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GALAXY DISTRIBUTIONS WITHIN AND AROUND OBSERVED AND SIMULATED GROUPS

SUMMARY

This thesis explores the properties and distributions of galaxies within and around galaxy
groups, making use of galaxy clustering statistics. We include both observations and
simulations in this analysis.

In the first part we explore the properties of galaxies in the GAMA survey and the
L-GALAXIES and SHARK semi-analytic models. We examine which elements of the
models affect the predictions for galaxy stellar masses, luminosities and clustering, and
find that satellite galaxy physics plays an important role in the small-scale clustering.

In the second part we determine the cross-correlation between groups and galaxies in the
GAMA survey, to explore both the group profile and the large-scale bias around groups,
and provide comparisons against the IllustrisTNG simulations and L-GALAXIES model.
Using marked clustering statistics we find that the clustering depends strongly on the
group masses, but has very little dependence on galaxy masses.

We then explore the differences in distributions of galaxies in groups in full-physics
and dark matter-only simulations. Using satellites matched between the IllustrisTNG
simulations and their dark matter-only equivalents, we find that the satellites reside
closer to the group centre and have enhanced survival times in the full-physics
simulations. We split the satellites of IllustrisTNG into those which possess dark
matter-only equivalents and those which do not, and create empirical models for both of
these populations.

Finally, we apply these empirical corrections in the L-GALAXIES and SHARK models, and
explore the impact this has on their predictions for galaxy clustering.
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1
Introduction

Understanding the physics which leads to the formation of structures in the Universe
requires a combination of observations, simulations and theories. Observational
studies inform us about the properties of galaxies, but cannot directly be used to infer
the physics involved in their formation and evolution. To achieve this, simulations
are performed which can test models for the physical processes. Then in order to
determine the statistical properties of galaxies we require large sample sizes, which from
observations means using galaxy surveys, and from simulations requires cosmological
boxes with periodic boundary conditions.

In this thesis we use a combination of observations and simulations to explore the
positions and properties of galaxies in and around groups. We also explain some of the
physics behind these galaxy distributions.

1.1 The structure of the Universe

1.1.1 Cosmological background

In our standard Lambda Cold Dark Matter (ΛCDM) model, the Universe consists of
baryonic matter, dark matter, dark energy and radiation. The dark energy drives the
expansion of the Universe and dark matter is responsible for forming structures, while
the baryonic matter and radiation comprise the remainder of the Universe, including
all visible components. This means that all current astronomical observations see only
a small fraction of the total matter, viewing only the luminous parts of the baryonic
components, and properties of the dark components can only be inferred. However,
when simulating the Universe it is common to focus on the dark components, as these
form the majority of the mass and their behaviour on large scales is easier to model. The
differences in these approaches pose problems when trying to understand and test the
physics of the Universe.

The existence of the dark components has not always been clear. In particular dark
energy was not included in our standard cosmological model until the discovery that the
expansion of the Universe is accelerating showed it to be necessary. This acceleration was
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noticed by looking at the distances to supernovae, as high-redshift supernovae were seen
to be further away than is possible in a universe without dark energy (Riess et al., 1998;
Perlmutter et al., 1999).

Dark matter has been included in the standard cosmological model for longer,
and the primary evidence for it comes from galaxy rotation curves and weak lensing
measurements around clusters. When examining the rotation of galaxies, the velocities
are seen to be too high at large radii when compared to predictions assuming only
the visible baryonic matter is present. This means an extra non-visible dark matter
component is needed (e.g. Corbelli & Salucci, 2000). Weak lensing on the other hand
refers to the modification of light travel paths due to gravity. In the case of galaxy
clusters the strength of the distortions and width of the region this occurs across is
inconsistent with this being just due to the baryonic matter in the galaxies, and therefore
additional matter which only interacts gravitationally—dark matter—is needed (e.g.
Abbott et al., 2022). Further evidence from observations of small-scale structure suggests
dark matter is cold, as if dark matter was warm then this structure would be suppressed
(see e.g. Bullock & Boylan-Kolchin, 2017; de Martino et al., 2020).

The ΛCDM cosmological model which includes these dark components and which
we assume throughout this thesis has developed over the last 100 years from Einstein’s
General Relativity with the addition of the cosmological principle that the Universe
is homogenous and isotropic, which means that in the Universe all spatial points are
equivalent and all directions look the same for an observer. The spacetime of a simple
universe fitting these criteria can be described with the Friedmann-Lemaître-Robertson-
Walker metric (Friedmann, 1922; Lemaître, 1931; Robertson, 1935; Walker, 1937). For a
flat spacetime this is given by

ds2 = −c2dt2 + a2(t)
[
dr2 + r2dθ2 + r2 sin2 θdφ2

]
(1.1)

where c is the speed of light, a(t) is the scale factor which describes the expansion of the
Universe as a function of time, and the spatial part of the metric is described in terms of
the comoving distance r and two angles θ and φ.

The scale factor can be related to time by using the redshift, z, which provides
a measure of both the distance and look-back time to an object. Considering the
wavelength change of a photon in an expanding universe leads to a relationship between
scale and redshift of

a =
1

1 + z
. (1.2)

The expansion of the Universe can also be derived from General Relativity to give
the two cosmological field equations for the scale factor in terms of the density, ρ, and
pressure, p. These are

ä

a
= −4πG

3
(ρ+

3p

c2
) +

Λc2

3
(1.3)

and (
ȧ

a

)2

=
8πGρ

3
+

Λc2

3
, (1.4)
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where we have also included the cosmological constant, Λ, which is required for dark
energy.

The second of the field equations leads to two further important quantities being
defined.

Firstly, the Hubble parameter, where

H(t) =
ȧ(t)

a(t)
, (1.5)

and at the present dayH(t0) is defined to beH0 = 100h km s−1Mpc−1. The dimensionless
parameter h in this is approximately 0.7, although the exact value is uncertain. The
Hubble parameter can be used to determine the comoving distance to a galaxy at a given
redshift, using

r = c

∫ z

0

dz′

H(z′)
. (1.6)

Secondly, the critical density, which describes the geometry of a universe with Λ = 0

and is defined by

ρc =
3H2

8πG
. (1.7)

This is important as in a flat Universe the overall density is ρc. This critical density is
then used to define two of the cosmological parameters we use: ΩΛ and Ωm. ΩΛ gives the
ratio of the dark energy density of the Universe to the critical density, while Ωm gives the
ratio of the total matter density of the Universe to the critical density. Additionally, the
fraction of the baryonic matter density only is sometimes given as Ωb. In a flat universe
the Ω terms must sum to one as the density must equal ρc, and so observational evidence
that the Universe has a low matter density and is flat provides a further demonstration
of the requirement for an extra dark energy component.

Finally, we note that two further cosmological parameters are also relevant in this
thesis when determining the state of the Universe. These are ns, which determines the
scale-dependence of primordial density fluctuations, and σ8, which gives the root mean
square density fluctuation in spheres of radius 8h−1 Mpc.

1.1.2 Structure formation

On the largest scales, structure formation is dominated by the gravitational interaction
of dark matter, which draws matter into clusters, sheets and filaments, leaving voids
in between. The large-scale structure was initially seeded by small perturbations in the
primordial Universe, and these are proposed to grow rapidly during a period of inflation.
Subsequently, large enough density perturbations are able to gravitationally collapse.

The spherical collapse model provides a description of the way in which this structure
formation occurs, stating that regions with a density that is sufficiently higher than the
background will evolve in the same manner as an isolated matter-dominated universe.
This means these regions expand until a turn-around time after which they collapse, and
the collapse continues until the matter in the region reaches an equilibrium state where it
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satisfies the virial theorem that the potential energy equals twice the kinetic energy. In a
matter-dominated universe, the density required for this to occur is about 178 times the
background density. This is frequently rounded to 200 to define halo masses as M200, the
mass in a spherical region where the density equals 200 times the background density.

M200 can be taken to be relative to either the mean density of the Universe (M200m) or
to the critical density (M200c). In this thesis we usually useM200m but we also occasionally
use M200c as some models only calculate this. Masses relative to the critical density are
slightly smaller as they require a denser, and therefore smaller, spherical volume.

The final stage of structure formation is the formation of galaxies within the dark
matter structures, and these galaxies consist of gas, dust and stars, and produce light
which can be observed. Galaxies can have a variety of shapes and internal compositions,
but are often split into an ellipsoidal bulge component and a flatter disc. Between and
around the galaxies further baryonic material traces the underlying structures, in the
form of the circumgalactic medium, intergalactic medium and intracluster medium.

The large-scale structure as traced by the visible galaxies is illustrated in Fig. 1.1,
showing the galaxy distributions from observations by the CfA2 (Geller & Huchra, 1989),
2dFGRS (Colless et al., 2001) and SDSS (York et al., 2000) surveys and from a model using
the Millennium simulation (Springel et al., 2005), where it can be seen that the galaxies
are aligned as part of large-scale structures.

1.1.3 Haloes and groups

In the halo model of the Universe the large-scale structure is divided into objects known
as haloes. While these haloes are complicated and potentially ill-defined, some basic
assumptions and simplifications are frequently made for them. In particular, they are
often assumed to be spherical and the radial distribution of matter within them is taken
to follow the Navarro et al. (1997, hereafter NFW) profile.

These haloes can be identified in simulations of the Universe, but observations
see galaxies and their groupings. A group of galaxies can be defined as an assembly
of galaxies gravitationally bound together, whose evolution is affected by being a
member of the group. The concept of a group often refers to structures with total mass
∼ 1013h−1M�, but can more generally be used to describe any collection of galaxies
ranging from pairs up to clusters of hundreds of galaxies with total mass ∼ 1015h−1M�.

The concepts of groups and haloes can be associated, and so dark matter haloes are
described as hosting the groups and the galaxies that constitute them. The structure of
these haloes is hierarchical, and so they contain subhaloes which then host the individual
galaxies of the group or cluster.

The constituent galaxies and subhaloes may be divided up into one central and any
number of satellites. The galaxy residing at the centre of the gravitational potential of the
host halo is described as the central, and will often be the most massive and brightest in
the group. All the remaining galaxies and subhaloes are identified as satellites.

When the positions of galaxies are explored in the form of galaxy clustering, the halo
model allows the clustering to be split into ‘one-halo’ and ‘two-halo’ terms. The one-
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Figure 1.1: Distributions of galaxies in observations and simulations, reproduced from
Springel et al. (2006). The upper and left panels show the galaxies observed by the CfA2,
2dFGRS and SDSS surveys, demonstrating the existence of filaments and clusters on the
largest scales, separated by voids. The lower and right panels show galaxies placed in
the Millennium simulation by a semi-analytic model.
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halo term describes the associations between galaxies in the same halo, mainly resulting
from the satellite galaxies, and dominates small-scale clustering. Then the two-halo term
instead describes pairs of galaxies in different haloes, and gives a clustering signal on
larger scales.

1.2 Statistical properties of the Universe

Galaxy clustering represents one example of a statistical property of the Universe,
and is the one we focus on in this thesis. Statistical properties provide an alternative
to considering individual galaxies, and can be used to explore the physics of galaxy
formation and cosmology.

1.2.1 One-point functions: mass and luminosity functions

The simplest statistical properties to consider are the numbers of galaxies with different
properties. These are usually expressed in the form of number densities within a sample
volume.

The most fundamental of these is the stellar mass function, which shows the number
density of galaxies binned by the total mass of their constituent stars. More generally,
mass functions can be used to record the matter of any phase associated with objects, and
examples include the baryonic mass function using the total galaxy mass in all baryonic
components (stars, dust and gas), and the halo and subhalo mass functions of dark matter
structures. Stellar masses are observationally given in units of h−2M�, as they are derived
from fluxes which decrease with the square of the distance to a galaxy. In simulations,
stellar masses are determined in units of h−1M� because the critical density goes as h2

and the simulation volume as h−3, although in this thesis we usually convert masses from
simulations into the observational units.

Similar to the mass functions are the luminosity functions of galaxies, which bin the
galaxies using the intrinsic luminosity in different frequency bands. These frequency
bands are defined by the filters of the telescopes used for observations, and so are specific
to each different survey. Luminosity functions are usually given in terms of magnitudes,
a logarithmic scale of flux. The absolute magnitudes, M , which we plot are related to the
observed magnitudes, m, and the distance to the object, DL, through

M = m− 5 log10

(
DL

10pc

)
. (1.8)

They are given in units of M − 5 log10 h because a factor of 100 in brightness is defined to
be 5 magnitudes (giving a factor of 2.5 in base 10 logarithms) and flux decreases with the
square of distance.

Despite a close relationship between the mass of an object and the light emitted,
comparing either stellar mass or luminosity functions between observations of the
Universe and numerical simulations poses a challenge, as the intrinsic outputs differ.
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Observationally, luminosities are recorded in filter bands in the frame of the telescope,
whereas in simulations it is stellar masses that are automatically available.

The usual approach to dealing with this, which we use in this thesis, is to perform
analysis on both observations and simulations to give consistent definitions of masses
and luminosities. However, we note that some works (e.g. Bergé et al., 2013; Herbel et al.,
2017; Fagioli et al., 2018) have argued that it is instead better to take a forward modelling
approach by performing all the analysis on the simulations, to reproduce what would be
observed from them.

Following the standard method, the first stage of analysis on observed galaxies is to
convert the observer-frame luminosities to intrinsic values. This requires accounting for
the K-correction (Humason et al., 1956; Hogg et al., 2002) and e-correction (Lin et al.,
1999) which result from galaxies originating at different redshifts. The K-correction
accounts for the filters detecting different regions of the galaxy spectra at different
redshifts due to the wavelength shift, while the optional e-correction accounts for the
evolution in the star formation rates of the galaxies. Stellar masses are then estimated
from the observed light, by modelling the initial stellar populations (e.g. Chabrier,
2003), the spectra that these produce (e.g. Bruzual & Charlot, 2003), and the effect of
dust on these spectra (e.g. Calzetti et al., 2000). However, the extensive processing and
assumptions required introduce uncertainties into the final mass estimates.

On the other hand, in simulations stellar masses are relatively simple to determine,
although they are model-dependent and subject to decisions about assigning particles to
objects, while luminosities are more complicated to derive. The luminosities are usually
obtained by making assumptions about the stars contained in the galaxies, mimicking
the procedure used to generate masses from observations.

Finally, the conversion of the resulting masses and luminosities to one-point functions
is subject to some uncertainties, particularly in observations. Specifically, the one-point
functions are affected by Eddington bias (Eddington, 1913), where uncertainties in the
derived quantities make rarer objects appear more common. This leads to a potential
overestimation of the bright end of the luminosity functions.

Once one-point functions have been measured, the form of the stellar mass and
luminosity functions for galaxies is often modelled as a Schechter function (Schechter,
1976) with the form

φ(L) = φ?
(
L

L?

)α
exp

[
−
(
L

L?

)]
, (1.9)

for luminosity (or mass) L, normalisation φ? and characteristic luminosity (or mass) L?.
This follows a power law for faint (less massive) galaxies, then has an exponential cut-off
at the bright (more massive) end. Modified forms of this function can also be used.

1.2.1.1 Conditional one-point functions

As well as considering the number density of galaxies per unit volume, it is possible to
consider the number fulfilling a certain criteria. Conditional stellar mass and luminosity
functions consider the number of galaxies per group, after selecting galaxies based on
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group mass (e.g. Yang et al., 2003). This provides a way to explore how the properties of
the constituent galaxies depend on the group mass. The one-point functions of satellite
galaxies in groups approximately follow a Schechter function, while the centrals follow a
log-normal distribution (Yang et al., 2008, 2009)

φ(L) = φ?exp

[
−(log10 L− log10 L

?)2

2σ2

]
, (1.10)

with width σ. This reflects a reasonably tight correlation between the luminosity (and
mass) of the central and the total group mass.

1.2.2 Two-point functions: galaxy clustering

Galaxy clustering analysis explores the locations and grouping of galaxies. It can be
related to the clustering of the underlying matter through a quantity known as the bias.

1.2.2.1 Three-dimensional clustering

The two-point correlation function is the most commonly used statistic to examine the
clustering of a galaxy population. In three dimensions the two-point correlation function
ξ(r) describes the excess probability dP of finding a galaxy in a volume dV at a separation
r from another galaxy, compared to that expected for a random distribution (Coil, 2013).
It may be expressed as

dP = n[1 + ξ(r)]dV, (1.11)

where n is the mean number density of galaxies (Peebles, 1980). We have expressed ξ(r)
in terms of the three-dimensional separation r, but for observations this is often split into
components along (r‖) and perpendicular to (r⊥) the line of sight to produce ξ(r⊥, r‖).

The first widely used estimator of the two-point correlation function in three
dimensions was that of Davis & Peebles (1983),

ξ(r) =
nR
nD

DD(r)

DR(r)
− 1, (1.12)

where nD is the number of data points and nR the number of random points. DD

gives the counts of pairs of galaxies within the data catalogue and DR gives the counts
of pairs between the data catalogue and a catalogue of randomly positioned galaxies.
These randomly positioned galaxies are needed to convert the data pair counts to an
excess probability and, by giving the random galaxies the same sky footprint and redshift
distribution as the data and then choosing the right estimator, they can be used to reduce
edge effects at the boundary of the sample.

Kerscher et al. (2000) compare the available estimators and show the Davis & Peebles
(1983) form deviates from their reference correlation function at large scales. They find
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the smallest deviations come from the estimator of Landy & Szalay (1993),

ξ(r) =
1

RR(r)

(
DD(r)

(
nR
nD

)2

− 2DR(r)

(
nR
nD

)
+RR(r)

)
, (1.13)

where RR is the count of pairs within the random catalogue. This estimator is now the
most widely used.

Several codes exist in order to calculate the two-point correlation function including
TreeCorr (Jarvis et al., 2004), Corrfunc (Sinha & Garrison, 2019, 2020) and CUTE (Alonso,
2012). However, some of these only perform the calculations on angular sky data and so
are unsuitable for use on simulation boxes.

Simulations often use periodic boundary conditions and this simplifies the clustering
calculation by removing the need for a random catalogue as the volume is not restricted
at the boundaries. By assuming a random distribution of galaxies over the volume with
no clustering, the random pairs may be computed as

RR(r) = n2
D

v(r)

V
, (1.14)

where V is the total box volume and v(r) = 4
3π((r+dr)3−r3) is the volume of a spherical

shell of radius r and thickness dr (Alonso, 2012). Further, this means the estimator for
the two-point correlation can be simplified to

ξ(r) =
DD(r)

RR(r)
− 1. (1.15)

1.2.2.2 Projected correlation functions

The disadvantage of three-dimensional clustering when comparing observations
and simulations is that the observational results include the effects of redshift space
distortions (Coil, 2013). These manifest in two ways. On large scales a compression
along the line of sight is seen due to the infall of galaxies onto clusters (Kaiser, 1987).
On the other hand, on small scales the galaxies are seen to spread out in the “Fingers of
God”, due to the peculiar velocities of galaxies within groups and clusters.

To get around this, the projected correlation function in two dimensions, wp, is
frequently used as it is independent of redshift space distortion effects. Davis & Peebles
(1983) derive this from the three-dimensional correlation using

wp(r⊥) = 2

∫ ∞
0

ξ
(

(r2
⊥ + y2)1/2

)
dy = 2

∫ ∞
r⊥

rξ(r)√
r2 − r2

⊥

dr, (1.16)

where the correlation function is projected along axis y onto r⊥.
For observational data where ξ(r⊥, r‖) is calculated this can be computed as

wp(r⊥) = 2

∫ ∞
0

ξ(r⊥, r‖)dr‖, (1.17)
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where the projection is performed along the line of sight r‖.
In practice this integral is not performed to infinity but is instead cut off at someRmax.

Loveday et al. (2018) determine it is reasonable to set this to 40h−1Mpc, but Baldauf et al.
(2010) demonstrate that errors are introduced at distances approaching the selected Rmax

so larger values may be beneficial. This effect is described in van den Bosch et al. (2013)
as being a residual redshift space distortion, and means that on scales approaching Rmax

results from simulations and observations may not be comparable.

1.2.2.3 Cross-correlations

Another way to consider clustering is with cross-correlations between two different
samples. This is commonly employed when considering the clustering of galaxy
groups, but it can be generically applied to any two samples that overlap in space.
Cross-correlations can be calculated with a modified form of the Landy & Szalay (1993)
estimator. In the case of cross-correlation between galaxies and groups, this form is
(Mohammad et al., 2016)

ξ =
Gg −Gr − gr + rr

rr
, (1.18)

where Gg, Gr, gr, and rr are the normalised numbers of group–galaxy, group–random,
galaxy–random and random–random pairs respectively. This can be projected in the
same way as the galaxy auto-correlation function.

As well as exploring the clustering of groups directly, this can be used to explore the
clustering of groups relative to the underlying matter distribution. Galaxies and groups
are known to be biased relative to the distribution of dark matter (Kaiser, 1984), and
this bias can be used to compare different samples, as well as having applications for
cosmology. Bias can be calculated for any clustering measure, and in the case of the
projected cross-correlation wAB

p between samples A and B it is derived from

wAB
p (r⊥) = bA(r⊥)bB(r⊥)wDM

p (r⊥), (1.19)

where wDM
p is the projected dark matter correlation function and bA and bB are the bias

measures for the two samples.
The biases measured from the cross-correlation are not necessarily the same as those

from the auto-correlations of the same samples. In particular, for the group–galaxy
clustering we consider in this thesis, on small scales the group bias derived from this
equation remains positive, although there would be no group–group pairs. On larger
scales the cross- and auto-correlation biases will be similar as they both measure the
clustering relative to the matter distribution across a wider region, but will have a
scaling factor due to the different bias of the second population in the cross-correlation.

1.2.2.4 Marked correlation functions

Marked correlation functions were introduced in Sheth & Tormen (2004) to explore the
environmental dependence of galaxy clustering, and were further developed by Sheth
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et al. (2005) and Skibba et al. (2006). These rely on weighted correlations, where each
pair is multiplied by an associated weight when included in the pair counts. In the case
of projected correlation functions the marked correlation Mw is given by (Skibba et al.,
2006)

Mw(r⊥) =
r⊥ +Wp(r⊥)

r⊥ + wp(r⊥)
, (1.20)

where r⊥ is the projected separation, wp is the unweighted projected two-point
correlation function and Wp is the weighted two-point correlation function.

1.2.2.5 Integral constraints

Finally, we note that when considering clustering in small volumes, an integral
constraint becomes important when calculating the correlation function. The volume
integral over the sample region of the estimator of ξ(r) is by definition zero, and this
results in deviations in the correlation function on large scales in small volumes. To
account for this the integral constraint needs to be added to each estimated ξ(r). The
integral constraint is calculated as the volume integral of ξ(r) out to the maximum
distance used.

