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Abstract

In this thesis we focus on questions of stability, existence and uniqueness for PDE con-

strained problems in both dynamics and statics under appropriate convexity conditions.

In the first part, we establish a Gårding-type inequality for quantities associated to (A, 0)-
quasiconvex functions, where A is a constant-coefficient, linear differential operator with

constant rank. In dynamics, we initially apply a simplified version of our derived inequal-

ity to prove weak-strong uniqueness results for conservation laws possessing involutions

i.e. a differential constraint A propagated by the initial data, provided that the system

is endowed with an A-quasiconvex entropy. In addition to this, combining our Gårding-

type inequality with the relative entropy method, we establish a weak-strong uniqueness

result for the hyperbolic system of adiabatic thermoelasticity under quasiconvexity condi-

tions. In particular, we show that classical solutions of that system are unique within a

suitable class of dissipative measure-valued solutions, provided that the internal energy is

stronly (curl, 0)-quasiconvex. In statics, we investigate the so-called Weierstrass problem

of finding necessary and sufficient conditions for local minimisers. More precisely, we prove

an A-quasiconvexity based sufficiency theorem for local minimisers for general problems

constrained by an operator A. An additional contribution of our result is that we infer

uniqueness of these local minimisers and quantify the difference in energy between them

and arbitrary comperitors. In the second part, in the context of image processing, we

study a class of PDE constrained variational problems whose regularising terms depend on

the differential operator. We prove the lower semicontinuity of the functionals in question

and existence of minimisers for the corresponding variational problems. Then, we embed

the latter into a bilevel scheme in order to automatically compute the space-dependent

regularisation parameters, and we establish existence of optima for the scheme. We finally

substantiate its feasibility by numerical examples in image denoising.
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Chapter 1

Introduction

In this thesis, using tools from the calculus of variations, we study mathematical prob-

lems where their solutions satisfy linear partial differential constaints. The problems we

are interested in arise from physics, and more precisely continuum mechanics and image

processing.

1.1 Continuum mechanics: dynamics and statics

In the setting of continuum mechanics and the theory of electromagnetism, often problems

are constrained by linear partial differential equations (PDEs), that is their solutions are

constrained to lie in the kernel of a certain differential operator A. The prototypical

example arises in elasticity. In elastostatics, one is concerned with the minimisation of the

functional ˆ
Ω
W (∇y) (1.1)

and thus solutions U = ∇y are constrained by the operator A = curl. Similarly, in

dynamics, the equations of elasticity can be written in the form of the first-order system

of conservation laws

∂tv − divDW (F ) = 0,

∂tF −∇v = 0,

curlF = 0.

Note that the last equation constrains solutions F to be gradients and it is satisfied as long

as the initial data are curl-free. More generally, one may consider problems constrained by

other differential operators A, leading to the study of minimisation problems of the form

W(U) =

ˆ
W (U), AU = 0 (1.2)
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and systems of conservation laws

∂tU + divf(U) = 0 (1.3)

with involutions A, i.e. with the property that AU(t, ·) = 0 whenever AU(0, ·) = 0. PDE

constrained problems of the above form, and others, have been studied extensively. Indeed,

the theory of compensated compactness developed by Murat and Tartar originated within

this A-free context [87, 102, 103].

In particular, they understood that quadratic forms that are convex in certain directions

associated to A are lower semicontinuous along A-free, weakly converging sequences. This

set of directions, ΛA, is referred to as the wave cone of A, see Section 2.1, and contains the

amplitudes along which ellipticity is lost. For example, for vectorial problems and A = curl,

the wave cone consists of rank-one matrices and rank-one convexity becomes the relevant

convexity condition. Note that rank-one convexity for quadratic forms is equivalent to

the less transparent notion of quasiconvexity which is itself equivalent to the weak lower

semicontinuity of (1.1), see [33].

Indeed, for problems of the form (1.2), an appropriate extension of quasiconvexity,

called A-quasiconvexity, was introduced by Dacorogna [32] and shown to be equivalent to

the weak lower semicontinuity of (1.2), in [32, 52]. Following the work of Murat and Tartar,

a developing body of literature has emerged on PDE constrained problems, including recent

results on appropriate modifications of BV spaces, lower semicontinuity, Young measures,

Sobolev-type inequalities etc [6, 7, 15, 46, 58, 80, 92, 93, 98].

In the context of dynamics, part of the thesis focuses on the system of adiabatic ther-

moelasticity in Lagrangian coordinates given by

∂tFiα − ∂αvi = 0

∂tvi − ∂αΣiα = 0

∂t

(
1

2
|v|2 + e

)
− ∂α(Σiαvi) = r,

(1.4)

that describes the evolution of a thermomechanical process
(
y(t, x), η(t, x)

)
∈ R3×R where

the time variable t ∈ R+ and the spatial variable x ∈ R3. This is a first-order system and

a solution to (1.4), consists of the deformation gradient F = ∇y ∈ M3×3, the velocity

v = ∂ty ∈ R3 and the specific entropy η. The first equation is a compatibility relation

between the partial derivatives of the motion, the second describes the balance of linear

momentum, while the third equation stands for the balance of energy. One must include

to (1.4) the constraint

∂αFiβ = ∂βFiα, i, α, β = 1, 2, 3 , (1.5)
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which guarantees that F is a deformation gradient associated to the motion y(t, x). We

note that relation (1.5) is an involution, namely, it is propagated from the initial data to

the solution via (1.4)1.

The remaining variables in (1.4) are the Piola-Kirchhoff stress Σiα, the internal energy

e, and the radiative heat supply r. Here, the referential heat flux Qα = 0 as this theory

describes adiabatic processes, and it does not appear in the equations (1.4). The balance

of entropy holds identically as an equality for strong solutions, that is

∂tη =
r

θ(F, η)
(1.6)

and it can be derived from system (1.4). By contrast, for weak solutions, (1.6) is replaced

by the Clausius-Duhem inequality [28, 105, 37], according to the second law of thermo-

dynamics, and it serves as a criterion of admissibility for thermodynamic processes that

satisfy the balance laws of mass, momentum and energy. The system is closed through

constitutive relations which, for smooth processes, are consistent with the Clausius-Duhem

inequality and describe the material response. For thermoelastic materials under adiabatic

conditions, the constitutive theory is determined from the thermodynamic potential of the

internal energy depending solely on the deformation gradient F and the entropy η, via the

relations

e = e(F, η), Σ =
∂e

∂F
=: eF , θ =

∂e

∂η
=: eη, (1.7)

for the stress Σ and the temperature θ. We refer the reader to [28, 105] for a detailed

derivation of adiabatic thermoelasticity and its relation to other constitutive theories.

System (1.4) belongs to a general class of hyperbolic problems that are symmetrisable

in the sense of Friedrichs and Lax [54], under appropriate hypotheses. It turns out that

symmetrisability is guaranteed by the positivity of the matrix

1

eη


eFF 0 eFη

0 1 0

eFη 0 eηη

 (1.8)

which in turn amounts to e(F, η) being strongly convex and θ(F, η) = ∂e(F,η)
∂η > 0. In

subsection 4.1.2 we discuss the connection of thermoelasticity to the general theory of

conservation laws for symmetrisable systems.

Convexity of e(F, η) suffices to apply the standard theory of conservation laws to (1.4),

however, the condition of convexity is too restrictive to encompass a large class of materials.

A broader notion of convexity is polyconvexity, that is e(F, η) = g(F, cof F,detF, η) for

3



some convex function g. For polyconvex energies stability and weak-strong uniqueness

results for system (1.4) have been obtained in [22, 23, 24]. Note that due to the presence

of involutions (1.5), the positivity of the matrix appearing in (1.8) is indeed only required

on the cone {
(a⊗ n, v, η) : a, n, v ∈ R3, η ∈ R

}
amounting to a notion of rank-one convexity for e(F, η).

Nevertheless, as it was proved by Dafermos in [38], weak-strong uniqueness for hyper-

bolic systems of conservation laws with entropies which are convex on the wave cone, can

be established under an extra assumption of small local oscilations on the weak solutions.

In particular, Dafermos studied the system of conservation laws (1.3) endowed with invol-

utions where A =
∑

αAα∂α was assumed to be a first order operator. He showed that if

the involutions are complete , see [40] for the respective definition, system (1.3) becomes

hyperbolic and he constructed a first order potential operator B =
∑

αBα∂α such that

U = BW whenever AU = 0. Through this potential B, he extracted a Poincaré type

inequality for A-free functions which played a decisive role in the proof of his main tool: a

Gårding-type inequality for the quantity

R(U |Ū) = R(U)−R(Ū)−DR(Ū) · (U − Ū)

=

ˆ 1

0
(1− t)D2R

(
Ū + t(U − Ū)

)
dt(U − Ū) · (U − Ū), (1.9)

associated to the ΛA-convex entropy R. Nevertheless, this Gårding inequality required that

the weak solutions, assumed bounded and in the space BV , satisfy an extra assumption of

small local oscillations. Then, naturally, it leads to stability and weak-strong uniqueness

results for such entropic weak solutions. In [74] and the case of elasticity, it was understood

that the crucial Gårding inequality and the subsequent weak-strong uniqueness result can

be proved without the assumption of small oscillations, provided the entropy instead sat-

isfies the stronger condition of quasiconvexity. Indeed, that nonlinear Gårding inequalities

are connected to strong quasiconvexity and that they can be useful in the setting of the

calculus of variations can already be found in [30]. We note that elements of the proof

of the Gårding inequality in [74] appear in [30]. More recently, Kristensen and Campos

Cordero in [79] have obtained a similar Gårding inequality in the curl-free setting following

a different approach.

More generally, Gårding inequalities have been very important, for example, to estab-

lish existence, uniqueness and regularity for elliptic problems, see [1, 56, 57, 86, 88, 97].

Crucially, a Gårding-type inequality for the function in (1.9) also appeared in the resolution
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of the so-called Weierstrass problem in the vectorial calculus of variations, i.e. the problem

of finding (quasiconvexity based) sufficient conditions for a map ȳ to be a strong (or Lp)

local minimiser of (1.1), see Section 4.2. This was indirectly employed in the original proof

of [60] and more explicitly in the subsequent proofs in [31, 29] which seek the positivity of
ˆ
W (∇ȳ +∇φ|∇ȳ),

related to a Gårding-type inequality for the function W (·|·). In this context, this quantity

is known as the Weierstrass excess or E-function, see [60, 29] for functionals depending on

lower order terms.

1.1.1 Continuum mechanics: our contribution

Motivated by the problems presented above and in particular, in terms of notation, by the

equations of adiabatic thermoelasticity, our work establishes a Gårding-type inequality for

quantities of the form

e(z1, z2|z̄1, z̄2) := e(z1, z2)− e(z̄1, z̄2)− eF (z̄1, z̄2)(z1 − z̄1)− eη(z̄1, z̄2)(z2 − z̄2), (1.10)

associated to (A, 0)-quasiconvex functions e : RN × R → R satisfying suitable growth

and coercivity assumptions, see Section 3.3. We note here that for consistency, we adopt

the notation of adiabatic thermoelasticity where by eF and eη we refer to the derivatives

with respect to the first and the second variable respectively. As it has been probably

already understood from the above discussion, these kind of quantities play an important

role: on the one hand, they appear as the relative entropy in the theory of conservation

laws and form the central object in the popular relative entropy method which allows to

tackle problems of local stability and weak-strong uniqueness. On the other hand, in the

calculus of variations, they correspond to the Weierstrass excess function which is crucial

in the so-called Weierstrass problem of finding necessary and sufficient conditions for local

minimisers.

More precisely, using ideas from the recently developed contributions of Rait,ă and

Guerra in PDE contrained analysis [92, 63] and those from Campos-Cordero and Kristensen

in the vectorial calculus of variations [31, 29], we prove a new Gårding-type inequality,

Theorem 3.2:
ˆ
Q

(
|φ|p + |φ|2 + |ψ|q + |ψ|2

)
≲
ˆ
Q
e(F̄ + φ, η̄ + ψ|F̄ , η̄) + ∥φ∥p

W−1,p(Q)
+ ∥φ∥2W−1,2(Q),

(1.11)
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for all (F̄ , η̄) ∈ UK , ψ ∈ Lq(Q) with
´
Q ψ = 0 and all A-free φ ∈ Lp(Q) with

´
Q φ = 0. We

refer the reader to Section 3.3 for the detailed setting and assumptions.

In dynamics, in [75], we employ a simplified version of our Gårding inequality to

prove stability and weak-strong uniqueness results for dissipative solutions of general PDE-

constrained systems of conservation laws of the form (1.3), under the assumption that the

entropy is A-quasiconvex. We note that no restrictions on the order of A are required and

as in [38] weak solutions need only be bounded but with no additional assumptions on the

local oscillations. Thus, we extend the ideas in [74] to the A-free setting by exhibiting

that in the general framework of [38] the assumption of small oscillations can be removed,

assuming A-quasiconvexity. In addition to this, in [55], we establish a novel uniqueness

result for the hyperbolic system of adiabatic thermoelasticity (1.4) under quasiconvexity

conditions, Theorem 4.3. In particular, we show that classical solutions of the system

are unique within a suitable class of dissipative measure-valued solutions, provided that

the internal energy e satisfies appropriate quasiconvexity assumptions, see Definition 3.1.

The proof is achieved by combining the relative entropy method with our Gårding-type

inequality (1.11). Our definition of quasiconvexity is associated with the symmetrisability

of the system and hence guarantees its hyperbolicity.

In statics, we investigate energies of the form (1.2), i.e.

W[U ] :=

ˆ
Q
W (U(x))dx, (1.12)

for A-free and zero average U ∈ Lp(Q). In particular, Theorem 4.5 establishes unique-

ness of local minimisers in the W−1,p topology for the above functionals, whenever W is

strongly A-quasivonvex, and we quantify the difference in energy between the minimiser

and arbitrary competitors, i.e. we prove that if the Euler-Lagrange and the positivity of

the second variation hold for some Ū , then there exists ε > 0 such that

W[U ]−W[Ū ] ≳
ˆ
Q

(
|U − Ū |p + |U − Ū |2

)
, (1.13)

for all A-free, zero-average U ∈ Lp(Q) with ∥U − Ū∥W−1,p(Q) ⩽ ε. The proof comes as a

direct consequence of our main tool for the proof of (1.11), Theorem 3.1. As an example, we

study the classical case A = curl and bounded domains Ω with mixed boundary conditions

and extend the results from [29], see Corollary 4.1. We note that the quantification of the

difference in energy (1.13) was not known even in the classical case A = curl.

6



1.2 Image processing: bilevel schemes

In the second part of this thesis, Chapter 5, we study a bilevel training scheme for the auto-

matic selection of spatially varying regularisation weights in the framework of variational

image reconstruction. Specifically, given a suitably defined class Adm of admissible weights

α, we look for solutions to the problem

α∗ ∈ argmin {F (uα) : α ∈ Adm} , (1.1)

where F is an assigned cost functional and uα is an image reconstructed by minimising

I[u;α] := Φg(u) +R(u;α). (1.2)

Here, Φg is a fidelity term that penalises deviations of u from the datum g, whereas R(u;α)

is a regularisation functional whose strength can be tuned by an appropriate selection of

the regularisation parameter α belonging to the admissible set Adm. The datum g is

typically a corrupted version of some ground truth image ugt. Often, one has

g = Tugt + η,

with η denoting a random noise component and T being a bounded linear operator that

corresponds to a certain image reconstruction problem. For instance, T is a blurring

operator in the case of deblurring, a sub-sampled Fourier transform in magnetic resonance

imaging (MRI), the Radon transform in tomography, or simply the identity in denoising

tasks, on which we will be focusing here. The aim of solving a problem of the type (1.2)

for suitable Φg, R and α is to obtain an output u which represents as well as possible the

initial ground truth image ugt.

Among classical regularisation functionals we find the total variation (TV) [95, 20], as

well as higher order or anisotropic extensions of it. Particularly relevant for this work are

the second order total variation (TV2) [91, 11] and the total generalized variation (TGV)

[13]. For a function u ∈ L1(Ω), these functionals are defined by duality as follows:

TV(u) = sup

{ˆ
Ω
udivϕ dx : ϕ ∈ C∞

c (Ω,Rd), ∥ϕ∥∞ ⩽ 1

}
, (1.3)

TV2(u) = sup

{ˆ
Ω
udiv2ϕ dx : ϕ ∈ C∞

c (Ω,Rd×d), ∥ϕ∥∞ ⩽ 1

}
, (1.4)

TGV(u) = sup

{ˆ
Ω
udiv2ϕ dx : ϕ ∈ C∞

c (Ω,Sd×d), ∥ϕ∥∞ ⩽ α0, ∥div2ϕ∥∞ ⩽ α1

}
. (1.5)

Here Sd×d denotes the space of d×d symmetric matrices. Note that the scalar regularisation

parameters α0, α1 > 0 are inserted within the definition of TGV, while the other functionals
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admit a single weighting parameter α acting in a multiplicative way, i.e., αTV and αTV2.

If the supremum in (1.3) is finite, then we say that u ∈ BV(Ω), the space of functions of

bounded variation [5], and TV(u) = |Du|(Ω), where |Du| is the total variation measure

associated with the distributional derivative Du ∈ M(Ω,Rd). Similarly, if the right-hand

side in (1.4) is finite, then u ∈ BV2(Ω), the space of functions of bounded second variation

[91, 11], and TV2(u) = |D2u|(Ω), with D2u ∈ M(Ω,Sd×d). Finally, it turns out that if the

supremum in (1.5) is finite, then u ∈ BV(Ω) as well and

TGV(u) = min
w∈BD(Ω)

{
α1

ˆ
Ω
d|Du− w|+ α0

ˆ
Ω
d|Ew|

}
,

see [14, 12]. In the previous formula, BD(Ω) is the space of functions of bounded de-

formation and Ew denotes the symmetrised gradient of w. The advantage of higher order

regularisers lies in their capability to reduce an undesirable artifact typical of TV, the so-

called staircasing effect, that is, the creation of cartoon-like piecewise constant structures

in the reconstruction [90].

Based on the concept of convex functions of Radon measures [48], variants of the

above regularisers involving convex integrands have also been considered in the literature

[91, 108, 70]. A widely used example is the one of Huber total variation TVγ , which is

defined for u ∈ BV(Ω) as

TVγ(u) =

ˆ
Ω
fγ(dDu) =

ˆ
Ω
fγ(∇u)dx+

ˆ
Ω
d|Dsu|, (1.6)

with ∇u and Dsu denoting respectively the absolutely continuous and the singular part of

Du with respect to the Lebesgue measure. The function fγ : Rd → R is given for γ ≥ 0 by

fγ(z) =


|z| − 1

2
γ, if |z| ≥ γ,

1

2γ
|z|2, if |z| < γ.

(1.7)

Note that TVγ(u) can be equivalently defined via duality as

TVγ(u) = sup

{ˆ
Ω
udivϕ dx− 1

2
γ

ˆ
Ω
|ϕ|2dx : ϕ ∈ C∞

c (Ω,Rd), ∥ϕ∥∞ ⩽ 1

}
, (1.8)

see [48]. This modification of TV, is typically considered in order to employ classical smooth

numerical solvers for the solution of the minimisation problem (1.2). In this specific case,

however, it also leads to a reduction of the staircasing effect by penalising small gradients

with the Tikhonov term (2γ)−1
´
Ω |∇u|2dx, which promotes smooth reconstructions [70,

18].

In all these models, the choice of the weights in the regularisation term is crucial

to establish an adequate balance between data fitting and denoising. On the one hand,
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the reconstructed u may remain too noisy or have many artifacts if the regularisation is

too weak. On the other hand, a very strong regularisation may result in an unnatural

smoothing effect. In the last years, bilevel minimisation methods have been employed to

select these weights automatically. A subfamily of these methods assumes the existence

of one or several training pairs (ugt, g) consisting of the ground truth and its corrupted

counterpart [19, 44, 43, 42, 84]. In these works the energy in the upper level problem (1.1)

is usually given by

FPSNR(u) := ∥u− ugt∥2L2(Ω), (1.9)

and its minimisation essentially corresponds to finding reconstructions that are closest

to the ground truth in the least square sense. Since typical images generally feature

both homogeneous regions and fine details, it is reasonable to assume that the optimal

regularisation intensity is not uniform throughout the domain. This matter of fact has

prompted researchers to consider bilevel schemes that output space-dependent weights,

i.e., functions α : Ω → [0,+∞) [26, 45]. A recent series of papers [68, 69, 66, 67] deals with

schemes for TV and TGV that yield such weights without resorting to the ground truth.

If the corrupted datum g is obtained by some additive Gaussian noise η with variance σ2,

this is achieved by the introduction of the statistics-based upper level objective

Fstat(u) :=
1

2

ˆ
Ω
max(Ru− σ2, 0)2dx+

1

2

ˆ
Ω
min(Ru− σ2, 0)2dx, (1.10)

where σ2 := σ2 − ε, σ2 := σ2 + ε, and

Ru(x) :=

ˆ
Ω
w(x, y)(u− g)2(y)dy for w ∈ L∞(Ω× Ω),

ˆ
Ω

ˆ
Ω
w(x, y)dxdy = 1.

The idea is that if the reconstructed image u is close to ugt, then it is expected that on

average the value of Ru(x) will be close to σ2. This justifies the use of Fstat, since its

minimisation forces the localised residuals Ru to fall within the tight corridor [σ2, σ2].

Image processing: the contribution of this thesis

Our contribution in the field is connected to the aforementioned literature on several levels.

Starting from an arbitrary l-th order, homogeneous, linear differential operator B between

two finite dimensional Euclidean spaces U and V, we introduce the general regulariser

R(u;α) =

l−1∑
i=1

ˆ
Ω
αi(x)fi(x, dD

iu) +

ˆ
Ω
αl(x)fl(x,dBu), (1.11)

αi : Ω → [0,+∞) being for i = 1, . . . , l the spatially dependent weights. The functions fi

are of linear growth and convex in the second variable. We assume them to be Carathéodory
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integrands, or in other words, they explicitly depend on the spatial variable x in a meas-

urable way. More details about the setting are to be found in Section 5.1. As a first

contribution, we prove lower semicontinuity of the functional in (1.11) with respect to a

suitable weak-∗ convergence, a necessary step towards the existence of solutions of the

corresponding variational image reconstruction problem (1.2). Secondly, we introduce and

prove existence of solutions to the bilevel scheme, which provides an optimal spatially

dependent weight and an associated reconstructed image.

Not much work has been done for functionals depending on general differential operat-

ors. One example comes from the recent preprint [41], where a bilevel scheme for first order

differential operators B is developed. Interestingly, the authors identify classes of operators

B such that the scheme outputs an optimal reconstructed image and an optimal B for the

upper level problem. However, in their analysis one always obtains BV minimisers. In

contrast, in our method the operator B is allowed to be arbitrary, see Theorems 5.4 and

5.6.

From the theoretical point of view, one of the main advantages of our approach is the

fact that we can allow for spatially dependent weights and for general convex integrands

in the regularisers. Our hypotheses on the convex integrands are optimal, due to the use

of Young measures for oscillation and concentration, see Section 2.3. From an analytical

point of view, our regularity assumptions on the weights are minimal, as can be seen from

Section 5.1.3. In the future, we aim to develop our theory to include optimisation problems

over linear PDE operators B that satisfy as few assumptions as possible. We expect that

our lower semicontinuity and existense results, Theorems 5.4 and 5.6 respectively, will serve

as preliminary work in this direction.

We conclude with a series of numerical examples that deal with versions of the Huber

TV and TV2 in which both the Huber and the regularisation parameter are spatially

dependent. We devise a strategy to prefix the former in a sensible way, while the latter

is computed automatically by the bilevel scheme. Even though the main purpose of these

numerical examples is to support the applicability and versatility of the framework, we are

able to draw two interesting conclusions. The first one is that the bilevel TV2 with spatially

varying weight, in combination with the statistics-based upper level objective Fstat is able

to produce high quality reconstructions, even outperforming TGV, both in its scalar and

spatially varying versions. The second one is that the introduction of the spatially varying

Huber parameter can further enhance the detailed areas in the reconstructed images.
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Chapter 2

General Preliminaries

In this chapter we summarise some general notions and tools which are widely used in this

thesis. In particular, we present some important aspects from the theory of constant rank

differential operators which is central in our work. After that, we proceed to a review of

the theory of generalised Young measures, and then we mention some key results from the

PDE constrained quasiconvex analysis. More specialised notions and tools that are used

in this work, are mentioned in the respective chapters and sections of the thesis.

2.1 Constant rank linear operators

We first clarify the notation and then we present some important results which play a

key role in the analysis of our work. For each d-multi index j = (j1, . . . , jd) ∈ Nd, let us

consider a collection of linear operators Aj ∈ Lin(RN ,RM ). We define a homogeneous k-th

order linear operator A by

Aφ :=
∑
|j|=k

Aj∂
jφ, φ : Rd → RN , (2.1)

where |j| =∑i ji. We think of A as a polynomial in ∂ and so we write its principal symbol

as

A : Rd → Lin(RN ,RM ), A(ξ) = (2πi)k
∑
|j|=k

Ajξ
j .

The wave cone associated with A is denoted by

ΛA =
⋃
ξ∈Sd−1

kerA(ξ),

and contains the amplitudes λ ∈ RN along which the system fails to be elliptic where

ellipticity means that kerA(ξ) = {0} for all ξ ̸= 0. Indeed, it is straightforward to check

that λ ̸∈ ΛA if and only if the operator Rλ(v) := A(λv) is elliptic, where v ∈ C∞(Q;R).
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Moreover, we assume throughout that the linear differential operator A has the constant

rank property, i.e. there exists r ∈ N such that

rank A(ξ) = r for all ξ ∈ Sd−1. (2.2)

As we already mentioned in the introduction, the constant rank assumption, first intro-

duced in the context of compensated compactness by Murat [87], ensures the smoothness

of the projection mapping

P : Rd \ {0} → Lin(RN ,RN ), ξ 7→ ProjkerA(ξ),

and thus makes tools of pseudo-differential calculus available. More precisely, the projec-

tion mapping P can be represented as

P(ξ) = IdN − A†(ξ)A(ξ), for ξ ∈ Rd\{0},

where by A†(ξ) we denote the pseudo-inverse of A(ξ). We recall the notion of Moore-

Penrose generalised inverse (so-called pseudo-inverse): for a matrixK ∈ RN×M , its pseudo-

inverse K† is the unique M ×N matrix defined by the relations

KK†K = K, K†KK† = K†, (KK†)∗ = KK†, (K†K)∗ = K†K,

where we use the symbol ∗ for the adjoint matrix. Using the above representation together

with [47, Theorem 3], Raiţă in [92] gave a new characterisation for constant rank operators:

Theorem 2.1. Let A be a linear homogeneous differential operator with constant coef-

ficients of order k ∈ N. Then A has constant rank if and only if there exists a linear

homogeneous differential operator B with constant coefficients and order l ∈ N such that

imB(ξ) = kerA(ξ) for all ξ ∈ Rd \ {0}.

We write, for some Bj ∈ Lin(RM ′
,RN ),

Bϕ :=
∑
|j|=l

Bj∂
jϕ, ϕ : Rd → RM ′

. (2.3)

We refer to the potential operator B simply as the potential of A although no meaningful

notion of uniqueness is known, see [63] for a discussion. We mention here that the potential

operator B is also of constant rank, see [92, Lemma 3].

For the sake of concreteness, we present some examples which are mainly motivated by

material science and are also used in this thesis.

(i) Unconstrained case: If A = 0 then it is straightforward to see that ΛA = RN . We
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note that in that case A-quasiconvexity, see Definition 2.3, is just the normal convexity;

(ii) Non-linear Elasticity: If A = curl then curl-free vector fields can be written as

gradients of some other vector fields, i.e. B = ∇, and the associated wave cone is the cone

of rank-one matrices i.e. ΛA =
{
a⊗ b : a ∈ RN , b ∈ Rd

}
. Similar arguments can be done

for higher gradients or even when only some of the partial derivatives are considered, see

[53, Example 3.10.];

(iii) Linear Elasticity: For A = curl curl then the potential operator is given as the

symmetric gradient E so that ΛA =
{
1
2(a⊗ b+ b⊗ a) : a ∈ RN , b ∈ Rd

}
;

(iv) Thermoelasticity: In this case we observe a couple of constraints described via

the operator A = (curl, 0) where the associated wave cone is given by

ΛA =
{
(a⊗ n, η) : a ∈ RN , n ∈ Rd and η ∈ R

}
.

We note that the above situation can be generalised by coupling any admissible constraints

and hence obtaining a new operator.

Refer to reader to [63, 53, 81] for the details and also some more delicate examples.

2.1.1 Sobolev estimates

We first take a moment to clarify our setting. In a large part of this thesis and in particular

in the analysis of our Gårding type inequality and its applications, for technical reasons

we restrict attention to functions φ : Rd → RN that are ∆-periodic where ∆ denotes the

unit cell of the lattice Zd, i.e.

φ(x+ P ) = φ(x) ∀P ∈ Zd.

These functions can be viewed as functions on the d-dimensional (flat) torus Td

Td :=
{
(e2πix1 , . . . , e2πixd) : (x1, . . . , xd) ∈ Rd

}
via the identification

φT (e
2πix1 , . . . , e2πixd) = ψ(x1, . . . , xd).

Thus, letting Q be (any translation of) the unit cube (0, 1)d, we may identify Lp(Td) with

Lp(Q), understanding that the natural measure on Td is the pushforward of the Lebesgue

measure Ld on Q via the map f : Q→ Td,

f(x1, . . . , xd) = f(e2πix1 , . . . , e2πixd).

Then, for any function φT ∈ L1(Td) and any unit cube Q (up to the obvious modifications

to the map f) it holds that ˆ
Td

φT =

ˆ
Q
φ.
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For the purposes of this thesis, we do not distinguish between φT and φ, or between Td

and Q and their respective measures, and we prefer to define our integrals and function

spaces over Q with opposite boundaries glued, rather than Td. This is because we often

consider functions defined on cubes which are seen as subsets of the unit cube Q, although

Q itself is a unit cube with opposite sides identified. Consequently, we write Lp(Q) instead

of Lp(Td) but also Ck(Q) instead of Ck(Td), i.e.

Ck(Q) :=
{
φ ∈ Ck(Rd) : ∂αφ ∆-periodic for all d-multi-index |α| ⩽ k

}
. (2.4)

Henceforth, for a function φ ∈ Lp(Q) we say that “Aφ = 0 in Q" in the sense of

distributions on the torus, i.e.

−
ˆ
Q
φ · A∗v = 0 for all v ∈ C∞(Q), (2.5)

where A∗ is the adjoint operator. We call A-free any function satisfying (2.5). Taking this

into account, we define the space

Lp
A(Q) :=

{
φ ∈ Lp(Q) : Aφ = 0,

ˆ
Q
φ = 0

}
,

which contains all the A-free and zero-average functions of Lp(Q).

In this section, we present some fundamental estimates in Sobolev spaces for a class of

primitive functions which we refer to as B†-primitives, constructed in [92]. These estimates

are necessary to replace Poincaré-type inequalities which we particularly require when

introducing cut-offs in the analysis of our main inequality, section 3.3. We note that these

estimates may fail for general primitives.

Remark 2.1. Throughout, W l,q(Q) denotes the closure of C∞(Q) in the W l,q norm.

Then, for p = q/(q − 1), the space W−l,p(Q) is its dual and its norm is equivalent to∥∥∥F−1
[ φ̂(ξ)

(1 + |ξ|2)l/2
]∥∥∥

Lp(Q)
.

Note that when
´
Q φ = 0 this norm is equivalent to the norm∥∥∥F−1

[ φ̂(ξ)
|ξ|l

]∥∥∥
Lp(Q)

since the Fourier multipliers (1 + |ξ|2)−l/2 and |ξ|−l are comparable for ξ ∈ Zd \ {0}.
Here, F−1 denotes the inverse Fourier transform, and for the Fourier coefficients we use

the notation

φ(x) =
∑
ξ∈Zd

φ̂(ξ)e2πi·x, for x ∈ Q, φ ∈ C∞(Q), where φ̂(ξ) :=
ˆ
Q
φ(y)e−2πiξ·ydy.
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Before we proceed to the proof of the Sobolev estimates, we present a well-known

result from Harmonic analysis which we use repeatedly, the Hörmander-Mikhlin multiplier

theorem:

Theorem 2.2. Let m ∈ C∞(Rd \ {0}) be 0-homogeneous. Then

∥∥F−1 (mφ̂)
∥∥
Lp(Rd)

⩽ ∥φ∥Lp(Rd) , for all φ ∈ Lp(Rd).

In the sequel the symbol ≲ is used to denote that the inequality ⩽ holds up to a positive

constant i.e. for two quantities q1 and q2 we say that q1 ≲ q2 if there exists a constant

C > 0 such that q1 ⩽ C q2.

Lemma 2.1. Let A and its potential B as in Theorem 2.1. Then for all φ ∈ Lp
A(Q), there

exists ϕ ∈W l,p(Q) such that

(i) φ = Bϕ ;

(ii) ∥ϕ∥Lp(Q) ⩽ C∥φ∥W−l,p(Q) ;

(iii) ∥ϕ∥W l,p(Q) ⩽ C∥φ∥Lp(Q);

(iv) ∥ϕ∥W l−i,p(Q) ⩽ C∥φ∥W−1,p(Q) for all i = 1, .., l.

We will call ϕ a B†-primitive of φ.

Although (ii), (iii) and (iv) follow from the construction in [92], a proof is not explicitly

given. Hence, for completeness, we provide a proof here.

Proof. We prove the result for φ ∈ C∞(Q) and the general case follows by approximation.

Indeed, (i) is known from [92, Lemma 2], where the primitive function ϕ ∈ C∞(Q) is

constructed as

ϕ(x) =
∑
ξ ̸=0

B†(ξ)φ̂(ξ)e2πiξ·x,

and B†(·) is the pseudo-inverse of B(·) which is itself smooth whenever B is, see [63]. This

justifies our adopted terminology B†-primitive.

For (ii), since B†(·) is smooth (B(·) is smooth by construction) and (−l)-homogeneous,

the operator B†(ξ/|ξ|) is 0-homogeneous and smooth, and thus a Fourier multiplier, see

[52, Proposition 2.13]. Hence, by the Hörmander-Mikhlin multiplier theorem, Theorem

2.2, and Remark 2.1

∥ϕ∥Lp(Q) =
∥∥∥F−1

[ 1

|ξ|lB
†(
ξ

|ξ|)φ̂(ξ)
]∥∥∥

Lp
≲
∥∥∥F−1

[ 1

|ξ|l φ̂(ξ)
]∥∥∥

Lp
= ∥φ∥W−l,p(Q).
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For (iii), by applying the Poincaré inequality for all the derivatives of ϕ, since
´
Q∇iϕ =

∇̂iϕ(0) = 0, we have that ∥∇l−iϕ∥Lp ≲ ∥∇lϕ∥Lp for all i=0,..,l and so ∥ϕ∥W l,p ≲ ∥∇lϕ∥Lp .

Then, by differentiating ϕ we obtain

∇lϕ(x) =
∑
ξ ̸=0

B†(ξ)φ̂(ξ)e2πiξ·x ⊗ ξ⊗l,

where B†(ξ) ⊗ ξ⊗l is a 0-homogeneous multiplier of φ, since B†(·) is (−l)-homogeneous.

Hence, again by Theorem 2.2, we find that

∥∇lϕ∥Lp(Q) =
∥∥∥F−1

[
B†(

ξ

|ξ|)φ̂(ξ)
]∥∥∥

Lp
≲
∥∥∥F−1

[
φ̂(ξ)

]∥∥∥
Lp

= ∥φ∥Lp(Q) = ∥Bϕ∥Lp(Q).

For (iv), by working similarly to (iii) we prove that

∥∇l−1ϕ∥Lp(Q) ≲
∥∥∥F−1

[ 1

|ξ| φ̂(ξ)
]∥∥∥

Lp(Q)
= ∥φ∥W−1,p(Q)

and since ∥∇l−iϕ∥Lp ≲ ∥∇l−1ϕ∥Lp for i=1,..,l we conclude the proof.

2.2 A-quasiconvexity

Here we recall the definition of A-quasiconvexity and collect results that are used in the

sequel. The following definition is due to Fonseca and Müller in [53].

Definition 2.3. A locally bounded, Borel function W : RN → R is A-quasiconvex at

λ ∈ RN if ˆ
Q

[
W (λ+ φ(x))−W (λ)

]
dx ⩾ 0,

for all φ ∈ C∞(Q) such that Aφ = 0 and
´
Q φ = 0.

It is proved in [92] that the above definition can equivalently be expressed over arbit-

rary domains and compactly supported test functions, i.e. it coincides with Dacorogna’s

definition of A-B quasiconvexity [33] given below.

