very similar aspects that could be employed 

in order to measure low- and high-competent programming comprehension in a problem-solving 

manner: understanding the specifications, planning solutions, writing the program, comprehension, 

and debugging. These classification systems are similar to the tasks outlined by Shneiderman (1976) 

and Shneiderman and Mayer (1979), however they pay attention to the pre-task phase (i.e., 

understanding the specifications and planning the solutions). All of these classification systems are 

represented in Table 2.3, which focuses on actual problem-solving activities. 
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 Comprehension studies 

Various studies have used comprehension tasks to measure programming comprehension. Some 

studies used comprehension questions only, such as Adelson (1984), Miara et al. (1983), Rambally 

(1986), Sarkar (2015), and Ye and Salvendy (1996). Ye and Salvendy (1996) presented high- and low-

competent graduate students with a program code written in the C programming language, then 

provided them with comprehension questions similar to multiple choice questions to measure their 

programming comprehension. The questions were written according to the five abstraction levels 

(as explained in section 2.2.1). They used the following measures: total test time in minutes, minutes 

spent to respond to each level of question, and overall number of wrongly answered questions. To 

calculate these, they utilized a software package. They found no significant distinction between 

high- and low-competent in total performance time. They found differences in function level but no 

significant differences in other abstraction levels. The overall conclusion emphasized previous 

studies’ classifications of programming knowledge, in which high-competent had better abstract 

knowledge than low-competent. 

Sarkar (2015) performed an eye tracking study which attempted to investigate the impact of syntax 

highlighting on programming comprehension times, and whether its effects can differentiate 

programmer expertise. The experiment was applied on graduate computer science students. 

Participant expertise was measured using a questionnaire. The participants were asked to mentally 

calculate the output of function definition lines of code, having been provided with a set of 

arguments (i.e., text-entry questions). Sarkar found that the participants were capable of 

disregarding highlighted keywords completely. Moreover, he found considerable improvement in 

task completion time when using syntax colouring for low-competent, but the impact of colouring 

became low when used with high-competent. This means that syntax highlighting assists low-
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competent in comprehension but does not assist high-competent, as they already understand the 

syntax.  

Rambally (1986) and Miara et al. (1983) calculated program comprehension using the mean and the 

variance of a comprehension quiz and subjective rating scores. They conducted their studies on 

novices (less than three years of programming experience) and experts (three or more years of 

experience) using the Pascal programming language. In Rambally’s (1986) study, participants were 

given three printed programs to assess the comprehensibility of program code, as well as to try to 

make control structures more visible and simpler to keep track of, while utilising a colour-coded 

formatting approach. The functions were coloured in the first program. Different blocks were 

coloured in the second program, and the last was black and white. The study found that the 

minimum level of program comprehension was achieved by all participants when using the black 

and white scheme. The maximum comprehension level was obtained while using the functional 

coloured scheme, hence some colouring might have been related to function concepts. Thus, 

Rambally concluded that high-competent perform better than low-competent, and that colour 

coding techniques have a statistically apparent impact on programming comprehension. 

Meanwhile, Miara et al. (1983) conducted their study utilizing four levels of indentation (0, 2, 4, 6 

spaces). They found that high-competent performed better than low-competent, and that in order 

to maximize program comprehension, a reasonable (2 or 4 spaces) level of indentation should be 

used. Participants found it difficult to work with the program without indentation as well as with 

too much indentation. 

Soloway and Ehrlich (1984) studied high- and low-competent performance on a fill-in-the-blanks 

task (they removed one line of the code and replaced it with a blank), using two versions (plan and 

non-plan (programming rules were broken)) of the same ALGOL PL program. They used a Newman-

Keuls test to calculate the difference and the percentage of subjects’ correct answers. In brief, they 
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found that high-competent exhibited better performance than low-competent, and the plan 

versions had more correct answers than non-plan, even though the differences between the two 

versions were not constant. There was a significant difference in accuracy between the plan and 

non-plan versions. Finally, they indicated that high-competent became low-competent when PL 

rules were broken. On the whole, program plans and rules of programming discourse considerably 

influence programming comprehension.  

Adelson (1984) asked low- and high-competent participants to answer questions based on a 

flowchart and a program code which were presented to them. Comprehension and question times 

were recorded using a stopwatch. Adelson used a Newman-Keuls test to measure the difference 

according to the following: task response time in minutes, error rates, and delay time in minutes. 

He found that high-competent understood the program abstractly, whereas low-competent 

understood it concretely. Multiple choice and fill-in-the-blanks tasks were also applied in studies 

such as those by Shneiderman (1977), Soloway and Ehrlich (1984), and Ye and Salvendy (1996).  

Other studies have utilized composition, debugging, and modification. Liu et al. (2012) and 

Obaidellah (2016) used composition, whereas Dimitri (2015) utilized composition and debugging. 

Shneiderman et al. (1977) used all three tasks. Others combined one or more of these three tasks 

with comprehension questions, such as Obaidellah (2016) and Shneiderman et al. (1977). Obaidellah 

(2016) studied first-year computer students. She used two Java questions, and firstly presented 

students with a question asking about the name of operation. Secondly, she presented them with a 

flowchart or program code, then asked them to draw a flowchart or compose code. Obaidellah used 

hand marking and measured comprehension and composition of code and flowchart, by calculating 

students’ success rate. She found that participants did better in interpreting the code into the 

flowchart than in the reverse task. Shneiderman et al. (1977) conducted four experiments; the first 

two utilized only novice and the other two used intermediate participants. Students’ solutions were 
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marked by hand. In a composition test, participants were asked to draw a flowchart and compose a 

simple Fortran program code. There was found to be no difference between the groups’ 

performance. Secondly, in a comprehension experiment, participants were asked to write the 

output of different input values. Again, the authors did not find any difference in participants’ 

performance within the same form (including both flowchart and code). However, they found that 

the second version (which did not start with a flowchart) was more difficult than the first (which 

started with a flowchart). Thirdly, in a debugging experiment, the stimulus was a long program 

printed with its output. The authors again did not find any difference, as participants preformed 

badly with the flowchart. Finally, in a modification experiment, two types of flowcharts were 

utilized, detailed and high-level. Each participant was requested to record time spent on each task. 

The authors found no difference between the groups’ performance. Therefore, what can be 

concluded from this series of experiments is that the use of a flowchart did not have a significant 

advantage in programming comprehension. 

The previously listed comprehension studies suggested, for this thesis, that participants’ 

programming expertise is best measured using a questionnaire, as Sarkar (2015) did. Obaidellah’s 

(2016) study proposed evaluating programming skill for a group with comparable levels of 

competence (i.e., first-year computer students). Furthermore, a reasonable amount of indentation 

(2–4 spaces) could be implemented in this thesis, as Miara et al. (1983) concluded that this is helpful 

in increasing program understanding. These comprehension studies suggest that the overall time 

spent performing a task is a significant element in determining programming comprehension.  

Shneiderman (1977, p.465) pointed out that the “Ability to debug, modify, hand simulate execution 

or respond to questions about the program all have their weaknesses as comprehension metrics”. 

None of the previously described tasks are totally satisfying for a variety of reasons, one of which is 

that modifying a program can take a long time. 
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 Recall studies 

Memorization (recall) studies were conducted in the late 1970s and during the 1980s. In general, 

during a memorization task, test-takers are provided with a program code for a set length of time, 

then this program is removed and they are given another set amount of time to write/type it again. 

Adelson (1981), McKeithen et al. (1981), Soloway and Ehrlich (1984), Barfield (1986), and 

Pennington (1987) utilized memorization tasks as a practical method of judging programmers’ 

comprehension. Shneiderman )1977) suggests that a recall task is a good measure of programming 

comprehension.  

Researchers have utilized recall tasks to examine the distinction between high- and low-competent 

programming knowledge structures in different ways. For instance, Barfield (1986) and Soloway and 

Ehrlich (1984) asked participants to memorize then recall programs literally. Barfield (1986) 

undertook a recall experiment using three versions (executable, random lines, random chunks) of 

the BASIC program. He applied it to expert, intermediate, novice, and naïve participants. 

Participants were asked to memorize then recall the programs on a blank sheet of paper. Correctly 

written lines were marked, and the correct number of lines were recoded. Barfield utilized the 

ANOVA and Scheffe tests. Next, he calculated the mean and standard deviation (SD) of the number 

and percentage of recalled lines. His findings were similar to those of Shneiderman (1976), in that 

the greater expertise participants had, the more chunks (in the random chunks version) and lines 

(in the random lines version) were recalled. He also found that random chunks were recalled more 

than random lines, and that executable versions of the program were recalled more often than 

randomized ones, similar to what McKeithen et al. (1981) and Shneiderman (1976) found.  

In contrast to Barfield (1986) and Soloway and Ehrlich (1984), Adelson (1981), in a multi-trial free 

recall experiment, presented each line of code separately to novice and expert participants in 

random order. They then had to recall as many lines as possible in any order. The pause that 
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occurred before each response was recorded. Adelson (1981) performed mean and variance 

analysis on number of items recalled, chunk size (i.e., amount of objects in a burst of recall), inter-

response times (participants were given eight minutes to recall), and pauses before every response 

(if an item was evoked by less than a 10-second pause from the previous item, it counted as a 

member of the recent chunk). What Adelson found from participants’ keyboard-typed responses 

and inter-response times was that the difference remained steady over trials, high-competent 

chunk size was larger and recalled more chunks than low-competent, and high-competent grouped 

the code lines according to the program they referred to. Thus, high-competent perceived the 

program lines’ functionality, while low-competent grouped the lines in terms of their syntactic 

purpose. Hence, low-competent understanding of the program was shallow. The current research 

differs from Adelson (1981) in that I utilize a freehand copying (i.e., transcription) task of a precisely 

ordered Java program block of code, whereas Adelson utilized keyboard typing in a recall task of 

randomly ordered Polymorfic Programming Language code. Also, I calculate the pauses which are 

produced before each transcribed stroke in milliseconds and not before each entire response in 

seconds.    

McKeithen et al. (1981) utilized Chase and Simon’s (1973) technique with programming, as 

conducted by Shneiderman et al. (1977). McKeithen et al. (1981) conducted two experiments on 

novice, intermediate, and expert participants using the ALGOL W PL. In the first study, participants 

were asked to memorize executable and randomly ordered programs on blank paper. The authors 

conducted a ‘t’ test and used, in their first experiment, the number of lines correctly written in their 

proper relative order as a measure. In their second experiment, recall orders were examined using 

R&R (Reitman-Rueter technique for deducing tree constructions from recall orders). Experts 

recalled more chunks than novices, as concluded by many studies, such as Chase and Simon (1973) 

and Adelson (1981). However, when they were presented with the scrambled version, both experts 
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and novices performed equally well, because experts found it difficult to recall the code lines when 

not grouped in meaningful chunks. In the second experiment, McKeithen et al. (1981) presented 

participants with reserved words and asked them to recall the words. They were asked to 

memorized them, then recall them out loud. The trials were tape recorded and data were not 

gathered until all participants accurately recalled all words. What they found was that novices 

recalled words that were apparently close to each other, such as having the same initial letter or 

being of the same length, story construction, and common language series, whereas experts sorted 

words based on their function. 

This thesis’s experimental stimuli (i.e., program code) were presented in executable order rather 

than random order. This suggestion was made based on the results of some previously listed studies, 

such as those by Barfield (1986), McKeithen et al. (1981), and Shneiderman (1976), which show that 

using a meaningful sequence of program lines or a set of reserved words is more effective than using 

a random order in distinguishing between high- and low-competent participants. Furthermore, 

Adelson’s (1981) study implies that inter-response time is a critical factor in determining 

programming understanding.  

 Combined comprehension and recall studies 

Some studies have combined comprehension and memorization tasks in one experiment, such as 

those by Pennington (1987) and Shneiderman (1977). Shneiderman (1977) performed two paper-

based experiments, the first a modification and memorization test on participants of the same level 

using the Fortran PL. Participants were asked to modify, then comprehend and recall the program, 

and finally to answer subjective multiple-choice questions. Shneiderman recorded the number of 

correct multiple-choice answers. Mean scores were also calculated for participants’ performance. 

The results revealed a strong relationship between recall measures (term grades and no. of lines 

attempted) and modification measures, using the Pearson correlation matrix. In the second 
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experiment, he calculated the average scores for the following: no. of correct multiple-choice 

answers, no. of lines attempted, no. of lines perfectly recalled, and the percentage of the functional 

accuracy of the program (note: only correctly written lines were marked correct). Eventually, it was 

concluded that a modification task is a valid measure of participants’ programming comprehension. 

The second experiment was a comprehension and recall test, for which participants of slightly 

different levels were recruited. Shneiderman found that it is effective to use comprehension 

questions before asking participants to recall a program.  

Pennington (1987) also conducted two experiments on experts utilizing the Fortran and Cobol PLs. 

In the first experiment, the first two trials started with yes/no comprehension questions and ended 

with a recall test. The researcher measured recognition speed by calculating the mean of the 

recorded responses and latency response times in seconds. She measured recognition accuracy by 

calculating the average of correct responses (i.e., comprehension rates) and incorrect responses 

(i.e., error rates). Error rates indicted that control flow was much easier to understand than 

dataflow, state, and function. In the second experiment, participants were asked to comprehend 

the program. Comprehension was tracked by recording the line of code that was located in the 

centre of the computer screen. Participants were then asked to type a summary and answer yes/no 

comprehension questions. After that, they were asked to complete a modification task, type a 

summary, and complete further yes/no comprehension questions.  

The think-aloud technique is used in some comprehension, recall, and combined 

comprehension/recall studies. It was utilized by McKeithen et al. (1981), for instance, who asked 

participants to recall aloud a list of reserved words which they had been asked to study at the 

beginning of the experiment. It was also used by Pennington (1987), who requested that 

participants think aloud while understanding the program.  
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In conclusion, tasks commonly utilized in previous studies are comprehension questions (multiple-

choice (Shneiderman, 1977; Ye & Salvendy, 1996), fill-in-the-blanks (Soloway & Ehrlich, 1984), write 

output values (Sarkar, 2015), write function/method name (Obaidellah, 2016), yes/no questions 

(Pennington, 1987)), composition and debugging (Dimitri, 2015), modification (Shneiderman, 1977; 

Shneiderman et al., 1977), and memorization and recall (Adelson, 1981; Barfield, 1986; McKeithen 

et al., 1981; Soloway & Ehrlich, 1984). None of these studies used transcription as a task to measure 

programming comprehension. Further, despite the fact that comprehension questions such as 

writing a specific output value and multiple-choice questions are easier to mark than composing or 

modifying a program code, they are not precisely accurate when compared with measuring 

programming performance in milliseconds. Although there are studies that have used time as a 

measure, such as Barfield (1986), Pennington (1987), Sarkar (2015), Adelson (1981), Rambally 

(1986), and Liu et al. (2012), their timescale is quite long (i.e., seconds and minutes). Thus, their idea 

of using time to measure programming comprehension is useful but not so useful for the purposes 

of this thesis, where the pauses are much shorter. In concrete terms, pauses in studies similar to 

this, such as Cheng (2015) and Zulkifli (2013), are along the lines of 100 milliseconds to a few 

seconds. What is noteworthy here is not only the time magnitudes, but also the time variation 

according to task type. It is clear that time measures can significantly vary when comparing, for 

instance, a composition task with a transcription task. In the former, time durations aggregate many 

actions, such as editing, adding, or erasing, whereas transcription within pause analysis assesses 

individual actions. Thus, time variability is lower in this context.   

The above listed combined studies aimed to measure programming comprehension and 

differentiating levels of programming competence by combining comprehension and recall (i.e., 

memorization) tasks. One of the ways in which this inspired this thesis was that it led me to ask the 

participants to answer subjective questions after finishing the task, as Shneiderman (1977) did (in 
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this thesis, a subjective rating of the familiarity of the experiments’ stimuli). Also, in these studies, 

researchers not only evaluated participants with varying degrees of programming competence, but 

also investigated individuals with similar levels of expertise, which inspired me to test two distinct 

programming competence level groups in the first and second experiments. In addition, as in the 

third experiment, students from the same level group were tested. 

Ultimately, recall/memorization and comprehension tasks were not used in this thesis because they 

are harder (i.e., time and effort consuming) than copying (transcribing) and the examiner could 

obtain partial responses, meaning the results will not be sufficient, efficient, or accurate. The focus 

is on how to produce temporal chunk signals that can be clearly spotted, in order to differentiate 

high- from low-competent. The suggested method of achieving this is to ask participants to copy 

exactly the same stimuli. In copying, all participants should produce exactly the same response, thus 

the difference will only be the time (pauses). The similarity of all participants’ output is a crucial 

aspect of this thesis. In addition, the previously listed studies showed that there are lots of measures 

of programming comprehension that work; however, are there other measures which might be an 

alternative and perhaps better?  

2.3.2 Assessment equipment (mode of production) 

Various assessment equipment has been used to measure programming comprehension, such as 

paper-pen, keystrokes, and smart-pen. This section discusses the equipment utilized by previous 

researchers. 

 Paper and pen  

Generally, programming processes consist of major phases, as illustrated in section 2.3.1. This 

section discusses the paper-inking pen, Livescribe smart-pen, and graphics tablet-inking pen 

techniques. In addition to using paper-inking pens in educational assessments, several empirical 
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studies, such as those by Barfield (1986), McKeithen et al. (1981), Miara et al. (1983), Obaidellah 

(2016), Rambally (1986), Shneiderman  )1976, 1977), and Shneiderman et al. (1977), have used it as 

a tool to measure programming comprehension by asking participants to write their solutions on 

blank paper using a simple inking pen, while doing different comprehension (i.e., composing, 

modifying, debugging, fill-in-the blanks, multiple choice, etc.) or recall tasks.  

Livescribe smart-pen technology (high-detailed resolution behaviour measurement) is similar to the 

traditional ink pen in its purpose. However, the Livescribe smart-pen has an advantage in that it 

allows researchers to record every pen stroke as it digitizes the writing, and thus gives a time-

stamped registry of the writing. That time can be used to calculate certain quantitative experiment 

features, as in the studies by Rawson and Stahovich (2013), Stahovich and Lin (2016), and Rawson 

et al. (2017). They used the Livescribe smart-pen in their empirical studies as a computer-based 

assessment technology in order to test students’ homework activity and compare it with their 

course grades. Their findings, based on timestamped numeric pen stroke records, showed that 

students’ course grades correlated positively with the quality of and amount of time spent doing 

homework.  

Finally, the graphics tablet-inking pen technique is different from the Livescribe smart-pen in that it 

utilizes a graphics tablet (with paper attached to it) and a special inking pen. This method is exploited 

in various disciplines: to measure second language learners’ competence, via pause analysis of 

copied sentences (Zulkifli, 2013); to measure mathematical equation competence through pause 

analysis of copied math equations (Cheng, 2014, 2015). The studies by Cheng (2014, 2015) and 

Zulkifli (2013) are considered the foundation for this thesis in using pause analysis to measure 

program code transcription, via use of the graphics tablet-inking pen technique to measure 

programming comprehension.  
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 Keystrokes (typing) 

The idea of recording keyboard presses to measure programming quality or performance is an idea 

applied by Adelson (1981), Pennington (1987), and Ye and Salvendy (1996). Participants’ responses, 

error rates, and latency response times were recorded via a control program and software package 

in all these studies. Recently, in a study by Liu et al. (2012), this technique (referred to as keystroke 

logging), was used with low-level performance data, recording number of keystrokes in seconds, to 

measure the difference between high- and low-competent programming performance in the 

software development and cognitive field. They found no relation between the number of 

keystrokes and programmers’ performance. The aim in this thesis is to use equipment that can 

measure programming comprehension using a more precise time scale (milliseconds). Keystroke 

logging depends on participants’ typing abilities, whereas using pen and paper is one of the learning 

basics for any educated person. Therefore, keystroke logging was not used in this thesis.  

Finally, the previously mentioned methods are time-consuming; one of the disadvantages of using 

them is the question of what happens if a student barely writes anything in an exam or can barely 

write a program, but still knows quite a bit about what the commands are (i.e., they might be quite 

a good programmer). This is an issue that should be examined, and a method that allows anybody, 

no matter how experienced, to provide a complete response that we can evaluate is worth 

employing. As a result, the transcription (copying) task was used in this thesis as a means of 

providing a complete response. This thesis also uses the graphics tablet-inking pen, but it will be 

different from previous studies measuring programming comprehension in that it will combine a 

digital pen and an A4 paper sheet with a graphics tablet to measure programming comprehension 

quickly and efficiently. 
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2.4 Chunk structures and pause analysis  

This subsection will demonstrate the following: the chunking process as a fundamental concept in 

the cognitive domain; the history of the application of the pause analysis methodology and the 

possibility of applying it in the programming domain, and the relation between pauses and cognitive 

processes; the relationship between transcription as a task and working memory; the potential 

signals and measures of the chunk structures such as keystroke logging and Graphical Protocol 

Analysis; and finally, proven studies of micro-behavioural temporal metrics reflecting chunk 

structures. 

2.4.1 Chunking as cognitive processing in general (other domains) 

‘Chunking’ is one of the most essential cognitive processes; it is sometimes called ‘association’. It is 

a basic mechanism by which information is linked together. If someone is trying to remember a 

mobile number, they will try to remember it as separate groups, such as "123 456 7891" When 

someone is trying to remember a shopping list, they will group the items based on their 

relationships, such as "pasta and rice" as one chunk and "lettuce and tomato" as another chunk. It 

is important to clearly define the chunking process, not only because it is a significant indication of 

programming competence, but also because it is important in understanding how transcription 

tasks work. In the field of psychology, Cowan (2001, p.145) defines the chunk as a “collection of 

concepts that have strong associations to one another and much weaker associations to other 

chunks concurrently in use”. This procedure includes aggregating input information into ‘chunks’, 

which are simple to handle as individual units. The idea of chunking is applied to perception and 

memory (Miller, 1956; Gobet et al., 2001; Jones, 2012); when individuals see things, they see them 

in groups, and when a difficult question is received, it is tackled by splitting it into fractions 

(Shneiderman, 1976): this is known as chunking. Things are stored in the memory in the form of 

chunks which are grouped together and then built into a chunk hierarchy in the memory. When 
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memorizing, individual mental powers are geared to conceptually ‘group’ as much information as 

possible (i.e., individual chunk structures), which facilitates the process of memorizing. The writing 

process involves perception, memory, and output (i.e., motor behaviour). During transcription (i.e., 

writing), which is a higher-level process, individuals try to retrieve chunks from memory, then break 

them down into their component parts in order to complete the motor behaviour which results in 

marks on the paper. 

During learning, the size of chunks increases, with the merging of sub-chunks (Cowan, 2001). The 

chunk structures of learners gradually change; hence chunk structures are quite different for low-

competence participants and high-competence participants. Many experimental studies have 

indicated the validity of using chunking as a cognitive process to distinguish high- from low-

competent in diverse domains, and have agreed that high-competent individuals use chunks that 

demonstrate functional units. One of the most frequently investigated domains is chess (Chase & 

Simon, 1973; Gobet & Simon, 1996), where the players perceive structure in such positions and 

encode them in chunks. Another common area is electronic circuit symbol drawing, as illustrated in 

Egan and Schwartz (1979) and Lane, Cheng, and Gobet (2000), where there was obvious "chunking" 

or grouping into functional units, analogous to Chess masters' recall of chess positions. Another 

sector is in explaining the age-related differences in performance while performing a non-word 

repetition test (Jones, 2012), where task behaviour improves with time as a result of chunking, 

which is consistent with children's performance. Jones found that chunking generates apparent 

changes in areas such as short-term memory capacity and processing speed, which are frequently 

highlighted as processes of child development. Another field is measuring mathematical 

competence via copying equations (Cheng, 2014, 2015; Cheng & Rojas-Anaya, 2007). Chunking has 

also been used in measuring second language learners’ competence (Zulkifli, 2013). This indicates 
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the feasibility of using chunking as a cognitive process to measure expertise levels in other domains 

(Gobet et al., 2001).  

2.4.2 Pause analysis discovery  

Since the 1970s, writing researchers have varied from studying written documents to employing 

real-time techniques (Schilperoord, 2001). Studies have begun to focus on implicit cognitive 

processes that happen during the writing process. Hence, to comprehend the cognitive processes 

underlying writing in general, many studies have applied different methodologies and utilized 

different tools in order to capture pauses.  

The initial approach used to analyse the processes writers are involved in while writing was the use 

of cognitive status of pause (Schilperoord, 2001). After this kind of studies, video recording and think 

aloud methods were suggested and used by Matsuhashi (1981, 1987). Video-graphs allowed more 

features to be captured, such as hand motion and facial expressions, because participants were 

asked to think aloud. A decade later, researchers such as Schilperoord (1996) and Spelman Miller 

(2000) improved techniques for real-time writing capturing. Their new technique indicated pauses 

or temporal signals, and is used in many studies, such as Cheng (2014), Cheng and Rojas-Anaya 

(2005, 2006, 2008), Spelman Miller (2000, 2006), and Zulkifli (2013), as well as this thesis.  

Until now, programming knowledge studies, as illustrated in section 2.3, have not utilized quick, 

sufficient, efficient, and accurate methods to measure cognitive processes in programming. Using 

pause analysis in a copying task, which is considered a novel technique in the computer 

programming field, permits the capturing of cognitive knowledge such as control (control flow). 

Ordinary tests assess knowledge only by providing scores, as presented in section 2.3.1. 
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 Relation between pauses and cognitive processes 

In the cognitive science field, pause analysis has been used in many domains, such as measuring 

mathematical competence through copying equations (Cheng, 2014, 2015; Cheng & Rojas-Anaya, 

2007), writing (Cheng & Obaidellah, 2009; Cheng & Rojas-Anaya, 2005, 2006, 2008; van Genuchten 

& Cheng, 2010) and measuring second language competence (Zulkifli, 2013), in order to study 

cognitive aspects. As the pause analysis method has proved to be efficient and effective in revealing 

underlying cognitive processes (i.e., chunk structures) in the previously listed studies, it can also be 

used in the programming domain. Thus, this study aimed to examine the reliability and efficiency of 

using pause analysis in measuring programming comprehension using a copying/transcription task. 

Until now, computer programming comprehension has not been measured using this procedure.  

A positive relationship exists between length of pauses and depth of chunk hierarchy. In this thesis, 

pause length was used to measure cognitive processes; however, the hierarchy structure produced 

by the pauses will not be demonstrated, because this is beyond the scope of this thesis, as producing 

a hierarchical knowledge structure for each participant requires further individually repeated 

experiments. 
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Figure 2.1 A high-competent generation of a pause profile 
 

 

Figure 2.2 A low-competent generation of a pause profile 
 

Figure 2.1 and Figure 2.2 above demonstrate how pauses are generated while a participant is 

inscribing a line of program code in the experiment. The figures show hypothetical cases which were 
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adapted from Cheng & Rojas-Anaya, (2008). The same code statement is presented to a high- and a 

low-competent individual. It is assumed that the high- and low- will break the statement into two 

different chunk structures. First of all, both of them will select and encode the first chunk they are 

going to write. Low-competent undertake more selection and encoding than high-competent, and 

this is because the number of chunks used by low-competent is greater than for high-competent, as 

high-competent have larger chunks (i.e., a larger number of characters). Then, participants inscribe 

the chunk letter by letter.   

In Figure 2.1 above, a low-competent first chunk is “for(int i=0;”, which is broken down into 

three parts: for, (int, and i=0; these three parts are split based on the appearance of the words, 

not based on their functions (i.e., the exact meaning of the program code statement), and this is 

because the low-competent understanding of the program is superficial. Furthermore, while 

copying, spaces are replaced by an inverted triangle, and this is because spaces are important in 

chunking behaviour; for high-competence participants, copying with or without spacing makes 

no difference in their chunk structures, but for low-competence participants, having a space is a 

major indication of having a new chunk, since spaces are typically employed to divide program code 

into distinct units. Hence, nothing will be recorded if the participant leaves it blank, and as this study 

requires recording the time, I used the inverted triangle.  

The line graphs following each hierarchy diagram in both Figure 2.1 and Figure 2.2 above show that 

a high-competent takes three steps before he/she can start writing, whereas a high-competent 

takes two steps, which means a low-competent will have longer pauses than a high-competent. The 

number of peaks is different between the two graphs, which is a sign of different levels of 

comprehension. The number of pauses is greater and they are longer for low- than for high-

competent, which therefore produces different temporal patterns in task performance and reflects 
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varying chunk structures. In concrete terms, the greater a person’s expertise, the lower the number 

of pauses produced. 

The aim of this thesis is to test whether such a temporal chunk signal can be used to measure 

programming knowledge (i.e., individuals’ chunk structures) and to develop a tool for this. I wished 

to analyse differences in temporal patterns and develop a comprehension measure. Each 

participant produced hundreds of pauses, from which a measure of programming comprehension 

was derived. I evaluated possible measures such as mean, median, and Q3.  

2.4.3 Transcription and working memory  

Gonzalez et al. (2011) compared copying and tracing, and concluded that copying required a greater 

amount of memory. Thus, in terms of this thesis, as copying requires resources from working 

memory, the number of resources needed is based on a person’s programming competence. 

Moreover, working memory space is restricted (Spelman Miller & Sullivan, 2006; Spelman Miller, 

2006), and the space will be available based on how a person processes information. For instance, 

if a person is competent in writing programs, he/she would not require working memory space to 

remember, for example, a command used to print out a specific sentence or number on the screen. 

Hence, this person could produce program statements automatically. On the other hand, a person 

who is unfamiliar with programming composition would require additional memory space, which 

delays the copying process, and in order to be capable of copying the next statement, there should 

be free working memory space (Zulkifli, 2013).  

However, so far, there have been no studies that use copying a program code as a task specifically 

for measuring programming comprehension. All previous research clearly indicates that chunk 

structures are regarded as a fundamental way for individuals to store information about 
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programming. Thus, having access to individuals’ chunk structures may allow measurement of 

individuals’ Java programming competence. 

2.4.4 Signals and measures of chunk structures 

Writing research saw an evolution in technology with the emergence of the keystroke logging 

technique as a new framework for logging writing, which permits researchers to explore the 

cognitive processes behind writing (Schilperoord, 2001; Spelman Miller, 2000). Smart-pens and a 

combination of smart-pens and Graphical Protocol Analysis (GPA) have also been used to investigate 

the cognitive processes of writing via pause analysis (Cheng & Rojas-Anaya, 2008; van Genuchten & 

Cheng, 2010; Zulkifli, 2013). The two subsections that follow introduce the keystroke logging and 

GPA techniques that have been used in the past, and consider their suitability for trying to assess 

chunk structures in the programming domain. 

 Keystroke logging 

Keystroke logging has emerged as a robust computer-based technique for recording writing activity. 

Writers type on the keyboard while the computer records the typing (Spelman Miller & Sullivan, 

2006). It electronically records procedures such as number of keypresses and cursor motion as the 

writer uses a word processor. This allows the user to spot pause duration and location, and series 

of writing behaviours. A logfile is produced which contains a highly detailed temporal feature that 

provides rich data. Many programs based on keystroke logging have been used, such as JEdit, used 

with the Macintosh operating system, and Inputlog (Leijten & van Waes, 2005). The utility of 

keystroke logging is well presented by Spelman Miller (2000).  

Previously, text production or composition indicted high-level writing processes (plan, translate, 

revise), and writing was recognized as a problem-solving activity (Zulkifli, 2013). Because of different 

keyboard expertise, researchers found it hard to distinguish between planning, translation, and 
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revision. Recently, low-level writing processes such as copying have been used by Cheng (2014) and 

Zulkifli (2013), and are used in this thesis. 

Keystroke logging has proved its usefulness in different disciplines, such as measuring programming 

performance (Liu et al., 2012). Despite the fact that the keystroke logging methodology is very close 

to GPA, the current study does not use it for several reasons (mentioned at the end of the next 

subsection).  

 Graphical Protocol Analysis: Why I decided to use GPA 

Graphical Protocol Analysis (GPA) is a technique that concentrates on pause duration (i.e., temporal 

chunk signals). GPA uses a graphics tablet, and utilizes pause measures to examine whether chunks 

can be detected using writing and drawing pause analysis. Pauses can be recorded at distinct levels 

throughout the writing process: within a letter, referred to as level zero (L0), among letters (L1), 

among words (L2), among phrases (L3), and among sentences (L4) (Zulkifli, 2013). Cheng and Rojas-

Anaya (2008) and van Genuchten and Cheng (2010) confirm that in working memory, the 

hierarchical structure of chunks is revealed via graphical production of pauses. Thus, generating a 

temporal chunk signal can supply information about chunk structures. However, although applying 

pause levels through writing can be done for drawing and sentences, it is not appropriate for 

program code, because sentences have clearly separated chunks (i.e., meaningful words), but 

programs do not.  

GPA is superior to keystroke logging in regards to the aim of this thesis to measure programming 

comprehension for several reasons, as follows:  

Firstly, GPA has been successfully utilized in freehand writing copying tasks to measure maths 

competence, as in Cheng’s (2014) study, and to measure second language learners’ competence, as 
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in Zulkifli’s (2013) work. Cheng and Zulkifli’s research is considered the basis for using GPA as a 

technique for measuring programming comprehension for this thesis. 

Secondly, there are big strategic/operational differences in the way individuals type (i.e., some 

people use the hunt and pick technique, while others use touch typing, whereas others do half and 

half). So, there is a significant difference between individuals that has nothing to do with chunking. 

Previous pilot experiments have shown that these individual typing differences tend to make the 

temporal chunk signals unclear. GPA utilizes freehand writing, which is considered essential 

expertise for everyone who is educated (Zulkifli, 2013), and the targeted population for this thesis 

are educated adults who have already learned how to write.  

Thirdly, there is a lot more variability in the measures (i.e., temporal chunk signals) in typing because 

there are other factors that influence the timing between successive actions, such as the variable 

distance between the keys. Sometimes two keys are next to each other and can be pressed with the 

same hand; other times, the keys are far apart and individuals may use separate hands to press each 

key. As a result, inter-keypress pauses (the pauses between key presses) do not appear to be 

reliable. Thus, freehand writing provides richer data than keyboard typing (Cheng & Rojas-Anaya, 

2005; Zulkifli, 2013). Furthermore, when people write by hand, they only move the pen a small 

distance each time, whereas when they type, the distances between keys are quite variable, which 

is why a specially designed response grid is used in this thesis. The temporal chunk signals generated 

during natural handwriting may be considered more distinguishable and reliable. 

2.4.5 Studies of the micro-behavioural temporal measure as reflection of chunk structures 

The advantage of using the pause analysis technique for understanding cognitive processing and 

assessing competence has been shown in various studies and disciplines, such as: text production 

studies (Schilperoord, 1996, 2001; Spelman Miller, 2000, 2006; Wengelin, 2006), freehand drawing 



73 
 

 
 

(Cheng, McFadzean & Copeland, 2001; Cheng & Obaidellah, 2009; Roller & Cheng, 2014), writing 

words and sentences (Cheng & Rojas-Anaya, 2006; Cheng & Rojas-Anaya, 2008; van Genuchten et 

al., 2009; van Genuchten & Cheng, 2010 ), and mathematical equation copying (Cheng, 2014, 2015; 

Cheng & Rojas-Anaya, 2005, 2007). These studies highlight the value of using this approach to assess 

competence and comprehend cognitive processes in general. This inspired the current project to 

investigate the feasibility of using pause analysis as a technique to measure programming 

comprehension.  

The cognitive processes underlying drawing have been examined by previous studies such as Cheng, 

McFadzean, and Copeland (2001), and Cheng and Obaidellah (2009), using temporal chunk signals 

(TCS). Roller and Cheng (2014) used Graphical Protocol Analysis (GPA, illustrated in section 2.4.4.2), 

graphics tablets, and freehand writing to reflect cognitive processes while drawing complex 

diagrams. Previous drawing studies suggest that utilizing the GPA methodology to measure the 

cognitive processes, which could be extracted via TCS measures, underlying programming (i.e., 

programming comprehension).  

In terms of writing words and sentences, van Genuchten et al. (2009) used TCS to examine whether 

dyslexia affects children’s writing of sentences from memory. They recruited 109 children between 

seven and ten years old. After familiarization, participants recalled 24 sentences which varied 

between familiar, unfamiliar, and non-words. Graphics tablets, traditional pens, and special 

software were used to record pen movement and to extract the position of the pen, as also used by 

Zulkifli (2013), who aimed to measure second language learners’ competence via the copying 

method and not writing from memory as van Genuchten et al. (2009) did. Van Genuchten et al. 