Roche & Eales (1999) fit angular correlation functions w(θ) with functions of the
form w(θ) = A(θ−0.8 − C) and add the derived value of C to the projected correlation to
estimate the true correlation. This same method can be used for correlation functions
computed as a function of r. An alternative method from Maddox et al. (1996)
approximates the integral constraint from the variance of the galaxy overdensity
between different observed fields.

1.2.2.6 Cosmology dependence

Before moving on from the discussion on the clustering of galaxies, it is worth noting that
this may be affected by the assumed underlying cosmology. The first order effect of this
will be a dependence on the expansion of the Universe throught the Hubble parameter, h,
which we minimise by plotting all distances in units of h−1 Mpc. Secondary effects will
be present due to different values of Ωm, which also alters the expansion of the Universe,
and σ8, which changes the amplitude of the correlation functions (e.g. Tinker et al., 2012).
However, these effects will primarily manifest at higher redshifts than those considered
in this thesis.

In Fig. 1.2 we show the comoving distances for redshifts up to z = 0.267 in each of
the different cosmologies assumed for the observations and simulations we use (these
are explained in the sections below1). It can be seen in the lower panel that the choice
of cosmology has an effect of at most about 1% by z = 0.267. This applies for the
line-of-sight distance plotted, and for the transverse distance between galaxies—which
equals the plotted distance multiplied by the angular separation on the sky. We note
that uncertainties of this order are much smaller than the differences we find later in this

1The cosmology of the Millennium simulation shown here is that of the rescaled version used in
L-GALAXIES.
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Figure 1.2: Comoving distance for redshifts up to 0.267 for the different cosmologies used
in this thesis. The upper panel shows the comoving distance as a function of redshift in
each cosmology, while the lower panel shows the ratios to the comoving distance in the
Ωm = 0.25 cosmology assumed for GAMA.

thesis from the numerical methods and baryonic physics used, and so we assume that
the cosmology has a minimal impact on the results in the remainder of our work.

1.2.3 Two-point functions: profiles of galaxy groups

On the scale of galaxy groups, an alternative to the two-point correlation function is the
group profile, which expresses the number of satellite galaxies as a function of distance
from the central. This is the simplest way of considering the distributions of satellites in
the groups, as it only uses the single measurement of radial separation. Similarly to the
correlation function, the profile can be considered in two or three dimensions.

The profile is closely related to the cross-correlation between groups and galaxies,
but contains slightly different information. Whereas the cross-correlation is computed
with respect to all galaxies, showing the relation between the groups and the background
density field, the profile gives the shape of the subhalo and satellite distributions of the
halo, as it contains only satellites associated with the group.

1.3 Galaxy surveys

To determine the statistical properties of the galaxy population in the Universe, galaxy
surveys are used. Here we consider spectroscopic surveys which observe large numbers
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of galaxies with the intention of obtaining their spectra. These galaxy spectra can then
be used to determine the properties of the galaxies, including age, chemical composition
and star formation rate. Additionally, and crucially for studies of clustering and galaxy
groups, these spectra can be used to determine accurate redshifts for the galaxies,
although these will include the effect of redshift space distortions.

It is important to note that galaxy surveys do not give perfect measurements as
generating properties from galaxy spectra is subject to modelling uncertainties in the
fittings used, and that the finite volume of galaxy surveys means that they are affected
by cosmic variance, due to sampling only part of the large-scale structure. Further,
observations are normally performed to a certain minimum observed brightness in
a chosen waveband. This cutoff in the galaxies observed can make it complicated to
produce volume-limited samples, those where we can be confident that all galaxies with
particular properties are detected out to a given redshift.

Over the past few decades the magnitude limits and number of galaxies explored
by surveys have progressively improved. One of the first large surveys that was able
to determine the statistical properties of the group and galaxy populations, including
clustering, was the Two Degree Field Galaxy Redshift Survey (2dFGRS, Colless et al.,
2001) which observed over 200,000 galaxies across 1,500 square degrees.

Following this, the Sloan Digital Sky Survey (SDSS, York et al., 2000) has been
one of the most important surveys in furthering our understanding of the Universe.
This is based around observations in five photometric filters ugriz centred on optical
wavelengths. The SDSS main galaxy sample contains around a million galaxies with
mr < 17.77 in more than 8,000 square degrees of the sky. This has been used to produce
results for many statistical properties, including stellar mass functions (Baldry et al.,
2008; Li & White, 2009) and two-point correlation functions (Zehavi et al., 2011).

SDSS has been well suited to determining statistical properties, but one disadvantage
for works looking at galaxy groups is that SDSS spectra in dense regions are limited due
to fibre collisions, which restrict the proportion of galaxies for which redshifts can be
obtained. This is due to the minimum angular separation on the sky which two fibres
in the instrument can be pointed at without interfering with each other. Groups are
particularly impacted by this due to the close proximity of the galaxies in them.

1.3.1 The GAMA survey

The Galaxy And Mass Assembly survey (GAMA, Driver et al., 2009, 2011; Liske et al.,
2015; Baldry et al., 2018; Driver et al., 2022b) is a joint European-Australasian project
which combines spectroscopic observations from the Anglo-Australian Telescope with
complementary data from other surveys. It provides a spectroscopic sample of galaxies
with a high completeness in all environments and has followed SDSS in calculating the
statistics of the galaxy population it observed.

GAMA observed a much smaller sky area than 2dFGRS and SDSS, but observes
galaxies at two magnitudes deeper than SDSS. The GAMA-I survey comprised three
equatorial fields, each of area 12 × 4 degrees, with a Petrosian magnitude limit of
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Figure 1.3: Locations of GAMA groups with at least 5 members in RA-redshift space, for
z < 0.267. The groups are coloured based on their estimated mass.

mr < 19.4. This was updated in GAMA-II to increase the area of each field to 12 × 5

degrees and the magnitude limit to mr < 19.8. Then most recently the final GAMA DR4
data release (Driver et al., 2022b) changed the main photometry from that of SDSS to
that of the Kilo-Degree Survey (KiDS, Kuijken et al., 2019), unifying the three equatorial
regions with a fourth region and altering the galaxy magnitudes slightly.

Importantly for this thesis, GAMA specifically aimed for a high spectroscopic
completeness, measuring spectra for nearly all galaxies in all environments, making it
ideal for exploring galaxy groups. While SDSS is limited by fibre collisions, GAMA
worked around this problem by making repeated observations of dense regions
including groups to determine spectroscopic properties of a much greater proportion of
the galaxies in them. Overall, GAMA has a completeness of over 96% for galaxies with
up to 5 neighbours within 40 arcsec (Liske et al., 2015).

Statistical properties have been explored in a number of works using the GAMA
samples. The galaxy stellar mass function from GAMA-I was determined by Baldry et al.
(2012) and this has been updated for more recent data releases by Wright et al. (2017) and
Driver et al. (2022b). Covariances in the Baldry et al. (2012) mass function are considered
by Benson (2019). Luminosity functions in the bands used by SDSS have been found by
Loveday et al. (2012, 2015) and across the full 11 GAMA bands from the far ultra-violet
to the near infra-red by Driver et al. (2012). More recently, the GAMA r-band luminosity
function was improved at the faint end in Karademir et al. (2022) by the addition of data
from KiDS.

This high spectroscopic completeness, including of close pairs (Robotham et al., 2010),
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makes the survey suitable for examining clustering down to small scales, and this has
been done by Farrow et al. (2015). Further, as it has been designed to observe groups of
galaxies, group catalogues have been produced from it by Robotham et al. (2011). The
locations of these groups in the GAMA lightcone are shown in Fig. 1.3. It can be seen that
groups of lower mass are only detected at low redshift, and that groups tend to cluster
together within the large-scale structure.

The group catalogues of Robotham et al. (2011) were produced using a friends-of-
friends (FoF) algorithm, grouping galaxies based on their projected and line-of-sight
separations. This FoF algorithm was calibrated and tested by applying it to mock
catalogues, optimising for a high completeness and purity where the true groups are
recovered without introducing spurious extra groups or additional group members. The
tests determined that the properties of recovered groups are robust but that the smaller
groups (Ngals ≤ 4) are less reliable. These groups have been used to extract properties of
the dark matter haloes that host them, including the halo masses. Scaling relations for
the masses have been calibrated against weak lensing (Viola et al., 2015; Han et al., 2015;
Rana et al., 2022), and one of the more reliable measures is that of Viola et al. (2015),
equation 37,

M200m

1014h−1M�
= (0.95± 0.14)

(
Lgrp

1011.5h−2L�

)(1.16±0.13)

, (1.21)

which estimates the group mass M200m from the total group luminosity Lgrp.

1.3.2 Clustering and radial profiles from surveys

Galaxy distributions are a standard measurement made from galaxy surveys, used for
exploring both astrophysics and cosmology. We describe a few of these results here.

When looking at the two-point correlation function of galaxies, stronger clustering
is seen for brighter, more massive and redder galaxies. This was seen in 2dFGRS by
Norberg et al. (2001), in SDSS by Zehavi et al. (2005, 2011) and in GAMA by Farrow et al.
(2015). The projected galaxy correlation functions for GAMA that were calculated in
Farrow et al. (2015) are explored in bins of galaxy stellar mass, luminosity and redshift,
showing some weak evidence of evolution of the clustering strengths. The correlation
functions from GAMA are shown to be reasonably well fit by power laws and are in
agreement with SDSS.

More recently clustering in GAMA has been explored using marked correlations by
Sureshkumar et al. (2021, 2022), where it is seen that stellar mass is the best tracer of
environment, while close pairs do not typically have high star formation rates.

The clustering of groups and the group–galaxy cross-correlation has been explored
in fewer works. In SDSS these are examined in Wang et al. (2008) to explore their
dependence on group mass and member galaxy colours, finding stronger clustering for
more massive groups and redder galaxy populations. Berlind et al. (2006) also show that
on small scales the group–galaxy cross-correlation increases, before flattening due to
either a core to the groups or mis-centring. The use of the clustering of groups to derive
bias and redshift space distortion parameters is discussed in Mohammad et al. (2016).
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While group clustering has only been considered in a few works, the distribution of
satellite galaxies around centrals has frequently been considered. At the largest cluster
masses the profiles showing the radial positions of satellite galaxies within groups from
SDSS have been explored by Hansen et al. (2005), and by Budzynski et al. (2012) who
explore the dependencies of profiles on properties including halo mass and satellite
luminosity. More recently, the profiles of observed cluster galaxies have also been found
by Adhikari et al. (2021) and Shin et al. (2021), and the distributions of galaxies around
smaller groups, similar to the Milky Way, have been explored by several works (e.g.
Carlsten et al., 2020; Mao et al., 2021; Font et al., 2021).

Across the wider SDSS galaxy sample, radial profiles have been considered in several
works including Watson et al. (2012) who find that the most luminous satellites do not
trace the dark matter profile, Guo et al. (2012) who explore the luminosity dependence
further, and Wang et al. (2014) who explore the colour dependence. Satellite radial
distributions have not previously been determined from GAMA, but Kafle et al. (2016)
calculated the masses of satellites at different radial separations, showing no significant
change in mean mass with distance. This shows there is negligible evidence of mass
segregation in the GAMA survey, a tendency for satellite galaxies of different masses
to be preferentially at different distances from the group centre. This trend is however
controversial, as other studies have found evidence of mass segregation in groups (e.g.
Roberts et al., 2015; Kim et al., 2020).

1.4 Simulating galaxy formation

The complexity of galaxy formation presents many challenges when simulating the
Universe. In particular, the finite resolution of any simulation requires assumptions on
the effects of unresolved small-scale effects. Despite these challenges, the latest models
and simulations have been shown to accurately reproduce many of the properties of the
Universe.

A variety of simulation methods are used, ranging from dark matter-only (DMO)
simulations which model a universe where matter interacts only by gravity (e.g. Springel
et al., 2005; Boylan-Kolchin et al., 2009), to zoom-in simulations of the baryonic processes
in individual galaxies (e.g. Grand et al., 2017; Hopkins et al., 2018).

In this thesis we use DMO simulations and two methods of modelling the inclusion
of baryons which produce visible galaxies. Semi-analytic models (SAMs, e.g. Henriques
et al., 2015; Somerville et al., 2015; Lacey et al., 2016; Lagos et al., 2018) model baryonic
processes as an addition to DMO simulations, while hydrodynamical simulations (e.g.
Crain et al., 2015; Schaye et al., 2015; Nelson et al., 2019a) begin with a combination of
dark matter and baryons and evolve them together.

1.4.1 Dark-matter only simulations

The simplest, and longest established, method of simulating the Universe is to use
gravity-only N-body methods, originating with Holmberg (1941). N-body methods are
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now used for dark matter-only simulations.
The usual method of producing DMO simulations is to choose a cosmology and then

begin with initial conditions of particles displaced by perturbations generated (often at
z = 127) from the approximation of Zel’Dovich (1970). The subsequent evolution of
these dark matter particles is then determined by the gravitational force between them,
calculated with a code such as GADGET (Springel et al., 2021) containing methods to
accelerate the computation. Finally, the outputs from these N-body simulations consist
of the locations of the dark matter particles at a series of defined timesteps, referred to as
snapshots.

DMO simulations exist for a variety of resolutions and box sizes, these being chosen
to balance the requirements between resolving small structures and having statistically
significant numbers of objects. The Millennium simulation (Springel et al., 2005) remains
one of the most suitable for cosmological simulations of galaxy formation, having a
volume of (500h−1Mpc)3 and 21603 particles. However, in recent years many other
simulations have been performed, such as the SURFS suite (Elahi et al., 2018) which we
use in addition to Millennium.

1.4.1.1 Clustering and profiles in DMO simulations

DMO simulations and the haloes and subhaloes that can be identified in them have been
shown to accurately reproduce the large-scale structure of the Universe as on the largest
scales they contain clusters, filaments and voids in a similar manner to the real Universe.
Quantitatively, they have been shown to reproduce the halo mass function inferred from
observations (e.g. Eke et al., 2006) and theoretically motivated models (e.g. Murray et al.,
2018), as well as the theoretical clustering of matter on large scales (e.g. Springel et al.,
2005).

However, some of the small-scale structure is not representative of the Universe.
Using DMO simulations it is consistently seen that the subhalo profile in the inner
region of haloes is flatter than the observed galaxy profile (e.g. Angulo et al., 2009;
Vogelsberger et al., 2014b; Bose et al., 2020). This then affects the clustering of subhaloes
when compared to that of galaxies.

1.4.1.2 Halo finders and merger trees

Galaxies cannot readily be placed directly into the N-body outputs of DMO simulations,
and are usually taken to be associated with the subhaloes. In order to compare DMO
simulations to observed galaxies it is therefore necessary to extract haloes and subhaloes
from the DMO particles.

Haloes are derived from the N-body outputs using halo finder tools such as SUBFIND

(Springel et al., 2001) and VELOCIRAPTOR (Elahi et al., 2019a). Halo finders are often
based on the use of a FoF algorithm in either three-dimensional position space or
six-dimensional position-velocity space to group particles. The simulations used in
this thesis all involve FoF methods, although there are other methods of determining
haloes, such as spherical overdensity estimates (e.g. Hadzhiyska et al., 2022) which
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Figure 1.4: Example of a halo merger tree structure, reproduced from Springel et al. (2021,
Fig. 35). With time increasing going down the page, this shows the relationships between
subhaloes, including groups and mergers, as well as the connections to progenitors and
descendants.

assign particles within spheres centred on the high-density regions to haloes. The haloes
produced by halo finders form hierarchical structures, with subhaloes contained within
the larger haloes, down to a minimum mass determined by the minimum number of
grouped particles allowed to be a subhalo.

The evolution of these haloes and subhaloes is determined by looking at different
output snapshots, and halo merger trees are found by connecting the structures across
these snapshots. Fig. 1.4 shows an example of a merger tree structure, reproduced
from Springel et al. (2021). This shows the subhaloes as circles, grouped together in
boxes representing haloes. Different rows show different snapshot outputs, and the
arrows show connections between the different subhaloes, including the progenitors
and descendants that define the subhalo evolution and mergers. When tracing the
evolution of a subhalo, trees define there to be only one descendant. This descendant is
the subhalo at the following snapshot which shares the most particles with the initial
subhalo, but Fig. 1.4 shows this assumption does not always accurately represent the
evolution. It can also be seen that the grouping of subhaloes can vary between snapshots
and there can be inconsistencies in the connections between snapshots.

As with the determination of haloes, there are a variety of codes and methods
for calculating the merger trees associated with output snapshots and haloes (e.g.
Springel et al., 2005; Rodriguez-Gomez et al., 2015; Elahi et al., 2019b). These do not
always lead to the same outputs from N-body simulations, as shown by the merger tree
comparison project in Srisawat et al. (2013) and Wang et al. (2016). Such differences
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include changes in the definition of the central halo of a group, the splitting of haloes,
and problems associated with the temporary disappearance of a halo. These problems
are almost unavoidable with current tree methods, and are a source of uncertainty in
the simulation results we present in this thesis, but they may in future be resolved by
the ideas presented in Roper et al. (2020), waiving the minimum mass requirement and
allowing trees to branch into graphs.

1.4.1.3 Subhaloes and orphan satellites

Further problems with haloes and merger trees are encountered when the evolution and
survival of satellite subhaloes is examined.

The DASH sequence of works (van den Bosch et al., 2018; van den Bosch & Ogiya,
2018; Ogiya et al., 2019) find that up to half of substructures are missing due to artificial
disruption effects. This is due to the discreteness of the simulations and the force
softening which is required to prevent spurious results for close particles. However,
Green et al. (2021) argue that this artificial disruption is less important than resolution
effects for radial biases of the locations of substructures. Additionally, Gao et al. (2004)
argue that simply improving the simulation resolution does not resolve the problem of
missing or inaccurate substructures, as it is still possible for subhalo masses to decrease
to the point where their evolution should be affected by the baryonic components. These
baryonic components of the galaxies within the haloes are shown by Zolotov et al. (2012)
to be capable of altering the survival of substructures.

The uncertain disruption, resolution issues and baryonic effects lead many works to
argue that when mapping between dark matter-only subhaloes and satellite galaxies,
extra ‘orphan’ satellites are required to account for the subhaloes which are missing in
the DMO simulations (e.g. Kitzbichler & White, 2008; Guo et al., 2011; Moster et al.,
2018; Bose et al., 2020; DeRose et al., 2021). The requirement for orphans in a semi-
empirical galaxy model is discussed by Behroozi et al. (2019) who argue that without
orphans the stellar masses of the other satellites would need to be increased to reproduce
observational constraints, and that this is not possible given most satellites are quenched
and not star-forming.

The detection of substructures by the subhalo finder is also important when
considering orphans, with Onions et al. (2012) showing that the ability to detect
subhaloes varies between different structure finders and Gómez et al. (2022) showing
this can influence the number of orphans required by a galaxy formation model. Haggar
et al. (2021) argue that the orphans are objects that the subhalo finder has been unable
to detect in DMO simulations as their density is not sufficiently different from the
background halo, but that they are nonetheless separate structures that can host galaxies.

Overall, we see that there are several reasons that have been proposed for the origin
of the orphan satellites. They may represent objects that have been stripped or disrupted
in the DMO run, but which would remain bound due to the baryons in a full-physics
run; they may be a numerical effect caused by artificial disruption or the ability of the
substructure finder to detect objects; or they could be a resolution effect, caused by
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attempting to include galaxies that cannot be resolved.
The true picture is likely to be a combination of these effects. In essence they are all

variations on the same central idea: DMO simulations are an incomplete picture of the
Universe.

1.4.1.4 Adding galaxies to DMO simulations

The incompleteness of DMO simulations also means they cannot themselves be used for
comparisons with observed galaxies and their distributions as they contain none of the
luminous material we observe. In order to make these comparisons, several methods
exist that populate dark matter haloes with galaxies.

The simplest methods are halo occupation distributions (HODs, e.g. Berlind &
Weinberg, 2002; Artale et al., 2018; Zehavi et al., 2018; Hadzhiyska et al., 2020), which
simply provide estimates of the number of galaxies in a halo. Dependent only on the
halo mass, these may place a central galaxy in the halo and, if so, then any number of
satellite galaxies can also be included. Satellite galaxies are often distributed spatially
according to the dark matter density profile of the halo, either sampling the particle
distribution or by making the assumption that the halo follows the NFW profile.

A slightly more advanced method is to use subhalo abundance matching methods
(SHAMs, e.g. Conroy et al., 2006; Behroozi et al., 2010; Guo et al., 2016; Contreras et al.,
2021), which match galaxies to subhaloes. Similarly to HODs, these usually depend only
on the subhalo masses, but they can be modified to include secondary dependencies
as well. Requiring galaxies to be in subhaloes provides a potential advantage in that
the locations of the satellites are then pre-defined, and their properties connected to the
subhalo mass, but in their simplest form they still require a one-to-one mapping between
satellite galaxies and DMO subhaloes.

The next level of detail is provided by semi-empirical models such as
UniverseMachine (Behroozi et al., 2019) and EMERGE (Moster et al., 2018).
These include empirically derived models to generate basic properties of galaxies such
as star formation rates, usually making use of the assembly history and mass growth of
the haloes over time.

Finally, the inclusion of further physical models leads to the most sophisticated
method to populate galaxies into dark matter haloes, semi-analytic models (SAMs).
These include the evolution of galaxies by seeding them at early times and proceeding
forwards in timesteps from there. SAMs are the models which we concentrate on in this
thesis.

1.4.2 Semi-analytic galaxy formation models

The principle aim of SAMs is to take the dark matter haloes from an N-body simulation
and perform the baryonic physics using simple physical models with empirically derived
parameters. Commonly used examples of SAMs which we include in this thesis are
L-GALAXIES (Henriques et al., 2015), GALFORM (Lacey et al., 2016) and SHARK (Lagos
et al., 2018), although these are only a few from a large assortment of available models
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(e.g. Cora et al., 2018; Croton et al., 2016; Somerville et al., 2015). This variety of models is
further complicated as most models have multiple versions, for example the list of major
releases of L-GALAXIES over the last 15 years runs to 6 different models (De Lucia &
Blaizot, 2007; Guo et al., 2011, 2013a; Henriques et al., 2013, 2015, 2020).

Specifically, in the following descriptions and throughout this thesis, we focus on
the Henriques et al. (2015) version of L-GALAXIES and the Lagos et al. (2018) version
of SHARK. Later we also make use of some mocks created with the Bower et al. (2006)
version of GALFORM.

When connecting galaxies to haloes, the galaxies in a SAM are split into centrals and
satellites, which may evolve differently. It is common to further divide the satellites
into those attached to dark matter subhaloes and any which may be left over after their
subhalo has been disrupted or stripped. Centrals are usually referred to as Type 0s,
satellites in subhaloes as Type 1s, and satellites without subhaloes as Type 2s or ‘orphans’.