Definition 2.4. Let Ω ⊆ Rd be a non-empty open subset. A locally bounded, Borel

function W : RN → R is A-quasiconvex at λ ∈ RN if and only if
ˆ
Ω

[
W (λ+ Bϕ(x))−W (λ)

]
dx ⩾ 0, for all ϕ ∈ C∞

c (Ω),

where B is the potential of A.

Additionally, assuming that W has at most p-growth, i.e. |W (z)| ⩽ c(1 + |z|p), , using

density results, the above definitions can also be expressed with test functions in Lp(Q)

and W l,p
0 (Ω), respectively, where W l,p

0 (Ω) denotes the closure of C∞
c (Ω) in the W l,p-norm.
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The results presented in this thesis, require strengthened versions of the quasiconvexity

condition. Let p ⩾ 2 and for k ∈ N define the auxiliary function Vp : Rk → R as

Vp(z) := (|z|2 + |z|p)1/2, z ∈ Rk. (2.1)

If there exists a constant c0 > 0 such that
ˆ
Ω

[
W (λ+ Bϕ(x))−W (λ)

]
dx ⩾ c0

ˆ
Ω
|V (Bϕ(x))|2dx, (2.2)

for all ϕ ∈W l,p
0 (Ω), we say that W is strongly A-quasiconvex at λ ∈ RN . Equivalently, W

is strongly A-quasiconvex at λ ∈ RN if
ˆ
Q

[
W (λ+ φ(x))−W (λ)

]
dx ⩾ c0

ˆ
Q
|Vp(φ(x))|2dx,

for all φ ∈ Lp
A(Q). We say that W is (strongly) A-quasiconvex, if it is (strongly) A-

quasiconvex at λ for all λ ∈ RN .

Note that A-quasiconvex functions are not in general continuous as, unlike quasiconvex

functions, they are not generally separately convex. However, the condition spanΛA = RN

recovers this loss of separate convexity, see [63, Lemma 4.4], and then

|W (z1)−W (z2)| ⩽ C(1 + |z1|p−1 + |z2|p−1)|z1 − z2|, for all z1, z2 ∈ RN .

We end this subsection with a remark on quadratic forms. It is well-known that for these

functions rank-one convexity, see [34] for the respective definition, implies quasiconvexity.

Here, repeating the arguments of [33], we extend the above implication in the case of

A-quasiconvexity. We first present a result which is crucial in the proof of the extension.

Lemma 2.2. Let M ∈ RN×N be a symmetric matrix and define the function f(λ) =Mλ·λ,
for all ξ ∈ RN . Then, if

ˆ
Q
f
(
φ(x)

)
dx ⩾ 0,

for all φ ∈ C∞
c (Q), A-free and zero-average, the function f is A-quasiconvex.

Proof. Let λ ∈ RN , φ ∈ C∞
c (Q) A-free and zero-average. Then

ˆ
Q
f
(
λ+ φ(x)

)
dx =

ˆ
Q
M
(
λ+ φ(x)

)
·
(
λ+ φ(x)

)
dx

=

ˆ
Q
Mλ · λdx+

ˆ
Q
Mφ(x) · φ(x)dx

⩾
ˆ
Q
Mλ · λdx = f(λ),

where in the second equality we used the fact that
´
Q φ = 0.
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The above lemma together with the fact that ΛA-convex quadratic functions are non-

negative on the wave cone ΛA yields:

Lemma 2.3. Let M ∈ RN×N be a symmetric matrix and define the function f(λ) =Mλ·λ,
for all ξ ∈ RN , and assume in addition that f is convex in the wave cone ΛA. Then f is

A-quasiconvex.

Proof. Since f is convex on the cone ΛA, for any ξ ∈ RN it holds that

∇2
ξf(ξ)λ · λ ⩾ 0

⇒Mλ · λ ⩾ 0, for all λ ∈ ΛA\{0},

and so f(λ) ⩾ 0 for all λ ∈ ΛA\{0}. From Lemma 2.2, it is enough to show that
ˆ
Q
f
(
φ(x)

)
dx ⩾ 0,

for all φ ∈ C∞
c (Q), A-free and zero-average. Indeed,
ˆ
Q
f
(
φ(x)

)
dx =

ˆ
Q
Mφ(x) · φ(x)dx =

ˆ
RN

Mφ̂(ξ) · φ̂(ξ)dξ ⩾ 0,

where the last equality follows from Plancherel’s theorem.

2.3 Young measures

In the sequel, we are interested in two classes of integrands. The first one Ep(Ω,RN ), which

is mainly associated with Chapter 3, is more natural with respect to the assumed growth

behaviour of our integrands, while the second one, denoted by L(Ω,RN ) and studied in

Chapter 5 for integrands with linear growth, is larger from the respective class E(Ω,RN ) :=

E1(Ω,RN ) and contains integrands for which, it will turn out, that we are able to compute

limits. We note that all of the following results hold the same if we replace RN with

any finite dimensional space V, however we restrict ourselves to RN for simplicity of the

notation.

We want to understand the limiting behaviour of the sequence (f(·, φj)) over weakly

convergent sequences (φj) ⊂ Lp(Ω,RN ) (or the sequence (f(·, µj)) for weakly-∗ convergent

sequences of measures µj ∈ M(Ω,RN ) in the case p = 1). To this end, we define the

natural space

Gp(Ω,RN ) :=

{
f ∈ C(Ω× RN ) : ∥f∥Gp := sup

(x,z)

|f(x, z)|
(1 + |z|)p <∞

}
,
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which can be equivalently described using the sphere compactification operator Tp : Gp(Ω,RN ) →
Cb(Ω×BN ) (and its inverse T−1

p )

(Tpf)(x, z̃) := (1− |z̃|)pf
(
x,

z̃

1− z̃

)
, x ∈ Ω, z̃ ∈ BN ,

(T−1
p g)(x, z) := (1 + |z|)pg

(
x,

z

1 + z

)
, x ∈ Ω, z ∈ RN .

In particular it holds that Tp : Gp(Ω,RN ) → Cb(Ω×BN ) is a linear isometric isomorphism

and therefore, the same holds for the adjoint operator T ∗
p : Cb(Ω × BN )∗ → Gp(Ω,RN )∗,

a property which reveals that the transformation mapping Tp captures the behaviour of

the p-growth integrands. However, due to the fact that Gp(Ω,RN )∗ ≃ Cb(Ω × BN )∗ is

the dual of a non-separable Banach space, by testing with integrands in Gp(Ω,RN ), we

lack an appropriate compactness principle. In order to overcome this issue, we look at the

subspace of Gp(Ω,RN ) which is isomorphic to the separable space C(Ω̄ × B̄N ), and we

define the space of p-admissible intergrands Ep(Ω,RN ) as follows:

Ep(Ω,RN ) := T−1
p (C(Ω̄× B̄N ))

=

{
f ∈ C(Ω̄× RN ) : f∞p (x, z) := lim

(x′,z′,t)→(x,z,∞)

f(x′, tz′)

tp
∈ R, for (x, z) ∈ Ω̄× RN

}
,

where f∞p : Ω̄×RN → R is called the (strong) p-recession function of f . It is straightforward

to see that the function f∞p is itself a p-admissible integrand and positively p-homogeneous

in z, i.e.

f∞p ∈ Ep(Ω,RN ), and f∞p (x, tz) = tpf∞p (x, z) for t ⩾ 0, x ∈ Ω̄, z ∈ RN .

In the sequel, we write just E(Ω,RN ) and f∞ for the case p = 1.

Using the above definitions, we are able to understand the space of Young measures as

a subspace of Ep(Ω,RN )∗. To this end, we embed the space Lp(Ω,RN ) ( or M(Ω,RN ) in

the case p = 1) into Ep(Ω,RN )∗ via

p>1: εφ(f) :=

ˆ
Ω
f(x, φ(x))dx, for φ ∈ Lp(Ω,RN ),

p=1: εµ(f) :=

ˆ
Ω
f(x, dµ) =

ˆ
Ω
f(x, µa(x))dx+

ˆ
Ω
f∞

(
x,

dµs

d|µ|(x)
)
d|µ|(x),

where µ = µaLn Ω+µs is the Radon–Nikodym decomposition of µ ∈ M(Ω,RN ). By the

sequential Banach-Alaoglu theorem, we can infer that bounded Lp (or M in the case p=1)

sequences are weakly-* compact in E∗ under the above identification. In particular, if (φj)

is bounded in Lp(Ω,RN ), we know that, along a subsequence which is not relabeled, we

have that εφj

∗
⇀ ν in Ep(Ω,RN )∗.
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We define σ := (T−1
p )∗ν ∈ C(Ω×BN )∗ ⋍ M(Ω×BN ) and, for f ∈ Ep(Ω,RN ), we

write

⟨⟨ν, f⟩⟩ := ⟨ν, f⟩E,E∗ = ⟨σ, Tpf⟩

=

ˆ
Ω̄×BN

(1− |z̃|)pf
(
x,

z̃

1− |z̃|

)
dσ(x, z̃) +

ˆ
Ω̄×SN

f∞p (x, z̃)dσ(x, z̃),

where SN denotes the unit sphere in RN . From this formula we derive two necessary

conditions for the weak-∗ limit ν, namely that σ ⩾ 0 in M(Ω×BN ) and
ˆ
Ω
ψ(x)dx =

ˆ
Ω̄×BN

ψ(x)(1− |z̃|)pdσ(x, z̃) for all ψ ∈ C(Ω̄). (2.1)

In particular, these two conditions characterise Young measures. We define:

Definition 2.5. A parametrized measure ν =
(
(νx)x∈Ω, λ, (ν

∞
x )x∈Ω̄

)
is said to be a Young

measure (or generalized Young measure) whenever

(a) (νx)x∈Ω ⊂ M+
1 (RN ) is weakly-* Ln-measurable (the oscillation measure).

(b) λ ∈ M+(Ω̄) (the concentration measure).

(c) (ν∞x )x∈Ω̄ ⊂ M+
1 (RN ) is weakly-* λ-measurable (the concentration-angle measure).

(d)
´
Ω

´
RN |z|pdνx(z)dx <∞ (the moment condition holds).

Then ν acts linearly on Ep(Ω,RN ) via

⟨⟨ν, f⟩⟩ :=
ˆ
Ω

ˆ
RN

f(x, • )dνxdx+

ˆ
Ω̄

ˆ
SN

f∞p (x, • )dν∞x dλ(x), for f ∈ Ep(Ω,RN ).

We write Yp(Ω,RN ) for the set of all such ν.

Moreover, the Young measures lie in E(Ω,RN )∗ and, more precisely, the inclusion

Yp(Ω,RN ) ⊂ E(Ω,RN )∗ is strict. The theorem below can be seen as the fundamental

theorem of Young measures.

Theorem 2.6. We have that

Yp(Ω,RN ) = T ∗{σ ∈ M+(Ω×BN ) : equation (2.1) holds}.

Using the above characterisation it has been proved that the space of Young measures

Yp(Ω,RN ) has the following closedness and compactness properties:

Theorem 2.7 (Compactness of Young measures). Let (φj) be a bounded sequence in

Lp(Ω,RN ). Then there exists ν ∈ Yp(Ω,RN ) such that, along a subsequence, εφj

∗
⇀ ν

in Ep(Ω,RN )∗, i.e.,

lim
j→∞

ˆ
Ω
f(x, φj(x))dx =

ˆ
Ω

ˆ
RN

f(x, z)dνx(z)dx+

ˆ
Ω̄

ˆ
SN

f∞p (x, z)dν∞x (z)dλ(x), (2.2)
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for all f ∈ Ep(Ω,RN ). In this case, we say that the sequence (φj) generates the Young

measure ν. In addition to this, Yp(Ω,RN ) is convex and weakly-∗ closed in Ep(Ω,RN )∗.

The above result holds also in the case p = 1, where we consider bounded sequences of

measures in M(Ω,RN ). In our analysis in Chapter 5, we use the following consequence of

Theorem 2.7:

Lemma 2.4. Let (µj) ⊂ M(Ω̄,RN ) generate a Young measure ν. Then

µj
∗
⇀ ν̄xLn Ω+ ν̄∞x λ in M(Ω̄,RN ).

The limit measure is refered to as the barycentre of ν.

This follows simply by taking f(x, z) = ψ(x)zi for ψ ∈ C(Ω̄) in Theorem 2.7, where we

write

ν̄x =

ˆ
RN

zdνx(z) and ν̄∞x =

ˆ
BN

zdν∞x (z)

for the expectations of the probability measures νx and ν∞x .

We next formalise an idea which helps us distinguish between the case of sequences

produce only oscillations and those that produce also concentrations. In a way, as it

becomes obvious from the result below, the recession integrand captures the concentration

effects of the generating sequence and hence we expect the lack of it in the presence of

suitable equiintegrability assumptions.

Proposition 2.1. Let Ω ⊂ Rd be bounded and open with Ld(∂Ω) = 0, p ∈ [1,∞), and

f : Ω×RN → R be a measurable integrand such that f(x, • ) is continuous for almost every

x ∈ Ω ( is a Carathéodory integrand). Let (φj) ⊂ Lp(Ω,RN ) generate ν ∈ Yp(Ω,RN ) be

such that (f( • , φj))j is p-equintegrable. Then

lim
j→∞

ˆ
Ω
f(x, φj(x))dx =

ˆ
Ω
⟨νx, f(x, • )⟩dx.

In particular, the barycentre ν̄x := ⟨νx, id⟩ of the oscillating part of the generated Young

measure ν identifies the weak limit of the sequence (φj), i.e.

φj ⇀ ν̄x in Lp(Ω).

In Chapter 5, we focus on the case p = 1 and in particular we study Carathéodory

integrands f : Ω× RN → R with linear growth at infinity i.e.

f is Ld × B(RN )-measurable such that z 7→ f(·, z) continuous and |f(·, z)| ≲ 1 + |z|.
(2.3)
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More precisely we are interested in a smaller class of Carathéodory functions which is

defined as

L(Ω,RN ) :=
{
f : Ω× RN → R : f satisfies (2.3) and f∞ ∈ C(Ω̄× RN ) exists

}
,

and we want to study the limiting behaviour of the sequence ( ⟨⟨µj , f⟩⟩ ) for f ∈ L(Ω,RN )

and bounded sequences of measures (µj). From the above discussion, we understand that

the statement “(µj) generates ν ∈ Y(Ω,RN )” only implies the convergence ⟨⟨µj , f⟩⟩ →
⟨⟨ν, f⟩⟩ for f ∈ E(Ω,RN ). However, the next result reveals that this convergence holds

also for the class L(Ω,RN ).

Proposition 2.2. [82, Proposition 2(i)] Let Ω ⊂ Rd be bounded and open, and f ∈
L(Ω,RN ). Let (µj) ⊂ M(Ω,RN ) generate ν ∈ Y(Ω,RN ). Then

lim
j→∞

ˆ
Ω
f(x,dµj(x)) =

ˆ
Ω
⟨νx, f(x, • )⟩dx+

ˆ
Ω̄
⟨ν∞x , f∞(x, • )⟩dλ(x).

The idea behind the proof of the above result is to decompose f ∈ L(Ω,RN ) as f(x, z) =

h(x, z) + g(x, z) where

h(x, z) := f(x, z)− |z|f∞
(
x,

z

|z|

)
, and, g(x, z) := |z|f∞

(
x,

z

|z|

)
.

Now it is not hard to check that, due to the continuity and the 1-homogeneity of f∞,

g ∈ E(Ω,RN ) and hence ⟨⟨µj , g⟩⟩ → ⟨⟨ν, g⟩⟩ = ⟨⟨ν, f∞⟩⟩. Regarding h, the observation

that h∞ = f∞ − f∞ = 0 allows us to deduce that ⟨⟨µj , h⟩⟩ → ⟨⟨ν, h⟩⟩ = ⟨⟨ν, f − f∞⟩⟩,
and hence conclude by putting the two convergences together. We refer the reader to [82,

Proposotion 2(i)] for the detailed proof.

Before we proceed, we present some examples which help in the understanding of the

difference between the oscillation and the concentration effects of the generating sequences,

see [81] for the details of the corresponding proofs and more complex examples.

Example 1. (No concentration) Let Q = (0, 1)n and φ ∈ Lp
loc(R

d,RN ) be Q-periodic. Set

φj(x) := φ(jx), so that, by using Riemann sums, we obtain that
ˆ
Q
ψ(x)F (φj(x))dx→

ˆ
Q
ψ(x)F (φ(x))dx,

for ψ ∈ Cc(Q), F ∈ Cc(RN ). However, by using the formula (2.2) together with the fact

that for these particular test functions F∞
p = 0, we get that νx = φ#(Ln⌊Q). Now, by

testing (2.2) with ψ ⊗ | · |p where ψ ∈ C(Q̄), we see that the concentration measure λ is

given by the weak-∗ limit of the sequence (|φj |p − ⟨νx, | · |p⟩). Since we already found the

oscillation measure νx, we can conclude that λ = 0.
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Example 2. (No oscillation) Consider now Q = (−1, 1) and φj = j1(0,1/j), where 1A

denotes the characteristic function of the Borel set A ⊆ Q. Then again as in the previous

example, for ψ ∈ Cc(Q), F ∈ Cc(R), we have that
ˆ 1

−1
ψ(x)F (φj(x)) =

ˆ 0

−1
+

ˆ 1

1/j
ψ(x)F (0)dx+

ˆ 1/j

0
ψ(x)F (j)dx→

ˆ 1

−1
ψ(x)F (0)dx,

i.e. νx = δ0. Since we found the oscillation part, similarly with the previous example,

considering the fact that φjLn⌊(−1,1)
∗
⇀ δ0 in M([−1, 1]), we infer that λ = δ0. Regarding

the concentration angles, since the measure ν∞x concentrates on the sphere, we know that

ν∞x = αδ−1 + βδ1 for some α, β > 0 such that α+ β = 1. So, for

F (z) =

 A, z = −1

B, z = 1
so F̃ (z) =

 −Az, z ⩽ 0

Bz z > 0,

and ψ ∈ C([−1, 1]), if we calculate the limit we get that
ˆ 1

−1
ψ(x)F̃ (φj(x))dx→ ψ(0)B.

By using now the Young measure representation (2.2) and comparing the two limits we

deduce that α = 0 and so ν∞0 = δ1. Remember that (2.2) gives us that
ˆ 1

−1
ψ(x)F̃ (φj(x)) →

ˆ 1

−1
ψ(x)⟨νx, F̃ ⟩+

ˆ 1

−1
ψ(x)⟨ν∞x , F ⟩dλ = ψ(0)(αA+ βB).

Hence, to summarize we showed that for the weakly-∗ convergent sequence of measures(
φjLn⌊(−1,1)

)
it holds that

εφj

∗
⇀
(
(δ0)x∈(−1,1), δ0, (δ1)x∈[−1,1]

)
, in E1(−1, 1)∗.

In the Lp case, where 1 < p <∞, we set φ̃j(x) = j1/p1(0,1/j) and we see, similarly with

the p = 1 case, that

εvj
∗
⇀
(
(δ0)x∈(−1,1), δ0, (δ1)x∈[−1,1]

)
, in Ep(−1, 1)∗.

The only difference between the two cases is that in the case 1 < p <∞, the concentration

is not visible in the weak limit, φ̃j ⇀ 0 in Lp(−1, 1).

2.3.1 Jensen-type inequalities

One of the main interests of this thesis is the study of functionals of the form

F [φ] :=

ˆ
Ω
f(x, φ(x))dx, (2.4)

whenever the function φ is constrained by a constant rank differential operator A, i.e.

Aφ = 0. Young measures reveal the link between the lower semicontinuity of (2.4) and
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the convexity of the associated integrand f(x, ·). One of the main contribution of Young

measure theory is that they make sense to the limits F [φj ], whenever f satisfies suitable

growth conditions.

Let us first consider f ∈ Ep(Ω,RN ) and PDE-constrained, p-equiintegrable sequences

φj ⇀ φ in Lp
A(Ω,R

N ). Then, in view of Theorem 2.7, the question of weakly lower

semicontinuity of F reduces to a question of some sort of convexity for fixed x ∈ Ω via the

following:

lim inf
j→∞

F [φj ] =

ˆ
Ω
⟨νx, f(x, ·)⟩dx ⩾⩾⩾

ˆ
Ω
f(x, ⟨νx, id⟩)dx =

ˆ
Ω
f(x, φ(x))dx = F [φ].

The missing element which makes the above relation true, is the so-called Jensen-type

inequality

⟨νx, f(x, ·)⟩ ⩾ f(x, ⟨νx, id⟩), for Ld-a.e. x ∈ Ω. (2.5)

As a first step to the understanding of the above inequality, it turns out that:

Theorem 2.8. Let f : Ω × RN be a Carathéodory function such that the mapping z 7→
f(x, z) is convex for Ld-a.e. x ∈ Ω. Then, it holds that

ˆ
RN

f(x, z)dµ(z) ⩾ f

(
x,

ˆ
RN

z dµ(z)

)
, for all µ ∈ M+

1 (R
N ),

and Ld-a.e. x ∈ Ω.

Even though the lower semicontinuity of F is equivalent to the convexity of f(x, ·)
in the unconstrained case A ≡ 0, this is not the case when PDE-constraints are present.

In particular, for the case A = curl and hence, when Young measures generated by a

sequence of gradients are considered, quasiconvexity suffices for weak lower semicontinuity

[71, 72, 77, 100]. The extension of the latter to constraints given by constant rank operators

is due to Fonseca and Müller [53]:

Theorem 2.9. Let Ω ⊂ Rd be a bounded Lipschitz domain, 1 < p < ∞, and let A be

defined by (2.1) and satisfy the constant rank assumption (2.2). Then, ν is generated by a

p-equiintegrable sequence φj ∈ Lp
A(Ω,R

N ) if and only if

(a) there exists φ ∈ Lp
A(Ω,R

N ) such that φ(x) = ⟨νx, id⟩ for Ld-a.e. x ∈ Ω;

(b) ν has finite p-th moment, i.e.
´
Ω⟨ν, | · |p⟩dx <∞;

(c) the Jensen-type inequality

⟨νx, f(·)⟩ ⩾ f(⟨νx, id⟩), for Ld-a.e. x ∈ Ω,

holds for all A-quasiconvex f ∈ C(RN ) with p-growth, i.e. |f(·)| ≲ 1 + | · |p.
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Case p = 1

In contrast with the case where p > 1, in the case p = 1 bounded sequences in L1 do

not necessarily have a weakly convergent subsequence and thus, as we saw in the previous

subsection, in the case of linear growth integrands it would be more natural from the

compactness point of view to consider weakly-∗ convergent sequences of measures. In that

case, the barycentre of ν, which due to Lemma 2.4 is

ν̄ := ν̄xLn⌊Ω+ ν̄∞x λ,

retains information from the concentration part, something that technically can be seen

from the fact that for f(x, z) := ϕ(x)z in Theorem 2.7, we have that f∞1 = f ̸= 0 = f∞p

where p > 1.

The analysis behind the study of weak lower semicontinuity in the presence of PDE-

constraints for p = 1 and linear growth integrands is much more complicated, and its

theory is based on very recent and powerful results that lead beyond the scope of this

thesis, see [3, 82, 94].
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Chapter 3

Gårding-type inequalities for

quasiconvex integrands

3.1 Quasiconvexity

As we already discussed in the introduction, motivated by applications arising from ma-

terials science, we study problems where the solution is constrained by a constant rank

differential operator A, while we also consider the case where part of the solution remains

unconstrained, and so in that case the constraints are enforced via operators of the form

(A, 0). To this end, we study quasiconvex integrands where our notion of quasiconvexity

at least guarantees convexity on the directions of the associated wave cone Λ(A,0). Even

though our definition of quasiconvexity is associated with the operator (A, 0), we call it

just quasiconvexity to distinguish it from the typical definition of (A, 0) quasiconvexity,

see the discussion below Definition 3.1.

In particular, we say that a continuous function e is quasiconvex at (λ1, λ2) ∈ RN ×R

if the inequality
ˆ
Q
e(λ1 + φ(x), λ2 + ψ(x))− e(λ1, λ2)− eη(λ1, λ2)ψ(x)dx ⩾ 0,

holds for all ψ ∈ C∞(Q) and all A-free and zero-average φ ∈ C∞(Q). The above definition,

using the potential operator B of A, can equivalently be expressed over arbitrary domains.

In particular, for Ω ⊆ Rd a non-empty open subset with |∂Ω| = 0, e is quasiconvex at

(λ1, λ2) ∈ RN × R if the inequality
ˆ
Ω
e(λ1 + Bϕ(x), λ2 + ψ(x))− e(λ1, λ2)− eη(λ1, λ2)ψ(x)dx ⩾ 0,

holds for all ϕ ∈ C∞
c (Ω) and ψ ∈ C∞(Ω).
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Henceforth, we assume that e has (p, q)-growth, i.e. |e(z1, z2)| ⩽ c(1 + |z1|p + |z2|q), and

then by density we can also express the above definition with test functions in W l,p(Q)

and Lq(Q) or in W l,p
0 (Ω) and Lq(Ω) respectively.

The results presented in this chapter require a strengthened version of quasiconvexity

which we now introduce. Remember that the auxiliary function Vi : Rk → R has been

defined by

Vi(z) := (|z|i + |z|2)1/2, (3.1)

where k = 1, k = d or k = N and i ∈ N.

Definition 3.1. Let Ω ⊆ Rd be a non-empty open subset with |∂Ω| = 0. A continuous

function e is strongly quasiconvex at (λ1, λ2) ∈ RN × R if the inequality
ˆ
Ω
e(λ1 + Bϕ, λ2 + ψ)− e(λ1, λ2)− eη(λ1, λ2)ψ ⩾ c0

ˆ
Ω
|Vp(Bϕ)|2 + |Vq(ψ)|2,

holds for all ϕ ∈ W l,p
0 (Ω) and ψ ∈ Lq(Ω). Equivalently, e is strongly quasiconvex at

(λ1, λ2) ∈ RN × R if
ˆ
Q
e(λ1 + Bϕ, λ2 + ψ)− e(λ1, λ2)− eη(λ1, λ2)ψ ⩾ c0

ˆ
Q
|Vp(Bϕ)|2 + |Vq(ψ)|2,

for all ϕ ∈W l,p(Q) and ψ ∈ Lq(Q). In addition, we say that e is (strongly) quasiconvex if

it is (strongly) quasiconvex at (λ1, λ2) for all (λ1, λ2) ∈ RN × R.

At first sight and as we already mentioned above, our definition of quasiconvexity,

Definition 3.1, differs from the classical definition of (A, 0)-quasiconvexity associated with

the cone Λ(A,0). We remark that, with respect to the latter definition, e is strongly (A, 0)-
quasiconvex if

ˆ
Ω
e(λ1 + Bϕ, λ2 + ψ)− e(λ1, λ2) ⩾ c̃0

ˆ
Ω
|Vp(Bϕ)|2 + |Vq(ψ)|2, (3.2)

for all ϕ ∈ W l,p
0 (Ω) and ψ ∈ Lq(Ω) with

´
Ω ψ = 0. In fact, as it can be seen from

the corollary below, the two definitions are in a sense equivalent (the one direction is

straightforward).

Corollary 3.1. Let e ∈ C1(RN × R) with (p, q)-growth i.e. |e(z1, z2)| ≲ 1 + |z1|p + |z2|q.
Then, if e is strongly (A, 0)-quasiconvex, there exists a constant c0 > 0 (smaller than c̃0)

such that
ˆ
Ω
e(λ1 + Bϕ, λ2 + ψ)− e(λ1, λ2)− eη(λ1, λ2)ψ ⩾ c0

ˆ
Ω
|Vp(Bϕ)|2 + |Vq(ψ)|2 (3.3)

for all ϕ ∈W l,p
0 (Ω) and ψ ∈ Lq(Ω), i.e. e is strongly quasiconvex.
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Proof. Let (λ1, λ2) ∈ RN × R, ϕ ∈W l,p
0 (Ω), ψ ∈ Lq(Ω) and for ψ|Ω :=

´
Ω ψ we infer that

ˆ
Ω
e(λ1 + Bϕ, λ2 + ψ)− e(λ1, λ2)− eη(λ1, λ2)ψ

=

ˆ
Ω
e(λ1 + Bϕ, λ2 + ψ|Ω + ψ − ψ|Ω)− e(λ1, λ2 + ψ|Ω)

+

ˆ
Ω
e(λ1, λ2 + ψ|Ω)− e(λ1, λ2)− eη(λ1, λ2)ψ|Ω

−
ˆ
Ω
eη(λ1, λ2)ψ + eη(λ1, λ2)ψ|Ω := I1 + I2 + I3.

From the (A, 0)-quasiconvexity of e, see (3.2), we deduce that

I1 ⩾ c̃0

ˆ
Ω
|Vp(Bϕ)|2 + |Vq(ψ − ψ|Ω)|2.

Concerning the second term, we claim that

I2 ⩾ c̃0

ˆ
Q
|Vq(ψ|Ω)|2, (3.4)

and taking this into account, since I3 = 0, we infer that
ˆ
Ω
e(λ1 + Bϕ, λ2 + ψ)− e(λ1, λ2)− eη(λ1, λ2)ψ ⩾ c̃0

ˆ
Ω
|Vp(Bϕ)|2 + |Vq(ψ − ψ|Ω)|2

+ c̃0

ˆ
Ω
|Vq(ψ|Ω)|2. (3.5)

Due to the convexity of the function | · |q for r ⩾ 2, we have that

|ψ − ψ|Ω|r + |ψ|Ω|r ⩾ 21−r|ψ|r,

and so, applying this into (3.5) for r = 2 and r = q, we conclude the proof for c0 := c̃0/2
1−q.

It remains to prove our claim, inequality (3.4). In particular, we show that (3.2) implies

that

e(λ1, β)− e(λ1, α)− eη(z1, α)(β − α) ⩾ c0|α− β|2
(
1 + |α− β|q−2

)
,

for all z1 ∈ RN and α, β ∈ R. To this end, for λ ∈ (0, 1) and α, β ∈ R let

ψ(x) =


−(1− λ)(α− β) x ∈ Ωα,

λ(α− β) x ∈ Ωβ,

where Ωα and Ωβ are two disjoint cubes such that Ld(Ωα) = λLd(Ω) and Ld(Ωβ) =

(1− λ)Ld(Ω). Then, for ϕ = 0 and λ2 := (1− λ)α+ λβ in (3.2), we infer that

c0|α− β|2λ(1− λ)
[
1 + |α− β|q−2

(
(1− λ)q−1 + λq−1

)]
+ e
(
λ1, (1− λ)α+ λβ)

)
⩽ λe(λ1, β) + (1− λ)e(λ1, α).
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Using the latter inequality, for βλ := (1− λ)α+ λβ, we infer that

e(λ1, β) = e

(
λ1, βλ +

1− λ

λ
(βλ − α)

)
⩾ e(λ1, βλ) +

1− λ

λ
(e(λ1, βλ)− e(λ1, α))

+ c0|α− β|2(1− λ)
[
1 + |α− β|q−2

(
(1− λ)q−1 + λq−1

)]
.

Hence, since

lim
λ→0

1

λ
(e(λ1, βλ)− e(λ1, α)) = lim

λ→0

1

λ
[e(λ1, α+ λ(β − α))− e(λ1, α)] = eη(λ1, α)(β − α),

we take the limit λ→ 0+ to conclude the proof of the claim.

3.2 Decomposition Lemma

The proof of Theorem 3.2 is based on a decomposition lemma which splits a weakly conver-

ging sequence into A-free oscillating and concentrating parts. This extends [31, Theorem

3.4] for the operator B, rather than ∇, and finds its origins in the decomposition results

of Kristensen [78], and Fonseca and Müller [52]. The former of these results is based on

the Helmholtz Decomposition, a version of which in the A-free setting can be found in

[63]. Below, we instead use the construction of Fonseca and Müller [52, Lemma 2.14] but

follow the structure of proof found in [31] to help the reader understand the connection

and differences between the curl-free and A-free cases.

Below we present a crucial result of Fonseca and Müller [52, Lemma 2.14] in which the

constant rank property is essential and cannot be avoided.

Lemma 3.1. Let A as in §2.1. For every 1 < p < +∞, there exists a linear and continuous

projection operator P : Lp(Q) → Lp(Q) and C > 0 such that

A(Pv) = 0,

ˆ
Q
Pv = 0 and ∥v − Pv∥Lp(Q) ⩽ C∥Av∥W−l,p(Q),

for all v ∈ Lp(Q) with
´
Q v = 0.

To reduce the number of indices in the proof of Lemma 3.2 we assume that the operator

A has order 1 and its potential operator B has order l ⩾ 1. Nevertheless, the result holds

in the general case where the operator A has order k ⩾ 1 and the proof remains essentially

the same.

Lemma 3.2. Let 2 ⩽ p < +∞ and (ϕj)j ⊂ W l,2(Q) such that Bϕj ⇀ Bϕ in L2(Q). Let

also (rj)j ⊂ (0, 1) such that (rjBϕj)j bounded in Lp(Q). Then, up to a subsequence, there

exist sequences (fj)j ⊆W l,2(Q) and (bj)j ⊆W l,2(Q) such that
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(1) Bfj ⇀ 0 and Bbj ⇀ 0;

(2) (|Bfj |2)j is equiintegrable;

(3) Bbj → 0 in measure;

(4) Bϕj = Bϕ+ Bfj + Bbj.

In addition, for a further subsequence, (fj)j and (bj)j can be chosen so that

(1 ′) rjBfj ⇀ 0 and rjBbj ⇀ 0 in Lp(Q);

(2 ′) (|rjBfj |p)j is equiintegrable;

(3 ′) rjBbj → 0 in measure.

Proof. By extracting a subsequence, we may assume that Bϕj Y−→ (νx)x and rjBϕj Y−→
(µx)x. The latter notation means that the sequences generate the respective Young meas-

ures and in particular that

G(Bϕj)⇀ ⟨νx, G⟩ =
ˆ
RN

G(z) dνx(z) in L1(Q),

whenever (G(Bϕj)) is equiintegrable, see Section 2.3 for details on Young measures. We

also observe that, by working with the sequence ϕj −ϕ instead of ϕj , we may assume that

ϕ = 0. We split the proof into 4 steps.

Step 1. Truncation: Define, for k ∈ N and z ∈ RN , the truncation operator τk by

τk(z) :=


z, |z| ⩽ k,

k z/|z|, |z| > k.

Its straightforward to see that for fixed k ∈ N the sequence
(
|τk(Bϕj)|2

)
j

is uniformly

integrable, and hence, by Proposition 2.1 and the Monotone Convergence Theorem, we

have that

lim
k→∞

lim
j→∞

ˆ
Q
|τk(Bϕj)|2dx = lim

k→∞

ˆ
Q
⟨νx, |τk(·)|2⟩dx =

ˆ
Q
⟨νx, | · |2⟩dx.

Moreover, if 1 ⩽ q < 2, then
ˆ
Q
|τk(Bϕj)− Bϕj |q =

ˆ
{|Bϕj |>k}

∣∣∣∣1− k

|Bϕj |

∣∣∣∣q |Bϕj |q ⩽ ˆ
{|Bϕj |>k}

2q
|Bϕj |2
|Bϕj |2−q

⩽ k2−q2q
ˆ
Q
|Bϕj |2dx→ 0,

as k → ∞. Summing up the above results, we may find a subsequence such that

lim
k→∞

ˆ
Q
|τk(Bϕjk)|2 =

ˆ
Q
⟨|.|2, νx⟩, (3.1)
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lim
k→∞

ˆ
Q
|τk(Bϕjk)− Bϕjk |q = 0, (3.2)

for 1 ⩽ q < 2. Letting vk := τk(Bϕjk), it then follows from (3.1), (3.2) that (vk)k is

2-equiintegrable and generates (νx)x. From (3.2) and the continuity of the operator A, it

also follows that Avk → 0 in W−1,q(Q).

Step 2. Decomposition: Since vk ∈ L2(Q), we can extend it periodically to Rd and then

apply Lemma 3.1 to infer that

vk −
ˆ
Q
vk = Fk +Bk

where Fk := P
(
vk −

´
Q vk

)
, Bk := vk −

´
Q vk − P

(
vk −

´
Q vk

)
.

Claim 1: Bk → 0 in measure.

By Lemma 3.1 we infer that

∥Bk∥Lq(Q) = ∥vk −
ˆ
Q
vk − P

(
vk −

ˆ
Q
vk

)
∥Lq(Q) ⩽ C∥Avk∥W−1,q(Q) → 0

for all 1 ⩽ q < 2. Hence, Bk → 0 in Lq(Q) and so in measure.

Claim 2: (|Fk|2)k is equiintegrable.

