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Summary

General relativity and quantum theory are two cornerstones of modern physics, which,

despite their huge individual successes, have so far failed to work together in a complete

and consistent way. As a consequence, the unification of the two theories in a consistent

formulation of quantum field theory on curved spacetimes and eventually in a theory of

quantum gravity has become one of the holy grails of modern physics. In this thesis, some

of the many aspects of such a theory of quantum gravity are explored.

The first part of the thesis is devoted to the construction of diffeomorphism invariant

theories on a spacetime that is itself fluctuating. We show how this can be achieved

for basic theories using second order geometry, which is an extension of the geometrical

framework applied in general relativity.

After these elementary considerations, we move on to study predictions from quantum

gravity at sub-Planckian energy scales, where quantum field theory and general relativity

can be combined in the framework of effective field theory. The resulting effective field

theory of gravity allows to make model independent predictions in quantum gravity.

In the second part of the thesis, we discuss perturbative predictions following from the

unique effective action for quantum gravity. Here, we particularly focus on predictions

from this formalism for compact stars, black holes and the fate of singularities in quantum

gravity.

Finally, in the third part, we use effective field theory and the universality of the

gravitational coupling to study quantum gravitational effects that lie within the reach of

current experiments. We then discuss the implications for beyond the Standard Model

physics and dark matter models in particular.



iv

Acknowledgements

I would like to express my sincere gratitude to Xavier for supervising me throughout the

Ph.D. journey and, in particular, for the many stimulating discussions we have had over

the years. I would also like to thank Roberto and Steve for many interesting discussions

and for collaborating on various projects, and express a special word of thanks to Roberto

for hosting me at the University of Bologna.

Many thanks goes also to my fellow Ph.D. students, the postdocs and the staff in the

group for the many entertaining conversations and for making my Ph.D. such a joyful

experience. Finally, I would like to thank my family and friends for their continuous

support.



v

Contents

I Introduction 1

1 Prelude 2

2 General Relativity 5

2.1 Construction of general relativity . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Singularities in general relativity . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Dark matter and dark energy . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Modifications of gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Towards a Quantum Theory of Gravity 17

3.1 Quantum field theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Quantizing general relativity . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Quadratic gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4 Gravity and gauge forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Effective Action of Quantum Gravity 24

4.1 Construction of the effective action . . . . . . . . . . . . . . . . . . . . . . . 24

4.2 Comparisons to quadratic gravity . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3 Coupling quantum gravity to matter . . . . . . . . . . . . . . . . . . . . . . 30

5 Outlook for the Thesis 32

II Construction of Diffeomorphism Invariant Theories on Fluctuating

Spacetimes 34

6 Stochastic Quantization on Lorentzian Manifolds 35

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.2 Second order geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.3 Manifold valued semi-martingales . . . . . . . . . . . . . . . . . . . . . . . . 57

6.4 Integration along semi-martingales . . . . . . . . . . . . . . . . . . . . . . . 61

6.5 Stochastic variational calculus . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.6 The stochastic Lagrangian . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.7 Scalar test particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82



vi

7 Stochastic Quantization of Relativistic Theories 85

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7.2 Massive scalar particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.3 Massless scalar particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.4 Off-shell motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.A Construction of the Brownian metric . . . . . . . . . . . . . . . . . . . . . . 95

8 Analytic Continuation of Stochastic Mechanics 97

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

8.2 Stochastic mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

8.3 Stochastic mechanics and the Feynman-Kac theorem . . . . . . . . . . . . . 101

8.4 The geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

8.5 The stochastic process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

8.6 Variational equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

8.7 Stochastic Euler-Lagrange equations . . . . . . . . . . . . . . . . . . . . . . 106

8.8 Field equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

8.9 Diffusion equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

8.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

8.A Non-relativistic theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

8.B Stochastic integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

8.C Calculation of conditional expectations . . . . . . . . . . . . . . . . . . . . 114

III Effective Field Theory of Quantum Gravity: Perturbative Effects121

9 Quantum Gravitational Corrections to a Star Metric and the Black Hole

Limit 122

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

9.2 Quantum corrections to a star metric . . . . . . . . . . . . . . . . . . . . . . 124

9.3 Divergence at the surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

9.4 Model for quantum black holes? . . . . . . . . . . . . . . . . . . . . . . . . . 131

9.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

9.A Derivation of the non-local term in equation (9.22) . . . . . . . . . . . . . . 135

10 Quantum Corrected Equations of Motion in the Interior and Exterior

Schwarzschild Spacetime 138

10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

10.2 The quantum corrected metric . . . . . . . . . . . . . . . . . . . . . . . . . 140

10.3 Geodesics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

10.4 Scalar fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

10.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149



vii

11 Singularity Theorems in the Effective Field Theory for Quantum Gravity

at Second Order in Curvature 151

11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

11.2 Effective quantum gravity in the Einstein frame . . . . . . . . . . . . . . . . 153

11.3 Singularity theorems in effective quantum gravity . . . . . . . . . . . . . . . 158

11.4 Conclusion and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

11.A Classical singularity theorems . . . . . . . . . . . . . . . . . . . . . . . . . . 163

11.B Singularity theorems for weakened energy conditions . . . . . . . . . . . . . 167

12 Singularities in Quantum Corrected Spacetimes 169

12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

12.2 A general metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

12.3 Energy conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

12.4 Quantum corrections to the metric . . . . . . . . . . . . . . . . . . . . . . . 173

12.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

12.A The Bardeen metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

13 Quantum Gravitational Corrections to the Entropy of a Schwarzschild

Black Hole 180

14 Quantum Hair from Gravity 186

14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

14.2 Asymptotic quantum states of the graviton field . . . . . . . . . . . . . . . 187

14.3 Leading corrections from quantum gravity . . . . . . . . . . . . . . . . . . . 189

14.4 Conclusions: holography and black hole information . . . . . . . . . . . . . 194

IV Effective Field Theories for Quantum Gravity: Non-Perturbative

Effects 196

15 Bounds on Very Weakly Interacting Ultra Light Scalar and Pseudoscalar

Dark Matter from Quantum Gravity 197

15.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

15.2 Interactions generated by quantum gravity . . . . . . . . . . . . . . . . . . . 198

15.3 Scalar and pseudoscalar dark matter . . . . . . . . . . . . . . . . . . . . . . 201

15.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

16 Theoretical Bounds on Dark Matter Masses 208

V Discussion 214

17 Conclusions 215

18 Outlook 218



viii

Bibliography 221



Part I

Introduction



2

Chapter 1

Prelude

Quantum theory and general relativity are among the most successful theories in physics

and are regarded as two of the corner stones of modern physics. Both theories were

developed early in the 20th century, and managed to resolve several issues that were much

discussed at the end of the 19th century. However, despite all successes of both quantum

theory and general relativity, the theories seem to be at odds with each other. This

realization led to the search for consistent quantum theories in gravitational backgrounds

and the idea halfway the 20th century that gravity itself must be quantized in a theory of

quantum gravity.

General relativity, on the one hand, is an extremely successful theory that provides a

precise description of the gravitational force and relativistic effects. It has, for example,

successfully predicted the existence of gravitational waves and black holes. Moreover, the

Standard Model of cosmology or ΛCDM Model, which provides our best understanding of

the evolution of the universe, has been formulated within this framework.

An important feature of general relativity is that the theory is mathematically con-

sistent. Nevertheless, it predicts the existence of singular spacetimes, which indicates

physical incompleteness of the theory. Moreover, by construction, general relativity does

not incorporate any quantum effects, and is therefore only valid in the limit ~→ 0.

On a phenomenological level, the ΛCDM Model has several shortcomings. For example,

the model requires a vast amount of dark matter and dark energy to be consistent with

observations, but it is still a mystery what comprises this dark matter and dark energy.

Furthermore, the ΛCDM Model provides a good description of the evolution of the

universe from the cosmic microwave background, which indicates the decoupling of photons

in the early universe, up to our current epoch. Combined with insights from particle

physics one can extrapolate the theory back to the end of a hypothetical inflationary era

at which point matter begins to form. However, little is known about what happened

during the first picosecond after the hypothetical Big Bang.

Quantum field theory, on the other hand, is arguably even more successful, as it lies at

the heart of our understanding of both particle physics and the theory of condensed matter

systems. As such, it underpins a large fraction of all technological advancement in the 20th

and 21st century. Moreover, the Standard Model of particle physics is formulated in the

language of quantum field theory, and has been tested to extreme precision in experiments.
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However, whereas general relativity is a mathematically consistent theory, the math-

ematical underpinnings of quantum field theory are not yet completely understood. Al-

though the Euclidean approach in quantum field theory has allowed to give a proper

mathematical treatment of many quantum field theories in dimensions d < 4, and no go

theorems have been formulated for various theories in d > 4 dimensions, there are still

many open questions about the mathematical foundations of quantum field theory in any

number dimensions, and, in particular, in the critical case d = 4.

Furthermore, even though the Standard Model of particle physics has been tested to

extreme precisions, there are still many outstanding issues within the Standard Model.

For example, the model has a large number of free parameters whose values can be fixed

by experiment, but not on the basis of theoretical considerations. A more fundamental

theory that fixes a subset of these parameters by theoretical arguments is desirable.

A major shortcoming of both the Standard Model and general relativity is that they

have not yet been combined in one framework. This is problematic, as it implies that the

corner stones of modern physics can only be applied in the regime where either quantum

effects or gravitational effects are negligible. Although this allows to describe most of the

physical phenomena, it also prevents from developing a proper understanding of the nature

of black holes and the very early universe. It is hoped that a theory of quantum gravity

that combines general relativity and quantum field theory in a consistent framework will

be able to answer such questions. Furthermore, a theory of quantum gravity could provide

handles towards the resolution of the aforementioned issues encountered in both the ΛCDM

Model and the Standard Model of particle physics.

The search for this theory of quantum gravity has gained a vast amount of attention

during the last decades. However, despite the formulation of many approaches to the

problem and despite a huge amount of research within these approaches, there still is no

widely accepted complete and consistent theory of quantum gravity. Nevertheless, using

the various approaches, progress has been made towards a resolution of the problem, and

many hints have been provided towards both the mathematical and phenomenological

properties of such an illustrious theory of quantum gravity.

Early attempts to quantize gravity focus on the quantization of the fluctuations of

the metric as a spin-2 graviton field. However, as was soon realized such a theory is

not renormalizable. Later, it was realized that renormalizability of the theory could be

regained, if the gravitational action is modified with higher derivative terms. However, this

comes at the price of introducing a ghost in the theory. Nowadays, the modification of the

gravitational action lies at the heart of the higher derivative gravity, the non-local gravity

and the asymptotic safety approach. These approaches aim to obtain a renormalizable

and ghost free theory of quantum gravity by adding a finite number of terms to the

gravitational action.

The path of quantizing fluctuations around a fixed background metric is also followed in

string theory and string inspired approaches such as the holographic approaches. However,

in these approaches the fundamental point-like degrees of freedom encountered in ordinary

quantum theories are substituted by the excitations of strings.
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Another class of approaches aims to quantize gravity in a background independent way.

Whereas string theory and higher derivative gravity quantize fluctuations of the metric as a

gauge force around a fixed background spacetime, the background independent approaches

aim to quantize spacetime itself without fixing a particular background metric. As there

is little guidance on how to do so, this leads to a variety of ideas. Notable approaches

include Loop Quantum Gravity, Causal Dynamical Triangulations, Group Field Theory

and Causal Set Theory.

This thesis discusses two conservative frameworks at two extremes of the spectrum of

approaches to quantum gravity. In part II, the elementary considerations, we will follow

the line of thought that a final theory of quantum gravity must also provide a mathematical

consistent framework of quantum field theory. As stochastic techniques have been very

successful in constructive quantum field theory, we will explore what stochastic analysis

can teach us about the interplay between gravity and quantum theories. Here, we will use

methods from stochastic mechanics and stochastic quantization, i.e. combine ideas from

the foundations of quantum mechanics and constructive quantum field theory, to obtain

a consistent quantum theory in curved spacetimes.

As this framework has not been explored much in the literature, we won’t be able to

go beyond any elementary considerations. However, we will see that stochastic analysis

provides a strong clue about the type of extensions of differential geometry, which is the

mathematical foundation of general relativity, that are necessary to incorporate quantum

effects in the theory of general relativity.

In parts III and IV, we jump to the other side of the spectrum of theories of quantum

gravity, and discuss the low energy effective field theory of quantum gravity. Although

general relativity with a quantized graviton is not renormalizable, any theory of quantum

gravity that contains a graviton in its spectrum, respects general covariance, and reduces

to general relativity at low energy scales, can be studied at sub-Planckian energy scales in

a model independent way using methods from effective field theory.

In part III, we focus on predictions from a purely quantum gravitational theory using

the unique effective action of quantum gravity, which allows to study quantum corrections

to general relativity. In part IV, we will introduce the coupling of quantum gravity to mat-

ter, which allows to systematically study a wide range of effective interactions generated

by quantum gravity.
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Chapter 2

General Relativity

General relativity is undoubtedly the most successful theory of the gravitational force.

It describes the gravitational force to great accuracy, and has been verified in many ex-

periments. It correctly predicts the existence of gravitational waves and serves as the

mathematical framework of the ΛCDM Model. In this chapter, we review some basic

aspects of this theory.

2.1 Construction of general relativity

In this section, we review some of the essential ideas of the theory of general relativity

by constructing the theory step by step, starting from the theory of classical Newtonian

gravity for a massive point particle. In the Newtonian theory of gravity the motion of

such a particle is given by a trajectory

x : T → Rd, (2.1)

where t ∈ T ⊆ R labels the universal time, and Rd is the d-dimensional space through

which the particle propagates. The motion of such a particle is governed by Newton’s

second law

m
d2xi

dt2
= F igrav(x) + F iother(x, ẋ, t), (2.2)

where

F igrav(x) = −m∇iVgrav(x) (2.3)

is the gravitational force described in terms of the gravitational potential Vgrav, and Fother

represents other non-gravitational forces.

The first step towards a theory of general relativity is the realization that the gravita-

tional force is induced by the geometry of the space through which the particle propagates.

For this description, we promote the configuration space to a d-dimensional Riemannian

manifold (M, g), where the metric g encodes the geometry that induces the gravitational

force. We now consider trajectories

x : T →M (2.4)
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and the motion of the particle is described by a generalization of Newton’s second law

m

(
d2xi

dt2
+ Γijk(x)

dxj

dt

dxk

dt

)
= F i(x, ẋ, t), (2.5)

where m is the mass of the particle, and Γ is the Christoffel connection. Moreover, F

represents the non-gravitational forces, that can generically be described in terms of vector

and scalar potentials, i.e.,

Fi(x, ẋ, t) = q
[
∇iAj(x, t)−∇jAi(x, t)

] dxj
dt
− q ∂tAi(x, t)−∇iU(x, t) (2.6)

with q the charge of the particle. We notice that in this geometrical description the

gravitational force is described through a modification of the acceleration term rather

than an external force.

For Fi(x, ẋ, t) = 0, eq. (2.5) is the geodesic equation and its solutions are geodesics.

These are paths that minimize both the length

L[x(t)] =

∫
T
ds =

∫
T

√
gij ẋiẋj dt (2.7)

and the energy

E[x(t)] =
m

2

∫
T
gij ẋ

iẋj dt, (2.8)

where the line element ds is defined by

ds2 = gijdx
idxj . (2.9)

More generally, for a non-vanishing force eq. (2.5) minimizes the action

S[x(t)] =

∫
T
L(x, ẋ, t) dt (2.10)

with the Lagrangian L : T × TM→ R given by

L(x, ẋ, t) =
m

2
gij(x) ẋiẋj + q Ai(x, t) ẋ

j − U(x, t). (2.11)

It is straightforward to show that minimization of the action with respect to the trajectory

x(t) indeed leads to eq. (2.5) with a force given in eq. (2.6).

The guiding principle of general relativity is that any Lagrangian defined on the man-

ifold M should satisfy the principle of general covariance, i.e. the physical theory is

coordinate invariant and there exists no preferred frame of reference. In the described

non-relativistic framework, this is reflected by the fact that the action must be invariant

under transformations generated by the inhomogeneous Galilean group.

Up to this point, we have described a non-relativistic test particle subjected to a

gravitational force induced by the geometry. However, it is well known that the world is

relativistic. This must be included in our description. In order to do so, we must promote

the d-dimensional Riemannian manifold, which looks locally like the Euclidean space Rd
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to a n-dimensional Lorentzian manifold with n = d + 1, which looks locally like the n-

dimensional Minkowski space Rd,1. Furthermore, we must impose that any theory defined

on this space satisfies general covariance. For this, the invariance under the inhomogeneous

Galilean group is promoted to an invariance under the Poincaré group.

We thus study trajectories

x : T →M, (2.12)

where λ ∈ T ⊂ R labels an affine parameter along the trajectory of the particle, and M
is a Lorentzian manifold. As we consider a Lorentzian manifold, the line element

ds2 = gµνdx
µdxν , (2.13)

is no longer positive definite. Therefore, in order to obtain a well-defined variational

principle, one must separate the tangent spaces into three sections:

ds2


< 0 timelike,

= 0 lightlike,

> 0 spacelike,

(2.14)

where we use a (− + ...+) metric signature. By restricting the tangent spaces to any of

these sections, one can define a norm and construct a variational principle.

In addition, the construction of a relativistic theory requires invariance under reparametriza-

tions of the affine parameter. It is easy to see that the length1

L[x(λ)] =

∫
T
ds =

∫
T

√
−gµν ẋµẋν dλ (2.15)

is indeed invariant under reparametrization of the affine parameter λ, but the energy

E[x(λ)] =
m

2

∫
T
gµν ẋ

µẋν dλ (2.16)

is not. We note, however, that reparametrization invariance of the length leads to a

secondary constraint

pµp
µ +m2 = 0, (2.17)

which can be implemented in the energy functional by introducing a gauge fixing term.

The equations of motion can then be derived by minimizing the action

S[x(τ)] =

∫
T
L(x, ẋ) (2.18)

with the Lagrangian L : TM→ R given by

L(x, ẋ) =
1

2 e
gµν(x) ẋµẋν − em2

2
+ qAµ(x) ẋµ, (2.19)

1We consider timelike or lightlike paths satisfying ds2 ≤ 0
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where e(λ) is an einbein field along the wordline of the particle. The equations of motion

are given by

gµν

(
d2xν

dτ2
+ Γνρσ

dxρ

dτ

dxσ

dτ

)
= e q

(
∇µAν −∇νAµ

)dxν
dτ

. (2.20)

The relativistic constraint (2.17) can be written as

gµν
dxµ

dτ

dxµ

dτ
= −e2m2 (2.21)

and follows from minimization of the action with respect to e. Finally, we gauge fix

e =

m−1 if m > 0,

1 if m = 0.
(2.22)

For timelike particles, this fixes the affine parameter to be the proper time λ = τ .

We have discussed the motion of a test particle moving on a Riemannian or Lorentzian

manifold (M, g). Although this provides a correct description of a test particle, it is

not the theory of general relativity. Indeed, general relativity describes the interaction

between matter and the geometry through which the matter propagates. Since the particle

gravitates, a complete theory of gravity must include the change of the geometry due to

the presence of a particle. In order to treat this interaction, we must leave our description

of point particles and move towards a classical field theory.

Before discussing a field theory, we review some basic definitions. Given a point x ∈M,

a real (k, l)-tensor is a map T (x) ∈ T (k,l)(TxM) = (TxM)⊗k ⊗ (T ∗xM)⊗l, i.e

T (x) : (T ∗xM)k × (TxM)l → R. (2.23)

The bundle of (k, l)-tensors is

T (k,l)(TM) =
⊔
x∈M

T (k,l)(TxM) (2.24)

and a tensor field T is a smooth section T ∈ Γ
(
T (k,l)(TM)

)
of this bundle, i.e. it is a

smooth map

T :M→ T (k,l)(TM). (2.25)

We have encountered three examples: the real scalar field

U :M→M× R (2.26)

with (k, l) = (0, 0); the covector field

A :M→ T ∗M, (2.27)

with (k, l) = (0, 1); and the metric

g :M→ T 2(T ∗M) (2.28)
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with (k, l) = (0, 2).

More generally, in classical field theory one considers a fiber bundle over the manifold

M, i.e. a tuple (E, π,M), where π : E → M is a projection, that looks locally like a

product space M× F with fibers F . A field φ is then defined as a section of this bundle.

This is a map φ :M→ E such that π(φ(x)) = x for all x ∈ M. We note that the tensor

bundle T (k,l)(TM) is an example of a fiber bundle with fibers T (k,l)(TxM).

In classical field theory, one considers k-dimensional fields Φ = {φa}a∈{1,...,k} as sections

of some fiber bundle E, which may be equipped with internal symmetry groups. The

typical example is classical electromagnetism, where the fibers are invariant under the

action of the U(1) symmetry group.

We note that fields cannot always be defined globally, i.e. global sections may not exist.

Therefore, one considers local sections φ ∈ Γx(E) instead. These are fields φ : U → E

such that U ⊂ M is open and x ∈ U . We say that two local fields Φ,Ψ ∈ Γx(E) are

1-equivalent at x, if

φa(x) = ψa(x) and ∂µφ
a(x) = ∂µψ

a(x) ∀a, µ. (2.29)

This defines an equivalence relation on the field space Γx(E) whose equivalence classes are

called first order jets at x. The first order jet containing the field φ is called the first order

jet of φ at x and denoted by j1
xφ. The set of all first order jets

J1π := {j1
xφ : x ∈M, φ ∈ Γx(π)} (2.30)

is called the jet manifold and can be endowed with a (n + k + nk)-dimensional manifold

structure. Moreover, it is a fiber bundle over M with source projection

π1 : J1π →M s.t. j1
xφ 7→ x (2.31)

and a fiber bundle over E with target projection

π1,0 : J1π → E s.t. j1
xφ 7→ φ(x). (2.32)

The jet manifold is the configuration space for a classical field theory. A Lagrangian

is thus a function L : J1π → R, and the action is given by

S =

∫ √
|g| L dnx. (2.33)

After this brief review of classical field theory, we can discuss the action of general

relativity. This action contains two parts

S = SEH + SM (2.34)

The second part is the action of all matter defined by a Lagrangian LM(Φ,∇Φ, g) that

depends on the metric, the matter fields and derivatives of the matter fields. The first

part is the Einstein-Hilbert action, and it depends on the metric and derivatives of the
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metric. It is given by

SEH =
1

16πG

∫ √
|g| (R− 2Λ) dnx, (2.35)

where R is the Ricci scalar, and where we have introduced a cosmological constant Λ.

Minimizing the action (2.34) with respect to the metric tensor then leads to the Einstein

equation

Rµν +

(
Λ− 1

2
R
)
gµν =

8πG

c4
Tµν , (2.36)

where

Tµν = − 2√
|g|

δSM

δgµν
(2.37)

is the energy-momentum tensor.

The Einstein equation is the fundamental equation of general relativity and it describes

the interaction between matter and geometry. Here, the kinetics of the geometry, as

derived from the Einstein action is written on the left hand side and it is sourced by the

presence of matter given on the right hand side.

2.2 Singularities in general relativity

In previous section we described the basic ingredients of the theory of general relativity,

which despite its apparent simplicity is a very rich theory. The rich structure of the theory

appears when one solves the Einstein equation in the presence of various matter fields. In

general, this is a hard task due to the non-linearity of the equations. However, it leads to

a plethora of physically interesting properties. In this thesis, we will only discuss a few

aspects of this theory. For more detail we refer to the large body of literature on the topic

and to introductory textbooks such as Refs. [106,342].

One particular aspect of relevance for this thesis is the presence of singularities in the

theory of general relativity. Singularities are characterized by the divergence of curvature

invariants. These are scalar quantities constructed from products of the Riemann tensor.

The presence of singularities is often associated to the notion of geodesic incompleteness

of the theory.

It is this property of geodesic incompleteness that is problematic from the physical

point of view, as it means that not all geodesics can be extended infinitely far into the

past and the future. Instead, some geodesics have a starting or endpoint. If the geodesic

incompleteness is due to a curvature singularity, these starting and end points are located

at the curvature singularity.

The geodesic incompleteness implies that particles moving along such geodesics hit the

singularity within a finite proper time towards the future or the past. The singularities

thus act as sinks or sources for physical information. From the physicist’s perspective this

is problematic, as the predictivity of the theory breaks down at these singularities.

As an example of a singular spacetime, we consider the Einstein equation in vacuum

such that Tµν = 0. It is well known that the unique time independent and spherically

symmetric solution of this equation is the Schwarzschild solution, whose existence was
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first derived by Schwarzschild [312], and whose uniqueness is provided by the Birkhoff

theorem [47,216]. In the coordinate frame of an asymptotic observer, the solution can be

represented by the line element

ds2 = −f(r) dt2 + f(r)−1 dr2 + r2dΩ2, (2.38)

where

dΩ2 = dθ2 + sin(θ)2dφ2 (2.39)

is the metric on a unit 2-sphere, and

f(r) = 1− 2GM

r
. (2.40)

with M the mass of the solution. This representation of the solution is well known to have

a coordinate singularity at the horizon r = 2GM . However, this coordinate singularity is

harmless, as it can be resolved by choosing a different set of coordinates. In addition, the

solution has a true curvature singularity at r = 0, which is characterized by the divergence

of the Kretschmann scalar

lim
r→0

RµνρσR
µνρσ = lim

r→0

48G2M2

r6
=∞. (2.41)

Another example of a singular solution in general relativity is the Reissner-Nordström

solution [217, 276, 300, 352], which describes a charged black hole. In the frame of an

asymptotic observer, the line element can be represented by (2.38) with

f(r) = 1− 2GM

r
+
GQ2

r2
, (2.42)

where Q is the total charge. This solution has a curvature singularity at r = 0 and horizons

at

r± = GM ±
√
G2M2 −GQ2. (2.43)

Another textbook example of a singular spacetime is the Kerr solution [222], which

describes a rotating black hole. It can be generalized into the Kerr-Newman solution

[273, 274] that describes a rotating charged black hole. The line element for the Kerr-

Newman solution in Boyer-Lindquist coordinates is given by

ds2 = −
(

1− 2GMr −GQ2

ρ(r, θ)2

)
dt2 − G (2Mr −Q2) a sin(θ)2

ρ(r, θ)2
(dt dφ+ dφ dt)

+
ρ(r, θ)2

∆(r)
dr2 + ρ(r, θ)2 dθ2 +

sin(θ)2

ρ(r, θ)2

[
(r2 + a2)2 − a2∆(r) sin(θ)2

]
dφ2 (2.44)

with a = J/M and J the total angular momentum. Furthermore,

ρ(r, θ)2 = r2 + a2 cos(θ)2, (2.45)

∆(r) = r2 − 2GMr +GQ2 + a2. (2.46)



12

The Kerr-Newman solution has a curvature singularity at (r, θ) = (0, π2 ). We note that

this is a circle at r = 0 with radius a. In addition, the solution has horizons at

r± = GM ±
√
G2M2 −GQ2 − a2. (2.47)

The mass M , charge Q and angular momentum J fully characterize all classical black

hole solutions. This is conjectured in the no-hair theorem [107,212,213,262], which states

that all stationary asymptotically flat black hole solutions of general relativity coupled to

electromagnetism that are non-singular outside the event horizon are completely charac-

terized by the mass, charge and angular momentum.

In this classical setting gravitational mass, electromagnetic charge and angular mo-

mentum is the only hair of the black hole. All other information contained in matter

falling into the black hole is lost to outside observers, once it crosses the event horizon.

In the classical theory this can be explained by the fact that all geodesics that cross the

horizon end up at the singularity within finite proper time. All particles that fall into

the black hole will thus end up at the singularity, which acts as a sink for the physical

information contained in the particle, while leaving an imprint of their mass, charge and

angular momentum in the geometry.

Although one could hope that the singular solutions of the Einstein equations are only

spurious effects and do not occur in reality, there are several reasons why they have to

be taken seriously. On theoretical grounds, they are expected to be the endpoints of the

gravitational collapse of massive stars. This is due to the fact that there are no known

forces that can counteract the gravitational force at the core of collapsing massive stars.

The critical point in such a collapse is the formation of a closed trapped surface. Any

future directed light ray that is sent from such a surface will be directed towards one

side of the surface. Such a surface thus splits spacetime into two regions: one that can

be reached by future directed light rays and another region that cannot be reached by

future directed light rays. Consequently, the region contained by the trapped surface is

hidden from outside observers. The typical example of a closed timelike surface is the

event horizon encountered in black hole solutions.

Early models of the collapse of massive objects up to the formation of a horizon were

considered in Ref. [280]. Later, the idea that such a collapse indeed leads to black hole

solutions was strengthened by the formulation of singularity theorems first developed by

Hawking and Penrose [191, 291]. Typically these theorems prove geodesic incompleteness

of a spacetime under generic assumptions about the global structure of the spacetime and

energy conditions that are satisfied by the matter defined on the spacetime.

On top of these theoretical considerations, there are strong empirical arguments in

favor of the existence of black holes. Astronomical observations provide strong evidence

for the existence of dark compact objects that induce a Kerr-like metric. Evidence is for

example provided by the observation of dark supermassive compact objects at the center

of galaxies [59, 169, 176, 231], the observation of massive compact objects in other regions

of galaxies [54, 114, 117, 348, 355], the analysis of gravitational waves from black hole like

sources [2–5], and an image of a black hole like object [12].
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2.3 Dark matter and dark energy

Another issue arising from general relativity is that, assuming general relativity and the

Standard Model of particle physics, a large part of the energy content of the universe is

unknown. Indeed, within the best current model of cosmology, it is estimated that the

energy content of the universe consists for about 68% out of dark energy, 27% dark matter

and only 5% ordinary matter [8,9]. Therefore, the Standard Model of cosmology is referred

to as the ΛCDM Model, where Λ is the cosmological constant indicating the presence of

dark energy, and CDM stands for cold dark matter.

Dark matter refers to the presence of matter that interacts gravitationally with other

matter, but not or very weakly through the Standard Model interactions. In short, the

presence of dark matter is necessary to account for the imbalance between the amount

of matter observed through gravitational interactions, and the much smaller amount of

matter observed through electromagnetic interactions. Concrete evidence for the presence

of dark matter comes from a wide variety of sources such as galaxy rotation curves [122],

velocity dispersions in galaxies [152], gravitational lensing [361], the cosmic microwave

background [8,9], and observation of the bullet cluster [118].

Despite the wide range of cosmological evidence for the existence of dark matter, little is

known about the nature of dark matter, as it has not been observed directly in laboratory

experiments. As a consequence, there exists a large variety of models explaining dark

matter. Most popular are Standard Model extensions, but alternatives exist and include

modifications of gravity, neutrinos and massive composite objects, such as primordial black

holes and MaCHOs. However, it is expected that the latter two can only make up few

percent of the total dark matter [158]. Modifications of gravity, on the other hand, are

not always compatible with data from the bullet cluster [118]. Moreover, classes of these

models can be mapped to Einstein-Hilbert gravity with a Standard Model extension, as

will be discussed in the next section.

If dark matter is a type of matter, not much is known about its fundamental properties.

Indeed, it can have any spin and its mass must roughly be in the range

10−22 eV . m . 1070 eV, (2.48)

where the upper bound comes from the absence of observed tidal disruptions in galaxies,

and the lower bound from the fact that dark matter must be bound within the smallest

galaxies, i.e. its de Broglie wavelength should not be larger than the size of the smallest

galaxies. In addition, as dark matter has not been detected in laboratory experiments,

its non-gravitational interactions with Standard Model matter must be extremely weak.

Furthermore, cosmological data implies that any non-gravitational interactions between

dark matter particles themselves must be very weak and that the dark matter is cold or

non-relativistic.

Dark energy is necessary to explain the accelerated expansion of the universe. Evidence

for this acceleration follows from a variety of observations such as the observation of

supernovae [292], the cosmic microwave background [8, 9], large scale structure [50], and
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the integrated Sachs-Wolfe effect [123,172,198].

Dark energy can be explained by a non-vanishing cosmological constant

Λ ≈ 10−122 l−2
p (2.49)

where lp =
√
~G/c3 is the Planck length. However, there exists no explanation for this

particular value within the ΛCDM Model nor in the Standard Model of particle physics.

Moreover, there is a small tension between the value of Λ as determined from the cosmic

microwave background, i.e. early universe measurements [8,9], and the value as determined

from standard candles, i.e. late universe measurements [301]. There are various models

that attempt to explain the presence of dark energy. Examples are modifications of the

gravitational theory and the introduction of a dynamical quintessence field that satisfies

unusual energy conditions.

2.4 Modifications of gravity

As discussed in previous sections, general relativity is a mathematically clean theory that

provides an extremely well tested description of the gravitational force. Nevertheless, there

are several issues, such as the existence of singularities and the presence of dark matter,

that cannot be described by general relativity. This tension provides a strong indication

that classical general relativity is an incomplete theory of gravity that should be regarded

as a limit of a more complete theory of gravity.

In the next chapter, we will discuss the construction of such a more complete theory

by incorporating quantum effects into the gravitational theory. However, before moving

to such quantum theories of gravity, it is important to point out that the classical theory

of gravity can also be modified in several ways. Here, we discuss some general classes of

modifications.

A first natural way to modify general relativity is to extend the geometrical description

of spacetime. In the construction of general relativity as a theory on pseudo-Riemannian

geometry, it is assumed that the connection of spacetime is the Levi-Civita connection,

which is the unique metric compatible and torsion free connection on a pseudo-Riemannian

manifold. However, generalizations of general relativity exist that use a more general

connection.

An example of such an extension is the Palatini formalism in which one considers the

Einstein-Hilbert action with the metric and connection as independent degrees of freedom.

Variation of the action with respect to the connection then leads to new field equations

for the connection. If the connection is assumed to be torsion-free, this field equation is

solved for the Levi-Civita connection, implying that the non-metricity tensor given by

Qρµν = ∇ρgµν (2.50)

vanishes.

If, on the other hand, the torsion is non-vanishing, then, under the assumption that
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the non-metricity vanishes, one obtains the Einstein-Cartan theory of gravity, which is

characterized by the torsion field

T ρµν = 2 Γρ[µν] = Γρµν − Γρνµ (2.51)

or equivalently by the contorsion tensor

Kρµν =
1

2
(Tρµν + Tµνρ − Tνρµ) (2.52)

with Tρµν = gρσT
σ
µν . The two extreme cases of this theory are given by general relativity,

in which the torsion vanishes but the curvature does not, and the teleparallel theory of

gravity, in which the curvature vanishes but torsion does not.

More general theories that include both torsion and non-metricity are referred to as

metric-affine theories of gravity. In this case the connection takes the form

Γρµν = Γ̄ρµν +Kρ
µν +

1

2
Qρµν (2.53)

with Γ̄µνρ the Levi-Civita connection.

Notice, however, that there exist equivalences between the Einstein-Hilbert theory of

gravity with additional matter fields and theories of gravity that include torsion or non-

metricity. Indeed, instead of referring to K and Q as contorsion and non-metricity, one

could include these fields in the matter Lagrangian and thus treat them as new matter

degrees of freedom.

A second natural modification of general relativity can be obtained by modifying the

Einstein-Hilbert action. This generically leads to a higher derivative theory of gravity,

as such theories often incorporate higher powers of curvature scalars or derivatives of

curvature scalars. A typical example of such theories is an f(R) theory for which the

gravitational action is of the form

SG =
1

16πG

∫ √
|g| f(R) dnx, (2.54)

with f a smooth function of the scalar curvature. More generally, one can consider smooth

functions f(Rµνρσ, gµν) or even smooth functions containing derivatives of the Riemann

tensor. Finally, non-analytic functions can be considered, but this generically leads to a

non-local theory.

A third modification of general relativity can be obtained by introducing an extra term

in the action Sint that explicitly couples certain matter fields to curvature. The standard

example of such a term is provided by a non-minimal coupling of a scalar field φ to gravity,

which introduces a term of the form

Sint = −ξ
2

∫ √
|g|Rφ2 dnx. (2.55)
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In this case, there exists two special cases: ξ = 0 is called minimal-coupling and

ξ =
n− 2

4(n− 1)
(2.56)

is called conformal coupling, since for this value the massless scalar field theory

S = −1

2

∫ √
|g|
(
∇µφ∇µφ+ ξRφ2

)
dnx. (2.57)

is invariant under conformal transformations

gµν(x)→ g̃µν(x) = ω2(x) gµν(x). (2.58)

A more general class of theories that contain an interaction between gravity and scalar

fields is the Horndenski theory [201]. In four dimensions, this is the most general theory

that includes an interaction between gravity and scalar fields, and yields second order

equations of motion.

Finally, we point out that there exist equivalences between certain classes of the second

and third modifications of general relativity and Einstein-Hilbert gravity with additional

matter fields. If this is the case, the representation with a modified gravitational action is

called the Jordan frame representation, while the Einstein-Hilbert action with additional

matter fields is the Einstein frame representation. We will encounter an example of such

an equivalence between modified gravity and classical gravity with additional matter fields

in chapter 11.
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Chapter 3

Towards a Quantum Theory of

Gravity

In previous chapter, we have discussed general relativity, which is a geometric theory

of gravity. In doing so, we have treated both spacetime and the matter defined on the

spacetime as classical fields. However, it is well known that all matter in our universe

must respect the laws of quantum theory. In this chapter, we discuss the quantization of

the theory described in the previous chapter.

3.1 Quantum field theory

Quantum field theory is the most advanced theoretical framework that combines quantum

theory with classical field theory and general relativity. This framework has been hugely

successful, as both the Standard Model of particle physics and many condensed matter

models are formulated within this framework.

The starting point of a quantum field theory is a classical field theory defined on some

fiber bundle with an underlying manifold given by the real space Rd for a non-relativistic

field theory and the Minkowski space Rd,1 for a relativistic theory. For example, the

Standard Model is formulated on the Minkowski space R3,1, and the fibers are invariant

under the action of the group SU(3)× SU(2)× U(1).

In order to obtain a quantum field theory, one must introduce the quantum fluctu-

ations into the theory. This is called the quantization of the theory and the two most

used procedures to quantize a theory are canonical quantization and functional integral

quantization. A thorough treatment of the various quantization procedures is beyond the

scope of this thesis, but can be found in any introductory book on quantum field theory.

Here, we will simply highlight a few basics of the quantization procedures.

In a canonical quantization procedure, one quantizes a theory by promoting all vari-

ables and their conjugates to operators. One then imposes commutation relations between

the variables and their conjugates. As discussed in previous chapter, the variables of a

field theory are the fields, i.e. smooth local sections of the fiber bundle. In a canonical

quantization procedure, one must thus determine the conjugate momenta of the fields,
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which are given by

π(~x, t) =
∂L(φ,∇φ)

∂φ̇(~x, t)
, (3.1)

and impose canonical quantization conditions of the form

[φ(~x, t), π(~x′, t)]t=t′ = i ~ δd(~x− ~x′). (3.2)

As is the case in ordinary quantum mechanics, it is convenient to rewrite the fields in terms

of creation and annihilation operators, which in the case of a field theory corresponds to

a Fourier expansion of the fields given by

φ(~x, t) =

√
~

(2π)d

∫
ddk

√
1

2ω

[
a(~k) ei

~k·~x−iωt + a†(~k) e−i
~k·~x+iωt

]
,

π(~x, t) = −i

√
~

(2π)d

∫
ddk

√
ω

2

[
a(~k) ei

~k·~x−iωt − a†(~k) e−i
~k·~x+iωt

]
. (3.3)

The creation and annihilation operators, a† and a, then satisfy the commutation relation

[a(~k), a†(~k′)] = δd(~k − ~k′), (3.4)

and they can be used to construct excited states of the lowest state or quantum vacuum

|0〉 of the Fock space corresponding to the theory. The observables of a quantum field

theory are correlation functions. In a canonically quantized theory these can simply be

calculated by sandwiching the operators between the vacuum states. For example, the

expectation value of an observable f(φ) is given by

〈f(φ)〉 = 〈0|f(φ)|0〉. (3.5)

Another widely used quantization approach, which is more relevant for this thesis, is

functional integral quantization or quantization by path integrals. The central object in

this procedure is the path integral, which can formally be written as∫
Dφe

i
~S(φ), (3.6)

and should be interpreted as an integral over all possible field configurations, where every

field configuration has a weight given by e
i
~S(φ). The path integral allows for a straight-

forward calculation of expectation values:

〈f(φ)〉 =

∫
Dφf(φ) e

i
~S(φ)∫

Dφe
i
~S(φ)

. (3.7)

For this purpose, it is convenient to define a generating functional by

Z[J ] =

∫
Dφe

i
~ [S(φ)+〈J,φ〉] , (3.8)
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where 〈., .〉 denotes the standard L2 inner product. This allows to calculate n-point cor-

relation functions as

〈φk〉 = (−i ~)k
δk

δJk
lnZ[J ]

∣∣∣
J=0

, (3.9)

which allows to compute 〈f(φ)〉 for any analytic function f .

Although these basic ideas of quantum field theory are rather straightforward, the

actual calculation of correlation functions in quantum field theory is a difficult task. This

is partially due to the complications in defining and evaluating path integrals. The path

integral for a free field theory can, however, be evaluated. The result is an ordinary

integral over space or equivalently over the dual momentum space. Any interaction term

in the Lagrangian can then be introduced using perturbative methods. This can neatly

be represented using Feynman diagrams. These provide a diagrammatic language for the

remaining ordinary integrals that need to be evaluated.

These ordinary integrals are often divergent, but can be regularized in various regu-

larization schemes. After regularization of the divergences, they can be absorbed into the

theory by a redefinition of the original fields and coupling constants. This process is called

renormalization of the theory. Any theory where this process can be applied, while adding

only a finite number of new terms into the Lagrangian is called renormalizable. Theories

for which this cannot be done are non-renormalizable.

In order to study quantum field theory in gravitational backgrounds, a framework of

quantum field theory in curved spacetimes is necessary. Following the above construction,

it can be obtained by simply replacing the Minkowski spacetime Rd,1 with an arbitrary

smooth Lorentzian manifold M.

An issue that arises in such a construction is that the vacuum of the Fock space becomes

an observer dependent notion. In other words, a quantum system that is in its ground

state according to one observer can appear excited in the frame of another observer. In

fact, any observer that accelerates through a Minkowski vacuum will observe a thermal

spectrum of particles, which is known as the Unruh effect [128,162,339].

This effect does not only apply to accelerating observers, but is also observed in grav-

itational fields. Indeed, the equivalence principle states that observers cannot distinguish

between accelerating frames and frames in a gravitational background field. This implies

that an effect similar to the Unruh effect must be present in the neighborhood of gravitat-

ing objects. This leads to the prediction of Hawking radiation [192] and the idea that black

holes are thermal objects with a radiation spectrum and entropy [41]. These predictions

are among the most fascinating ideas of quantum field theory in curved spacetime.

3.2 Quantizing general relativity

In previous section, we have discussed quantum field theory in curved spacetime, which

treats quantum theories on a static spacetime. However, as discussed in previous chapter,

spacetime is dynamical in general relativity and its dynamics is governed by the Einstein

equation

Rµν −
1

2
R gµν + Λgµν =

8πG

c4
Tµν . (3.10)
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When the quantum properties of matter are introduced, the energy-momentum tensor on

the right hand side of this equation is quantized. If the left hand side is kept classical,

this leads to an inconsistency in the equation, as the classical and quantum configuration

spaces are different.

A first approach to resolve this inconsistency is provided by semiclassical gravity. In

semiclassical gravity the right hand side of the Einstein equation is classicalized by taking

the expectation value of the energy momentum tensor:

Rµν −
1

2
R gµν + Λgµν =

8πG

c4
〈Tµν〉. (3.11)

This semiclassical approach is consistent and incorporates the quantum behavior of matter.

However, it does not provide a complete picture of the interplay between quantum field

theory and gravity, as it neglects the back-reaction of the gravitational field on the quantum

fluctuations of matter. Therefore, semiclassical gravity is only an approximation to a more

complete theory that can treat both quantum field theory and its interplay with gravity.

Such a more complete theory requires the quantization of the gravitational field on the

left hand side of the Einstein equation and is therefore called a theory of quantum gravity.

A second reason for the quantization of gravity is that there still exist many unanswered

questions within both the Standard Model and the ΛCDM Model. Although it is not

expected that a theory of quantum gravity will resolve all open questions in particle physics

and cosmology, it is hoped that the quantization of gravity will shine a new light on several

of these issues. In particular, quantum gravity could provide solutions to cosmological

issues related to dark matter, dark energy, and the resolution of singularities.

A consistent and complete formulation of quantum gravity is still absent, but many

approaches to its formulation have been suggested. A first approach to the quantization of

gravity is the background field method in which fluctuations of the metric are quantized

using standard methods from quantum field theory. In this approach, one uses the fact

that the the tangent bundle TM is itself a fiber bundle over the manifold, where the fibers

are the tangent spaces TxM with the Lorentz group SO(3, 1) as its symmetry group. One

then interprets gravity as a gauge force associated to this symmetry group by splitting the

metric g into a background metric ḡ and a perturbation h:

gµν = ḡµν + κhµν , (3.12)

where κ2 = 8π~G. The background can be chosen arbitrarily, but the most common

choice is the Minkowski background ḡ = η. One then defines a new fiber bundle, where

the underlying manifold with metric g is replaced by a manifold with metric ḡ. Moreover,

the fibers are extended such that they include the new (2, 0)-tensor field h that is associated

to the SO(3, 1) symmetry of the fibers. The gauge field h is a massless spin-2 particle, it

is called the graviton, and its wavelike dual is the gravitational wave.

The background metric is kept classical, while the gravitons can be quantized similar to

the gauge forces. However, the resulting theory is non-renormalizable, which can easily be

checked by power counting from the fact that the mass dimension of the coupling [κ2] = 2
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is positive.

If one checks the non-renormalizability explicitly, one finds that the one-loop diver-

gences of pure gravity can in 4 dimensions be canceled [200] using the Chern-Gauss-Bonnet

identity

χ(M) =
1

32π2

∫
M
d4x
√
|g|
(
R2 − 4RµνRµν +RµνρσRµνρσ

)
, (3.13)

where χ(M) is the Euler characteristic of the manifoldM. However, this is no longer true

for the divergences appearing in 2-loop diagrams [179]. In order to cancel such divergences

one would require an infinite number of counterterms, and thus an action of the form

S =

∫
d4x
√
|g|

∞∑
k=1

ak κ
2(k−2) Rk, (3.14)

where ak are dimensionless coefficients and Rk denotes any scalar contraction of a product

of k Riemann tensors. As this would require to fix an infinite number of coefficients ak by

experiment, such a theory is not predictive.

3.3 Quadratic gravity

The fact that the non-renormalizability of the Einstein-Hilbert action can be deduced

from power counting arguments suggests that an action must be constructed where the

coupling constants have non-positive mass dimensions. A natural candidate for such an

extension is quadratic gravity with an action given by

S =

∫
d4x
√
|g|
(
R

2κ2
+ c1R2 + c2RµνRµν

)
. (3.15)

Here, we have not included the quadratic curvature invariant RµνρσRµνρσ, as it can be

rewritten in terms of R2, RµνRµν and a boundary term, that does not affect the equations

of motion, using the Chern-Gauss-Bonnet identity. The couplings for the quadratic inter-

actions in this theory are dimensionless, which suggests renormalizability of the action by

power counting.

It was shown by Stelle [329] that this action of quadratic gravity is indeed renor-

malizable. However, the renormalizability of the quadratic action comes at the price of

introducing a ghost field in the action, i.e. a field with negative energy excitations. The

presence of this ghost can be deduced from the propagator of quadratic gravity. This

propagator can be derived from linearizing the action around flat spacetime [330], and is

given by

δρµδσν + δσµδ
ρ
ν − ηµνηρσ

2 k2
− P

(2)ρσ
µν

k2 −m2
2

+
P

(0)ρσ
µν

2 (k2 −m2
0)

(3.16)



22

with

m2
0 =

1

4κ2 (3c1 + c2)
,

m2
2 = − 1

2κ2 c2
, (3.17)

and where the Nieuwenhuizen operators are given by

P (0)ρσ
µν =

1

3
θµνθ

ρσ

P (2)ρσ
µν =

1

2

(
θρµθ

σ
ν + θσµθ

ρ
ν

)
− 1

3
θµνθ

ρσ (3.18)

with

θµν = ηµν −
kµkν
k2

. (3.19)

The first term is the same as the propagator encountered in Einstein-Hilbert gravity.

This term corresponds to a massless spin-2 field, which is the graviton. The second term

represents the propagator of a massive spin-2 field, and the third the propagator of a

massive spin-0 field. Both these fields are not present in the Einstein-Hilbert action of

gravity. Moreover, the negative sign in front of the second term indicates that the massive

spin-2 field carries a negative kinetic energy, and is thus a ghost field. In addition, the new

degrees of freedom could be tachyonic. However, this can be avoided by simply imposing

constraints on the coefficients ci such that m2
0,m

2
2 ≥ 0.

As a final remark, we note that the definition of the masses allows to rewrite the

quadratic gravity action as [197]

S =
1

2κ2

∫
d4x
√
|g|
(
R+

1

6m2
0

R2 − 1

2m2
2

CµνρσCµνρσ
)
, (3.20)

where Cµνρσ is the Weyl tensor.

3.4 Gravity and gauge forces

In the next chapter, we will build an effective field theory for quantum gravity using the

background field method. As we will see in parts III and IV, this allows to study quantum

gravity at sub-Planckian energy scales in a way that is independent of the details of the

ultraviolet completion of quantum gravity.

Before moving on to this framework, we point out that the failure of constructing a

renormalizable quantum theory of gravity in the background field method does not come

as a complete surprise. Indeed, in the previous chapter we have seen that the configuration

space of classical general relativity is a fiber bundle over a manifold. Moreover, gravity

is associated to the general covariance of the underlying manifold, while gauge forces are

associated to symmetries in the fibers. Even though there are many similarities between

gravity and gauge forces, this makes that they are fundamentally different on a classical

level.
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In the background field approach we quantize gravity by reformulating gravity as a

gauge force. An opposite approach is to reformulate the gauge forces as a gravitational

type of force by equipping the fiber bundle with a higher dimensional manifold structure.

Ideas along those lines go back to the works of Kaluza [220] and Klein [225], who attempted

to unify gravity with the electromagnetic force in a geometric formulation, and are now

prominent in string theoretic approaches.

In part II of this thesis, we will explore how to incorporate quantum effects in the

theory of general relativity, while keeping the fiber bundle structure from classical general

relativity intact. We will do this by exploring stochastic formulations of quantum theories,

and in particular stochastic mechanics using the stochastic quantization procedure as

developed by Edward Nelson [270].

Stochastic quantization in the sense of Nelson1 finds its roots in two closely related

ideas from the 1950s. First, the development of stochastic mechanics [153,267] showed that

quantum fluctuations can mathematically be described using extensions of the theory of

Brownian motion, and can thus be interpreted as a special kind of stochastic fluctuations.

This idea has since then become important in the foundations of quantum mechanics, as

it provides a solution to some of the outstanding issues in this field.

The second root for Nelson’s stochastic quantization approach lies in the mathematical

foundation of quantum field theory. Despite the elegant construction of path integrals

introduced by Feynman, their mathematical construction is still not properly understood

[14]. Nevertheless, it was realized shortly after the introduction of the path integral that

one can make sense of the path integral for the free field using a Wick rotation by mapping

it to a stochastic integral [218]. Since then, stochastic analysis has become foundational

to constructive quantum field theory [177,185,269].

In part II, we will find that the extension of a stochastic framework to manifolds

requires second order geometry [150], which is an extension of ordinary first order differ-

ential geometry. The latter provides the mathematical foundation of general relativity.

Both Nelson’s theory and the second order geometry framework will be introduced exten-

sively in chapter 6 and will therefore not be discussed in more detail in this introductory

part.

1There exists a different stochastic quantization procedure developed by Parisi and Wu [284]. This
approach will not be covered in this thesis.
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Chapter 4

Effective Action of Quantum

Gravity

In previous chapter, we have discussed the fact that a quantum field theory of general

relativity, in which the fluctuations of the metric are quantized as a massless spin-2 field,

is not renormalizable. This non-renormalizability is reflected by the fact that, in order

to absorb all divergences in the coupling constants of the quantum theory, one must add

an infinite number of counterterms. Therefore, the quantum action for the gravitational

interaction will be of the form

S =

∫
d4x
√
|g|

(
M2
p

2
R+ a1 R

2 +
a2

M2
p

R3 +
a3

M4
p

R4 + ...

)
, (4.1)

where Mp is the reduced Planck mass1, ai are dimensionless coefficients and Rn denotes

any contraction of the product of n Riemann tensors. Since there is an infinite number of

coefficients that must be fixed by experiment this theory is not predictive.

It is important to notice that this action is perturbative in the Planck mass, i.e.

at scales R � M2
p one can safely truncate the action, and neglect higher order terms.

Therefore, the quantum field theory of general relativity can still provide predictions that

are under perturbative control as long as the curvature does not grow beyond the Planck

scale, i.e. as long as R < M2
p .

In practice, super-Planckian curvatures are only reached in the very early universe,

and at the center of black holes. Therefore, an action as described in eq. (4.1) applies to

all visible scales and all scales that are achievable by current and near future experiments.

For comparison, the LHC reaches an energy scale of the order 1.3 × 104 GeV, whereas

Mp = 2.4× 1018 GeV.

4.1 Construction of the effective action

The idea sketched above can be made more precise in the language of effective field theories.

In this framework, one constructs a quantum field theory around a low energy limit of

1Mp = κ−1 in units where c, ~ = 1.



25

the theory. The resulting effective field theory is valid from this low energy limit up to a

certain cutoff scale of the theory. The main philosophy behind this approach is that the

high energy modes of a theory are not always the relevant modes for physical processes

taking place at low energy scales. This is due to the fact that high energy modes cannot

be excited at low energy scales.

The first step in constructing an effective action is to set the cutoff scale of the theory

and split all modes of the theory in high energy modes, i.e. modes with energies above

the given energy scale, and low energy modes, i.e. modes with energies below the given

energy scale. One can then obtain the effective action by integrating out all the high

energy modes in the path integral formalism.

If the microscopic theory is known, one can perform this integration explicitly and

obtain an exact effective action. On the other hand, if the microscopic theory is unknown,

one cannot perform the integration explicitly. Nevertheless, if one knows the symmetries of

the underlying microscopic theory, one can make predictions about the type of interactions

that are present in the effective action. This is due to the fact that any effective interaction

that is added to the Lagrangian by integrating out high energy modes must respect the

symmetries of the underlying theory.

The calculation of the effective action by integrating out high energy degrees of free-

dom has been performed in the literature in a variety of models, cf. e.g. [65, 66, 167] for

introductions to the topic. For some of these models the ultraviolet completion is known.

This allows to compare the effective field theory obtained by integrating out fields with

and without assuming the properties of the ultraviolet completion. An example of a model

where the ultraviolet complete theory is known and such integration has been performed

explicitly is the linear sigma model. The effective field theory for this model and its

similarity to quantum gravity is discussed in more detail in Refs. [64, 141,142].

In the case of gravity, the low energy limit is given by general relativity, but the

microscopic theory is unknown. General relativity respects general covariance, and it is

expected that this symmetry is respected by a fundamental theory of quantum gravity.

Therefore, all operators appearing in an effective action of quantum gravity must respect

this symmetry, and will be of the form Rn. Furthermore, using dimensional analysis, one

can set the cut-off scale of the effective theory to be equal to the reduced Planck mass

Mp =

√
~ c

8πG
= 2.435× 1018 GeV. (4.2)

Knowing the cut-off scale, the fundamental symmetries and the low energy limit, one

can qualitatively write down an effective action for quantum gravity. Indeed, after inte-

grating out any unknown heavy degrees of freedom of the microscopic theory, one will

obtain corrections to the Einstein-Hilbert action that respect general covariance and are

Planck scale suppressed. One thus arrives at an action as given in eq. (4.1). We note

that the dimensionless Wilson coefficients, ai, in this action are unknown, and can only

be derived in a specific ultraviolet complete model of quantum gravity, where the heavy

degrees of freedom are known and can be integrated out explicitly.

Additionally, one can integrate out the gravitons, as these are expected to be present
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in any fundamental theory of quantum gravity and are excited at the Planck scale, cf.

eq. (3.12). This integration can be performed explicitly by considering a microscopic

graviton action of the form

S[g] =
M2
p

2

∫
d4x
√
|g| L(g). (4.3)

The moment generating functional for this theory is defined as the path integral

W [J ] = −i ~ ln

[
N
(∫

Dg e
i
~

(
S[g]+

∫
d4x
√
|g| gµνJµν

))]
, (4.4)

where N is a normalization factor. The effective action can then be obtained by taking

the Legendre transform of W :

Γ[ḡ] = W [J ]−
∫
d4x
√
|g| ḡµνJµν , (4.5)

where

ḡµν =
δW

δJµν
= 〈gµν〉 (4.6)

is the vacuum expectation value of the metric. One can then plug in the expression for

the metric (3.12):

gµν = ḡµν +M−1
P hµν . (4.7)

This yields

Γ[ḡ] = S[ḡ] +
i

2M2
p

Tr

[
ln

(
δ2S(ḡ)

δg2

)]
+O(M−2

p ), (4.8)

where we note the ḡ is the classical background metric. Unlike the original microscopic

action (4.3), this action no longer depends on the quantum fluctuations hµν , as these have

been integrated out of the path integral.

The next step in obtaining an effective action is the evaluation of the corrections to

the classical action. In the language of Feynman diagrams, the expansion (4.8) can be

regarded as a loop expansion of the gravitons: the leading order term is the on-shell

graviton action; the next term represents the diagrams containing one graviton loop; and

higher order represent Feynman diagrams with multiple graviton loops. The corrections to

the on-shell action can thus be obtained by evaluating the loop diagrams order by order.

Calculation of the loop diagrams gives rise to two types of operators in the effective

action. The first are local or analytic operators that were already obtained in eq. (4.1).

These originate in the UV-divergences of the graviton loops. The second type are non-

local or non-analytic operators that originate in the infrared divergences of the graviton

loops, which result from the masslessness of the graviton. Within the effective field theory

approach, the local and non-local terms do not impact each other at any finite order in

the energy expansion, as they have a different origin.

The calculation of these terms requires to fix the gauge for the graviton field hµν .

However, fixing the gauge for hµν , will generically also fix the gauge of the background

field ḡµν . Therefore, the resulting effective action will be gauge dependent. The gauge
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freedom for the background field can, however, be preserved using DeWitt’s method of

background or mean-field gauges. This method allows to fix the gauge of hµν without

fixing the gauge of ḡµν [341,356–358], and leads to the Vilkovisky-DeWitt unique effective

action.

The calculation of the unique effective action for gravity can be done using a method

called covariant perturbation theory or the generalized Schwinger-DeWitt technique, which

has been developed in Refs. [34–39]. The resulting unique effective action of quantum

gravity is given by

ΓEQG = ΓL + ΓNL + SM, (4.9)

where we ΓL and ΓNL denote the effective gravitational action and SM is the matter action.