(2009) also compared working memory, short-term memory, and automated working memory 

assessment, and the means and medians of the pauses of various kinds of sentences were 

calculated. The results showed that working memory problems in dyslexic children have little effect 
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on their writing. It was also found that the mean duration of the pauses presented differences 

between age groups in working memory performance.  

The other study, van Genuchten and Cheng (2010), examined whether writing sentences from 

memory can distinguish between five different levels of chunking. Thirty-two adult English native 

speakers were recruited and a graphics tablet was utilized to record pauses between five levels: 

sentence, phrase, word, letter, and stroke. The stimuli consisted of eight English sentences which 

were specifically written to include the five listed levels. Each stimulus contained three to four 

sentences, two to three phrases, four to eight words, and letters that could have one or more stroke. 

The stimuli were presented in jumbled form, and written on paper and attached to the tablet; 

participants recalled the sentences on paper taped to the tablet containing horizontal rows of 

rectangles; each letter should be written in each rectangle. Participants were asked to write ‘#’ as 

in van Genuchten et al. (2009) at the beginning of each sentence, to make sure that writing was well 

underway before they started writing the first letter. Five measures were calculated for each 

stimulus. The median was calculated for each level. It was found that TCS between the written 

elements reflected the five levels in writing sentences. There are several implications for the 

programming domain. This finding implies that the five levels can be utilized in sentence writing and 

drawing (P. Cheng & Obaidellah, 2009), whereas they are not suitable in programming, as chunk 

structures are not obviously divided like words in sentences.  

In the process of writing from memory, as seen in van Genuchten et al. (2009) and van Genuchten 

and Cheng (2010), it is quite clear that chunking behaviour is apparent in temporal signals. Because 

program code transcription, the task used in this thesis, is also a writing process, there is reason to 

believe that programming chunks could manifest as temporal signals.  
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Using a maths competence assessment, Cheng and Rojas-Anaya (2007) successfully demonstrated 

that copying and pause analysis is a valid method of distinguishing between and measuring different 

levels of mathematical formula writing. They recruited four participants with vastly different levels 

of expertise, in order to maximize differences in participants’ levels of chunking. The stimulus 

consisted of sixteen formulas of varying complexity, which participants looked at for two minutes 

before starting copying. A standard graphics tablet was used to record strokes, in order to analyse 

pause duration between written strokes. The authors conducted a test comparing the mean, long 

pause duration (LPD), and long pause count (LPC) as three potential measures of chunking (to find 

which would be an effective measure of chunking). LPD is the duration of the pause, thus it shows 

the actual magnitude of the pause, whereas LPC is the number of pauses which are greater than a 

specific threshold. Cheng and Rojas-Anaya (2007) found that LPD was better at differentiating levels 

of competence. Furthermore, they concluded that the most expert participants had a smaller 

number of chunks (i.e., chunk size is larger), whereas the low-competent had a larger number of 

chunks. Thus, as chunking in this study is manifested as pauses, this suggests the possibility of 

applying the copying and pause analysis method to the measurement of competence in the 

programming domain. It also implies that because they employed a limited number of equations, 

there is no requirement for large programs to be used to assess programming comprehension.        

Cheng (2014) asserts the feasibility of using GPA with freehand copying in measuring mathematical 

competence using the third quartile measure to see whether it is an improvement when compared 

with the LPD measure used by Cheng and Rojas-Anaya (2007). Twenty adults were recruited, with 

diverse levels of maths expertise in order to maximise disparities in chunking levels. Their level of 

expertise was measured using a questionnaire with three parts, focusing on maths qualifications, 

problem solving with multiple choice answers, and a confidence rating of those answers. The stimuli 

consisted of eleven copying items, three for practicing and eight for copying. A standard graphics 
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tablet, A4 paper, the tablet’s inking pen, and specially designed software (SMouseLog) were used 

as the experiment tools. Each stimulus was presented on a 5 cm card above the graphics tablet. 

Pause measures normalized the pause third quartile (Q3) and pause interquartile range (IQR) for 

each individual test per participant. Considering all pauses, strong correlations were found using the 

Q3. For the number stimuli and equation stimuli these were approximately -0.55 and -0.70, 

respectively. Further, the author found both pause Q3 and pause IQR were better measures than 

LPD. There are several implications for programming competence assessment. Not just Cheng 

(2014) but also Cheng and Rojas-Anaya (2007) and van Genuchten and Cheng (2010) suggest the 

possibility of using GPA with freehand copying in measuring high frequency data, which implies the 

possibility of using it in the current research domain (i.e., programming). As maths equations are 

more similar to program code than copying words and sentences, and drawing geometric diagrams, 

this suggests that the method may indeed work for program code. The general configuration of 

stimuli, materials, and procedure is a good basis for the design of a programming comprehension 

experiment. For example, combining a relatively small number of short stimuli is sufficient for a 

fairly accurate measure. Pauses again appear to be a sufficient general measure of competence. 

Although normalization did not improve the Q3 measure in general, the results with the higher 

competence participants suggest that further investigation is worthwhile.   

Cheng (2015) demonstrated the feasibility of using the ‘centre-click’ copying method for measuring 

mathematical competence by utilizing paused-based temporal chunk signals in a copying task, and 

investigating whether utilizing other forms of interaction such as a mouse can be used instead of 

freehand writing and drawing. Twenty-two adults from various maths levels were recruited. 

Participants completed the same questionnaire utilized in Cheng (2014). In this experiment, a typical 

mouse, response grid, and the SMouseLog software were used. Symbols in the grid were grouped 

according to mathematical meanings, which helped high- more than low-competent. The stimuli 
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involved twelve items, eight formula items, and four practice items. Formulas were varied in their 

level of difficulty and scrambled when presented to the participants. However, practice items, which 

included all grid symbols, were presented in the correct order. Participants were trained to click a 

return to centre (RTC) symbol located in the middle of the response grid each time they clicked on 

any symbol, in attempt to make the mouse distance uniform when moved to reach each symbol, as 

Cheng found no correlation between the pauses and maths competence when the distance was not 

controlled. Items were separately presented, written on a card placed at the same height as the 

grid. The author examined first quartile (Q1) and Q3 of the following: symbol, RTC, ALL, which added 

a symbol to RTC, and subtracting a symbol from RTC. He showed that Q3 is sufficient as it showed 

different levels of competence, whereas Q1 showed that all participants were at the same level of 

competence. For all the participants, strong correlation was found using the Q3 symbol, which is -

0.52, followed by Q3 ALL = -0.50 and Q3 RTC = -0.10, which is the worst. Adding and subtracting RTC 

and symbol were in the middle. Basic mathematical skills were normalized, calculated by subtracting 

basic Q3 from Q3 ALL. Stimuli varied in difficulty level, suggesting that this could be implemented in 

this thesis. Q3 again appears a good general measure of competence. The centre-click method may 

not appropriate for the programming domain as a program consists of a variety of characters, 

numbers, letters, symbols, and punctuation, which are hard to aggregate in a reasonable-size grid. 

Thus, it was not used in this study. 

The studies by van Genuchten et al. (2009), Cheng and Rojas-Anaya (2007), Cheng (2014), and Zulkifli 

(2013) all suggest the value of the GPA method for measuring high cognitive skills, and thus the 

value of measuring programming competence via graphics tablets, traditional pens, an especially 

designed response sheet, and the special software which records pen movement. Van Genuchten 

et al. (2009) utilized freehand writing in a memory task. The specifically designed response sheet (to 

prevent cursive writing) could be utilized, as program code contains a variety of characters and it is 
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assumed that it will make pauses between characters apparent. Starting with ‘#’ appeared to be a 

good idea to implement in this thesis, because the use of ‘#’ at the beginning is to make sure the 

first pause associated with a character of the stimulus has a meaningful pause associated with it. On 

the other hand, when beginning transcription of the stimulus with the very first letter of the stimulus 

it would not be possible to calculate the first pause duration.  

In conclusion, the work of Cheng and Rojas-Anaya (2007), Cheng (2014), and Zulkifli (2013) 

measuring maths and second language learners’ competence revealed evidence that measures 

depending on the pauses (i.e., temporal chunk signals (TCS) of micro-behaviours) that occur in 

freehand copying reflect learners’ chunks structures. Therefore, there is a theoretical base to utilize 

these TCS of micro-behaviours for measuring competence in the programming domain. Put another 

way, TCS can be used to evaluate high-level cognitive skills involved in programming. In addition, 

van Genuchten et al. (2009) and van Genuchten and Cheng (2010) have shown that writing from 

memory allows use of pauses as a measure. Whereas, in transcription, participants keep looking 

back at the stimulus, and when they look back at the stimulus, they pick up a number of chunks to 

copy. So, by using transcription other measures of competence can be produced, more than just 

pauses. These include the number of times participants view the stimulus, the number of characters 

per view, or the writing time, which are the hide and show (HS) measures. This thesis’s experiments 

are the first to utilize HS measures.  

A limitation of the previous work, which was conducted in labs (Cheng, McFadzean, and Copeland, 

2001; Cheng and Obaidellah, 2009; van Genuchten et al., 2009; van Genuchten and Cheng, 2010; 

Cheng & Rojas-Anaya, 2006; Cheng & Rojas-Anaya, 2008; van Genuchten et al., 2009; van Genuchten 

& Cheng, 2010; Cheng, 2014, 2015; Cheng & Rojas-Anaya, 2005, 2007; Zulkifli, 2013), is that only 

pause measures were implemented, and these only look at the output motor writing behaviour, not 
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perception. As chunking is used for perception as well as for writing output, it might be useful to 

look at chunking during perception as well. 

All the previously discussed work shows that chunk signals occur not only when writing linear 

notations as in maths and natural language learning, but also when drawing. Hence, it is considered 

a general phenomenon, and there seems to be no reason why it would not be expected to work 

with copying (i.e., transcribing) program code. 

 

2.5 Design space 

A primary goal of this thesis is to maximise the difference between high- and low-competence 

participants’ chunk signals. As a result, several concerns were raised about the setup of the thesis 

experiments. These concerns can be summarised as follows: 

1. What type of task would be the most suitable method of measuring Java programming 

comprehension? Comprehension (i.e., composition, modification, debugging, mutable-

choice, fill-in-the-blanks, subjective ratings, etc.), recall (i.e., memorization), combined 

comprehension and memorization, or a copying (transcription) task? 

2. What is the best production mode to employ for the specified task, freehand writing or 

keyboard typing? 

3. What kinds of stimulus modifications are possible, complete program code, parts of 

program code, or code (reserved) distinct words? 

4. Should the stimuli be presented all at once, line by line, or word by word? 

5. What modes of stimulus transcription or presentation are possible, hide-show, view-

display, or both? 
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6. What is the best way of familiarising participants with the experimental stimuli? Pre-

exposure is used before beginning the real activity. Alternatively, the stimulus might be 

revealed immediately at the start of the task. 

7. Might using different supplementary aids in programming maximise the difference between 

high- and low-competence participants’ chunk signals? These might include the use of 

flowcharts, different levels of comments, memorability, modularity, syntax highlighting and 

colouring, the use of indentation (i.e., layout), and arbitrarily displayed stimulus content 

orders. 

Table 2.4 below shows different factors that were considered when designing the experiment 

assessment method and stimuli. The role of this table is to represent the variables investigated in 

this thesis’s experimental design.  

 



81 
 

 
 

 

Table 2.4 Thesis design space aspects  
 

 

2.5.1 Aspects that may influence programmers’ cognitive processes 

There are many aspects that may affect reading code, thus influencing comprehension of it. Learners 

who are weak in reading program statements are commonly weak in solving code problems (Lister 

et al., 2004). Thus, it could be concluded that participants who cannot read code clearly will not be 

able to compose code correctly (Obaidellah, 2016). This section includes programming aspects (i.e., 

supplementary aids) that may affect programmers’ understanding of a program, such as: different 

stimulus (i.e., program code) presentation mode, syntax highlighting, indentation, memorability, 

flowcharts, and code scrambling. In the context of the present study, the use of these 

No. Factor Thesis design factors

Produce errors

Code fragments

Whole program

Line by line

Reserved words

Concurrent

Hide/show

Syntax highlighting

Indentation/layout

Modularity

Memorable variable names

Same level (naïve, novice, 

intermediate or expert)

Naïve, novice, intermediate & expert

Naïve, novice & intermediate

Novice and expert

1 Task type Transcription & Subjective rating

2
Production 

mode
Free-writing

3
Stimulus  

manipulations

4
Stimuli 

presentation

5
Stimuli 

familiarization
Immediate exposure

7

Participants’ 

competence 

levels

Stimuli 

augmentation
6
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supplementary aids may differentiate high- from low-competent; only those that will separate the 

two groups will be useful. 

In the following subsection, the overall design of the new assessment method that is evaluated in 

this thesis is illustrated in terms of the following aspects, which may affect programmers’ cognitive 

processes: (1) different modes of transcription (i.e., stimulus presentation modes), (2) syntax 

highlighting, (3) indentation, (4) memorable variable names, commenting, and modularity, (5) 

flowcharts, and (6) code scrambling. 

 Stimuli presentation modes  

Two main stimuli presentation modes (i.e., different modes of transcription) are used in the design 

of this research’s experiments: hide and show (HS) and view display (VD). VD, where the stimulus is 

always apparent, is the appropriate mode to provide the 𝑝𝑎𝑢𝑠𝑒𝑄3 measure. HS, where the stimulus 

becomes visible only when a participant clicks a special button, is the suitable presentation mode 

to provide the other temporal chunk signals, characters per view (i.e., view-numbers), writing-times, 

and view-times. 

 Syntax highlighting 

Syntax highlighting (or syntax colouring) means making parts of the program code syntax obvious 

by colouring them with a different colour to the rest of the code statements. Sarkar (2015) 

investigated the impact of syntax colouring in a comprehension task and whether its effects can 

differentiate programmer expertise. Sarkar found that using syntax colouring improved 

programming comprehension. He found that it enhanced program comprehension speed in low- 

more than in high-competent. Dimitri (2015) states that if programming expertise increases, the 

time needed to understand the highlighted task decreases. He found that using syntax highlighting 

increased debugging and writing speed. Thus, the intellectual overhead required to comprehend 
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highlighted program code is lower than the mental overhead required to understand plain program 

code (Sarkar, 2015). Rambally (1986), Dimitri (2015), and Sarkar (2015) conclude that syntax 

highlighting and function (control flow) colouring significantly improve programming 

understanding. Their findings reinforce the theory that when trying to understand a program code 

which includes extra visible cues, the required overhead will be less. Sarkar’s (2015) study led me to 

refrain from using syntax highlighting in my experiments as it would have lessened the difference 

between high- and low-competent. What I am precisely focusing on is finding techniques that will 

differentiate students with good and poor programming comprehension in relation to chunk signals.  

 Indentation  

Indentation means leaving a specific space before starting to write a program statement; it is used 

in order to better structure code blocks. Indentations are not compulsory in Java and most 

programming languages. Figure 2.3 below presents an example of a block of Java program code 

including indentation. 

 

Figure 2.3 Indentation example   
 

With regards to indentation use, McKeithen et al. (1981) kept indentation in both program versions, 

normal and scrambled, as they are vital to the meaning of the ALGOL W programming language. 

Barfield (1986) also kept them in BASIC programs, which were presented to participants as 

executable orders, random lines, and random chunks, but he did not consider indentation in 

counting correct lines. However, Pennington (1987), who used the Cobol and Fortran programming 

languages, removed the indentation. Shneiderman (1976), who used Fortran, also eliminated 
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indentation from experimental programs. As Shneiderman (1977) and Miara et al. (1983) showed, 

although participants prefer the indentation, there is no considerable effect on their performance 

measures in general. For this thesis, as indentation is determined by the logic of the program code, 

it could be used, as I am trying to manipulate techniques that could discriminate high- from low-

competent in terms of chunk signals. Thus, it is assumed that indentation will strengthen the chunk 

signal for high- more than low-competent, because it will make the program functions clearer, 

hence will help experts to understand the code as they already have good programming knowledge. 

On the other hand, it will not have a considerable effect for the low-competent individuals, because 

their programming knowledge is superficial. Thus, the use of indentation differentiates 

programming comprehension levels.  

 Memorability 

In a series of studies, McKay and Shneiderman (1976), Shneiderman (1976, 1977), Shneiderman et 

al. (1977), Shneiderman and Mayer (1979), and Rambally (1986), found that memorable variable 

names, commenting, and modularity had a noteworthy influence on program comprehension, 

whereas using flowchart diagrams did not.  

Commenting is used to simplify and explain the role of the program code statements, and can be 

used for one or more statements. Comments are not executed and are not considered a part of the 

actual program. Shneiderman (1977) differentiated two kinds of comments, low-level comments 

and high-level comments. He found that high-level comments assist in evolving the hierarchical 

structure, whereas low-level comments prohibit it, because they are like repeating code lines whose 

function is already obvious to experts. In addition, they are distracting to readers. On the other 

hand, Miara et al. (1983) and Rambally (1986) did not use comments at all in their experiments. In 

this thesis, comments were not used because it is difficult to systematically write comments.  
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Regarding modularity, Shneiderman and Mayer (1979) presented participants with three program 

formats: modular, where each module has a clear function, nonmodular, which is an undivided serial 

program, and random modular, which is a program divided into subdivisions without obvious 

function. Shneiderman and Mayer (1979) and Rambally (1986) found that an unclear breakdown of 

a program could make it more difficult to understand. However, while providing a random modular 

format to the superior students in the class, the latter accomplished high grades, despite the 

difficulty of the program. A further result was that “modular program design facilitates the chunking 

process”. Hence, measuring program comprehension using a modular program is difficult for low-

competent but helpful for high-competent. With regards to this project, modularity may be 

manipulated because it will help high-competent understanding, and thus make the difference 

between low- and high-competent obvious by strengthening the chunk signal, which is an indication 

of a higher level of programming expertise.  

 Flowcharts 

Shneiderman et al. (1977) and Shneiderman and Mayer (1979) found no difference when using a 

flowchart to measure program comprehension. Shneiderman et al. (1977) indicate that the use of a 

flowchart is more beneficial when used with comprehension rather than composition tasks. 

However, they also concluded that the use of the flowchart neither benefits nor harms students. 

Obaidellah (2016), while trying to measure students’ programming comprehension by asking them 

to translate a Java program code to a flowchart and a flowchart to a program code, concluded that 

participants did better in interpreting the code into the flowchart than in the reverse task. So, 

Obaidellah’s results agree with those of Shneiderman et al. (1977). Overall, the aid provided by a 

flowchart is not dependent on the existence of the flowchart only, but also and mainly on the kind 

of information utilized to help learners in building their programming knowledge. 
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Therefore, based on previous studies, it can be concluded that the use of a flowchart does not have 

a significant advantage in programming comprehension, hence a flowchart would not be useful in 

this particular thesis, as I am looking for a technique that discriminates between students with good 

and poor programming comprehension via chunk signals. On the whole, utilizing flowcharts will not 

differentiate high- from low-competent individuals in terms of temporal chunk signals.  

 Code scrambling  

Scrambling an executable program code means changing its statements’ order. They are not 

presented to the participant in the normal executable order, thus there are no logical, functional, 

or control flow relations between the statements. Code scrambling obviously makes it harder to 

read and understand the overall program function because it is not presented as usual. Barfield 

(1986), Shneiderman (1976), and McKeithen et al. (1981) found that when participants were 

presented with a scrambled version, both high- and low-competent performed equally. This is 

because experts were used to grouping various parts of a program according to their meaning, so 

they found it difficult to recall the code as its lines were not grouped in meaningful chunks. However, 

when they were presented in the executable version, participants’ ability to remember increased 

with an increase in expertise (Barfield, 1986; Shneiderman, 1976).  

Summing up, previous studies indicate that low- and high-competent act alike when using 

scrambled versions. In addition, Shneiderman (1976) and Zulkifli (2013) (who used the pause 

analysis while copying technique to measure second language learners’ competence, the same as 

this thesis’s technique) found no benefit from using random/scrambled versions. This thesis’s main 

aim is to find a technique that clearly differentiates High- from low-competent. All this implies that 

using scrambled program code in this thesis is useless.  
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To conclude, in order to measure programming comprehension rapidly and efficiently, it was 

decided to use temporal chunk signal analysis in a freehand writing transcription task utilizing the 

graphics tablet-inking pen technique. I decided to use natural handwriting, which is supposed to be 

a more accurate and precise measure than keyboard typing, because people have different typing 

abilities. Its feasibility and benefits have been demonstrated in previous studies, and as a result, I 

decided to use it in this thesis. 

2.6 Summary 

Three major domains have been covered in this section, studies of: programming knowledge; 

programming tasks; chunk structure and pause analysis. Based on a review of the literature in these 

domains: 

• There is a need for an effective programming assessment approach. 

• It is clear that programming involves chunking.  

• Pause analysis in relation to chunk structure in a copying task has been successfully applied 

to measure competence in other domains, therefore it might potentially be used to 

measure programming comprehension.  

The overall target of this thesis was to develop a novel approach for evaluating computer 

programming comprehension by analysing the temporal chunk signals that arise in the task of code 

transcription. To accomplish this target: 

• This research focused on freehand writing by evaluating adults’ programming skills. 

• This research methodology may suggest an alternate approach to measuring learners’ 

programming skill over typical methods (i.e., composing program code, debugging, or 

modification).  
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3 Experiment 1: Measuring Java comprehension 

Chapter content:  

• An introduction that includes the experiment hypothesis and key questions. 

• The experiment methodology: 

o General experiment design. 

o Classification of participants. 

o Experiment implemented materials.  

o The experiment procedures. 

o Stimuli design. 

• The experiment results: 

o Independent measure of competence.  

o Evidence of the role of chunking in Java transcription task. 

o Regression analysis for the behavioural measures. 

o Further evidence of the role of chunking (Content analysis). 

• Discussion: 

o How the experiment builds on previous findings. 

o The relation between the behavioural measures.  

o Content analysis. 

o Suggestions and future work. 

• Summary.  

 

3.1 Introduction  

The goal of this experiment is to see if the previously developed chunk-based methods for 

measuring competence via copying in domains such as maths and second language learning can be 

applied to programming. According to the literature review, this technique has never been applied 

to programming. As stated in Chapter 2, chunking is important in the doing and learning of 

programming (e.g., Shneiderman, 1976; McKeithen et al., 1981; Pennington, 1987). In this 

experiment, the aim is to measure participants’ existing programming knowledge. It is assumed 
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that: (1) Java programming knowledge is hierarchically represented in the learners’ memory (as 

demonstrated in section 2.2.2 in Chapter 2); (2) High-competent will read the code for meaning, 

thus they copy it knowing the meaning of it, whereas low-competent may copy it without 

understanding the meaning (as explained in section 2.2.3).  

In previous transcription experiments (e.g., Cheng, 2014, 2015; Zulkifli, 2013), the stimulus has 

typically been shown on a card or computer screen near the writing tablet, allowing participants to 

alternate their gaze between the stimulus and the tablet. What is new for this experiment is the use 

of the hide and show (HS) presentation mode to record when the participant moves between the 

stimulus and the tablet. When the participant presses a special button, the stimulus appears on the 

computer screen. To write, the participant must release the button, and the stimulus is masked. 

This extends the repertoire of techniques that may be used to assess chunk structures with a 

method that targets the processing of several chunks, at a 10 s timescale, which makes available the 

behavioural measures: (a) view-numbers, (b) writing-times, and (c) view-times. 

This method (HS) contrasts with a previous method that analyses elements within a single chunk to 

collect Q3 pauses – I call it view display (VD) mode, where stimuli are shown all the time. 

Regrettably, I was unable to record pauses for this experiment due to a technical issue with the 

experimental device. As a result, I will not refer to Q3 pauses or the VD presentation mode 

throughout this chapter.  
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Figure 3.1 Generation of view-numbers and writing-
times profile: High-competent 

Figure 3.2 Generation of view-numbers and writing-
times profile: Low-competent 

 

 

Figure 3.1 and Figure 3.2 show the behavioural measures that are produced during the transcription 

of a line of Java code: view-numbers (the total number of views of the stimulus in a trial, obtained 

by counting the number of button presses to view the stimulus), writing-times (the time spent 

writing between two consecutive views), and view-times (the length of each look at the stimulus, 

obtained by subtracting the time when they release the button from the time when they press the 

button). 

 As mentioned in the first chapter, I used the Java programming language because it is commonly 

used. Java is particularly important to this thesis because it is the primary programming language 

taught to undergraduate students at the University of Sussex (i.e., my participants), and I had full 

access to these students.  

The same Java code statement is shown in both the above figures for a high- and low-competent. 

Based on their chunk structures, the high- and low-competent have different writing-times and 

view-numbers. The high-competent has a longer writing-time than low-competent because the 

high-competent chunk size (i.e., number of characters) is larger and has fewer chunks than the low-
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competent. As a result, the high-competent has fewer views of the stimuli than the low-competent 

(view-numbers). It is believed that the view-times are the same for both the high- and low-

competent (the reasons will be explained later). Views in Figure 3.1 and Figure 3.2 refers to any time 

a person presses the button to display the stimuli (i.e., there could be several views without writing), 

whereas break refers to the time between stopping writing and starting writing again, which could 

include one or more views. The majority of the participants have the same number of views and 

breaks. However, because some of the participants have more than one point of view, I consider all 

of those points to be one break, as revealed by my additional analysis (i.e., content analysis), and 

which was not evident from the previous analysis. I chose to address view-numbers (i.e., views) 

rather than breaks in this chapter because I examined both and found no difference. Further, in 

order to conduct the experiment, multiple decisions must be taken and evaluated in order to 

determine the effectiveness of the assessment of programming comprehension and the distinction 

between high- and low-competence participants.  

Therefore, the experiment aims to explore whether:  

(1) Could chunk-based measures of comprehension be extended to domains other than 

mathematics and natural language learning? 

(2) Is it possible that handwriting a program code provides powerful and stable temporal chunk 

signals that can be used to assess programming comprehension?  

(3) Can programming comprehension be accurately measured using view-numbers, writing-times, 

and view-times?  

Various predictions can be made for the HS measures. 

Assuming that the size of a stimulus remains constant, I predict: 
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H1) View-numbers: more competent participants will have a smaller number of views of the 

stimulus in a trial because their chunk size is bigger.  

As more competent participants’ chunks contain more content, I predict:  

H2) Writing-times: for more competent participants, the duration of written answers after each 

stimulus view will be longer because their chunks are bigger and each character takes the 

same time to write. 

This suggests that writing speed is independent of target domain expertise, which is plausible for 

adult participants. Now, as the time to perceive a chunk is approximately constant (Chase & Simon, 

1973), and if working memory capacity is independent of competence, then I predict: 

H3) View-times: the amount of time spent on each individual view of the stimulus will not be 

directly related to competence.  

I used two levels of stimuli difficulty (explained in detail later): simple stimuli, which contain 

frequently used components of Java, introduced earlier during instruction (in the students’ 

programming module); and difficult stimuli that include more specialist expressions that are 

presented later in the course. So, I predict:  

H4) Performance on simple stimuli will be superior to performance on advanced stimuli, with 

fewer view-numbers and longer writing-times, but there will be no effect on view-time. 

Note that H3 is framed negatively, so care is required to interpret data that might support it. In 

particular, the magnitude of other effects must be strong enough to indicate that the possibility of 

the absence of an overall view-time effect is not due to a lack of statistical power. The underlying 

pattern of view-time data can also be examined for supporting evidence.  

Clearly, the predictions are based on strong assumptions, so no reliable measurements of 

competence can be achieved until the effects of chunking produce significant temporal signals.    
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What was done in this experiment that was not applied in previous studies (e.g., Cheng, 2014, 2015; 

Cheng & Rojas-Anaya, 2007; van Genuchten et al., 2009; Zulkifli, 2013) is content analysis. 

 

3.2 Method   

There are numerous measures of programming competence, as stated in the literature review; for 

this experiment, I employed the following measures: view-numbers, writing-times, and view-times, 

collected in HS presentation mode, where the stimuli are only visible if a participant continues to 

press a special button. 

The following sections describe the methodology used in this experiment (general experiment 

design, classification of participants, materials, procedures, stimuli design). 

3.2.1 General experiment design 

The experiment design includes: (1) a within-participant factor, with each person transcribing a 

simple and a difficult section of Java program code; (2) a mixed factor, involving low- and high-

competence participants as well as simple and difficult stimuli (explained below). The order of these 

trials was counter-balanced. The trials were preceded by two practice stimuli.   

(Originally, the experiment was a counter-balanced 2x2 design with a view display (VD, i.e., where 

the stimulus is constantly shown on the screen) factor to provide pause distribution measures for 

comparison. Unfortunately, an obscure software-hardware interaction on the experimental 

computer was found during the analysis. As the original counter-balancing does appear to have 

affected the reported conditions, for clarity, the experiment is presented as just a single factor.) 
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3.2.2 Classification of participants 

The participants were 24 adults from the School of Engineering and Informatics at the University of 

Sussex. Recruitment spanned first-year undergraduate students through to members of faculty, to 

obtain a good range of programming expertise. Ages ranged from 19 to 59 years (mean=25, 

SD=8.51); there were fifteen male participants and nine female participants. They received £8 for 

participating.  

3.2.3 Materials 

There were two main stimuli categories: the first is the practice stimuli and the second is the Java 

stimuli. The practice stimuli consisted of series of simple statements, such as ‘Computer Science’, 

‘Programming Course’, ‘JAVA Programming Language’. In the Java stimuli, each stimulus was made 

up of nine lines of code separated into three distinct blocks. Each stimulus had the same number of 

lines, and the total number of characters varied by less than 5%. Two simple (S) and two difficult (D) 

versions of the stimuli were created by consulting the course content of the students. The 

expressions in the simple stimuli were a core part of their Java instruction in their first year, for 

example, ‘Public class person{’ is exploited as an example of a simple statement stimuli since 

it was introduced early on in the undergraduate Java course. The expressions in the difficult stimuli 

are more specialist items that would only have been seen by the better performing students, for 

example, ‘g.setFont(f);’ is used as an example of the difficult stimuli because not all participants 

can comprehend it, as it is not taught until later in the course.  

The experiment was conducted using a standard graphics tablet (Wacom Intuos3) connected to a 

PC running a logging program specially written in our lab. Participants wrote with an inking pen on 

a response sheet. The response sheet was printed with a grid of 25 lines, each consisting of 42 spaces 

for writing individual characters. The sheet was designed for non-cursive writing in order to provide 
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rich inter-stroke pause data (see parenthetical note in the general design section above). 

Participants adapt easily to this writing style, and it does not seem to have a negative impact on 

other aspects of their performance (Cheng, 2014; Zulkifli, 2013).    

Following the experiment, the participants completed a questionnaire with four parts (using an 

online survey platform). Part 1 included biographical questions relating to educational level. Part 2 

assessed programming experience in general with five graduated rating items, such as ‘I can develop 

programs using more than one object-oriented programming language’. Part 3 assessed Java 

programming expertise using eight graduated items, such as ‘I am familiar with both objects and 

classes in Java’. Part 4 assessed participants’ familiarity with the four specific Java stimuli provided 

to them during the experiment. Participants were asked to judge what their degree of familiarity 

would have been for each item prior to the experiment, on a 5-point Likert scale.  

3.2.4 Procedures 

Participants were instructed to use their preferred hand to hold the pen, and instructed to: begin 

writing at the beginning of each line, even for indented code; start writing as soon as the stimulus 

is revealed; copy the code as quickly and as accurately as they can; continue writing without 

correcting if they made a mistake; draw an upside-down triangle symbol (inverted capital delta) in 

place of spaces because spaces are important, and as I needed to record the time, nothing would 

be recorded if the participant left it blank; to start each trial with a hash (#) in order to ensure the 

validity of the pause for the first symbol; to start writing from the beginning of the line (write it line 

by line); to continue writing the same code statement in the next line in the response sheet, and 

when the same line of code exceeds a line in the response sheet, then start a new line for the next 

code statement; to hold down the special key to reveal the stimulus, with their preferred hand, 

ensuring that they write only when the stimulus key is released. The participants quickly became 
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fluent in the practice trials, so these conditions were not an especial burden (several of these 

conditions were needed for the pause measurements). Similar trial requirements were successfully 

used in previous experiments, so it is clear that they do not in themselves undermine the reliability 

of the results. The participants finished the experiment within an hour.  

3.2.5 Stimuli design 

In order to achieve a high level of experimental control, it was decided to use small code fragments. 

Each fragment consisted of three lines. In addition, as Miara et al. (1983) found, it is difficult to 

comprehend programs without indentation or with excessive indentation, so it was decided to keep 

indentation in this experiment stimuli because it will help high-competent and may not affect low-

competent as they do not understand the program anyway. However, all participants were asked 

to ignore the indentation while writing and start from the beginning of each line. This is because I 

wanted better chunking signals, and because the number of indented spaces varies between each 

line of code, and I wanted participants to concentrate on the code material rather than counting 

how many spaces are at the beginning of each code line. The experiment had two factors: the first 

is participants’ familiarity as low- and high-competence participants (between-subjects design); the 

second factor is stimuli difficulty, with the stimuli being either simple or difficult (within-subjects 

design). Four versions (S1, S2, D1, D2) were produced, as listed in  

Table 3.1 below. 

The next subsection discusses the two factors and justifies the selection of each stimulus. Each 

participant was presented with the four stimuli versions (i.e., two simple and two difficult). Two 

versions (S and D) were in VD presentation mode and the other two versions were in HS 

presentation mode.  
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Table 3.1 Stimulus versions (S1, S2, D1, D2) and the total number of characters and source code 
lines 

Stimulus Content
No. Of 

Characters

No. Of 

Lines

public class Person{         

    private String name;      

    private int age;}

public int Balance(){           

      int amountRefund;             

      return amountRefund;}

for(int h=0;h<hCount.length;h++)         

  {                                         

    System.out.println(h+hCount[h]);}  

184 9

public class Person{         

    public String name;      

    public int age;} 

public void Balance(){           

    System.out.println("#");  

    Total += balance;} 

int h=0;                         

while(h<hCount.length){            

  System.out.println(h+hCount[h]);h++;}

187 9

<body>                                                  

  Hello! The time is now <%=new java.util.Date()%>    

</body>

int[] numbers=                              

    {1,1,3,5,8,13};          

 for(int item:numbers) 

cont=f.getContentPane();         

button=new JButton("Yes");        

cont.add(button);

182 9

<body>                                                     

 <%! private static boolean visited=false; %>           

</body>                                                     

int summation=0;                           

  for(int counter:arrayTall)       

      summation+=;          

Font f=new Font("S",Font.PLAIN,6);  

  g.setFont(f);                       

  g.drawString("T",1,9);

182 9

3

C 69 3

                                                                                                                                          Total:

C 67 3

                                                                                                                                          Total:

D2

A 59 3

B 54

68 3

                                                                                                                                          Total:

D1

A 61 3

B 54 3

3

                                                                                                                                          Total:

S2

A 55 3

B 64 3

C

Stimuli Version

S1

A 57 3

B 61 3

C 66
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 Stimuli difficulty factors: Simple (S) & difficult (D) 

The stimuli were chosen following a review of the students’ programming modules. Java is the base 

language used for programming assignments in nearly all first-year modules. As shown 

 in  

Table 3.1 above, the number of program code lines in every stimulus is identical. The number of 

characters in each stimulus version, e.g., S1 A and S2 A, is very similar; the total number of stimuli 

characters, e.g., S1, S2, D1, and D2, is also quite similar, with no more than 5% difference between 

them.    

The reasons for selecting each stimulus are as follows: 

1- S1 A & S2 A: consist of instance variables and data types. These stimuli declare class and instance 

variables of the same class, which is considered a fundamental concept. Students study it at a very 

early stage and must use it in any Java program. Therefore, it is categorized as S.  

2- S1 B & S2 B: contain a return and void methods concept which is introduced to the students early 

in the course. A method is a set of program statements written to perform a specific operation. 

Students frequently use it because it helps in code reusability. For instance, main is a vital method 

in Java, as when a program is compiled and run, it is the first method to be executed. Thus, it is also 

a simple stimulus. 

3- S1 C & S2 C: utilize embedded concepts: arrays and controls (iterations) using while and for loops 

for the same code. These notions are introduced to the students early in the first year. These stimuli 

are considered simple because they consist of simple and not nested loops. They also include 

frequently used code words.   
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4- D1 A & D2 A: the servlet JPS concept (i.e., creating dynamic web pages in Java) is introduced to 

third-year students in their first semester but is not covered in the first year. Also, it is not frequently 

used. Thus, it is considered difficult. 

