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Summary

Time-Domain imaging at Terahertz (THz) frequencies exploits illumination with

short broadband electromagnetic pulses and has become a crucial tool for coherent

2D spectral analysis since its inception in 1995. Many materials of interest, bio

compounds and even explosives exhibit typical revealing spectral signatures in this

band. In addition, the interaction of terahertz waves with free carriers is widely

used as diagnostic in several conducting and semiconducting media. A peculiar

distinction established in the THz field is the ability to access the evolution of the

full electromagnetic field in time (in the picosecond time-scale). Established

implementations are generally remarkably slow, especially resolution finer than the

wavelength are targeted, making them of limited practical significance in many

fields. Approaching the desired resolutions with a real-time video rate is still a

challenge. This work concerns the development of two novel methodologies that

sharply move above state of the art, pushing forward all the typical qualifying

features of THz imaging, enabling the field to further grow and even outpace the

scope of established imaging techniques. The first methodology I developed, in

terms of physical mechanism and methodological approach, regards a way to map

ultrafast dynamics of carriers using terahertz imaging with resolution significantly
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finer than the wavelength and acquisition rate approaching video-rate, which is

unprecedented in the field. I conceived a video-rate large-area THz carrier analysis

approach that allowed for phase-sensitive measurement of the conductivity changes

that photo-excited carriers introduce in samples, significantly surpassing the

performances of established approaches to map carrier relaxation dynamics and

relate them to material properties in complex structures. This novel technique, the

Optical Pump – Terahertz Near-field Microscopy, made THz carrier analysis

possible simultaneously on large surfaces, showing how the full microscopic

distribution of THz conductivity is affected by a distribution of hot carriers that

lies on the sample plane. The technique achieves a video rate of multiple frames

per second and also a subwavelength spatial resolution that exceeds λ/20. The

second methodology I contributed to in my thesis work regards the establishment

of a single-pixel terahertz microscopy approach, which does not require arrays of

sensors. THz raster scan imaging approach has been around for a while. However,

the achievable signal-to-noise ratio and the exploitation of mechanics scanning

mechanisms fundamentally limit their performances. Within a research team, we

then introduced the Nonlinear Ghost Imaging an approach that places a sample in

the near-field of a optical-to-terahertz converter. My specific contribution regarded

the specific methodological approach of sampling the object with a series of

terahertz patterns and reconstructing the image by correlating this information

with the information obtained with a single-pixel terahertz detector. Again, this

approach significantly outperforms the state-of-the-art in terms of fidelity of the

reconstructed spectral information and its publication is having a transformative

effect on the field. This thesis work serves as a presentation of methodologies and

results and also covers related issues such as limitations and future development,

with a comprehensive exploration of the motivations behind the work and the

general impact in the domain. Because some results and achievements are

certainly the result of a teamwork, I will present them in a comprehensive manner,

and then I will highlight my specific contribution.
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Chapter 1

Introduction to Terahertz Analysis

1.1 Terahertz Radiation

The focus of this thesis discussion is Terahertz (THz) Radiation and a specific subset of

its uses in imaging. The electromagnetic spectrum is the vast range of frequencies that

the field manifestations of the electromagnetic force can possess. Photon energy, and thus

frequency, is often the determining factor in any field-media interaction; understandably,

there has always been interest in finding applications for the different frequency regions in

the spectrum. Although the microscopic interaction driving a medium dielectric responses

can have very different origin, interaction with low energy photons (meV) often relates to

vibrational modes, as opposed to optical photons often triggering electronic transitions.

Hence, for example in organic chemical molecular solids and polymers, intra-molecular

bonds classically have resonances above Mid-Infrared wavelengths; molecular vibrational

and rotational modes and inter-molecular weak bonds that resonate within the THz band.

In addition, in inorganic crystalline and amorphous solids and metal, using THz as probe

has the inherent advantage of not eliciting significant quantum transition on carriers be-

cause of the relative low energy photon. (Lee, 2009a) Essentially, a full classical description

can be adopted on a relatively large excitation bandwidth. The THz frequency range was

chronically under-explored until the late 20th century because of the general unavailability

of bright sources outside of big infrastructure (e.g. synchrotrons). In addition, thermal

sources have been practically irrelevant below the 10 THz mark, as opposed to the flour-

ishing pre-laser optical field. Probably the relevant milestone towards the adoption of

THz systems has been the demonstration of ultra-short laser emission based on laser-

mode-locking (Garmire and Yariv, 1967). Time domain terahertz systems exploit optical-

to-terahertz conversion elicited by an ultra-fast field-matter interaction and by the large
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instantaneous power of such laser pulses. The demonstration of chirped-pulse regenerative

amplification, awarded very recently with a Nobel prize (Strickland and Mourou, 1985),

enabled the generation of very bright terahertz pulses via nonlinear optical conversion,

a foundation principle in this thesis. Relevant sources of THz radiation are described in

detail in later chapters where the fundamental processes that contribute to their function

are also explored.

1.1.1 The Definition of Terahertz

Figure 1.1: A scale illustrating different applications of electromagnetic radiation and

their frequencies.

Terahertz radiation is traditionally an electromagnetic radiation in the frequency range

of 0.1 THz to 10 THz, though some definitions extend beyond these margins. This region

of the spectrum lies between the infrared (IR) and microwave parts of the electromagnetic

spectrum. Interestingly, while IR and microwave are exclusive domains of (quantum)

photonics sources (Jung et al., 2017) and electronics sources (Gu et al., 2017), ironically

terahertz has been traditionally inaccessible to both, because the photon energy is too low

and because the relative frequency is above the electronic bandwidth cut-off (Williams,

2005). Yet, many substances contain a unique spectral fingerprint in the THz region

including bio-molecules (Zheng et al., 2012) and other chemicals (Fischer et al., 2005);

this was a key motivator for the development of pulsed, broadband THz radiation for

spectral analysis (Helminger et al., 1983). Unlike optical radiation, THz is invisible to

the human eye and unlike x-ray, Ultra-violet and gamma radiation is non-ionising to

biological tissue (Seo et al., 2015) and therefore non-destructive. Notably, in modern
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technological settings there is a fundamental distinction between technologies producing

continuous-wave terahertz emission, some of very recent demonstration (e.g. diodes and

quantum-cascade-laser (Zeng et al., 2020)), and broadband pulsed laser sources. This

thesis work is indeed related to the latter.

1.1.2 Terahertz Spectroscopy

There are not that many ways to identify the composition of an unknown substance.

The available methods fall into two categories: destructive and non-destructive (Wang

et al., 2020). Destructive methods often utilise chemical analysis and ionising radiation

whereas non-destructive methods can utilise, for example, optical spectroscopy or ultra-

sound (Achenbach, 2000). Because THz radiation is non-ionising, (Seo et al., 2015) it

does not destroy biological samples and thus is also an effective mode of non-destructive

evaluation. With optical spectroscopy a vast range of wavelengths can be used to identify

resonances, revealing particular media. High frequency photons, as in ultraviolet light, can

illuminate inter-band transitions of core electrons (Fabian et al., 1971) while low frequency

photons in mid- and far-infrared can identify large molecules, because of their structural

resonance, like fatty acids (Meiklejohn et al., 1957). The wide range of available photon

interactions necessitates spectroscopy applications for a variety of wavelength ranges and

different detection techniques (Jepsen et al., 2011) depending on available technology as

well as material state and conductivity. Terahertz spectroscopy can highlight low energy

Figure 1.2: A graphic displaying the interaction between a THz field and molecular

vibrational modes in a material. As seen on the right, analysis of the THz field yields an

absorption spectrum in the frequency domain.
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molecular transitions, for example the vibrational modes of polyatomic molecules (Leon-

hardt et al., 1987). Protein unfolding or other molecular processes can be quantified at

the molecular level via their vibrational response to THz (Okumura and Tanimura, 1998).

Interestingly, many of these proteins must be suspended in solutions, and water is a notori-

ously strong THz absorber (Gente et al., 2013), reducing the measurable field interaction.

However, water absorption has been used for analysis of cancerous tissue (Woodward et al.,

2002), which can be differentiated from their surroundings by the different concentration

of blood vessels (Yu et al., 2012).

Time Domain Terahertz Spectroscopy

An interesting aspect in the generation of broadband Terahertz pulses from laser pulses is

that the resulting long THz wave-period lies in the same dimensional scale as the duration

of the optical pulse that excites its generation (Valdmanis et al., 1983). Conceptually, this

means that a replica of this pulse can be used to synchronously ’sample’ the field of a

terahertz pulse in a certain point in space via a nonlinear device. By altering the delay

between the two pulses we can change the sampling point in the terahertz wave. This

concept is known in literature as time-domain-spectroscopy (TDS).

Primordial examples of generation and detection of terahertz waves via optical sampling

was reported by Auston et al. (1980) (whereas first examples of terahertz generation from

optical pulses date back to Yang et al. (1971)). The first example of TDS in its complete

definition was reported by the same group in 1983, Valdmanis et al. (1983); a carrier

spectroscopy demonstration using terahertz waves was reported much later (Nuss et al.,

1987), in the framework of Measurement of Carrier Mobility of Photo-excited Electrons

in Gallium Arsenide.

The core feature of the Time Domain Spectroscopy (TDS) is to operate via the com-

plete reconstruction of the field-transient of short THz (Valdmanis et al., 1983). The basic

idea is that the field is transmitted through an object (or reflected from it) and the change

of the detected waveform can be used to infer the dielectric response of the object. The

detection, usually referred as electro-optical sampling, of the field operates on the assump-

tion that the THz waveform and the probing optical pulse are synchronised and then the

optical pulse is sufficiently shorter than the terahertz period to fulfil the Nyquist-Shannon

sampling limit (Weingarten et al., 1988). Phase-resolved techniques, popularised by Wu

and Zhang (1995) among others, allowed for the amplitude of the field rather than the in-

tensity to be measured as a voltage, offering extra insight into field and sample properties.
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The resulting dataset can be used to determine complex parameters of an object such as

the complex refractive index (Francis et al., 2020).

Interestingly, in modern practice, ultrafast lasers generating trains of pulses of duration

100 fs or shorter are quite common and most of the relevant ways to generate terahertz

transients are from optical pulses; though this preserves only a fraction of the optical

bandwidth (Zhang et al., 1992). This means that it is normally true that the transform-

limited pulse is perfectly suitable to sample the generated waveform (Liu et al., 2009).

Trivially (sharply differently from the practice in the optical field), once the detected

field waveform is available, a numerical Fourier transform can be used to address its

spectral content. This aspect also highlights one of the most distinctive aspect of TDS,

which is the providing of the complex spectrum of the detected field (amplitude and

phase) - quite uncommon in the standard photonics practice. This means that both the

absorption and refractive index spectrum of an object can be determined by placing it

between the source and detection.

The THz time-domain spectroscopy of an actual medium was first reported in the late

80s (van Exter et al., 1989) and clearly demonstrated the THz sensitivity to water vapour

in air. In fact, TDS systems are often subject to unwanted environmental contributions

from air water content, which presents in the spectrum as absorption peaks at specific

frequencies (Nahata et al., 1996).

Figure 1.3: Terahertz Time domain and Frequency domain spectra taken with LiNb03

generation and detection crystals.

The Fig. 1.3 shows an example of the spectrum of a THz field transient transmitted

through air. Visible notches corresponding to water absorption (at about 1 THz and

1.7 THz) are clearly visible in the pulse spectrum.
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1.2 Terahertz Time-Domain Imaging

Terahertz imaging offers the benefits of Terahertz spectroscopy (Hu and Nuss, 1995) in 2-D

morphological analysis and can be performed as an ultrafast time-of-flight measurement

that produces a TDS for each measured pixel. Fixed-time THz images can produce biolo-

gical contrast (Gente et al., 2013) datasets and profile point artefacts and defects; however

scattering profiles of the THz interacting with the sample and structures are also available

when a time-of-flight measurement is performed. These profiles contain complex inform-

ation on the sample that can be used to infer parameters such as the 2-D distribution of

the absorption coefficient and the complex refractive index (Francis et al., 2020) over the

sample. The methodology, as first conceived, is analogous to confocal microscopy with

sample translation. Terahertz radiation is focused with specialised optical components

and the sample is placed in the focal point (Hu and Nuss, 1995). To create an image the

sample can be moved through this focal point, with a TDS taken at each position. This

type of image is known as a hyperspectral image because of the vast range of frequencies

contained in each pixel, as opposed to a multispectral image which is usually only taken

at a limited number of bands per pixel (Goetz et al., 1985) (red, green, and blue for a

full-colour image). Only the former type is truly suitable for spectroscopic applications.

The first example of the THz-TDS image was taken in 1995 by Hu and Nuss (1995),

and interestingly was a biological image of a leaf that displayed the excellent contrast that

water-containing tissues have in the THz spectrum. This methodology is, however, not the

first image taken at THz frequencies - as an example, THz imaging via an interferometric

setup that utilised bolometer detection was demonstrated in 1984 by Lash and Yundev

(1984). Raster scanning a sample imposes limitations on the speed and resolution of the

image acquisition (Cui et al., 2012), motivating the development of modern THz imaging

methods to improve the applications of the field. Around the turn of the century, near-field

methods (Wynne and Jaroszynski, 1999) and aperture methods for confocal microscopy

(Hunsche, 1998) were introduced to THz imaging to improve the spatial resolution. A few

years later large-area illumination methods (Wang et al., 2008) drastically reduced the

imaging time, pushing THz microscopy closer to real-time function. In recent years, there

has been much focus on applying compressive imaging methods to THz imaging; perhaps

the earliest of these was a concept by Chan et al. (2008). These compressive methods

generally allow for faster electrical sampling compared to ordinary synchronous sampling;

perhaps they will soon allow for effective real-time THz applications.
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1.2.1 Near-Field Imaging Method with Terahertz Pulses

To measure ’in the near-field’ is a well established method in optical microscopy, involving

imaging the field perturbations that occur close to the sample (Wynne and Jaroszynski,

1999). Though offering vastly improved image resolution when compared to confocal

microscopy, it often requires little modification to adopt the changes required to allow a

confocal microscope to take near-field images (Hunsche, 1998). It is therefore unsurprising

that near-field imaging is often considered standard practice in the field THz imaging. To

understand the motivations of near-field THz imaging it is important to first consider some

of the limits that confocal microscopy can apply to the images it produces when operated

in the THz domain.

Diffraction Limited Imaging

The concept of diffraction limited images refers to the nature of image reconstructed via

system of limited numerical aperture where the diffraction limits our ability to represent

an image, i.e. the image resolution. Although the basic elements are a already part of

scholarly literature Born and Wolf (1999), it is useful to recall some key concepts as they

are important in understanding the relevancy of this work. A perfect focusing system

can represent the Spatial Fourier Spectrum of an impinging light wave. However, the

system always samples a limited amount of the wavefront. Said differently, an impinging

plane wave is actually multiplied in space by the aperture of focusing system, which alters

the spatial spectrum. Because the focusing system is focusing a wavefront of limited

dimension, the ability to focus it is also limited by the diffraction of the input beam.

Diffraction (Fowle, 1989) takes place in any real optical system which focuses the wave to

an Airy disc instead of the 2D Fourier transform shape of a periodic plane wave – a Dirac

delta. This is the same as saying that the image of two distinct adjacent point sources

can overlap in the image plane, making them indistinguishable.

The distance from the centre of the Airy disc to the first minimum is proportional

to the wavelength of the incident light and the numerical aperture – the ratio of the

lens focal length to the aperture diameter (Fowle, 1989). This can be seen in Figure

1.4. If another source is located within this radius then Rayleigh diffraction states that

it cannot be resolved, as also seen in Fig. 1.4. This is the main contributing factor to

‘diffraction limited resolution’ and the limit itself in microscopy applications is known as

the Abbe limit. This limit generally depends on the aperture width, wavelength range

and bandwidth of the incident field (Siemion, 2021).
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Figure 1.4: Rottenfusser et al. (2021) (left) Overlapping airy disks are just resolved when

the first minimum coincide, the resolved distance is d0 (right) A single point diffraction

creates an Airy Disk.