By Step 1,
(
vk −

´
Q vk

)
k

is 2-equiintegrable, and hence for every ε > 0 and all q > 2 there

exists a sequence (Wk)k such that

∥vk −
ˆ
Q
vk −Wk∥L2(Q) ⩽ ε/C

and supk ∥Wk∥Lq(Q) < +∞. This is an equivalent characterisation of equiintegrability, see

[78]. Taking into account the properties of the projection P, we infer that

∥Fk − P(Wk)∥L2 = ∥P
(
vk −

ˆ
Q
vk −Wk

)
∥L2 ⩽ C∥vk −

ˆ
Q
vk −Wk∥L2 ⩽ ε

and

sup
k

∥P(Wk)∥Lq ⩽ C sup
k

∥Wk∥Lq < +∞.

This concludes the proof of Claim 2.

Claim 3: Fk, Bk ⇀ 0 in L2(Q).

Since Bϕjk has zero average, (3.2) and Claim 2 imply that

Fk − Bϕjk = vk −
ˆ
Q
vk − Bϕjk −Bk = vk − Bϕjk −

ˆ
Q
(vk − Bϕjk)−Bk → 0

in measure. In addition, by (3.1), vk is bounded in L2(Q) and by the continuity of P,

(Fk)k is also bounded in L2(Q) and Fk − Bϕjk ⇀ 0 in L2(Q). This proves the claim for
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Fk, since Bϕjk ⇀ 0 in L2(Q). For (Bk)k the claim is immediate as it is bounded in L2(Q)

and converges to 0 in measure.

Step 3. Concluding the L2-decomposition: Since Fk is A-free with zero average, from

Lemma 2.1 (i), there exists a function fk ∈W l,2(Q) such that Fk = Bfk. Set bk := ϕjk−fk.
We thus conclude that

Bbk = Bϕjk − vk +

ˆ
Q
vk +Bk → 0

in measure as, by Claim 1, Bϕjk − vk → 0 in measure. Also,
´
Q vk → 0 since

´
Q Bϕjk = 0

and (3.2) with q = 1, and Bk → 0 by Claim 1. Thus,

Bϕjk = Bfk + Bbk

satisfying (1)-(4).

Step 4. Lp-decomposition: This follows the arguments in [31] but we include it for com-

pleteness. Similarly to Step 1 we can extract a p-equiintegrable subsequence such that

lim
k→∞

ˆ
Q
|τk(rjkBϕjk)|p =

ˆ
Q
⟨|.|p, µx⟩, (3.3)

and with vk = τk(Bϕjk), we infer that

|rjkvk(x)| = |τkrjk (rjkBϕjk(x))| ⩽ |τk(rjkBϕjk(x))|,

since rτk(z) = τkr(rz), krjk ⩽ k and k 7→ τk(z) is non-decreasing in z. Hence, the sequence

(rjkvk)k is p-equiintegrable and bounded in Lp(Q). From the linearity and continuity of

the projection P, we find that

P
(
rjkvk −

ˆ
Q
rjkvk

)
= rjkP

(
vk −

ˆ
Q
vk

)
= rjkFk

and so ∥rjkFk∥Lp(Q) ≲ ∥rjkvk∥Lp(Q) which implies that the sequence (rjkFk)k is also

bounded in Lp(Q). Hence, we can proceed as in Steps 2 and 3 and deduce that rjkBfk,
rjkBbk ⇀ 0 in Lp(Q). Since rjk ∈ (0, 1), (3 ′) is a straightforward implication of (3).

Remark 3.1. We remark that the above decomposition applies to any A-free and zero-

average sequence (ψj)j ⊆ L2(Q) with ψj ⇀ ψ in L2(Q). Indeed, by Lemma 2.1 (i),

ψj = Bϕj , ψ = Bϕ for some ϕj , ϕ ∈ W l,p(Q). In addition, we can choose bj to be a

B†-primitive and hence to satisfy the bounds of Lemma 2.1. Note that fj is already chosen

as a B†-primitive.

Moreover, we note that a similar decomposition lemma can also be applied to functions

ϕj which are defined on an open, bounded set Ω ⊂ Rd with Ld(∂Ω) = 0. We refer the

reader to [62, Lemma 1.1] for details.
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3.3 Gårding-type inequality

In this part of the thesis, and more precisely in Theorem 3.2, we prove the Gårding in-

equality (3.15) which plays a crucial role in the proof of our weak-strong uniqueness results,

Theorems 4.2 and 4.3. Henceforth, we study functions e : RN × R → R which satisfy the

following assumptions:

(H1) e ∈ C3(RN × R);

(H2) c2(|z1|p + |z2|q − 1) ⩽ e(z1, z2) ⩽ c1(|z1|p + |z2|q + 1);

(H3) |eF (z1, z2)| ≲ 1 + |z1|p−1 + |z2|q
p−1
p , and |eη(z1, z2)| ≲ 1 + |z1|p

q−1
q + |z2|q−1.

We collect all continuous functions F̄ : Rd → RN and η̄ : Rd → R in the ball of L∞(Q) of

radius K, with uniform modulus of continuity ω, in the set

UK :=
{
(F̄ , η̄) ∈ CK(Q) : |F̄ (x)− F̄ (y)|+ |η̄(x)− η̄(y)| ⩽ ω(|x− y|),∀x, y ∈ Q

}
,

where CK(Q) :=
{
(F̄ , η̄) ∈ C(Q;RN )× C(Q;R) : ∥F̄∥L∞(Q) + ∥η̄∥L∞(Q) ⩽ K

}
.

Next, for (z1, z2) ∈ RN ×R and e ∈ C3(RN ×R) which satisfies the growth conditions

(H2) and (H3), we define the function

ẽ(z1, z2) := e(z1, z2)− C1|Vp(z1)|2 − C2|Vq(z2)|2, (3.1)

which is not hard to check that satisfies the same growth and coercivity conditions with

e up to smaller positive constants. Note that for integrals without the z2-dependence i.e.

W : RN → R, the associated function W̃ is defined naturally as above without the last

term on the RHS. Integrands of the latter form concern us in the subsection 4.1.1 and

section 4.2. The corresponding Hessians of e and ẽ are denoted by L and L̃ respectively,

i.e.

L(λ1, λ2)[(ξ1, ξ2), (ξ1, ξ2)] := eFF (λ1, λ2)ξ1ξ1 + 2eηF (λ1, λ2)ξ1ξ2 + eηη(λ1, λ2)ξ2ξ2,

for all (ξ1, ξ2) ∈ RN × R and (λ1, λ2) ∈ B(0,K) := {λ ∈ RN × R : |λ| ⩽ K}. In the

sequel, without loss of generality, we assume that p ⩾ q. In the opposite case, i.e. if

p < q, the results below can be proved following the same strategy but with the respective

adjustments in the proofs.

We next prove a series of results which lead to the proof of Theorem 3.1. Lemma 3.3

provides some properties of the relative function e(·|·) and its proof can be found in the

Appendix. For brevity, henceforth, constants shown to depend on K, e.g. C(K), may
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also depend on the modulus of continuity ω but the latter dependence is omitted from the

notation.

Lemma 3.3. Let f (in place of e) satisfy (H1), (H2) and (H3). Then the following hold:

(a) There exists C = C(f,K) such that for all (λ1, λ2) ∈ B(0,K)

|f(λ1 + ξ1, λ2 + ξ2|λ1, λ2)− f(λ1 + z1, λ2 + z2|λ1, λ2)|

⩽ C(|ξ1|+ |ξ2|+ |z1|+ |z2|+ |ξ1|p−1 + |z1|p−1 + |ξ2|q
p−1
p )|ξ1 − z1|

+ C(|ξ1|+ |ξ2|+ |z1|+ |z2|+ |ξ2|q−1 + |z2|q−1 + |z1|p
q−1
q )|ξ2 − z2|.

Additionally,

|f(λ1 + ξ1, λ2 + ξ2|λ1, λ2)| ⩽ C
(
|Vp(ξ1)|2 + |Vq(ξ2)|2

)
.

(b) For every δ > 0 there exists R = R(δ, f,K) > 0 such that for all (λ1, λ2), (µ1, µ2) ∈
B(0,K) with |(λ1, λ2)− (µ1, µ2)| < R, it holds that

|f(λ1 + ξ1, λ2 + ξ2|λ1, λ2)− f(µ1 + ξ1, µ2 + ξ2|µ1, µ2)|

⩽ δ
(
|Vp(ξ1)|2 + |Vq(ξ2)|2

)
.

(c) There exist constants d1 = d1(f,K), d2 = d2(f,K) such that for all (λ1, λ2) ∈
B(0,K)

f(λ1 + ξ1, λ2 + ξ2|λ1, λ2) ⩾ d1
(
|ξ1|p + |ξ2|q

)
− d2

(
|ξ1|2 + |ξ2|2

)
.

Next, we prove two important properties of the function ẽ. In the first lemma below,

Lemma 3.4, we show that ẽ retains the key quasiconvexity property of e in B(0,K), and

as a consequence of this result we next prove in Lemma 3.5 that the Hessian L̃ is positive

for fixed x0 ∈ Q.

Lemma 3.4. Let e satisfy (H1)-(H3) be strongly quasiconvex. Then, the function ẽ is

strongly quasiconvex at all (λ1, λ2) ∈ B(0,K) with constant c0/2, i.e. for any Q′ ⊆ Q and

all |λ1|+ |λ2| ⩽ K
ˆ
Q′
ẽ(λ1 + Bϕ, λ2 + ψ)− ẽ(λ1, λ2)− ẽη(λ1, λ2)ψ ⩾ c0

ˆ
Q′

|Vp(Bϕ)|2 + |Vq(ψ)|2,

holds for all ϕ ∈W l,p
0 (Q′) and ψ ∈ Lq(Q′).

Proof. Let Q′ ⊆ Q, ϕ ∈ W l,p
0 (Q′), ψ ∈ Lq(Q′) and (λ1, λ2) ∈ B(0,K). Then, noting that´

Q′ Bϕ = 0,
ˆ
Q′
ẽ(λ1 + Bϕ, λ2 + ψ)− ẽ(λ1, λ2)− ẽη(λ1, λ2)ψ
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=

ˆ
Q′
e(λ1 + Bϕ, λ2 + ψ)− e(λ1, λ2)− eη(λ1, λ2)ψ

− C1

ˆ
Q′

|λ1 + Bϕ|p + |λ1 + Bϕ|2 − |λ1|p − |λ1|2

− C2

ˆ
Q′

|λ2 + ψ|q + |λ2 + ψ|2 − |λ2|q − |λ2|2 − qλ2|λ2|q−2ψ − 2λ2ψ

=: I1 + I2 + I3.

By the quasiconvexity of e we infer that

I1 ⩾ c0

ˆ
Q′

|Bϕ|p + |Bϕ|2 + |ψ|q + |ψ|2,

and for f(·) = |Vi(·)|2 with i = p and i = q respectively in Lemma 3.3 (a), taking again

into account that
´
Q′ Bϕ = 0, we deduce that

I2 ⩾ −C1C

ˆ
Q′

|Bϕ|p + |Bϕ|2,

I3 ⩾ −C2C

ˆ
Q′

|ψ|p + |ψ|2.

So, we may choose C1 ⩽ c0/(2C) and C2 ⩽ c0/(2C) to conclude the proof.

As a consequence of the above lemma, in the result below, we deduce the positivity of

the Hessian L̃ for fixed x0 ∈ Q.

Lemma 3.5. Let e satisfy (H1)-(H3) be strongly quasiconvex and Q′ ⊆ Q and x0 ∈ Q′.

Then for all ϕ ∈W l,p
0 (Q′) and ψ ∈ Lq(Q′) it holds that

ˆ
Q′
L̃(F̄0, η̄0)

[
(Bϕ(x), ψ(x)), (Bϕ(x), ψ(x))

]
dx ⩾ c0

ˆ
Q′

|Bϕ(x)|2 + |ψ(x)|2dx,

where F̄0 = F̄ (x0) and η̄0 = η̄(x0).

Proof. The quasiconvexity of ẽ, Lemma 3.4, says that I(ϕ, ψ) ⩾ I(0, 0) for all ϕ ∈W l,p
0 (Q′)

and ψ ∈ Lq(Q′), where

I(ϕ, ψ) :=

ˆ
Q′
ẽ(F̄0 + Bϕ, η̄0 + ψ)− ẽ(F̄0, η̄0)− ẽη(F̄0, η̄0)ψ

− c0
2

ˆ
Q′

|Vp(Bϕ)|2 + |Vq(ψ)|2,

and so we infer that d2

dε2
I(εϕ, εψ)

∣∣∣
ε=0

⩾ 0. However,

d

dε
I(εϕ, εψ) :=

ˆ
Q′
ẽF (F̄0 + εBϕ, η̄0 + εψ)Bϕ+ ẽη(F̄0 + εBϕ, η̄0 + εψ)ψ

− ẽη(F̄0, η̄0)ψ − c0
2
pεp−1|Bϕ|p − c0ε|Bϕ|2 −

c0
2
qεq−1|ψ|q − c0ε|ψ|2,
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and so

d2

dε2
I(εϕ, εψ) =

ˆ
Q′
ẽFF (F̄0 + εBϕ, η̄0 + εψ)Bϕ : Bϕ+ ẽηη(F̄0 + εBϕ, η̄0 + εψ)ψ · ψ

+ 2ẽFη(F̄0 + εBϕ, η̄0 + εψ)Bϕ · ψ

− c0
2
p(p− 1)εp−2|Bϕ|p − c0|Bϕ|2 −

c0
2
q(q − 1)εq−2|ψ|q − c0|ψ|2.

We conclude that

0 ⩽
d2

dε2
I(εϕ, εψ)

∣∣∣
ε=0

=

ˆ
Q′
L̃(F̄0, η̄0)

[
(Bϕ, ψ), (Bϕ, ψ)

]
− c0|Bϕ|2 − c0|ψ|2.

We are now ready to prove a Gårding-type inequality for the delocalised version of the

Hessian L̃, which is crucial for the contradiction argument of the proof of Theorem 3.1.

Proposition 3.1. Let e satisfy (H1)-(H3) be strongly quasiconvex. Then, for every δ > 0,

there exist constants c > 0 and Cpen := C(δ) > 0 such that

ˆ
Q
L̃(F̄ (x), η̄(x))

[
(Bϕ, ψ), (Bϕ, ψ)

]
⩾ c(1− δ)2

ˆ
Q
|Bϕ|2 + |ψ|2 − Cpen

l∑
i=1

ˆ
Q
|∇l−iϕ|2

for all ϕ ∈W l,p(Q), ψ ∈ Lq(Q) and (F̄ , η̄) ∈ UK .

Proof. Fix δ > 0 and pick a finite cover {Qi}i, Qi := Q(xi, ri) ⊆ Q such that

|ẽFF (F̄ (x), η̄(x))− ẽFF (F̄ (xi), η̄(xi))|+ |ẽηη(F̄ (x), η̄(x))− ẽηη(F̄ (xi), η̄(xi))|

+ 2|ẽFη(F̄ (x), η̄(x))− ẽFη(F̄ (xi), η̄(xi))| ⩽
1

2
cδ(1− δ).

Note that since (F̄ (x), η̄(x)) ∈ UK (bounded with uniform modulus of continuity) and

ẽ ∈ C2 the cover can be chosen uniformly.

Now choose a partition of unity (ρi)i, ρi ∈ C∞
c (Qi) and

∑
i ρ

2
i = 1. Given ϕ ∈W l,p(Q)

and ψ ∈ Lq(Q), we infer that

∑
i

ˆ
Qi

L̃(F̄ , η̄)[(ρiBϕ, ρiψ), (ρiBϕ, ρiψ)]− L̃(F̄i, η̄i)[(ρiBϕ, ρiψ), (ρiBϕ, ρiψ)]

⩾ − c
2
δ(1− δ)

ˆ
Q

(
|Bϕ|2 + |Bϕ||ψ|+ |ψ|2

)
⩾ −cδ(1− δ)

ˆ
Q

(
|Bϕ|2 + |ψ|2

)
,

and so,
ˆ
Q
L̃(F̄ , η̄)[(Bϕ, ψ), (Bϕ, ψ)] =∑

i

ˆ
Qi

L̃(F̄ , η̄)[(ρiBϕ, ρiψ), (ρiBϕ, ρiψ)]− L̃(F̄i, η̄i)[(ρiBϕ, ρiψ), (ρiBϕ, ρiψ)]
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+
∑
i

ˆ
Qi

L̃(F̄i, η̄i)[(ρiBϕ, ρiψ), (ρiBϕ, ρiψ)] =:
∑
i

Ii +
∑
i

IIi.

Since we already bounded the term
∑

i Ii from below, it remains to prove a similar bound

for the second term. Since B(ρiϕ) = ρiBϕ+ϕ⊗Bρi, where ϕ⊗Bρi :=
∑l

j=1B
L
j [∇jρi,∇l−jϕ]

and BL
j are given by the Leibniz rule, we infer that

IIi =

ˆ
Qi

ẽFF (F̄i, η̄i)B(ρiϕ) : B(ρiϕ) + ẽηη(F̄i, η̄i)(ρiψ) : (ρiψ) + 2ẽFη(F̄i, η̄i)B(ρiϕ) : (ρiψ)

+

ˆ
Qi

ẽFF (F̄i, η̄i)(ϕBρi) : (ϕ⊗B ρi)−
ˆ
Qi

ẽFF (F̄i, η̄i)B(ρiϕ) : (ϕ⊗B ρi)

−
ˆ
Qi

ẽFη(F̄i, η̄i)(ϕ⊗B ρi) : (ρiψ) =:

4∑
j=1

T j
i .

In particular, for T 1
i we apply Lemma 3.5 testing with ρiϕ ∈ W l,p

0 (Qi) and ρiψ ∈ Lq(Qi)

to infer that

T 1
i ⩾ c0

ˆ
Qi

(
|B(ρiϕ)|2 + |ρiψ|2

)
.

For the remaining three terms, by Young’s inequality, we find that

T 2
i ⩾ −c

(
sup
j

∥∇jρi∥∞
)

l∑
j=1

ˆ
Qi

|∇l−jϕ|2,

T 3
i ⩾ −c(1− δ)2

ˆ
Qi

|B(ρiϕ)|2 − 2C1(δ)
l∑

j=1

ˆ
Qi

|∇l−jϕ|2,

T 4
i ⩾ −c1 + δ2

2

ˆ
Qi

|ρiψ|2 − 2C2(δ)

l∑
j=1

ˆ
Qi

|∇l−jϕ|2.

Finally combining all the above and since

|B(ρiϕ)|2 = |ρiBϕ+ ϕ⊗B ρi|2 ⩽
1

2
|ρiBϕ|2 +

1

2
|ϕ⊗B ρi|2,

|B(ρiϕ)|2 = |ρiBϕ+ ϕ⊗B ρi|2 ⩾ (1− δ)ρ2i |Bϕ|2 − C(δ)|ϕ⊗B ρi|2,

we conclude that
ˆ
Q
L̃(F̄ , η̄)[(Bϕ, ψ), (Bϕ, ψ)] ≳ (1− δ)2

ˆ
Q
|Bϕ|2 + |ψ|2 − C(δ)

l∑
j=1

ˆ
Q
|∇l−jϕ|2.

Following ideas of [31, 109], the following lemma shows that the function ẽ(·|·) has

convex-like behaviour on the wave cone when it is integrated over cubes with sufficiently

small radius and plays a crucial role in the proof of Proposition 3.2.
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Lemma 3.6. Let e satisfy (H1)-(H3) be strongly quasiconvex. Then, there exists R =

R(c0,K) > 0 such that for all x0 ∈ Q the inequality
ˆ
Q(x0,r)

ẽ(F̄ (x) + Bϕ, η̄(x) + ψ|F̄ (x), η̄(x)) ⩾ c0
4

ˆ
Q(x0,r)

|Vp(Bϕ)|2 + |Vq(ψ)|2

holds for all ϕ ∈W l,p
0 (Q(x0, r)) and ψ ∈ Lq(Q(x0, r)) with r ⩽ R.

Proof. Observe that by Lemma 3.3 (b), letting δ = c0/4 we find R = R(c0, ẽ,K) such that

for all (F̄ , η̄) ∈ UK and whenever |x− x0| < R

∣∣ẽ(F̄ + Bϕ, η̄ + ψ|F̄ , η̄)− ẽ(F̄0 + Bϕ, η̄0 + ψ|F̄0, η̄0)
∣∣ ⩽ c0

4

(
|Vp(Bϕ)|2 + |Vq(ψ)|2

)
.

Note here that ẽ satisfies the growth conditions of Lemma 3.3. So for ϕ ∈ W l,p
0 (Q(x0, r))

and ψ ∈ Lq(Q(x0, r)) with r ⩽ R we infer that
ˆ
Q(x0,r)

ẽ(F̄ + Bϕ, η̄ + ψ|F̄ , η̄) ⩾
ˆ
Q(x0,r)

ẽ(F̄0 + Bϕ, η̄0 + ψ|F̄0, η̄0)

− c0
4

(
|Vp(Bϕ)|2 + |Vq(ψ)|2

)

=

ˆ
Q(x0,r)

ẽ(F̄0 + Bϕ, η̄0 + ψ)− ẽ(F̄0, η̄0)−ẽη(F̄0, η̄0)ψ − ẽF (F̄0, η̄0)Bϕ

−c0
4

(
|Vp(Bϕ)|2 + |Vq(ψ)|2

)
⩾
c0
4

ˆ
Q(x0,r)

(
|Vp(Bϕ)|2 + |Vq(ψ)|2

)
,

where in the last inequality we used Lemma 3.4 and that
´
Q(x0,r)

Bϕ = 0.

We next prove a central result which can be seen as a limiting version of a Gårding

inequality and replaces the quasiconvexity condition in the proof of Theorem 3.1.

Proposition 3.2. Let e satisfy (H1)-(H3) be strongly quasiconvex and (F̄k, η̄k)k ⊆ UK ,

(ϕk)k ⊆W l,p(Q), (ψk)k ⊆ Lq(Q) and (ak)k ⊆ R such that

• a−1
k Vp(∇l−iϕk) → 0 strongly in L2(Q) for all i = 1, .., l,

•
(
a−1
k Vp(Bϕk)

)
k

is bounded in L2(Q),

•
(
a−1
k Vq(ψk)

)
k

is bounded in L2(Q).

Then,

lim inf
k

c0
4
a−2
k

ˆ
Q
|Vp(Bϕk)|2+|Vq(ψk)|2

⩽ lim inf
k

a−2
k

ˆ
Q
ẽ(F̄k + Bϕk, η̄k + ψk|F̄k, η̄k).
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Proof. Since
(
a−2
k |Vp(Bϕk)|2 + a−2

k |Vq(ψk)|2
)
k

is bounded in L1(Q) we may assume that

(up to a subsequence)

a−2
k |Vp(Bϕk)|2 + a−2

k |Vq(ψk)|2Ld⌊Td
∗
⇀ µ, in M(Td) =

(
C(Td)

)∗
.

Since µ is a positive measure, there can be at most a countable number of hyperplanes

parallel to the coordinate axes which admit positive µ-measure. Hence, we can extract a

finite cover of Q by non overlapping cubes Qrj := Q(xj , rj) with the property that rj < R,

so that Lemma 3.6 applies and

µ(∂Q(xj , rj)) = 0. (3.2)

Next, consider cut-off functions ρj ∈ C∞
c (Q(xj , rj)) such that for λ ∈ (0, 1)

1Q(xj ,λrj) ⩽ ρj ⩽ 1Q(xj ,rj), ∥∇iρj∥L∞(Q) ⩽
C

(1− λ)i
,

for i = 1, .., l. For simplicity, we denote Qrj := Q(xj , rj) and Qλrj := Q(xj , λrj). We now

apply Lemma 3.6 for the functions ρjϕk ∈W l,p
0 (Qrj ) and ρjψk ∈ Lq(Qrj ) to find that

c0
4

ˆ
Qrj

|Vp(B(ρjϕk))|2 + |Vq(ρjψk)|2 ⩽
ˆ
Qrj

ẽ(F̄k + B(ρjϕk), η̄k + ρjψk|F̄k, η̄k),

where (F̄k, η̄k) ∈ UK . Thus by Lemma 3.3 (a) and for C = C(ẽ, K), it holds that

c0
4

ˆ
Qλrj

|Vp(Bϕk)|2 + |Vq(ψk)|2 +
c0
4

ˆ
Qrj \Qλrj

|Vp(B(ρjϕk))|2 + |Vq(ρjψk)|2

⩽
ˆ
Qλrj

ẽ(F̄k + Bϕk, η̄k + ψk|F̄k, η̄k) +

ˆ
Qrj \Qλrj

ẽ(F̄k + B(ρjϕk), η̄k + ρjψk|F̄k, η̄k)

⩽
ˆ
Qλrj

ẽ(F̄k + Bϕk, η̄k + ψk|F̄k, η̄k) + C

ˆ
Qrj \Qλrj

|Vp(B(ρjϕk))|2 + |Vq(ρjψk)|2

⩽
ˆ
Qλrj

ẽ(F̄k + Bϕk, η̄k + ψk|F̄k, η̄k) + C

ˆ
Qrj \Qλrj

|Vp(Bϕk)|2 + |Vq(ψk)|2

+

l∑
i=1

∣∣∣Vp( ∇l−iϕk
(1− λ)i

)∣∣∣2,
where in the last inequality we used the definition of the cut-offs and the fact that B(ρjϕk) =
ϕk ⊗B ρj + ρjBϕk. We observe that the second term on the left hand side is positive and

so by summing over j we infer that

c0
4

ˆ
Q
|Vp(Bϕk)|2 + |Vq(ψk)|2 −

c0
4

∑
j

ˆ
Qrj \Qλrj

|Vp(Bϕk)|2 + |Vq(ψk)|2

⩽
ˆ
Q
ẽ(F̄k + Bϕk, η̄k + ψk|F̄k, η̄k)−

∑
j

ˆ
Qrj \Qλrj

ẽ(F̄k + Bϕk, η̄k + ψk|F̄k, η̄k)

+ C
∑
j

ˆ
Qrj \Qλrj

|Vp(Bϕk)|2 + |Vq(ψk)|2 +
l∑

i=1

∣∣∣Vp( ∇l−iϕk
(1− λ)i

)∣∣∣2.
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Using again Lemma 3.3 (a) we deduce that

c0
4

ˆ
Q
|Vp(Bϕk)|2 + |Vq(ψk)|2 ⩽

ˆ
Q
ẽ(F̄k + Bϕk, η̄k + ψk|F̄k, η̄k)

+ C
∑
j

ˆ
Qrj \Qλrj

|Vp(Bϕk)|2 + |Vq(ψk)|2 +
l∑

i=1

∣∣∣Vp( ∇l−iϕk
(1− λ)i

)∣∣∣2.
Multiplying with a−2

k and taking the limit over k we conclude that

lim inf
k

c0
4
a−2
k

ˆ
Q
|Vp(Bϕk)|2 + |Vq(ψk)|2 ⩽ a−2

k lim inf
k

ˆ
Q
ẽ(F̄k + Bϕk, η̄k + ψk|F̄k, η̄k)

+ C
∑
j

µ
(
Q̄rj \Qλrj

)
.

Finally, send λ→ 1 to complete the proof via (3.2).

The Gårding inequality, Theorem 3.2, follows as a consequence of Theorem 3.1 below

which forms the core of this section. Before we proceed to the theorem, we define the

auxiliary mapping ∥ · ∥W−1,(2,p) : Lp(Q) → R (though not a norm) by

∥φ∥W−1,(2,p) :=
(
∥φ∥2W−1,2(Q) + ∥φ∥p

W−1,p(Q)

)1/2
. (3.3)

Theorem 3.1. Let e satisfy (H1)-(H3) be strongly quasiconvex. Then, there exists ϵ0 > 0

and constants C̃0 = C̃0(e,K) > 0, C̃1 = C̃1(e,K) > 0 such that for all (F̄ , η̄) ∈ UK ,

ψ ∈ Lq(Q) with
´
Q ψ = 0 and all φ ∈ Lp

A(Q) with ∥φ∥Lp(Q) < ϵ0 it holds that
ˆ
Q

(
|Vp(φ(x))|2 + |Vq(ψ(x))|2

)
dx

⩽ C̃0

ˆ
Q
e(F̄ (x) + φ(x), η̄(x) + ψ(x)|F̄ (x), η̄(x))dx+ C̃1∥φ∥2W−1,(2,p) .

Proof. It is enough to show the existence of some ϵ0 > 0 such that for all (F̄ , η̄) ∈ UK ,

ψ ∈ Lq(Q) with zero average and φ ∈ Lp
A(Q) with ∥φ∥W−1,p(Q) < ϵ0 it holds that

ˆ
Q
ẽ(F̄ + Bϕ, η̄ + ψ|F̄ , η̄) + Cpen

2

l∑
j=1

ˆ
Q
|∇l−jϕ|2 ⩾ 0, (3.4)

where ϕ is the B†-primitive of φ whose existence is guaranteed by Lemma 2.1.

Indeed, due to the convexity of the functions fp(·) := |Vp(·)|2 and fq(·) := |Vq(·)|2, we

see that (3.4) implies that there exists C > 0 such that

C

ˆ
Q

(
|Vp(Bϕ)|2 + |Vq(ψ)|2

)
⩽ C1

ˆ
Q
fp(F̄ + Bϕ|F̄ ) + C2

ˆ
Q
fq(η̄ + ψ|η̄)

⩽
ˆ
Q
e(F̄ + Bϕ, η̄ + ψ|F̄ , η̄) + Cpen

2

l∑
j=1

ˆ
Q
|∇l−jϕ|2.
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This would conclude the proof of Theorem 3.1 since by Lemma 2.1 (iv),

l∑
j=1

ˆ
Q
|∇l−jϕ|2 ⩽ ∥ϕ∥2W l−1,2(Q) + ∥ϕ∥p

W l−1,p(Q)
⩽ C∥Bϕ∥2

W−1,(2,p) .

We proceed to prove (3.4) by contradiction. Suppose that (3.4) fails. Then, there exist

(F̄k, η̄k)k ⊆ UK , (ψk)k ⊆ Lq(Q) zero-average and pairs (ϕk, φk) ⊆ W l,p(Q) × Lp(Q) with

∥φk∥W−1,p(Q) → 0 and (F̄k, η̄k) → (F̄ , η̄) in C0(Q) such that

ˆ
Q
ẽ(F̄k + Bϕk, η̄k + ψk|F̄k, η̄k) +

Cpen

2

l∑
j=1

ˆ
Q
|∇l−jϕ|2 < 0, (3.5)

where ϕk is the B†-primitive of φk. Note that, again by Lemma 2.1 (iv), we extract the

strong convergence ∥ϕk∥W l−1,p ≲ ∥φk∥W−1,p → 0.

We split the proof into 5 steps. Let

βηk :=
(
∥Bϕk∥qLq(Q) + ∥ψk∥qLq(Q)

)1/q
, βFk :=

(
∥Bϕk∥pLp(Q) + ∥ψk∥qLq(Q)

)1/p
and αk :=

(
∥Bϕk∥2L2(Q) + ∥ψk∥2L2(Q)

)1/2
.

Step 1: We show that ∥Bϕk∥Lp(Q) → 0, ∥ψk∥Lq(Q) → 0 as k → ∞ and

ΛF := sup
k

(βFk )
p

α2
k

<∞, Λη := sup
k

(βηk)
q

α2
k

<∞. (3.6)

Indeed, by the coercivity of ẽ and Young’s inequality we infer that

ẽ(F̄k + Bϕk, η̄k + ψk|F̄k, η̄k) = ẽ(F̄k + Bϕk, η̄k + ψk)− ẽ(F̄k, η̄k)

− ẽF (F̄k, η̄k)Bϕk − ẽη(F̄k, η̄k)ψk ⩾ −C(δ) + (
c

2p
− δ)|Bϕk|p + (

c

2q
− δ)|ψk|q,

and for δ > 0 small enough we conclude that

0
(3.5)
>

ˆ
Q
ẽ(F̄k + Bϕk, η̄k + ψk|F̄k, η̄k) ⩾ −C + c

ˆ
Q
|Bϕk|p + |ψk|q.

The above inequality tell us that the sequences (Bϕk)k and (ψk)k are bounded in Lp(Q) and

Lq(Q) respectively. We now apply Proposition 3.2 for the sequences (F̄k, η̄k)k, (Bϕk)k, (ψk)k

and ak = 1 to find that

lim inf
k

c0
4

ˆ
Q
|Vp(Bϕk)|2 + |Vq(ψk)|2 ⩽ lim inf

k

ˆ
Q
ẽ(F̄k + Bϕk, η̄k + ψk|F̄k, η̄k) < 0,

and so, up to a subsequence, ∥Bϕk∥Lp(Q) → 0 and ∥ψk∥Lq(Q) → 0. Note that, in order to

apply Proposition 3.2, we used the fact that ϕk → 0 in W l−1,p(Q).

For the rest of Step 1 we recall Lemma 3.3 (c) which tell us that

0
(3.5)
⩾ d1

ˆ
Q

(
|Bϕk|p + |ψk|q

)
− d2

ˆ
Q

(
|Bϕk|2 + |ψk|2

)
,

41



0
(3.5)
⩾ d3

ˆ
Q

(
|Bϕk|q + |ψk|q

)
− d4

ˆ
Q

(
|Bϕk|2 + |ψk|2

)
,

and so by dividing both inequalities by α2
k we conclude the proof of this step. In the second

inequality we used that

ẽ(F, η) ≳ −1 + |F |p + |η|q ≳ −1 + |F |q + |η|q,

since p ⩾ q and so |F |q ⩽ 1 + |F |p.

Step 2: Following the strategy of [31], [29], [61] we decompose the normalised sequences

sk :=
ϕk
αk

and ck :=
ψk

αk
.

Since ∥Bsk∥2L2(Q) + ∥ck∥2L2(Q) = 1 we find s ∈ W 1,2(Q) and c ∈ L2(Q) with
´
Q c = 0 such

that Bsk ⇀ Bs and ck ⇀ c in L2(Q). Moreover,
´
Q Bsk = 0 and A (Bsk) = 0. Setting

MF
k := 2

− p−2
2p
αk

βFk
and Mη

k := 2
− q−2

2q
αk

βηk
,

we also infer that ∥MF
k Bsk∥Lp(Q), ∥Mη

k ck∥Lq(Q) ⩽ 1 and MF
k , M

η
k ∈ (0, 1]. The first two

bounds come directly from the definition of the sequences sk and ck, while for the rest we

have that

(MF
k )p

2−
p−2
2

=
αp
k

(βFk )
p
=

(
∥Bϕk∥2L2 + ∥ψk∥2L2

)p/2
∥Bϕk∥pLp + ∥ψk∥qLq

⩽ 2(p−2)/2 ∥Bϕk∥
p
L2 + ∥ψk∥pL2

∥Bϕk∥pLp + ∥ψk∥qLq

⩽ 2
p−2
2 ,

for k large enough. The last inequality comes from the fact that, since p ⩾ q and ∥ψk∥Lq →
0, we may find a subsequence (denoted again by ψk) such that ∥ψk∥pLq ⩽ ∥ψk∥qLq . Similarly,

we see that

(Mη
k )

q

2−
q−2
2

=
αq
k

(βηk)
q
=

(
∥Bϕk∥2L2 + ∥ψk∥2L2

)q/2
∥Bϕk∥qLq + ∥ψk∥qLq

⩽ 2(q−2)/2 ∥Bϕk∥
q
L2 + ∥ψk∥qL2

∥Bϕk∥qLq + ∥ψk∥qLq

⩽ 2
q−2
2 .

According to the decomposition lemmas [51, Lemma 8.13] and Lemma 3.2, we find B†-

primitives gk, bk ∈ W 1,2(Q) and functions Gk, Bk ∈ L2(Q) such that (up to common

subsequences)

(a) Bsk = Bs+ Bgk + Bbk;

(b) Bgk, Bbk ⇀ 0 in L2(Q) and MF
k Bgk, MF

k Bbk ⇀ 0 in Lp(Q);

(c)
(
|Bgk|2

)
k

and
(
|MF

k Bgk|p
)
k

are equiintegrable;

(d) Bbk → 0 and MF
k Bbk → 0 in measure,
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and

(a’) ck = c+Gk +Bk;

(b’) Gk, Bk ⇀ 0 in L2(Q) and Mη
kGk, M

η
kBk ⇀ 0 in Lq(Q);

(c’)
(
|Gk|2

)
k

and
(
|MF

k Gk|q
)
k

are equiintegrable;

(d’) Bk → 0 and Mη
kBk → 0 in measure.

We define

fk(x) := α−2
k

(
ẽ(F̄k + αkBsk, η̄k + αkck|F̄k, η̄k)− ẽ(F̄k + αkBbk, η̄k + αkBk|F̄k, η̄k)

)
and then we deduce that

ˆ
Q
fk(x) + α−2

k ẽ(F̄k + αkBbk, η̄k + αkBk|F̄k, η̄k) +
Cpen

2

l∑
i=1

|∇l−isk|2

= α−2
k

ˆ
Q
ẽ(F̄k + αkBsk, η̄k + αkck|F̄k, η̄k) +

Cpen

2

l∑
i=1

|∇l−iαksk|2

= α−2
k

ˆ
Q
ẽ(F̄k + Bϕk, η̄k + ψk|F̄k, η̄k) +

Cpen

2

l∑
i=1

|∇l−iϕk|2
(3.4)
< 0.