The local effective action is given by

ΓL =

∫
d4x

√
|g|
[
M2
P

2

(
R− 2Λ

)
+ c1(µ)R2 + c2(µ)RµνRµν

+ c3(µ)RµνρσRµνρσ + c4(µ)�R+O(M−2
P )
]

(4.10)

and the non-local action is given by

ΓNL = −
∫
d4x

√
|g|
[
αR ln

(
�
µ2

)
R+ βRµν ln

(
�
µ2

)
Rµν

+γRµνρσ ln

(
�
µ2

)
Rµνρσ +O(M−2

P )

]
. (4.11)

We note that O(M−2
P ) denotes the higher curvature terms that appear in multiple

graviton loop diagrams. In this thesis, we will neglect such terms and focus on the linear

and quadratic parts of the effective action, i.e. the on-shell and one loop contributions.

Additionally, we will ignore the cosmological constant. Furthermore, we note that the

RµνρσRµνρσ terms can be rewritten in terms of R2, RµνRµν and a boundary term using

the Chern-Gauss-Bonnet theorem. This boundary term and the boundary term with

Wilson coefficient c4 do not affect the equations of motion and will therefore be ignored

in the remainder of the thesis.

The local coefficients ci are associated with UV-divergences in the Feynman diagrams,

and can therefore not be calculated within the effective field theory approach. They are,

however, calculable in ultraviolet complete theories of quantum gravity, cf. e.g. Ref. [15]

for an example in string theory. Moreover, the graviton contribution to the running of

these Wilson coefficients can be determined within any renormalization scheme. This

introduces the dependence on the renormalization scale µ.

The fact that the Wilson coefficients cannot be calculated within the effective field

theory approach renders the local theory unpredictive. Nevertheless, the coefficients are

expected to be non vanishing, unless some unknown symmetry in the ultra-violet complete

theory is present or if fine tuning occurs. Therefore, the presence of higher order local

interaction can be regarded as a qualitative prediction of the effective field theory.

The non-local coefficients, on the other hand, are associated with IR-divergences in

the Feynman diagrams and can be calculated within the effective field theory approach.
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α β γ

Scalar 5(6ξ − 1)2 −2 2

Fermion −5 8 7

Vector −50 176 −26

Graviton 250 −244 424

Table 4.1: Non-local Wilson coefficients for various fields. All numbers should be di-
vided by 11520π2. Furthermore, ξ denotes the value of the non-minimal coupling for a
scalar theory. The values for the scalar, fermion and vector field have been calculated in
Refs. [48, 132]. The values for the graviton can be gauge dependent due to the graviton
self-interaction diagrams [219]. However, it is possible to define a unique effective ac-
tion with gauge independent coefficients leading to the gauge independent results quoted
here [34,35,341].

The values of these coefficients depend on the type of matter that the graviton couples

to, and are given for several types of matter in Table 4.1. For any theory, the value of the

non-local coefficients is then given by

α = Ns αs +Nf αf +Nv αv +Ng αg, (4.12)

where Ns, Nf , Nv, Ng denote the number of scalar, fermionic, vector, and graviton fields

in the theory.

We conclude this section with a remark on the chosen cut-off scale. We have used

dimensional analysis to set this scale equal to the Planck scale. However, a priori, there

is no reason for the scale of quantum gravity to be exactly equal to the Planck scale. One

expects

MQG = aMP , (4.13)

where a is an unknown numerical factor.

Despite the fact that a is unknown, one can set rough bounds on its value. Indeed,

since quantum gravity effects have not been observed in the lab, the scale of quantum

gravity is expected to be several order of magnitude above the TeV scale that can be

reached in collider experiments. This provides a lower bound on the value of a. An upper

bound can be obtained from the violation of tree unitarity in the effective field theory of

quantum gravity [190]:

a ≤
√

480π

NS + 3NF + 12NV
, (4.14)

where NS , NF and NV denote the number of scalar fields, Weyl fermions and vector bosons

in the theory. This bound can roughly be translated into a . 1.

By constructing the effective action with an arbitrary value of a, one can easily see

that the larger the scale of quantum gravity, the larger the range of validity of the effective

field theory, and the larger the suppression of quantum gravitational effects. In this thesis,

we use the conservative estimate a = 1. This provides a maximal suppression of quantum

gravitational effects.
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4.2 Comparisons to quadratic gravity

The effective field theory of quantum gravity allows to calculate quantum gravitational

corrections to any gravitational observable. Perhaps, one of its most interesting predictions

is the computation of corrections to the Newtonian potential. The corrections due to the

local terms were first calculated by Stelle in the framework of quadratic gravity [329,

330], while the corrections due to the non-local terms were first obtained in the works of

Donoghue [49,139,140]. More recently, the two types of corrections have been put together

yielding a quantum corrected potential of the form [93,94]

Φ(r) = −GM
r

(
1 +

1

3
e−Re(m0) r − 4

3
e−Re(m2) r

)
(4.15)

with complex masses given by

m2
0 = −

M2
P

4 (3α+ β + γ) W
(

M2
P

4µ2(3α+β+γ)
exp

[
−3c1+c2+c3

3α+β+γ

]) ,
m2

2 =
M2
P

2 (β + 4γ) W
(
− M2

P
2µ2(β+4γ)

exp
[
− c2+4c3

β+4γ

]) , (4.16)

where W (z) denotes the principal branch of the Lambert-W function, which is defined as

the solution w = W (z) of the equation

w ew = z. (4.17)

We note that these complex masses are generalizations of the masses of the spin-0

and spin-2 field in quadratic gravity that were given in eq. (3.17). The major difference

between the masses given in eq. (4.16) and those given in eq. (3.17) is that the masses

of the spin-0 and spin-2 fields in the effective action are complex and include corrections

due to the non-local part of the action. The complex parts of the masses represent the

decay width for the decay of the spin-0 and spin-2 fields into the classical graviton and

into Standard Model fields [94].

There are many other similarities between quadratic gravity and the effective action

for quantum gravity, which is due to the fact that the quadratic action is contained in the

effective action of quantum gravity. As we truncate the effective action at quadratic order,

the only difference resides in the presence of the non-local terms in the effective action.

Given these similarities, it is important to stress some fundamental differences between

the two frameworks. In quadratic gravity, the fundamental classical action is the quadratic

action, which contains three classical degrees of freedom: a massless spin-2, a massive spin-

0, and a massive spin-2 particle. When quantized, the theory is renormalizable, implying

that the quantum action is also the quadratic action. However, quantization of the theory

requires to quantize all three degrees of freedom. This is problematic for the massive

spin-2 field, as it is a ghost field.

In contrast, in the effective field theory of quantum gravity the fundamental classical
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action is the Einstein-Hilbert action. This action contains only one degree of freedom,

which is the massless spin-2 graviton. When quantized, there is no ghost problem, as only

this particle is quantized. However, the theory is non-renormalizable implying that an

infinite number of counterterms must be added.

Since the counterterms are perturbatively under control up to the Planck scale, the

resulting quantum action can be truncated at some order and be treated as an effective field

theory. From the effective field theory perspective, the resulting action is again classical,

since the quantum degrees of freedom have been integrated out. If the truncation is made

after the quadratic order, one will find three degrees of freedom. If, on the other hand, the

truncation is made at a higher order, one can find other new degrees of freedom appearing

in the action [95].

By the Ostragradsky theorem [148,282,360], at least one of these new degrees of free-

dom will be ghostlike. Therefore, when treated as a fundamental theory, such a theory will

suffer from instabilities. However, in the effective field theory approach, these instabilities

are harmless, as they lie at the Planck scale just beyond the range of validity of the ef-

fective field theory. They result from truncating an expansion of the unknown ultraviolet

complete theory around the known infrared limit and do not necessarily correspond to

poles in the ultraviolet complete theory [64,238,315]. However, the presence of these new

poles also modifies the infrared regime of the theory. These modifications at sub-Planckian

energy scales can be studied reliably within the effective field theory framework.

The new massive spin-0 and spin-2 fields thus provide perturbative quantum correc-

tions to the gravitational field that are obtained by integrating out the quantum fluctu-

ations of the graviton. The massive spin-0 provides an attractive correction, while the

massive spin-2 provides a repulsive correction to the gravitational force.

4.3 Coupling quantum gravity to matter

In the previous sections, we have focused on the effective action of quantum gravity for

a purely gravitational theory. However, all matter interacts gravitationally, and therefore

quantum gravitational effects will also generate new effective interactions in the matter

Lagrangian LM.

In order to see this, let us recall the effective action (4.9)

ΓEQG = ΓL + ΓNL + SM, (4.18)

where the local and non-local action are given by eqs. (4.10) and (4.11). Linearizing this
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action around Minkowski space in the Einstein frame yields [93]

Γ =

∫
d4x

[
−1

2
hµν∂

2hµν +
1

2
hµµ∂

2hνν − hµν∂µ∂νhρρ + hµν∂ρ∂νh
ρ
µ

+
1

2
∂µσ∂

µσ − m2
0

2
σ2

+
1

2
kµν∂

2kµν − 1

2
kµµ∂

2kνν + kµν∂µ∂νk
ρ
ρ − kµν∂ρ∂νkρµ

− m2
2

2

(
kµνk

µν − kµµkνν
)

− 1

MP

(
hµν − kµν +

1√
3
σηµν

)
Tµν + LM(η) +O(M−2

p )

]
, (4.19)

where η is the Minkowski metric, h is the graviton, k is the massive spin-2 particle and

σ is the massive spin-0 particle associated to the effective quantum gravity action. Here,

the first lines result from the effective gravitational action and the last line follows from

linearizing the matter Lagrangian SM. We see that the last line generates an explicit

interaction between the gravitational degrees of freedom and the energy momentum tensor.

As the gravitational degrees are heavy, this leads to effective contact interactions of the

form

OEFT =
8π

M2
P M

2
i

OMO′M, (4.20)

where Mi is the mass of the massive spin-0 and spin-2 degrees of freedom, i.e. the real

part of eq. (4.16), and OM, O
′
M ∈ LM are matter interactions.

As Mi ∼ MP , these interaction are heavily suppressed, and lie beyond experimen-

tal reach. However, in constructing these interactions, we have only used the quantum

gravitational effective action generated by graviton loops, i.e. perturbative effects. Non-

perturbative quantum gravitational effects, such as virtual black holes, will also generate

new interactions between matter.

Little is known about these non-perturbative quantum gravitational effects. However,

following the standard reasoning from effective field theory, one should expect any type of

operator that respects the symmetries of the underlying theory. We should thus expect any

interaction that respects the symmetries of the Standard Model and general covariance, as

long as the interaction is turned off in the limit MP → ∞, where quantum gravitational

effects vanish. As an example, consider a matter Lagrangian that contains a real scalar

field φ and a vector field Aµ. For such a Lagrangian quantum gravity will generate an

effective interaction of the form
c

MP
φFµνF

µν , (4.21)

where Fµν = ∂µAν − ∂νAµ is the field strength and c is a dimensionless constant. For a

more general classification of the possible effective interactions we refer to Ref. [72].
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Chapter 5

Outlook for the Thesis

The remainder of the thesis consists of 4 more parts. In part II, we discuss the construc-

tion of diffeomorphism invariant theories on fluctuating spacetimes. This will be done in

the framework of Nelson’s stochastic quantization. Here, we will only discuss the most

elementary theory in such a framework, which is the stochastic quantization of a single

relativistic scalar particle in an arbitrary gravitational background. As we do not consider

field theoretic extensions, we stick to a first quantization approach in which we quantize

the particle but do not quantize gravity or the gauge forces.

In chapter 6, we provide a review of stochastic mechanics, and discuss in depth the

framework of second order geometry, which is key in constructing diffeomorphism invari-

ant stochastic theories on pseudo-Riemannian manifolds. In chapter 7, we employ the

results from chapter 6 to consider the physically relevant case of a relativistic particle on

Lorentzian manifolds. Finally, in chapter 8, we show that the Nelson process, used in

stochastic quantization, can be redefined as a complex Brownian motion.

In part III, we move away from the elementary considerations of part II, and discuss

model independent predictions of quantum gravity. This will be done in the framework of

the unique effective action of quantum gravity.

In chapter 9 we discuss quantum gravitational corrections to the metric of a compact

star and chapter 10 we discuss the consequence of these corrections for the motion of scalar

test particles and scalar fields in this geometry.

In chapters 11 and 12, we discuss the existence of singularities and secularities in

the effective action of quantum gravity. Chapter 11 discusses the avoidance of classical

singularities due to the quantum gravitational effects, while chapter 12 discusses how the

effective action generates new singular and secular solutions.

Finally, chapters 13 and 14 deal with issues related to black hole information. In

chapter 13, we employ the effective action of quantum gravity to calculate the leading

quantum gravitational corrections to the entropy of a black hole, and, in chapter 14, we

show that quantum gravitational effects generate hair for compact objects.

In part IV, we move away from the unique effective action for a purely quantum grav-

itational theory and consider effective matter interactions generated by quantum grav-

ity. Here, we discuss how quantum gravity generates new interaction terms between the

Standard Model and a hidden sector. In chapter 15, we discuss how these new effective
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interactions can be combined with experimental results to set new lower bounds on the

masses of dark matter fields. In chapter 16, we then combine these results with upper

bounds on dark matter masses.

Finally, in part V, the results obtained in this thesis will be summarized and we will

provide an outlook for future research directions.



Part II
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Chapter 6

Stochastic Quantization on

Lorentzian Manifolds

Folkert Kuipers

Department of Physics and Astronomy, University of Sussex, Brighton, BN1 9QH,

United Kingdom

Abstract

We embed Nelson’s theory of stochastic quantization in the Schwartz-Meyer second or-

der geometry framework. The result is a non-perturbative theory of quantum mechanics

on (pseudo-)Riemannian manifolds. Within this approach, we derive stochastic differ-

ential equations for massive spin-0 test particles charged under scalar potentials, vector

potentials and gravity. Furthermore, we derive the associated Schrödinger equation. The

resulting equations show that massive scalar particles must be conformally coupled to

gravity in a theory of quantum gravity. We conclude with a discussion of some prospects

of the stochastic framework.

This chapter has been published in the Journal of High Energy Physics 05, a. 028 (2021).

A preprint of this chapter can be found at arXiv:2101.12552 [hep-th].
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6.1 Introduction

The construction of a theory of quantum gravity is one of the main open issues in theoret-

ical high energy physics. One of the reasons why such a theory is desirable is that general

relativity is unable to completely describe physical aspects of gravity at extremely high

energy scales. This feature is most prominent in the fact that singularities seem to be

unavoidable in general relativity, when natural assumptions are made [191,280,291,312].

From a physical perspective, the formation of such singularities would require the con-

tinuous collapse of a matter distribution to a delta distribution located at the singularity.

On Rn one can make sense of such a collapse, as one can construct a family of smooth

distributions that converges to the delta distribution. In general relativity, on the other

hand, point-like sources cannot be obtained as a continuous limit of matter distributions

defined on manifolds with smooth metrics, as the Einstein equations must be satisfied

during the collapse [168].

It is expected that this paradox will be resolved, when general relativity is embedded

into a quantum theory such that gravity is quantized. However, when one attempts such

an embedding using standard quantum field theory methods, one runs into the problem

that the resulting quantum theory is non-renormalizable [200]. Up to the Planck scale, one

can still make predictions regarding quantum gravity using effective field theory methods,

since the ultraviolet divergences responsible for the non-renormalizability of the theory

can be kept under control perturbatively. However, beyond the Planck scale this is no

longer true, which renders the theory incomplete.

Over the last decades many approaches to an ultraviolet complete theory of quantum

gravity have been developed, and many interesting insights have been obtained within

these approaches. In this paper, we argue that Nelson’s stochastic quantization framework

could help gain further insight in theories of quantum gravity. We will motivate this by

showing that stochastic quantization allows to construct a well defined non-perturbative

theory of quantum mechanics on (pseudo-)Riemannian manifolds.

We will adopt the framework of stochastic mechanics, also known as Nelsonian stochas-

tic quantization1, that was proposed by Fényes [153] and Kershaw [223], rederived by

Nelson [267, 268, 270] and further developed by many others. The main idea governing

stochastic mechanics is that quantum mechanics can be derived from a stochastic theory.

In this more fundamental theory all particles follow trajectories through a randomly fluc-

tuating background field. Due to the interactions with this background field all matter

behaves quantum mechanically. An equivalent way2 to state this idea is that all particles

and fields are defined on a randomly fluctuating space-time.

We focus in this paper on ordinary quantum mechanics. We will thus work with

point-like particles instead of fields. Moreover, we work on a fixed Lorentzian manifold.

Therefore, the metric is not considered to be a dynamical field. We leave extensions to

1In this paper, we use the terms stochastic mechanics and stochastic quantization interchangeably. We
emphasize that the framework is related to, but different from the Parisi-Wu formulation of stochastic
quantization.

2One could call this a ‘passive’ description of stochastic quantization, since the space-time fluctuates,
while in the previous ‘active’ description the matter defined on the space-time fluctuates.
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a field theory framework and to dynamical geometries for future work. In the stochastic

quantization framework such extensions lead to a theory of quantum gravity.

6.1.1 Stochastic quantization

Since the quantization procedure in stochastic quantization is different from more com-

monly used quantization procedures, we will compare the main steps to canonical quan-

tization. In a canonical quantization procedure one starts with a classical Hamiltonian

H(p, x) and promotes the variables p, x to operators P,X such that

H(p, x)→ Ĥ(P,X).

One then imposes canonical commutation relations

[Xν , Pµ] = i ~ δνµ. (6.1)

Moreover, one postulates the existence of a wave function Ψ, which is an element of a

complex Hilbert space with L2-norm, that can be used to calculate observables, i.e.,

〈Ψ|Ô|Ψ〉 = O. (6.2)

In stochastic quantization, one starts with a classical Lagrangian Lc(x, v, τ), and pro-

motes the position of a particle x to a stochastic process X(τ). Since the stochastic process

is not differentiable, one can define two velocities v± using conditional expectations:

v+(X(τ), τ) = lim
h↓0

1

h
E [X(τ + h)−X(τ)|X(τ)] ,

v−(X(τ), τ) = lim
h↓0

1

h
E [X(τ)−X(τ − h)|X(τ)] . (6.3)

One can then introduce a stochastic Lagrangian

Lc(x, v, τ)→ L(X,V+, V−, τ) =
1

2
[Lc(X,V+, τ) + Lc(X,V−, τ)] (6.4)

Moreover, one fixes the quadratic variation3 of the process X by the background hypoth-

esis:

[[Xν , Xµ]](τ) =
~
m
δνµ τ. (6.5)

We remind the reader that the joint quadratic variation of two processes X,Y is itself a

stochastic process and can be written as

[[X,Y ]](τ) = X(τ)Y (τ)−X(0)Y (0)−
∫ τ

0
X(s)dY (s)−

∫ τ

0
Y (s)dX(s). (6.6)

3More commonly used notations for d[[Xi, Xj ]] are d[Xi, Xj ] or dXidXj . We use the double brackets
instead to avoid confusion with the commutator, first order bilinear tensors and second order vectors that
will be introduced in section 6.2.
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The Itô integral used in this expression is defined by∫ τf

τi

f(X, τ) dX := lim
k→∞

∑
[τj ,τj+1]∈πk

f(X(τj), τj) [X(τj+1)−X(τj)] , (6.7)

where πk is a partition of [τi, τf ].

Observables in stochastic quantization can be calculated using the expectation E, which

is defined on a filtered probability space, and evaluated as a Lebesgue integral in the L2-

space of stochastic processes. The construction of expectation values in modern probability

theory as founded by Kolmogorov [230] requires the existence of a probability measure P
in the probability space, and a measure µ in the L2-space, but not the existence of a

probability density.4 Therefore, the wave function Ψ no longer needs to be postulated in

stochastic quantization.

Since the wave function is no longer fundamental to the theory, the interpretation of

quantum mechanics in the stochastic quantization framework is different from the standard

Copenhagen interpretation. In stochastic quantization, one assumes that particles follow

well defined trajectories through space-time. However it is assumed that all matter moves

through a fluctuating background field, which is sometimes called the aether, but can also

be regarded as a fluctuating space-time or as a diffeomorphism invariant quantum vacuum.

Due to the fluctuating background field, the motion of massive particles5 will become

stochastic and comparable to a frictionless Brownian motion.6 This Brownian motion

is imposed to be time-reversible. This additional assumption introduces an important

distinction from Brownian motion processes that are more commonly studied in statistical

physics.

Most stochastic diffusion processes that are studied in physics, such as for example

the Ornstein-Uhlenbeck process, are dissipative diffusions. These processes are not time

reversible, and energy is transferred from the system to the environment until an equilib-

rium is reached. The processes studied in stochastic mechanics are conservative diffusion

processes. These processes are time-reversible and the expected energy transfer between

the system and environment is 0 at all times.

The fact that the wave function is no longer fundamental in stochastic quantization

has two further important consequences. First, constructing normalized wave functions on

Riemannian manifolds is a difficult task, that complicates extensions of ordinary quantum

mechanics to manifolds. This problem is circumvented in the stochastic approach, as the

wave function no longer needs to exist globally.

Secondly, due to the secondary role of the wave function, there is no measurement

problem in stochastic mechanics. The wave function and probability density in stochastic

mechanics have the same status as in standard probability theory. A theoretically perfect

measurement in stochastic mechanics thus corresponds to conditioning of the process.

Conditioning is a mathematical operation that still leads to collapse of the wave function,

but since the wave function is only a mathematical construct and not a physical object,

4If a probability density ρ(x) exists, one has the familiar relation dµ(x) = ρ(x)dnx.
5Stochastic quantization has yet to be extended to massless particles.
6Notice that eq. (6.5) characterizes a scaled Brownian motion [242].
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this does not correspond to a physical interaction.

6.1.2 Successes of stochastic quantization

The success of stochastic quantization relies on the relation between probability density

functions associated to stochastic processes and partial differential equations. In the case

of dissipative diffusions, the probability density associated to the solution of a stochastic

differential equation evolves according to a parabolic differential equation. This result is

known as the Feynman-Kac formula [218]. An example of this relation is the fact that

the probability density of a dissipative Brownian motion evolves according to the heat

equation, which is a real diffusion equation.

A similar relation exists for conservative diffusion processes. For example, the prob-

ability density of a conservative Brownian motion evolves according to the Schrödinger

equation, which is a complex diffusion equation. This result is closely related to the

Feynman-Itô formula [14,214]. Before this latter relation was formally established, it was

discovered independently by Fényes, Kershaw and Nelson [153,223,267,268,270] that the

Schrödinger equation can be derived from a stochastic theory, if one assumes that particles

follow a time-reversible stochastic process, governed by a stochastic version of Newton’s

second law, where the force is derived from a potential.

The theory that was developed in this way is called stochastic mechanics. The im-

mediate consequence of this discovery is that all predictions of quantum mechanics that

follow from the Schrödinger equation, are also predictions of stochastic mechanics. Later

it was shown that the same result can be formulated in terms of Lagrangian dynamics

using the stochastic variational calculus developed by Yasue [362–364]. This Lagrangian

approach goes by the name of stochastic quantization.

The theory of stochastic mechanics and stochastic quantization has been extended to

Riemannian manifolds, see e.g. Refs. [127, 135–137, 187, 270]. Moreover, extensions of

stochastic quantization to bosonic field theory have been developed, cf. e.g. Refs. [165,

184,186,188,189,227,251,265,289]. Furthermore, the notion of spin has been discussed in

this framework, cf. e.g. Refs. [127,159,270].

It is worth noticing that in the dissipative field theoretic stochastic framework that

was later developed by Parisi and Wu [125, 284], and also goes by the name of stochastic

quantization, extensions to fermionic field theories have been developed, cf. e.g. Ref. [126].

Although this framework is different from the stochastic quantization as developed by

Nelson and others, there exist many similarities. It is also worth mentioning that several

authors have incorporated stochastic mechanics into models of quantum gravity, cf. e.g.

Refs. [151,249].

Many basic results from quantum mechanics such as the commutation relations, the

uncertainty principle, the double slit experiment and the motion of particles in various

potentials have been discussed within the stochastic framework, see e.g. Refs. [164, 184,

270, 278, 290, 293, 364]. We emphasize that the interpretation of these results radically

changes in the stochastic quantization framework, as the particle follows a well defined

trajectory. For example, in the double slit experiment, a particle always goes through
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one slit. One still obtains an interference pattern, as this is the unique solution of the

time-reversible diffusion process.7

6.1.3 Criticism on stochastic quantization

Despite the successes described above, stochastic quantization has never been widely stud-

ied. We will therefore review some of the main concerns that have been raised against

stochastic quantization.

Historically, one of the more prominent confusions arose from the idea that a diffusion

process is necessarily dissipative, and cannot give rise to quantum mechanics. As argued

before, this is not the case, when the diffusion is time-reversible. This point has been

well explained by Nelson in section 14 of Ref. [270], where an analogy is made with the

difference between Aristotelean and Galilean dynamics. It should be noted that in order

to describe entanglement in stochastic quantization, the background field has to be non-

local. This particular feature was disliked by Nelson, cf. e.g. Ref. [271]. We stress that

this non-locality is merely a feature of quantum mechanics, and not specific to stochastic

quantization. Moreover, it is an open question, whether the non-locality of the background

can be avoided, if one considers non-Markovian diffusion processes.

Another concern that may be raised against stochastic mechanics is that it can be

regarded as a hidden variable theory, as it is assumed that a background field exists that is

responsible for the quantum fluctuations. One could thus expect that stochastic mechanics

satisfies the Bell inequalities, which would distinguish it from quantum mechanics. We will

avoid this issue by assuming that the background field is fundamentally random, in the

sense that the fluctuations cannot be derived from a more fundamental theory. Under this

assumption there are no deterministic hidden variables. This assumption distinguishes

the framework from for example the Brownian motion of a colloid suspended in a liquid,

where the trajectory of the colloid can in theory be derived by solving the equations of

motion of all the molecules in the liquid.

A more pressing issue for stochastic quantization is Wallstrom’s criticism [346, 347],

which states that the 2π periodicity of the wave function has to be imposed as an additional

assumption. Such an assumption must be made ad hoc, since the wave function is not a

fundamental object in the theory. Several responses against this criticism have been given,

such as for example the incorporation of zitterbewegung [130, 131], adding a postulate

regarding the boundedness of the Laplace operator acting on the probability density [309]

or by adding the assumption of unitarity of superpositions of wave functions [159]. It is also

worth mentioning that it was pointed out in Ref. [11] that the stochastic processes should

be lifted to the universal cover of the configuration space, as the configuration space itself

might not be simply connected. When this is done, the wave function obtains periodicity

factors that are related to the winding numbers around the holes in the configuration

7Let us be a bit more precise, as the process is slightly more complicated in stochastic quantization:
after passing through one of the slits, the particle will diffuse according to a one slit diffusion process.
However, due to the imposed time-reversibility of the motion, it will transition into a double slit diffusion
process. The length scale associated to this transition is the width of the slit, cf. e.g. sections 16 and 17
in Ref. [270].
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space, which could resolve Wallstrom’s criticism.

Since no consensus yet exists about the solution of Wallstrom’s criticism, we will take

a more pragmatic approach: we accept this ad hoc constraint and remain agnostic about

its solution. The reason for this is that imposing such a constraint is only problematic at

a foundational level. Even if Wallstrom’s criticism cannot be resolved within stochastic

quantization, the theory can still be used as an alternative mathematical model of quantum

theory, and can thus be used to make predictions about quantum systems. As we will show

in this paper, a particular advantage of the stochastic model is that it can be formulated

on (pseudo-)Riemannian manifolds, which could help guide the way towards a theory of

quantum gravity.

A more practical concern regarding stochastic quantization is that analytical calcu-

lations require to solve stochastic differential equations. This is notoriously difficult. In

fact, an important solution method relies on the mapping stochastic differential equa-

tions to path integral problems and to partial differential equations, as established by

the Feynman-Kac formula. It is thus expected that many calculations can more easily

be performed in ordinary quantum theory. This would render stochastic mechanics as

an alternative mathematical model unnecessary. Despite this fact, it is expected that

stochastic quantization could prove to be useful in numerical calculations, and a small

number of analytical calculations. More interesting, however, is the potential of stochastic

quantization on a more formal level. In particular, it could prove to be useful in math-

ematically rigorous definitions of the path integral, which is expected to be essential for

constructing a theory of quantum gravity. We note here that stochastic approaches already

serve as one of the stepping stones of the Euclidean approach in quantum field theory, see

e.g. [269,313,332,354].

6.1.4 Postulates of the theory

Before moving on, let us summarize the fundamental assumptions of stochastic quanti-

zation: we assume that all particles follow well defined trajectories through a diffeomor-

phism invariant background field. This background field induces stochastic fluctuations

such that the motion of particles resembles a conservative Brownian motion. Moreover,

the quadratic variation of this process scales with the Planck constant according to the

background hypothesis. We have the following postulates:

� All observables are invariant under a change of coordinate system.

� The stochastic motion of a particle with mass m is Markovian.

� The stochastic motion of a particle with mass m is time-reversible.

� The stochastic motion obeys the structure equation [[Xµ, X
ν ]](τ) = ~

mδ
ν
µτ .

We note that the classical limit of the theory can be obtained straightforwardly by taking

the limit ~→ 0.



42

6.1.5 Main results of the paper

In this paper, we work in the (− + ++) signature with a Riemann tensor defined by

Rρσµν = ∂µΓρνσ − ∂νΓρµσ + ΓρµκΓκνσ − ΓρνκΓκµσ and Ricci tensor Rµν = Rρµρν . In addition,

we set c = 1 throughout the paper.

The main result we present in this paper is the following: in the stochastic quantization

framework, a massive scalar particle moving on a Lorentzian manifold and governed by

the stochastic Lagrangian

L(X,V+, V−, τ) =
1

2
Lc(X,V+, τ) +

1

2
Lc(X,V−, τ) (6.8)

where the classical Lagrangian is given by

Lc(x, v, τ) =
m

2
gµν(x) vµ vν − ~Aµ(x, τ) vµ − U(x, τ) (6.9)

with x = (t, ~x) and τ is the proper time, evolves according to the Stratonovich stochastic

differential equation

mgµν
(
d2Xν + Γνρσ dX

ρdXσ
)

=

(
~ ∂τAµ −∇µU−

~2

12m
∇µR

)
dτ2

− ~ (∇µAν −∇νAµ) dXνdτ. (6.10)

Furthermore, if the probability density ρ(x, τ) associated to the probability measure µ =

P ◦X−1 exists, one can construct the wave function

Ψ(x, τ) =
√
ρ(x, τ) exp

{
i

~
E
[∫ τ

τi

L
(
X(t), V+(t), V−(t), t

)
dt
∣∣∣X(τ) = x

]}
(6.11)

that evolves according to a generalization of the Schrödinger equation given by

i~
∂

∂τ
Ψ =

[
− ~2

2m

([
∇µ + iAµ

][
∇µ + iAµ

]
− 1

6
R
)

+ U

]
Ψ. (6.12)

This wave function obeys the Born rule

|Ψ(x, τ)|2 = ρ(x, τ). (6.13)

If there is no explicit proper time dependence in Aµ or U, one can solve by separation of

variables such that

Ψ(x, τ) =
∑
k

φk(x) exp

(
imλk

2 ~
τ

)
, (6.14)

where φk(x) solves the generalization of the Klein-Gordon equation given by

~2

([
∇µ + iAµ

][
∇µ + iAµ

]
− 1

6
R
)
φk = m2 λk φk + 2mUφk. (6.15)

We note that the derivation of eqs. (6.11), (6.12) and (6.13) is a well established

result on Rn, see e.g. Refs. [184, 223, 267, 268, 270, 364]. Moreover, partial extensions to
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Riemannian manifolds have been known for some time, cf. Refs. [127,135–137,187,270].

In this paper, we show that these results can be generalized to pseudo-Riemannian

manifolds. An important ingredient for these extensions is the second order geometry

as developed by Schwartz and Meyer [150, 257, 311]. This is an extension of ordinary

differential geometry that allows to describe stochastic processes on manifolds. In addition

to the extension of stochastic quantization to pseudo-Riemannian manifolds, we will give

some new interpretations of stochastic quantization.

This paper is organized as follows: in the next section 6.3, we introduce the relevant

semi-martingale processes for quantum mechanics; section 6.4 discusses integration along

semi-martingales on manifolds; in section 6.5, we discuss stochastic variational calculus; in

section 6.6, we discuss the shape of the stochastic action; in section 6.7, we put everything

together and derive the stochastic differential equations for quantum mechanical scalar test

particles on pseudo-Riemannian manifolds, and the associated Schrödinger equation. Fi-

nally, in section 6.8, we conclude and summarize some future perspectives of the stochastic

approach.

6.2 Second order geometry

In this section, we review the theory of Schwartz-Meyer second order geometry, that can be

used to extend the theory of stochastic calculus to manifolds. The first three subsections

are loosely based on Ref. [150]. The later subsections contain new material and extend

some important concepts from first order geometry into second order geometry. For more

detail we refer to the work of Emery [150] and the original works by Schwartz [311] and

Meyer [257].

6.2.1 Second order vectors and forms

We consider a (n = d + 1)-dimensional pseudo-Riemannian manifold M with the usual

first order tangent and cotangent spaces TxM, T ∗xM. For every x ∈ M and any coor-

dinate chart containing x one can write down bases for the tangent and cotangent space

respectively given by {∂µ|µ ∈ {0, 1, ..., d}} and {dxµ|µ ∈ {0, 1, ..., d}}. In particular for

v ∈ TxM and ω ∈ T ∗xM we have

v = vµ ∂µ,

ω = ωµ dx
µ. (6.16)

Furthermore, a form ω ∈ T ∗xM can often be written as the differential form of some

function f :M→ R i.e.

ω = df = ∂µf dx
µ. (6.17)

The product rule for such differential forms is given by

d(fg) = f dg + g df. (6.18)
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In addition, there exists a metric associated to the tangent space that is given by

g : TxM× TxM→ R s.t. (v, w) 7→ 〈v|w〉 = gµνv
µwν , (6.19)

and is bilinear, symmetric and non-degenerate. Moreover the metric induces an isomor-

phism g
Z

: TxM→ T ∗xM between the tangent and cotangent space, that is defined by

〈gZ(v), w〉 = 〈v, gZ(w)〉 = 〈v|w〉 (6.20)

We define a similar bracket for two forms α, β ∈ T ∗xM by

〈α|β〉 = 〈α, g\(β)〉 = 〈g\(α), β〉. (6.21)

We will now define a second order tangent space and cotangent space T̃xM, T̃ ∗xM.

For every x ∈ M and any coordinate chart containing x one can write down bases for

the tangent and cotangent space respectively given by
{
∂µ, ∂µν

∣∣µ ≤ ν ∈ {0, 1, ..., d}} and

{d2x
µ, dxµ ·dxν |µ ≤ ν ∈ {0, 1, ..., d}}.8 In particular, for V ∈ T̃xM and Ω ∈ T̃ ∗xM we have

V = vµ ∂µ + vµν ∂µν ,

Ω = ωµ d2x
µ + ωµν dx

µ · dxν . (6.22)

Notice that TxM ⊂ T̃xM and T ∗xM ⊂ T̃ ∗xM. Furthermore, ∂µν := ∂µ∂ν is a symmetric

object, which implies that vµν must be symmetric. Moreover, we choose the basis of the

cotangent space dual to the basis of the tangent space. This imposes dxµ · dxν , and ωµν

to be symmetric as well.

We have a duality pairing between the bases of the tangent and cotangent space such

that:

〈∂µ, d2x
ρ〉 = δρµ,

〈∂µ, dxρ · dxσ〉 = 0,

〈∂µν , dxρ〉 = 0,

〈∂µν , dxρ · dxσ〉 =
1

2

(
δρµ δ

σ
ν + δσµ δ

ρ
ν

)
. (6.23)

The duality pairing of an arbitrary vector and covector is then given by

〈V,Ω〉 = vµωµ + vµνωµν . (6.24)

As in the classical case, forms Ω ∈ T̃ ∗xM can often be written as a differential form of

some function f :M→ R:

Ω = d2f = ∂µf d2x
µ + ∂µνf dx

µ · dxν . (6.25)

8Notice that dxµ · dxν 6= dxµ ⊗ dxµ.
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The product rule for differential forms is given by

d2(fg) = f d2g + g d2f + 2 df · dg (6.26)

where the product of first order forms9 ω, θ ∈ TxM is defined by

ω · θ :=
1

2
(ωµ θν + ων θµ) dxµ · dxν

= ωµ θν dx
µ · dxν . (6.27)

Therefore, the product for two first order differential forms can be written as

df · dg = ∂µf ∂νg dx
µ · dxν . (6.28)

It will be useful to define mappings between the first order and second order tangent

spaces. The projection map10 can be defined as:

P : T̃ ∗xM→ T ∗xM s.t.

P(d2f) = df,

P(ω · θ) = 0.
(6.29)

Furthermore, there exists a unique smooth and invertible linear map H from bilinear first

order forms to second order forms, such that P ◦ H = 0, given by11

H : T ∗xM× T ∗xM→ T̃ ∗xM s.t. (ω, θ) 7→ ω · θ, (6.30)

The adjoint of this map is denoted by H∗ : T̃xM→ TxM⊗TxM. In addition there exists

a unique linear map12 d : T ∗xM→ T̃ ∗xM such that for any f ∈ C∞(M,R), ω ∈ T ∗xM and

u, v ∈ TxM

d(df) = d2f,

d(fω) = fdω + df · ω,

〈dω, [u, v]〉 = 〈ω, [u, v]〉,

〈dω, {u, v}〉 = u〈ω, v〉+ v〈ω, u〉, (6.31)

where [u, v] is the commutator, {u, v} the anti-commutator and [[u, v]] the joint quadratic

variation of u and v.

Finally,13 one can define maps F : T̃xM → TxM and G : T ∗xM → T̃ ∗xM such that

for any affine connection14 Γ : X(M) × X(M) → X(M) the following relations define a

9More generally, one often defines the carré du champ operator or the squared field operator associated
to a linear mapping L for two functions f, g by Γ(f, g) := 1

2
[L(fg)− f Lg − g Lf ]. Cf. e.g. Lemma

6.1 in [150]. We can then interpret df · dg as the squared field operator associated to the second order
differential operator d2 acting on f, g.

10In Ref. [150] this map is called the restriction R.
11cf. Proposition 6.13 in Ref. [150].
12cf. Theorem 7.1 in Ref. [150]. We use an underlined d to avoid confusion with the exterior derivative.
13cf. Proposition 7.28 in Ref. [150].
14X(M) is the space of all smooth vector fields onM, i.e. the space of all smooth sections of the tangent



46

bijection between F and Γ

(F V )f = V f − 〈HΓ∗(df), V 〉,

Γ(u, v)f = u v f −F(u v)f, (6.32)

where V is a second order vector and u, v are first order vector fields. A bijection between

G and Γ is then defined by

G(df) = d2f −HΓ∗(df),

Γ(u, v)f = u v f − 〈G(df), u v〉. (6.33)

Moreover, F and G are each others adjoint.15

6.2.2 Coordinate transformations

In this section, we investigate the change of vectors and covectors under coordinate trans-

formations. For a vector field V we find:

V f = (vµ∂µ + vµν∂µν) f

=

(
vµ
∂x̃ρ

∂xµ
∂̃ρ + vµν∂µ

[
∂x̃ρ

∂xν
∂̃ρ

])
f

=

(
vµ
∂x̃ρ

∂xµ
∂̃ρ + vµν

∂2x̃ρ

∂xµ∂xν
∂̃ρ + vµν

∂x̃σ

∂xµ
∂x̃ρ

∂xν
∂̃σρ

)
f. (6.34)

Hence, we find the active transformations laws

vµ → ṽµ = vρ
∂x̃µ

∂xρ
+ vρσ

∂2x̃µ

∂xρ∂xσ
,

vµν → ṽµν = vρσ
∂x̃µ

∂xρ
∂x̃ν

∂xσ
, (6.35)

or equivalently the passive transformation laws

∂µ → ∂̃µ =
∂xρ

∂x̃µ
∂ρ,

∂µν → ∂̃µν =
∂2xρ

∂x̃µ∂x̃ν
∂ρ +

∂xσ

∂x̃µ
∂xρ

∂x̃ν
∂ρσ. (6.36)

A form Ω transforms as

Ω(V f) = (ωµd2x
µ + ωµνdx

µ · dxν) (V f)

=

(
ωµ
∂xµ

∂x̃ρ
d2x̃

ρ + ωµ
∂2xµ

∂x̃ρ∂x̃σ
dx̃ρ · dx̃σ + ωµν

∂xµ

∂x̃ρ
∂xν

∂x̃σ
dx̃ρ · dx̃σ

)
(V f). (6.37)

bundle TM.
15It is possible to take a connection in the defining relation for G that is different from F . If such a

choice is made, F and G are no longer each others adjoint. In this paper, we will not make such a choice,
as we will restrict ourselves to the Levi-Civita connection.
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Therefore, the active transformation laws are given by

ωµ → ω̃µ = ωρ
∂xρ

∂x̃µ
,

ωµν → ω̃µν = ωρ
∂2xρ

∂x̃µ∂x̃ν
+ ωρσ

∂xρ

∂x̃µ
∂xσ

∂x̃ν
, (6.38)

and the passive transformation law is

d2x
µ → d2x̃

µ =
∂x̃µ

∂xρ
d2x

ρ +
∂2x̃µ

∂xρ∂xσ
dxρ · dxσ,

dxµ · dxν → dx̃µ · dx̃ν =
∂x̃µ

∂xρ
∂x̃ν

∂xσ
dxρ · dxσ. (6.39)

The transformation laws should leave the duality pairing (6.24) invariant. Indeed we find16

〈V,Ω〉 = vµωµ + vµνωµν

= ṽρ
∂xµ

∂x̃ρ
∂x̃σ

∂xµ
ω̃σ + ṽρσ

∂2xµ

∂x̃ρ∂x̃σ
∂x̃κ

∂xµ
ω̃κ + ṽρσ

∂xµ

∂x̃ρ
∂xν

∂x̃σ
∂2x̃κ

∂xµ∂xν
ω̃κ + ṽρσ

∂xµ

∂x̃ρ
∂xν

∂x̃σ
∂x̃κ

∂xµ
∂x̃λ

∂xν
ω̃κλ

= ṽµω̃µ + ṽµν ω̃µν . (6.40)

6.2.3 Covariance

In previous subsection, we found that vectors and forms in second order geometry trans-

form in an affine but not contravariant/covariant way. This can be fixed by introducing a

covariant basis {∂̂µ, ∂̂µν} for T̃xM such that

V = v̂
µ
νρ ∂̂µ

νρ
= v̂µ∂̂µ + v̂νρ ∂̂νρ, (6.41)

and

∂̂µ := ∂µ,

∂̂µν := ∂µν − Γρµν∂ρ,

v̂µ := vµ + vρσΓµρσ,

v̂µν := vµν . (6.42)

In a similar way, we can introduce a contravariant basis for the cotangent space T̃ ∗xM,

such that

Ω = ω̂µ
νρ
d2x̂

µ
νρ = ω̂µ d2x̂

µ + ω̂νρ dx̂
ν · dx̂ρ (6.43)

16One can use the Christoffel symbols to make the second term in the second line vanish.
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with

d2x̂
µ := d2x

µ + Γµνρdx
ν · dxρ,

dx̂µ · dx̂ν := dxµ · dxν ,

ω̂µ := ωµ,

ω̂µν := ωµν − ωρΓρµν . (6.44)

It is possible to extend the notion of vector fields and forms to arbitrary (k, l)-tensors.

Indeed, one can construct mappings

T (x) : (T̃ ∗xM)k × (T̃xM)l → R. (6.45)

In local coordinates such a tensor will be given by

T = T
(µνρ)1...(

µ
νρ)k

(σκλ)1...(
σ
κλ)l

∂(µνρ)1
⊗ ...⊗ ∂(µνρ)k

⊗ d2x
(σκλ)1 ⊗ ...⊗ d2x

(σκλ)l

= Tµ1...µkσ1...σl
∂µ1 ⊗ ...⊗ ∂µk ⊗ d2x

σ1 ⊗ ...⊗ d2x
σl

+ T (νρ)1µ2...µk
σ1...σl

∂ν1ρ1 ⊗ ∂µ2 ⊗ ...⊗ ∂µk ⊗ d2x
σ1 ⊗ ...⊗ d2x

σl

+ Tµ1(νρ)2µ3...µk
σ1...σl

∂µ1 ⊗ ∂ν2ρ2 ⊗ ∂µ3 ⊗ ...⊗ ∂µk ⊗ d2x
σ1 ⊗ ...⊗ d2x

σl

+ ...

+ Tµ1...µkσ1...σl−1(κλ)l
∂µ1 ⊗ ...⊗ ∂µk ⊗ d2x

σ1 ⊗ ...⊗ d2x
σl−1 ⊗ dxκl · dxλl

+ T (νρ)1(νρ)2µ3...µk
σ1...σl

∂ν1ρ1 ⊗ ∂ν2ρ2 ⊗ ∂µ3 ⊗ ...⊗ ∂µk ⊗ d2x
σ1 ⊗ ...⊗ d2x

σl

+ ...

+ T
(νρ)1...(νρ)k
(κλ)1...(κλ)l

∂ν1ρ1 ⊗ ...⊗ ∂νkρk ⊗ dx
κ1 · dxλ1 ⊗ ...⊗ dxκl · dxλl . (6.46)

The components of T do not transform in a covariant/contravariant way. However, one

can construct a representation with components T̂ such that

T = T̂
(µνρ)1...(

µ
νρ)k

(σκλ)1...(
σ
κλ)l

∂̂(µνρ)1
⊗ ...⊗ ∂̂(µνρ)k

⊗ d2x̂
(σκλ)1 ⊗ ...⊗ d2x̂

(σκλ)l . (6.47)

If expanded as in eq. (6.47), the coefficients T̂ do transform covariantly/contravariantly.

The relation between components T and T̂ for a general (k, l)-tensor can then be derived

from the transformation laws for (1, 0)- and (0, 1)-tensors.

Finally, we note that there exists a relation between the second order contravariant

vectors and covariant forms and the maps F ,G,H. For V ∈ T̃xM we have

F(V ) =
(
vµ + vρσΓµρσ

)
∂µ

= v̂µ ∂̂µ, (6.48)

H∗(V ) = vµν ∂µ ⊗ ∂ν
= v̂µν ∂̂µ ⊗ ∂̂ν , (6.49)
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and for α, β ∈ T ∗xM

G(α) = αµ
(
d2x

µ + Γµρσdx
ρ · dxσ

)
= α̂µ d2x̂

µ, (6.50)

H(α⊗ β) = αµβν dx
µ · dxν

= α̂µβ̂ν dx̂
µ · dx̂ν . (6.51)

Therefore, all second order vectors and forms can be decomposed into first order vectors,

forms and symmetric bilinear tensor products of first order vectors and forms. More

generally, any second order (k, l)-tensor can be decomposed into first order tensors of

degree (κ, λ) with k ≤ κ ≤ 2k and l ≤ λ ≤ 2l.

6.2.4 Second order metric

In this subsection, we extend the notion of a metric to the second order geometry frame-

work. We can define a symmetric bilinear function g̃ : T̃xM× T̃xM→ R, that we call the

second order metric tensor. Analogously to the first order metric, it acts on two second

order vectors V,W ∈ T̃xM, such that

g̃(V,W ) = 〈V |W 〉. (6.52)

Moreover, it induces an isomorphism between vectors and forms

g̃
Z

: T̃xM→ T̃ ∗xM s.t.

〈V |W 〉 = 〈g̃Z(V ),W 〉,

〈Ω,Θ〉 = 〈Ω|g̃\(Θ)〉.
(6.53)

In a local coordinate chart the metric tensor g̃ can be written as

g̃ = g̃(µρσ)(νκλ)
d2x

(µρσ) ⊗ d2x
(νκλ)

= g̃µν d2x
µ ⊗ d2x

ν + g̃µ(κλ) d2x
µ ⊗ dxκ · dxλ

+ g̃(ρσ)ν dx
ρ · dxσ ⊗ d2x

ν + g̃(ρσ)(κλ) dx
ρ · dxσ ⊗ dxκ · dxλ. (6.54)

Using the defining isomorphism (6.53) and the duality pairing, eq. (6.24), we find the rules

for transforming second order vectors into second order forms:

g̃(µρσ)(νκλ)
v
ν
κλ = vµ

ρσ
,

g̃µν v
ν + g̃µ(κλ) v

κλ = vµ,

g̃(ρσ)ν v
ν + g̃(ρσ)(κλ) v

κλ = vρσ. (6.55)
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Furthermore, the inverse g̃−1 can be used to transform second order forms into second

order vectors:

g̃(µρσ)(νκλ) ων
κλ

= ω
µ
ρσ ,

g̃µν ων + g̃µ(κλ) ωκλ = ωµ,

g̃(ρσ)ν ων + g̃(ρσ)(κλ) ωκλ = ωρσ. (6.56)

The components of the metric tensor do not transform covariantly. Therefore, we

define a covariant representation of the second order metric:

g̃ = g̃(µρσ)(νκλ)
d2x

µ
ρσ ⊗ d2x

ν
κλ

= g̃µν d2x̂
µ ⊗ d2x̂

ν

+
(
g̃µ(κλ) − g̃µν Γνκλ

)
d2x̂

µ ⊗ dx̂κ · dx̂λ

+
(
g̃(ρσ)ν − g̃µν Γµρσ

)
dx̂ρ · dx̂σ ⊗ d2x̂

ν

+
(
g̃(ρσ)(κλ) + g̃µν Γµρσ Γνκλ − g̃µ(κλ) Γµρσ − g̃(ρσ)ν Γνκλ

)
dx̂ρ · dx̂σ ⊗ dx̂κ · dx̂λ

= ĝµν d2x̂
µ ⊗ d2x̂

ν + ĝµ(κλ) d2x̂
µ ⊗ dx̂κ · dx̂λ

+ ĝ(ρσ)ν dx̂
ρ · dx̂σ ⊗ d2x̂

ν + ĝ(ρσ)(κλ) dx̂
ρ · dx̂σ ⊗ dx̂κ · dx̂λ

= ĝ(µρσ)(νκλ)
d2x̂

µ
ρσ ⊗ d2x̂

ν
κλ . (6.57)

We notice that a second order vector can be uniquely decomposed in a first order vector

and a bilinear first order tensor. We will therefore impose

g̃
Z

=

(
G ◦ gZ ◦ F

H ◦
(
g
Z ⊗ gZ

)
◦ H∗

)
(6.58)

We can then write in a local coordinate system

ĝ(µρσ)(νκλ)
=

(
ĝµν ĝµ(κλ)

ĝ(ρσ)ν ĝ(ρσ)(κλ)

)

=

(
gµν 0

0 1
2 (gρκgσλ + gρλgσκ)

)
(6.59)

where we have suppressed the maps F , G, H, H∗ in the second line and where gµν are the

components of the first order metric. The inverse can be written as

ĝ(µρσ)(νκλ) =

(
ĝµν ĝµ(κλ)

ĝ(ρσ)ν ĝ(ρσ)(κλ)

)

=

(
gµν 0

0 1
2

(
gρκgσλ + gρλgσκ

)) (6.60)

We can now raise and lower indices on covariant forms and contravariant vectors in the



51

usual way

ĝ(µρσ)(νκλ)
v̂
ν
κλ = v̂µ

ρσ
,

ĝµν v̂
ν = v̂µ,

ĝ(ρσ)(κλ)v̂
κλ = v̂ρσ,

ĝ(µρσ)(νκλ) ω̂ν
κλ

= ω̂
µ
ρσ ,

ĝµν ω̂ν = ω̂µ,

ĝ(ρσ)(κλ)ω̂κλ = ω̂ρσ, (6.61)

where we used the symmetry of vµν and ωµν . Finally we can express the second order

metric components g̃ in terms of the first order metric:

g̃(µρσ)(νκλ)
=

(
g̃µν g̃µ(κλ)

g̃(ρσ)ν g̃(ρσ)(κλ)

)

=

(
gµν gµα Γακλ

gαν Γαρσ
1
2 (gρκgσλ + gρλgσκ) + gαβ Γαρσ Γβκλ

)
(6.62)

Its inverse is given by

g̃(µρσ)(νκλ) =

(
g̃µν g̃µ(κλ)

g̃(ρσ)ν g̃(ρσ)(κλ)

)

=

(
gµν + gαηgβξΓµαβΓνηξ −gακgβλΓµαβ
−gραgσβΓναβ

1
2

(
gρκgσλ + gρλgσκ

)) (6.63)

6.2.5 k-forms

In this subsection, we extend the notion of k-forms to the second order geometry frame-

work. As usual, we denote the bundle of covariant k-tensors by T k(T ∗M) and the sub-

bundle of alternating k-tensors by Λk(T ∗M). The rank of the latter bundle is
(
n
k

)
and a

k-form ω ∈ Λk(T ∗M) can be written as

ω = ωµ1...µk dx
µ1 ∧ ... ∧ dxµk (6.64)

where we assume µ1 < ... < µk. Similarly, we construct a bundle of second order k-tensors

T k(T̃ ∗M) and a subbundle Λk(T̃ ∗M) of rank
(
N
k

)
with N = 1

2n(n + 3). A second order
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k-form Ω ∈ Λk(T ∗M) can be written as

Ω = ω(µνρ)1...(
µ
νρ)k

d2x
(µνρ)1 ∧ ... ∧ d2x

(µνρ)k

= ωµ1...µk d2x
µ1 ∧ ... ∧ d2x

µk

+ ω(νρ)1µ2...µk dx
ν1 · dxρ1 ∧ d2x

µ2 ∧ ... ∧ d2x
µk

+ ωµ1(νρ)2µ3...µk d2x
µ1 ∧ dxν2 · dxρ2 ∧ d2x

µ3 ∧ ... ∧ d2x
µk

+ ...

+ ωµ1µ2...µk−1(νρ)k d2x
µ1 ∧ d2x

µ2 ∧ ... ∧ d2x
µk−1 ∧ dxνk · dxρk

+ ω(νρ)1(νρ)2µ3...µk dx
ν1 · dxρ1 ∧ dxν2 · dxρ2 ∧ d2x

µ3 ∧ ... ∧ d2x
µk

+ ...

+ ω(νρ)1...(νρ)k dx
ν1 · dxρ1 ∧ ... ∧ dxνk · dxρk . (6.65)

6.2.6 Exterior derivatives

In this subsection, we extend the notion of the exterior derivative to the second order geom-

etry framework. The first order exterior derivative is a map d : Λk(T ∗M)→ Λk+1(T ∗M)

such that

dω = ∂νωµ1...µk dx
ν ∧ dxµ1 ∧ ... ∧ dxµk , (6.66)

which is linear:

d(ω + θ) = dω + dθ ∀ ω, θ ∈ Λk(T ∗M),

d(c ω) = c dω ∀ ω ∈ Λk(T ∗M), c ∈ R; (6.67)

satisfies the modified Leibniz rule:

d(ω ∧ θ) = dω ∧ θ + (−1)kω ∧ dθ ∀ ω ∈ Λk(T ∗M), θ ∈ Λl(T ∗M); (6.68)

satisfies the closure condition

d(d(ω)) = 0 ∀ω ∈ Λk(T ∗M); (6.69)

and commutes with pullbacks:

φ∗(dω) = d(φ∗(ω)) ∀ ω ∈ Λk(T ∗M), φ ∈ C∞(M,R). (6.70)

Analogously we define a a second order exterior derivative d2 : Λk(T̃ ∗M) → Λk+1(T̃ ∗M)

such that

d2 Ω = ∂ν
κλ
ω(µρσ)1...(

µ
ρσ)k

d2x
ν
κλ ∧ d2x

(µρσ)1 ∧ ... ∧ d2x
(µρσ)k

= ∂ν ω(µρσ)1...(
µ
ρσ)k

d2x
ν ∧ d2x

(µρσ)1 ∧ ... ∧ d2x
(µρσ)k

+ ∂κ∂λ ω(µρσ)1...(
µ
ρσ)k

dxκ · dxλ ∧ d2x
(µρσ)1 ∧ ... ∧ d2x

(µρσ)k . (6.71)
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This second order exterior derivative is also linear and commutes withs pullbacks. Fur-

thermore, it obeys the closure condition

d2(d2(Ω)) = 0 ∀Ω ∈ Λk(T̃ ∗M); (6.72)

and a new modified Leibniz rule

d2(Ω∧Θ) = d2Ω∧Θ+(−1)kΩ∧d2Θ+2dΩ·dΘ ∀ Ω ∈ Λk(T̃ ∗M), Θ ∈ Λl(T̃ ∗M), (6.73)

where

dΩ·dΘ = ∂α ω(µρσ)1...(
µ
ρσ)k

∂β ω(νκλ)1...(
ν
κλ)l

dxα·dxβ∧d2x
(µρσ)1∧...∧d2x

(µρσ)k∧d2x
(νκλ)1∧...∧d2x

(νκλ)l .

(6.74)

The proof for these properties is similar to the proof for the corresponding properties in

first order geometry, and is therefore omitted.

6.2.7 Interior products

In this subsection, we extend the notion of the interior product to the second order geom-

etry framework. The first order interior product is a map ιv : Λk(T ∗M) → Λk−1(T ∗M)

such that

ιv ω =
k∑
l=1

(−1)l−1 vµl ωµ1...µk dx
µ1 ∧ ... ∧ dxµl−1 ∧ dxµl+1 ∧ ... ∧ dxµk . (6.75)

This map is linear, commutes with pullbacks, satisfies the modified Leibniz rule and sat-

isfies the anti-symmetry property

{ιu, ιv}ω = 0. (6.76)

Similarly, one can define a second order interior product ιV : Λk(T ∗M) → Λk−1(T ∗M),

such that

ιV Ω =
k∑
l=1

(−1)l−1 v(µρσ)l ω(µρσ)1...(
µ
ρσ)k

d2x
(µρσ)1 ∧ ...∧ d2x

(µρσ)l−1 ∧ d2x
(µρσ)l+1 ∧ ...∧ d2x

(µρσ)k ,

(6.77)

which satisfies the same properties with the modified Leibniz rule replaced by a new

modified Leibniz rule as in previous subsection.

6.2.8 Lie derivatives

Using the results from previous subsections, we can extend the notion of a Lie derivative

to the second order geometry framework. A family of diffeomorphisms φλ := R×M→M
satisfying the usual (semi-)group properties can be thought of as a vector field v ∈ X(M)

that generates a set of integral curves γv : R→M along the vector field. Along any such

integral curve parametrized by λ, one can define the first order derivative of a function
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f ∈ C∞(M,R) by
d

dλ
f =

dxµ

dλ
∂µf = vµ∂µf = v f. (6.78)

This derivative is equivalent to the Lie derivative along the vector field v

Lvf = v f, (6.79)

which can be generalized to a Lie derivative acting on vectors and forms given by

Lvu = [v, u],

Lvω = {ιv, d}ω. (6.80)

In a local coordinate chart, these expressions can be written as

Lvuµ = vν∂νu
µ − uν∂νvµ, (6.81)

Lvωµ = vν∂νωµ + (∂µv
ν)ων . (6.82)

Furthermore, using the Leibniz rule one can construct Lie derivatives acting on arbitrary

tensor fields.