Near Field Perturbation

Diffraction-limited imaging struggles to resolve small features either physical or in field

dynamics. However, these small features can contain important sample information. In-

Figure 1.5: Tomandl (2021) The interaction of a plane wave with an object, in this case a

slit. After some wavelengths of propagation the near field perturbations are invisible.

terestingly, when an aperture made of a perfectly shielding conducting material is placed

in the path of an incident plane wave, the transmission of the wave is dependent on the

size of the aperture relative to its wavelength. If the aperture (or more generally an ob-

ject) is small compared to the wavelength, then any perturbation it induces in the wave

will become undetectable (Fowle, 1989) after a few wavelengths’ distance. This effect is
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visualised in Fig 1.5.

To measure ‘in the near field’ is to probe the perturbation that a small object induces in a

plane wave of comparable wavelength to its size (Lewis et al., 2003), which must be done

close to the object. Said differently, the object can be imaged as soon as we are able to

perceive the spatial perturbation of the local field.

Exceeding the Diffraction Limit in THz

Unfortunately THz radiation diffracts significantly in the far-field (Baillergeau et al., 2016)

when compared to optical radiation over the same distance. The diffraction limit for THz

radiation tends to be large (Lee, 2009b); it therefore makes sense that diffraction-limited

THz microscopy fails to resolve small features, even when near-field perturbations are

not considered. However, near field perturbations are of great interest in sample analysis

because they contain information on physical phenomena occurring at the sample surface

(Courjon and Bainier, 1994). Like larger features, the resolving limit of the equipment

directly affects their visibility when using a microscope to attempt to measure them. An

insufficient resolving limit is often expressed as a wavelength-dependent lateral resolution,

either the Abbe limit or the related Rayleigh limit, that exceeds the feature size(Chen

et al., 2003). If the small feature is visible then the resolving limit of the microscopy

equipment can instead be expressed as better than the size of the feature’s smallest di-

mension. There are several methods that can reduce the effects of diffraction on the

resolution, and additional methods that can allow the microscope to access near field per-

turbations. Both of these goals, in the THz domain, have historically contributed to the

development of near-field THz microscopy.

The resolution of diffraction limited imaging can be improved with an aperture (Mac-

faden et al., 2014), both in the optical and THz bands (Wynne and Jaroszynski, 1999).

This is because the conjugate image (of a plane wave) is a point in theory (Fowle, 1989)

at the focus of the confocal microscope so a circular aperture placed in this focal plane

can block the diffraction rings of the Airy disc (Mitrofanov, 2000) formed in experiment.

However, a small aperture decreases the transmitted field especially when it is smaller

than the wavelength (Mitrofanov et al., 2001). This means that although an aperture is

an effective method of image improvement the aperture size cannot be reduced indefinitely

to increase THz resolution. The aperture can filter lower frequencies because the cut-off

frequency of the field modes that can be transmitted through it is inversely proportional

(Macfaden et al., 2014) to its diameter. The sub-wavelength aperture also allows for near-
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field access by scattering the evanescent field component (Hunsche, 1998) at the sample,

allowing for limited sensing of the phenomena at the sample. This scattering methodology

was well established in optical near-field imaging (Greffet and Carminati, 1997) and was

often performed with an Atomic Force Microscopy cantilever tip scatterer (Zenhausern

et al., 1994) or even optical fibre tip (Lewis and Lieberman, 1991), itself acting as an

optical source or detector. These sub-wavelength tips are placed close to the sample.

Placing objects close to the emitter or detector allows the near-field perturbations in the

THz domain to be sampled directly as well (Federici et al., 2002); this placement is often

combined with focusing optics to increase the peak THz field at the sample. Often a

focused probing pulse is used to sample the region or alternately a focused optical pulse

at the THz generation plane (Wang et al., 2004). This pulse can emulate the effects of

a real aperture (Chen et al., 2000) on the image. (Mitrofanov, 2000). To maximise the

resolution of a near field measurement the active region of the detector(Lai et al., 2015)

must be small. This can be achieved by not only using a tightly focused incident pulse

but also a thin detector region (Blanchard et al., 2011).

Figure 1.6: A method of near field Terahertz Imaging involves placement of the sample

semiconducting device on a detector.

One form of this popular method is visualised in Fig. 1.6, where the detector - a large-

area electro-optic crystal - contacts a sample at the THz focus (Blanchard et al., 2011).

The probing pulse, incident on a detection crystal can act as an aperture generating a local

polarisation ‘pulse’ – (a changing polarisation density) (Wang et al., 2010) which interacts

with the polarisation rotation caused by the incident THz. The implementation of near
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field-imaging by bringing the emitter into contact with a sample (Wynne and Jaroszynski,

1999) is an equivalently effective method (Courjon and Bainier, 1994), provided that the

active area of the source is sufficiently small compared to the wavelength of the radiation

(Lecaque et al., 2011), allowing the emission source to act as the aperture. A good

example of such a source is a femtosecond laser focused onto a nonlinear quadratic crystal,

generating THz radiation by optical rectification (Rice et al., 1994), or onto a narrow

bandgap semiconductor (Peters et al., 2017) producing THz by carrier acceleration. To

obtain a two-dimensional THz image the THz field detected with a large-area detection

can be imaged with a pixel array and a set of imaging optics (Blanchard et al., 2011).

The large area of high-strength optical-to-THz conversion probed with a focused pulse

and imaged onto the pixel array allows the pixel to act as the minimum probing aperture,

leading to maximised THz lateral resolution. The development of the near-field method

is complex but after many iterations the technology has developed and progressed in an

attempt to meet the maturity of optical near-field imaging technology.

1.2.2 Compressive Imaging

As previously mentioned, the fundamental form of imaging based on single-pixel detection

is the raster-scan approach, which generally involves lateral translation of the sample

in respect to focal point, aperture, or other spatial sampling technique. This is also

true for THz-TDS system as most commercial embodiments allow the retrieval of the

time-domain spectrum of each point of an object via scanning. As most common TDS

approaches require seconds or fraction of seconds for the extraction of a single waveform,

normally dictated by the system signal-to-noise ratio, raster-scans are also possibly the

slowest solution in the field (Hu and Nuss, 1995), and scale badly on large surfaces (Chan

et al., 2008). The extremely long acquisition time was a major motivation in the adoption

of compressive imaging techniques into the field of THz imaging, in which the challenge

of achieving effective real-time imaging still exists today.

Compressive sensing is a domain that investigates ways to reduce the amount of mean-

ingful information content to represent an image. In an experimental setting, this corres-

ponds to performing fewer measurements than the number of pixels (Augustin et al.,

2018). For the sake of historic accuracy, compressive imaging in the optical domain has

a background that spans more then a century and vastly predates pixel arrays. Perhaps

the first popular embodiment and early example of compressive imaging has been repor-

ted by Prof. Arthur Korn (Times, 1907) where an image was transmitted by telegraph
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encoding and the varying intensity profile was obtained through a revolving drum with

apertures. The detector in this case was a galvanometer with a similar drum and provided

a true method of single pixel detection that produces a line-by-line image. The method

of encoding with a spinning Nipkow disk (a disk with multiple carefully placed apertures

seen in Fig.1.7) was behind the first television and even predated the demonstration of a

prototype by Korn (Shiers, 1997).

Figure 1.7: Manly and Gorder (1951) A setup allowing the Nipkow Disk to act as an

image receiver, encoding the images line-by-line to the output screen, in this case labelled

’Observer’.

Actually, this type of imaging approach is quite relevant to modern approaches requir-

ing a ‘dynamic aperture’, as the Nipkow Disc acts as a spatial light modulator (SLM).

The SLM encodes a ‘pattern’ or ‘mask’ into the beam, applying an intensity or phase map

(Shrekenhamer et al., 2013) that can be projected onto the object. A set of patterns can

be chosen to ‘encode’ the full set of pixels, and the image can be reconstructed by solving

a linear combinatory equation (Chan et al., 2008). Thinking outside the pixel-by-pixel de-

scription, we can consider the sampling to occur over the momentum space (k-space) (Hu

et al., 2019) as the pattern samples the spatial impulse response via a sum of plane waves

with different wavevectors. Here the necessary condition for the image reconstruction is

the coverage of a sufficiently large k-space, imposed by the Nyquist -Shannon sampling

(Weingarten et al., 1988). The image matrix can be assumed to be sparse to reduce the

computational power required for the reconstruction (Augustin et al., 2018). The recon-

struction problem is ill-conditioned under this assumption and has no exact solution when

there are fewer patterns than pixels (Jiang et al., 2021), but an approximate one can be

found when utilising an appropriate choice of masks with known transmission functions.

This enables the reconstruction of a modern computational ‘compressive image’ which is
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the numerical solution to the posed reconstruction issue. Compressive imaging as applied

to the experimental extraction of images is normally referred as ‘computational imaging’

when deterministic masks are used to encode the beam (Gibson et al., 2020). Interestingly,

this form of imaging can operate with random patterns (for example originating from spe-

cific physical mechanisms), although the low-relative orthogonality of the patterns implies

a much larger number of illumnations.

To achieve deterministic light encoding spatial light modulators or dynamic mirror

devices (Chan et al., 2008) are widely available photonics devices (at the basis of many

modern image projectors).

The image can be reconstructed by performing a summation of iterative images where

each is a calculated field intensity at the object plane (Shapiro and Boyd, 2012); an in-

tensity that is correlated with the measured intensity at the single-pixel detector that

corresponds to the beam overlap of the mask and object transmission. Because the trans-

Figure 1.8: Hawes (2015) The first four orders of Hadamard matrices, generated by al-

gorithm from the lowest order matrix which solves Hadamard’s determinant problem.

mission function of the masks is directly used when computing the solution to the matrix

equation the type of mask chosen affects signal-to-noise ratio, resolution, and computa-

tion speed (Augustin et al., 2018). A mask can have two major characterising properties

– binary/greyscale, and random/deterministic (Wei et al., 2020) that are intrinsic to its
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make-up. A random mask could be rotating ground glass that produces pseudo-thermal

light. A binary mask only has ’black’ and ’white’ pixels like a multiplicative matrix con-

taining only 0 or 1, whereas a greyscale mask can have any number of possible values.

A binary mask, for example the deterministic Hadamard mask or the (pseudo-) random

Bernoulli mask, has the advantage of each pixel being either fully- transmissive or non-

transmissive (Gibson et al., 2020); this can ease the determination of the transmission

function as there are many vanishing elements. A greyscale mask for THz radiation is

very difficult to implement in experiment (Augustin et al., 2018) but can in theory offer a

greater bit-depth for sample encoding. The ordering of masks has a significant effect on

the quality of the reconstructed image (Vaz et al., 2020), but the most effective ordering

algorithm depends on the level of compression that the reconstruction uses.

1.2.3 Ghost Imaging

Ghost imaging (GI) has a history in optics that is linked experimentally with the demon-

stration of a thought experiment that was designed to challenge the uncertainty prin-

ciple (Kim and Shih, 1999) - Popper’s experiment. Popper believed that correlation in

entangled photons allows for the precise determination of one photon’s position and mo-

mentum through interference when the other is measured.

Though many iterations of GI have been reported, the optical setup (Pittman et al., 1995)

measured the correlation signal between two entangled photons measured with distant

bucket detectors. One photon passes through a sample causing a correlation signal in

the other bucket detector as the sample is moved. Strangely, this phenomenon can be

observed in the classical domain despite the entangled state being indescribable classically

(Shapiro and Boyd, 2012) when the two photons are classically correlated. This correla-

tion can be induced by transmitting light through rotating ground glass or another objects

that induces an intensity pattern; subsequently one photon will pass through an object

to a bucket detector and the other will have its intensity profile scanned. This particular

measurement can be performed as a computational image with one bucket detector (Sha-

piro, 2008) if the intensity profile can be pre-determined, and therefore the phenomenon

cannot be dependent on the non-local two-photon interference that defined the entangled

photons’ behaviour. The single bucket detector is what enables the Ghost image to be

referred to as a single-pixel image. The field of ghost imaging, while fairly recent, has

already demonstrated the intriguing power of classical spatial correlation. Ghost imaging

has been demonstrated with a range of photon wavelengths (Gibson et al., 2020), and un-
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surprisingly was proposed in the Terahertz domain shortly after the initial demonstrations

of computational ghost imaging methodologies (Chan et al., 2008). Its demonstration in

the Terahertz domain was eventually performed by Stantchev et al. (2016) and (Olivieri

et al., 2018), utilising different methodologies, providing hyperspectral measurements of

objects’ field interaction along with morphological analysis. Time-domain THz images

tend to consist of large array data sets, and the possibility of utilising compressed sensing

with GI allows for the image set to be undersampled, drastically reducing the measurement

time for this type of dataset. In both the optical and Terahertz domains the methodology

is capable of spatially resolving hidden objects - objects that are completely concealed

from modes of morphological feature detection (Shapiro, 2008) - despite only measuring

the object interaction with a single pixel detector. With no imaging optics or spatial

detector required, the prospect of GI as a single-pixel lensless imaging mode (Chen et al.,

2009) indicates suitability for a much wider range of applications than any standard ima-

ging. This is especially true outside of the field of optics, where bulky and delicate spatial

detection setups are an inconvenience. However, when a THz imaging application requires

a large number of TDS pixels in the set there are far quicker methods available, such as

the parallel imaging method described in Fig. 1.6.

1.3 Optical Pulses and Matter

A distinctive aspect in optical absorption is the relatively high energy of involved photons

when compared to terahertz photons. This is very important because in many substances,

photons promotes carriers in to higher free-energy states (Fowle, 1989). Hence, while

using optical photons is indeed an appropriate way to probe quantum transition-mediated

absorption processes, we can argue that the access to other mechanism like free-electron

absorption in dielectrics can be understandably inhibited by the photon energy. Said

differently, probing using optical photons inherently alter the free-electron dynamics.

THz radiation offers a low-energy, classical interaction that is incapable of exciting the

inter-band transitions that free carriers by absorption of optical radiation. The processes

described in the later sections can be sensed with THz radiation (Joyce et al., 2018) which

reveals crucial details about their complex properties (Afalla et al., 2019).

1.3.1 Material Classifications

Material interactions have always been a significant consideration in nonlinear optics;

quantum interactions are difficult to observe and quantify therefore research often focuses
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on measuring bulk effects. Basic solid state theory is largely sufficient to describe the

processes of concern in this thesis - processes where energy is transferred between photon

pulses and material carriers. There are many materials that could be considered to have

interesting electronic properties, but due to the band structure and band gap properties

it is semiconductors that were the focus of the experiments described in later chapters.

Individual atoms and molecules posses energy levels - states in which electrons can reside

stably - that are characteristic to them. Therefore it makes sense that any system that

they are part of has a characteristic band structure. In a material this is often assumed

to be spatially homogeneous, though unfortunately this assumption doesn’t hold at the

surface or at impurities. Because of this, a material’s electronic properties can be subject

to change depending on a variety of parameters. To recap, and following the argument by

Ashcroft and Mermin (1976), the gap between the highest occupied level and the lowest

unoccupied level is the band gap, where bands are occupied at room temperature up to

the Fermi Level. The bands situated around the Fermi level are the valence (lower) and

conduction (upper) bands. Carriers in the conduction band can contribute to the material

conductivity.

Figure 1.9: An illustration of energy bands and their relation to the Fermi Level.

The Fig. 1.9 shows the basic definitions that are utilised in this thesis for material

classification, and the relation of the Fermi level to the bandgap. Large-bandgap materials

like the insulator are transparent to lower energy photons and often specialist equipment

is required to access their conduction properties. In the metal, the Fermi Level lies within

a band and thus at room temperature the energetic carriers can be subject to a therm-

alisation process that is later explored in detail. Semiconductors, in this thesis, have
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a bandgap that is around 2 eV and can be excited by photons within the near-infrared

range. They then exhibit metallic behaviour after absorption that can be measured with

THz radiation.

Figure 1.10: Parker (2012) The band structure of Silicon as generated from the Local

Density Approximation The x-axis values are vector paths within the first Brillouin zone.