5- D1 B & D2 B: the iteration concept is introduced early in the course. However, this enhanced loop 

construction is not frequently used in the first and third years, especially for low-component 

programmers, unless students do programming as an activity beyond the course. In D1, the 

Fibonacci sequence is utilized in writing the array element as it is considered common knowledge 

for senior students and faculty, more so than for low-competent. Consequently, these stimuli are 

classified as difficult. It is assumed that high-competent will not find it difficult to transcribe and may 

recognize it as one chunk.  

6- D1 C & D2 C: utilize the graphical user interface (GUI) notion which is introduced later in the first 

year, thus students do not practice them and it can be said that they are only somewhat familiar 

with it. Thus, it is classified as difficult. It is predicted that high-competent will produce shorter 

pauses than low-competent in this part.  

 

3.3 Results 

This experiment’s results will concern the following: (1) the independent measures; (2) the test of 

the predictions associated with each of the main hypotheses; (3) further analysis of the effect of 

chunking; (4) the content analysis, which provides more detailed evidence for the claims that 

chunking occurs.  
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3.3.1 Independent measure of competence  

 

Table 3.2 Correlations between competence measures (n=24, Pearson correlation, 1 tail, critical 
value is 0.472 at p<.01) 

 
Questionnaire responses were coded to obtain independent competence measures against which 

to compare the chunk-based measures. Education level was scored on a scale from one to six (1 = 

first year undergraduate student, six = faculty member); an example of a question regarding this is 

“Have you learnt more than three programming languages?”. General programming and Java 

experience were scored by giving one point for each positive answer related to the measure, so had 

scales from one to five and one to eight, respectively. Examples of the yes/no questions which were 

included in the questionnaire regarding general programming are “I am familiar with all the 

following programming concepts: declaring variables, conditions and iterations, and printing out a 

sentence on the screen” and “I can develop programs using more than one object-oriented 

programming language”. Examples of yes/no questions regarding Java experience are “I am familiar 

with the ‘main’ method in Java” and “I am familiar with using GUI in Java”. Ratings of familiarity 

were scored from 0 (low) to 4 (high), so with the four stimuli, the overall scale runs from zero to 

twelve. Participants were asked “Before you started the experiment, how familiar would think you 

were with these statements?”. Table 3.2 above presents correlations between all combinations of 

the competence measures, and is unsurprising. Education level is only weakly (and not significantly) 

correlated to the other measures. General programming experience has a strong positive relation 

(r)
Education 

level

General 

Programming
JAVA Familiarity

Education 

level

General 

Programming
0.366

JAVA 0.183 0.759

Familiarity 0.181 0.734 0.849
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to both Java experience and familiarity. The correlation between Java experience and familiarity is 

particularly strong. All this suggests that both Java experience and familiarity are specific to Java, 

rather than wider programming competence, and that either is suitable to serve as an independent 

measure. As the actual pattern of results is equivalent with either measure, just the analyses of the 

comparison using familiarity will be reported here.  
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3.3.2 Evidence of the role of chunking in a Java transcription task 

  

Figure 3.3 Total number of views for participants, ranked 
in order of familiarity, across simple and difficult stimuli 

Figure 3.4 Median writing-times for participants, ranked 
in order of familiarity, across simple and difficult stimuli 

 

 

Figure 3.5 Median view-times for participants, ranked in 
 order of familiarity, across simple and difficult stimuli 

 
 

The view-numbers, writing-times, and view-times were computed from the logs of each participant 

for each trial. Figure 3.3, Figure 3.4, and Figure 3.5 above show the total view-numbers, median 
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writing-times, and median view-times for participants, ordered by their familiarity scores though 

simple and difficult stimuli, and we can see a fairly linear increase in the degree of familiarity across 

all participants. A binary split of participants’ familiarity scores conveniently creates two equal size 

groups, with low familiarity scores exclusively below 6 and high score exclusively above 8. Further, 

there is a lot of variability between the participants. The overall trend of view-numbers is a decrease, 

as in Figure 3.3, where it is clear that the blue dotted line (simple stimulus) tends to be lower than 

the red solid line (difficult stimulus). However, there is an increase in writing-times, as in Figure 3.4, 

and the red solid line (difficult stimulus) tends to be lower than the blue dotted line (simple 

stimulus). Figure 3.5 shows that the general view-times trend is towards going up. 

 Figure 3.6, Figure 3.7, and Figure 3.8 below aggregate the data across low- and high-competence 

participants and across simple and difficult stimuli by showing the mean of the total view-numbers, 

the mean of the median writing-times and the mean of the median view-times.   
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Figure 3.6 Mean view-numbers across stimuli difficulty 
types and levels of competence 

Figure 3.7 Mean of median writing-times across stimuli 
difficulty types and levels of competence 

 

 

Figure 3.8 Mean of median view-times across stimuli difficulty types 
and levels of competence 

 

The first thing to note is that in the total view-numbers (Figure 3.6) the value for practise items is 

significantly lower than for the Java stimuli, but it is essentially equivalent at low and high 

competence levels (6.6 and 5.7, respectively). Similarly, the mean of the median writing-times 

(Figure 3.7) for the practise items is somewhat longer than for the Java stimuli, and while the value 

is greater for higher and lower competence participants (means of 14.2 s and 12.1 s), it is not 

significant (by a t test; t=1.09, df=22, 1 tail, p=.24). These findings reassures that there is an impact 

of transcribing the Java stimuli that extends beyond simply transcribing any stimuli. 
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Consistent with prediction H1, which concerns the increase in the number of views with a decrease 

in the Java competence of the participants, Figure 3.3 and Figure 3.6 show that the high-competence 

participants required fewer views than those with low competence, which is significant at both 

levels of stimuli (simple: 16.3 vs 25.2, t=4.40, p=.0002; difficult, 20.0 vs 28.5; t=4.05, p=.0005; both 

df=22, 1 tail). Consistent with prediction H4, which predicted that the performance on simple stimuli 

would be superior to advanced stimuli with fewer view-numbers, Figure 3.3 and Figure 3.6 show 

that the simple stimuli require fewer views than the difficult stimuli across all participants (20.8. vs 

24.3; t=4.05, p=.0003; df=22, 1 tail). For high-competence participants the view-numbers are still 

significant despite the small group size (16.3 vs 20.0; t=2.88, p=.016; df=10, 1 tail), but not for the 

low-competence participants (25.2 vs 28.5 s, t=1.8, p=.1, df=10, 1 tail).    

Consistent with prediction H2, which focuses on an increase in writing duration with an increase in 

Java competence, Figure 3.4 and Figure 3.7 show that the high-competence participants had longer 

writing-times than those with low competence, which is significant at both levels of stimuli (simple: 

10.7 vs 6.5 s, t=3.86, p=.0008; difficult, 8.0 vs 5.7; t=3.14, p=.005; both df=22, 1 tail). Consistent with 

prediction H4, the difficult stimuli had shorter writing-times than the simple stimuli across all 

participants (6.9. vs 8.6 s; t=3.29, p=.002; df=22, 1 tail). For high-competence participants only the 

writing-time is still significant despite the small group size (10.7 vs 8.0 s; t=3.0, p=.013; df=10, 1 tail).   

Turning to prediction H3, which concerns the absence of an overall effect of view-times on Java 

competence, Figure 3.5 does not show a clear overall upward or downward pattern across all 

degrees of stimulus difficulty. If anything, the overall pattern is in contrast to the trends in Figure 

3.3 and Figure 3.4. Figure 3.8 above reveals that high-competence participants have longer view-

times than those with low competence, but this is not significant for the difficult stimuli (2.1 vs 1.7 

s; t=1.50, p=.15, df=22, 1 tail), and marginally significant for the simple stimuli (2.4 vs 1.5 s; t=2.62, 

p=.02, df=22, 1 tail). Further, comparing the view-times on the practice stimuli with the Java stimuli 
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view-times we see they are similar, whereas for view-numbers and for writing-times the practice 

values are quite different to Java stimuli values, as noted above. Consistent with prediction H4, 

Figure 3.5 shows that there were nearly equal numbers of participants with longer view-times for 

the simple stimuli and longer view-times for the difficult stimuli. In terms of the means across all 

participants (Figure 3.8), no significant differences occur for the simple stimuli (1.5 vs 1.7, t=1.03, 

p=.3, df=22, 1 tail) nor for the difficult stimuli (2.4 vs 2.3; t=1.21, p=.25; df=22, 1 tail). 

In summary, all predictions are supported in terms of view-numbers, writing-times, and view-times. 
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Figure 3.9 Correlation of view-numbers with familiarity 
across simple and difficult stimuli for all participants, 

low and high competence  

Figure 3.10 Correlation of writing-times with familiarity 
across simple and difficult stimuli for all participants, low 

and high competence 
 
 

 

Figure 3.11 Correlation of view-times with familiarity across simple and difficult stimuli for all participants, low and 
high competence 

 

Figure 3.9, Figure 3.10, and Figure 3.11 show the Pearson correlations of familiarity scores with, 

respectively, view-numbers, writing-times and view-times, which confirm what appears in Figure 

3.3, Figure 3.4, and Figure 3.5 and further support the four predictions H1, H2, H3, and H4. The scale 

ranges are not the same. For correlations over all participants (solid (green) line in Figure 3.9–Figure 

3.11) the critical value is 0.344 for significant correlations at p<.05, and 0.472 at p<.01 (1 tail, df=22). 
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For correlations with just high competence or low competence (dashed or dotted lines) the critical 

value is 0.497 at p<.05 and 0.658 at p<.01 (1 tail, df=10).  

As expected, none of the correlations for the practice items are significant. With view-numbers 

(Figure 3.9), across all participants the negative correlations are strongly significant: the number of 

views decreases with an increase in familiarity score (i.e., competence), which matches prediction 

H1. The result is similar when just the low-competence group is considered, but correlation for the 

high-competence participants is positive but not significant. For writing-times, the pattern of results 

is similar but the direction of the correlations is reversed (Figure 3.10): writing-time increases with 

an increase in familiarity score, consistent with prediction H2. For the whole group and the low-

competence sub-group, the correlations for the difficult stimuli are lower than for the simple stimuli.   

The view-time correlations (Figure 3.11) for the whole group and the high-competence sub-group 

are not significant, but the correlations of the low-competence participants are strong for both Java 

stimuli difficulty levels, simple and difficult.  

In summary, correlations between view-numbers, writing-times, and view-times are overall 

consistent with the four predictions, with some divergence in detail. In particular, view-numbers 

and writing-times did not differentiate high-competence participants. Also, view-times did 

unexpectedly differentiate low-competence participants, who need more views with increasing 

competence.  
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3.3.3 Regression analysis for writing-times and view-times against view-numbers 

  

Figure 3.12 Relation of writing-times to view-numbers 
(simple stimulus) 

Figure 3.13 Relation of view-times to view-numbers 
(difficult stimulus) 

 
 

 
 

Table 3.3 Parameter of best-fit power relation for writing-times and view-times to view-numbers 
 

 

The relationship between the three main behavioural measures (view-numbers, writing-times, 

view-times) are examined because a systematic relationship between them could provide further 

support for the hypotheses and more precise chunk-based explanations of the results. View-

numbers and writing-times are both predicted to be dependent upon chunking processes; as a 

result, there should be some kind of stable and formal relationship between them. View-times are 

Practice Simple Difficult Practice Simple Difficult

0.459 0.818 0.747 0.603 0.615 0.623

Writing-times & view-numbers View-times & view-numbers

Index, i -0.95 -1.09 -0.97 -1.05 -1.16 -1.24

56 83.7
Constant, 

C
57.9 203.9 136.5 8.9
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not expected to be chunk-dependent, so no regular relation between them and view-numbers (or 

writing-times) is anticipated.   

To investigate further whether chunking might explain the differences between writing-times and 

view-times, scatter plots of these variables against view-numbers were plotted for all participants 

in all the conditions of the experiment. Figure 3.12 above plots writing-times versus view-numbers 

for the simple stimuli and Figure 3.13 above plots view-times against view-numbers for the difficult 

stimuli. Table 3.3 above presents the parameters of the best fit equations for both relations of 

writing-times and view-times against view-numbers across all stimuli, along with the R2 values.  

The pattern of data in Figure 3.12 has a particularly distinctive shape, which is also apparent in the 

graph for the difficult stimuli. Hence, the power law for writing-times versus view-numbers is 

notable, over both stimuli difficulty levels, simple and difficult: a power law curve was perfectly 

fitted to the data and the R2 values are large. This implies that writing-times is the more reliable 

measure to predict view-number. The relation between view-times and view-numbers is less clear, 

with lower R2 values.   

3.3.4 Further evidence of the role of chunking in Java comprehension  

When participants study Java, they begin to recognise and group common code words and syntax. 

When they see the stimulus, they recognise these common code words as a single chunk. Content 

analysis was carried out to provide more detailed evidence for the claims that chunking occurs (as 

presented in Chapter 2), as well as to support the claim that chunking does not occur in random 

positions, but that it happens at the border of meaningful things. 

I investigated the identity of each stroke that participants transcribed in order to know where 

exactly the breaks were in the stimulus, and as a result what the exact contents of the participants’ 

chunks are. For example, a low-competent may break the While(h<hCount.length){ stimulus 
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as follows, While--- (h --- <h --- Count --- .length --- ){, whereas an high-

component may break it as While(h< --- hCount.length){. The chunk’s contents can be 

obtained by locating the beginning of each view, extracted from the written logs of the participants.     

The main goal of conducting a content analysis is to determine which content categories had the 

most breaks. Since each category has a unique code, the output of this analysis will show the number 

of breaks that occurred for each category in each stimulus. This will then help to determine whether 

or not breaks occur at the border of meaningful things (explained in more detail later on). To do 

this, four major data sets were used: (1) a stroke log; (2) a view log; (3) a model file that includes the 

sequence of the whole stimuli characters; and (4) an actual log, written characters of individual 

participants. The first two logs are from the written logs; the stroke log includes the times when the 

pen is on the paper and when it is picked up, as well as the precise positions of each stroke using X 

and Y coordinates (i.e., tablet and response sheet). The view log contains the number of times a 

participant viewed the stimuli (i.e., breaks) as well as the precise time for each view. The model file 

contains the expected written characters for each stimulus. Finally, there is the actual written 

character log, which includes the times and positions of each stroke for each participant’s trial. 

So, in the end, there were four coded (i.e., model) stimuli that were combined with the model files 

(as explained earlier). The file containing the real written characters was then compared and 

adjusted with the model file for each stimulus for each participant. At this point, and as previously 

reported, I could specifically compare each character in the model files with each actually written 

character. As a result of this procedure, I knew which exact characters were associated with each 

break, because I could see where each participant wanted to view the stimulus and the content of 

each chunk for each participant. Some participants’ individual logs included problems such as 

missing characters, wrong letters, or the insertion of additional characters that did not appear in the 
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model files. It is worth noting that this analysis was performed manually and required a substantial 

amount of time and effort. 

A coding scheme was established for different content categories in the stimulus, as shown in Table 

3.4 below. The coding scheme relates to sets of characters that are likely to be chunks that someone 

familiar with Java would see as meaningful. Each unit under the text or punctuation mark categories 

is assigned a unique code; for example, the ‘beginning of a variable type’ such as int or float in the 

actual log is assigned the code ‘3000' and the punctuation ‘[‘ is assigned the code ‘100’, etc.  

Some participants on occasion view a stimulus without any associated writing before the next view. 

It is worth noting that content analysis allowed me to compute a view-related measure; the pattern 

of results obtained with this measure is essentially identical to that obtained with view-numbers. 

This type of view was not apparent in my initial research, but I discovered it after conducting the 

content analysis. All this implies the exact location of each participant’s views (i.e., breaks) in each 

stimulus, thus the precise content of participants’ chunks of each stimulus is acquired.  
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Table 3.4 Coding scheme for various types of stimulus content (code content categories) 
  

CODE Categories Calculated

1000 Beginning Reserved Word Yes

1001 Within Reserved Word

2000 Beginning Var Yes

2001 Within Var

3000 Beginning Var Type Yes

3001 Within Var Type

4000 Beginning Access Modifier Yes

4001 Within Access Modifier

5000 Beginning text Yes

5001 Within text

100 [ Yes

101 ]

110 { Yes

111 }

120 ( Yes

121 )

130 <  Yes

131 > 

200 ; Yes

210 : Yes

220 . Yes

230 " (open) Yes

231 " (close) 

240 , Yes

300 / Yes

310 + Yes

320 % Yes

330 ! Yes

340 = Yes

600 Strokes within characters Yes

700
Capitals within reserved 

words or variables
Yes

Spaces Space Yes

Text

Punctuation Marks
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Table 3.5 Definition of each content analysis measure, S means simple and D means difficult   
 

 

Table 3.6 Correlation between familiarity scores and number of breaks associated with each 
category (n=24, Pearson correlation, 1 tail, critical value is 0.472 at p<.01) 

  

The BreaksNo. and BreaksPerCate measures were introduced to help in achieving the main goal of 

this analysis (i.e., chunking happens at the border of meaningful things), via counting the break 

numbers and percentages of each content category. Before looking deeper into the findings of this 

analysis, it is important to consider the meaning of the two measures BreaksNo. and BreaksPerCate, 

as seen in Table 3.5. When analysing the data, all symbols such as < and ; are combined as one 

category, PunctuationMarks. Reserved words and variable names were integrated as one group 

(Reserved & Variables) as both are combination of alphabetic characters. Thus, there are five codes 

for the content categories: Reserved & Variables (such as class, age); PunctuationMarks (such as [, 

{>); CapitalsWithinWords (such as hCount and JButton); StrokesWithinChars (such as writing the 

letter t in 2 stages ‘–‘ and ‘I’ ); and Spaces, as shown in Table 3.6 above. Further, when it says ‘yes’ 

in the last column of the Table 3.4, it implies that this category is taken into account in the final 

calculation of the categories that have been assigned breaks. 

No. Abbreviation Definition

1 No.Bs(S) The number of breaks for this particular category

2 BsPerCate(D)
The number of breaks for this particular category / the number of 

times this particular category exists in the trial *100

Correlations
Reserved & 

Variables
PunctuationMarks CapitalsWithinWords StrokesWithinChars Spaces

BreaksNo.(S) -0.32 -0.72 -0.42 -0.13 -0.6

BreaksNo.(D) -0.18 -0.63 -0.62 -0.09 -0.37

BreaksPerCate(S) -0.36 -0.59 -0.37 -0.17 -0.55

BreaksPerCate (D) -0.11 -0.49 -0.62 -0.08 -0.39
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After aggregating this enormous amount of detailed data, correlation values between participants’ 

familiarity scores and the number of breaks associated with each code content category (‘S’ and ‘D’ 

in Table 3.6 mean simple and difficult stimulus), as shown in Table 3.6. Specifically addressing the 

five content categories in Table 3.6, regarding (1) punctuation marks, there is a significant negative 

relationship between familiarity and BreaksNo. that is correlated with punctuation marks for both 

simple and difficult stimuli. To put it another way, the less qualified the participants are, the more 

breaks identified with punctuation marks they take. Furthermore, BreaksPerCate. and BreaksNo. 

have similar correlation values, but BreaksNo. has slightly more values. Regarding (2) capitals within 

reserved words and variables, there is a robust negative relation between both BreaksNo. & 

BreaksPerCate and participants’ familiarity (i.e., there are more breaks associated with capitals for 

low-competence participants than high-competence participants). Low-competence participants 

tend to split up single variables or reserved words (i.e., which are considered as a single word) more 

than high-competence participants, only for difficult stimuli, although nevertheless there is a 

weakened relation for simple stimuli. The D stimuli are more difficult for low-competence 

participants than the S stimuli. In terms of (3) the spaces category, there is a strong negative relation 

between participants’ competence and BreaksNo., which is associated with spaces (i.e., low-

competence participants are more likely to have more breaks associated with spaces than high-

competence participants). Again, this is similar with BsPerCate. 

On the other hand, there is no chunking effect in the (4) Reserved & Variables and (5) 

StrokesWithinChars code content categories (i.e., baseline condition); as shown in Table 3.6, they 

have no significant correlations with smaller values. In other words, for all participants, there is a 

weak relationship between the number of breaks and Reserved & Variables and 

StrokesWithinChars. 
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In summary, as previously noted (earlier analysis at the beginning of the Results subsection), low-

competence participants have more view-numbers (i.e., breaks) than high-competence participants 

for both simple and difficult stimuli; accordingly, the correlations between the number of breaks 

and Java familiarity in Table 3.6 are generally negative, which is unsurprising. In other words, as Java 

competence increases, the number of breaks associated with each code’s content category 

decreases. Moreover, I found, as shown in Table 3.6, that the breaks are more associated with the 

punctuation marks than with Reserved & Variables for both simple and difficult stimuli. More 

precisely, breaks are more closely aligned with the PunctuationMarks, CapitalsWithinWords, and 

Spaces categories, and hence these categories give a stronger indicator of Java competence than 

Reserved & Variables and StrokesWithinChars. 

3.4 Discussion 

The overall purpose of this experiment was to see whether previously proven chunk-based 

approaches to evaluating competence by copying in domains such as maths and second language 

learning can be extended to programming. The aim was also to see if the view-numbers, writing-

times, and view-times measures (HS technique) can extend the repertoire of techniques that have 

been used (i.e., VD mode (pauses)) to assess chunk structures.  

This section will answer the three questions and go through the four hypotheses raised in the 

introductory part of this chapter. It is important to note that the analysis here will concern view-

numbers, writing-times, and view-times (HS behavioural measures) only. This section includes four 

subsections: (1) how this experiment extends similar studies; (2) the evidence of the role of chunking 

in a Java transcription task; (3) the content analysis outcomes and implications; (4) suggestions and 

implications for future experiments.  
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3.4.1 How this experiment builds on previous findings 

This experiment contributes a method for evaluating competence in programming using a 

transcription task and measures with timescale of 10 s. This extends the range of techniques beyond 

the pause distribution measures of previous work (e.g., Cheng, 2014, 2015; Cheng & Rojas-Anaya, 

2007).  

This experiment extends previous researches findings in three ways.   

First, allowing the user to expose and hide the stimuli at will allows two alternative temporal chunk 

measures to be captured: view-numbers, the total number of views of the stimulus in a trial; writing-

times, the median duration of writing time between views. Predictions H1, which concerns the 

decrease in the number of views with an increase in Java competence, H2, which focuses 

on increasing the length of written responses as the Java level increases, and H4, which refers to the 

superior output on simple stimuli compared to advanced stimuli, with fewer view-numbers and 

longer writing-times, are well supported by converging evidence. These behavioural measures are 

strongly correlated with the independent measure of competence (familiarity). No support for view-

times as a suitable measure of competence was obtained, as predicted in H3, despite the relative 

strength of the effects for the view-numbers and writing-times measures. The HS measures’ 

correlations that were found in this experiment are at the same level as the pause correlations from 

previous studies (Cheng, 2014; van Genuchten & Cheng, 2010; Zulkifli, 2013).    

Second, the experiment shows that measures based on temporal chunk signals are applicable 

beyond mathematics (algebraic formulas) and natural language, in a domain that happens to share 

some characteristics of both those domains. This is not surprising, but it is certainly reassuring that 

the approach works for programming. So, I can answer ‘Yes’ to my first question, ‘Could chunk-
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based measures of comprehension be extended to domains other than mathematics and natural 

language learning?’. 

Third, in contrast to the single-line stimuli used in the previous experiments mentioned above, the 

present stimuli were larger (nine lines). A greater amount of data per trial means that single trials 

can yield strong usable correlations with competence, without the theoretical problem of deciding 

how to aggregate data from multiple trials or the practical problems associated with switching 

between multiple trials. 

3.4.2 The relationships between the dependent behavioural measures 

Overall, for all participants, correlation of view-numbers and writing-times with the independent 

Java competence measure (i.e., familiarity) are strong, and this also holds for the low-competence 

group. The greater the familiarity scores, the smaller the view-numbers, and the longer the writing-

times. Furthermore, it is clear from Figure 3.3 and Figure 3.4 that there is considerable variability 

between participants, such that some of the best low-competence participants have better scores 

than many of the high-competence participants, and vice versa. Clearly the development of a real 

educational test of programming competence must address the accuracy and sensitivity of the 

measures.   

The correlations between view-numbers, writing-times, and view-times are overall consistent with 

my four predictions, with some divergence in detail. View-numbers and writing-times, in particular, 

differentiate low-competence participants but not high-competence participants. In other words, 

the difficulty of the difficult stimuli may be insufficient to differentiate those within that group. This 

seems plausible, in hindsight, as the range of difficulty captured in the stimuli was based on the 

undergraduate Java programming curriculum, but a proportion of the participants were drawn from 

more senior groups. This plateauing was also seen in previous studies (Cheng, 2014, 2015). One 
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implication of this is the importance of designing stimuli with a sufficient range for the target test 

group. 

For view-times, there are two unexpected findings (which contradict hypothesis H3). The first is the 

clear positive correlation of view-times with Java competence for low-competence participants; the 

correlations are not significant for the whole group and the high-competence group. High-

competence participants had longer view-times than low-competence participants for both simple 

(marginally significant) and difficult (not significant) stimuli. The second is the increase in view-times 

with decreasing view-numbers (Figure 3.13); theoretically, there should be no connection between 

the two. My current assumption is that disparities in view-times are caused by different stimulus 

encoding procedures utilised by participants, which vary depending on the type of stimulus content. 

However, the relations between view-times and familiarity are not strong as for view-numbers and 

writing-times. 

The clear negative relation between writing-times and view-numbers (Figure 3.12 and Table 3.3) 

supports the chunk-based hypotheses underlying predictions H1 and H2, which concern the 

decrease in view-numbers and increase in writing-times as Java familiarity scores increase. The poor 

fit of such a power law for view-times vs view-numbers is consistent with prediction H3, which 

claims that view-times have no impact on Java competence. This means that the basic process in 

transcription tasks appears to be the selection of chunks from the stimulus, with more competent 

participants keeping more characters – since they have larger chunks – and that the time required 

for writing is proportional to the number of characters. Nevertheless, Figure 3.3 and Figure 3.4 show 

much individual variability, so a useful line for future work would be to investigate the possibility of 

separately measuring the working memory capacity of participants in order to consider whether 

there is a need to devised methods to normalize for them.   
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Finally, this experiment allows me to respond ‘yes’ to the questions mentioned in the introduction 

subsection of this chapter: is it possible that handwriting program code provides powerful and 

stable temporal chunk signals that can be used to assess programming comprehension? Can 

programming comprehension be accurately measured using view-numbers, writing-times, and 

view-times?  

3.4.3 Content analysis  

Content analysis was used to supplement the first analysis, allowing me to determine where 

participants chose to view the stimulus each time they finished writing the previous chunk content. 

This ensures that the precise content of each stimulus is revealed for each participant. As a 

participant’s Java competence increases, the number of breaks associated with each stimulus 

(Reserved & Variables, PunctuationMarks, CapitalsWithinWords, StrokesWithinChars, and Spaces 

(i.e., content categories)) decreases (Table 3.6). 

Moreover, it was found, as shown in Table 3.6, that the breaks are more associated with the 

punctuation marks than with Reserved & Variables for both simple and difficult stimuli. One of the 

key distinctions between low- and high-competence participants is that low-competence 

participants had more breaks associated with punctuation than high-competence participants. 

More precisely, breaks are more closely aligned with the PunctuationMarks, CapitalsWithinWords, 

and Spaces categories, and hence these categories give a stronger indicator of Java competence 

than Reserved & Variables or StrokesWithinChars. To explain why these three categories 

(PunctuationMarks, CapitalsWithinWords, and Spaces) have more breaks than the others, consider 

the following: (1) for PunctuationMarks, this is not unexpected given that recognisable ordinary 

words, that have everyday meanings other than in Java, can be recognised by anybody, while 

punctuation is more difficult to remember; (2) for CapitalsWithinWords, if a capital character 
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appears inside a word, low-competence participants break the word because they recognise it as a 

different (i.e., new) word, while high-competence participants recognise it as a whole word; finally, 

(3) for the Spaces category, low-competence participants were more likely than high-competence 

participants to take more breaks that are correlated with spaces. In other words, highly competent 

participants can recognise, for example, three words divided by spaces as one block rather than 

three distinct words, since they understand the connections between the words and, as a result, 

understand the general context. Low-competence participants, on the other hand, interpret them 

as three disconnected words because they do not understand the links between the words (i.e., the 

whole meaning). As a result, participants with low competence had more breaks correlated with 

spaces than participants with high competence. 

To sum up, the experiment has verified that it is feasible to use view-numbers, writing-times, and 

view-times displayed using the hide and show technique in a simple freehand transcription task as 

a method of measuring competence in a rich information domain such as programming. The 

correlations found in this experiment are at the same level as the pause correlations from previous 

studies (Cheng, 2014; van Genuchten & Cheng, 2010; Zulkifli, 2013). Therefore, in this experiment, 

it was proved that there is another, complementary way (rather than the pause measure) to obtain 

a competence measure based on chunking. 

3.4.4 Suggestions and future work 

This experiment has several implications which are worth considering in further work: 

• The level of competence for the target participant group must be considered when 

designing the experiment stimuli. 

• Implement an independent memory test to assess participants’ working memory ability 

apart from their transcribing speed. 
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• Use stimuli that contain more punctuation marks, capitalization within words, and spaces. 

 

3.5 Summary 

• It is maybe possible to use view-numbers and writing-times recorded in HS display mode 

with simple freehand transcription tasks as a method of measuring competence in such a 

rich information domain as programming. 

• Similar to previous studies, normalising for practise items did not improve the measures 

(i.e., processing speed is independent of programming competence).  

• According to the content analysis, participants break more before punctuations, spaces, and 

capitals within words.  

• There were significant relationships found: view-numbers decrease with the increase of 

familiarity scores and writing-times increase with the increase of the familiarity scores. 

• Significant relationships between view-numbers and writing-times were discovered. 



123 
 

 
 

4 Experiment 2: Improved stimuli design  

Chapter content:  

• An introduction that contains the hypothesis and main questions. 

• The experiment methodology: 

o General experiment design. 

o Classification of participants. 

o Experiment applied materials.  

o Stimuli design. 

o The experiment procedures. 

• Results part 1: 

o Independent measure of competence.  

o Evidence of the role of chunking in Java transcription task. 

o Regression analysis for the behavioural measures against familiarity scores. 

o PPCS normalisation. 

o Regression analysis for writing-times and view-times against Characters per view. 

• Discussion part 1: 

o Checking the behavioural measures performance. 

o Stimuli design.  

• Results part 2:  

o Complexity analysis. 

o Discrimination between the two complexity levels across all the behavioural 

measures.  

• Discussion part 2. 

• Overall discussion 

• Summary.  
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4.1 Introduction  

The first experiment (Chapter 3) showed that assessing the structure of chunks is a potential method 

for evaluating programming comprehension in a transcription task. It demonstrated that the more 

familiar participants are with Java, the longer their writing-times and the fewer view-numbers they 

produce. It demonstrated as well that the independent measure (familiarity) can significantly 

predict view-numbers and writing-times. On the other hand, due to the previous experiment’s 

shortcomings, the following points were considered for the current experiment. (1) I planned to 

collect Q3 pause data from the view display (VD) mode, as this was not collected in the previous 

experiment due to an obscure software-hardware interaction on the experimental computer, which 

resulted in unrecorded pauses. (2) I redesigned the stimuli, since the advanced stimuli were 

inadequate to distinguish participants within the high-competence group, and the content analysis 

was applied (Chapter 3), indicating that the distinction between participants would be clearer if the 

stimulus contained more punctuation and a reduced number of letters/terms, i.e., variable words 

and reserved names. 

Characters per view would be used to calculate view-numbers in this experiment (characters per 

view is calculated by dividing the total number of characters of a stimulus by the view-numbers per 

trial). This is due to the fact that, unlike the previous experiment, the stimulus length of this 

experiment varies. Thus, in order to have equivalent stimulus length, characters per view is used 

here, and thus the characters per view metric equals view-numbers. 

The first experiment is replicated here in terms of experimental design, through use of the same 

presentation factor, hide and show (HS; where the stimulus is only made visible when a participant 

presses a button), to obtain the view-numbers (the total number of views of the stimulus in a trial), 

writing-times (the time spent writing between two successive views), and view-times (the duration 
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of each look at the stimulus). In addition to HS, view display (VD; where the stimulus is visible at all 

times) is used as a presentation method in this experiment to capture participants’ pauses. 

Participants, as in VD, press the special button just once to make the stimulus visible before 

beginning to transcribe the program code. This approach ensures the reliability of the length of the 

pauses before each character. What’s new in this experiment is that I attempted to recruit a larger 

sample of participants by recruiting more undergraduate students. 

Since the previous experiment’s results matched the views and writing-times generation model (see 

section 3.1 in Chapter 3), I planned to test it again in this experiment to see if better correlations 

between behavioural measures and familiarity can be obtained with the new stimuli design in this 

experiment. Thus, the hypotheses H1, H2, H3, and H4 are the same as in the first experiment 

(Chapter 3) and will be repeated here for convenience. 

Given that the size (i.e., the number of characters) of each Java code stimulus is set, I predict: 

H1) Characters per view for a particular stimulus in a trial will be higher for more competent 

participants. 

Since the chunks of a more knowledgeable participant contain more information, I predict:   

H2) Writing-times after each stimulus view will be longer for more competent participants.  

In the first experiment I predicted that there would be no relation between view-times and 

programming competence, however the results showed an unexpected relation (strong positive 

correlations of view-times with competence, specifically for low-competence participants). Thus, I 

make the same prediction again except this time I paid close attention to whether the strange 

relationship still exists. 
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Since the time required to comprehend a chunk is roughly fixed (Chase & Simon, 1973), and if the 

time retained per view is unrelated to competence, then I predict: 

H3) View-times will not be directly related to programming competence. 

I will make certain that pauses are successfully logged in this experiment, as they were not in the 

previous one (Chapter 3). Thus, I will be able to compare 𝑝𝑎𝑢𝑠𝑒𝑄3 with characters per view, writing-

times, and view-times in this experiment. I was seeking to answer the following question: 

Is 𝑝𝑎𝑢𝑠𝑒𝑄3 a valid measure for assessing programming comprehension in a transcription task? 

Thus, this experiment has two more hypotheses (H4 and H6) than the previous one. 

As predicted by the pause generation model (section 2.4.4 in Chapter 2) and as a pause is the 

duration before beginning to write each stroke/character in VD, I predict: 

H4) Pauses will be shorter for more competent participants.  

In this experiment, I used basic and advanced stimuli again; as basic Java concepts (which were 

introduced to students in the early stages of their first year) are used for the basic stimulus, I predict: 

H5) Participant’s performance on basic stimuli will be higher than on advanced stimuli. 

According to chunking theory, each person can have his or her own chunk size (i.e., number of 

elements). Two people, for example, may have the same degree of experience on a topic. However, 

one has a greater working memory capacity than the other, and the person with a larger capacity 

can appear to have improved Java comprehension in the tests, not because they are more expert, 

but because their normal working memory capacity is larger. So, there is a theoretical reason why 

measuring their chunk size will be beneficial. I hoped to improve the behavioural measures by 

normalising them using Participant Preferred Cluster Size (PPCS), which is the total number of 

characters participants transcribe each time they view the stimuli, in order to remove any individual 
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differences that might influence the measures. The PPCS test uses arbitrary letters and numbers to 

estimate working memory size, used as an individual baseline for each participant. According to the 

outcomes of this side experiment (Cheng & Albehaijan, 2020), participants’ PPCS varied between 

two and even up to six elements. I found that the number of elements varies both within a 

participant and across different participants. I measured PPCS using performance on the PPCS 

stimuli S1 as a baseline, as justified in Cheng and Albehaijan (2020). 

In addition, PPCS tests were applied using the same protocols as the Java test in order to achieve 

the same temporal chunk signal measurements as the Java stimuli. As a result, PPCS data can be 

evaluated in the same manner as the Java data. The main difference is in the content of the stimulus; 

PPCS stimuli are made up of randomly ordered numbers and letters (an alphanumeric string) and 

are delivered in four forms: S1, S2, S3, and S4 (further explained in the methodology section).  

 So, I was seeking to answer the following question: 

Can characters per view, writing-times, view-times, and Q3 pauses be improved by normalizing 

using PPCS?   

After assessing participants’ basic transcription performance, I predict: 

H6) The behavioural measures will be improved after normalizing them for the PPCS measures. 

The relationship between the three HS measures (view-numbers, writing-times, view-times) were 

evaluated in the previous experiment to provide evidence that the transcription process is based on 

chunking. This in turn gives more confidence in the interpretation of the results of the competence 

measures. I found a significant relation between writing-times and view-numbers. Therefore, for 

this experiment, and as I am using characters per view instead of view-numbers, I predict:  
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H7) Writing-times will be directly related to characters per view. The longer the writing-times 

(the more time participants spend transcribing), the more characters per view they will 

produce.   