This shows that
ˆ
Q
fk(x) + α−2

k ẽ(F̄k + αkBbk, η̄k + αkBk|F̄k, η̄k) +
Cpen

2

l∑
i=1

|∇l−isk|2 < 0. (3.7)

Step 3: In this step we show that the contribution of the concentrating part must be

nonnegative in the limit due to quasiconvexity. In particular, we prove that

lim inf
k

α−2
k

ˆ
Q
ẽ(F̄k + αkBbk, η̄k + αkBk|F̄k, η̄k) ⩾ 0.

To this aim we apply Proposition 3.2 for the sequences (F̄k, η̄k)k, (αkbk)k, (αkBk)k and

(αk)k, after noting that

αp−2
k =

(βFk )
p

α2
k

αp
k

(βFk )
p
⩽ 2

p−2
2 ΛF |MF

k |p,

where, by Step 1, ΛF := supk(β
F
k )

p/α2
k is finite. Thus, again due to the control of the full

Sobolev norm of the B†-primitives bk, Lemma 2.1, we infer that

α−2
k |Vp(αk∇l−ibk)|2 = |∇l−ibk|2 + αp−2

k |∇l−ibk|p ≲ |∇l−ibk|2 + ΛF |MF
k ∇l−ibk|p → 0,

in L1(Q), for i = 1, .., l. Also,

sup
k

ˆ
Q
α−2
k |Vp(αkBbk)|2 ≲ sup

k

ˆ
Q
|Bbk|2 + ΛF sup

k
|MF

k Bbk|p <∞,
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sup
k

ˆ
Q
α−2
k |Vq(αkBk)|2 ≲ sup

k

ˆ
Q
|Bk|2 + Λη sup

k
|Mη

kBk|q <∞,

and so Proposition 3.2 says that

0 ⩽ lim inf
k

c0
4
α−2
k

ˆ
Q
|Vp(αkBbk)|2 + |Vq(αkBk)|2

⩽ lim inf
k

α−2
k

ˆ
Q
ẽ(F̄k + αkBbk, η̄k + αkBk|F̄k, η̄k).

Combining this with (3.7) we have that

lim inf
k

ˆ
Q
fk(x) +

Cpen

2

l∑
i=1

|∇l−isk|2 < 0. (3.8)

Step 4: Next, consider the (A, 0)-2-Young measure generated by the sequence (Bsk, ck),
say ν = (νx)x∈Q, and recall that (F̄k, η̄k) → (F̄ , η̄) in C0(Q). In this step we show that

1

2

ˆ
Q

〈
νx, L̃(F̄ (x), η̄(x)) [Λ,Λ]

〉
dx ⩽ lim inf

k

ˆ
Q
fk(x),

where for simplicity we use the notation Λ := (λF , λη).

We first prove the equiintegrability of fk. Recalling that Bsk − Bbk := Bs + Bgk and

ck −Bk = c+Gk, by Lemma 3.3 (a), we find that

|fk| =
|ẽ(F̄k + αkBsk, η̄k + αkck|F̄k, η̄k)− ẽ(F̄k + αkBbk, η̄k + αkBk|F̄k, η̄k)|

α2
k

⩽ α−2
k

(
|αkBsk|+ |αkck|+ |αkBbk|+ |αkBk|

+ |αkBsk|p−1 + |αkBbk|p−1 + |αkBk|q
p−1
p
)
αk|Bs+ Bgk|

+α−2
k

(
|αkBsk|+|αkck|+ |αkBbk|+ |αkBk|

+ |αkck|q−1 + |αkBk|q−1 + |αkBbk|p
q−1
q
)
αk|c+Gk|

=
(
|Bsk|+ |ck|+ |Bbk|+ |Bk|+ αp−2

k |Bsk|p−1 + αp−2
k |Bbk|p−1

)
|Bs+ Bgk|

+
(
|Bsk|+ |ck|+ |Bbk|+ |Bk|+ αq−2

k |ck|q−1 + αq−2
k |Bk|q−1

)
|c+Gk|

+ α−2
k |αkBk|q

p−1
p αk|Bs+ Bgk|+ α−2

k |αkBbk|p
q−1
q αk|c+Gk| =: I1 + I2 + I3.

Regarding Ik, k = 1, 2, for a given set A ⊂ Q, we apply Young’s inequality and we integrate

both sides to infer that
ˆ
A
Ik ⩽ Cδ + C(δ)

ˆ
A
|Bs+ Bgk|2 + αp−2

k |Bs+ Bgk|p + |c+Gk|2 + αq−2
k |c+Gk|q,
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where we used the boundness of the sequences (Bsk), (Bbk), (ck), (Bk) and (αp−2
k |Bsk|p),

(αp−2
k |Bbk|p), (αq−2

k |ck|q), (αq−2
k |Bk|q) in L2(Q) and L1(Q) respectively. For I3, again by

Young’s inequality, we see that

I3 = α−2
k

(
|αkBk|q

p−1
p αk|Bs+ Bgk|+ |αkBbk|p

q−1
q αk|c+Gk|

)
⩽ α−2

k

(
δαq

k|Bk|q + C(δ)αp
k|Bs+ Bgk|p + δαp

k|Bbk|p + C(δ)αq
k|c+Gk|q

)
= δαq−2

k |Bk|q + C(δ)αp−2
k |Bs+ Bgk|p + δαp−2

k |Bbk|p + C(δ)αq−2
k |c+Gk|q.

Combing the above we conclude that
ˆ
A
fk ⩽ Cδ + C(δ)

ˆ
A
|Bs+ Bgk|2 + αp−2|Bs+ Bgk|p

+ C(δ)

ˆ
A
|c+Gk|2 + αq−2|c+Gk|q.

All sequences appearing on the right hand side are equiintegrable so, choosing δ > 0

appropriately, we see that fk is equiintegrable. Then, for ε > 0 fixed, we can find mε > 0

such that
ˆ
Q
fk =

ˆ
Ac

k∪B
c
k

fk +

ˆ
Ak∩Bk

fk > −ε+
ˆ
Ak∩Bk

fk, (3.9)

for all m ⩾ mε, where

Ak =
{
x ∈ Q : (|Bsk|2 + |ck|2)1/2 < m

}
,

Bk =
{
x ∈ Q : (|Bbk|2 + |Bk|2)1/2 < m

}
.

This indeed follows from the fact that Bbk, Bk → 0 in measure and that

lim
R→∞

sup
k

∣∣∣{x ∈ Q : (|Bsk(x)|2 + |ck(x)|2)1/2 > R}
∣∣∣ = 0,

where the latter holds from Chebyshev’s inequality. Now, by choosing mε larger if neces-

sary, we assume that∣∣∣ˆ
Q

〈
νx, L̃(F̄ , η̄) [ Λ,Λ]1Rd×d×R\B(0,m)(Λ)

〉∣∣∣ < ε, for all m ⩾ mε, (3.10)

where 1A denotes the indicator function of a set A ⊂ RN ×R. Indeed, due to the fact that´
Q⟨νx, |Λ|2⟩ <∞, Young’s inequality and dominated convergence give us∣∣∣ˆ

Q

〈
νx, L̃(F̄ , η̄) [ Λ,Λ]1Rd×d×R\B(0,m)(Λ)

〉∣∣∣ ⩽ C

ˆ
Q

∣∣⟨νx, |Λ|21Rd×d×R\B(0,m)(Λ) ⟩
∣∣

= C

ˆ
Q

∣∣⟨νx, |Λ|2 ⟩ − ⟨νx, |Λ|21B(0,m)(Λ) ⟩
∣∣ −→ 0

and so,
ˆ
Q

〈
νx, L̃(F̄ , η̄)

[
Λ,Λ

]〉
=

ˆ
Q

〈
νx, L̃(F̄ , η̄)

[
Λ,Λ

]
1B(0,m)(Λ)

〉
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+

ˆ
Q

〈
νx, L̃(F̄ , η̄)

[
Λ,Λ

]
1Rd×d×R\B(0,m)(Λ)

〉
⩽
ˆ
Q

〈
νx, L̃(F̄ , η̄)

[
Λ,Λ

]
1B(0,m)(Λ)

〉
+ ε,

(3.11)

for all m ⩾ mε. However, 1B(0,m) is lower semicontinuous and hence, for all x ∈ Q, the

function

Λ 7→ L̃(F̄ , η̄)[ Λ,Λ ]1B(0,m)(Λ)

is also lower semicontinuous. Then, since (Bsk, ck) generates (νx)x we infer that
ˆ
Q

〈
νx, L̃(F̄ , η̄)

[
Λ,Λ

]
1B(0,m)(Λ)

〉
⩽ lim inf

k

ˆ
Ak

L̃(F̄ , η̄)[ (Bsk, ck), (Bsk, ck) ]

= lim inf
k

ˆ
Ak

L̃(F̄k, η̄k)[ (Bsk, ck), (Bsk, ck) ]

where the last equality follows from the strong convergence (F̄k, η̄k) → (F̄ , η̄) in C0(Q).

Going back to (3.11) we conclude that
ˆ
Q

〈
νx, L̃(F̄ , η̄)

[
Λ,Λ

]〉
⩽ lim inf

k

ˆ
Ak

L̃(F̄k, η̄k)[ (Bsk, ck), (Bsk, ck) ] + ε, (3.12)

for all m ⩾ mε. We now claim that

1

2
lim inf

k

ˆ
Ak

L̃(F̄k, η̄k)[ (Bsk, ck), (Bsk, ck) ] = lim inf
k

ˆ
Ak∩Bk

fk, (3.13)

for all m ⩾ mε. Indeed, we observe that

fk =

ˆ 1

0
(1− t)

(
L̃(F̄k + tαkBsk, η̄k + tαkck)[ (Bsk, ck), (Bsk, ck) ]

− L̃(F̄k + tαkBbk, η̄k + tαkBk)[ (Bbk, Bk), (Bbk, Bk) ]
)
dt.

Then, since
´ 1
0 (1− t)dt = 1/2, we infer that

1Ak∩Bk
fk = 1Ak∩Bk

ˆ 1

0
(1− t)

(
L̃(F̄k + tαkBsk, η̄k + tαkck)[ (Bsk, ck), (Bsk, ck) ]

− L̃(F̄k, η̄k)[ (Bsk, ck), (Bsk, ck) ]
)
dt

+ 1Ak

1

2
L̃(F̄k, η̄k)[ (Bsk, ck), (Bsk, ck) ]

− 1Ak

1

2
L̃(F̄k, η̄k)[ (Bsk, ck), (Bsk, ck) ] (1− 1Bk

)

− 1Ak∩Bk

ˆ 1

0
(1− t)L̃(F̄k + tαkBbk, η̄k + tαkBk)[ (Bbk, Bk), (Bbk, Bk) ] dt

=: Ik1 + Ik2 + Ik3 + Ik4 ,

and so it is enough to prove that

lim
k→∞

ˆ
Q
Ik1 = lim

k→∞

ˆ
Q
Ik3 = lim

k→∞

ˆ
Q
Ik4 = 0.
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Recall that αk → 0 and (F̄k, η̄k) → (F̄ , η̄) in C0(Q). Thus, for Ik1 and since we are in the

set Ak, we find that∣∣∣L̃(F̄k + tαkBsk, η̄k + tαkck)[ (Bsk, ck), (Bsk, ck)− L̃(F̄k, η̄k)[ (Bsk, ck), (Bsk, ck) ]
∣∣∣

⩽ C(K)αkm
3 → 0, k → ∞,

and thus,
´
Q I

k
1 → 0 by dominated convergence. As for Ik3 , again since L̃ is continuous,

∥(F̄ , η̄)∥L∞(Q) ⩽ K and we are in Ak, we get that

|Ik3 | ⩽ C(W,K)m2 (1− 1Bk
) = C(W,K)m2

1Bc
k
.

Hence,
´
Q I

k
3 → 0 as Bbk → 0 and Bk → 0 in measure. We note here that

{x ∈ Q : |Bbk(x)|2 + |Bk(x)|2 ⩾ ε2}

⊆ {x ∈ Q : |Bbk(x)|2 ⩾ ε2/2} ∪ {x ∈ Q : |Bk(x)|2 ⩾ ε2/2}.

Lastly, for Ik4 , as we are in Bk and t ∈ (0, 1), we get that

(F̄k, η̄k) + tαk(Bbk, Bk) → (F̄ , η̄), k → ∞,

uniformly and thus

|Ik4 | ⩽ C(W,K)(|Bbk|2 + |Bk|2) ⩽ C(W,K)m(|Bbk|+ |Bk|) → 0

in measure. In particular, restricting to Bk,
´
Q I

k
4 → 0 by dominated convergence. Finally

combining (3.12), (3.13) and (3.9) we infer that

1

2

ˆ
Q

〈
νx, L̃(F̄ , η̄)

[
Λ,Λ

]〉
⩽ lim inf

k

ˆ
Ak∩Bk

fk + ε/2

< lim inf
k

ˆ
Q
fk + 3ε/2,

for all m ⩾ mε. Since ε is arbitrary and the dependence on mε has been removed, we take

the limit ε→ 0 to deduce that

1

2

ˆ
Q

〈
νx, L̃(F̄ , η̄)

[
Λ,Λ

]〉
⩽ lim inf

k

ˆ
Q
fk.

Combining the above inequality with (3.8), and since sk → s in W l−1,2(Q), we conclude

that
1

2

ˆ
Q

〈
νx, L̃(F̄ , η̄)

[
Λ,Λ

]〉
+ Cpen

l∑
i=1

|∇l−is|2 < 0. (3.14)
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Step 5: In this step we show how (3.14) leads to a contradiction. By Lemma 3.5, the

function

h(x, ξ1, ξ2) := L̃(F̄ (x), η̄(x))[ (ξ1, ξ2), (ξ1, ξ2) ]

is strongly (A, 0)-quasiconvex for each x ∈ Q. Hence, since (Bsk, ck) generates the (A, 0)-
2-Young measure (νx)x and h(x, ξ1, ξ2) grows quadratically in (ξ1, ξ2), Jensen’s inequality

for (A, 0)-quasiconvex functions, Theorem 2.9(c), says that, for a.e. x ∈ Q,

L̃(F̄ , η̄)[ (Bs, c), (Bs, c) ] ⩽
〈
νx, L̃(F̄ , η̄)

[
(λF , λη), (λF , λη)

]〉
.

Adding Cpen
∑l

i=1 |∇l−is|2 on both sides and integrating over Q, we infer that
ˆ
Q
Cpen|s|2+L̃(F̄ , η̄)[ (Bs, c), (Bs, c) ]

⩽
ˆ
Q
Cpen

l∑
i=1

|∇l−is|2 +
〈
νx, L̃(F̄ , η̄)

[
(λF , λη), (λF , λη)

]〉 (3.14)
⩽ 0.

However, by Proposition 3.1, since Bs ∈W l,p(Q) and c ∈ Lq(Q), we know that

0 ⩾
ˆ
Q
L̃(F̄ (x), η̄(x))

[
(Bs, c), (Bs, c)

]
+ Cpen

l∑
i=1

|∇l−is|2 ⩾ c

ˆ
Q
|Bs|2 + |c|2.

In particular, we see that Bs = 0 and c = 0, and so s = F−1(B†(·))⋆Bs = 0. We may thus

apply Proposition 3.2 for the sequences (F̄k, η̄k)k, (αksk)k, (αkck)k and (αk)k. Recall that

ap−2
k ⩽ 2

p−2
2 ΛF |MF

k |p <∞ and hence

α−2
k |Vp(αk∇l−isk)|2 = |∇l−isk|2 + αp−2

k |∇l−isk|p ≲ |∇l−isk|2 + ΛF |MF
k ∇l−isk|p → 0,

in L1(Q). Also,

sup
k

ˆ
Q
α−2
k |Vp(αkBsk)|2 ≲ sup

k

ˆ
Q
|sk|2 + ΛF sup

k
|MF

k sk|p <∞,

sup
k

ˆ
Q
α−2
k |Vq(αkck)|2 ≲ sup

k

ˆ
Q
|ck|2 + Λη sup

k
|Mη

k ck|q <∞,

and recalling that αksk = ϕk and αkck = ψk, Proposition 3.2 yields

0 <
c0
4

= lim inf
k→∞

c̃

4

ˆ
Q
|Bsk|2 + |ck|2

⩽ lim inf
k→∞

c̃

4

ˆ
Q
|Bsk|2 + |ck|2 + αp−2

k |Bsk|p + αq−2
k |ck|q

⩽ lim inf
k→∞

α−2
k

ˆ
Q
ẽ(F̄k + αkBsk, η̄k + αkck|F̄k, η̄k)

= lim inf
k→∞

α−2
k

ˆ
Q
ẽ(F̄k + Bϕk, η̄k + ψk|F̄k, η̄k) +

Cpen

2

l∑
i=1

ˆ
Q
|∇l−is|2

(3.4)
⩽ 0.

But c0 > 0, concluding the proof.
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We are now ready to prove our main result, the Gårding inequality. Note here that it

suffices to show that the Gårding inequality of Theorem 3.1 remains valid for test functions

ϕ such that ∥ϕ∥Lp(Q) > ε0.

Theorem 3.2. Let e satisfy (H1)-(H3) be strongly quasiconvex. Then, there exist constants

C0 = C0(e,K) > 0, C1 = C1(e,K) > 0 such that for all (F̄ , η̄) ∈ UK , ψ ∈ Lq(Q) with´
Q ψ = 0 and all φ ∈ Lp

A(Q), it holds that
ˆ
Q

(
|Vp(φ(x))|2 + |Vq(ψ(x))|2

)
dx

⩽ C0

ˆ
Q
e(F̄ (x) + φ(x), η̄(x) + ψ(x)|F̄ (x), η̄(x))dx+ C1∥φ∥2W−1,(2,p) . (3.15)

Proof. We claim that for all ε > 0, all (F̄ , η̄) ∈ UK , ψ ∈ Lq(Q) zero-average and all

φ ∈ Lp
A(Q) with ∥φ∥W−1,p(Q) ⩾ ε it holds that
ˆ
Q

(
|Vp(φ)|2 + |Vq(ψ)|2

)
⩽ C0(ε)

ˆ
Q
e(F̄ + φ, η̄ + ψ|F̄ , η̄) + C1(ε)∥φ∥2W−1,(2,p) ,

where C0 and C1 also depend on ε. By Lemma 2.1 (i), we find ϕ ∈ W l,p(Q) such that

φ = Bϕ and by the assumed coercivity of e, its smoothness and the fact that (F̄ , η̄) ∈ UK ,

we estimate by Young’s inequality

e(F̄ + Bϕ, η̄ + ψ|F̄ , η̄) ⩾ c
(
−1 + |F̄ + Bϕ|p + |η̄ + ψ|q

)
− C(δ)|e1(F̄ , η̄)|p

′ − δ|Bϕ|p − C(δ)|e2(F̄ , η̄)|q
′ − δ|ψ|q

⩾ −C(δ) + (21−pc− δ)|Bϕ|p + (21−qc− δ)|ψ|q.

Since p ⩾ q, choose δ = 2−pc to find that

e(F̄ + Bϕ, η̄ + ψ|F̄ , η̄) ⩾ −C + 2−pc|Bϕ|p + 2−qc|ψ|q. (3.16)

Note that since ∥Bϕ∥W−1,p(Q) ⩾ ε, it follows that

C ⩽
C

εp
∥Bϕ∥p

W−1,p(Q)
,

so that, integrating (3.16) over Q with |Q| = 1, we infer that

2−pc

ˆ
Q
|Bϕ|p + 2−qc

ˆ
Q
|ψ|q ⩽

ˆ
Q
e(F̄ + Bϕ, η̄ + ψ|F̄ , η̄) + C

εp
∥Bϕ∥p

W−1,p(Q)
. (3.17)

But, by the virtue of the compact embedding Lp(Q) ↪→W−1,p(Q), we have that

1 ⩽
1

εp
∥Bϕ∥p

W−1,p(Q)
≲

1

εp
∥Bϕ∥pLp(Q)

and so
ˆ
Q
|Vp(Bϕ)|2 = ∥Bϕ∥2L2(Q) + ∥Bϕ∥pLp(Q) ⩽ 1 + 2∥Bϕ∥pLp(Q) ≲

(
1

εp
+ 2

)
∥Bϕ∥pLp(Q),
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and similarly
ˆ
Q
|Vq(ψ)|2 ≲

1

εp
∥Bϕ∥pLp(Q) + ∥ψ∥qLq(Q).

So combining the above two results,
ˆ
Q
|Vp(Bϕ)|2 +

ˆ
Q
|Vq(ψ)|2 ≲

(
1

εp
+ 1

)
∥Bϕ∥pLp(Q) + ∥ψ∥qLq(Q)

⩽ C(ε)
(
∥Bϕ∥pLp(Q) + ∥ψ∥qLq(Q)

)
.

Together with (3.17) we infer that

C−1(ε)

ˆ
Q
|Vp(Bϕ)|2 + |Vq(ψ)|2 ⩽

ˆ
Q
e(F̄ + Bϕ, η̄ + ψ|F̄ , η̄) + C

εp
∥Bϕ∥p

W−1,p(Q)
,

which is the desired inequality. However, Theorem 3.1 says that there exists ε0 > 0 such

that whenever ∥φ∥W−1,p(Q) ⩽ ε0 it holds that
ˆ
Q
|Vp(φ)|2 + |Vq(ψ)|2 ⩽ C̃0

ˆ
Q
e(F̄ + φ, η̄ + ψ|F̄ , η̄) + C̃1∥φ∥2W−1,(2,p) .

Choosing ε = ε0 we conclude the proof.
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Chapter 4

Applications in dynamics and statics

4.1 Dynamics: conservation laws with involutions

This section is devoted to applications of Theorem 3.2 in dynamics. In particular, we

study systems of conservation laws for which the corresponding entropy is not convex, and

hence additional structure in such systems compensate this lack of convexity. This special

structure is enforced via PDE constraints propagated by the initial data, and lead to more

general notions of convexity, which in our case are different versions of quasiconvexity. In

the first part of the section we use a simplified version of Theorem 3.2 to prove stability

and weak-strong uniqueness for general systems of conservation laws with involutions,

typical examples are the (non-)linear elasticity and Maxwell equations. In the second part,

the combination of our Gårding-type inequality, Theorem 3.2, with the so-called relative

entropy method leads to weak-strong uniqueness results for a class of dissipative measure-

valued solutions for the system of adiabatic thermoelasticity.

We note that the relative entropy method provides a general structure upon which one

can compare two solutions in various frameworks [35, 36, 49] as it can be interpreted as

a “metric” measuring the distance between two solutions. The calculation provides means

to control the norm of the difference of two solutions by the initial data, and the most

important ingredient is the convexity of the entropy. Our Gårding inequality, Theorem

3.2, compensates this lack of convexity.

4.1.1 General systems of conservations laws with involutions

Here, we study local stability and weak-strong uniqueness properties for general systems

of conservation laws (4.1) possessing involutions (4.3) and an A-quasiconvex entropy. In
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particular, for T > 0 and Q the flat torus, we examine the system

∂tU(t, x) + divxf(U(t, x)) = 0, (t, x) ∈ (0, T )×Q

U(0, x) = U0(x), x ∈ Q
(4.1)

for the unknown periodic function U : (0, T )×Q→ RN with
ˆ
Q
U(t, x) dx = 0, for all 0 < t ⩽ T. (4.2)

In (4.1), the flux function f = (fiα)(i,α)∈RN×d : RN → RN×d is a given C3 mapping. We

say that system (4.1) possesses an involution if there exists a linear differential operator A
with the property that

AU0 = 0 ⇒ AU(t, ·) = 0 for all t ∈ (0, T ). (4.3)

Note that in continuum mechanics, systems like (4.1), are typically supplemented with

an inequality of the form

∂tη + divxq ⩽ 0, (4.4)

known as the Clausius-Duhem inequality, expressing the second law of thermodynamics in

this context. Mathematically, η : RN → R is referred to as an entropy and q : RN → Rd

as an entropy flux and are assumed to satisfy

∂qα
∂Ui

=
∂η

∂Uj

∂fjα
∂Ui

. (4.5)

In particular,
∂fjα
∂Ui

∂2η

∂Uk∂Uj
=

∂2η

∂Ui∂Uj

∂fjα
∂Uk

(4.6)

and thus Lipschitz solutions to (4.1) satisfy (4.4) as an equality.

Typical examples include the equations of elasticity and electromagnetism, see [39].

Indeed, the equations of motion of a hyperelastic body in the absence of external forces

take the form ytt = divDW (∇y) where W denotes the stored energy function. Upon the

change of variables v = yt and F = ∇y, we obtain the system

∂tv − divxDW (F ) = 0,

∂tF −∇v = 0,

curlF = 0.

The second equation shows that A = curl is an involution. Similarly, in linear elasticity,

the equations take the form

∂tu− divxCE = 0,
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∂tE − E(u) = 0,

curl curlE = 0,

where 2E(u) = ∇u + (∇u)T and A = curl curl is an involution whose kernel consists of

symmetric gradients. Also, note that a natural assumption on the quadratic form CE · E
is convexity on the wave cone of the operator curl curl which, by Lemma 2.3, is equivalent

to curl curl-quasiconvexity. Moreover, the equations of electromagnetism in the absence of

charges and currents become

∂tB + curlE = 0,

∂tD − curlH = 0,

divB = divD = 0,

where B is the magnetic induction, D is the electric displacement, and E, H are, respect-

ively, the electric and magnetic fields. Typically, Maxwell’s equations are assumed linear,

however, there are relevant nonlinear theories, see [27], [96], [39], with the so-called Max-

well’s equations in the Born-Infeld medium being the most known. The reader is referred

to [17] for a mathematical treatment.

Entropies in physical systems are often convex which, combined with (4.6), renders

the system symmetrisable upon the change of variables U → Dη(U) and hence locally

well-posed, see [39]. At the same time, inequality (4.4) restricts admissible solutions and

may rule out unphysical solutions.

On the other hand, it is also known that convexity of the entropy may be ruled out as a

consequence of physical invariance. This is precisely the case in nonlinear elasticity due to

frame-indifference [39], and in electromagnetism due to Lorentz invariance [96]. However,

the presence of involutions may compensate this loss of convexity, but only in the directions

where the operator A has elliptic behaviour. Essentially, the “bad” behaviour is expected

to occur in the directions of the wave cone ΛA, and convexity along these directions, i.e.

ΛA-convexity, may be enough to partially recover results ensured by convexity.

Indeed, Dafermos in [38] examined such systems endowed with a ΛA-convex entropy

and, under additional assumptions on the involutions A, recovered hyperbolicity. Moreover,

he showed that local stability and weak-strong uniqueness results can also be recovered

within a class of BV weak solutions, if they satisfy an assumption of small local oscillations,

required to prove a Gårding-type inequality for ΛA-convex functions. In this section, we

show that in fact this assumption is redundant when the entropy is A-quasiconvex. In this

sense, A-quasiconvexity captures the structure of these systems and arises as a natural
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convexity condition.

We note that Maxwell’s equations do not generally fall under this setting. For vector

fields B, D : R3 → R3, the wave cone of A = div is the entire space R6 and thus A-

quasiconvexity and ΛA-convexity reduce to convexity. However, when B, D : R2 → R3,

the wave cone is strictly smaller than R6. Still, it is a matter of tedious computations to

show that the entropy at least for the Born-Infeld medium is not even ΛA-convex and thus,

unlike polyconvex elasticity, not convex in the null-Lagrangians of A = div. Nevertheless,

similar to polyconvex elasticity, the system can be extended to an enlarged system that

admits a convex entropy, see [39, 96].

Weak-strong uniqueness

In the sequel, we assume that an entropy-entropy flux pair exists satisfying (4.5) and that

η satisfies the assumptions:

(h1) η ∈ C3(RN );

(h2) |η(z)| ⩽ c1(1 + |z|p) and |Dη(z)| ⩽ c(1 + |z|p−1);

(h3) c2(|z|p − 1) ⩽ η(z);

(h4) η is strongly A-quasiconvex;

Remark 4.1. Recall that, as discussed in §2.2, if ΛA spans RN , the growth on Dη in (h2)

follows from (h1) and the growth of η in (h2).

We note that the assumptions (h1), (h2) and (h3) are the same with the respective assump-

tions (H1), (H2) and (H3) in section 3.3, if in the latter we remove the z2-dependance. In

addition to this, the same holds for the quasiconvexity assumption (h4), inequality (2.2),

and the respective quasiconvexity assumption in section 3.1, Definition 3.1. This observa-

tion is crucial in the sequel, since it allow us to apply Theorem 3.2 for the entropy η which

is crucial for the proof of our weak-strong uniqueness result. In this case, inequality (3.15)

takes the form
ˆ
Q
|Vp(φ(x))|2dx ⩽ C0

ˆ
Q
η(F̄ (x) + φ(x)|F̄ (x))dx+ C1∥φ∥2W−1,(2,p) , (4.7)

for all F̄ ∈ FK and all A-free functions φ ∈ Lp(Q) with
´
Q φ = 0. Here

FK := {F̄ ∈ C(Q) : ∥F̄∥L∞(Q) ⩽ K, |F̄ (x)− F̄ (y)| ⩽ ω(|x− y|), ∀x, y ∈ Q},

constitutes the projection of the set UK , defined in section 3.3, on RN .
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Moreover, as in [38], we assume that weak solutions are bounded. We refer the reader

to Remark 4.2 following the proof for a discussion on these assumptions.

Definition 4.1. Let U ∈ L∞((0, T ) × Q). We say that the function U is a dissipative

weak solution to (4.1) with initial data U0 if
ˆ
Q
ϕi(0, ·)U0

i +

ˆ T

0

ˆ
Q
∂tϕi · Ui +

ˆ T

0

ˆ
Q
∂αϕi · fiα(U) = 0 (4.8)

for any ϕ ∈ C1
c ([0, T ), C

1(Q)) and i=1,..,N , and the dissipation inequality
ˆ
Q
θ(0)η(U0) +

ˆ T

0

ˆ
Q
θ̇ η(U) ⩾ 0 (4.9)

holds for any nonnegative test function θ ∈ C1
c ([0, T )).

Recall that Lipschitz solutions Ū ∈ W 1,∞([0, T ]×Q) satisfy (4.9) as an equality, that

is ˆ
Q
θ(0)η(Ū0) +

ˆ T

0

ˆ
Q
θ̇ η(Ū) = 0. (4.10)

Moreover, note that if
´
Q U

0 = 0 then also
´
Q U(t, ·) = 0 for a.e. t ∈ (0, T ). This follows

by testing (4.8) with ϕ(t, x) = θ(t) where θ localises at a fixed time, as in (4.13). The main

theorem of this section now follows, cf. [38, Theorem 4.1].

Theorem 4.2. Let Ū ∈W 1,∞([0, T ]×Q) and U ∈ L∞((0, T )×Q) be, respectively, a strong

and a dissipative weak solution of (4.1) emanating from the zero-average initial data Ū0,

U0 ∈ L∞(Q). Assume that U and Ū satisfy the PDE constraint AŪ = AU = 0, and that

the entropy η satisfies (h1)-(h4). Then, there exist constants C1, C2 > 0 such that for

almost all t ∈ (0, T )

ˆ
Q
|Vp(U(t, ·)− Ū(t, ·))|2 ⩽ C1

ˆ
Q
|Vp(U0 − Ū0)|2 eC2 t,

see (2.1) for the definition of Vp.

Proof. Let U and Ū as in the statement and test the equations (4.8) with the function

ϕ(t, x) = θ(t)Dη(Ū(t, x)), where θ ∈ C1
c ([0, T )). Note that this is an appropriate test

function by density. Subtracting the equations for U from the equations for Ū , we infer

that
ˆ
Q
θ(0)Djη(Ū

0) (U0
j − Ū0

j ) +

ˆ T

0

ˆ
Q
θ̇ Djη(Ū) (Uj − Ūj)

= −
ˆ T

0

ˆ
Q
θ
{
∂αDkη(Ū)

(
fkα(U)− fkα(Ū)

)
+ ∂tDjη(Ū) (Uj − Ūj)

}
,

55



where ∂α, ∂t and Dj stand for the operators ∂
∂xα

, ∂
∂t and ∂

∂Uj
respectively. By (4.6), we

observe that

∂tDjη(Ū) =
∂Ūk

∂t

∂η(Ū)

∂Uj∂Uk

(4.1)
= −∂αŪi

∂fkα(Ū)

∂Ui

∂2η(Ū)

∂Uj∂Uk

= −∂αŪi
∂2η(Ū)

∂Ui∂Uk

∂fkα(Ū)

∂Uj
= −

[
∂αDkη(Ū)

]
Djfkα(Ū)

and thus ˆ
Q
θ(0)Djη(Ū

0) (U0
j − Ū0

j ) +

ˆ T

0

ˆ
Q
θ̇ Djη(Ū) (Uj − Ūj)

= −
ˆ T

0

ˆ
Q
θ
[
∂αDkη(Ū)

]
fkα(U |Ū) =: R,

(4.11)

where fkα(U |Ū) := fkα(U)−fkα(Ū)−Djfkα(Ū) (Uj−Ūj) is the relative flux. This complies

with the notation in the previous section as U = Ū + (U − Ū). By using the definition of

the relative entropy, testing with θ ∈ C1
c ([0, T )) and integrating in space and time, we get

that
ˆ T

0

ˆ
Q
θ̇ η(U |Ū) +

ˆ
Q
θ(0) η(U0|Ū0)

=

ˆ T

0

ˆ
Q
θ̇η(U) +

ˆ
Q
θ(0)η(U0)−

(ˆ
Q
θ̇η(Ū) +

ˆ
Q
θ(0)η(Ū0)

)
(4.12)

−
ˆ T

0

ˆ
Q
θ̇ Djη(Ū) (Uj − Ūj)−

ˆ
Q
θ(0)Djη(Ū

0) (U0
j − Ū0

j )

(4.11)
⩾ −R,

where the quantity in the second line, due to the relations (4.9) and (4.10), is non-negative.

Recall that the relative entropy is given by

η(U |Ū) = η(U)− η(Ū)−Djη(Ū)(Uj − Ūj).

We next follow a standard argument to localise in time. Let (θm)m∈N ⊂ C∞
c ([0, T )) be a

bounded sequence approximating the function

θ(τ) =


1, τ ∈ [0, t)

(t− τ)/ϵ+ 1, τ ∈ [t, t+ ϵ)

0, τ ∈ [t+ ϵ, T )

(4.13)

such that (θm)m is nonincreasing and θ̇m(τ) → θ̇(τ) for all τ ̸= t, t+ ϵ. Note that θ̇m ⩽ 0

and so testing (4.12) with θm we find that
ˆ T

0

ˆ
Q
|θ̇m(τ)| η(U(τ, x)|Ū(τ, x)) dxdτ ⩽ R+

ˆ
Q
θm(0)η(U0(x)|Ū0(x)) dx. (4.14)
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Since U ∈ L∞((0, T ) × Q) and ∂αDkη(Ū) is bounded, for the locally Lipschitz function

fkα, we compute from (4.11) that

|R| ⩽ C

ˆ T

0

ˆ
Q
|θ| |U − Ū |2.

As U is bounded, taking the limit m→ ∞ in (4.14) by dominated convergence, gives

1

ϵ

ˆ t+ϵ

t

ˆ
Q
η(U |Ū) ⩽ C

ˆ t+ϵ

0

ˆ
Q
|U − Ū |2 +

ˆ
Q
η(U0|Ū0).

Then, sending ϵ→ 0, we get that for almost all t ∈ (0, T ),
ˆ
Q
η(U |Ū) ⩽ C

ˆ t

0

ˆ
Q
|U − Ū |2 +

ˆ
Q
η(U0|Ū0).

Note that since η satisfies (h1)-(h4), by Lemma 3.3 (a), η(U0|Ū0) ≲ |Vp(U0 − Ū0)|2 and

thus, integrating (4.7) ( Theorem 3.2) in time, we deduce that for almost all t ∈ (0, T ) and

up to a suitable constant
ˆ
Q
|Vp(U − Ū)|2 ≲

ˆ t

0

ˆ
Q
|U − Ū |2 +

ˆ
Q
|Vp(U0 − Ū0)|2 + ∥U − Ū∥2

W−1,(2,p) , (4.15)

where ∥ · ∥W−1,(2,p) is the auxiliary mapping defined in (3.3). In order to apply Grönwall’s

inequality and conclude the proof, it remains to estimate the last term on the right-hand

side of (4.15). Similarly to Dafermos in [38], for r ∈ {2, p}, we infer that, since Lr(Q)

embeds into W−1,r(Q),

∥U(t, ·)− Ū(t, ·)∥W−1,r ≲ ∥U0 − Ū0∥Lr +

ˆ t

0
∥∂t{U(s, ·)− Ū(s, ·)}∥W−1,rds.