Figure 1.10 is a calculated band structure for silicon, representing an actual momentum-

energy description of the bulk material (Parker, 2012). This particular material is a

standard semiconductor used in electronic devices and is utilised in experiment in later

chapters.

1.3.2 Carriers in Semiconductors

The energy of the absorbed photon can be spontaneously emitted from an excited system

as a photon of energy h̄ω (Rossler, 2009). In response to the impulse excitation this

spontaneous emission has a temporal decay that equates to the characteristic lifetime of

the excited level (Agarwal, 1975). Alternatively the recombination process can distribute

energy through phononic interaction, or by interaction with a third carrier or trap centre

(Bullis and Huff, 1996). The carrier recombines with the valence band and an electron and

hole are exchanged again. This absorption and recombination is one of the basic carrier

dynamic processes that is explored in this thesis.

The incidence of an ultrafast laser pulse upon a semiconductor creates a metallic region

of hot carriers. The contribution of the hot carrier density to the medium’s dielectric

properties is rather complex, but its decay alters the conductivity. The dynamics of the
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Figure 1.11: In radiative recombination an excited electron recombines with a hole in

the valence band, releasing a photon. In trap-assisted recombination the electron and

hole recombine at a trap-level, dissipating energy via phonons. In Auger recombination

an excited electron recombines with a hole in the valence band, transferring energy to

another excited electron.

conductivity can then reveal the recombination mechanisms that typically occur in the

medium(Bullis and Huff, 1996). The processes seen in Fig. 1.11 are common recombination

mechanisms seen in semiconductors (Rossler, 2009).

The measurement of this type of decay is known as transient carrier spectroscopy

(Balland et al., 1986). When using certain techniques, including THz probing, (Kar et al.,

2018) the form of the complex dielectric function can be unveiled too, which contains

important information that can be used to predict the function of devices containing the

material. Recombination effects seen in transient carrier measurements can be character-

ised as either surface or bulk depending (Heinz et al., 2017) on whether they can only

occur within the small depth of material that the excitation field can penetrate or solely

on the surface where there is a material boundary. Effects such as surface recombination

can have a significant influence on the transient lifetime (Linnros, 1998) as does surface

treatment and defects (Heinz et al., 2017); these are surface effects. Bulk effects include

doping and impurities. If materials are layered with each other there can be further effects

as energy is transferred between material layers and carriers diffuse (Proctor et al., 2013).

This can cause multi-layer material samples to produce unusual transients (Kar et al.,
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2018) when carrier spectroscopy is performed, provided the sample layer is sufficiently

thin for the carrier diffusion process to occur. If the dielectric function of a material is

known then new applications and devices can be proposed. There are a few popular device

combinations that benefit from information on the material conductivity and involve in-

terplay between the carrier-field dynamics of different materials. Doped semiconductors

have different conductivity properties due to impurities (Sah et al., 1957), and the junction

between different doping regions - the p-n junction - has special properties (Smith et al.,

2018). Trapping and recombination between holes, electrons and the trap levels causes 2

currents: the drift current and the diffusion current that flow in different directions when

part of a circuit. Because such a junction can only be manufactured through specialised

processes, the conductivity properties of the material and dopant should be pre-estimated.

A transient carrier measurement for each material is crucial in this case. This information

can be used to model the conductivity properties of different regions across the p-n junc-

tion and aid in the estimation of the drift and diffusion currents. When operated in reverse

bias, the mode in which current doesn’t naturally flow through the carrier depleted central

region (Mao et al., 2017) in it’s resting state, the diode can generate current from optical

absorption. This device is known as a solar diode, and its properties are based on the

size of the depleted region (Proctor et al., 2013). Transient carrier spectroscopy can easily

identify these depleted regions, again giving insight into the junction operations. This can

be especially useful for more complex junctions and diodes that can consist of multiple

doped layers and depleted regions. The premise of performing carrier spectroscopy on a

multi-composite device is explored experimentally later on in the text.

1.4 About this Thesis

This thesis will introduce the reader to the field of Terahertz Imaging which lies within the

larger discipline of nonlinear optics - a subset of the photonics methods used in modern

research. The introduction has served as a background and the next chapter, Chapter 2,

offers deeper technical insight into the processes that are crucial to this work. These include

nonlinear field interactions, ultrashort pulses, optical rectification, and the electro-optic

sampling process. The subsequent chapters contain practical and technical descriptions

and results regarding the successful implementation of novel techniques; Chapter 3 presents

what has been the central result of my PhD endeavour, which is the conception of an

ultrafast Hot-Carrier Microscopy based on terahertz waves, which was largely my own

work. Chapter 4 covers a novel and influential imaging methodology developed in the
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deployment of this PhD work, the Nonlinear Ghost Imaging. I stress here that while

my specific contribution to this technique is within the experimental implementation in

a much larger team-work, the chapter will guide the reader through the background, the

conception, the theory and the experimental results. Chapter 5 features a final reflection

on work, its impact and also a reflection on my general experience during the development

of my PhD a truly fun, inspirational and welcoming part of my career. In that, there is

my hope that bits of wisdom (if any) could serve the next generation of PhD students.
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Chapter 2

Methods in Terahertz Generation

and Detection

Since its generation became possible in small-scale laboratories (Auston et al., 1980) the

field of THz radiation has been evolving in steps that mark the development of crucial

new methodologies. This chapter is about optical methodologies that were used in this

work, methodologies which mainly concern the generation and detection of THz radiation.

This includes some of the fundamental mathematical descriptions of photonics as well as

justifications for the parameters that are linked via fundamental relations. The background

of these methodologies can be complex and thus the descriptions in this thesis should not

be considered exhaustive, however they are sufficient to cover the necessary background.

2.1 Optical Methods for Terahertz Generation

Terahertz generation technology has improved in recent years (Mittleman, 2017), (Papaioan-

nou and Beigang, 2021) and now consists of a wide range of technologies; from ready-to-

buy Continuous-Wave (CW) sources such as the Backward-wave Oscillator (Dayton et al.,

1987) to ultrafast sources like the wide-aperture photoconductive antenna (Fattinger and

Grischkowsky, 1988). This thesis will focus on the utilisation of nonlinear quadratic crys-

tals to generate THz radiation via optical rectification for multiple practical reasons. In-

deed, at the basis there is the need to operate with wide-bandwidth pulses to achieve

the time-domain imaging targeted by this work. However, when compared to alternative

technology, the combination of nonlinear crystals with high-energy ultrafast laser is a very

accessible route to obtain the high terahertz fluence requires to illuminate relatively large

targeted areas.
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2.1.1 Ultrashort Pulses

Because of the inherently low conversion efficiency that characterises terahertz generation,

high power ultrashort laser pulses are a general requirement for large area illuminations.

A mode-locked regenerative amplifier (Regen) (Murray and Lowdermilk, 1980) is used to

produce these pulses which are of millijoule energy, Gaussian in shape, and as transform

limited pulses are well confined (Curley and Ferguson, 1991) in the frequency and time

domain. The creation of this sort of pulse first occurred decades ago by a process called

Chirped Pulse Amplification (CPA) (Strickland and Mourou, 1985) that was designed to

increase the maximum field amplitude of the Regen pulse; this work later won the Nobel

prize in Physics.

2.1.2 Nonlinear Optical Mechanisms

The term nonlinear optics, refers to the general observation that in a medium the po-

larisation field is in general non-linearly related to an exciting electric field. This means

that assuming the relation between the medium polarisation density and the local elec-

tric field as P̃ (t) = ε0χ ˜E(t), that susceptibility tensor χ also exhibits a dependence from

the electric field. While this is a condition in most frameworks, nonlinear products are

generally visible only for significantly large fields (Boyd, 2003). Because of the relatively

high instantaneous electric field expressed in ultrashort pulses, they are a common means

to excite significant electromagnetic nonlinear products. Relevant to this thesis, ultrafast

electronic nonlinearities, i.e. nonlinear mechanism driven by a non-elastic displacement of

the electrons bounded to atoms, are generally perturbative. This means that that suscept-

ibility tensor can be expanded in a power series (Boyd (2003)). In a scalar representation

for fields, this results in a standard expression for the polarisation density field

P̃ (t) = ε0χ
(1)E(t) + ε0χ

(2)E2(t) + ε0χ
(3)E3(t) + .... (2.1)

P̃ (t) ≡ P̃ (1)(t) + P̃ (2)(t) + P̃ (3)(t) + ... (2.2)

Interestingly, many optical materials exhibit microscopic inversion symmetry at atomic

level. Because the polarisation must (Ito et al., 1975) preserve the electric field sign, this

means that odd order susceptibility are in general vanishingly low. Conversely quadratic

nonlinear crystals, as the typical media exploited for optical rectification, exhibit a very

pronounced microscopic crystalline symmetry breaking, resulting in the χ(2) being the sole

most relevant contributor to the nonlinear polarisation response. Assuming a propagating



23

monochromatic we cast the identities

Ẽ(t) = Ee(−iωt) + E∗e(iωt) (2.3)

Ẽ2(t) = EE∗ + E∗E + E2e(−2iωt) + E∗2e(2iωt) (2.4)

We can observe that the quadratic product implies that resulting polarisation contains

a static zero frequency component and a frequency doubled component.

The frequency doubling effect can be seen in the case of Lithium Niobate, where a

pronounced blue beam is produced from the nonlinear conversion of an 800 nm pulse.

This intense Second Harmonic generation is in this case an unintended effect.

Figure 2.1: An image of the second harmonic of an 800 nm excitation of a prism-cut

Lithium Niobate crystal.

The resulting static polarisation component

P̃ (t) = ε0χ
(2)EE∗ + c.c (2.5)

is at the origin of the terahertz generation. This can be appreciated considering the

multiple frequency components ωj that make up the electric field spectrum of an ultrashort

pulse. Focusing on the interaction between photons at frequencies ω1 and ω2 we can write

the nonlinear polarisation product as

Ẽ(t) = E1e
(−iω1t) + E∗1e

(iω1t) + E2e
(−iω2t) + E∗2e

(iω2t) (2.6)

Ẽ2(t) =E2
1e
−i2ω1t + E2

2e
−i2ω2t + (E1E2 + E2E1)e

(−i(ω1+ω2)t)+

(E2E
∗
1 + E∗1E2)e

(i(ω1−ω2)t) + E1E
∗
1 + E2E

∗
2 + c.c

(2.7)
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This implies the existence of three distinct frequency transformations in the polarisa-

tion density that are source of electromagnetic field: ωi → 2ωi, ω → ωi−ωj , ω → ωi +ωj ,

These processes are the commonly referred to as Second Harmonic Generation (SHG),

Difference Frequency Generation (DFG), Sum-Frequency Generation (SFG). The remain-

ing terms are static field components that do not propagate. Because of the typical

bandwidth of ultrafast pulses, the oscillation frequency of the DFG term is in the order

of the THz scale. Hence, this term is the common source of the THz radiation and the

all process takes the name of optical rectification (OR) when excited from a single optical

pulse. They are known as second-order parametric processes, as the system preserves its

quantum state after a ‘three photon’ interaction, represented in fig 2.2. The system in

the Fig 2.2 comprises an initial state and virtual excited states. In these lossless processes

frequency is transformed with proportionality to χ(2). In the SHG process, two low energy

photons with identical frequency interact within the material and are transformed into one

high energy photon with a doubled frequency. Similarly in SFG, two non-identical photons

interact and are transformed into a single photon with a frequency that is the sum of that

of its constituent parts. DFG is a process wherein one photon can excite the material to

virtual state, then decay emitting two photons.

Figure 2.2: Illustration of the processes of Second Harmonic Generation, Sum Frequency

Generation and Difference Frequency Generation. The dashed lines represent virtual en-

ergy levels.

Interestingly, the way the system exhibits inversion symmetry affects which process

can be observed and in what specific propagation geometry. In fact, optical rectification is
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Figure 2.3: Illustration of an optical pulse causing an electronic transient while passing

through a nonlinear quadratic crystal. Low frequency radiation in the THz region is

produced as the optical pulse passes through.

often not allowed for propagation along crystal axes (Wyncke and Brehat, 1989). Changing

the axis of transmission (Auston, 1983), or changing the desired propagation geometry to

a non collinear type (Suizu et al., 2009), is used to circumvent these issues.

If all requirements are met then the optical pulse causes a changing polarisation density

Bass et al. (1962), where energy is transferred to the material lattice and partial excitation

and relaxation occurs due to the incidence of energy in the short wavepacket and its

creation of a dipole distributed electronic transient (Rice et al., 1994). Ultrafast (or

ultrashort) pulses are clearly better suited for this application than CW lasers due to

the available instantaneous energy; CW lasers are inherently inappropriate for THz OR

applications. The OR process is illustrated in Fig 2.3. To describe the optical rectification

process it is important to consider the wavepacket itself to determine the nature of the

polarisation created in the system. The wavepacket is considered to have a finite range of

frequencies distributed around a central wavelength. Following the argument by Schneider

et al. (2006) the polarisation created can be described by

Pi(Ω) = ε0

∫ ω0+δω/2

ω0−δω/2
dijk(−Ω;ω + Ω;−ω)× Ej(ω + Ω)E∗k(ω)d(ω) (2.8)

where ω0 is the central frequency of the optical pulse, δω is its bandwidth, Ω is the

frequency and dijk is the relevant element of the χ(2) for collinear transmission at a selected

material lattice rotation. The Fourier transformed elements of the electric field are Ej(ω+

Ω) and E∗k(ω).

Because the nonlinear susceptibility tensor (Boyd, 2003) many repeating or empty
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entries, the term χ(2) with frequency dependence can usually be substituted for a scalar

matching the desired element χOR (Ito et al., 1975). For a zinc-blende crystal this integral

can be expressed in terms of the rotation angle around the axis of field propagation (Rice

et al., 1994). The field emission strength is dependent on the axial angle with respect to

the propagation direction.

The electric field that corresponds to this polarisation can be found analytically but

is beyond the scope of this thesis.

2.1.3 Phase Matching

Momentum conservation in nonlinear processes is related to wavevector (Boyd, 2003)

matching between the input and output photons of a single parametric process. For

example, an SHG process will hold Wyncke and Brehat (1989) a requirement of k2ω =

kω1 + kω2 between photons 1 and 2, which have the same frequency. In optical rectification

the phase matching can be basically stated as that of a DFG process (Schneider et al.,

2006)

k(ωoptical − ωTHz) = k(ωoptical)− k(ωTHz) (2.9)

The phase matching occurs between three frequency elements of the optical pulse where

the THz is the ’signal’ and the idler is the unwanted optical frequency component (ωoptical−

ωTHz). This implies that THz generation by optical rectification has a limited efficiency

(Yeh et al., 2007). The phase matching geometry is shown in parts (a) of Fig. 2.4. In prac-

tise, the issue of defining this scheme will depend on the isotropy Fiore et al. (1998) of the

medium, which describes the symmetry of the interacting optical system. The momentum

conservation inside the crystal often implies that different pulse elements have different

phase velocities, which limits phase-matched nonlinear quadratic effects to anisotropic

systems. For parametric processes, Type 1 phase matching allows frequency element 1

and 2 to have parallel polarisations and Type 2 allows them to have orthogonal polarisa-

tions Ito et al. (1975). When considering a THz DFG process, broadband phase matching

maximises the conversion efficiency of OR processes across the frequency elements of the

interacting system. In order to find this maximal efficiency the medium thickness must be

limited to allow for absorptive effects. This concept can be visualised by considering the

1-D nonlinear wave equation in a material under excitation of a linearly polarised pulse

∂E(ω)

∂z
+

[
ω2n2(ω)

c2
− iωµ0σ(ω)

]
E =

−ω2µ0
χOR(ω;ω0)

n(ω0)c
exp[−i(ωng/c)z]exp(−α0z)I0(ω),

(2.10)
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where α0 is the absorption coefficient at ω0, n(ω) is the phase index (of the THz) and ng

is the group index of the optical pulse, I0 is the input pulse shape at frequency ω, µ0 is

the permeability of free space, z is the distance in the direction of the pulse propagation,

c is the speed of light, χOR is the relevant element of the nonlinear susceptibility tensor,

and σ is the conductivity at ω.