 

This chapter includes three main sections: Methodology, Results, and Discussion. It consists of two 

‘results and discussion’ parts. As shown in  

Table 4.1, Part 1 uses the difficulty factors basic (B1, B2) and advanced (A1, A2). Part 2 uses the 

complexity factors simple (B1.1, B2.1 and A1.1, A2.1) and complex (B1.2, B2.2 and A1.2, A2.2). The 

analysis Part2 was developed because the findings of the analysis in Part 1 were not as good as in 

the first experiment (Chapter 3), and I attempted to analyse this. The results of this analysis are 

given in Part 2. The majority of the structure of this experiment is the same as in experiment 1; 

certain sections have been replicated for ease of reading. 

 

4.2 Method   

4.2.1 General experiment design 

This experiment includes two main parts: (1) PPCS test and (2) Java tests. For both parts, two 

presentation factors were applied, VD and HS. The PPCS test consists of eight stimuli (four in VD and 

four in HS), presented to the participants in the same order, from S1 through to S4. 

With regards to the Java test, the experiment is a counter-balanced 2x2 design (two display factors, 

VD and HS, and two difficulty factors, basic and advanced). It contains four stimuli (each was made 

up of nine lines divided into two sperate blocks), two basic and two advanced: a within-participant 
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factor with each participant transcribing basic and advanced stimuli, and a mixed factor with low- 

and high-competence participants and basic and advanced stimuli.  

4.2.2 Participant classification 

The participants were 51 adults from the School of Engineering and Informatics at the University of 

Sussex. Recruitment spanned first-year undergraduate students through to faculty members (with 

a wide range of Java knowledge), to obtain a good range of programming expertise. There were 28 

students who had just begun the Java module, 15 students who had done some Java programming, 

and some who had completed the first Java module, seven postgraduate students, and one faculty 

member. Participants ranged from 18 to 59 years of age (mean = 21.922, SD = 6.378), and 35 were 

male, 15 females, and one not specified. They received £8 for participating.  

4.2.3 Materials 

The experiment was carried out with a tablet connected to a PC running a logging program written 

specifically for our lab. Participants wrote with a special inking pen on an A4 response sheet. The 

sheet was printed in landscape orientation (i.e., crosswise, not lengthwise)  with a net of 17 lines, 

each consisting of 42 spaces for the writing of separate characters. It was designed for non-cursive 

writing in order to provide rich inter-stroke pause data. 

After completing the transcription task, participants completed a four-section online questionnaire 

designed to offer an independent assessment of their Java competence. Section 1 asked four 

biographical questions about educational level. Section 2 used four graduated ranking items to 

measure programming expertise in general, such as “I can develop programs using more than one 

object-oriented programming language”. Section 3 used eight graduated items to assess the level 

of Java programming expertise, such as “I am familiar with both objects and classes in Java”. Section 

4 assessed participants’ experience with the Java stimuli used in the experiment by asking them to 
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judge “what their degree of familiarity would have been for each stimulus before starting the 

experiment”, on a 5-point Likert scale. 

4.2.4 Stimuli design  

Why was the Java programming language chosen for this research? This was because Java is the 

base language used for programming assignments in nearly all first-year modules for undergraduate 

participants. As shown in  

Table 4.1 below, four stimuli versions were chosen after consulting the content of the Java modules 

taken by the student participants. The expressions for the basic stimuli were an important part of 

their Java curriculum during their first year. The expressions for the advanced stimuli are more 

advanced items that may have previously been used by the top students. The content analysis 

results (Chapter 3) helped in improving this experiment’s stimuli design. The new stimuli were 

designed to increase the number of chunks by replacing variable and reserved words with 

expressions with more symbols and punctuation.  

Regarding stimuli content, the two practice items consisted of a series of simple statements, such 

as ‘Sussex University’, and ‘Computer Science’. The PPCS test consisted of two trials, each PPCS 

stimulus containing 40 randomly ordered letters and numbers (presented in one line) such as ‘k 6 

m 4 i 7 h 2 z …’, as shown in Cheng & Albehaijan (2020).  

For each Java stimulus, there were two code blocks, and each block contained four or five lines. 

Indentation was kept in this experiment as well, for reasons mentioned in the first experiment 

(Chapter 3).  
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Table 4.1 Stimulus versions (B1, B2, A1, A2) 

Stimulus Content
No. Of 

Characters

No. Of 

Lines

import java.util.Scanner;

class A{

   public static void main(String[]args){

       Scanner s=new Scanner(System.in);

       double l=s.nextDouble();}}

int n,i,j; 

    int a[]=new int[n];

    for(i=0;i<(n-1);i++){

      for(j=0;j<n-i-1;j++)}}

191 9

import java.util.Scanner;

class S{

   public static void main(String[]args){

       Scanner b=new Scanner(System.in);

       int n=b.nextInt();}}

int num,i,j,tem;

if(ar[j]>ar[j+1]){

         tem=ar[j];

         ar[j]=ar[j+1];}

174 9

InputStream is=null;

        Try{

            is=new FileInputStream(f);

            byte c[]=new byte[2*1024];}

Node<T>n=new Node<T>();

        n.setValue(i);

        n.setNext(f);

        if(f!=null)f.setPrev(n);

        if(f==null)r=n;

161 9

try{

    Files.createFile(f);}

    catch(FileAlreadyExistsException x){

          System.err.format("n",f);}

Node<T>d=new Node<T>();

        d.setValue(i);

        d.setPrev(r);

        if(r!=null)r.setNext(d);

        if(r==null)f=nd;

175 9

4

588

86 4

89 5

Total:

122 5

69 4

5116

58 4

73

Total:

A1

A1.1

A1.2

Total:

A2

A2.1

A2.2

Stimuli Version

B1

B1.1

B1.2

Total:

B2

B2.1

B2.2
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 Stimuli difficulty factors: basic (B) & advanced (A) 

The experimental stimuli can be summarised briefly as follows: 

1- B1.1 & B2.1: consist of import statement; declaring the class; declaring the main method; 

declaring an object from class Scanner; input value from the user. These concepts are 

considered fundamental in Java and students study them at an early stage in their first year. 

Thus, these stimuli are considered basic.  

2- B1.2 & B2.2: consist of declaring variables and arrays; using conditional if; nested (inserting 

one loop inside the body of another loop) for loop. These are presented for first year 

students, hence these stimuli are considered basic. However, the complexity of the loop 

structures can make them harder.  

3- A1.1 & A2.1: these stimuli include the try and catch block (try allows one to test some lines 

of code for errors while it is being executed, whereas catch allows one to execute a specific 

code if an error occurs in try), I/O (input/output), and stream (to read from a file or write to 

a file) notions. These notions are introduced later in the first term of the first year, thus 

students had not practiced them a lot. Hence, these stimuli are classified as advanced.  

4- A1.2 & A2.2: the data structure notion is presented here, which is considered an advanced 

concept in Java. This notion is presented to students towards the end of their first year, thus 

it can be said that they are somewhat familiar with it. So, it is classified as advanced. 

4.2.5 Procedures 

Participants started the experiment by transcribing the practice items, then the PPCS items, and 

finally the Java stimuli.  

Participants were asked to obey the following guidance (similar to the previous experiment’s 

procedures but briefly listed here for ease of reading): (1) hold the pen in their preferred hand, (2) 
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start writing from the beginning of the line even if there is indentation, (3) start writing as soon as 

the stimulus is revealed, (4) copy the code as quickly and as accurately as they can, (5) continue 

writing even if they make a mistake and don’t go back to correct it, (6) draw an upside-down triangle 

in place of spaces, (7) start each trial with hash (#), (8) hold down the special key to reveal the 

stimulus, with their preferred hand. Participants quickly became fluent in the practice trials, so these 

specific ways of writing were not an especial burden. Similar trial requirements were successfully 

used in previous experiments, so they do not undermine the reliability of the results. The 

participants finished the experiment within an hour.  

Spaces are important in Java, and to make sure that participants produced something that indicates 

a space, they were asked to draw upside-down triangle. As the response sheet contains boxes, there 

is a temptation that they might miss them out. I did not want spaces to be missed out because it is 

important to record a time for every character (including blanks between characters). On the other 

hand, in the PPCS test spaces are included only to show the different numbers of characters and 

participants are not required to copy the spaces; thus, participants were asked to transcribe the 

letters and numbers without spaces.  

For both PPCS and Java tests, participants started writing each stimulus by drawing # in order to 

ensure the validity of the pause for the first character. Furthermore, to ensure that participants 

could not write while the stimulus was apparent in the HS process, they were instructed to use their 

preferred hand (i.e., their writing hand) to press the special button, so they had to leave their hand 

off the space bar in order to continue transcribing the stimulus. 
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4.3 Results and discussion 

The experiment’s results consist of two parts: part 1 presents the results using the basic and 

advanced stimuli difficulty factor (similar to the first experiment’s analysis), while part 2 examines 

the same stimuli but utilizing the complexity factor (simple/complex) for both basic and advanced 

categories in turn, in order to determine whether the complexity of the stimuli may be an additional 

factor that needs to be taken into account in the design of stimuli.  

4.3.1 Results part 1 

The results will consider the following: (1) the correlations between the various independent 

competence measures and justifying the dedicated competence measure (familiarity) for this 

experiment. (2) The evidence for the role of chunking in a Java transcription task across basic and 

advanced stimuli (difficulty factor). (3) Hypotheses H1–H5 concerning the predictions regarding the 

relationship of the behavioural measures (characters per view, writing-times, view-times, and 

pauses) to the competence measure (familiarity). (4) Hypothesis H6 relating to an improvement in 

behavioural measure values following normalisation for the PPCS test. (5) And finally, hypothesis H7 

relating to the prediction of the relation of writing-times to characters per view. 

 Independent measures of competence  

Four independent measures of competence were examined (via online questionnaire), similar to 

what was implemented in the first experiment (Chapter 3); education level, general programming, 

Java experience, and familiarity (participants’ familiarity with the experiment stimuli was assessed 

by asking them to judge what their degree of familiarity would have been with each stimulus prior 

to beginning the experiment). However, the questionnaire here is slightly different. Three questions 

were eliminated from general programming part: the first question was deleted because it does not 
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give a clear indication of the general programming background, while the other two questions were 

deleted because there are other equivalent questions.  

Education level was recorded on a scale from 1 to 4 (1 = new first-year undergraduates who had just 

started the course (thus have no Java background), 2 = first-year undergraduates toward the end of 

the year and second-year undergraduates, 3 = PhD students, 4 = faculty members). Education level 

has a positive (not strong) relationship with Java experience, which is in contrast to what was found 

in the first experiment (i.e., weak relation). The existence of the relation between education level 

and Java experience in this experiment may be because the majority of the recruited participants 

are new first-year undergraduates. 

The general programming questions focus on programming concepts in general, and contain four 

yes/no questions. The Java experience questions concentrate only on the Java programming 

language, and include nine yes/no questions. For both parts, the answers were scored by giving one 

point for each ‘Yes’ answer. So, the general programming part had a scale from one to four and the 

Java experience part had a scale from one to eight. Familiarity scores were rated from 0 (low) to 4 

(high), so with the four stimuli, the overall scale runs from one to nine.  

 

 

Table 4.2 Correlation between competence measures (n=51, Pearson correlation, 1 tail, critical 
value is 0.354 at p<.01, 0.273 at p<.05) 

 
 

(r)

Education 

Level

General 

Programming Java Familiarity

Education 

Level

General 

Programming 0.277

Java 0.407 -0.166

Familiarity 0.331 -0.187 0.873
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Table 4.2 above presents correlations between all combinations of the measures. General 

programming experience is only weakly (and not significantly) correlated to the other measures. 

The correlation between Java experience and familiarity is essentially strong, similar to the first 

experiment, which suggests that both Java experience and familiarity are specific to the Java, rather 

than general programming competence. Hence, either Java or familiarity are suitable to serve as an 

independent measure. Just the analyses with the comparison using familiarity will be stated in this 

chapter. Familiarity scores (from 1 to 9) were utilized in order to split the participants into two 

groups, low competence and high competence. A binary split of participants conveniently creates 

two groups: 31 low-competence participants having scores from 1 to 4 and 20 high-competence 

participants with scores of 5 to 9. The majority of the new students are in the low-competence 

group, whereas most of the participants with Java experience (students at the end of their first year, 

in their second and last year, and PhD students) are in the high-competence group. 

 The evidence for the role of chunking in the Java transcription task  

The four dependent behavioural measures were calculated from the logs of each participant. This 

subsection investigates whether chunking is a significant mechanism (as shown in the first 

experiment) in the transcription of the Java code generated by this experiment. Is there a disparity 

in the patterns of the behavioural measures between basic and advanced stimuli across all the 

participants?       
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Figure 4.1 Total characters per view for participants across basic and 
advanced stimuli; participants are ranked by their familiarity scores 

Figure 4.2 Median writing-times for participants across basic and advanced 
stimuli; participants are ranked by their familiarity scores 

  

Figure 4.3 Median view-times for participants across basic and advanced 
stimuli; participants are ranked by their familiarity scores 

Figure 4.4 Q3 pauses for participants across basic and advanced stimuli; 
participants are ranked by their familiarity scores 
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Figure 4.5 Mean characters per view across 
stimuli types and competence levels 

 

Figure 4.6 Mean of median writing-times across stimuli 
types and competence levels 

 

  

Figure 4.7 Mean of median view-times across 
stimuli types and competence levels 

 

Figure 4.8 Mean of Q3 pauses across stimuli types and 
competence levels 
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Figure 4.1, Figure 4.2, Figure 4.3, and Figure 4.4 show the distribution of the behavioural measures 

(characters per view, writing-times, view-times, and pauses) for all participants – ranked in line with 

their familiarity – across basic and advanced stimuli difficulty levels. Overall, there is a general trend 

in the above listed figures that characters per view and writing-times increase with an increase in 

the participants’ competence levels, whereas pauses decrease, as expected from the hypotheses. 

In other words, the more competent participants are, the higher characters per view and writing-

times they have, and the shorter pauses they produce. View-times do not show a clear overall 

downward or upward trend for either level of stimuli difficulty. In other words, H1, H2, H3, and H4 

are all supported. 

Figure 4.5, Figure 4.6, Figure 4.7, and Figure 4.8 show the mean values for all the behavioural 

measures across the low and high groups (competence levels), PPCS test, and basic (b) and advanced 

(a) stimuli (difficulty levels). Generally, Figure 4.5, Figure 4.6, and Figure 4.8, suggest high-

competence participants are performing better (more characters per view (SD b=1.87, a=1.41), 

longer writing-times (SD b=1.45, a=1.28), and shorter length of pauses (SD b=186.25, a=177.57)) 

than the low-competence participants (characters per view (SD b=1.88, a=1.62) and writing-times 

(SD b=1.94, a=1.65) and Q3 pauses (SD b=278.50, a=244.69)). However, in terms of the view-times 

(Figure 4.7), both low- and high-competence participants performed similarly. Mean PPCS values 

are essentially equal for both low- and high-competence groups for every behavioural measure 

shown in the figures above. It is worth noting that the mean PPCS values of characters per view and 

writing-times are lower than the Java stimuli values, whereas they are longer than the Java stimuli 

for view-times and pauses.   

The following paragraphs explain Figure 4.5, Figure 4.6, Figure 4.7, and Figure 4.8 in greater detail 

in regards to prediction H5, basic and advanced stimuli (difficulty levels): 
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- For characters per view and writing-times, consistent with prediction H5, Figure 4.5 and 

Figure 4.6 show that across all participants, basic stimuli have slightly more characters per 

view and longer writing-times than the advanced stimuli (i.e., not much difference between 

basic and advanced), which is only significant for the characters per view basic stimuli (6.2 

vs 5.1, t=-2.09, p=.024, df=49, 1 tail). For both characters per view and writing-times, the 

disparity in the results between basic and advanced stimuli is clearer in the high-

competence group than the low-competence group. As a result, despite the small group 

size, only characters per view is significant for high-competence participants (i.e., when 

compared with the low-competence group) (6.2 vs 5.7, t=-1.84, p=.041; df=18, 1 tail), and 

writing-times as well (5.7 vs 5.1s, t=-2.5, p=.012; df=18, 1 tail).   

- For view-times, concerning prediction H5, Figure 4.7 shows the view-times mean values are 

similar for both basic and advanced stimuli across low- and high-competence groups. For all 

participants, no significant differences occur for the basic stimuli (1.7 vs 1.5, t=-0.81, p=.2, 

df=49, 1 tail) nor the advanced stimuli (1.6 vs 1.5, t=-0.49, p=.32, 1 tail).  

- For pauses, Figure 4.8 reveals that the advanced stimuli had a longer mean pause than the 

basic stimuli, which is consistent with H5 (advanced: 652 vs basic: 638) for high-competence 

participants only but not significant (by a t test; t=-0.54, p=.29, df=49, 1 tail). The opposite 

is the case (advanced: 789 vs basic: 819) for the low-competence participants (which 

contradicts H5), but also not significant (by a t test; t=-0.86, p=.2, df=49, 1 tail).  

As previously noted, there is no discernible variation in the participants’ output between basic and 

advanced stimuli across characters per view, writing-times, and pauses for this experiment. In 

comparison, the previous experiment showed substantial variation in participants’ temporal chunk 

signals between basic and advanced stimuli. As a consequence of these observations, I conclude 

that there is something about the stimuli that merits repeating the analysis, but this time based on 
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the complexity factor of the stimuli (simple and complex) rather than the difficulty factor (basic and 

advanced). 

In summary, Figure 4.5, Figure 4.7, and Figure 4.8 show that PPCS test findings suggest that the 

effect of transcribing the Java stimuli exists beyond the act of merely transcribing any stimuli. 

Moreover, the overall data provides support for all the predictions H1, H2, H3, H4, and H5 (H5: 

except for the low-competence participants pauses), all of which suggest that chunking is a key 

mechanism in the transcription task in VD and HS settings, which is consistent with the results of 

the first experiment (except for pauses, as they were not calculated in the first experiment). 

The next subsection and its subsections examine the predictions of the relationship of characters 

per view, writing-times, view-times, and pauses to familiarity. 

 Regression analysis for the behavioural measures against familiarity  

The seven hypotheses that relate temporal chunk signals to competence are considered in this 

subsection. A simple linear regression was performed to analyse the relationship between the 

different variables in greater depth. The results are presented for each behavioural measure against 

familiarity, to provide additional information about the strength of the relationship between a 

behavioural measure and familiarity, and to provide information about the reliability of the 

behavioural measure. The results are also presented for writing-times, view-times, and Q3 pauses 

against characters per view (in the next subsection) to provide extra evidence that chunking is 

occurring. The analysis was performed on PPCS, basic, and advanced stimuli for all participants and 

separately for low- and high-competence participants, to normalize the behavioural measures for 

the PPCS measure, thus improving the behavioural measure values.  

Since the regression analysis was performed independently for low- and high-competence 

participants, this subsection is separate from the behavioural measurements subsection (4.3.1.2, all 
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participants together). Generally, predictions H1, H2, H3, H4, H5, and H7 are supported; the 

orientation of the relationship is as expected, the absolute magnitudes of the gradients are 

significant, and the data points are a good match to the linear regression line.   
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Figure 4.9 Relation of characters per view to 
familiarity for all participants; low- (thin lines) and 
high- (thick lines) competence groups. Basic (blue 

diamonds) and advanced (red crosses) stimuli 

Figure 4.10 Relation of writing-times to familiarity for all 
participants; low- (thin lines) and high- (thick lines) 

competence groups. Basic (blue diamonds) and 
advanced (red crosses) stimuli 

  

Figure 4.11 Relation of view-times to familiarity for all 
participants; low- (thin lines) and high- (thick lines) 

competence groups. Basic (blue diamonds) and 
advanced (red crosses) stimuli 

Figure 4.12 Relation of pauses to familiarity for all 
participants; low- (thin lines) and high- (thick lines) 

competence groups. Basic (blue diamonds) and 
advanced (red crosses) stimuli  
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Figure 4.9, Figure 4.10, Figure 4.11, and Figure 4.12 present the linear regression relationships 

of characters per view, writing-times, view-times, and 𝑝𝑎𝑢𝑠𝑒𝑄3 to familiarity for participants, 

who are ranked in order of familiarity. They also present the relationships among all participants 

as well as low- and high-competence groups, across basic and advanced stimuli, separately. The 

lines for both low and high groups are nearly flat for view-times (which do not differentiate 

participants’ competence levels), as opposed to the steep lines for the other measures, which 

fits the first experiment’s findings and is compatible with H1, H2, H3, and H4. For characters per 

view, writing-times, and 𝑝𝑎𝑢𝑠𝑒𝑄3, the lines are steeper for the low group than for the high 

group, indicating that the behavioural measures are better at discriminating the low group than 

the high group. In other words, the stimuli perform better for the low group than for the high 

group. Accordingly, the 𝑅2 values for the behavioural measures, shown in Table 4.3 below, are 

slightly greater for characters per view and Q3 pauses than for writing-times, whereas they are 

very weak – close to zero – for view-times, as predicted. Thus, characters per view and Q3 pauses 

are the more reliable measures in predicting Java competence. 𝑅2 values are lower (weaker 

relation) for the high group than for the low group. Thus, the stimuli do not work well for high-

competence participants. Another thing to note is that, for both characters per view and writing-

times, the distinction between the basic and advanced stimuli is clearer for the high-competence 

group than for the low-competence group. The critical 𝑅2 values for characters per view, 

writing-times, view-times, and 𝑝𝑎𝑢𝑠𝑒𝑄3 are as follows: for all participants, the critical value is 

0.23 for significant 𝑅2 at p<.05, and 0.322 at p<.01 (1 tail, df=49). The critical value for 𝑅2 with 

only high-competence participants is 0.296 at p<.05 and 0.409 at p<.01 (1 tail, df=29). The critical 

value for 𝑅2 with only low-competence participants is 0.378 at p<.05 and 0.516 at p<.01 (1 tail, 

df=18). 
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Table 4.3 Parameter of best-fit linear relation for characters per view, writing-times, view-
times, and pauses to familiarity 

 

I will look at each behavioural measure individually in the subsections that follow: characters 

per view, writing-times, view-times, and Q3 pauses. 

4.3.1.3.1 Characters per view 

Hypothesis H1 focuses on characters per view, the total number of stimuli characters divided by 

the total number of times the stimulus is viewed per trial, which should increase with an increase 

in familiarity. Table 4.3 shows linear regression models of characters per view as functions of 

familiarity scores for all participants with both stimuli difficulty levels at low and high stages of 

Java competence.   

As predicted and as shown in Figure 4.9 and Table 4.3, characters per view increases with 

familiarity scores (steep lines – good constant values) for all the participants for both basic and 

advanced stimuli (the more competent participants are with Java, the more characters per view 

they have); thus, characters per view effectively distinguishes participants’ Java competence 

levels. When splitting the participants into low- and high- competence groups, the low-

PPCS  Low PPCS  High PPCS B A Low B High B Low A High A B-PPCS A-PPCS

51 31 20 51 51 31 20 31 20 51 51

49 29 18 49 49 29 18 29 18 49 49

Constant -0.03 -0.12 -0.06 0.35 0.22 1.01 0.26 0.79 0.18 0.49 0.25

Intercept 3.58 3.74 3.81 4.18 4.49 2.95 4.46 3.44 4.53 1.62 1.12

f 0.60 0.80 0.54 12.66 7.35 19.33 0.69 14.41 0.55 12.43 5.70

significance f 0.441 0.378 0.471 0.001 0.009 0.000 0.418 0.001 0.468 0.001 0.021

0.01 0.03 0.03 0.21 0.13 0.40 0.04 0.33 0.03 0.20 0.10

Constant 0.07 0.27 -0.03 0.24 0.13 0.91 -0.02 0.56 -0.09 0.05 0.13

Intercept 4.28 3.88 4.86 4.33 4.41 3.05 5.81 3.57 5.71 0.17 0.06

f 1.06 3.57 0.02 6.39 2.29 12.69 0.00 5.44 0.16 3.92 0.68

significance f 0.309 0.069 0.904 0.015 0.137 0.001 0.948 0.027 0.696 0.053 0.415

0.02 0.11 0.00 0.12 0.05 0.30 0.00 0.16 0.01 0.07 0.01

Constant -0.03 -0.01 -0.14 -0.01 -0.01 0.11 0.01 0.00 0.10 -0.85 -0.97

Intercept 2.53 2.46 3.23 1.68 1.56 1.46 1.43 1.58 0.84 0.02 0.03

f 0.30 0.00 0.86 0.09 0.09 0.72 0.02 0.00 1.00 0.18 0.42

significance f 0.588 0.964 0.367 0.762 0.762 0.404 0.877 0.999 0.330 0.675 0.522

0.01 0.00 0.05 0.00 0.00 0.02 0.00 0.00 0.05 0.00 0.01

Constant -24.49 -104.60 -95.70 -49.40 -46.07 -98.84 -48.23 -126.28 -53.88 -228.03 -251.28

Intercept 1111.35 1239.50 1643.51 938.46 913.03 1029.06 953.50 1057.54 1004.89 -17.22 -14.87

f 1.48 3.32 3.46 14.34 16.71 6.12 2.53 16.92 3.68 1.10 0.95

significance f 0.229 0.079 0.079 0.000 0.000 0.026 0.129 0.000 0.071 0.299 0.335

0.03 0.10 0.16 0.23 0.25 0.17 0.12 0.37 0.17 0.02 0.02

stimuli name

char/VN

N

df

WT MDN

VT MDN

Pause Q3

𝑅2 

𝑅2 

𝑅2 

𝑅2 
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competence group has a more stable relation than the high group. Put another way, the low 

group has a steeper line – greater constant – than the high group. Thus, in general, characters 

per view can strongly predict Java competence for the low competence group only.  

The correlations for all the participants, whether with basic or advanced stimuli, are unlikely to 

be due to chance. The correlations for low B and low A groups are not due to chance. The 𝑅2 

values are lower than the first experiment, but they are significant for low B and low A only. The 

goodness of fit value for basic is greater than the value for comparable advanced stimuli. 

Partitioning the participants into low and high groups over basic and advanced stimuli results in 

better fitted values and higher 𝑅2 values for the low group than for the high group. As a 

consequence, characters per view are thought to be a good predictor of Java competence in 

transcription tasks. In conclusion, there is support for prediction H1 and consistency with the 

previous experiment (Chapter 3).  

4.3.1.3.2 Writing-times 

Hypothesis H2 focuses on writing-times following each stimulus view. Writing-times is the time 

spent writing between two consecutive views in HS presentation condition. Table 4.3 reveals 

linear regression models of writing-times to familiarity scores for all participants with all stimulus 

difficulty levels at variable levels of Java competence (low and high).  

As expected, and presented in Figure 4.10 and Table 4.3, writing-times improve with familiarity 

scores (steep lines – good constant values); the more competent participants are with Java, the 

longer their writing-times. So, writing-times differentiate participant competence levels (the 

basic stimuli are more suitable for the participant levels), but not as well as characters per view. 

Thus, there is a positive significant relation between familiarity and writing-times. For both basic 

and advanced stimuli, the low group, in comparison, have a more robust association (steeper 

line – a higher constant) than the high group. Thus, in general, writing-times will forecast Java 



147 
 

 
 

competence strongly (though not as strongly as characters per view; see section 4.3.1.3.1), and 

predict it more strongly for the low group than for the high group.  

The correlations in the case of basic stimuli only (for all participants) are unlikely to be due to 

chance. The low-competence group correlations for both basic and advanced are unlikely to be 

random as well. The 𝑅2 values are low; they are significant only for Low B. The goodness of fit 

value for basic stimuli is higher than that for corresponding advanced stimuli. When participants 

are split into low and high groups, the low group has much better suited values and higher 𝑅2 

values than the high group, for both basic and advanced. Hence, writing-times have some 

potentials to predict Java competence in transcription tasks. To summarise, there is some 

support for prediction H2, which is consistent with the first experiment. 

4.3.1.3.3 View-times 

Hypothesis H3 focuses on view-times and predicts that there is no relation between view-times 

and Java competence. View-times is the duration of each view of the stimulus in the HS 

presentation condition. View-times differ from characters per view, writing-times, and Q3 

pauses as chunking theory suggests that there is no association between view-times and 

competence. Table 4.3 reveals linear regression models of view-times as functions of familiarity 

scores for all the participants with both basic and advanced stimuli at varying levels of Java 

competence (low and high).  

In addition, as expected and as presented in Figure 4.11 and Table 4.3, the lines do not show a 

clear upward or downward trend (flat lines – poor constant values) in regards to familiarity 

scores, thus do not discriminate participants’ levels of competence well for participants as a 

whole (basic and advanced) and for both low and high subgroups, which is counter to Figure 4.9, 

Figure 4.10, and Figure 4.12 (characters per view, writing-times, Q3 pauses, respectively). Hence, 

generally, view-times cannot be a predictor of Java competence in a transcription activity. 
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The correlations are all likely to be due to chance. 𝑅2 values are all close to zero (very weak). 

The scatter of the data points around the regression lines is very high, as opposed to the scatter 

of the data points around the regression lines of other behavioural measures. So, view-times is 

thought to be an unreliable predictor of Java competence in a transcription task. To put it briefly, 

there is support for prediction H3 and uniformity with the first experiment (Chapter 3). 

4.3.1.3.4 𝑃𝑎𝑢𝑠𝑒𝑄3 

Hypothesis H4 focuses on pauses, the duration of the pause before transcribing a stroke. Table 

4.3 shows linear regression models of pauses as functions of familiarity scores for all participants 

with both stimuli difficulty stages at low and high levels of Java competence.   

As predicted and presented in Figure 4.12 and Table 4.3, pauses decrease with the increase of 

familiarity scores (inverse relation) – steep lines, good constant values, for both basic and 

advanced stimuli (the more competent participants are with Java, the shorter the pauses they 

produce). Hence, Q3 pauses efficiently distinguish participants’ Java competence levels. The 

low-competence group has a more stable association than the high group. To put it another way, 

the low group has a steeper line – a higher constant – than the high group. Thus, in general, Q3 

pauses will strongly predict Java competence, and predict it more strongly for the low group 

than for the high group.  

The correlations for basic and advanced (all participants) and for low B and low A subgroups only 

are unlikely to be accidental. The 𝑅2 values are strongly significant for all the participants with 

both levels of stimuli difficulty, and remain so when just the low-competence group is 

considered. Whereas the 𝑅2 values for the high-competence group are likely to be due to 

chance. The data fits very well for both basic and advanced (all participants). Splitting the 

participants into low and high competence over basic and advanced stimuli causes better fitted 

values and higher 𝑅2 values for the low group than for the high group, as with characters per 

view (Figure 4.9) and writing-times (Figure 4.10). For the low-competence group, it is noted that 
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the goodness of fit value for the advanced stimuli is greater than for comparable basic stimuli 

(the opposite of characters per view and writing-times); this may be because there is an 

exception in the details of the design of the stimuli (or perhaps the VD measure is more accurate 

because it picks every single stroke in ms, while HS measures may consist of a set of characters, 

letters, or words). Thus, the Q3 pauses measure is considered to be a better indicator of Java 

skill in transcription tasks. To sum up, there is support for prediction H4.  

The overall results for characters per view, writing-times, view-times, and 𝑝𝑎𝑢𝑠𝑒𝑄3 are 

consistent with the predictions, but with some divergence in details. Characters per view and 

Q3 pauses are recognized as more reliable predictors of Java competence, but in most cases, Q3 

pauses are a slightly better predictor of Java competence than characters per view.  

 PPCS normalization  

Hypothesis H6 concerns the improvement of the behavioural measures values after normalizing 

them for the PPCS (Participants’ Preferred Cluster Size) test. It is worth recalling that the PPCS 

stimuli are made up of randomly ordered numbers and letters (an alphanumeric string) and are 

delivered in four forms: S1(used), S2, S3, and S4, as explained earlier in the chapter. 

Table 4.3 shows linear regression models of PPCS as functions of familiarity scores for all the 

participants and both low- and high-competence groups. As shown in the columns PPCS (all 

participants), Low PPCS (low-competence group), and High PPCS (high-competence group), 

there is generally no relation between PPCS results and familiarity scores. For all the behavioural 

measures, the constant values are very low, and the 𝑅2 values are close to zero. Thus, the PPCS 

test does not distinguish participants’ Java familiarity levels, and hence cannot predict Java 

competence. All the correlations are likely to be due to chance.  

Table 4.3 displays linear regression models of normalised PPCS values for both stimulus difficulty 

levels (basic (B-PPCS) and advanced (A-PPCS)) as functions of familiarity scores. For characters 

per view, when comparing the columns B&B-PPCS and A&A-PPCS, the constant values are 
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slightly greater after normalizing, whereas the 𝑅2 values are slightly lower (almost the same) for 

both B&B-PPCS and A&A-PPCS. All the correlations are unlikely to be due to chance. Thus, the 

B-PPCS and A-PPCS measures distinguished participants’ Java levels and can predict Java 

competence, but not as well as the B and A. Normalising for the PPCS test does not improve 

characters per view values to make them a better measure of Java competence. On the other 

hand, for writing-times, view-times, and Q3 pauses, the constant and 𝑅2 values are very low 

after normalizing when compared with the B and A. All the correlations are due to chance. 

Therefore, the normalized data (B-PPCS and A-PPCS measures) does not differentiate between 

participants’ Java levels and cannot predict Java competence, hence normalising for the PPCS 

test does not improve writing-times, view-times, or Q3 pauses values to make them a stronger 

indicator of Java competence. 

To sum up, contrary to hypothesis H6, none of the behavioural measures were improved after 

normalizing, as shown in Table 4.3, B-PPCS and A-BBCS columns. Put another way, individual 

differences do not impact the effectiveness of the behavioural measures because the values of 

all behavioural measures do not increase after subtracting each participant’s working memory 

size.  

In the following subsection, additional proof of the role of chunking in transcription tasks will be 

provided via the regression analysis for writing-times, view-times, and Q3 pauses against 

characters per view. Since characters per view, writing-times, and Q3 pauses are predicted to 

be influenced by chunking processes, there should be a clear and structured interaction between 

them. View-times are not supposed to be chunk based, so there would be no expected 

association between view-times and characters per view.  
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 Regression analysis for writing-times, view-times, and pauses against characters per 

view 

Prediction H7 concerns the nature of the direct connection between writing-times and 

characters per view (the more characters per view participants generate, the longer their 

writing-time while transcribing).  

Extra evidence for the role of chunking in freehand transcribing can be gathered by looking at 

the relation between characters per view and the other measures. The previous experiment 

(Chapter 3) showed that writing-times were significantly predicted by characters per view. Thus, 

for this experiment, as all the behavioural measures use chunking, a positive relation between 

characters per view and writing-times is expected, as both are anticipated to increase with an 

increase in Java familiarity scores (H1 and H2). A negative relation between characters per view 

and 𝑝𝑎𝑢𝑠𝑒𝑄3 is predicted because pauses are supposed to decrease with an increase in 

familiarity (H5). For view-times, it is expected that there will be a weaker relation than with 

writing-times, as view-times are supposed to be not directly related to programming 

competence (H3).  

Scatter plots for writing-times, view-times, and 𝑝𝑎𝑢𝑠𝑒𝑄3 against characters per view are plotted 

below (Figure 4.13, Figure 4.14, and Figure 4.15) for all participants and low- and high-

competence groups for both basic and advanced stimuli. 
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Figure 4.13 Relation of writing-times to characters per 
view (basic (blue diamonds) and advanced (red 

crosses) stimuli) 
 

Figure 4.14 Relation of view-times to characters per 
view (basic (blue diamonds) and advanced (red 

crosses) stimuli) 

 

Figure 4.15 Relation of pauses to characters per view (basic (blue diamonds) and advanced (red crosses) 
stimuli) 
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Table 4.4 Parameter of best-fit linear relation for writing-times, view-times, and Q3 pauses to 
characters per view 

 
 

Figure 4.13, Figure 4.14, and Figure 4.15 above show the linear regression relation of writing-

times, view-times, and 𝑝𝑎𝑢𝑠𝑒𝑄3 in relation to characters per view for test-takers across stimuli 

difficulty levels (basic and advanced). A simple linear regression was used to assess whether 

writing-times, view-times, and 𝑝𝑎𝑢𝑠𝑒𝑄3 can predict characters per view. 