1.4.2.1 SAM physical models

The main constituent of SAMs is a set of physical models for galaxy evolution. The
parameters of these models have to be constrained against observations, as they generally
cannot be determined analytically. The standard way of constraining these parameters
is to manually alter them to give predictions that match particular observables, but this
can be done in a more sophisticated way with the Markov Chain Monte Carlo (MCMC)
methods introduced by Kampakoglou et al. (2008) and Henriques et al. (2009). The
observations used as constraints for SAM physics vary, but the stellar mass function of
galaxies is usually the primary observable used. While other observable quantities are
also used, it is beneficial to leave some unused so as to provide testable predictions from
the models.

The most basic requirement of a SAM is an estimate for the mass of gas contained in
dark matter haloes, and a model to convert the gas into stars. Beyond this, black holes are
seeded in galaxies and grow by accreting gas, and these can subsequently influence the
gas distribution of galaxies through active galactic nuclei (AGN) feedback. It was shown
early in the development of SAMs, including by Efstathiou (2000) and Benson et al.
(2003), that both AGN and supernovae feedback are essential requirements to reproduce
observed stellar mass and luminosity functions, as they limit the available gas in galaxies,
and consequently the star formation rate.

These processes create a cycle for the gas distribution around haloes. Hot gas initially
accretes onto haloes, where it may cool and form stars. Feedback processes then inject
energy into the remaining gas, ejecting it from the halo. This causes a suppression of
star formation, but gas may be reincorporated back into the haloes allowing the cycle to
continue.

This cycle for the gas and stars is the minimum requirement of a SAM, but many
more processes occur that should be included. Examples are chemical enrichment due to
metals forming in stars, the modelling of both atomic and molecular hydrogen gas, and
effects specific to galaxy disc and bulge components. It is also necessary to model galaxy
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mergers and effects due to group environments, both of which we discuss below.
One important aspect for comparing SAMs to observations is the generation of galaxy

luminosities. This requires a model for the stellar populations of the galaxies, such as that
of Bruzual & Charlot (2003) or Maraston (2005), which can be combined with the star
formation rate histories of the galaxies to predict their emitted light. Then to estimate the
spectra they would have if observed this needs to be combined with a model for the dust
content of the galaxies and the absorption this causes.

1.4.2.2 L-GALAXIES and SHARK

L-GALAXIES is a well-established and extensively developed SAM, originally built upon
the Millennium simulation (Springel et al., 2005), and later adapted to simulate lower
mass galaxies with the higher resolution Millennium-II simulation (Boylan-Kolchin et al.,
2009). A major update to the code was released in Henriques et al. (2015) and a more
recent version was produced by Henriques et al. (2020).

The main model includes gas physics, star formation, black hole growth and
feedback, and supernova feedback. Additionally, environmental effects are included for
satellite galaxies such as gas stripping and tidal disruption. The more recent Henriques
et al. (2020) model also includes rings of material in galaxy discs as well as more detailed
chemical models. Post-processing methods were added by Henriques et al. (2012) for
stellar population synthesis and dust, to generate galaxy luminosities in different filter
bands.

The free parameters in L-GALAXIES are chosen using Monte Carlo Markov Chain
(MCMC) analysis. This was first incorporated into the SAM by Henriques et al. (2009),
and from Henriques et al. (2013) has been used to fit the SAM on a representative sample
of merger trees from the Millennium and Millennium-II simulations. This MCMC uses
a standard Metropolis-Hastings algorithm (Metropolis et al., 1953; Hastings, 1970), with
a flat prior. This works by generating walkers which are able to explore the possible
parameter values. For each walker, the process is to select a new point in parameter
space, calculate a likelihood for that point, and accept or reject that point using the ratio
of the likelihood to that of the previous step. The MCMC for the Henriques et al. (2015)
version of L-GALAXIES was used to fit 17 parameters in the model against observations
of the stellar mass function at z = 0, 1, 2, 3 and the fraction of red galaxies as a function
of mass at z = 0, 0.4, 1, 2, 3.

The SHARK SAM (Lagos et al., 2018) is a more recent model built upon the SURFS
(Elahi et al., 2018) halo catalogues. It is designed to be an open source and modular
SAM which can be easily adapted for new models. This contrasts with most other SAMs
where the code is either not public (as is the case for GALFORM) or has been developed
piecemeal without a clear structure (as is the case for L-GALAXIES).

Being a newer model SHARK is less well-developed but includes the basic required
methods of a SAM such as gas cooling and heating, star formation, stellar feedback, black
hole feedback, and galaxy mergers.

The parameters in SHARK were chosen by hand to match observations of the stellar
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mass function at z = 0 and 2, as well as the z = 0 black hole–bulge mass relation and
galaxy mass-size relations.

1.4.2.3 Merging galaxies

Galaxy mergers in SAMs are taken to occur between a central galaxy and one of the
associated satellites. Mergers are split into major mergers and minor mergers depending
on the mass ratio of the two objects. Major mergers occur when two similarly sized
galaxies merge, and these destroy the discs of both galaxies, leading to the formation of a
bulge in the centre of the resulting galaxy. Minor mergers occur when one galaxy is much
larger than the other, and result in the larger galaxy having a disc and bulge structure.
Mergers may cause bursts of star formation and also feed the central super-massive black
hole with cold gas which then drives AGN feedback.

The question of when these galaxy merger events occur in SAMs poses a problem.
The loss of a dark matter subhalo from the simulation does not necessarily imply that any
galaxy within it has undergone a merger. While a few SAMs, such as that of Cattaneo
et al. (2017), do include instantaneous mergers, most include Type 2 or orphan satellites
to account for the possible extended survival times of galaxies compared to subhaloes.

The extended survival of these galaxies is usually accounted for by estimating the
merger time tdf based on the properties of the satellite when it becomes a Type 2, and
merging it with the central galaxy once this time has elapsed. A variety of models for
survival time exist (e.g. Boylan-Kolchin et al., 2008; Jiang et al., 2008; Poulton et al., 2021;
Berner et al., 2021), most of which are built on the theoretical model of Chandrasekhar
(1943). These models all account for the dynamical friction of the host on the satellite, but
many do not account for satellites with a physical extent or the addition of baryons, so
they are often adapted with a free parameter that can be tuned.

For the specific cases of the SAMs we use, L-GALAXIES uses a model based on Binney
& Tremaine (1987),

tdf = αDF
r2

satV200c

GMsat ln Λ
, (1.22)

which has a free parameter αDF and depends on the satellite mass Msat and radial
position rsat, as well as the host properties through V200c and the Coulomb logarithm
ln Λ = ln(1 +M200c/Msat). SHARK instead uses a formula from Lacey & Cole (1993),

tdf = αDF
ΘorbitR

2
200cV200c

GMsat ln Λ
, (1.23)

and calculates the Coulomb logarithm as ln Λ = ln(M200c/Msat). We have expressed
these two equations in a way that emphasises an overall similarity, but also demonstrates
the differences, in particular the inclusion of rsat in the L-GALAXIES method, and the
addition of a dimensionless orbital function Θorbit for SHARK. Θorbit depends on the
energy of the satellite orbit, but in practice it is selected at random from a log-normal
distribution in SHARK. The significance of this is that the survival times of satellites in
L-GALAXIES depend on the location of the satellite, but are independent of position in
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SHARK.
Having established the survival time of a Type 2 satellite at the snapshot its host

subhalo is lost, the position of the satellite at subsequent snapshots needs consideration.
A common method is to assume the satellite follows the position of the particle which
had the greatest binding energy in the subhalo it previously belonged to, referred to as
the most-bound particle (e.g. Guo et al., 2011; Pujol et al., 2017). This is the approach taken
by the Henriques et al. (2015) version of L-GALAXIES, although a slight modification is
applied. It is assumed that the baryonic component of the satellite causes an increase
in the dynamical friction force, and so the satellite is displaced radially from the most-
bound particle by a factor

rsat

rMBP
= 1− δt

tdf
, (1.24)

where δt is the time since the galaxy became a Type 2.
SHARK follows another common approach for the locations of Type 2 satellites:

distribute the satellites randomly. In SHARK this random distribution is taken to be
the NFW profile using the properties of the host halo, and positions selected using the
method of Robotham & Howlett (2018).

While the methods used by L-GALAXIES and SHARK are common approaches to
dealing with the problem of Type 2 locations, we note that other models have been
proposed and used. These include analytically predicting orbits based on the initial
properties of the host and satellite, as used by Tollet et al. (2017), Cora et al. (2018) and
Jiang et al. (2021), and creating a model that matches the orbits of DMO subhaloes at
different resolutions, as done by Delfino et al. (2022).

1.4.2.4 Environmental effects

The evolution of satellites is further complicated by possible environmental effects, which
can cause the loss of gas and stars from the satellites. In particular, in L-GALAXIES, once
a satellite has become an orphan it is assumed that, if the forces on the galaxy are great
enough, it can be broken apart.

Within L-GALAXIES there are two environmental effects that act on satellites. Firstly,
tidal and ram pressure stripping of Type 1s by their host halo; these stripping effects
gradually cause the removal of the hot gas of the satellite based on the location and mass
of the satellite. The tidal aspect of this acts proportionally to the dark matter mass of the
subhalo, thus removing all the hot gas by the time the mass reaches zero and the satellite
becomes an orphan (Guo et al., 2011).

The second environmental effect occurs after the point at which the satellite becomes
an orphan and this removes the remaining components of the galaxy, the cold gas and
stars. The main Henriques et al. (2015) model includes an instantaneous disruption
method, whereby if an orphan satellite is estimated to pass far enough into the halo
density profile, it is completely destroyed and the components of it are dispersed into
the intergalactic medium. This is a simplistic model, and a more detailed model has been
developed by Henriques & Thomas (2010) and Murphy et al. (2022) where the stars and
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cold gas are stripped from the satellite gradually.
In SHARK no detailed environmental effects are included for Type 2s. Instead, the

model of Lagos et al. (2014) is used, so that when a satellite first becomes a satellite all of
the hot gas is instantaneously stripped away and transferred to the central.

1.4.2.5 Clustering and profiles in SAMs

The clustering predictions of SAMs have been widely explored, as these are key large-
scale structure observables for which benefits are gained by the larger volume that can
be modelled by SAMs compared to the more computationally expensive hydrodynamical
simulations we discuss next. However, the inclusion of clustering among the constraints
on the free parameters of SAMs has proven a greater challenge.

In works based around individual SAMs the most relevant here are Henriques et al.
(2017) which shows projected clustering results from the Henriques et al. (2015) version
of L-GALAXIES in stellar mass bins, and Chauhan et al. (2020) which shows clustering in
SHARK for galaxies selected by HI mass. Both SAMs demonstrate a reasonable agreement
with observations, but neither exactly matches the observations. By comparing to Guo
et al. (2013a), Henriques et al. (2017) are able to conclude these predictions are affected
by supernova feedback and gas reincorporation.

A number of works have also compared clustering predictions between SAMs.
The most detailed of these is Pujol et al. (2017), part of the SAM comparison project
begun in Knebe et al. (2015), which provides direct comparisons between 12 SAM and
HOD variants by running them all on the same halo catalogue. By comparison of both
three-dimensional clustering and radial profiles, they conclude that the differences in
the modelling of orphan satellites is the primary cause of the scatter between SAM
and HOD predictions on small scales. The merging of satellites is also identified as the
main cause of differences in clustering between models in Contreras et al. (2013), which
compared a range of variants of the L-GALAXIES and GALFORM SAMs.

Wang et al. (2014) compare profiles from an earlier version of L-GALAXIES against
SDSS, and also show that the profiles on the smallest scales are dominated by Type
2 satellites. Further comparisons are done with SDSS using the GALFORM SAM by
Guo et al. (2013b), showing the SAM does not match the colour dependence to the SDSS
profiles.

The most complete way to explore the dependence of clustering on SAM parameters
would be to use clustering as a constraint in the fitting of the free parameters. However,
the two-point structure of clustering does not lend itself to calculations on subsets of SAM
outputs, as is required for MCMC fitting. The one major attempt to use clustering is that
of van Daalen et al. (2016), who endeavour to get around the problem of clustering in
small volumes by using the halo model to predict clustering for samples of galaxies. This
allows them to perform MCMC parameter analysis, finding the satellite merger timescale
and the parameters associated with supernovae feedback are altered the most by the use
of clustering constraints.
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1.4.3 Hydrodynamical simulations and the effect of baryons

The most comprehensive method of simulating galaxy formation is the use of
cosmological hydrodynamical simulations such as IllustrisTNG (Nelson et al., 2019a)
and EAGLE (Crain et al., 2015; Schaye et al., 2015). These simulate the baryons and dark
matter simultaneously, solving both the equations of gravity and hydrodynamics. This
means that they include the interactions between the baryonic and dark components
of the Universe in a manner that is impossible in simulations built upon DMO
methods. Fig. 1.5, reproduced from Vogelsberger et al. (2020), shows some examples of
hydrodynamical simulations, as well as some of the DMO simulations which SAMs are
built upon. It can be seen that the large-scale structure is similar for hydrodynamical
and DMO methods, but on small scales they differ. This is most clearly seen for the small
hydrodynamical zoom simulations which can produce realistic images of galaxies.

While hydrodynamical simulations, by including the baryons with the dark matter,
are expected to be the most detailed and accurate simulations currently available, they
are still not free from uncertainties in the modelling. It is important to note that the
particle masses in the simulation are large, often millions of stellar masses, and for
example the stellar particles are equivalent to large objects such as star clusters. Similarly
the minimum spatial resolution that can be resolved may represent a significant fraction
of the size of a galaxy. Physics at smaller scales and masses must be accounted for
using subgrid models, which are often similar to the empirical models used in SAMs.
The details of these models are uncertain and they require calibration to produce
results comparable to observed galaxies. As explained in Vogelsberger et al. (2020), the
mechanisms used for feedback processes are particularly unclear and can significantly
impact the outcomes of the simulations.

1.4.3.1 IllustrisTNG

In this thesis we use the IllustrisTNG simulations (TNG, Marinacci et al., 2018; Naiman
et al., 2018; Nelson et al., 2018, 2019a,b; Pillepich et al., 2018b, 2019; Springel et al., 2018)
These are a recent set of cosmological magnetohydrodynamical simulations which
have been run at a variety of resolutions. They are an improved version of the Illustris
simulations (Vogelsberger et al., 2014a,b; Genel et al., 2014; Sijacki et al., 2015), to resolve
issues with the feedback in the original model causing discrepancies with observations
compiled in Nelson et al. (2015).

The main TNG simulations consist of 9 simulations, split into 3 different size boxes,
each with 3 different resolutions. These are detailed in Table 1.1. There are also dark
matter-only simulations to match each of the 9 TNG simulations. Of particular note are
the highest resolution simulation, TNG50-1, and the largest simulation, TNG300-1. In
TNG50-1 galaxies of lower masses are resolved and the internal structure of galaxies can
be explored, while TNG300-1 has a box size comparable to some DMO simulations and
so samples the large-scale structure in a more statistically significant manner.

The physical models of TNG are detailed in Weinberger et al. (2017) and Pillepich
et al. (2018a), and include star formation, gas radiative processes, chemical enrichment
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Figure 1.5: A comparison of some examples of galaxy formation and dark matter
simulations, reproduced form Vogelsberger et al. (2020, Fig. 1). Cosmological and
zoom simulations are shown, for both hydrodynamical and DMO methods. Some of the
simulations we use in this thesis are shown in the lower half of this figure: the Millennium
and Millennium-II DMO simulations and the IllustrisTNG hydrodynamical simulation.
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Table 1.1: Details of the IllustrisTNG simulations, giving the particle masses of the full-
physics simulations and their dark matter-only equivalents.

Name Lbox Mbary Hydro MDMO DMO MDMO

[h−1 Mpc] [h−1M�] [h−1M�] [h−1M�]
TNG50-1 35 5.7× 104 3.1× 105 3.7× 105

TNG50-2 35 4.6× 105 2.5× 106 2.9× 106

TNG50-3 35 3.7× 106 2.0× 107 2.3× 107

TNG100-1 75 9.4× 105 5.1× 106 6.0× 106

TNG100-2 75 7.6× 106 4.0× 107 4.8× 107

TNG100-3 75 6.0× 107 3.2× 108 3.8× 108

TNG300-1 205 7.6× 106 4.0× 107 4.8× 107

TNG300-2 205 5.9× 107 3.2× 108 3.8× 108

TNG300-3 205 4.8× 108 2.5× 109 3.0× 109

and black hole growth. Feedback effects from the stars and black holes in the simulations
occur in the form of supernovae and active galactic nuclei.

1.4.3.2 Effects of baryons

The key difference between hydrodynamical simulations and other methods such as
SAMs is that the impact of baryonic physics on galaxy formation and the structure of
the Universe can be directly investigated. This has lead to studies being done of the
effect of baryons on haloes in many hydrodynamical simulations.

One of the key studies is that of Sawala et al. (2013), who find that baryonic physics
reduces both the mass and abundance of structures with masses . 1012M�. Chua et al.
(2017), using the original Illustris simulations, also show baryons reduce the abundance
of low mass subhaloes. However, other studies such as Schaller et al. (2015) and Castro
et al. (2021) show a reduction in abundance for all masses. Despali & Vegetti (2017)
argue that the apparently inconsistent reductions, and some differences they show in
the radial distribution of subhaloes, are due to the range of feedback mechanisms used
in simulations. Additionally, the variety of reductions in masses seen in different studies
may be partly attributable to the choices made about the selection of subhaloes.

However, it can be hard to distinguish the effects of the baryonic physics from the
impacts of the numerical methods used for the hydrodynamics. Jia et al. (2020) found
that adding only the hydrodynamics required for gas particles is enough to alter the
abundance of substructures, and this will therefore account for some of the differences
between dark matter-only and hydrodynamic simulations.

Another effect of baryons, seen in studies such as Schaller et al. (2015), is the
alteration of the radial distributions of the different components of the haloes, caused by
the presence of stars. Baryons have been seen to change the shapes of haloes, including
in Illustris by Chua et al. (2019), but there are two different effects involved. In the inner
regions of haloes the baryons can cause contraction (Gnedin et al., 2004) but the feedback
processes associated with baryons can also eject matter from the centre (Duffy et al.,
2010).
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Figure 1.6: Radial distribution of satellite galaxies in clusters from the Illustris simulation,
reproduced from Vogelsberger et al. (2014b, Fig. 2). The solid black line shows the
satellite profile, and is in agreement with the green band, which shows the results of
Budzynski et al. (2012). The dotted line shows the distribution of subhaloes in the
equivalent DMO simulation, which has a much flatter profile.

1.4.3.3 Clustering and profiles in hydrodynamical simulations

Hydrodynamical simulations have been limited by box size and obtainable resolution
when considering the large-scale structure of the Universe, but recently the increasing
size and complexity of the simulations has made it possible to generate predictions for
galaxy clustering.

The clustering in the TNG100 and TNG300 simulations is explored in Springel et al.
(2018). A reasonable agreement is shown compared to SDSS, except for when galaxies are
split by colour. This is suggested to be the result of not applying dust corrections for their
colours. One of the most successful clustering predictions from other hydrodynamical
simulations is in the EAGLE simulations by Artale et al. (2017), reaching a similar level
of agreement as IllustrisTNG, with results consistent with observations except for red
galaxies.

The distribution of satellite galaxies from the centre of their host halo has been
considered by Vogelsberger et al. (2014b) in the earlier Illustris simulation. Fig. 1.6 is
reproduced from that work and shows that satellites closer in to the centre are redder
and that luminous satellite galaxies have an enhanced number density on small scales
compared to the distribution of subhaloes in the dark matter-only simulation.

Nagai & Kravtsov (2005) showed that adding in some of the gas dynamics and star
formation processes involved in galaxy formation results in this enhancement over
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the distribution of DMO subhaloes, and brings simulations into reasonable agreement
with observations, but that this does depend on the subhalo selection used. Similar
enhancement of galaxies compared to DMO subhaloes is also seen in Weinberg et al.
(2008), where it is shown to cause an enhancement in the correlation function on small
scales, and in the subhalo distributions around clusters in the THETHREEHUNDRED

project by Haggar et al. (2021).
In the IllustrisTNG simulations radial profiles are considered by Bose et al. (2019),

where the galaxies are seen to follow the NFW profile of matter more closely than
they follow the distribution of subhaloes selected by mass in the dark matter-only
run. Further, they show that if dark matter-only subhaloes are instead selected by the
maximum value of the peak circular velocity at any point in their history, then a close
match to the galaxy profile can be obtained.

1.5 Thesis outline

In this thesis we use the galaxy surveys and simulations we have discussed above to
explore the distribution of galaxies within and around groups. To achieve this we make
use of small-scale clustering and satellite galaxy radial profiles. The outline of this thesis
is as follows.

In Chapter 2 we compare predictions from the L-GALAXIES and SHARK SAMs against
results from the GAMA survey, with a focus on how well they are able to reproduce the
clustering of galaxies. We examine which aspects of the models influence the clustering,
finding that on small scales the modelling of ‘orphan’ satellites is most important, while
large scales are mainly determined by the halo catalogue. We confirm this with some
simple modifications to the satellite radial distributions in SHARK.

As part of this study we measure the stellar mass function and luminosity functions
of the galaxies in the SAMs, and we adapt the luminosity post-processing methods from
L-GALAXIES to work on SHARK, allowing direct comparison of these methods. We also
discuss the occupation of haloes of different masses by galaxies with differing properties,
and the impact of the tuning of the SAMs.

In Chapter 3 we present Riggs et al. (2021), an exploration of the group clustering
in the GAMA survey. We calculate the group–galaxy cross-correlation for GAMA to
explore the small-scale group profile and the large-scale bias around groups, and we
also calculate the first results for marked correlation functions using groups.

We find the marked clustering statistics depend strongly on the group masses, but
have only weak dependence on galaxy mass, suggesting there is little mass segregation.
We compare these GAMA results to predictions from IllustrisTNG and L-GALAXIES.
IllustrisTNG matches GAMA well for most measurements but L-GALAXIES over-predicts
the mass dependence of the cross-correlation, which we ascribe to inaccuracies in the
modelling of the physics affecting satellite galaxies.

In Chapter 4 we present Riggs et al. (2022), looking at the radial distribution of
satellite galaxies around groups in the IllustrisTNG simulations and the GAMA survey.
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We compare the TNG satellite profiles to the distributions of matched subhaloes in
the equivalent dark matter-only simulations, seeing that there is an enhanced satellite
density on small scales in the full-physics simulations. This is due to the full-physics
satellites residing closer to the halo centre and having longer survival times.