The generation length Lgen (Schneider et al., 2006) is the absolute value of the solution

to the nonlinear wave equation of the rectified field and is a measure of the process efficiency

in the direction of the pulse wavevector, z,

Lgen(ω, z) =(
exp [−αT (ω)z)] + exp (−2α0z)− 2 exp{−[αT (ω)/2 + α0]z} cos{ωc [n(ω)− ng]z}

[αT (ω)
2 − α0]2 + ω

c
2[n(ω)− ng]2

)1/2

(2.11)

where αT is the absorption coefficient of the THz in the medium. This expression shows

explicitly that the group index of the optical pulse must match the phase index of the THz

pulse to maximise the expression for each element of the input frequency packet of ω.

2.1.4 Cherenkov Phase Matching

In order to maximise the efficiency of the OR process it is crucial to ensure that wide-band

phase matching can occur(Suizu et al., 2009). The usual scheme for phase matching in

a nonlinear quadratic crystal is collinear, which means that the pump wavevector and

the THz wavevector are parallel. As seen in Fig 2.4, the momentum conservation can be

Figure 2.4: Two Phase Matching Schemes (a) A collinear scheme. (b) A non-collinear

scheme.

achieved using non-collinear propagation of the interacting field. This is subject to the

relevant χ(2) element for the optical geometric arrangement to be non-zero. Historically,
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as ultrashort pulses became shorter and shorter due to the improvement of mode-locked

lasers, physicists sought to understand the effects of increasingly short electric field tran-

sients (Pessot et al., 1987) travelling though bulk crystals. Early on it was demonstrated

Auston (1983) that the ultrashort polarisation transient caused by the incident pulse would

radiate energy in a cone of plane wave frequencies much like an electron travelling at op-

tical speeds in a material. This is because velocity matching in the system ensures that

the DFG emission is excited as an off-axis propagating wave that constructively interferes

in the direction of the Cherenkov angle. The matching condition requires the projection of

the THz velocity on the optical propagation to be the same. As illustrated in Fig 2.5, the

Cherenkov radiation (named after the analogous effect in electrons) is emitted from a χ(2)

material by an optical rectification process. The angle of the wavefront is the Cherenkov

Figure 2.5: Cherenkov radiation emitted at the Cherenkov angle ΘC .

angle ΘC , can be expressed as Hirori et al. (2011)

ΘC = γ = arccos
ng
nω

(2.12)

where ω is the THz frequency. The emission is radial about the propagation axis and

fully three-dimensional Auston et al. (1984). This means that the cut, size, and rotation

of the crystal are the crucial element in directing the THz (Hirori et al., 2011), forming

a stable planar wavefront, and allowing absorption to diminish the THz moving in un-

wanted directions through the crystal. For the purpose of non-collinear THz generation

the nonlinear crystal is often prism-cut or prism-coupled (Tani et al., 2011); these dif-

fractive elements are designed to allow for plane wave emission of the THz wave from the

crystal facet. Selecting a prism-cut crystal cannot cause broadband phase matching or

increase the Cherenkov generation efficiency.
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2.1.5 Tilted Pulse Excitation

To achieve true broadband phase matching in a Cherenkov-type optical rectification pro-

cess the pulse front can be manipulated (Auston et al., 1984). The group front of an

ultrashort pulse emitted from a regenerative amplifier is flat (Maine et al., 1988), meaning

that the entire lateral Gaussian spatial distribution arrives concurrently. This influences

the front of the transient, though the arrival time can be distributed throughout the lateral

pulse front by use of a diffractive optical element or optical chirping (Jiang and Zhang,

1998).

Figure 2.6: Tilted pulse excitation of LiNb03.

The tilted front can be created from the image of a beam that is incident on a diffractive

optical element. The tilt angle is selected to match the Cherenkov angle of the nonlinear

medium (Ravi et al., 2015), accounting for refraction if the medium is prism coupled.

This tilted pulse-excitation greatly improves the efficiency of OR in many non-isotropic

materials. Careful imaging of the tilted front (Hirori et al., 2011) can help to tune the

size of the group front to further maximise the optical field in the crystal. The general

schematic of this process is illustrated in Fig. 2.6.

The angle of the tilted front γ is matched to the image of the grating with angular

parameters of incidence and diffraction θ Hirori et al. (2011). The degrees of freedom

in this optimisation problem are the grating magnification factors, where the factor β1

is a horizontal magnification factor for the pump pulse front and β2 is the horizontal

magnification factor for the grating. The first matching expression is

tan γ =
mλ0p

ngβ1 cos θd
, (2.13)

where m is the diffraction order, θd is the diffracted angle, p is the grating groove density,

λ0 is the central pump pulse wavelength and ngrp is the group refractive index at the pump

wavelength. The second expression is

tan θ = nβ2 tan θd, (2.14)
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where n is the pump pulse refractive index for the χ(2) material. Horizontal magnification

is used in LiNb03 tilted pulse excitation to avoid reaching the damaging threshold of the

material (Hirori et al., 2011) by over-focusing in the ’un-tilted’ directions that do not

correspond to the desired phase matching arrangements. Tilted pulse excitation increases

the width of the phase matching band for wavevectors that are firmly in the x-y plane,

because of the chosen tilt orientation (Ravi et al., 2015). This helps to enhance THz

emission in the desired flat, planar wavefront.

2.2 Electro-Optic Detection of Terahertz Radiation

This work exclusively utilises the Electro-optic detection method and other variations due

to its many advantages. The method is phase coherent (Wu and Zhang, 1995) and used

to detect long-wavelength radiation such as radiation in the Mid-Infrared (Keiber et al.,

2016) to THz range; it requires limited special equipment and produces a large electronic

signal with many modes of noise reduction available.

2.2.1 Electro-Optic Sampling

This method analyses the polarisation of a probe pulse that passes through a χ(2) material

that exhibits the linear electro-optic effect ie. Pockels’ Effect (Gallot and Grischkowsky,

1999). A birefringence is generated in the medium upon incidence of a THz pulse (Jepsen

et al., 2011) which alters the polarisation state of the optical pulse, which can then be read

with polarisation analysis. In the case of Fig. 2.7 this analyser is a polariser, which rejects

one component of the polarisation at a separate angle, after a quarter wave plate, which

retards one polarisation component with respect to another. The wave plate transforms

the linear polarisation to circular and the polariser spatially separates the components

which then have their relative intensity read by balanced detection. The differential phase

retardation shows the phase effect of the electro-optic modulation, indicating the effect of

the THz field on a probe beam in a given medium. This time-dependent quantity is δφ

(Wu and Zhang, 1995) and is found from a standard electro-optic detection. Birefringent

and non-birefringent crystals had their theoretical responses compared by Leitenstorfer

et al. (1999), who expressed the phase retardation imposed by a < 110 > Zinc Telluride

crystal as

δφTHz(t) =
ω

c
n3or41ETHz(t) · dz (2.15)



31

Figure 2.7: A THz pulse and an optical pulse interact in an nonlinear quadratic medium.

THz birefringence alters the refractive index of the medium which alters the polarisation

of the optical pulse.

for an infinitesimal propagation in z, where t is the differential time delay between the

THz and probe, r41 is the relevant scaled constant from χ(2), and no is the refractive index

along the ordinary axis. For a crystal like b-cut Lithium Niobate the differential phase

retardation can be expressed as

δφTHz =
1

2

ω

c
(n3or13 − n3er33)ETHz(t) · dz (2.16)

where the relevant elements of χ(2) are different for the ordinary and extraordinary axes.

Lithium Niobate has an additional phase retardation contribution that originates from

its’ innate birefringence

δφnat =
ω

c
(ne − no)dz (2.17)

which is only dependent on the intrinsic properties of the crystal and its length. These

expressions can be integrated over the crystal length, though Jones’ Calculus is required

to consider their effects on the polarisation components of an axial beam (Jones, 1941).

2.3 Optical Pump-Terahertz Probe Approaches

This section offers further technical detail into the processes covered in the background.

Because our later methodology depends on the measurement of carrier processes, the effect

of the light-matter interactions on material parameters such as the dielectric function is
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explored also.

2.3.1 Optical Absorption and Carrier Excitation in Condensed Matter

Figure 2.8: Materials absorbing a photon of energy. The available states are filled by

electrons (red) and holes (black) h̄ω.

An illustration of carrier absorption can be seen in Fig.2.10. When a metal or metal-

like material absorbs a photon an electron is excited to the conduction region causing the

displacement of a hole. The energy of the photon doesn’t inhibit the absorption process.

For the semiconductor the photon again displaces the hole, but only if the energy is

sufficient. In an insulator the photon energy is redistributed to the lattice because of the

large bandgap energy.

This problem can be quantified by treating the perturbed hamiltonian of the system

with Fermi’s Golden Rule (Rossler, 2009). The probability of electron absorption in con-

densed matter resulting in a band transition between states is described in many texts;

Bassani and Parravicini (1993) states it to be, per unit time

Pνkisf =
2π

h̄

(
eA0

mc

)2

δsi,sf
∣∣〈ψc,kf |ε̂ · p|ψv,ki〉∣∣2 δ(Ef (k)− Ei(k)− h̄ω) (2.18)

where A0 is the magnitude of the vector potential of the incoming light with polarisation

ε̂, e is the magnitude of the electron charge, h̄ is the reduced Planck’s constant, c is the
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speed of light, m is the free electron mass, p is the momentum operator and ψv,ki ,ψc,kf

are the valence and conduction band wavefunctions that have energy Ef (k), Ei(k). The

initial and final states are labelled i, f and the process conserves the spin s. This single-

electron interaction is simplified when compared to a real case as it ignores the influence

of the hole, which drops to the lower band in the case of absorption. The probability also

gains an optical intensity dependence when the bands are considered to not be entirely full

or empty (Lyon, 1986); band filling effects decrease the absorption in a given area of the

material. The probability for a transition can be expressed in a simpler form by Bassani

and Parravicini (1993) as

Pνkisf =
2π

h̄

(
eA0

mc

)2

δsi,sf |e ·Mev(k)|2 δ(Ef (k)− Ei(k)− h̄ω) (2.19)

where Mev(k) is the matrix element

e ·Mev(k) =
〈
ψc,kf |ε̂ · p|ψv,ki

〉
... = ε̂·

∫
ψ∗f (k, r)(−ih̄∇)ψi(k, r)dr

(2.20)

where the integral is evaluated over the crystal volume. The wavevectors that are ap-

plicable for the transition are distributed with a density V/(2π)3 in k-space where V is

the crystal volume. Because of the approximations made these equations are valid for

’vertical’ transitions only where kf ≈ ki (Bassani and Parravicini, 1993). The number of

transitions induced by photons of h̄ω per unit volume between all valence and conduction

bands is

W (ω) =
2π

h̄

(
eA0

mc

)2∑
i,f

∫
2dk

2π3
|e ·Mev(k)|2 δ(Ef (k)− Ei(k)− h̄ω) (2.21)

where the integral extends over the allowed wavevectors k. The process of absorption

alters the complex dielectric constant of the material,ε = ε1 + iε2, and as expressed by

Bassani and Parravicini (1993) this constant is related to W (ω) by

ε2 =
2πc2h̄

A2
0ω

2
W (ω) (2.22)

where the real component of the dielectric function can be found by utilising the Kramers-

Kronig relation, resulting in (Bassani and Parravicini, 1993)

ε1(ω) = 1 +
8πe2

m2

2π

h̄

(
eA0

mc

)2∑
i,f

∫
2dk

2π3
|e ·Mev(k)|2

[Ec(k)− Ev(k)]/h̄

1

[Ec(k)− Ev(k)]2/h̄2 − ω2

(2.23)
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To conclude, a photon absorption can induce changes in the real and imaginary parts

of the dielectric function, thus changing the absorption and delay of the system.

2.3.2 Thermalisation and Recombination

The absorption process changes the dielectric function because of the formation of quasi-

free hot carriers. Carriers thermalise towards the ground state, via different scattering

processes. However, when the excitation is provided by ultrashort pulses, thermalisation

processes can be even several order of magnitude slower (Agarwal, 1975). This means that

it is possible to follow the track recombination response, revealing properties that mediate

the carrier-recombination, and this can be done using a short pulse as excitation and a

short pulse as a probe of the dielectric function.

Thermalisation of carriers is part of the bulk relaxation and recombination processes in

excited semiconductors whereby the carrier dynamics are similar to that of conductors.

Therefore this time is intrinsically related to the time constants of the recombination

processes that were previously mentioned in Fig. 1.6. The major contributing transition is

the band-to-band radiative transition which emits a photon of energy h̄ω, the trap-assisted

recombination process which normally dissipates energy in phonons, and the Auger process

which is an uncommon three-particle interaction between the electron, hole and a second

electron which is excited within the conduction band (Bullis and Huff, 1996). However,

the type of process that occurs is also dependent on the time that has elapsed since

the initial absorption; directly after the absorption the electrons in the conduction band

relax, releasing energy or phonons through electron-electron and electron-phonon processes

(Lyon, 1986). These processes largely involve scattering (Rossi and Kuhn, 2002), allowing

the electron distribution to reach the lowest available energy state in the band.

To consider the how the probability of any of the recombination processes occur-

ring affects the dielectric properties of the material the constant can be expressed in its

oscillator-mode based basic form (Hopfield, 1958) which excludes dissapitive interactions

ε(ω) =
∑
j

4πβi
1− (ω2/ω2

j ) + iγjω
(2.24)

where ωj is the resonant frequency of a particular mode. γj is the transition probability

for the jth decay mode, and βj is the polarisability of the jth decay mode. These decay

modes are carrier-photon or carrier-phonon interactions that lead to the loss of energy of

a particular exciton - in the simplest case when a single type of decay occurs γ−1 = τ , the

lifetime of the exciton. These lifetimes are characteristic of the transition.
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The immediate non-thermal (hot) carrier relaxation and activity in the conduction

band can be characterised by a lifetime τ0 that is dependent on the plasma oscillation

frequency ωp as Fann et al. (1992)

τ0 =
128

π
√

3

1

ωp
(2.25)

which is an ultrafast process of the order of fs (Fann et al., 1992). The subsequent

thermalisation is the process alters the complex dielectric function of the material in the

excited region also. There are some associated lifetimes, for example the time constant

for radiative recombination is roughly inversely proportional to the carrier concentration

of the material (Hall, 1959).

Hence, by mapping the dielectric constant and discerning the different decay dynamics

occurring as the carrier relaxes, we can extrapolate the time-constants and associate them

to the magnitude of the ongoing recombination processes, highlighting material properties.

2.3.3 Probing with Terahertz Fields

Once carriers are excited in a material there are multiple methods of profiling the sub-

sequent dynamics, and even some of probing minute details in the thermalisation if

everything is kept at ’ultrafast’ limits (Joyce et al., 2018). It is possible to detect these

transients using optical probe reflectance measurements or ellipsometry (Yoneda et al.,

2003) wherein a weak, polarised optical pulse is directed onto the thermalised region and

either transmitted through or reflected from the sample then analysed for polarisation

change. By varying the arrival time of the pulse the full transient can be reconstructed,

including the thermalisation and relaxation, and if given sufficient temporal resolution

so can the carrier processes. These processes, as mentioned to be scattering, diffusion,

surface recombination (Heinz et al., 2017), etc produce small changes in the transient that

last between a couple of picoseconds and tens of picoseconds; the overall recovery can

even last nanoseconds in bulk semiconductors like Silicon (Fossom et al., 1983). It can be

deceptive to consider the polarisation analysis of this weak probe as indicative of polar-

isation sensitivity of the ellipsometry measurement. In fact, the measurement lacks phase

coherence because the measured polarisation signal is an intensity, and only proportional

to the intensity of the field attenuation caused by thermalised carriers. Because of this

any complex parameters involved in the thermalisation process are effectively non-existent

to the optical probe; this includes anything to do with an induced phase change such as

the complex refractive index and complex dielectric function. In order to measure these
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parameters a different approach is required therefore this is where THz probing comes in

as a coherent approach to carrier dynamic measurement. To a THz wave the lattice is

deeply subwavelength. THz probe is physically a ’THz Time Domain Spectroscopy’ setup

- it consists of a THz generation arm and a detection arm with space for a sample placed

in a chosen region. In this arrangement it is the sample that is excited by the optical

probe and is either placed confocally in the far-field or within the near or pseudo-near-

field region. As with an ordinary THz spectroscopy setup a TDS is obtained of the sample

space containing spectral details from the sample, and in the case of a thermalised sample

excited by an optical pump these spectral details will include phase changes from which

the previously mentioned complex parameters can be extracted.
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Chapter 3

Terahertz Hot-Carrier Microscopy

As introduced in the previous chapter, the idea of mapping the recombination dynamics

of hot carriers in order to infer physical/chemical properties of targets has been pursued

within the framework of point-like probing. This means that, in the art, spatially resolved

videos of the recombination dynamics mapped via terahertz scattering can be obtained by

repeating the acquisition on different part of an object. By changing the delay between

an optical pump pulse and a terahertz probe, the scattered terahertz field reveals the dy-

namics in each point of the object surface. However, although the literature is not always

straightforward on this specific point, there are some underlining hypotheses on this pro-

cess. (i) The carrier dynamics in a point of the object are completely uncoupled with the

dynamics in a adjacent point. (ii) The effect of the pumping mechanism is fundament-

ally local, meaning that the excitation of a specific point relates only to the illumination

impinging that specific point. (iii) The variation of the detected terahertz field directly

relates only to the illuminated point.