By taking into account (4.1) we deduce the bound

∥∂t{U(s, ·)− Ū(s, ·)}∥W−1,r(Q) ⩽ ∥∂αfiα(U)− ∂αfiα(Ū)∥W−1,r(Q)

⩽ C∥fiα(U)− fiα(Ū)∥Lr(Q)

⩽ C∥U(s, ·)− Ū(s, ·)∥Lr(Q), (4.16)

where the last inequality follows from the fact that f is locally Lipschitz and U is bounded.

Finally, by Hölder’s inequality, we infer that

∥U(t, ·)− Ū(t, ·)∥rW−1,r ≲ ∥U0 − Ū0∥rLr + T r−1

ˆ t

0
∥U(s, ·)− Ū(s, ·)∥rLrds.

Returning to (4.15) and applying the above bound for r = 2 and r = p we arrive at
ˆ
Q
|Vp(U − Ū)|2 ≲

ˆ t

0

ˆ
Q
|Vp(U − Ū)|2 +

ˆ
Q
|Vp(U0 − Ū0)|2.

An application of Grönwall’s inequality completes the proof.
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Remark 4.2. Note that the L∞ bounds on weak solutions are needed in the estimate

(4.16). Moreover, we note that the assumed growths on η do not e.g. directly apply to

elasticity where η(v, F ) = 1
2 |v|2 +W (F ). However, as |v|2 is convex, it is immediate to

deduce the result assuming (h1)-(h4) on W [74].

Remark 4.3. (Lp bounds and elliptic estimates) Here, we propose an additional

structure to the PDE that allows one to prove weak-strong uniqueness for merely Lp

bounded weak solutions of (4.1). For simplicity, we focus on p = 2. For p > 2 similar

arguments were used in [74] where we refer the reader. To be more precise, instead of the

PDE constraint (4.3) we assume that

∂tU(t, x)− Bg(U(t, x)) = 0, (4.17)

where B is a first-order elliptic potential operator of A and g : RN → RN is globally

Lipschitz. Then, the estimates of Lemma 2.1 on the primitives follow directly due to

the ellipticity of B and in particular due to the fact that B∗(ξ)B(ξ) is invertible for all

ξ ∈ Rd \ {0}. We claim that these assumptions suffice to bound the term ∥U − Ū∥2W−1,2

and replace estimate (4.16) without any L∞ assumptions.

Indeed, for zero-average U ∈ L∞(0, T ;L2(Q)) and W ∈ L∞(0, T ;W 1,2(Q)) a primitive

of U , equation (4.17) implies that
ˆ T

0

ˆ
Q
(W − W̄ )B∗ψt +

ˆ T

0

ˆ
Q

(
g(U)− g(Ū)

)
B∗ψ = 0,

for all ψ ∈ C∞
c ((0, T );C∞(Q)). Now, by testing the above equation with ψ = Bh where,

for ϕ ∈ C∞
c ((0, T );C∞(Q)) with zero average, h is the unique solution of the elliptic system

−B∗Bh = ϕ,

ˆ
Q
h = 0, (4.18)

we infer that ˆ T

0

ˆ
Q
(W − W̄ )tϕ−

ˆ T

0

ˆ
Q

(
g(U)− g(Ū)

)
ϕ = 0. (4.19)

Note that we have moved the time derivative on (W − W̄ ). This is indeed possible since

by (4.17) and the fact that g is globally Lipschitz, Ut ∈ L∞(0, T ;H−1(Q)). In particular,

BWt ∈ L∞(0, T ;H−1(Q)) and by ellipticity of B, we infer that Wt ∈ L∞(0, T ;L2(Q)). We

may now test (4.19) with the function ϕ =W − W̄ , while localising in time, to get that by

Young’s inequality and the Lipschitz condition on g,
ˆ
Q
|W − W̄ |2 ≲

ˆ
Q
|W 0 − W̄ 0|2 +

ˆ t

0

ˆ
Q
|g(U)− g(Ū)|2 +

ˆ t

0

ˆ
Q
|W − W̄ |2, t ∈ (0, T )

≲
ˆ
Q
|W 0 − W̄ 0|2 +

ˆ t

0

ˆ
Q
|U − Ū |2 +

ˆ t

0

ˆ
Q
|W − W̄ |2, t ∈ (0, T ).
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Then, the above estimate inserted in (4.15) and Grönwall’s inequality allows us to complete

the proof. This setting may seem restrictive but it is, up to suitable modifications, the

case of elasticity where (B,A) = (∇, curl) and (4.18) reduces to the Poison equation which

provides the appropriate elliptic estimates. We present the above remark as we find its

generalisation to the A-free setting interesting.

4.1.2 Quasiconvex adiabatic thermoelasticity

We turn our attention to the system of adiabatic thermoelasticity which, recalling from

the introduction, is given by

∂tFiα − ∂αvi = 0

∂tvi − ∂αΣiα = 0

∂t

(
1

2
|v|2 + e

)
− ∂α(Σiαvi) = r.

We remind that smooth solutions of (1.4) satisfy the entropy production identity

∂tη =
r

θ
,

which is replaced by the inequality ∂tη ⩾ r
θ for weak solutions. The latter serves as

an admissibility condition for our system. We additionally assume that the differential

constraint curlF = 0 is an involution i.e.

curlF (0, ·) = 0 ⇒ curlF (t, ·) = 0 for any t ∈ (0, T ), (4.20)

which enforces F to be a deformation gradient as long as the solution exists.

System (1.4) belongs to a general class of symmetrisable hyperbolic systems of con-

servation laws describing the evolution of a function U : R+ × Rd → RN and have the

form

∂tA(U) + ∂αfα(U) = 0 (4.21)

where A and fα : O ⊂ RN → RN , α = 1, . . . , d, are smooth functions describing fluxes.

Here the matrix A(U) is globally invertible on the domain of definition O ∋ U and ∇A(U) is

nonsingular. System (4.21) is endowed with an entropy - entropy flux pair η, qα : RN → R

if any smooth solution U(t, x) ∈ C1(RN ) of (4.21) satisfies the additional conservation law

of entropy

∂tη(U) + ∂αqα(U) = 0 . (4.22)
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This is equivalent to the existence of a multiplier G : RN → RN which is a smooth function

of the solution G = G(U) satisfying the relations

G · ∇A = ∇η

G · ∇fα = ∇qα
(4.23)

or equivalently the relations

∇GT∇A = ∇AT∇G

∇GT∇fα = ∇fαT∇G .
(4.24)

In particular, whenever (4.23) is satisfied by a smooth solution of (4.21), then it also

satisfies the entropy identity (4.22).

Suppose now that (4.21) is endowed with a smooth entropy pair η−qα, that is for some

multiplier G(U) relations (4.24) are satisfied. We can rewrite (4.21) for smooth solutions,

in the form of an equivalent system with symmetric coefficients:

(∇GT∇A)∂tU + (∇GT∇fα)∂αU = 0. (4.25)

The hypothesis

∇GT∇A > 0

guarantees that the system (4.21) is symmetrisable in the sense of Friedrichs and Lax [54],

it has real eigenvalues and it is hyperbolic. Moreover, it induces a relative entropy identity

and therefore a notion of stability for the system (4.21), see [54, 25]. Using (4.22), it can

be equivalently expressed in the form

∇2η −
∑
k=1

Gk∇2Ak > 0 . (4.26)

For weak solutions the entropy pair η− qα gives rise to a notion of admissibility. The func-

tion U ∈ L1
loc(RN ) is an entropy weak solution if it satisfies, in the sense of distributions,

(4.21) and the entropy inequality

∂tη(U) + ∂αqα(U) ≤ 0. (4.27)

Adiabatic thermoelasticity (1.4) fits into the general form of system (4.21), by setting

U = (F, v, η) A(U) =
(
F, v, 12 |v|2 + e(F, η)

)
.

The positivity condition θ = ∂e/∂η > 0 for the temperature guarantees that A(U) is

invertible and ∇A(U) is nonsingular. By construction of the theory, there is a multiplier

G(U) that leads to the entropy pair η̌(U) - q̌α(U) with

η̌(U) := −η, q̌α(U) := 0, G(U) = 1
θ(F,η)

(
∂e

∂F
(F, η), v,−1

)
.
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We may compute that

∇2η̌(U)−
∑
k=1

Gk(U)∇2Ak(U) =
1

eη


eFF 0 eFη

0 1 0

eFη 0 eηη


and thus the condition of symmetrisability (4.26) amounts to e(F, η) strongly convex and

θ(F, η) = ∂e(F,η)
∂η > 0. Convexity of e(F, η) suffices to apply the standard theory of conser-

vation laws to (1.4) and, in that case, the entropy admissibility inequality (4.27) amounts

to the growth of the physical entropy.

However, as we already discussed in the introduction, the requirement of convex in-

ternal energy is too restrictive due to frame indifference, and so we here assume a weaker

assumption which is associated with the symmetrasibility of the system and hence with

the positivity of the matrix (1.8) in specific directions. The latter is guaranteed assumping

that the free energy e is strongly quasiconvex, see Definition 3.1, and hence, if in addition

it satisfies the assumptions (H1), (H2) and (H3), we show that smooth solutions of the

system (1.4) are unique within a suitable class of dissipative measure-valued solutions,

Theorem 4.3. As we mentioned in the Introduction, for polyconvex energy e, stability of

classical solutions in the class of entropy weak and dissipative measure-valued solutions of

the system (1.4) has been established in [22, 23, 24].

Dissipative measure-valued solutions:

For p ⩾ 0, let Cp(Rd) denote the space of continuous functions such that

Cp(Rd) :=

{
g ∈ C(Rd) : lim

|z|→∞

g(z)

|z|p = 0

}
while the space C0(Rd) is defined as

C0(Rd) :=

{
g ∈ C(Rd) : lim

|z|→∞
g(z) = 0

}
.

Identifying the space of signed Radon measures M(Rd) equipped with the total variation

norm as isometrically isomorphic to the dual of C0(Rd), a (parametrised) Young measure

ν = (νx)x∈Q is an element of the space L∞
w∗(Q,M(Rd)) taking values in the space of prob-

ability measures. The space L∞
w∗(Q,M(Rd)) consists of all weak-∗ measurable, essentially

bounded maps ν : Q ∋ x 7→ νx ∈ M(Rd), i.e. all maps such that

x 7→ ⟨ν, g⟩ :=
ˆ
g(z) dν(z)

is measurable for all g ∈ C0(Rd) and

sup
x∈Q

∥νx∥M(Rd) <∞.
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Since C0(Rd) is separable, we have

L∞
w∗(Q,M(Rd)) = L1(Q,C0(Rd))∗

and this defines the weak-∗ limits of Young measures. The Fundamental Theorem of Young

measures in Lp states that given a bounded sequence (Un) in Lp(Q) (1 ⩽ p < ∞), there

exists a subsequence and a parametrized family of Young measures ν = (νx)x∈Q such that

g(Un)⇀ ⟨νx, g⟩ in L1(Q), ∀ g ∈ Cp(Rd), (4.28)

and we say that the sequence (Un) generates the Young measure ν. We call ν a p−Young

measure since it is generated by a bounded sequence in Lp. We note that the space of

Young measures as defined here coincides with the space Y (Q;Rd) defined in Section 2.3,

see [81] for more details. In fact, as we already mentioned in section 2.3, the sequence

(g(Un)) converges as in (4.28) whenever it is equiintegrable and the barycentre ⟨νx, id⟩ of

the generated Young measure gives the weak limit of the sequence Un, i.e.

Un ⇀ ⟨νx, id⟩ in Lp(Q).

If Un = ∇un for un ∈ W 1,p(Q), then we call ν a gradient p−Young measure. Below, we

wish to consider generating sequences (Un) bounded in the Bochner space L∞(0, T ;Lp(Q)),

defined both in time and space, for some T > 0. Then, (Un) is also bounded in Lp(QT )

and generates a p-Young measure νt,x, with (t, x) ∈ QT := (0, T )×Q, which satisfies
ˆ
QT

⟨νt,x, | · |p⟩dx <∞.

However, the above integrability can be improved to obtain L∞ bounds in the time variable,

see [16] for the proof. In particular, it holds that

sup
0⩽t⩽T

ˆ
⟨νt,x, | · |p⟩ <∞.

In our context, we naturally consider measure-valued solutions as limits of approximations

that satisfy the uniform bound

sup
0⩽t⩽T

ˆ
Td

e(F ε, ηε) +
1

2
|vε|2 dx ⩽ C, (4.29)

coming by integrating in QT the energy conservation equation (1.4)3, given that the radi-

ative heat supply r is bounded in L1(QT ) and that the initial data have bounded energy.

Since the energy satisfies the growth-coercivity condition (H2) i.e.

c(|F |p + |η|q − 1) ⩽ e(F, η) ⩽ c(|F |p + |η|q + 1), (4.30)
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together with (4.29), implies the following uniform in ε bounds:

F ε ∈ L∞(0, T ;Lp(Q)), vε ∈ L∞(0, T ;L2(Q)), ηε ∈ L∞(0, T ;Lq(Q)). (4.31)

Then, the sequence {(F ε, vε, ηε)} generates a family of probability measures

νt,x ∈ M+
1 (M

3×3 × R3 × R)

given by the mapping (νt,x) : QT ∋ (t, x) 7→ νt,x. The Young measure (νt,x) is an element

of the space L∞
w∗(QT ,M(R13)) representing weak limits of the form

wk-∗- lim
ε→0

ψ(F ε, vε, ηε) = ⟨νt,x, ψ(λF , λv, λη)⟩, (4.32)

for all continuous functions ψ = ψ(λF , λv, λη) such that

lim
|λF |p+|λv |2+|λη |q→∞

|ψ(λF , λv, λη)|
|λF |p + |λv|2 + |λη|q

= 0, (4.33)

where in (4.32) the notation ⟨νt,x, ·⟩ stands for the average

⟨νt,x, ψ(λF , λv, λη)⟩ =
ˆ
ψ(λF , λv, λη) νt,x(dλF , dλv, dλη)

and λF ∈ M3×3, λv ∈ R3, λη ∈ R. The marginal of νt,x generated by (F ε)ε = (∇yε)ε is a

gradient p−Young measure, while the marginals generated by (vε) and (ηε) are a 2- and a

q-Young measure respectively. In particular,

F ε ∗
⇀ ⟨νt,x, λF ⟩ =: F weak-∗ in L∞(0, T ;Lp(Q)) ,

vε
∗
⇀ ⟨νt,x, λv⟩ =: v weak-∗ in L∞(0, T ;L2(Q)) ,

ηε
∗
⇀ ⟨νt,x, λη⟩ =: η weak-∗ in L∞(0, T ;Lq(Q)) .

We note that the space Cp(Rd) is separable equipped with the norm ∥g(·)/(1 + | · |p)∥L∞ ,

and so is the space Cp,q(Rd × R) defined as

Cp,q(Rd × R) :=
{
g ∈ C(Rd × R) : lim

|z1|p+|z2|q→∞

g(z1, z2)

|z1|p + |z2|q
= 0

}
,

equipped with the norm ∥g(·)/(1+ | · |p+ | · |q)∥L∞ . As a result, the internal energy function

e(λF , λη) belongs to the separable space Cp,q(R9×R) (M3×3 ≃ R9) under the aformentioned

norm.

To take into account the formation of concentration effects, we introduce the concen-

tration measure γ, that depends on the total energy. This is a well-defined nonnegative

Radon measure for a subsequence of

1

2
|vε|2 + e(F ε, ηε).
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Since we know that the functions (F ε, vε, ηε) are all bounded in some Lp space -because of

(4.31)- we may apply the Theorem 2.7, in order to pass to the limit. Indeed, letting Ω be

an open subset of Rd, the theorem asserts that given a sequence of functions (un), un : Ω →
Rm, bounded in Lp(Ω), (p ⩾ 1) there exists a subsequence (which we will not relabel), a

parametrized family of probability measures ν ∈ L∞
w∗(Ω; (Rm)), a nonnegative measure λ ∈

M+(Ω) and a parametrized probability measure on a sphere ν∞ ∈ L∞
w∗((Ω, µ);M+

1 (S
m−1))

such that

ψ(x, un) dx
∗
⇀

ˆ
Rm

ψ(x, z) dνdx+

ˆ
Sm−1

ψ∞(x, z) dν∞(z)dλ(x), (4.34)

for all ψ continuous with well-defined recession function

ψ∞(x, z) := lim
s→∞
z′→z

ψ(x, sz′)

sp
.

The sequences (F ε, vε, ηε) are bounded in different spaces and have different growth,

and as a result, we need to apply a refinement of the aforementioned theorem as, for

instance, in [64]: consider a sequence of maps un = (u1n, u
2
n) where (u1n) is bounded in

some Lp(Ω;Rb) and (u2n) is bounded in Lq(Ω;Rl) and define the non-homogeneous unit

sphere

Sb+l−1
pq := {(β1, β2) ∈ Rb+l : |β1|p + |β2|q = 1} ,

for exponents p, q > 1. Then one can pass to the limit as in (4.34) where

ψ∞(x, z) := lim
x′→x
s→∞

(β′
1,β

′
2)→(β1,β2)

ψ(x′, sqβ′1, s
pβ′2)

spq
= lim

x′→x
τ→∞

(β′
1,β

′
2)→(β1,β2)

ψ(x′, τ
1
pβ′1, τ

1
q β′2)

τ
.

We define the generalized sphere

S12 = {(F, v, η) ∈ R13 : |F |p + |v|2 + |η|q = 1} .

The form of the recession function for the energy follows from [2, Thm 2.5] and reads(
1

2
|v|2 + e(F, η)

)∞
= lim

τ→∞

(
1

2
|v|2 + e(τ

1
pF, τ

1
q η)

τ

)
,

and we require it to be continuous on S12. Then, along a subsequence in ε,

1

2
|vε|2 + e(F ε, ηε)

∗
⇀

〈
νt,x,

1

2
|λv|2 + e(λF , λη)

〉
dx+

〈
ν∞,

(
1

2
|λv|2 + e(λF , λη)

)∞〉
λ

weak-∗ in the sense of measures, where ν ∈ M+
1 (QT ;R13), ν∞ ∈ M+

1 ((QT , λ);S
12) and

λ ∈ M+(QT ). Then (4.30) implies(
1

2
|λv|2 + e(λF , λη)

)∞
> 0
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so that the concentration measure γ ∈ M+(QT ) is nonnegative, i.e.

γ :=

〈
ν∞,

(
1

2
|λv|2 + e(λF , λη)

)∞〉
λ ≥ 0 . (4.35)

The following definition of a measure-valued solution for system (1.4) thus arises:

Definition 4.1. A dissipative measure-valued solution to adiabatic thermoelasticity (1.4),

(1.6) consists of a thermomechanical process (y(t, x), η(t, x)) : [0, T ]×Q→ R3 ×R for any

T > 0,

y ∈W 1,∞(0, T ;L2(Q)) ∩ L∞(0, T ;W 1,p(Q)) , η ∈ L∞(0, T ;Lq(Q)) , (4.36)

a parametrized family of probability measures ν = (νt,x)(t,x)∈QT
and a nonnegative Radon

measure γ ∈ M+(QT ). The measure ν is generated by a sequence (vε,∇yε, ηε) such that

(yε) is bounded in L∞(0, T ;W 1,p(Q))

(∂t∇yε) is bounded in L∞(0, T ;H−1(Q))

(ηε) is bounded in L∞(0, T ;Lq(Q)).

(4.37)

If (v, F, η) denote the averages

F = ⟨νt,x, λF ⟩ , v = ⟨νt,x, λv⟩ , η = ⟨νt,x, λη⟩ ,

then νt,x and γ satisfy

F = ∇y ∈ L∞(Lp), v = ∂ty ∈ L∞(L2) , (4.38)

and the relations

∂tF = ∂αvi

∂t ⟨νt,x, λvi⟩ = ∂α

〈
νt,x,

∂e

∂Fiα
(λF , λη)

〉
∂t ⟨νt,x, λη⟩ ⩾

〈
νt,x,

r

θ(λF , λη)

〉 (4.39)

in the sense of distributions. Moreover, they satisfy the integrated form of the averaged

energy identity,
ˆ
φ(0)

〈
ν0,x,

1

2
|λv|2 + e(λF , λη)

〉
dx

ˆ T

0

ˆ
φ′(t)

(〈
νt,x,

1

2
|λv|2 + e(λF , λη)

〉
(t, x) dx dt+ γ(dx dt)

)
= −

ˆ T

0

ˆ
⟨νt,x, r⟩φ(t) dx dt,

(4.40)

holding for all φ ∈ C∞
c ([0, T )), φ ≥ 0.
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Remark 4.4. On the definition of the dissipative measure-valued solution:

(1) We remark that in addition to the uniform estimate (4.29), natural approximations

of (1.4), (1.6) produce a uniform bound on the time derivatives of (F ε) and (vε) in

a negative Sobolev space. We take all this into account by assuming (4.37).

(2) The first equation holds in a classical weak form, due to its linearity.

(3) Henceforth, we assume the measure γ0 = 0, meaning that we consider initial data

with no concentrations at time t = 0.

(4) We choose to work with dissipative measure-valued solutions, namely solutions that

satisfy the integrated form of the averaged energy equation (4.40). This approach has

the technical advantage that one does not need to place any integrability condition

on the right hand-side of the energy equation (1.4)3, namely on the term Σiαvi, since

it appears as a divergence and its contribution integrates to zero.

The averaged relative entropy inequality

Consider a strong solution (F̄ , v̄, η̄)T ∈W 1,∞(QT ) to (1.4) that satisfies the entropy iden-

tity (1.6) and a dissipative measure-valued solution to (1.4), (1.6) according to Definition

4.1. Similarly with the first part of this section, subsection 4.1.1, we use the relative en-

tropy method to estimate the distance between the above solutions. To this end, we first

write the difference of the weak form of equations (1.4) and (4.39), to obtain the following

three integral identities
ˆ
(Fiα − F̄iα)(0, x)ϕ1(0, x) dx+

ˆ T

0

ˆ
(Fiα − F̄iα)∂tϕ1(t, x) dx dt

=

ˆ T

0

ˆ
(vi − v̄i)∂αϕ1(t, x) dx dt,

(4.41)

ˆ
(⟨ν0,x, λvi⟩−v̄i(0, x))ϕ2(0, x) dx+

ˆ T

0

ˆ
(⟨νt,x, λvi⟩ − v̄i)∂tϕ2(t, x) dx dt

=

ˆ T

0

ˆ (
⟨νt,x,Σiα(λF , λη)⟩ − Σiα(F̄ , η̄)

)
∂αϕ2(t, x) dx dt ,

(4.42)

and
ˆ (〈

ν0,x,
1

2
|λv|2 + e(λF , λη)

〉
−
(
1

2
|v̄|2 + e(F̄ , η̄)

)
(0, x)

)
ϕ3(0) dx

+

ˆ T

0

ˆ {(〈
νt,x,

1

2
|λv|2 + e(λF , λη)

〉
− 1

2
|v̄|2 − e(F̄ , η̄)

)
+ γ

}
∂tϕ3(t) dx dt

= −
ˆ T

0

ˆ
(⟨νt,x, r⟩ − r̄)ϕ3(t) dx dt, (4.43)
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for any ϕi ∈ C1
c ([0, T ) ×Q), i = 1, 2 and ϕ3 ∈ C1

c ([0, T )). Similarly, testing the difference

of (1.6) and (4.39)3 against ϕ4 ∈ C1
c ([0, T )×Q), with ϕ4 ≥ 0, we have

−
ˆ
(⟨ν0,x, λη⟩ − η̄(0, x))ϕ4(0, x) dx−

ˆ T

0

ˆ
(⟨νt,x, λη⟩ − η̄)∂tϕ4(t, x) dx dt

⩾
ˆ T

0

ˆ (〈
νt,x,

r

θ(λF , λη)

〉
− r̄

θ(F̄ , η̄)

)
ϕ4(t, x) dx dt.

(4.44)

We then choose

(ϕ1, ϕ2, ϕ3) = −θ(F̄ , η̄)G(Ū)φ(t) = (−Σ(F̄ , η̄),−v̄, 1)Tφ(t),

for some φ ∈ C1
c ([0, T ]). Thus, by virtue of (1.7), equations (4.41), (4.42) and (4.43)

become
ˆ (

− ∂e

∂Fiα
(F̄ , η̄)(Fiα − F̄iα)

)
(0, x)φ(0) dx

+

ˆ T

0

ˆ (
− ∂e

∂Fiα
(F̄ , θ̄)(Fiα − F̄iα)

)
φ′(t) dx dt

=

ˆ T

0

ˆ [
∂t

( ∂e

∂Fiα
(F̄ , η̄)

)
(Fiα − F̄iα)− ∂α

( ∂e

∂Fiα
(F̄ , η̄)

)
(vi − v̄i)

]
φ(t) dx dt ,

(4.45)

ˆ
− v̄i(⟨ν0,x, λvi⟩ − v̄i(0, x))φ(0) dx+

ˆ T

0

ˆ
−v̄i(⟨νt,x, λvi⟩ − v̄i)φ

′(t) dx dt

= −
ˆ T

0

ˆ [
−∂α

(
∂e

∂Fiα
(F̄ , η̄)

)
(⟨νt,x, λvi⟩ − v̄i)

+∂αv̄i

(〈
νt,x,

∂e

∂Fiα
(λF , λη)

〉
− ∂e

∂Fiα
(F̄ , η̄)

)]
φ(t) dx dt ,

(4.46)

and
ˆ (〈

ν0,x,
1

2
|λv|2 + e(λF , λη)

〉
−
(
1

2
|v̄|2 − e(F̄ , η̄)

)
(0, x)

)
φ(0) dx

+

ˆ T

0

ˆ {(〈
νt,x,

1

2
|λv|2 + e(λF , λη)

〉
− 1

2
|v̄|2 − e(F̄ , η̄)

)
+ γ
}
φ′(t) dx dt

= −
ˆ T

0

ˆ
(⟨νt,x, r⟩ − r̄)φ(t) dx dt. (4.47)

For inequality (4.44), we choose accordingly ϕ4 := θ(F̄ , η̄)φ(t) ⩾ 0, φ ⩾ 0 so that

−
ˆ
θ(F̄ , η̄)(⟨ν0,x, λη⟩ − η̄(0, x))φ(0) dx−

ˆ T

0

ˆ
θ(F̄ , η̄)(⟨νt,x, λη⟩ − η̄)φ′(t) dx dt

⩾
ˆ T

0

ˆ [
∂tθ(F̄ , η̄)(⟨νt,x, λη⟩ − η̄)

+ θ(F̄ , η̄)

(〈
νt,x,

r

θ(λF , λη)

〉
− r̄

θ(F̄ , η̄)

)]
φ(t) dx dt.

(4.48)

Adding together (4.45), (4.46), (4.47) and (4.48), we obtain the integral inequality
ˆ
φ(0)

[
− ∂e

∂Fiα
(F̄ , η̄)(Fiα − F̄iα)(0, x)− ⟨ν0,x, v̄i(λvi − v̄i)⟩(0, x)
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+

〈
ν0,x,

1

2
|λv|2 + e(λF , λη)−

1

2
|v̄|2 − e(F̄ , η̄)

〉
(0, x)

− θ(F̄ , η̄)⟨ν0,x, λη − η̄⟩(0, x)
]
dx

+

ˆ T

0

ˆ
φ′(t)

[
− ∂e

∂Fiα
(F̄ , η̄)(Fiα − F̄iα)− ⟨νt,x, v̄i(λvi − v̄i)⟩

+

〈
νt,x,

1

2
|λv|2 + e(λF , λη)−

1

2
|v̄|2 − e(F̄ , η̄)

〉
− θ(F̄ , η̄)⟨νt,x, λη − η̄⟩+ γ

]
dx dt

⩾ −
ˆ T

0

ˆ
φ(t)

[
− ∂t

( ∂e

∂Fiα
(F̄ , η̄)

)
(Fiα − F̄iα)

+ ∂αv̄i

(〈
νt,x,

∂e

∂Fiα
(λF , λη)

〉
− ∂e

∂Fiα
(F̄ , η̄)

)
− ∂tθ(F̄ , η̄)(⟨νt,x, λη⟩ − η̄)

− θ(F̄ , η̄)

(〈
νt,x,

r

θ(λF , λη)

〉
− r̄

θ(F̄ , η̄)

)
+ ⟨νt,x, r − r̄⟩

]
dx dt

=: −
ˆ T

0

ˆ
φ(t)R(t, x) dx dt . (4.49)

Using relations (1.7), the entropy production identity (1.6) that holds for strong solutions

and equation (1.4)1, since

r − r̄ =
r

θ
θ − r̄

θ̄
θ̄,

the quantity R(t, x) in the integrand on the right hand-side of (4.49) becomes

R = −∂tF̄jβ
∂2e

∂Fiα∂Fjβ
(F̄ , η̄)(Fiα − F̄iα)− ∂tη̄

∂2e

∂Fiα∂η
(F̄ , η̄)(Fiα − F̄iα)

+ ∂tF̄iα

〈
νt,x,

∂e

∂Fiα
(λF , λη)−

∂e

∂Fiα
(F̄ , η̄)

〉
− ∂tF̄iα

∂2e

∂Fiα∂η
(F̄ , η̄)⟨νt,x, λη − η̄⟩

− ∂tη̄
∂2e

∂η2
(F̄ , η̄)⟨νt,x, λη − η̄⟩

+ ∂tη̄⟨νt,x, θ(λF , λη)− θ(F̄ , η̄)⟩ − ∂tη̄⟨νt,x, θ(λF , λη)− θ(F̄ , η̄)⟩

− θ(F̄ , η̄)

(〈
νt,x,

r

θ(λF , λη)

〉
− r̄

θ(F̄ , η̄)

)
+ ⟨νt,x, r − r̄⟩

= ∂tη̄

[ 〈
νt,x, θ(λF , λη)− θ(F̄ , η̄)

〉
− ∂θ

∂Fiα
(F̄ , η̄)(Fiα − F̄iα)−

∂θ

∂η
(F̄ , η̄)⟨νt,x, λη − η̄⟩

]

+ ∂tF̄jβ

[ 〈
νt,x,Σjβ(λF , λη)− Σjβ(F̄ , η̄)

〉
− ∂2e

∂Fiα∂Fjβ
(F̄ , η̄)(Fiα − F̄iα)−

∂2e

∂η ∂Fjβ
(F̄ , η̄)⟨νt,x, λη − η̄⟩

]
− r̄

θ(F̄ , η̄)
⟨νt,x, θ(λF , λη)− θ(F̄ , η̄)⟩
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− θ(F̄ , η̄)

(〈
νt,x,

r

θ(λF , λη)

〉
− r̄

θ(F̄ , η̄)

)
+ ⟨νt,x, r − r̄⟩

= ∂tη̄
〈
νt,x, θ(λF , λη|F̄ , η̄)

〉
+ ∂tF̄jβ

〈
νt,x,Σjβ(λF , λη|F̄ , η̄)

〉
+

〈
νt,x, (θ(λF , λη)− θ(F̄ , η̄))

(
r

θ(λF , λη)
− r̄

θ(F̄ , η̄)

)〉
. (4.50)

Above, we have used the following notation:

〈
νt,x, θ(λF , λη|F̄ , θ̄)

〉
:=

〈
νt,x, θ(λF , λη)− θ(F̄ , θ̄)

− ∂θ

∂Fiα
(F̄ , η̄)(Fiα − F̄iα)−

∂θ

∂η
(F̄ , η̄)(λη − η̄)

〉
,

(4.51)

and

〈
νt,x,Σiα(λF , λη|F̄ , η̄)

〉
:=

〈
νt,x,Σiα(λF , λη)− Σiα(F̄ , η̄)

− ∂2e

∂Fiα∂Fjβ
(F̄ , η̄)(λF − F̄ )− ∂2e

∂Fiα∂η
(F̄ , η̄)(λη − η̄)

〉
.

(4.52)

If we define the averaged quantity

I(λU |Ū) = I(λF , λv, λη|F̄ , v̄, η̄) :=
1

2
|λv − v̄|2 + e(λF , λη|F̄ , η̄) (4.53)

for

e(λF ,λη|F̄ , η̄) := e(λF , λη)− e(F̄ , η̄)− ∂e

∂Fiα
(F̄ , η̄)(λF − F̄ )iα − ∂e

∂η
(F̄ , η̄)(λη − η̄),

we observe that the term on the left hand-side of (4.49) becomes

− ∂e

∂Fiα
(F̄ , η̄)(Fiα − F̄iα)− ⟨νt,x, v̄i(λvi − v̄i)⟩

+

〈
νt,x,

1

2
|λv|2 + e(λF , λη)−

1

2
|v̄|2 − e(F̄ , η̄)

〉
− θ(F̄ , η̄)⟨νt,x, λη − η̄⟩

=

〈
νt,x,

1

2
|λv − v̄|2

〉
+
〈
νt,x, e(λF , λη|F̄ , η̄)

〉
=
〈
νt,x, I(λF , λv, λη|F̄ , v̄, η̄)

〉
.

(4.54)

We then combine (4.49),(4.50), and (4.54) to arrive at the relative entropy inequality
ˆ
φ(0)[

〈
ν0,x, I(λU0 |Ū0)

〉
dx]

+

ˆ T

0

ˆ
φ′(t)

[〈
νt,x, I(λU |Ū)

〉
dx dt+ γ(dx dt)

]
⩾ −
ˆ T

0

ˆ
φ(t)

[
∂tη̄
〈
νt,x, θ(λF , λη|F̄ , η̄)

〉
+ ∂tF̄jβ

〈
νt,x,Σjβ(λF , λη|F̄ , η̄)

〉
+

〈
νt,x, (θ(λF , λη)− θ(F̄ , η̄))

(
r

θ(λF , λη)
− r̄

θ(F̄ , η̄)

)〉]
dx dt.

(4.55)
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Measure-valued versus strong uniqueness

Due to the relative entropy inequality (4.55), we may now show that classical solutions

are unique in the class of dissipative measure-valued solutions. Before we proceed, we

summarise the assumptions on the internal energy:

(H1) e ∈ C3(Rd×d × R)

(H2) c2(|F |p + |η|q − 1) ⩽ e(F, η) ⩽ c1(|F |p + |η|q + 1)

(H3) |eF (F, η)| ≲ 1 + |F |p−1 + |η|q
p−1
p , and |eη(F, η)| ≲ 1 + |F |p

q−1
q + |η|q−1.

To establish the measure-valued vs strong uniqueness result, we first assert that the

following bounds on the relative entropy and the terms on the right hand side of (4.55)

can be obtained given the above hypotheses and the quasiconvexity assumption, Definition

3.3.

Lemma 4.1. Given hypotheses (H1)− (H3), for p, q ⩾ 2, assume that the smooth solution

(F̄ , v̄, η̄) lies in the compact set

ΓK :=
{
(F̄ , v̄, η̄) : |F̄ (t, ·)| ⩽ K, |v̄(t, ·)| ⩽ K, |η̄(t, ·)| ⩽ K

}
for a positive constant K. Then there exist constants C1, C2, C3 > 0 such that

|I(F, v, η|F̄ , v̄, η̄)| ⩽ C1

(
|v − v̄|2 + |Vp(F − F̄ )|2 + |Vq(η − η̄)|2

)
(4.56)

|θ(F, η|F̄ , η̄)| ⩽ C2

(
|Vp(F − F̄ )|2 + |Vq(η − η̄)|2

)
(4.57)

and

|Σ(F, η|F̄ , η̄)| ⩽ C3

(
|Vp(F − F̄ )|2 + |Vq(η − η̄)|2

)
. (4.58)

Under the additional hypothesis:

θ(F, η) =
∂e

∂η
(F, η) ≥ δ > 0 , (4.59)

and given that r(t, x) = r̄(t, x) ∈ L∞(QT ), there exist a constant C4 > 0 such that∣∣∣∣∣(θ(F, η)− θ(F̄ , η̄))

(
r

θ(F, η)
− r̄

θ(F̄ , η̄)

) ∣∣∣∣∣ ⩽ C4

(
|Vp(F − F̄ )|2 + |Vq(η − η̄)|2

)
(4.60)

for all (F̄ , v̄, η̄) ∈ ΓK .

Proof. For the proof of (4.56), observe that

e(F, η|F̄ , η̄) =
ˆ 1

0
(1− s)D2e

(
F̄ + s(F − F̄ ), η̄ + s(η − η̄)

)
(F − F̄ , η − η̄) : (F − F̄ , η − η̄).

70



Given the set of hypotheses (H1) − (H3), (4.56) follows from Lemma 3.3 (a) by setting

ξ1 = F − F̄ , ξ2 = η − η̄, λ1 = F̄ , λ2 = η̄ and z1 = z2 = 0.