We can analogously define a notion of a Lie derivative of second order tensors along

a second order vector field V ∈ X̃(M). As defining relations for derivatives of vectors

U ∈ T̃xM and forms Ω ∈ T̃ ∗xM we take

LV f = V f,

LV U = [V,U ],

LV Ω = {ιV , d2}Ω. (6.83)

In order to make these expressions well defined, we impose

vµσ∂σu
νρ = uµσ∂σv

νρ, (6.84)

ωµν = ∂µων . (6.85)

In order to satisfy the first condition, we impose uµν = k vµν with k ∈ R and define

W ∈ TM⊂ T̃M such that

W = kV − U =

(
kvµ − uµ

0

)
(6.86)
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In local coordinates we then find

LV f = (vσ∂σ + vσκ∂σ∂κ) f,

LV Uµ = (vσ∂σ + vσκ∂σ∂κ)uµ − uσ∂σvµ − uσκ∂σ∂κvµ,

LV Uνρ = wσ∂σv
νρ − vνσ∂σwρ − vρσ∂σwν ,

LV Ωµ = (vσ∂σ + vσκ∂σ∂κ)ωµ + ωσ∂µv
σ + ωσκ∂µv

σκ,

LV Ωνρ = (vσ∂σ + vσκ∂σ∂κ)ωνρ + ωσ∂ν∂ρv
σ + ωσκ∂ν∂ρv

σκ

+ 2∂(νv
σ∂ρ)ωσ + 2∂(νv

σκ∂ρ)ωσκ. (6.87)

or equivalently with respect to the covariant bases

LV f = (v̂σ∇σ + v̂σκ∇σ∇κ) f,

LV Ûµ = (v̂σ∇σ + v̂σκ∇σ∇κ) ûµ − ûσ∇σv̂µ − ûσκ∇σ∇κv̂µ +Rµσκλv̂
σκŵλ,

LV Ûνρ = ŵσ∇σv̂νρ − v̂νσ∇σŵρ − v̂ρσ∇σŵν ,

LV Ω̂µ = (v̂σ∇σ + v̂σκ∇σ∇κ) ω̂µ + ω̂σ∇µv̂σ + ω̂σκ∇µv̂σκ +Rσκλµv̂κλω̂σ,

LV Ω̂νρ = (v̂σ∇σ + v̂σκ∇σ∇κ) ω̂νρ + ω̂σ∇(ν∇ρ)v̂
σ + ω̂σκ∇(ν∇ρ)v̂

σκ + 2∇(ν|v̂
σ∇|ρ)ω̂σ

+ 2∇(ν|v̂
σκ∇|ρ)ω̂σκ −Rκ(νρ)σv̂

σω̂κ + 2v̂σκ
(
Rλσκ(ν ω̂ρ)λ −Rλ(νρ)σω̂κλ

)
− v̂σκω̂λ

(
∇σRλ(νρ)κ +∇(ν|Rλσ|ρ)κ

)
. (6.88)

The Lie derivatives for first order vectors and forms and along first order vector fields

can easily be obtained from these formulae by taking the appropriate limit. Only the Lie

derivative of a second order vector field along a first order vector field cannot be derived

as a limit from these formulae. This one can be obtained by replacing vµν → uµν and

wµ → vµ in the above formulae.

6.2.9 Parallel transport

In this subsection, we discuss the notion of parallel transport along second order vector

fields. This notion is similar to the notion of stochastic parallel transport along semi-

martingales as developed by Dohrn and Guerra [135, 136]. It is different from first order

parallel transport, as the second order part of the vector fields generate geodesic deviation.

Here, we closely follow the presentation of stochastic parallel transport by Nelson, cf.

section 10 in Ref. [270].

Let X(τ) be a path inM, passing through the points x, y ∈M at times τ1, τ2. We will

assume that there exists a convex coordinate chart (U, χ) such that x, y ∈ U . Moreover,

let V ∈ T̃xM be a second order tangent vector at x with v̂ = F(V ) its contravariant first

order projection, such that in χ(U) we have yµ = xµ + v̂µ.

Let d2X̂(τ) ∈ F(TM) be a transport and let d2x̂
µ = d2X̂(τ1) and d2ŷ

µ = d2X̂(τ2) be

its values when passing through x and y respectively. Then, using the standard notion of

parallel transport, d2X̂(τ) is said to be a parallel transport, if

d2ŷ
µ = d2x̂

µ − Γµρσ(x) v̂ρ d2x̂
σ. (6.89)
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In order to extend this notion to second order vector fields, we define the difference vector

d2v̂
µ := d2y

µ − d2x
µ. (6.90)

Using the parallel transport equation (6.89), the relations

d2x̂
µ = d2x

µ + Γµρσ(x) dx̂ρ · dx̂σ,

d2ŷ
µ = d2y

µ + Γµρσ(y) dŷρ · dŷσ (6.91)

and the Taylor expansion

Γµρσ(y) = Γµρσ(x) + ∂νΓµρσ(x)v̂ν +O(v̂2), (6.92)

we find

d2v̂
µ = −Γµρσv̂

ρd2x
σ −

(
∂νΓµρσ + ΓµνκΓκρσ − 2ΓµρκΓκνσ

)
v̂ν dxρ · dxσ

= −Γµρσv̂
ρd2x̂

σ −
(
∂νΓµρσ − 2ΓµρκΓκνσ

)
v̂ν dx̂ρ · dx̂σ (6.93)

where Γµρσ = Γµρσ(x). We will call this the equation of second order parallel transport.

Notice that the equation of first order parallel transport is obtained if dX̂ ∈ TM is a first

order transport and V ∈ TM is a first order vector, as this implies dxρ · dxσ = 0 and

v̂ = v respectively.

The equation of second order parallel transport is linear in v̂ and has a solution of the

form

v̂µ(τ2) = Pµν(τ2, τ1) v̂ν(τ1), (6.94)

where Pµν(τ2, τ1) is the second order parallel propagator. Using this propagator, we can

define the second order directional covariant derivative d̂ by

d̂2v̂
µ = Pµν(τ1, τ2) v̂ν(τ2)− v̂µ(τ1)

= d2v̂
µ + Γµρσv̂

ρd2x̂
σ +

(
∂νΓµρσ − 2ΓµρκΓκνσ

)
v̂ν dx̂ρ · dx̂σ. (6.95)

6.2.10 Embeddings into higher dimensions

As an aside, we discuss the relation between second order geometry and first order geom-

etry on higher dimensional manifolds. One can embed a n-dimesional pseudo-Riemannian

manifold with signature17 (d, 1, 0) into a N -dimensional pseudo-Riemannian manifold M̃

with signature18 (D,n, 0) with N = 1
2n(n + 3) and D = 1

2n(n + 1). We can for example

take the trivial embedding

ι :M ↪→ M̃ s.t.

ια(x) = xα, if α ≤ d;

ια(x) = 0, if α > d.
(6.96)

17We denote the signature by (+,-,0). i.e. (d, 1, 0) corresponds to a (−+ ...+) metric.
18More generally, if M has signature (k, l,m), then M̃ has signature (K,L,M) with K =

1
2

[k(k + 3) + l(l + 1)], L = l(k + 1) and M = m
2

(2k + 2l +m+ 3).
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The pushforward ι∗ of this embedding defines for every x ∈M a bijection between the

second order tangent space T̃xM and the first order tangent space Tι(x)M̃. Additionally,

the pullback ι∗ defines a bijection between the cotangent spaces T̃ ∗xM and T ∗ι(x)M̃. This

bijection ι∗ acts on the basis vectors as19

d2x
µ 7→ dxµ,

dxρ · dxσ 7→ dxn+ 1
2
ρ(2n−ρ−1)+σ. (6.97)

Moreover, this induces a bijection between the second order metric on M and the first

order metric on M̃:

g̃(µρσ)(νκλ)
7→ g̃αβ (6.98)

with α, β ∈ {0, 1, ..., N}. One can thus describe the second order geometry framework

using the first order formalism on a N -dimensional manifold M̃ instead of the original

n-dimensional manifold M. However, the support of functions defined on M̃ must be

restricted to the subspace M⊂ M̃.

6.3 Manifold valued semi-martingales

In this section, we discuss stochastic motion on a manifold. Classically, a particle follows

a trajectory or path on the manifold, that is parametrized by its proper time. In other

words a trajectory is a map γ : T →M, where T = [τi, τf ] ⊂ R.

We make this notion stochastic by promoting the manifold to a measurable space

(M,B(M)), where B(M) is the Borel sigma algebra of M. Furthermore, we introduce

the probability space (Ω,Σ,P), and the random variable X : (Ω,Σ,P) → (M,B(M)).

Given T = [τi, τf ] ⊂ R we can introduce a filtration {Pτ}τ∈T , which is by definition an

ordered set such that Pτi ⊆ Ps ⊆ Pt ⊆ Σ ∀ s < t ∈ T . In addition, we assume the filtration

to be right-continuous, i.e. Pτ = ∩ε>0Pτ+ε.

We can then introduce a stochastic process adapted to this filtration as a family of

random variables {X(τ) : τ ∈ T}. We will restrict the set of stochastic processes to the

continuous manifold valued semi-martingales. These are the continuous manifold valued

stochastic processes {X(τ)}τ∈T such that f(X) is a semi-martingale for every smooth

function f ∈ C∞(M,Rn). In particular, for a coordinate chart χ : U → V with U ⊂ M
and V ⊂ Rd+1 the coordinates Xµ = χµ(X) are semi-martingales. A semi-martingale is a

process X(τ) that can be decomposed as

X(τ) = xi + C+(τ) +W+(τ), (6.99)

where xi := X(τi) is the initial value of the process, C+(τ) is a local càdlàg process with

finite variation, such that C+(τi) = 0, and W+(τ) is a local martingale process, such that

W+(τi) = 0, satisfying the martingale property

Et+ [W+(τ)] := E[W+(τ)|{Ps}τi≤s≤t] = W+(t) ∀ t < τ ∈ T. (6.100)

19Notice that µ ∈ 0, 1, ..., d, and that ρ ≤ σ.
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We will make the additional assumption that the time-reversed process is also a semi-

martingale. Hence, we can construct a time reversed filtration {Fτ}τ∈T , which is a left-

continuous and decreasing set of sigma algebras, i.e. Fτ = ∩ε>0Fτ−ε and Fτf ⊆ Fs ⊆
Ft ⊆ Σ ∀ s > t ∈ T . Moreover, X is adapted to this filtration and can be decomposed as

X(τ) = xf + C−(τ) +W−(τ), (6.101)

where X(τf ) = xf , C−(τf ) = 0 and W−(τf ) = 0. Furthermore, W− satisfies the backward

martingale property

Et− [W−(τ)] := E[W−(τ)|{Fs}t≤s≤τf ] = W−(t) ∀ t > τ ∈ T. (6.102)

For obvious reasons, we will call {Pτ}τ∈T the past filtration and {Fτ}τ∈T the future

filtration. The intersection of the two Pτ = Pτ ∩ Fτ , will be called the present sigma

algebra, and we denote conditional expectations with respect to this sigma algebra by

Et[X(τ)] := E[X(τ)|Pt]. (6.103)

Furthermore, we will assume Markovianness of both the forward and backward process,

i.e.

Et+ [X(τ)] = Et[X(τ)] and Et− [X(τ)] = Et[X(τ)]. (6.104)

Finally, one can define a sample path for every ω ∈ Ω as the set γ(ω) := {X(τ, ω) : τ ∈
T}. The measurable space of sample paths is the cylinder

(
MT ,Cyl(MT )

)
, where we take

the cylinder sigma algebra on MT . This construction allows to interpret the stochastic

process as a single random variable γ : (Ω,Σ,P)→
(
MT ,Cyl(MT )

)
.

6.3.1 Time derivatives

Stochastic motions are not differentiable, and therefore the notion of velocity is not well

defined. However, one can define the conditional velocities for the forward and backward

process:

vµf [X(τ), τ ] := lim
h↓0

1

h
Eτ+ [Xµ(τ + h)−Xµ(τ)] ,

vµb [X(τ), τ ] := lim
h↓0

1

h
Eτ− [Xµ(τ − h)−Xµ(τ)] , (6.105)

Using these velocities, we can construct the compensators C±(τ). These càdlàg processes

are given by

Cµ+(τ) =

∫ τ

τi

vµf (X(s), s) ds,

Cµ−(τ) =

∫ τf

τ
vµb (X(s), s) ds. (6.106)
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Since we are dealing with stochastic processes with non-zero quadratic variation, we can

also define

vµνf [X(τ), τ ] := lim
h↓0

1

2h
Eτ+

{
[Xµ(τ + h)−Xµ(τ)][Xν(τ + h)−Xν(τ)]

}
,

vµνb [X(τ), τ ] := lim
h↓0

1

2h
Eτ−

{
[Xµ(τ − h)−Xµ(τ)][Xν(τ − h)−Xν(τ)]

}
. (6.107)

This can be used to construct the compensator20 Cµν(τ) of the quadratic variation process

[[Xµ, Xν ]], which is given by

Cµν+ (τ) = 2

∫ τ

τi

vµνf (X(s), s)ds,

Cµν− (τ) = 2

∫ τf

τ
vµνb (X(s), s)ds. (6.108)

In practice, we choose the direction of time. We will therefore introduce a slightly

modified notion of velocity and define a forward velocity and backward velocity by

v+(X, τ) = vf (X, τ),

v−(X, τ) = −vb(X, τ). (6.109)

Using the Markov property, these velocities can be defined by21

vµ+ [X(τ), τ ] := lim
h↓0

1

h
Eτ [Xµ(τ + h)−Xµ(τ)] ,

vµ− [X(τ), τ ] := lim
h↑0

1

h
Eτ [Xµ(τ + h)−Xµ(τ)] , (6.110)

and

vµν+ [X(τ), τ ] := lim
h↓0

1

2h
Eτ+

{
[Xµ(τ + h)−Xµ(τ)][Xν(τ + h)−Xν(τ)]

}
,

vµν− [X(τ), τ ] := lim
h↑0

1

2h
Eτ−

{
[Xµ(τ + h)−Xµ(τ)][Xν(τ + h)−Xν(τ)]

}
. (6.111)

Reversibility of the process imposes

vµνb (τ) = vµνf (τ), (6.112)

and therefore

vµν+ (τ) = −vµν− (τ). (6.113)

Moreover, the background hypothesis imposes

[[Xµ, X
ν ]](τ) =

~
m
δνµ τ. (6.114)

20The compensator of the quadratic variation process is often denoted by the angle bracket 〈Xµ, Xν〉.
We will use Cµν(τ) instead to avoid confusion with the duality pairing.

21Note that the backward velocity can equivalently be defined as vµ−[X(τ), τ ] := limh↓0
1
h
Eτ [Xµ(τ) −

Xµ(τ − h)].
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Hence,

d[[Xµ, X
ν ]] =

~
m
δνµ dτ. (6.115)

Consequently,

vµν+ [X(τ), τ ] =
1

2 dτ
Eτ
[
gµρ(X(τ)) d[[Xρ(τ), Xν(τ)]]

]
=

~
2m

gµν(X(τ)). (6.116)

v±[X(τ), τ ] has the structure of a second order vector, i.e. v±(x) ∈ T̃xM. If the

metric is fixed22, the second order parts vµν± (x) are also fixed. The vectors then live in

n-dimensional subspaces vµ± ∈ T±xM ⊂ T̃xM. Since these slices are not invariant under

coordinate transformations, we will consider (v̂+, v̂−) ∈ T̂+
xM⊕ T̂−xM instead.

Finally, we define a current velocity by

v :=
1

2
(v+ + v−) (6.117)

and an osmotic velocity by

u :=
1

2
(v+ − v−) . (6.118)

Notice that v ∈ TxM is a first order vector, while u ∈ T̃xM has the structure of a second

order vector.

6.3.2 Diffeomorphism invariance

In classical physics, one imposes a theory to be invariant under diffeomorphisms: general

relativity should be invariant under the action of any diffeomorphism φ ∈ C∞(M,N ). The

diffeomorphism φ induces associated maps on the tangent and cotangent spaces, which are

the pullback φ∗ : T ∗yN → T ∗xM and the pushforward φ∗ : TxM→ TyN , where y = φ(x).

The tangent space and cotangent space are invariant under respectively the pullback and

the pushforward.

In quantum physics, we would like to impose the same invariance under diffeomor-

phisms. However, it is not immediately clear that the n-dimensional tangent subspace

T̂xM ⊂ T̃xM and cotangent subspace T̂ ∗xM ⊂ T̃ ∗xM with fixed second order parts are

invariant spaces under the the pullback φ̃∗ : T̃ ∗yN → T̃ ∗xM and pushforward φ̃∗ : T̃xM→
T̃yN of a diffeomorphism φ. In order to establish this invariance, we require the notion of

a Schwartz morphism:23

Definition. Given two manifolds M,N and points x ∈ M, y ∈ N , a linear mapping

f : T̃xM→ T̃yN is called a Schwartz morphism, if

1. f(TxM) ⊂ TyN ,

2. ∀L ∈ T̃xM, H∗(f(L)) = (f◦ ⊗ f◦)H∗(L),

22In this paper, we only consider test particles in a fixed geometry.
23cf. Definition 6.22 in Ref. [150].
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where f◦ is the restriction of f to TxM.

A Schwartz morphism is thus a morphism that leaves the slices T̂xM invariant. Fur-

thermore, it can be shown24 that a mapping f : T̃xM → T̃yN is a Schwartz morphism

if and only if f = T̃xφ for a smooth φ : M → N with φ(x) = y. It immediately follows

that the pushforward φ̃∗ of a diffeomorphism φ is a Schwartz morphism. Therefore, all

slices T̂M⊂ T̃M are invariant under the pushforward φ̃∗ : T̃xM→ T̃φ(x)N induced by a

diffeomorphism φ : M → N . Moreover, all slices T̂ ∗M ⊂ T̃ ∗M are invariant under the

pullback φ̃∗ : T̃ ∗φ(x)N → T̃ ∗xM of the diffeomorphism φ. We note that this invariance is a

consequence of the construction of the ‘covariant slices’ T̂xM.

6.4 Integration along semi-martingales

In the previous sections, we have introduced manifold valued semi-martingales and second

order geometry. This allows us to construct a notion of integration along semi-martingales

on manifolds. This section is loosely based on the review by Emery [150]. For mathematical

detail we refer to this work by Emery [150] or the original works by Schwartz [311] and

Meyer [257].

In first order geometry, one defines integrals using forms ω ∈ T ∗M. The integral of a

form along a curve γ : I →M with I ⊂ R is given by∫
γ

: T ∗M→ R s.t. ω 7→
∫
γ
ω(x), (6.119)

which can be written as ∫
γ
ω =

∫ τf

τi

ωµ dγ
µ =

∫ τf

τi

ωµγ̇
µ dτ, (6.120)

where dγ = γ∗(ω). If we assume that the form can be written as a differential form ω = dF

for a function F ∈ C∞(M,R) we find∫
γ
dF (x) =

∫ τf

τi

∂µF (γ) dγµ =

∫ τf

τi

∂µF (γ)γ̇µ dτ. (6.121)

Moreover, the fundamental theorem for line integrals states∫
γ
dF (x) = F [γ(τf )]− F [γ(τi)]. (6.122)

One can analogously construct an integral of second order forms Ω ∈ T̃ ∗M. The

integral of a second order form along a semi-martingale X can be written as∫
X

: T̃ ∗M→ R s.t. Ω 7→
∫
X

Ω(x) (6.123)

24cf. Exercise 6.23 in Ref. [150]
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with ∫
X

Ω =

∫ τf

τi

ωµ d2X
µ +

∫ τf

τi

ωµν dX
µ · dXν

=

∫ τf

τi

ω̂µ d2X̂
µ +

∫ τf

τi

ω̂µν dX̂
µ · dX̂ν , (6.124)

where (d2X dXdX) = X∗(Ω). If we assume that the form can be written as a differential

form Ω = d2F for a function F ∈ C∞(M,R), we find∫
X
d2F (x) =

∫ τf

τi

∂µF (X) d2X
µ +

∫ τf

τi

∂µ∂νF (X) dXµ · dXν

=

∫ τf

τi

∇µF (X) d2X̂
µ +

∫ τf

τi

∇µ∇νF (X) dX̂µ · dX̂ν . (6.125)

The fundamental theorem for line integrals can be extended to the second order context,

such that25 ∫
X
d2F (x) = F [X(τf )]− F [X(τi)]. (6.126)

Moreover, one can relate the second order integral to first order order integrals. For this

we consider a form ω ∈ TM ⊂ T̃M. We can then construct two second order integrals,

that are manifestly invariant under coordinate transformations, using the maps d and G
respectively:

−
∫
X
ω =

∫
X
dω

=

∫ τf

τi

ωµ d2X
µ +

∫ τf

τi

∂νωµ dX
µ · dXν

=

∫ τf

τi

ω̂µ d2X̂
µ +

∫ τf

τi

∇νωµ dX̂µ · dX̂ν (6.127)

and ∫
X
ω =

∫
X
G(ω)

=

∫ τf

τi

ωµd2X
µ +

∫ τf

τi

ωµΓµνρ dX
ν · dXρ

=

∫ τf

τi

ω̂µ d2X̂
µ. (6.128)

The first of these integrals is a Stratonovich integral,26 while the second is an Itô integral.27

We immediately find a relation between the two

−
∫
X
ω =

∫
X
ω +

∫ τf

τi

∇ν ω̂µ dX̂µ · dX̂ν . (6.129)

In order to evaluate the integral over the second order part we use that the integral over

25cf. Theorem 6.24 in Ref. [150].
26cf. Definition 7.3 and Proposition 7.4 in Ref. [150].
27cf. Definition 7.33 and Proposition 7.34 in Ref. [150].
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a bilinear form is given by28

∫ τf

τi

fµν(X, τ) dXµ ⊗ dXν =

∫ τf

τi

fµν(X, τ) d[[Xµ, Xν ]]. (6.130)

Using the map H one can then map the integral over the second order part to an integral

over a bilinear form. This yields29

∫ τf

τi

fµν(X, τ) dXµ · dXν =
1

2

∫ τf

τi

fµν(X, τ) d[[Xµ, Xν ]] =

∫ τf

τi

fµν(X, τ) vµν(X, τ) dτ.

(6.131)

Moreover, if ω can be written as a differential form ω = dF , the two first order integrals

can be written as30∫
X
d2F (x) = −

∫ τf

τi

∂µF (X) dXµ,∫
X
d2F (x) =

∫ τf

τi

∇µF (X) d+X̂
µ +

∫ τf

τi

∇µ∇νF (X) dX̂µ · dX̂ν . (6.132)

Using the decomposition of the semi-martingale, we can then write∫
X
d2F (x) =

∫ τf

τi

vµ(X, τ)∂µF (X) dτ +−
∫ τf

τi

∂µF (X) dWµ, (6.133)∫
X
d2F (x) =

∫ τf

τi

v̂µ+(X, τ)∇µF (X) dτ +

∫ τf

τi

∇µF (X) dWµ
+ +

∫ τf

τi

v̂µν+ (X, τ)∇µ∇νF (X) dτ.

Notice that all integrals are manifestly invariant under coordinate transformations. Fur-

thermore, the Itô integral is a local martingale, i.e.

Eτ+i

[ ∫ τ

τi

∇µF (X) dWµ
+

]
= 0. (6.134)

In addition, we will construct a backward Itô integral such that∫
X
d2F (x) =

∫ τf

τi

∇µF (X) d−X̂
µ −

∫ τf

τi

∇µ∇νF (X) dX̂µ · dX̂ν (6.135)

=

∫ τf

τi

v̂µ−(X, τ)∇µF (X) dτ +

∫ τf

τi

∇µF (X) dWµ
− +

∫ τf

τi

v̂µν− (X, τ)∇µ∇νF (X) dτ.

The backward integral is a local backward martingale, i.e.

Eτ−f

[ ∫ τf

τ
∇µF (X) dWµ

−

]
= 0. (6.136)

28cf. Theorem 3.8 in Ref. [150].
29cf. Proposition 6.31 in Ref. [150].
30We use the notation

∫
fµ(X) d+X̂

µ instead of
∫
fµ(X) dXµ to make the covariance of the expression

explicit.
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We note that the three integrals are related by

−
∫
X
dF (x) =

1

2

( ∫
X
dF (x) +

∫
X
dF (x)

)
. (6.137)

Let us now relate the Stratonovich and Itô integral to their well known definitions in

Rn. If there exists a coordinate chart χ : U → Rn such that f([τi, τf ]) ⊂ U , we have31

−
∫ τf

τi

fµ(X, τ) dXµ := lim
k→∞

∑
[τj ,τj+1]∈πk

1

2

[
fµ
(
X(τj), τj

)
+ fµ

(
X(τj+1), τj+1

)]
×
[
Xµ(τj+1)−Xµ(τj)

]
,∫ τf

τi

fµ(X, τ) d+X
µ := lim

k→∞

∑
[τj ,τj+1]∈πk

fµ
(
X(τj), τj

)[
Xµ(τj+1)−Xµ(τj)

]
,

∫ τf

τi

fµ(X, τ) d−X
µ := lim

k→∞

∑
[τj ,τj+1]∈πk

fµ
(
X(τj+1), τj+1

)[
Xµ(τj+1)−Xµ(τj)

]
,

∫ τf

τi

fµν(X, τ) d[[Xµ, Xν ]] := lim
k→∞

∑
[τj ,τj+1]∈πk

fµν
(
X(τj), τj

)[
Xµ(τj+1)−Xµ(τj)

]
×
[
Xν(τj+1)−Xν(τj)

]
, (6.138)

where πk is a partition of [τi, τf ], fµ = (χ ◦ f)µ and Xµ = (χ ◦X)µ. We thus have

−
∫ τf

τi

fµ(X, τ) dXµ =
1

2

( ∫ τf

τi

fµ(X, τ) d+X
µ +

∫ τf

τi

fµ(X, τ) d−X
µ

)
, (6.139)

and we will define an osmotic integral by

−
∫ τf

τi

fµ(X, τ) d◦X
µ :=

1

2

( ∫ τf

τi

fµ(X, τ) d+X
µ −

∫ τf

τi

fµ(X, τ) d−X
µ

)
. (6.140)

6.4.1 Integration by parts

In this subsection, we state two integration by parts formulae, that will be useful for

stochastic variational calculus. The first is given by∫ τf

τi

d [fµ(τ)gµ(τ)] = fµ(τf ) gµ(τf )− fµ(τi) g
µ(τi)

= −
∫ τf

τi

fµ(τ) dgµ(τ) +−
∫ τf

τi

gµ(τ) dfµ(τ)

=

∫ τf

τi

fµ(τ) d+g
µ(τ) +

∫ τf

τi

gµ(τ) d+fµ(τ) + 2

∫ τf

τi

dfµ(τ) · dgµ(τ)

=

∫ τf

τi

fµ(τ) d−g
µ(τ) +

∫ τf

τi

gµ(τ) d−fµ(τ)− 2

∫ τf

τi

dfµ(τ) · dgµ(τ),

(6.141)

31This is a consequence of Theorem 7.14 and Theorem 7.37 in Ref. [150].
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where we write fµ(τ) = fµ(X(τ), τ), gµ(τ) = gµ(X(τ), τ). We immediately find∫
fµ(τ) d◦g

µ(τ) +

∫
gµ(τ) d◦fµ(τ) = −2

∫
dfµ(τ) · dgµ(τ), (6.142)

where we recall ∫
dfµ(τ) · dgµ(τ) =

1

2

∫
d[[fµ, g

µ]](τ). (6.143)

There exists another integration by parts formula, which can be derived from eq. (6.138)

and is given by32

∫ τf

τi

d [fµ(τ)gµ(τ)] =

∫
fµ(τ) d+g

µ(τ) +

∫
gµ(τ) d−fµ(τ)

=

∫
fµ(τ) d−g

µ(τ) +

∫
gµ(τ) d+fµ(τ). (6.144)

Combining eqs. (6.142) and (6.144) then yields∫
fµ(τ) d◦g

µ(τ) =

∫
gµ(τ) d◦fµ(τ) = −

∫
dfµ(τ) · dgµ(τ). (6.145)

6.5 Stochastic variational calculus

In this section, we discuss stochastic variational calculus as developed by Yasue [362–364].

We will consider the tangent bundle

T̂M =
⊔
x∈M

(
T̂+
xM⊕ T̂−xM

)
, (6.146)

which can be endowed with a (3n)-dimensional manifold structure with coordinates (xµ, vµ+, v
µ
−).

We define the Lagrangian as a map

L : T̂M→ R, (6.147)

and the action as the integral

S = E
[∫ τf

τi

L(X,V+, V−) dτ

]
. (6.148)

Equivalently the action can be expressed as a function of the processes X, V (V+, V−) and

U(V+, V−), which we will use later on. We emphasize that V±(τ) are processes on the

tangent bundle, while v±(X, τ) are second order vector fields. The two are related as

follows

lim
s→τ

Eτ
[
V µ

+ (s)
]

= vµ+(X, τ),

lim
s→τ

Eτ
[
V µ
− (s)

]
= vµ−(X, τ). (6.149)

32See also e.g. Refs. [270,364] for a derivation of this formula
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As we intend to do variational calculus, we require the notion of a norm on the space

of manifold valued time-reversible semi-martingales. In order to construct such a norm,

we would like to split the space of all processes into spaces of time-like, space-like, and

null-like processes. For this, we need to define the notion of a time-like process. We will

call the process X = X(τ) time-like, if

gµν(X) vµ(X, τ) vν(X, τ) < 0 ∀ τ ∈ T. (6.150)

Moreover, we call the process space-like, if

gµν(X) vµ(X, τ) vν(X, τ) > 0 ∀ τ ∈ T, (6.151)

and light-like or null-like, if

gµν(X) vµ(X, τ) vν(X, τ) = 0 ∀ τ ∈ T. (6.152)

Note that sample paths of a time-like process are not necessarily time-like. Indeed, for

a time-like process we have

E
[
gµν(X(τ)) dXµ(τ)⊗ dXν(τ)

]
< 0 ∀ τ ∈ T. (6.153)

However, this relation does not hold without the expectation value. Therefore, sample

paths can contain segments that are not time-like. A similar remark holds for space-like

and light-like processes.

We will now restrict the semi-martingales on M to those that are time-like. After a

Wick rotation, the space of these time-like processes can be equipped with the L2-norm

||X|| =

√
E
[∫ ∣∣Xµ(τ)Xµ(τ)

∣∣ dτ], (6.154)

which is the conventional choice in quantum mechanics.

6.5.1 Euler-Lagrange equations

The stochastic Euler Lagrange equations can be derived similar to the classical Euler-

Lagrange equations. We vary the action with respect to a semi-martingale δX independent

of X that satisfies

δX(τi) = δX(τf ) = 0. (6.155)
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This leads to

δS(X) := S(X + δX)− S(X)

= E
[∫ τf

τi

L (X + δX, V+ + δV+, V− + δV−) dτ

]
− E

[∫ τf

τi

L (X,V+, V−) dτ

]
= E

[∫ τf

τi

{
∂L(X,V+, V−)

∂Xµ
δXµ +

∂L(X,V+, V−)

∂V µ
+

δV µ
+

+
∂L(X,V+, V−)

∂V µ
−

δV µ
−

}
dτ

]
+O(||δX||2)

= E
[∫ τf

τi

{
∂L(X,V+, V−)

∂Xµ
δXµdτ +

∂L(X,V+, V−)

∂V µ
+

d+δX
µ

+
∂L(X,V+, V−)

∂V µ
−

d−δX
µ

}]
+O(||δX||2)

= E
[∫ τf

τi

δXµ

{
∂L(X,V+, V−)

∂Xµ
dτ − d−

∂L(X,V+, V−)

∂V µ
+

−d+
∂L(X,V+, V−)

∂V µ
−

}]
+O(||δX||2),

(6.156)

where we used the partial integration formula (6.144). We find a system of stochastic

differential equations given by∫ τf

τi

∂

∂Xµ
L(X,V+, V−)dτ =

∫ τf

τi

{
d−

∂

∂V µ
+

L(X,V+, V−) + d+
∂

∂V µ
−
L(X,V+, V−)

}
(6.157)

or equivalently∫ τf

τi

∂

∂Xµ
L(X,V, U)dτ =

∫ τf

τi

{
d
∂

∂V µ
L(X,V, U)− d◦

∂

∂Uµ
L(X,V, U)

}
. (6.158)

Since δX ⊥⊥ X, the osmotic integral vanishes, and we obtain∫ τf

τi

∂

∂Xµ
L(X,V, U)dτ =

∫ τf

τi

d
∂

∂V µ
L(X,V, U). (6.159)

6.5.2 Hamilton equations

As in classical physics, one can define an Hamiltonian picture. We define the generalized

momenta by

P+
µ (τ) =

∂L

∂V µ
+

,

P−µ (τ) =
∂L

∂V µ
−
. (6.160)

and the Hamiltonian as the Legendre transform

H(X,P+, P−) = P+
µ V

µ
+ + P−µ V

µ
− − L(X,V+, V−). (6.161)
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We can take a first order total derivative. This yields

dH =
∂H

∂Xµ
dXµ +

∂H

∂P+
µ
dP+

µ +
∂H

∂P−µ
dP−µ (6.162)

and

dH = P+
µ dV

µ
+ + V µ

+dP
+
µ + P−µ dV

µ
− + V µ

−dP
−
µ −

∂L

∂Xµ
dXµ − ∂L

∂V µ
+

dV µ
+ −

∂L

∂V µ
−
dV µ
−

= V µ
+dP

+
µ + V µ

−dP
−
µ −

(
d−
dτ
P+
µ +

d+

dτ
P−µ

)
dXµ. (6.163)

One can then read off the Hamilton equations:

V µ
+ (τ) =

∂H

∂P+
µ
,

V µ
− (τ) =

∂H

∂P−µ
, (6.164)

and ∫ (
d+P

−
µ + d−P

+
µ

)
= −

∫
∂H

∂Xµ
dτ. (6.165)

Furthermore, if an explicit proper time dependence is introduced, one finds

∂

∂τ
H(X,P+, P−, τ) = − ∂

∂τ
L(X,V+, V−, τ). (6.166)

As is the case for the Lagrangian, one can express the Hamiltonian in terms of current

and osmotic momenta. These can be defined as

Pµ(τ) =
∂

∂V µ
L(X,V, U),

Qµ(τ) =
∂

∂Uµ
L(X,V, U). (6.167)

The Hamiltonian is then given by

H(X,P,Q) = PµV
µ +QµU

µ − L(X,V, U). (6.168)

This leads to the Hamilton equations

V µ(τ) =
∂H

∂Pµ
,

Uµ(τ) =
∂H

∂Qµ
. (6.169)

and ∫
dPµ = −

∫
∂H

∂Xµ
dτ. (6.170)
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Let us summarize the relation between U, V, V+, V−:

V =
1

2
(V+ + V−) , V+ = V + U,

U =
1

2
(V+ − V−) , V− = V − U. (6.171)

Furthermore, for P,Q, P+, P− we have

P = P+ + P−, P+ =
1

2
(P +Q) ,

Q = P+ − P−, P− =
1

2
(P −Q) . (6.172)

6.5.3 Hamilton-Jacobi equations

The Hamilton-Jacobi equations play an important role in the derivation of the Schrödinger

equation in stochastic quantization. We will therefore review the derivation of these equa-

tions. We define Hamilton’s principal function as the action conditioned on its end point

S(X, τ) = E
[∫ τ

τi

L(X,V+, V−) ds
∣∣∣X(τ)

]
, (6.173)

such that the Euler-Lagrange equations are satisfied.

We consider the variation of the principal function under a variation of the end point.

This yields

δS(X, τ) = S(X + δX, τ)− S(X, τ)

= E
[∫ τ

τi

L(X,V+, V−) ds
∣∣∣X(τ) + δX(τ)

]
− E

[∫ τ

τi

L(X,V+, V−) ds
∣∣∣X(τ)

]
= E

[∫ τ

τi

L(X + δX, V+ + δV+, V− + δV−) ds−
∫ τ

τi

L(X,V+, V−) ds
∣∣∣X(τ), δX(τ)

]
= E

[∫ τ

τi

{
∂

∂Xµ
L(X,V+, V−) δXµ +

∂

∂V µ
+

L(X,V+, V−) δV µ
+

+
∂

∂V µ
−
L(X,V+, V−) δV µ

−

}
ds
∣∣∣X(τ), δX(τ)

]
+O

(
||δX||2

)
= E

[∫ τ

τi

{
δXµ d−

∂L

∂V µ
+

+ δXµ d+
∂L

∂V µ
−

+
∂L

∂V µ
+

d+δX
µ +

∂L

∂V µ
−
d−δX

µ

} ∣∣∣X(τ), δX(τ)

]
+O

(
||δX||2

)
= E

[∫ τ

τi

d

[(
∂L

∂V µ
+

+
∂L

∂V µ
−

)
δXµ

]
+O

(
||δX||2

) ∣∣∣X(τ), δX(τ)

]
=
(
p+
µ (X, τ) + p−µ (X, τ)

)
δXµ +O

(
||δX||2

)
, (6.174)

where we used the Euler-Lagrange equations in the fifth line. Furthermore, in the third

line, we have rewritten the original trajectory which is the minimal path between (τi, xi)

and (τ,X(τ)+δX(τ)) as two independent trajectories X, δX, which are the minimal paths

between (τi, xi) and (τ,X(τ)) and between (τi, 0) and (τ, δX(τ)) respectively.
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We conclude with the first Hamilton-Jacobi equation

∇µS(X, τ) = p+
µ (X, τ) + p−µ (X, τ) = pµ(X, τ). (6.175)

Moreover, taking a first order total derivative of Hamilton’s principal function yields

dS = Eτ [Ldτ ] ,

dS = Eτ
[
∂S

∂xµ
dXµ +

∂S

∂τ
dτ

]
. (6.176)

This leads to the second Hamilton-Jacobi equation

∂

∂τ
S(X, τ) = Eτ [L(X,V, U)]− pµvµ. (6.177)

6.5.4 Kolmogorov equations

In this section, we derive the Kolmogorov equations. Although these do not follow

from a variational principle, they are another crucial ingredient for the derivation of the

Schrödinger equation.

Let µ(x, τ) be a probability measure on M× T , such that∫
M×T

f(x, τ) dµ(x, τ) =

∫
T
E [f(X(τ), τ)] dτ (6.178)

for any smooth function f compactly supported onM×int(T), where int(T) is the interior

of T . We will assume that the probability density ρ associated to the measure µ exists,

such that dµ(x, τ) =
√
|g|ρ(x, τ)dnxdτ . Then

0 = E[f(X(τf ), τf )]− E[[f(X(τi), τi)]

=

∫
T

d2

dτ
E[f(X(τ), τ)]dτ

=

∫
T
E
[
d2

dτ
f(X(τ), τ)

]
dτ

=

∫
T
E
[
Eτ
[
d2

dτ
f(X(τ), τ)

]]
dτ

=

∫
T
E
[(

∂

∂τ
+ v̂µ(X, τ)∇µ + v̂µν(X, τ)∇µ∇ν

)
f (X, t)

]
dτ

=

∫
M×T

(
∂

∂τ
+ v̂µ(x, τ)∇µ + v̂µν(x, τ)∇µ∇ν

)
f(x, τ) dµ(x, τ)

=

∫
M×T

√
|g| ρ(x, τ)

(
∂

∂τ
+ v̂µ(x, τ)∇µ + v̂µν(x, τ)∇µ∇ν

)
f(x, τ) dnx dτ

=

∫
M×T

√
|g| f(x, τ)

(
− ∂

∂τ
ρ(x, τ)−∇µ [v̂µ(x, τ) ρ(x, τ)] +∇µ∇ν [v̂µν(x, τ) ρ(x, τ)]

)
dnx dτ

(6.179)

for all compactly supported functions f . We can choose v = v±, and plug in the back-
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ground hypothesis

v̂µν± = ± ~
2m

gµν . (6.180)

This leads to the Kolmogorov forward and backward equations or equivalently the Fokker-

Planck equations associated to the forward and backward process:

∂

∂τ
ρ(x, τ) = −∇µ

[
v̂µ+(x, τ)ρ(x, τ)

]
+

~
2m
∇2ρ(x, τ),

∂

∂τ
ρ(x, τ) = −∇µ

[
v̂µ−(x, τ)ρ(x, τ)

]
− ~

2m
∇2ρ(x, τ). (6.181)

Adding and subtracting the two equations leads to the continuity and osmotic equations

∂

∂τ
ρ(x, τ) = −∇µ [vµ(x, τ)ρ(x, τ)] , (6.182)

ûµ(x, τ) =
~

2m
∇µ ln [ρ(x, τ)] . (6.183)

6.6 The stochastic Lagrangian

In classical physics a Lagrangian is a function of the form L(X,V, τ). In stochastic quan-

tization on the other hand the Lagrangian is a function of the form L(X,V+, V−, τ). Due

to the existence of two different velocities, it is not immediately clear how the classical

Lagrangian should be generalized to the stochastic framework. However, it was shown by

Zambrini, cf. Ref. [364] that for any classical Lagrangian of the form

Lc(x, v, τ) =
m

2
Tµν(x, τ)vµvν − ~Aµ(x, τ)vµ − U(x, τ) (6.184)

the minimal stochastic extension that is compatible with gauge invariance and Maupertuis’

principle is given by

L(X,V+, V−, τ) =
1

2
Lc(X,V+, τ) +

1

2
Lc(X,V−, τ). (6.185)

We note that this form of the Lagrangian was also assumed by Yasue [362, 363]. In the

remainder of this paper, we will assume that gravity is the only spin-2 field, i.e.

Tµν(x, τ) = gµν(x). (6.186)

The stochastic Lagrangian corresponding to the classical Lagrangian (6.184) is then given

by

L (X,V+, V−) =
m

4
gµν

(
V µ

+V
ν

+ + V µ
−V

ν
−
)
− ~

2
Aµ(X)

(
V µ

+ + V µ
−
)
− U(X) (6.187)

or equivalently

L (X,V, U) =
m

2
gµν (V µV ν + UµUν)− ~Aµ(X)V µ − U(X). (6.188)
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Compared to the classical Lagrangian there is an additional energy contribution:

m

2
gµνU

µUν . (6.189)

This is the osmotic energy and can be interpreted as the kinetic energy of the background

field.

There also exists a Hamiltonian description. The momenta for this Lagrangian are

P+
µ (τ) =

m

2
gµνV

ν
+(τ)− ~

2
Aµ(X),

P−µ (τ) =
m

2
gµνV

ν
−(τ)− ~

2
Aµ(X),

Pµ(τ) = mgµνV
ν(τ)− ~Aµ(X),

Qµ(τ) = mgµνU
ν(τ). (6.190)

The Hamiltonian is then given by

H
(
X,P+, P−

)
=

1

m
gµν

(
P+
µ P

+
ν + P−µ P

−
ν + ~

(
P+
µ + P−µ

)
Aν(X) +

~2

2
Aµ(X)Aν(X)

)
+U(X)

(6.191)

or equivalently

H (X,P,Q) =
1

2m
gµν

(
PµPν +QµQν + 2~PµAν(X) + ~2Aµ(X)Aν(X)

)
+U(X). (6.192)

6.6.1 Conditional expectations

In section 6.5.3, we derived the Hamilton-Jacobi equations and obtained expressions that

contained the conditional expectation of the Lagrangian Eτ [L(X,V, U, τ)]. We can calcu-

late this expression for the Lagrangian (6.187) obtained in previous subsection. For this

we notice that for any smooth function U : T ×M→ R

Eτ [U(X(τ), τ)] = lim
s→τ

Eτ [U(X(s), s)] = U(X(τ), τ). (6.193)

For the terms that depend on the velocity process, we need to make sense of the processes

V±. This can be done by performing an integration over dτ . At linear order we have

Aµ(X(τ), τ)V µ
+ (τ) = lim

h→0

1

h

∫ τ+h

τ
Aµ(X(s), s)V µ

+ (s) ds

= lim
h→0

1

h

[ ∫ τ+h

τ

(
Aµ(X(s), s) d+X

µ(s) + ∂νAµ(X(s), s) dXµ · dXν(s)
)]

= lim
h→0

1

h

[ ∫ τ+h

τ

(
Aµ(X(s), s) d+X̂

µ(s) +∇νAµ(X(s), s) dX̂µ · dX̂ν(s)
)]
.

(6.194)
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By a similar calculation, we obtain

Aµ(X(τ), τ)V µ
− (τ) = lim

h→0

1

h

[ ∫ τ+h

τ

(
Aµ(X(s), s) d−X̂

µ(s)−∇νAµ(X(s), s) dX̂µ · dX̂ν(s)
)]
.

(6.195)

We note that we can write these expressions in differential notation as

AµV
µ
± dτ = Aµ d±X̂

µ ±∇νAµ dX̂µ · dX̂ν (6.196)

Taking the expectation value of these expressions yields

Eτ
[
Aµ(X(τ), τ)V µ

+ (τ)
]

= lim
h→0

1

h
Eτ
[∫ τ+h

τ
Aµ(X(s), s) v̂µ+(X(s), s) ds

+

∫ τ+h

τ
Aµ(X(s), s) dWµ

+(s)

+

∫ τ+h

τ
∇νAµ(X(s), s) v̂µν+ (X(s), s) ds

]
= Aµ(X(τ), τ) v̂µ+(X, τ) +

~
2m
∇µAµ(X(τ), τ), (6.197)

where we used the martingale property (6.134). Moreover,

Eτ
[
Aµ(X(τ), τ)V µ

− (τ)
]

= Aµ(X(τ), τ) v̂µ−(X, τ)− ~
2m
∇µAµ(X(τ), τ). (6.198)

Consequently,

Eτ [Aµ(X(τ), τ)V µ(τ)] = Aµ(X(τ), τ) vµ(X, τ), (6.199)

Eτ [Aµ(X(τ), τ)Uµ(τ)] = Aµ(X(τ), τ) ûµ(X, τ) +
~

2m
∇µAµ(X(τ), τ). (6.200)

For the terms quadratic in velocity we will perform a double integral over dτ . In

differential notation we have33

gµνV
µ

+V
ν

+ dτ
2 = gµν d+X̂

µ ⊗ d+X̂
ν + gµν ∇ρ

(
d+X̂

µ
)
⊗ dX̂ν · dX̂ρ

+ gµν dX̂
µ · dX̂ρ ⊗∇ρ

(
d+X̂

ν
)
− 2

3
Rµνρσ dX̂µ · dX̂ρ ⊗ dX̂ν · dX̂σ,

gµνV
µ
−V

ν
− dτ

2 = gµν d−X̂
µ ⊗ d−X̂ν − gµν ∇ρ

(
d−X̂

µ
)
⊗ dX̂ν · dX̂ρ

− gµν dX̂µ · dX̂ρ ⊗∇ρ
(
d−X̂

ν
)
− 2

3
Rµνρσ dX̂µ · dX̂ρ ⊗ dX̂ν · dX̂σ,

gµνV
µ

+V
ν
− dτ

2 = gµν d+X̂
µ ⊗ d−X̂ν − gµν ∇ρ

(
d+X̂

µ
)
⊗ dX̂ν · dX̂ρ

+ gµν dX̂
µ · dX̂ρ ⊗∇ρ

(
d−X̂

ν
)

+
2

3
Rµνρσ dX̂µ · dX̂ρ ⊗ dX̂ν · dX̂σ.

(6.201)

33cf. section 9 in Ref. [270].
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We can take the expectation values of these expressions. This yields

Eτ
[
gµν d+X̂

µ ⊗ d+X̂
ν
]

= Eτ
[
gµν

(
v̂µ+v̂

ν
+ dτ

2 + v̂µ+ dW
ν
+ dτ + v̂ν+ dW

ν
+ dτ + dWµ

+ ⊗ dW ν
+

)]
= gµν

(
v̂µ+v̂

ν
+ dτ

2 + 2 v̂µν+ dτ
)

=
n ~
m

dτ + gµν v̂
µ
+v̂

ν
+ dτ

2 (6.202)

where we used that the expectation value of the terms linear in dW+ vanishes, due to

the martingale property of W+. Moreover, we used eq. (6.130) to evaluate the term

dWµ
+dW

ν
+ = dWµ

+ ⊗ dW ν
+. By a similar calculation we obtain

Eτ
[
gµν d−X̂

µ ⊗ d−X̂ν
]

= −n ~
m

dτ + gµν v̂
µ
−v̂

ν
− dτ

2 (6.203)

Eτ
[
gµν d+X̂

µ ⊗ d−X̂ν
]

= gµν v̂
µ
+v̂

ν
− dτ

2. (6.204)

Furthermore,

Eτ
[
gµν∇ρ

(
d+X̂

µ
)
⊗ dX̂ν · dX̂ρ

]
= Eτ

[
gµν v̂

νρ
+ ∇ρ

(
v̂µ+dτ + dWµ

+

)
dτ
]

=
~

2m
∇µv̂µ+ dτ2. (6.205)

Similarly,

Eτ
[
gµν∇ρ

(
d−X̂

µ
)
⊗ dX̂ν · dX̂ρ

]
=

~
2m
∇µv̂µ− dτ2. (6.206)

For the remaining term we find

Eτ
[
Rµνρσ dX̂µ · dX̂ρ ⊗ dX̂ν · dX̂σ

]
= Eτ

[
Rµνρσ v̂µρv̂νσdτ2

]
=

~2

4m2
R dτ2. (6.207)

We conclude,

Eτ
[
gµν V

µ
+V

ν
+

]
= gµν v̂

µ
+v̂

ν
+ +

~
m
∇µv̂µ+ −

~2

6m2
R+

n ~
mdτ

,

Eτ
[
gµν V

µ
−V

ν
−
]

= gµν v̂
µ
−v̂

ν
− −

~
m
∇µv̂µ− −

~2

6m2
R− n ~

mdτ
,

Eτ
[
gµν V

µ
+V

ν
−
]

= gµν v̂
µ
+v̂

ν
− −

~
2m
∇µv̂µ+ +

~
2m
∇µv̂µ− +

~2

6m2
R (6.208)

or equivalently

Eτ
[
gµν V

µV ν
]

= gµνv
µvν ,

Eτ [gµν U
µUν ] = gµν û

µûν +
~
m
∇µûµ −

~2

6m2
R,

Eτ [gµν V
µUν ] = gµνv

µûν +
~

2m
∇µvµ +

n ~
2mdτ

. (6.209)
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The conditional expectation of the Lagrangian (6.188) is thus given by34

Eτ [L(X,V, U, τ)] =
m

2
gµν (vµvν + ûµûν) +

~
2
∇µûµ −

~2

12m
R− ~Aµvµ − U. (6.210)

6.6.2 Correlation functions

Observables in quantum mechanics can be constructed from correlation functions com-

puted in the path integral formalism. Since this computation is slightly different in

stochastic quantization, we review the main steps.

In order to compute correlation functions within the stochastic quantization, one must

first solve the stochastic equations of motion derived from the action. The solution is a

stochastic process {X(τ)|τ ∈ T}. For this stochastic process one can define a characteristic

functional ΦX(J), and a moment generating functional MX(J):

ΦX(J) = E
[
e
i
~
∫ τf
τi

Jµ(τ)Xµ(τ)dτ
]
, (6.211)

MX(J) = E
[
e

1
~
∫ τf
τi

Jµ(τ)Xµ(τ)dτ
]
, (6.212)

where J(τ) is a bounded process of finite variation that corresponds to the source in the

path integral formulation. We emphasize that one no longer averages over the action, as

this is essentially done in the first step, where the stochastic differential equation is solved.

Using the characteristic and moment generating functionals for the process X(τ), one

can calculate all moments of the theory. For example, the two-point correlation function

is given by

E [Xµ(s)Xν(r)] = lim
||J ||→0

∂

∂Jµ(s)

∂

∂Jν(r)
MX(J). (6.213)

We emphasize that the integrals that need to be evaluated in the path integral formal-

ism and stochastic quantization are constructed in different ways. Due to this different

construction, theories that require renormalization in the path integral formalism can be

finite in stochastic quantization.

6.6.3 Uncertainty principle

Due to the relevance of the uncertainty principle in quantum mechanics, we will derive it

in stochastic quantization, which can be done using the results from section 6.6.1.

34Note that the divergent term n~
mdτ

does not appear in the Lagrangian.
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For s > τ we find

Covτ [Xµ(s), Xν(s)] = Eτ [Xµ(s)Xν(s)]− Eτ [Xµ(s)]Eτ [Xν(s)]

= Eτ
[(
Xµ(τ) +

∫ s

τ
V+µ(r) dr

)(
Xµ(τ) +

∫ s

τ
V µ

+ (r) dr

)]
− Eτ

[(
Xµ(τ) +

∫ s

τ
Vµ(r) dr

)]
Eτ
[(
Xµ(τ) +

∫ s

τ
V µ(r) dr

)]
=

~
m
δνµ(s− τ) +

~
2m

(
∇µv̂ν+ +∇ν v̂+µ −

~
3m
Rνµ
)

(s− τ)2 + o(s− τ)2.

(6.214)

Furthermore, the covariance for the momenta is given by

Covτ
[
P+
µ (s), P+ν(s)

]
=
m2

4

{
Eτ
[
V+µ(s)V ν

+(s)
]
− Eτ [V+µ(s)]Eτ

[
V ν

+(s)
] }

− m ~
4

{
Eτ [V+µ(s)Aν(s)]− Eτ [V+µ(s)]Eτ [Aν(s)]

}
− m ~

4

{
Eτ
[
Aµ(s)V ν

+(s)
]
− Eτ [Aµ(s)]Eτ

[
V ν

+(s)
] }

− ~2

4

{
Eτ [Aµ(s)Aν(s)]− Eτ [Aµ(s)]Eτ [Aν(s)]

}
=
m ~
4
δνµ(s− τ)−1 +

m ~
8

(
∇µv̂ν+ +∇ν v̂+µ

)
− ~2

8
(∇µAν +∇νAµ)− ~2

24
Rνµ + o(1). (6.215)

If we take the limit s→ τ , we find

lim
s→τ

Covτ [Xµ(s), Xν(s)] = 0, (6.216)

lim
s→τ

Covτ
[
P+
µ (s), P+ν(s)

]
=∞. (6.217)

This reflects the fact that we have constructed the stochastic theory in a position repre-

sentation, i.e. the process (X,P+, P−) is adapted to the filtration generated by the process

X.

We can calculate the product of the two variances. For this we fix the indices µ = ν = µ̄,

and obtain

Varτ
[
X µ̄(s)

]
Varτ

[
P+
µ̄ (s)

]
=

~2

4
+

~2

2

(
∇µ̄v̂µ̄+ −

~
2m
∇µ̄Aµ̄ −

~
6m
Rµ̄µ̄
)

(s− τ) + o(s− τ).

(6.218)

If we then take the limit s→ τ , we find

lim
s→τ

Varτ
[
X µ̄(s)

]
Varτ

[
P+
µ̄ (s)

]
=

~2

4
. (6.219)

This corresponds to the lower bound given by the Heisenberg uncertainty principle.
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6.7 Scalar test particles

In this section, we derive the equations of motion that govern a quantum mechanical spin-0

test particle on a pseudo-Riemannian manifold subjected to the Lagrangian (6.188).

6.7.1 Stochastic equation of motion

We consider the Lagrangian (6.188):

L (X,V, U) =
m

2
gµν (V µV ν + UµUν)− ~AµV µ − U. (6.220)

After integrating this expression twice over τ we obtain, cf. eq. (6.201),

E
[
Ldτ2

]
= E

[m
2
gµν

{
dXµdXν + d◦X̂

µd◦X̂
ν +∇ρ

(
d◦X̂

µ
)
d[[Xν , Xρ]]

− ~2

6m2
Rµρκσ d[[Xν , Xκ]] d[[Xρ, Xσ]]

}
−~Aµ dXµ dτ − U dτ2

]
= E

[
m

2
gµν dX

µdXν − ~AµdXµdτ −
(
U +

~2

12m
R
)
dτ2

]
, (6.221)

where we used

E
[
gµν

{
d◦X̂

µd◦X̂
ν +∇ρ

(
d◦X̂

µ
)
d[[Xν , Xρ]]

}]
= 0, (6.222)

which follows from eq. (6.145) and the metric compatibility. If we vary this expression

with respect to a stochastically independent deviation process δX, we obtain the stochastic

Euler-Lagrange equations (6.159) that take the form

m
(
gµνd

2Xν + gµνΓνρσdX
ρdXσ

)
=

(
~ ∂τAµ −∇µU−

~2

12m
∇µR

)
dτ2 − ~Hµν dX

νdτ,

(6.223)

where

Hµν := ∂µAν − ∂νAµ = ∇µAν −∇νAµ. (6.224)

In the classical limit ~→ 0, the quadratic variation vanishes. This gives35

m

(
gµν

d2Xν

dτ2
+ gµνΓνρσ

dXρ

dτ

dXσ

dτ

)
= − lim

~→0

{
∇µU + ~

[
−∂τAµ +Hµν

dXν

dτ

]}
, (6.225)

which is consistent with general relativity. On the other hand, taking the flat space-time

limit GN → 0 gives gµν = ηµν , and therefore

mηµν d
2Xν =

(
~ ∂τAµ − ∂µU

)
dτ2 − ~Hµν dX

νdτ. (6.226)

If we then take the non-relativistic limit c→∞, we identify t = τ and replace ηµν → δij .

35Note that U and Aµ could contain an additional ~ dependence.
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The resulting equation is consistent with stochastic quantization in flat spaces [184, 223,

267,268,270,364].

The stochastic differential equation (6.223) is the fundamental equation of motion in

stochastic quantization. The solutions describe the stochastic trajectories of quantum

mechanical spin-0 test particles in any geometry. In section 6.7.3, we will show that prob-

ability density function associated to the solution X(τ) of this equation evolves according

to the Schrödinger equation.