While all conditions are easily fulfilled in homogeneous bulk under homogeneous pump-

ing, we could argue that this is not necessarily true in presence of structured devices.

Besides, we can also argue that this is exactly the case in which imaging becomes a neces-

sary diagnostics. Last, it is indeed trivial that in imaging complex structures the coarse

terahertz wavelength is not a desirable resolution limit, and that optical pumping allows

for a significant more spatially resolved excitation morphology. Those elements are the

main rationale behind my work on Optical Pump Near-Field Microscopy, which answers to

the challenge of terahertz-imaging simultaneously the carrier recombination dynamics on

large surfaces with arbitrary excitation dynamics and resolution approaching the optical

diffraction limit.



38

3.1 Optical-Pump Near Field Terahertz Microscopy

Optical Pump-Near Field THz Microscopy (OP-TNFM) is our novel technique towards

terahertz hot-carriers Microscopy, that allows for complex analysis of semiconducting ma-

terials. The basic idea of this approach is to fuse a large parallel terahertz imaging tech-

nique with sub-wavelength resolutions of large area excitation. The basic steps that are

used to implement this methodology occur concurrently within the setup. A target is sim-

ultaneously illuminated by an ultrashort THz pulse and an intense ultrashort optical pulse.

The latter causes photo-promotion of carriers in a semiconductor that has a bandgap smal-

ler than the pulse energy. The relative time delay between the optical and THz pulse is

then changed, allowing the mapping of the spatially-distributed optical carrier interaction

in a set of images at specific delays. The image set shows the carrier distribution evolving

with respect to the initial excitation. This target is an object placed in the near-field

region of a large electro-optic sensor which results in the temporal dynamics of the tera-

hertz field amplitude in different points being resolved in parallel over a large area. Due to

the near-field detection, the field distribution can be resolved with sub-wavelength spatial

resolution.

For the embodiment of the methodology that was realised in this thesis, high energy

ultrafast laser pulses, centred at 800 nm, from a Coherent Libra He+ regenerative amplifier

were used. This wavelength was chosen because it is suitable for THz generation via tilted

pulse excitation in Lithium Niobate and is also an appropriate energy to excite carriers in

semiconductors like Silicon. The THz radiation was generated by P1 (see fig. 3.1) used

for non-collinear tilted pulse excitation of prism-cut LiNb03, producing high energy pulses

centred at 0.7 THz via the nonlinear quadratic process of optical rectification. These

pulses were focused onto the detection crystal, a 20 µm thick x-cut LiNb03 mounted on

a glass substrate. A low energy probe pulse, P2, centred at 800 nm was imaged onto the

lower surface of the detection crystal, with its corresponding imaging plane positioned

at a CMOS array. This allows a high-resolution image to be taken of the polarisation

distribution region near the upper facet of the detection crystal, and therefore the sample

is placed within this region. Concurrently, P3 is magnified and imaged onto the plane of

the detection crystal, freeing carriers in the sample and thus changing its conductivity,

affecting the polarisation distribution that is recreated in the CMOS plane. When a

THz image is taken of a semiconductor or insulator, the THz pulse is imprinted with the

spectral fingerprint of the material. When a series of THz images is taken the full THz

waveform can be reconstructed in time by varying the delay of P1 throughout the set, or
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the recombination dynamics of the hot carriers on the sample surface can be reconstructed

by varying the delay of P3. The target on the detection crystal will have its field interaction

spatially reproduced at the imaging plane reproduced at the camera plane by splitting the

beam into polarisation components to detect the small birefringence change caused by

electro-optic effect in the detection crystal under influence of the THz field. The process

of electro optic detection is coherent, whether photodiode or CMOS detection is used, as

phase information of the field is preserved either way. Therefore a single CMOS detector is

used to take a differential measurement between the polarisation components of the beam,

allowing the components to remain synchronised, and a dynamic subtraction technique is

utilised to increase the signal-to-noise ratio. This dynamic subtraction was implemented

by synchronising a chopper to block the THz pulses in every other frame, thus providing

a set of background ‘dark’ frames to subtract noise from the ‘light’ frames.

Figure 3.1: Full experimental diagram of the free space setup. All focal lengths stated

are in mm.( DG – Diffraction Grating, BS – Beam Splitter, L – Lens, PBS – Polarising

Beam Splitter, TS – Translation Stage, TPF – tilted Pulse Front, λ – waveplate, P – Gold

Parabolic of 1 inch diameter, Pi are pulses described in the next paragraph.

The Terahertz Source

Tilted pulse excitation of prism-cut LiNb03 crystal in the Cherenkov geometry was util-

ised for THz generation. The pump that excites this process is Gaussian in shape and

collimated and can be described as horizontally polarised. As seen in Fig 3.1 the sub-mJ
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energy optical pulse, with a length of 105 fs, enters the setup where energy is deflected

twice to create the screening pump arm and then the probe arm using a 0.1 neutral density

filter and a 92 : 8 beam sampler respectively. The pump is then directed to a delay stage

that offers 630 ps of variable delay. The next part of the arm creates a tilt in the phase

front of the pulse the design of which is Hirori et al. (2011), and this tilt is created by

first entering a holographic reflective grating of groove density 1800 cm−1 at incident angle

of Θi = 35.3◦ creating a zeroth order diffraction at an angle Θd = 55.7◦ from the grating

normal. The first order from the grating is discarded (which limits the efficiency of the

process). The zeroth order pulse is allowed to propagate through a half wave plate set

to rotate the polarization to a vertical orientation and a Keplerian telescope consisting

of cylindrical lenses of focal length f1 = 250 mm and f2 = 150 mm arranged confocally

to create a grating image at a distance f2 from the second lens. This image coincides

with a face of the prism cut LiNb03 which has prism angle 62 ◦; this angle coincides with

the grating image angle because of the resizing from the lenses. To focus the THz plane

wave that is emitted from the crystal face a system of 3, 1 inch gold coated parabolic

mirrors are used with focal lengths f1 = 25.4 mm, f2 = 76.2 mm and f3 = 50.8 mm that

are arranged confocally with distances of separation f1, f1 + f2, f2 + f3, f3. The THz is

chopped with a mechanical chopper placed between the final two parabolics so that both

lock-in detection and dynamic subtraction imaging can be performed. This final section

of the arm expands the THz beam and then focuses it down to a waist size of 1 mm on

the horizontally-oriented crystal plane.

Electro-Optic Detection

The probe beam is reduced to 4 mm in size using an iris and then enters an f = 300 mm

lens after 300 mm of propagation. After 400 mm of propagation the beam enters the first

100 mm lens of the periscope system which consists of 3, 100 mm lens confocally arranged

(200 mm apart) with a final 100 mm of propagation between the final lens, called the

imaging lens, and the detection crystal face. The system is designed to direct the beam to

enter the crystal from below such that the crystal can be simultaneously exposed to optical

and THz radiation from below and above respectively. Because of the 3× magnification

applied at the entry to the system the size of the probe image on the crystal is 1.3 mm; the

corresponding imaging plane is at the initial iris. A very thin detection crystal is placed

at this plane to maximise the image resolution by limiting the size of the detector region.

The detection crystal is a 20 µm thick b-cut LiNb03 crystal mounted on a 1 mm− thick
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Figure 3.2: Stylised and labelled setup diagram.

glass substrate for mechanical stability, polished and coated on the top and bottom sides

with HR-coating and AR-coating respectively. The coatings on the detection crystal are

designed for minimum reflection of the probe pulse from the lower crystal facet upon entry

and maximum reflection from the upper facet to prevent probe losses. The reflected pulse

then re-enters two of the arranged 100 mm lenses but is deflected by a 50 : 50 beam splitter

cube before reaching the initial periscope entry. The beam confocally enters a Keplerian

telescope with two lenses of focal length f1 = 75 mm and f2 = 150 mm to expand its

size, and a quarter wave plate to introduce phase retardation between the polarisation

components of the probe. The orientation of the wave plate is set to balance the intensity

of the polarisation components as detected by a balanced pair of photodiodes later in the

setup but first the components are spatially separated by a 50 : 50 polarising beam splitter.

Each polarisation is split again by 50 : 50 non polarising beam splitter which creates two

pairs of polarisation components with each pair propagating at right angles with respect

to each other. One pair is incident upon a CMOS detector array (The Imaging Source

DMK23UP1300) placed 150 mm optical distance from the final lens of the periscope, the

lens described as f2 = 150 mm from the final Keplerian telescope. This places the CMOS

sensor array at a corresponding imaging plane to the detection crystal and the initial iris.

At the CMOS plane, an image of the background-subtracted polarisation map of the THz

induced birefringence is visible for each polarisation component of the probe pulse. The

remaining pair of probe polarisation components are directed to the previously mentioned

custom balanced photodiode pair.
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Ultrafast Carrier Excitation

The energy deflected from the main pulse by the 0.1 neutral density filter is used to excite

carriers in a sample placed near the crystal plane. This arm contains around 40 µJ of

energy and is directed over the periscope setup into a Galilean telescope of f1 = 300 mm

and f2 = −75 mm placed 225 mm apart. The beam is now tightly confined, allowing for

more energy to pass through the later iris and be available for carrier excitation. The

beam is then directed into a delay stage with approximately 200 ps of variable delay. It is

then clipped by a mask and attenuated before entering a 300 mm lens placed 300 mm after

the iris and directed into a 45 : 55 pellicle placed in the THz beam path 60 mm before

the final f = 50.8 mm parabolic, causing 19 µJ of energy to be imaged onto the crystal

plane. In order for the image to be formed the 300 mm lens and iris are carefully placed

to ensure that the system is in focus, leaving around 350 mm of propagation distance

between the lens and parabolic. The mask is recreated in the imaging plane as an optical

intensity distribution, and an opaque sample that is also placed in this plane will undergo

absorption of the optical field.

3.1.1 Spectroscopic Benchmark of the Microscope

For the purpose of the Optical Pump - Terahertz Near Field Imaging method three possible

detection crystals were compared. The spectra seen in Fig. 3.3 were taken with the same

THz pulse and only differ in their detection properties. It’s clear from the Figure that

an HR- coated crystal produces a spectrum with a higher SNR - this crystal was selected

for experiment. The GaP could perhaps be a great choice for a Near-Field THz imaging

application because it has fewer defects than the ZnTe but a larger bandwidth than the

LiNb03.

3.2 Benchmark Examples of Terahertz Near-Field Micro-

scopy

This section contains Terahertz time-domain near-field images taken with an electro-optic

2D detection utilising coated LiNb03 as the detection crystal.

The first sample is an unbiased spiral photoconductive micro-antenna; as seen in Fig.3.4

it is around 1 mm across and thus should be expected to scatter THz fields on the micron

scale. The sample itself is thin: 300 nm of Au printed on a plastic substrate of around

300 µm. Ideally this sample can act as a photconductive emitter but it requires pumping
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Figure 3.3: A THz trace taken with an uncoated 100 µm thick ZnTe 〈110〉 crystal, a single

side AR- coated 100 µm thick GaP crystal 〈110〉, and a AR- coated and HR - coated 20 µm

thick LiNb03 b-cut 〈100〉 crystal mounted on a 1 mm thick glass substrate.

that matches the absorption profile of the Germanium centre in the UV- range. The

Figure 3.4: Optical image of the spiral antenna with 300 nm thick gold printed on a

plastic substrate. The ticks on the scale are 100 µm

Fig.3.4 shown is an optical image of the sample in Fig.3.5 which is an example of a

partially opaque object to THz. It is sufficiently thin to lie in the near field region of the

THz field detection region so its morphology can be revealed with THz imaging analysis.

Although the gold is not transmissive to THz the sample scatters fields and thus after

a certain time after the arrival of the THz the morphology of the sample is obscured by

scattering. At times before the field peak at t = 0 ps, The THz field is absent in areas

corresponding to the gold film. The scattered THz interferes throughout the image and



44

Figure 3.5: Background subtracted polarisation THz Time Domain images of gold ’Spiral’

sample. The detection crystal used was HR@800 nm- and AR@800 nm- coated LiNb03 of

20 µm thickness.
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Figure 3.6: An optical image of the glucose and fructose crystals measured in experiment,

on a tape substrate.

this coupled with further scattering from structures causes more complex patterns to form

as time evolves. Of interest is the pattern at time around 1.1 ps where the THz scatters

from the Ge in almost a ’square shape. In this way the sample morphology, like the Ge

square, can be revealed at later times.

Sucrose crystals are an appropriate sample for benchmarking the spectroscopic cap-

abilities of the THz microscope. Fructose and Glucose have distinct chemical signatures

in the THz region but are indistinguishable optically. Additionally, the grain morphology

can affect the reconstructed waveform via the THz scattering process. This scattering

information cannot be measured with a standard spectrometer. This sample, seen in Fig.

3.6, was chosen to demonstrate that by using a wide area of parallel illumination a wide

area of THz transmission spectra can be extracted even with binning. The Glucose and

Fructose grains were collected from each sample and placed on a packing tape substrate

that is nearly completely transparent to THz in terms of its low power absorption.

For this dataset in Fig. 3.7 the THz delay has been set to peak in the grain areas of

the image; the THz that passes through the grains arrives slightly after the THz that does

not. As seen in Fig. 3.7, the amplitude of the field in the grains varies between positive

and negative values before scattering occurs several ps after the time of first incidence.

The time between incidence and scattering is dependent on sample morphology, in this

case the sample almost transmits THz uniformly and thus is cylindrical in shape, to the

THz at least.

The Fig. 3.8 shows the extracted spectra, phase and transmission from the images. In

referenced spectroscopy a reference is selected from the same spatial region of the THz but
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Figure 3.7: Background subtracted polarisation THz Time Domain images of sugar and

fructose grain samples. The detection crystal used was HR@800 nm- and AR@800 nm-

coated LiNb03 of 20 µm.

with a sample placed or removed. However, in this experiment the reference is taken from

a separate region which was far from the Gaussian centre of the THz; this is an unfortunate

reality of concurrent reference extraction. Imaging artefacts that are present in the probe

beam also cause regional variations, and possible over- or under- probing if the beam is

saturated or contains hot spots. Here these regional variations in the probe and the THz

have contributed to an under-powered reference that is lower in amplitude than the probe.