We use these differences to derive models to account for the effect of baryons on the
positions of satellite galaxies in SAMs. For the satellites which have DMO counterparts,
we find that they reside closer to the central in the full-physics simulations, and that this
can be modelled with a power law. Satellites without DMO counterparts are distributed
radially in a manner that can be fit with a log-normal distribution, and we also develop
a model for their radial motion.

Following this, we test the application of these models to L-GALAXIES and SHARK

in Chapter 5. In both SAMs we find that our models provide some improvement in the
predicted satellite galaxy distributions and galaxy clustering when compared to GAMA.
However, for L-GALAXIES these changes impact the other predictions of the SAM such
that it needs recalibrating, and we show that this recalibration leads to faster mergers and
altered star formation rates.

Finally, we give our conclusions from this thesis and discuss the outlook for future
works in Chapter 6.
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2
Comparing semi-analytic galaxy
formation models against the GAMA
survey

S. D. Riggs, J. Loveday

Abstract

We compare the semi-analytic galaxy formation models (SAMs) L-GALAXIES and
SHARK against the Galaxy and Mass Assembly (GAMA) survey. We consider the stellar
mass function, luminosity functions from FUV to K-band, and the projected two-point
correlation function. To understand the differences in these, we compare the occupation
of haloes by galaxies of different stellar masses and luminosities, and also examine the
distributions of satellite galaxies within haloes.

We find that the tuning of SHARK places high-mass galaxies in less massive haloes
than L-GALAXIES, meaning that SHARK produces galaxy distributions in disagreement
with GAMA when galaxies are split by halo mass. The accuracy of the clustering
predictions varies with the underlying N-body simulation and the galaxy selection
criteria, but we find that L-GALAXIES consistently predicts a greater small-scale
clustering amplitude than SHARK.

We conclude that the halo catalogue matters for clustering predictions, particularly on
scales above 0.5h−1Mpc; smaller scales are dominated by the effects of orphan satellite
galaxies that have lost their dark matter subhalo and are spiralling in to merge with their
associated central galaxy. Our work indicates that clustering predictions from the SHARK

model could be improved by merging orphan satellite galaxies later, and that in both
SAMs small-scale clustering predictions require a more detailed model for the positions
of the orphan satellites.
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2.1 Introduction

Galaxy formation involves a complex mixture of many processes, which many
simulations have attempted to reproduce in order to understand the underlying physics.
The two most sophisticated simulation methods are hydrodynamical simulations
(e.g. Crain et al., 2015; Schaye et al., 2015; Pillepich et al., 2018b) and semi-analytic
models (SAMs, e.g. Henriques et al., 2015; Somerville et al., 2015; Lacey et al., 2016;
Lagos et al., 2018). Hydrodynamical simulations consider the dark matter and
baryons simultaneously, providing insight into the interactions between them, but
are computationally expensive to run. SAMs are simpler and evolve galaxies on a
pre-computed dark matter N-body simulation. They contain more free parameters that
must be tuned, but they allow rapid testing in large volumes of a range of different
simple models for the processes involved in galaxy formation. This makes them a
powerful tool for investigating these processes. In this work we explore predictions
from two SAMs, the Lagos et al. (2018) version of SHARK and the Henriques et al. (2015)
version of the Munich galaxy formation model L-GALAXIES.

Large spectroscopic galaxy surveys are important for constraining and testing galaxy
formation models, and we compare these SAM predictions to observational results from
the Galaxy And Mass Assembly survey (GAMA, Driver et al., 2009, 2011; Liske et al.,
2015). GAMA provides a spectroscopic sample of galaxies that is highly complete in
all environments. In comparison to the Sloan Digital Sky Survey (SDSS, York et al.,
2000) main galaxy sample, GAMA is two magnitudes deeper and has much better
spectroscopic completeness, although at the cost of reduced sky coverage.

The parameters of the galaxy formation physics in SAMs have to be constrained
against such observations, as it is not possible to produce theoretical values for them
a priori. The stellar mass function (SMF) of galaxies is the first observable that any model
should reproduce, and most SAMs constrain their parameters to give the best possible
fit to the SMF. However, luminosity functions (LFs) provide a more direct comparison to
observations of real galaxies, and so it is also important to reproduce these.

In addition to the overall SMF and LFs, it is interesting to consider how galaxies
with different masses and luminosities are distributed in haloes of different masses.
Recently Vázquez-Mata et al. (2020, hereafter VM20) compared SMFs in different mass
haloes between GAMA, L-GALAXIES and two hydrodynamical models, finding similar
trends in central galaxy properties but significantly less dependence of satellite galaxy
properties on halo mass in the simulations than in GAMA.

Galaxy clustering is also a key prediction of galaxy formation models, although most
SAMs do not include clustering among their constraints, with the Markov Chain Monte
Carlo (MCMC) methods introduced by Kampakoglou et al. (2008) and Henriques et al.
(2009) only once having been adapted to include clustering. This was done in the work
of van Daalen et al. (2016), who concluded that the parameters most strongly affecting
the two-point correlation function are those affecting merger times and supernovae
feedback, and suggested that clustering will be a fruitful additional measurement to test
and constrain models.



34

While not often used as a constraint, galaxy clustering binned by galaxy stellar mass
has been frequently examined in the outputs from SAMs, including by Henriques et al.
(2013), Kang (2014) and Campbell et al. (2015). The Henriques et al. (2015) version of
L-GALAXIES has its projected galaxy clustering examined by Henriques et al. (2017),
who show that the most significant effects on the predicted two-point correlation
function are from supernova feedback and gas reincorporation models. Contreras et al.
(2013) provide a detailed comparison of clustering in several versions of the Munich
and Durham SAMs, and conclude that the merging of satellite galaxies is the biggest
cause of differences between models. Comparing those SAMs avoids some differences
associated with the N-body simulation, as they both use the Millennium (Springel et al.,
2005) N-body simulation, but that still leaves some degeneracy between the effects of
the halo merger tree construction and the galaxy formation models.

The most comprehensive exploration of galaxy clustering in different SAMs is that
of Pujol et al. (2017), who run several SAMs on the same dark matter halo catalogue.
This follows the work of Knebe et al. (2015), where it is shown that using the same halo
catalogue for different SAMs can produce large differences in the stellar mass functions
and other observables due to the different tuning used for each SAM.

Pujol et al. (2017) identify the modelling of ‘orphan’ satellite galaxies, also referred
to in the models as Type 2 galaxies, as one key element of clustering predictions. These
are satellite galaxies which have lost their associated dark matter subhalo. This occurs
when the subhalo becomes sufficiently disrupted that it is no longer detected by the halo
finding algorithm, and so any galaxy contained within that subhalo becomes an orphan.
The subsequent modelling of these galaxies varies between SAMs, with some instantly
merging the galaxy with the central galaxy of the host halo, and others following orbits
generated analytically, or from the most-bound particle of the disrupted subhalo.

Increasing the simulation resolution allows for the exploration of galaxies with
smaller stellar masses, but does not solve the problem of orphan galaxies (Gao et al.,
2004). If the dark matter mass of a subhalo drops below that of its baryons, the orbit
found by just considering the dark matter will become inaccurate. In L-GALAXIES,
galaxies where that happens are treated as orphan satellites for their subsequent
evolution.

Small-scale problems affected by satellite galaxies are also found in Farrow et al.
(2015) when mock catalogues from the Lacey et al. (2016) and Gonzalez-Perez et al. (2014)
versions of the Durham SAM are compared against GAMA projected correlations.

Our work adds to this, considering clustering in volume-limited samples from two
different SAMs. We present the first comprehensive clustering results from SHARK

and compare against L-GALAXIES to test the SHARK model and explore reasons
for the differences in their predictions. We compare both SAMs against the GAMA
spectroscopic galaxy survey, as the high completeness of GAMA for close pairs (see
Robotham et al., 2010) is a significant improvement upon SDSS for examining small-scale
clustering. We expand upon the results of Pujol et al. (2017), looking at galaxy clustering
as a function of both stellar mass and luminosity, and considering the effect that different
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halo catalogues can have on the results. Through the addition of luminosity-dependent
clustering we compare against a more direct result from the observations, where it is
much easier to derive a volume-limited sample for luminosities than for stellar masses.

This paper is organised as follows. In Section 2.2 we introduce the GAMA survey and
the relevant details of the SAMs we use, and then in Section 2.3 we explain our methods.
Section 2.4 gives our results for stellar mass and luminosity functions, and Section 2.5 for
two-point correlation functions. We present a discussion of the impact of the model for
orphan satellite positions in Section 2.6 and conclude in Section 2.7.

2.2 Data and simulations

2.2.1 GAMA survey

The data we use for our comparisons comes from the GAMA spectroscopic galaxy survey.
The GAMA-I survey comprised three equatorial fields, each of area 12× 4 degrees, with
a Petrosian magnitude limit of r < 19.4. This was updated in GAMA-II to increase
the area of each field to 12 × 5 degrees and the magnitude limit to r < 19.8. The high
spectroscopic completeness, including of close pairs (see Robotham et al., 2010), makes
the survey suitable for examining clustering down to small scales.

We primarily use results from GAMA-II, but also compare to GAMA-I results in the
form of the SMF of Baldry et al. (2012) and the LFs of Driver et al. (2012) from the far
ultra-violet to the near infra-red.

We calculate projected two-point correlation functions for volume-limited samples
from GAMA-II. The details of these samples are given in Table 2.1. Our bin selections
match those of Farrow et al. (2015), with the exception of the lowest stellar mass bin where
Farrow et al. (2015) use a wider bin of 8.5 < log10(M?/h

−2M�) < 9.5. Samples split by
stellar mass use the masses derived in Taylor et al. (2011) and are volume-limited using
the same method as VM20. Briefly, the number density of galaxies with different stellar
masses is calculated as a function of redshift, and the turnover pointsMt

? in density are
fit by a polynomial,

logMt
? = 1.17 + 29.69a− 22.58a2, (2.1)

where a = 1/(1 + z). Galaxies are only included in samples selected by stellar mass if
their mass exceeds the value of this polynomial at their redshift.

2.2.2 Dark matter halo catalogues

In this work we use four dark matter N-body simulations with box sizes ranging
from 40 h−1Mpc to almost 500 h−1Mpc. The largest simulation we use is Millennium
(MR, Springel et al., 2005), which together with Millennium-II (MRII, Boylan-Kolchin
et al., 2009), allows the exploration of the formation of galaxies with stellar masses
from 107h−1M� upwards. In the Henriques et al. (2015) version of L-GALAXIES these
have been updated to the Planck Collaboration et al. (2014) cosmology of ΩΛ = 0.685,
ΩM = 0.315, Ωb = 0.0487, H0 = 67.3 km s−1Mpc−1, ns = 0.96 and σ8 = 0.829, using the
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Table 2.2: Box sizes and resolutions of the N-body simulations used in the SAMs.

Name
Box size

[h−1Mpc]
Number of particles

Particle mass
[h−1 M�]

Snapshots

Millennium (MR) 480.28 21603 9.61× 108 64
Millennium-II (MRII) 96.06 21603 7.69× 106 68
SURFS L40N512 40.00 5123 4.13× 107 200
SURFS L210N1536 210.00 15363 2.21× 108 200

method of Angulo & Hilbert (2015). Our smallest simulation is the L40N512 simulation
from the SURFS set of simulations (Elahi et al., 2018). We choose to use this for some of
our analysis as it has the highest resolution of the SURFS simulations, but we primarily
make use of the larger L210N1536 box from them. The SURFS simulations were run
with the Planck Collaboration et al. (2016) cosmology of ΩΛ = 0.6879, ΩM = 0.3121,
Ωb = 0.0491, H0 = 67.51 km s−1Mpc−1, ns = 0.9653 and σ8 = 0.815. We show in Table
2.2 the resolution of each simulation used, showing Millennium and Millennium-II after
scaling to Planck Collaboration et al. (2014) cosmology.

In this work, we assume that the small differences in assumed cosmology between
SURFS and Millennium will not have significant effects on our conclusions; this is
justified as Guo et al. (2013a) see only small differences at low redshifts when changing
cosmologies in L-GALAXIES. However, the structures within the catalogues will not
be the same as they have been constructed differently. Haloes and subhaloes in the
Millennium and Millennium-II simulations were extracted using the SUBFIND (Springel
et al., 2001) substructure finder and joined together into trees with LHALOTREE (Springel
et al., 2005). The SURFS haloes have been found using the VELOCIRAPTOR (Elahi et al.,
2019a) halo finder and trees were constructed from these using the TREEFROG (Elahi
et al., 2019b) code. This is expected to lead to differences in the galaxies produced by
the SAMs on the different halo catalogues—Lee et al. (2014) show that the growth of
galaxies depends on the halo merger trees used.

We show in Fig. 2.1 the subhalo mass function of the simulations, as differences
between subhalo mass functions at the high- and low-mass ends have an impact on our
later results. The uncertainty regions show the standard deviation from dividing each
catalogue into 8 subvolumes. It can be seen that there are fewer high-mass subhaloes in
SURFS and Millennium-II than in Millennium, but that Millennium has a higher cut-off
threshold at the low mass end.

2.2.3 L-GALAXIES

To produce galaxies from the halo catalogues we first use the Henriques et al. (2015) form
of L-GALAXIES. This uses the Millennium and Millennium-II simulations, but we also
investigate using the SURFS simulations as the input. However, we have not recalibrated
the galaxy formation parameters in L-GALAXIES for the SURFS simulations, and so we
expect some loss of accuracy of the results compared to those from Millennium. The
parameter values we use are those of Henriques et al. (2015), which have been fit using
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Figure 2.1: Comparison of the subhalo mass functions of the simulations in Table 2.2 at
redshift zero.

MCMC against the observed galaxy SMF and the observed fraction of passive galaxies
out to redshift 3 for the output from the Millennium and Millennium-II simulations.

In order to run L-GALAXIES on SURFS we had to adjust the halo catalogues slightly.
For each defined group of subhaloes in the SURFS catalogues we choose the most massive
subhalo in a group to be the central halo. This is necessary as L-GALAXIES requires
information on the mass ordering of subhaloes during mergers, which we needed to
compute for SURFS. We set the masses of the SURFS haloes to be the sum of the masses
of all the subhaloes within the group.

We also change the magnitude of the subhalo spins, following the method employed
in SHARK. Spin parameters λ are selected randomly from a log-normal distribution with
mean 0.03 and width 0.5, and the subhalo spin Js is then calculated with (Mo et al., 1998)

Js = λ

√
2G2/3

(10H(z))1/3
M5/3

s , (2.2)

where Ms is the subhalo mass. Spin components are then assigned, maintaining
the direction of the original spin. It can be seen this is necessary from Fig. 2.2,
where the spin parameters for SURFS L40N512 subhaloes are compared to one
subvolume of Millennium. In both cases the subhalo masses are restricted to the range
10.3 < log10(Ms/h

−1M�) < 11.3 and it can be seen that the SURFS subhaloes have
greater values of λ and of maximum circular velocity, Vmax. Such different distributions
suggest differences and perhaps problems with the halo finders used. We also show the
subhalo spins when selected randomly from a log-normal distribution, which brings the
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Figure 2.2: Scatter plot of the spin parameter λ against maximum circular velocity Vmax

for subhaloes with 10.3 < log10(Ms/h
−1M�) < 11.3 in the first subvolume of the

Millennium simulation (green triangles), the SURFS L40N512 simulation (red squares)
and for SURFS L40N512 when λ is selected from a log-normal distribution as described
in the text (yellow circles). Black lines show contours at density 0.15 of the maximum in
each case to make comparison easier in the overlapping regions.

values of λ into better alignment with those of Millennium. While this does not correct
the difference in Vmax, we choose to use this method for consistency with the SHARK

model.
The orphan satellites in L-GALAXIES, important for galaxy clustering, are followed

using the position of the most-bound particle in the halo last identified with the galaxy.
The radius of the orbit is also decayed over time by a factor of (1 − δt/tdf) compared to
that of the most-bound particle, where δt is the time since the galaxy became an orphan
and tdf is the dynamical friction time. When δt = tdf the orphan galaxy is merged to the
associated central galaxy.

When running on the SURFS simulations, most-bound particle positions are not
contained in the halo catalogues so, as in Pujol et al. (2017), the radial positions of
orphan satellites are decayed over time by 2 ×

√
1− δt/tdf from the position at which

they become an orphan. This formula is included in the standard Henriques et al.
(2015) implementation of L-GALAXIES for instances where most-bound particles are
unavailable. It was designed to approximate the effects of dynamical friction on the
satellites, modifying the formula used with most-bound particles. This reduces the
differences found by Angulo et al. (2014) in the two-point correlation function on scales
less than 0.4 h−1Mpc with and without most-bound particles. However, this formula
instantaneously doubles the radial distance from the central at the point when a satellite
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becomes an orphan, and the reason for this formula change is partly due to differences
in the implementation of the methods within the code, leading to different outcomes of
the satellite disruption mechanism. It needs to be kept in mind during the later analysis
that L-GALAXIES is treating orphan galaxies slightly differently between the Millennium
and SURFS simulations.

In addition to galaxies without dark matter subhaloes, L-GALAXIES also models
galaxies where the stellar mass exceeds the dark matter subhalo mass as orphans. This
approximation is made as for these cases the dynamics of the subhalo will have been
strongly affected by the stars.

2.2.4 SHARK

We also consider the galaxies output from the SHARK SAM, version 1.2.1, on the SURFS
simulations. We use the parameters of Lagos et al. (2018) which have been tuned by hand
against observations, including the galaxy stellar mass function out to redshift 2 and the
black hole–bulge mass relation at redshift 0.

The orphan satellites in SHARK are treated in a simpler way than in L-GALAXIES,
placing them in a Navarro et al. (1997, hereafter NFW) profile adopting the properties of
the host halo using the method of Robotham & Howlett (2018).

A further difference between the SAMs is that SHARK contains no inbuilt galaxy
luminosity calculations, whereas L-GALAXIES does. This does not prevent luminosities
being generated from SHARK, as star formation histories are recorded, but it does
add an extra layer of post-processing. The existing method of post-processing is the
VIPERFISH code of Lagos et al. (2019), which connects SHARK outputs to the PROSPECT

spectral fitting code (Robotham et al., 2020). We use the default model of Lagos et al.
(2019), referred to there as EAGLE-τ RR14, which uses Charlot & Fall (2000) dust model
parameters from the parametrisation of Trayford et al. (2020), and dust to metals ratio
of Rémy-Ruyer et al. (2014). As a comparison to this, we also adapt the luminosity
post-processing routines of L-GALAXIES to run on the SHARK star formation histories.
In order to do this, we re-bin the star formation histories into the bins generated by
L-GALAXIES, making the simplest assumption that star formation is constant within a
bin for the late-time bins in SHARK which are subdivided in converting to L-GALAXIES

bins.
The advantage of the method we have adapted from L-GALAXIES is a much shorter

running time. Approximate computation times for the VIPERFISH and L-GALAXIES

methods running on 1/64 of the SURFS L40N512 simulation on 1 core of a laptop are
5 minutes compared to 2 seconds, although we note the VIPERFISH code can be run in
parallel to decrease the run times.

On the other hand, the VIPERFISH code has a major advantage in that it can reproduce
luminosity functions in the far infra-red, as shown in Lagos et al. (2019). The methods
used in L-GALAXIES are unable to produce accurate luminosity functions beyond the
near infra-red and so there is a significant benefit to using the VIPERFISH code with
SHARK. However, for the remainder of this work we will only consider wavelengths
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up to K-band where direct comparisons between the models can be made for the SAMs.

2.3 Methodology

2.3.1 Luminosity and stellar mass functions

We calculate LFs and SMFs for all galaxies in the simulations and also for galaxies divided
into bins of host halo mass. To generate uncertainties for these we divide each simulation
into 8 subvolumes and calculate the standard deviation between these.

LFs and SMFs in halo mass bins are designed to match to the results of VM20, using
the same halo mass bins used there for the IllustrisTNG hydrodynamical simulation.
Halo masses for GAMA are calibrated to reproduce the mass within an overdensity 200
times the mean density of the Universe, but for the SAMs the masses correspond to the
mass within 200 times the critical density of the Universe. This definition is used for the
SAMs as it is the only one available from SHARK, but we have checked with L-GALAXIES

(where both mass definitions are available) that the mass used has only a minimal effect
on the results we show.

We use the same fitting functions as VM20. Central galaxies are fit with log-normal
functions φc (Yang et al., 2008, 2009) of the form

φc(M) = φ?cexp

[
−(M −Mc)

2

2σ2
c

]
, (2.3)

with peak height φ?c , central value Mc and width σc. M represents magnitude or
log10 mass, respectively for LFs and SMFs.

Satellite galaxies are fit with Schechter functions φs, as these were found in VM20 to
provide the best fits to the GAMA data. These have the form

φs(L)dL = φ?s

(
L

L?

)α
exp

[
−
(
L

L?

)]
d

(
L

L?

)
, (2.4)

for normalisation φ?s, characteristic mass or luminosity L? and faint-end slope α.
L represents luminosity or stellar mass, respectively for LFs and SMFs. We fit the satellite
galaxy LFs and SMFs over the same ranges used in VM20: −24 < Mr − 5 log10 h < −16

and 9 < log10(M?/h
−2M�) < 12.5.

2.3.2 Two-point correlation functions

When calculating clustering results for GAMA we first estimate the two-dimensional
correlation function ξ(r⊥, r‖); the excess probability above random of finding a group
and a galaxy separated by r‖ along the line of sight (LOS) and r⊥ perpendicular to the
LOS. This is calculated using the estimator of Landy & Szalay (1993),

ξ(r⊥, r‖) =
1

RR

(
DD

(
nR
nD

)2

− 2DR

(
nR
nD

)
+RR

)
, (2.5)
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where nD is the number of galaxies in the observations, nR the number of galaxies in
the random catalogue and DD, DR and RR give the counts of pairs of galaxies in the
data catalogue, between the data catalogue and a random catalogue, and in the random
catalogue respectively.

The random catalogue of points is needed to model any selection effects in the galaxy
sample. We use the same survey mask described in section 2.3.1 of Loveday et al. (2018),
and generate angular coordinates using MANGLE (Hamilton & Tegmark, 2004; Swanson
et al., 2008). Radial coordinates are drawn at random from a distribution uniform in
comoving volume modulated by the density-evolution factor 100.4Pz (Loveday et al.,
2015, equation 5), where we assume P = 1.