Moving to bound (4.57), we cannot use the proof in the Appendix directly, as θ does

not satisfy the same growth conditions as e. We start by expressing θ(F, η|F̄ , η̄) as follows:

θ(F, η|F̄ , η̄) =
ˆ 1

0
(1− s)D2θ(F̄ + s(F − F̄ ), η̄ + s(η − η̄))(F − F̄ , η − η̄) : (F − F̄ , η − η̄)

so that

|θ(F, η|F̄ , η̄)| ⩽ C
(
|F − F̄ |2 + |η − η̄|2

)
,

where C = C(d,maxD2θ) in the region |F − F̄ | + |η − η̄| ⩽ 1 and (F̄ , η̄) ∈ ΓK . If

|F − F̄ |+ |η − η̄| > 1 and (F̄ , η̄) ∈ ΓK we have

|θ(F, η|F̄ , η̄)| ⩽ |θ(F, η)− θ(F̄ , η̄)|+
∣∣∣∣ ∂θ∂Fiα

(F̄ , η̄)

∣∣∣∣ |Fiα − F̄iα|+
∣∣∣∣∂θ∂η (F̄ , η̄)

∣∣∣∣ |η − η̄|

≲ |θ(F, η)|+ |F − F̄ |+ |η − η̄|+ 1

≲ |F |p
q−1
q + |η|q−1 + |F − F̄ |+ |η − η̄|+ 1

≲ 2
p q−1

q
−1

(|F − F̄ |p
q−1
q + |F̄ |p

q−1
q ) + 2q−2(|η − η̄|q−1 + |η̄|q−1)

+ |F − F̄ |+ |η − η̄|+ 1

≲ |F − F̄ |p + |η − η̄|q + |F − F̄ |+ |η − η̄|+ 1

≲ |F − F̄ |p + |η − η̄|q + |F − F̄ |+ |η − η̄|

≲ |F − F̄ |p + |η − η̄|q + (|F − F̄ |+ |η − η̄|)2

≲ |F − F̄ |p + |η − η̄|q + |F − F̄ |2 + |η − η̄|2

⩽ C
(
|Vp(F − F̄ )|2 + |Vq(η − η̄)|2

)
,

because of (H3)2, Minkowski’s inequality and Young’s inequality.

Bound (4.58) can be obtained similarly by employing (H3)1, as now the function Σ(F, η)

is given by (1.7)2 as a partial derivative of e(F, η).

Finally for (4.60) in the region where |F − F̄ |+ |η − η̄| ⩽ 1 and (F̄ , η̄) ∈ ΓK we have∣∣∣∣∣(θ(F, η)− θ(F̄ , η̄))

(
r

θ(F, η)
− r̄

θ(F̄ , η̄)

) ∣∣∣∣∣ ≲ |θ(F, η)− θ(F̄ , η̄)|2
θ(F, η)θ(F̄ , η̄)

≲ |θ(F, η)− θ(F̄ , η̄)|2

≲ |F − F̄ |2 + |η − η̄|2,

where the constants involved depend on (||r||L∞ ,K). If |F − F̄ |+ |η− η̄| > 1, given (4.59)

it holds that∣∣∣∣∣(θ(F, η)− θ(F̄ , η̄))

(
r

θ(F, η)
− r̄

θ(F̄ , η̄)

) ∣∣∣∣∣ ≲ |θ(F, η)− θ(F̄ , η̄)| ≲ |θ(F, η)|+ 1,
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for all (F̄ , η̄) ∈ ΓK and for a constant depending on (||r||L∞ , δ,K). Then we can proceed

as above to bound the term |θ(F, η)|. This concludes the proof.

As in the proof of Theorem 4.2, in order to establish weak-strong uniqueness for the

system of adiabatic thermoelasticity (1.4), we use our Gårding-type inequality, Theorem

3.2. In the current setting, due to the fact that the involutions correspond to the differential

operator curl, inequality (3.15) takes the form
ˆ

|Vp(∇ϕ)|2 + |Vq(ψ)|2 ⩽ C0

ˆ
e(F̄ +∇ϕ, η̄ + ψ|F̄ , η̄) + C1

ˆ
|Vp(ϕ)|2, (4.61)

where C0 = C0(e,K) > 0, C1 = C1(e,K) > 0 and ψ ∈ Lq(Q) with
´
ψ = 0 and ϕ ∈

W 1,p
0 (Q). We note here that in the RHS we used the equivalent norm for the penalty

term, expressed with respect to the primitive functions. In the sequel, we use (4.61) for

(F̄ , η̄) a classical (Lipschitz) solution of (1.4), to prove the measure-valued versus strong

uniqueness result. Hence, the proof of Theorem 4.3 relies on Theorems 3.1 and 3.2, and

we refer the reader to those statements for the proof of (4.61).

Lemma 4.2. Suppose that (ν, γ, F, v, η) is a dissipative measure-valued solution to adia-

batic thermoelasticity according to Definition 4.1 and that (F̄ , v̄, η̄) is a classical solution

to (1.4) with initial data (F 0, v0, η0) and (F̄ 0, v̄0, η̄0) respectively. Under the assumptions

of Theorem 3 and by denoting ν0 = νt0,x, it holds that
ˆ
⟨ν0, |Vp(λF − F̄ (t0, x))|2 + |Vq(λη − η̄(t0, x))|2⟩ dx

⩽ C̃0

ˆ
⟨ν0, e(λF , λη|F̄ (t0, x), η̄(t0, x))⟩ dx+ C̃1

ˆ
|Vp(y(t0, x)− ȳ(t0, x))|2 dx,

(4.62)

andˆ
⟨ν0, |Vp(λF − F̄ (t0, x))|2 + |Vq(λη − η̄(t0, x))|2 + |λv − v̄(t0, x)|2⟩ dx

⩽ C̃0

ˆ
⟨ν0, I(F, v, η|F̄ , v̄, η̄; (t0, x))⟩ dx+ C̃1

ˆ
|Vp(y(t0, x)− ȳ(t0, x))|2 dx,

(4.63)

for almost all t0 ∈ (0, T ). In addition, at t = 0

ˆ
I(F 0, v0, η0|F̄ 0, v̄0, η̄0) ⩽ c̃

ˆ
|v0 − v̄0|2 + |Vp(F 0 − F̄ 0)|2 + |Vq(η0 − η̄0)|2 . (4.64)

Proof. We prove (4.62) as a result of Theorems 4.4 and 3.2. In (4.61) take F̄ = F̄ (t0, ·) and

η̄ = η̄(t0, ·) and then fix t ∈ (0, T ) and choose ϕ = zk(t, ·)−ȳ(t0, ·) and ψ = wk(t, ·)−η̄(t0, ·),
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see Theorem 4.4. Observe in this case, that the relative quantity e(F̄ + ∇ϕ, η̄ + ψ|F̄ , η̄)
becomes e(∇zk, wk|F̄ (t0, x), η̄(t0, x)) and Theorem 3.2 gives that
ˆ
Q
|Vp(∇zk(t, x)− F̄ (t0, x))|2 + |Vq(wk(t, x)− η̄(t0, x))|2 dx

⩽ C̃0

ˆ
Q
e
(
zk(t, x), ηk(t, x)|F̄ (t0, x), η̄(t0, x)

)
dx+ C̃1

ˆ
Q
|Vp(zk(t, x))− ȳ(t0, x))|2 dx.

Integrating the resulting inequality in time and since, from Theorem 4.4 (∇zk, wk) gener-

ates the measure (νt0,x)x∈Q, (|∇zk|p + |wk|q) is weakly relatively compact in L1(QT ) and

zk → y(t0, ·) strongly in Lp(Q), by taking the limit k → ∞, we obtain inequality (4.62).

For (4.63), we exploit inequality (4.62), together with the fact that the relative entropy

I is given as a sum in (4.53). Indeed, let (F k, vk, ηk) be a generating sequense satisfying

F k ∈ L∞(0, T ;Lp(Q)), vk ∈ L∞(0, T ;L2(Q)), ηk ∈ L∞(0, T ;Lq(Q)).

Note that whenever g : QT ×Rd×d ×Rd ×R is a function that admits an additive decom-

position

g(t, x, F, v, η) = gv(t, x, v) + gF,η(t, x, F, η),

where

|gv| ⩽ c(1 + |v|2) and |gF,η| ⩽ c(1 + |F |p + |η|q),

the action of the generated measure νt,x is equivalent with the action of νv ⊗ νF,η where

νv and νF,η are generated by the sequenses (vk) and (F k, ηk) respectively. Therefore, it

suffices to add the term ˆ
⟨νv0 , |v − v̄(t0, x))|2⟩ dx

to the inequality (4.61). Finally, (4.64) follows directly from Lemma 4.1 and in particular

bound (4.56).

Combining the above lemma with the averaged relative entropy inequality (4.55), we

are now in a position to prove that in the presence of a classical solution, given that the

associated Young measure is initially a Dirac mass, the dissipative measure-valued solution

must coincide with the classical one.

Theorem 4.3. Let Ū be a Lipschitz bounded solution of (1.4),(1.6) with initial data Ū0

and (νt,x, γ, U) be a dissipative measure-valued solution satisfying (4.39),(4.40), with ini-

tial data also Ū0, both under the constitutive assumptions (1.7) and such that r(t, x) =

r̄(t, x) ∈ L∞(QT ). Suppose that e is strongly quasiconvex according to Definition 3.1 and

the hypotheses (H1) − (H3) hold for p, q ⩾ 2, together with (4.59). If ν0,x = δŪ0(x) and

γ0 = 0, we have that νt,x = δŪ and U = Ū a.e. on QT .
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Proof. Let {φn} be a sequence of monotone decreasing functions such that φn ⩾ 0, for all

n ∈ N, converging as n→ ∞ to the Lipschitz function

φ(τ) =


1 0 ⩽ τ ⩽ t

t− τ

ε
+ 1 t ⩽ τ ⩽ t+ ε

0 τ ⩾ t+ ε

for some ε > 0. Writing the relative entropy inequality (4.55) for r(t, x) = r̄(t, x), tested

against the functions φn we have
ˆ
φn(0)[

〈
ν0,x, I(λU0 |Ū0)

〉
dx]

+

ˆ T

0

ˆ
φ′
n(t)

[〈
νt,x, I(λU |Ū)

〉
dx dt+ γ(dx dt)

]
⩾ −
ˆ T

0

ˆ
φn(t)

[
∂tη̄
〈
νt,x, θ(λF , λη|F̄ , η̄)

〉
+ ∂tF̄jβ

〈
νt,x,Σjβ(λF , λη|F̄ , η̄)

〉
+

〈
νt,x, (θ(λF , λη)− θ(F̄ , η̄))

(
r̄

θ(λF , λη)
− r̄

θ(F̄ , η̄)

)〉]
dx dt.

Passing to the limit as n→ ∞ we get
ˆ 〈

ν0,x, I(λF , λv, λη|F̄ , v̄, η̄)
〉
(0, x) dx

− 1

ε

ˆ t+ε

t

ˆ [〈
ντ,x, I(λF , λv, λη|F̄ , v̄, η̄)

〉
dx dτ + γ(dxdτ)

]
⩾ −
ˆ t+ε

0

ˆ [
∂tη̄
〈
ντ,x, θ(λF , λη|F̄ , η̄)

〉
+ ∂tF̄jβ

〈
ντ,x,Σjβ(λF , λη|F̄ , η̄)

〉
+

〈
ντ,x, (θ(λF , λη)− θ(F̄ , η̄))

(
r̄

θ(λF , λη)
− r̄

θ(F̄ , η̄)

)〉]
dx dτ,

and using the estimates (4.57), (4.58), and (4.60) we arrive at
ˆ 〈

ν0,x, I(λF , λv, λη|F̄ , v̄, η̄)
〉
(0, x) dx

− 1

ε

ˆ t+ε

t

ˆ [〈
ντ,x, I(λF , λv, λη|F̄ , v̄, η̄)

〉
dx dτ + γ(dxdτ)

]
⩾ −C

ˆ t+ε

0

ˆ 〈
ντ,x, |Vp(λF − F̄ )|2 + |Vq(λη − η̄)|2

〉
dx dτ.

Passing now to the limit as ε→ 0+ and using the fact that γ ⩾ 0 we get
ˆ
[⟨νt,x, I(λF , λv,λη|F̄ , v̄, η̄)⟩ dx ⩽

ˆ 〈
ν0,x, I(λF , λv, λη|F̄ , v̄, η̄)

〉
(0, x) dx

+ C

ˆ t

0

ˆ 〈
ντ,x, |Vp(λF − F̄ )|2 + |Vq(λη − η̄)|2

〉
dx dτ, (4.65)
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which together with (4.56), (4.63), and (4.64) yields
ˆ
⟨νt,x,|λv − v̄|2 + |Vp(λF − F̄ )|2 + |Vq(λη − η̄)|2⟩ dx

⩽ C

ˆ t

0

ˆ 〈
ντ,x, |Vp(λF − F̄ )|2 + |Vq(λη − η̄)|2

〉
dx dτ + C

ˆ
|Vp(y − ȳ)|2 dx,

(4.66)

for a.e. t ∈ (0, T ). Here we used the assumptions that the two solutions have the same

initial data and that γ0 = 0. Note that the constant C depends only on the smooth bounded

solution Ū .

To apply Grönwall’s inequality and close our argument it remains to estimate the last

term on the right hand-side of (4.66). This was done in [73], using elliptic estimates and

equation (1.4)1, together with (4.20). Here, for the sake of completeness, we briefly sketch

their arguments. Note that, due to the fact that F and F̄ are deformation gradients,

involution (4.20), we have that
ˆ T

0

ˆ
Q
(∇y −∇ȳ)ϕt − (u− ū)divϕdxdt = 0, (4.67)

for all ϕ ∈ C∞
c ([0, T );C∞(Q)). Then, consider the unique solution of the system

−∆g(t, x) = ψ(t, x)ˆ
Q
g(t, x) = 0,

where ψ ∈ C∞
c ((0, T );C∞(Q)) such that

´
Q ψ(t, x) = 0. Taking ϕ = ∇g in (4.67), we infer

that
ˆ T

0

ˆ
Q
(y − ȳ)t ψ − (u− ū)ψ dxdt = 0. (4.68)

Note that in the above equation we integrate the time derivative of y − ȳ. This is indeed

well defined, since we have that ∂t∇y, ∂t∇ȳ ∈ L∞ (0, T ;H−1(Q)
)
. We now test (4.68) with

the function (y − ȳ)
(
1 + |y − ȳ|p−2

)
−
´
Q(y − ȳ)

(
1 + |y − ȳ|p−2

)
, and since

´
Q(u − ū) =´

Q(y − ȳ) = 0, we infer that

d

dt

ˆ
Q

|y(t, x)− ȳ(t, x)|2
2

+
|y(t, x)− ȳ(t, x)|p

p
dx

⩽
ˆ
Q
|u(t, x)− ū(t, x)| |y(t, x)− ȳ(t, x)|dx+

ˆ
Q
|u(t, x)− ū(t, x)| |y(t, x)− ȳ(t, x)|p−1dx.

Now, by integrating in time and applying Young’s inequality, we get that for almost all

t ∈ (0, T ),
ˆ
Q

|y(t, x)− ȳ(t, x)|2
2

+
|y(t, x)− ȳ(t, x)|p

p
dx ≲

ˆ t

0

ˆ
Q
|u(τ, x)− ū(τ, x)|2 dxdτ+
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+

ˆ t

0

ˆ
Q
|y(τ, x)− ȳ(τ, x)|2 dxdτ +

ˆ t

0

ˆ
Q
|y(τ, x)− ȳ(τ, x)|2p−2 dxdτ. (4.69)

Then, since 2p− 2 ⩾ p ⩾ 2, we use the fact that W 1,p(Q) ↪→ L2p−2(Q) to deduce that
ˆ t

0

ˆ
Q
|y(τ, x)− ȳ(τ, x)|2p−2 ≲

ˆ t

0

(
∥y(τ, ·)− ȳ(τ, ·)∥2p−2

Lp(Q) + ∥∇y(τ, ·)−∇ȳ(τ, ·)∥2p−2
Lp(Q)

)
≲
ˆ t

0

(
∥y(τ, ·)− ȳ(τ, ·)∥pLp(Q) + ∥∇y(τ, ·)−∇ȳ(τ, ·)∥pLp(Q)

)
,

where in the last inequality we used the fact that

sup
τ∈(0,t)

{
∥y(τ, ·)− ȳ(τ, ·)∥p−2

Lp(Q) + ∥∇y(τ, ·)−∇ȳ(τ, ·)∥p−2
Lp(Q)

}
<∞.

Going back to (4.69), we finally conclude that,
ˆ

|Vp(y − ȳ)|2 dx ⩽ C

ˆ t

0

ˆ 〈
νt,x, |Vp(λF − F̄ )|2 + |λv − v̄|2

〉
dx dτ

+ C

ˆ t

0

ˆ
Vp(y − ȳ)|2 dx dτ.

Adding the term
´
|Vp(y − ȳ)|2 dx on both sides of (4.66) we arrive at

ˆ (
⟨νt,x,|λv − v̄|2 + |Vp(λF − F̄ )|2 + |Vq(λη − η̄)|2⟩+ |Vp(y − ȳ)|2

)
dx

⩽ C

ˆ t

0

ˆ ( 〈
νt,x, |Vp(λF − F̄ )|2 + |Vq(λη − η̄)|2

〉
+ |Vp(y − ȳ)|2

)
dx dτ.

Grönwall’s inequality completes the proof.

Remark 4.5. The radiative heat supply r(t, x) is a field that can be regulated externally.

Therefore, one could think instead the theory of thermoelasticity with zero radiative heat

supply and prove Theorem 4.3 in this less general setting. In the case r(t, x) = r̄(t, x) = 0,

the result of Theorem 4.3 holds without the assumption on the temperature (4.59), and

bound (4.60).

Localisation in time

In Theorem 4.3 we are required to localise our measure-valued solution in time and the

generating sequences for these localised measures must be given by a proper time modi-

fication of the generating sequence for ν. However, due to the lack of equiintegrability of

the assumed generating sequence, we need to construct a new sequence which lies on the

desired wave cone, has suitable equiintegrability and convergence properties and generates

the localised measure (νt0,x)x∈Q. To this end, we first prove a technical result which is

used for our time-dependent decomposition lemma, Lemma 4.4. The latter is not needed

if, instead of measure-valued solutions, weak solutions of (1.4) are considered.
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Lemma 4.3. ([Lemma 15,[73]]) Let v ∈ L∞ (0, T ;Lp(Q)) for any p ∈ [1,∞). Then, up to

a subsequence which is not relabelled and for almost all t0 ∈ (0, T ), it holds that

lim
ε→0

ˆ
QT

|v(t0 + εt/T, x)− v(t0, x)|p dxdt = 0.

Proof. By the continuity of the translations, for almost all t,

∥v(·+ εt/T, ·)− v(·, ·)∥pLp(QT ) → 0, as ε→ 0.

Also, due to the fact that v ∈ L∞ (0, T ;Lp(Q)), the above quantity is uniformly bounded

in ε and hence, by dominated convergence,

lim
ε→0

ˆ T

0

ˆ
QT

|v(t0 + εt/T, x)− v(t0, x)|p dxdtdt0 = 0,

where t0 is considered as a variable. Indeed, the above limit holds since
ˆ T

0

ˆ
QT

|v(t0 + εt/T, x)− v(t0, x)|p dxdtdt0 =
ˆ T

0

ˆ
QT

|v(t0 + εt/T, x)− v(t0, x)|p dxdt0dt

=

ˆ T

0
∥v(·+ εt/T, ·)− v(·, ·)∥pLp(QT ) dt

D.C.T.→ 0.

Hence, up to a subsequence, for almost t0

lim
ε→0

ˆ
QT

|v(t0 + εt/T, x)− v(t0, x)|p dxdt = 0.

Theorem 4.4. Let ν = (νt,x)(t,x)∈QT
be a family of probability measures generated by a

sequence (∇yk, ηk) such that

(yk) is bounded in L∞(0, T ;W 1,p(Q))

(∂t∇yk) is bounded in L∞(0, T ;H−1(Q))

(ηk) is bounded in L∞(0, T ;Lq(Q)),

and write (∇y, η) = ⟨ν, id⟩ for its centre of mass. Then, for almost all t0 ∈ (0, T ), there

exists a sequence (∇zk, wk) also bounded in L∞(0, T ;Lp(Q)) × L∞(0, T ;Lq(Q)) with the

following properties

(1) (∇zk, wk) generates the measure (νt0,x)x∈Q as a p-q-Young measure;

(2) (|∇zk|p + |wk|q) is weakly relatively compact in L1(QT );

(3) zk → y(t0, ·) strongly in Lp(QT ).
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Proof. For t0 ∈ (0, T ) define

yk,ε(t, x) := yk(t0 + εt/T, x), ηk,ε(t, x) := ηk(t0 + εt/T, x).

We claim that for a.e. t0 an appropriate subsequence of (εk) can be chosen such that

(∇yk,ε, ηk,ε) generates the measure (νt0,x)x∈Q and that yk,εk → y(t0, ·) in Lp(QT ). To this

end, note that, up to a subsequence which is not relabelled, for any g ∈ Cp,q(Rd×d × R)

and any Borel set E ⊆ QT for a.e. t0 ∈ (0, T ) it holds that

lim
ε→0

ˆ
E
|⟨νt0+εt/T,x, g(λF , λη)⟩ − ⟨νt0,x, g(λF , λη)⟩| = 0. (4.70)

This is a consequence of Lemma 4.3 noting that the function v(t, x) = ⟨νt,x, g⟩ is an element

of L∞(0, T ;L1(Q)) since, due to the growth behaviour of g,

sup
t

ˆ
Q
|⟨νt,x, g⟩| ≲ sup

t

ˆ
Q
⟨νt,x, |λF |p + |λη|q⟩ <∞.

Hence, it follows that for any such g and E, denoting by XE the characteristic function of

E and t0 fixed a.e. in (0, T ) using (4.70), we infer that

lim
ε→0

lim
k→∞

ˆ
E
g(∇yk,ε(t, x), ηk,ε(t, x))

= lim
ε→0

lim
k→∞

T

ε

ˆ t0+ε

t0

ˆ
Q
XE ((t− t0)T/ε, x) g(∇yk(t, x), ηk(t, x))

= lim
ε→0

ˆ
QT

XE(t, x)⟨νt0+εt/T,x, g(λF , λη)⟩

=

ˆ
E
⟨νt0,x, g(λF , λη)⟩. (4.71)

In addition, similarly with [[73],Lemma 16] we have that

lim
ε→0

lim
k→∞

ˆ
QT

|yk(t0 + εt/T, x)− y(t0, x)|p = 0. (4.72)

Indeed,
ˆ
QT

|yk(t0 + εt/T, x)− y(t0, x)|p ⩽ C

ˆ
QT

|yk(t0 + εt/T, x)− y(t0 + εt/T, x)|p

+ C

ˆ
QT

|y(t0 + εt/T, x)− y(t0, x)|p =: I + II.

Then , since y ∈ L∞(0, T ;Lp(Q)), Lemma 4.3 says that (up to a further subsequence), for

a.e. t0 ∈ (0, T )

lim
ε→0

II = 0.

Regarding the first term, noting that the sequences

(yk) ⊂ L∞(0, T ;W 1,p(Q)) and (∂ty
k) ⊂ L2(0, T ;L2(Q))
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are bounded in the respective spaces, we apply the Aubin-Lions lemma to infer that

yk → y in C(0, T ;Lp(Q)),

which is enough to conclude that

lim
k→∞

I = 0, .

Now, for g and E in a countable dense subset of Cp,q(Rd×d × R) and of the collection

of Borel subsets of QT , respectively, we may choose a subsequence (εk) such that (4.70)

and (4.72) hold. In particular, for t0 fixed almost everywhere in (0, T ),

lim
k→∞

ˆ
E
g
(
∇yk,εk , ηk,εk

)
=

ˆ
E
⟨νt0,x, g(λF , λη)⟩,

for all the elements of the countable subsets where g and E belong and, by density, for all

g ∈ Cp,q(Rd×d × R) and all E ⊆ QT , i.e.

g
(
∇yk,εk , ηk,εk

)
⇀ ⟨νt0,x, g(λF , λη)⟩ in L1(QT ),

and
(
∇yk,εk , ηk,εk

)
generates the measure (νt0,x)x. Note also that

(∇yk,εk) ⊆ L∞(0, T ;Lp(Q)) and (ηk,εk) ⊆ L∞(0, T ;Lq(Q)).

For n ∈ N and (z1, z2) ∈ Rd×d × R consider the truncation operator

τn(z1, z2) :=


(z1, z2), |z1|2 + |z2|2 ⩽ n2,

n (z1, z2)/|(z1, z2)|, |z1|2 + |z2|2 > n2.

We observe that τn(z1, z2) =
(
τFn (z1, z2), τ

η
n(z1, z2)

)
where

τFn (z1, z2) :=


z1, |z1|2 + |z2|2 ⩽ n2,

n z1/|(z1, z2)|, |z1|2 + |z2|2 > n2,

and τηn(z1, z2) is defined respectively. It is straightforward to see that for fixed n ∈ N the

sequence
(
|τFn (z1, z2)|p + |τηn(z1, z2)|q

)
is equiintegrable and so

lim
n→∞

lim
k→∞

ˆ
QT

|τFn (∇yk,εk , ηk,εk)|p + |τηn(∇yk,εk , ηk,εk)|q

= lim
n→∞

ˆ
QT

⟨νt0,x, |τFn (λFλη)|p + |τηn(λF , λη)|q⟩ =
ˆ
QT

⟨νt0,x, |λF |p + |λη|q⟩, (4.73)

where the second equality uses monotone convergence. Moreover,

lim
n→∞

lim
k→∞

ˆ
QT

|τn(∇yk,εk , ηk,εk)− (∇yk,εk , ηk,εk)| = 0 (4.74)
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due to the L1-equiintegrability of (∇yk,εk , ηk,εk). Then, from (4.73) and (4.74), there exists

a subsequence kn, such that

Vn :=
(
τFn (∇ykn,εkn , ηkn,εkn ), τηn(∇ykn,εkn , ηkn,εkn )

)
Y→ (νt0,x)x∈Q;(

|τFn (∇ykn,εkn , ηkn,εkn )|p + |τηn(∇ykn,εkn , ηkn,εkn )|q
)

is equiinegrable.

Next, for almost all t, consider the decomposition

Ṽn :=

(
Pcurl

(
V (1)
n −

ˆ
Q
V (1)
n

)
, V (2)

n −
ˆ
Q
V (2)
n

)
, (4.75)

where

Ṽ (1)
n := Pcurl

(
V (1)
n −

ˆ
Q
V (1)
n

)
, V (1)

n := τFn (∇ykn,εkn , ηkn,εkn ),

Ṽ (2)
n := V (2)

n −
ˆ
Q
V (2)
n , V (2)

n := τηn(∇ykn,εkn , ηkn,εkn )

and Pcurl denotes the projection operator onto curl-free vector fields. For convenience, let

us write yn := ykn,εkn and ηn := ηkn,εkn and recall that Pcurl is a strong (r, r) operator,

1 < r <∞. Then, for a.e. t ∈ (0, T ),

∥Ṽ (1)
n (t, ·)∥Lp(Q) ⩽ C∥∇yn(t, ·)∥Lp(Q) ⩽ C sup

t
∥∇yn(t, ·)∥Lp(Q),

∥Ṽ (2)
n (t, ·)∥Lq(Q) ⩽ C∥ηn(t, ·)∥Lq(Q) ⩽ C sup

t
∥ηn(t, ·)∥Lq(Q),

which shows that the sequences (Ṽ
(1)
n ) and (Ṽ

(2)
n ) are bounded in L∞(0, T ;Lp(Q)) and

L∞(0, T ;Lq(Q)) respectively. To see that (Ṽn) generates the measure (νt0,x)x∈Q, note

that, denoting by Pdiv the projection onto divergence-free vector fields,

| (∇yn(t, ·), ηn(t, ·))− Ṽn(t, ·)| ⩽ |∇yn(t, ·)− Ṽ (1)
n (t, ·)|+ |ηn(t, ·)− Ṽ (2)

n (t, ·)|

= |∇yn(t, ·)− τFn (∇yn(t, ·), ηn(t, ·)) + Pdiv

(
τFn (∇yn(t, ·), ηn(t, ·))−∇yn(t, ·)

)
|

+
∣∣∣ηn(t, ·)− τηn(∇yn(t, ·), ηn(t, ·)) +

ˆ
Q
τηn(∇yn(t, ·), ηn(t, ·))

∣∣∣
⩽ |∇yn(t, ·)− τFn (∇yn(t, ·), ηn(t, ·))|+ |Pdiv

(
τFn (∇yn(t, ·), ηn(t, ·))−∇yn(t, ·)

)
|

+|ηn(t, ·)− τηn(∇yn(t, ·), ηn(t, ·))|+
∣∣∣ ˆ

Q
τηn(∇yn(t, ·), ηn(t, ·))

∣∣∣ =:
4∑

i=1

Ini . (4.76)

However, for any ε > 0 and almost all t

Ld
(
{| (∇yn(t, ·), ηn(t, ·))− Ṽn(t, ·)| > ε}

)
⩽

1

ε

ˆ
{|(∇yn(t,·),ηn(t,·))−Ṽn(t,·)|>ε}

εdx

⩽
1

ε

ˆ
Q
| (∇yn(t, ·), ηn(t, ·))− Ṽn(t, ·)|

(4.76)
⩽

1

ε

ˆ
Q
In1 + In2 + In3 + In4 .
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Then, we claim that

Ld+1
(
{ | (∇yn, ηn)− Ṽn| > ε}

)
=

ˆ T

0
Ld
(
{| (∇yn(t, ·), ηn(t, ·))− Ṽn(t, ·)| > ε}

)
⩽
C

ε

ˆ
QT

In1 + In2 + In3 + In4 → 0.

Indeed, for the first term
ˆ
QT

In1 = ∥∇yn − τFn (∇yn, ηn)∥L1(QT ) ⩽ 2

ˆ
{|∇yn|2+|ηn|2>n2}

|∇yn|

⩽ 2

ˆ
{|∇yn|2+|ηn|2>n2}

(|∇yn|+ |ηn|)2
|∇yn|+ |ηn| ⩽ 2

ˆ
{|∇yn|+|ηn|>n}

(|∇yn|+ |ηn|)2
|∇yn|+ |ηn|

⩽
2

n

ˆ
QT

|∇yn|2 + |ηn|2 ⩽ 2T

n
sup
t

ˆ
Q
|∇yn|2 + |ηn|2 → 0,

whenever n → ∞. Similarly we may prove that
´
QT

In3 → 0 as n → ∞. Since Pdiv is a

weak (1, 1) operator, the term
´
QT

In2 behaves like
´
QT

In1 and thus
ˆ
QT

In2 → 0, whenever n→ ∞.

Concerning the last term, since ∥ηn − τηn(∇yn, ηn)∥L1(QT ) → 0 and
´
Q η

n(t, ·)dx = 0 for

a.e. t ∈ (0, T ), we infer that

lim
n

ˆ T

0

∣∣∣ˆ
Q
τηn(∇yn(t, ·), ηn(t, ·))

∣∣∣dt = 0,

which concludes the proof of the claim. From the above estimates we infer that the sequence

Ṽn := (Ṽ
(1)
n , Ṽ

(2)
n ) generates the Young measure (νt0,x)x∈Q.

The equiintegrability of the sequences Ṽ (1)
n and Ṽ (2)

n comes directly from the equiinteg-

rability of V (1)
n and V (2)

n . We note that since Ṽ (1)
n (t, ·) is curl-free for a.e. t ∈ (0, T ), there

exists zk ∈ L∞(0, T ;W 1,p(Q)) s.t. Ṽ (1)
n (t, ·) = ∇zn(t, ·). In addition, we set wn := Ṽ

(2)
n (t, ·)

to serve the requirements of the theorem.

Finally, for the strong convergence of the primitives of the sequence Ṽ (1)
n we follow the

proof of [[73],Lemma 16]. We note that by (4.74) and the Lebesgue interpolation theorem,

it holds that

lim
n

ˆ T

0

ˆ
Q
|V (1)

n −∇yn| = 0 ⇒ lim
n

∥V (1)
n −∇yn∥Lr(Lm) = 0, (4.77)

for all r < ∞, m < p. Since V (1)
n := ∇zn + Pdiv(V

(1)
n ), by adding ∇yn to both sides and

taking the divergence we get that

−∆(zn − yn) = div(∇yn − V (1)
n ). (4.78)

Then, by standard elliptic estimates, for all 1 < m <∞ it holds that

∥∇zn(t, ·)−∇yn(t, ·)∥Lm(Q) ≲ ∥∇yn(t, ·)− V (1)
n (t, ·)∥Lm(Q). (4.79)
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In our setting we treat the case d = 3 and so letting m = 3p/(p+3), by Sobolev embedding

and (4.79) we have that

∥zn(t, ·)− yn(t, ·)∥Lp(Q) ≲ ∥∇yn(t, ·)− V (1)
n (t, ·)∥Lm(Q),

and by integrating in time,
ˆ T

0
∥zn(t, ·)− yn(t, ·)∥pLp(Q)dt ≲

ˆ T

0
∥∇yn(t, ·)− V (1)

n (t, ·)∥pLm(Q) → 0,

as n→ ∞. The last convergence comes from (4.77) and concludes the proof of the theorem

since, from (4.72), yn → y(t0, ·) in Lp(QT ).

4.2 Statics: sufficient conditions for local minimisers

The problem of finding sufficient conditions for a smooth extremal to be a strong local

minimiser is an old problem. It has been first solved by Weierstrass for the case of one

single independent variable, while for scalar variational problems see [65, 21].

Motivated by applications arising from continuum mechanics and material sciences, the

question of finding necessary and sufficient conditions for strong local minima in the vec-

torial case gained great interest. It turned out by the work of Meyers [85] that the notion

of quasiconvexity is a necessary condition for strong local minima, while in [10] Ball and

Marsden, by introducing the notion of quasiconvexity at the boundary, proved a similar

result for minimisers that take free values on part of the boundary of their domain. In

addition to this, regarding the sufficiency questions, Ball in [9] conjectured that if the solu-

tions of the weak Euler-Lagrange is sufficiently smooth, then the combination of the strict

positivity of the second variation with suitable quasiconvexity-based assumptions should

imply that the extremals are strong local minimisers. Later, the work of Taheri [101] in

Lp-local minimisers enriched the existing theory around the Weierstrass problem, however

it resulted in a convexity-based sufficiency theorem, and hence it left Ball’s conjecture

open.

After a few attempts which partially answered Ball’s conjecture, see [110, 59], it was

Grabovsky and Mengesha in [61] who, by following the strategy of [59] enriched with a

proper decomposition result, settled a sufficiency theorem for C1-extremals in the quasicon-

vex setting. The importance of the C1-smoothness requirement on the extremals is high-

lighted by the example of Kristensen and Taheri in [83]. More recently, Campos Cordero in

[31] presented an alternative strategy for the sufficiency theorem for C1-extremals, which

also formed the basis of the proof of our Gårding inequality, Theorem 3.2. At this point, we
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want to emphasise that the strategy of Zhang in [110], which shows that smooth extremals

of quasiconvex integrands are minimisers with respect to localised variations, constitutes

one of the most crucial tools in this alternative approach by Campos Cordero. The latter

can be also revealed from our arguments in Section 3.3, see Lemma 3.6.

In this section, we study functionals of the form

W[U ] :=

ˆ
Q
W (U(x))dx, (4.1)

for U ∈ Lp
A(Q) where we remind that

Lp
A(Q) :=

{
U ∈ Lp(Q) : AU = 0,

ˆ
Q
U = 0

}
.

Motivated by recent developments in the vectorial Weierstrass problem [31, 29, 60], we

provide an appropriate generalisation for functionals of the form (4.1) and differential

operators other than curl, that is we establish sufficient conditions for local minimisers

in the strong W−1,p topology based on A-quasiconvexity assumptions. We remark that

the presented result entails a quantitative version of uniqueness for these minimisers, see

also Corollary 4.1, which had not been previously observed. The proof comes as a direct

consequence of Theorem 3.1 which formed the basis for the Gårding inequality, and its proof

has been largely motivated by these recent developments on the Weierstrass problem.

In particular, we prove the following theorem. We note that the natural space of

variations for W is given by{
φ ∈ C(Q) : Aφ = 0,

ˆ
Q
φ = 0

}
.

However, under the growth assumptions (h3), see (4.1.1), one may equivalently consider

the closure of variations in Lp given by the space Lp
A(Q).