A possible solution is to create a Gaussian mask to ’multiply out’ variations. The desired

shape for this mask is slightly problematic because it should not conceal the time evolution

of the THz, nor should it obscure its Gaussian shape and scattering profile. Back to the

discussion of Fig. 3.8, the spectra should be noted not just for their amplitude but also

their spectral shape. The reference contains multiple peaks due to Fabry-Perot reflections
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Figure 3.8: These graphs show (clockwise from top left) the frequency domain spectrum,

time domain spectrum, transmission spectrum, and field phase of two regions of sample

in the image set and one reference.

within the detection crystal. The low frequency peak is likely to be the result of an artefact

in the probe sampling region. The THz time domain spectra show oscillations that are

likely to correspond to THz scattered from the grains’ outside structures arriving at the

detector at slightly different times. All THz spectra taken in air have low amplitude water

absorption lines (though in the case of the grain spectra the scattering is strong enough

to conceal them) but when imaging with thin LiNb03 the low detection bandwidth can

conceal features like this. The transmission spectra of the fructose and glucose show clear

differentiation between the two grains at high THz frequencies. The shape of the crystal

can have a contribution to transmission as can absorption features of the grain both

chemical and morphological. In this measurement it appears that the transmission was

most useful because the field phase is practically identical for the grains. This implies that

the sampling region may be too large to distinguish any significant topographic differences

in the grain as the phase is sensitive to the transmission path of the THz field.
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3.3 Optical Pump-Terahertz Near Field Imaging: bench-

marks

Creating a carrier distribution on a material wafer is the first step of Optical Pump Near

Field Imaging; then obtaining an image of the THz interaction was achieved at a set time.

Subsequently the thermalisation signal from carrier recombination was measured before a

time-of-flight measurement of a multi-composite semiconductor sample was taken.

3.3.1 Spatially Distributing Thermal Carriers

One major goal in the project was parallel illumination of samples and the simultaneous

illumination of different areas. Imaging masks onto the optical beam is the simplest

method to achieve this because it eliminates issues with synchronisation.

Figure 3.9: A distribution of thermal carriers was created on a 380 µm Silicon wafer. The

transients were extracted from the image set.

In Fig. 3.9 part (a) the carrier distribution was created on a Float-Zone Silicon wafer

that is far larger than the microscope field-of-view. The distribution closely follows the

intended beam image but is affected by diffraction in the wafer. This allows for assessment

of the resolution reduction that occurs due to diffraction of the THz between the wafer

facet and the detector. The transients were extracted from the image set as seen in

part (b) and exhibit the long transient recombination that is characteristic of low-energy

pumped Silicon. The recombination times extracted from the dataset are of the order of

ns. However the extraction long recombination time from the short dataset is not accurate

enough to include in the results. A longer delay stage is crucial in extracting characteristic
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Figure 3.10: The line plot taken from the inset and THz image of the Fig. 3.9.

recombination times from the thermal carrier distribution. The two regions that have had

their transients sampled show slight differences in recombination and absorption signal

amplitude. The subtlety of these differences make it hard to determine whether they are

due to truly unique dynamics in the region or probe sampling inaccuracies.

Assessment of the THz Diffraction

The plot in Fig 3.10 compares the line plots for an optical and THz carrier image with the

sample a 380 µm Si wafer, leaving the image a full wafer thickness away from the imaging

plane. The THz near-field image of this carrier distribution shouldn’t necessarily be a 1:1

map because the propagation distance is of the order of the wavelength and this allows

for Fraunhofer-style diffraction in the wafer.

3.3.2 Imaging of Thermal Multi-Composite Samples

Many target applications for the OP-TNFM methodology are multi-composite, such as

micro-devices and solar cells. The above figure is a part of a multi-composite sample util-

ised for THz carrier imaging, where there is a 2D and height distribution of semiconducting

materials. The target device consists of a 400 µm GaAs rod (seen in Fig. 3.11) placed on

a 380µm thick Si substrate; GaAs and Si both have distinctive carrier dynamics and show

characteristic recombination dynamics with transient spectroscopy. The Fig. 3.12. shows

the sample illuminated by THz radiation, with delay set to 1.6 ps post arrival of the main

pulse, allowing for slight scattering of the THz as it peaks in the rod. Attenuation of the

THz field in an area of the image is easier to detect when the amplitude of the THz in

that area is not zero. The left image shows this THz distribution, while the right image
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Figure 3.11: Optical image of GaAs rod used in experiment.

Figure 3.12: Static THz image of GaAs sample with and without contact with a thermal

carrier distribution.

additionally has an area of thermal carriers liberated by the an optical pump pulse. This

measurement involved the time delay of the optical pump over a large range of values,

allowing for extraction of the carrier transients.

The Fig 3.13. Shows the transients extracted from different areas of the image set that

each display a fairly complicated shape, however they do show the expected recombination

after absorption with likely shape influence from THz scattering. It is possible to see the

different absorption arrival times of the pump in each region that correspond to the vertical

height of that region above the detector. This specific shape of the recovery makes it more

difficult to extract a recombination time from the data because it does not neatly fit an

exponential function. A significantly longer variable delay is required. The respective

amplitudes of the transients are partially due to their different locations within the THz
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Figure 3.13: Carrier transients extracted from three 100-pixel areas of the image set:

The centre of the thermalised carrier region ’Wafer Hot’, the end of the rod seen at the

centre of the image ’Rod Edge’, and the edge of the rod that overlaps with the thermalised

region. The reference ’Wafer Cold’ is taken from the top of the image far from the thermal

region.

Gaussian centre because there is a similar excitation energy within each sampling region.

Another likely factor is the wafer and rod quality; while the wafer is high quality Float-

zone manufactured and polished on both sides the GaAs rod has surface defected and is a

lower quality offcut, thus detrimentally affecting the pump absorption at the surface due

to optical scattering.

The time evolution of the THz is shown in Fig 3.14, by taking the static THz image

with thermalised carriers and changing the THz time delay while keeping the time delay

difference between the THz and the optical pump static. This allows for THz scattering

from sample structures and the thermal carrier distribution which is seen as time evolves

over this set of images. Terahertz scattering causes non-local interactions in images after

the THz arrival time, which complicates the analysis. Terahertz spectra can be extracted

from various areas of the full image set but due to sample scattering they will show a

time-dependent non-local interaction which can be filtered from the spectrum restricting

the Fourier transform to an early portion of the data.

The THz time domain spectra in Fig. 3.15 show distinct features between regions due

to the interplay between THz scattering and thermal carriers. Similarly to the transients,

the peaks show that the THz has different arrival times in each region. However, the

deformed THz spectra complicate the determination of the central peak. The reference

peak ’Wafer Cold’ is clean and is essentially an attenuated THz field when compared to

its source; there are no visible additional deformations or scattering oscillations. This
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Figure 3.14: The static THz image with thermalised carriers that was previously shown.

pulse is the one with the widest bandwidth and comparatively the regions affected by the

carrier distribution have fewer high frequency oscillations. Due to the high THz amplitude

because of its central position the ’Rod End’ region is double-peaked at the THz maximum,

which in this case is caused by the edge of the rod lying in the sampling region so that

two different path lengths are sampled. The ’Wafer Cold’ section is hugely attenuated by

the presence of hot carriers but its slight delay with respect to the peak is due to an angle

in the THz wavevector rather than the carriers themselves inducing delay.

The frequency domain spectra seen in Fig. 3.16 compare the reference to other areas

of the image set. It should be noted that the amplitudes of the THz in different areas

are affected by their position in the THz Gaussian distribution so the THz reference peak

is of the same magnitude as certain sample areas, but the transmission still shows some

interesting features. The reference spectrum can be seen in part (a) of Fig. 3.16 where

there are multiple peaks from Fabry Perot reflections in the detection crystal; despite this
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Figure 3.15: The set of time domain spectra is taken from the four regions of the image

set that were previously described. The centre of the thermalised carrier region ’Wafer

Hot’, the end of the rod seen at the centre of the image ’Rod Edge’, and the edge of the

rod that overlaps with the thermalised region. The reference ’Wafer Cold’ is taken from

the top of the image far from the thermal region.

the bandwidth of the THz in this region is clearly the largest, comfortably covering the

noise floor throughout its frequency range. The region of the hot wafer has significant

absorption peaks as an effect of the thermalisation and a greatly restricted bandwidth.

Considering that the reference is the same material without hot carriers this spectrum

seems an extreme but important look at the effect of thermal carriers in a semiconductor.

The rod edge has multiple contributions as evidenced by the many small peaks. The

multiple above-crystal sample heights in this region mean that characteristic evidence of

GaAs and Si should be present along with strong scattering from the rod edge. This

region has a high THz amplitude throughout the frequency range but has a significant

absorption peak. A close comparison between thermal GaAs and cold GaAs is seen in

part (b). Both material regions have a restricted spectral profile in comparison to the

plain wafer (which in this case can be considered a substrate) partly due to the thickness of

material in this region attenuating the THz at higher frequencies. However, they each show

appreciably unique absorption around the centre of the frequency range with the thermal

GaAs having a pronounced lower field amplitude in this part of the frequency range.

Onto the transmission spectra in (c) which show low transmission for the thermalised

Si wafer across the whole frequency range. The ’Rod End’ has an unusual transmission

spectrum with huge variation in amplitude centred around the major absorption peak.

This complicated shape is the result of the two materials sampled in the region. The
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Figure 3.16: These graphs show (a)the frequency domain spectrum of the first 2 sample

areas and reference,(b) the frequency domain spectrum of the second 2 areas and refer-

ence, (c) the transmission spectrum of the first 2 sample areas, and (d) the transmission

spectrum of the second 2 sample areas.

transmission plot in (d) shows that the presence of thermal carriers in GaAs deforms

the frequency spectrum, both attenuating it and shifting it slightly, allowing a higher

amplitude of mid-frequency components to be transmitted. More detailed analysis of the

frequency spectra is beyond the scope of this thesis, however would be very useful for the

future of the carrier microscope project.

The Fourier Transform of each pixels’ THz evolution can help to indicate the spatial

distribution of the THz frequencies when viewed as an image evolution in the frequency

domain. The resulting set of images has real and imaginary components but features visible

in the real set are not necessarily visible in their corresponding imaginary THz image.

The frequency images featured here are not comparisons between real and imaginary

components but show where morphological features that can be seen in the time domain

are visible in the frequency domain. This helps to indicate the spatial distribution of the
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frequency profile without a video presentation of the image set.

Figure 3.17: The set of images show distinct frequency bins in the real spatial distribution

of the frequency profile constructed via pixel-by-pixel Fourier Transforms of the earlier THz

time domain image dataset.

As expected the scattered THz is very visible at high frequencies in Fig. 3.17. Scattered

components are easily detected in the near field and can be detected at the limits of the

detection bandwidth. The imaginary set in Fig 3.18. also shows scattered THz domin-

ating the high frequencies but appears to indicate that the THz regions that have been

attenuated by thermal carriers consist of low frequency contributions.

3.3.3 Assessment of Lateral Resolution

In practice the resolution of any 2-D optical measurement is limited by both the diffraction

limit of the optical radiation and the pixel size of the 2-D detector. The THz resolution
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Figure 3.18: The set of images show distinct frequency bins in the imaginary spatial

distribution of the frequency profile constructed via pixel-by-pixel Fourier Transforms of

the earlier THz time domain image dataset.

can be estimated as a lower bound by selecting the FWHM of a known small feature in

the THz image (Chen et al., 2003).

To understand the relationship between the diffraction limit and the sensor resolution

it is best to compare the two (Totero-Gongora, 2019) and adjust possible parameters

(Siemion, 2021) to match them.

Numerical aperture (NA) of the lens can be expressed as

NA =
1

2f#
≈ nD

2f
(3.1)

where f# is the f-number of the system, n is the refractive index of the object space, D

is the lens/aperture diameter and f is the lens focal length. This particular lens is the

last lens of the imaging system, which images the beam onto the CMOS detector with a
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magnification factor of M = 1/2 due to the telescope it is part of (see Fig 2.7).

The Diffraction Limit is the resolution limit of optics as set by Airy diffraction of a

two-point source; in a microscope setting it is known as the Abbe diffraction limit.

δx,optical ≈ 2.4
λ

2NA
(3.2)

where the wavelength of the radiation is λ. The actual object resolution with magnification

is the size of Airy disk after imaging system.

∆xoptical = M ∗ δx,optical (3.3)

The sensor resolution is defined by Nyquist theorem (Weingarten et al., 1988) with respect

to its sampling frequency, the minimum size of its sensor. The smallest object that can

be imaged takes up by two pixels, so that

δx,camera = 2 ∗∆xcamera (3.4)

Therefore the number of pixels per Airy disk diffraction limit is

∆xoptical
∆xcamera

= M ∗
δoptical

∆xcamera
(3.5)

In the microscope system the value for ∆xcamera = 4.8 µm, the lens diameter is D = 1 inch,

the focal length is f = 150 mm, the wavelength is λ = 800 nm and the refractive index

of the glass lens is nlens = 1.5. This leaves NA = 0.127 and the optical diffraction

δx,optical = 7.685 µm which gives a ∆xoptical = 3.843 µm.

By this logic the THz diffraction limit can be written as

∆xTHz = M ∗ 1.22λ

NA
= M ∗ 2.4λf

nD
(3.6)

and assuming the THz wavelength is 4.3× 10−4 m, n = 1 because the focusing optics

are parabolic mirrors, the final lens has f = 50.8 mm, and once again D = 1 inch. The

magnification factor of the triple-parabolic lens system (see Fig. 3.1) is M = 0.042 in

theory ∆THz ≈ 90 µm for the THz microscope. This resolution limit is slightly bigger

than λ/5.

3.3.4 THz Microscope Resolution

The measured THz resolution of the THz microscope was extracted from the near-field

image of the sample seen in Fig. 3.19. This sample contains sub-wavelength features when
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Figure 3.19: An evaluation of features and edges in a THz Microscope image (a) An

optical image showing the Germanium square at the centre of a spiral antenna. (b) A

THz image of the same feature (c) A line plot of the feature taken from a central cross

section of the THz image (d) A plot of the feature’s edge along with a differential that

indicates the edges’ blur.

compared to the peak wavelength of 430 nm including a Germanium square of approxim-

ately 30 µm in width and length. From the THz image of this deeply sub-wavelength

feature, in Fig 3.16 (b), the lateral resolution was calculated to be λ/22.

Edge profile analysis of line plots extracted from the THz image set was used to

determine the resolution utilising the theory of blurred edges. First the small features of

the antenna were found in the THz image set by manually searching through the delayed

images. The features were in an unexpected temporal delay - a huge 2 ps after the arrival

of the THz pulse. This again illustrates the complexity of THz scattering interactions in

subwavelength samples and the problems that can arise from temporal filtering of THz

datasets, which could have completely hidden the image. The line plot of the edge was

filtered heavily and then bulked at either side with straight line data to help create a

neat differential plot. After more smoothing the line plot resembled a blurred Heaviside

step function and was then differentiated to create a blurred Dirac delta which in this

case resembled a Gaussian function. As the theory goes, the width of this blurred delta

gives an indication of the resolution reduction when compared to a perfect edge. This
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method is widely used and fairly robust though does only provide an approximation of

the resolution. The measured resolution is subwavelength and in line with that of state-

of-the-art technologies.

3.4 General Physical Trade-offs in Large-Area Time-Domain

Imaging

There are multiple constraints that are involved with building a time-domain imaging

system. The first choice made in a field detection setup is often the electro-optic crystal,

of which a multitude are available. There are many parameters that a given crystal is

selected for including bandwidth, and relevant nonlinear susceptibility coefficient.

As discussed in the introduction, near-field imaging in general requires a small active

detection region. With near-field electro-optic sampling this region is formed by a tightly

imaged optical pulse upon a thin nonlinear crystal. This can result in trade-offs that are

fundamental to operating with THz radiation and nonlinear crystals. There are several

factors that influence a user’s choice of crystal, and several further factors that influence

the choice of length and cut. The mechanism of phononic absorption of THz radiation

(Gallot et al., 1999) is often the limiting factor in crystal size. This absorption has a

significant limiting effect on the bandwidth of the measurement, though a thicker crystal

allows for a stronger signal because the sensitivity of the measurement is greatly improved.

This is the basis of the trade-off - measurement sensitivity versus bandwidth. Another

significant factor is phase matching of the nonlinear process, where the negative effects of

phase mismatch on the frequency response of electro-optic crystals are smaller for thinner

crystals (Schall and Jepsen, 2000).