In order to calculate correlation functions from the SAMs we use the correlation
function calculator CUTE (Alonso, 2012). This calculates three-dimensional correlation
functions which we project, then we calculate uncertainties using 8 jackknife samples.
The CUTE code provides a specific form, CUTE_box, to run on periodic boxes. In the
periodic box case the two-point correlation is estimated as

ξ(r) =
DD(r)

RR(r)
− 1, (2.6)

with the random pair count calculated as

RR(r) = n2
D

v(r)

V
, (2.7)

where V is the total box volume and v(r) = 4
3π((r+dr)3−r3) is the volume of a spherical

shell of radius r and thickness dr (Alonso, 2012).
To overcome the effects of redshift space distortions, we then calculate the projected

correlation function wp according to (e.g. Coil, 2013)

wp(r⊥) = 2

∫ Rmax

0
ξ(r⊥, r‖)dr‖ (2.8)

for GAMA and using

wp(r⊥) = 2

∫ Rmax

0
ξ
(

(r2
⊥ + y2)1/2

)
dy (2.9)

for the SAMs, where the correlation function is projected along the line-of-sight direction
onto the perpendicular separation direction r⊥. In practice this integral is performed to
a cutoff distance Rmax, which we choose to be 25h−1Mpc. The cutoff distance for the
SAMs is dictated by the smallest box size we use; and for consistency we use the same
for GAMA. The cutoff distance used has only a small effect on our results, as shown for
GAMA in appendix B of Loveday et al. (2018).

However, the use of this integral ignores the effect of residual redshift-space
distortions (e.g. van den Bosch et al., 2013), which may bias our results at large radii to
be low. This will be degenerate with the integral constraint problem where, due to the
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small volumes of some of the simulations used, an integral constraint biases the results
when calculating the correlation function. The volume integral of the estimator of ξ(r)
over the sampled volume is by definition zero, which causes the correlation function to
deviate from the true value for small simulation boxes and surveys. To account for this
we add the integral constraint I to each estimated ξ(r), where I is the volume integral of
ξ(r) out to the maximum correlation distance used.

We estimate the volume integral of the binned correlation function ξi in the
simulations by

I =
Σi(ξiRRi)

ΣiRRi
, (2.10)

using random pair counts RRi (Roche & Eales, 1999).
For the GAMA data, we estimate the integral constraint by assuming that wp has a

power law behaviour. Following (Roche & Eales, 1999), we fit wp with a function of the
form

wp(r⊥) = Ar−B⊥ − C, (2.11)

and add the derived value of C to the projected correlation to estimate the true
correlation.

2.4 Stellar mass functions and luminosity functions

2.4.1 Stellar mass function

We show in Fig. 2.3 the comparison between the SMFs of the SAMs we have run.
Uncertainties, given by the standard deviation between 8 subsamples in each simulation,
are seen to be highest for the runs on the SURFS L40N512 simulation, as expected from
the small box size.

We only show the L-GALAXIES–Millennium SMF for its range of validity,
M? > 109h−2M�, where it provides a reasonable match to GAMA data. This is a
reflection of the previous MCMC tuning of L-GALAXIES to combined datasets including
the Baldry et al. (2012) SMF used here, although the SAM prediction is slightly below
the observational results at masses around 1010.7h−2M�. L-GALAXIES–Millennium-II
is shown across the full mass range, and we note that the curve is similar to the
one produced when running L-GALAXIES on the SURFS L40N512 box, which has a
similar resolution. These two simulations have halo mass functions which drop below
Millennium at a similar mass, log10(Msubhalo/h

−1M�) ≈ 13.5, as shown in Fig. 2.1,
resulting in a similar deviation in SMF. SHARK fits the GAMA data within uncertainties
across most of the mass range shown, which is expected as it has been tuned by hand
using the SURFS simulations, although on SURFS L210N1536, SHARK produces slightly
more of the most massive galaxies than are seen in Baldry et al. (2012). This is due to
tuning, as the Wright et al. (2017) SMF used to tune SHARK slightly exceeds the Baldry
et al. (2012) SMF at the high-mass end.

At the high mass end it is clear that L-GALAXIES produces fewer galaxies than SHARK

when both are run on the SURFS simulations. This implies that, for the same halo mass,
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Figure 2.3: Comparison of the SMF from the SAMs at redshift zero. We show
L-GALAXIES run on the Millennium (green solid), Millennium-II (lime dashed), SURFS
L40N512 (blue dot dashed) and SURFS L210N1536 (purple dot dashed) simulations.
SHARK runs on the SURFS L40N512 and SURFS L210N1536 simulations are shown with
orange and red dotted lines respectively. Uncertainties are estimated by the standard
deviation between 8 subboxes. GAMA results from Baldry et al. (2012) are shown in
black.

SHARK produces higher mass galaxies than L-GALAXIES. Considering that the SURFS
L40N512 box in particular is under-representative of massive haloes, it is perhaps to be
expected that SAMs based on it cannot replicate the high mass end of the SMF. This
would imply the masses of the galaxies formed by L-GALAXIES are more accurate.

Some deviation is seen at the low mass end as well. However, this is again likely
to be predominantly due to tuning. SHARK is tuned to the GAMA SMF of Wright et al.
(2017), which is very similar to the Baldry et al. (2012) values shown here at the low mass
end. However, a combined dataset additionally including SDSS data from Baldry et al.
(2008) and Li & White (2009) is used for tuning L-GALAXIES, and this dataset displays
the upturn below 109h−2M� seen in the L-GALAXIES runs here.

2.4.2 Luminosity functions

We compare LFs produced by the simulations against GAMA LFs from Driver et al.
(2012). Uncertainties are computed as the standard deviation between 8 subsamples,
as with the SMF. We measure LFs in the GALEX FUV and NUV ultra-violet bands, SDSS
ugriz bands and the UKIDSS YJHK infra-red bands, and show a selection of these in
Fig. 2.4.

In the infra-red UKIDSS YJHK bands, accurate predictions are made by all the models
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Figure 2.4: Comparison of the LFs at redshift zero in a selection of the available GAMA
bands between L-GALAXIES running on the Millennium (green solid), Millennium-II
(lime dashed) and SURFS L210N1536 (purple dot dashed) simulations, and SHARK

running on the SURFS L210N1536 simulation, post-processed using VIPERFISH (red
dotted) or the methods of L-GALAXIES (magenta dotted). GAMA data from Driver et al.
(2012) is shown as black points.

except for the brightest galaxies. K-band luminosity is known to be closely correlated
with stellar mass at low redshifts and so the level of agreement merely reflects that the
models have been tuned to reproduce the SMF.

Moving down in wavelength to the SDSS riz-bands, the agreement between each
model and the GAMA data remains fairly consistent, except L-GALAXIES–Millennium
slightly under-predicts the numbers of the brightest galaxies. These trends continue
moving into the SDSS u-band except for an increasing density of bright galaxies relative
to GAMA seen in the models run on the SURFS L210N1536 box.

Then in the GALEX bands, both SAMs predict a greater number density of brighter
galaxies from SURFS L210N1536 than is present in GAMA. As L-GALAXIES–Millennium
matches GAMA well, this may suggest later halo growth in SURFS L210N1536 than
Millennium, leading to a greater number of bright, young stars. The over-prediction
of the number densities of galaxies in the FUV band by SHARK matches the conclusions
of Lagos et al. (2019), although our results slightly exceed the values shown there due to
different parameter values and we see over-prediction across almost the entire magnitude
range shown.

We have found the LFs from SHARK to be nearly identical in all bands, whether using
VIPERFISH or the post-processing methods of L-GALAXIES, except at short wavelengths.
Fig. 2.4 shows a small difference in the u band at the brightest end and then an
increased difference in the FUV at the brightest end. The similarity across most bands is
surprising, as while both SAMs have dust models based around Charlot & Fall (2000),
the parametrisation is performed differently. However, one effect of the dust models is
visible, as they will alter the absorption of short wavelengths and consequently be part
of the cause of differences in the FUV.
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Table 2.3: Halo mass bins and limits (column 1) for the SMFs and LFs split by halo
mass. Columns 2 and 3 give mean redshifts and mean halo masses for the GAMA
samples of VM20. Columns 4–6 give mean halo masses for our matched samples at the
corresponding redshifts. The halo mass bins used for GAMA differ slightly from those
of the SAMs, and these are listed below the table.

Mean halo mass (log10Mh[h−1M�])
Halo mass range

(log10Mh[h−1M�])
Redshift GAMA

L-GALAXIES

MR + MRII
L-GALAXIES

L210N1536
SHARK

L210N1536
[12.8, 13.3]† 0.12 13.03 13.00 13.00 13.00
[13.3, 13.7] 0.19 13.50 13.47 13.47 13.47
[13.7, 14.1] 0.26 13.88 13.86 13.85 13.85
[14.1, 14.8]‡ 0.32 14.37 14.29 14.28 14.27

GAMA halo mass ranges differ to give similar mean masses: † [12.0, 13.3]; ‡ [14.1, 15.2]

The difference in the short wavelength bands between the post-processing methods
may also be a problem related to the star formation histories, as the FUV band in
particular is dependent on the binning of star formation histories near the output
redshift. The greater number of snapshots in the SURFS simulations compared to
Millennium should be beneficial for this, but it is possible that the snapshot subdivision
used in L-GALAXIES at low redshifts is specifically tuned to Millennium. It may also
imply that our approximation of dividing the star formation uniformly across the
bins when changing the binning scheme is overly simplistic. However, the similarity
of the two post-processing methods across the other bands validates the use of the
L-GALAXIES post-processing method with SHARK.

2.4.3 SMFs and LFs in haloes

When calculating the SMF and LF for galaxies in haloes of different masses, we use only
the larger L210N1536 box of the SURFS simulations, as there are too few large haloes in
the L40N512 box. Similarly, instead of using Millennium and Millennium-II separately,
we use Millennium for galaxies with log10(M?/h

−2M�) > 9.5 andMr−5 log10 h < −19.5,
and Millennium-II otherwise. We make comparisons here against the GAMA results of
VM20 using the four halo mass bins given in Table 2.3, and the SMF of L-GALAXIES with
Millennium and Millennium-II was also incorporated into VM20. We report here the
trends in the fitting parameters, and give the tables of parameter values in Appendix 2.A
for direct comparisons. We note that we assume the covariance matrices of the SMFs and
LFs are diagonal, which may cause biased parameter estimates (see Smith, 2012), but that
this is consistent with the method used in VM20.

2.4.3.1 SMF trends

The SMFs show the expected pattern of centrals at typically higher masses than satellites,
seen in Fig. 2.5. The centrals are well fit by log-normal functions for L-GALAXIES

on Millennium and Millennium-II, but both SAMs on SURFS L210N1536 show some
deviation, with central galaxies present at lower masses than expected. As low mass
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Figure 2.5: SMFs of galaxies split by halo mass for L-GALAXIES and SHARK, with GAMA
data from VM20. Central galaxies with log-normal fits are shown in the upper panel and
satellite galaxies with Schechter fits are shown in the lower panel. For clarity we only
plot bins containing 2 or more galaxies.
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central galaxies are found in both SAMs for SURFS and some central galaxies are not the
most massive galaxy in their halo we suggest that the central subhalo and the growth
history of it have in some cases been misidentified when making the merger trees.

The parameter values for the log-normal fits to the central galaxies in both SAMs
show a clear increase in Mc, as seen in the GAMA (VM20) results. No trend in
σc is seen for the SAMs in contrast to a broadening at low halo masses in GAMA.
Similar parameter values are found for L-GALAXIES on both halo catalogues, although
with large uncertainties on SURFS L210N1536, and these reasonably agree with the
observations. On the other hand, SHARK shows enhanced values of the characteristic
mass Mc compared to GAMA, caused by the tendency of SHARK to populate low-mass
haloes with higher mass galaxies which we noted in Section 2.4.1.

The simulated satellites are poorly fit by the Schechter fits, as these drop too fast at
the high stellar mass end and do not show the upturn in the L-GALAXIES SMF at low
masses. However, if these fits are used, L-GALAXIES shows little variation in fit except
an increased amplitude in low mass haloes, in contrast to GAMA where the characteristic
mass increases in line with halo mass. On the other hand, SHARK agrees much better with
GAMA, showing a characteristic mass that increases for more massive haloes.

2.4.3.2 LF trends

The LFs all show that within each halo mass bin, brighter galaxies are generally centrals
and fainter galaxies satellites, as shown in Fig. 2.6. All the simulations have central galaxy
LFs that are reasonably well-fit by a log-normal distribution, but they all show an excess
of fainter centrals relative to the fit.

The parameter trends for central galaxies are similar to those seen for SMFs,
particularly SHARK which again shows a shift to brighter (and more massive)
galaxies relative to GAMA. L-GALAXIES LFs have similar characteristic magnitudes
to GAMA but are wider, This is partly driven by a weaker relation between stellar
mass and luminosity in L-GALAXIES, but there could also be effects due to the use
of luminosity-based halo mass estimates in GAMA, perhaps with insufficient scatter
between halo mass and central galaxy luminosity.

Schechter functions for satellite galaxy LFs give reasonable fits for L-GALAXIES but
under-predict the number of bright galaxies for SHARK. Both SAMs display a trend for
an increase in characteristic magnitude and a slight decrease in faint-end slope α with
increasing halo mass. Particularly in the higher mass bins, the faint end slope in the
SAMs disagrees with GAMA.

2.4.3.3 Summary of halo-dependent SMFs and LFs

For both the SMFs and LFs for galaxies split by halo mass, we see similar best-fit
parameters in L-GALAXIES for both the Millennium and SURFS halo catalogues.
This helps validate the use of L-GALAXIES on simulations other than Millennium by
showing that the masses of galaxies formed are not heavily influenced by the particular
N-body simulation used. It also further demonstrates that the lack of massive galaxies
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Figure 2.6: r-band LFs of galaxies split by halo mass for L-GALAXIES and SHARK, with
GAMA data from VM20. Central galaxies with log-normal fits are shown in the upper
panel and satellite galaxies with Schechter fits are shown in the lower panel. For clarity
we only plot bins containing 2 or more galaxies.
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in the SMF from L-GALAXIES run on the SURFS boxes is due to the boxes being
under-representative of massive haloes, and not due to the SAM.

We have found that the modified Schechter fits used for satellite galaxies in the
GAMA data are non-optimal for both SAMs. This is due to greater numbers of
massive satellite galaxies being predicted by the SAMs compared with GAMA. Further
exploration of this may determine whether the SAMs overproduce massive satellites, or
if this is an observational bias against massive galaxies, such as the effects of different
photometric methods considered in Bernardi et al. (2016, 2017).

2.5 Projected correlation function

2.5.1 Galaxy auto-correlation functions

We compare projected correlation functions against GAMA in four bins of stellar
mass and of luminosity, considering for each simulation the snapshot closest to the
mean redshift of the GAMA sample for the bin. Here we calculate uncertainties by
jackknife between 8 subsamples. For SHARK we use the luminosities calculated with
the L-GALAXIES post-processing, although very similar results are expected from
the VIPERFISH post-processing. While the r-band luminosity functions produced
in these bins by the two post-processing methods are almost identical, we use the
L-GALAXIES post-processing method here as it gives a fairer comparison by minimising
any post-processing aspect of differences in the correlation functions between the SAMs.

Calculating the projected two-point correlation function in stellar mass bins, as shown
in Fig. 2.7, all models are seen to reproduce the general trends of the GAMA data. In the
three higher mass bins, bins (9.5 < log10M?[h

−2M�] < 11.0), all simulations display a
power law; in the lowest mass bin they all show a change in slope around 0.5 h−1Mpc,
approximately the size of a typical group.

L-GALAXIES produces very similar projected correlation functions running on
Millennium and Millennium-II, except at small scales in the two higher stellar mass
bins, where the stellar mass function begins to drop off for Millennium-II. A reasonable
match to GAMA is seen, except in the two higher mass bins the slope appears to be too
steep. When running on SURFS L210N1536, L-GALAXIES shows similar results to those
on Millennium-II except for the smallest scales in the higher mass bins, where a reduced
correlation is seen, which better matches the GAMA results.

The behaviour at separations of a few h−1Mpc is similar with SHARK and
L-GALAXIES running on SURFS L210N1536, supporting the idea that correlations at
these scales are dependent on the underlying haloes. However, SHARK shows a reduced
correlation, mainly at short distances, implying that the distribution of galaxies within
haloes differs from L-GALAXIES. In the higher mass bins this brings SHARK into better
agreement with GAMA than is seen for L-GALAXIES.

In luminosity bins, shown in Fig. 2.8, the models appear to perform less well than
in stellar mass bins, except for the case of L-GALAXIES running on SURFS L210N1536,
which at around 0.1 h−1Mpc matches the data within uncertainties in all of these bins.



51

100

101

102

103

104

w
p(

r
)[h

1 M
pc

]

9.0 <  log10 [h 2M ] <  9.5 9.5 <  log10 [h 2M ] <  10.0 10.0 <  log10 [h 2M ] <  10.5 10.5 <  log10 [h 2M ] <  11.0

10 1 100 101

r [h 1Mpc]

1

0

1

w
p(

r
)/|

w
GA

M
A

p
(r

)|

10 1 100 101

r [h 1Mpc]
10 1 100 101

r [h 1Mpc]
10 1 100 101

r [h 1Mpc]

Farrow 2015 power law
GAMA

L-Galaxies SURFS L210N1536
Shark SURFS L210N1536

L-Galaxies Millennium
L-Galaxies Millennium-II
L-Galaxies Millennium
L-Galaxies Millennium-II

Figure 2.7: The upper panels show the projected two-point correlation function in
different stellar mass bins for L-GALAXIES running on the Millennium (green solid),
Millennium-II (lime dashed) and SURFS L210N1536 (purple dot dashed) simulations,
and SHARK running on the SURFS L210N1536 simulation (red dotted). GAMA results
are shown as black points and the power law fits of Farrow et al. (2015) are shown in
grey. Note that in the 9.0 < log10(M?/h

−2M�) < 9.5 bin we show the power law for
a wider bin of 8.5 < log10(M?/h

−2M�) < 9.5. The lower panels show the ratio of the
simulation correlation functions against the GAMA results in the corresponding upper
panel.

This difference in performance between mass- and luminosity-dependent clustering is
perhaps indicative of an environmental dependence to the relationship between galaxy
stellar masses and luminosities that is not included in the SAM post-processing.

In magnitude bins between Mr − 5 log10 h = −21 and Mr − 5 log10 h = −19, SHARK is
seen to underestimate clustering on all scales. A similar underestimation is also seen
in L-GALAXIES when running on Millennium and Millennium-II in these bins. The
results for Millennium and Millennium-II are similar except in the brightest bin, but the
difference between these and L-GALAXIES–SURFS L210N1536 must be attributed to the
construction of the halo catalogue or the approximations made about the orphan satellites
without most-bound particles in SURFS L210N1536.

2.5.2 Central and satellite clustering

In order to understand the differences in the correlation functions, we focus on two
mass bins, and compare some of the higher resolution simulations, namely SHARK

running on SURFS L210N1536 with L-GALAXIES running on SURFS L210N1536 and on
Millennium-II. The bins considered are those with stellar masses between 109.5h−2M�

and 1010.5h−2M�.
We show in Fig. 2.9 the contributions to the projected two-point correlation function

broken down by central and satellite galaxies: the central and satellite auto-correlation
functions and the central–satellite cross-correlation, all divided by the overall galaxy
auto-correlation function. The cross-correlation is calculated with CORRFUNC (Sinha &
Garrison, 2019, 2020).
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Figure 2.8: The upper panels show the projected two-point correlation function in
different luminosity bins for L-GALAXIES running on the Millennium (green solid),
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and SHARK running on the SURFS L210N1536 simulation (red dotted). GAMA results
are shown as black points and the power law fits of Farrow et al. (2015) are shown in
grey. The lower panels show the ratio of the simulation correlation functions against the
GAMA results in the corresponding upper panel.

These terms can be connected to the halo model of clustering. The central
auto-correlation function contains only two-halo clustering, and is closely related to the
clustering of the underlying host haloes themselves. On small scales the central–satellite
cross-correlation shows one-halo clustering and is related to the distribution of
satellite galaxies in groups, while on larger scales it will contain two-halo terms and
is the main contribution to the group–galaxy cross-correlation. However, the satellite
auto-correlation is less easily expressed in these terms, as on small scales it is indicative
of any exclusion limiting the proximity of satellites in groups, but on large scales it will
also contain two-halo terms.

The contributions we plot are scaled by the fractions of centrals and satellites, as

wGG = f2
CwCC + 2fCfSwCS + f2

SwSS , (2.12)

where wii is the auto-correlation of galaxies (G), centrals (C) or satellites (S), wCS is
the cross-correlation between centrals and satellites, and fi is the fraction of centrals or
satellites. In Fig. 2.9 the top row shows f2

CwCC , the middle row f2
SwSS and the bottom

row 2fCfSwCS .
We also show on the figure the satellite fractions for each of the simulations within

each bin. We see that SHARK produces consistently fewer satellites than L-GALAXIES

and we note that L-GALAXIES produces a slightly greater satellite fraction when running
on Millennium-II than on SURFS L210N1536. We have also observed that both SAMs
running on SURFS produce some galaxies labelled as satellites that are not associated
with a central, meaning that the true satellite fractions are lower than the stated values.
This is a greater problem for haloes with less massive galaxies, so has only a very
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small effect in the bins considered here. The cause of this is misidentification of the
central subhalo in a group by the halo finder. In some cases, a subhalo hosting a galaxy
previously identified as a central becomes a satellite of a halo which has not had time to
evolve a central galaxy, therefore producing an isolated satellite galaxy. Note that these
are not the same as the orphan satellite galaxies we discuss elsewhere; orphan satellites
have no associated dark matter subhalo within their host halo while these isolated
satellites have host haloes with no stellar mass at the centre.

The satellite fractions help to highlight some of the differences between the
correlation functions. The auto-correlations of central galaxies are seen to be much
lower when running L-GALAXIES on Millennium-II than on SURFS L210N1536 in all
bins. It therefore seems surprising that the overall correlation function is very similar
to that of the other simulations, as we see that in most bins the Millennium-II galaxy
auto-correlation function depends almost entirely on the satellite galaxies. In all bins we
see that SHARK produces a greater contribution from central galaxy auto-correlations
when running on SURFS L210N1536, but this is due to the satellite fraction differences,
as the amplitudes of the central galaxy auto-correlations are very similar for the two
SAMs running on SURFS L210N1536. This is expected, as larger central galaxies should
be formed in the same haloes of the simulation. This means that the differences in
the galaxy auto-correlation functions from SURFS L210N1536 must be driven by the
differences in satellite galaxy modelling between the SAMs.

The contribution from satellite auto-correlations is always seen to be greater for
L-GALAXIES than SHARK, and the domination of satellites on scales r⊥ . 1h−1Mpc

shows these are responsible for the differences in overall correlation function. At
increasing separation, the contribution from the satellites decreases, leaving only the
effects of the centrals in different haloes, and, by association, the halo catalogue.