In the sequel, similarly with subsection 4.1.1, we remove the z2-dependence from the

analysis of the Gårding inequality part of the thesis, section 3.3. Having this in mind,

we are able to apply Theorem 3.1 for our integrand W , whenever the latter satisfies the

growth assumptions (h1)-(h4).

Theorem 4.5. Assume that W ∈ C3(RN ) satisfies (h2), (h3) (see (4.1.1)) and let Ū ∈
Lp
A(Q) ∩ C(Q) such that the following conditions hold:

• Ū is a weak solution of the Euler-Lagrange equations, B∗DW (Ū) = 0, i.e.
ˆ
Q
DW (Ū(x))φ(x)dx = 0,

for all φ ∈ Lp
A(Q);
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• the second variation is strongly positive at Ū , i.e. there exists c > 0 such that
ˆ
Q
D2W (Ū(x))φ(x) · φ(x)dx ⩾ c

ˆ
Q
|φ(x)|2dx,

for all φ ∈ Lp
A(Q);

• W is strongly A-quasiconvex at Ū(x0) for all x0 ∈ Q, i.e. there exists c0 > 0 such

that ˆ
Q

[
W (Ū(x0) + φ(x))−W (Ū(x0))

]
dx ⩾ c0

ˆ
Q
|V (φ(x))|2dx,

for all φ ∈ Lp
A(Q).

Then, there exists ε0 > 0 and C > 0 such that

W[U ]−W[Ū ] ⩾ C

ˆ
Q
|V (U(x)− Ū(x))|2dx,

for all U ∈ Lp
A(Q) with ∥U − Ū∥W−1,p(Q) ⩽ ε0.

Proof. The main ingredient in the proof is Theorem 3.1 combined with the simple obser-

vation that if Ū solves the Euler-Lagrange system, then
ˆ
Q
W (Ū + φ|Ū) =

ˆ
Q

[
W (Ū + φ)−W (Ū)

]
= W(Ū + φ)−W(Ū),

for any φ ∈ Lp
A(Q). Note that the relative energy W (·|·) is precisely the so-called Weier-

strass excess or E-function for the functional W. Thus, given Ū as in the statement, let

U ∈ Lp
A(Q) and set φ = U − Ū ∈ Lp

A(Q). We prove that there exists ε0 > 0 and C > 0

such that
ˆ
Q
W (Ū + φ|Ū) ⩾ C

ˆ
Q
|V (ψ)|2

whenever ∥φ∥W−1,p(Q) ⩽ ε0. Note that this is precisely the statement of Theorem 3.1

without the penalty term ∥φ∥2
W−1,(2,p) . One may indeed proceed in the exact same way

as in the proof of Theorem 3.1 setting c1 = 0. The only difference lies in Step 5 where

Proposition 3.1 is replaced by the stronger assertion that
ˆ
Q
D2W̃ (Ū)φ · φ ≳

ˆ
Q
|φ|2 (4.2)

which is a consequence of the strong positivity of the second variation of W at Ū . Indeed,

W̃ is defined in (3.1) as W̃ (z) = W (z) − C1|V (z)|2 where C1 = C1(W,K) can be chosen

even smaller if necessary. For |λ| ⩽ K and z ∈ RN , we compute that

|D2
(
|V (λ)|2

)
z · z| ⩽ 2|z|2 + p(p− 2)|λ|p−4λ2|z|2 + p|λ|p−2|z|2 ⩽

(
2 + p(p− 1)Kp−2

)
|z|2,
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and hence, due to the positivity of the second variation of W at Ū , setting C := 2+ p(p−
1)Kp−2,

ˆ
Q
D2W̃ (Ū)φ · φ =

ˆ
Q
D2W (Ū)φ · φ− C1

ˆ
Q
D2
(
|V (Ū)|2

)
φ · φ

⩾ c

ˆ
Q
|φ|2 − C1C

ˆ
Q
|φ|2

and we may thus choose C1 = C1(p,K) ⩽ c/(2C) so that for ∥Ū∥L∞ ⩽ K and φ ∈ Lp
A(Q),

(4.2) holds. This completes the proof.

Remark 4.6. Note that in the case A = curl, Theorem 4.5 reduces to a statement about

Lp local minimisers, thus recovering partially the result in [31]. In fact this is a statement

about Lp local minimisers for any operator A that admits an elliptic, first-order potential

B. Indeed, ellipticity is required to control the Lp norm of the primitive by the W−1,p norm

of the function without reverting to properties of the potential operator as in Lemma 2.1.

We also remark that extending the presented result to the case of a bounded domain Ω is

nontrivial as, working on the torus, allows for Fourier Analysis tools that are otherwise not

available. However, for A = curl, the above result can be extended in a straightforward

way for pure displacement boundary conditions. In fact, with slight modifications one

may treat problems with mixed boundary conditions, whereby a part of the boundary

remains free. Then, one needs to append the sufficient conditions of Theorem 4.5 with

quasiconvexity at the boundary, see [31] as well as [60, 29] for L∞ local minimisers. Below

we show that this is indeed true in the form of a corollary that extends existing results to

include a quantitative estimate of uniqueness. The case of functionals depending on lower

order terms and L∞ local minimisers lies outside the scope of the present thesis. We refer

the reader to [60, 31, 29] for discussions on quasiconvexity at the boundary. Note that a

notion of A-quasiconvexity at the boundary for p-homogeneous functions was defined in

[76] in the context of lower semicontinuity for signed integrands.

For the following corollary, let Ω ⊂ Rd a bounded domain with C1 boundary ∂Ω such

that

∂Ω = ΓD ∩ ΓN

where ΓD is a relatively open subset of ∂Ω and ΓN = ∂Ω\ΓD. We consider the minimisation

problem

W(y) =

ˆ
Ω
W (∇y(x)) dx

for y ∈W 1,p
y0,D

(Ω) where for a generic function g we write

W 1,p
g,D(Ω) =

{
y ∈W 1,p(Ω) : y = g on ΓD

}
,
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in the sense of trace. We thus interpret ΓD as the Dirichlet part of the boundary, and ΓN

as the Neumann boundary. Moreover, for a unit vector n, we define the half ball

B−
n :=

{
x ∈ Rd : |x| < 1, x · n < 0

}
.

Corollary 4.1. Assume that W ∈ C2(Rn×d) satisfies (h2), (h3) (see (4.1.1)) and let

ȳ ∈ C1(Ω) ∩W 1,p
y0,D

(Ω) such that the following conditions hold:

• ȳ is a weak solution of the Euler-Lagrange equations, divDW (∇ȳ) = 0, i.e.
ˆ
Ω
DW (∇ȳ(x))∇ϕ(x)dx = 0,

for all ϕ ∈ C1(Ω) ∩W 1,p
0,D(Ω);

• the second variation is strongly positive at ȳ, i.e.
ˆ
Ω
D2W (∇ȳ(x))∇ϕ(x) · ∇ϕ(x)dx ⩾ c

ˆ
Ω
|∇ϕ(x)|2dx,

for all ϕ ∈ C1(Ω) ∩W 1,p
0,D(Ω);

• W is strongly quasiconvex at ∇ȳ(x0) for all x0 ∈ Ω, i.e.
ˆ
B
[W (∇ȳ(x0) +∇ϕ(x))−W (∇ȳ(x0))] dx ⩾ c0

ˆ
B
|V (∇ϕ(x))|2dx,

for all ϕ ∈W 1,p
0 (B), where B denotes the unit ball in Rd;

• W is strongly quasiconvex at ∇ȳ(x0) for all x0 ∈ ΓN , i.e. denoting by n(x0) the

outward pointing unit normal at x0 ∈ ΓN ,
ˆ
B−

n(x0)

W (∇ȳ(x0) +∇ϕ(x)|∇ȳ(x0))dx ⩾ c0

ˆ
B−

n(x0)

|V (∇ϕ(x))|2dx,

for all ϕ ∈W 1,p(B−
n(x0)

) such that ϕ = 0 on ∂B ∩B−
n(x0)

.

Then, there exists ε0 > 0 and C > 0 such that

W[y]−W[ȳ] ⩾ C

ˆ
Ω
|V (∇y(x)−∇ȳ(x))|2dx,

for all y ∈W 1,p
y0,D

(Ω) with ∥y − ȳ∥Lp(Ω) ⩽ ε0.

Proof. The proof that (h2), (h3), the strong positivity of the second variation and the

quasiconvexity conditions imply that
ˆ
Ω
W (∇ȳ +∇ϕ|∇ȳ) ⩾ 0, (4.3)
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is given in [31, 29]. Note that the proof relies on proving Proposition 3.2 also for points

on ΓN and appropriate test functions, using the quasiconvexity at the boundary. This

is the content of [29, Proposition 4.6] where, due to the presence of lower order terms,

L∞ assumptions are needed which are not required here. Proposition 3.2 replaces the

quasiconvexity conditions for the rest of the proof which thus remains the same. Then, the

satisfaction of the Euler-Lagrange equations implies that (4.3) gives the minimality of ȳ.

Thus, in order to obtain the lower bound and the quantitative estimate of uniqueness,

we prove (4.3) for the function W̃ , in place of W . In particular, we need to find a constant

C1 = C1(W, ∥ȳ∥C1) such that W̃ satisfies (h2), (h3), the strong positivity of the second

variation, as well as the quasiconvexity conditions. That C1 can be chosen so that (h2)

and (h3) holds is straightforward, while quasiconvexity is the content of Lemma 3.4. That

the second variation is strongly positive is part of the proof of Theorem 4.5 and we are thus

left to infer the quasiconvexity at the boundary. Denoting by f(λ) = |V (λ)|2, we compute
ˆ
B−

n(x0)

W̃ (∇ȳ(x0) +∇ϕ|∇ȳ(x0)) =
ˆ
B−

n(x0)

W (∇ȳ(x0) +∇ϕ|∇ȳ(x0))

− C1

ˆ
B−

n(x0)

f(∇ȳ(x0) +∇ϕ(x)|∇ȳ(x0)) ⩾ (c0 − C1C)

ˆ
B−

n(x0)

|V (∇ϕ)|2,

by the strong quasiconvexity at the boundary of W and Lemma 3.3 (a). We may thus

choose C1 ⩽ c0/(2C) to complete the proof.
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Chapter 5

Bilevel training schemes in imaging:

total-variation-type functionals with

convex integrands

5.1 Mathematical setup

We collect in this section all the assumptions and the notation to be used in the sequel. We

also include some heuristic motivation for the definition of the class of admissible weights.

5.1.1 Functional setting: BVB
p spaces.

We work in the d-dimensional Euclidean space Rd, d ⩾ 2, that we endow with the Lebesgue

measure L d. We let Ω ⊂ Rd be a fixed open and bounded set with Lipschitz boundary,

which stands as the image domain. In typical applications d = 2 and Ω is a rectangle. We

suppose that the image functions take values in a finite dimensional inner product space U,

which, for instance, is R for grayscale images, R3 for RGB images, or it can be even more

structured like e.g. Sd×d for diffusion tensor imaging [106]. In order to describe further

the functional setting in which our analysis is carried out, we need to introduce the class

of differential operators that we consider.

Let V be another finite dimensional inner product space and let Lin(U,V) be the space

of linear maps from U to V. Hereafter, for l ∈ N\{0}, B denotes a l-th order, homogeneous

and linear differential operator with constant coefficients. Explicitly, as we discussed in

section 2.1, given Bi ∈ Lin(U,V) for any d-dimensional multi-index j, we define for a

smooth function u : Rd → U

Bu :=
∑
|j|=l

Bj∂
ju.
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When u is less regular, we interpret Bu in the distributional sense. In particular, we are

interested in the case in which Bu is a finite Radon measure.

Given a generic open set O ⊂ Rd, we recall that a finite (U-valued) Radon measure

on O is a measure on the σ-algebra of the Borel sets of O. We denote the space of such

measures by M(O,U), and, by means of the classical Riesz’s representation theorem, we

can identify it as the dual of the space

C0(O,U) :=
{
u : O → U : {|u| > δ} is relatively compact for all δ > 0

}
,

equipped with the uniform norm. The dual norm induced on M(O,U) turns out to be the

one associated with the total variation, which we denote by | • |. We refer to [5, Chapter

1] for further reading on measure theory.

In our case, given µ ∈ M(Ω,U), we have that Bµ ∈ M(Ω,V) if and only if there exists

ν ∈ M(Ω,V) such that

⟨ν, ϕ⟩ =
ˆ
Ω
B∗ϕ dµ for all ϕ ∈ C∞

c (Ω,V),

where ⟨ • , • ⟩ denotes the duality pairing and B∗ is the formal adjoint of B, i.e.

B∗ϕ := −
∑
|j|=l

B∗
j ∂

jϕ for all ϕ ∈ C∞
c (Rd,V),

B∗
j being the transpose of Bj .

It is convenient to have at our disposal a specific notation for the spaces that we are

going to work with. For Ω, U and V as above, and for p ∈ (1,+∞), we set

BVB
p (Ω) := {u ∈ Lp(Ω,U) : Bu ∈ M(Ω,V)},

and we abbreviate BVB(Ω) := BVB
p (Ω) when p = 1. The spaces above are naturally

endowed with weak-∗ notions of convergence, namely

uj
∗
⇀ u in BVB

p (Ω) if and only if uj ⇀ u in Lp(Ω) and Buj ∗
⇀ Bu in M(Ω,V).

Stronger convergence may be retrieved if the class of differential operators is restricted.

We give a brief account on this point in the following lines.

Due to the interaction between Fourier transform and linear PDE, often analytic prop-

erties of BVB spaces (and of the equation Bu = v in general) can be expressed in terms

of algebraic properties of the characteristic polynomial. We recall that the characteristic

polynomial, or symbol, of B is

B(ξ) :=
∑
|j|=l

Bjξ
j ∈ Lin(U,V), ξ ∈ Cd,

where ξj := ξj11 · · · ξjdd . In our study, the following property will be particularly relevant:
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Definition 5.1 ([99, 15, 58]). An operator B is said to be C-elliptic if

kerC B(ξ) = {0} for all ξ ∈ Cd \ {0}.

It was shown in [99] that C-ellipticity is equivalent with full Sobolev regularity for the

equation Bu = v on Lipschitz domains, provided that v ∈ Lp(Ω,V), p ∈ (1,+∞). For

p = 1 we have the counterpart:

Theorem 5.2 ([58]). Let Ω ⊂ Rd be a Lipschitz domain. An operator B is C-elliptic if

and only if

∥u∥Wk−1,d/(d−1)(Ω) ⩽ c
(
|Bu|(Ω) + ∥u∥L1(Ω)

)
for u ∈ BVB(Ω),

where |Bu| is the total variation measure associated with Bu.

In particular, the above result constitutes a generalisation of the Gagliardo-Niremberg-

Sobolev inequality on domains Ω and of the Korn-Sobolev inequality in [104]. The proof

relies on the extension of maps in C∞(Ω̄,U) to the full-space boundedly and the application

of an estimate of the form

∥Dl−1u∥L1∗ (Rd) ≲ ∥Bu∥L1(Rd).

The latter inequality, which characterise a particular class of operators, see [107], is guar-

anteed by a novel result of [58], where the authors proved that the C-ellipticity of B implies

that ⋂
ξ∈Rd\{0}

imB(ξ) = {0},

the so-called cancelling property. In other words, Theorem 5.2 says that an operator B,

which is defined as above, is C-elliptic if and only if

BVB(Ω) ⊂W l−1,d/(d−1)(Ω,U).

5.1.2 The bilevel scheme

We are now in a position to formulate our problem rigorously. Let us fix p ∈ (1,+∞). As

we have touched upon in the introduction, our goal is to provide an existence result for

solutions to the following training scheme: given g ∈ Lp(Ω,U),

find α∗ ∈ argmin {F (uα) : α ∈ Adm} (L1)

such that uα ∈ argmin
{
I[u;α] : u ∈ BVB

p (Ω)
}
, (L2)
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where

I[u;α] := Φg(u) +

ˆ
Ω
α(x)f(x,dBu). (5.2)

All the due definitions and assumptions are collected below.

– Cost functional: As for the upper level problem (L1), F : Lp(Ω,U) → R is a proper,

convex and weakly lower semicontinuous functional. Typical choices for this functional

are the Peak Signal-to-Noise Ratio (PSNR) maximising FPSNR in (1.9), which makes

use of the ground truth ugt, and the statistics-based, ground truth-free Fstat in (1.10),

in the spirit of supervised and unsupervised learning respectively.

– Fidelity term: The assumptions on the functional Φg : L
p(Ω,U) → R in (5.2) are

similar to the ones on F , namely Φg is a proper, convex and weakly lower semicontinu-

ous functional that is also coercive. This means that

lim
j→+∞

∥uj − g∥Lp(Ω,U) = +∞ implies lim
j→+∞

Φg(uj) = +∞.

In particular,

Φg(u) = ∥uj − g∥pLp(Ω,U)

is a simple instance of a fidelity term.

– Weights: Given α, α ⩾ 0 with α < α, the scalar fields α ∈ C(Ω̄, [α, α]) are supposed

to share the same uniform modulus of continuity ω, that is, an increasing function

ω : [0,+∞) → [0,+∞) such that ω(0) = 0. As a consequence, the class of admissible

weights

Adm :=
{
α ∈ C(Ω̄, [α, α]) : |α(x)− α(y)| ⩽ ω(|x− y|) for every x, y ∈ Ω

}
, (5.3)

is compact with respect to the uniform norm by Arzelà–Ascoli theorem. We will mo-

tivate the definition of the set Adm below, see Subsection 5.1.3.

– Integrand: The function f : Ω × V → [0,+∞) is a Carathéodory integrand such

that z 7→ f(x, z) is convex for Ld-a.e. x ∈ Ω. We remind that, Carathéodory integrand

means that f(·, z) is Borel measurable for all z ∈ V and f(x, ·) is continuous for a.e.

x ∈ Ω. We also suppose that the integrand satisfies the linear coercivity and growth

bounds

c(| • | − 1) ⩽ f(x, • ) ⩽ C(1 + | • |) for Ld-a.e. x ∈ Ω, (5.4)

for some c, C ⩾ 0.
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We note that (5.2) makes sense via the discussion we made in section 2.3. In particular,

for an integrand f : Ω × V → R satisfying (5.4), we recall that the recession function is

defined as

f∞(x, z) := lim
(x′,z′,t)→(x,z,+∞)

f(x′, tz′)

t
for (x, z) ∈ Ω̄× V, (5.5)

which we assume exists and is jointly continuous. We also remind that, for µ ∈ M(Ω,V),ˆ
Ω
f(x,dµ) :=

ˆ
Ω
f

(
x,

dµ

dLn
(x)

)
dx+

ˆ
Ω
f∞

(
x,

dµs

d|µ|(x)
)
d|µ|(x), (5.6)

where µs denotes the singular part of µ with respect to Lebesgue measure and dµ/dν is

the Radon-Nikodým derivative of µ with respect to the measure ν. To summarise, in this

chapter we consider integrands

f ∈ L+(Ω,U) such that z 7→ f(x, z) is convex, and c| • | ⩽ f(x, • ) for Ld-a.e. x ∈ Ω,

where the space L+(Ω,U) contains all the non-negative valued functions of L(Ω,U), see

Section 2.3 for the respective definition.

5.1.3 Rationale for the definition of the set of admissible weights

In order to highlight the main technical obstacles that are encountered in the analysis of

bilevel training schemes with space-dependent weights, we start with an example involving

the total variation with spatially varying weight, which, in spite of its simplicity, exhibits

the typical features of such class of problems. The model we address has been already

studied in [68], using a slightly different approach from the one we outline.

Let Ω ⊂ Rd be a bounded open set with Lipschitz boundary. For p ∈ [1, d
d−1), we sup-

pose that a training pair (ugt, g) ∈ L2(Ω,R)×Lp(Ω,R) is assigned, where ugt and g encode

the ground truth and the corrupted datum respectively. We also fix two positive paramet-

ers α and α, and we provisionally allow the regularising weights to vary in LSC(Ω, [α, α]),

the space of lower semicontinuous functions on Ω with range in [α, α].

For u ∈ BV(Ω) and α ∈ LSC(Ω, [α, α]), we introduce the first order functional

J [u;α] :=

ˆ
Ω
|u− g|pdx+

ˆ
Ω
α(x)d|Du|(x), (5.7)

and the ensuing corresponding training scheme:

find α∗ ∈ argmin {FPSNR(uα) : α ∈ LSC(Ω, [α, α])} (5.8)

such that uα ∈ argmin {J [u;α] : u ∈ BV(Ω)} . (5.9)

The functional in (5.7) is reminiscent of the one considered in [8], where, motivated by

vortex density models, the authors studied the property of minimisers, i.e., of solutions to

(5.9).
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Before discussing the existence of solutions to the scheme (5.8)–(5.9) as a whole, let us

justify the choice of the class of weights in (5.8). Note that the definition of J itself calls

for some degree of regularity for α. Indeed, if in (5.7) α : Ω → [α, α] is a given function

and u is allowed to vary in BV(Ω) (as it is the case of (5.9)), there might be choices of u

for which the coupling ˆ
Ω
α(x)d|Du|(x)

is not well-defined. Prescribing lower semicontinuity for the admissible weights α allows

to circumvent the issue, because lower semicontinuous functions are Borel measurable and

Du ∈ M(Ω,Rd) is a Borel measure. Besides, for any α ∈ LSC(Ω, [α, α]) the existence of a

solution uα to (5.9) follows by the direct method of the calculus of variations. Indeed, we

firstly observe that the coercivity of J in L1 is deduced by the following standard result

(see e.g. [5, Theorem 3.23]):

Theorem 5.3 (Compactness in BV). Let Ω ⊂ Rd be a bounded Lipschitz domain and let

(uj)j be a bounded sequence in BV(Ω). Then, there exist u ∈ BV(Ω) and a subsequence of

(uj) (which is not relabelled), such that (uj) weakly-∗ converges to u, that is, uj → u in

L1(Ω) and

lim
j→+∞

ˆ
Ω
ϕ dDuj =

ˆ
Ω
ϕ dDu for all ϕ ∈ C0(Ω).

Additionally, we notice that J [ • ;α] is lower semicontinuous with respect to the L1-

convergence, because, when α ∈ LSC(Ω, [α, α]), general lower semicontinuity results in BV

may be invoked (see e.g. [50]; and also [4] for lower semicontinuity and relaxation results

with BV integrands).

Once we know that, due to the lower semicontinuity of the weights, solutions to (5.9)

exist, we can handle the complete scheme. So, let (αj)j ⊂ LSC(Ω, [α, α]) be a minimising

sequence for (5.8). Then, by definition, the integrals

FPSNR(uj) = ∥uj − ugt∥2L2(Ω), with uj := uαj ,

converge, and we deduce that (uj)j is a bounded sequence in L2(Ω). Denote by u ∈ L2(Ω)

the weak L2-limit of (a subsequence of) (uj)j . By lower semicontinuity of the L2-norm,

we obtain

FPSNR(u) ⩽ lim inf
j

FPSNR(uj) = inf {FPSNR(uj) : α ∈ LSC(Ω, [α, α])} .

If we manage to show that u = uα∗ for some admissible α∗, then the latter is a solution to

(5.8). The natural choice for α∗ would be the weak-∗ limit of (αj)j in L∞(Ω), which can fail
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in general to have any lower semicontinuous representative. On the positive side, J [u; • ] is

continuous with respect to a suitable weak-∗ convergence. Indeed, if (αj)j ⊂ LSC(Ω, [α, α])

is bounded and u ∈ BV(Ω), then there exist a subsequence, which we do not relabel, and

α∗ ∈ L∞(Ω, [α, α]; |Du|) such that

lim
j→+∞

ˆ
Ω
αj(x)ϕ(x)d|Du|(x) =

ˆ
Ω
α∗(x)ϕ(x)d|Du|(x) for all ϕ ∈ L1(Ω; |Du|).

In particular,

lim
j→+∞

J [u;αj ] = J [u;α∗]. (5.10)

The previous lines suggest that what is missing to solve the scheme (5.8)-(5.9) is a

compactness property for the class of admissible weights. This leads us to reduce ourselves

to the problem

find α∗ ∈ argmin {FPSNR(uα) : α ∈ Adm} (5.11)

with uα ∈ argmin {J [u;α] : u ∈ BV(Ω)} ,

where we assume a priori that Adm ⊂ C(Ω̄, [α, α]) is compact with respect to the uniform

convergence. Under the compactness assumptions on the class of admissible weights, if

(αj)j ⊂ Adm is a minimising sequence for (5.11), and if (uj)j and u are constructed

as above, we are actually able to prove that u = uα∗ , where α∗ ∈ Adm is the uniform

limit of (αj). In other words, the couple (α∗, u) is a solution to the scheme consisting of

(5.11)–(5.9).

To prove the claim, we need to show that

J [u;α∗] ⩽ J [v;α∗] for any v ∈ BV(Ω). (5.12)

We start from observing that from the definition of uj we get

J [uj ;αj ] ⩽ J [v;αj ] for any v ∈ BV(Ω),

and hence, for any v ∈ BV(Ω),

lim inf
j→+∞

J [uj ;αj ] ⩽ lim inf
j→+∞

J [v;αj ] = J [v;α∗], (5.13)

where the equality follows by (5.10). In particular,

lim inf
j→+∞

J [uj ;αj ] < +∞.

Then, the uniform lower bound αj ⩾ α and Theorem 5.3 yield that (uj) converges weakly-∗
in BV(Ω) (again upon extraction of subsequences) to a limit function which is necessarily

u. We thereby infer

u ∈ BV(Ω) ∩ L2(Ω).
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Finally, from the weak-∗ lower semicontinuity of J [·, α∗] and the uniform convergence of

(αj) we obtain that

J [u;α∗] ⩽ lim inf
j→+∞

J [uj ;α
∗] = lim inf

j→+∞
J [uj ;αj ]

(5.13)
⩽ J [v;α∗], (5.14)

which is the desired inequality.

Remark 5.1. In the absence of compactness for the set Adm under uniform convergence,

the analysis becomes more delicate. We outline here some of the issues.

Keeping in force the notation above, let u ∈ BV(Ω) be the weak-∗ limit of (uj) and

let α∗ ∈ L∞(Ω, [α, α]; |Du|) be the weak-∗ limit of (αj). Proving the optimality of u, i.e.

u = uα∗ , means

J [u;α∗] ⩽ J [v;α∗] for any v ∈ BV(Ω).

However, the right-hand side might not be well-defined. Intuitively, an ideal class of

weights should be a priori “sufficiently compact”, and at the same time it should give rise

to “well-behaved” weighted BV functions.

Another passage that is needed in the proof of existence (cf. (5.6), (5.7)) is the following

semicontinuity inequality:

J [u;α∗] ⩽ lim inf
j→+∞

J [uj ;α
(j)].

Knowing that (uj) weakly-∗ converges to u, its validity is undermined if only weak-∗
convergence is available for the weights.

5.2 Existence theorems for the lower level problems

We begin with a general lower semicontinuity result for convex integrands with rough x-

dependence, Proposition 5.1. Before we present this result, we will prove a technical lemma

which is needed in the latter’s proof.

Lemma 5.1. Let g : V → R+ be a convex function with linear growth at infinity. Then,

g(z) + tg∞(w) ⩾ g(z + tw),

for all z, w ∈ V and t ⩾ 0.

Proof. We observe that

z + tw =
t

s
(z + sw) + (1− t

s
)z,

and hence, due to the convexity of g and for all s ⩾ t, it holds that

g(z + tw) ⩽
t

s
g(z + sw) + (1− t

s
)g(z) ⇒ g(z + tw)− g(z)

t
⩽
g(z + sw)− g(z)

s
.
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Taking the limit s→ ∞ in the above inequality, we infer that

g(z + tw)− g(z)

t
⩽ lim

s→∞

g(z + sw)− g(z)

s
= lim

s→∞

g(z + sw)

s
.

However, since g is convex and it has linear growth, it is also Lipshitz and thus

lim
s→∞

[
g(z + sw)

s
− g(sw)

s

]
≲ lim

s→∞

|z|
s

= 0.

Combining the above we finally deduce the required inequality

g(z + tw)− g(z)

t
⩽ lim

s→∞

g(sw)

s
= g∞(w).

Proposition 5.1. Let f ∈ L+(Ω,V) such that f(x, • ) is convex for almost every x ∈ Ω.

Then, it holds that

µj
∗
⇀ µ in M(Ω,V) =⇒ lim inf

j→∞

ˆ
Ω
f(x, dµj(x)) ⩾

ˆ
Ω
f(x,dµ(x)).

Proof. From the weak-∗ convergence, due to Theorem 2.7, we consider the associated Young

measure ν which is generated by the sequence (µj)j . By Proposition 2.2 and Jensen’s

inequality Theorem 2.8, we have that

lim inf
j→∞

ˆ
Ω
f(x,dµj(x)) =

ˆ
Ω
⟨νx, f(x, • )⟩dx+

ˆ
Ω̄
⟨ν∞x , f∞(x, • )⟩dλ

⩾
ˆ
Ω
f(x, ν̄x)dx+

ˆ
Ω̄
f∞(x, ν̄∞x )dλ,

=

ˆ
Ω

[
f(x, ν̄x) + λa(x)f∞(x, ν̄∞x )

]
dx+

ˆ
Ω̄
f∞(x, ν̄∞x )dλs

where λ = λαLd + λs is the Radon-Nikodým decomposition of λ. We note that in the last

inequality we used that the recession function of a convex integrand is itself convex. The

latter constitutes a straightforward consequence of the definition of the recession function.

Now, due to the convexity of f(x, • ), we apply Lemma 5.1 to get that
ˆ
Ω

[
f(x, ν̄x) + λa(x)f∞(x, ν̄∞x )

]
dx ⩾

ˆ
Ω
f(x, ν̄x + λa(x)ν̄∞x )dx,

and hence, combining the above, we conclude

lim inf
j→∞

ˆ
Ω
f(x,dµj(x)) ⩾

ˆ
Ω
f(x, ν̄x + λa(x)ν̄∞x )dx+

ˆ
Ω̄
f∞(x, ν̄∞x )dλs

⩾
ˆ
Ω
f(x, µa(x))dx+

ˆ
Ω
f∞(x,dµs) =

ˆ
Ω
f(x,dµ),

where µ = µαLd + µs is the Radon-Nikodým decomposition of µ. In the last inequality

above we applied Lemma 2.4 for the sequence (µj)j together with the fact that f∞ is

non-negative, while in the last equation we used the 1-homogeneity of f∞.
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We next prove two general existence results for convex integrals defined on BVB
p spaces.

The first one holds for arbitrary operators B.

Theorem 5.4. Let us fix p ∈ (1,+∞), g ∈ Lp(Ω,V), α > 0 and α ∈ C(Ω̄, [α, α]). Then, if

f : Ω× V → [0,+∞) satisfies the assumptions outlined in Subsection 5.1.2, the functional

I, defined in (5.2), is weakly-∗ lower semicontinous and admits a minimiser u ∈ BVB
p (Ω).

If in addition the fidelity term is strictly convex, then the minimiser is unique.

Proof. There is no loss of generality in assuming that α ≡ 1, and hence denote the func-

tional I[·, 1] just by I[·]. We will employ the direct method of the calculus of variations.

From the non-negativity of f we have that the functional I is bounded from below, and

hence, there exists a minimising sequence (uj)j ⊂ BVB
p (Ω) such that the limit of I[uj ] as

j → +∞ is finite. Since Φg is coercive on Lp(Ω,U) and f satisfies the growth condition in

(5.4), we have that

sup
j

(ˆ
Ω
|uj(x)− g(x)|pdx+

ˆ
Ω
|Buj(x)|

)
≲ sup

j

(
Φg(uj) +

ˆ
Ω
f(x, dBuj)

)
⩽ ∞,

and so (uj)j must be bounded in BVB
p (Ω). Thus, on a subsequence that we do not relabel,

we have uj ⇀ u in Lp(Ω,U) and Buj ∗
⇀ Bu in M(Ω,V). By the weak lower semicontinuity

of the fidelity term we have that

Φg(u) ⩽ lim inf
j→+∞

Φg(uj), (5.1)

whereas by Proposition 5.1 we obtain
ˆ
Ω
f(x,dBu) ⩽ lim inf

j→∞

ˆ
Ω
f(x, dBuj). (5.2)

On the whole, we deduce

I[u] ⩽ lim inf
j→+∞

I[uj ],

and we conclude that u ∈ BVB
p (Ω) is a minimiser of I.

Uniqueness follows easily when Φg is strictly convex. Indeed, let u1, u2 be distinct

minimisers and u0 := (u1+u2)/2. Then, Φg(u
0) < 1

2Φg(u
1)+ 1

2Φg(u
2), while the convexity

of the second term gives
ˆ
Ω
f(x,dBu0) ⩽ 1

2

ˆ
Ω
f(x,dBu1) + 1

2

ˆ
Ω
f(x, dBu2).

By adding the last two inequalities we infer I[u0;α] < min I, a contradiction.

Remark 5.2. Notably, in the previous theorem uniqueness holds for Φg(u) = ∥u−g∥pLp(Ω).

Indeed, for instance by the uniform convexity of the Lp spaces, we have for u0 := (u1+u2)/2

2

ˆ
Ω
|u0 − g|pdx <

ˆ
Ω
|u1 − g|pdx+

ˆ
Ω
|u2 − g|pdx.
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Remark 5.3. There is no immediate counterpart of Theorem 5.4 when p = 1, due to the

fact that bounded sequences in BVB are not weakly-∗ precompact. One possibility would

be to embed BVB in the larger space of measures {µ ∈ M(Ω,U) : Bµ ∈ M(Ω,V)}. A

second option is to assume B to be C-elliptic, as we do below.

The second existence result involves the smaller class of C-elliptic operators, which was

introduced in Definition 5.1. In this case, we are able to treat regularisers that also involve

lower order terms, see (1.11), and we can obtain much more precise information on the

minimisers. We make the unconventional convention that d
d−l = +∞ if l ⩾ d, and we

denote by symi(Rd,U) the space of symmetric U-valued i-linear maps on Rd.

Theorem 5.5. Let us fix p ∈ [1, d
d−l ), g ∈ Lp(Ω,U), α > α > 0, αi ∈ C(Ω̄, [0, α])

for i = 1, . . . , l − 1 and αl ∈ C(Ω̄, [α, α]). Let fi : Ω × symi(Rd,U) → R be Carathéodory

integrands such that fi(x, • ) is convex with linear gowth at infinity i.e. fi(x, • ) ⩽ C(1+| • |)
for all i = 1, . . . , l− 1 and almost every x ∈ Ω, and let fl : Ω×V → [0,+∞) satisfying the

assumptions outlined in Subsection 5.1.2. Then, if B is C-elliptic, the functional

Ĩ[u;α] := Φg(u) +

l−1∑
i=1

ˆ
Ω
αi(x)fi(x,∇iu(x))dx+

ˆ
Ω
αl(x)fl(x,dBu). (5.3)

is weakly-∗ lower semicontinuous in BVB and admits a minimiser

u ∈ BVB(Ω) ∩Wl−1,d/(d−1)(Ω,U).

If the fidelity term is strictly convex, then the minimiser is unique.

Proof. If l = 1 the statement collapses to Theorem 5.4. The C-ellipticity of B is still needed

to make use of Theorem 5.2, which grants that the minimiser u ∈ Ld/(d−1)(Ω,U). We now

turn to the case l ⩾ 2.

If (uj)j ⊂ BVB(Ω) is a minimising sequence, as in the proof of Theorem 5.4, due to

the coercivity conditions on the fidelity term Φg, the integrand fl and the lower bound of

the higher order weight αl, we have that

sup
j

(ˆ
Ω
|uj(x)− g(x)|pdx+

ˆ
Ω
α|Buj(x)|

)
≲ sup

j
Ĩ[uj , α] ⩽ ∞.

The above inequality guarantees that the sequence (uj)j is bounded in BVB(Ω), and hence

also in Wl−1,d/(d−1)(Ω,U) thanks to the C-ellipticity of B, Theorem 5.2. Let u ∈ BVB be a

weak-∗ limit point of (uj)j . Following the same arguments with the proof of Theorem 5.4,

we have that (5.1) and (5.2) with f = αlfl hold. We now fix 1 ⩽ i ⩽ l− 1, and we look at

the Young measure ν generated by (∇iuj)j , which is bounded in Ld/(d−1)(Ω). Thus, due to
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the linear growth of fi, we have that (αifi( • ,∇iuj))j is uniformly bounded in Ld/(d−1)(Ω)

and hence uniformly integrable. We can thus employ Proposition 2.1 for f = αifi to obtain

lim inf
j→∞

ˆ
Ω
αi(x)fi(x,∇iuj(x))dx =

ˆ
Ω
αi(x)⟨νx, fi(x, • )⟩dx ⩾

ˆ
Ω
αi(x)fi(x, ν̄x)dx

=

ˆ
Ω
αi(x)fi(x,∇iu(x))dx,

where, due to the convexity of fi(x, • ), we used Jensen’s inequality and Lemma 2.4. Com-

bining the above, we infer that

lim inf
j→+∞

Ĩ[uj ;α] ⩾ Ĩ[u;α],

which translates to u ∈ BVB(Ω) ⊂ Wl−1,d/(d−1)(Ω,U) is a minimiser of Ĩ[ • , α].