With these factors in mind, an implementation of electro-optic detection with the thin-

cut nonlinear crystal Zinc Telluride is fairly appropriate. The crystal is a semiconducting

crystal that is only grown at thicknesses larger than 0.1 mm, and exhibits phase matching

in a collinear geometry. The crystal texture is unfortunately ’crispy’ texture; its growth

process results in large air bubbles (Niessen and Markelz, 2013) throughout the crystals.

It is extremely delicate for this reason and small accidental force on its facet causes

it to shatter, as seen in Fig. 3.20. Fortunately it is strong enough to support most

light microscopy samples. With those factors in mind the crystal is still an excellent

electro-optic detection crystal (Wu and Zhang, 1995) and as an emitter provides a large

THz bandwidth (Liu et al., 2009). Thin crystals tend to be completely inappropriate for
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Figure 3.20: An uncoated 0.1 mm ZnTe crystal shattered by a small force on the facet.

Figure 3.21: Left and Right- circularly polarised probe components imaged into a CMOS.

The detection crystal used was uncoated 0.1 mm ZnTe. The sample was gold ’US’ printed

on a Kapkon substrate.

applied optical coatings due to their fragility. Sampling with an uncoated ZnTe presents

a significant problem for 2-D electro-optic sampling because it allows for transmissive

propagation of the optical probe in what is by necessity a reflection-geometry setup. In

Fig. 3.21 the largest contribution to uneven 2-D electro-optic sampling in uncoated crystals

is reflection of the probe from metallic samples when probing the sample in reflection

geometry. The morphology of a gold ’University of Sussex’ logo is visible in the sub-

frames but has significant optical energy present even after background subtraction, which

should in theory remove optical contribution before the left-right sub-frame subtraction.

Of interest also in this figure are the ’bubble’ like ZnTe artefacts which are genuine air

bubbles in the crystal that scatter both optical and THz fields due to their shape and

structure. In theory metallic samples are opaque to THz (Walther et al., 2007) and this is
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Figure 3.22: Background subtracted polarisation THz Time Domain images of gold ’US’

sample. The detection crystal used was an uncoated 0.1 mm ZnTe.

true in practice for a sample of above −nm thickness that is in contact with the detection

crystal; it is the latter requirement that is most often not met especially when using thin

metallic samples on a plastic substrate. When THz leaks under the substrate it can appear

that electro-optic sampling is occurring in the nanometre-thick gold layer, though when

this was tested it turned out not to be true. Needless to say, the resulting THz image is not

representative of the THz field (Chen et al., 2000), but because of the optical enhancement

often represents the sample itself to a high degree of accuracy.

The Fig 3.22 illustrates the time evolution of the THz as it transmits through this

sample and undergoes electro-optic probing. The first panel of the Fig. 3.22 shows very

little signal at a significant level above the noise floor and therefore indicates that left-right

subtraction is effective in eliminating the signal where there is no THz and leaves only a

small DC-error component. The logo is immediately visible upon incidence of the THz
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Figure 3.23: Elements of the OP-TNFM microscope setup.

radiation and is significantly brighter than the surrounding regions. The time evolution of

the THz shows that the logo itself, which should be opaque to THz, is displaying apparent

THz transmission that temporally precedes the field peak and possesses a signal level that

lies consistently at a higher amplitude than the surrounding plastic region.

3.4.1 Imaging Artefacts

In highly monochromatic optical images artefacts can be present from a number of sources.

Periscope and reflection imaging setups contain hundreds of glass and silver-coated com-

ponents - some are shown in Fig.3.23 - which can end up covered in statically attracted

dust and particles from the room.

In a semi-clean environment without air filtration uncovered components can become

physically marked over time by the presence of these contaminants especially when dust is

blown between setups by users. Dust and related particles are often barely visible optically

in the near field but if interacting light is allowed to propagate then contaminants will be

present as point (Airy) diffraction patterns in a confocal image. Because the Airy pattern

is clearly visible this means that the image contains visible intensity rings, introducing

a non-Gaussian intensity profile. Similarly, there are other causes of artefacts. When
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imaging with Zinc Telluride the materials characteristic ’bubbles’ are visible in the optical

and THz image (Niessen and Markelz, 2013) due to their diffractive properties. Other

crystals will contain air as part of their growth process and these will leave a similar small

round profile in the image because the crystal itself lies in the imaging plane. The only

way to avoid this type of artefact is manual removal in post processing or careful selection

of the crystal sampling area. Sometimes high-strength optical fields will thermally damage

glass components (Marouf, 2021); this can occur when accidentally focusing the field in

a material. This artefact is often too large to manually remove and the component must

be replaced. Similarly scratches on optical components will result in linear diffraction

patterns. Each of the described artefacts results in intensity fringes when viewed in a

distant imaging plane, or distinct shapes when close to a focal plane, as seen in Fig. 3.22.

In this work the artefacts present in THz carrier images are corrected in post processing

by creating a model of the true field which is assumed to be Gaussian. In a rather

brute-force fashion a Gaussian filter is applied to the carrier-free image and treated as a

representation of the true field. This filtered image is used to create a multiplicative mask

for the subsequent images and introduces a significant visual improvement.

3.4.2 Extracting Transmission and Spectral Properties

Utilising large area illumination can cause challenges when extracting transmission and

spectral properties from THz Images. Regions far from the Gaussian centre may have

lower field amplitude than regions in the centre; this is unfortunate if the sample causes

scattering from a central location as the only clean reference is located at the image edge.

A map of the THz Gaussian distribution at the peak field would be useful in removing the

amplitude effect and allowing spectral transmission to be calculated. The problem is that

samples and scattering obscure the true shape of the THz. This poses fewer problems if the

reference scalar value is taken far from the sample; at the peak of the THz and before the

scattering occurs this area can be compared to the peak in the image distribution. This

method is used in later analysis to correct transmission values. Another potential approach

to this is frequency analysis of the imaging set. Assuming that the scattered elements will

occupy the high frequencies of the image set in the frequency domain it is prudent to

assume that spectral filtering will remove scattered elements. Frequency analysis of the

THz images is included in a later chapter which confirms that scattered elements occupy

the high frequencies of the spectrum. Unfortunately low-order scattering is present in the

low frequency images. More complex analysis would be required to approximate the area



64

covered by the sample and without it the spectrally filtered THz is not useful in correcting

the transmission.

3.4.3 Implementation of Synchronous Sampling

In order to take an electro-optic measurement at the time of pulse interaction several

measures are taken both in hardware and software. The pulses are temporally aligned at

the detection system by careful placement of the translation stages, the distances between

each pulses respective origin and the detection system being set as equal, to 50 µm ac-

curacy. Any time delay measurement needs to have multiple points in time, surrounding

the time of interception between the pulses and at least enough in number to reach the

Nyquist-Shannon sampling limit. Sampling a repeating waveform is known as synchronous

sampling if it is time-domain (or harmonic mixing if frequency domain) Weingarten et al.

(1988) where the repeating waveform is in this case the 1 kHz output of a regenerative

amplifier. Averaging is a simple way to increase the SNR of a measurement system (Jiang

et al., 2000), and by retarding the probe pulse by the variable delay ∆τ2 subsequent parts

of the waveform can be sampled. The sampling frequency of the THz waveform must be

chosen carefully Keiber et al. (2016) to accurately reconstruct the physical field dynamics.

According to the Nyquist-Shannon rate, the fundamental minimum rate that electronic

sampling can be performed at to accurately reconstruct a signal (Weingarten et al., 1988),

a THz pulse can be sampled at

SamplingRate = 2×BandwidthTHz (3.7)

which in practice is around 1 ps of temporal sampling distance for the type of pulse used

in this work. This limit refers to the sampling rate required to accurately reconstruct

a signal; disregarding techniques that are designed to achieve under-sampling this is a

fundamental property of electronic sampling, especially when attempting to electronically

sample optical fields. The exposure setting on a camera determines the length of its

sampling window. As a CMOS array sensor, it is merely sampling the intensity of a set

number of pulses, which is determined by the sampling window length. Maximising the

number of pulses in the sampling window allows for noise reduction through averaging,

one of the simplest techniques to increase signal-to-noise ratio. The cue for the camera to

start the sampling window is an electronic trigger, a square pulse of around 5 V peak to

peak.



65

Figure 3.24: A mechanical chopper placed in the path of a THz beam to allow for dynamic

subtraction.

If this electronic pulse is synchronised to the laser pulse and has a frequency that is a

a multiple of the laser pulse frequency, then there will be a set number of laser pulses per

electronic trigger, and thus per camera sampling window. If this is equal then it provides

a long term consistent sampling of binned pulse intensity. The bin size being a 1 to 16 bit

value, which can be scaled by a calibrated measurement with a power meter. However,

the noise inherent in the camera system makes up a large portion of the bits in each array

pixel. Thus, averaging is needed to ensure that each ‘bin is filled’ past this dead value,

preferably significantly enough that the value of the bin can be said to be due to the

energy on the sensor array rather than random electronic or thermal fluctuations.

3.4.4 Noise reduction in Electro-Optic Sampling

Even a dynamic subtraction technique - a ‘differential measurement’ between the beam

under the influence of an electro-optic effect and the beam free of this influence - can

show some evidence of second order processes. Using a dynamic subtraction method

(Jiang et al., 2000) assumes that subtraction between the left and right images is sufficient

to remove the optical beam influence in theory. This is the same as assuming a linear

relationship between the electro-optic response to the THz in the crystal and the optical

field from the probe pulse, which is a fundamental assumption to dynamic subtraction,

discounting the term corresponding to long-term optical drift (Jiang et al., 2000). This

assumption ensures that only the birefringence contribution from the THz field is recorded

in the final image, and the optical morphology is of the order of the noise floor. Dynamic

subtraction offers a massive reduction in the noise of the final image, effectively subtracting
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the noise of the probing beam by use of a large chopping blade as seen in Fig. 3.24. This can

be extremely useful when the probing beam is inhomogeneous due to far-field scattering

from objects in the beam path. This is just one technique for reduction of noise in these

images, the main other being averaging and filtering, in order to also reduce scattered light

that can cause noise. Unfortunately lock-in detection cannot be used with an array sensor,

even in theory, because the noise has the same chopping frequency as the desired signal

(Mickan et al., 2000). In general lock-in detection applies a strict bandpass filter around

the signal which has frequency matching a separate reference, and therefore is one of the

most effective pre-processing strategies to reduce noise in a single pixel measurement. In

post-processing, bandpass filtering a set of THz images is possible. The ‘wrong’ frequencies

to cut out would include high frequency components, as although these can be present

due to noise they often contain diffracted elements from various parts of the sample-field

interaction region. This type of filtering produced modest effects on the results of this

experiment, perhaps indication that the reduction of physical noise sources from other

parts of the experiment would be more effective at improving image quality.
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Chapter 4

Nonlinear Ghost Imaging

In the introduction we presented the Ghost Imaging as a technique that fundamentally

translates the complexity of an imaging process in space in the way a sample is illuminated,

as opposed to regular array-sensor that allows the detection of the spatial feature of an

object scattering an homogeneous illumination. In a sketch-example, the principle is

often referred as the ability to perform the imaging of tree taking a picture of the sun. By

sampling an object with patterns of light and collecting some average scattering properties

(e.g. the average power), it is possible to infer the object image. The computational GI

algorithm can be expressed as

G(2) =
1

N

N∑
i=1

(Ioi − 〈Io〉)Ii(x, y) (4.1)

Liu (2020) where Ioi is the single pixel object signal,Ii(x, y) is the pre-computed intensity

spatial distribution and 〈Io〉 is the object DC background average. The sum over N is

the ensemble average of patterns. In terms of information theory, this process trivially

represents the determination of the value of the scalar product of several orthogonal (or

quasi-orthogonal) distributions with the image (Ragy and Adesso, 2012).

From an experimental point, we observe immediately that the application of the GI

implies the ability of spatially-modulating illuminations. This is not trivial at terahertz

frequency because of the lack of a standard spatial-light-modulator technology (Chan

et al., 2008). Most importantly, terahertz time-domain spectroscopy detects fields and not

intensities, which means that a GI application in this domain is fundamentally challenged

by significantly different physics. Last, the terahertz diffraction length is relatively short

(Baillergeau et al., 2016), which means that the resolution of any diffracting system ap-

plying the GI to obtain an image would be coarser than the large terahertz wavelength.

Although implementation of the GI has been proposed to access the near-field domain
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(Stantchev et al., 2016), they are generally challenged by limited fidelity in collecting the

spectral fingerprint of microscopic features, objective at the very core of terahertz micro-

scopy. This problem descends from the physics of propagation at sub-wavelength scales,

which mixes spatial and temporal information in a remarkably complex fashion (Olivieri

et al., 2018). The nonlinear ghost imaging is a GI-inspired methodology that embeds

nonlinear transformations in order to address all those challenges.

4.1 Terahertz Ghost Imaging Implementation

The NGI operates on the following hypotheses: (i) an object is placed in the proximity

of a terahertz source distribution obtained via optical rectification from an optical field

distribution (ii) the source is sufficiently thin for the terahertz spatial morphology to main-

tain features spatially defined within the optical diffraction limit, i.e. much smaller than

the terahertz wavelength (iii) an electro-optic field detection allows for the time-domain

spectroscopy of the average field scattered (iv) an imaging system transfers a spatial mask

onto the pump at the generation plane of the crystal. The spatial patterns are applied

to the pump beam by use of a Digital Micromirror Device (DMD), i.e. implementing a

binary encoding of the intensity, i.e. of the terahertz pattern.

The algorithm is a crucial component and is modified for NGI with respect to the

normal GI; it utilises a TDS measurement and replaces the field intensity with a time-

dependent average The reconstruction of the image can be expressed analytically via the

spatiotemporal transfer function T (x, y, t)

T (x, y, t) = 〈Cn(t)Pn(x, y)〉n − 〈Cn(t)〉n〈Pn(x, y)〉n (4.2)

where Pn(x, y) is the n−th spatial pattern and the angled brackets represent the ensemble

average. Cn(t) represents the average of the field detected after transmission through the

sample, i.e.

Cn(t) =

∫
dx dy T (x, y, t) ∗ E−n (x, y, t) (4.3)

and contain dependencies on the term E−n (x, y, t) which is the electromagnetic field

impinging on the object. The integrand is in this case the direct measurement of the

electric field via electro-optic sampling, performed at the center of an optical Fourier

plane, which corresponds to the field component of transverse momentum kx = ky = 0.
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4.1.1 Nonlinear Ghost Imaging Experimental Setting

The NGI setup is designed to imprint binary patterns onto an ultrafast optical beam

which is projected onto a nonlinear crystal surface. Although there are a number of

possible implementations, probably the most straightforward implies placing an spatial

intensity modulator intercepting a large collimated beam and then project the image of

the modulator surface plane onto the crystal. The Fig. 4.1 shows a typical embodiment of

Figure 4.1: (a) Basic equipment setup and THz patterning methodology for Nonlinear

Ghost Imaging (b) Illustration of THz patterning and algorithmic reconstruction.

a NGI setup, showing the basic elements that are required to produce an image, including

the DMD and the full wave reconstruction (the assembly of the projection system is not

sketched to avoid cluttering).

Interestingly, the optical rectification process exploited for terahertz generation, im-

poses that the generated terahertz field is linearly dependent from the optical intensity in

a specific generation plane.

ETHz(x, y, t) ∝ χ(2)Iopt(x, y, t) (4.4)

where the intensity mask of the optical pump is Iopt(x, y, t). To optically create the

patterned pump, optical pulses of sub- mJ energy were first clipped with an iris to create

a profile close to a flat-top. While maintaining focal geometry, the beam is enlarged with

a Galilean telescope and imaged onto the Dynamic Mirror Device, then imaged once again

and enlarged with a magnifying lens pair onto a 0.2 mm ZnTe crystal to generate THz

by optical rectification. To understand the issues that sub-wavelength illumination can
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introduce, a visual graphic can be useful. The Fig. 4.2. is an illustration of this patterned

THz propagating through air, which occurs in the setup between the generation and

detection. The plot shows the spatio-temporal coupling that occurs when THz radiation,

especially patterned THz, is allowed to propagate. This propagation encodes information

on the medium. The generated THz is collected by a large aperture parabolic mirrorand

Figure 4.2: Volumetric plot illustrating the generation the essence of the sub-wavelength

spatio-temporal coupling. Insets showing the pattern spatial features at different propaga-

tion length.

collimated, where it is measured at the point of the profile’s conjugate transform. This

ensures that the ’zeroth-order’ element in the plane of the conjugate transform is measured.