6.7.2 Stochastic Newton equation

The stochastic differential equation derived in previous section can be rewritten as a

diffusion equation for the vector fields v±(x, τ). This representation is known as the

stochastic Newton equation, see e.g. Ref. [270]. In order to derive it, we define a function

R(x, τ) :=
~
2

ln [ρ(x, τ)] . (6.227)

The osmotic (6.183) and continuity equation (6.182) can then be rewritten as

∇µR(x, τ) = mûµ, (6.228)

∂

∂τ
R(x, τ) = −

(
mgµν û

ν +
~
2
∇µ
)
v̂µ. (6.229)

Furthermore, we recall that the Hamilton Jacobi equations (6.175) and (6.177) are given

by

∇µS(x, τ) = pµ, (6.230)

∂

∂τ
S(x, τ) = Eτ [L(X,V, U, τ)]− pµvµ. (6.231)

We consider the Lagrangian (6.188)

L(X,V, U, τ) =
m

2
gµν (V µV µ + UµUµ)− ~AµV µ − U (6.232)

with momenta

Pµ(τ) = mgµνV
ν − ~Aµ,

Qµ(τ) = mgµνU
ν . (6.233)

Therefore,

pµ(x, τ) = Eτ [Pµ(τ)] = mgµνv
ν − ~Aµ,

q̂µ(x, τ) = Eτ [Qµ(τ)] = mgµν û
ν . (6.234)

Moreover, in eq. (6.210), we found

Eτ [L(X,V, U, τ)] =
m

2
gµν (vµvν + ûµûν) +

~
2
∇µûµ −

~2

12m
R− ~Aµvµ − U. (6.235)
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Putting everything together yields

∇µS(x, τ) = pµ = mgµνv
ν − ~Aµ, (6.236)

∇µR(x, τ) = q̂µ = mgµν û
ν (6.237)

and

∂

∂τ
S(x, τ) = −m

2
gµν (vµvν − ûµûν) +

~
2
∇µûµ −

~2

12m
R− U, (6.238)

∂

∂τ
R(x, τ) = −mgµνv

µûµ − ~
2
∇µvµ. (6.239)

We take the covariant derivative of eq. (6.238). This yields

m
∂vµ
∂τ
− ~

∂Aµ
∂τ

= −mvν∇µvν +mûν∇µûν +
~
2
∇µ∇ν ûν −

~2

12m
∇µR−∇µU. (6.240)

Using eqs. (6.236) and (6.237), we find

∇µûν = ∇ν ûµ,

∇µvν = ∇νvµ +
~
m
Hµν ,

∇µ∇ν ûν = �ûµ −Rµν ûν . (6.241)

Therefore,

~
(
∂Aµ
∂τ
−Hµν v̂

ν

)
− ~2

12m
∇µR−∇µU = m

(
∂v̂µ
∂τ

+ vν∇ν v̂µ − ûν∇ν ûµ

− ûρσ∇ρ∇σûµ + ûρσRνρσµûν
)
. (6.242)

We will associate the left hand side with a force, i.e.

Fµ := ~
(
∂Aµ
∂τ
−Hµν v̂

ν

)
− ~2

12m
∇µR−∇µU. (6.243)

Moreover, we rewrite the left hand side in terms of the forward and backward velocity.

We find

Fµ =
m

2

[(
∂

∂τ
+ v̂ν+∇ν + v̂ρσ+ ∇ρ∇σ

)
v̂µ− −Rµρσν v̂

ρσ
+ v̂ν−

+

(
∂

∂τ
+ v̂ν−∇ν + v̂νρ− ∇ν∇ρ

)
v̂µ+ −Rµρσν v̂

ρσ
− v̂

ν
+

]
. (6.244)

As we would like to associate the right hand side with an acceleration, we define second

order acceleration vectors a±± by

aµ+±(x, τ) := lim
h→0

1

h
Eτ
[
V µ
± (τ + h)− V µ

± (τ)
]
,

aµ−±(x, τ) := lim
h→0

1

h
Eτ
[
V µ
± (τ)− V µ

± (τ − h)
]
, (6.245)
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and

aρσ+±(x, τ) := lim
h→0

1

2h
Eτ
{[
V ρ
±(τ + h)− V ρ

±(τ)
][
Xσ(τ + h)−Xσ(τ)

]}
+

1

2h
Eτ
{[
Xρ(τ + h)−Xρ(τ)

][
V σ
± (τ + h)− V σ

± (τ)
]}
,

aρσ−±(x, τ) := lim
h→0

1

2h
Eτ
{[
V ρ
±(τ)− V ρ

±(τ − h)
][
Xσ(τ)−Xσ(τ − h)

]}
+

1

2h
Eτ
{[
Xρ(τ)−Xρ(τ − h)

][
V σ
± (τ)− V σ

± (τ − h)
]}
. (6.246)

Using the parallel transport equation (6.95), we then find

aµ+± = lim
dτ→0

1

dτ
Eτ
[
d+v̂

µ
± + Γµνρv̂

ν
±d+x

ρ +
(
∂νΓµρσ + ΓµνκΓκρσ − 2ΓµρκΓκνσ

)
v̂ν±dx

ρ · dxσ + o(dτ)
]

= ∂τ v̂
µ
± + vν+∂ν v̂

µ
± + vρσ+ ∂ρ∂σv̂

µ
± + Γµνρv̂

ν
±v

ρ
+ +

(
∂νΓµρσ + ΓµνκΓκρσ − 2ΓµρκΓκνσ

)
v̂ν±v

ρσ
+

= ∂τ v̂
µ
± + v̂ν+∇ν v̂

µ
± + v̂ρσ+ ∇ρ∇σv̂

µ
± − 2Γµνρv̂

ρσ
+ ∇σv̂ν± −Rµρσν v̂

ρσ
+ v̂ν± (6.247)

and

aµ−± = lim
dτ→0

1

dτ
Eτ
[
d−v̂

µ
± + Γµνρv̂

ν
±d−x

ρ −
(
∂νΓµρσ + ΓµνκΓκρσ − 2ΓµρκΓκνσ

)
v̂ν±dx

ρ · dxσ + o(dτ)
]

= ∂τ v̂
µ
± + v̂ν−∇ν v̂

µ
± + v̂ρσ− ∇ρ∇σv̂

µ
± − 2Γµνρv̂

ρσ
− ∇σv̂ν± −Rµρσν v̂

ρσ
− v̂

ν
±, (6.248)

where we allow for an explicit proper-time dependence of the velocity v±(X, τ). For the

second order parts we find

aρσ+± = lim
dτ→0

2

dτ
Eτ
[
dv̂

(ρ
± · dxσ) + Γ

(ρ|
κλv̂

κ
± dx

λ · dx|σ) + o(dτ)
]

= v̂ρκ+ ∇κv̂σ± + v̂κσ+ ∇κv̂
ρ
± (6.249)

and

aρσ−± = lim
dτ→0

2

dτ
Eτ
[
−dv̂(ρ

± · dxσ) − Γ
(ρ|
κλv̂

κ
± dx

λ · dx|σ) + o(dτ)
]

= v̂ρκ− ∇κv̂σ± + v̂κσ− ∇κv̂
ρ
±. (6.250)

Eq. (6.244) can now be rewritten as the stochastic Newton equation

Fµ(X, τ) =
1

2
m
[
âµ+−(X, τ) + âµ−+(X, τ)

]
, (6.251)

where âµ = aµ + Γµρσaρσ is the covariant form of aµ and Fµ is a first order vector.

There exists another representation of the stochastic Newton equation that is given by

Fµ(X, τ) =
1

2
m (D+D− +D−D+)Xµ, (6.252)

where the covariant diffusion operators D± act on an arbitrary first order (k, l)-tensor
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field A(X, τ) as, cf. Refs. [135,136,270],

D±A =

[
∂

∂τ
+ v̂µ±∇µ + v̂µν±

(
∇µ∇ν +R ·µ · ν

)]
A, (6.253)

where

R ·α ·βAµ1...µkν1...νl
=

k∑
i=1

RµiαλβA
µ1...µi−1λµi+1...µk
ν1...νl −

l∑
j=1

RλανjβA
µ1...µk
ν1...νj−1λµj+1...νl

. (6.254)

Using that vµν± = ± ~
2mg

µν , eq. (6.253) can be rewritten as

D±A =

(
∂

∂τ
+ v̂µ±∇µ ±

~
2m
�DG

)
A, (6.255)

where the Dohrn-Guerra Laplacian is defined by

�DG := gµν
(
∇µ∇ν +R ·µ · ν

)
. (6.256)

6.7.3 Schrödinger equation

The solutions of the stochastic differential equation (6.223) are stochastic processes. One

can associate a probability density to these stochastic processes, and derive a partial differ-

ential equation for the evolution of this probability density. As argued in the introduction,

the equation governing this evolution is the Schrödinger equation. Here, we present an

explicit derivation.

Using eqs. (6.236) and (6.237), we can rewrite eqs. (6.238) and (6.239) as

∂

∂τ
S(x, τ) = − 1

2m

(
∇µS∇µS −∇µR∇µR− ~�R+ 2~Aµ∇µS + ~2AµA

µ +
~2

6
R
)
− U,

(6.257)

∂

∂τ
R(x, τ) = − 1

m

(
∇µS∇µR+Aµ∇µR+

~
2
�S +

~2

2
∇µAµ

)
. (6.258)

If we define the wave function

Ψ(x, τ) = e
1
~ (R+iS), (6.259)

we find that these equations are equivalent to the equation

i~
∂

∂τ
Ψ =

{
− ~2

2m

[
(∇µ + iAµ) (∇µ + iAµ)− 1

6
R
]

+ U

}
Ψ. (6.260)

This is a generalization of the Schrödinger equation to pseudo-Riemannian geometry.36

We note that the Born rule is an immediate consequence:

|Ψ(x, τ)|2 = e
2
~R(x,τ) = ρ(x, τ) (6.261)

36Note that for flat space-times R = 0. Moreover, in the non-relativistic limit one replaces xµ → xi and
identifies τ = t. Therefore, in the flat non-relativistic limit we obtain the standard Schrödinger equation.
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by the definition of R in eq. (6.227).

6.7.4 Conformal coupling

In this section, we show that the generalization of the Schrödinger equation (6.260) imposes

a conformal coupling of massive scalar particles to gravity. For this, we consider the

Lagrangian of a free scalar field non-minimally coupled to gravity

L(φ,∇φ) = −1

2

(
∇µφ∇µφ+

m2

~2
φ2 + ξRφ2

)
. (6.262)

The field equation is given by the Klein-Gordon equation

�φ =
m2

~2
φ+ ξRφ. (6.263)

We can construct an explicitly proper time dependent field Φ defined onM×T , such that

Φ(x, τ) = φ(x) e
im
2~ τ , (6.264)

where x = (t, ~x) is a four-vector. Then Φ satisfies the generalized Schrödinger equation

(6.260) with Aµ = 0, U = 0 and conformal coupling ξ = 1
6 . This result can be generalized

in a straightforward manner to the cases Aµ 6= 0 and U 6= 0.

We conclude that stochastic quantization predicts that any scalar test particle must

be conformally coupled to gravity. It is expected that this result can be generalized to

arbitrary scalar fields. However, proof of this latter statement can only be achieved within

a field theory description of stochastic quantization.

6.8 Discussion

In this paper, we have reviewed some aspects of second order geometry and stochastic

quantization, and shown that the combination of the two leads to a consistent quantum

theory on manifolds. In addition, we have further developed second order geometry, and

constructed the notion of a Lie derivative in this framework. Furthermore, we have pro-

vided new results within stochastic quantization. In particular, we have shown that a

diffeomorphism invariant framework of stochastic quantization imposes a conformal cou-

pling of massive spin-0 test particles. It is expected that this result can be generalized to

arbitrary scalar fields, but a proof of such a generalization requires further study of a field

theory framework.

Since stochastic quantization can be formulated on (pseudo-)Riemannian manifolds,

it is a natural approach to explore quantum gravity. However, in order to do so, a major

hurdle must still be overcome, which is a consistent extension to both bosonic and fermionic

field theories. Until now only a few specific bosonic examples have been studied in this

framework, see for example Refs. [165,184,186,188,189,227,251,265,289], but no general

formalism has yet been developed. The embedding of stochastic quantization into second

order geometry, as developed in this paper could help guide the way towards such an
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extension. Particularly interesting in this respect are recent developments in the study of

Lagrangian dynamics on higher order jet bundles, see e.g. Refs. [102, 103], as this is the

natural extension of second order geometry to a field theory setting.

There are several studies that can be performed within the stochastic quantization

framework without going to a field theory description or to dynamical backgrounds. The

stochastic differential equation (6.223) allows to solve and simulate the motion of quantum

mechanical spin-0 test particles charged under scalar and vector potentials in any geometry.

Such a study would be particularly interesting when performed in black hole geometries.

One can then calculate the probability that a particle hits the singularity37 or escapes

the black hole. Furthermore, one can calculate the expected proper time until one of

these events occurs. Also, higher moments such as the variance for these events can be

calculated. Such calculations could provide microscopic insights into Hawking radiation

and black hole thermodynamics.

In this paper, we have restricted ourselves to time-like processes with positive mass. A

formulation for space-like processes can be obtained by considering imaginary masses and

by replacing the proper time with the proper distance. However, a theory for massless

particles on null-like surfaces is not easily obtained from the theory presented in this paper,

and deserves further study.

There are many other issues that deserve further exploration within the stochastic

framework. For example, as discussed in the introduction, there is no consensus yet

on the resolution of Wallstrom’s criticism. Moreover, the notion of spin in stochastic

quantization is only partially understood, see e.g. Refs. [127, 159, 270]. In this paper, we

have focused on scalar particles, in the presence of commuting spin-0 and spin-1 fields and

gravity. Extensions to fermions, non-commuting potentials and higher spin fields would

be interesting to investigate.

Furthermore, the formulation of stochastic quantization presented here was entirely in

a position representation. Investigation of the dual picture in terms of momenta deserves

further exploration. Early considerations along these lines can for example be found in

Ref. [314].

Another open question is whether stochastic quantization can be formulated on com-

plex manifolds instead of real manifolds. An argument for such a construction is that the

wave function resembles the probability density of a complex random variable Z = X+ iY

with dZ = (V + iU)dτ . Discussions along these lines can also be found in Ref. [285].

Related to this is the question whether the function R can be interpreted as an action for

the background field in a Wick rotated version of the theory. The action S would then be

related to the probability density for the coordinates Y .

Finally, the presence of an osmotic velocity in stochastic quantization could provide

new insights in the nature of dark matter. In this respect, it is worth noticing that

the kinetic energy in stochastic quantization does not only contain the classical kinetic

energy given by m
2 gµνv

µvν , but also the osmotic energy of the background field given

37In stochastic quantization, geodesic incompleteness of the space-time does not imply that the particle
ends up at the singularity. One should study the Brownian completeness of the geometry instead, see e.g.
Section 5 in Ref. [150].
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by m
2 gµν û

µûν . It is expected that the notion of osmotic energy is also present in a field

theoretical extension of stochastic quantization. In such an extension it will take the shape

of the kinetic term of additional fields that only interact gravitationally with other fields.

This suggests that the osmotic energy could be interpreted as dark matter.

We conclude that stochastic quantization is an interesting framework, that deserves

further exploration. We are currently investigating several aspects of the theory along the

lines mentioned above, and hope to report on it elsewhere.
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Chapter 7

Stochastic Quantization of

Relativistic Theories
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Abstract

It was shown recently that stochastic quantization can be made into a well defined quanti-

zation scheme on (pseudo-)Riemannian manifolds using second order differential geometry,

which is an extension of the commonly used first order differential geometry. In this letter,

we show that restrictions to relativistic theories can be obtained from this theory by im-

posing a stochastic energy-momentum relation. In the process, we derive non-perturbative

quantum corrections to the line element as measured by scalar particles. Furthermore, we

extend the framework of stochastic quantization to massless scalar particles.

This chapter has been published in the Journal of Mathematical Physics 62, no. 12, p. 2301

(2021).

A preprint of this chapter can be found at arXiv:2103.02501 [gr-qc].



86

7.1 Introduction

Stochastic quantization is a quantization scheme comparable to canonical quantization

and path integral quantization that is employed in the theory of stochastic mechan-

ics [153,184,187,223,267,268,270,362–364]. Stochastic mechanics is a theory of Newtonian

mechanics coupled to a fluctuating Gaussian background field. Due to the coupling to this

background field, particles follow stochastic processes instead of deterministic trajectories.

The evolution of the probability density of these processes is governed by complex diffusion

equations.

Processes described by complex diffusion equations generically have a single well de-

fined position, but two independent well defined velocities. If one imposes there to be a

single well defined velocity, one obtains a real diffusion equation that is better known as

the heat equation. The process described by the heat equation is the well known dissipa-

tive Brownian motion. This dissipative Brownian motion breaks time reversal symmetry.

If, on the other hand, time reversibility is imposed as a constraint, the governing complex

diffusion equation is the Schrödinger equation. The resulting process is often called a

conservative Brownian motion or a Nelson process.

The derivation of the Schrödinger equation for a Newtonian system coupled to a time

reversible Gaussian background field is the central result of stochastic mechanics. The

stochastic quantization scheme that is employed in stochastic mechanics is build upon

five fundamental principles: diffeomorphism invariance, gauge invariance, time reversal

symmetry, the principle of least action and the background hypothesis.

The background hypothesis states that all variables in the theory must be promoted to

random variables and the trajectories to time reversible semi-martingale processes. The

quadratic variation for these stochastic processes is fixed by the background hypothesis.

For massive scalar particles the condition on the quadratic variation takes the form1

d[[Xµ, Xν ]] =
~
m
hµν dτ, (7.1)

where h is a positive definite metric tensor, obtained from the metric tensor g with

Lorentzian signature by a Wick rotation. The construction of this positive definite ten-

sor is discussed in more detail in Ref. [137] and reviewed in appendix 7.A. We note that

this condition imposes the stochastic part of X to be a scaled Brownian motion by the

Lévy characterization. Furthermore, we remark that this relation is the equivalent of the

canonical commutation relation imposed in the canonical quantization scheme.

Stochastic quantization is closely related to the path integral formulation, as it can

be regarded as a local construction scheme for path integrals. In imaginary time, this is

achieved by the Feynman-Kac theorem [218], which maps the path integral formulation to

the stochastic formulation. Stochastic quantization extends this stochastic formulation to

a real time description. An extension of the Feynman-Kac theorem to the real time path

integral is given by the Feynman-Itô theorem [14, 214]. Although this theorem does not

1In order to avoid confusion with the commutator, we denote the quadratic variation with a double
bracket [[Xµ, Xν ]] instead of a single bracket, which is the more common notation.
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have an immediate stochastic interpretation, the real time path integral has been related

explicitly to the stochastic quantization framework [288].

The mathematical advantage of the stochastic quantization scheme over the path in-

tegral formulation resides in the fact that stochastic integrals are better understood than

path integrals. This is an important motivation for the study of stochastic quantization.

For similar reasons, the framework is used as an important tool in constructive approaches

to quantum field theory [14, 270]. The study of constructive approaches to quantum field

theory bears relevance, as the absence of a mathematically rigorous framework of rela-

tivistic quantum field theory lies at the heart of several issues in quantum field theory.

One of which is the non-renormalizability of gravity as a quantum theory.

A second motivation for the study of stochastic mechanics is of a foundational nature.

The philosophy governing stochastic quantization is closely related to the quantum foam

introduced by Wheeler [353]. However, in stochastic quantization the quantum foam is

considered to be the source rather than the consequence of quantum mechanics.

Stochastic mechanics is a classical2 probabilistic3 interpretation of quantum theory.

In this framework, the physical configuration space is a measurable covering space of

the classical configuration space. The L2-space containing the wave functions is built on

top of this. Although this L2-space is crucial for mathematical analysis, global existence

of the wave functions is not required in a stochastic formulation. The wave function

represents the best possible prediction of a system given the measurements of the system

at earlier times, but is not a physical object. Measuring a system amounts to conditioning

the stochastic process.4 Collapse of the wave function thus occurs due to updating the

filtration to which the process is adapted.5

Finally, stochastic quantization has received attention, since it can be used as a com-

putational framework in quantum field theory. Stochastic quantization provides an alter-

2We call the theory classical, as the quantum configuration space is a covering space over the classical
configuration space. The covering is crucial for the treatment of intrinsically quantum properties such as
spin and discretized spectra, cf. e.g. Ref. [270].

3We call a theory probabilistic, if there is a structure of a probability space (Ω,Σ,P), a measurable
configuration space (M,B(M), µ) and random variablesX : (Ω,Σ,P)→ (M,B(M)) such that µ = P◦X−1.
The random variables are elements of an Lp-space. As usual in quantum mechanics, we consider the L2-
space, which has the important properties that it is a Hilbert space and that it is self-dual.

4We consider measurements where the interaction between the measurement device and the system is
negligible. For microscopic systems, such measurements are unachievable. However, these interactions are
unrelated to the wave function collapse in the stochastic interpretation.

5Let us add a clarification by making a comparison to stock markets: the shares in a stock market
have a well defined value at any point in time. However, if we do not observe the value for a certain
amount of time, we can only give a probabilistic description of the value of the stock, which is modeled by
a probability distribution. Once we decide to observe the market this probability distribution collapses to
a delta distribution. According to stochastic mechanics the situation in quantum mechanics is similar. A
difference between the two pictures is that quantum mechanics is governed by a time-reversible Brownian
motion, while stock markets are usually modeled by a dissipative Brownian motion. As a consequence,
quantum mechanics is modeled by a complex wave function, while the probability distributions in stock
markets often take the shape of a Gaussian profile. We should stress that the picture is not in conflict
with the superposition principle. The superposition principle holds in the stochastic interpretation as
particles move between different layers in the covering space. Before measuring a particle, the observers
can only give a probabilistic prediction on which layer they will measure the particle, and thus what values
of spin or other discretized spectra they will measure. This leads to the superposition principle in the
description given by the observer. Furthermore, we emphasize that stochastic mechanics is agnostic about
the question whether the quantum fluctuations are fundamental or can be derived from a more fundamental
deterministic theory. However, the Bell experiments suggest that the stochasticity is fundamental.
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native mathematical model that can be used to calculate observables in quantum theo-

ries. For certain problems this could simplify the calculations, while other problems are

more easily solved using standard quantum field theory methods. Stochastic quantization

should therefore be regarded as complementary to other approaches. In this respect, the

reformulation due to Parisi and Wu [125,126,284] has achieved considerable success in nu-

merical calculations. This reformulation has also been related to quantum gravity inspired

theories [134,248,281].

The general formalism of stochastic quantization is a well defined approach to quan-

tum mechanics for non-relativistic scalar particles on Rn charged under scalar and vec-

tor potentials. Extensions have been made to Riemannian manifolds [127, 135–137, 187,

270]. In addition, particles with spin have been discussed in this framework, cf. e.g.

Refs. [127, 159, 270]. Furthermore, field theoretic extensions have been developed, see

e.g. [165,184,186,188,189,227,251,265,289]. We note that the field theoretic framework is

more evolved in the Parisi-Wu formulation. Furthermore, it is worth noticing that many

standard quantum mechanics problems have been discussed in the stochastic quantization

framework, see e.g. Refs. [164,178,184,270,278,290,293,364]. Finally, the ideas governing

stochastic quantization have been incorporated in models of quantum gravity [151, 249].

For a more complete review of stochastic quantization we refer to Refs. [184,233,270,364].

Most successes of stochastic quantization are of a non-relativistic nature. Although

a relativistic version has been treated in the literature, cf. e.g. Refs. [137, 165, 184, 188,

189, 251, 265, 289], it is not as well established as the non-relativistic theory. In this let-

ter, we remedy this and show that stochastic quantization can be made into a relativistic

quantization scheme. Here, we build on our previous work [233], where stochastic quan-

tization was extended to (pseudo-)Riemannian geometry. In this letter, we restrict this

general framework to a special class of theories, namely the relativistic theories defined

on Lorentzian manifolds. More concretely, we discuss the stochastic quantization of a

single relativistic spinless particle on a curved space-time charged under scalar and vector

potentials.

A difficulty that arises, when one tries to extend stochastic quantization to (pseudo-

)Riemannian manifolds is that there exists a single well defined position X, but two

independent well defined velocities6

v+(X(τ), τ) = lim
h↓0

1

h
E [X(τ + h)−X(τ)|X(τ)] ,

v−(X(τ), τ) = lim
h↓0

1

h
E [X(τ)−X(τ − h)|X(τ)] , (7.2)

which are often re-expressed as v = 1
2(v+ +v−) and u = 1

2(v+−v−). These velocity vectors

are not vectors in the usual geometrical sense, i.e. they do not transform as vectors under

coordinate transformations. Therefore, stochastic quantization cannot be easily embedded

in differential geometry, which is the mathematical corner stone of general relativity. This

issue was resolved for semi-martingale processes on smooth manifolds with a connection

6Note that the definition requires to take conditional expectations. Without this conditional expectation
there is no notion of velocity, as the stochastic process is almost surely nowhere differentiable.
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by extending the ordinary first order geometry to a second order geometry, cf. Refs.

[150, 257, 311]. In second order geometry the (co)tangent spaces are extended to second

order (co)tangent spaces. This allows to interpret v± as vectors in these second order

spaces. Consequently, the stochastic processes discussed in this paper are diffeomorphism

invariant. We refer to Ref. [233] for a more detailed exposition of stochastic quantization

in the context of second order geometry.

This paper is organized as follows: in the next section 7.2, we discuss relativistic

massive theories. In section 7.3, we extend stochastic quantization to massless theories.

In section 7.4, we discuss the notion of off-shellness in stochastic quantization, and in

section 7.5 we conclude.

7.2 Massive scalar particles

We consider the classical relativistic action

S(x) = −
[∫

m
√
−gµν(x) vµ vν + q Aµ(x) vµ

]
dτ (7.3)

defined on an (n = (d + 1))-dimensional Lorentzian manifold M. Following standard

procedures we rewrite this action in the form

S(x) =

∫ [e
2

(
e−2gµν(x) vµ vν −m2

)
− q Aµ(x) vµ

]
dτ, (7.4)

where e is an einbein field along the worldline of the particle. As we will consider the

equations of motion of massive particles under the gauge fixing condition e = m−1, this

action is equivalent to the action

S(x) =

∫ [
m+ λ

2
gµν(x) vµ vν +

λ

2
− q Aµ(x) vµ

]
dτ, (7.5)

where λ is a Lagrange multiplier that must be gauge fixed to λ = 0 in the equations of

motion. Its equation of motion is algebraic and reproduces the energy-momentum relation

gµνv
µvν = −1. (7.6)

We will thus consider the classical Lagrangian

Lc(x, v) =
m+ λ

2
gµν(x) vµ vν +

λ

2
− q Aµ(x) vµ. (7.7)

If the gauge symmetries of the classical action are to be preserved, the stochastic quanti-

zation of this Lagrangian is given by, cf. Ref. [233,364],

L(X,V, U) =
m+ λ

2
gµν(X) (V µ V ν + Uµ Uν) +

λ

2
− q Aµ(X)V µ, (7.8)

where (X,V, U) is a stochastic process on the second order tangent bundle T̂M. X repre-

sents the position, V the current velocity and U the osmotic velocity. The corresponding
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action is given by

S(X) = E
[∫

L(X,V, U) dτ

]
, (7.9)

where τ is the proper time. The equation of motion for λ yields the stochastic energy-

momentum relation

E [gµν (V µV ν + UµUν)] = −1 (7.10)

or equivalently, cf. Ref. [233],

E
[
gµν

(
dXµdXν + d◦X̂

µd◦X̂
ν
)

+
~
m
∇µ
(
d◦X̂

µ
)
dτ − ~2

6m2
R dτ2

]
= −dτ2. (7.11)

We note that the geometrical line element remains gµνdx
µdxν = −dτ2. However, a quan-

tum particle traveling through this geometry does not measure the same length, as it

fluctuates around its classical path. Due to these quantum fluctuations, the line element

as measured by a quantum particle obtains a quantum correction as given in eq. (7.11).

For a single scalar particle adapted to its own natural filtration the osmotic integral van-

ishes, cf. Ref. [233]. This allows to re-express the quantized energy-momentum relation

as

E
[
gµν dX

µdXν +

(
1− ~2

6m2
R
)
dτ2

]
= 0. (7.12)

It follows that scalar quantum particles fluctuate around a quantum corrected path, where

the quantum correction is given by the term ~2
6m2R.

Minimizing the action leads to the stochastic differential equations in the sense of

Stratonovich, cf. Ref. [233],

mgµν
(
d2Xν + Γνρσ dX

ρdXσ
)

= − ~2

12m
∇µR dτ2 − q (∇µAν −∇νAµ) dXνdτ (7.13)

and the condition (7.12). When supplemented with the background hypothesis

d[[Xµ, Xν ]] =
~
m
hµν(X) dτ, (7.14)

these equations can be solved for the appropriate boundary conditions. The result is a

stochastic process X(τ) parametrized by the proper time. Observables of the theory can be

determined from this stochastic process using the standard definitions of the characteristic

and moment generating functional

ΦX(J) = E
[
e
i
~
∫
Jµ(τ)Xµ(τ) dτ

]
, (7.15)

MX(J) = E
[
e

1
~
∫
Jµ(τ)Xµ(τ) dτ

]
. (7.16)

We remark that in contrast to the path integral framework, these expressions do not

average over the action. The averaging over the action effectively takes place when the

system of equations (7.12), (7.13) and (7.14) is solved.

If a probability density ρ(x, τ) associated to the stochastic process X exists, one can
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construct the wave function7

Ψ(x, τ) =
√
ρ(x, τ) e

i
~S(x,τ) (7.17)

with Hamilton’s principal function defined by

S(x, τ) = E
[∫ τ

τi

L
(
X,V, U

)
dt
∣∣∣X(τ) = x

]
. (7.18)

One can then show that this wave function must evolve according to a generalization of

the Schrödinger equation, cf. Ref. [233] and references therein,

i~
∂

∂τ
Ψ = − ~2

2m

[(
∇µ + i

q

~
Aµ

)(
∇µ + i

q

~
Aµ
)
− 1

6
R
]

Ψ. (7.19)

As there is no explicit dependence on the affine parameter τ , one can solve eq. (7.19)

by separation of variables such that

Ψ(x, τ) = Φα(x) exp

(
imα

2 ~
τ

)
, (7.20)

where α is a dimensionless parameter. If we gauge fix τ to be the proper time, we impose

the condition (7.10). Under this constraint the expectation of the energy becomes −m
2 ,

which implies α = 1. We conclude that

Ψ(x, τ) = Φ(x) exp

(
im

2 ~
τ

)
, (7.21)

where Φ(x) solves the generalization of the Klein-Gordon equation given by[(
∇µ + i

q

~
Aµ

)(
∇µ + i

q

~
Aµ
)
− 1

6
R− m2

~2

]
Φ = 0. (7.22)

We remark that the function Ψ(x, τ) and the relativistic Schrödinger equation (7.19) are

not constructed in the traditional approaches to the quantization of relativistic theories.

However, their construction is not forbidden in these approaches, while their construction

seems necessary in the stochastic approach. The reason for this is that the probability

density is defined on the space M× T , where M is the space-time manifold and T is

the proper time monoid. Moreover, the wave function Ψ(x, τ) is defined on the universal

cover8 of M×T .

An important feature of relativistic theories is that the theory is invariant under proper

time reparametrizations. Therefore, one can always perform separation of variables. Con-

sequently, it is sufficient to consider the Klein-Gordon equation for the wave function Φ(x)

in any relativistic quantum theory, as it determines the dynamics of the function Ψ(x, τ)

7Note that the wave function is not always well defined on the configuration space, as this space might
not be simply connected. This is the essence of Wallstrom’s criticism [346, 347]. However, if the process
is lifted to the universal cover of the configuration space, the wave function Ψ becomes well defined, cf.
Ref. [270].

8See previous footnote
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completely up to a phase factor. This phase factor is given in eq. (7.21) and is a genuine

prediction of stochastic quantization.

7.3 Massless scalar particles

Following similar arguments as in previous section using the gauge fixing e = 1, we obtain

the stochastic Lagrangian

L(X,V, U) =
λ

2
gµν(X) (V µ V ν + Uµ Uν)− q Aµ(X)V µ, (7.23)

where the Lagrange multiplier must be gauge fixed to λ = 1 in the equations of motion.

The equation of motion for the Lagrange multiplier yields the stochastic energy-momentum

relation

E
[
gµν (V µV ν + UµUν)

]
= 0, (7.24)

which can be rewritten as

E
[
gµν dX

µdXν − ~2

6
R dτ2

]
= 0. (7.25)

Minimizing the action leads to stochastic differential equations in the sense of Stratonovich

given by

gµν
(
d2Xν + Γνρσ dX

ρdXσ
)

= − ~2

12m
∇µR dη2 − q (∇µAν −∇νAµ) dXνdη (7.26)

and the constraint (7.25). We note that η is an affine parameter that has the dimension

of time per unit mass. The background hypothesis in the massless case under the gauge

fixing λ = 1 takes the shape

d[[Xµ, Xν ]] = ~hµν(X) dη. (7.27)

The system of equations (7.25), (7.26) and (7.27) can be solved for the appropriate bound-

ary conditions. The result is a stochastic process X(η) parametrized by the parameter

η. Observables of the theory can be determined from this stochastic process using the

characteristic and moment generating functional.

The derivation of the Schrödinger equation in the massless case is similar to the deriva-

tion in the massive case, which can be found in Ref. [233] and references therein. If a

probability density ρ(x, η) associated to the stochastic process X exists, one can construct

the wave function

Ψ(x, η) =
√
ρ(x, η) exp

{
i

~
E
[∫ η

ηi

L
(
X(t), V (t), U(t), t

)
dt
∣∣∣X(η) = x

]}
(7.28)

that evolves according to a generalization of the Schrödinger equation

i~
∂

∂η
Ψ = −~2

2

[(
∇µ + i

q

~
Aµ

)(
∇µ + i

q

~
Aµ
)
− 1

6
R
]

Ψ. (7.29)
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As there is no explicit dependence on the affine parameter η, one can solve by separation

of variables, such that

Ψ(x, η) = Φα(x) exp

(
i ~α

2
η

)
, (7.30)

where α has the dimension of inverse length squared. If we impose the condition (7.24),

the kinetic energy becomes 0. This imposes α = 0. We conclude that

Ψ(x, η) = Φ(x), (7.31)

where Φ(x) solves the generalization of the Klein-Gordon equation given by([
∇µ + i

q

~
Aµ

][
∇µ + i

q

~
Aµ
]
− 1

6
R
)

Φ = 0. (7.32)

We remark that the vanishing phase factor in eq. (7.31) is expected, as massless particles

are restricted to d-dimensional submanifolds of M.

7.4 Off-shell motion

Let us consider the Lagrangian (7.7) for a massive particle in the simple case that gµν = ηµν

and q = 0. The on-shell condition (7.12) is then given by

E
[
ηµν dX

µdXν
]

= −dτ2. (7.33)

Moreover,

dXµ(τ) = vµ(τ) dτ +
1

2

(
dWµ

+(τ) + dWµ
−(τ)

)
, (7.34)

where W± are independent Brownian motions, cf. e.g. Ref. [233] and references therein.

Consequently,

E
[
ηµν dX

µdXν
]

= E
[
ηµν

(
vµvνdτ2 + vµ

(
dW ν

+ + dW ν
−
)
dτ

+
1

4

(
dWµ

+(τ) + dWµ
−(τ)

)(
dW ν

+ + dW ν
−
))]

= ηµν v
µvν dτ2, (7.35)

where we used that

E
[
dWµ
±
]

= 0, (7.36)

E
[
dWµ

+dW
ν
−
]

= E
[
dWµ

+

]
E
[
dW ν
−
]
, (7.37)

E
[
dWµ

+dW
ν
+

]
= −E

[
dWµ
−dW

ν
−
]
. (7.38)

The first equation follows from the fact that W± is a martingale, the second from the

stochastic independence of the forward and backward processes W+ and W−, and the

third from the time reversibility of the semi-martingale X.
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Under the expectation value the particle moves on-shell, i.e.

ηµν v
µvν = −1. (7.39)

However, without the expectation value this relation is not satisfied. Therefore, the ex-

pected trajectory of a particle is on-shell, but the actual trajectory of a particle can be

off-shell. As dWµ
±(τ) ∼ N

(
0, ~

mdτ
)
, it is easy to see that the quantum fluctuations domi-

nate in the regime

c dτ .
~
mc

, (7.40)

which corresponds to length scales less than the de Broglie wavelength. On these length

scales the event {ηµν dXµdXν ≥ 0} becomes very likely. Therefore, according to stochastic

mechanics, particles have a high probability of traveling faster than light on length scales

less than the de Broglie wavelength, while the probability of traveling faster than light

over length scales larger than the de Broglie wavelength quickly decays to 0. According

to the stochastic interpretation, this is the reason why particles are not localized within

their de Broglie wavelength. We remark that this interpretation is given in a position

representation, where the process (X,V, U) is adapted to the natural filtration of X. In

other words we perform position measurements only. As is the case in other quantization

schemes, stochastic quantization predicts an uncertainty relation between position and

momentum measurements.

We note that this result is similar in the path integral approach. However, there

is a difference in the interpretation: in the stochastic approach there is a single well

defined stochastic trajectory, while the path integral approach considers the statistical

ensemble of the sample paths of the stochastic trajectory. These sample paths are virtual

and in this approach there is no notion of the real trajectory. From the perspective of

modern probability theory, the path integral can in principle be derived from the stochastic

integral, if both are well defined. Consequently, it is unlikely that the two interpretations

can be distinguished experimentally, as their physical predictions are equivalent.

7.5 Conclusion

In this letter, we have shown that stochastic quantization can be made into a well defined

quantization scheme for relativistic theories. Furthermore, we have extended the frame-

work such that it includes massless particles. We point out that stochastic quantization

is a local quantization scheme and that the motion of particles in this framework is gov-

erned by stochastic differential equations. In this framework, the Schrödinger equation

and Klein-Gordon equation are derived from first principles. Finally, we have discussed

the interpretation of off-shellness in the stochastic framework. We conclude that stochastic

quantization is an interesting framework with important implications for the mathematical

and philosophical foundations of quantum theory.
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7.A Construction of the Brownian metric

The background field hypothesis was introduced in Ref. [270] for massive particles as

d[[Xµ, Xν ]] =
~
m
gµν(X) dτ. (7.41)

If gµν has a definite signature this condition has a semi-martingale solution, but for indef-

inite signature there exist no semi-martingale satisfying this condition. The extension of

this condition to manifolds with indefinite signatures, and in particular with a Lorentzian

signature has been the subject of several studies, see e.g. Refs. [137,165,184,188,189,251,

265,289]. In this paper, we adopt the approach discussed in Ref. [137].

We reformulate the background hypothesis as

d[[Xµ, Xν ]] =
~
m
hµν(X) dτ, (7.42)

where hµν is a positive definite tensor that is sometimes called the Brownian metric. Its

inverse hµν is defined by the relation

hµνh
νρ = δρµ. (7.43)

Moreover, it is related to the kinetic metric gµν through the compatibility condition

gµνh
µρhνσ = gρσ. (7.44)

where gµν is the inverse of the kinetic metric gµν . If the kinetic metric gµν has a definite

signature, the compatibility condition yields a unique solution for the Brownian metric

gµν = hµν , but for a Lorentzian signature there is a family of positive definite solutions

hµν . In this paper, we work in the (−+ ...+) convention and set

hµν = gµν + 2uµuν (7.45)

with time-like vector uµ = (1, 0, ..., 0), which is uniquely defined and satisfies the given

conditions.

We remark that in order to obtain a covariant stochastic theory, we have adopted the

Schwartz-Meyer second order geometry framework discussed in Refs. [150, 257, 311]. In a

local coordinate system second order vectors can be expressed as

V = vµ ∂µ + vµν ∂µ∂ν , (7.46)

where vµν is the second order part of the vector v. As discussed in Ref. [233], the back-
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ground hypothesis fixes the second order part of the velocity vectors such that

vµν± = ± ~
2m

gµν dτ, (7.47)

which is defined in terms of the kinetic metric. Consequently, the kinetic equations (7.12),

(7.13) and (7.19) are independent of the Brownian metric, as was already observed in

Ref. [137].

Finally, we notice that the constructions in this appendix can be generalized straight-

forwardly to the massless case discussed in section 7.3.
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Chapter 8

Analytic Continuation of

Stochastic Mechanics

Folkert Kuipers

Department of Physics and Astronomy, University of Sussex, Brighton, BN1 9QH,

United Kingdom

Abstract

We study a (relativistic) Brownian motion on a complexified (pseudo-)Riemannian man-

ifold. Using Nelson’s stochastic quantization, we derive three equivalent descriptions for

this problem. If the process has a purely real pseudo-variance, we obtain the ordinary

dissipative Brownian motion. In this case, the result coincides with the Feynman-Kac

formula. On the other hand, for a purely imaginary pseudo-variance, we obtain a conser-

vative Brownian motion, which provides a description of a quantum particle on a curved

spacetime.

This chapter has been published in the Journal of Mathematical Physics 63, no. 04, p. 2301

(2022).

A preprint of this chapter can be found at arXiv:2109.10710 [math-ph].
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8.1 Introduction

Brownian motion has been at the forefront of physics research ever since the phenomenon,

first observed by Brown, was described by Einstein. Moreover, it has attracted much

attention in the mathematics literature, since the early works of Wiener, Kolmogorov and

Lévy, and it plays a major role in the stochastic calculus developed by Itô and Stratonovich.

Nowadays the literature on Brownian motion is rich and extends far beyond its orig-

inal purpose of describing the motion of pollen suspended in water. In particular, since

the introduction of the path integral by Feynman, it has become an important tool in

quantum physics. This is mainly due to the Feynman-Kac theorem [218], which made use

of the relation between the Euclidean path integral and the Wiener integral. This result

became one of the cornerstones of the mathematical foundations of Euclidean quantum

field theory, and has been used by several authors as a starting point in attempts to de-

velop a mathematically consistent formulation of Lorentzian quantum field theory, cf. e.g.

Refs. [14, 177] for reviews.

Later, Parisi and Wu exploited the relation between Brownian motion and Euclidean

quantum field theory to develop a framework called stochastic quantization [125, 284],

which became a very useful computational tool in Euclidean quantum field theory. In

recent years, this framework has also been used to relate various string theory inspired

models [134,196,248,281].

Before the work of Parisi and Wu, the notion of stochastic quantization was used by

Nelson in the theory of stochastic mechanics [267]. This theory, originally proposed by

Fényes [153], serves as an interpretation of quantum mechanics in which quantum mechan-

ics is generated by a time reversible Nelson process. However, later studies of stochastic

mechanics were also motivated by the fact that it can be used as an computational frame-

work in quantum theories [184] or as a mathematical tool in constructive quantum field

theory [270].

Both the Nelsonian and the Parisi-Wu framework quantize a theory by bringing it

in contact with a stochastic background field. However in the Parisi-Wu framework this

is done using an ordinary dissipative Brownian motion, while the Nelsonian approach

makes use of a Nelson process, which can be regarded as a time-reversible or conservative

Brownian motion. As the Parisi-Wu framework uses an ordinary Brownian motion, it can

only establish an equivalence between a Euclidean quantum theory and the equilibrium

limit of the stochastic theory. The Nelsonian approach, on the other hand, allows to

establish a full equivalence between quantum theories and stochastic theories. However,

as the Nelson process is more complicated than the ordinary Brownian motion, its field

theoretic formulation is not as far evolved as the Parisi-Wu formalism.

Since the early work by Fényes and Nelson, the theory of stochastic mechanics and its

associated stochastic quantization scheme have been extended to include spin [127, 159,

270], to describe processes on (pseudo-)Riemannian manifolds [127,135,136,187,229,233,

270], and to relativistic theories [137, 165, 184, 188, 189, 234, 251, 265, 289]. Furthermore,

field theoretic extensions have been made [151,165,184,186,188,227,228,265,269,272], but

this theory is still in its infancy.
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In this paper, we focus on stochastic mechanics of a single particle on a manifold.

However, we will do this by reformulating the Nelson process as a complexified Brownian

motion. We will thus study a Brownian motion of a relativistic1 spinless test particle

on a complexified (pseudo-)Riemannian manifold. We then find that for a real pseudo-

variance the ordinary real Brownian motion is obtained, while for a purely imaginary

pseudo-variance the Nelson process is obtained.

This paper is organized as follows: in the next section 8.2, we review the ideas governing

stochastic mechanics and the complex generalization discussed in this paper; in section

8.3, we review the connections between stochastic mechanics and generalizations of the

Feynman-Kac theorem; in sections 8.4 and 8.5, we introduce the relativistic stochastic

process considered in this paper and the manifold on which this process is defined; in

section 8.6, we discuss the variational equations that govern the stochastic process; in

sections 8.7, 8.8 and 8.9, we then derive three different formulations for the diffusion

problem; finally, in section 8.10, we conclude. Furthermore, in appendix 8.A, we summarize

our results for the non-relativistic case; in appendix 8.B, we review the basics of stochastic

integration and appendix 8.C contains calculations of conditional expectations that are

necessary to derive our results. Throughout the paper we work in Planck units, i.e. ~ = 1,

c = 1, G = 1 and kB = 1. Moreover, we work in the (−+ ++) signature convention.

8.2 Stochastic mechanics

In order to illustrate the ideas governing stochastic mechanics, we will start with the

discussion of a single scalar non-relativistic particle with mass m moving on Rn.

In classical mechanics, the motion of such a particle is governed by the Euler-Lagrange

equations that can be derived using a variational principle from an action

S =

∫ T

0
L(x, v) dt (8.1)

with Lagrangian L. Given some initial conditions (x, v)(0) = (x0, v0), one then obtains a

unique solution x(t) on T = [0, T ].

We will now make the additional assumption that the particle moves through some

randomly fluctuating background field. In order to introduce the stochastic fluctuations

from this background field, we must promote the trajectory {x(t) : t ∈ T } to a semi-

martingale process {Xt : t ∈ T }. We then impose, as before, that this process must satisfy

the Euler-Lagrange equations, which should now be interpreted as stochastic differential

equations. On top of this, we will fix the stochastic law of the background field. The

simplest way to do so is by imposing a condition on the quadratic variation. For example,

a Brownian motion satisfies the structure relation

d[[Xi, Xj ]]t = α δij dt, (8.2)

where α is a positive definite constant. If, on the other hand, we were to consider a Poisson

1We implement relativity following Refs. [137,234].
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process, the quadratic variation would be given by

d[[Xi, Xj ]]t = α δij dt+ δij ck dX
k
t , (8.3)

where ck is a constant covector.

Many stochastic processes are completely determined by such a structure relation. It is

thus expected that, if quantum mechanics allows for a stochastic description, there exists

a quantum structure relation. In fact, the canonical commutation relations

[Xi, Pj ] = i δij (8.4)

suggest that such a structure relation must be of the form

md[[Xi, Xj ]]t = i δij dτ. (8.5)

However, since the right hand side is not a positive definite tensor, there does not exist a

real semi-martingale X satisfying this relation.

In stochastic mechanics this issue is circumvented by promoting the process X to a

bidirectional stochastic process that is adapted to both a future and a past filtration. One

then introduces two time generators d+ and d−. The first is the forward generator, which

is adapted to the past filtration and generates the future. The second is the backward

generator, is adapted to the future and generates the past. This allows to construct the

Nelson process X that satisfies the condition

md+[[Xi, Xj ]]t = δij dt,

md−[[Xi, Xj ]]t = δij dt. (8.6)

The stochastic Euler-Lagrange equations supplemented with these structure relation can

then be solved within the framework of stochastic optimal control theory. It is well-

established that this process indeed generates quantum mechanics of a spin-0 particle

with mass m, cf. e.g. [184,270,364] for reviews.

In this paper, we advocate a slightly different route. Instead of introducing the notion

of a bidirectional process and two time generators d±, we will analytically continue our

space Rn to the complex space Cn. We can then impose a condition on the quadratic

variation of the form

md[[Zi, Zj ]]t = α δij dt. (8.7)

where α ∈ C. As the right hand side now determines a pseudo-variance, it no longer has

to be positive definite. Similarly, for the complex conjugate process Z̄, we impose

md[[Z̄i, Z̄j ]]t = ᾱ δij dt, (8.8)

md[[Zi, Z̄j ]]t = (|α|+ β) δij dt (8.9)

with β ∈ [0,∞). We note that this last expression is positive definite as required for the

existence of Zt. Furthermore, we remark that β determines the conformal part of the
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process, i.e., if α = 0, Z is a conformal martingale.

If we use polar coordinates α = ρ eiφ and set Z = X + i Y , we find

md[[Xi, Xj ]]t =
β + ρ (1 + cosφ)

2
δij dt, (8.10)

md[[Y i, Y j ]]t =
β + ρ (1− cosφ)

2
δij dt, (8.11)

md[[Xi, Y j ]]t =
ρ sinφ

2
δij dt. (8.12)

It is then easy to see that for (α, β) = (1, 0), we recover the Gaussian process defined by

eq. (8.2). Moreover, the case (α, β) = (i, 0) suggested in eq. (8.5) is now well-defined.

We will set β = 0 and in analogy with the ordinary Brownian motion defined by

eq. (8.2), we call the process defined by eq. (8.7) a complex Brownian motion. Furthermore,

we refer to the special case α = ±i as a conservative Brownian motion. This is due to

fact that its stochastic dynamics is symmetric under the time reversal operation. As a

consequence the conservative Brownian motion is at all times in a statistical equilibrium

with the background field. This is in stark contrast with the real Brownian motion obtained

for α = 1, which is known to be a dissipative process.

In the remainder of the paper, we study the complex Brownian motion defined by the

structure relation (8.7) for a general α ∈ C in more detail. We will do this in the more

complicated setting where the particle is relativistic and moves on a curved spacetime.

8.3 Stochastic mechanics and the Feynman-Kac theorem

Using Nelson’s stochastic quantization, we will in section 8.9 derive a complex diffusion

equation that governs the process described in the previous section. This result is closely

tied to the Feynman-Kac theorem [218], which we review in this section.

The Feynman-Kac theorem states2 that given the real diffusion equation

∂

∂t
Ψ(x, t) = −

[α
2
δij ∂i∂j + vi(x, t) ∂i − U(x, t)

]
Ψ(x, t) (8.13)

with x ∈ Rn and t ∈ [0, T ] subjected to the terminal condition

Ψ(x, T ) = u(x) (8.14)

The solution can be written as the conditional expectation

Ψ(x, t) = E
[
exp

(
−
∫ T

t
U(Xs, s) ds

)
u(XT )

∣∣∣Xt = x

]
(8.15)

2We present an elementary form of the Theorem. Extensions beyond the formula presented here are
known.
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for the Itô process defined by

dXi
t = vi(Xt) dt+ dM i

t ,

d[[Xi, Xj ]]t = α δij dt, (8.16)

with α ≥ 0, M a local martingale and [[X,X]] denotes the quadratic variation. The

process X thus describes a real Brownian motion with drift.

It was suggested by by Gelfand and Yaglom [166], that a similar relation could exist

for the Schrödinger equation

i
∂

∂t
Ψ(x, t) = −

[α
2
δij ∂i∂j + vi(x, t) ∂i − U(x, t)

]
Ψ(x, t). (8.17)

However, soon after, it was pointed out by Cameron and Daletskii [14, 101, 124] that a

straightforward generalization does not exist, as the complex measure necessary to con-

struct such an equivalence will have an infinite total variation.

Later, Pavon [288] showed that, if one considers, instead of the process (8.16), a bidi-

rectional Nelson process defined by

d+X
i
t = vi+(Xt) dt+ d+M

i
t ,

d+[[Xi, Xj ]]t = α δij dt, (8.18)

and

d−X
i
t = vi−(Xt) dt+ d−M

i
t ,

d−[[Xi, Xj ]]t = α δij dt. (8.19)

such a relation could still be established.

In deriving this result Pavon build on earlier work [285–287], where the forward and

backward velocity were combined into a single complex velocity

vq = v − i u, (8.20)

with the current velocity v and osmotic velocity u given by

v =
1

2

(
v+ + v−

)
, (8.21)

u =
1

2

(
v+ − v−

)
. (8.22)

In contrast to the the earlier works [101, 124, 166], Pavon did not only complexify the

measure, but also the underlying degrees of freedom. In this case, the velocity of the

process. In this work, we go one step further and also complexify the position of the

process. As pointed out in the previous section, we can then replace the bidirectional
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Nelson process by a complex process satisfying

dZit = wi(Zt) dt+ dM i
t ,

d[[Zi, Zj ]]t = α δij dt (8.23)

with α ∈ C.

8.4 The geometry

We will generalize the discussion in previous sections to the context of relativistic particles

on Lorentzian manifolds. For this, we consider a set T = [0, T ], a real (n = d + 1)-

dimensional Lorentzian manifold (M, g), and trajectories x(τ) : T →M.

We intend to superpose stochastic dynamics on these trajectories. However, stochastic

dynamics violates the Leibniz rule, as stochastic processes have a non-vanishing quadratic

variation. As a consequence, diffeomorphism invariance of stochastic theories defined on

this manifold is broken. In this paper, we resolve this issue using the second order geometry

framework as developed by Schwartz, Meyer and Emery [150,257,311].

The most important aspect of the second order geometry framework is that all tangent

spaces TxM are extended to second order tangent spaces T2,xM. In a local coordinate

chart, second order vectors can be expressed as3

v = vµ ∂µ +
1

2
vµν ∂µ∂ν , (8.24)

where vµ∂µ ∈ TxM⊂ T2,xM represents the first order part and vµν∂µ∂ν the second order

part. This second order part can be mapped bijectively onto a symmetric bilinear first

order tensor, which in turn can be mapped bijectively onto the quadratic variation of the

process Xt.
4

When regarded as part of a second order vector, the first order vector vµ∂µ ∈ TxM no

longer transforms in a covariant manner. However, one can construct the objects

v̂µ = vµ +
1

2
Γµσκv

σκ, (8.25)

v̂νρ = vνρ, (8.26)

which both transform covariantly. Diffeomorphism invariance of the physical theory can

then be restored by replacing all vectors vµ with their covariant expression v̂µ.

For a more complete exposition of the material, we refer to the works of Schwartz,

Meyer and Emery [150, 257, 311]. We note that the construction of a diffeomorphism

invariant theory of stochastic mechanics was already studied extensively, cf. e.g. Refs. [135,

136, 270]. Recently, we have translated and extended these results into the second order

geometry language [233].

3We slightly deviate from Refs. [150,233], as we have introduced a factor 1
2

in the second order part of
the vector.

4cf. Theorem 3.8 and Proposition 6.13 in Ref. [150]



104

As a final step, we will need to analytically continue the manifold to the complexified

manifoldMC. Similarly the tangent spaces are analytically continued, such that we obtain

a first and second order tangent bundle

(TM)C = TM⊗ C = T 1,0M⊕ T 0,1M, (8.27)

(T2M)C = T2M⊗ C = T 1,0
2 M⊕ T

0,1
2 M. (8.28)

8.5 The stochastic process

In order to introduce stochastic dynamics, we must promote the complex manifold to a

measurable space
(
MC,B(MC)

)
with Borel sigma algebra. Moreover, we introduce the

probability space (Ω,Σ,P) and study random variables Z : (Ω,Σ,P) →
(
MC,B(MC), µ

)
with µ = P ◦ Z−1. More precisely, we study stochastic processes, i.e. families of random

variables {Zτ : τ ∈ T }. We will therefore introduce a filtration {Fτ}τ∈T , which is by

definition an ordered set that is increasing, i.e. ∅ ⊆ Fs ⊆ Ft ⊆ Σ ∀s < t ∈ T , and

right-continuous, i.e. Fτ = ∩ε>0Fτ+ε.

We assume the stochastic processes Zτ to be continuous semi-martingale processes

adapted to a filtration. We remind the reader that continuous manifold valued semi-

martingales are processes such that for every every coordinate chart χ : U → V with

U ⊂MC and V ⊂ Cn the processes Zµ = χµ(Z) are continuous semi-martingales, i.e they

can locally be decomposed uniquely as

Zτ = Cτ +Mτ , (8.29)

where Cτ is a continuous local càdlàg process with finite variation and Mτ is a continuous

local martingale satisfying the martingale property

E
[
Mτ

∣∣Ft] = Mt ∀ t < τ ∈ T . (8.30)

In the remainder of the paper, we will also use a shorthand notation for conditional

expectation values:

Et
[
Zτ
]

:= E
[
Zτ
∣∣Ft]. (8.31)

Using this notation, one can define the second order velocity of the process by the condi-

tional expectation5

wµ(Zτ , τ) = lim
h→0

1

h
Eτ
[
Zµτ+h − Z

µ
τ

]
, (8.32)

wµν(Zτ , τ) = lim
h→0

1

h
Eτ
[(
Zντ+h − Zντ

)(
Zρτ+h − Z

ρ
τ

)]
. (8.33)

The object (wµ, wνρ) is a second order vector field. As discussed in the previous section,

5We note that the definition for the second order part deviates by a factor 2 compared to the definition
used in our previous works [233,234], see also previous footnote.
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these objects are not covariant. However, one can obtain a covariant formulation given by

ŵµ = wµ +
1

2
Γµσκw

σκ, (8.34)

ŵνρ = wνρ. (8.35)

Moreover, using these velocities, one can reconstruct the Càdlàg process as

Cµτ − C
µ
0 = lim

h→0

∫ τ

0

1

h
Es
[
Zµs+h − Z

µ
s

]
ds (8.36)

and the angle bracket process

Cµντ − C
µν
0 := 〈〈Zµ, Zν〉〉τ − 〈〈Zµ, Zν〉〉0

= lim
h→0

∫ τ

0

1

h
Es
[(
Zµs+h − Z

µ
s

)(
Zνs+h − Zνs

)]
ds, (8.37)

which is the compensator for the quadratic variation, i.e. the process

Mµν
τ := [[Zµ, Zν ]]τ − 〈〈Zµ, Zν〉〉τ (8.38)

is a local martingale.

The process Z can be lifted to the tangent bundle, yielding a process (Zτ ,Wτ ) that

is a continuous semi-martingale on the second order holomorphic tangent bundle T 1,0
2 M.

This process can be decomposed into the real processes Xτ , Yτ and Vτ , Uτ such that

Zτ = Xτ + i Yτ , (8.39)

Wτ = Vτ + i Uτ . (8.40)

As discussed in section 2, we will fix the quadratic variation of the processes by

d[[Zµ, Zν ]]τ = Wµν
τ = αλ gµν(Zτ ) dτ, (8.41)

where α ∈ C and λ is a dimensionful constant characterizing the particle. Moreover,6

ŵµν(Zτ , τ) = wµν(Zτ , τ) = Eτ [Wµν
τ ] = αλ gµν(Zτ ). (8.42)

8.6 Variational equations

Having specified the geometry and the stochastic dynamics, we can derive equations of mo-

tion for the stochastic particle. For this, we assume the geometry to be non-dynamical, and

thus the metric to be a fixed symmetric bilinear form gµν(z). Consequently, the processes

(Zµτ ,W ν
τ ,W

ρσ
τ ) defined on the n(n+5)

2 -dimensional second order holomorphic tangent bun-

6Note that ŵµν is the second order part of a second order vector field, while gµν is a bilinear first order
tensor. Therefore, the two cannot be equated straightforwardly. However, there exists a unique smooth
and invertible linear map H from bilinear first order forms to second order forms, cf. Proposition 6.13 in
Ref. [150] or eq. (2.15) in Ref. [233]. Using this mapping, which is notationally suppressed in equation
(8.42), one can equate the two objects.



106

dle T 1,0
2 M are restricted to (Zµτ ,W ν

τ ) defined on the 2n-dimensional slice T 1,0M⊂ T 1,0
2 M.