Hypothesis H7 concerns the relation between characters per view and writing-times. As 

predicted, writing-times increase with characters per view (the longer participants spent 

transcribing after each view, the more characters per view they have). Table 4.4 shows linear 

regressions of writing-times, view-times, and 𝑝𝑎𝑢𝑠𝑒𝑄3 as functions of characters per view for 

both basic and advanced stimuli. In Figure 4.13, Figure 4.14, and Figure 4.15, the lines for both 

basic and advanced stimuli are steeper (larger constant values) for writing-times than view-

times, similar to the first experiment results (Chapter 3) and compatible with H7. All the 

correlations are unlikely to be due to chance. Further, the 𝑅2 values are greater – stronger 

relation – for writing-times than for both view-times and pauses. Thus, writing-times are thought 

PPCS B A

51 51 51

49 49 49

Constant -0.06 0.76 0.74

Intercept 4.75 1.09 0.93

f 0.07 99.70 67.56

significance f 0.789 0.000 0.000

0.00 0.67 0.58

Constant -0.01 0.19 0.24

Intercept 2.43 0.57 0.24

f 0.00 16.50 20.01

significance f 0.971 0.000 0.000

0.00 0.25 0.29

Constant -22.54 -61.95 -68.70

Intercept 1094.71 1090.29 1103.17

f 0.11 13.14 13.59

significance f 0.747 0.001 0.001

0.00 0.21 0.22

Pause Q3

stimuli name

N

df

WT MDN

VT MDN

𝑅2 

𝑅2 

𝑅2 
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to be a reliable predictor of characters per view in transcription tasks. For writing-times only, 

the goodness of fit value for basic is superior than the value for the equivalent advanced stimuli. 

For PPCS, compared with the Java stimuli, the constant and the 𝑅2 values for PPCS are very low 

(close to zero). The correlations are all due to chance.  

Another point to note is that there is no substantial variation in participant results between basic 

and advanced across any of the figures above (only stimuli difficulty factor is concerned), which 

encourages the detailed analysis in part 2 (concerning the complexity factor). 

In summary, writing-times have remarkably the better constant and 𝑅2 values than view-times 

and 𝑝𝑎𝑢𝑠𝑒𝑄3 (explanations are given below) in relation to characters per view, as shown in Table 

4.4. Writing-times has the best fitted regression line to the data (stronger relation), which 

supports H7 and matches the first experiment (Chapter 3). In other words, writing-times is the 

more reliable measure for predicting the number of characters per view.   

The subsection that follows goes into the findings for the main results (part 1) in more depth, 

via the seven predictions. 

4.3.2 Discussion part 1 

This subsection discusses the overall results in two subsections, the first concerning the seven 

hypotheses which were discussed in the introduction subsection of this chapter. The second 

subsection compares this experiment with the previous experiment (Chapter 3) in order to 

answer the specific question addressed in the design of the stimuli for this experiment 

 Are the behavioural measures performing as expected? 

The previous experiment (Chapter 3) showed that view-numbers and writing-times, obtained in 

the HS presentation mode, can be used to assess Java programming competence in a simple 

transcription task. Previous studies have revealed that measures of the distribution of inter-

stoke pauses, in the same kind of task (copying, transcription), appear to reflect participants’ 
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chunk structures and thus can be utilized to examine learners’ competence (Cheng, 2014, 2015; 

van Genuchten & Cheng, 2010; Zulkifli, 2013). This experiment extends those findings and differs 

from the first experiment (Chapter 3) in that: (1) 𝑝𝑎𝑢𝑠𝑒𝑄3 is investigated as a temporal chunk 

signal measure that is available in the view display VD presentation mode, (2) a PPCS test is 

applied for each participant in both VD and HS presentation modes.  

The linear regression analysis showed that the overall relationships of characters per view, 

writing-times, and 𝑝𝑎𝑢𝑠𝑒𝑄3 with the stimuli familiarity scores are strong, especially for low-

competence participants group, as revealed in Table 4.3. To put it another way, characters per 

view, writing-times, and 𝑝𝑎𝑢𝑠𝑒𝑄3 have potential as predictors of Java competence, and they 

predict it more strongly for the low-competence group than for the high-competence group. 

Hypothesis H1 predicts a positive relationship between characters per view and familiarity, and 

hypothesis H2 likewise predicts a positive relationship between writing-times and familiarity. 

Hypothesis H3 predicts that there is no relationship between view-times and familiarity. The 

findings are consistent with these predictions and extend the findings of the first experiment 

(Chapter 3), which showed that participants’ temporal chunk signals (characters per view and 

writing-times) are greatly influenced by participants’ Java competence levels (chunk structures). 

On the other hand, in this experiment, there is little support for view-times as an adequate 

predictor of competence. This means that any chunking effects that can arise during stimulus 

viewing would be minimised. Hence, characters per view and writing-times have potentials as 

indicators of Java competence in transcription tasks. 

Hypothesis H4 predicts a negative relationship between 𝑝𝑎𝑢𝑠𝑒𝑄3 and familiarity. 𝑃𝑎𝑢𝑠𝑒𝑄3 is 

greatly shaped by the participant’s Java comprehension level, hence the participant’s chunk 

structure. The simple linear regression test, as seen in Table 4.3, shows that 𝑝𝑎𝑢𝑠𝑒𝑄3 effectively 

distinguishes the Java competence of participants. Thus, 𝑝𝑎𝑢𝑠𝑒𝑄3 is thought to be a good 

predictor of Java ability in transcription tasks, which allow me to answer ‘Yes’ to the question: 



156 
 

 
 

Is 𝑝𝑎𝑢𝑠𝑒𝑄3 a potential measure for assessing programming comprehension in a transcription 

task?  

Hypothesis H5, which states that participants do better on basic stimuli than on advanced stimuli 

(difficulty factor), is supported for characters per view and writing-times (which is consistent 

with the previous experiment) and partly supported for 𝑝𝑎𝑢𝑠𝑒𝑄3. This is as expected, since basic 

stimuli are meant to be easy, and most participants should be able to transcribe them very well. 

Whereas, for 𝑝𝑎𝑢𝑠𝑒𝑄3, the length of the pauses is similar for both levels of stimuli difficulty 

(basic and advanced) among all participants and both low and high subgroups. This may be 

because VD and HS modes are two distinct ways of displaying the stimulus. In VD, any character 

(i.e., stroke) participates as a data point as 𝑝𝑎𝑢𝑠𝑒𝑄3 picks up any single bit of punctuation, thus 

this measure is finer grained (smaller scale). In HS, characters per view and writing-times are a 

smaller number of data points and a set of characters.  

Generally, for all the behavioural measures, the difference in participants’ performance 

between basic and advanced is not as clear as it was in the previous experiment. When taking a 

close look at the stimuli, and with the benefit of hindsight, the results are not surprising, because 

the second part of both basic stimuli for this experiment is similar to the advanced stimuli used 

in the first experiment (Chapter 3). For the HS measures, the disparity in results between basic 

and advanced stimuli is more pronounced in the high-competence group than in the low-

competence group; this is reasonable considering that high-competence participants considered 

the basic stimuli simpler than the advanced stimuli (even the basic stimuli have a complex part), 

while low-competence participants found them both (basic and advanced) difficult.  

Hypothesis H6, which concerns the possibility of improving (stronger associations with Java 

familiarity scores) characters per view, writing-times, view-times, and Q3 pause values following 

normalisation for the PPCS (Participants Preferred Cluster Size) test (Table 4.3 columns B-PPCS 

and A-PPCS), was not supported. So, the answer is ‘No’ to the second question of this chapter: 
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Can characters per view, writing-times, view-times, and Q3 pauses be improved by normalizing 

them using PPCS? It is worth noting that, also in the first experiment (Chapter 3), I attempted to 

normalise using practise items, which did not work as well (perhaps because there were only 

slight differences between participant performances). 

Figure 4.5, Figure 4.6, and Figure 4.8 show that for each behavioural measure, the PPCS test has 

almost the same values, which significantly differ from the Java stimuli values (similar to the 

relationship between the practise items and the Java stimuli in the first experiment). This adds 

to the evidence of the Java stimuli’s role on measuring competence in transcription tasks. 

Further, the absence of the PPCS effect may be due to PPCS being unimportant in the 

transcription task, and/or that the individual variations observed in the PPCS in terms of 

characters per view, writing-times, and Q3 pauses might not be as significant as the differences 

observed while actually transcribing the Java stimuli. 

Lastly, hypothesis H7 is supported, which concerns the existence of a direct substantial 

relationship between writing-times and characters per view: the longer participants spent 

transcribing a chunk, the more characters per view they created, which corresponds to what 

was discovered in the first experiment (Chapter 3). The clear linear relationship between writing-

times and characters per view (Figure 4.13, Table 4.4) underpins the chunk explanations 

supporting my first and second predictions, H1 and H2. However, view-times (i.e., based on 

chunking but not related to competence) and characters per view have a weaker relationship, 

as expected, that not as characters per view do with writing-times (Figure 4.14, Table 4.4), which 

provides additional support to the third prediction, H3. While transcribing, the participant looks 

at the stimulus, then does some writing, then returns to look at the stimulus, and has to find 

where he/she finished the last line and then start looking for the new part. So, something else 

is interfering with the process, and this could indicate that the relationship between characters 

per view and view-time is weak (the length of time a person spends viewing the stimulus is 
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unrelated to the number of characters they transcribe). Further, the linear regression analysis 

clearly indicates a negative association between 𝑝𝑎𝑢𝑠𝑒𝑄3 and characters per view (Figure 4.15, 

Table 4.4), and supports chunking theories that underpin my fourth prediction, H4. This 

relationship is weak, as expected, since the Q3 pauses are clearly determined by the 

participant’s chunks and not by the number of characters per view. 

To sum up, this experiment is consistent with the first experiment (Chapter 3) in terms of the 

potential of HS measures as Java competence predictors and how these measures differentiate 

participants’ Java competence levels (more competent participants have more characters per 

view and longer writing-times) across stimuli difficulty levels (basic and advanced). This 

experiment suggests that characters per view and 𝑝𝑎𝑢𝑠𝑒𝑄3 have potentials as predictors of Java 

competence in a transcription task, but in most cases 𝑝𝑎𝑢𝑠𝑒𝑄3 becomes a better predictor of 

Java competence than characters per view. This may be because the nature of the transcription 

task is more suited to the view display (VD) presentation mode; also, as previous research has 

shown, pauses are a greater reflection of competence and are more closely related to the 

structure of chunks (Cheng, 2014, 2015; van Genuchten & Cheng, 2010; Zulkifli, 2013), hence, 

there is a possibility that such a slight difference occurs between the values of 𝑝𝑎𝑢𝑠𝑒𝑄3 and the 

values of characters per view and writing-times. Furthermore, in comparison to the first 

experiment and consistent with H3, no evidence of the unusual relation between view-times 

and programming competence was found here. In addition, the disparity in participant 

performance between basic and advanced (difficulty factors) is not as substantial as in the first 

experiment. So, one of the things that really seems to be an important factor when designing 

the stimuli is the stimuli complexity factor (explained in the next subsections). Consequently, 

the analysis of basic (simple and complex) and advanced (simple and complex) variations will be 

applied in the detailed analysis provided in the following subsection (Results part 2). 
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 This experiment’s stimuli design  

As mentioned earlier in the stimuli deign subsection, two main factors were focused on while 

designing this experiment stimuli: (1) consulting the Java module content for the student 

participants; (2) consulting the content analysis results (Chapter 3), which concern increasing 

the number of chunks via providing more expressions with symbols and punctuation, capital 

letters with a variable, and spaces. So, has trying to increase the density of these expressions 

made this experiment’s stimuli (part 1) more discriminating between those with high 

competence? The answer is ‘No’; the explanations are as follows. 

This experiment supports the previous experiment’s findings (Chapter 3) in terms of: (1) the 

substantial variation in temporal chunk signal HS metrics (characters per view and writing-times) 

as a result of participants’ familiarity. (2) The curves in Figure 4.1, Figure 4.2, and Figure 4.4 

propose that characters per view, writing-times, and 𝑝𝑎𝑢𝑠𝑒𝑄3 have plateaued for the high-

competence participants, which suggests that advanced stimuli will not be adequate to 

differentiate the high-competence group. This may be because some participants had more Java 

knowledge, and the stimuli were structured based on the undergraduate Java curriculum. This 

curve, once again, resembles that of comparable research (Cheng, 2014, 2015; Albehaijan & 

Cheng 2019). Thus, careful selection of the level of difficulty in the test stimuli will be important 

for the design of tests using this method. As a consequence, this experiment’s redesigned stimuli 

again did not distinguish participants with high competence levels. So, another question to ask 

is: ‘What other factors may be important in the design of the stimuli that impact its difficulty?’ 

In the following subsection, Results part 2, the stimuli are viewed according to the complexity 

factor (simple and complex) rather than the difficulty factor (basic and advanced, as in Results 

part 1 above), for two main reasons: (1) Why is there no difference in participants’ performance 

between basic and advanced stimuli? Especially for 𝑝𝑎𝑢𝑠𝑒𝑄3 which contradicts prediction H5. 

(2) The other reason, stemming from reason 1, is to examine whether considering the difficulty 
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factor alone is sufficient when designing the experiment’s stimuli, or whether the complexity 

factor should also be considered. 

4.3.3 Results part 2 

For the second part of the analysis, I predict that the complexity of the stimulus could be an 

additional aspect that must be considered in stimuli design. Hence, in this section, I will re-

examine the existing experimental stimuli by using the complexity factor (simple and complex). 

I will consider the following: (1) analysing the experiment stimuli based on the complexity factor 

by measuring the percentage of different stimuli components; (2) the discrimination between 

the two complexity levels (simple and complex) across all behavioural measures. 

 Stimuli complexity analysis   

Consulting the Java module content was considered while designing both the previous 

experiment’s (Chapter 3) and this experiment’s stimuli. However, this experiment’s stimuli differ 

from the previous experiment in that more effort was made to increase the density of the syntax 

(i.e., more punctuation), more variables including capital letters in the middle of words, more 

spaces, and shortened variable names; this was done for all the stimuli difficulty levels (i.e., all 

versions). This was done based on the findings of the content analysis (Chapter 3), which showed 

that, in general, participants choose to see the stimulus (i.e., took breaks) more often before 

transcribing the following categories: punctuation marks, capitals within variables or reserved 

words, and spaces. 

According to this complexity analysis (part 2), the more PunctuationALL in a stimulus, the more 

complex it is. Therefore, the stimuli were classified as simple or complex (based on the stimulus 

complexity factor (syntax)) for both the basic and advanced categories. I compared 

PunctuationALL (i.e., summation of brackets and punctuation marks) and textAll (summation of 

reserved words and variable names) in order to determine which stimulus is simple and which 

is complex.  
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Table 4.5 shows the percentage of the number of characters of each stimuli version (B1.1, B1.2, 

B2.1, B2.2, A1.1, A1.2, A2.1, A2.2) according to the content measures. The content measures 

consist of two main groups, PunctuationAll and textAll. In more detail, PunctuationAll concerns 

the summation of the two percentages brackets (total number of brackets e.g. {[ <) and symbols 

(total number of symbols e.g., + - *!) for each stimulus version, as in equation 1 below. Whereas 

textAll concerns the summation of the two proportions ReservedWords (total number of 

characters in each Java reserved word e.g., main, try, class, for) and VariableNames (total 

number of characters in each variable name e.g., tem, ar, n, s) for each stimulus version, as in 

equation 2 below.  

𝑃𝑢𝑛𝑐𝑡𝑢𝑎𝑡𝑖𝑜𝑛𝐴𝑙𝑙 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 = 𝑏𝑟𝑎𝑐𝑘𝑒𝑡𝑠 𝑝𝑟𝑝𝑜𝑟𝑡𝑖𝑜𝑛 + 𝑠𝑦𝑚𝑏𝑜𝑙𝑠 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 (1) 

 

𝑡𝑒𝑥𝑡𝐴𝑙𝑙 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 = 𝑅𝑒𝑠𝑒𝑟𝑣𝑒𝑑𝑊𝑜𝑟𝑑𝑠 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 + 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑁𝑎𝑚𝑒𝑠 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 (2) 

Concerning the degree of complexity, for the basic stimuli (B1, B2), it is obvious from Table 4.5 

below that for the simple stimuli (B1.1, B2.1), the PunctuationALL percentage is much lower than 

the percentage for textAll, whereas for the complex stimuli (B1.2, B2.2), the PunctuationALL 

proportion is slightly lower than the textAll. In terms of the advanced stimuli (A1, A2), for the 

simple stimuli (A1.1, A2.1), the PunctuationALL proportion is much smaller than the textAll, 

while for the complex stimuli (A1.2, A2.2), the PunctuationALL proportion is lower than the 

textAll but not as much as it is in the simple. In brief, the degree of complexity between the two 

levels of basic (B1.1+B2.1 vs B1.2+B2.2) is much stronger than the degree of complexity between 

the two levels of advanced (A1.1+A2.1 vs A1.2+A2.2). Put another way, the distinction in the 

participants’ performance between simple and complex will be clearer for the basic stimuli (B1, 

B2) than for the advanced stimuli (A1, A2). Thus, the basic category will better differentiate 

simple and complex than the advanced category. 
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Table 4.5 Proportions of the no. of characters for stimuli content categories 
 

 

 

 

 

Stimulus Content
No. of 

characters

Brackets 

()<>{}[]""

. ; = + * > < 

- !

Punctuatio

nALL

Reserved 

words

Variable 

names
TextALL

PunctuationA

LL+TextALL

import java.util.Scanner;

class A{

   public static void main(String[]args){

       Scanner s=new Scanner(System.in);

       double l=s.nextDouble();}}

int n,i,j; 

    int a[]=new int[n];

    for(i=0;i<(n-1);i++){

      for(j=0;j<n-i-1;j++)}}

import java.util.Scanner;

class S{

   public static void main(String[]args){

       Scanner b=new Scanner(System.in);

       int n=b.nextInt();}}

int num,i,j,tem;

if(ar[j]>ar[j+1]){

         tem=ar[j];

         ar[j]=ar[j+1];}

InputStream is=null;

        Try{

            is=new FileInputStream(f);

            byte c[]=new byte[2*1024];}

Node<T>n=new Node<T>();

        n.setValue(i);

        n.setNext(f);

        if(f!=null)f.setPrev(n);

        if(f==null)r=n;

try{

    Files.createFile(f);}

    catch(FileAlreadyExistsException x){

          System.err.format("n",f);}

Node<T>d=new Node<T>();

        d.setValue(i);

        d.setPrev(r);

        if(r!=null)r.setNext(d);

        if(r==null)f=nd;

0.07

Stimuli Versions

B1              

(Basic)

B1.1      

(Simple)
122 0.10 0.17 0.80 0.03 0.83 1

0.26 0.26 0.52 1

B2            

(Basic)

B2.1     

(Simple)
116 0.10 0.08 0.18

B1.2     

(Complex) 
69 0.19 0.29 0.48

0.78 0.03 0.82 1

B2.2  

(Complex)
58 0.24 0.19 0.43 0.09 0.48 0.57 1

A1        

(Advance)

A1.1     

(Simple)
73 0.11 0.10 0.21 0.64 0.15 0.79 1

A1.2  

(Complex)
88 0.18 0.16 0.34 0.52 0.14 0.66 1

A2          

(Advance)

A2.1     

(Simple)
86 0.14 0.07 0.21 0.74 0.05

1

0.79 1

A2.2     

(Complex)
89 0.18 0.16 0.34 0.51 0.16 0.66
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 Discrimination between the two stimuli complexity levels across all behavioural 

measures 

The structure of the following subsections will be slightly different from the structure of Results 

part 1, behavioural measure correlations subsection, as both basic and advanced have been 

broken down into simple and complex. For ease of reading and comparison between basic 

(simple and complex) and advanced (simple and complex) complexity categories, I present each 

behavioural measure (characters per view, writing-times, view-times, and pauses) separately. 

 The focus in this subsection is mainly on the discrimination between the two complexity levels 

(simple and complex).  

The next four subsections demonstrate the relations of characters per view, writing-times, view-

times, and Q3 pauses with familiarity. 
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4.3.3.2.1 Characters per view 

  

Figure 4.16 (Basic) Total characters per view for 
participants across simple and complex stimuli; 

participants are ranked by their familiarity scores 

Figure 4.17 (Advanced) Total characters per view for 
participants across simple and complex stimuli; 

participants are ranked by their familiarity scores 
 
 

  

Figure 4.18 (Basic) Mean characters per view across 
stimuli types and competence levels 

Figure 4.19 (Advanced) Mean characters per view across 
stimuli types and competence levels 

 
 

 

Figure 4.16 and Figure 4.17 above show the distribution of characters per view for all 

participants – ranked according to their familiarity scores – across simple and complex stimuli. 

Figure 4.18 and Figure 4.19 present characters per view mean values across the two complexity 

levels and low- and high-competence groups, for basic and advanced, respectively.  
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Table 4.6 below shows the difference in the mean values for the number of characters per view 

between the main analysis part 1 (difficulty factor) and the detailed analysis part 2 (complexity 

factor) over all the participants and across competence levels (low and high). Based on Table 4.5 

and in regards to Table 4.6, the following comparisons can be made: 

(1) The difference between simple and complex stimuli in the detailed analysis should be greater 

(and more apparent for basic than advanced) than the difference between basic and advanced 

in the main analysis. Figure 4.16 to Figure 4.19 show that splitting the stimuli into two levels of 

complexity (simple and complex) increases the difference in the total number of characters per 

view between these two complexity levels when compared with the main analysis (part 1). It is 

clear that the basic category has the greatest improvement in the characters per view mean 

values, as would be expected (from the stimuli complexity analysis in Table 4.5 above). 

(2) The mean number of characters per view should be higher for the high- than the low-

competence group. Figure 4.16 to Figure 4.17 and Table 4.6 show that there is generally a 

positive relationship between the number of characters per view and Java familiarity scores 

(matching H1). This relationship is significant for basic (simple) stimuli (high 7.2 vs low 5.9, t=-

2.02, p=.028, df=49, 1 tail) and not significant for basic (complex) stimuli (high 5.1 vs low 4.3, t=-

1.49, p=.075, df=49, 1 tail). For the Advanced category, the relationship is not significant for both 

simple (high 5.4 vs low 5.9, t=-0.96, p=.173, df=49, 1 tail) and complex (high 6.0 vs low 5.4, t=-

1.20, p=.122, df=49, 1 tail).    

Charters per 

view 

 (simple) (complex)  (simple) (complex)

All 5.5 5.4 6.4 4.6 5.2 5.6

High 6.2 5.7 7.2 5.1 5.4 6.0

Low 5.1 5.1 5.9 4.3 5.0 5.4

Main analysis part1 Detailed Analysis part2

Competence 

levels
Basic Advanced

Basic Advanced
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(3) The mean number of characters per view should be greater for simple than complex stimuli 

(matching H5). Overall, Figure 4.16 to Figure 4.17 and Table 4.6 show that the basic category is 

consistent with prediction H5, across all participants; simple stimuli have more characters per 

view than complex ones (participants performed better on simple than complex stimuli). The 

performance on simple stimuli is superior to performance on complex stimuli and this is 

significant for all participants (6.4 vs 4.6 respectively, t=-7.23, p=.000, df=49, 1 tail), and for low- 

and high-competence groups as well (low: t=-4.73, p=.000, df=29, 1 tail, high: t=4.42, p=.000, 

df=18, 1 tail). These findings are significantly stronger than the main analysis findings (part 1), 

and consistent with complexity analysis expectations (Table 4.5 above).  

The advanced category contradicts prediction H5. Figure 4.19 shows that all participants 

performed slightly better on complex stimuli than simple ones; this was expected as, based on 

the stimuli complexity analysis, the percentage of PunctuationALL is close for both simple and 

complex. The distinction in the performance between simple and complex is significant for all 

participants (5.2 vs 5.6 respectively, t=-2.94, p=.002, df=49, 1 tail) and almost significant for low- 

and high-competence groups as well (low: t=-1.88, p=.033, df=29, 1 tail, high: t=-2.17, p=.017, 

df=18, 1 tail).  

Concerning the PPCS test (Figure 4.18 and Figure 4.19), the findings are similar to the main 

analysis (part 1), which suggests that the effect of transcribing the Java stimuli exists beyond the 

act of merely transcribing any stimuli. 

 
Table 4.6 Mean total number of characters per view across low- and high-competence groups 

and across stimuli difficulty and complexity factor for both (analysis parts 1 & part 2)  
 

Charters per 

view 

 (simple) (complex)  (simple) (complex)

All 5.5 5.4 6.4 4.6 5.2 5.6

High 6.2 5.7 7.2 5.1 5.4 6.0

Low 5.1 5.1 5.9 4.3 5.0 5.4

Main analysis part1 Detailed Analysis part2

Competence 

levels
Basic Advanced

Basic Advanced
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4.3.3.2.2 Writing-times 

 

  

Figure 4.20 (Basic) Median writing-times for 
participants across simple and complex stimuli; 

participants are ranked by their familiarity scores 

Figure 4.21 (Advanced) Median writing-times for 
participants across simple and complex stimuli; 

participants are ranked by their familiarity scores 
 
 
 

  

Figure 4.22 (Basic) Mean of median writing-times 
across stimuli types and competence levels 

 

Figure 4.23 (Advanced) Mean of median writing-
times across stimuli types and competence levels 

 
Figure 4.20 and Figure 4.21 above show the distribution of writing-times for all participants, 

ranked in familiarity order, over simple and complex stimuli. Figure 4.22 and Figure 4.23 show 

mean writing-times values across simple and complex and low- and high-competence groups, 

for basic and advanced. Table 4.7 below presents the mean writing-times for both part 1 

(difficulty factor) and part 2 (complexity factor) over all the participants and low- and high-

competence groups. Based on Table 4.5 and in regards to Table 4.7, the following comparisons 

can be made: 
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(1) The disparity between the simple and complex analyses (part 2) should be larger (and more 

noticeable for basic than advanced) than the difference between the basic and advanced 

analyses (part 1). Figure 4.20 to 4.23 show that, compared to the analysis in part 1, dividing the 

stimulus into two degrees of complexity increases the disparity in the mean writing-times for 

these two complexity levels. Similar to the characters per view, the basic (simple, complex) 

category has the greatest improvement in the mean values of writing-times, as anticipated (from 

the stimuli complexity analysis, Table 4.5 above). On the whole, the difference between simple 

and complex is apparent for basic (Figure 4.22 and Figure 4.23) but not for advanced (Figure 

4.23), as predicted.   

(2) The mean writing-times should be longer for the high-competence group than for the low. 

The overall pattern (Figure 4.20 to 4.23 above and Table 4.7 below) for both basic and advanced 

shows a positive relationship between familiarity and writing-times (conforming to H2) but this 

is not significant for both basic (simple: high 6.6 vs low 5.8, t=-1.31, p=.102, df=49, 1 tail; 

complex: high 5.0 vs low 4.4, t=-1.29, p=.105, df=49, 1 tail) and advanced (simple: high 5.1 vs 

low 5.0, t=-0.31, p=.378, df=49, 1 tail; complex: high 5.3 vs low 4.8, t=-0.98, p=.168, df=49, 1 tail).  

(3) The mean writing-time could be longer for simple stimuli than for complex stimuli (matching 

H5). Overall, Figure 4.20 to 4.23 and Table 4.7 reveal that the basic category (Figure 4.22) is 

aligned with prediction H5, over all participants, and simple stimuli have longer writing-times 

than complex (participants performed better on simple than on complex stimuli). Superior 

results on simple compared to complex stimuli were significant to all participants (6.1 vs 4.6 

respectively, t=-6.66, p=.000, df=49, 1 tail) and significant for low- and high-competence 

participants as well (low: t=-5.49, p=.000, df=29, 1 tail; high: t=-3.27, p=.001, df=18, 1 tail). These 

results are better overall than part 1 of the analysis, and they are compliant with the complexity 

analysis expectations, as seen in Table 4.5 above. The results show that the disparity in writing-

times between simple and complex is better for the basic category. 
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The advanced category (Figure 4.23) is marginally aligned with prediction H5 for the low-

competence group only. All participants showed similar performance on both simple and 

complex stimuli (5.0 vs 5.0 respectively, t=-0.413, p=.341, df=49, 1 tail). The low group 

performed slightly better on simple than complex, however the difference is not significant (5.0 

vs 4.8 respectively, t=-0.799, p=0.214, df=29, 1 tail). For the high group, writing-times for 

complex stimuli were slightly longer than for simple (5.1 vs 5.3 respectively, t=-0.402, p=.345, 

df=18, 1 tail). This is not surprising because, depending on the stimuli complexity analysis (Table 

4.5), the ratio of PunctuationALL is similar for both simple and complex stimuli. 

Concerning the PPCS test (Figure 4.22 and 4.23), the results are consistent with the main analysis 

(part 1), implying that the influence of transcribing the Java stimulus extends beyond the act of 

simply transcribing any stimuli. 

 

Table 4.7 Mean writing-times across low- and high-competence groups and across stimuli 
difficulty and complexity factor for both (analysis parts 1 & 2) 

 

 

 

Writing-times

 (simple) (complex)  (simple) (complex)

All 5.3 4.9 6.1 4.6 5.0 5.0

High 5.7 5.1 6.6 5.0 5.1 5.3

Low 5.0 4.8 5.8 4.4 5.0 4.8

Main analysis part1 Detailed Analysis part2

Competence 

levels
Basic Advanced

Basic Advanced
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4.3.3.2.3 View-times 

  

Figure 4.24 (Basic) Median view-times for 
participants across simple and complex stimuli; 

participants are ranked by their familiarity scores 
 
 

Figure 4.25 (Advanced) Median view-times for 
participants across simple and complex stimuli; 

participants are ranked by their familiarity scores 
 
 

  

Figure 4.26 (Basic) Mean of median view-times 
across stimuli types and competence levels 

 

Figure 4.27 (Advanced) Mean of median view-
times across stimuli types and competence levels 

 
 

Figure 4.24 and Figure 4.25 above present the distribution of view-times for all participants, 

ranked according to their familiarity, across simple and complex stimuli. Figure 4.26 and 4.27 

show mean view-times across the two complexity levels and the low- and high-competence 

groups, for basic and advanced, separately. Table 4.8 below shows the mean view-times for the 

main analysis and detailed analysis over all the participants and the two levels of competence. 

The following distinctions should be made based on Table 4.5 above and Table 4.8 below: 

(1) The difference in the mean view-times between simple and complex in the detailed analysis 

should be similar to the difference between basic and advanced in the main analysis. Overall, 
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Figure 4.24 to 4.27 show that splitting the stimuli into two levels of complexity (simple and 

complex) produces the same difference in the mean view-times between these two complexity 

levels when compared with the main analysis (part 1).  

(2) The mean view-times values should not be related to Java competence. Figure 4.24 and 

Figure 4.25 do not show a clear overall downward or upward trend in view-times in relation to 

Java familiarity scores for both basic and advanced categories, consistent with prediction H3, 

which concerns the absence of a general effect of view-times in measuring competence. That is 

in contrast to the characters per view (Figure 4.16) and writing-times (Figure 4.20) trends. 

(3) The mean view-times should be similar for simple and complex stimuli, as view-times are not 

related to competence. Figure 4.24 to 4.27 and Table 4.8 show that the mean view-times are 

similar for both simple and complex stimuli across the low- and high-competence groups and 

across the basic and advanced categories.  

In terms of the basic category, consistent with the main analysis (part 1), across all participants, 

there is no significant difference in the mean view-times between simple and complex (1.66 vs 

1.65 respectively, t=-0.180, p=.429, df=49, 1 tail). The difference between simple and complex 

is not significant for both competence groups (low: t=-0.323, p=0.374, df=29, 1 tail; high: t=-

0.202, p=.420, df=18, 1 tail).  

Regarding the advanced category, for all participants, there is a significant difference in view-

times between simple and complex stimuli (1.64 vs 1.46 respectively, t=-3.519, p=.000, df=49, 1 

tail). The difference is significant between simple and complex for both competence groups 

(low: t=-2.183, p=0.017, df=29, 1 tail; high: t=-2.841, p=.003, df=18, 1 tail). Both competence 

groups viewed the simple stimuli slightly longer than the complex (this applied to the advanced 

category only). 
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Table 4.8 Mean view-times across low- and high-competence groups and across stimuli 

difficulty and complexity factor for both (analysis parts 1 & 2)  
  

4.3.3.2.4 𝑃𝑎𝑢𝑠𝑒𝑄3 

  

Figure 4.28 (Basic) Q3 pauses for participants across 
simple and complex stimuli; participants are ranked 

by their familiarity scores 

Figure 4.29 (Advanced) Q3 pauses for participants 
across simple and complex stimuli; participants are 

ranked by their familiarity scores 
 
 

  

Figure 4.30 (Basic) Mean of Q3 pauses across stimuli 
types and competence levels 

 

Figure 4.31 (Advanced) Mean of Q3 pauses across 
stimuli types and competence levels 

 
 

Figure 4.28 and Figure 4.29 above show the distribution of the Q3 pauses for all participants, 

ranked according to their familiarity scores, across the simple and complex stimuli complexity 

View-times

 (simple) (complex)  (simple) (complex)

All 1.6 1.5 1.7 1.6 1.6 1.5

High 1.5 1.5 1.5 1.6 1.6 1.4

Low 1.7 1.6 1.7 1.7 1.7 1.5

Main analysis part1 Detailed Analysis part2

Competence 

levels
Basic Advanced

Basic Advanced
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levels. Figure 4.30 and Figure 4.31 show Q3 pause values across simple and complex and low- 

and high-competence groups, for basic and advanced, respectively. Table 4.9 below shows the 

disparity in the mean values for the Q3 pauses between the analysis part 1 and analysis part 2 

across participants’ competence levels (low and high). Based on Table 4.5 above and focusing 

on Table 4.9 below, the following comparisons can be drawn: 

(1) The distinction between simple and complex in the detailed analysis should be stronger (and 

more visible for basic than for advanced) than the distinction between basic and advanced in 

the main analysis. Figure 4.28 to Figure 4.31 demonstrate that dividing the stimuli into two 

degrees of complexity increases the discrepancy in the overall Q3 pauses between these two 

complexity levels as compared to the main analysis. The basic category (Figure 4.30) clearly has 

the greatest improvement in the Q3 pause values, as expected (from the stimuli complexity 

analysis, Table 4.5 above). 

(2) The length of the Q3 pauses should be shorter for the high-competence group than the low 

group. Overall, Figure 4.28 and Figure 4.29 above and Table 4.9 below reveal a clear downward 

trend for both basic and advanced categories. Both basic and advanced categories show 

significant negative relations between familiarity scores and the length of pauses, for the basic 

category, across all participants (simple: high 573 vs low 694, t=-2.18, p=.020, df=49, 1 tail; 

complex: high 795 vs low 965, t=-1.84, p=.040, df=49, 1 tail) and for the advanced category, 

across all participants (simple: high 593 vs low 733, t=-2.45, p=.011, df=49, 1 tail; complex: high 

678 vs low 806, t=-1.94, p=.033, df=49, 1 tail). Put another way, the more competent participants 

have shorter pauses (to a great degree, consistent with H4).    

(3) The Q3 pauses should be shorter for simple than for complex stimuli (matching H5). Overall, 

Figure 4.28 to Figure 4.31 and Table 4.9 below demonstrate that, focusing on the basic category, 

consistent with prediction H5, Figure 4.30 reveals that all participants produce longer pauses 

while transcribing the complex stimuli than for the simple ones (i.e., participants performed 
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better on simple than complex stimuli), as shown in Table 4.9 below. Further, the difference 

between simple and complex is significant (646 vs 899, t=-6.85, p=.000, df=49, 1 tail) and 

significant for both low- and high-competence groups as well (low: t=-4.67, p=.000, df=29, 1 tail; 

high: t=-4.42, p=.000, df=18, 1 tail). These results are significantly stronger than the main 

analysis findings (part 1), and they are compliant with the complexity analysis assumptions, as 

seen in Table 4.5 above. 

The advanced category conforms to prediction H5; Figure 4.31 above shows a similar trend to 

Figure 4.30 (basic category). All participants performed better on simple than complex stimuli 

and had significant negative relations between Java familiarity scores and Q3 pauses (678 vs 

756, t=-3.24, p=.001, df=49, 1 tail). The difference between simple and complex is significant for 

low- and high-competence groups as well (low: t=-2.05, p=.023, df=29, 1 tail; high: t=-2.71, 

p=.005, df=18, 1 tail). In sum, these results are significantly robust when compared with the 

analysis (part 1).  