The uniqueness follows exactly by the same argument as in the proof of Theorem 5.4,

so the conclusion is achieved.

Remark 5.4. If Φg(u) = ∥u− g∥L1(Ω), uniqueness might fail in Theorem 5.5.

5.3 The bilevel training scheme in the space BVB
p

We devote this section to the proof of our main theoretical result, that is, the existence

of solutions to the bilevel scheme (L1)–(L2). The study of the lower level problem will be

addressed by Theorem 5.4. A variant involving functionals as in Theorem 5.5 will also be

presented, see Remark 5.5.

Theorem 5.6. Let us fix p ∈ (1,+∞), g ∈ Lp(Ω,U), α > α > 0 and α ∈ C(Ω̄, [α, α]). Let

f : Ω×V → [0,+∞) be an integrand satisfying the assumptions outlined in Subsection 5.1.2.

Then, the training scheme (L1)–(L2) in Subsection 5.1.2 admits a solution α∗ ∈ Adm and

it provides an associated optimally reconstructed image uα∗ ∈ BVB
p (Ω).

Proof. Let (αj)j ⊂ Adm be a minimising sequence for the upper level objective F i.e.,

lim
j
F (uj) = inf

α∈Adm
F (uα), (5.1)

where we abbreviated uj := uαj ∈ BVB
p (Ω) for a minimiser of (L2) associated to the

weight αj , which, together with uα ∈ BVB
p (Ω) above, exists in light of Theorem 5.4. Since

αj ∈ Adm which is a compact space (see the respective discussion in the subsection 5.1.2),

we find α∗ ∈ Adm such that αj → α∗ uniformly in Ω̄. Thus, to prove our theorem, it

suffices to show that

F (uα∗) ⩽ lim
j→+∞

F (uj), (5.2)
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where uα∗ ∈ BVB
p (Ω) is a minimiser of (L2) with respect to the weight α∗.

We firstly show that (uj) is weakly-∗ precompact in BVB
p (Ω). To see this, we observe

that by the definition of uj we have

I[uj ;αj ] ⩽ I[v;αj ], for any v ∈ BVB
p (Ω). (5.3)

In particular, by selecting v = 0 and recalling that ∥αj∥L∞ ⩽ α, we find that I[uj ;αj ] ⩽ C

for some C ⩾ 0 independent of j. Then, owing to the coercivity of I and similarly with

Theorem 5.4, we infer that (uj)j is bounded in BVB
p (Ω). Hence, there exists u ∈ BVB

p (Ω)

such that, upon extraction of subsequences, uj
∗
⇀ u in BVB

p (Ω).

We now claim that u = uα∗ , which is enough to conclude due to the lower semicontinuity

of F . In other words, we need to show that

I[u;α∗] ⩽ I[v;α∗], for any v ∈ BVB
p (Ω). (5.4)

The uniform convergence of (αj)j along with (5.3) yields

lim inf
j→+∞

I[uj ;αj ] ⩽ lim inf
j→+∞

I[v;αj ] = I[v;α∗], for any v ∈ BVB
p (Ω). (5.5)

Further, in view of the growth condition (5.4) and the fact that the sequence (uj)j is

bounded in BVB
p (Ω), we obtain the estimate

|I[uj ;αj ]− I[uj ;α
∗]| ⩽

ˆ
Ω
|αj − α∗|f(x,dBuj) ⩽ C(1 + |Buj |(Ω))∥αj − α∗∥L∞

⩽ C∥αj − α∗∥L∞ → 0, (5.6)

for j → +∞. Hence, by the lower semicontinuity result in Theorem 5.4, we obtain that

I[u;α∗] ⩽ lim inf
j→∞

I[uj ;α
∗]

(5.6)
⩽ lim inf

j→∞
I[uj ;αj ]

(5.6)
⩽ I[v, α∗], for any v ∈ BVB

p (Ω), (5.7)

which proves our claim. Finally, due to the weak lower semicontinuity of the upper level

objective F , since uj ⇀ u ≡ uα∗ in Lp(Ω), we conclude that

inf
α∈Adm

F (uα) ⩽ F (uα∗) = F (u) ⩽ lim inf
j→∞

F (uj)
(5.1)
= inf

α∈Adm
F (uα),

which completes the proof.

If in the lower level problem (L2) the functional I is replaced by Ĩ as in Theorem 5.5,

a result in the same spirit of the above holds. We only sketch it in the next remark, since

it parallels closely Theorem 5.6.
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Remark 5.5. Within the general framework of subsection 5.1.2, we introduce a variant

of the scheme (L1)–(L2). For l ∈ N, l ⩾ 2, we define the sets

Admlow :=
{
α ∈ C(Ω̄, [0, α]l−1) : |αi(x)− αi(y)| ⩽ ω(|x− y|) for every i and x, y ∈ Ω

}
,

Ãdm := Admlow ×Adm,

where ω is the same modulus of uniform continuity as in (5.3). We consider the bilevel

problem

find α∗ ∈ argmin
{
F (uα) : α ∈ Ãdm

}
(5.8)

such that uα ∈ argmin
{
Ĩ[u;α] : u ∈ BVB(Ω)

}
, (5.9)

where Ĩ is as in (5.3). Under the assumptions of Theorem 5.5, notably C-ellipticity for B,

we are able to prove the existence of a solution, that is, an optimal regulariser α∗ ∈ Ãdm

for (5.8). Let us outline the argument.

If (αj)j ⊂ Ãdm is a minimising sequence, as in the proof of Theorem 5.6, we may assume

that αj → α∗ ∈ Ãdm uniformly. By Theorem 5.5, we can pick a sequence (uj)j ⊂ BVB(Ω)

made of minimisers for (5.9) associated with (αj)j . As a consequence of the coercivity of

Ĩ, (uj)j is bounded in BVB(Ω), and thus, owing to Theorem 5.2, also in Wl−1,d/(d−1)(Ω).

Denoting by u ∈ BVB(Ω) the weak-∗ limit (up to subsequences) of (uj)j , the remainder of

the proof follows the one of Theorem 5.6, the most significant difference being the use of

Theorem 5.5 instead of Theorem 5.4 to obtain the analogue of (5.7).

5.4 Numerical examples

In this section, due to the cotribution of my collaborator Kostas Papafitsoros, we are able

to provide some numerical results for image reconstruction by focusing on some specific

instances of the differential operators considered above. These numerical examples show

the applicability and versatility of our approach, which, as we will see, is able to yield results

that are comparable, and in certain cases even better, than the ones obtained by using some

standard high quality regularisers, such as the Total Generalized Variation (TGV) [13] and

its version with spatially varying weights [67]. Since our main target here is to evaluate

the performance of the types of regularisers that we introduced, we restrict ourselves to

two particular cases of image denoising. Firstly, in the class of first-order functionals, we

consider a Huber-type TV regularisation, with both the regularisation parameter α and the

Huber parameter γ being spatially dependent. This can be considered as a functional that

incorporates a local choice between TV and Tikhonov regularisation. The second example
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is a spatially varying TV2 regularisation, which is a second-order functional and has the

capability to improve the reconstructions by eliminating the undesirable staircasing effect

of TV [91]. Even though in theory the TV2 regularisation is not able to preserve sharp

edges, we will see that its spatially varying version produces high quality results and can

even outperform both the scalar and the spatially varying versions of TGV.

5.4.1 Spatially varying Huber versions of TV and TV2

Let γ ∈ L∞(Ω), with γ ≥ 0, be fixed. We define the spatially varying Huber function

fγ : Ω× RN → [0,+∞) as follows:

fγ(x, z) =


|z| − 1

2
γ(x), if |z| ≥ γ(x),

1

2γ(x)
|z|2, if |z| < γ(x).

(5.1)

Obviously, for all z ∈ RN and for almost all x ∈ Ω, fγ satisfies the coercivity and growth

conditions in (5.4), namely

|z| − ∥γ∥L∞(Ω) ≤ fγ(x, z) ≤ |z|. (5.2)

Indeed, for |z| ⩾ γ(x) and since ∥γ∥∞ ⩾ γ(x) for a.e. x ∈ Ω,

fγ(x, z) = |z| − 1

2
γ(x) ⩽ |z|,

fγ(x, z) = |z| − 1

2
γ(x) ⩾ |z| − 1

2
∥γ∥∞ ⩾ |z| − ∥γ∥∞.

On the other hand, if |z| < γ(x),

fγ(x, z) =
1

2γ(x)
|z|2 = |z|

2γ(x)
|z| < 1

2
|z| ⩽ |z|,

fγ(x, z) =
1

2γ(x)
|z|2 ⩾ 0 ⩾ |z| − ∥γ∥∞,

since, in this case, |z| ⩽ ∥γ∥∞.

Then, if u ∈ BV(Ω), we define the ensuing convex function of the measure Du with the

alternative notations

TVγ(u) := |fγ(Du)|(Ω) :=
ˆ
Ω
fγ(x, dDu).

A straightforward check shows that the recession function of fγ (cf. (5.5)) is

f∞γ (x, z) := lim
(x′,z′,t)→(x,z,+∞)

fγ(x
′, tz′)

t
= lim

(x′,z′,t)→(x,z,+∞)

t|z′| − 1
2γ(x

′)

t
= |z|.
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Thus, all the assumptions of Theorem 5.6 are trivially satisfied. Consequently, TVγ is

indeed well-defined as

TVγ(u) =

ˆ
Ω
fγ(x,∇u)dx+

ˆ
Ω
d|Dsu|,

and for α ∈ C(Ω) with α ⩾ α(x) ≥ α > 0 we can define its spatially varying version

TVα,γ(u) =

ˆ
Ω
αfγ(x,∇u)dx+

ˆ
Ω
αd|Dsu|.

Similarly, for a function u ∈ BV2(Ω) := {u ∈ W 1,1(Ω) : D2u ∈ M(Ω,SN×N )} and

α ∈ C(Ω) with α ⩾ α(x) ⩾ α > 0, we define the spatially varying Huber TV2 functional

as

TV2
α,γ(u) =

ˆ
Ω
αfγ(x,∇2u) dx+

ˆ
Ω
α d|(D2u)s|,

where fγ now is a function defined on Ω×RN×N defined by the natural analogue of (5.1).

Our examples concern the following lower level image denoising problems:

I1γ [u;α] :=

ˆ
Ω
|u− g|2dx+TVα,γ(u), (5.3)

I2γ [u;α] :=

ˆ
Ω
|u− g|2dx+TV2

α,γ(u). (5.4)

5.4.2 The bilevel problems

The family of bilevel problems for the automatic computation of the spatial regularisation

parameter α associated with the functional Iiγ for i = 1, 2 is:

find α∗ ∈ argmin {F (uα) : α ∈ Adm} (5.5)

such that uα = argmin
{
Iiγ [u;α] : u ∈ BVi(Ω)

}
. (5.6)

In view of (5.2), the lower level problems (5.6) are well-defined, while from Theorem

5.6 we know that the overall schemes (5.5)–(5.6) admit a solution for the two alternative

upper level objectives F considered next. As we discussed in the introduction and repeat

here for the sake of reading flow, we take into account two alternatives for the upper level

objective functional F :

FPSNR(u) =

ˆ
Ω
|u− ugt|2dx, (5.7)

Fstat(u) =
1

2

ˆ
Ω
max(Ru− σ2, 0)2dx+

1

2

ˆ
Ω
min(Ru− σ2, 0)2dx, (5.8)

where Ru(x) :=
ˆ
Ω
w(x, y)(u− g)2(y)dy for w ∈ L∞(Ω× Ω),

ˆ
Ω

ˆ
Ω
w(x, y)dxdy = 1.

The first cost functional corresponds to a maximisation of the PSNR of the reconstruction

and requires the knowledge of the ground truth ugt [19, 44, 43, 42, 84], while the second
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enforces the localised residuals Ru to belong in a certain tight corridor [σ2, σ2] := [σ2 −
ϵ, σ2 + ϵ], σ2 being the variance of the noise η, which is assumed here to be Gaussian, see

also [68, 69, 66, 67]. The latter option has the advantage of being ground truth free, but

knowledge or a good estimate for the noise variance σ2 is needed. For the discrete version

of the averaging filter w in the definition of the localised residuals (5.8) we use a filter of

size nw × nw, with entries of equal value that sum to one.

Since a numerical projection to the admissible set Adm is not practical, here we also

follow [68, 69, 66, 67] and add instead a small H1 term of the weight function α in the

upper level objective, together with a supplementary box constraint C := {α ∈ H1(Ω) :

α ≤ α ≤ α} for some α, α ∈ R with 0 < α < α. On the whole, we will use the following

upper level objectives:

FPSNR(α, u) =

ˆ
Ω
|u− ugt|2dx+

λ

2
∥α∥2H1(Ω),

Fstat(α, u) =
1

2

ˆ
Ω
max(Ru− σ2, 0)2dx+

1

2

ˆ
Ω
min(Ru− σ2, 0)2dx+

λ

2
∥α∥2H1(Ω),

for some small λ > 0. We will denote by F̂ the corresponding reduced objective functionals,

that is F̂PSNR/stat(α) := FPSNR/stat(α, uα). That leads us to the bilevel minimisation

problems that we tackle numerically: for i = 1, 2

find α∗ ∈ argmin
α

FPSNR/stat(α, uα) (5.9)

such that


uα = argmin

u
Iiγ [u;α],

α ∈ C.
(5.10)

Note that in this setting it is not guaranteed that α ∈ C(Ω), since H1(Ω) does not

embed in that space for dimensions higher than 1. However, one can take advantage of a

regularity result of the H1-projection onto C, denoted by PC see [69, Corollary 2.3]. This

projection is applied to every iteration of the projected gradient algorithm, which is to be

used for the numerical solution of (5.9)–(5.10) and is described in [89]. In that case, it is

ensured that the computed weight αl at the l-th projected gradient iteration belongs to

H2(Ω), which for d = 2 embeds compactly into any Hölder space Cβ(Ω), β ∈ (0, 1).

5.4.3 Strategy for fixing γ

Since in our set up the function γ is not part of the minimising variables, it has to be

fixed from the start. Our rationale for fixing γ is that we would like to regularise high

detailed areas with a Tikhonov term with a spatially varying weight 1
2

´
Ω α̃|∇u|2dx, with

α̃ having as low regularity as possible, e.g. L∞(Ω), in order to increase flexibility in the
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regularisation. In the other areas we would like to regularise using a TV or TV2 term with

a spatially varying weight α. This will happen if γ is large in such detailed areas in order

to allow for the second case in (5.1) and small otherwise. We thus adopt the following

strategy: We first solve an auxiliary bilevel problem with a weighted Tikhonov regulariser

using the upper level objective Fstat. The output is a spatially varying α̃ that essentially

acts as an edge detector, since it is small on the edges and on the detailed areas of the

image. We then invert this weight and set

γ = s
1

α̃
(5.11)

for some constant s > 0. By choosing the function γ as in (5.11), we have that when α̃ is

small (fine scale details), γ will be large and thus the second case in (5.1) will be selected

with a weight 1
2γ(x) =

s
2 α̃ in front of the term |∇u|2. On the other hand, when α̃ is large,

then γ will be small and thus a TV or TV2 term will be preferred, i.e., first case in (5.1). In

the third images of the top rows of Figures 5.1 and 5.3, we see how the resulting γ function

looks like for the example images. Details for the computation of α̃ via the auxiliary bilevel

Tikhonov problem are discussed in [89].

5.4.4 Numerical results

Our main tools for the quality of reconstructions are the peak signal-to-noise ratio PSNR

and the structural similarity index SSIM. Those two metrics has been widely used in the

literature to assess the quality of the reconstructed image, and more precisely, even though

PSNR is a measurement tool that is more popular and more widely used than SSIM, the

later (SSIM) is designed based on three factors i.e. luminance, contrast, and structure to

better suit the workings of the human visual system. Note that a perfect reconstruction

has SSIM= 1.

In Figure 5.1 we report our numerical results on the Parrot image, see also Figure

5.2 for zoom-in details. Here the spatially varying regularisation weights α are produced

with the ground truth-free bilevel approach, i.e., using Fstat as an upper lever objective.

Among the regularisers with scalar parameters, second row, first three images, the best

reconstruction both in terms of PSNR and SSIM is achieved by the scalar TGV. The

bilevel Huber TV reconstruction with spatially varying α and scalar γ is able to better

preserve the details around the eye of the parrot, third row first image. When we use the

spatially varying γ, the details in that area become even more pronounced, compare the

first two images in the third row of Figure 5.2. This is also accompanied with a slight

increase of the SSIM index but also with a decrease in PSNR. Observe that the weights
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Ground truth

PSNR=∞, SSIM=1.000

Gaussian noise, σ2 = 0.01

PSNR=20.04, SSIM=0.2773

Spatially varying γ

scalar Huber TV

PSNR=29.25, SSIM=0.8354

scalar Huber TV2

PSNR=29.28, SSIM=0.8305

scalar TGV

PSNR=29.50, SSIM=0.8509

Bilevel TGV

with spatially varying α and β

PSNR=29.84, SSIM=0.8606

Bilevel Huber TV

with spatially varying α

and scalar γ

PSNR=29.20, SSIM=0.8549

Bilevel Huber TV

with spatially varying α

and spatially varying γ

PSNR=28.92, SSIM=0.8571

Bilevel Huber TV2

with spatially varying α

and scalar γ

PSNR=29.81, SSIM=0.8705

Bilevel Huber TV2

with spatially varying α

and spatially varying γ

PSNR=29.84, SSIM=0.8700

Weight α of Huber TV Weight α of Huber TV Weight α of Huber TV2 Weight α of Huber TV2

Figure 5.1: Parrot image: Huber TV and TV2 denoising with spatially varying Huber

parameter γ and regularisation parameter α. The weights α are produced with the ground

truth-free bilevel approach using Fstat. The highest PSNR and SSIM values are highlighted

in bold font.
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Ground truth

PSNR=∞, SSIM=1.000

Gaussian noise, σ2 = 0.01

PSNR=20.04, SSIM=0.2773

scalar Huber TV

PSNR=29.25, SSIM=0.8354

scalar Huber TV2

PSNR=29.28, SSIM=0.8305

scalar TGV

PSNR=29.50, SSIM=0.8509

Bilevel TGV

with spatially varying α and β

PSNR=29.84, SSIM=0.8606

Bilevel Huber TV

with spatially varying α

and scalar γ

PSNR=29.20, SSIM=0.8549

Bilevel Huber TV

with spatially varying α

and spatially varying γ

PSNR=28.92, SSIM=0.8571

Bilevel Huber TV2

with spatially varying α

and scalar γ

PSNR=29.81, SSIM=0.8705

Bilevel Huber TV2

with spatially varying α

and spatially varying γ

PSNR=29.84, SSIM=0.8700

Figure 5.2: Details of images shown in Figure 5.1

α that are computed in these two cases are quite different, see first two images of the last

row of Figure 5.1. The bilevel Huber TV2 approach with spatially varying α, produces

similar reconstructions for both the scalar (slighly higher SSIM) and the spatially varying

γ case (slightly higher PSNR). These reconstructions are of very good quality and even

outperform the spatially varying TGV in terms of SSIM, having also the same PSNR. This

is due to the fact that the combination of the statistics-based upper level objective and

the second order TV is forcing the weight α to drop significantly in the detailed areas of

the image, see the last two images of the last row of Figure 5.1. It is characteristic that

while the PSNR of scalar TV2 is only 0.03 dB higher than the one of scalar TV, the PSNR

of bilevel Huber TV2 with spatially varying α and scalar γ is 0.61 dB higher compared to

the corresponding Huber TV result.

The superiority of the bilevel Huber TV2 with spatially varying weights, is even more
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Ground truth

PSNR=∞, SSIM=1.000

Gaussian noise, σ2 = 0.01

PSNR=20.00, SSIM=0.3349

Spatially varying γ

scalar Huber TV

PSNR=27.75, SSIM=0.7701

scalar Huber TV2

PSNR=28.22, SSIM=0.8142

scalar TGV

PSNR=28.20, SSIM=0.8132

Bilevel TGV

with spatially varying α and β

PSNR=28.33, SSIM=0.8145

Bilevel Huber TV

with spatially varying α

and scalar γ

PSNR=27.50, SSIM=0.7702

Bilevel Huber TV

with spatially varying α

and spatially varying γ

PSNR=27.15, SSIM=0.7688

Bilevel Huber TV2

with spatially varying α

and scalar γ

PSNR=28.66, SSIM=0.8367

Bilevel Huber TV2

with spatially varying α

and spatially varying γ

PSNR=28.44, SSIM=0.8285

Weight α of Huber TV Weight α of Huber TV Weight α of Huber TV2 Weight α of Huber TV2

Figure 5.3: Hatchling image: Huber TV and TV2 denoising with spatially varying Huber

parameter γ and regularisation parameter α. The weights α are produced with the ground

truth-free bilevel approach using Fstat. The highest PSNR and SSIM values are highlighted

in bold font.
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Ground truth

PSNR=∞, SSIM=1.000

Gaussian noise, σ2 = 0.01

PSNR=20.04, SSIM=0.2773

scalar Huber TV

PSNR=27.75, SSIM=0.7701

scalar Huber TV2

PSNR=28.22, SSIM=0.8142

scalar TGV

PSNR=28.20, SSIM=0.8132

Bilevel TGV

with spatially varying α and β

PSNR=28.33, SSIM=0.8145

Bilevel Huber TV

with spatially varying α

and scalar γ

PSNR=27.50, SSIM=0.7702

Bilevel Huber TV

with spatially varying α

and spatially varying γ

PSNR=27.15, SSIM=0.7688

Bilevel Huber TV2

with spatially varying α

and scalar γ

PSNR=28.66, SSIM=0.8367

Bilevel Huber TV2

with spatially varying α

and spatially varying γ

PSNR=28.44, SSIM=0.8285

Figure 5.4: Details of images shown in Figure 5.3

evident in the second image example Hatchling, Figures 5.3 and 5.4. Here the reconstruc-

tion is more challenging due to the oscillatory nature of the ground truth image. The

bilevel Huber TV2 with scalar γ gives by far the best result with respect to both PSNR

and SSIM. Again, the automatically computed regularisation weights α have much lower

values in bilevel TV2 than in bilevel TV, compare the first two versus the last two figures

of the last row of Figure 5.3. In this example, the spatially varying γ leads to a reduction

of PSNR and SSIM in all cases, but nevertheless also to more highlighted details in the

eye area, see second and fourth images of the last row of Figure 5.4.

In order to verify further the regularisation capabilities of these regularisers, we make

another series of experiments with these two example images, using the ground truth-based

upper level objective FPSNR, see Figure 5.5. In both images, the highest PSNR and SSIM
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Bilevel Huber TV

with spatially varying α

and scalar γ

PSNR=29.95, SSIM=0.8610

Bilevel Huber TV

with spatially varying α

and spatially varying γ

PSNR=29.66, SSIM=0.8644

Bilevel Huber TV2

with spatially varying α

and scalar γ

PSNR=30.27, SSIM=0.8736

Bilevel Huber TV2

with spatially varying α

and spatially varying γ

PSNR=30.19, SSIM=0.8651

Weight α of Huber TV Weight α of Huber TV Weight α of Huber TV2 Weight α of Huber TV2

Bilevel Huber TV

with spatially varying α

and scalar γ

PSNR=28.23, SSIM=0.7979

Bilevel Huber TV

with spatially varying α

and spatially varying γ

PSNR=27.86, SSIM=0.8016

Bilevel Huber TV2

with spatially varying α

and scalar γ

PSNR=29.09, SSIM=0.8494

Bilevel Huber TV2

with spatially varying α

and spatially varying γ

PSNR=28.96, SSIM=0.8492

Weight α of Huber TV Weight α of Huber TV Weight α of Huber TV2 Weight α of Huber TV2

Figure 5.5: Huber TV and TV2 denoising with spatially varying Huber parameter γ and

regularisation parameter α. The weights α are produced with the ground truth-based

bilevel approach using FPSNR. The highest PSNR and SSIM values are highlighted in bold

font.

is achieved by the bilevel TV2 with spatially varying α and scalar Huber parameter γ,

third images of first and third row, with the corresponding regularisation weight α having
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Figure 5.6: Values of the reduced objective F̂(uk) along the projected gradient iterations.

The inner boxes show zoom-in plots of the last 10 iterations.

again smaller values compared to the TV one. Nevertheless, we observe that the spatially

varying γ results in higher SSIM in the Huber TV examples in both images, again with

more pronounced features around the eye.

Finally in Figure 5.6, we have plotted the values of the reduced objective F̂(uk) along

the projected gradient iterations, for all bilevel Huber TV and TV2 examples. The top row

shows these plots for the reduced statistics-based upper level objective F̂stat. We observe

that in both images, the introduction of the spatially varying γ in both Huber TV and

Huber TV2 functionals, helps towards a further reduction of this objective, compare red

versus green and blue versus black plots. We observed already that in some cases this is

accompanied with a larger SSIM index and more pronounced details in the images, but

in most cases the PSNR in decreased. This is in accordance with the plots of the second

row, where we see that the reduced PSNR-maximising upper level objective F̂PSNR is not

further decreased by the introduction of the spatially varying γ, compare again the red

versus green and blue versus black plots.

We conclude that the bilevel Huber TV2 is able to produce remarkably good results.
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This is perhaps even surprising as the use of its scalar version is not that popular due

to its inability to preserve sharp edges. We showed that the use of a spatially varying

Huber parameter γ can result in improved results both quantitatively and qualitatively,

thus justifying our rigorous analytical study on spatially inhomogeneous integrands acting

on TV-type regularisers. We also stress that by no means our strategy for setting γ is

necessarily the optimal one. In fact, future work will involve setting up a bilevel framework

where also this parameter is included in the upper level minimisation variables along with

the parameter α, adding further flexibility to the regularisation process.
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Appendix A. Proof of Lemma 3.3, pg. 34

Proof. We define the associated Hessian Lf as follows

Lf (λ1, λ2)[(ξ1, ξ2), (ξ1, ξ2)] :=fFF (λ1, λ2) ξ1 : ξ1 + fηη(λ1, λ2) ξ2 ξ2 + 2fFη(λ1, λ2) ξ1 ξ2.

In the sequel we write simply L instead of Lf .

For (a), note that if |ξ1|+ |ξ2|+ |z1|+ |z2| ⩽ 1, it holds that

f(λ1 + ξ1, λ2 + ξ2|λ1, λ2)− f(λ1 + z1, λ2 + z2|λ1, λ2)

=

ˆ 1

0
(1− t)

(
L(λ1 + tξ1, λ2 + tξ2)[ (ξ1, ξ2), (ξ1, ξ2) ]

− L(λ1 + tz1, λ2 + tz2)[ (z1, z2), (z1, z2) ]
)
dt

=

ˆ 1

0
(1− t)

(
L(λ1 + tξ1, λ2 + tξ2)[ (ξ1, ξ2), (ξ1, ξ2) ]

− L(λ1 + tξ1, λ2 + tξ2)[ (ξ1, ξ2), (z1, z2) ]
)
dt

+

ˆ 1

0
(1− t)

(
L(λ1 + tξ1, λ2 + tξ2)[ (ξ1, ξ2), (z1, z2) ]

− L(λ1 + tξ1, λ2 + tξ2)[ (z1, z2), (z1, z2)
)
dt

+

ˆ 1

0
(1− t)

(
L(λ1 + tξ1, λ2 + tξ2)[ (z1, z2), (z1, z2) ]

− L(λ1 + tz1, λ2 + tz2)[ (z1, z2), (z1, z2) ]
)
dt

=:

ˆ 1

0
(1− t)(I1 + I2 + I3)dt.

Concerning the term I we observe that

I1 ⩽ |I1| ⩽ |fFF (λ1 + tξ1, λ2 + tξ2)||ξ1||ξ1 − z1|

+ |fηη(λ1 + tξ1, λ2 + tξ2)|ξ2||ξ2 − z2|+ 2|fFη(λ1 + tξ1, λ2 + tξ2)||ξ1ξ2 − z1z2|,

and since ξ1ξ2 − z1z2 = ξ1ξ2 − z1ξ2 + z1ξ2 − z1z2 we infer that

I1 ⩽ C
(
|ξ1||ξ1 − z1|+ |ξ2||ξ1 − z1|+ |z1||ξ2 − z2|+ |ξ2||ξ2 − z2|

)
= C

(
|ξ1|+ |ξ2|

)
|ξ1 − z1|+ C

(
|ξ1|+ |ξ2|

)
|ξ2 − z2|.

Similarly for I2 we find that

I2 ⩽ C
(
|ξ1||ξ1 − z1|+ |ξ2||ξ1 − z1|+ |z1||ξ2 − z2|+ |ξ2||ξ2 − z2|

)
= C

(
|z1|+ |z2|

)
|ξ1 − z1|+ C

(
|ξ1|+ |z2|

)
|ξ2 − z2|.
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Considering the third term since for |z1|+ |z2| ⩽ 1 we have that
(
|z1|+ |z2|

)2
⩽ |z1|+ |z2|

it holds that

I3 ⩽ |I3| ⩽ C
(
|ξ1 − z1|+ |ξ2 − z2|

)(
|z1|+ |z2|

)2
⩽ C

(
|ξ1 − z1|+ |ξ2 − z2|

)(
|z1|+ |z2|

)
.

Combining the above we deduce that

|f(λ1 + ξ1, λ2 + ξ2|λ1, λ2)− f(λ1 + z1, λ2 + z2|λ1, λ2)|

≲
(
|ξ1|+ |ξ2|+ |z1|+ |z2|

)
|ξ1 − z1|+

(
|ξ1|+ |ξ2|+ |z1|+ |z2|

)
|ξ2 − z2|.

Now, for |ξ1|+ |ξ2|+ |z1|+ |z2| > 1

|f(λ1 + ξ1, λ2 + ξ2|λ1, λ2)− f(λ1 + z1, λ2 + z2|λ1, λ2)|

= |f(λ1 + ξ1, λ2 + ξ2)− f(λ1 + z1, λ2 + z2) + fF (λ1, λ2)(ξ1 − z1) + fη(λ1, λ2)(ξ2 − z2)|

⩽ |f(λ1 + ξ1, λ2 + ξ2)− f(λ1 + z1, λ2 + ξ2)|+ |f(λ1 + z1, λ2 + ξ2)− f(λ1 + z1, λ2 + z2)|

+ C|ξ1 − z1|+ C|ξ2 − z2| =: J1 + J2 + J3

So, from the growth assumptions on f and on its partial derivatives we infer that

J1 ⩽
ˆ 1

0
|fF
(
λ1 + z1 + t(ξ1 − z1), λ2 + ξ2

)
|dt · |ξ1 − z1|

≲ (1 + |z1|p−1 + |ξ1|p−1 + |ξ2|q
p−1
p )|ξ1 − z1|

≲ (|ξ1|+ |ξ2|+ |z1|+ |z2|+ |z1|p−1 + |ξ1|p−1 + |ξ2|q
p−1
p )|ξ1 − z1|.

Similarly for the second term

J2 ≲
(
|ξ1|+ |ξ2|+ |z1|+ |z2|+ |ξ2|q−1 + |z2|q−1 + |z1|p

q−1
q
)
|ξ2 − z2|.

For J3, since |ξ1|+ |ξ2|+ |z1|+ |z2| > 1 we have that

J3 ≲
(
|ξ1|+ |ξ2|+ |z1|+ |z2|

)
|ξ1 − z1|+

(
|ξ1|+ |ξ2|+ |z1|+ |z2|

)
|ξ2 − z2|,

and together with the first two terms we deduce that

|f(λ1 + ξ1, λ2 + ξ2|λ1, λ2)− f(λ1 + z1, λ2 + z2|λ1, λ2)|

⩽ C(|ξ1|+ |ξ2|+ |z1|+ |z2|+ |ξ1|p−1 + |z1|p−1 + |ξ2|q
p−1
p )|ξ1 − z1|

+ C(|ξ1|+ |ξ2|+ |z1|+ |z2|+ |ξ2|q−1 + |z2|q−1 + |z1|p
q−1
q )|ξ2 − z2|.

For the second part we just set (z1, z2) = (0, 0) in the above inequality and apply Young’s

inequality to conclude the proof of (a).

Concerning (b) we see that for |ξ1|+ |ξ2| ⩽ 1 and ξ = (ξ1, ξ2), it holds
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|f(λ1 + ξ1, λ2 + ξ2|λ1, λ2)− f(µ1 + ξ1, µ2 + ξ2|µ1, µ2)|

⩽
ˆ 1

0

∣∣∣L(λ1 + tξ1, λ2 + tξ2)[ξ, ξ]− L(µ1 + tξ1, µ2 + tξ2)[ξ, ξ]
∣∣∣dt

⩽ C
(
|λ1 − µ1|+ |λ2 − µ2|

)(
|ξ1|2 + |ξ2|2

)
.

When |ξ1|+ |ξ2| > 1, from the growth of Df = (fF , fη), we have that

|f(λ1 + ξ1, λ2 + ξ2|λ1, λ2)− f(µ1 + ξ1, µ2 + ξ2|µ1, µ2)|

⩽
∣∣f(λ1 + ξ1, λ2 + ξ2)− f(µ1 + ξ1, µ2 + ξ2)

∣∣+ ∣∣f(λ1, λ2)− f(µ1, µ2)
∣∣

+
∣∣Df(λ1, λ2)−Df(µ1, µ2)

∣∣ · |ξ|
⩽
∣∣f(λ1 + ξ1, λ2 + ξ2)− f(µ1 + ξ1, λ2 + ξ2)

∣∣
+
∣∣f(µ1 + ξ1, λ2 + ξ2)− f(µ1 + ξ1, µ2 + ξ2)

∣∣+ (|ξ1|+ |ξ2|
)(
|λ1 − µ1|+ |λ2 − µ2|

)
≲
ˆ 1

0
|fF
(
ξ1 + µ1 + t(λ1 − µ1), λ2 + ξ2

)
|dt · |λ1 − µ1|

+

ˆ 1

0
|fη
(
µ1 + ξ1, ξ2 + µ2 + t(λ2 − µ2)

)
|dt · |λ2 − µ2|

+
(
|ξ1|+ |ξ2|

)(
|λ1 − µ1|+ |λ2 − µ2|

)
≲
(
1 + |ξ1|p−1 + |ξ2|q

p−1
p

)
|λ1 − µ1|+

(
1 + |ξ1|p

q−1
q + |ξ2|q−1

)
|λ2 − µ2|

+
(
|ξ1|+ |ξ2|

)(
|λ1 − µ1|+ |λ2 − µ2|

)
.

But since |ξ1|+|ξ2| > 1 we have that |ξ1|p−1+|ξ2|q
p−1
p , |ξ1|p

q−1
q +|ξ2|q−1 ⩽ 2+|ξ1|p+|ξ2|q ≲

|ξ1|+ |ξ2|+ |ξ1|p + |ξ2|q ≲ |ξ1|2 + |ξ2|2 + |ξ1|p + |ξ2|q. Combining both cases we infer that

|f(λ1 + ξ1, λ2 + ξ2|λ1, λ2)− f(µ1 + ξ1, µ2 + ξ2|µ1, µ2)|

⩽ C
(
|λ1 − µ1|+ |λ2 − µ2|

)(
|ξ1|2 + |ξ2|2 + |ξ1|p + |ξ2|q

)
,

and by choosing R < δ/C we conclude the proof of part (b).

Regarding the proof of (c), again for |ξ1|+ |ξ2| ⩽ 1, since p, q ⩾ 2

f(λ1 + ξ1, λ2 + ξ2|λ1,λ2) =
ˆ 1

0
(1− t)L(λ1 + tξ1, λ2 + tξ2)[ξ, ξ]dt ⩾ −d̃2|ξ|2

⩾ d̃1
[
(|ξ1|p − |ξ1|2) + (|ξ2|q − |ξ2|2)

]
− d̃2(|ξ1|2 + |ξ2|2).

For the case |ξ1|+ |ξ2| > 1, from the coercivity of f we have that

f(λ1 + ξ1, λ2 + ξ2|λ1, λ2) = f(λ1 + ξ1, λ2 + ξ2)− f(λ1, λ2)− fF (λ1, λ2)ξ1 − fη(λ1, λ2)ξ2

⩾ d̃3
(
− 1 + |ξ1|p + |ξ2|q

)
− d̃4

(
|ξ1|+ |ξ2|

)
⩾ d̃3

(
|ξ1|p + |ξ2|q

)
− d̃4

(
|ξ1|2 + |ξ2|2

)
.
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So, combining the two cases, we may choose d1, d2 > 0 to conclude the proof of the

lemma.
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