The Lagrangian for these processes is a complex function on the holomorphic tangent bun-

dle, i.e.

L : T 1,0M→ C, (8.43)

and the action is given by

S = E
[∫

L(Z,W ) dτ

]
. (8.44)

The stochastic Euler-Lagrange equations are given by∫
∂

∂Zµ
L(Z,W ) dτ = −

∫
◦ d ∂

∂Wµ
L(Z,W ), (8.45)

which is a stochastic differential equation in the sense of Stratonovich. One can also

construct a stochastic Hamiltonian function

H(Z,P ) = PµW
µ − L(Z,W ), (8.46)

where Pµ is the conjugate momentum process, i.e.

Pµ =
∂

∂Wµ
L(Z,W ). (8.47)

In addition, we define Hamilton’s principal function by

S(z, τ) = E
[∫ τ

0
L(Z,W ) ds

∣∣∣Zτ = z

]
. (8.48)

The corresponding stochastic Hamilton-Jacobi equations are given by

∇µS(z, τ) = Eτ [Pµ] , (8.49)

∂

∂τ
S(z, τ) = Eτ [−H(Z,P )] . (8.50)

Finally, we remark that our relativistic theory is invariant under rescalings of the proper

time parameter, which imposes
∂

∂τ
S(z, τ) = 0. (8.51)

8.7 Stochastic Euler-Lagrange equations

We consider a classical real Lagrangian L : TM→ R of the form

L(x, v) =
1

2λ
gµν(x) vµvν − λm2

2
+ q Aµ(x) vµ, (8.52)

where λ is an einbein field along the worldline of the particle with charge q. For massive

theories we gauge fix λ = m−1, while for massless theories we gauge fix λ = 1 in the
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equations of motion. We consider the stochastic analytic continuation of this Lagrangian

given by L : T 1,0M→ C such that

L(Z,W ) =
1

2λ
gµν(Z)WµW ν − λm2

2
+ q Aµ(Z)Wµ. (8.53)

The Euler-Lagrange equations for this Lagrangian become

−
∫
−
∫
gµν ◦

(
d2Zν + ΓνρσdZ

ρdZσ
)

=

∫
−
∫
λ q (∇µAν −∇νAµ) ◦ dZνdτ, (8.54)

which is a complex second order stochastic differential equation in the sense of Stratonovich.

This equation must be supplemented with the relativistic constraint equation

Eτ
[
gµν ◦ dZµdZν + λ2m2 dτ2

]
= 0 (8.55)

that follows from the variation of the action with respect to λ. In addition, it must be

supplemented with the condition on the quadratic variation

d[[Zµ, Zν ]] = αλ gµν(Z) dτ. (8.56)

We note that in the limit α→ 0, one obtains the classical results: the Euler-Lagrange

equations become ordinary differential equations

gµν

(
d2Zν

dτ2
+ Γνρσ

dZρ

dτ

dZσ

dτ

)
= λ q

(
∇µAν −∇νAµ

) dZν
dτ

(8.57)

with constraint

gµν
dZµ

dτ

dZν

dτ
= −λ2m2 (8.58)

and the quadratic variation vanishes.

8.8 Field equations

Although the equations of motion derived in the previous section can be written down

formally, for practical purposes it may be easier to solve a system of first order stochastic

differential equations in the sense of Itô. In this section, we will therefore derive an

equivalent system of stochastic differential equations in the Itô formulation using the

Hamilton-Jacobi formalism.

The Hamilton-Jacobi equations for the Lagrangian introduced in previous section yield

∇µS(z, τ) = λ−1 gµνŵ
ν + q Aµ. (8.59)
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and

∂

∂τ
S(z, τ) = −Eτ

[
1

2λ
gµν(Z)WµW ν +

λm2

2

]
= − 1

2λ
gµνŵ

µŵν − α

2
∇µŵµ +

α2λ

12
R− λm2

2
, (8.60)

where we used the results from appendix 8.C. We can combine these two equations by

taking a covariant derivative of the second equation and plugging in the first equation.

This yields
1

λ
ŵν ∇µŵν +

α

2
∇µ∇νŵν −

α2λ

12
∇µR = 0, (8.61)

where we applied the relativistic constraint ∂τS = 0. Then using that

∇µŵν = ∇νŵµ − λ q Hµν , (8.62)

∇µ∇νŵν = � ŵµ − λ q∇νHµν −Rµνŵν (8.63)

with the field strength defined by

Hµν := ∇µAν −∇νAµ, (8.64)

we find[
1

λ
gµν ŵ

ρ∇ρ − q Hµν +
α

2

(
gµν �−Rµν

)]
ŵν =

αλ

2

(
q∇νHµν +

α

6
∇µR

)
, (8.65)

which can be solved for the velocity field ŵµ(z) under the relativistic constraint

gµνŵ
µŵν + αλ∇µŵµ −

α2λ2

6
R = −λ2m2. (8.66)

The solution can then be plugged into the first order stochastic differential equation in

the sense of Itô

dZµτ = wµ(Zτ ) dτ + dMµ
τ , (8.67)

d[[Zµ, Zν ]]τ = αλ gµν(Zτ ) dτ. (8.68)

where we note that ŵµ = wµ + αλ
2 Γµ. This system can be solved for the appropriate

boundary conditions, yielding a stochastic process Zτ . The moments of this process can

be calculated using the characteristic and moment generating functional

ΦZ(J) = E
[
ei
∫
JµZµdτ

]
, (8.69)

MZ(J) = E
[
e
∫
JµZµ dτ

]
. (8.70)
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8.9 Diffusion equation

In this section, we derive a diffusion equation governing the stochastic process described

in previous sections.

The Hamilton-Jacobi equations (8.59) and (8.60) can be combined such that

∂

∂τ
S = −λ

2

(
∇µS∇µS + α�S − 2 q Aµ∇µS − α q∇µAµ + q2AµA

µ − α2

6
R+m2

)
.

(8.71)

If we then define the wave function

Ψ(z, τ) = exp

{
1

α

[
S(z, τ) +

λm2

2
τ

]}
, (8.72)

we find that eq. (8.71) is equivalent to the diffusion equation

∂

∂τ
Ψ = −αλ

2

[(
∇µ −

q

α
Aµ

)(
∇µ − q

α
Aµ
)
− 1

6
R
]

Ψ. (8.73)

Moreover, we have

∣∣Ψ(z, τ)
∣∣2 = exp

[
2

ρ

(
cos(φ)

{
Re
[
S(z, τ)

]
+
λm2

2
τ

}
+ sin(φ) Im

[
S(z, τ)

])]
. (8.74)

We note that this equation should be interpreted as a backward equation, i.e. subjected

to a terminal condition.

We will now set ρ = |α| = 1 and consider several special cases. As anticipated in

sections 8.2 and 8.3, for φ ∈ {0, π} we obtain the heat equation

∂

∂τ
Ψ = ∓λ

2

[(
∇µ ∓ q Aµ

)(
∇µ ∓ q Aµ

)
− 1

6
R
]

Ψ (8.75)

with

Ψ(z, τ) = exp

{
±
[
S(z, τ) +

λm2

2
τ

]}
, (8.76)∣∣Ψ(z, τ)

∣∣2 = exp
(
±
{

2 Re
[
S(z, τ)

]
+ λm2 τ

})
. (8.77)

On the other hand for φ ∈ {−π
2 ,

π
2 }, we obtain the Schrödinger equation

i
∂

∂τ
Ψ = ∓λ

2

[(
∇µ ∓ i q Aµ

)(
∇µ ∓ i q Aµ

)
− 1

6
R
]

Ψ (8.78)

with

Ψ(z, τ) = exp

{
± i
[
S(z, τ) +

λm2

2
τ

]}
, (8.79)∣∣Ψ(z, τ)

∣∣2 = exp
{
∓ 2 Im

[
S(z, τ)

]}
. (8.80)
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Furthermore, we note that the relativistic constraint imposes S(z, τ) = S(z), which

allows to solve eq. (8.73) by separation of variables. We then obtain

Ψ(z, τ) = Φ(z) exp
(mτ

2α

)
, (8.81)

where Φ(z) = exp
[
α−1S(z)

]
solves the Klein-Gordon equation[(

∇µ −
q

α
Aµ

)(
∇µ − q

α
Aµ
)
− 1

6
R+

m2

α2

]
Φ = 0. (8.82)

8.10 Conclusion

In this paper, we have derived three equivalent descriptions for the diffusion of a single

scalar relativistic particle on a complexified Lorentzian manifold charged under a vector

potential. The first is as a second order stochastic differential equation in the sense of

Stratonovich; the second is a system of first order stochastic differential equations in the

sense of Itô and the third is as the Kolmogorov backward equation associated to the

process. In addition, we have presented the results for the non-relativistic particle in

appendix 8.A.

In fact, this result is well known for non-relativistic diffusion processes on Rn with

a real variance, and is given by the Feynman-Kac formula. In this paper, we have used

Nelson’s stochastic quantization scheme to generalize this result to the case of (relativistic)

diffusion processes on (pseudo-)Riemannian manifolds with a complex pseudo-variance.

We should emphasize, however, that we have derived our results under the assumption of

the existence of unique solutions to the given formulations. A mathematically rigorous

proof of our results will be left for future work.

It is worth pointing out the similarities and differences of the rotation of the pseudo-

variance around the angle φ studied in this paper and the Wick rotation. Both rotations

transform a heat-type equation into a Schrödinger-type equation. This is due to the fact

that both rotations act on the proper time parameter. However, there is also an important

difference, as the rotation discussed in this paper also acts on all coordinates. As a

consequence it preserves the (k, l,m) signature of the (pseudo-)Riemannian manifold. In

contrast the Wick rotation only acts on the time-like coordinates, and therefore transforms

a pseudo-Riemannian manifold with (k, l,m) signature into a Riemannian manifold with

(k + l, 0,m) signature.

Furthermore, it is worth noticing that the diffusion equation (8.73) contains a term

proportional to the Ricci scalar. This term comes with a prefactor 1
6 that results from

a Taylor expansion, cf. appendix 8.C. On the other hand, it is well known that for a

prefactor given by n−2
4(n−1) the diffusion equation is conformally invariant. Interestingly, the

two prefactors coincide in 4 dimensions.

Finally, as the description given in this paper requires the complexification of space-

time, we are forced to give a physical interpretation to the imaginary part of position

and velocity vectors. Here, Pavon’s formulation in terms of bidirectional processes and

complex velocities as discussed in section 8.2 might provide an answer: Pavon considered
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a velocity vq = v− i u, where v is the current velocity associated to the particle itself and

u is the osmotic velocity associated to the motion of the background field through which

the particle propagates. In our formulation in terms of unidirectional complex processes,

we can give the same interpretation to the velocity field.

We will thus interpret Re(W ) = V as the velocity of the particle and Im(W ) = U as

the velocity of the background field. Consequently, we must also associate Re(Z) = X

to the position of the particle and Im(Z) = Y to the position of an associated particle

in the background field. We conclude that both matter and the background field move

under evolution of the proper time. Interestingly, for α ∈ C \ R the stochastic dynamics

of the particle and the background field are coupled and therefore they cannot be treated

independently. This is particularly true for pure quantum systems where α ∈ iR, but is in

stark contrast with the real Brownian motion with α ∈ R. In this latter case, the motion

of the background field and matter are completely decoupled, which allows to neglect the

motion of the background field.

We conclude that our results further illustrate the close connection between Brown-

ian motion and quantum physics and open up new avenues to tackle quantum problems

using the theory of stochastic differential equations. In addition, our results reaffirm the

central result of stochastic mechanics that quantum physics can be understood in terms

of stochastic processes.
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8.A Non-relativistic theories

In this paper, we have presented a stochastic formulation of relativistic diffusion processes.

In this appendix, we present the results for non-relativistic diffusion processes, which can

be derived in a similar fashion.

We consider a set T = [0, T ], a real (n = d)-dimensional Riemannian manifold and

trajectories x(t) : T →M. We consider a classical non-relativistic theory of the form

L(x, v, t) =
m

2
gij(x) vivj + q Ai(x, t) v

i − U(x, t). (8.83)

The stochastic analytic continuation is then given by

L(Z,W, t) =
m

2
gij(Z)W iW j + q Ai(Z, t)W

i − U(Z, t) (8.84)

and the stochastic Euler-Lagrange equations are

mgij ◦
(
d2Zj + Γjkl dZ

kdZ l
)

= q
(
∇iAj −∇jAi

)
◦ dZjdt−

(
q ∂tAi +∇iU

)
dt2, (8.85)
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which must be supplemented with the condition on the quadratic variation

d[[Zi, Zj ]] =
α

m
gij(Z) dt. (8.86)

On te other hand, in the Itô formulation, we find that the velocity field is governed by

the equation

[
mgij

(
∂t + ŵk∇k

)
− q Hij +

α

2

(
gij �−Rij

)]
ŵj =

α q

2m
∇jHij − q ∂tAi −∇iU +

α2

12m
∇iR.

(8.87)

As in the relativistic case the solution wi(z, t) can be plugged into the first order stochastic

differential equation in the sense of Itô:

dZit = wi(Zt, t) dt+ dM i
t , (8.88)

d[[Zi, Zj ]]t =
α

m
gij(Zt) dt, (8.89)

where we note that ŵi = wi + α
2mΓi.

Furthermore, we can define the wave function

Ψ(z, t) = exp

[
S(z, t)

α

]
(8.90)

for which we find that eq. (8.71) is equivalent to the complex diffusion equation

α
∂

∂t
Ψ = −

{
α2

2m

[(
∇i −

q

α
Ai

)(
∇i − q

α
Ai
)
− 1

6
R
]

+ U

}
Ψ. (8.91)

If there is no explicit time dependence, i.e. U(x, t) = U(x) and Ai(x, t) = Ai(x), this can

be solved by separation of variables, such that

Ψ(z, t) =
∑
k

Φk(z) exp

[
Ek
α
t

]
, (8.92)

where Φk(z) solves the wave equation{
α2

2m

[(
∇i −

q

α
Ai

)(
∇i − q

α
Ai
)
− 1

6
R
]

+ U + Ek

}
Ψk = 0. (8.93)

8.B Stochastic integration

In this appendix, we review some notions from stochastic integration on manifolds. Let

us first review the definition of stochastic integrals on Rn. The Stratonovich integral is

defined as

−
∫ T

0
f(Xτ ) ◦ dXµ

τ := lim
k→∞

∑
[τi,τi+1]∈πk

1

2

[
f(Xτi) + f(Xτi+1)

][
Xµ
τi+1
−Xµ

τi

]
, (8.94)
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where πk is a partition of [0, T ]. The Itô integral is defined by∫ T

0
f(Xτ ) dXµ

τ := lim
k→∞

∑
[τi,τi+1]∈πk

f(Xτi)
[
Xµ
τi+1
−Xµ

τi

]
(8.95)

and the integral over the quadratic variation is given by∫
f(Xτ ) d[[Xµ, Xν ]]τ := lim

k→∞

∑
[τi,τi+1]∈πk

f(Xτi)
[
Xµ
τi+1
−Xµ

τi

][
Xν
τi+1
−Xν

τi

]
. (8.96)

By a straightforward calculation, one can then derive a relation between the three integrals:

−
∫ T

0
f(Xτ ) dXµ

τ =

∫ T

0
f(Xτ ) dXµ

τ +
1

2

∫
∂νf(Xτ ) d[[Xµ, Xν ]]τ (8.97)

The Stratonovich integral has the advantage that it obeys the Leibniz rule:

◦ d(XµY ν) = Xµ ◦ dY ν + Y ν ◦ dXµ, (8.98)

while the Itô integral satisfies a modified Leibniz rule given by

d(XµY ν) = Xµ dY ν + Y νdXµ + d[[Xµ, Y ν ]]. (8.99)

On the other hand, the Itô integral has the advantage that for any martingale Mτ

Eτ
[∫ T

τ
f(Xs) dM

µ
s

]
= 0. (8.100)

All these integrals can be extended to smooth manifolds with a connection. As usual

this must be done using differential forms. We will express a first order form ω ∈ T ∗M in

a local coordinate chart as

ω = ωµ ◦ dxµ. (8.101)

The Stratonovich integral is then defined by

−
∫
Xτ

ω := −
∫ T

0
ωµ(Xτ ) ◦ dXµ

τ . (8.102)

The right hand side can be calculated using the definition (8.94) in a local coordinate

chart.

The construction of the Itô integral on the other hand, requires the construction of

second order forms Ω ∈ T ∗2M. These can be expressed in a local coordinate chart as7

ω = ωµ dx
µ +

1

2
∂νωµ d[[xµ, xν ]] (8.103)

7Note that we deviate here from the notation used in Refs. [150, 233], where first order forms are
expressed as ω = ωµdx

µ and second order forms as ω = ωµd2x
µ + ωµν dx

µ · dxν . The notation used in
Refs. [150, 233] is the standard notation in the geometry literature, while the notation adapted in this
paper is closer to the stochastics literature.
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Expressions of the form∫ T

0
ωµ(Xτ ) dXµ

τ and

∫ T

0
ωµν(Xτ ) d[[Xµ, Xν ]]τ

can then be calculated in a local coordinate chart using definitions (8.95) and (8.96)

respectively. Moreover, the second expression represents the integral over the quadratic

variation on a manifold. The first, however, does not define an Itô integral on manifolds,

as it is not covariant. Instead, the Itô integral is defined by the covariant expression∫
Xτ

ω :=

∫ T

0
ωµ(Xτ ) dX̂µ

τ

:=

∫ T

0
ωµ(Xτ ) dXµ

τ +
1

2

∫ T

0
ωµ(Xτ ) Γµνρ(Xτ ) d[[Xν , Xρ]]τ . (8.104)

The relation between the Stratonovich and Itô integral on a manifold is then given by

−
∫ T

0
ωµ(Xτ ) ◦ dXµ

τ =

∫
Xτ

ωµ(Xτ ) dX̂µ
τ +

1

2

∫ T

0
∇νωµ(Xτ ) d[[Xµ, Xν ]]τ . (8.105)

8.C Calculation of conditional expectations

In this appendix we derive the following expressions

Eτ
[
U
]

= U, (8.106)

Eτ
[
gµνW

µν
]

= nαλ, (8.107)

Eτ
[
AµW

µ
]

= Aµŵ
µ +

αλ

2
∇µAµ, (8.108)

Eτ
[
gµνW

µW ν
]

= gµνŵ
µŵν + αλ∇µŵµ −

α2λ2

6
R. (8.109)

The proof of the first equality is immediate by “taking out what is known”:

Eτ [U(Zτ )] = U(z). (8.110)

For the second equality we find

Eτ
[∫ τ+dτ

τ
gµν(Zs)W

µν
s ds

]
= Eτ

[∫
gµν(Zs) d[[Zµ, Zν ]]s

]
= Eτ

[
αλ

∫
gµν(Zs) g

µν(Zs) ds

]
= Eτ

[
nαλdτ

]
= nαλdτ, (8.111)

In the limit dτ → 0 we then obtain the result (8.107).
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For the third equality, we find

Eτ
[∫ τ+dτ

τ
Aµ(Zs)W

µ
s ds

]
= Eτ

[
−
∫
Aµ(Zs) ◦ dZµs

]
= Eτ

[ ∫
Aµ(Zs) dZ

µ
s +

1

2

∫
∂νAµ(Zs) d[[Zµ, Zν ]]s

]
= Eτ

[∫ (
Aµ(Zs)w

µ(Zs) + wµν(Zs) ∂νAµ(Zs)
)
ds+

∫
Aµ(Zs) dM

µ
s

]
= Eτ

[(
Aµ(Zτ )wµ(Zτ ) + wµν(Zτ ) ∂νAµ(Zτ )

)
dτ + o(dτ)

]
= Eτ

[(
Aµ(Zτ ) ŵµ(Zτ ) + ŵµν(Zτ )∇νAµ(Zτ )

)
dτ + o(dτ)

]
=

(
Aµ ŵ

µ +
αλ

2
∇µAµ

)
dτ + o(dτ), (8.112)

where we rewrote the Stratonovich integral as an Itô integral, such that the martingale

property (8.100) can be applied on the stochastic integral dM . In the limit dτ → 0, we

then obtain eq. (8.108).

8.C.1 Quadratic in velocity

The calculation of the conditional expectation of a term quadratic in the velocity process

is slightly more involved. This calculation was first performed by Guerra and Nelson in

Ref. [270]. Here, we reproduce their result using a slightly different presentation.

We first notice that

gµν(Zτ ) ◦ dZµτ dZντ = gµν(Zτ )Wµν
τ dτ + gµν(Zτ )Wµ

τ W
ν
τ dτ

2 + o(dτ2), (8.113)

where the left hand side is a Stratonovich integral. In order to calculate the conditional

expectation of this expression, we will need to rewrite this into an Itô integral. For this,

we note that8

d2f = d

(
∂µf dZ

µ +
1

2
∂µ∂νf d[[Zµ, Zν ]]

)
= ∂µf d

2Zµ + ∂ν∂µf dZ
µdZν + ∂ρ∂ν∂µf dZ

µ d[[Zν , Zρ]]

+
1

4
∂σ∂ρ∂ν∂µf d[[Zµ, Zν ]] d[[Zρ, Zσ]]

= ∂µf d
2Zµ + ∂ν∂µf dZ

µdZν +
1

3
∂ρ∂ν∂µf dZ

µdZνdZρ

+
1

12
∂σ∂ρ∂ν∂µf dZ

µdZνdZρdZσ, (8.114)

8We make use of the that Brownian motion is completely determined by its quadratic moment: all even
moment can be expressed in terms of the quadratic moment and all odd moments vanish.
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where we introduced the notation

dZµdZνdZρ = dZµ d[[Zν , Zρ]] + dZν d[[Zµ, Zρ]] + dZρ d[[Zµ, Zν ]], (8.115)

dZµdZνdZρdZσ = d[[Zµ, Zν ]] d[[Zρ, Zσ]] + d[[Zµ, Zρ]] d[[Zν , Zσ]] + d[[Zµ, Zσ]] d[[Zν , Zρ]].

(8.116)

This expression can be rewritten into an explicitly covariant form:

d2f = ∇µf
[
dZµ + Γµνρ dZ

νdZρ +
1

3

(
∂νΓµρσ + ΓµνκΓκρσ

)
dZνdZρdZσ

+
1

12
∂κ

(
∂νΓµρσ + ΓµνλΓλρσ

)
dZνdZρdZσdZκ

+
1

12
Γµκλ

(
∂νΓλρσ + ΓλναΓαρσ

)
dZνdZρdZσdZκ

]
+∇ν∇µf

[
dZµdZν +

2

3
Γµρσ dZ

νdZρdZσ +
1

3
Γνρσ dZ

µdZρdZσ

+
1

4
ΓµρσΓνκλ dZ

ρdZσdZκdZλ +
1

4

(
∂κΓµρσ + ΓµκλΓλρσ

)
dZνdZρdZσdZκ

+
1

12

(
∂κΓνρσ + ΓνκλΓλρσ

)
dZµdZρdZσdZκ

]
+

1

3
∇ρ∇ν∇µf

(
dZµdZνdZρ +

3

4
Γµσκ dZ

νdZρdZσdZκ

+
1

2
Γνσκ dZ

µdZρdZσdZκ +
1

4
Γρσκ dZ

µdZνdZσdZκ
)

+
1

12
∇σ∇ρ∇ν∇µf dZµdZνdZρdZσ, (8.117)

and therefore

d2f = ∇µf
[
dZµ + Γµνρ dZ

νdZρ +
1

3

(
∂νΓµρσ + ΓµνκΓκρσ

)
dZνdZρdZσ

+
1

12
∂κ

(
∂νΓµρσ + ΓµνλΓλρσ

)
dZνdZρdZσdZκ

+
1

12
Γµκλ

(
∂νΓλρσ + ΓλναΓαρσ

)
dZνdZρdZσdZκ

+
1

12
ΓλρσR

µ
νλκdZ

νdZρdZσdZκ
]

+∇(ν∇µ)f

[
dZµdZν +

1

2
Γµρσ dZ

νdZρdZσ +
1

2
Γνρσ dZ

µdZρdZσ

+
1

4
ΓµρσΓνκλ dZ

ρdZσdZκdZλ +
1

6

(
∂κΓµρσ + ΓµκλΓλρσ

)
dZνdZρdZσdZκ

+
1

6

(
∂κΓνρσ + ΓνκλΓλρσ

)
dZµdZρdZσdZκ

]
+

1

3
∇(ρ∇ν∇µ)f

(
dZµdZνdZρ +

1

2
Γµσκ dZ

νdZρdZσdZκ

+
1

2
Γνσκ dZ

µdZρdZσdZκ +
1

2
Γρσκ dZ

µdZνdZσdZκ
)

+
1

12
∇(σ∇ρ∇ν∇µ)f dZ

µdZνdZρdZσ. (8.118)
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By reading of the term proportional to ∇µ∇νf , we conclude

gµν ◦ dZµτ dZντ = gµν

[
dZµτ dZ

ν
τ + Γµρσ dZ

ν
τ dZ

ρ
τ dZ

σ
τ +

1

4
ΓµρσΓνκλ dZ

ρ
τ dZ

σ
τ dZ

κ
τ dZ

λ
τ

+
1

3

(
∂κΓµρσ + ΓµκλΓλρσ

)
dZντ dZ

ρ
τ dZ

σ
τ dZ

κ
τ

]
. (8.119)

where the Itô differential is given by

dZµτ = Zµτ+dτ − Z
µ
τ

=

∫ dτ

τ
wµ(Zs) ds+ dMµ

τ (8.120)
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We can now calculate the conditional expectation of this expression. We find

Eτ
[
dZµτ dZ

ν
τ

]
= Eτ

[
dMµ

τ dM
ν
τ + dMµ

τ

∫ τ+dτ

τ
wν(Zs) ds+ dMν

τ

∫ τ+dτ

τ
wµ(Zs) ds

+

∫ τ+dτ

τ
wµ(Zs) ds

∫ τ+dτ

τ
wν(Zr) dr + o(dτ2)

]
= Eτ

[∫ τ+dτ

τ
wµν(Zs) ds+ dMµ

τ

∫ τ+dτ

τ
wν(Zs) ds+ dMν

τ

∫ τ+dτ

τ
wµ(Zs) ds

+

∫ τ+dτ

τ
wµ(Zs) ds

∫ τ+dτ

τ
wν(Zr) dr + o(dτ2)

]
= Eτ

[
wµν(Zτ )

∫ τ+dτ

τ
ds+ ∂ρw

µν(Zτ )

∫ τ+dτ

τ
(Mρ

s −Mρ
τ ) ds

+ ∂ρw
µν(Zτ )

∫ τ+dτ

τ

∫ s

τ
wρ(Zr) dr ds

+
1

2
∂ρ∂σw

µν(Zτ )

∫ τ+dτ

τ
(Mρ

s −Mρ
τ ) (Mσ

s −Mσ
τ ) ds

+ wν(Zτ ) dMµ
τ

∫ τ+dτ

τ
ds+ ∂ρw

ν(Zτ ) dMµ
τ

∫ τ+dτ

τ
(Mρ

s −Mρ
τ ) ds

+ wµ(Zτ ) dMν
τ

∫ τ+dτ

τ
ds+ ∂ρw

µ(Zτ ) dMν
τ

∫ τ+dτ

τ
(Mρ

s −Mρ
τ ) ds

+wµ(Zτ )wν(Zτ )

∫ τ+dτ

τ
ds

∫ τ+dτ

τ
dr + o(dτ2)

]
= Eτ

[
wµν(Zτ ) dτ + wρ(Zτ ) ∂ρw

µν(Zτ )

∫ τ+dτ

τ
(s− τ) ds

+
1

2
∂ρ∂σw

µν(Zτ )

∫ τ+dτ

τ

∫ s

τ
wρσ(Zr) dr ds

+ ∂ρw
ν(Zτ )

∫ τ+dτ

τ

∫ s

τ
wµρ(Zr) dr ds+ ∂ρw

µ(Zτ )

∫ τ+dτ

τ

∫ s

τ
wνρ(Zr) dr ds

+ wµ(Zτ )wν(Zτ ) dτ2 + o(dτ2)
]

= wµν(Zτ ) dτ +
1

2
wρ(Zτ ) ∂ρw

µν(Zτ ) dτ2 +
1

4
wρσ(Zτ ) ∂ρ∂σw

µν(Zτ ) dτ2

+
1

2
wµρ(Zτ ) ∂ρw

ν(Zτ ) dτ2 +
1

2
wνρ(Zτ ) ∂ρw

µ(Zτ ) dτ2

+ wµ(Zτ )wν(Zτ ) dτ2 + o(dτ2), (8.121)
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Eτ
[
dZντ dZ

ρ
τ dZ

σ
τ

]
= Eτ

[
dMν

τ dM
ρ
τ

∫ τ+dτ

τ
wσ(Zs) ds+ dMν

τ dM
σ
τ

∫ τ+dτ

τ
wρ(Zs) ds

+dMρ
τ dM

σ
τ

∫ τ+dτ

τ
wν(Zs) ds+ dMν

τ dM
ρ
τ dM

σ
τ + o(dτ2)

]
= Eτ

[∫ τ+dτ

τ
wν(Zs) ds

∫ τ+dτ

τ
wρσ(Zr) dr + dMν

τ

∫ τ+dτ

τ
wρσ(Zs) ds

+

∫ τ+dτ

τ
wρ(Zs) ds

∫ τ+dτ

τ
wνσ(Zr) dr + dMρ

τ

∫ τ+dτ

τ
wνσ(Zs) ds

+

∫ τ+dτ

τ
wσ(Zs) ds

∫ τ+dτ

τ
wνρ(Zr) dr + dMσ

τ

∫ τ+dτ

τ
wνρ(Zs) ds

]
+ o(dτ2)

= Eτ
[
wν(Zτ )wρσ(Zτ ) dτ2 + wρ(Zτ )wνσ(Zτ ) dτ2 + wσ(Zτ )wνρ(Zτ ) dτ2

+ wρσ(Zτ ) dMν
τ

∫ τ+dτ

τ
ds+ ∂κw

ρσ(Zτ ) dMν
τ

∫ τ+dτ

τ
(Mκ

s −Mκ
τ ) ds

+ wνσ(Zτ ) dMρ
τ

∫ τ+dτ

τ
ds+ ∂κw

νσ(Zτ ) dMρ
τ

∫ τ+dτ

τ
(Mκ

s −Mκ
τ ) ds

+wνρ(Zτ ) dMσ
τ

∫ τ+dτ

τ
ds+ ∂κw

νρ(Zτ ) dMσ
τ

∫ τ+dτ

τ
(Mκ

s −Mκ
τ ) ds

]
+ o(dτ2)

= Eτ
[
wν(Zτ )wρσ(Zτ ) dτ2 + wρ(Zτ )wνσ(Zτ ) dτ2 + wσ(Zτ )wνρ(Zτ ) dτ2

+ ∂κw
ρσ(Zτ )

∫ τ+dτ

τ

∫ s

τ
wνκ(Zr) drds+ ∂κw

νσ(Zτ )

∫ τ+dτ

τ

∫ s

τ
wρκ(Zr) drds

+∂κw
νρ(Zτ )

∫ τ+dτ

τ

∫ s

τ
wσκ(Zr) drds

]
+ o(dτ2)

=
1

2

[
wνκ(Zτ ) ∂κw

ρσ(Zτ ) + wρκ(Zτ ) ∂κw
νσ(Zτ ) + wσκ(Zτ ) ∂κw

νρ(Zτ )
]
dτ2

+
[
wν(Zτ )wρσ(Zτ ) + wρ(Zτ )wνσ(Zτ ) + wσ(Zτ )wνρ(Zτ )

]
dτ2 + o(dτ2)

(8.122)

and

Eτ
[
dZµτ dZ

ν
τ dZ

ρ
τ dZ

σ
τ

]
= Eτ

[
dMµ

τ dM
ν
τ dM

ρ
τ dM

σ
τ + o(dτ2)

]
= Eτ

[∫ τ+dτ

τ
wµν(Zs) ds

∫ τ+dτ

τ
wρσ(Zr) dr

+

∫ τ+dτ

τ
wµρ(Zs) ds

∫ τ+dτ

τ
wνσ(Zr) dr

+

∫ τ+dτ

τ
wµσ(Zs) ds

∫ τ+dτ

τ
wνρ(Zr) dr

]
+ o(dτ2)

=
[
wµν(Zτ )wρσ(Zτ ) + wµρ(Zτ )wνσ(Zτ ) + wµσ(Zτ )wνρ(Zτ )

]
dτ2

+ o(dτ2). (8.123)
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If we then use that wµν = αλ gµν , we find

Eτ
[
gµν ◦ dZµτ dZντ

]
= gµνw

µν dτ

+ gµν

(
wµwν +

1

2
wρ ∂ρw

µν +
1

2
wµρ ∂ρw

ν +
1

2
wνρ ∂ρw

µ +
1

4
wρσ ∂ρ∂σw

µν

)
dτ2

+ gµνΓµρσ

(
wνwρσ + wρwνσ + wσwνρ

)
dτ2

+
1

2
gµνΓµρσ

(
wνκ∂κw

ρσ + wρκ∂κw
νσ + wσκ∂κw

νρ
)
dτ2

+
1

4
gµνΓµρσΓνκλ

(
wρσwκλ + wρκwσλ + wρλwσκ

)
dτ2

+
1

3
gµν

(
∂κΓµρσ + ΓµκλΓλρσ

)(
wνκwρσ + wνρwσκ + wνσwρκ

)
dτ2 + o(dτ2)

= nαλdτ + gµνw
µwν dτ2 + αλ

(
∂µw

µ − Γµµνw
ν
)
dτ2

+
α2λ2

2
gρσ
(
gµνg

κλΓµρκΓνσλ + ΓµρνΓνµσ − ∂ρΓµµσ
)
dτ2

+ αλ
(
gµνg

ρσΓµρσw
ν + 2 Γµµνw

ν
)
dτ2

− α2λ2gρσ
(
gµνg

κλΓµρκΓνσλ + 2 ΓµρνΓνµσ

)
dτ2

+
α2λ2

4
gµνg

ρσgκλ
(

ΓµρσΓνκλ + 2 ΓµρκΓνσλ

)
dτ2

+
α2λ2

3
gρσ
(
∂µΓµρσ + 2 ∂ρΓ

µ
µσ + ΓµµνΓνρσ + 2 ΓµρνΓνµσ

)
dτ2 + o(dτ2)

= nαλdτ + gµνŵ
µŵν dτ2 + αλ∇µŵµdτ2 − α2λ2

6
R dτ2 + o(dτ2).

(8.124)

Plugging this result into eq. (8.113) then yields eq. (8.109).
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Abstract

In this paper we consider the full set of quantum gravitational corrections to a star metric

to second order in curvature. As we use an effective field theoretical approach, these

corrections apply to any model of quantum gravity that is based on general coordinate

invariance. We then discuss the black hole limit and identify an interesting phenomenon

which could shed some light on the nature of astrophysical black holes: while star metrics

receive corrections at second order in curvature, vacuum solutions such as black hole

metrics do not. What happens to these corrections when a star collapses?

This chapter has been published in Physical Review D 100, no. 08, p. 6010 (2019).
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9.1 Introduction

Since the seminal work of Weinberg in 1979 [351], much progress has been made in quantum

gravity using effective field theory methods [34–37,61,70,140]. While finding a consistent

theory of quantum gravity valid at all energy scales remains an elusive goal, effective field

theory methods can be applied at energies below the Planck mass which might be all

that is ever needed as physics is an empirical science. This approach enables calculations

in quantum gravity which are model independent, see e.g. [49, 68, 69, 73–76, 81–83, 91, 93,

94, 97, 98, 111, 143]. The model independence only applies to models that assume that

general coordinate invariance is also the correct symmetry of quantum gravity. Obviously

in fundamental models with e.g. Lorentz violation, the effective field theory could be

different. One of the important results recently obtained is that there are no quantum

gravitational corrections to vacuum solutions of general relativity [70] to second order

in curvature. This in particular applies to eternal black hole metrics which are static

vacuum solutions [97]. On the other hand, real astrophysical black holes are clearly not in

vacuum and they undergo a time evolution as they are formed out of some time dependent

astrophysical process such as during the collapse of a heavy star.

Understanding the transition from a star to a black hole state could help to understand

the nature of astrophysical black holes better. The aim of this work is to do a first step in

that direction by calculating quantum gravitational corrections to the metric of a star in

stable equilibrium, as described by the Tolman-Oppenheimer-Volkoff equation. In general

relativity, the metric outside non-rotating black holes and stars is given in both cases by

the vacuum Schwarzschild solution. Our aim is to compare the quantum gravitational

corrections to a star metric and black hole metric as seen by an observer who is far away

from both objects. While it is known that in the black hole case there are no corrections

to the metric at second order in curvature, we will show that there is a correction at this

order in the case of a star. This phenomenon is intriguing as a distant observer could in

principle differentiate a star that is collapsing from an eternal black hole (i.e. a vacuum

solution) by measuring the correction at order G2
N to Newton’s potential. The collapsing

star would have a potential that deviates from 1/r by corrections of order G2
N while the

black hole vacuum solution does not have such corrections.

We then consider the limit when the mass and the radius of the star are taken to-

wards respectively the Planck mass and the Planck length and discuss whether the metric

obtained in that limit could be used to describe the metric of a quantum black hole,

i.e. the lightest black holes that could have masses of the order of the Planck mass and a

Schwarzschild radius of the order of the Planck length. We argue that as quantum black

holes cannot be described as a classical vacuum, the quantum corrected star metric should

be a better model for the metric of a quantum black hole than the Schwarzschild vacuum

solution.

This paper is organized as follows. In Section 9.2, we introduce the effective quantum

gravitational action and calculate the leading order corrections to the metric for a homo-

geneous isotropic star. In Section 9.3, we discuss the validity of our results close to the

surface of the star. In Section 9.4, we discuss the differences with an eternal Schwarzschild
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black hole metric and argue that quantum black holes might be better described by the

star metric. Finally, we conclude with some outlooks in Section 9.5.

9.2 Quantum corrections to a star metric

Aim of this section is to calculate the leading order quantum gravitational corrections

to the metric of a stable star satisfying the Tolman-Oppenheimer-Volkoff equation. This

investigation was started in [97], but that paper only considered the contribution of the

term R log�R. Here we consider the full set of corrections at second order in curvature.

We also take this opportunity to fix a calculational mistake in [97].

We work within the framework of the effective quantum gravitational action given

by [34–37,61,70,140,351]

Γ[g] = ΓL[g] + ΓNL[g], (9.1)

where the local part of the action is given by 1

ΓL =

∫
d4x
√
g

[
R

16πGN
+ c1(µ)R2 + c2(µ)Rµν R

µν + c3(µ)Rµναβ R
µναβ

]
(9.2)

and the non-local part of the action by

ΓNL = −
∫
d4x
√
g

[
αR ln

(
�
µ2

)
R+ β Rµν ln

(
�
µ2

)
Rµν + γ Rµναβ ln

(
�
µ2

)
Rµναβ

]
.

(9.3)

This effective action is obtained by integrating out the fluctuations of the graviton and

potentially other massless matter fields. While the Wilson coefficients of the local part

of the action are not calculable from first principles as we do not specify the ultraviolet

theory of quantum gravity, those of the non-local part are calculable and model indepen-

dent quantum gravitational predictions. We reproduce these coefficients, which have been

derived by many different authors, see e.g. [34, 35, 48, 140, 143, 149, 190, 219, 260, 261], in

Table 9.1.

The equations of motion obtained from varying the effective action which respect to

the metric are given by

Gµν + 16πGN

(
HL
µν +HNL

µν

)
= 0, (9.4)

where

Gµν = Rµν −
1

2
Rgµν (9.5)

is the usual Einstein tensor. The local part of the equation of motion is given by

HL
µν = c̄1

(
2RRµν −

1

2
gµν R

2 + 2 gµν �R− 2∇µ∇νR
)

(9.6)

+ c̄2

(
2RαµRνα −

1

2
gµν Rαβ R

αβ +�Rµν +
1

2
gµν �R−∇α∇µRαν −∇α∇νRαµ

)
,

1In this paper we work in the (+−−−) signature and use the convention where the Riemann tensor is
defined by Rρσµν = ∂µΓρνσ − ... and the Ricci tensor by Rµν = Rλµλν
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α β γ

Scalar 5(6ξ − 1)2 −2 2

Fermion −5 8 7

Vector −50 176 −26

Graviton 250 −244 424

Table 9.1: Non-local Wilson coefficients for different fields. All numbers should be divided
by 11520π2. Here, ξ denotes the value of the non-minimal coupling for a scalar theory.
All these coefficients including those for the graviton are gauge invariant. It is well known
that one needs to be careful with the graviton self-interaction diagrams and that the
coefficients α and β can be gauge dependent, see [219], if the effective action is defined
in a naive way. For example, the numbers α = 430/(11520π2) and β = −1444/(11520π2)
for the graviton quoted in [143] are obtained using the Feynman gauge. However, there
is a well-established procedure to derive a unique effective action which leads to gauge
independent results [34, 35]. Here we are quoting the values of α and β for the graviton
obtained using this formalism as it guaranties the gauge independence of observables.

with c̄1 = c1 − c3 and c̄2 = c2 + 4 c3. Finally, the non-local part reads

HNL
µν = − 2α

(
Rµν −

1

4
gµν R+ gµν �−∇µ∇ν

)
ln

(
�
µ2

)
R

− β
(

2 δα(µRν)β −
1

2
gµν R

α
β + δαµ gνβ �+ gµν ∇α∇β

− δαµ ∇β∇ν − δαν ∇β∇µ
)

ln

(
�
µ2

)
Rβα

− 2 γ

(
δα(µR

β
ν) στ −

1

4
gµν R

αβ
στ +

(
δαµ gνσ + δαν gµσ

)
∇β∇τ

)
ln

(
�
µ2

)
R στ
αβ .

(9.7)

Note that the variation of the ln� term yields terms of higher order in curvature and can

thus safely be ignored at second order in curvature.

We consider a stationary homogeneous and isotropic star with density

ρ(r) = ρ0 Θ(Rs − r) =

ρ0 if r < Rs

0 if r > Rs,
(9.8)

where ρ0 > 0 is a constant and Θ(x) is Heaviside’s step function. The solution to the

Einstein equation inside this star (for r ≤ Rs) is the well-known interior Schwarzschild

metric [312,342]

ds2 =

(
3

√
1− 2GNM

Rs
−

√
1− 2GNM r2

R3
s

)2

dt2

4
−
(

1− 2GNMr2

R3
s

)−1

dr2 − r2 dΩ2

≡ gint
µν dx

µ dxν , (9.9)

where

M = 4π

∫ Rs

0
ρ r2 dr =

4π

3
R3

s ρ0 (9.10)
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is the total Misner-Sharp mass of the source. The corresponding pressure is given by

P (r) = ρ0

√
1− 2GNM

Rs
−
√

1− 2GNM r2

R3
s√

1− 2GNM r2

R3
s
− 3

√
1− 2GNM

Rs

= O(GN), (9.11)

and is of order GN in agreement with the fact that the pressure does not gravitate in

Newtonian physics. Of course, the metric outside the star (for r > Rs) is the usual

vacuum Schwarzschild metric [312,342]

ds2 =

(
1− 2GNM

r

)
dt2 −

(
1− 2GNM

r

)−1

dr2 − r2 dΩ2 ≡ gext
µν dx

µ dxν , (9.12)

from which one can see that M is also the Arnowitt-Deser-Misner (ADM) mass [16] of the

system.

We now perturb the above metrics,

g̃µν = gµν + gq
µν , (9.13)

and take the perturbation gq
µν to be O(GN). The equations of motion then become

GL
µν [gq] + 16πGN

(
HL
µν [g] +HNL

µν [g]
)

= 0, (9.14)

where the linearised Einstein tensor is given by

2GL
µν =�gq

µν − gµν �gq +∇µ∇νgq + 2Rα β
µ ν g

q
αβ −∇µ∇

βgq
νβ −∇ν∇

βgq
µβ

+ gµν ∇α∇βgq
αβ. (9.15)

We first calculate solutions to equation (9.14) due to the local corrections. Outside

the star, where the unperturbed metric equals the Schwarzschild vacuum solution (9.12)

with R = Rµν = 0, these corrections are trivially 0. Inside the star this is not the case.

However, these corrections turn out to be O(G3
N), and thus sub-leading. Therefore the

local part in the equations of motion (9.6) does not contribute.

In order to calculate corrections due to the non-local corrections of the equation of

motion (9.6) we use the fact that the Ricci Scalar, Ricci tensor and Riemann tensor are

all O(GN). We thus obtain

GL
µν

16πGN
= 2α (gµν �−∇µ∇ν) ln

(
�
µ2

)
R

+ β
(
δαµ gνβ �+ gµν ∇α∇β − δαµ ∇β∇ν − δαν ∇β∇µ

)
ln

(
�
µ2

)
Rβα

+ 2γ
(
δαµ gνσ + δαν gµσ

)
∇β∇τ ln

(
�
µ2

)
R στ
αβ +O(G3

N). (9.16)

We will solve this equation perturbatively in GN. We use Einstein equations to rewrite
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the Ricci scalar and tensor in terms of the energy-momentum tensor of the source,

R = −8πGNT (9.17)

Rµν = 8πGN

(
Tµν −

1

2
gµν T

)
, (9.18)

where, for a perfect isotropic fluid like our star, we have

T = ρ0 +O(GN) (9.19)

Tµν = δ0
µ δ

0
ν ρ0 +O(GN), (9.20)

where ρ0 is the energy density.

By applying the results from Appendix 9.5 to the homogeneous distribution (9.8), we

find

8πGN ln

(
�
µ2

)
ρ =

6GNM

R3
s

f(r) +O(G2
N), (9.21)

with

f(r) =


−2
[
γE − 1 + ln

(
µ
√
R2

s − r2
)]

if r < Rs,

2
Rs

r
− ln

(
r +Rs

r −Rs

)
if r > Rs.

(9.22)

Note that the function f in equation (9.22) is not defined at r = Rs. In fact, one can

verify that the results should be taken with some care in a small region around Rs, as we

discuss in more detail in Section 9.3.

Furthermore, we emphasize that equation (9.22) is the main source of the discrepancy

between the results reported here and those obtained in [97], where the calculation was

only done for r > Rs. In equation (31) of [97] a factor of 2 is missing in front of the term

Rs/r and a factor of −1 is missing in front of the log term.

In order to obtain the contribution proportional to γ in equation (9.16), we first rewrite

it in terms of those proportional to α and β using the non-local Gauss-Bonnet theorem

[37–39, 70], which holds for the non-local part up to second order in curvature (hence

O(G2
N)). We then evaluate equation (9.16) using α′ = α − γ and β′ = β + 4 γ. We thus

have to solve

GL
µν = 192π (α− γ)

G2
NM

R3
s

(∇µ∇ν − gµν �) f(r)

+ 96π (β + 4 γ)
G2

NM

R3
s

(
∇µ∇ν − gµν �+ δ0

µ gν0�
)
f(r) +O(G3

N), (9.23)

where we used that

(
gµν ∇0∇0 − δ0

µ∇0∇ν − δ0
ν ∇0∇µ

)
f(r) = O(GN). (9.24)

We solve this equation, imposing the solution to be spherically symmetric and time inde-
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pendent. In addition we fix the gauge freedom by setting gq
θθ = 0. Doing so, we obtain

the quantum corrections gq
µν = δgext

µν to the Schwarzschild metric (9.12) outside the star.

The corrections are given by 2

δgext
tt = (α+ β + 3 γ)

192πG2
NM

R3
s

[
2
Rs

r
+ ln

(
r −Rs

r +Rs

)]
+
C1

r
+ C2 +O(G3

N)

δgext
rr = (α− γ)

384πG2
NM

r (r2 −R2
s )

+
C1

r
+O(G3

N), (9.25)

where Ci are integration constants which must be set to zero, if we require asymptotic

flatness, that is limr→∞ δgµν = limr→∞ r δgµν = 0 3.

In a similar way, using the same gauge condition, one can find the corrections gq
µν =

δgint
µν to the metric (9.9) inside the star. These are given by

δgint
tt = (α+ β + 3 γ)

192πG2
NM

R3
s

ln

(
R2

s

R2
s − r2

)
+
C3

r
+ C4 +O(G3

N)

δgint
rr = (α− γ)

384πG2
NM r2

R3
s (R2

s − r2)
+
C3

r
+O(G3

N), (9.26)

where Ci are integration constants, which we will set to 0 by requiring regularity in the

origin r = 0.

In the limit r → Rs we find that the corrections diverge, but it is easy to explain that

these divergences are generated, because we assumed a model for the star described by

a discontinuous density at r = Rs, which is not realistic for an astrophysical star. This

discontinuity leads to a discontinuity in the first derivative of the pressure (9.11), in the

second derivative of the gtt component and in the first derivative of the grr component.

We thus do not expect that our star model and hence the quantum corrections apply to

a real star in a small region around Rs. We shall discuss this observation in more details

as well as how to cure these divergences in the next section.

We can now consider our result in different limits. Far away from the star (for r � Rs),

the leading behavior of the metric corrections (9.25) is given by

δgext
tt = −(α+ β + 3 γ)

128πG2
NM

r3
+O(G3

N)

δgext
rr = (α− γ)

384πG2
NM

r3
+O(G3

N), (9.27)

whereas, to the same order in GN, the corrections (9.26) for the metric inside the star far

away from the star radius (for r � Rs) vanish,

δgint
tt = δgint

rr = O(G3
N). (9.28)

It is important to realize that the correction to the components of a metric are gauge

2Note that we take the metric with signature (+ − −−). With signature (− + ++) the corrections
obtain an extra minus sign.

3These conditions ensure that we recover the classical weak field limit with ADM mass M as r → ∞,
which is the usual boundary condition for the classical Schwarzschild black hole.
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dependent. As such components are not observables, this is not an issue. For example,

one could calculate the metric corrections in the harmonic gauge. In this case one finds

the asymptotic r � Rs expressions

gtt = 1− 2GNM

r
+

2G2
NM

2

r2
− (α+ β + 3 γ)

128πG2
NM

r3
+O(G3

N)

gti = 0

gij = − δij
{

1 +
2GNM

r
+
G2

NM
2

r2
− (2α+ β + 2 γ)

128πG2
NM

r3

[
1

3
+ ln

(
C r

Rs

)]}
− xixj

r2

[
G2

NM
2

r2
− (α− γ)

384πG2
NM

r3
+ (2α+ β + 2 γ)

384πG2
NM

r3
ln

(
C r

Rs

)]
+O(G3

N), (9.29)

where C is a dimensionless integration constant 4. We derived this result using the ex-

pression for the Schwarzschild metric outside a star in the harmonic gauge, which can,

for example, be found in [349]. Furthermore, we imposed the solutions to be spherically

symmetric and time independent and imposed the harmonic (De Donder) gauge condition

instead of setting δgθθ = 0.

Taking the graviton values for α, β and γ from [143], one can set the scale C/Rs =

µ exp(−173/132), to recover the quantum correction due to the vacuum polarization dia-

gram found in [49]. It should be emphasized that the graviton values for α and β presented

in [143] are not gauge invariant [219] and do not correspond to the values obtained when

the unique effective action formalism [34] is used, which are presented in Table 9.1. The re-

sults in [49,143] are thus dependent on the gauge in which the effective action is obtained.

The results presented in this paper on the other hand do not suffer from this gauge depen-

dence. Naturally, both the results presented in this paper and those in [49, 143] depend

on the gauge (that is, the reference frame) in which the field equations are solved. This

gauge dependence cannot be removed, as the metric components are not gauge invariant

quantities.

Let us emphasize that the results presented in this section are interesting: we have

shown that although the metric outside an eternal static black hole and of a static star

are given at the classical level by the Schwarzschild solution, quantum gravity makes a

difference between the two objects due to its non-local nature. The star metric receives

a quantum correction at second order in curvature, while there is no such correction for

an eternal black hole [70]. A distant observer can in principle monitor the gravitational

collapse of a star by studying the quantum gravitational corrections to Newton’s poten-

tial to second order in curvature. This raises the question whether astrophysical black

holes should really be described by metrics corresponding to vacuum solutions of general

relativity. Note that our argument does not rely on the limit Rs → 0, but rather on a

comparison of the initial state (e.g. collapsing star or star before it has even started to

collapse) and the final state which is an eternal black hole.

4As in previous results, one obtains a couple more integration constants, which can be set to 0 by
requiring that one recovers the classical weak field limit as r →∞.



130

9.3 Divergence at the surface

The explicit calculation shown in Appendix 9.5 makes it clear that the non-local function

ln
(
�
µ2

)
must be treated as a distribution in order to allow for the various exchanges of

limits and integrations. This in turn implies that the functions f upon which it can act

must belong to a suitable set of regular test functions. Clearly, the density profile (9.8)

does not satisfy this requirement, the Heaviside function Θ being a distribution itself. It

therefore comes as no surprise that ln
(
�
µ2

)
ρ is not well defined around r = Rs, unless

the density (9.8) is replaced with a function that falls to zero smoothly.

It is important to remark that, although the density (9.8) generating the classical

Schwarzschild interior metric (9.9) drops to zero within a vanishingly short length, it

causes no issues in general relativity despite the fact that the manifold is not smooth at

the star surface. Instead, it conjures with the non-local terms of the effective action (9.3)

to give rise to divergences. The divergence thus purely arises due to inclusion of higher

order derivatives of the metric, while the metric is only once continuously differentiable.

However, it is obvious that the density profile of any realistic matter distribution will go

to zero in a finite width ε > 0. For instance, we could replace (9.8) with the infinitely

smooth

ρ(r) =

ρ0 exp

(
ε2

R2
s

− ε2

R2
s − r2

)
for 0 ≤ r ≤ Rs

0 for Rs < r,

(9.30)

where we can safely assume that ε & `p. This implies that our solutions (9.25) and (9.26)

should only be considered outside a layer of thickness ε around Rs. On the other hand,

it is important to remark that the size of the corrections does not depend on ε explicitly

(only the region of space excluded in our results does).

In some more details, Eqs. (9.25) and (9.26) contain divergences for ε ≡ |r−Rs| → 0+,

namely

δgint
tt ' −(α+ β + 3 γ)

192πG2
NM

R3
s

ln

(
2 ε

Rs

)
δgext
tt ' (α+ β + 3γ)

192πG2
NM

R3
s

[
2 + ln

(
ε

2Rs

)]
δgint
rr ' (α− γ)

192πG2
NM

R3
s

(
Rs

ε
− 3

2

)
δgext
rr ' (α− γ)

192πG2
NM

R3
s

(
Rs

ε
− 1

2

)
, (9.31)

which appear in two forms, namely

d1 ∼
G2

NM

R3
s

ln

(
|r −Rs|
r +Rs

)
, (9.32)

or

d2 ∼
G2

NM

r |r2 −R2
s |
. (9.33)

Since we obtained the corrections in a “weak” field approximation, such terms should be
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small compared to the unperturbed metric coefficients, that is

di . V ∼
GNM

r
. (9.34)

By recalling that GN = `2p in our units, this means that d1 � V provided

`2p
R2

s

ln

(
|r −Rs|
Rs

)
. 1 (9.35)

and d2 � V if
`2p

Rs |r −Rs|
. 1. (9.36)

The above two conditions are clearly satisfied if ε ≡ |r − Rs| . `p, since Rs � `p is

the radius of a macroscopic matter source. To illustrate this, one can derive numerical

estimates on the size of ε for various values of Rs. In particular, we find for a typical

neutron star with radius Rs ' 10 km, that ε & 10−78Rs, while for objects of the order of

the Planck length Rs ≈ 10−35 m, we find ε ≈ Rs. As expected, our approximation fails for

sub-Planckian objects, and we must therefore restrict our analysis to M & 1/
√
GN = MP

where MP is the Planck scale. Moreover for Planck sized objects these restrictions are of

major importance, and must be considered in any further analysis.

9.4 Model for quantum black holes?

While it is remarkable to be able to calculate model independent quantum gravitational

corrections to the metric of a star or vacuum solutions of general relativity, it is clear

that these corrections are tiny and probably of little empirical value from an astrophysical

perspective. However, quantum gravitational corrections could be important for objects

such as Planckian quantum black holes [68,69,74–76,82,83,111], i.e. hypothetical objects

with a mass close to the Planck scale and size of the order of the Planck length, which

could have played an important role during the big bang. We have seen that quantum

gravity makes a difference between a static star metric and an eternal black hole solution,

the latter being described by a vacuum solution of Einstein equations. In this section we

investigate which of the two external metrics would be better suited to model a Planckian

quantum black hole. In order to address this question, we need to extrapolate our star

model into the quantum regime.

In Section 9.2 we derived quantum corrections to the metric generated by a homoge-

neous ball of dust with density (9.8) and isotropic pressure (9.11). According to general

relativity, this unperturbed classical configuration is stable only provided the size of the

source does not violate the Buchdahl limit [62,342], so that its radius must satisfy

Rs >
9

8
RM ≡

9

8
(2GNM) , (9.37)

where RM is the gravitational radius of the ball and would be the horizon radius of the

outer Schwarzschild metric. While this is the classical limit, it may not hold for quantum
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black holes as can be seen by taking Rs ∼ `p ∼
√
GN and M ∼ MP ∼ 1/

√
GN

5.

Quantum black holes are not expected to be stable objects anyway, but one expects them

to decay very quickly within a time of the order of the Planck time τP '
√
GN . We

thus do not expect Planckian black holes to be well described by vacuum solutions. The

inside of Planckian black holes is certainly not in vacuum as the fluctuations of space-time

are expected to be large and space-time could lose its meaning altogether on such short

distances. A better approximation might thus be to describe such objects might with a

quantum corrected star metric.

In fact, even if we accept the general relativistic prediction that the collapsed matter

giving rise to a black hole geometry must end in a very small region of extremely high

density 6, it is not a priori clear that the size of this region remains negligible when the

black hole mass M approaches the Planck scale.

In particular, the external metric (9.12) receives the quantum corrections (9.25) in the

regime |r − Rs| � `p (as we explained in Section 9.3). For r � Rs, the corrected metric

can therefore be written as

ds2 = gtt dt
2 − grr dr2 − r2 dΩ2, (9.38)

with

gtt ' 1− 2GNM

r
−
α̂ ~G2

NM

r3

' 1− 2 `pM

MP r
−
α̂ `3pM

MP r3
, (9.39)

and

grr ' −
(

1− 2GNM

r

)−1

+
β̂ ~G2

NM

r3

' −
(

1− 2 `pM

MP r

)−1

+
β̂ `3pM

MP r3
, (9.40)

where α̂ = 128π (α + β + 3 γ) and β̂ = 384π (α − γ). Note that α̂ > 0 for scalar and

vector particles as well as for fermions and gravitons, while β̂ < 0 for vectors, fermions

and gravitons, and can be both positive and negative for scalars depending on the value

of the non-minimal coupling ξ (see Table 9.1). On considering the particle content of the

Standard Model and minimal coupling ξ = 0, one would then find β̂ < 0.