2.5.3 Satellite profiles

To understand the differences in satellite galaxy clustering, we compare the distribution
of satellites within haloes. For this we use the SURFS L210N1536 box and Millennium-II
for the better resolution they offer. We follow the method of Pujol et al. (2017), but divide
by the total number of galaxies to account for the different volumes used:

n(r/Rvir) =
Nr

(4π/3)[(r/Rvir + ∆(r/Rvir))3 − (r/Rvir)3]Ntot
. (2.13)

Here, n(r/Rvir) is the satellite profile in radial annular bin from r/Rvir to
r/Rvir + ∆(r/Rvir), Nr is the number of galaxies in the annulus, Rvir is the virial radius
of the halo and Ntot is the total number of galaxies. The virial radii are calculated from
the halo masses, Mhalo, from the simulation outputs as Rvir = (3Mhalo/(4π∆virρc))

1/3,
where ρc is the critical density, and the overdensity used is ∆vir = 200.

We show these profiles for the orphan Type 2 galaxies in Fig. 2.10. We show only
the Type 2 galaxies as the orbital distances of other satellites (Type 1s) are defined by the
subhalo positions and therefore show little difference between the SAMs run on the same
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L210N1536 (purple dot dashed) and Millennium-II (lime solid), and SHARK running on
SURFS L210N1536 (red dotted). The profiles shown correspond to the mean density of
Type 2 galaxies within haloes as a function of the virial radius of the halo.

halo catalogue.
It can be seen that the orphan satellite profiles for SHARK cut off just above the virial

radius in all the selected bins, in contrast to L-GALAXIES which shows Type 2 galaxy
profiles that extend to larger radii, both when running on Millennium-II and SURFS.
This difference in number and position of the orphan satellites suggests that the satellite
fraction differences can be partly attributed to differences in the modelling of orphan
satellite orbits, and that the assumption made in SHARK that the orphans follow the NFW
profile does not match the more detailed model options in L-GALAXIES. This will then
contribute to the differences in correlation functions.

Additionally, it can be seen that within the virial radius both SAMs show slightly
reduced orphan satellite profiles when running on SURFS L210N1536 compared to
L-GALAXIES on Millennium-II, with both SAMs on SURFS showing a slope change
around the virial radius, while L-GALAXIES–Millennium-II displays a profile close to a
power law. The main reason for the differences between L-GALAXIES run on the two
simulations will be the different methods of tracking the satellites, due to only having
most-bound particle positions for Millennium-II. The similarity of the L-GALAXIES

profiles at the largest radii plotted suggests the orphans are originating at the same radii
(although the positions are instantaneously doubled without most-bound particles) but
the different shapes closer to the centre show the subsequent evolution is different with
and without most-bound particle orbits. However, profile differences are also likely to
be impacted by differences in simulation resolution and halo finder, which will change
the mass and location at which a galaxy becomes an orphan.

These differences in projected clustering and satellite profiles depend heavily on
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Figure 2.11: Comparison of the halo occupation of orphan satellites between L-GALAXIES

running on SURFS L210N1536 (purple dot dashed) and Millennium-II (lime solid), and
SHARK running on SURFS L210N1536 (red dotted).

orbital position, so such measurements will be a useful tool to look at the physics
affecting satellite galaxies. In particular, it may be possible to use clustering and radial
profiles to constrain the dynamical friction that causes satellite orbits to decay, moving
the satellites towards the centre of haloes, and the timescales of the resulting galaxy
mergers.

2.5.4 Occupation numbers

Finally, we consider the halo occupation of orphan satellites in Fig. 2.11, again using
the SURFS L210N1536 and Millennium-II boxes. The occupation number as a function of
mass is calculated as the number of galaxies in haloes of a given mass divided by the total
number of haloes of that mass in the dark matter simulation. This is complementary to
our earlier examination of the SMFs and r-band LFs as a function of halo mass in Section
2.4.3, but focussing on the orphan satellites.

It is seen that L-GALAXIES running on SURFS produces more satellites in low mass
haloes than the other simulations. Their absence in SHARK appears to be part of the
cause of the lower satellite fraction produced, and may be responsible for the enhanced
characteristic masses of satellites seen in Section 2.4.3. It is surprising that the satellite
occupation numbers for SHARK in lower mass haloes are consistently very close to those
of L-GALAXIES with Millennium-II, given the different halo mass functions and distinct
satellite profiles and correlation functions they produce.
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2.6 Alterations to orphan galaxy modelling

To further investigate the differences we see in the Type 2 satellites between L-GALAXIES

and SHARK, we try implementing the orbital decay model from L-GALAXIES in SHARK.
To do this we record the position and dynamical friction time of orphan galaxies at the
point the merger clock is started and at any output snapshots move the satellite radially
from the starting position by a factor 2×

√
1− δt/tdf , where δt is the time since the galaxy

became an orphan and tdf is the initial dynamical friction time. Note that this does not
change any of the internal physics of SHARK; we are simply changing the locations of the
orphan satellites in the outputs.

Clustering and radial profiles for this modification are shown in Fig. 2.12. Very little
change occurs to the clustering, although there is a fractional increase on the smallest
scales. The radial profiles show a greater change but comparison to the profiles from
L-GALAXIES in Fig. 2.10 explains why this does not lead to clustering amplitude changes.
The change of the orphan galaxy positions causes the radial profiles to become more
extended, but without the flattening of the inner profile seen in L-GALAXIES. We attribute
this to the environmental disruption of satellites close to the centre in L-GALAXIES, which
does not occur in SHARK, and also the inclusion in the orphan population of L-GALAXIES

of galaxies where the stellar mass has exceeded the dark matter mass. The flatter and
more extended profiles of L-GALAXIES suggest the loss of some galaxies at small radii
due to disruption, and that the extra orphan condition causes galaxies to become orphans
further out in haloes.

The different orphan criteria will have some impact on the numbers of orphans
present, but the dramatically reduced number of satellites in SHARK compared to
L-GALAXIES shown in Fig. 2.9 suggests the orphans are also merging too fast in SHARK.
To explore this, we try changing the tau_delay parameter in SHARK when running on
SURFS L210N1536. This is a constant prefactor fdf in the merger time used for an orphan
satellite galaxy in SHARK, based on the merger time formula of Lacey & Cole (1993).
Changing this parameter is also justified by the results of van Daalen et al. (2016), who
find the merger time has a large effect on clustering in L-GALAXIES, and it is reasonable
to assume the same will be the case in SHARK. For our test we increase the value of this
parameter from 0.1 to 0.9, selecting this value as being at the opposite end of the range
suggested in Lagos et al. (2018).

Increasing the merger time parameter means the number of orphan satellites at low
redshifts increases. Central galaxy masses will also be slightly altered as there have been
fewer mergers to add mass to both them and their central black hole. This causes a slight
increase in the mass function at masses below 1010h−1M�, and a clear increase in the
small-scale clustering, as shown in the upper part of Fig. 2.12. This brings the clustering
closer to that of L-GALAXIES, but does not make much impact on the level of agreement
with GAMA.

These simple modifications to SHARK demonstrate the strength of the dependence of
clustering on only minor changes to the modelling of the orphan satellites. Improvements
in the clustering predictions of SAMs therefore requires a much better understanding of



58

100

101

102

103

104
w

p(
r

)[h
1 M

pc
]

9.5 < log10 [h 2M ] < 10.0 10.0 < log10 [h 2M ] < 10.5

GAMA
Original
Radial decay
fdf = 0.9

10 1 100 101

r [h 1Mpc]

1

0

1

w
p(

r
)/|

w
GA

M
A

p
(r

)|

10 1 100 101

r [h 1Mpc]

10 1 100 101

r/Rvir

10 6

10 4

10 2

100

102

n(
r/R

vi
r)

9.5 < log10 [h 2M ] < 10.0

10 1 100 101

r/Rvir

10.0 < log10 [h 2M ] < 10.5

Figure 2.12: Comparison of SHARK running on SURFS L210N1536 (red dotted) with two
minor modifications, altering the positions of orphan galaxies based on the merging time
(green dot dashed) and changing the merger time scaling factor fdf to 0.9 (blue dashed).
The upper panels show the projected correlation functions in two bins of stellar mass
and the ratios of the projected correlations to GAMA. The lower panels show the radial
profiles of orphan satellites in the same stellar mass bins.
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the effects of the baryons in galaxies on the positions and infall timescales of satellite
galaxies.

2.7 Conclusions

We have compared the semi-analytic galaxy formation models L-GALAXIES and SHARK,
and have examined whether they can reproduce the observed SMF, FUV to K-band
LFs and projected two-point correlation functions. We have run SHARK on the SURFS
L40N512 and L210N1536 simulations and L-GALAXIES on SURFS L40N512, SURFS
L210N1536, Millennium and Millennium-II. We compared the SAMs against the Galaxy
and Mass Assembly (GAMA) survey which is highly complete even in high-density
regions, and offers improvements upon previous surveys for considering small-scale
clustering.

Our main results are as follows:

• The galaxy SMF is accurately reproduced by both SAMs on their native simulation,
which is expected as they have been tuned to do so. However, when running
on identical simulations, SHARK produces a greater number of galaxies than
L-GALAXIES at the high mass end. This is due to the SURFS simulations that
SHARK is built on having fewer massive haloes than the Millennium simulation on
which L-GALAXIES is based.

• We compared LFs in 11 bands from far ultra-violet to near infra-red and found
they differ most between the SAMs at short wavelengths, with SHARK predicting
too many bright galaxies in the ultra-violet bands of GALEX. This appears to be
partly related to the halo catalogue as L-GALAXIES also has slightly too many bright
galaxies when running on the SURFS simulations.

• We have directly compared the methods used by the SAMs to produce luminosities
by running both VIPERFISH and the post-processing routines of L-GALAXIES on
star formation histories from SHARK. The two methods are seen to produce almost
identical results across the 11 bands we have considered, except at the brightest
end of the FUV band. This consistency over many bands is unexpected given
differences in dust modelling parametrisation.

• SMFs and r-band LFs for galaxies split by host halo mass show similar trends to
GAMA but differ in detail. In particular the SAMs contain more faint and low mass
galaxies for a given halo mass than GAMA.

• SHARK generally underestimates the projected two-point correlation function on
small scales relative to GAMA, both when binning galaxies by stellar mass and
luminosity. At projected separations below 1 h−1Mpc, L-GALAXIES always shows
a greater clustering amplitude than SHARK when both are run on SURFS.

• The choice of halo catalogue has a significant effect on the clustering results,
mainly above 0.5 h−1Mpc. While higher resolution probes halo interiors with
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more confidence, the construction of the halo catalogues appears to be a more
important factor for clustering, as we found differences in the clustering between
L-GALAXIES running on the Millennium and SURFS simulations with similar
resolutions.

• Scales smaller than those affected by the halo catalogue are dependent on the
astrophysics in the SAMs, with some cross-over in effects on scales between
0.5 and 2 h−1Mpc; we have found the small-scale clustering to be most clearly
dependent on the dynamics of orphan satellite galaxies that have lost their
subhaloes, supporting the conclusions of Pujol et al. (2017).

The presence of orphan satellites is a result of using N-body simulations without
baryons, rather than a true physical effect, but these galaxies have a physical meaning
as they are the ones which are allowed to merge with their central by the SAMs.
L-GALAXIES produces a much larger fraction of orphan satellites than SHARK, leading
to enhanced predictions of galaxy clustering on small scales, where the contribution
from satellite auto-correlations is greater. We have also observed that the orphan
satellite radial distribution around haloes in SHARK truncates just above the virial
radius, whereas in L-GALAXIES orphans are found further out. This is a result of
different models for the satellite locations, and will also influence small-scale clustering.
However, we have shown that simply incorporating the model for orphan positions
in L-GALAXIES into SHARK does not produce the same profiles and clustering,
highlighting that the definition of when a galaxy becomes an orphan and the inclusion
of environmental effects are also important components of the modelling.

Making use of small-scale clustering will therefore be useful in understanding the
physics of galaxy mergers, including looking at dynamical friction timescales that
cause the galaxies to spiral inwards. In an initial attempt to make use of this, we have
lengthened the time taken for orphan satellites to merge with their central galaxy in
SHARK. This increases the small-scale clustering amplitude, and also increases the
fraction of galaxies that are orphan satellites. However, improving orphan satellite
modelling further would require incorporating an enhanced model for their positions,
which we leave for future work.

To improve the fitting of L-GALAXIES to GAMA, adjusting the star formation rates
may be required to adjust the relative strengths of mass and luminosity dependent
correlation functions. Further changes are likely to focus on the parameters affecting the
orphan satellite galaxies but would be best fit using an MCMC approach, similar to that
in van Daalen et al. (2016).

We conclude that the L-GALAXIES and SHARK semi-analytic models compare
reasonably well, but not perfectly, with GAMA observations. There is room for
improvement, particularly around the modelling of orphan satellite galaxies.
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Appendices

2.A Halo-dependent SMF and LF fit parameters

We present on the following pages the parameter values of our best fits to SMFs and
LFs for galaxies split by host halo mass for L-GALAXIES and SHARK. We also include
the parameter values for GAMA from VM20. These fits use the functions described in
Section 2.4.3, and the uncertainties given are non-marginalised 1-sigma errors. Mass bins
M1–4 are given in Table 2.3.
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Table 2.4: Log-normal fits to the SMFs of central galaxies.
Mc σc log10φ

?
c χ2/ν

GAMA
M1 10.56 ± 0.03 0.30 ± 0.02 -3.54 ± 0.04 28.5/7
M2 10.95 ± 0.01 0.25 ± 0.01 -3.84 ± 0.04 13.2/5
M3 11.12 ± 0.01 0.22 ± 0.01 -4.20 ± 0.03 3.5/3
M4 11.19 ± 0.01 0.24 ± 0.01 -4.67 ± 0.03 9.5/3

L-GALAXIES MR + MRII
M1 10.52 ± 0.00 0.26 ± 0.00 -3.22 ± 0.00 70.1/7
M2 10.72 ± 0.01 0.26 ± 0.00 -3.78 ± 0.01 20.1/8
M3 10.87 ± 0.01 0.25 ± 0.01 -4.27 ± 0.02 6.7/9
M4 11.07 ± 0.02 0.25 ± 0.02 -4.88 ± 0.04 2.2/5

L-GALAXIES L210N1536
M1 10.42 ± 0.01 0.28 ± 0.01 -3.26 ± 0.02 37.5/16
M2 10.68 ± 0.03 0.29 ± 0.02 -3.89 ± 0.05 9.6/17
M3 10.82 ± 0.06 0.33 ± 0.04 -4.54 ± 0.08 3.0/13
M4 11.06 ± 0.16 0.34 ± 0.12 -5.15 ± 0.21 1.0/7

SHARK L210N1536
M1 10.76 ± 0.01 0.23 ± 0.01 -3.08 ± 0.02 24.0/20
M2 11.10 ± 0.02 0.21 ± 0.01 -3.70 ± 0.05 6.8/12
M3 11.30 ± 0.03 0.23 ± 0.02 -4.31 ± 0.09 2.4/9
M4 11.55 ± 0.07 0.26 ± 0.07 -4.95 ± 0.20 1.3/6

Table 2.5: Schechter function fits to the SMFs of satellite galaxies.
log10M

? α log10φ
?
s χ2/ν

GAMA
M1 10.31 ± 0.04 -1.16 ± 0.09 -3.17 ± 0.07 7.4/7
M2 10.51 ± 0.04 -0.98 ± 0.09 -3.27 ± 0.05 5.2/9
M3 10.61 ± 0.03 -0.84 ± 0.09 -3.45 ± 0.05 9.0/9
M4 10.77 ± 0.04 -0.91 ± 0.11 -3.68 ± 0.06 22.5/9

L-GALAXIES MR + MRII
M1 10.24 ± 0.01 -0.72 ± 0.02 -2.88 ± 0.01 33.6/9
M2 10.32 ± 0.01 -0.79 ± 0.02 -3.04 ± 0.01 24.2/9
M3 10.36 ± 0.01 -0.80 ± 0.02 -3.20 ± 0.01 25.3/10
M4 10.42 ± 0.02 -0.88 ± 0.03 -3.44 ± 0.02 27.5/10

L-GALAXIES L210N1536
M1 10.15 ± 0.03 -0.96 ± 0.06 -3.03 ± 0.04 12.6/8
M2 10.37 ± 0.05 -1.12 ± 0.05 -3.35 ± 0.06 2.9/9
M3 10.43 ± 0.06 -1.10 ± 0.07 -3.57 ± 0.08 1.9/9
M4 10.47 ± 0.08 -1.18 ± 0.08 -3.83 ± 0.10 2.7/10

SHARK L210N1536
M1 10.29 ± 0.04 -0.99 ± 0.06 -3.31 ± 0.05 6.9/8
M2 10.53 ± 0.06 -1.22 ± 0.06 -3.66 ± 0.07 3.2/10
M3 10.74 ± 0.08 -1.31 ± 0.07 -4.00 ± 0.11 3.9/10
M4 10.67 ± 0.14 -1.28 ± 0.09 -4.03 ± 0.15 5.1/12
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Table 2.6: Log-normal fits to the LFs of central galaxies.
Mc σc log10φ

?
c χ2/ν

GAMA
M1 -20.71 ± 0.08 0.55 ± 0.04 -3.01 ± 0.06 3.9/5
M2 -21.70 ± 0.02 0.43 ± 0.01 -3.95 ± 0.03 2.5/3
M3 -22.03 ± 0.02 0.41 ± 0.01 -4.39 ± 0.03 8.6/3
M4 -22.35 ± 0.02 0.47 ± 0.02 -4.97 ± 0.03 3.5/2

L-GALAXIES MR + MRII
M1 -20.63 ± 0.01 0.73 ± 0.01 -3.68 ± 0.01 24.9/9
M2 -21.13 ± 0.02 0.71 ± 0.02 -4.25 ± 0.01 38.2/10
M3 -21.52 ± 0.03 0.66 ± 0.02 -4.73 ± 0.02 25.3/7
M4 -22.03 ± 0.07 0.67 ± 0.05 -5.31 ± 0.03 8.5/6

L-GALAXIES L210N1536
M1 -20.48 ± 0.04 0.83 ± 0.03 -3.71 ± 0.03 12.3/17
M2 -21.11 ± 0.07 0.85 ± 0.05 -4.35 ± 0.04 7.8/17
M3 -21.43 ± 0.16 1.00 ± 0.11 -5.02 ± 0.07 1.9/12
M4 -22.31 ± 0.29 0.70 ± 0.21 -5.52 ± 0.19 1.8/10

SHARK L210N1536
M1 -21.14 ± 0.02 0.62 ± 0.02 -3.55 ± 0.02 40.3/20
M2 -22.00 ± 0.04 0.56 ± 0.03 -4.12 ± 0.04 7.5/15
M3 -22.57 ± 0.07 0.63 ± 0.06 -4.74 ± 0.07 0.8/9
M4 -23.33 ± 0.27 0.73 ± 0.22 -5.34 ± 0.15 0.5/5

Table 2.7: Schechter function fits to the LFs of satellite galaxies.
M? α log10φ

?
s χ2/ν

GAMA
M1 -19.98 ± 0.13 -1.02 ± 0.11 -2.68 ± 0.10 9.7/8
M2 -20.32 ± 0.08 -0.73 ± 0.10 -3.01 ± 0.04 11.2/9
M3 -20.36 ± 0.05 -0.38 ± 0.08 -3.15 ± 0.02 18.9/0
M4 -20.83 ± 0.05 -0.68 ± 0.08 -3.38 ± 0.02 6.9/11

L-GALAXIES MR + MRII
M1 -20.20 ± 0.03 -1.14 ± 0.03 -2.99 ± 0.02 20.5/11
M2 -20.56 ± 0.04 -1.25 ± 0.03 -3.24 ± 0.02 6.6/12
M3 -20.75 ± 0.05 -1.24 ± 0.03 -3.43 ± 0.02 7.5/13
M4 -21.01 ± 0.07 -1.32 ± 0.04 -3.71 ± 0.04 4.7/13

L-GALAXIES L210N1536
M1 -20.51 ± 0.06 -1.26 ± 0.02 -3.23 ± 0.03 24.8/12
M2 -20.83 ± 0.09 -1.32 ± 0.03 -3.49 ± 0.04 32.8/12
M3 -21.22 ± 0.14 -1.42 ± 0.03 -3.88 ± 0.08 25.1/13
M4 -21.51 ± 0.20 -1.49 ± 0.05 -4.21 ± 0.11 11.8/13

SHARK L210N1536
M1 -20.76 ± 0.10 -1.29 ± 0.03 -3.54 ± 0.05 25.3/12
M2 -20.73 ± 0.12 -1.28 ± 0.04 -3.59 ± 0.06 10.1/13
M3 -21.46 ± 0.20 -1.40 ± 0.04 -4.04 ± 0.10 10.7/13
M4 -21.41 ± 0.37 -1.41 ± 0.06 -4.10 ± 0.16 9.6/13
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3
Galaxy and Mass Assembly (GAMA):
the clustering of galaxy groups

S. D. Riggs, R. W. Y. M. Barbhuiyan, J. Loveday,
S. Brough, B. W. Holwerda, A. M. Hopkins, S. Phillipps

Abstract

We explore the clustering of galaxy groups in the Galaxy and Mass Assembly (GAMA)
survey to investigate the dependence of group bias and profile on separation scale and
group mass. Due to the inherent uncertainty in estimating the group selection function,
and hence the group auto-correlation function, we instead measure the projected group–
galaxy cross-correlation function. We find that the group profile has a strong dependence
on scale and group mass on scales r⊥ . 1h−1 Mpc. We also find evidence that the most
massive groups live in extended, overdense, structures. In the first application of marked
clustering statistics to groups, we find that group-mass marked clustering peaks on scales
comparable to the typical group radius of r⊥ ≈ 0.5h−1 Mpc. While massive galaxies are
associated with massive groups, the marked statistics show no indication of galaxy mass
segregation within groups. We show similar results from the IllustrisTNG simulations
and the L-GALAXIES model, although L-GALAXIES shows an enhanced bias and galaxy
mass dependence on small scales.
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3.1 Introduction

In the standard hierarchical model of galaxy formation, galaxies form in gravitationally
collapsed dark matter (DM) haloes which grow by merging with other haloes (e.g. Press
& Schechter, 1974; White & Rees, 1978). Consequently, the relative density of observable
matter (δg, such as galaxies, galaxy groups and galaxy clusters) in a given volume of
space is believed to trace the relative density of dark matter, δm, in that same space. In
the linear bias model δg = bδm, where b is known as the bias parameter, which will in
general be a function of the tracer population, separation scale, and redshift. This linear
bias has previously been shown to increase with halo mass (e.g. Mo & White, 1996; Sheth
& Tormen, 1999; Sheth et al., 2001; Seljak & Warren, 2004; Tinker et al., 2005).