In this plane higher order frequency-space or k-space elements are distributed away from

the axial centre of the focal distribution. The central element is considered to contain

the average field and can be sampled with a small lateral detection region. This enables

for single-pixel measurement which is in this case performed with standard electro-optic

sampling, using a ZnTe crystal of medium thickness to account for the tradeoff between

measurement sensitivity and bandwidth that was mentioned in the previous chapter.

The DMD is an intensity modulator that consists of mirror pixels which can be set

to an ’on’ or ’off’ state. This directs or diverts energy in a desired direction. Replacing

the DMD with a Spatial Light Modulator (SLM) allows for full phase modulation of the

incident optical pulse (Turtaev et al., 2017) which prevents the losses that occur from

the non-zero diffractive orders and ’off’ pixels of the DMD. Though the liquid crystal

modulator of the SLM is generally slower that the DMD, it potentially allows for a higher

generation efficiency and greater control over the THz profile. The SLM exploits phase

modulation that is converted to amplitude modulation in a far-field Fourier plane, so
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the input masks need to be transformed before input in order to be reproduced at the

far plane. This problem generally involves a Fourier propagation problem which can be

computationally taxing, making the SLM a more difficult module to implement.

4.1.2 Spatio-Temporal Coupling and Inverse Propagation

The general modeling of the NGI starts from the assumption of a pure spatial light modu-

lation of a ultrashort optical pulse of temporal waveform f(t), i.e. an optical illumination

~Eoptn (x, y, t) (Olivieri et al. (2018)) of the form:

~Eoptn (x, y, t) = Hn(x, y)f(t)p̂ (4.5)

Hn(x, y) is the Walsh-ordered Hadamard pattern, f(t) is the temporal profile and p̂ is the

beam polarisation unit vector. This type of pattern was mentioned and demonstrated in

the Introduction, but the specific Walsh ordering was selected for image quality in this

application (Vaz et al., 2020). At the crystal plane, where nonlinear generation occurs the

optical beam induces a nonlinear polarisation of the form

↔
Pn(x, y, t) = ε0χ

(2)(Ω;ω + Ω,−ω)| ~Eoptn (x, y, t)|2 (4.6)

for a generation co-polarised with the impinging beam, the terahertz field can be

expressed as

~ETHzn (x, y, z = 0, t) ∝ ∂2t ~Pn(x, y, t) (4.7)

From the generation plane, the THz wave undergoes a transformation via propagation

driven by the local point spread function expressed in the near-field domain

~E−n (x, y, z, t) =
↔
G ∗ ~ETHzn (x, y, z = 0, t). (4.8)

↔
G(x, y, z, t) is the Dyadic Green’s tensor, and shows that the field dynamics involved the

full spatio-temporal domain. The field transmitted through the object is then

~E+
n (x, y, z0 + ε, t) = T (x, y, t) ∗ ~E−n (x, y, z0 − ε, t). (4.9)

~E−n is, then, the field immediately before the sample, ~E+
n is the field immediately after,

and ε represents a perturbative spatial displacement. Under these conditions the TDS

signal for the transmitted field is

~ETDSn (t) =

∫
dx dy pTDS · ~E+

n (x, y, t). (4.10)
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pTDS is the detection polarisation state, controllable by rotation of a waveplate when

the propagated field is detected with electro-optic sampling. The substitution of (4.9) and

(4.8) into (4.3) yields

Cn(t) =

∫
dx dy pTDS · T (x, y, t) ∗ [

↔
G(x, y, z, t) ∗ ~ETHzn (x, y, z = 0, t)]. (4.11)

Cn(t) coincides with single pixel TDS signal at the centre of a Fourier plane. Its

specific form implies that it is the distance-propagated pattern that generate the THz

field exploited at the measuring plane, causing the interacted THz field to significantly

differ from the simple spatial modulation imposed to the pump beam. The reconstructed

transfer function should be considered to be

T ′ = T ∗G (4.12)

which includes the effect of this propagation. It is easy to conclude that T ′ (the measure-

ment) does not represent the sample fingerprint, and the approximation T ′ = T brings

in a complex aberrations of the signal which is negligible for extremely thin sample and

emitter, but it is not trivially quantifiable in a given measurement.

Interestingly, in equations (4.9) and (4.10) can be inverted, executing what it is in

jargon known as back-propagation. In essence T ′ still contains the full space-time inform-

ation. This inversion originates a relation in the form of a Wiener-like filter applied to the

measured THz field Olivieri et al. (2018).

W (Kx, ky, kz, ω) =

↔
G(kx, ky, kz, ω)∗

|
↔
G(kx, ky, kz, ω)|2 + α ∗NSR(kx, ky, kz, ω)

(4.13)

↔
G(kx, ky, kz, ω) is the Dyadic Green’s Function in the Fourier Domain, NSR is the average

noise-to-signal ratio, and α is a scaling factor. The NSR term has the role of quenching

the back propagation (introducing inaccuracies) in order to avoid the amplification of noise

components in the reconstructed field.

4.2 Nonlinear Ghost Imaging Demonstrations

The demonstrations included in this section are part of published works on the NGI

methodology. The figure 4.3 shows the basic concept of the NGI in a visual format that

re-emphasises the steps that the methodology consists of and the stages within the exper-

imental cycle at which they are implemented. Figure 4.4 is the spatiotemporal image of a
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Figure 4.3: Conceptual description of the TNGI approach from Olivieri et al. (2020).

(a) Key experimental components and methodology; (b) volumetric representation of the

nonlinear generation of THz patterns; (c) fixed-time reconstruction with a field of view

2mm × 2mm and 32 × 32 spatial sampling; (d) backpropagated hyperspectral image,

averaged between 1 and 2 THz.

gold structure on a 50 µm Kapkon plastic substrate. The fixed-time images demonstrate

complex THz resonances that can be seen to develop over time. The resolution achieved in

the image set is between 50 µm and 100 µm, which is lower than the pixel size at 125 µm;

this means that the NGI method has successfully demonstrated the proposed spatial un-

dersampling in the image plane. This is despite the 1 mm thick ZnTe detection crystal

limiting the resolution. Fig. 4.5 shows an NGI image of a leaf, a semi-transparent sample,

through various stages of dehydration at room-temperature. A hyperspectral intensity

and phase image of the leaf is achieved by fixed-time reconstruction and fixed-frequency

reconstruction. This image demonstrates the changes in spectral phase and intensity that

result from changes in hydration of fresh samples.

Fig. 4.6 is taken with a slightly altered sample placement. The sample is now placed

a distance z from the emitting crystal. Now the propagation of the THz pulse after the

sample affects the fixed-time reconstructed image, obscuring sample morphology. Even

the hyperspectral image is affected due to the pattern propagation - a direct consequence

of spatio-temporal coupling. The reversal of spatio-temporal coupling that results from

applying the inverse-propagation filter allows for an accurate resolution of the field mor-

phology in the region of the sample.
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Figure 4.4: Spatiotemporal image of a metallic sample from Olivieri et al. (2020). (a)

Temporal response of the metallic sample with fixed-time image reconstructions. It is

worth noting that field evolution (color change) can be appreciated underneath the metallic

mask as the structure resonance produces a secondary emission. (b) Spectral response with

hyperspectral images. The field of view was 2 mm × 2 mm with a 16×16 spatial sampling.
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Figure 4.5: Hyperspectral image of a leaf From Olivieri et al. (2020). (a) Optical image

of the leaf; (b) microscope image; (c) temporal response of the field transmitted by the

leaf; (d) fixed-time reconstruction (128 pixels × 128 pixels); (e) local temporal response

of the fresh leaf in the points indicated in (b); (f ) hyperspectral image of a fresh leaf at

1.5 THz (16 pixels × 16 pixels); (g) phase image of the fresh leaf, obtained without phase

unwrapping of the experimental data; (h)–(j) same as the previous panel for a dried leaf

(32 pixel × 32 pixel images). All the images correspond to a field of view of 4 mm × 4 mm.
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Figure 4.6: Time-resolved image reconstruction (from Olivieri et al. (2020)): inverse

propagation approach. (a) Conceptual illustration of the propagating imaging scheme: the

sample is placed at z0 = 300 µm from the crystal. (b) Temporal response of the sample;

(c)–(d) fixed-time reconstructed images at the points indicated in (b); (e) hyperspectral

image averaged between 1 and 2 THz; (f ) conceptual illustration of the back-propagation

scheme; (g) temporal response of the back-propagated image (green) and the temporal re-

sponse without the sample (gray); (h)–(i) fixed-time reconstruction of the back-propagated

image at the points indicated in (g); (j) back-propagated hyperspectral image, averaged

between 1 and 2 THz. In all panels, the field of view was 2 mm × 2 mm with a 32 × 32

spatial sampling.
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Chapter 5

Conclusions and Perspective

5.1 The Impact of Terahertz Time-Domain Imaging

In order to appreciate the impact of the progress in Terahertz Time-Domain imaging and,

more specifically, the role of this work in advancing the state of the art, a parallel with the

evolution of optical imaging (and more in general of the Photonics field at large) might

be able to provide some insight.

As many other technologies, Time-Domain Spectroscopy has been driven by the ability

of terahertz to see beyond prior technological limits. TDS did not simply cover a new

portion of the spectrum; besides, THz spectroscopy using incoherent or synchrotron light

sources largely predates TDS. What TDS did was to expose the electric field as a meas-

urable quantity. Hence, although those techniques clearly descend from the photonics of

ultrafast pulses, this specific quality immediately identified a very different experimental

framework. The possibility of measuring fields in ultra-fast transients along the time axis

enabled new abilities and therefore applications. In Photonics jargon, we refer to this as

the ability to reconstruct spectral amplitude and phase of a field, generally quite challen-

ging in Photonics. Interestingly, we can argue that time is epistemologically broader than

phase. This gave time-domain terahertz all the specifications of an alternative research

topics. We can appreciate the same difference between Terahertz Time-Domain imaging,

which is fundamentally a 3-dimensional space-time methodology, and classical imaging

approaches.

Following this trend, we can discern how Terahertz Time-Domain Microscopy is conceptu-

ally very different in construction when compared to optical microscopy, although carrying

similar name. From a traditional photonics position, to exploit terahertz microscopy we

need to circumvent the diffraction limit imposed by the long wavelength. From another



78

and less traditional perspective, we are imaging fields, which means that any reference to

standard microscopy, based on collecting light intensity, is dropped. This implies the need

of novel physical understanding (which this thesis contributes to).

5.2 The impact and the future of the Optical Pump-Terahertz

Near-Field Microscopy

The Optical Pump-Terahertz Near-Field Microscopy is the first imaging technique of its

kind but responds to a very common need of physical probing in material science: the

ability to image hot-carrier dynamics. The methodology offers (i) the ability of terahertz

to interact classically with free carriers (ii) the sub-wavelength resolution required to

discern technological devices (iii) the speed to process around one million pixels per frame

at video frame-rate (iv) the ability to excite hot electrons in an arbitrary geometry. All

of those properties exists in previous embodiments, but not together. Yet, we can argue

that removing even a single one requires acceptance of a restricted hypothesis and we

can certainly argue that (ii) is required to actually resolve small devices with terahertz.

Some of the carrier images produced in this thesis are, in fact, the first images available in

the art with all these features and, therefore, novel scientific and technical questions arise

from this achievement. As the nonlinear ghost imaging spot-lighted, the image of carriers

dynamics at very high resolution is fundamentally entangled in the space-time. This means

that when you look at the scattered terahertz field as expression of the transient of the

local dielectric response, some of the information might not be directly visible. The NGI

can retrieve the spectral fingerprint of scattered field even in this scenario. Hence a valid

scientific question is whether this approach can increase the fidelity in reconstructing the

carrier dynamics of spatial distribution in heterogeneous structures. In my view, this is

the next challenge for this topic. At the time of writing, my main publication on the topic

is still in preparation, hence it might contain a more developed vision of this aspect.

5.3 The impact and the future of the Nonlinear Ghost Ima-

ging

The Nonlinear Ghost Imaging is not only the proof that a Ghost Imaging protocol can

be used to reconstruct terahertz images using a single-pixel setting. It is the demon-

stration that when we exceed the diffraction limit, the information of the field scattered

from an object has a complex entanglement in space-time. This has enormous practical
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consequences. Simply stated, every time we measure a spectrum originating from a sub-

wavelength feature of an object, that spectrum does not directly represent the

spectral fingerprint of that feature. Hence, in general terms, the NGI highlights that

(i) there are structural challenges in the way hyper-spectral imaging of very small objects

is done (ii) those challenges are an exception in Photonics but the rule in the terahertz

domain, because of the long wavelength (iii) the proper information is scrambled in space-

time, but it is not lost. Interestingly, in order to retrieve the correct information, the

NGI places the assumption that a field of interest is emitted from a specific plane and

that the field emitted from any other plane is sufficiently dispersed in the space time to

represent just a background. This concept is not dissimilar from the operating mechanism

of the optical confocal microscope and it is proficiently used to image single planes in a

thick object. it is then conceivable that the NGI could operate as a 3-D time-domain

microscope (essentially a 4-dimensional imaging system). This fascinating perspective is

currently under discussion at the EPic Lab and it might represent a uniquely disruptive

development in the field.

5.4 Reflection on my PhD work

Initially, I expected the body of my PhD to contain implementations of near-field imaging,

mainly based on the development of the NGI methodology. However, the project title was

’Nonlinear Terahertz Imaging’ which is a rather vast term. It meant that I had some

options in terms of the methods that I could explore, and I ended up focusing my time

on the development of a methodology that I did not foresaw, the OP-TNFM. Incidentally,

I had spent some weeks taking Optical-Pump-Optical-Probe transients of novel material

structures as training at the beginning of my PhD; I had considered this ’wasted time’ until

years later it came to the time to demonstrate OP-TNFM methodology from the basis of

near-field THz imaging. The time I had spent taking these transients was crucial to the

relatively short turn around of the OP-TNFM project. There were many points like this -

often research tasks aren’t completed in a completely successive fashion. At the beginning,

it is often an educated guess what preparations are critical to a research objective. This

can give the timelines some unpredictability. Experimental physics projects can change

and evolve due to constant re-assessment of their viability and progress. This progress is

often impacted by technical issues that range from equipment wear-and-tear to requisition

times from companies leading to modifications to the timeline. Because a PhD work needs

to provide a genuine contribution to its field or specialty in a quite limited temporal span,
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any change in the timeline represents a risk to this achievement. Due to the COVID-19

pandemic and other unforeseen circumstances my own completion was delayed. At times

the creation of a thesis seemed like an impossible task, but then again so did many of

the experimental tasks. Outside of the day-to-day of experimental physics, progress can

come in leaps if a certain problem gets solved on a particular day. The process of design

and assembly can often be cyclical because of the complexity of optical setups and the

inter-dependencies between large numbers of elements. This meant that a lot of my time

was devoted to understanding how to work with these systems and the best methods of

implementing nonlinear processes. Over time, I became well-attuned to the alignment

of optical setups and able to manually diagnose issues with high precision. This gradual

skill development was also helpful in the final demonstration of the carrier methodologies.

Work is generally highly collaborative in the Emergent Photonics Lab, though over the

years I found myself collaborating less because I was so focused on the THz microscope

methodology, and on developing the scope of that project. Perhaps I was a slave to

familiarity, though I am glad that I developed the microscope as far as I did and achieving

the OP-TNFM. I didn’t expect the amount of preparation that would be required to bring

a project to fruition, or realise that the seeds of success are planted years in advance. I

think if there’s any wisdom to be shared it’s not to be afraid of wasting time on experiments

that are only tangentially related to the PhD topic. A wide range of practical skills is

instrumental to success.
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