The gravitational radiusRH of the system is then determined by the condition grr(RH) =

5In this section we shall use units with c = 1, GN = `p/MP and ~ = `pMP .
6It is worth recalling that delta-like sources in general relativity are not mathematically consistent [168].
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Figure 9.1: Difference RH −RM for M > 0 and β̂ = −10 in Planck units.

0. For β̂ < 0, one finds

RH

`p
=

2M

3MP
+

{
− M

2MP

[
β̂ − 16M2

27M2
P

+

√
β̂

(
β̂ − 32M2

27M2
P

)]}1/3

+

{
−2M

MP

[
β̂ − 16M2

27M2
P

−

√
β̂

(
β̂ − 32M2

27M2
P

)]}1/3

. (9.41)

and it follows that RH > RM for any values of M > 0 (see Figure 9.1). If we push the

above description to values of the mass M & MP , this implies that, if the matter which

sources the metric is not confined in a singularity, but occupies a finite volume [112] of

size, say Rs ∼ `p, its gravitational radius is significantly larger than it would be in the

vacuum Schwarzschild geometry. Consequently, the probability of this system of size Rs to

be a black hole would be larger according to the Horizon Quantum Mechanics [108, 113].

Moreover, this is qualitatively similar to what was found in [110], namely that the horizon

area would also be larger than in general relativity. However, one has to be careful

interpreting the results obtained in Figure 9.1, since RH −RM doesn’t exceed lp, which is

precisely the region where our approach breaks down, as discussed in the previous section.

Ideally, for sufficiently large β̂ and small mass M , one could have

RH &
9

8
RM , (9.42)

which implies that the classical Buchdahl limit will not survive in this quantum realm as

anticipated. These considerations indicate that the metric of a Planckian quantum black

hole might be better described by our quantum corrected star model rather than by a

Schwarzschild metric.



134

9.5 Conclusions

In this paper we have calculated the full set of quantum gravitational corrections to the

metric of a star in stable equilibrium, as described by the Tolman-Oppenheimer-Volkoff

equation, to second order in curvature. We have found a remarkable result. While eternal

black holes, which are static vacuum solutions of general relativity, and stars have the same

outside metric in general relativity, namely the famous Schwarzschild vacuum metric,

quantum gravity makes a difference between black holes and stars at second order in

curvature. Star solutions receive a quantum gravitational correction at this order, while

vacuum black holes do not. It raises a deep question, namely what happens to this

correction if we were to follow the gravitational collapse of a ball of dust? According

to our results, a distant observer would be able to monitor the collapse of the star by

measuring the quantum gravitational corrections to Newton’s gravitational potential. If

he followed the process, he would have an operational procedure to determine that an

eternal black hole has formed.

It is usually argued that astrophysical black holes are well described by a Kerr metric

(as they rotate), however it is a vacuum solution and there are thus no quantum gravita-

tional corrections to second order in curvature. Our calculations thus raise deep questions

about the nature of astrophysical black holes. Are they truly vacuum solutions?

Clearly answering these questions is beyond the scope of this paper. It would require

to follow precisely quantum gravitational corrections during the dynamical process of a

star collapsing into a black hole.

From a technical point of view, we have obtained an interesting result showing that

the standard textbook metric for a star [312, 342] is too naive when it is assuming that

matter is distributed according to a step function at the boundary of the star. Quantum

gravity forces us to consider stars with a smooth matter profile at their surfaces.

Our results also have interesting consequences for quantum black holes. We have

argued that the quantum corrected star metric could be used as an effective metric for a

quantum black holes which, if they exist, are clearly not vacuum solutions.

In conclusion, quantum gravity corrections have deep implications for black holes and

stars. Even though these corrections might be too tiny to be observable, they demonstrate

that black holes are even more mysterious than usually assumed.
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9.A Derivation of the non-local term in equation (9.22)

We will here show how to calculate the expression

ln

(
�
µ2

)
f(t, ~x), (9.43)

for time-independent and spherically symmetric functions f(t, ~x) = f(r), where r = |~x|.
In particular, we will consider the following two cases: a) if ∃ ε > 0 such that f(r′) = 0 for

|r′ − r| < ε, we will find equation (9.43) can be computed rather straightforwardly and it

yields

ln

(
�
µ2

)
f(r) =

1

r

∫ ∞
0

(
r′

r + r′
− r′

|r − r′|

)
f(r′) dr′; (9.44)

b) otherwise, if r > 0, f(r) 6= 0 and ∃ ε > 0 such that f(r′) is smooth for |r′ − r| ≤ ε,

equation (9.43) requires some care to make sense and yields

ln

(
�
µ2

)
f(r) =

1

r

∫ ∞
0

r′

r + r′
f(r′) dr′ − lim

ε→0+

{
1

r

∫ r−ε

0

r′

r − r′
f(r′) dr′

+
1

r

∫ ∞
r+ε

r′

r′ − r
f(r′) dr′

+ 2 f(r) [γE + ln(µε)]

}
, (9.45)

which contains a Cauchy principal value integral, as was found in [97].

As a first step, we use time independence to express the function f in terms of its

Fourier transform f̂ and write

ln

(
�
µ2

)
f(~x) =

∫
d3k

(2π)3
ln

(
k2

µ2

)
ei
~k·~x f̂(~k), (9.46)

where k = |~k|. Next, we use the spherical symmetry of f (and f̂) and assume that

~x = (0, 0, r) without loss of generality, so that

ln

(
�
µ2

)
f(r) =

1

(2π)2

∫ ∞
0

k2 dk

∫ +1

−1
d(cos θ) ln

(
k2

µ2

)
ei k r cosφ f̂(k)

=
1

2π2 r

∫ ∞
0

dk k ln

(
k2

µ2

)
sin(k r) f̂(k)

=
1

π2 r

∫ ∞
0

dk k ln

(
k

µ

)
sin(k r) f̂(k). (9.47)

We can now Fourier transform back to coordinate space by making use of the relation

between the Fourier and the Hankel transforms for spherically symmetric functions in 3

dimensions, namely

k1/2 f̂(k) = (2π)3/2

∫ ∞
0

r3/2 f(r) J1/2(k r) dr, (9.48)
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where J1/2(k r) =
√

2
π k r sin(k r). Therefore, we obtain

ln

(
�
µ2

)
f(r) =

4

π r

∫ ∞
0

dk

∫ ∞
0

dr′ ln

(
k

µ

)
sin(kr) sin(kr′) r′ f(r′)

=
1

π r

∫ ∞
0

dk

∫ ∞
0

dr′ lim
δ→0+

{
f(r′) r′ ln

(
k

µ

)
e−δ k

×
[
ei k (r−r′) + e−i k (r−r′) − ei k (r+r′) − e−i k (r+r′)

]}
=

µ

π r

∫ ∞
0

dr′ lim
δ→0+

∫ ∞
0

dq f(r′) r′ ln(q) e−δ µ q

×
[
ei µ q (r−r′) + e−i µ q (r−r′) − ei µ q (r+r′) − e−i µ q (r+r′)

]
,

(9.49)

where we rescaled the momentum variable and swapped the limit with momentum inte-

gration in the last line. For Re(α) > 0, we have∫ ∞
0

dq ln(q) e−α q = − 1

α
[γE + ln(α)] , (9.50)

which allows us to get

ln

(
�
µ2

)
f(r) =

1

π r

∫ ∞
0

dr′ f(r′) r′ lim
δ→0+

[
γE + ln(µR+) + i φ+

δ + i (r + r′)
+
γE + ln(µR+)− i φ+

δ − i (r + r′)

−γE + ln(µR−) + i φ−
δ + i (r − r′)

− γE + ln(µR−)− i φ−
δ − i (r − r′)

]
,

(9.51)

where R± =
√
δ2 + (r ± r′)2 and φ± = arctan[(r ± r′)/δ]. The first two terms are regular

and we can take the limit δ → 0 straightforwardly, whereas the last two terms may contain

a pole at r′ = r. Here is where the two cases mentioned above occur:

Case a): since f(r′) = 0 around r, there is no pole in equation (9.51), which immediately

yields the result (9.44).

Case b): for f(r) 6= 0 but bounded and sufficiently smooth, we can rewrite equation (9.51)

as

ln

(
�
µ2

)
f(r) =

1

r

∫ ∞
0

dr′
r′ f(r′)

r + r′
− lim
ε→0+

1

r

{∫ r−ε

0
dr′

r′ f(r′)

|r − r′|
+

∫ ∞
r+ε

dr′
r′ f(r′)

|r − r′|

+
1

π

∫ r+ε

r−ε
dr′ f(r′) r′ lim

δ→0+

[
γE + ln(µR−) + i φ−

δ + i (r − r′)
+
γE + ln(µR−)− i φ−

δ − i (r − r′)

]}
=

1

r

∫ ∞
0

r′

r + r′
f(r′) dr′ − 1

r
lim
ε→0+

[∫ r−ε

0

r′

r − r′
f(r′) dr′ +

1

r

∫ ∞
r+ε

r′

r′ − r
f(r′) dr′

]
+ L1 , (9.52)

where it is understood that 0 < δ < ε before the limits are taken. The first line in

equation (9.52) already reproduces the first line in the result (9.45), and we need only
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compute

L1 ≡ −
1

π r
lim
ε→0+

∫ r+ε

r−ε
dr′ f(r′) r′ lim

δ→0+

[
γE + ln(µR−) + i φ−

δ + i (r − r′)
+
γE + ln(µR−)− i φ−

δ − i (r − r′)

]
.

By swapping the limit with the integral and defining a contour around the pole at r′ = r,

we get

L1 = − 1

π r
lim
ε→0+

{
lim
δ→0+

∫ 2π

π
i ε ei t dt (r + ε ei t) f(r + ε ei t)

×

γE + ln
(
µ
√
δ2 + ε2 e2 i t

)
− i arctan

(
ε ei t

δ

)
δ − i ε ei t

+
γE + ln

(
µ
√
δ2 + ε2 e2 i t

)
+ i arctan

(
ε ei t

δ

)
δ + i ε ei t

 .

(9.53)

We can finally use the fact that f is locally smooth and Taylor expand it as f(r+ ε ei t) =

f(r) +O(ε). Hence,

L1 =− f(r)

π
lim
ε→0+

lim
δ→0

∫ 2π

π
i εei t dt

γE + ln
(
µ
√
δ2 + ε2 e2 i t

)
− i arctan

(
ε ei t

δ

)
δ − i ε ei t

+O(ε)


− f(r)

π
lim
ε→0+

lim
δ→0

∫ 2π

π
i εei t dt

γE + ln
(
µ
√
δ2 + ε2 e2 i t

)
+ i arctan

(
εei t

δ

)
δ + i ε ei t

+O(ε)


=− 4 f(r)

π
lim
ε→0+

{
lim
δ→0+

arctan
( ε
δ

) [
γE + ln

(
µ
√
δ2 + ε2

)]
+O(ε)

}
=− 2 f(r) [γE + ln(µ ε)] , (9.54)

which completes the result presented in equation (9.45).
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10.1 Introduction

In earlier work [77] we derived the leading quantum corrections to the interior and exterior

region of the spacetime containing a constant and uniform density star, which are clas-

sically described by the well-known interior and vacuum Schwarzschild solutions. These

calculations were done in the framework of the effective field theory for quantum grav-

ity [34–37,61,140,351]. Corrections obtained in this way are the result of integrating out

the quantum fluctuations of the graviton.

Remarkably, despite the fact that quantum general relativity is not renormalizable,

it is possible to make predictions in quantum gravity. These predictions apply to any

model for which Lorentz invariance is a fundamental symmetry, general relativity is the

correct low energy limit, and for which quantum field theory methods remain applicable

up to the Planck scale. The quantum gravitational effective action contains two parts

consisting of local and nonlocal operators. While the Wilson coefficients of the local part

are non-calculable without knowing the ultraviolet complete theory of quantum gravity,

the Wilson coefficients of the nonlocal part of the action are calculable from first principles

and depend only on the infrared physics which is very well understood as we know general

relativity.

Any unknown physics coming from an ultraviolet complete theory, would give rise to

extra quantum corrections in the form of local operators. However, such physics only

gives rise to contact interactions below the Planck scale. For example, integrating out

Kaluza-Klein interactions would give rise to contact interactions. Furthermore, it was

shown in [77] that corrections due to such contact interactions are subleading in the case

of a star, assuming higher order curvature terms are not unnaturally large. The leading

order corrections to the metric describing the spacetime around a star only depend on the

nonlocal physics which is calculable from first principles and in a model independent way,

without a detailed knowledge of the ultraviolet complete theory of quantum gravity.

In this paper we will use the results from Ref. [77] to derive the leading quantum

corrections to the geodesics and the scalar waves in such a quantum corrected spacetime.

A complication in these calculations may arise, since the metric corrections and curvature

invariants, such as the Ricci scalar, diverge when the surface of the star is approached.

These secularities indicate a breakdown of the perturbative approach that is used, and

result from the fact that the interior Schwarzschild solution of general relativity contains

a step-like discontinuity in the energy density at the star surface.

Since the Einstein equations in general relativity only involve second order derivatives

of the metric, step-like discontinuities result in acceptable C1 metrics. 1 Quantum gravity

in the effective field theory approach, on the other hand, is an infinite derivative theory

and it therefore requires C∞ sources in order to produce continuous metrics. In other

words, one should also determine a quantum correction to the matter source which makes

it compatible with the effective quantum equations for the metric. However, quantum

corrections to the uniform matter source appear really necessary only within a layer of

1Even Dirac delta-like discontinuities in the energy density produce continuous metrics, which leads to
the well-known case of shell-like sources.
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thickness of the order of the Planck length around the surface, and are expected to remain

phenomenologically negligible.

In any case, and although the non-smooth solutions of general relativity are not ex-

pected to be physical, they can still serve as important toy models. This is particularly

true for the Schwarzschild interior, as it is an analytical solution of the Einstein equations,

that could approximate compact objects.

While it seems difficult to find practical applications for our results, they are a further

demonstration that model independent calculations are possible in quantum gravity at

energies below the Planck scale. This is in sharp contrast to the standard lore which

states that quantum gravity is a mystery: we do not have a theory of quantum gravity

and thus quantum gravitational calculations are not possible. This is simply not true

and our results help to reinforce this point. As such, our findings are very important as

they further demonstrate that quantum gravitational calculations are possible at energies

below the Planck scale.

This paper is organized as follows: in the next section we state the results derived

in [77]; in section 10.3, we solve the radial geodesics perturbatively and derive the leading

quantum corrections; in section 10.4 we turn to the radial modes of the scalar field and

solve their equations of motion perturbatively to derive the leading quantum corrections;

finally in section 10.5 we conclude.

10.2 The quantum corrected metric

We here consider the quantum corrected metric derived in [77], which is static and spher-

ically symmetric and can therefore be written as

ds2 = −f(r) dt2 + g(r) dr2 + r2 dΩ2. (10.1)

where dΩ2 = dθ2 + (sin θ)2 dφ2. Outside the star of radius Rs (that is, for r > Rs), the

metric functions are given by

f(r) = 1− 2GNM

r
+ αe(r), (10.2)

g(r) =

(
1− 2GNM

r

)−1

+ βe(r), (10.3)

where

αe(r) = α̃
2GN `

2
pM

R3
s

[
2
Rs

r
+ ln

(
r −Rs

r +Rs

)]
+O

(
G3

N

)
,

βe(r) = β̃
2GN `

2
pM

r (r2 −R2
s )

+O
(
G3

N

)
, (10.4)
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with 2

α̃ = 96π (α+ β + 3γ) (10.5)

β̃ = 192π (γ − α). (10.6)

In the stellar interior (given by 0 ≤ r < Rs), we likewise have

f(r) =
1

4

(
3

√
1− 2GNM

Rs
−

√
1− 2GNMr2

R3
s

)2

+ αi(r), (10.7)

g(r) =

(
1− 2GNMr2

R3
s

)−1

+ βi(r), (10.8)

where now

αi(r) = α̃
2GN `

2
pM

R3
s

ln

(
R2

s

R2
s − r2

)
+O(G3

N),

βi(r) = β̃
2GN `

2
pM r2

R3
s (R2

s − r2)
+O(G3

N). (10.9)

Moreover, we assume throughout the paper that the Buchdahl limit [62] is satisfied, so

that

Rs ≥
9

8
(2GNM). (10.10)

Let us remark that the Newton constant GN is dimensionful and the displayed per-

turbation expansion is therefore a shorthand notation for two contributions, which are

different in nature. In particular,

O
(
G3

N

)
= `2pRO

(
[2GNM/Rs]

2
)

+O
(
`4pR2

)
, (10.11)

where `p is the Planck length, and R is the curvature scalar. The true perturbation

parameters are thus the inverse of the radius of curvature in units of the Planck length

and the compactness of the star, which are dimensionless as they should.

Furthermore, the quantum corrections become secular when r ∼ Rs. This secularity

can be avoided, if the layer

(1− δ)Rs < r < (1 + δ)Rs with δ ∼
(

2GNM

Rs

)(
`p
Rs

)2

(10.12)

is excluded, as discussed in [77].

Finally, we recall that the metric can be rewritten as

ds2 = f(r)(−dt2 + dr2
∗) + r2dΩ2 (10.13)

2The values for α, β and γ can be found in [77].
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by introducing the tortoise coordinate

r∗ =

∫ r
√
g(r′)

f(r′)
dr′. (10.14)

This form is particularly useful fo studying waves and will be employed in section 10.4.

10.3 Geodesics

Geodesic equations can be derived in a way similar to the derivation in a Schwarzschild

metric. The quantum corrected star metric has four Killing vectors. Three of those are

due to the spherical symmetry, and one due to time-invariance. We use two of these Killing

vectors to fix the direction of the angular momentum along the polar axis by setting

θ =
π

2
. (10.15)

The remaining two Killing vectors can then be written as

Kµ = (∂t)
µ, (10.16)

Rµ = (∂φ)µ, (10.17)

and can be used to define a conserved energy

E = −Kµ
dxµ

dλ
= f(r)

dt

dλ
(10.18)

and a conserved angular momentum

L = Rµ
dxµ

dλ
= r2 dφ

dλ
. (10.19)

Furthermore, along geodesics the quantity

ε = −gµν
dxµ

dλ

dxν

dλ
(10.20)

is also conserved. For massive particles we can set ε = 1, as long as we identify λ = τ as

the proper time along the geodesic. For massless particles ε = 0 with λ an arbitrary affine

parameter. By making use of the conserved quantities, we can rewrite Eq. (10.20) as(
dr

dλ

)2

+
1

g(r)

(
L2

r2
+ ε

)
=

E2

f(r) g(r)
. (10.21)

Compatibly with the quantum corrections described in section 10.2, we will solve this

equation perturbatively in the Planck length and the star compactness, by writing

r(λ) = rc(λ) + rq(λ), (10.22)
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where

rc(λ) =
∞∑
m=0

r0,m(λ)

(
2GNM

Rs

)m
(10.23)

represents the classical trajectory, and

rq(λ) =
∞∑
n=1

∞∑
m=0

rn,m(λ)

(
`p
Rs

)2n(2GNM

Rs

)m
(10.24)

is the quantum correction.

10.3.1 Exterior region

In the exterior region, r > Rs, we can write(
dr

dλ

)2

+
L2

r2
− 2GNM

Rs

(
L2

r2
+ ε

)
Rs

r
+ Vq(r) = η2, (10.25)

where η =
√
E2 − ε and the effective quantum potential is given by

Vq(r) = E2 αe(r) + η2 βe(r)−
L2

r2
βe(r). (10.26)

We notice that the term proportional to E2 signals a violation of the equivalence

principle, since the acceleration undergone by the particle following the geodesic depends

on its energy. However, αe = O(G2
N) ∼ (`p/Rs)

2 in the sense explained after Eq. (10.11),

and the size of this violation remains negligibly small throughout space. The quantum

corrections to the metric outside the star are larger near the surface. In order to study

geodesics for which the quantum corrections are expected to be the largest, we impose the

boundary conditions

rc(0) = Rs, (10.27)

rq (λ0 →∞) = 0. (10.28)

This somewhat unconventional choice of specifying the boundary conditions at two differ-

ent points is motivated by the fact that one cannot set rq(λ = 0) = 0, as the quantum

corrections diverge at the surface of the star. Instead one can impose any boundary condi-

tion on rq(λ0) for any λ0 > 0, as this boundary condition does not impact the cumulative

quantum corrections along a particular segment of the geodesic. For this one has to eval-

uate the difference rq(λ2)− rq(λ1), for specified values λ1 and λ2, and any such difference

is independent of the specific choice of λ0.

For L = 0 one finds the leading classical solutions for an outgoing radial geodesic

(λ ≥ 0)

r0,0(λ) = η λ+Rs, (10.29)

r0,1(λ) =
εRs

2 η2
ln

(
1 +

η λ

Rs

)
, (10.30)
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and the leading quantum corrections

r1,0(λ) = 0 (10.31)

r1,1(λ) =
α̃E2Rs

2 η2

[
2 ln

(
2Rs + ηλ

Rs + ηλ

)
− 2 +

ηλ

Rs
ln

(
1 +

2Rs

ηλ

)]
+
β̃Rs

4
ln

[
ηλ(2Rs + ηλ)

(Rs + ηλ)2

]
. (10.32)

Notice that r11(λ) contains a secular term proportional to β̃ for λ→ 0, which was expected,

and occurs within the interval of Eq. (10.12). However, the term proportional to E2 never

grows large even for λ ∼ 0, and the violation to the equivalence principle therefore remains

of order (`p/Rs)
2 everywhere in r > Rs.

10.3.2 Interior region

In the interior region we can write(
dr

dλ

)2

+
L2

r2
−

[(
L2

r2
+ ε

)(
r

Rs

)2

+
3E2(R2

s − r2)

2R2
s

]
2GNM

Rs

−3E2(11R4
s − 14R2

s r
2 + 3r4)

16R4
s

(
2GNM

Rs

)2

+ Vq(r) = η2, (10.33)

where we again set η =
√
E2 − ε and the effective quantum potential now reads

Vq(r) = E2 αi(r) + η2 βi(r)−
L2

r2
βi(r). (10.34)

Like in the exterior, we impose initial conditions suitable for studying radial geodesics

near the surface, that is

rc(0) = Rs , (10.35)

rq

(
−Rs

η

)
= A, (10.36)

where we will fix the value of A at a later stage.

For L = 0 one finds the leading classical solution for an outgoing radial geodesic (λ ≤ 0)

is given by

r0,0(λ) = η λ+Rs, (10.37)

r0,1(λ) =
ε λ

2 η
− (3E2 − 2 ε) (3Rs + η λ)

λ2

12R2
s

, (10.38)
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and the leading quantum corrections read

r1,0(λ) = 0 (10.39)

r1,1(λ;x) =
α̃E2Rs

2η2

[
2 ln

(
2 +

ηλ

Rs

)
− 2 +

ηλ

Rs

{
ln

[
−ηλ
Rs

(
2 +

ηλ

Rs

)]
− 2

}]
+
β̃Rs

4

{
2 + 2

ηλ

Rs
− ln

[
−
(

1 +
2Rs

ηλ

)]}
+A. (10.40)

Notice that r11(λ) also contains a secular term proportional to β̃ for λ→ 0 which, like for

the exterior expression (10.32), occurs within the interval given in Eq. (10.12).

10.3.3 Crossing the surface

By means of the previous results, we can analyze the discontinuities (of quantum ori-

gin) that the radial geodesics would encounter across r = Rs. Since we assumed initial

conditions such that the classical radial geodesics rc can be joined continuously across

r = Rs, we just need to calculate the difference between the non-vanishing quantum ex-

terior correction in Eq. (10.32) and the interior analogue in Eq. (10.40) at r = Rs, which

yields

lim
λ→0

[
rext

1,1 (λ)− rint
1,1(λ)

]
=
β̃ Rs

2
[ln(2)− 1]−A. (10.41)

We then notice that the interior and exterior geodesics can be continuously connected by

fixing A such that the boundary condition for the interior solution is given by

rint
q

(
−Rs

η

)
=
β̃ Rs

2
[ln(2)− 1] , (10.42)

provided for the exterior solution one employs the condition

rext
q (∞) = 0, (10.43)

which was used to determine Eq. (10.32).

One could go further and check the smoothness of the solution, and find that there

is a discontinuity in the first derivative that cannot be removed. However, this is not a

physical effect, as it occurs in the interval (10.12), and is thus expected to be regularized

once the interior Schwarzschild solution is smoothened like we wrote in the Introduction.

10.4 Scalar fields

The equation of motion for a free scalar field Φ with mass µ is given by

�Φ = µ2 Φ. (10.44)

Since our metric (10.1) has spherical symmetry, we can separate the angular variables from

the other coordinates and write Φ(t, r, θ, φ) = Φ(t, r)S(θ, φ), where S can be decomposed
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in the usual spherical harmonics satisfying(
∂2
θ +

cos θ

sin θ
∂θ +

1

(sin θ)2
∂2
φ

)
Y (θ, φ) = − l(l + 1)Y (θ, φ). (10.45)

It is then convenient to consider one mode at a time and further separate time from

the radial coordinate, to wit Φ(t, r) = Ψ(t) Φ(r), where Ψ ∼ ei ω t and satisfies

Ψ̈(t) = −ω2 Ψ(t). (10.46)

Furthermore, using the metric (10.13) with the tortoise-like coordinate r∗ yields the radial

equation [
∂2
r∗ + η2 − l(l + 1)

r2

]
u(r) = (Vc + Vq)u(r), (10.47)

where r∗ is given as a function of r in Eq. (10.14), η2 = ω2 − µ2 > 0 and

u(r) = r∗(r) Φ(r). (10.48)

Notice that we have explicitly separated the effective potential into a classical part,

Vc(r) = [f(r)− α(r)− 1]

[
µ2 +

l (l + 1)

r2

]
(10.49)

and a quantum contribution

Vq(r) = α(r)

[
µ2 +

l (l + 1)

r2

]
. (10.50)

Like for the geodesics, we can expand the radial function in the same perturbative

parameters of the quantum corrections to the metric and write

u(r) = uc(r) + uq(r)

=

∞∑
n,m=0

un,m(r)

(
`p
Rs

)2n(2GNM

Rs

)m
, (10.51)

where uc contains all the terms with n = 0.

We are particularly interested in how quantum corrections to the metric affect the

s-waves with l = 0 originating near the surface of the star. On using the fact that Vc and

Vq are of order (at least) GN, we immediately obtain

u0,0(r) = A cos [η (r∗ −R∗s )] , (10.52)

u1,0(r) = 0, (10.53)

where A and R∗s are integration constants which we will suitably set in the following

subsections. The effect of the potentials (10.49) and (10.50) can then be determined

perturbatively by treating them as sources acting on the unperturbed solutions defined by

Eqs. (10.52) and (10.53).
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10.4.1 Exterior region

In the exterior region, the tortoise coordinate is given by

r∗(r) = r + 2GNM ln

(
r

2GNM
− 1

)
+

1

2

∫ ∞
r

[
αe(r

′)− βe(r
′)
]
dr′ + C, (10.54)

where we set the integration constant C so that

R∗s = Rs + 2GNM ln

(
Rs

2GNM
− 1

)
. (10.55)

In order to determine the radial function in such a way that all corrections to the unper-

turbed solutions (10.52) and (10.53) vanish at some r = (1 + δ)Rs > Rs, we impose the

boundary condition

u[(1 + δ)Rs] = A, (10.56)

where A is the same constant as in Eq. (10.52) and δ is the same parameter that defines

the excluded layer in Eq. (10.12).

We want to see how these modes behave for values of r > (1 + δ)Rs. The radial

equation (10.47) can then be rewritten as the integral equation

u(r∗) = A cos[η (r∗ −R∗s )] +

∫ ∞
(1+δ)R∗s

G(r∗, r
′
∗)
[
Vc(r

′
∗) + Vq(r′∗)

]
u(r′∗) dr

′
∗, (10.57)

where the Green’s function is given by

G(r∗, r
′
∗) =

 1
η sin [η(r∗ − r′∗)] if r′∗ ≤ r∗,

0 if r′∗ > r∗.
(10.58)

In order to solve the integral equation, one needs to invert Eq. (10.54), which can be done

perturbatively using

r∗ −R∗s = r −Rs +O (2GNM/Rs) . (10.59)

This is valid if the secularity is avoided, which is the case for r > (1 + δ)Rs. The leading

classical solution is then found to be 3

u0,1(r) =
µ2RsA

2η

{
ln(Rs/r) sin [η(r∗ −R∗s )] + [Si(2ηr)− Si(2ηRs)] cos [η(r +Rs)]

− [Ci(2ηr)− Ci(2ηRs)] sin [η(r +Rs)]
}
, (10.60)

3Note we make use of Eq. (10.59) also in order to express the result in the coordinate r.
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and the leading quantum correction

u1,1(r) =
α̃µ2A

4η2

({
γE + ln

[
4ηRs(r −Rs)

r +Rs

]
− Ci(2η|r −Rs|)

}
cos[η(r∗ −R∗s )]

+

[
4ηRs ln

(
2r

r +Rs

)
+ 2η(r −Rs) ln

(
r −Rs

r +Rs

)
− Si(2η|r −Rs|)

]
sin[η(r∗ −R∗s )]

− 4ηRs [Si(2ηr)− Si(2ηRs)] cos[η(r +Rs)]

+ 4ηRs [Ci(2ηr)− Ci(2ηRs)] sin[η(r +Rs)]

+ {Ci[2η(r +Rs)]− Ci(4ηRs)} cos[η(r + 3Rs)]

+ {Si[2η(r +Rs)]− Si(4ηRs)} sin[η(r + 3Rs)]
)
, (10.61)

where Ci and Si are cosine and sine integrals. Notice that the results are independent of

δ, since corrections due to δ are subleading by its definition in Eq. (10.12). Furthermore,

at this order in perturbation theory, the divergences of the metric corrections (10.4) can

be absorbed in the phase

r∗ −R∗s = r −Rs + 2GNM ln(r/Rs) +
1

2

∫ ∞
r

[
αe(r

′)− βe(r′)
]
dr′

= (r −Rs)

(
1 +

2GNM

Rs

)
+

({
α̃ [ln(2)− 1] +

β̃

4
ln

[
2(r −Rs)

Rs

]}
Rs

−1

2

{
α̃

[
1 + ln

(
r −Rs

2Rs

)]
+

3

4
β̃

}
(r −Rs)

)
2GNM

Rs

`2p
R2

s

+O (r −Rs)
2 +O

(
2GNM

Rs

)2

+O
(
`p
Rs

)4

. (10.62)

10.4.2 Interior region

In the interior region the tortoise coordinate is given by

r∗(r) = r +
r

4

(
3− r2

R2
s

)
2GNM

Rs
− 1

2

∫ r

0

[
αi(r

′)− βi(r′)
]
dr′ +D, (10.63)

and D is chosen so that

R∗s = Rs +GNM. (10.64)

We again impose a boundary condition, in order to fix the wave mode this time at r =

(1− δ)Rs, to wit

u[(1− δ)Rs] = A. (10.65)

Like in the exterior, Eq. (10.47) yields the integral equation

u(r) = A cos[η (R∗s − r∗)] +

∫ (1−δ)R∗s

0
G(r∗, r

′
∗)
[
Vc(r

′) + Vq(r
′)
]
u(r′) dr′∗, (10.66)
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with the Green’s function here given by

G(r∗, r
′
∗) =

0 if r′∗ < r∗,

1
η sin [η(r′∗ − r∗)] if r′∗ ≥ r∗.

(10.67)

Eq. (10.63) can again be inverted perturbatively using

R∗s − r∗ = Rs − r +O
(

2GNM

Rs

)
, (10.68)

which is valid inside the ball 0 ≤ r < (1 − δ)Rs. The leading classical solution is then

found to be 4

u0,1(r) =
m2A

24η3R2
s

{
3η (r2 −R2

s ) cos[η(r∗ −R∗s )]

+
[
2η2(r −Rs)(r

2 + rRs − 8R2
s )− 3(r +Rs)

]
sin[η(r∗ −R∗s )]

}
, (10.69)

and the leading quantum correction

u1,1(r) =
α̃m2A

4η2

(
−
[
γE + ln

(
η|r2 −R2

s |
Rs

)
− Ci(2η|r −Rs|)

]
cos[η(r∗ −R∗s )]

+

{
4ηRs ln

(
2Rs

r +Rs

)
+ 2η(r −Rs)

[
2− ln

(
|r2 −R2

s |
R2

s

)]
− Si(2η|r −Rs|)

}
sin[η(r∗ −R∗s )]

+ {Ci[2η(r +Rs)]− Ci(4ηRs)} cos[η(r + 3Rs)]

+ {Si[2η(r +Rs)]− Si(4ηRs)} sin[η(r + 3Rs)]
)
. (10.70)

The results in the interior are again independent of δ, to leading order, and the divergences

of the metric corrections (10.9) can also be absorbed in the phase

r∗ −R∗s = r −Rs +

[
r

4

(
3− r2

R2
s

)
− Rs

2

]
2GNM

Rs
− 1

2

∫ r

0
αi(r

′)− βi(r′)dr′

= r −Rs −

(
Rs

{
α̃[1− ln(2)] +

β̃

4

[
2 + ln

(
|r −Rs|

2Rs

)]}

+

{
α̃

2

[
1− ln

(
2|r −Rs|

Rs

)
+

3 β̃

8

]}
(r −Rs)

)
2GNM

Rs

`2p
R2

s

+O (r −Rs)
2 +O

(
2GNM

Rs

)2

+O
(
`p
Rs

)4

. (10.71)

10.5 Discussion

In this work we calculated the leading quantum corrections to the geodesics and the scalar

waves in a spacetime containing a constant and uniform density star. We have shown as

a proof of principle that such calculations can be done in quantum gravity. Furthermore,

4We make use of Eq. (10.68) to revert to the coordinate r.
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we have found that the divergences at the surface of the star found in Ref. [77], do not

cause serious issues for such calculations. In fact, these divergences can be kept well

under control, if a Planck length layer around the surface of the star is excluded from the

analysis. It is then possible to connect the interior and exterior solutions in a continuous,

but not differentiable way, between the boundaries of such a layer.

In the case of geodesics the quantum corrections only affect the velocity with respect

to the proper time for a particle following the geodesic. For scalar waves on the other

hand the quantum corrections give rise to both wavelike perturbations to the classical

wave solution and to a phase shift of the classical solution. The latter could in principle

lead to a measurable blueshift when the star surface is approached. However, this would

require compact objects to have density profiles that are smoothened out within a Planck

length interval around the surface of the star, and thus derivatives of the energy density

that exceed the Planck scale. For any realistic matter distribution one would expect that

all derivatives of the energy density remain below the Planck scale.

We conclude that neither the perturbations nor the phase shift are expected to be

measurable for realistic density profiles with current or near future experiments. However,

the latter effect is in fact very interesting, as it shows that quantum gravity introduces a

redshift due to the gradient of the density profile, while the redshift in general relativity

results only from the presence of mass.
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Chapter 11

Singularity Theorems in the

Effective Field Theory for

Quantum Gravity at Second Order

in Curvature

Folkert Kuipers and Xavier Calmet

Department of Physics and Astronomy, University of Sussex, Brighton, BN1 9QH,

United Kingdom

Abstract

In this paper we discuss singularity theorems in quantum gravity using effective field the-

ory methods. To second order in curvature, the effective field theory contains two new

degrees of freedom which have important implications for the derivation of these theo-

rems: a massive spin-2 field and a massive spin-0 field. Using an explicit mapping of this

theory from the Jordan frame to the Einstein frame, we show that the massive spin-2

field violates the null energy condition, while the massive spin-0 field satisfies the null

energy condition, but violates the strong energy condition. Due to this violation classical

singularity theorems are no longer applicable, indicating that singularities can be avoided,

if the leading quantum correction are taken into account.

This chapter has been published in Universe 6, no. 10, p. 0171 (2020).

A preprint of the chapter can be found at arXiv:1911.05571 [gr-qc].
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11.1 Introduction

The significance of singularity theorems in general relativity first presented in the seminal

papers of Penrose and Hawking [191, 291] cannot be overemphasized. Since these foun-

dational works several adaptions and refinements of the singularity theorems have been

developed (see e.g. [55, 60, 155, 302, 344]). In general, all these theorems boil down to the

same principle: the assumption of some energy condition together with some global state-

ment about space-time leads to the prediction of geodesic incompleteness somewhere in

the space-time. Geodesic incompleteness is then often taken as equivalent to the existence

of a singularity, although the latter is a slightly stronger statement (see e.g. [359]).

A crucial ingredient for the proof of most of singularity theorems is the Raychaudhuri

equation1, that can be derived from the Einstein field equations. It is therefore crucial to

assume classical general relativity for singularity theorems to hold, and for any deviations

of general relativity one would have to reassess the derivation of singularity theorems, as

was done, for example, for f(R) gravity [13].

It is clear that general relativity needs to be embedded in a gravitational theory which

can be quantized, i.e. a theory of quantum gravity, if one accounts for the quantum

properties of matter and space-time. Such a theory of quantum gravity is not known

yet, but many different approaches to such a theory have been formulated. Furthermore

any theory of quantum gravity should in the infrared limit reduce to general relativity.

Despite the lack of a unique theory of quantum gravity, quantum corrections to general

relativity solutions can be calculated using effective field theory methods [34–37, 61, 140,

351]. Calculations done in this framework apply to any ultraviolet complete theory of

quantum gravity and are valid at energies scales up to the Planck mass, and thus in the

entire spectrum that can potentially be probed experimentally.

It is expected that in a theory for quantum gravity singularities will be resolved, since

singularities lead to pathologies both in general relativity and quantum field theory. How-

ever, singularities cannot be avoided as long as singularity theorems hold. It is therefore

an important question whether the assumptions of the singularity theorems break down

in a theory for quantum gravity. A discussion of possible quantum loop holes for the

singularity theorems can for example be found in [157].

In this work we discuss the validity of the singularity theorems in the framework of the

effective field theory approach to quantum gravity. A drawback of this approach is that

the theory is not valid at energy scales larger than the Planck mass which corresponds

to regions of large curvature, where singularities are expected to form. We shall assume

that the physics responsible for the avoidance of singularities becomes relevant at energies

below the Planck scale and can thus be described within our mathematical framework,

an example would be, e.g., a bounce solution in a stellar collapse to a black hole [161] or

in FLRW cosmology which would avoid a Big Crunch solution [143]. We note that this

approach goes beyond general relativity and it is applicable to any theory of quantum

gravity that does not break diffeomorphism invariance.

This paper is organized as follows: in the next section we derive the action for effective

1However, see [156] for a recent example that doesn’t make use of this equation



153

α β γ

Scalar 5(6ξ − 1)2 −2 2

Fermion −5 8 7

Vector −50 176 −26

Graviton 250 −244 424

Table 11.1: Non-local Wilson coefficients of various fields. All numbers should be divided
by 11520π2. ξ denotes the value of the non-minimal coupling for a scalar theory. We refer
to [48, 132] for the calculation of the values for the scalar, fermion and vector field. It is
known that the graviton self interactions [219] make the form factors ill-defined, as the
Wilson coefficients become gauge dependent. However, there is a well defined procedure
to resolve these ambiguities [34,35].

quantum gravity in the Einstein frame. In section 11.3 we discuss singularity theorems in

effective quantum gravity using this action. In section 11.4 we then conclude. Furthermore,

in appendix 11.A we discuss the classical Hawking and Penrose singularity theorems, and

in appendix 11.B we discuss a refined statement of Hawking’s theorem using weakened

energy conditions.

In this paper we work in the (+ − −−) metric and use the conventions Rρσµν =

∂µΓρνσ − ..., Rµν = Rλµλν , Tµν = 2√
|g|

δSm
δgµν . Furthermore κ2 = 8πGN.

11.2 Effective quantum gravity in the Einstein frame

While an ultraviolet complete theory of quantum gravity is still elusive, it has been shown

[34–37,61,140,351], that quantum gravity can be well described by an effective field theory

as long as one considers physical effects taking place at energies below the Planck scale.

The effective field theory is obtained by integrating out the graviton fluctuations and

potentially other massless degrees of freedom. After the various low energy fields have

been integrated out, one finds the following action

S =

∫
d4x
√
|g|
{
− R

2κ2
+ c1(µ)R2 + c2(µ)RµνR

µν + c3(µ)RµνρσR
µνρσ + αR ln

(
�
µ2

)
R

+βRµν ln

(
�
µ2

)
Rµν + γRµνρσ ln

(
�
µ2

)
Rµνρσ +O(κ2)

}
+ Sm, (11.1)

where µ is the renormalization scale. The action is given up to second order in curvature

and higher order corrections are suppressed in the O(κ2) term. The effective action of any

ultraviolet complete theory of quantum gravity that respects diffeomorphism invariance

can be written in this form when expanded to second order in curvature. We emphasize

that the Wilson coefficients ci depend on the UV-completion of the theory and are only

calculable within a specific UV-complete model of quantum gravity. Nevertheless it is

expected that these coefficients are non-zero unless some undiscovered symmetry protects

them or if fine tuning occurs. Moreover the values are bounded by the Eöt-Wash ex-

periment [202] to ci . 1061. The non-local Wilson coefficients α, β, γ are calculable and

independent of such a specific UV-completion. The values of these coefficients are given

in Table 11.1.
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We will now map this theory to the Einstein frame, in which the theory is represented as

standard general relativity with additional matter fields. After this frame transformation,

the usual singularity theorems are applicable, if the new fields satisfy the given energy

conditions. Mappings to the Einstein frame for R and Rµν theories have been discussed

in [92, 100, 154, 215, 245, 246]. Furthermore, the case of higher derivative gravity without

non-local interactions has been discussed in [197]. Here we follow the same approach but

include the non-local terms in the effective quantum gravity formalism.

Using the Gauss-Bonnet theorem the effective action can be rewritten as2

S = − 1

2κ2

∫
d4x
√
|g|
{
R− κ2RL̂1R− κ2CµνρσL̂2C

µνρσ +O(κ4)
}

+ Sm, (11.2)

where C is the Weyl tensor and

L̂1 =
2

3

[
3c1(µ) + c2(µ) + c3(µ) + (3α+ β + γ) ln

(
�
µ2

)]
, (11.3)

L̂2 =

[
c2(µ) + 4c3(µ) + (β + 4γ) ln

(
�
µ2

)]
. (11.4)

We apply a Legendre transform to the function

f1(R) = R− κ2RL̂1R, (11.5)

and find

S = − 1

2κ2

∫
d4x
√
|g|
{
φR− V1(φ)− κ2CµνρσL̂2C

µνρσ +O(κ4)
}

+ Sm, (11.6)

where

R =
∂V1(φ)

∂φ
, (11.7)

φ =
∂f1(R)

∂R
. (11.8)

We integrate the first equation and fix the integration constant such that

V1(φ) = − 1

4κ2
(φ− 1)L̂−1

1 (φ− 1), (11.9)

where we use the notation L̂−1
1 to denote the Green’s function of the operator L̂1. If we

apply a conformal transformation to the metric

gµν → ḡµν = |φ|gµν = exp

(√
2κ2

3
χ

)
gµν , (11.10)

2Due to the presence of a ln(�) term in L̂2, the Gauss-Bonnet theorem does not hold in full generality.
However, it is valid up to this order in κ [37–39,70]
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where we have introduced a new field χ, we can rewrite the action as

S = − 1

2κ2

∫
d4x
√
|ḡ|
{
R̄+
√

6κ�̄χ− κ2∇̄µχ∇̄µχ−
V1[φ(χ)]

φ(χ)2
− κ2C̄µνρσL̂2C̄

µνρσ

−2κ2Lm (X, gµν)

φ(χ)2
+O(κ4)

}
, (11.11)

where we have used that the Weyl tensor does not transform under a conformal rescaling

of the metric. Furthermore, X represents all matter fields.

We can drop the total divergence term, since it does not affect the equations of motion,

and apply the Gauss-Bonnet theorem to rewrite the Weyl tensor. We then find

S = − 1

2κ2

∫
d4x
√
|ḡ|
{
R̄− κ2∇̄µχ∇̄µχ−

V1[φ(χ)]

φ(χ)2
− 2κ2R̄µνL̂2R̄

µν +
2κ2

3
R̄L̂2R̄

−2κ2Lm (X, gµν)

φ(χ)2
+O(κ4)

}
. (11.12)

We consider the function

f2(R̄µν) = R̄− 2κ2R̄µνL̂2R̄
µν +

2κ2

3
R̄L̂2R̄, (11.13)

and apply a Legendre transform to this part of the action, which results in

S = − 1

2κ2

∫
d4x
√
|ḡ|
{
ψµνR̄µν − V2(ψµν)− κ2∇̄µχ∇̄µχ−

V1[φ(χ)]

φ(χ)2

−2κ2Lm (X, gµν)

φ(χ)2
+O(κ4)

}
, (11.14)

where3

R̄µν =
∂V2(ψµν)

∂ψµν
, (11.15)

ψµν =
∂f2(R̄µν)

∂R̄µν
. (11.16)

We integrate the first equation and fix the integration constant such that4

V2(ψµν) = − 1

8κ2

(
ψµν −

1∓ i
√

3

4
ψ ḡµν ∓ i

√
3 ḡµν

)
L̂−1

2

(
ψµν − 1∓ i

√
3

4
ψ ḡµν ∓ i

√
3 ḡµν

)
.

(11.17)

We perform another metric transformation such that

ḡµν → g̃µν =
√
|ψ| ḡµρ

(
ψ−1

)ρ
ν
, (11.18)

3Note that the spin-2 field is symmetric in its indices, since Rµν is symmetric.
4The potential V2 is real, which can easily be shown by evaluating the expression.
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where we define the determinants

|g| = det (gµν) , (11.19)

|ψ| = det (πµν) , (11.20)

and we write

ψ̃µν = ψµν , (11.21)

ψ̃µν = ψ̃µρg̃
ρν , (11.22)

ψ̃µν = g̃µρψ̃
ρ
ν . (11.23)

We obtain the transformed action

S = − 1

2κ2

∫
d4x
√
|g̃|
{
R̃− κ2

(
ψ−1

)µ
ν
∇̃νχ∇̃µχ

+ g̃µν
(
∇̃ρQρµν − ∇̃νQρρµ +QρρσQ

σ
µν −QρσµQσρν

)
− V1[φ(χ)]

φ(χ)2
√
|ψ|
− V2(ψµν)√

|ψ|
− 2κ2Lm (X, gµν)

φ(χ)2
√
|ψ|

+O(κ4)

}
, (11.24)

where

Qρµν(ψαβ) =
1

2
ḡρσ(ψαβ)

(
∇̃µḡνσ(ψαβ) + ∇̃ν ḡσµ(ψαβ)− ∇̃σ ḡµν(ψαβ)

)
. (11.25)

We again drop the total derivative terms, and we define a new spin-2 field ξ such that

ψµν =
(

1 +
κ

2
ξ
)
δµν − κξµν (11.26)

with ξ = ξµµ. We find

V2(ψµν) = −1

8

(
ξµνL̂

−1
2 ξνµ − ξL̂−1

2 ξ
)
. (11.27)

After this transformation the action becomes

S =

∫
d4x
√
|g̃|

{
− R̃

2κ2
+

1

2
∇̃νχ∇̃µχ+

V1[φ(χ)]

2κ2φ(χ)2
√
|ψ(ξ)|

−
[

1

2
ξ�̃ξ − 1

2
ξµν�̃ξµν − ξµν∇̃µ∇̃νξ + ξµν∇̃ρ∇̃νξρµ

]
+
V2(ψµν(ξ))

2κ2
√
|ψ(ξ)|

+ Lm (X, gµν)

}
+O(κ), (11.28)

where we used that φ(χ) = 1 +O(κ), ψµν = δµν +O(κ). In addition, we expand the terms
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containing a potential using L̂ = ˆ̃L+O(κ) and find

S =

∫
d4x
√
|g̃|

{
− R̃

2κ2
+

1

2
∇̃µχ∇̃µχ− χ(12κ2 ˆ̃L1)−1χ

−
[

1

2
ξ�̃ξ − 1

2
ξµν�̃ξµν − ξµν∇̃µ∇̃νξ + ξµν∇̃ρ∇̃νξρµ

]
−
[
ξµν(16κ2 ˆ̃L2)−1ξµν − ξ(16κ2 ˆ̃L2)−1ξ

]
+ Lm (X, gµν)

}
+O(κ), (11.29)

where indices on ξ are raised and lowered with g̃. We then find the equations of motion

for the scalar field:

�̃χ = −(6κ2 ˆ̃L1)−1χ+O(κ). (11.30)

We can solve the equation of motion for the Green’s function (6κ2 ˆ̃L1)−1 by Fourier trans-

formation:

∫
d4k

−k2 +
1

4κ2
[
3c1(µ) + c2(µ) + c3(µ) + (3α+ β + γ) ln

(
−k2
µ2

)]
χ(k) = O(κ).

(11.31)

This results in the mass of the scalar field given by

m2
0 =

1

4κ2(3α+ β + γ)W
(
− 1

4µ2κ2(3α+β+γ)
exp

[
3c1(µ)+c2(µ)+c3(µ)

3α+β+γ

]) , (11.32)

which corresponds to earlier results (see e.g. [93]). We can do a similar analysis for the

tensor field, which yields (cf. [93])

m2
2 =

1

2κ2(β + 4γ)W
(
− 1

2µ2κ2(β+4γ)
exp

[
c2(µ)+4c3(µ)

β+4γ

]) . (11.33)

This resulting action is

S =

∫
d4x
√
|g̃|

{
− R̃

2κ2
+

1

2
∇̃µχ∇̃µχ−

1

2
m2

0χ
2

−
[

1

2
ξ�̃ξ − 1

2
ξµν�̃ξµν − ξµν∇̃µ∇̃νξ + ξµν∇̃ρ∇̃νξρµ

]
−1

2
m2

2 [ξµνξµν − ξξ] + Lm (X, gµν)

}
+O(κ). (11.34)
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We can then find the equation of motion for the metric(
R̃µν −

1

2
R̃ g̃µν

)
=κ2

{
T̃µν + ∇̃µχ∇̃νχ−

1

2
g̃µν∇̃ρχ∇̃ρχ+

1

2
m2

0g̃µνχ
2

− 2ξµν�̃ξ − ξ∇̃µ∇̃νξ + 2ξµρ�̃ξ
ρ
ν + ξρσ∇̃µ∇̃νξρσ

+ 2ξρµ∇̃ν∇̃ρξ + 2ξρµ∇̃ρ∇̃νξ + 2ξρσ∇̃ρ∇̃σξµν
− 2ξρµ∇̃σ∇̃ρξσν − 2ξρµ∇̃σ∇̃νξσρ − 2ξρσ∇̃µ∇̃σξνρ

+ g̃µν

[
1

2
ξ�̃ξ − 1

2
ξρσ�̃ξρσ − ξρσ∇̃ρ∇̃σξ + ξρσ∇̃λ∇̃σξλρ

]
−2m2

2

[
ξρµξνρ − ξµνξ

]
+

1

2
m2

2g̃µν [ξρσξρσ − ξξ]
}

+O(κ3). (11.35)

This can be rewritten in the form

R̃µν =κ2

{
T̃µν −

1

2
T̃ g̃µν + ∇̃µχ∇̃νχ−

1

2
m2

0g̃µνχ
2

− 2ξµν�̃ξ − ξ∇̃µ∇̃νξ + 2ξµρ�̃ξ
ρ
ν + ξρσ∇̃µ∇̃νξρσ

+ 2ξρµ∇̃ν∇̃ρξ + 2ξρµ∇̃ρ∇̃νξ + 2ξρσ∇̃ρ∇̃σξµν
− 2ξρµ∇̃σ∇̃ρξσν − 2ξρµ∇̃σ∇̃νξσρ − 2ξρσ∇̃µ∇̃σξνρ

+ g̃µν

[
ξ�̃ξ − ξρσ�̃ξρσ − 2ξρσ∇̃ρ∇̃σξ + 2ξρσ∇̃λ∇̃σξλρ

]
−2m2

2

[
ξρµξνρ − ξµνξ

]
+

1

2
m2

2g̃µν [ξρσξρσ − ξξ]
}

+O(κ3). (11.36)

11.3 Singularity theorems in effective quantum gravity

11.3.1 Massive scalar field

It is known that a massive scalar field always satisfies the null energy condition, but can

easily violate the strong condition (cf. [42, 193]). The energy momentum tensor is given

by

Tµν = ∇µχ∇νχ−
1

2
gµν

(
∇ρχ∇ρχ+m2χ2

0

)
. (11.37)

Hence,

Tµνv
µvν = (vµ∇µχ)2 ≥ 0, (11.38)

where v is an arbitrary null vector. We conclude that the null energy condition is satisfied.

However,

Tµν −
1

2
gµνT = ∇µχ∇νχ−

1

2
gµνm

2
0χ

2 (11.39)

which leads to (
Tµν −

1

2
gµνT

)
tµtν = (tµ∇µχ)2 − 1

2
m2

0χ
2, (11.40)

where t is an arbitrary normalized time-like vector. We see that this expression could

be both larger and smaller to 0. Consequently the strong energy condition does not

necessarily hold. We conclude that the scalar field arising in effective quantum gravity
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could resolve cosmological singularities, but not black hole singularities.

11.3.2 Bounds on the mass of the massive scalar field

Using the results from appendix 11.B we can derive a bound on the mass of the scalar

field for which the cosmological singularity theorem still holds. First consider the action

(11.34) containing only the massive scalar. Eq. (11.36) then reduces to

R̃µν = κ2

{
T̃µν −

1

2
T̃ g̃µν + ∇̃µχ∇̃νχ−

1

2
m2

0g̃µνχ
2

}
+O(κ3). (11.41)

Let us consider a globally hyperbolic 4-dimensional space-time with compact Cauchy hy-

persurface S, and assume |χ| < χmax is bounded towards te past of S. Then∫ T

0
e−

2Cτ
n−1Rµν(τ)γ̂µγ̂ν(τ)dτ ≥ −1

2
κ2m2

0χ
2
max

∫ T

0
e−

2Cτ
n−1dτ

≥ −3κ2

4C
m2

0χ
2
max, (11.42)

where γ̂ is a normalized tangent vector to a past directed time-like geodesic and where we

have used the strong energy condition in the first line. We find

− C

2
+

∫ 0

−T
e

2Cτ
n−1Rµν(τ)γ̂µ(τ)γ̂ν(τ)dτ ≥ −C

2
− 3κ2

4C
m2

0χ
2
max (11.43)

for any C > 0. The right hand side is maximized for C =
√

3
2κm0χmax. By Theorem 11.4

we then find that M is past geodesically incomplete, if

θ >

√
3

2
κm0 χmax (11.44)

everywhere on S. Hence for

m0 <

√
2

3

θmin

κχmax
(11.45)

the singularity theorem still holds.

We can use the expression for the mass of the scalar (11.32) to find a condition for the

Wilson coefficients. Let us first ignore the nonlocal terms α, β, γ. We then find

m2
0 =

1

4κ2 [3c1(µ) + c2(µ) + c3(µ)]
. (11.46)

We thus find that the singularity theorem holds for

3c1(µ) + c2(µ) + c3(µ) >
3χ2

max

8θ2
min

, (11.47)

where we have assumed 3c1(µ) + c2(µ) + c3(µ) > 0, as the opposite would imply that the
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scalar field is tachyonic.5 If we include the non-local contributions, we find instead

3c1(µ) + c2(µ) + c3(µ) > Re

(
3χ2

max

8θ2
min

+ (3α+ β + γ) ln

[
−3µ2κ2χ2

max

2θ2
min

])
, (11.48)

where only the logarithm has a complex part that accounts for the decay width of the

field [68,75,76].

We can make an estimate of the expansion parameter for our universe, by assuming

the FLRW-metric, and by assuming that we live on a compact Cauchy hypersurface with

a Hubble parameter that is constant along the surface. We find

θmin =
1

3
H ≈ 10−18 s−1, (11.49)

where the Hubble parameter is fixed by experiment6. In addition, we require an estimate

for χmax, which will rely on theoretical prejudice. However, for the effective action to be

consistent one would expect that both the scalar and tensor fields arising in the Einstein

frame do not exceed the Planck scale. We thus make the rough estimate

χmax =

√
c5

8πGN~
= 1042 s−1. (11.50)

Hence,
3χ2

max

8θ2
min

= 10121. (11.51)

Furthermore, the non-local part leads to a correction given by

(3α+ β + γ) ln

[
−3µ2κ2χ2

max

2θ2
min

]
≈ 102, (11.52)

where we have used the known values for α, β, γ assuming only Standard Model fields.

Furthermore, we have set the cutoff scale µ ≈ κ−1. These non-local corrections are thus

negligible compared to the local contributions. We conclude that the singularity theorem

holds, if the local Wilson coefficients satisfy the condition

3c1(µ) + c2(µ) + c3(µ) & 10121 (11.53)

or equivalently

m0 . 10−34 eV/c2. (11.54)

The singularity theorem can thus be violated for a large range of values.

The scalar and spin-2 particles give rise to corrections to the Newtonian potential

according to the formula

Φ(r) = −GNm

r

(
1 +

1

3
e−Re(m0)r − 4

3
e−Re(m2)r

)
(11.55)

5We do not consider the tachyonic case, as it is unphysical. It can be shown, however, using eq. (11.40)
that in this case the strong energy condition is satisfied.

6We take H0 ≈ 70km s−1 Mpc−1
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The Eöt-Wash experiment [202] sets bounds on deviations from this potential. Assum-

ing that the corrections do not cancel each other, both corrections should satisfy these

experimental bounds, i.e.

m0,m2 ≥ 10−3 eV/c2. (11.56)

Hence, the singularity theorem can be violated for all feasible values of the Wilson coeffi-

cients.

It might seem counterintuitive that tiny Wilson coefficients already lead to a breakdown

of the assumptions of the singularity theorems, while large Wilson coefficients do not. In

particular, since the smaller the Wilson coefficients the closer the action is to the Einstein-

Hilbert action. However, small Wilson coefficients lead to very massive scalar fields, which

can violate the strong energy condition, as can be seen in eq. (11.40). Furthermore, the

Einstein equation is a second order differential equation, while the introduction of the

terms quadratic in the Ricci scalar and tensor make it a fourth order equation. As is well

known solutions of differential equations are generically not stable against perturbations

that change the class of the differential equation (cf. [33] for a discussion of this fact in

the context of general relativity).