A direct way to explore the connection between galaxies and their DM haloes is with
galaxy group catalogues. The total mass of individual haloes can be estimated using
the galaxy motions within them (e.g. Girardi et al., 1998; Eke et al., 2006; Robotham
et al., 2011), or by scaling relations based on the luminosity or mass of their constituent
galaxies (e.g. Yang et al., 2007; Han et al., 2015; Viola et al., 2015). The galaxy distribution
within haloes can be explored directly by group stacking (e.g. Budzynski et al., 2012) or
with group–galaxy clustering (e.g. Wang et al., 2008; Mohammad et al., 2016). Group
clustering probes intermediate scales compared to the typical galaxy- and galaxy
cluster-scales used in most clustering studies, and can be combined with galaxy- and
dark matter-clustering to extract estimates of bias.

The mass and colour dependence of the clustering and bias of galaxy groups
was investigated for SDSS Data Release 4 (Adelman-McCarthy et al., 2006) by
Wang et al. (2008). They found that the clustering strength of groups increases with
increasing total group mass and also that groups of comparable mass are more strongly
clustered when they contain redder galaxies. Similar results from SDSS were found
in the earlier study by Berlind et al. (2006), where a sharp increase in group–galaxy
clustering is observed within the typical group scale compared to larger scales. Further,
group–galaxy clustering is observed to decrease slightly on scales r⊥ . 0.3h−1 Mpc,
possibly suggesting the existence of group cores, although clustering measurements on
these scales are sensitive to the choice of group centre, a point we discuss further in
Section 3.5.1. An increase in clustering strength with increasing group mass has also
been shown at slightly higher redshifts using the zCOSMOS survey (Lilly et al., 2007) by
Knobel et al. (2012).

While there is a general consensus in previous work on the group clustering increase
with group mass at large scale, the details on small scales are less constrained. A
key aspect to this is the dependence of the positions of galaxies within groups on the
properties of the satellite galaxies. Mass segregation, a tendency for more massive
galaxies to be closer to the group centre, is found by, e.g., Presotto et al. (2012); Roberts
et al. (2015), but other studies (e.g. von der Linden et al., 2010; Kafle et al., 2016) find no
trend in stellar mass with radial distance from group centre. The presence or absence
of mass segregation helps constrain the strength of dynamical friction effects within
haloes, as satellites infall at large radii (Wetzel et al., 2013) and then move inwards due
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to dynamical friction.
Standard two-point clustering measurements can be expanded on using marked

statistics (Stoyan & Stoyan, 1994; Beisbart & Kerscher, 2000; Sheth & Tormen, 2004; Sheth
et al., 2005; Skibba et al., 2006; Harker et al., 2006; White & Padmanabhan, 2009; White,
2016). These have been used to explore the environmental dependence of clustering,
with Skibba et al. (2013) finding that small-scale clustering is dependent on local density,
and Sheth & Tormen (2004) showing that close pairs of haloes form earlier. Armijo
et al. (2018) show that galaxy clustering has an increasing dependence on halo mass on
smaller scales. However, this method has not to our knowledge previously been applied
to the exploration of group clustering.

The Galaxy and Mass Assembly (GAMA; Driver et al. 2009, 2011; Liske et al. 2015)
survey provides an opportunity to reassess the clustering of galaxy groups. GAMA has
a smaller area than SDSS, but provides spectroscopic redshifts two magnitudes fainter
(Hopkins et al., 2013), and is highly complete, even in the high-density environments
of galaxy groups. We thus expect the GAMA group catalogue to be more reliable
than group catalogues constructed from SDSS data, and to allow the exploration of
group clustering on much smaller scales. The clustering of GAMA galaxies has been
shown to increase with luminosity and mass by Farrow et al. (2015). The dependency
of galaxy clustering in GAMA on galaxy properties has been explored with marked
correlation functions by Gunawardhana et al. (2018) and Sureshkumar et al. (2021),
finding that specific star formation rate best traces interactions, and stellar mass best
traces environment. Within GAMA groups, Kafle et al. (2016) find negligible mass
segregation for satellites. Recently, Vázquez-Mata et al. (2020, hereafter VM20) explored
the stellar masses and r-band luminosities of galaxies in GAMA groups, finding brighter
and more massive galaxies in more massive groups.

In this paper, we present group–galaxy cross-correlation functions from the GAMA
survey; exploring their dependence on scale and group mass. We consider both the large,
inter-group, scales which can be compared to results from SDSS, and the smaller, intra-
group, scales that are opened up with the high completeness of GAMA. The group–
galaxy cross-correlation contains different information in these two scale ranges. On
large scales it informs us of the relationship between groups and the underlying matter
distribution, while on small scales it contains information about the radial distribution of
satellite galaxies within the groups. We further examine the mass and scale dependencies
we find by presenting the first application of marked correlations to group clustering. We
also compare these correlation functions to results from the IllustrisTNG hydrodynamical
simulations (Marinacci et al., 2018; Naiman et al., 2018; Nelson et al., 2018, 2019a; Pillepich
et al., 2018b; Springel et al., 2018) and the L-GALAXIES semi-analytic model (Henriques
et al., 2015).

The layout of this paper is as follows: in Section 3.2 we describe the data selection
from the GAMA survey, mock catalogues and models we compare against; in Section
3.3 we detail the methods used to derive the two-point correlation functions and marked
statistics; in Section 3.4 we present our results; and finally in Sections 3.5 and 3.6 we
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provide a discussion and conclusions. The cosmology assumed throughout is that of a
ΛCDM model with ΩΛ = 0.75, Ωm = 0.25, and H0 = h100 km s−1Mpc−1. We represent
group (halo) masses on a logarithmic scale by lgMh ≡ log10(Mh/h

−1M�), where we
takeMh to be M200, defined by the mass enclosed within an overdensity 200 times the
mean density of the Universe.

3.2 Data, mocks, and simulations

The GAMA data and mock catalogues used in this analysis are identical to those used
in a recent study of the dependence of the galaxy luminosity and stellar mass functions
on the mass of their host groups (VM20), although we select groups and galaxies using
different mass and redshift cuts. We summarise the most salient features here.

We make use of the GAMA-II (Liske et al., 2015) equatorial fields G09, G12 and G15,
centred on 09h, 12h and 14h30m RA respectively. These fields each have an area of 12 × 5
degrees, Petrosian magnitude limit of r < 19.8 mag, and a completeness greater than
96% for all galaxies which have up to 5 neighbours within 40 arcsec; for a more in-depth
description see Liske et al. (2015).

3.2.1 Galaxy sample

It is necessary to use a volume-limited sample of galaxies for cross-correlating with
groups, as more massive groups are at higher redshift, where galaxies in a flux-limited
sample will be more luminous and therefore more strongly clustered. In other words,
using a flux-limited galaxy sample, apparent clustering strength would increase with
halo mass, even if there was no dependence of halo bias on mass.

We select a volume-limited sample of 42,679 GAMA-II galaxies which have (K + e)-
corrected r-band Petrosian magnitude 0.1Mr − 5 log10 h < −20 mag, with corresponding
redshift limit zlim < 0.267 and mean number density n = 5.38 × 10−3 h3 Mpc−3. This
corresponds to the ‘V0’ sample of Loveday et al. (2018, hereafter L18)1, and is chosen
to roughly maximise survey volume and number of galaxies. We choose to define the
volume-limited sample by luminosity rather than stellar mass, as (i) the parent sample
is magnitude limited, meaning that variations in mass-to-light ratio would require
much more stringent cuts on mass than on luminosity, and (ii) estimated stellar mass is
inherently more uncertain (and model-dependent) than luminosity.

To account for the different redshifts at which galaxies are observed, the intrinsic
luminosities of the GAMA galaxies we use have been corrected by the so-called
K-correction (Humason et al., 1956). We obtain K-corrections from the GAMA data
management unit (DMU) kCorrectionsv05; see Loveday et al. (2015) for details on
how these were calculated. We K-correct to a passband blue-shifted by z = 0.1 in order
to minimise the size, and hence uncertainty, in K-correction. Absolute magnitudes

1 Attentive readers will notice that here we use a slightly higher redshift limit for the same absolute
magnitude limit as L18. This is due to an alternative way of defining a 95 percent complete sample. In L18,
we take the 95th-percentile of the K-correction of galaxies within zlim±0.01. Here we take the 95th-percentile
of the projected K-correction K(zlim) of all galaxies with z < zlim.
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Table 3.1: Definition of volume-limited galaxy samples for GAMA data, mocks,
TNG300-1 simulation, and L-GALAXIES SAM. The columns are absolute r-band
magnitude limit (K-corrected to redshift 0.1 for GAMA, redshift 0.0 for other samples),
redshift limit, sample volume, number of galaxies selected, and mean density. GAMA
data and mocks cover areas of 180 and 144 degrees2 respectively. The mock sample was
volume-limited to redshift 0.301 before applying the GAMA redshift limit, leading to a
slightly higher final number density. TNG300-1 and L-GALAXIES use periodic boxes, and
so are volume-limited by nature. The redshifts we quote for them are those of the output
snapshot used.

Mlim zlim V Ngal n̄
[106 h−3 Mpc3] [10−3 h3 Mpc−3]

GAMA −20.00 0.267 7.93 42, 679 5.38
Mock −20.21 0.267 6.35 34, 615 5.45

TNG300-1 −19.83 0.200 8.62 46, 349 5.38
L-GALAXIES −20.12 0.180 110.78 596, 023 5.38

in this band are indicated by 0.1Mr. We include luminosity evolution by applying a
correction of +Qez mag, where Qe = 1.0.

The statistics of the GAMA volume-limited galaxy sample, along with those of
the mock catalogue and simulations, are summarised in Table 3.1. The GAMA data,
mocks and simulations have galaxies with differing K- and e-corrections, and different
luminosity functions, but we only need luminosities in order to generate comparable
volume-limited galaxy samples. We therefore choose magnitude limits (shown in the
second column of Table 3.1), in order to achieve approximately equal number densities
(final column), and hence clustering properties. Note that the GAMA mocks were
designed to have a luminosity function very close to that of the GAMA data (R11). The
different magnitude limits in Table 3.1 most likely reflect differences in the K- and e-
corrections assumed, as well as sample variance in the GAMA data (Driver et al., 2011).
For reference, the clustering and stellar mass distribution for our GAMA, mock, and
simulated galaxy samples are presented in Appendix 3.A.

3.2.2 GAMA groups

The GAMA Galaxy Group Catalogue (G3Cv9) was produced by grouping galaxies in
the GAMA-II spectroscopic survey using a friends-of-friends (FoF) algorithm; this is an
updated version of G3Cv1 which was generated from the GAMA-I survey by Robotham
et al. (2011, hereafter R11). The FoF parameters used for G3Cv9 (hereafter abbreviated
to G3C) are identical to those in R11, but applied to the larger GAMA-II galaxy sample.
G3C contains 23,654 groups with 2 or more members and overall ∼ 40% of galaxies
in GAMA are assigned to G3C groups. In this study, we utilise only those groups
within the redshift limit z < 0.267 of our volume-limited galaxy sample (Table 3.1),
and which have five or more member galaxies, as R11 find these richer groups are
most reliable. Reducing the threshold on the number of group members increases the
number of low-mass groups, but these groups are very unreliable as chance alignments
are increasingly included in the group sample. We also require groups in our sample to
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Figure 3.1: Mass–redshift distribution for GAMA and mock groups at z < 0.267 with
at least 5 members. Groups are colour-coded by the number of group members. The
horizontal lines show the division of groups into halo mass bins. Mock groups are shown
for all nine realisations of the lightcone.

have GroupEdge > 0.9, this removes any where it is estimated that less than 90% of the
group is within the GAMA-II survey boundaries. This leaves us with a sample of 1,894
groups with 12.0 < lgMh < 14.8. We do not attempt to form a volume-limited sample
of GAMA groups, as selection effects are complex (see VM20 for a discussion), and to do
so would severely limit the number of groups that could be used.

We take the centre of these groups to be the iterative central from R11, found by
iteratively removing galaxies from the centre of light until one is left. We choose this as it
is found by R11 to be the best estimator of true central, but we discuss the choice of this
further in Section 3.5.1.

Halo masses Mh are estimated from group r-band luminosity (column LumB)
using the scaling relation for M200 of Viola et al. (2015, equation 37), which was
calibrated against weak-lensing measurements. The LumB column contains total r-band
luminosities down to Mr − 5 log10 h = −14 mag in solar luminosities, corrected by an
empirical factor B which has been calibrated against mock catalogues (see R11 section
4.4 for details). The G3C also provides dynamical mass estimates derived via the virial
theorem (column MassA).

Our choice of luminosity-based mass estimates follows the checks on mass estimate
reliability by VM20, who find that the luminosity-based estimates correlate much better
with true halo mass than dynamical mass estimates (VM20 Fig. 1).

We show the mass–redshift distribution of our selected GAMA groups in the
left-hand panel of Fig. 3.1. Due to the r < 19.8 mag flux limit of GAMA-II and our
requirement for groups to contain at least 5 members, low-mass groups are less likely to
be detected at higher redshifts, and the groups that are detected generally have fewer
observed members.

We subdivide the groups into four mass bins as defined in Table 3.2, chosen as a
compromise between bins of fixed mass range and comparable group numbers. As seen
in VM20, the central galaxy luminosity is greater for more massive groups, with our mass
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binsM1–4 having central galaxy mean absolute magnitudes of 0.1Mr−5 log10 h = −20.48,
−21.12, −21.48, and −21.87 respectively. We note that this means that the M1 centrals
have a lower mean luminosity than our volume-limited galaxy sample, which has a mean
0.1Mr−5 log10 h = −20.59, and so theM1 groups are expected to be slightly less clustered
than the galaxy sample.

3.2.3 Mock catalogues

We compare our results with predictions from two sets of mock group catalogues for
the GAMA-I survey (catalogues updated to the GAMA-II survey are currently being
developed). These catalogues were produced using lightcones from the GALFORM
(Bower et al., 2006) semi-analytic galaxy formation model run on the Millennium dark
matter simulation (Springel et al., 2005). For more details on these mocks we refer the
reader to R11.

The first set of mocks are G3CMockHaloGroupv06, which we refer to as halo mocks.
This contains the dark matter haloes in the simulations, with their positions and masses
MDhalo. The definition of MDhalo differs slightly from M200, but Jiang et al. (2014) and
R11 find they are median unbiased relative to each other, so we can use MDhalo as
an estimate of M200. The second set of mocks are G3CMockFoFGroupv06, which we
refer to as FoF mocks. The groups in this are generated with the same FoF algorithm
as GAMA, and masses Mlum estimated using the same Viola et al. (2015) luminosity
scaling relation. Comparing results from these two mock group catalogues thus allows
us to assess the impact on estimated halo clustering of redshift-space group-finding and
luminosity-based mass estimation. For halo and FoF mock groups that share a common
central galaxy, Fig. 3.2 comparesMlum withMDhalo. The upper panel shows all groups
with NFoF > 5 (and implicitly Nhalo > 2 to be counted as a group), while the lower panel
shows groups with NFoF > 5 and Nhalo > 5. From the lower panel it is apparent there
is reasonable agreement ofMlum toMDhalo (within one standard deviation) for groups
that have sufficient members to be included in our halo catalogue sample. However,
it is clear from the upper panel that there is a population of groups which have their
membership, and therefore mass, overestimated in the FoF mocks. Through the rest of
this work, for consistency with our GAMA selection, we use all groups in the FoF mock
with NFoF > 5, so the groups with overestimated mass are included. In the halo mock
we select all groups with Nhalo > 5, representing the sample we would have if the FoF
group finder perfectly assigned galaxies to groups.

The central and right-hand panels of Fig. 3.1, showing the mass-redshift relation
for all selected mock groups, further shows that the luminosity-based masses have
a stronger redshift dependence than the true halo masses. The mass overestimation
appears to be greater at high redshift. However, at redshifts z . 0.04 the FoF mock
groups mostly have low masses, suggesting galaxies are missed from the outskirts of the
more extended groups at low redshift. We expect this to imply a similar trend in group
mass misestimation with redshift will also be present in the groups from GAMA.

Mock galaxies are taken from the galaxy catalogue associated with the mock
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Figure 3.2: Comparison of luminosity-based (lgMlum) estimates of mock group mass,
against true mock halo mass (lgMDhalo), colour-coded by group membership, for groups
at redshifts z < 0.267. The upper panels show groups selected by their visibility in the
FoF mocks (NFoF > 5), while the lower panels show only those groups visible in both
mocks (NFoF > 5 and Nhalo > 5). The red error-bars show the mean and standard
deviation of lgMlum in 0.5 dex bins of lgMDhalo. The horizontal and vertical lines
delineate the halo mass bins used in this analysis.
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groups we use, G3CMockGalv06. We K-correct the absolute magnitudes to redshift
zero with the K- and e-corrections specified in section 2.2 of R11. Due to differences
with GAMA K- and e-corrections, we set the galaxy magnitude limit by trial-and-
error to give approximately the same mean volume-limited number density as the
GAMA galaxy sample. This results in a sample with a limiting absolute magnitude
0.0Mr − 5 log10 h < −20.21 and limiting redshift zlim < 0.301. The typical masses of
observed galaxies and groups increase with redshift, and so to ensure that the mock
samples are comparable to the observations, we then restrict our mock sample to the
GAMA redshift limit of zlim < 0.267. The details of our final mock galaxy sample are
given in Table 3.1.

We estimate uncertainties on mock clustering from the scatter between nine
realisations of the GAMA-I survey equatorial regions. Each of these realisations consists
of three 12 × 4 degrees regions; which are 20 per cent smaller in area (and so also
volume) than the equatorial fields we use from GAMA-II. Galaxy stellar masses are not
included in these mocks so we cannot explore the dependence of the marked correlation
on galaxy mass in the mocks.

3.2.4 Random catalogues

A random sample of points is needed to model any selection effects in the galaxy
sample (our choice of cross-correlation estimator in Section 3.3.1 means that the selection
function of group samples is not needed). We use the same survey mask described
in section 2.3.1 of L18, and generate angular coordinates using MANGLE (Hamilton &
Tegmark, 2004; Swanson et al., 2008). Radial coordinates are drawn at random from
a uniform distribution in comoving volume with a modulation factor of 100.4Pz , the
density-evolution factor of Loveday et al. (2015, equation 5), taking P = 1. We generate
10 times more random points than galaxies.

In Fig. 3.3 we show galaxy redshift distributions for GAMA, the average across the
nine mocks, and random samples (with the number of randoms divided by 10 to match
the data samples). The random number counts accurately reproduce the GAMA redshift
distribution except for fluctuations due to large-scale structure (c.f. Loveday et al., 2015,
Fig. 7).

3.2.5 Comparison models

In addition to comparisons with GAMA mock catalogues, we also compare our results
with predictions from the IllustrisTNG hydrodynamical simulations (Marinacci et al.,
2018; Naiman et al., 2018; Nelson et al., 2018, 2019a; Pillepich et al., 2018b; Springel et al.,
2018) and the Henriques et al. (2015) version of the L-GALAXIES semi-analytic model.
For each of these, we select galaxies at a snapshot close to the GAMA mean redshift,
selecting z = 0.20 in IllustrisTNG and z = 0.18 (the closest snapshot to z = 0.20)
in L-GALAXIES, and set the absolute magnitude limit of the galaxy sample in order to
give the same approximate number density as the GAMA volume-limited sample, viz.,
n = 5.38× 10−3 h3 Mpc−3.
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Figure 3.3: Comparison of galaxy redshift distributions for GAMA, the average across
the nine mocks, and the random samples. Random counts have been divided by 10 to
account for the larger number of random points generated. Uncertainties on GAMA
and random counts are found by jackknife between 27 regions in RA, and on the mock
counts by the scatter between 9 realisations. The offset in the number of galaxies between
GAMA and the mocks is due to the larger area of GAMA (180 degrees2 compared to 144
degrees2).

For IllustrisTNG, we use the highest resolution simulation at the largest box-size
of 300 Mpc (205h−1 Mpc for h = 0.6774), TNG300-1. Haloes are selected by M200

(Group_M_Mean200) using the mass limits in Table 3.2. For galaxy masses we select
the stellar component (type 4) of the SubhaloMassInRadType field, which gives the
stellar mass within twice the stellar half mass radius. Following the recommendation of
Pillepich et al. (2018b), we multiply these by a factor of 1.4, appropriate for haloes in the
mass range 12 < lgMh < 15. We use the dust-corrected luminosities derived from dust
model C of Nelson et al. (2018) when selecting the volume-limited galaxy sample.

For L-GALAXIES, we use the Henriques et al. (2015) version with the Millennium
(Springel et al., 2005) N-body simulation. Haloes are again selected by M200 and the total
stellar mass of the galaxies is taken.

To avoid including galaxies below the resolution limits of the TNG300-1 and
L-GALAXIES simulations, we select only galaxies with log10(M?/M�) > 9.0.

To provide comparable group samples, we need to allow for the fact that the
periodic-cube (i.e. volume-limited) simulations contain many more low-mass groups
than the flux-limited GAMA data and mocks. We describe here our approach to
the group selection; in Appendix 3.B we validate our method and demonstrate the
consequences of not applying it.
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Since we are measuring only group–galaxy cross-correlation functions, we do not
require the simulated groups to have an accurate group auto-correlation. Further,
while we would ideally create lightcones from the simulated galaxies to provide fair
comparisons to GAMA, the mock catalogues already inform us of the potential issues
with the GAMA group finding methods, and the creation of lightcones introduces its
own uncertainties such as potential duplication of galaxies from the relatively small
IllustrisTNG box and the difficulty of interpolating the locations of galaxies between
snapshots (e.g. Kitzbichler & White, 2007; Merson et al., 2013). Therefore, rather
than attempt to create lightcones from the simulations, we simply down-sample the
simulated groups to match the mass distribution of selected GAMA groups. We do this
by estimating the probability of finding each halo2 within the GAMA volume. In our
GAMA sample we have set NFoF > 5, and so the halo selection probability is dependent
on the fifth brightest galaxy in the halo. To calculate this probability and select simulated
groups we use the following procedure for each halo:

1. Identify the absolute magnitude of the fifth brightest galaxy in the halo.

2. Calculate the luminosity distance (and corresponding comoving distance) at which
this galaxy would have an observed magnitude ofmr = 19.8 mag, the GAMA limit.

3. Calculate the volume of the GAMA lightcone out to this comoving distance.

4. Divide by the total volume of our GAMA sample to get the selection probability.

5. Multiply selection probabilities by 0.95 to account for the use of a 95% complete
sample based on K-corrections in GAMA (we do not attempt to model K-corrections
for simulated galaxies).

6. Assign a random number to the halo and include the halo in our sample if this is
less than the selection probability.

3.2.6 Comparison of group samples

Statistics for the groups selected in GAMA, the mocks and the comparison models are
tabulated in Table 3.2. To complement this, the group mass distributions are shown in
Fig. 3.4.