 
Table 4.9 Q3 Pauses across low- and high-competence groups and across stimuli difficulty and 

complexity factors for both (analysis parts 1 & 2)  
 

The overall results suggest that the second part of the analysis achieved the required outcome 

by showing an improvement in the disparity between the level of stimuli difficulty from the main 

analysis part 1 (basic and advanced) and the detailed analysis part 2 (simple and complex). In 

other words, when the complexity factor is considered, improvements in the difference 

between the stimuli difficulty levels occur for all the behavioural measures. In fact, the VD 

measure (Q3 pauses) is the best in regards to the improvement in differentiating levels of 

complexity than the HS measures (characters per view and writing-times). Characters per view 

Q3 pause

 (simple) (complex)  (simple) (complex)

All 748 735 646 899 678 756

High 638 652 573 795 593 678

Low 819 789 694 965 733 806

Main analysis part1 Detailed Analysis part2

Competence 

levels
Basic Advanced

Basic Advanced
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has higher disparities than writing-times, whereas view-times remain constant, as expected 

according to H3. In terms of the low- and high-competence groups, the high group outperformed 

the low group in terms of characters per view, writing-time, and Q3 pauses. Furthermore, all the 

behavioural measures in the basic category showed a more significant difference between 

simple and complex than the advanced category, which matches my predictions based on the 

stimuli complexity analysis (Table 4.5). Predictions H1, H2, H3, H4, and H5 are all supported for 

all behavioural measures, with only a few minor differences in details. PPCS mean values are 

almost the same for low- and high-competence participants, with an obvious difference 

between PPCS and Java stimuli mean values, which is similar to the results of the main analysis 

part 1, for all the behavioural measures. 

4.3.4 Discussion part (2) 

For the detailed analysis (part 2), every stimulus used in the main analysis (part 1) is further 

broken down (to form two separate degrees of complexity) according to the stimuli complexity 

analysis (Table 4.5 above). The overall findings of the detailed analysis (part 2) are addressed in 

this subsection (according to the comparisons made in subsection 4.3.3.2 above). 

Generally, when the complexity factor is taken into account, the discrimination between the two 

complexity levels (simple and complex) is improved for each behavioural measure, as shown in 

Figure 4.16 Figure 4.17, Figure 4.20 Figure 4.21, and Figure 4.24 Figure 4.25 above. Q3 Pauses 

(VD) is superior to characters per view and writing-times (HS) in terms of showing improvement 

in measuring Java competence; this may be because the VD measure is better fitted to the 

specific nature of the transcription task. Characters per view and Q3 pauses showed better 

improvement than writing-times. The writing process is variable and more complicated than just 

looking at the stimulus; as participants write, several variables that can interact with the process 

that are not explicitly relevant to Java competence may be present. For example, participants 

will return to the stimulus when writing to double-check that what they wrote is right. Pauses, 
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meanwhile, simply calculate the time it takes to process and plan to write the next character, 

thus pauses are more closely linked to what participants have in their memories. Accordingly, 

𝑝𝑎𝑢𝑠𝑒𝑄3 is believed to be a reliable indicator of Java competence in transcription tasks. View-

times showed no differences (improvement between part 1 and part 2) because view-times are 

not linked to Java competence, as expected in H3. 

The figures also show that the basic category had the greatest improvement in characters per 

view, writing-times, and Q3 pause mean values between simple and complex, which matches 

my predictions derived from the stimuli complexity analysis (Table 4.5 above). The difference is 

clearer than it is for results part 1 (Figure 4.1, Figure 4.2, and Figure 4.4 above); this is due to 

taking the complexity factor into account in addition to the difficulty factor when categorising 

the stimuli as two complexity levels.  

The high-competence group outperformed the low-competence group. For characters per view, 

writing-times, and Q3 pauses, the high-competence group performed better than the low group 

for both basic (simple and complex) and advanced (simple and complex) categories. The Q3 

pauses measure is superior to characters per view and writing-times in terms of showing better 

performance for the high over the low group; this may be because the VD measure is better 

fitted to the specific nature of the transcription task.  

Performance on the simple stimuli should be greater than on the complex stimuli. This is 

reasonable since simple stimuli are intended to be easy, and most participants should be able 

to transcribe them well. The results significantly support this for characters per view, writing-

times, and for 𝑝𝑎𝑢𝑠𝑒𝑄3 (superior to the main analysis (part 1)), which is consistent with both the 

first experiment (Chapter 3) and the stimuli complexity analysis (Table 4.5). However, for 

characters per view, for the advanced category only, performance on the complex stimuli (A1.2, 

A2.2) was slightly superior to the simple stimuli (A1.1, A2.1). This may be attributed to 

differences in the nature of the stimuli for both categories, as the complex part has some lines 
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with repetitive syntax with slight differences, making the next line easier to understand. For 

view-times, as well, participants viewed the A1.2, A2.2 stimuli for shorter times than A1.1, A2.1. 

This may be because of the reason listed above concerning the better performance for 

characters per view on the complex over the simple. Therefore, it may be said that under certain 

very particular circumstances, view-times can be affected where there is similarity between 

parts of the stimuli; if anything is repeated, it will be easier to read the second time.  

Concerning the PPCS test, the results are consistent with the main analysis (part 1), implying 

that the influence of transcribing the Java stimulus extends beyond the act of simply transcribing 

any stimuli. 

In conclusion, this study further demonstrates a noticeable discrimination between the stimuli 

of two different levels of complexity (simple and complex), with the basic category showing the 

greatest discrimination and improvement in mean values over all behavioural measures, as 

anticipated from the stimuli complexity analysis (Table 4.5). It demonstrates that the high-

competence group outperforms the low-competence group over the two stimuli complexity 

levels across all the behavioural measures. Additionally, as predicted from Table 4.5, the 

performance on simple is higher than on complex, which is more evident in the basic category 

than the advanced one. According to the stimuli complexity analysis, this is rational, and 

provides some evidence that the complexity factor has an effect, which suggests that when 

designing stimuli, it is not enough to consult the Java module (difficulty factor), but it is also 

necessary to consider the stimuli complexity factor. 

Finally, it is worth noting that Q3 pauses showed the greatest improvement in the mean values 

of all the behavioural measures between simple and complex; This might be due to the VD 

metric being more suited to the unique nature of the transcribing process. 
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4.4 Overall discussion 

Previous studies have shown the possibility of utilizing temporal chunk indicators acquired in 

transcription tasks as measurements of participants’ competence, across different domains. 

Generally, both the first experiment (Chapter 3) and this experiment’s main and detailed 

analysis permit me to answer ‘Yes’ to the thesis’s main question, ‘Can programming competence 

be measured by analysing patterns of chunk behaviour in the task of program code 

transcription?’. For both experiments, characters per view, writing-times, and 𝑝𝑎𝑢𝑠𝑒𝑄3 (second 

experiment) made a significant contribution (p<0.05) in predicting familiarity scores. Q3 pauses 

are obtainable in the view display (VD) mode of transcription, while characters per view, view-

times, and writing-times are obtainable in the hide and show (HS) presentation mode.  

This experiment examined the possibility of using the above-listed temporal chunk signals to 

assess Java programming competence in a transcription task through my seven hypotheses. 

Hypothesis H1 is concerned with the characters per view increase as familiarity scores increase. 

Hypothesis H2 reflects on the rise of writing-times with a rise in familiarity. Hypothesis H3 

focuses on view-times and predicts that there will be no association between them and Java 

competence. Hypothesis H4 considers the decrease in Q3 pauses as familiarity scores rise. 

Hypothesis H5 concerns the better performance on basic than advanced stimuli. Hypothesis H6 

considers the likelihood of improving characters per view, writing-times, view-times, and Q3 

pause values after PPCS normalisation. And finally, hypothesis H7 concerns the existence of a 

direct significant relationship between writing-times and characters per view. Generally, H1, H2, 

H3, H4, H5, and H7 are all supported, though the details vary: characters per view (HS), writing-

times (HS), and 𝑝𝑎𝑢𝑠𝑒𝑄3 (VD) significantly discriminate participants’ levels of Java competence. 

Therefore, these behavioural measures have the potential to predict Java competence in 

transcription tasks. This experiment proposes that characters per view and Q3 pauses are 
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reliable predictors of Java competence, although Q3 pauses become a better predictor of Java 

competence than characters per view. 

There was no noticeable difference between basic and advanced stimuli in the participants’ 

temporal chunk signals (difficulty factor) when compared with the previous experiment (Chapter 

3). As a result, a detailed analysis was performed, and the stimuli were further subdivided into 

two complexity levels (simple and complex), according to the stimuli complexity analysis 

(subsection 4.3.3.1). Generally, the detailed analysis shows more differences in participant 

behaviour between the two stimuli complexity levels than the main analysis. This means that 

the goal of performing the second analysis has been achieved. The distinction between simple 

and complex is visible in the basic (Figure 4.18) more than the advanced (Figure 4.19) categories, 

as anticipated from Table 4.5. Characters per view and Q3 pauses showed greater improvement 

in distinguishing simple and complex stimuli than writing-times; these two measures have also 

been identified as more accurate predictors of Java competence for the main analysis (part 1). 

View-times remained constant, as expected according to H3. Besides this, the difference in 

participant performance between simple and complex (complexity factor) is significant, in 

contrast to the main analysis (part 1) and compatible with both the first experiment (Chapter 3) 

and the stimuli complexity analysis (Table 4.5). So, one of the aspects that seems to be 

particularly important to consider when designing stimuli is the stimuli complexity factor. As a 

consequence, there are some factors that we should pay attention to while designing stimuli: 

participants’ level of competence, stimuli difficulty levels (i.e., consulting the modules), content 

analysis results (Chapter 3), stimuli complexity analysis (Table 4.5), and avoiding using stimuli 

with similar syntax (this may be a problem, as discovered in the advanced category, complex 

part (A1.2 and A2.2)). 

In terms of the differences between the first and second experiments, in summary: 



180 
 

 
 

• The stimuli were designed and categorized in basic and advanced among the first and 

second experiment differently:  

o First experiment: by consulting the undergraduate student Java modules (i.e., 

difficulty factor). 

o Second experiment main analysis part 1: by consulting (1) the undergraduate 

student Java modules; (2) the content analysis (Chapter 3), which showed that 

participants choose to see the stimuli more often (i.e., take breaks) before 

transcribing the following categories: punctuation marks, capitals within 

variables or reserved words, and spaces. What was learned was that consulting 

these two aspects is not enough to improve the difference in the behavioural 

measures’ values between the two stimuli difficulty levels. 

o Second experiment detailed analysis part 2: by consulting the stimuli 

complexity analysis (Table 4.5), which inspired me to split each stimulus into 

two complexity levels (simple and complex), what was discovered is that when 

the complexity factor is taken into account, there is an increase in the disparity 

between the stimuli complexity levels for all behavioural measures. In 

particular, Q3 pauses outperforms the HS measures in terms of showing 

improvement in differentiating levels of complexity. In more detail, characters 

per view have greater differences than writing-times, while view-times are 

consistent. 

• In the first experiment, only HS measurements (view-numbers, writing-times, view-

times) were used, while in this experiment, both HS and VD measures (Q3 pauses) were 

used. What was discovered is that HS and VD measures are both reliable indicators of 

Java familiarity scores. 

• The first experiment used practise items for normalisation, which did not improve the 

HS measures. In this experiment, the behavioural measures were normalised for a PPCS 
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(Participants Preferred Cluster Size) test, and this did not increase characters per view, 

writing-times, or Q3 pause values. This suggests that the behavioural measures 

accurately predict Java performance. 

• In the first experiment, the low-competence group consisted of a wider range of 

educational levels (undergraduate to faculty members). In this experiment, the low-

competence group was a concentrated group (all were first-year undergraduates). 

• The number of participants in this experiment (51) was twice the number of the first 

experiment (24). 

• In this experiment, linear regression was used to investigate the relationship between 

the various variables, whereas the first experiment only used correlations. Both 

experiments revealed a strong relationship between behavioural measures and 

familiarity. This implies that the behavioural measures accurately predict Java 

competence. 

4.4.1 Suggestions and future work 

It would be possible to repeat the same experiment with the same stimuli and with the same 

group of participants after a short period of learning. The idea would be to learn if performing a 

longitudinal study would result in significant changes in students’ behavioural temporal chunk 

signals and Java programming competence. 

Why is it now necessary to do a longitudinal study in addition to the cross-sectional research 

(first and second experiments, Chapters 3 and 4) and other related studies (Cheng, 2014, 2015; 

Zulkifli, 2013)? This is an important step in trying to apply the approach to more realistic samples 

with a range of ability similar to that found in real tests. Also important in demonstrating the 

sensitivity of the whole approach (i.e., measuring competence using temporal chunk signals in 

a transcription task). It is as well necessary to investigate whether short-term learning gains will 

influence chunk structures.  
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The low-competence group were assigned to perform the next experiment, since, according to 

the results of this experiment, characters per view, writing-times, and Q3 pauses strongly 

predict familiarity in low-competence participants, more than for those of high competence. 

Furthermore, since all low group participants are first-year undergraduate students, I want to 

see if repeating the experiment with only those on the Java module would show an 

improvement in their behaviours. Will we see the small changes they have experienced after a 

few months of learning? I tested to see how the behavioural measures will handle small changes 

over the course of a single module. Participants in the first and second experiments, on the other 

hand, had a wider range of Java programming expertise. 

 

 

4.5 Summary 

• Pauses, in addition to view-numbers and writing-times, have potential as a measure of 

programming competence.  

• Normalizing for PPCS had no effect on the measures (individual differences do not 

impact the effectiveness of the behavioural measures). 

• Significant relations were found between the dependent measures (Characters per 

view, writing-times, and pauses) and the independent measure of competence (i.e., 

familiarity scores). 

• Significant relationships between Characters per view and writing-times were again 

spotted, similarly to the previous experiment. 

• In most cases 𝑝𝑎𝑢𝑠𝑒𝑄3 becomes a better predictor of Java competence than characters 

per view. 
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• After splitting each stimulus into further complexity levels: basic into (simple and 

complex) and advanced into (simple and complex), the difference in the participants' 

performance between the two levels of stimuli complexity becomes clearer. 
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5 Experiment 3: Longitudinal post-test study of the impact of 

learning on participants’ behaviour 

Chapter content:  

• An introduction that includes the experiment hypothesis and key questions. 

• The experiment methodology: 

o Overall experiment design. 

o Participants. 

o Employed materials.  

o Stimuli design. 

o The experiment procedures. 

• Results and discussion: 

o Results part 1: comparing pre-test and post-test. 

▪ The behavioural measures.  

o Discussion part 1. 

o Results part 2: The effectiveness of the behavioural measures at detecting 

learning gain 

▪ Independent measures of competence. 

▪ Regression analysis for the behavioural measures against final exam 

marks. 

▪ Regression analysis for the behavioural measures against characters per 

view. 

o Discussion part 2. 

• Overall discussion 

• Summary.  

 

5.1 Introduction  

The previous experiments (Chapters 3 and 4) demonstrated the potential of my method of 

evaluating Java competence by assessing chunk structures in a transcription task. It has been 

shown that the behavioural measures (characters per view, writing-times, 𝑝𝑎𝑢𝑠𝑒𝑄3) can 

substantially predict the competence measure (familiarity). The second experiment (Chapter 4) 
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showed that 𝑝𝑎𝑢𝑠𝑒𝑄3 predicts Java competence better than both characters per view and 

writing-times. On the other hand, the PPCS (Participants Preferred Cluster Size) normalization 

did not improve the behavioural measures. And there was no significant correlation found 

between view-times and Java programming competence.  

The purpose of this experiment is to see whether it is possible to measure an actual learning 

gain by participants over the duration of a course in Java. This is the first time this has been done 

in any of the experiments, so it is particularly novel. The narrow range of participants (all 

participants will be treated here as a single group, rather than being divided into low and high) 

is a consequence of selecting just those participants who previously took part and were at the 

beginning of their Java course. This presents a challenge to the temporal chunk transcription 

method, because the range of competence is narrower. I was fortunate to have the students’ 

exam marks as an additional measure, but this was not one of the main purposes of the 

experiment. 

This experiment therefore aimed to answer the question:  

Can the method be used to measure learning gains over the course of one term of study? 

As the same participants enrolled in both the second (previous) experiment and this one, and 

all studied the same module over the same period of time, I predict that: 

Given that the size (the total number of characters) of each Java stimulus is known: 

Ha) The number of characters per view will increase after learning. 

As more capable participants’ chunks contain more information: 

Hb) The duration of written answers following each stimulus view will be longer after 

learning. 
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Now, if the time it takes to interpret a chunk is roughly constant (Chase & Simon, 1973), and if 

the amount maintained per view is independent of competence, I predict: 

Hc) The amount of time spent on each individual view of the stimulus will be unrelated to 

learning gain. 

Based on chunking theory, I predict: 

Hd) The length of the 𝑝𝑎𝑢𝑠𝑒𝑄3 will be shorter after learning. 

Since commonly used Java components implemented earlier (in students’ programming 

module) during teaching are assigned to basic stimuli, I predict: 

He) Participants’ performance will be better on the basic stimuli than on the advanced ones 

after learning. 

To reconfirm the results of the first and second experiments (Chapters 3 and 4) I have the same 

H1, H2, H3, H4, H5, and H6 hypotheses as the second experiment (Chapter 4), but also consider 

exam marks as an independent variable in addition to the familiarity measure.  

I am therefore also seeking to answer this question: 

Will the behavioural measures be effective at detecting the learning that occurred during 

the Java course?  

As the number of characters of each stimulus is constant, I predict:  

H1) The number of characters per view of a particular stimulus in a trial will be greater for 

more competent participants (higher familiarity scores and exam marks). 

As the more competent participants’ chunks contain more content, I predict:   

H2) Writing-times will be longer for more competent participants (higher familiarity scores 

and exam scores).  
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So, as the time to comprehend a chunk is roughly stable (Chase & Simon, 1973), and if the 

number of characters retained per view is independent of competence, then I expect: 

H3) View-times will not be directly related to programming competence. 

Based on chunking theory and on the specific hierarchical models for different levels of 

competence, as shown in the pause generation model (Chapter 2, section 2.4.4), I anticipate: 

H4) 𝑝𝑎𝑢𝑠𝑒𝑄3 will be longer for less competent participants (lower familiarity scores and 

exam marks).  

As basic and advanced stimuli will be used here again, and as the basic Java concepts are applied 

for the basic stimulus, I predict: 

H5) The performance on basic stimuli will be higher than on the advanced stimuli. 

Since chunking processes are predicted to affect characters per view and writing-times, there 

should be a consistent and systematic association between them; therefore, observing the 

relationship between them provides further proof that chunking occurs (proved in the first and 

second experiments). Thus, I predict: 

H6) Writing-times will be directly related to characters per view.  

This chapter contains three key sections: Methodology, Results, and Discussion. It consists of 

two main ‘results and discussion’ analyses. The first section contrasts both pre-test and post-

test findings. The second is the use of the basic (B1, B2) and advanced (A1, A2) stimuli.  

5.2 Method 

This experiment was carried out using the same experimental design as the second experiment. 

However, here the focus is on comparing participants’ performance before and after 

undertaking the Java module. Thus, this section describes only the minor variations between the 

second and third experiments. 
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5.2.1 General experiment design 

The experiment is a counter-balanced 2x2 design (two VD and HS display factors and two basic 

and advanced stimuli difficulty factors). The previous experiment was a mixed design with low- 

and high-competence participants and basic and advanced stimuli, while this experiment is a 

within-participant factor with each participant transcribing basic and advanced stimuli, since the 

participants in this experiment are of the same educational level. In the previous experiment, 

they were from a wider educational context.  

5.2.2 Participants  

21 adults from the School of Engineering and Informatics at the University of Sussex 

participated. Participants are first-year undergraduate students who have just finished their first 

semester and completed their Java module exams. Their ages ranged from 18 to 25 years 

(mean= 20.5, SD= 3.5); 14 were male and 7 were female. They were given £10 for their 

involvement.  

5.2.3 Materials 

Please refer to the Materials section of the second experiment (Chapter 4). The only difference 

here is that the online questionnaire consisted of one section (not four parts, as in Chapter 4). 

After the participants had carried out the transcription task, they were only asked to fill in the 

portion that assessed their familiarity with the Java stimuli provided in the experiment. 

5.2.4 Stimuli design  

The stimuli in this experiment are the same as the one used in the second experiment, see the 

section on stimuli design in Chapter 4.  

(Additionally, the PPCS (Participants Preferred Cluster Size) test was conducted with quintuple 

(i.e., S5) and sextuple (i.e., S6) such as ‘9g2b6 d7f5w …’ and ‘z8b3n2 7y3e5n …’ etc stimuli in 
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order to extend the previous PPCS data. However, the analysis of PPCS is not included in this 

chapter.)  

5.2.5  Procedure  

The procedure in this experiment is the same as the one in the second experiment. See the 

Procedure section in Chapter 4.  

  

5.3 Results and discussion 

The experiment’s results consist of two parts: part 1 compares pre-test and post-test results; 

part 2 reports the regression analysis findings across all the measures for all students as a single 

category, using the basic and advanced stimuli difficulty factor. 

5.3.1 Results part 1: Comparing pre-test and post-test results 

The primary goal of this experiment was to determine if the behavioural measures are sensitive 

to learning development over a one-module period. That is, to see if repeating the same 

experiment with those on the Java module would result in an increase in their performance 

before and after learning. 

 This subsection seeks to answer the first question: Does examining the same students after a 

short period of learning show a significant difference in their performance, and thus their Java 

programming competence? Do the measures reflect the learning that the students did? 

 Behavioural measures  

The following subsections present characters per view, writing-times, view-times, and 𝑝𝑎𝑢𝑠𝑒𝑄3. 

Figures Figure 5.1 to Figure 5.8 below show the performance for each participant in both pre-

test and post-test, and the difference before and after learning for each measure and for basic 

and advanced separately. Table 5.1 below shows the mean and SD for the differences between 
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pre-test and post-test for all behavioural measures across both stimuli difficulty levels, basic and 

advanced.  

 

Table 5.1 Mean and SD for the difference between post-test and pre-test behavioural measure 
values across all behavioural measures over basic and advanced stimuli, HS=hide and show, 

VD=view display, WT=writing-times, VT=view-times 
 

5.3.1.1.1 Characters per view 

  

Figure 5.1 Total characters per view for basic stimuli 
across pre-test and post-test; participants are 

ranked by their exam marks 

Figure 5.2 Total characters per view for advanced 
stimuli across pre-test and post-test; participants are 

ranked by their exam marks 
 

Consistent with prediction Ha, which concerns the increase in the number of characters per view 

after learning, for all participants, Figure 5.1 and Figure 5.2 show that the number of characters 

per view increased from pre-test to post-test by about 2 characters per view (about 20%) for the 

basic stimuli (mean=1.8, SD=1.7) and by 1 character for the advanced stimuli (mean= 1.0, SD= 

1.0).  

For the basic stimuli, the post-test scores are higher in 19 of the 21 cases than the pre-test 

scores; 1 case has almost identical scores, while the other is a little lower. For the advanced 

Char/View Basic 

Posttest - Pretest

Char/view 

Advance 

Posttest - Pretest

WT Basic Posttest - 

Pretest

WT Advance 

Posttest - 

Pretest

VT Basic 

Posttest - 

Pretest

VT Advance 

Posttest - 

Pretest
pause Basic Posttest - 

Pretest

Pause Advance 

Posttest - Pretest

mean 1.8 1.0 0.9 0.4 -0.1 0.0 -105.1 -93.5

SD 1.7 1.0 1.3 0.9 0.3 0.3 151.2 115.0

HS mesures VD measure

Measures
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stimuli, the post-test scores are greater in 15 of the 21 cases than the pre-test scores, 5 cases 

have almost the same scores, and 1 case is slightly worse. The increase is significant for both 

stimuli difficulty levels, basic (5.26 (pre-test) vs 7.07 (post-test), t=-4.93, p=.00, df=19, 1 tail) and 

advanced (5.38 (pre-test) vs 6.34 (post-test), t=-4.54, p=.00, df=19, 1 tail).    

Consistent with prediction He, which predicts that participants’ performance will be better on 

the basic stimuli than on the advanced after learning, across all participants, the basic stimuli 

(Figure 5.1) show more characters per view after learning than the advanced stimuli (Figure 5.2), 

i.e., participants’ performance on the basic stimuli is higher than on the advanced stimuli, which 

is significant (basic: 7.1 vs advanced: 6.3, t=-1.96, p=.032, df=19, 1 tail).  

 

5.3.1.1.2 Writing-times 

  

Figure 5.3 Median writing-times for basic stimuli 
across pre-test and post-test; participants are ranked 

by their exam marks 

Figure 5.4 Median writing-times for advanced stimuli 
across pre-test and post-test; participants are 

ranked ordered by their exam marks 

 
Consistent with prediction Hb, which predicts that the duration of written answers following 

each stimulus view will be longer after learning, for all participants, Figure 5.3 and Figure 5.4 

show that there was a significant improvement in writing-times after learning for both basic and 

advanced stimuli. Participants took nearly a second longer while writing the basic stimuli than 

the advanced. For basic stimuli, the post-test scores are greater in 13 of the 21 cases than the 
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pre-test scores, 2 cases deteriorate marginally, while 6 cases have almost equal scores. For the 

advanced stimuli, the post-test scores are higher in 9 out of the 21 cases than the pre-test scores, 

2 cases deteriorate slightly, and 10 cases have almost identical scores. The difference between 

the pre-test and post-test means for the basic stimuli is significant (mean=0.9, SD=1.3). So, the 

writing-times for the basic stimuli show that participants clearly improved (4.71 (pre-test) vs 

5.64 (post-test), t=-3.22, p=.00, df=19, 1 tail). But for the advanced stimuli, the difference 

between the means (mean=-0.4, SD=0.9) is not a lot but still significant (4.53 (pre-test) vs 4.94 

(post-test), t=-1.99, p=.03, df=19, 1 tail). This trend is identical for the characters per view above, 

as well as for pauses (below), but not for view-times.  

Consistent with prediction He, across all participants, the basic stimuli (Figure 5.3) saw longer 

writing-times after learning than the advanced stimuli (the output of the basic stimuli was higher 

than that of the  advanced stimuli) which is significant (basic: 5.6 vs advanced: 4.9, t=-2.78, 

p=.006, df=19, 1 tail).  

5.3.1.1.3 View-times 

  

Figure 5.5 Median view-times for basic stimuli across 
pre-test and post-test; participants are ranked by their 

exam marks 

Figure 5.6 Median view-times for advanced stimuli 
across pre-test and post-test, participants are ranked 

by their exam marks 
 

 
Prediction Hc predicts that the amount of time spent on each individual view of the stimulus will 

be unrelated to learning gain. Figure 5.5 and Figure 5.6 reveal that there was no improvement 
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in participants’ performance before and after learning, despite the fact that there has been 

improvement since they completed the Java course. The above figures do not show a clear 

relation between view-times and Java competence, as they do not show general increasing or 

decreasing trends for either basic or advanced stimuli before and after learning. In general, with 

both basic and advanced stimuli, most cases have almost equal pre-test and post-test scores 

because the data points are very similar to each other, with post-test scores being marginally 

lower in some cases. To sum up, analysis of participants’ performance differences before and 

after learning supports the claim that view-times do not predict Java competence and therefore 

are not a valid indicator of competence. Further, view-times’ trends differ from the trends in 

Figure 5.1 to Figure 5.4.  

Consistent with prediction He, across all participants, there is no significant difference between 

basic and advanced stimuli, after learning, in terms of view-times (basic: 1.4, advanced: 1.3, t=-

0.442, p=.33, df=19, 1 tail).  

5.3.1.1.4 𝑃𝑎𝑢𝑠𝑒𝑄3 

  

Figure 5.7 Q3 pauses for basic stimuli across pre-
test and post-test; participants are ranked by their 

exam marks 

Figure 5.8 Q3 pauses for advanced stimuli across pre-
test and post-test; participants are ranked by their exam 

marks 
 

Consistent with prediction Hd, which predicts a reduction in the duration of 𝑝𝑎𝑢𝑠𝑒𝑄3 after 

learning, for all participants, Figure 5.7 and Figure 5.8 show that the length of Q3 pauses 
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decreases by about 105 milliseconds for the basic stimuli (mean=-105.1, SD=151.2) and by about 

93 milliseconds for the advanced stimuli (mean=-93.5, SD=115.0). 

For the basic stimuli, in 13 of the 21 cases, the post-test scores are smaller than the pre-test 

scores, 6 cases have almost equal scores, and 2 cases have slightly increased scores. When it 

comes to advanced stimuli, the post-test scores are lower in 12 of the 21 cases than the pre-test 

scores, 7 cases have almost the same scores, and in 2 cases they are marginally higher. The 

decrease in the length of Q3 pauses is significant between pre-test and post-test for both basic 

stimuli (778.15 (pre-test) vs 673.04 (post-test), t=-3.21, p=.00, df=19, 1 tail) and advanced stimuli 

(745.67 (pre-test) vs 652.21 (post-test), t=-3.76, p=.00, df=19, 1 tail). In other words, 

participants’ pauses after learning were shorter than they were prior to learning.  

Contrary to prediction He, which predicted that participants’ performance on basic stimuli 

would be higher than on advanced stimuli once they have learned, across all participants, Figure 

5.7 shows that the basic stimuli had slightly longer Q3 pauses than the advanced stimuli (Figure 

5.8). Thus, the output of the basic stimuli is not higher than that of the  advanced stimuli, though 

this is not significant (basic: 673.0, advanced: 652.2, t=-1.363, p=.094, df=19, 1 tail). 

Concerning all the behavioural measures (HS and VD), table Figure 5.1 above shows that all the 

behavioural measures reflect the learning gained by the students. The yellow lines in Figure 5.1 

to Figure 5.8 above show the disparity between participants’ performance before and after 

learning for both basic and advanced characters per view, writing-times, view-times, and Q3 

pauses. In general, the variations in output pre-test and post-test for characters per view, 

writing-times, and Q3 pauses are present across all participants and follow a similar trend for 

basic and advanced. When the differences between the two stimuli difficulty levels are 

compared, the differences are larger for basic than for advanced. View-times, when considered 

individually, do not show a significant difference in participant performance. When it comes to 

characters per view and writing-times, when the difference in one measure is high, the other 
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measure is also large. Furthermore, the Q3 pauses reveal major variations in the performance 

of the participants. Another point to make is that, in all measures and levels of exam scores, 

there are improvements in students’ performance from pre-test to post-test, not only for 

students with high marks, but also for students with low marks.  

To summarise, characters per view, writing time, and Q3 pauses clearly represent the 

learning that students gained. The trend (improvement in participants’ output after learning) 

between basic and advanced is consistent for characters per view and writing-times. 

Participants’ progress pre-test to post-test is consistent across the HS measures.  

 

  

Table 5.2 Correlations for post-test - pre-test scores between various behavioural measures (n=21, Pearson 
correlation, 1 tail, critical value is 0.5034 at p<.01) 

 

Table 5.2 presents the correlations between disparities in student performance before and after 

learning (post-test and pre-test), demonstrating that differences for characters per view and 

writing-times are strongly correlated for basic and advanced. In other words, the greater the 

difference in the number of characters per view, the greater the difference in writing-times for 

every participant. View-times were significantly correlated with both characters per view and 

writing-times for advanced stimuli only. For the basic stimuli, the VD measure (Q3 pauses) is 

negatively correlated (not significant) with the other HS measures for the basic stimuli, whereas 

for the advanced stimuli, the correlation values are close to zero. 

5.3.2 Discussion part 1 

In studies of related style, such as Cheng (2014, 2015), van Genuchten and Cheng (2010), and 

Zulkifli (2013), participants had varying levels of expertise (education), as in my first and second 

Basic Characters per view Writng-times View-times Pauses 

Characters per view

Writng-times 0.83

View-times 0.34 0.47

Pauses -0.17 -0.14 -0.05

Advanced Characters per view Writng-times View-times Pauses 

Characters per view

Writng-times 0.84

View-times 0.67 0.56

Pauses 0.01 0.01 0.05
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experiments (Chapters 3 and 4). However, the previously listed studies did not measure 

improvement over a period of time. Thus, this experiment is the first to utilize participants from 

the same educational background (expertise level) and to measure their improvement over a 

period of time. The reason for focusing on a single year group was to try to apply the approach 

to more realistic samples with a range of ability similar to that found in real tests. As a result, we 

will be able to answer the main question of this experiment, which is whether examining the 

same students after a short period of learning time (3 months) will reveal a significant difference 

in their performance. 

Hypothesis Ha predicts that characters per view will increase after learning gain and hypothesis 

Hb predicts that writing-times will increase after learning gain. The findings are remarkably 

consistent with these predictions, which gives extra support to my base predictions H1 and H2. 

Both characters per view and writing-times increased significantly after learning for almost all 

participants. This is because participants’ behaviour (total number of characters per view and 

their writing durations) were significantly affected by their new chunk structures after learning. 

Hence, according to chunking theory, their chunk structure hierarchy will have less layers. 

Hypothesis Hc predicts that there is no relationship between view-times and learning gain. The 

results are consistent with this prediction and provide extra support to my base prediction H3. 

This assumes that any chunking effects that could occur during stimulus viewing will be 

eliminated. 

Hypothesis Hd predicts that Q3 pauses will decrease after learning gain. The results are 

remarkably consistent with this prediction, and this adds weight to my fundamental prediction 

H4. The students showed significantly shorter pauses after learning, which means that 

participants’ length of pauses was significantly affected by their improved Java competence, and 

thus their new chunk structures.  
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Hypothesis He predicts that participants’ performance will be better on the basic stimuli than 

advanced after learning, which would strengthen my base prediction H5. The results are 

significantly consistent with this prediction for characters per view and writing-times; this is as 

predicted, as the basic stimuli are supposed to be easier than the advanced stimuli. On the other 

hand, the prediction is not upheld for Q3 pauses, which is similar to what was found in the 

previous experiment (because of the details of the design of the stimuli (complexity factor not 

considered); justification can be found in Chapter 4).  

The differences in the participants’ performance after learning (Figure 5.1–Figure 5.8) is more 

consistent for characters per view and writing-times (i.e., significantly correlated: the greater 

number of characters per view, the longer the writing-times) rather than Q3 pauses. This may 

be due to the nature of the transcription task; characters per view and writing-times are 

collected in the HS presentation mode which is different from the VD mode in which Q3 pauses 

were collected.  

Thus, I can answer ‘Yes’ to my main question: Does examining the same students after a short 

period of learning time show a significant difference in their performance, thus, their Java 

programming competence? The results show significant improvement in the mean scores of all 

the behavioural measures after learning. 

To conclude, this experiment shows a disparity in participant performance over a particular 

time, despite the fact that the extra experience is just three months.   

5.3.3 Results part 2: The effectiveness of the behavioural measures at detecting 

learning gain 

The results in this section consider the following: (1) the correlations between the independent 

variables and between these and the dependent variables, and the justification for the 

dedicated competence measure (exam marks) for this experiment. (2) The six hypotheses 

concerning the relationships between the behavioural measures (characters per view, writing-
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times, view-times, and pauses) and the competence measure (exam marks). (3) And finally, the 

six hypotheses related to the relation of the writing-times to characters per view. 

 Independent measures of competence  

In this section, I will look at the relationship between the independent variables, familiarity and 

exam marks, across the behavioural measures (characters per view, writing-times, view-times, 

and 𝑝𝑎𝑢𝑠𝑒𝑄3).  

 

Table 5.3 Correlation between competence measures with both familiarity and exam marks 
(n=21, Pearson correlation, 1 tail, critical value is 0.503 at p<.01, 0.369 at p<.05) 

 

In this experiment there were two independent variables, familiarity and exam marks. 

Familiarity was examined via online questionnaire, which is similar to what was implemented in 

the first and second experiments (Chapters 3 and 4). As the students were from the same year 

group, their exam marks are available to use. The students’ final exam took place before they 

completed the post-test; students’ marks are based on their final exam scores for their first Java 

module. The exam is a written exam that contains common programming questions such as 

implementing a piece of Java code according to the question requirements, or providing the 

students with the program code and asking comprehension questions that assess their 

understanding of Java concepts. 

Table 5.3 above shows the correlations across both dependent and independent variables over 

basic and advanced stimuli. The table reveals that the behavioural measures correspond with 

Independent 

variables

Dependent 

variables
Basic Advanced

Familiarity 0.157 0.037

Marks 0.270 0.454

Familiarity 0.143 0.073

Marks 0.189 0.380

Familiarity -0.239 -0.126

Marks 0.293 0.281

Familiarity 0.020 0.070

Marks -0.143 -0.489

Characters 

per view

Writng-

times

View-times

Pause

Correlations
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exam scores rather than familiarity. None of the correlations with familiarity are significant. The 

correlations are significant, for the exams marks only, at p<.05 for characters per view, writing-

times and Q3 pauses for the advanced stimuli only. In other words, the higher the exam marks, 

the more characters per view, the longer the writing-times, and the shorter the Q3 pauses. For 

familiarity, correlation values are higher for basic stimuli than advanced stimuli, while the 

reverse is true for exam marks. 