11.3.3 Spin-2 massive ghost

Let us now turn to the massive spin-2 field. Since this field is a ghost, one would expect

it to violate the null energy condition. Indeed we can write the energy momentum tensor

explicitly

Tµν = −2ξµν�̃ξ − ξ∇̃µ∇̃νξ + 2ξµρ�̃ξ
ρ
ν + ξρσ∇̃µ∇̃νξρσ

+ 2ξρµ∇̃ν∇̃ρξ + 2ξρµ∇̃ρ∇̃νξ + 2ξρσ∇̃ρ∇̃σξµν
− 2ξρµ∇̃σ∇̃ρξσν − 2ξρµ∇̃σ∇̃νξσρ − 2ξρσ∇̃µ∇̃σξνρ

+ g̃µν

[
1

2
ξ�̃ξ − 1

2
ξρσ�̃ξρσ − ξρσ∇̃ρ∇̃σξ + ξρσ∇̃λ∇̃σξλρ

]
− 2m2

2

[
ξρµξνρ − ξµνξ

]
+

1

2
m2

2g̃µν [ξρσξρσ − ξξ] . (11.57)

In order to show that the field can violate the null energy condition, we construct a

counterexample. We consider the special case in which the tensor field is aligned with the

metric:

ξµν =
1

4
gµνξ. (11.58)

This results in an energy momentum tensor given by

Tµν = − 1

16
(gµνξ�ξ + ξ∇µ∇νξ + ξ∇ν∇µξ) . (11.59)
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Hence,

Tµνv
µvν = −1

8
ξ∇µ∇νξvµvν

= −1

8
(kµv

µξ)2

≤ 0, (11.60)

where v is an arbitrary null-like vector and where we assumed the field ξ to be an eigenvec-

tor of ∇µ∇ν with eigenvector kµkν , as is the case if the field exhibits sinusoidal behavior

with wave vector k.

Since the spin-2 field can violate the null energy condition, it can violate the strong

energy condition as well. We conclude that the massive spin-2 field can resolve both kinds

of singularities, since it does not satisfy any of the required energy conditions.

The fact that the ghost field can resolve singularities is less of a surprise, if one takes into

account that the ghost field leads to a repulsive contribution to Newton’s potential [73,95],

and could thus result in a effective repulsive force at small distances.

11.4 Conclusion and outlook

It is well known that the classical singularity theorems by Penrose and Hawking [191,291]

only hold if general relativity is assumed. Quantum gravity, however, leads to devia-

tions from general relativity, as can easily be shown using effective field theory methods.

Furthermore, one of the main objectives of quantum gravity theories is to resolve singu-

larities. In this work, we have discussed the validity of the classical singularity theorems

in the context of the unique effective field theory for quantum gravity at second order in

curvature.

We have considered singularity theorems by making an explicit mapping to the Einstein

frame. The local terms in this theory give rise to an additional scalar and tensor field at

second order in curvature. Moreover, the inclusion of the nonlocal terms at this order only

gives rise to a shift in the mass of these fields.

We have shown that the massive spin-2 ghost field can violate the null energy condition

and thus the strong energy condition as well. This is independent of its unknown mass.

Although this is expected from a ghost field, it shows that the ghost field can be useful for

resolving singularities in quantum gravity. We emphasize that the ghost field in effective

theories for quantum gravity is not problematic, since it results from integrating out the

low energy quantum degrees of freedom. In this framework, it must thus be treated as a

classical field, and not be quantized again [95].

Furthermore, we have shown that the scalar field satisfies the null energy condition, but

may violate the strong energy condition. The latter is a necessary assumption of Hawking’s

original theorem. For the entire mass range that is allowed by experiment the scalar

field poses troubles for a singularity theorem with weakened energy conditions derived

by Fewster and Galloway in [155]. It should be noted that singularity avoidance in our

framework has already been found in [143, 161]. Moreover, other examples of singularity
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resolution in various theories such as higher derivative gravity [170,171], string theory [337]

and polynomial gravity models [6] have been found. The topic has also extensively been

discussed within many ultraviolet complete approaches to quantum gravity.

It is important to notice that the breakdown of the assumptions of Hawking’s and

Penrose’s singularity theorem does not imply the non-existence of singularities. However,

it does imply that singularities can potentially be avoided. If the assumptions for the

singularity theorems hold, the singular solutions of general relativity are the necessary

endpoint of a collapsing star or universe. When considering perturbative corrections in

the effective field theory approach, it is expected that these singular solutions such as the

Kerr black hole remain to be viable solutions. However, it is possible that new solutions

such as the ones discussed in [243, 244, 330] are present when the higher order curvature

corrections are taken into account. If the singularity theorems are no longer applicable

such non-singular solutions can become the physically relevant solutions.

Finally, we should notice that the results discussed in this paper only hold up to second

order in curvature. Inclusion of higher orders might force us back into a regime where the

singularity theorems hold or might draw us further away from this regime. The effects of

these higher order terms are sub-leading but not negligible, as singularities form in highly

curved regions of space-time. It is interesting, however, that singularities can potentially

already be resolved at second order in curvature without making assumptions about the

correct UV-complete theory of quantum gravity. This fact may help guide the way to

singularity resolution in ultraviolet complete theories of quantum gravity.
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11.A Classical singularity theorems

11.A.1 Hawking’s cosmological singularity theorem

In this appendix we state and proof Hawking’s singularity theorem [191].

Theorem. Let M be a globally hyperbolic n-dimensional space-time with n ≥ 2 and

a Cauchy surface S. Assume that ∃C > 0 such that θx < −C ∀x ∈ S, where θ =
1
2g
µν∂τgνµ is the expansion parameter. Furthermore, assume that matter within this space-

time satisfies the strong energy condition(
Tµν −

1

2
gµνT

)
tµtν ≥ 0 (11.61)

for every normalized time-like vector tµ everywhere in the future of the Cauchy surface S.

Then the space-time M is geodesically incomplete towards the future of S. Moreover, if

θx > C ∀x ∈ S and the strong energy condition is satisfied everywhere in the past of S,

then M is geodesically incomplete towards the past of S.
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Proof. Consider an n-dimensional globally hyperbolic space-timeM with Cauchy surface

S. Then we can find an open neighborhood Ŝ ⊃ S and a coordinate system on Ŝ such

that the metric is given by

ds2 = −dt2 + gij(t, ~x)dxidxj . (11.62)

In order to proof Hawking’s singularity theorem [191], we can write down the Raychaudhuri

equation [299]:
dθ

dτ
= − θ2

n− 1
− σµνσνµ −Rµνtµtν , (11.63)

where the expansion θ and shear σµν are given by

θ =
1

2
gµν∂τgνµ =

V̇

V
, (11.64)

σµν =
1

2

(
gµρ∂τgρν −

1

n− 1
δµν g

ρσ∂τgσρ

)
, (11.65)

where we defined

V =
√

det(g) (11.66)

and the time-derivative by V̇ = ∂τV . Furthermore, θ and σµν are taken along a time-like

path γ parametrized by τ with normalized tangent vectors tµ, and γ(0) ∈ S.

If we use the Einstein field equation, we can rewrite the Raychaudhuri equation to

dθ

dτ
= − θ2

n− 1
− σµνσνµ − κ2

(
Tµν −

1

2
gµνT

)
tµtν . (11.67)

Assuming the strong energy condition(
Tµν −

1

2
gµνT

)
tµtν ≥ 0, (11.68)

we find
dθ

dτ
≤ − θ2

n− 1
. (11.69)

Hence,
d

dτ
θ−1 ≥ 1

n− 1
. (11.70)

Assume ∃C > 0 such that θx(0) < −C ∀x ∈ S, then we can integrate (11.70) and obtain

1

θ(τ)
≥ τ

n− 1
− 1

C
. (11.71)

Hence for τ ∈
(
−∞, n−1

C

)
θ(τ) ≤ −

(
1

C
− τ

n− 1

)−1

. (11.72)
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We can rewrite in terms of V and integrate to find

0 ≤ V (τ) ≤ V (0)

(
1− Cτ

n− 1

)n−1

. (11.73)

Therefore

lim
τ→n−1

C

V (τ) = 0. (11.74)

We thus conclude that any geodesic emanating from the Cauchy surface will develop

a focal point for 0 < τ ≤ n−1
C . Furthermore, since S is a Cauchy surface and M is

globally hyperbolic, any point y ∈ M is connected to a point x ∈ S through a causal

path of maximal proper time. We thus conclude that no geodesic γ(τ) can be extended

to τ ≥ n−1
C . Therefore, the space-time is geodesically incomplete towards the future.

This proves the future version of the theorem. The past version immediately follows by

inverting the time direction in the proof.

We conclude this subsection by mentioning an immediate result of the theorem: if

there exists a Cauchy surface S such that the Hubble parameter H ≥ H0 > 0 on the

entire surface S, and the strong energy condition is expected to hold anywhere in the past

of this surface, then the space-time is geodesically incomplete towards the past. More

precisely no geodesic can be extended beyond τ = H−1
0 towards the past. To see this, we

recall that the Hubble constant given by

H =
ȧ

a
= (n− 1)

V̇

V
(11.75)

for the FLRW-metric

ds2 = −dt2 + a(t)2d~x2. (11.76)

11.A.2 Penrose’s black hole singularity theorem

In this appendix we state and prove Penrose’s singularity theorem [291]. Here we closely

follow the proof provided in [359].

Theorem. Let M be a globally hyperbolic n-dimensional space-time with n ≥ 3 and a

non-compact Cauchy surface S. Assume that M contains a compact trapped surface7 U .

Furthermore, assume that matter within this space-time satisfies the null energy condition

Tµνv
µvν ≥ 0 (11.77)

for every null-like vector vµ everywhere in the future of the trapped surface U . Then the

space-time M is null-geodesically incomplete towards the future of U .

Proof. Consider a globally hyperbolic n-dimensional space-time with non-compact Cauchy

surface S, and a compact trapped surface U . Then we can find an open neighborhood

7A codimension 2 spacelike and achronal submanifold such that the null expansion parameter is negative
everywhere on U for each family of orthogonal future going null geodesics.
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Û ⊃ U and a coordinate system on Û such that the metric is given by (cf. [304,359])

ds2 = −2eqdvdu+ gAB(dxA + cAdv)(dxB + cBdv), (11.78)

where xA is an arbitrary but fixed local coordinate system on the (n − 2)-dimensional

surface U . Furthermore, q and c are respectively a scalar and vector function of the

coordinates. In this metric we can evaluate the Ricci tensor and find

Ruu = −1

2
∂u
(
gAB∂ugAB

)
− 1

4

(
gAC∂ugBC

) (
gBD∂ugDA

)
. (11.79)

We can define the area of a bundle of orthogonal null geodesics locally by

A =
√

det(gAB), (11.80)

which allows us to define the null expansion as

θ =
Ȧ

A
=

1

2
gAB∂ugBA, (11.81)

where the dot represents a derivative with respect to u. Furthermore, we can define the

null shear by

σAB =
1

2

(
gAC∂ugCB −

1

n− 2
δABg

CD∂ugDC

)
. (11.82)

We then find the null Raychaudhuri equation given by

dθ

du
= − θ2

n− 2
− σABσBA −Ruu. (11.83)

Furthermore, we can use the Einstein equation and the fact guu = 0 to write

Ruu = κ2Tuu. (11.84)

Imposing the null energy condition results in

d

du
θ−1 ≥ 1

n− 2
. (11.85)

Using that U is a trapped surface ∃C > 0 such that θx < −C ∀x ∈ U , one can integrate

this equation in a similar way as was done in the proof of theorem 11.4. One obtains

lim
u→n−2

C

A(u) = 0. (11.86)

Therefore, all future going null like geodesics develop a focal point for an affine distance

0 < u ≤ n−2
C .

Let us now assume that all null-geodesics can be extended beyond this focal point, and

let us pick such a geodesic l arbitrarily. Then at least a small segment of this geodesic is

prompt, and lies in the lightcone ∂J+(U). Furthermore, the part of l that lies in ∂J+(U)

is connected, and the part beyond its first focal point cannot be in ∂J+(U), since it is not
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prompt. Therefore l∩∂J+(U) is a finite non-empty interval, which has to be closed, since

∂J+(U) is closed in M.

If we take an arbitrary point p ∈ ∂J+(U), then this point can be reached by a null

geodesic originating from U . This point is thus determined by the point q ∈ U , where

the geodesic emanates, the value of the affine parameter u measured along the geodesic

and the direction (i.e. ingoing or outgoing) of the geodesic. Since U is compact and since

the affine parameters measured along the geodesics range over a compact interval, we find

that ∂J+(U) is compact.

However, by construction ∂J+(U) is an achronal codimension 1 submanifold of M.

Furthermore, by assumptionM is a globally hyperbolic manifold with noncompact Cauchy

hypersurface S, and thus does not allow for an achronal codimension 1 submanifold (see

e.g. [359]). Hence, we arrive at a contradiction and conclude that at least one of the

future going null geodesics orthogonal to U cannot be extended beyond an affine distance

(n− 2)/C, which proves the theorem.

11.B Singularity theorems for weakened energy conditions

In this section, we state a theorem and its proof from [155]. The theorem is similar to

Hakwing’s cosmological singularity theorem, but uses relaxed conditions on the energy

momentum tensor.

Theorem. Let M be a globally hyperbolic n-dimensional space-time (n ≥ 2) with a com-

pact Cauchy surface S. Assume that ∃C ≥ 0 such that along every future directed geodesic

γ issuing orthogonally from S we have

lim inf
T→∞

∫ T

0
e−

2Cτ
n−1Rµν(τ)γ̂µ(τ)γ̂ν(τ)dτ > θ(x0) +

C

2
, (11.87)

where x0 = γ(0) ∈ S, θ(x0) is the expansion at x0, and γ̂(τ) is a normalized time-

like tangent vector of γ(τ). Then M is geodesically incomplete towards the future of S.

Moreover, if

lim inf
T→∞

∫ T

0
e−

2Cτ
n−1Rµν(τ)γ̂µ(τ)γ̂ν(τ)dτ > −θ(x0) +

C

2
(11.88)

with γ a past directed geodesic, then M is geodesically incomplete towards the past of S.

For the proof we will use the following lemma which is proved in [155].

Lemma 1. Consider the initial value problemẋ(t) = x(t)2

q(t) + p(t),

x(0) = x0,
(11.89)
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where q(t) and p(t) are continuous on [0,∞) and q(t) > 0 ∀t ∈ [0,∞). If∫ ∞
0

q(t)−1dt =∞, (11.90)

lim inf
T→∞

∫ T

0
p(t)dt > −x0, (11.91)

eq. (11.89) has no solution on [0,∞). Moreover it implies that limt→tc x(t) → ∞ for

tc ∈ (0,∞).

Proof of Theorem 11.4. We follow the same argument as in the proof of Theorem 11.4 and

find the Raychaudhuri equation

dθ

dτ
= − θ2

n− 1
− σµνσµν −Rµνtµtν , (11.92)

which can be rewritten to
dx(τ)

dτ
=
x(τ)2

q(τ)
+ p(τ) (11.93)

with

x(τ) = −(θ + C)e−
2Cτ
n−1 , (11.94)

p(τ) =

(
C2

n− 1
+ σµνσ

µν +Rµνt
µtν
)
e−

2Cτ
n−1 , (11.95)

q(τ) = (n− 1)e−
2Cτ
n−1 . (11.96)

Then q(τ) satisfies condition (11.90), while p(τ) satisfies condition (11.91), if

lim inf
T→∞

∫ T

0

(
C2

n− 1
+ σµνσ

µν +Rµνt
µtν
)
e−

2Cτ
n−1dτ > θ(0) + C, (11.97)

which is satisfied, if

lim inf
T→∞

∫ T

0
e−

2Cτ
n−1Rµνt

µtνdτ > θ(0) +
C

2
. (11.98)

By assumption (11.87), this holds for all geodesics emanating from the Cauchy surface

S. Thus limτ→τγ x(τ) → ∞ for some τγ ∈ (0,∞), which immediately implies that

limτ→τγ θ(τ)→ −∞. Hence

∀γ : [0,∞)→M with γ(0) ∈ S ∃τγ ∈ (0,∞) s.t. lim
τ→τγ

V (τ)→ 0. (11.99)

By compactness of S, sup{τγ |γ : [0,∞) →M, γ(0) ∈ S} < ∞. Furthermore, since M is

globally hyperbolic every point y ∈ J+(S) can be connected through a geodesic γ with

maximal proper time. The past version can be obtained with a similar proof by inverting

the direction of time.

Let us finally note that one can derive a similar theorem for the black hole case [155].
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Abstract

In this paper we consider a static and regular fluid generating a locally spherically sym-

metric and time-independent space-time and calculate the leading quantum corrections to

the metric to first order in curvature. Starting from a singularity free classical solution of

general relativity, we show that singularities can be introduced in the curvature invariants

by quantum gravitational corrections calculated using an effective field theory approach to

quantum gravity. We identify non-trivial conditions that ensure that curvature invariants

remain singularity free to leading order in the curvature expansion of the effective action.
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12.1 Introduction

Black holes are stationary vacuum solutions of Einstein’s field equations. Despite the

simplicity of these solutions, rotating black holes which are described by the Kerr met-

ric appear to account for the numerous observations of astrophysical black holes with a

remarkable accuracy. Furthermore, it is known that massive stars collapse at the end of

their lifetime and form black holes. The idea that gravitational collapse leads to a black

hole is strengthened by singularity theorems that prove geodesic incompleteness when a

trapped surface is formed [191, 291]. However, the collapse picture may not be fully real-

istic. Solutions like the Kerr metric are in fact vacuum solutions, and delta-like sources

are not well defined in general relativity [168]. The collapse of a star to a Kerr black hole

thus requires the destruction of the matter that made up the star, while some information

like the mass and angular momentum is conserved. Indeed this is the reason why general

relativity is considered to break down at singularities.

It is usually assumed that a theory of quantum gravity will provide a physical mech-

anism to resolve these classical curvature singularities. Although many candidate theo-

ries of quantum gravity have been developed, an ultraviolet complete theory of quantum

gravity is still illusive. There exists however a unique infrared theory of quantum grav-

ity [34–37,61,140,351] that is valid up to the scale where the new physics necessary for an

ultraviolet completion kicks in. This scale is known to be far beyond the reach of current

experiments and is assumed to be at the Planck scale unless there is a very large number

of fields in the model.

An important prediction of the effective field theory of quantum gravity is the lead-

ing quantum correction to the Newtonian potential [93, 139, 330]. This correction can

equivalently be described by the introduction of two classical fields. Recently it has been

shown that these fields can lead to the violation of assumptions of the singularity the-

orems and that singularities can therefore be avoided before Planck scale energies are

reached [237,239]. Moreover the possibility of the singularity avoidance in a gravitational

collapse [161] and a hypothetical big crunch [143] was shown earlier in the same framework.

It is thus possible that a space-time that is classically singular becomes regular, when

perturbative quantum gravitational effects are taken into account. In the specific cases

studied in Refs. [143,161], singularities avoidance happens at energy densities that do not

exceed the Planck scale and can thus be described by the effective action approach to

quantum gravity.

In this paper we investigate the opposite scenario in which curvature singularities

can be introduced on regular space-times when the quantum gravitational corrections are

taken into account. Since we are working in an effective field theory framework, this

question should be rephrased as: can quantum corrections to the curvature invariants

reach the Planck scale, if the classical curvature is well behaved, i.e. singularity free? It

is not possible within the effective field theory approach to draw strong conclusions about

the fate of such new singularities, as the logic of any perturbative approach dictates to

dismiss the results in regimes where the perturbation theory is no longer under control.

Nevertheless this is an intriguing question, as non-perturbative quantum gravity is not
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yet well-understood. Moreover, from an effective field theory perspective singularities

arising at any order in perturbation theory should be treated at the same level as the

classical singularities. Indeed in the effective field theory framework general relativity is

the zeroth order approximation of a theory of quantum gravity, and any higher order

theory is considered to be an improvement over this low energy approximation.

In this work we derive non-trivial conditions for which classical regular space-times

remain regular in a first order effective field theory approach. Furthermore, we provide

an explicit example of a space-time that is classically regular but contains a singularity at

first order.

This paper is organized as follows: in the next section we introduce the general form

for the metric considered in this paper; in section 12.3 we discuss some properties of

this metric, related to the pressure and density of its matter source. These properties

can be used to put further constraints on the metric; section 12.4 discusses the leading

quantum corrections to this metric and derives conditions for which a classical regular

metric remains regular, if the leading quantum corrections are taken into account; in

section 12.5 we conclude and appendix 12.A discusses the Bardeen metric as an explicit

example.

12.2 A general metric

We consider a Lorentzian (3 + 1)-dimensional space-time containing a regular fluid. We

choose the origin of our local coordinate system at a local maximum in the density of the

fluid and assume the space-time to be locally spherically symmetric and time-independent

around the origin. The line element can then be written as 1

ds2 = −f(r) dt2 +
dr2

g(r)
+ r2

(
dθ2 + sin θ2 dφ2

)
, (12.1)

in which we employ the usual areal radial coordinate r. Consistently with the regular

matter source, we assume the space-time to be smooth and regular everywhere, which we

define in this paper by |R|, |Rµν Rµν |, |Rµνρσ Rµνρσ| <∞. 2 If we impose these conditions,

we can expand f and g around r = 0 in the following way:

f(r) = 1 +

∞∑
n=0

a2n r
2n + f∞(r), (12.2)

g(r) = 1 +

∞∑
n=1

b2n r
2n + g∞(r), (12.3)

1Since we assume only local spherical symmetry and time-independence, this line element needs only
be valid in a small region around r = 0.

2Of course, Rµνρσ is the Riemann tensor, Rµν the Ricci tensor and R the Ricci scalar. The above
conditions immediately imply for the Weyl tensor |Cµνρσ Cµνρσ| <∞.
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where the Lorentzian signature requires a0 > −1. Furthermore, the non-analytic parts f∞

and g∞ have the property

lim
r→0

f∞(r)

rn
= lim

r→0

g∞(r)

rn
= 0, ∀ n ∈ N. (12.4)

and

∃ ε > 0 s.t. f∞(r) = f∞(−r) and g∞(r) = g∞(−r), ∀ r ∈ [0, ε). (12.5)

Since we only want to perform a local analysis, we can truncate the series so that

f(r) = 1 + a0 + am r
m +O

(
rm+2

)
, (12.6)

g(r) = 1 + bn r
n +O

(
rn+2

)
, (12.7)

where m,n ≥ 2, a0 > −1, am, bn 6= 0. Furthermore, we say that m = ∞, n = ∞, if

f(r) = 1 + a0 + f∞(r), g(r) = 1 + g∞(r) respectively.

12.3 Energy conditions

For the line element introduced in the previous section, the regular energy density, radial

and transversal pressure generating the space-time metric (12.1) with f and g given in

Eqs. (12.2) and (12.3), respectively, can be calculated from the Einstein tensor and read

ρ = − 1

8πGN
bn (n+ 1) rn−2 +O(rn−1), (12.8)

p‖ =
1

8πGN

(
am

1 + a0
mrm−2 + bn r

n−2

)
+O(rm−1, rn−1), (12.9)

p⊥ =
1

8πGN

(
am

1 + a0

m2

2
rm−2 + bn

n

2
rn−2

)
+O(rm−1, rn−1). (12.10)

A positive energy density thus requires bn < 0. Moreover, a non-zero energy density and

pressure at r = 0 requires n = 2. Furthermore, |p⊥| ≥ |p‖|, and a necessary but not

sufficient requirement for equality (hence isotropy) is that one of the following is true:

� (m = 2 ∨m =∞) ∧ (n = 2 ∨ n =∞) ,

� m = n ∧ amm+ bn (1 + a0) = 0 .

We can write,

p‖ = − ρ

n+ 1

(
1 +

amm

bn (1 + a0)
rm−n

)
+O(rm−n−1, r−1) (12.11)

≡ w ρ. (12.12)
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Depending on the parameter of the model one can find various values for w. It follows

that a de Sitter core with w = −1 requires

m = n ∧ am
bn (1 + a0)

= 1, (12.13)

a non-relativistic matter (dust) core with w = 0 requires

m = n ∧ am
bn (1 + a0)

= − 1

n
, (12.14)

and an ultra-relativistic (radiation) core with w = 1
3 requires

m = n ∧ am
bn (1 + a0)

= −n+ 4

3n
. (12.15)

Finally an asymptotically Minkowski core with ρ = 0 and |w| <∞ requires m ≥ n > 2.

12.4 Quantum corrections to the metric

We shall here use the same approach as discussed in Refs. [77, 97], for which we review

the main steps. 3 The effective action is given by

Γ = ΓL[g]− ΓNL[g] + SM +O(GN) (12.16)

with SM the matter action and

ΓL[g] =

∫
d4x
√
g

[
R

16πGN
+ c̃1(µ)R2 + c̃2(µ)Rµν R

µν

]
, (12.17)

ΓNL[g] =

∫
d4x
√
g

[
α̃ R ln

(
− �
µ2

)
R+ β̃ Rµν ln

(
− �
µ2

)
Rµν

]
, (12.18)

where c̃i(µ) are renormalization scale dependent coefficients that follow from matching

with an ultraviolet complete theory and experiment. Furthermore, α̃ = α−γ, β̃ = β+ 4 γ

with the values of α, β, γ given in Table 12.1. The equation of motion for the metric can

then be solved perturbatively in `2p = ~GN (and we will set ~ = 1 when no ambiguity can

arise). The zeroth order equation is the Einstein equation

Gµν = 8πGN Tµν , (12.19)

and the first order equation is given by

GL
µν + 16πGN

(
HL
µν −HNL

µν

)
= 0, (12.20)

3Note that the signature conventions in this work differ from those in [77,97].
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α β γ

Scalar 5(6ξ − 1)2 −2 2

Fermion −5 8 7

Vector −50 176 −26

Graviton 250 −244 424

Table 12.1: Non-local Wilson coefficients for different fields. All numbers should be di-
vided by 11520π2. Furthermore, ξ denotes the value of the non-minimal coupling for a
scalar theory. The values for the scalar, fermion and vector field have been calculated in
Refs. [48, 132]. The values for the graviton can be gauge dependent due to the graviton
self-interaction diagrams [219]. However, it is possible to define a unique effective ac-
tion with gauge independent coefficients leading to the gauge independent results quoted
here [34,35,341].

where

GL
µν = −1

2

(
�gq

µν − gµν�gq +∇µ∇νgq + 2Rα β
µ νg

q
αβ

−∇µ∇βgq
νβ −∇ν∇

βgq
µβ + gµν∇α∇βgq

αβ

)
, (12.21)

HL
µν = 2 c̃1

(
RRµν −

1

4
gµνR

2 + gµν�R−∇µ∇νR
)

+ c̃2

(
2RαµRνα −

1

2
gµνRαβR

αβ +�Rµν

+
1

2
gµν�R−∇α∇µRαν −∇α∇νRαµ

)
, (12.22)

HNL
µν = 2α̃

(
Rµν −

1

4
gµνR+ gµν�−∇µ∇ν

)
ln

(
− �
µ2

)
R

+ β̃

(
δαµ Rνβ + δαν Rµβ −

1

2
gµνR

α
β + δαµgνβ�

+ gµν∇α∇β − δαµ∇β∇ν − δαν∇β∇µ
)

ln

(
− �
µ2

)
Rβα. (12.23)

Equation (12.20) can now be solved for the leading quantum corrections to the metric

such that

g̃µν = gµν + ~GN δgµν , (12.24)

where g̃µν is the quantum corrected metric, gµν is the solution of Eq. (12.19) and δgµν ≡
gqµν .
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12.4.1 Local corrections

The leading local quantum corrections are found to be

δgL
tt =− 32πGN

[
c̃1 amm (m+ 1) rm−2 + (2c̃1 + c̃2) bn (1 + a0) (n+ 1) rn−2

]
+O

(
rm−1, rn−1

)
, (12.25)

δgL
rr =− 16πGN

[
(2c̃1 + c̃2)

am
1 + a0

m (m2 −m− 2) rm−2

+ (4c̃1 + c̃2) bn (n2 − n− 2) rn−2

]
+O

(
rm−1, rn−1

)
. (12.26)

Hence, the leading local corrections are of the order rm−2 and rn−2. For m ≤ 3 or n ≤ 3

these corrections would make the space-time singular at r = 0. Interestingly for the special

cases m,n = 2 we find an exact cancellation keeping the space-time regular. Moreover,

due to the assumptions of local spherical symmetry, regularity and smoothness of the

classical space-time, we imposed the conditions m,n ≥ 2 and m,n even from the onset.

Therefore the local corrections do not pose any threats to the regularity and smoothness

of the space-time at this order.

12.4.2 Non-local corrections

Corrections due to the non-local terms in Eq. (12.23) are more difficult to calculate, if

the line element is only known locally, since the ln� is an infinite derivative operator.

However, for a smooth time-independent and spherically symmetric function f , one can

derive an expansion in a flat background given by 4 5

ln

(
− �
µ2

)
f(x) =

∞∑
k=0

c2k r
2k (12.27)

with

c0 = −2 lim
ε→0

{
[γE − 1 + ln(µ ε)] f(0) +

∫ ∞
ε

f(r)

r
dr

}
. (12.28)

Therefore, we find

ln

(
− �
µ2

)
R = d0 + d2 r

2 +O
(
r4
)
, (12.29)

ln

(
− �
µ2

)
Rtt = x0 + x2 r

2 +O
(
r4
)
, (12.30)

ln

(
− �
µ2

)
Rrr = y0 + y2 r

2 +O
(
r4
)
, (12.31)

ln

(
− �
µ2

)
Rθθ = z0 + z2 r

2 +O
(
r4
)
. (12.32)

4Since we assume a regular geometry, ln� can be expanded as a power series in GN. The leading term
in such an expansion is determined by the flat space kernel of ln�. Corrections due to curvature are
subleading.

5Calculation of such expressions has a long history in both the mathematics and physics literature.
For the calculation of this particular expression we follow the same steps as presented in appendix A of
Ref. [77]. Similar calculations have been performed in e.g. Refs. [119,143].
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These expressions lead to the corrections

δgNL
tt = −16πGN (1 + a0)

[
2 α̃ d2 − β̃ (x2 − y2 − 2 z2)

]
r2 +O

(
r4
)
, (12.33)

δgNL
rr = −32πGN

{
β̃ (y0 − z0) +

[
2 α̃ d2 + β̃ (x2 + 2 y2 − z2)

]
r2
}

+O
(
r4
)
. (12.34)

Hence, if singularities are to be avoided, it is necessary to impose

y0 = z0. (12.35)

Interestingly, this condition can be translated into the following condition for the pressure

anisotropy: 6

lim
r→0

ln

(
− �
µ2

)(
p⊥ − p‖

)
= 0. (12.36)

If the time-independence and spherical symmetry holds globally, this is equivalent to∫ ∞
0

dr
p⊥(r)− p‖(r)

r
= 0. (12.37)

Moreover, if p‖ is differentiable, conservation of the energy momentum tensor, ∇µTµν = 0,

implies that the above condition is equivalent to 7

p‖(0) =

∫ ∞
0

dr
f ′(r)

2 f(r)

[
ρ(r) + p‖(r)

]
. (12.38)

These identities are clearly satisfied for isotropic fluids, but cause trouble for many anisotropic

fluids. For instance, it can easily be verified that the condition is not satisfied for the

Bardeen [28] (see Appendix 12.A), Hayward [194] and Frolov [160] metrics, but it is sat-

isfied for the Simpson-Visser metric [316] and for a constant density star (cf. Ref. [77] for

the explicit calculation.).

12.5 Discussion

We have shown that perturbative quantum gravity can introduce singularities to geome-

tries that are classically regular. Furthermore, for a locally spherically symmetric and

time-independent space-time, we have found a condition, given in Eq. (12.36), on the

pressure anisotropy for which this scenario occurs. Matter distributions that violate the

condition contain a singularity at this order in perturbation theory.

It should be stressed that the employed methods break down at and close to the emerg-

ing singularity, as the truncation of the effective field theory becomes invalid. Therefore

it cannot be concluded that the singularity is physical. In fact it is not unlikely that the

newly found singularity is a spurious effect, and that it disappears, when the full expansion

of the effective action is taken into account and/or when the non-local terms are evaluated

using the complete curvature expansion. Nevertheless such an effect is interesting, as it

6Notice that only smoothness, along with local time-independence and spherical symmetry are required.
7We assume p‖(∞) = 0.
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points out that for certain geometries naive application of perturbation theory fails when

calculating the quantum corrections at first order, even when the classical energy density

is close to the vacuum. On the other hand, one cannot exclude the possibility that the

singularity will persist, when the effective action is considered up to infinite order.

It would be interesting to investigate the higher order corrections within this frame-

work. As the higher order corrections will come with different power of the Planck length,

it is not expected that the terms at 2-loop or at any finite order will cancel the new

singularities. 8 However, such a higher order analysis could generate new singular terms

and thus provide new constraints such as the one in Eq. (12.36), for which classical mat-

ter distributions are safe in the sense that quantum corrections do not generate secular

terms. Moreover, a higher order analysis could provide indication whether resummation

effects can occur, which would indicate that the singularities are spurious, as they would

be resolved at infinite order in perturbation theory.

We will leave such an higher order analysis for future research. Let us note however

that higher order terms in the effective action are potentially more dangerous than the

first order terms analyzed in this paper. Indeed, from dimensional analysis, one expects

that local terms in the effective action at order `2kp generate corrections to the metric

at order min{rm−2k, rn−2k}. This was indeed found in Eqs. (12.25) and (12.26). For

2k ≥ min{m − 2, n − 2}, this generates terms that make the metric singular. For k = 1

we found that these dangerous terms are not present, as their coefficients vanish. It is

expected that the dangerous terms also vanish for k > 1. If such a cancellation mechanism

were not present, this would pose new challenges for the use of perturbative methods in

quantum gravity. Note that a priori there is no reason to expect that non-perturbative

quantum gravity should be invoked, as the classical densities and pressures we consider

here are well below the Planck scale. For the same reason, we do not expect that the

singularity we found can be removed by any matter rearrangements which keep density

and pressure in the sub-Planckian range.

Furthermore, following the same reasoning, we find that, if 2 < m,n <∞, the quantum

corrections will always generate corrections with smaller powers of r. In particular, the

non-local terms are expected to generate corrections at order r2. Therefore, a byproduct

of our analysis is that a regular and smooth quantum space-time, that is locally spherically

symmetric and time-independent should always have the form of Eq. (12.1) with f and g

given by Eqs. (12.2) and (12.3), with the extra assumption that all coefficients a2n and

b2n are non-zero unless some kind of fine-tuning occurs. In addition, a0 > −1, and using

the analysis in section 12.3, one can impose b2 < 0, and |a2| ≤ (1 + a0)|b2|.
Finally, one could try to generalize these results to space-times that do not have local

spherical symmetry or are time-dependent, as it could lead to similar conditions on the

expansion of the metric components. We will leave this for a future paper.

8We might mention in passing the famous result by Goroff and Sagnotti that 2-loop corrections diverge
for pure gravity [179].
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12.A The Bardeen metric

Let us consider the Bardeen metric [28] as an example of regular space-time where one

encounters singularities of the type discussed in this work. The Bardeen space-time has no

central singularity but a de Sitter core (see Eq. (12.13)), and can be motivated by coupling

Einstein gravity to a non-linear electrodynamic field [22]. The Bardeen line element is of

the form in Eq. (12.1) with

f(r) = g(r) = 1− 2GNM r2

(r2 + l2)3/2
, (12.39)

where l > 0 is some length scale. For sufficiently small values of l, this space-time contains

a horizon and, in fact, it reduces to the Schwarzschild geometry in the limit l→ 0 and to

the Minkowski space-time in the limit l→∞.

Using the procedure outlined in section 12.4, one can calculate the metric corrections.

Up to O(G3
N) the local corrections are given by

δgL
tt = −

192π ~G2
NM l2

(r2 + l2)7/2

[
c̃1(µ)

(
r2 − 4 l2

)
− c̃2(µ)

(
r2 + l2

)]
, (12.40)

δgL
rr =

480π ~G2
NM l2 r2

(r2 + l2)9/2

[
2 c̃1(µ)

(
r2 − 6 l2

)
+ c̃2(µ)

(
2 r2 − 5 l2

)]
, (12.41)

and the non-local corrections are given by

δgNL
tt =

128π ~G2
NM

(r2 + l2)7/2

{
α̃

[
r4 + 16 l2 r2 − 31 l4 − 3 l2

(
r2 − 4 l2

)(
γE + ln

[
2µ
(
r2 + l2

)
l

])]

+β̃

[
r4 − 6 l2 r2 − 7 l4 + 3 l2

(
r2 + l2

)(
γE + ln

[
2µ
(
r2 + l2

)
l

])]}
,

(12.42)

δgNL
rr = −

64π ~G2
NM

(r2 + l2)9/2

{
2 α̃ r2

[
3 r4 + 82 l2 r2 − 273 l4 − 15 l2

(
r2 − 6 l2

)(
γE + ln

[
2µ
(
r2 + l2

)
l

])]

+β̃ l2

[
125 r4 − 224 l2 r2 + 3 l4 − 15 r2

(
2 r2 − 5 l2

)(
γE + ln

[
2µ
(
r2 + l2

)
l

])]}
,

(12.43)
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where γE is Euler constant. Using these expressions, one can calculate the quantum cor-

rected Ricci scalar, which we split into the classical Ricci scalar and a quantum correction

as

R = Rc +Rq
fin +Rq

div. (12.44)

The classical part Rc is finite everywhere, while the quantum correction contains both a

finite contribution Rq
fin and a contribution

Rq
div = −

384π β̃ ~G2
NM l8

r2 (r2 + l2)11/2
(12.45)

which diverges for r → 0. This divergence cannot be canceled within perturbation theory,

since corrections only appear at O(G3
N). Resolution of this singularity can thus only be

achieved in a non-perturbative way. Notice, however, that this singularity is integrable in

the sense that radial geodesics can be extended through the singularity. Furthermore, the

expansion in GN consists of both a classical expansion in GNM/l and a quantum expansion

in ~GN/l
2. To keep the classical expansion under control we will thus assume l > GNM .

For this choice the space-time does not contain a horizon, implying that the singularity is

naked.
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Chapter 13

Quantum Gravitational

Corrections to the Entropy of a

Schwarzschild Black Hole

Xavier Calmet and Folkert Kuipers

Department of Physics and Astronomy, University of Sussex, Brighton, BN1 9QH,

United Kingdom

Abstract

We calculate quantum gravitational corrections to the entropy of black holes using the

Wald entropy formula within an effective field theory approach to quantum gravity. The

corrections to the entropy are calculated to second order in curvature and we calculate

a subset of those at third order. We show that, at third order in curvature, interesting

issues appear that had not been considered previously in the literature. The fact that

the Schwarzschild metric receives corrections at this order in the curvature expansion has

important implications for the entropy calculation. Indeed, the horizon radius and the

temperature receive corrections. These corrections need to be carefully considered when

calculating the Wald entropy.

This chapter has been published in Physical Review D 104, no. 06, p. 6012 (2021).

A preprint of the chapter can be found at arXiv:2108.06824 [hep-th].
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Black holes are fascinating objects for many different reasons. Hawking’s groundbreak-

ing intuition that black holes are not black but have a radiation spectrum that is very

similar to that of a black body makes black holes an ideal laboratory to investigate the

interplay between quantum mechanics, gravity and thermodynamics. This has led to the

notion of Bekenstein-Hawking entropy or black hole entropy which has attracted much

attention over the last almost 50 years. The calculation of quantum corrections to this

entropy has been the subject of many publications, see e.g. [319,345] for reviews.

In this work we revisit the calculation of the entropy of a Schwarzschild black hole

in quantum gravity and identify new important subtleties that have been overlooked in

previous calculations. To be very specific, we use effective field theoretical methods to

calculate quantum gravitational corrections to the entropy of this black hole using the

Wald entropy formula [343]. We highlight new intriguing relations between the quantum

corrections to the entropy, the Euler characteristic and quantum corrections to the metric

of the Schwarzschild black hole. Previous calculations within the effective theory approach

to quantum gravity [163, 255, 256] have used the Euclidean path integral formulation of

the entropy. We present a systematic approach that can easily be extended to any order

in perturbation theory or to any black hole metric.

The Wald approach to the calculation of a black hole entropy is very elegant and does

not involve the Wick rotation to Euclidean time which is known to be tricky in quantum

gravity. The Wald entropy formula reads [343]

SWald = −2π

∫
dΣ εµνερσ

∂L
∂Rµνρσ

∣∣∣
r=rH

, (13.1)

where dΣ = r2 sin θdθdφ, L is the Lagrangian of the model, Rµνρσ is the Riemann tensor

and rH is the horizon radius. Furthermore, εµνε
µν = −2, εµν = −ενµ. The integral is over

the perimeter of the horizon of the black hole and we thus need to determine the location

of the horizon with radius rH . This is our first observation: to calculate the entropy of

the black hole, we do not only need the Lagrangian of the gravitational action, but we

also need to verify whether the metric receives quantum corrections as these could impact

the position of the horizon. This important point had simply been overlooked in previous

calculations for Schwarzschild black holes.

As explained before, we are using the effective action to quantum gravity [34–37, 61,

140,351]. At second order in curvature, one has

SEFT =

∫ √
|g|d4x

(
R

16πGN
+ c1(µ)R2 + c2(µ)RµνR

µν + c3(µ)RµνρσR
µνρσ + Lm

)
,

(13.2)

for the local part of the action and the nonlocal part is given by

Γ
(2)
NL = −

∫ √
|g|d4x

[
αR ln

(
�
µ2

)
R+ βRµν ln

(
�
µ2

)
Rµν + γRµναβ ln

(
�
µ2

)
Rµναβ

]
,

(13.3)
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where � := gµν∇µ∇ν .

It is straightforward to show [70, 97] that there are no corrections up to second order

in curvature to the Schwarzschild metric using the non-local Gauss-Bonnet identity [70]∫ √
|g|d4xRµναβ

(
c3(µ)− γ ln

(
�
µ2

))
Rµναβ = +4

∫ √
|g|d4xRµν

(
c3(µ)− γ ln

(
�
µ2

))
Rµν

−
∫ √

|g|d4xR

(
c3(µ)− γ ln

(
�
µ2

))
R

+O(R3) + boundary terms. (13.4)

This identity can be proven using [144,226]

log
�
µ2

=

∫ ∞
0

ds
e−s − e−s

�
µ2

s
(13.5)

and [37]

�Rαβµν = ∇µ∇αRνβ −∇ν∇αRµβ −∇µ∇βRνα + +∇ν∇βRµα

−4R
α [µ
σ λR

βσν]λ + 2R
[µ
λR

αβλν] −RαβσλR
µνσλ, (13.6)

which follows from the Bianchi identity. One obtains [20,133,226,334]

Rαβµν�R
αβµν = 4Rαβµν∇α∇µRβν +O(R3). (13.7)

It is straightforward to generalize this result to higher power of the Laplacian. Inserting

this relation into the Lagrangian and using partial integrations and the contracted Bianchi

identity, we obtain the non-local Gauss-Bonnet identity. As the Riemann tensor can be

eliminated from the dynamical part of the action at second order in curvature, we find

that there are no corrections to the field equations at this order for vacuum solutions of

general relativity [70].

As there are no corrections to the metric, the horizon radius is unchanged and we can

calculate the Wald entropy at second order in a straightforward manner using (13.2) and

(13.3)1

S
(2)
Wald =

A

4GN
+ 64π2c3(µ) + 64π2γ

(
log
(
4G2

NM
2µ2
)
− 2 + 2γE

)
(13.8)

where A = 16π(GNM)2 is the area of the black hole. A similar answer was obtained using

the Euclidean path integral formulation. Note that the entropy is renormalization group

invariant and finite. As there are no corrections to the metric, the temperature remains

unchanged and the classical relation TdS = dM receives a quantum correction. Indeed

we find TdS = (1 + γ16π/(GNM
2))dM .

A possible interpretation of this result is that the nonlocal quantum effects generate a

1Note that we need to use this basis for the calculation of the entropy, as we have not calculated the
boundary term generated by Gauss-Bonnet identity explicitly.
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pressure for the black hole. The first law of thermodynamics is then given by

TdS − PdV =

(
1 + γ

16π

GNM2

)
dM = dM + γ

16π

GNM2
dM, (13.9)

where P is the pressure of the black hole. Its volume is given by V = 4/3πr3
H , where rH =

2GNM is the horizon radius. We can then identify TdS = dM and γ16π/(GNM
2)dM =

−PdV with dV = 32πG3
NM

2dM . We thus obtain

P = −γ 1

2G4
NM

4
, (13.10)

which can be negative as γ is positive for spin 0, 1/2 and 2 fields or positive as γ is negative

for spin 1 fields. Indeed, one finds γ0 = 2/(11520π2) [132], γ1/2 = 7/(11520π2) [132],

γ1 = −26/(11520π2) [132] and γ2 = 424/(11520π2) [34]. We note that Dolan had discussed

the possibility that black holes would have a pressure [138] in the context of gravitational

models with a cosmological constant. It is remarkable that quantum gravity leads to a

pressure for Schwarzschild black holes. Note that this is the main difference with previous

results [163,255,256] who did not study quantum corrections to the metric. Because there

is no dynamical correction to the metric at this order in curvature, the interpretation of

the correction to the entropy as a pressure term is forced upon us.

At third order in curvature, we need to add the following operators to the effective

action

L(3) = c6GNR
µν
ασR

ασ
δγR

δγ
µν , (13.11)

where c6 is dimensionless. As pointed out by Goroff and Sagnotti [180], there is only one

invariant involving only Riemann tensors in vacuum, as RαβγδR
α γ
ε ζR

βεδζ can be rewritten

in terms of RµνασRασδγR
δγ
µν and terms involving the Ricci scalar or Ricci tensors which

both vanish in vacuum. There is a corresponding non-local operatorRµνασ log�RασδγR
δγ
µν .

While the Wilson coefficient is known in a specific gauge [180], it is not known for the

unique effective action and we will thus neglect this term.

The dimension six local operator leads to a correction to the metric. We find

ds2 = −f(r)dt2 +
1

g(r)
dr2 + r2dΩ2 (13.12)

with

dΩ2 = dθ2 + sin(θ)2dφ2, (13.13)

f(r) = 1− 2GNM

r
+ 640πc6

G5
NM

3

r7
, (13.14)

g(r) = 1− 2GNM

r
+ 128πc6

G4
NM

2

r6

(
27− 49

GNM

r

)
. (13.15)
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The corrections to the metric implies a shift of the horizon radius

rH = 2GNM

(
1− c6

5π

G2
NM

4

)
. (13.16)

Clearly for astrophysical black holes the correction to the classical Schwarzschild radius

goes to zero very quickly but it can be an order one correction for quantum black holes

with masses of the order of the Planck scale.

The εµν tensors also need to be redefined. We have

εµν =


√
f(r)/g(r) if (µ, ν) = (t, r),

−
√
f(r)/g(r) if (µ, ν) = (r, t),

0 otherwise.

(13.17)

One can easily verify that εµνε
µν = −2, εµν = −ενµ, and εµν = 0, if µ, ν 6= t, r.

At third order in curvature, we thus obtain the following correction to the entropy:

S
(3)
Wald = S

(2)
Wald + 128π3c6

GN
Atot

, (13.18)

where we neglect third order non-local terms which would compensate for the scale depen-

dence of c6
2. Note that while the dimension six operator has been considered before [320],

our result differs from that paper as the metric corrections were not taken into account in

that work.

With corrections to the metric that deviate from the Schwarzschild solution, one may

wonder whether the Euler characteristic given by

χ =
1

32π2

∫ 1/T

0
dtE

∫ ∞
rH

dr

∫ π

0
dθ

∫ 2π

0
dφ
√
|g|
(
R2 − 4RµνR

µν +RµνρσR
µνρσ

)
(13.19)

remains 2 for black holes. It is however easy to see that this is the case, because there is

also a correction to the temperature which is given by

T =

√
f ′(rH)g′(rH)

4π
=

1

8πGNM

[
1 + 2πc6

(
1

G2
NM

4

)]
. (13.20)

With this in mind, it is easy to verify that χ = 2 is fulfilled, which is required for our results

to be consistent. One can also easily verify that the thermodynamic law TdS = dM holds

at order of O(c6) with the modified temperature and entropy. The non-local correction to

the action at third order in curvature would lead to a contribution to the pressure which

is much smaller than the seconder order correction obtained in eq. (13.10). A back of the

2We can estimate the magnitude of the non-local correction of the entropy (albeit in the de Donder
gauge, the actual calculation in the unique effective action would be much more involved) using the result
in [180] for the two-loop divergences of Einstein gravity Γ∞ = 209

2880(4π)4
1
ε

∫
d4x
√
−gRµνασRασδγRδγµν . This

divergent term fixes the renormalization group equation for c6 and thus the Wilson coefficient of the term
Rµνασ log�RασδγR

δγ
µν . For the entropy to be renormalization group invariant at third order in curvature,

the non-local correction to the entropy must go as 209
2880(4π)4

GN/Atot log(4G2
NM

2µ2). These corrections

are thus very small in comparison to those obtained in eq. (13.8).
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envelop calculation shows that, as expected, the third order curvature nonlocal correction

to the pressure is suppressed by a factor (GNM
2)−1 in comparison to the leading second

order term that we have calculated.

Our work has interesting implications for quantum black holes. The temperature of

black holes can be seen as an indicator of how quantum a black hole is. A black hole with

a mass of the order of ten times the reduced Planck mass M̄P would still be a very good

approximation and have a temperature close to its classical value

TQBH =
1

8πGNM̄P

[
1 + 128π3c6

M̄4
P

M4
QBH

]
. (13.21)

Assuming that c6 is of order unity, we see that the classical temperature receives an

order one correction from the third order curvature term in the action for MQBH = M̄P ,

but these corrections are very tiny for quantum black holes with masses of the order of

MQBH ∼ 10M̄P . This justifies the geometrical cross-section adopted for quantum black

holes in the framework of low scale quantum gravity at colliders [83, 174, 203, 254]. The

semi-classical approximation appears to be an excellent one. Describing quantum black

holes with the classical Schwarzschild metric is clearly a good approximation as well as

long as their masses are larger than O(10M̄P ).

In this work we have calculated quantum gravitational corrections to the entropy of

black holes using the Wald entropy formula within an effective theory approach to quan-

tum gravity at third order in curvature. We first have revisited the calculation of the

entropy of black holes at second order in curvature and have found that the quantum

gravitational correction to the entropy can be interpreted as a pressure term in the first

law of thermodynamics for black holes. This pressure can be positive or negative depend-

ing on the field content of the theory. Furthermore, we have shown that at third order

in curvature, there are interesting issues that had not been considered previously in the

literature. The fact that the Schwarzschild metric receives corrections at this order in

the curvature expansion has important implications for the entropy calculation. Indeed,

the horizon radius and the temperature receive corrections. These corrections need to be

carefully considered when calculating the Wald entropy, knowing the corrections to the

Lagrangian is not enough. The reason why previous entropy calculations at second order

in curvature match our results is that there are no correction to the Schwarzschild metric

at that order. We can actually justify this result with our approach. Finally, our results

have interesting consequences for the lightest black holes of Planckian masses [68,75] which

are much more classical than naively expected.

Acknowledgments: We would like to thank Yong Xiao for very useful discussions.

The work of X.C. is supported in part by the Science and Technology Facilities Council

(grants numbers ST/T00102X/1, ST/T006048/1 and ST/S002227/1). The work of F.K.

is supported by a doctoral studentship of the Science and Technology Facilities Council.



186

Chapter 14

Quantum Hair from Gravity

Xavier Calmeta, Roberto Casadiob,c, Stephen D. H. Hsud and Folkert Kuipersa

a Department of Physics and Astronomy, University of Sussex, Brighton, BN1 9QH,

United Kingdom
b Dipartimento di Fisica e Astronomia, Università di Bologna, via Irnerio 46, I-40126
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Abstract

We explore the relationship between the quantum state of a compact matter source and

of its asymptotic graviton field. For a matter source in an energy eigenstate, the graviton

state is determined at leading order by the energy eigenvalue. Insofar as there are no

accidental energy degeneracies there is a one to one map between graviton states on the

boundary of spacetime and the matter source states. A typical semiclassical matter source

results in an entangled asymptotic graviton state. We exhibit a purely quantum gravi-

tational effect which causes the subleading asymptotic behavior of the graviton state to

depend on the internal structure of the source. These observations establish the existence

of ubiquitous quantum hair due to gravitational effects.

This chapter has been published in Physical Review Letters 128, no. 11, p. 1301 (2022).

A preprint of this chapter can be found at arXiv:2110.09386 [hep-th].
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14.1 Introduction

Classical no-hair theorems limit the information that can be obtained about the internal

state of a black hole by outside observers [262]. External features (“hair”) of black hole

solutions in general relativity are determined by specific conserved quantities such as mass,

angular momentum, and charge. In this letter we investigate how the situation changes

when both the matter source (black hole interior state) and the gravitational field itself

are quantized.

We begin by showing that the graviton state associated with an energy eigenstate

source is determined, at leading order, by the energy eigenvalue of the source. These

graviton states can be expressed as coherent states of non-propagating graviton modes,

with explicit dependence on the source energy eigenvalue. Semiclassical matter sources

(e.g., a star or black hole) are superpositions of energy eigenstates with support in some

band of energies, and produce graviton states that are superpositions of the coherent

states. Next, we consider quantum gravitational corrections which lead to r−3 and r−5

corrections to the r−1 Newtonian potential. We show that the r−5 corrections are sensitive

to the internal structure of the matter source. That is, two matter sources with the same

semiclassical mass M can produce different r−5 terms in the metric. These observations

imply that information about the interior state of a black hole exists outside the classical

horizon. This could, in principle, affect the Hawking radiation states produced as the

hole evaporates. We discuss implications for black hole information and holography in the

conclusions.

14.2 Asymptotic quantum states of the graviton field

General relativity relates the spacetime metric to the energy-momentum distribution of

matter, but only applies when both the metric (equivalently, the gravitational field) and

matter sources are semiclassical. A theory of quantum gravity is necessary to relate the

quantum state of the gravitational field to the quantum state of the matter source.

A semiclassical matter configuration S is a superposition of energy eigenstates with

support concentrated in some narrow band of energies

ψS =
∑
n

cnψn, (14.1)

where ψn are energy eigenstates with eigenvalues En. S produces a gravitational field

(metric) governed by the Einstein equations Gµν = 8πGN Tµν , where the energy mo-

mentum tensor is itself semiclassical. Here we assume that S is compact – localized in

some spatial region of an otherwise empty universe – and consider the gravitational field

asymptotically far away.

What can be said about the quantum state of the graviton field given the exact quan-

tum state of the matter source? This question extends beyond the realm of classical

general relativity, but we show below that the properties of semiclassical gravity constrain

the result in an interesting way.
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We find that the quantum state of the asymptotic gravitational field of a matter source

which is an energy eigenstate is controlled by the energy eigenvalue En. In particular,

energy eigenstate sources with different eigenvalues produce distinct graviton states. This

immediately implies that the asymptotic graviton field of a typical semiclassical matter

source is a superposition state of the form

ψg(S) =
∑
n

cnψg(En), (14.2)

where ψg(E) 6= ψg(E
′) when E 6= E′.

It is typically assumed in many body physics that there are no accidental degeneracies

– i.e., that the eigenvalues En of a complex matter system are distinct (barring exact

symmetries of the Hamiltonian; note even these may be violated by quantum gravity

effects), although energy level splittings might be exponentially small in the size of the

system. If this is the case, then the above results imply that the state of the matter system

can, in principle, be reconstructed from the asymptotic graviton state. The quantum

information encoded in the matter system is also stored, via entanglement, in the spacetime

metric at infinity.

To obtain the desired result we use the following gedanken construction. In brief, we

want to show that the matter source energy eigenstate ψn produces a different asymptotic

graviton state than another state ψn′ of the system with En′ 6= En. The problem is that

the energy splitting En′ − En could be exponentially small in the size of S and as far

as the classical Einstein equations are concerned the corresponding sources T and T ′ are

effectively identical.

However, we can imagine configurations made of N identical copies of the original

system S, which we take to be an energy eigenstate (ψS = ψn), and the same number

N of identical copies of the system S′ with the source in the eigenstate ψS′ = ψn′ . For

sufficiently large N the difference in source terms T and T ′ becomes macroscopic, and the

difference between the corresponding metrics is governed by the classical Einstein equa-

tions. The asymptotic behaviors of these metrics are equivalent to the additive Newtonian

gravitational potentials resulting from each of theN copies of S and S′, respectively. Hence

the asymptotic graviton state ψg(NEn) of the system S cannot be identical to ψg(NEn′)

of the system S′, otherwise the resulting sums would also be identical.1

This analysis does not determine the graviton states ψg(E), but does establish that

different energies E correspond to different (albeit possibly very similar) states ψg.

We can obtain the same result via quantum field theory using the property that the

spin-2 graviton hµν couples to the operator Tµν . The gravitational potential is generated

by graviton exchange between the source “particle” S and a test mass. At long wave-

1Some details of the gedanken construction: 1. Place the N copies of the system S at distances r apart,
where r is much larger than the size of S. We can stabilize the copies against their mutual gravitational
attraction by assuming a repulsive force mediated by a boson with mass ∼ 1/r. This finite range interaction
is negligible at asymptotically large distances. 2. Consider the graviton field at distances R much larger
than N1/3r (i.e., far from all of the matter sources). 3. Take the limits R,N, r →∞ such that the leading
contribution to the Newtonian potential at large R is given by the total energy E = N En, up to corrections
that can be made as small as desired.
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lengths, we can treat the composite state S as a single particle, analogous to a nucleon

which is composite and has its own complex substructure. The Feynman amplitude for

graviton emission from an incoming source particle S has a vertex factor which is simply

its energy eigenvalue E. States S with different energies E have different graviton emission

amplitudes, and hence produce different asymptotic states of the hµν field.

The graviton quantum state ψg(E) is exactly analogous to the quantum state of the

U(1) vector field (Coulomb potential) created by a charge Q [29, 109, 266]. This can be

constructed explicitly as a coherent state

|0〉Q = exp

[
Q

∫
d3k q(k)b(k)

]
|0〉Q=0 , (14.3)

where b(k) is a linear combination of annihilation operators of the non-propagating (tem-

poral and longitudinal, depending on choice of gauge) modes of the photon. The factor

of Q in the exponent shows how the photon state depends on the source charge. In the

gravitational case Q is replaced by the energy eigenvalue of the source state and the co-

herent state modes are temporal and longitudinal graviton modes. In both gauge theory

and gravity the manner in which the charge or energy control the asymptotic quantum

state is determined by the Gauss law via constrained quantization. The direct connection

between the gravitational field (Schwarzschild metric) and the Coulomb potential can also

be seen as a consequence of the double copy relationship [264]. For our purposes the

most important point is that ψg(E) depends explicitly on E and for each distinct energy

eigenstate of the compact source there is a different graviton quantum state.

The evaporation of a black hole takes place over a timescale ∼M3 so its evolution from

a matter configuration to outgoing radiation is confined to a finite region of spacetime.

Hence the asymptotic gravitational field at r �M3 remains unchanged, in the form (14.2),

throughout the entire process. However, near the horizon the gravitational quantum state

presumably reflects the changing internal state of the hole. The internal state is itself

dependent on the previously emitted Hawking radiation – e.g., due to conservation of

energy, angular momentum, etc. This provides a mechanism connecting the region just

outside the horizon, where the next quantum of Hawking radiation originates, to the

internal state of the black hole and the radiation quanta emitted in the past. Once we go

beyond the semiclassical approximation the amplitude for radiation emission is a function

of ψg(E) which itself depends on the internal state of the hole. We discuss this further in

the conclusions.