 

Table 5.4 Relationship of characters per view, writing-times, view-times, and pauses to 
familiarity and exam marks 

 

As seen in the pre-test (Chapter 4), familiarity (independent variable) was well correlated with 

the behavioural measures (dependent variables). However, familiarity stopped serving as a 

metric in this experiment (the explanation for this will be discussed later), as shown in Table 5.4 

above, which shows the linear regression analysis results for the dependent variables across the 

Basic Advanced Basic Advanced

21 21 21 21

19 19 19 19

Constant 0.21 0.03 0.04 0.05

Intercept 6.01 6.16 4.57 3.41

f 0.48 0.03 1.50 4.93

significance f 0.496 0.872 0.236 0.039

0.02 0.00 0.07 0.21

Constant 0.14 0.05 0.02 0.03

Intercept 4.90 4.67 4.31 3.04

f 0.40 0.10 0.70 3.20

significance f 0.536 0.754 0.413 0.090

0.02 0.01 0.04 0.14

Constant -0.06 -0.03 0.01 0.01

Intercept 1.66 1.50 0.84 0.81

f 1.15 0.31 1.78 1.63

significance f 0.297 0.586 0.198 0.217

0.06 0.02 0.09 0.08

Constant 1.23 4.52 -1.03 -3.64

Intercept 666.76 629.18 735.84 874.37

f 0.01 0.09 0.40 5.96

significance f 0.933 0.765 0.536 0.025

0.00 0.00 0.02 0.24

df

Characters 

per view

Writing-times

View-times

Pauses

Familiarity Marks

N

𝑅2 

𝑅2 

𝑅2 

𝑅2 
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independent variables for both basic and advanced stimuli. As a result, it was determined that 

the students’ final exam scores would serve as the independent variable in this experiment. So, 

are characters per view, writing-times, and 𝑝𝑎𝑢𝑠𝑒𝑄3 still good measures to show the differences 

between the participants within this experiment? The post-test (this experiment) does not 

demonstrate the variations as clearly as the pre-test (previous experiment). This may be because 

there was a broader spectrum of experience in the previous experiment amongst the 

participants, while the participants have the same level of experience here. Also, all of the 

participants in this experiment have learned, so what was an appropriate level of test stimuli in 

the pre-test is no longer appropriate in the post-test. 

 Regression analysis for the behavioural measures against final exam marks  

The following subsections explain each behavioural measure separately. This subsection 

examines the six hypotheses that connect temporal chunk signals to Java programming 

competence. A simple linear regression is applied. The findings for each behavioural measure 

are interpreted in relation to exam marks, as well as for writing-times, view-times, and Q3 

pauses in relation to characters per view.  

Overall, predictions H1, H3, H4, and H5 (not for view-times and Q3 pauses) are supported, with 

variations in details. There is weak support for prediction. The relationships’ direction is as 

expected.  
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Figure 5.9 Lines for linear best fit of characters 
per view to exam marks for all participants, basic 

(blue) and advanced (red) stimuli 

Figure 5.10 Lines for linear best fit of writing-
times to exam marks for all participants, basic 

(blue) and advanced (red) stimuli 
 

  

Figure 5.11 Lines for linear best fit of view-times 
to exam marks for all participants, basic (blue) 

and advanced (red) stimuli 

Figure 5.12 Lines for linear best fit of pauses to 
exam marks for all participants, basic (blue) and 

advanced (red) stimuli 
  

Figure 5.9, Figure 5.10, Figure 5.11, and Figure 5.12 show the linear regression relations of 

characters per view, writing-times, view-times, and 𝑝𝑎𝑢𝑠𝑒𝑄3 to final exam marks for students, 
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who were ranked in order of exam marks. They also present the relations among all participants 

across basic and advanced stimuli. 

The above graphs show that characters per view and Q3 pauses can be predictors for Java 

competence. The lines for characters per view, writing-times, and Q3 pauses are steeper for 

advanced stimuli than for basic stimuli, meaning that advanced stimuli outperform basic stimuli 

in distinguishing participant learning gain levels. 

 

Table 5.5 Relationship of characters per view, writing-times, view-times, and pauses to exam 
marks 

 

5.3.3.2.1 Characters per view 

Hypothesis H1 focuses on an increase in the total number of characters per view with an increase 

in the final exam marks. Table 5.5 shows linear regression models of characters per view as 

Basic Advanced

21 21

19 19

Constant 0.04 0.05

Intercept 4.57 3.41

f 1.50 4.93

significance f 0.236 0.039

0.07 0.21

Constant 0.02 0.03

Intercept 4.31 3.04

f 0.70 3.20

significance f 0.413 0.090

0.04 0.14

Constant 0.01 0.01

Intercept 0.84 0.81

f 1.78 1.63

significance f 0.198 0.217

0.09 0.08

Constant -1.03 -3.64

Intercept 735.84 874.37

f 0.40 5.96

significance f 0.536 0.025

0.02 0.24

View-times

Pauses

N

Marks

df

Characters 

per view

Writing-times

𝑅2 

𝑅2 

𝑅2 

𝑅2 
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functions of exam marks for all the participants with both stimuli difficulty levels (basic and 

advanced).   

As predicted and shown in Figure 5.9 and Table 5.5, the lines show upward trends for both basic 

and advanced stimuli. Hence, characters per view increase with an increase in exam marks (the 

more competent participants are with Java, the more characters per view they have). Thus, 

characters per view can distinguish Java competence levels among participants. The advanced 

stimuli have a more stable relationship and a steeper line – greater constant – than the basic 

stimuli. In general, characters per view can predict Java competence, and the advanced stimuli 

is more suitable for the participant levels in this experiment. The goodness of fit value for 

advanced stimuli is greater than for the basic stimuli. Put another way, characters per view may 

have some potentials to measure Java competence for the advanced stimuli. H1 is partially 

supported as only the correlation for the advanced stimuli is significant but not for the basic 

stimuli. 

Consistent with the fifth prediction H5, which concerns better performance on basic than 

advanced stimuli, for most of the participants, basic stimuli have more characters per view than 

advanced stimuli (i.e., participants performed better on basic stimuli than on the advanced 

stimuli). This is significant (basic: mean=7.1, SD=2.61 vs advanced: mean=6.3, SD=1.82, t=-1.96, 

p=.032, df=19, 1 tail). Put another way, the difference in the participants’ performance between 

basic and advanced stimuli is not due to chance.  

5.3.3.2.2 Writing-times 

Hypothesis H2 predicts a rise in writing-times as final exam marks increase. Table 5.5 displays 

linear regression models of writing-times as a result of exam marks for all participants using both 

basic and advanced stimuli. 

As expected, and as shown in Figure 5.10 and Table 5.5, the lines show a slight positive trend for 

both stimuli difficulty levels. Therefore, writing-times slightly rise with a rise in exam marks (the 
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more participants understand Java, the more time they spend writing). Writing-times thus may 

be able to distinguish participants’ Java competence levels. The advanced stimuli have a steeper 

line – slightly greater constant – than the basic stimuli, thus, the advance stimuli are more 

suitable for the participants’ levels of competence in this experiment.  In general, writing-times 

in this experiment may have some potential to predict Java competence for the advanced stimuli 

only, but not as effectively as characters per view. However, H2 cannot be stated to be 

supported because the regression analysis correlations for both basic and advance stimuli are 

not significant. 

Consistent with the fifth prediction, H5, which concerns better results on basic than advanced 

stimuli, over all the participants, basic stimuli have longer writing-times than advanced stimuli 

(i.e., participants’ performance on basic stimuli is superior to that of advanced stimuli), which is 

significant (basic: mean=5.6, SD=1.98 vs advanced: mean=4.9, SD=1.42; t=-2.78, p=.006, df=19, 

1 tail).  

5.3.3.2.3 View-times     

View-times are the subject of hypothesis H3, which predicts no relationship between view-times 

and Java competence. In the HS presentation condition, view-time is the length of each view of 

the stimulus. View-times vary from characters per view, writing-times, and Q3 pauses because 

the chunking hypothesis suggests that view-times have no relationship with competence. Table 

5.5 shows linear regression models of view-times as a function of exam marks for all participants 

using both basic and advanced stimuli. 

As presented in Figure 5.11 and Table 5.5, the view-times lines show a very slight upward trend 

(poor constant values) with exam marks, thus do not discriminate participants’ levels of 

competence well for either basic or advanced. This is counter to the other behavioural 

measures. Thus, view-times cannot predict Java competence in transcription tasks, which is 

consistent with previous studies (Chapters 3 and 4). 
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All of the correlations are most likely due to chance. The 𝑅2 values are close to 0 (very weak) for 

both basic and advanced stimuli. The scatter of data points along the regression lines is 

extremely large. As a result, view-times is classified as an inaccurate indicator of Java 

competence in transcription tasks. To conclude, there is support for prediction H3 and 

consistency with the previous two experiments (Chapters 3 and 4). 

Contrary to the fifth prediction, H5, which states that basic stimuli show better results than 

advanced stimuli, in terms of view-times there is no noticeable distinction between basic and 

advanced stimuli (basic: mean=1.4, SD=0.50, advanced: mean=1.3, SD=0.53; t=-0.442, p=.33, 

df=19, 1 tail).  

5.3.3.2.4 𝑃𝑎𝑢𝑠𝑒𝑄3 

Hypothesis H4 focuses on a decrease in the length of Q3 pauses with an increase in final exam 

marks. Table 5.5 presents linear regression models of Q3 pauses as functions of exam marks for 

all participants with both basic and advanced stimuli. It should be noted that this measure is 

collected in VD, which differs from the HS method, which collects characters per view, writing-

times, and view-times. 

As expected, and as shown in Figure 5.12 and Table 5.5, there are clear descending trend lines 

for both basic and advanced stimuli. Hence, unlike characters per view and writing-times, Q3 

pauses decrease with an increase in exam marks-steep lines- (the more competent participants 

are, the shorter 𝑝𝑎𝑢𝑠𝑒𝑄3 they have before they start writing each stroke). Thus, Q3 pauses can 

differentiate participants’ Java competence. The advanced stimuli have a more consistent 

relationship with the exam marks and a steeper line – a higher constant – than the basic stimuli. 

In general, in this experiment, the advanced stimuli are better suited to the participant levels 

because the 𝑅2 values for advanced stimuli are greater that for the basic stimuli. Hence, Q3 

pause may have some potentials to measure Java competence for the advance stimuli only. H4 
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has some support because the correlations for advanced stimuli is significant but not for basic 

stimuli. The effect is weaker in this experiment compared with the previous experiment. 

Contrary to the fifth prediction, H5, the basic stimuli had slightly longer pauses than the 

advanced stimuli, which is similar to what was found in the previous experiment (Chapter 4), for 

the participants with higher marks, as shown in Figure 5.12, but the difference is not significant 

(basic: mean=673.0, SD=123.90, advanced: mean=652.2, SD=128.25; t=-1.363, p=.094, df=19, 1 

tail). In conclusion, H4 is supported. 

In summary, the results are similar to the previous experiment’s findings (Chapter 4) in terms of 

two points: (1) while there is some inconsistency in the details, the overall results for characters 

per view, writing-times, view-times, and Q3 pauses are consistent with H1, H2, H3, H4, and H5. 

(2) While both characters per view and Q3 pauses may have some potential to predict Java 

competence, in most situations, Q3 pauses are a slightly better predictor of Java competence 

than Characters per view. 

The regression analysis for writing-times, view-times, and Q3 pauses against characters per view 

is presented in the following subsection to provide further evidence for the importance of 

chunking in transcription tasks. 

 Regression analysis for the behavioural measures against characters per view  

The existence of a direct relationship between writing-times and characters per view is the 

concern of prediction H6, and as previously mentioned, writing-times increase as the number of 

characters per view for each participant rises. Prediction H6 was added to this experiment as a 

consequence of the previous studies’ (first and second experiments, Chapters 3 and 4) 

observations about the relationship between writing-times, view-times, and 𝑝𝑎𝑢𝑠𝑒𝑄3 to 

characters per view. Since chunking processes are predicted to affect characters per view, 

writing-times, and Q3 pauses, there should be an explicit and systematic relationship between 

them. Since view-times are not meant to be chunk-based, there will be no actual relationship 
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between view-times and characters per view. The previous two experiments showed that 

writing-times significantly predicted characters per view, which provides further evidence of the 

importance of chunking in freehand transcribing. Thus, with this experiment, a positive 

relationship between characters per view and writing-times is predicted, as both are expected 

to improve as Java familiarity scores increase (according to H1 and H2). Whereas a negative 

relationship between characters per view and Q3 pauses is anticipated, since pauses are 

expected to decrease as Java familiarity scores increase (according to H4). I anticipate a poorer 

relationship with view-times, since view-times are not thought to be directly linked to 

programming competence (according to H3). 

In summary, to further investigate whether chunking might explain the differences between 

writing-times, view-times, and Q3 pauses, scatter plots of these variables versus characters per 

view were plotted (Figure 5.13,Figure 5.14, and Figure 5.15) for all the participants in all the 

conditions of the experiment (i.e., basic and advanced). 
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Figure 5.13 Relation of writing-times to characters 
per view (basic (blue) and advanced (red) stimuli) 

Figure 5.14 Relation of view-times to characters per 
view (basic (blue) and advanced (red) stimuli) 

 

 
Figure 5.15 Relation of pauses to characters per view (basic (blue) and advanced (red) stimuli) 
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Table 5.6 Relation of writing-times, view-times, and pauses to characters per view 
 

Figure 5.13, Figure 5.14, and Figure 5.15 above demonstrate the linear regression relationship 

between writing-times, view-times, and Q3 pauses against characters per view for the 

participants across the basic and advanced stimuli. A simple linear regression was used to see 

whether writing-times, view-times, and Q3 pauses could estimate characters per view. In Table 

5.6 above, the linear regression relationships of writing-times, view-times, and Q3 pauses as 

functions of characters per view are presented for both stimuli difficulty levels. 

In Figure 5.13, Figure 5.14, and Figure 5.15, the blue and red lines for basic and advanced stimuli, 

respectively, are steeper (greater constant values) for writing-times and 𝑝𝑎𝑢𝑠𝑒𝑄3 than view-

times, which is consistent with the first and second experiments’ findings (Chapters 3 and 4) and 

supports H6. None of the correlations can be attributed to chance excluding that for the Q3 

pauses advanced stimuli. The 𝑅2 values for writing-times are higher – indicating a closer 

relationship – than for view-times and Q3 pauses. Writing-times are thus considered to be a 

strong predictor of characters per view in transcription tasks. 

Basic Advanced

21 21

19 19

Constant 0.66 0.66

Intercept 0.96 0.77

f 61.33 48.39

significance f 0.000 0.000

0.76 0.70

Constant 0.10 0.18

Intercept 0.64 0.18

f 7.46 12.59

significance f 0.013 0.002

0.28 0.40

Constant -23.68 -25.11

Intercept 840.44 811.42

f 6.32 2.78

significance f 0.021 0.112

0.25 0.13

df

Writing-times

View-times

Pauses

stimuli name

N

𝑅2 

𝑅2 

𝑅2 
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Another point to note is that the writing-times for both basic and advanced stimuli predict 

characters per view at equal strength in the relationship, whereas for view-times, advanced 

stimuli have a much closer relationship with characters per view than basic stimuli, and vice 

versa for Q3 pauses.  

In summary, writing-times has notably the better 𝑅2 constant and intercept values than view-

times and 𝑝𝑎𝑢𝑠𝑒𝑄3 against characters per view, as revealed in Table 5.6. Thus, prediction H6 is 

supported. The relationships’ direction is as expected, the absolute magnitudes of the gradients 

are significant, and the data points follow the linear regression line very well. All of this means 

that writing-times versus characters per view are the most reliable indicator of the chunking 

process, as shown in Figure 5.13. Since chunking is the whole principle behind my method of 

assessing Java competence in freehand transcription, additional proof that chunking is occurring 

is reassuring. 

The subsection that follows goes into further detail about the findings for the analyses (part 2) 

using my six hypotheses. 

5.3.4 Discussion part 2 

The results of part 2 are discussed in this subsection, as well as the six hypotheses, H1 to H6, that 

were discussed in the introduction section of this chapter.  

The previous experiment (Chapter 4) revealed that both the view display (VD) measure Q3 

pauses and the hide and show (HS) measures characters per view and writing-times can be used 

to assess Java programming competence in a transcription task. Earlier studies have shown that 

measurements of pause distribution, in similar types of tasks, seem to reflect chunk structures 

of participants and hence could be applied to evaluate learners’ competence (Cheng, 2014, 

2015; van Genuchten & Cheng, 2010; Zulkifli, 2013). This experiment, like the first and second 

experiments (Chapters 3 and 4), builds on those findings and is similar to the previous 

experiment (Chapter 4) in terms of experiment design, method, and stimuli. The distinction is 
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that in this experiment all of the participants were from the same year group/education level, 

while in previous experiments the participants were from a wider range. 

 

Figure 5.16 Pre-test and post-test familiarity scores for participants, ranked according to post-
test familiarity scores 

 

Figure 5.16 above shows the pre-test and post-test familiarity scores for all the students, who 

are ranked (P1 to P21) according to their post-test familiarity scores. Overall, participants’ 

familiarity scores improved from the pre-test to the post-test, implying that they were more 

familiar after studying. Only three of the 21 cases have slightly higher familiarity scores from the 

pre-test to the post-test. However, when the participants performed the experiment for the first 

time and before studying (pre-test), there is proof that familiarity scores were accurate because 

they matched up with their Java ratings in the pre-test, as seen in Table 4.2 (Chapter 4).  

On the other hand, after studying the Java module (post-test) and repeating the experiment, 

familiarity is no longer reliable, as shown in Table 5.4. When participants were asked to re-

evaluate their familiarity with the same stimulus for the post-test, they were very confused 

about what precisely to apply their familiarity scores to. They considered various factors, such 

as: had they come across these code segments of the stimulus before studying the module? Or 
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did they come across them while working on the Java module? Or maybe both? Participants 

were confused and unable to provide accurate and precise familiarity scores at this point of the 

experiment. As a result, familiarity becomes even more unclear, and it no longer serves as an 

independent measure of this experiment. Furthermore, we might conclude that familiarity as 

an independent variable only works in a limited number of situations. Luckily, I had a good 

measure of the participants’ Java competence in the form of their final exam marks. 

Generally, the linear regression analysis showed that there is a relationship between the 

independent variable (exam marks) and the behavioural measures, which is stronger for 

characters per view and 𝑝𝑎𝑢𝑠𝑒𝑄3 than it is for writing-times. This experiment confirmed the 

results of the previous experiment (Chapter 4) in terms of the significant variance in temporal 

chunk signal HS measure (characters per view) and the VD measure (Q3 pauses) as a function of 

participants’ Java competence. For both experiments, the direction of the relationship of 

characters per view and Q3 pauses to Java competence, are similar, which matches H1 and H4.  

The simple linear regression outcomes shown in Table 5.5 allow me to answer ‘Yes’ to the 

question: Will the behavioural measures be effective at detecting the learning that occurred 

during the Java course?  

Hypothesis H1 predicts a positive relationship between characters per view and final exam 

marks, and hypothesis H2 also predicts a positive relationship between writing-times and final 

exam marks. Hypothesis H3 predicts that there will be no relationship between view-times and 

programming competence. The results are consistent with H1 and H3, with minor differences in 

specifics, and expand the observations of the first and second experiments (Chapters 3 and 4), 

as well as the work of Albehaijan and Cheng (2019). H2 is weakly supported. Additionally, the 

effect is weaker in this experiment compared with the second experiment, this could be because 

the stimuli used for this experiment (after learning) are the same as those used in the second 

experiment (before learning). But the students have had a full term of learning Java, so the 
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advanced stimulus is not difficult enough to successfully discriminate them (i.e., the advanced 

stimuli become much easier). In accordance with chunking theory, the overall findings reveal 

that participants’ temporal chunk signals are determined by their Java chunk structures, as 

reflected in their final grades. View-times, on the other hand, were not considered to be a 

sufficient predictor of competence in this experiment. This assumes that any chunking 

consequences that can occur when viewing a stimulus will be minimised. Characters per view 

can be regarded, in this experiment, as a measure of Java competence in transcription tasks. 

Hypothesis H4 predicts a negative relation between 𝑝𝑎𝑢𝑠𝑒𝑄3 and final exam marks. For each 

participant, Q3 pauses may affected by the participant’s Java comprehension level, and thus the 

participant’s chunk structure. The simple linear regression analysis, as shown in Table 5.5, 

demonstrates that Q3 pauses can distinguish participants’ Java competence. As a result, 

Q3 pauses may have some potentials to be an indicator of Java competence in transcription 

tasks. 

Hypothesis H5 predicts that participants will perform better on basic stimuli than on advanced 

stimuli, and is supported for characters per view and writing-times and partially supported for 

Q3 pauses, which is compatible with the previous experiment (Chapter 4). This is to be 

anticipated because the basic stimulus is intended to be easy, and most participants should be 

able to transcribe it appropriately. The disparity in participant results between the HS and VD 

tests may be due to a variety of factors, as mentioned before; this might be because VD (where 

𝑝𝑎𝑢𝑠𝑒𝑄3 were collected) and HS (where characters per view and writing-times were collected) 

are two distinct display methods. Also, 𝑝𝑎𝑢𝑠𝑒𝑄3 is a finer-grained measure that picks up on 

every particular piece of punctuation, while characters per view and writing-times are made up 

of groups of characters. (More justification can be found in Discussion part 1, Chapter 4). 

Lastly, hypothesis H6, which focuses on the existence of a clear and significant relationship 

between writing-times and characters per view (the more time participants spend transcribing, 
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the more characters per view they will develop), is supported by this experiment as well as the 

first and second experiments (Chapters 3 and 4). The linear regression analysis for writing-times, 

view-times, and 𝑝𝑎𝑢𝑠𝑒𝑄3 against the characters per view measure proved the following: Figure 

5.13 and Table 5.6 show that there is an evident relation between writing-times and characters 

per view, which supports my base predictions, H1 and H2. On the other hand, as shown in Figure 

5.14 and Table 5.6, the relationship between view-times and characters per view is not evident, 

as it is with the writing-times measure, which supports my third prediction, H3. As presented in 

Figure 5.15 and Table 5.6, there is a negative relation between 𝑝𝑎𝑢𝑠𝑒𝑄3 and characters per view, 

which supports my fourth prediction H4.  

To sum up, predictions H1, H4, and H5, related to characters per view and 𝑝𝑎𝑢𝑠𝑒𝑄3, are 

supported by the independent measure (exam marks). H2 is weakly supported. Additionally, I 

did not spot any indication that view-times are a suitable measure of competence, which 

supports my third prediction, H3. Prediction H6 was prompted because, as shown in the results 

earlier, there is a significant relationship between writing-times and characters per view, which 

provides further evidence about chunking, thus, support Albehaijan and Cheng (2019) findings.  

5.4 Overall discussion 

The findings of all three experiments confirm that I am able to answer ‘Yes’ to the main research 

question: Can programming competence be measured by analysing patterns of chunk behaviour 

in a program code transcription task? The outcomes assure that I am also able to answer ‘Yes’ 

to this chapter’s questions: 1) Will examining the same students after a short period of learning 

time show a significant difference in their performance, and thus their Java programming 

competence? The results (part 1) show significant development in the mean scores of all the 

behavioural measures after learning, thus this experiment reveals a difference in participant 

performance over a particular time, despite the fact that the extra experience is just three 

months. 2) Are the behavioural measures still able to demonstrate the differences between the 
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participants within the experiment? Hypotheses Ha to He and hypotheses H1 to H6 (except H2) 

are supported, with some divergence in the details.  

This experiment’s outcomes, generally, supports the findings of both the first and second 

experiments (Chapters 3 and 4). Table 5.5 above shows that, in this experiment, characters per 

view and 𝑝𝑎𝑢𝑠𝑒𝑄3 may have some potentials as measures of competence, and there is a 

marginal effect for the writing-times measure. No evidence of a relationship between view-

times and programming competence was found in this experiment. When it comes to the stimuli 

difficulty levels in this experiment, the advanced stimuli differentiate participants’ levels better 

than the basic stimuli. The correlation (Table 5.4) and the regression analysis (Table 5.5) values 

are not significant for basic but are for advanced, and this may be because all the students 

improved. Thus, the stimuli were no longer sufficiently difficult on average across all the 

students, meaning there was no visible difference between basic and advanced as everything 

had now become basic for all the students. 

Both the second (pre-test) and third (post-test) experiments are similar, except for the following 

differences:  

• The aim of the third experiment was to conduct a post-test analysis in order to compare 

participants’ performance after studying the Java module over a three-month period to 

their performance in the pre-test (previous experiment, Chapter 4). It was discovered 

that the temporal chunk signals (behavioural measures) would detect substantial 

changes in student success before and after learning. 

• PPCS stimuli contain randomly ordered letters and numbers. These were used in both 

the second and third experiments, but the difference was in the PPCS stimuli content 

design. In this experiment, PPCS were written in two ways (quintuple (i.e., S5) and 

sextuple (i.e., S6)). However, the PPCS in the previous experiment were written in four 

different forms (single (i.e., S1), double (i.e., S2), triple (i.e., S3), and quadruple (i.e., 
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S4)), such as ‘k 6 m 4 I 7 h 2 z …’ and ‘f6 3c 1t w9 4e x5 …’ etc. Notwithstanding, the 

analysis of PPCS is not included in this chapter. It was found that characters per view, 

writing-times, view-times, and Q3 pauses are not improved by normalizing using PPCS. 

Normalizing the PPCS test has very little impact on participants’ temporal chunk signals, 

which contradicts prediction H6. 

• In the previous experiment (Chapter 4), participants had a broader range of educational 

levels (undergraduate to faculty members). The participants in this experiment were all 

first-year undergraduate students who had participated in the previous experiment 

(second experiment, Chapter 4). 

• There were 51 participants in the previous experiment, and 21 participants in this 

experiment. 

• The previous experiment showed the differences between the participants’ 

performance quite well. But when focusing on only the 21 participants from both 

experiments, the results were not as strong for the relations between the independent 

variables (either familiarity or final exam marks) and the dependent variables 

(characters per view, writing-times, view-times, 𝑝𝑎𝑢𝑠𝑒𝑄3). 

• For the previous experiment, the dependent variables significantly predicted 

familiarity, whereas familiarity no longer works as an independent variable for this 

experiment. Thus, we could infer that familiarity as an independent variable is only 

effective in a narrow range of cases, and we have to be careful when using it as a 

competence measure. 

• In the previous experiment, the independent variable was familiarity scores, and in this 

experiment, it was final exam scores. 
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5.4.1 Suggestions and future work 

In terms of recommendations for future experiments, if the debate is to be moved forward, a 

better understanding of familiarity scores needs to be developed and we should be more precise 

about what we mean by familiarity. Another suggestion is the implementation of Java or 

programming self-rating scores, such as using a proper Java test before running the experiment 

e.g., 10 multiple-choice Java questions instead of the familiarity scores. In this experiment I did 

not have materials to challenge the students at the right level of familiarity; future work could 

have more sophisticated materials. 

5.5 Summary 

•  It is possible to measure actual learning gains over a short period of time using this 

thesis methodology; this is especially novel because it is the first time this has been done 

in such studies. 

• Almost all students showed significant differences in mean values before (Pretest) and 

after (Posttest) learning. 

• Familiarity scores may be effective as an independent measure of competence only 

when the experiment is carried out for the first time. 

• Significant relations were found between the dependent measures (Characters per 

view, writing-times, and pauses) and the independent measure of competence (i.e., 

final exam marks). However, these relationships are weaker in this experiment, which is 

to be expected given that all of the students have learned and the same stimuli can no 

longer differentiate their levels. 

• Significant relationships between Characters per view and writing-times were once 

more spotted, likewise the previous experiments. 
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6 Discussion and conclusion  

Chapter content: 

• Introduction which presents the main thesis questions.  

• Recap of the chunking theory. 

• How this research relates to previous work. 

• Main research findings: 

o Does the longitudinal post-test study show learning gain over a short period of 

learning time?   

o Does the complexity analysis improve the discrimination of the stimuli?  

• Discussion of findings, limitations, and implications for future work: 

o Why a freehand transcription (i.e., copying) task?  

o Transcription modes.  

o What kind of stimuli were used? 

o Can the components of the chunks be revealed?  

o What kind of measure is suitable? 

▪ Extra evidence of chunking  

o Does normalization improve the measures? 

o Novel thesis contributions.  

o Limitations and suggestions for future research.  

• Real-world application of the approach and final conclusion 

• Summary 

 

6.1 Introduction 

The overarching aim of this study was to evaluate whether signals of cognitive chunk structures 

could be used to reveal cognitive processes occurring in a freehand writing programming 

transcription task, to serve as measures of Java competence. Put another way:  

To develop a novel method that quickly and efficiently assesses programming 

comprehension by analysing the cognitive chunk structures and behavioural measures 
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(characters per view, writing-times, view-times, and Q3 pauses) that occur during the 

activity of Java code transcription. 

Throughout this thesis, a number of questions were raised: 

1) Can programming competence be measured by analysing patterns of chunk behaviour 

in the task of program code transcription? This extends chunk-based measures of 

comprehension to domains beyond mathematics and natural language learning. 

2)  Is it possible that handwriting a program code could provide powerful and stable 

temporal chunk signals that can be used to assess programming comprehension?  

3) Can programming comprehension be accurately measured using view-numbers/or 

characters per view, writing-times, view-times, and 𝑝𝑎𝑢𝑠𝑒𝑄3, in a freehand writing 

transcription task? 

4) Can characters per view, writing-times, view-times, and Q3 pauses be improved by 

normalizing using participants’ preferred cluster size?   

5) Will the behavioural measures be effective at detecting the learning that occurred 

during a Java course?  

These questions were constructed around the goals of this research, which were to explore: (1) 

an efficient transcription technique, (2) the type of stimuli appropriate to a transcription task, 

and (3) the probable programming comprehension measures, characters per view, writing-

times, view-times, and Q3 pauses. 

This chapter begins with a reminder of how the approach used in this thesis taps into chunking 

theory and how it relates to comparable prior work, followed by a quick summary of the primary 

results for this thesis. Different aspects of all the experiments are then discussed. The chapter 

then discusses limitations, implications, and future research contributions. It concludes with a 

general statement on the discoveries of this thesis. 
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6.2 Recap of chunking theory 

A chunk is a memory unit whose components are highly related to one another but only weakly 

related to components in other chunks. In general, the chunking process occurs during learning, 

and it begins to build hierarchies of structures of chunks in memory through learning. These 

chunk structures in memory can be used for a variety of tasks, including transcription. When 

participants are about to transcribe a piece of code, they use the chunk hierarchy to recognise 

what is in the stimulus. And because participants are using chunks, this affects their behaviour, 

which can be assessed in terms of how often they look at the stimuli (view-numbers), how many 

characters they have been transcribing in one view (characters per view), and how long they 

have been transcribing (writing-times), all of which are obtained in the hide and show (HS) 

presentation mode, or in terms of how long they pause before transcribing any stroke (Q3 

pauses), obtained in the view display (VD) mode. These measures were then used to assess Java 

programming competence, as how high the competence is equivalent to how good the chunk 

hierarchy is. 

The three experiments in this thesis support the underlying idea of chunking as a cognitive 

process that is used to differentiate high-competence from low-competence participants in 

various domains, and confirms that high-competence participants create bigger chunks with 

functional components, with a smaller number of views. This thesis has demonstrated that the 

chunk structures of each participant offered indications of their programming comprehension 

level. And the findings confirm the findings of prior research (mentioned in Chapter 2, section 

2.2.2) that demonstrated the potential of utilising chunking in evaluating individuals’ 

programming comprehension. 
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6.3 How this thesis relates to previous work 

The work of Cheng (2014, 2015) in the maths field and Zulkifli (2013) in regards to second 

language learners served as the foundation for this thesis in terms of using pause analysis to 

measure competence and to distinguish participants’ competence levels in various domains. 

This thesis validates the use of this method in measuring programming comprehension by 

differentiating participants’ Java programming comprehension levels.  

This research method, which relies on analysis of chunk signals in freehand transcribed Java 

code, surpasses other conventional methods of measuring programming comprehension, which 

use comprehension tasks such as composing, debugging, or modifying program code, by 

producing more accurate and precise outcomes in a short period of time, saving the student and 

the instructors (teacher, trainer, marker) time and effort. Previous studies, such as Adelson 

(1984), Miara et al. (1983), Rambally (1986), and Sarkar (2015), measured programming 

competence using computer-based techniques and common tasks such as modification, 

debugging, composition, and so on, whether in educational assessments or empirical studies. 

Studies such as Soloway and Ehrlich (1984), McKeithen et al. (1981), Barfield (1986), and 

Shneiderman (1976) were able to identify distinctions between specialists and beginners in 

programming via recall tasks and programming knowledge structures, whereas this thesis aimed 

to differentiate programmers’ competence levels via a freehand transcription (copying) task and 

determining chunk structure signals. Despite the fact that time was utilised as a metric in that 

research, their time frame is relatively long (i.e., minutes). As a result, while their notion of 

utilising time to assess programming comprehension is beneficial, it is not so effective for the 

purposes of this thesis, since the pauses are considerably shorter. Pauses in research more 

similar to this, such as Cheng (2015) and Zulkifli (2013), range from 100 milliseconds to a few 

seconds.  
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6.4 Main findings             

This thesis primarily demonstrated that individuals’ chunk structure signals have potential as a 

method of assessing Java programming comprehension in a freehand transcription task. In 

particular, view-numbers or characters per view, writing-times, and pauses have some potential 

in measuring competence. However, view-times do not (as expected).  

 

Table 6.1 Relationship of view-numbers, characters per view, writing-times, pauses, and view-times to 
familiarity and exam marks 

Table 6.1 above summarises the relationships between the dependent variables and the 

independent variables, across all the three experiments and across the two levels of stimuli 

difficulty, by presenting the 𝑅2 and significance values. For the first experiment, only the HS 

transcription task (which provides the view-numbers or characters per view, writing-times, and 

view-times measures) was addressed, but for the second and third experiments, both HS and 

VD (Q3 pauses measure) tasks were considered. Concerning the independent variables, 

familiarity scores were calculated for all three experiments, whilst final exam marks were also 

used for the third experiment. In terms of the stimuli, the same stimuli were applied for both 

the second and third experiments, as the main purpose of the third experiment was to assess 

whether students’ learning over a short period of time (three months) can be measured.  

Overall, the R2 of view-numbers, characters per view, writing-times, and pauses were significant 

in the first and second experiments. On the other hand, despite the fact that the students’ 

familiarity scores increased after learning (third experiment), the dependent variables for the 

third experiment were more weakly related to the independent measure of competence, 

P P P P P P

View-numbers 0.60 0.000 0.46 0.000

Char per View 0.21 0.001 0.13 0.009 0.07 0.236 0.21 0.039

Writng-times 0.47 0.001 0.32 0.231 0.12 0.015 0.05 0.137 0.04 0.413 0.14 0.090

Q3 pause VD 0.23 0.000 0.25 0.000 0.02 0.536 0.24 0.025

View-times HS 0.21 0.000 0.08 0.000 0.00 0.762 0.00 0.762 0.09 0.198 0.08 0.217

Dependant V
Transcription 

mode

1st Experiment 2nd Experiment 3rd Experiment 

N

Familirity (Independent V)

N

Familirity (Independent V)

N

Exam marks (Independent V)

Basic Advance Basic Advance Basic Advance 

HS

24 51 21

𝑅2 𝑅2 𝑅2 𝑅2 𝑅2 𝑅2
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although, as in Table 6.1 above, characters per view and Q3 pauses significantly predict final 

exam marks for the advanced stimuli.  

Cohen (1992) pointed out that 𝑅2 values (goodness of fit values) are considered low when they 

are 0.12 or lower, medium when they are between 0.13 to 0.25, and high when they are 0.26 or 

higher. For view-numbers (or characters per view), writing-times, and Q3 pauses results, the 𝑅2 

values are stronger for the first experiment than for both the second and third experiments. To 

illustrate, the 𝑅2 values for the second experiment decreased, which is not surprising given that 

the second experiment had a larger number of participants, the majority of whom had a 

narrower range of Java experience. As a result, the amount of variation among all participants 

was reduced. Why did I choose to administer the second and third experiments to students with 

a narrower range of abilities? The first experiment demonstrated the applicability of the 

approach to the programming domain, while the second and third experiments applied the 

approach to more realistic samples with a range of ability similar to that which would be found 

in real tests.   