14.3 Leading corrections from quantum gravity

In general relativity, Birkhoff’s theorem states that any spherically symmetric solution

of the vacuum field equations must be static and asymptotically flat. In other words,

the exterior solution must be given by the Schwarzschild metric. It has been shown that

this is not the case in quantum gravity [77, 97]: the asymptotic gravitational potential

of a compact object received quantum gravitational corrections [77, 79] which are not

present for an eternal black hole [70,77]. Quantum gravitational corrections depend on the
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composition of the compact object. This quantum memory effect has also been observed

in FLRW cosmology [143]. In this section, we show that compact objects are hairy in

quantum gravity. We work within the framework of the effective quantum gravitational

action at second order in curvature [34–37,61, 70, 140,351]: Γ[g] = ΓL[g] + ΓNL[g], where

the local part of the action is given by

ΓL =

∫
d4x
√
g

[
R

16πGN
+ c1(µ)R2 + c2(µ)Rµν Rµν + c3(µ)RµναβRµναβ

]
(14.4)

and the non-local part of the action by

ΓNL = −
∫
d4x
√
g

[
αR ln

(
�
µ2

)
R+ βRµν ln

(
�
µ2

)
Rµν

+ γRµναβ ln

(
�
µ2

)
Rµναβ

]
. (14.5)

This effective action is obtained by integrating out the fluctuations of the graviton and

potentially other massless matter fields. The Wilson coefficients of the local part of the

action are not calculable from first principles, as we do not specify the ultraviolet theory

of quantum gravity. However, those of the non-local part are calculable and model inde-

pendent quantum gravitational predictions. These non-local coefficients can be found in

e.g. [77]. The equations of motion obtained from varying the effective action with respect

to the metric are given by

Rµν −
1

2
R gµν + 16πGN

(
HL
µν +HNL

µν

)
= 8πGNTµν . (14.6)

The local part of the equation of motion is given by

HL
µν = c̄1

(
2RRµν −

1

2
gµν R2 + 2 gµν �R− 2∇µ∇νR

)
(14.7)

+ c̄2

(
2RαµRνα −

1

2
gµν RαβRαβ +�Rµν +

1

2
gµν �R−∇α∇µRαν −∇α∇νRαµ

)
with c̄1 = c1 − c3 and c̄2 = c2 + 4 c3. Finally, the non-local part reads

HNL
µν = − 2α

(
Rµν −

1

4
gµν R+ gµν �−∇µ∇ν

)
ln

(
�
µ2

)
R

− β
(

2 δα(µRν)β −
1

2
gµν Rαβ + δαµ gνβ �+ gµν ∇α∇β

− δαµ ∇β∇ν − δαν ∇β∇µ
)

ln

(
�
µ2

)
Rβα

− 2 γ

(
δα(µR

β
ν) στ −

1

4
gµν Rαβστ +

(
δαµ gνσ + δαν gµσ

)
∇β∇τ

)
ln

(
�
µ2

)
R στ
αβ .

(14.8)

Note that the variation of the ln� term yields terms of higher order in curvature and

can thus safely be ignored at second order in curvature. The non-local parts of the field

equations are responsible for the memory effect. We can easily illustrate this by considering
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the corrections to the metric of a stationary homogeneous and isotropic star with radius

Rs and density

ρ(r) = ρ0 Θ(Rs − r) =

ρ0 if r < Rs

0 if r > Rs,
(14.9)

where ρ0 > 0 is a constant and Θ(x) is Heaviside’s step function. The solution to the

Einstein equation inside this star (for r ≤ Rs) is the well-known interior Schwarzschild

metric

ds2 =

(
3

√
1− 2GNM

Rs
−

√
1− 2GNM r2

R3
s

)2

dt2

4
−
(

1− 2GNMr2

R3
s

)−1

dr2 − r2 dΩ2

≡ gint
µν dx

µ dxν , (14.10)

where

M = 4π

∫ Rs

0
ρ r2 dr =

4π

3
R3

s ρ0 (14.11)

is the total Misner-Sharp mass of the source. The corresponding pressure is of orderGN [77]

in agreement with the fact that the pressure does not gravitate in Newtonian physics. Of

course, the metric outside the star (for r > Rs) is the usual vacuum Schwarzschild metric

ds2 =

(
1− 2GNM

r

)
dt2 −

(
1− 2GNM

r

)−1

dr2 − r2 dΩ2 ≡ gext
µν dx

µ dxν , (14.12)

from which one can see that M is also the Arnowitt-Deser-Misner (ADM) mass of the

system.

We now perturb the above metrics: g̃µν = gµν + gq
µν , and take the perturbation gq

µν to

be O(GN). We solve this equation, imposing the solution to be spherically symmetric and

time independent. In addition we fix the gauge freedom by setting gq
θθ = 0. Doing so, we

obtain the quantum corrections gq
µν = δgext

µν to the Schwarzschild metric (14.12) outside

the star. The corrections are given in [77]:

δgext
tt = (α+ β + 3 γ)

192πG2
NM

R3
s

[
2
Rs

r
+ ln

(
r −Rs

r +Rs

)]
+
C1

r
+ C2 +O(G3

N)

δgext
rr = (α− γ)

384πG2
NM

r (r2 −R2
s )

+
C1

r
+O(G3

N), (14.13)

where Ci are integration constants which can be set to zero. We work with the metric

with signature (+−−−), in the signature (−+ ++) case, the corrections obtain an extra

minus sign. Note the two terms in large brackets, when combined, give rise to the r−3 and

r−5 corrections mentioned in the introduction. The coefficient of this term is proportional

to G2
NMR−3

s : i.e., it is a quantum gravitational effect proportional to the density of the

source object. Two source objects with the same mass M but different densities give rise

to different metric perturbations.

Now compare the result to that generated by two nested (one inside the other) dust
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balls with densities

ρi(r) = ρ0,i Θ(Ri − r) =

ρ0,i if r < Ri

0 if r > Ri,
(14.14)

and masses M1 and M2

Mi = 4π

∫ Ri

0
ρ0,i r

2 dr =
4π

3
R3
i ρ0,i (14.15)

with i ∈ {1, 2}, such that, e.g., R1 < Rs, R2 = Rs and M = M1 + M2. In other words,

the star built from two nested dust balls has total mass equal to M and the same outer

radius Rs as the star composed of only one component.

It is straightforward to show that a solution in general relativity exists. In the region

r ∈ [R2,∞), the metric is the exterior Schwarzschild solution with mass M . In the region

r ∈ [0, R1) (the most inner one), the metric is the interior Schwarzschild solution with

radius R1 and mass M1 + M2(R1/R2)3. In the region r ∈ [R1, R2), the metric is the

interior Schwarzschild solution with radius R2 and mass M2.

In general relativity, an external observer cannot differentiate a star with radius Rs

and mass M from the star with two different components but same external radius and

same total mass M . However, we will show that the quantum gravitational corrections

are different for the two matter distributions and there is thus a memory effect. Repeating

the same calculation as in [77], using the fact that at this order in GN the equations are

linearized, we find a correction

δgext
tt = (α+ β + 3 γ)

192πG2
NM1

R3
1

[
2
R1

r
+ ln

(
r −R1

r +R1

)]
+ (α+ β + 3 γ)

192πG2
NM2

R3
2

[
2
R2

r
+ ln

(
r −R2

r +R2

)]
+O(G3

N)

δgext
rr = (α− γ)

384πG2
NM1

r (r2 −R2
s,1)

+ (α− γ)
384πG2

NM2

r (r2 −R2
s,2)

+O(G3
N). (14.16)

While the classical part of the metric cannot distinguish between the one ball of dust

with mass M and two concentric dust balls with masses M1,M2 and M1 +M2 = M , the

quantum gravitational corrections depend on the matter distribution of the nested balls.

For the one-layer star we obtain

gtt = 1− 2GNM

r

−128π2(α+ β + 3γ)
l2p
r2

[
GNM

r

(
1 +

3R2
s

5r2
+O(Rs/r)

4

)
+O(GNM/r)2

]
+ O(lp/r)

4, (14.17)
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where lp =
√
~G is the Planck length, and for two layers we obtain

gtt = 1− 2GNM

r

−128π2(α+ β + 3γ)
l2p
r2

[
GNM

r

(
1 +

3(M1R
2
1 +M2R

2
s)

5Mr2
+O(Rs/r)

4

)
+O(GNM/r)2

]
+ O(lp/r)

4. (14.18)

Clearly, the quantum gravitational corrections are different for the two stars. Here we

made explicit the different expansion parameters. The series in lp/r reflects the truncation

of the effective action at second order in curvature. The series in GNM/r is due to

the linearization of the field equations and the expansion in Rs/r corresponds to the

asymptotic limit. In this limit we see that potentials generated by the two stars are

composition dependent at order r−5.

In this case we have considered a two-layered star and shown that the result can differ

from a single-layered star. However, the above argument can easily be extended to show

that any n- and m-layered stars with n 6= m can be distinguished by an outside observer

due to quantum gravitational effects, although their classical external gravity fields are

identical. The quantum memory effect leads to hairy stars.

To extend the above discussion, consider two homogeneous stars both with initial mass

Mi and radius Ri. We assume that at a certain time both stars run out of fuel and collapse

towards a new equilibrium state with mass Mf and radius Rf . Let us furthermore assume

that the first star remains homogeneous, while the second collapses to a two-layered state

as described above. The initial configurations are gravitationally indistinguishable in terms

of classical effects. Moreover, due to Birkhoff’s theorem the two final states are classically

indistinguishable. However, due the quantum gravitational memory effect the two final

states are distinguishable at the quantum level.

While earlier we assumed a time-independent static star, we could consider a collapsing

dust ball which can form a black hole. We introduce time-dependence via the radius of the

star Rs(t). For a distant observer, r � Rs(t) at all times, we can expand the correction

to the metric in Eq. (14.13), and it seems likely that the r−5 dependence remains during

the totality of the collapse.

Eventually, Rs(t) will reach 2GNM and a closed trapped surface will form indicating

the formation of a black hole. An observer could in principle measure the coefficient of

the r−5 correction to the metric. This correction contains information about the matter

distribution that collapsed and could thus enable the observer to differentiate between

black holes formed by different matter distributions.

The r−5 correction shifts the location of the horizon slightly and modifies the metric

near the horizon. This presumably has an effect on Hawking radiation. A fully quantum

mechanical treatment of the metric g, as opposed to the semiclassical perturbation analysis

above, would yield the detailed quantum state of the graviton field (analogous to (14.3))

in place of the r−5 correction we obtained.

We find that quantum gravity produces a new kind of hair on black holes.
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14.4 Conclusions: holography and black hole information

The existence of a one to one map between the quantum states of compact matter sources

and of their asymptotic gravitational fields is clearly suggestive of holography and area

bounds on entropy. We emphasize that the appearance of the charge or energy in results

like (14.3) originates in Gauss law constraints which play an important role in the quan-

tization of gauge theories and gravity. The recovery of bulk information from asymptotic

gravitational fields at the boundary is also discussed in [115,116,240,250].

In a fully quantum mechanical treatment the evolution of the matter source cannot be

considered independently from that of its gravitational field. This contrasts sharply with

the usual approximation of a fixed spacetime background in which matter fields evolve.

For example, Hawking radiation from a black hole is computed in this approximation,

whereas our analysis shows that a precise treatment (e.g., one which hopes to examine

the unitarity of black hole evaporation) must consider that the metric outside the horizon

depends on the state of the interior. The evaporation process takes the form

|B0, g0〉 → |B1, g1, γ1〉 → |B2, g2, γ2, γ1〉 → |B3, g3, γ3, γ2, γ1〉 · · · (14.19)

where B is the black hole internal state, g the quantum state of the (external) graviton

field or metric, and γ the emitted radiation which originates at the horizon. The radiation

state γn+1 depends on the metric state gn, and each gn depends on, and is entangled with,

Bn. From this perspective it is clear that the Hawking radiation state is connected to the

internal state of the black hole.

We can give some idea of the complexity of this process through the following schematic

description. Consider the semiclassical superposition state in (14.2),

ψg(S) =
∑
n

cnψg(En), (14.20)

and suppose that each graviton state ψg(En) (describing the exterior metric) has amplitude

α(En,∆) to produce a Hawking radiation quantum γ with energy ∆. Then the exterior

state evolves to

ψ ≈
∑
n

cn [ψg(En) + α(En,∆)ψg(En −∆)γ(∆) + · · · ] . (14.21)

The state after radiation emission (from second term in the sum, above) is a different

semiclassical state constructed from ψg corresponding to energies shifted by ∆. Through

α(En,∆) and ψg(En−∆) the detailed form of this quantum state depends on the emitted

radiation, including on quantum numbers we have suppressed such as momentum, spin,

charge, etc. Even if the deviation of α(En,∆) from the semiclassical amplitude is expo-

nentially small, the aggregate effect on the process of evaporation could be significant. It

is plausible that each initial black hole state, specified by coefficients cn, evolves into a

different final quantum state – i.e., the evolution is unitary.

For each history of radiation quanta {γ1, γ2, · · · , γn} there is a corresponding quantum
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spacetime {g1, g2, · · · , gn}. A black hole with entropy A can produce ∼ expA distinct

evaporation states and corresponding quantum spacetimes. Schrödinger evolution of the

initial state will produce a superposition of these radiation states and spacetimes [63,204,

207]. It has been conjectured that black hole evaporation is unitary when all of these

branches of the wavefunction are taken into account [27,205,206,298].
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Abstract

In this paper we consider very weakly interacting and ultra light scalar and pseudoscalar

dark matter candidates. We show that quantum gravity has important implications for

such models and that the masses of the singlet scalar and pseudoscalar fields must be

heavier than 3×10−3 eV. However, if they are gauged, their masses could be much lighter

and as light as 10−22 eV. The existence of new gauge forces in the dark matter sector can

thus be probed by atomic clocks or quantum sensors experiments.

This chapter has been published in the European Physics Journal C 80, no. 08, p. 781

(2020).

A preprint of the chapter can be found at arXiv:2008.06243 [hep-ph].
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15.1 Introduction

A strong evidence for physics beyond the Standard Model of particle physics comes from

the observation that 75% of the matter balance of our universe cannot be accounted for

by the Standard Model. Some form of non-luminous matter must exist. Despite being the

most abundant form of matter, embarrassingly little is known about dark matter and a

wide range of masses and couplings to the Standard Model particles are still possible. In

this paper, we focus on ultralight and very weakly coupled scalar and pseudoscalar dark

matter models which have recently received a fair share of attention and for which a large

part of the parameter space can now be probed experimentally [44–46,51,67,208,210,224,

252,294,295,297,306,340,350].

In particular experiments that search for oscillations in the fundamental constants

resulting from the coupling of scalar or pseudoscalar dark matter with the Standard Model

[1,17,19,182,318,322,323,326,327] have a great potential of testing such models in the mass

range mφ ∈ [10−16, 10−23]eV. The optimal sensitivity of such experiments typically lies

around 10−22 eV, and the bounds on the sensitivity are set by the fact that the oscillation

frequency is proportional to the mass of the scalar field. Masses of the order mφ ∼
10−16 eV correspond to oscillation times of the order T ∼ 10 s, while masses of the order

mφ ∼ 10−23 eV correspond to oscillation times of the order T ∼ 10 yr.

In this paper we follow the line of arguments put forward in refs. [71, 72] based on

quantum gravity to put further theoretical bounds on such searches. In particular, we

exploit the fact that dark matter will always couple gravitationally to the Standard Model.

Therefore quantum gravity will generate effective interactions between the Standard Model

and the hidden sector. This fact together with current experimental bounds restricts the

mass range for such weakly interacting light particles considerably. While this is the case

for singlet scalar fields, we show that this is not the case if there are new forces in the

dark matter sector.

15.2 Interactions generated by quantum gravity

For any dark matter model we can write the following effective action.

S = SEH +

∫ √
|g| (LSM + LDM + Lint) d

4x, (15.1)

where the Standard Model Lagrangian and the dark matter sector Lagrangian can be

written as

LSM =
∑
i

ciOSM,i, (15.2)

LDM =
∑
j

cj ODM,j , (15.3)
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where ci, cj are dimensionless Wilson coefficients. Interactions between the Standard

Model particles and those of the dark matter section can be introduced via a Lagrangian

Lint =
∑
k

ckOint,k, (15.4)

where again ck are dimensionless Wilson coefficients.

Besides the “particle physics” interactions induced by the operator Oint,k, there will be

some gravitational interaction between the two sectors. Indeed, since both the Standard

Model and the hidden sector couple to gravity, gravity will generate operators connecting

the two sectors whether there is an interaction operator Oint,k at tree level or not.

For every OSM,i and ODM,j , perturbative quantum gravity will generate the additional

interactions M−4
P OSM,iODM,j . We thus have

Lint =
∑
k

ckOint,k +
∑
i,j

ci,j
M4

P

OSM,iODM,j , (15.5)

where MP is the reduced Planck scale, which is the scale of quantum gravity and where

ci,j are Wilson coefficients of order unity. It is clear from eq. (15.5) that the interactions

generated by perturbative quantum gravity are suppressed by the reduced Planck scale to

the fourth power. Therefore these interactions are not expected to be measurable in any

contemporary or near future experiment. Hence, perturbative quantum gravity cannot

yet provide any constraints to dark matter models.

Non-perturbative quantum gravity, on the other hand, can constrain dark matter mod-

els. Using the same argument, namely that everything couples to gravity as it is universal,

one can deduce that non-perturbative quantum gravity effects could generate effective op-

erators of any dimension. However any such operator must be suppressed by the scale of

quantum gravity as such interactions must vanish in the limit where MP →∞, i.e. when

gravity decouples. We thus expect quantum gravity induced effective interactions to be of

the form ∑
n≥0

∑
k

c̃n,kOQG,n,k =
∑
n≥0

∑
k

c̃n,k
Mn

P

OQG,n,k, (15.6)

where OQG,n has mass-dimension 4 and OQG,n has mass-dimension n+ 4.

As the Wilson coefficients c̃d,k depend on the ultraviolet completion of quantum gravity,

one might be inclined to conclude that no predictions can be made until such a theory is

known. However, experience with effective field theories, see discussion in [71, 72], shows

that sensible predictions on the order of magnitude of the Wilson coefficients can be made.

Quite generically, Wilson coefficients are expected to be of order one, if the scale of the

physics generating the interaction is known and properly normalized. In particular, there

is no reason to expect an exponential suppression as it is sometimes claimed. For example,

it has been shown that there is no exponential suppression in the production of quantum

black holes in high energy collisions of particles [203].

In the case of quantum gravity, it is known that the scale of quantum gravity is

dynamical. Naively, one might expect that the scale is the reduced Planck scale MP =
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2.435 × 1018 GeV. However it is now well understood that the scale at which quantum

gravitational interactions become relevant is MP

√
160π/N with N = 1/3NS +NF + 4NV

where NS , NF and NV are respectively the number of real scalar fields, Weyl fermions

and vector bosons in the model [21,68,84,190]. For the Standard Model, this is very close

to the naive reduced Planck scale. Once the suppression scale for these operators has

been properly defined there is no reason to expect a further suppression via smaller than

unity Wilson coefficients. Furthermore, as we are considering non-perturbative physics,

the Wilson coefficients will not be suppressed by loop factors or small coupling constants

to some power. Note that the scale of quantum gravity cannot be larger than the reduced

Planck scale as adding more fields to the theory can only lead to a lower scale of quantum

gravity. We are thus being as conservative as possible by taking the scale of quantum

gravity to be the reduced Planck scale.

We can now combine the quantum gravitational effective interactions with the non-

gravitational interactions between the Standard Model and the dark matter sector. These

can be written as ∑
k

ckOint,k =
∑
n≥0

∑
k

cn,k
Λnn,k

Oint,n,k, (15.7)

where Λn,k is the energy scale associated with this effective operator. Comparing these

two we find that non-gravitationally induced effective operators between the Standard

Model and the hidden sector are corrected by gravitationally induced operators. There-

fore, excluding all operators of dimension less than 4, we can write down an interaction

Lagrangian of the form

Lint =
∑
n≥0

∑
k

(
cn,k
Λnn,k

+
c̃n,k
Mn

P

)
Oint,n,k

=
∑
n≥0

∑
k

cn,k
Λnn,k

[
1 +

c̃n,k
cn,k

(
Λn,k
MP

)n]
Oint,n,k. (15.8)

As both c̃n,k and cn,k are expected to be of order 1, we find that the quantum gravitational

interactions dominate, if Λn,k > MP. Note that cn,k could contain further loop suppression

factors if the corresponding operators are generated perturbatively, but this does not

change our analysis, the important point is that as we are considering nonperturbative

quantum gravitational effects, there are no loop suppression factors in c̃n,k.

Experiments looking for weakly interacting dark matter put bounds on the interaction

strength cn,k/Λ
n
n,k. For some operators with n ≤ 2 these bounds have reached the Planck

scale, i.e. cn,kM
n
P & Λnn,k. Therefore, since cn,k, c̃n,k = O(1), it is possible to exclude

various models without probing more feeble interactions. In particular, if one operator can

be excluded up to the Planck scale for a certain mass range, quantum gravity will exclude

the existence of the scalar or pseudoscalar field for this mass range. This follows from the

fact that quantum gravity will generate all possible, i.e. allowed by gauge symmetries,

operators at the Planck scale.
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15.3 Scalar and pseudoscalar dark matter

In this section we discuss the consequences of the argument from the previous section

for some specific scalar and pseudoscalar dark matter models. The most relevant models

involving spinless dark matter are dimension 4 operators. However, it is expected that

the Wilson coefficients of dimension four operators must be exponentially suppressed by

a factor e−MP/µ, as such quantum gravity induced operators should vanish in the limit

MP →∞, i.e., when gravity decouples. Here µ is a renormalization scale.

The next most relevant operators for a spinless dark matter boson coupling to the

Standard Model are dimension 5 operators. An example is an operator of the form

O1 =
c1

Λ1
φFµνF

µν , (15.9)

where φ is the scalar dark matter field, and Fµν is the electromagnetic field tensor. The

results from the Eöt-Wash torsion pendulum experiment that searches for fifth forces

[10,11,58,202,221,241,308,317,365] lead to the following bound1

c1

Λ1
.M−1

P if mφ . 3 · 10−3 eV (15.10)

and slightly stronger bounds for lower masses. Moreover atomic spectroscopy measure-

ments [195,335] put even tighter bounds on such an interaction for masses mφ . 10−18 eV,

however these bounds rely on the assumption that the scalar field is the unique component

of the dark matter sector.

As argued above, quantum gravity will lead to an additional contribution

O1,QG =

(
c1

Λ1
+

c̃1

MP

)
φFµνF

µν , (15.11)

with c̃1 ∼ O(1) as argued before. Therefore the current bounds exclude this interaction

for all masses mφ ≤ 3×10−3eV. The resulting bounds on this interaction are summarized

in figure 15.1, which can be compared2 to figure 31.1 in ref. [328].

Moreover, since quantum gravity generates interactions between all the particles of

the Standard Model and the scalar field. Any scalar field with a mass below 3× 10−3eV

would generate a Planck scale gravitational operator, which has not been detected by the

Eöt-Wash experiment. Therefore the derived bound does not exclusively apply to models

containing the non-gravitationally induced interaction (15.9). In fact, any dark matter

model containing scalar dark matter fields of masses mφ . 3 × 10−3 eV is excluded. A

similar analysis can be done for a pseudoscalar field a. The interaction between an axion-

1Bounds in the Eöt-Wash experiments are usually presented in terms of the coupling strength α and
the length scale of the Yukawa interaction λ. Such bounds can be translated into a mass-bound using the
fact that α = O(1) as discussed before and by noticing that mφc

2 = ~c
λ

.
2Note that there is a factor 4 difference: gφ =

gsγ
4

, where gφ is the dimensionful coupling in this paper,
and gsγ is the dimensionful coupling in ref. [328].
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Figure 15.1: Limits on the linear scalar interaction gφ = c1/Λ1 as a function of the mass of
the scalar mφ. Green: limits from light shining through a wall experiments [25,146]. Blue:
limits from torsion experiments [10, 11, 58, 202, 221, 241, 308, 317, 365]. Red: limits from
atomic spectroscopy experiments [195, 328, 335]. Purple: limits from galaxy formation,
quasar lensing and stellar streams [57,121,211,277,307,310]. Black: limits from quantum
gravity as discussed in this paper. Dashed black line: reduced Planck scale.

like-particle a and gluons will receive a quantum gravitational correction

O2,QG =

(
c2

Λ2
+

c̃2

MP

)
aGµνG̃

µν , (15.12)

where c̃2 ∼ O(1) and Gµν is the usual gluonic field strength and G̃µν its dual. Magnetom-

etry measurements [1] constrain the strength of this interaction by

c2

Λ2
+

c̃2

MP
.M−1

P if ma . 5 · 10−21 eV. (15.13)

Therefore, any dark matter model containing scalar axion-like fields of masses ma .

10−21 eV is excluded. The result for this particular interaction are summarized in figure

15.2, which can be compared to figure 4 in ref. [1] and figure 31.5 in ref. [328]. Note that

this bound assumes that all of dark matter is described by the axion-like-particle a. It is

possible to relax this bound if dark matter has multiple components.

On the other hand, for interactions of the form

O3,QG =

(
c3

Λ3
+

c̃3

MP

)
aFµνF̃

µν , (15.14)

with c̃3 ∼ O(1), the bounds are much weaker3. Therefore, there is still a large parameter

space to explore. However, the bound (15.13) excludes axion like particles with masses

below 10−21 eV, because of the universality of gravity: one cannot have the interaction

aFµνF̃
µν without the interaction aGµνG̃

µν .

Furthermore, there is no reason why parity symmetry would be preserved by quantum

gravitational interactions, see e.g. [32, 199]. Indeed, it is not a gauge interaction. In this

3cf. Figure 31.4 in ref. [328].
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Figure 15.2: Parity conserving quantum gravity. Limits on the linear axion interaction
ga = c3/Λ3 as a function of the mass of the axion ma. Green: limits from supernovae
measurements [181]. Blue: limits from the big bang nucleosynthesis [52,321,323–325]. Red:
limits from magnetometry experiments [1, 328]. Purple: limits from galaxy formation,
quasar lensing and stellar streams [57, 121, 211, 277, 307, 310]. Orange: limits from the
superradiance instability of black holes [105], however note that these bounds can be
avoided, if the self-interaction of the axion-like particle is sufficiently strong [18]. Brown:
predicted value of the QCD axion [296, 333]. Black: axion masses below ma . 10−21 eV
are excluded by parity conserving quantum gravity as discussed in this paper. Dashed
black line: reduced Planck scale.

case, the operators

O4 =
c̃4

MP
aGµνG

µν , (15.15)

and

O5 =
c̃5

MP
aFµνF

µν , (15.16)

which are parity violating will be generated. As before we expect c̃4 ∼ O(1) and c̃5 ∼ O(1).

These operators lead to a Yukawa-type interaction and thus to a fifth force. Therefore,

if quantum gravity violates parity, axion-like-particle with masses ma . 3 × 10−3 eV are

excluded. As shown in figure 15.3, this reduces the parameter space for axion models

massively.

Another possible interaction of a spinless dark matter boson coupling to the Standard

Model is a dimension 6 interaction of the form

O6,QG =

(
c6

Λ2
6

+
c̃6

M2
P

)
φ2 FµνF

µν , (15.17)

which does not distinguish between scalars and pseudoscalars, as parity is automatically

conserved. Again we have c̃6 ∼ O(1). Atomic spectroscopy measurements [323, 327]

constrain the strength of this interaction by

c6

Λ2
6

+
c̃6

M2
P

.M−2
P if mφ . 2 · 10−22 eV. (15.18)

Therefore, any dark matter model containing scalar dark matter fields of masses mφ .

10−22 eV that couple to the Standard Model in this way are excluded. Note that bounds
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Figure 15.3: Parity violating quantum gravity. Limits on the linear axion interaction
ga = c3/Λ3 as a function of the mass of the axion ma. Green: limits from supernovae
measurements [181]. Blue: limits from the big bang nucleosynthesis [52,321,323–325]. Red:
limits from magnetometry experiments [1, 328]. Purple: limits from galaxy formation,
quasar lensing and stellar streams [57, 121, 211, 277, 307, 310]. Orange: limits from the
superradiance instability of black holes [105], however note that these bounds can be
avoided, if the self-interaction of the axion-like particle is sufficiently strong [18]. Brown:
predicted value of the QCD axion [296,333]. Black: axion masses below ma . 3×10−3 eV
are excluded by parity violating quantum gravity as discussed in this paper. Dashed black
line: reduced Planck scale.

from galaxy formation, quasar lensing and stellar streams are slightly more stringent and

lead to mφ . 10−21 eV but they have a larger uncertainty. Quantum gravity will however

also generate operators of the type M−1
P φFµνF

µν and M−1
P φFµνF̃

µν even if these operators

are not introduced in the interaction Lagrangian and we can thus rule out masses below

3 × 10−3 eV. In the case of axions, this bound applies if parity is violated by quantum

gravity which we argued is to be expected. The results are summarized in figure 15.4,

which can be compared to figure 31.6 in ref. [328].
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Figure 15.4: Limits on the quadratic scalar interaction gφ2 = c6/Λ6 as a function of
the mass of the scalar mφ. Green: limits from supernovae measurements [279]. Blue:
limits from the big bang nucleosynthesis [323]. Red: limits from atomic spectroscopy
[323, 327, 328]. Purple: limits from galaxy formation, quasar lensing and stellar streams
[57,121,211,277,307,310]. Black: limits from quantum gravity as discussed in this paper.
Dashed black line: reduced Planck scale.
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Our results rule out most of the parameter range for ultralight and very weakly coupled

singlet scalar dark matter models. It is worth mentioning that our bound applies as well

to the quintessence type models which are often advocated to generate a cosmological

time evolution of fundamental constant. A change of the hyperfine constant within the

last Hubble time, implies the existence of a scalar field with a very light mass of the order

of the present Hubble scale H = 10−33 eV [145]. This is ruled out because of quantum

gravity. If a time variation of the hyperfine constant is observed, we can safely conclude

that it is not due to such a scalar field or dark matter.

Also, it had already been pointed out that the axion is not a valid solution to the strong

CP problem of quantum chromodynamics because quantum gravitational effects would

destabilize its potential [32, 199], our results imply that the quantum chromodynamics

axion is ruled out for most of its parameter range because of quantum gravity if parity is,

as expected, violated by quantum gravitational effects.

Obviously there is a well known mechanism to avoid the bound from the Eöt-Wash

experiment namely the screening mechanism. However, if the masses of light scalar fields

were screened by the matter density on Earth thereby increasing their masses on Earth,

they would also be heavy for atomic clocks and quantum sensor experiments based on

Earth and would thus not lead to the usual signatures mimicking a time variation of

fundamental constants. Interestingly, this could be probed by putting atomic clocks or

quantum sensor experiments on a satellite where the screening mechanism would be inef-

ficient.

While we focused thus far on scalar and pseudoscalar fields which are singlets under

gauge symmetries, it is possible to avoid some of the bounds from quantum gravity dis-

cussed above if we consider scalar or pseudoscalar fields that are gauged under some new

gauge group, as gauge symmetries are preserved by quantum gravity. In that case, the

only relevant operators are dimension 6 ones of the type

O7,QG =

(
c7

Λ2
7

+
c̃7

M2
P

)
Φ · ΦFµνF

µν , (15.19)

where Φ is a scalar or pseudoscalar field gauged under some new gauge group of the dark

matter sector and Φ · Φ is a scalar under that gauge symmetry. We find

c7

Λ2
7

+
c̃7

M2
P

.M−2
P if mΦ . 2 · 10−22 eV. (15.20)

in which case we can only exclude masses mΦ . 10−22 eV for scalar and pseudoscalar fields

(or mΦ . 10−21 eV if we use the bound from galaxy formation, quasar lensing and stellar

streams [57,121,211,277,307,310]). If atomic clocks or quantum sensor experiments were

to discover such scalar or pseudoscalar fields, they would not only have discovered dark

matter but also proven the existence of a new gauge force in the dark matter sector. The

results are summarized in figure 15.5. For quintessence fields, the effect would be of order

(∆φ/MP)2 and thus more suppressed than usually assumed.
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Figure 15.5: Limits on the quadratic gauged scalar interaction gΦ2 = c7/Λ7 as a function
of the mass of the scalar mΦ. Green: limits from supernovae measurements [279]. Blue:
limits from the big bang nucleosynthesis [323]. Red: limits from atomic spectroscopy
[323, 327, 328]. Purple: limits from galaxy formation, quasar lensing and stellar streams
[57,121,211,277,307,310]. Black: limits from quantum gravity as discussed in this paper.
Dashed black line: reduced Planck scale.

Let us finally emphasize that the bounds on quantum gravity shown in figures 15.1,

15.2, 15.3, 15.4 and 15.5 carry a small theoretical uncertainty, as the Wilson coefficients

are not exactly known. We argued that we know the scale of quantum gravity and that

it can be calculated given the number of fields introduced in the model. While the scale

of quantum gravity incorporates any suppression for the operators generated by quantum

gravity, it is conceivable that the Wilson coefficients could take values between 10−1 and

10. Smaller than unity Wilson coefficients could still decrease the bounds by about a factor

of 10, which would bring the bound from g = 4 × 10−19GeV−1 to g = 4 × 10−20GeV−1

in figures 15.1, 15.2 and 15.3, and from g = 2 × 10−37GeV−1 to g = 2 × 10−39GeV−1 in

figure 15.4. If the Wilson coefficients were order 10−1, we could only exclude masses below

1× 10−4eV.

Moreover, the bounds derived from spectroscopy experiments (red lines) and from

models of galaxy formation, are based on the assumption that the scalar field accounts

for the total observed local dark matter density ρ = 0.4GeV/cm3. Multicomponent dark

matter models would loosen the bounds shown in figures 15.1, 15.2, 15.3 and 15.4.

15.4 Conclusions

In this paper we have considered models of dark matter with ultra-light scalar or pseu-

doscalar fields which have received a lot of attention as they could be discovered with

tabletop experiments looking for dark matter using modern quantum sensors or atomic

clocks. These particles are usually assumed to be extremely light and very weakly coupled

to the particles of the Standard Model.

We have argued that quantum gravity will induce interactions between scalar or pseu-

doscalar dark matter particles and those of the Standard Model. These quantum gravi-

tational interactions often dominate over the strength of the interaction posited in these

models. We have shown that these quantum gravitational interactions are of the fifth force
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type for scalar dark matter and also for pseudoscalar dark matter if quantum gravity vio-

lates parity symmetry. Such interactions are constrained by torsion pendulum experiments

such as the Eöt-Wash experiment. Scalar dark matter must be heavier than 3× 10−3 eV

and the same bound applies to pseudoscalar particles assuming that quantum gravity vi-

olates parity symmetry. If quantum gravity does not violate parity, pseudoscalar particles

are only constrained to have masses larger than 10−21 eV. We stress that these bounds

are universal and applicable to any scalar dark matter models including models of fuzzy

dark matter as discussed for example in [208,253,306].

While singlet scalar or pseudoscalar fields are constrained to be heavier than 3× 10−3

eV, gauged fields could be much lighter. They could be as light as mΦ ∼ 10−22 eV and

thus very much relevant to current experiments using atomic clocks or quantum sensors.

A positive signal would not only be potentially the sign of dark matter but also a sign

that the dark matter sector is very rich and contains new forces. Another way to look at

our results is that very low energy tabletop experiments such as atomic clocks and other

experiments based on quantum sensors are directly probing quantum gravitational effects.
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Theoretical Bounds on Dark

Matter Masses
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Abstract

In this letter, we show that quantum gravity leads to lower and upper bounds on the

masses of dark matter candidates. These bounds depend on the spins of the dark matter

candidates and the nature of interactions in the dark matter sector. For example, for

singlet scalar dark matter, we find a mass range 10−3eV . mφ . 107eV. The lower bound

comes from limits on fifth force type interactions and the upper bound from the lifetime

of the dark matter candidate.

This chapter has been published in Physics Letters B 814, p. 136068 (2021).

A preprint of the chapter can be found at arXiv:2009.11575 [hep-ph].
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There is overwhelming evidence that most of the matter in our universe is dark and

cannot be described by the Standard Model of particle physics. The case for the existence

of dark matter is strong because it comes from astrophysical and cosmological observations

made on different scales and times in our universe. For example, the cosmic microwave

background or galaxy rotation curves involve very different physics and eras in the evolu-

tion of our universe but they both require that about 75% of the matter content of the

universe consists of cold, non-baryonic, dark matter.

From a theoretical point of view, very little is known of the nature of dark matter. We

know that there is no viable candidate in the Standard Model of particle physics. There

are basically three different approaches. The first approach consists in introducing a new

particle stable enough over the lifetime of the universe which couples at most extremely

weakly to the photon so that it remains dark enough. A typical example of such a particle

would be a weakly interacting massive particle (WIMP), see e.g. [303] for a review. The

second one consists in modifying gravity see e.g. [43, 104, 258, 263], but it is difficult to

construct a proper model and even when that is case, it has been argued [92] that this

approach is identical to the first one with the caveat that the new field is only coupled

gravitationally to the Standard Model particles. Finally, one could hope that some massive

astrophysical compact halo objects (MACHOs) such as primordial black holes [183] could

explain the missing matter without having to modify the Standard Model or general

relativity. Alas, this solution to the dark matter problem, while beautifully simple and

minimalistic as it does not require new physics beyond the Standard Model or general

relativity, does not appear to be relevant to Nature, see e.g. [158].

If we accept that new physics is required to address the missing matter problem, we

are faced with a huge theoretical challenge as we have very little information about the

nature of the dark matter particle or particles. We do not know their spins, masses, self-

interactions or couplings to the Standard Model particles. Galaxy formation simulations

seem to prefer cold, i.e. non-relativistic, dark matter. The interactions of dark matter

particles with that of Standard Model or dark matter self-interactions must be weak see

e.g. [338] for a review.

Fortunately, quantum gravity can provide some guidance on the allowed parameter

range for a given dark matter candidate. The reason for this is simple. In general,

quantum gravitational effects will lead to a decay of any dark matter candidate that is not

protected by Lorentz invariance or a gauge symmetry from decaying. Furthermore, gravity

is universal, it will thus couple to all forms of matter and it will create portals between

the Standard Model and any hidden sector. While these decays will be suppressed by

powers of the Planck mass, they will still lead to an upper bound on dark matter particles

given the large age of our universe. Furthermore, if the dark matter particles are light,

the same quantum gravitational effects will lead to fifth force type interactions and these

interactions are bounded by limits coming from the Eöt-Wash experiment [10,11,58,202,

221, 241, 308, 317, 365]. Finally, there is a well known lower bound coming from quantum

mechanics and more specifically the spin-statistics theorem which applies to fermionic

dark matter candidate. This last bound depends on the dark matter profile. Putting all
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these bounds together, we obtain tight mass ranges for scalar, pseudo-scalar, spin 1/2 and

spin 2 dark matter particles which are gauge singlets. These bounds can be relaxed if the

fields describing these particles are gauged, we however note that there are fairly tight

constraints on the strength of the interactions in the dark matter sector. Finally, we argue

that spin-1 vector dark matter particles are less constrained by quantum gravity, because

of the chiral nature of the fermions in the Standard Model.

We consider local operators that are generated by non-perturbative quantum gravity

effects (see e.g. [32, 71,72,86,99,120,173,175,199]):

O1 =
cφ
MP

φFµνF
µν , (16.1)

where MP = 2.4 × 1018 GeV is the reduced Planck scale, φ is the scalar dark matter

field, and Fµν is the electromagnetic field tensor. We note that there are solid arguments

showing that the Wilson coefficient c1 is of order one [86].

The results from the Eöt-Wash torsion pendulum experiment that searches for fifth

forces [10, 11, 58, 202, 221, 241, 308, 317, 365] imply that mφ & 10−3 eV [71, 72, 86]. The

same operator can lead to the decay of the dark matter scalar [96,247] with a decay width

Γ ∼ m3
φ/(4πM

2
P ) and lead to an upper bound mφ . 107eV from the requirement that the

dark matter candidate lives long enough to still be present in today’s universe. Quantum

gravity thus enables to restrict the mass of any singlet scalar particle to be in the range:

10−3eV . mφ . 107eV, (16.2)

independently of its potential non-gravitational couplings to Standard Model particles or

self-interactions. Note that these bounds would not apply to a gauged scalar field as only

dimension six operators would be generated by quantum gravity. In that case, one has

mφ & 10−22eV [86], and the upper bound disappears 1.

The same bound applies to the mass of a pseudo-scalar dark matter candidate, an

axion like particle, a if quantum gravity violates parity (and time reversal invariance) [86]

10−3eV . ma . 107eV. (16.3)

On the other hand, if quantum gravity preserves parity, we have to consider the oper-

ator

Oa =
ca
MP

a F̃µνF
µν . (16.4)

For an axion-like-particle, we then find [86,247]

10−21eV . ma . 107eV, (16.5)

for parity conserving quantum gravity. The upper bound comes from the requirement that

the particle is long-lived in comparison to the age of the universe and the lower bound is

1Note that some readers may be worried about the naturalness of very light scalars. We take an agnostic
approach and simply derive bounds from quantum gravity assuming that such light scalars exist.
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derived from magnetometry searches [1, 86].

For spin 1/2 fermions ψ, quantum gravity leads to an upper bound on the mass of the

dark matter candidate [56,96,247] as it could decay to the Standard Model fields, while a

lower bound comes from the Pauli exclusion principle. We consider the operator [96,247]:

Oψ =
cψ
MP

ψ̄H̃† /DL, (16.6)

where H is the Higgs doublet of the Standard Model with H̃ = −iσ2H
∗. This operator

implies that the singlet right-handed fermion ψ can decay to an off-shell Z boson and

a neutrino, the Z boson then decays to two light fermions. Requiring that the fermion

singlet lives long enough to still be present today imposes an upper bound on its mass.

One finds mψ < 1010eV using Γ = v2G2
Fm

5
ψ/(192π3M2

P ) where GF is the Fermi constant

and v = 246 GeV the electroweak vacuum expectation value.

Since fermions cannot be in the same state, only a limited amount of fermions can be

present in a galaxy with momenta below the escape velocity. Together with the assumption

that the fermions must account for the observed dark matter density in a typical galaxy

this leads to a lower bound on the mass of the fermions [283,305,336]. The bounds on the

mass of the dark fermion are then given by

102eV . mψ . 1010eV. (16.7)

The lower bound holds for the Standard Model, but it can be relaxed by assuming multi-

component dark matter [129].

We now consider a vector boson dark matter V µ. The well studied dimension four op-

erator FµνBµν , where Fµν is the field strength of the hypercharge photon of the Standard

Model and Bµν that of the dark photon, while generated by quantum gravity, is expected

to be exponentially suppressed [86, 96]. Within the Standard Model, the only dimension

five gauge invariant operator is given by cV,5M
−1
P V µ(ψ̄RiH̃

†γµL) but after electroweak

symmetry breaking, this simply accounts for a shift of the photon field. The next oper-

ators are of mass dimension 6 cV,6M
−2
P Vµ(H†DνH)Fµν or M−2

P (ψ̄σµνH̃
† /DL)Bµν . These

operators lead to dimension five operators after electroweak symmetry breaking but there

is a chiral suppression v/MP . The only useful dimension five operator involves the pro-

duction of a graviton hµν

OV =
cV
MP

hµαF
µ
νB

να , (16.8)

which enables the decay of a vector dark matter to a photon and a graviton. This operator

exists in the Standard Model with the vector boson replaced by a Z-boson [275]. It is

straightforward to estimate the decay width of the V boson, one finds Γ ∼ c2
Vm

3
V /M

2
P and

we can thus find an upper bound on the mass of a vector dark matter particle from the

requirement that it is still around in today’s universe. We find mV < 107 eV. We can get

a lower bound on its mass if we assume that all of dark matter is described by a vector

particle. As for a scalar field, see e.g. [328] for a recent review, the requirement that the

boson’s de Broglie wavelength does not exceed the dark matter halo size of the smallest
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dwarf galaxies gives a lower bound on its mass mV > 10−22 eV. We thus find

10−22eV . mV . 107eV. (16.9)

Using the results developed in [72], it is straightforward to see that for a massive spin-2

field dark matter field, one obtains similar bounds for its mass to that of a singlet scalar

field dark matter candidate:

10−3eV . m2 . 107eV. (16.10)

In this letter, we have shown that a few very well motivated theoretical concepts based

on quantum gravity and the spin-statistics theorem enable to constrain the masses of low

spin dark matter candidates. Quantum gravity generates operators that will lead to a

decay of all dark matter candidates that are represented by fields that are not gauged or

prevented by Lorentz invariance from decaying to Standard Model particles. This lead

to an upper bound on their masses. If these dark matter candidates are bosons, they

will mediate a fifth force and we can apply bounds from the Eöt-Wash experiment which

provide a lower bound on their masses. In the case of fermion dark matter candidates,

the lower bound comes from the spin-statistics theorem.

Our bounds are derived assuming the worst case scenario for quantum gravity, namely

that it has only one scale and that this scale is the traditional reduced Planck scale i.e.

2.4× 1018 GeV. In other words, we assumed that quantum gravity is as weak as possible.

Our bounds become much more stringent if the effective scale of quantum gravity is below

2.4 × 1018 GeV as it is the case in models with large extra-dimensions where it could be

in the TeV region or if there is another infrared cutoff that is below the reduced Planck

mass as it is the case in some specific models of quantum gravity see, e.g., [147,259,331].

We would like to stress that our bounds are orders of magnitude estimates. We argue

that because we are dealing with non-perturbative quantum gravity, the only relevant

coupling constant should be the Planck mass. It is however conceivable that there is

a further suppression of some of the Wilson coefficients which could involve coupling

constants of the Standard Model. For example, cφ could contain a factor g2/(4π) where

g is the hyperfine coupling constant of the U(1) group of the Standard Model or cψ could

be proportional to the electron Yukawa coupling which is of the order of 10−5. Clearly,

this would impact our bounds. Here, we made the strong assumption that the dimension

five operators are of pure quantum gravitational origin.

Finally, as explained already, we emphasize that these bounds will not apply to hidden

sector fields that are gauged under some gauge symmetry whether this is a continuous or

discrete gauge symmetry [26, 232]. For gauged fields, dimension 5 operators will not be

generated directly, one would expect dimension 6 or higher operators. For a gauged scalar

field Φ for example, one has M−2
P Φ · ΦFµνF

µν in which case we can only exclude masses

mΦ . 10−22 eV. Dimension 5 operators, if they exist, would have a further suppression if

they are generated from a higher dimensional operators. For example, if Φ has some none-

vanishing expectation value vΦ in the TeV region, the resulting dimension five operator

vΦM
−2
P φFµνF

µν would be suppressed by a factor vΦ/MP ∼ 10−16. A similar suppression
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would be generated in models with a discrete gauge symmetry. Such a suppression would

open up the allowed mass range for dark matter candidates. The situation is similar for

complex scalar dark matter, see e.g. [53], which carries a charge: quantum gravity would

form operators of the type M−2
P φ?φOSM (where OSM are operators build with fields of

the Standard Model) which would be at least of dimension 6, if the complex scalars are

gauged. If it is a discrete symmetry, one would expect that quantum gravity breaks the

global U(1) symmetry. One would then obtain operators of the type M−1
P φOSM and

our bounds would apply. This is particularly important in the case of WIMPs, which

are largely excluded by our bounds, if the WIMP is a gauge singlet. Our bounds can be

avoided if one gauges WIMPs. Clearly the origin of the dimension five operators that we

have discussed in this letter is model dependent and one needs to verify on the case-by-case

whether such operators will be generated in a specific dark matter model.
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Chapter 17

Conclusions

The formulation of a consistent theory of quantum gravity that is valid at all energy scales

is one of the major open questions in theoretical physics. Although direct probes of quan-

tum gravity are beyond the reach of contemporary experiments, quantum gravity could be

probed indirectly and future technologies could allow to directly probe regimes, where both

quantum effects and gravity are relevant. This necessitates a theory of quantum gravity.

Moreover, even when effects of the theory cannot be probed directly in experiments, such

a theory is desirable for aesthetic reasons and is necessary to understand extreme regimes

such as the early universe and black holes. In addition, a theory of quantum gravity could

help to solve some of the outstanding issues in both cosmology and particle physics.

The search for a theory of quantum gravity has been the subject of many studies over

several decades and has led to a variety of approaches tackling the issues involved in con-

structing such a theory. Within these approaches, many insights about the properties of

a final theory of quantum gravity have been obtained. Nevertheless, the correct ultra-

violet complete theory of quantum gravity is still unknown. Furthermore, there is little

experimental guidance directing towards a theory of quantum gravity. As a consequence,

favoring one approach over the other strongly relies on theoretical prejudice.

In this thesis, we have discussed a few aspects of a theory of quantum gravity. Here,

we have taken a conservative approach to the problem, as we have not introduced any new

physics that has not been verified experimentally. Instead, we have investigated what our

state of the art theories of quantum and gravitational physics teach us about quantum

gravity. We have done this by covering two sides of the spectrum of quantum gravity

theories.

First, we have exploited the tight connection between quantum theories and stochastic

theories and discussed the formulation of elementary physical theories from the stochastic

viewpoint. Moreover, we have shown that preservation of general covariance in such

theories requires extensions of ordinary differential geometry due to the modifications of

Leibniz’ rule.

After this, we studied effective field theories of quantum gravity. Here, we used that

a theory of quantum gravity must reduce to quantum field theory in flat spacetime, when

the gravitational interaction is turned off, and to general relativity, when quantum effects

are turned off. Under these assumptions, it is possible to construct an effective action of
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quantum gravity containing features that are independent of the ultraviolet completion

of quantum gravity. Using this effective action, we were able to make model independent

quantum gravity predictions at sub-Planckian energy scales.

In part II of this thesis, we have discussed stochastic dynamics of a single particle on

manifolds and the connections of the stochastic framework to quantum theories. More-

over, we have discussed the necessary geometric extensions that allow to preserve general

covariance in these theories.

In chapter 6 and Ref. [233], we reviewed the theory of stochastic mechanics. This

stochastic theory is known to be equivalent to the first quantization of single scalar par-

ticles in standard approaches to quantum mechanics. Moreover, building on the success

of stochastic analysis in constructive quantum field theory, it is expected that this equiva-

lence can be extended beyond this simple case. In addition, we have reviewed the second

order geometry framework, which allows to describe stochastic dynamics in a consistent

and diffeomorphism invariant setting on smooth manifolds with a connection. This chap-

ter then brings the two frameworks together and shows that this provides a consistent

extension of stochastic mechanics to pseudo-Riemannian manifolds.

In chapter 7 and Ref. [234], we used the results from chapter 6 to formulate a relativistic

version of stochastic mechanics on Lorentzian manifolds. The key ingredient here was the

introduction of a stochastic energy-momentum relation. Furthermore, this formulation

required the construction of a Brownian metric on the manifold, which can be obtained

by a Wick rotation from the kinetic Lorentzian metric.

In chapter 8 and Ref. [235], we have reformulated the Nelson process as the real pro-

jection of a complex Wiener process. This simplifies the cumbersome original formulation

of stochastic mechanics, as this original formulation is makes use of the Nelson process,

which is constructed using two instead of one differential operators: one going forward in

time and one going backward in time.

In part III of this thesis, we have considered the unique effective action of quantum

gravity and used this action to obtain model independent quantum gravity predictions.

In chapter 9 and Ref. [77], we have used this framework to calculate the leading quan-

tum gravitational corrections to the metric of a constant density star. Although the

corrections for this object at infinity were known and reproduce the leading quantum

gravitational corrections to the Newtonian potential, the analysis in chapter 9 allowed

to extend the calculations to the entire spacetime, i.e., both the exterior region and the

interior region.

In chapter 10 and Ref. [79], we have used the results from chapter 9 to calculate the

corrections to the trajectories of test particles and the propagation of scalar fields in this

geometry.

In chapter 11 and Ref. [237], we have discussed the breakdown of singularity theorems

in quantum gravity. Although extensions of the classical singularity theorems have been

formulated that include the quantum nature of matter, we have shown that the intro-

duction of the quantum nature of gravity allows to violate the sufficient conditions for

singularities to occur. This can be ascribed to the introduction of higher order terms in
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the gravitational action that change the order of the Einstein equations.

In chapter 12 and Ref. [78], we have shown that non-local corrections to the Einstein-

Hilbert action can generate singularities in spacetimes that are classically singularity free.

Moreover, we have derived conditions for which such a scenario can be avoided. From the

effective field theory point of view these singularities indicate regions in spacetime where

the perturbative approach breaks down.

In chapter 13 and Ref. [89], we have calculated corrections to the entropy of a black hole

within the effective field theory formalism. Here, we have uncovered various subtleties in

such calculations. Moreover, we have seen that the non-local terms in the effective action

generate a topological correction, which can be interpreted as a pressure term.

In chapter 14 and Ref. [80], we showed that quantum gravity induces quantum hair

in the external geometry of compact objects. Whereas in semiclassical gravity only the

mass, charge, and angular momentum of an object are stored in the external geometry,

quantum gravity allows to store more information such as the density profile in the external

geometry.

In part IV of this thesis, we have considered more general effective field theories that

include the quantum gravitational interactions in the matter section. Here, we used that

all terms that respect the symmetry of the underlying high energy theory are expected

to be present in a low energy effective field theory, as long as they are suppressed by the

relevant scale.

In chapter 15 and Ref. [86], we have applied this idea and have considered dimension 5

and dimension 6 operators generated by the quantum gravitational interaction. We have

then compared the resulting effective action to various experiments looking for weakly

coupled light particles. This comparison allowed us to obtain a set of lower bounds for

various types of dark matter particles using only assumptions about the symmetries of

quantum gravity.

In chapter 16 and Refs. [87, 88], we have complemented the results from chapter 15

with upper bounds on the masses. Here, we used that effective interactions lead to the

decay of massive dark matter particles into ordinary matter. Moreover, the time scale of

such a decay must be larger than the age of the universe for the dark matter particles to

still be present.
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Chapter 18

Outlook

The results discussed in this thesis show that research into a theory of quantum gravity

remains relevant and can be fruitful. We have particularly showed that progress can be

made both on a phenomenological level and on a more formal level.

In part II, we have seen that quantum theories of gravity likely require a geometrical

framework beyond Riemannian geometry. Second order geometry is a good candidate for

such a framework. However, whether second order geometry or something else, such as

non-commutative geometry [40], is the correct geometrical framework of quantum gravity

remains an open question that must be answered by future research.

Any extension of Riemannian geometry to a quantum framework will require extensions

of many notions encountered in differential geometry. Such extensions will play a crucial

role in determining which spacetime symmetries are broken and which are unbroken in a

quantum theory of gravity. For example, in chapter 6 and Refs. [209,233,236], extensions of

Lie derivatives and Killing vectors are constructed in a second order geometry framework.

It is then found that the second order modifications of first order Killing vectors lead to

the breaking of spacetime symmetries according to classical observers.

Moreover, part II shows that stochastic quantization can lead to important insights

in the interplay between quantum theories and gravity. However, in order to obtain such

insights in a Lorentzian framework, the Nelsonian formulation of stochastic quantization

must be further developed in a field theory context as was initiated in Ref. [184]. As

discussed in chapter 6 and Refs. [233, 236], such a stochastic field theory formulated in

curved spacetime will likely build on developments in the study of classical field theories

in higher order jet bundles, as studied in Refs. [102,103]. Future research in this direction

is desirable and could help to tackle outstanding issues in the formulation of quantum

theories of gravity.

The results from part III show that model independent predictions of quantum gravity

are possible, due to the fact that all theories of quantum gravity must reproduce general

relativity at low energy scales. In this thesis, we have discussed several predictions at

second order in curvature. In particular, we have seen that the unique effective action

allows to calculate quantum gravitational corrections to classical solutions of the Einstein

equation. An interesting extension of our results would be to go beyond the second order

framework, and calculate corrections at third order.
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Moreover, in chapter 11, we have seen that singularity theorems no longer apply in a

quantum gravity context. This result was obtained by considering higher derivative terms

in the action, which arise in a perturbative treatment. This chapter discusses the fact

that singularity theorems can be formulated for classical gravity interacting with quantum

matter, but also illustrates the difficulty in making any rigorous statements about the fate

of singularities when gravity is quantized.

In order to understand the fate of singularities in a non perturbative treatment of

quantum gravity, it will be necessary to generalize the intrinsically classical concept of

geodesic completeness to a quantum context. Using the strong similarities between quan-

tum and stochastic theories as discussed in part II, one could argue that in the context of

quantum gravity one should study stochastic completeness instead of geodesic complete-

ness. Stochastic completeness theorems, as for example discussed in Refs. [23, 24], can

then provide strong guidance in the formulation of spacetime completeness theorems in a

quantum context.

In chapter 13, we have discussed corrections to the entropy of a Schwarzschild black

hole. The fact that the effective action allows to calculate such corrections raises the

question whether the framework can be used to improve our understanding of questions

related to the information stored in black holes and the black hole information paradox.

Combining this idea with the calculations presented in chapter 9, it was found in chapter

14 that quantum corrections obtained from the effective action of quantum gravity induce

a new type of hair for black holes. This presents a loophole in the formulation of the black

hole information paradox.

Indeed, the black hole information paradox is usually formulated for classical space-

times interacting with quantum matter. It is then often assumed that quantum gravita-

tional effects can be ignored at the horizon of astronomical black holes, as the effects are

hugely suppressed. However, as is the case for singularity theorems discussed in chapter

11, even tiny effects of quantum gravity can invalidate such classical reasoning [90]. This

line of thought has been worked out and has been combined with recent insights from

quantum information theory in Ref. [85]. Here, it is shown that the black hole information

paradox is a semiclassical problem that does not persist in quantum gravity.

Another interesting possibility for future research is quantum gravity phenomenology

and the connection to experiments. Although all the quantum gravity effects found in

part III are far beyond the range of current experiments, certain effects may build up

on cosmological timescales, which could bring them within experimental reach. In order

to explore such effects, one should go beyond the quantum corrections studied in this

thesis, as these are all obtained for static solutions of the Einstein equations, and consider

time-dependent solutions of the Einstein equations instead.

Another path towards measuring quantum gravity is discussed in part IV. Here, we

found that general arguments about the symmetries of an underlying UV-complete theory

of quantum gravity provide an effective action that incorporates quantum gravity effects

and is largely independent of the ultra violet completion. This allows to categorize and

test ultraviolet completions of quantum gravity based on their symmetries.
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As shown in part IV, some effective interactions lie within reach of current and near

future experiments. For example, quantum gravity could induce an effective variation

in some of the fundamental constants of the Standard Model. Such variations can be

measured, as for example discussed in Refs. [30, 31]. Related ideas are also discussed in

Ref. [7] for a variety of other experiments. Current and near future experiments can thus

provide guidance towards the formulation of a theory of quantum gravity.
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