The 𝑅2 values decreased for the third experiment basic stimuli (as expected) but increased for 

the advanced, for various reasons; all the students were from the same year group, and all of 

them had learned for the same period of time (details about the improved results are discussed 

below), thus, the basic stimuli became easy for everyone after learning. As a result, 

distinguishing between student levels became more difficult. For the advanced stimuli, the 𝑅2 

values increased, as expected, indicating that the students had learned. As a result, the 

advanced stimuli became more effective in differentiating their levels of competence after 

learning than when they were used before learning (second experiment).  

Across the experiments, for the first experiment, view-number (or characters per view) and 

writing-times have the stronger 𝑅2 value. For the second and third experiments, characters per 

view and Q3 pauses have stronger 𝑅2 values than writing-times. View-times have low values (as 
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expected), as the purpose of implementing view-times was to give more support to the chunking 

explanation. It is apparent from all three experiments that view-numbers (characters per view), 

writing-times, and pauses have the potential to predict Java programming competence. These 

findings are consistent across all the behavioural measures, as they point in the same directions 

across the three experiments (i.e., they consistently distinguish participants’ levels of Java 

competence). 

The results overall support the main thesis hypotheses: (1) More competent participants have a 

smaller number of views of the stimulus because their chunk size is bigger. (1a) The number of 

characters per view increases after learning. (2) For more competent participants, the duration 

of written answers after each stimulus view is longer because their chunks are bigger and each 

character takes the same time to write. (2a) The duration of written answers following each 

stimulus view is longer after learning. (3) The amount of time spent on each individual view of 

the stimulus is not directly related to competence. (3a) The amount of time spent on each 

individual view of the stimulus is unrelated to learning gain. (4) Pause duration before beginning 

writing each stroke is shorter for more competent participants. (4a) Pause duration is shorter 

after learning. (5) Performance on simple stimuli is superior to performance on advanced 

stimuli, with fewer view-numbers, longer writing-times, and shorter pauses, but there is no 

effect on view-time. (5a) Participants’ performance is better on the basic stimuli than on the 

advanced after learning. (6) Writing-times are directly related to characters per view; the longer 

participants spent transcribing, the more characters per view they produce. On the other hand, 

the results did not support one of my hypotheses: that behavioural measures would improve 

after normalizing them for the PPCS measures (justification is presented below).  

To sum up, the results indicate that view-numbers, characters per view, writing-times, and 

pauses have potential as indicators of Java competence, extending the findings of previous work 

in maths (Cheng 2014, 2015) and second language learning (Zulkifli, 2013). Further details 
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regarding the independent and dependent variables, as well as the best-suited measure, are 

given below. 

6.4.1 Does the longitudinal post-test study show learning gain over a short period of 

learning time?   

Temporal chunk signals have been used to measure competence in previous studies (such as 

Cheng, 2014, 2015; van Genuchten & Cheng, 2010; Zulkifli, 2013), and this thesis’s first and 

second experiments. Static levels of competence were used and participants came from a 

diverse range of backgrounds. However, the third experiment in this thesis (Chapter 5) aimed to 

assess learning gains in the same students who took part in the previous test (second 

experiment, Chapter 4). This thesis’s third experiment is the first to show changes in chunk 

structures over a short period of learning time (i.e., from the start to the end of a single Java 

module), which equates to only three months of additional experience.  

 

Table 6.2 Mean post-test and pre-test values and the percentage of change in the values of 
behavioural measures across all the behavioural measures over basic and advanced stimuli  

 

Table 6.2 above presents the mean values for all of the HS and VD behavioural measures for 

both basic and advanced stimuli before (pre-test, in the second experiment) and after (post-test, 

in the third experiment) learning on the Java course. The table shows the percentage change in 

behavioural measure values after completing the Java course. The study showed significant 

differences in participants’ behaviour due to learning for a short period of time, which is clear 

from the percentage of change in the behavioural measures. Put another way, the experiment 

outcomes show significant progress in the mean scores of characters per view, writing-times, 

and 𝑝𝑎𝑢𝑠𝑒𝑄3 for all the students after learning, with stronger values for characters per view. 
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Again, these findings reassuringly support the previous experiment’s results (before learning) 

because the behavioural measures show consistent patterns across both experiments. 

Characters per view and writing-times increased with an increase of competence, while pause 

duration decreased. The results also reassure that view-times do not suggest a difference in 

participant outcomes before and after learning.  

6.4.2 Does the complexity analysis improve the discrimination of the stimuli?  

After analysing the second experiment’s data, a complexity analysis was conducted (section 

4.3.3.). The investigation was carried out to determine whether the complexity of the stimulus 

is an extra factor that needs to be addressed when designing the stimuli. Might it enhance the 

disparity between the levels of stimuli complexity? This analysis concentrated on analysing the 

experimental stimuli based on the complexity factor by evaluating the proportion of various 

stimulus components. 

 

Table 6.3 Mean values of all the behavioural measures across all participants, over different 
stimuli difficulty (basic, advanced) and complexity (simple, complex) levels  

  
Table 6.3 above compares the mean values of the number of characters per view, the writing 

durations, the viewing stimulus durations, and the pause durations between different levels of 

stimuli difficulty (basic and advanced) and complexity (basic: simple and complex; advanced: 

simple and complex). I observed that when the complexity factor is considered, the difference 

between the stimulus complexity levels increases for all behavioural measurements. Q3 pauses, 

in particular, show a marked increase in differentiation. Characters per view change more than 

 (simple) (complex)  (simple) (complex)

Charters per 

view
5.5 5.4 6.4 4.6 5.2 5.6

Writing-times 5.3 4.9 6.1 4.6 5.0 5.0

View-times 1.6 1.5 1.7 1.6 1.6 1.5

Q3 pause 748 735 646 899 678 756

Behavioural 

measures 

Main analysis Complexity analysis 

Basic Advanced
Basic Advanced
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writing-times, while view-times are constant. This analysis shows a distinct discrimination 

between the two complexity stimuli (simple and complex), with the basic category exhibiting 

the highest discrimination and improvements in mean values across all behavioural measures, 

as predicted by the stimuli complexity analysis (Table 4.5 in Chapter 4).  

The results show that the complexity factor has an influence, implying that when developing 

stimuli, it is important to take into account both the stimuli difficulty level (according to the Java 

curriculum) and the stimuli complexity level. Finally, the Q3 pauses show the highest 

enhancement in mean values of all the behavioural measures, which may be due to the VD 

measure being better suited to the unique characteristics of the transcription task. 

 

6.5 Discussion of findings, limitations, and implications for future work 

6.5.1 Why a freehand transcription (i.e., copying) task? 

The reason for implementing the freehand transcription task for this thesis was that 

transcription simplifies and clarifies cognitive processes, making participants’ knowledge visible 

and able to be measured, whereas other programming tasks, such as composing program code, 

may involve editing the code (i.e., rewrite, delete, debug, etc.), which will undoubtedly generate 

noise that will negatively impact the programming comprehension measure. As a result, the 

participants’ programming knowledge may be hidden, making it difficult to precisely identify 

chunk structures. 

Freehand transcription was chosen over typing in order to get a better method of measuring 

competence. The focus in this thesis was on using a more precise time scale (milliseconds), which 

is only achievable with freehand writing, and which offers richer and more distinguishable chunk 

signal data than keyboard typing (Cheng & Rojas-Anaya, 2005; Zulkifli, 2013). And as this thesis 

targeted participants who were educated adults, freehand writing (i.e., transcribing) is a 



228 
 

 
 

fundamental skill for them. On the other hand, the results obtained through typing would be 

influenced by the different participants’ typing abilities and thus would be imprecise.  

To summarise, freehand transcription was considered an adequate, effective, and simple writing 

assignment that could be used to evaluate cognitive processes due to the consistency of data it 

provides. In addition, the transcription method used in this thesis is a novel method that has not 

previously been used in the programming domain. 

6.5.2 Transcription modes   

The research demonstrates that in order to obtain the primary measures of this thesis, both 

display techniques (i.e., transcription modes), view display (VD), and hide and show (HS), can be 

used. The HS transcription mode was used to obtain view-numbers, characters per view, writing-

times, and view-times, where the stimulus is only visible when a special button is pressed. To 

obtain the Q3 pauses measure values, the VD transcription mode was used, in which the 

stimulus is always visible. Thus, throughout this series of experiments, I was able to successfully 

assess participants’ Java programming comprehension by using both HS and VD measures. 

In both transcription modes, participants transcribed each character (letter, number, or 

punctuation) in a separate box within the specially designed response grid. The study confirms 

that this method of transcription is beneficial, as strong correlations were found across the 

experiments. This method was chosen because it produced successful outcomes for Cheng and 

Rojas-Anaya (2004, 2005, 2006, 2007), who established the method first, and Zulkifli (2013), who 

successfully followed their approach. While putting each character in a distinct box may seem 

uncontrollable, the impact is constant for each character, so it should have no effect on the 

overall data. Besides, participants quickly adjust to this method of transcribing, and it does not 

appear to have a negative impact on their performance (Cheng, 2014; Zulkifli, 2013).  
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6.5.3 What kind of stimuli were used? 

As the target population was from the Department of Informatics at the University of Sussex, 

and Java is the base programming language for almost all undergraduate modules, 

undergraduate Java modules played a significant role in deciding on the stimuli content for all 

of the experiments. Two pairs of basic and advanced versions of the stimuli were used. The 

syntax in the basic stimuli was a critical component of their first year of Java instruction. The 

advanced stimuli syntax was more specialised and comes from advanced Java modules. 

Following the analysis of the first experiment’s data, a content analysis was performed, which 

revealed that, in general, participants choose to return to the stimulus (i.e., break) more 

frequently before transcribing three elements: punctuation marks, capitals within variables or 

reserved words, and spaces. This was taken into account while developing the second 

experiment’s stimuli, which involved increasing the density of the syntax (i.e., punctuation, 

variables with capital letters in the middle, and spaces). After analysing the second experiment’s 

data, it was discovered that not only is the stimuli difficulty factor important, but also the 

complexity factor. PunctuationALL (i.e., summation of brackets and punctuation marks) and 

TextAll (summation of reserved words and variable names) were compared, then the stimuli 

(both basic and advanced) were further broken into simple and complex. When the complexity 

factor was considered, it distinguished the students’ behaviour between simple and complex 

stimuli much more clearly. 

Various aspects were considered when designing the stimuli (as discussed in Chapter 2), such as 

the use of indentation and modularity (where each module has a clear function), which aided in 

differentiating programming comprehension levels. In order to achieve a high level of 

experimental control, I decided to use small code fragments. Each fragment consisted of a 

specific number of code lines. Because the response sheet is made up of distinct small boxes, 

needless spaces between code phrases were eliminated to minimise uncertainty when 

transcribing these unnecessary spaces. After obtaining the content analysis findings (Chapter 3), 
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further stimulus design decisions were made for the subsequent experiments, such as focusing 

on increasing the syntactic intensity of the code fragments and shortening the variable names. 

Finally, after conducting three experiments for this thesis, it was revealed that adopting the 

previously mentioned aspects aided in meeting the thesis’s major aim of differentiating high-

competence participants from low-competence participants. Focusing on the program code 

complexity level (by increasing the quantity of punctuation such as symbols and brackets) aided 

in creating two clearly separate stimuli difficulty levels. Via all the above, participants’ 

competence levels were clearly differentiated, which is concluded via obtaining clear and precise 

chunk structure signals. 

Prior research indicates that when utilising scrambled versions, beginners and professionals 

behave similarly; Zulkifli (2013), who utilised the same approach (i.e., pause analysis during 

copying) to assess second language learners’ competence, and Shneiderman (1976) discovered 

no benefit to utilising random/scrambled versions. As the primary goal of this thesis was to 

discover a strategy that clearly distinguishes professionals from beginners, prior work suggested 

that employing scrambled program code versions in this thesis would have been pointless. 

6.5.4 Can the components of the chunks be revealed?  

At the end of the first experiment (Chapter 3), a content analysis was performed to provide 

additional evidence that chunking had occurred, and to state that chunking does not happen at 

arbitrary positions, but rather at the boundaries between things that are meaningful. Thus, I 

could determine the exact content of each chunk. 

This analysis revealed a set of results, mainly that there is a negative relation between 

participants’ programming familiarity and the number of breaks they take (i.e., number of views 

of the stimulus). The results imply that, firstly, the breaks are more associated with punctuation 

marks than reserved and variable words. Thus, the greater number of breaks that accompany 

punctuation, the less competent participants are. Secondly, the more breaks associated with 
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capital letters within reserved and variable words, the lower participants’ competence. For 

example, if a capital appears within a variable or reserved word, low-competence participants 

write it as two words because they recognise it as two distinct words, whereas high-competence 

participants identify it as one word. Thirdly, low-competence participants produced more space-

related breaks than highly competent participants. For example, a high-competence participant 

can get three words as one chunk rather than three separate chunks, while a low-competence 

participant gets them as three sperate words. On the other hand, for all the participants, there 

is a weak relation between familiarity and the number of breaks in reserved and variable words, 

and in the strokes within each character, as shown in Table 3.6. All of this implied that when 

designing the upcoming experiment stimuli, the emphasis should be on syntax density by 

increasing the number of punctuation marks and capitals inside variable names, and on 

attempting to minimise the number of variable names. As a result, the levels of programming 

comprehension will be better distinguished between low- and high-competence groups. 

To summarise, the chunks effect was clearly visible in the punctuation marks, capital letters 

within variable and reserved words, and allocated spaces in the program code. Views (i.e., 

breaks), on the other hand, were not displayed within reserved and variable words or in strokes 

within each character. Consequently, it might be possible to use this kind of analysis to 

supplement the overall measures of competence. For example, knowing what characters have 

been written allows you to select pauses that are likely to be associated with the beginning of 

chunks (i.e., punctuation marks or the first letter of specific reserved words). In other words, 

knowing what is likely to be at the start of each new chunk, and thus knowing where the pauses 

are likely to be longer. So, rather than using the pauses’ third quartile, an interesting line for 

future research could be to use this type of data. 

6.5.5 What kind of measure is suitable?  

Throughout the experiments, various independent and dependent variables were utilised.  
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Firstly, familiarity scores and final exam scores (third experiment) were used as independent 

variables. The behavioural measures significantly predicted familiarity scores in both the first 

and second experiments but not in the third. To demonstrate, familiarity as an independent 

measure performed well when the participants performed the experiment for the first time and 

before taking the Java module (first and second experiments). However, for the third 

experiment (after taking the Java module) the participants’ experience had generally increased 

(i.e., participants’ competence levels were more similar), so there was much less to differentiate 

their levels of competence. To illustrate, in the third experiment, when participants were asked 

to re-evaluate their experience with the identical stimuli, I suspect they became quite confused 

about what to attribute to familiarity to. Thus, it may be concluded that familiarity is only 

effective in a limited number of situations. However, the Java module results show a difference 

between student levels of competence; as a result, student exam scores were used as an 

independent variable in the third experiment.  

Secondly, characters per view (view-numbers in first experiment), writing-times, view-times, 

and 𝑝𝑎𝑢𝑠𝑒𝑄3 were used as dependent variables calculated from each participant’s logs. These 

variables were evaluated for all experiments with the exception of 𝑝𝑎𝑢𝑠𝑒𝑄3 in the first 

experiment, which was not recorded due to a technical error. Across all three experiments, view-

numbers and characters per view had a stronger relation with the independent variables and 

better closeness of fit of participants to the independent variables than writing-times. The 

overall results, on the other hand, show that there is no relationship between the view-times 

measure and the independent variables, and that the participants showed a poor fit to the 

independent measure regression lines. In most cases, the Q3 pauses measure had a stronger 

relationship with the independent measures and a better fit of participants to the independent 

variable regression lines than the HS measures, writing-times and characters per view. 
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In summary, the overall results for characters per view, writing-times, view-times, and 𝑝𝑎𝑢𝑠𝑒𝑄3 

are consistent with the predictions, but with some divergence in details. Characters per view 

and Q3 pauses are recognized as more reliable predictors of Java competence, but in most cases, 

Q3 pauses is a slightly better predictor of Java competence than characters per view.  

 Extra evidence of chunking 

The significant negative relationship between writing-times and view-numbers in the first 

experiment, and the significant positive relationship between writing-times and characters per 

view in the second and third experiments, confirm the chunk-based assumptions underpinning 

the thesis predictions, which involve a decrease in view-numbers and an increase in characters 

per view and writing-times as Java familiarity scores grow. Thus, these strong relationships, 

across the three experiments, serve as extra evidence of chunking. 

View-numbers (or characters per view) and writing-times were both anticipated to be 

dependent on chunking procedures; hence, they should have some type of stable and formal 

relation. And as the whole theory behind my method of measuring competence is ‘chunking’, so 

having some extra evidence that chunking is happening (writing-times vs view-numbers and 

writing-times vs characters per view) is reassuring.  

6.5.6 Does normalization improve the measures? 

Concerns may arise regarding whether the effect of individuals’ working memory size may hide 

any competence participants have got. Thus, throughout this research, I sought to improve the 

behavioural measures values via normalizing them using the practise stimuli (first experiment) 

and the PPCS stimuli (second experiment). The PPCS test can be thought of as a working memory 

size (chunk size) test, as it was used here to determine the size of the chunks that the 

participants used for transcribing the stimuli. However, the normalization process did not 

enhance the behavioural measures’ values. Furthermore, not only did the PPCS normalization 

(second experiment) not improve the values of the behavioural measures, the practice items 
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(first experiment) did not either. This may be due to the fact that transcribing the PPCS stimuli 

is not very important when it comes to the transcription task, and/or the individuals’ variations 

in characters per view, writing-times, and 𝑝𝑎𝑢𝑠𝑒𝑄3 that arose using the practise and PPCS  items 

may not be very large in comparison to the differences when actually transcribing the Java 

stimulus. Normalization improved the behavioural measures in the similar work of Cheng (2014, 

2015), measuring maths competence using algebra equations. Cheng normalizes using very 

simple arithmetic equation materials. But in this thesis, PPCS (arbitrary letters and numbers) 

was implemented, which did not improve the behavioural measures of Java competence. This is 

not surprising, because copying simple equations may be affected by individual experience, 

while copying PPCS is not affected by programming experience. 

In conclusion, the normalisation performed in this thesis provides additional evidence that it is 

worthwhile to normalise materials that include the fundamental aspects of the topic being 

measured. As a result, this is yet another piece of indirect evidence that it is not worthwhile to 

try to normalise for factors such as working memory size, writing speed, or writing ability. 

Another important conclusion is that the lack of improvement in the behavioural measure values 

after normalisation confirms that my method measures individuals’ programming 

comprehension and learning gained rather than individuals’ working memory capacity. 

6.5.7 Novel contributions  

This thesis’s novel contributions compared to previous work on micro-behavioural temporal 

chunk signals are: 

1. The strategy can be applied to programming discipline in addition to maths and 

language learning. 

2. In contrast to the single-line stimuli used in previous related micro-behavioural 

temporal chunk signals studies, this thesis’s stimuli were larger (nine lines). Because 

there is more data per trial, single trials can provide significant useable correlations 
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with competence without the theoretical difficulties of choosing how to aggregate 

data from numerous trials or the practical difficulties of switching between multiple 

trials. 

3. This is the first application of the content analysis, where the identity of each stoke 

was discovered, in the use of temporal chunk signals and chunk structure to measure 

competence in freehand transcription task. 

4. There is another complementary method (rather than using pauses) of obtaining a 

chunk-based measure of competence, which is to use the characters per view (or 

view-numbers) and writing-times (HS) measures. The correlations reported for the HS 

measures are at the same level as the correlations identified for pauses in prior studies 

(Cheng, 2014; van Genuchten & Cheng, 2010; Zulkifli, 2013). 

5. The longitudinal study (i.e., the third experiment) to demonstrate learning gain over 

a short period of time is thought to be the first to be used in this type of study 

(compared to e.g., Cheng, 2014, 2015; van Genuchten & Cheng, 2010; Zulkifli, 2013, 

where participants came from a wide range of backgrounds, and only static levels of 

competence were evaluated). 

Novel contributions compared to various types of programming assessments studies are: 

1. This is the first known study to use transcription (i.e., copying) as a task to measure 

individuals’ levels of programming competence. 

2. Some studies have used response times to study programming comprehension in 

whole tasks, such as sets of multiple-choice questions, lasting minutes (e.g., Adelson, 

1981, 1984; Ye & Salvendy, 1996). For this thesis, the focus was on the time required 

for component activities within a task, rather than overall task time, and the 

examination of process durations that may be directly related to the chunks possessed 

by participants. 
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3. The pause analysis technique is used for the first time as a measure to assess 

individuals’ programming comprehension. 

6.5.8 Limitations and suggestions for future research. 

The experiment  series reported in this thesis focused on examining view-numbers or characters 

per view, writing-times, view-times, and 𝑝𝑎𝑢𝑠𝑒𝑄3 to cognitively evaluate programming 

comprehension.  

The research constraints and suggestions for future works are:  

1) The use of a graphical tablet (i.e., non-standard equipment) in this thesis is regarded as a 

practical limitation that can be overcome in future work by employing standard equipment 

such as computer desktop interfaces, as in the work of Ismail and Cheng (2021), which 

uses a standard computer interface with a mouse to measure English language 

competence, attempting to use the same chunking theory and utilizing temporal chunk 

signals. 

2) Using a transcribing task may be considered a limitation because it is an artificial task to 

be used in such a rich domain as programming, which involves problem solving, debugging, 

and designing. This method of competency assessment does not, however, focus on this 

skills-oriented aspect of programming. It focuses on the knowledge structure of program 

code in particular. 

3) This thesis utilized a specially designed response grid and an unnatural non-cursive mode 

of transcribing each character in a sperate box, in order to prevent cursive transcribing 

and to enable me to easily differentiate words, letters, and punctuation pauses. Future 

work could include experimenting with cursive writing, which will only allow for pauses 

between words. 
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4) My sample categorisation is limited to high- and low-competent groups, whereas in future 

work, other detailed categorisations, such as naive, novice, intermediate, and expert, can 

be considered. 

5) The programming language used in this thesis was Java. Future research could look into 

other programming languages where the structure of chunks can be reflected in the 

structure of written programming notations, implying that my micro-behaviour 

transcription task method could work for such languages. Will programming languages 

with more complex syntax be more amenable to this approach? 

6) Only a limited range of Java concepts were included here (as this thesis’s stimuli design 

relied on the undergraduate programming curriculum). It would be interesting to see 

whether other concepts in the language might reveal chunk structures more strongly in 

future work.  

7) For this thesis, I used content analysis after the first experiment to determine where each 

participant in each stimulus decided to view the stimulus again. This additional analysis 

revealed that the views were more closely associated with punctuation, capitalization 

within words, and spaces. Additional research may be conducted to match participants’ 

pauses to specific characters. This could potentially enhance the precision of the 

measures, as they would be associated with specific bits of code that could be related to 

familiarity. 

8)  In terms of the stimuli design space, stimuli manipulations that might impact the chunking 

process for participants with different levels of competence were applied. For instance, 

the use of indentation and modularity provides an advantage to those participants who 

can use their chunks, and this could be manipulated in future research. The literature, on 

the other hand, revealed that the use of code scrambling, flowcharts, and similar syntax 

within the same code fragment demonstrates that participants with varying levels of 

competence act in the same way, hence, it is recommended that they be avoided. A key 
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point for future research would be to explore stimuli manipulations that might benefit 

high-competence participants differentially compared with low-competence participants.  

9) This study was limited to the independent post-tests (online questionnaires) that 

participants completed after running the experiments, which concern education levels, 

general programming, Java, and familiarity scores. The fifth variable is the final exam 

score, which was used in the third experiment. It is recommended that in future research, 

other tests, such as a pre-test for Java or programming knowledge in general before 

launching the experiment, be performed to point out other types of programming 

components that are not involved in this thesis. Furthermore, it is recommended to 

implement more than one independent test (pre-programming test and post-

programming test), as in the third experiment. 

10) Only basic and advanced programming knowledge categories were used in this thesis. But 

there are different kinds of knowledge associated with programming, such as text-

structure and plan knowledge, explained in Chapter 2, and future work should look at 

these various other types of programming knowledge. 

11) Because my method of measuring programming competence is based primarily on reading 

and writing, it is considered limited if applied to people with learning disabilities such as 

dyslexia (reading and language disorder) and Dysgraphia (writing difficulties). If they will 

be considered, this will necessitate additional research and consideration of three major 

aspects: (1) how the visual processing of the stimulus affects the transcriptional encoding 

(i.e., viewing and reading the stimuli). (2) How any disabilities may affect memory use (e.g., 

memory retention, mental processing (chunk building)). (3) How it might affect the actual 

writing process (i.e., motor processing). 

The aggregate findings of this thesis show that the implementation of temporal chunk structure 

signals has potential in measuring the cognitive processes of Java programming.  
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6.6 Real-world application of the approach and final conclusion 

The applications of this thesis’s methodology in education are easily anticipated, especially given 

the success of the longitudinal post-test research (third experiment), which makes use of relative 

simplicity, short trial times, and the possibility of fully automated scoring. Simply put, such 

transcription assignments might be given as part of summative end-of-course assessments or as 

independent screening assessments at the beginning of a course. More interestingly, with 

appropriately designed test items, the approach might be used as a form of formative 

assessment to provide tutors with information about individuals’ growing understanding of 

targeted programming concepts. 

Another interesting broader application of this thesis methodology (i.e., use the analysis of 

temporal chunk signals and chunk structure to measure competence via transcription task) is to 

use it as a possible diagnostic tool for some categories of learning disabilities/disorders such as 

dyslexia and Dysgraphia. It will be interesting to see how the writing process differs between 

people with and without learning disabilities. For example, the participants could be asked to 

transcribe the PPCS stimuli. This could provide a more detailed understanding of the process 

that distinguishes people with and without learning disabilities. 

This thesis sought to build a novel technique for measuring programming comprehension via 

assessing participants’ chunk structures. It manipulated the appropriate transcription methods, 

suitable program code fragments, and three appropriate measures for assessing participants’ 

cognitive chunk structures. It has demonstrated that there is authentic potential for measuring 

programming competence using view-numbers, writing-times, and pause analysis.  

The thesis finishes with a number of unresolved concerns that require additional examination in 

order to fully assess the efficiency of the methodology. It creates opportunities for future study 

to build on the findings and develop a more conclusive technique, utilising a larger group of 

participants or a broader variety of stimuli, programming languages, and concepts. 
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This thesis has demonstrated the utility of my novel method for assessing programming 

competence. In order to improve the technique, further study will undoubtedly be required. 

 

6.7 Summary 

To summarise my findings from the three experiments: 

• In a free handwriting transcription task, temporal chunk signals have the potential to 

predict Java programming competence. 

• The results are consistent across all the behavioural measures. 

• The findings, with minor differences in details, support the overall hypothesis. 
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Appendices 

Stimuli for practice items in Chapters 3, 4, and 5 

No. Stimulus content 

1 # 

Sussex University 

United Kingdom 

Informatics Department 

Engineering Department  

2 # 

Computer Science  

Programming Course  

Java Programming Language  

Pascal Programming Language  

Stimuli for PPCS in Chapter 4 

Stimulus 

name 

Stimulus content 

S1 (HS) 

 

# 

9 g 2 b 6 d 7 f 5 w 1 c 8 x 3 h 6 n 4 e 8 m 1 d 5 w 9 j 3 b 8 z 2 h 7 i 4 m 6 k 

S1 (VD) # 

k 6 m 4 i 7 h 2 z 8 b 3 j 9 w 5 d 1 m 8 e 4 n 6 h 3 x 8 c 1 w 5 f 7 d 6 b 2 g 9 

 

 



242 
 

 
 

Questionnaire for Chapter 3 

Participant No.:                                    Participant code:                                            Date:                                        

 
Introduction and biographical information (text questions): 

1. How old are you?  

…………………………………………………………………………………………............... 

2. What is your gender? (Male – Female – other ………………….) 

 

3. In which group of the following you are? (1st year – 2nd year – final year – MSc – 

PhD/member of faculty) 

 

4. If you are a student, do you do programming activities which are not part of your 

study? If yes, for how many years? 

…………………………………………………………………………………………............... 

Education (yes/no responses):   

1. Did you learn more than 3 programming languages? 

…………………………………………………………………………………………............... 

2. Did you take more than 3 programming courses in which you were required to 

implement source code?  

…………………………………………………………………………………………............... 

General programming background (yes/no responses): 

1- I am familiar with all the following programming concepts: declaring variables, 

conditions and iterations, and printing out a sentence on the screen 

…………………………………………………………………………………………............... 

2- I can develop programs using procedural languages only and not object-oriented 

…………………………………………………………………………………………............... 

3- I can develop programs using at least one object-oriented programming languages 

…………………………………………………………………………………………............... 

4- I can develop programs using more than one object-oriented programming language 

…………………………………………………………………………………………............... 
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5- I develop long programs (100+s lines of code) using object-oriented programming 

languages such as Java, python, Ruby, and C++ away from my study or work 

…………………………………………………………………………………………............... 

Java (yes/no questions) 

1- I am familiar with the ‘main’ method in Java 

…………………………………………………………………………………………............... 

2- I am familiar with both objects and classes in Java 

…………………………………………………………………………………………............... 

3- I can implement all the following Java object-oriented concepts: encapsulation, 

inheritance, and polymorphism 

…………………………………………………………………………………………...............     

4- I am familiar with using GUI in Java 

…………………………………………………………………………………………............... 

5- I develop programs utilizing all I/O (streams, readers, writers, files) in Java 

…………………………………………………………………………………………............... 

6- I am familiar with both Java’s API (Application Programming Interface) and 

Annotations 

…………………………………………………………………………………………............... 

7- I have used both data structures and recursion in Java 

…………………………………………………………………………………………............... 

8- I am familiar with database programming in Java 

…………………………………………………………………………………………............... 

(Text questions) 

9- Approximately, how many lines of code have you implemented using Java? 

Less than 100 

Less than 1000 

Less than 5000 

More than 10000 

        10- For how many years have you been programming using Java? 
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…………………………………………………………………………………………............... 

Participant No.:                                      Participant code:                                            Date:   

                                      

Before you started the experiment, how familiar would think you were with these statements. 

 
Stimuli Stimuli content Very 

unfamiliar 

Unfamiliar Neutral Familiar Very 

familiar 

S1 A public class Person{          

    private String name;       

    private int age;}         

     

S2 A public class Person{          

    public String name;       

    public int age;}          

     

S1 B public int Balance(){            

      int amountRefund;              

      return amountRefund;}          

     

S2 B public void Balance(){            

    System.out.println("#");   

    Total += balance;}         

     

S1 C for(int h=0;h<hCount.length;h++)          

  {                                          

    System.out.println(h+hCount[h]);}     

     

S2 C int h=0;                          

while(h<hCount.length){             

  System.out.println(h+hCount[h]);h++;}  

     

D1 A <body>                                                   

  Hello! The time is now <%=new 

java.util.Date()%>     

</body>                                                    

     

D2 A <body>                                                      

 <%! private static boolean visited = 

false; %>            

</body>                                                     

     

D1 B int[] numbers=                               

    {1,1,3,5,8,13};           

 for(int item:numbers) 

     

D2 B int summation=0;                            

  for(int counter:arrayTall)        

      summation+=;           

     

D1 C cont=f.getContentPane();          

button=new JButton("Yes");         

cont.add(button);                  

     

D2 C Font f=new Font("S",Font.PLAIN,6);   

  g.setFont(f);                        

  g.drawString("T",1,9);               
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Questionnaire for Chapter 4 

Participant No.:                                    Participant code:                                            Date:                                        

 
Introduction and biographical information (text questions): 

1. How old are you?  

…………………………………………………………………………………………............... 

2. What is your gender? (Male – Female – other ………………….) 

 

3. In which group of the following you are?  (1st year – 2nd year – final year – MSc – 

PhD/member of faculty) 

 

4. If you are a student, do you do programming activities which are not part of your 

study? If yes, for how many years? 

…………………………………………………………………………………………............... 

Education (yes/no questions):   

1. Did you learn more than 3 programming languages? 

…………………………………………………………………………………………............... 

2. Did you take more than 3 programming courses in which you were required to 

implement source code?  

…………………………………………………………………………………………............... 

General programming background (yes/no responses): 

1. I am familiar with all the following programming concepts: declaring variables, 

conditions and iterations and printing out a sentence on the screen 

…………………………………………………………………………………………............... 

2. I can develop programs using procedural languages only and not object-oriented 

…………………………………………………………………………………………............... 

3. I can develop programs using more than one object-oriented programming language 

…………………………………………………………………………………………............... 

4. I develop long programs (100+ lines of code) using object-oriented programming 

languages such as Java, python, Ruby, and C++ away from my study or work 

…………………………………………………………………………………………............... 
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Java programming language (yes/no responses): 

1. I am familiar with the ‘main’ method in Java 

…………………………………………………………………………………………............... 

2. I am familiar with both objects and classes in Java 

…………………………………………………………………………………………............... 

3. I can implement all the following Java object-oriented concepts: encapsulation, 

inheritance, and polymorphism 

…………………………………………………………………………………………...............     

4. I am familiar with using GUI in Java 

…………………………………………………………………………………………............... 

5. I develop programs utilizing all I/O (streams, readers, writers, files) in Java 

…………………………………………………………………………………………............... 

6. I am familiar with both Java’s API (Application Programming Interface) and 

Annotations 

…………………………………………………………………………………………............... 

7. I have used both data structures and recursion in Java 

…………………………………………………………………………………………............... 

8. I am familiar with database programming in Java 

…………………………………………………………………………………………............... 
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Participant No.:                                      Participant code:                                            Date:   

                                      

Before you started the experiment, how familiar would you say you were with these 

statements? 
Stimuli Stimuli content Very 

unfamiliar 

Unfamiliar Neutral Familiar Very 

familiar 

S1 A import java.util.Scanner; 

class A{ 

   public static void main(String[]args){ 

       Scanner s=new Scanner(System.in); 

       double l=s.nextDouble();}} 

     

S2 A import java.util.Scanner; 

class S{ 

   public static void main(String[]args){ 

       Scanner b=new Scanner(System.in); 

       int n=b.nextInt();}} 

     

S1 B int n,i,j;  

    int a[]=new int[n]; 

    for(i=0;i<(n-1);i++){ 

      for(j=0;j<n-i-1;j++)}} 

     

S2 B int num,i,j,tem; 

if(ar[j]>ar[j+1]){ 

         tem=ar[j]; 

         ar[j]=ar[j+1];} 

     

D1 A InputStream is=null; 

        Try{ 

            is=new FileInputStream(f); 
            byte c[]=new byte[2*1024]; 

     

D2 A try{ 

    Files.createFile(f);} 

    catch(FileAlreadyExistsException x){ 

          System.err.format("n",f);} 

     

D1 B Node<T>n=new Node<T>(); 

        n.setValue(i); 

        n.setNext(f); 

        if(f!=null)f.setPrev(n); 

        if(f==null)r=n; 

     

D2 B Node<T>d=new Node<T>(); 

        d.setValue(i); 

        d.setPrev(r); 

        if(r!=null)r.setNext(d); 

        if(r==null)f=nd; 
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Questionnaire for Chapter 5 

Date:                                                                                                   Participant code:                  

                                  

Before you started the experiment, how familiar would you say you were with these 

statements? 

 
Stimuli Stimuli content Very 

unfamiliar 

Unfamiliar Neutral Familiar Very 

familiar 

S1 A import java.util.Scanner; 

class A{ 

   public static void main(String[]args){ 

       Scanner s=new Scanner(System.in); 

       double l=s.nextDouble();}} 

     

S2 A import java.util.Scanner; 

class S{ 

   public static void main(String[]args){ 

       Scanner b=new Scanner(System.in); 

       int n=b.nextInt();}} 

     

S1 B int n,i,j;  

    int a[]=new int[n]; 

    for(i=0;i<(n-1);i++){ 

      for(j=0;j<n-i-1;j++)}} 

     

S2 B int num,i,j,tem; 

if(ar[j]>ar[j+1]){ 

         tem=ar[j]; 

         ar[j]=ar[j+1];} 

     

D1 A InputStream is=null; 

        Try{ 

            is=new FileInputStream(f); 

            byte c[]=new byte[2*1024]; 

     

D2 A try{ 

    Files.createFile(f);} 

    catch(FileAlreadyExistsException x){ 

          System.err.format("n",f);} 

     

D1 B Node<T>n=new Node<T>(); 

        n.setValue(i); 

        n.setNext(f); 

        if(f!=null)f.setPrev(n); 

        if(f==null)r=n; 

 

     

D2 B Node<T>d=new Node<T>(); 

        d.setValue(i); 

        d.setPrev(r); 

        if(r!=null)r.setNext(d); 

        if(r==null)f=nd; 
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