The GAMA group masses display a strongly peaked distribution, with more groups
inM2 andM3 than the other bins. Comparing the halo and FoF mock groups, it is clear
from the table that the FoF algorithm is systematically overestimating the numbers of
groups for the two higher mass bins. The slightly lower mean mass of M1 FoF versus
halo groups is likely due to the fact thatMlum is systematically underestimated for low
redshifts where these low-mass haloes are found (see Fig. 3.1). For higher-mass haloes,
Mlum correlates well with MDhalo (see Fig. 3.2), and so it seems likely that the higher

2The terms ‘halo’ and ‘group’ are used interchangeably when discussing the TNG and L-GALAXIES
simulations.
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Figure 3.4: Distribution of group (halo) masses in our sample for GAMA, the two mock
catalogues, TNG300-1 and L-GALAXIES. The plotted uncertainties are jackknife values
between 27 regions for GAMA and simulations, and the scatter between 9 realisations
for the mocks. The vertical lines delineate the halo mass bins used in this analysis.

numbers of larger-mass FoF groups is due to the FoF algorithm aggregating lower-mass
haloes into one system.

Comparing the FoF mock groups with the GAMA groups, it is clear that the mock
groups in the lowest mass bin tend to be of slightly lower mass than the corresponding
GAMA groups, and of higher mass than the GAMA groups in the highest mass bin. It
also appears that relatively there are slightly more high- than low-mass groups in the FoF
mocks. These differences should be borne in mind when comparing results from GAMA
data and mock catalogues.

TNG matches the halo mock well on both the mean group masses and the mass
distribution of selected haloes. The only apparent difference is in the relative numbers
of groups in bin M4 compared to the other bins, with TNG showing a greater relative
number. This demonstrates the success of our group selection in TNG, which has the
predominant effect of removing low mass groups.

L-GALAXIES matches the halo mock mean group masses and follows very similar
trends to TNG. It can be seen from Fig. 3.4 that the mass distribution is almost identical
to that from TNG, except for a slightly greater number of haloes at the highest mass end.
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3.3 Measuring the correlation function

We estimate the galaxy auto-correlation function and group–galaxy cross-correlation
functions in bins of halo mass, as well as marked correlation functions, in which we
weight groups and/or galaxies by their estimated mass.

We use CORRFUNC (Sinha & Garrison, 2019, 2020) to calculate pair counts for the
clustering statistics. When plotting correlation functions, we always plot wp against the
mean separation of galaxy pairs in each bin, rather than the centre of each (log-spaced) bin.

3.3.1 GAMA data and mock catalogues

In order to overcome the effects of redshift space distortions in the lightcones, we start
by estimating the two-dimensional group–galaxy cross-correlation function ξGg(r⊥, r‖)

and galaxy auto-correlation function ξgg(r⊥, r‖); the excess probability above random
of finding a group and a galaxy (cross-correlation) or two galaxies (auto-correlation)
separated by r‖ along the line of sight (LOS) and r⊥ perpendicular to the LOS. These
separations are calculated using the standard method (e.g. Fisher et al., 1994) for pairs of
objects with position vectors r1 and r2. The separation is given by vector s = r2− r1 and
the vector to the midpoint of the pair from an observer at the origin by l = (r1 + r2)/2.
The separations in the LOS and perpendicular directions are then given by r‖ = |s.l̂|,
with l̂ being the unit vector in the direction of l, and r⊥ =

√
s.s− r2

‖.
Raw pair counts are obtained using CORRFUNC, then normalised to account for

the relative total numbers of groups, NG, galaxies, Ng, and random points, Nr. The
normalised galaxy–galaxy, gg, group–galaxy, Gg, group–random, Gr, galaxy–random,
gr, and random–random, rr, pair counts are then used to calculate the correlation
functions. Specifically, these are obtained by dividing the raw pair counts in each
separation bin by N2

g , NGNg, NGNr, NgNr, and N2
r respectively.

The pair counts may additionally be weighted by group and/or galaxy mass in order
to obtain marked correlation functions, and hence explore the dependence of clustering
on group and galaxy mass. The random points, which follow the selection function of
the galaxy sample, are generated as described in Section 3.2.4. A total of 426,790 random
points are generated, 10 times the number of galaxies in the sample.

The galaxy auto-correlation ξgg(r⊥, r‖) is estimated using the standard Landy &
Szalay (1993) estimator,

ξgg(r⊥, r‖) =
gg − 2gr + rr

rr
, (3.1)

while ξGg(r⊥, r‖) is estimated with the cross-correlation form (Mohammad et al., 2016) of
this estimator,

ξGg(r⊥, r‖) =
Gg −Gr − gr + rr

rr
. (3.2)

As discussed in Hang et al. (2022), in principle this equation should include terms
involving a random catalogue of groups as well as of galaxies. However, our form
of the cross-correlation estimator containing only one random catalogue will be valid
providing the two populations are similar. In the case of the groups and galaxies we
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use, they have the same sky footprint (although groups may be missing near the edges
of the fields). The line-of-sight distribution differs, but the effect of this is small as we
are considering a very low redshift sample. In Appendix 3.C we show that, even with
extreme examples of artificially introduced group selections, the cross-correlation results
are not altered.

The two-dimensional group–galaxy cross-correlation functions for our four mass bins
of GAMA groups with our volume-limited sample of galaxies, are shown in Fig. 3.5. At
small projected separations, r⊥ . 5h−1 Mpc, the clustering is seen to be stretched along
the LOS direction (r‖-axis). This is increasingly apparent in higher mass bins. At larger
projected separations, the LOS clustering signal is compressed.

The projected auto- and cross-correlation functions, wp(r⊥), are obtained by
integrating the observed two-dimensional correlation function ξ(r⊥, r‖) along the LOS
direction r‖:

wp(r⊥) = 2

∫ r‖max

0
ξ(r⊥, r‖)dr‖. (3.3)

We use a limit of r‖max
= 40h−1 Mpc; following the results of Loveday et al. (2018,

appendix B).
To estimate uncertainties on the clustering results from GAMA we use jackknife

sampling. We use 27 regions in RA and calculate error bars as the square root of the
diagonal terms in the covariance matrix calculated from these regions. For the mock
catalogues 9 different realisations are available and we estimate uncertainties using the
scatter between these.

The jackknife sampling we use is designed to reproduce the cosmic variance between
independent regions. This accurately reproduces the uncertainty on large scales, and on
small scales can be interpreted as an upper bound on the variation between groups.

3.3.2 Simulations

TNG and L-GALAXIES use periodic boxes with no redshift space distortions, and so we
can directly calculate the three-dimensional correlation function ξ(r) using the simplified
formula

ξ(r) =
DD

RR
− 1, (3.4)

with the normalised data pair count DD (Gg for the cross-correlation, gg for the auto-
correlation) and random pair count RR. We again make use of CORRFUNC to calculate
the data pair counts, normalised by total galaxy and group numbers as above.

Due to periodic boundary conditions, no random catalogue is needed. Instead, the
normalised random pair count is calculated as

RR =
v(r)

V
, (3.5)

where V is the total box volume and v(r) = 4
3π((r+dr)3−r3) is the volume of a spherical

shell of radius r and thickness dr (Alonso, 2012).
The real-space three-dimensional correlation function ξ(r) is then converted to a
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Figure 3.5: The two-dimensional group–galaxy cross-correlation functions ξ(r⊥, r‖) for
our four bins of group mass. We show the clustering signal reflected about both axes
to make it easier to see the distortions introduced by the peculiar velocities of galaxies
around groups. Contour levels are the same as Li et al. (2006), going up from ξ = 0.1875
to ξ = 48 in factors of 2.
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projected correlation function using

wp(r⊥) = 2

∫ ymax

0
ξ
(

(r2
⊥ + y2)1/2

)
dy = 2

∫ rmax

r⊥

rξ(r)√
r2 − r2

⊥

dr, (3.6)

to produce a quantity directly comparable to the GAMA measurements. We perform this
integral over an interpolation of the ξ(r) and we again use an upper integration limit of
rmax = 40h−1 Mpc. It is pointed out in van den Bosch et al. (2013) that this integral may
be biased on large scales relative to clustering calculated from observations, but we do
not attempt to correct for this as we are mostly interested in small scales.

To calculate uncertainties in the results for the simulation boxes we perform jackknife
sampling by dividing the box into 27 subboxes and excluding these one at a time. We
then give error bars as the square root of the diagonal elements of the covariance matrix.
Jackknife sampling breaks the periodicity of the box, and should therefore require a
random catalogue. However, we continue to use equation 3.5 for random pair counts,
and account for the changed random–random term by scaling the ξ(r) value in each
jackknife region by the ratio of the overall ξ(r) in the box against the mean ξ(r) from the
jackknife regions.

3.3.3 Marked correlation

The marked correlation Mw is calculated from the unweighted projected two-point
correlation function wp and weighted projected two-point correlation function Wp in all
cases using (Sheth et al., 2005; Skibba et al., 2006)

Mw(r⊥) =
r⊥ +Wp(r⊥)

r⊥ + wp(r⊥)
. (3.7)

Uncertainties on marked correlations would be overestimated if we simply combine
the errors on Wp and wp (see Skibba et al. 2006). Therefore we calculate the marked
correlation for each of our jackknife samples separately and estimate the uncertainty from
these.

3.3.4 Bias

We make use of two bias measures in our analysis. The first is the relative bias of the
group sample compared to the galaxy sample, which we define as

brel(r⊥) =
wGg
p (r⊥)

wgg
p (r⊥)

. (3.8)

This accounts for different galaxy auto-correlation amplitudes between samples,
although it does retain some dependence on the galaxy sample.

The second bias measure we use is that relative to dark matter. We define the galaxy
bias bg using

wgg
p (r⊥) = b2g(r⊥)wDM

p (r⊥), (3.9)
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and the corresponding group bias bG with

wGg
p (r⊥) = bG(r⊥)bg(r⊥)wDM

p (r⊥). (3.10)

Note that in this notation the relative bias from equation 3.8 becomes brel = bG/bg.
For the dark matter auto-correlation, wDM

p , we use the Millennium simulations,
the Millennium (Springel et al., 2005) ξ(r) on scales r > 1h−1 Mpc and Millennium-II
(Boylan-Kolchin et al., 2009) on smaller scales, which we project from ξ(r) to wp(r⊥) by
interpolating ξ(r) and using equation 3.6, the same method we used for the simulation
correlations.

The group bias we measure from the cross-correlation will not equal the one we
would obtain if we were able to compute a group auto-correlation function. On small
intra-group scales, the group auto-correlation goes to -1 as there are no group–group
pairs, but the cross-correlation remains positive and so gives a different bias. On larger
scales the bias from this cross-correlation will be similar to that from the auto-correlation,
although subject to a scaling associated with any remaining dependence on the galaxy
population.

3.4 Results

3.4.1 FoF versus halo mocks

We first compare clustering results obtained using the FoF and halo mocks in Fig. 3.6.
We see that in mass bins 3 and 4, the FoF mock group clustering is in very good
agreement with that of the halo mocks, despite the large excess of FoF groups in these
mass bins (Table 3.2). However, for the lower mass bins, particularlyM1, the FoF group
clustering is underestimated on very small scales, r⊥ . 0.2h−1 Mpc, and very slightly
overestimated on scales 0.5 . r⊥ . 2h−1 Mpc. It seems likely that the low mass FoF
groups may be contaminated by chance projections of isolated galaxies, thus reducing
the small-scale clustering signal. Insofar as the mock catalogues are representative of the
GAMA data, we can infer that the GAMA results are likely to be reliable in mass bins
2–4, but that those forM1 should be treated with some scepticism.

To check the effects of the group finding on the marked correlation, we show the
group mass marked correlation for the FoF and halo mocks in Fig. 3.7. We see that on
small scales the mocks agree, but on scales r⊥ & 0.1h−1 Mpc the FoF marked correlation
is lower. This is around the size of a compact group, and is perhaps due both to spurious
FoF groups (created by chance alignments) being isolated from other galaxies, and also
to more extended groups being missed by the FoF group finder. We expect this trend to
be representative of GAMA, and so the GAMA marked correlation may also be biased
low on these scales.
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Figure 3.6: Group–galaxy cross-correlation functions for the mock catalogues. Orange
symbols show results using the halo mocks, blue symbols show results obtained using
FoF mocks.
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3.4.2 Group clustering and bias in mass bins

3.4.2.1 GAMA and mocks

Fig. 3.8 shows the GAMA projected group–galaxy cross-correlation functions for each
group mass bin (top), along with the bias relative to the galaxy sample (middle), and
the bias relative to a DM-only simulation (bottom). Left, middle and right panels show
comparison results from the halo mocks, TNG, and L-GALAXIES respectively. Both
bias estimates are highly dependent on scale and group mass on intra-group scales,
r⊥ . 1h−1 Mpc. On larger scales, the biases are relatively constant (within the error
bars) for each mass bin, but there is still a slight trend for bias to increase with mass.

On scales r⊥ ≈ 0.1h−1 Mpc, GAMA relative group bias (brel from equation 3.8; middle
panels) increases rapidly with group mass, from b ≈ 0.8± 0.2 forM1 groups to b ≈ 5± 1

forM4 groups. The strong halo-mass dependence of the GAMA small scale clustering
seen here is to be expected, as on scales r⊥ . 1h−1 Mpc, the cross-correlation signal will
be dominated by galaxies within each respective halo (intra-halo clustering) and group
membership increases with halo mass.

Comparison in Fig. 3.6 of the FoF and halo mocks on these scales suggests that
the apparent below-unity bias of M1 groups in GAMA is partly an artefact of the
group-finding algorithm, although it also reflects a lack of bright galaxies in these
small groups. The halo mock bias in the middle-left panel of Fig. 3.8 is consistent with
unity for M1 groups at r⊥ ≈ 0.1h−1 Mpc, although it drops below unity above this,
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Figure 3.8: Top panels: The projected group–galaxy cross-correlation functions for our
four bins of group mass as indicated. Also shown is the galaxy auto-correlation function.
Middle panels: Relative bias of the projected group–galaxy cross-correlation to the
galaxy sample, obtained by dividing the group–galaxy cross-correlation by the galaxy
auto-correlation. Bottom panels: Bias of the projected group–galaxy cross-correlation
and galaxy auto-correlation relative to the dark matter auto-correlation function of the
Millennium simulations. In all panels, symbols and error bars show the GAMA results;
lines of corresponding colour show results from the halo mock in the left panels, the
Illustris TNG300-1 simulation in the central panels, and L-GALAXIES in the right panels.
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reaching a minimum at r⊥ ≈ 0.5h−1 Mpc, indicating the spatial extent of these smaller
groups. As with other mass bins, the mock galaxies in M1 groups seem to be too
centrally-concentrated.

On larger scales (1–5 h−1 Mpc), the dependence of relative bias on group mass in
GAMA is weaker, although the bias of the highest mass bin is still 2–3 times that of
the lowest mass groups. By scales of r⊥ ≈ 10h−1 Mpc, the biases of each mass bin are
consistent within the uncertainties.

On the largest scales r⊥ & 10h−1 Mpc, the relative bias remains constant in each
bin within uncertainties but the GAMA auto- and cross-correlation functions are seen to
have slightly greater amplitude than those of the mocks. This perhaps indicates small
differences in the galaxy populations used, but these scales are also the most affected by
the projection of the clustering signal, so we cannot draw any firm conclusions on these
scales.

When turning to bias relative to the dark matter auto-correlation (bg and bG from
equation 3.10; lower panels), the bias for GAMA is seen to increase down to the smallest
scales we plot for the galaxies and the groups in bins M2–4. As with the bias relative
to the galaxies,M1 GAMA groups show a bias of about unity on the smallest scales not
seen in the halo mock, which is likely to be a result of the group-finding algorithm.

The halo mocks substantially over-predict the bias on small scales. On intra-halo
scales the relative bias (middle panels) is seen to increase roughly as a power-law with
decreasing r⊥, rather than displaying a flattening as seen in GAMA. This becomes even
more apparent in bias relative to the dark matter (lower panels), with an even steeper
increase when moving to smaller scales. This suggests inaccuracy in the physics defining
satellite galaxy occupations and positions in the mocks, with satellites being placed too
close to the centre on average. This is perhaps unsurprising given the uncertainties in
the modelling of satellite mergers when the dark matter subhalo they are associated with
disappears (see e.g. Pujol et al., 2017).

3.4.2.2 TNG300 and L-GALAXIES

In Fig. 3.8, we also show corresponding results from the Illustris TNG300-1 simulation
and the L-GALAXIES semi-analytic model, each around the mean GAMA redshift z = 0.2.

TNG results are shown as solid lines in the central column of panels. The TNG
galaxy auto-correlation function (purple line) is in very close agreement with GAMA
on scales r⊥ . 5h−1 Mpc, although slightly below that of the mock, and the TNG
halo–galaxy cross-correlation functions show a similar characteristic inflection to
GAMA around r⊥ ≈ 0.5–1h−1 Mpc; the transition from the intra-halo to the inter-halo
regime. In the higher mass bins, M3 and M4, the amplitude of the cross-correlations
is also in agreement with GAMA on smaller scales within uncertainties. In M1, and
to a lesser extent in M2, for which GAMA results are suspect, TNG shows a greater
cross-correlation on scales r⊥ . 0.3h−1 Mpc than GAMA. This is clearest moving to the
smallest scales, r⊥ . 0.05h−1 Mpc, where it leads to convergence ofM1–M3 results as
M1 andM2 continue to rise whileM3 andM4 flatten off.



86

101

102

103

104

105

w
p(

r
)[h

1 M
pc

]

Halo mock
GAMA

gal-grp, weights: grp
gal-grp, weights: both
gal-grp, weights: gal
gal-grp, weights: none
gal-auto, weights
gal-auto

TNG300
GAMA
TNG300
GAMA

L-Galaxies
GAMA
L-Galaxies
GAMA

10 2 10 1 100 101

r [h 1Mpc]
0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

M
w
(r

)

MG
X

MGg
X

Mg
X

Mg
A

10 2 10 1 100 101

r [h 1Mpc]
10 2 10 1 100 101

r [h 1Mpc]

Figure 3.9: Top panels: The projected group–galaxy cross-correlation functions for all
groups, weighted by galaxy and group masses as indicated. Also shown is the galaxy
auto-correlation function both unweighted and using galaxy masses as weights. Bottom
panels: Marked cross-correlations using galaxy masses (Mg

X ), group masses (MG
X ),

and both masses (MGg
X ) as marks, along with the stellar-mass marked galaxy auto-

correlation (Mg
A). In all panels, symbols and error bars show the GAMA results; lines

of corresponding colour show results from the halo mock in the left panels, the Illustris
TNG300-1 simulation in the central panels and L-GALAXIES in the right panels.

Solid lines in the right-hand panels of Fig. 3.8 show results for L-GALAXIES. Both the
galaxy auto-correlation and halo–galaxy cross-correlations fall below the GAMA results.
The relative biases in L-GALAXIES show the trend seen in the halo mock of a continuing
increase down to the smallest scales and greater amplitude than GAMA, suggesting
the same issues in the two SAMs. However, the group bias in the lower panels agrees
well with GAMA on scales r⊥ & 0.1h−1 Mpc, implying some of the discrepancy is
connected to the galaxy sample. This difference in the dependence on the galaxy
properties between L-GALAXIES and GAMA becomes clearer in the marked correlations
discussed below. On larger scales, L-GALAXIES shows the halo mass dependence of bias
continuing beyond r⊥ = 5h−1 Mpc, showing the most massive groups are at the centre
of denser regions extending further than those of smaller groups, in agreement with
GAMA.
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3.4.3 Marked correlation functions

3.4.3.1 Marked cross-correlation

The upper panels of Fig. 3.9 show projected correlation functions weighted in the various
ways indicated. Lower panels show marked group–galaxy cross-correlation functions
using group mass (MG

X ), galaxy mass (Mg
X ), and both masses (MGg

X ) as weights, as well
as the marked galaxy auto-correlation function (Mg

A). We weight by linear mass in order
to enhance the differences between the marked statistics, although the use of log-mass
weights does not qualitatively change our results (see Sheth et al. 2005 for a discussion
on re-scaling marks). In Appendix 3.D we show, using rank-ordered marks, that the
specific values of the weights do not affect our conclusions.

The GAMA group-mass marked cross-correlation function (MG
X , blue symbols) peaks

at scales r⊥ ≈ 0.5h−1 Mpc, declining gradually to smaller scales, and somewhat more
rapidly on larger scales until r⊥ ≈ 2h−1 Mpc, beyond whichMG

X declines more gradually.
The halo mock (blue line) shows similar trends to GAMA data, but with MG

X about 20
percent higher. The peak in MG

X around r⊥ ≈ 0.5h−1 Mpc is indicative of the typical
projected radii of our galaxy groups. It is also consistent with the bias results of Fig. 3.8,
where the relative strengths of the group biases differ most around this scale, due to the
below-unity bias ofM1 groups and large bias ofM4 groups.

The GAMA galaxy-mass marked cross-correlation function (Mg
X , green points) is

systematically greater than unity only on inter-group scales, r⊥ & 0.5h−1 Mpc. We
are unable to measure Mg

X for the GAMA mocks, as galaxy masses are not available.
When both galaxy and group masses are used as weights (MGg

X , orange points), a slight
additional enhancement is seen relative to MG

X , indicative of the most massive groups
having an enhanced number of massive satellite galaxies.

MG
X measurements from both the TNG and L-GALAXIES simulations show general

agreement with GAMA. TNG agrees with GAMA within uncertainties on almost all
scales, but is below the mocks on scales r⊥ . 1h−1 Mpc. L-GALAXIES on the other hand
agrees well on all scales with the halo mock, and is generally above but just consistent
with the GAMA results. The very close agreement between L-GALAXIES and the halo
mock may be a result of both being built upon the Millennium simulation.

When marking with galaxy masses, TNG shows Mg
X < 1 on scales r⊥ . 0.5h−1 Mpc,

meaning the most massive satellite galaxies are not found near the group centres. Yet
when both group and galaxy masses are used (MGg

X ), an enhancement relative to MG
X

is seen on all scales. This is consistent with the conclusion from GAMA that the most
massive groups also contain the most massive satellites, but this dependency extends
out slightly further in TNG, to r⊥ ≈ 10h−1 Mpc.

L-GALAXIES shows a galaxy-mass marked cross-correlation Mg
X greater than unity,

especially on scales r⊥ . 1h−1 Mpc where Mg
X is seen to increase as scale decreases,

meaning massive satellites are always closely associated with the group centre. The
same trend is seen and enhanced even further when both group and galaxy masses
are used as marks (MGg

X ). This is consistent with the high small-scale bias we observed
for L-GALAXIES, yet very different from the GAMA result, suggesting that the satellite
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galaxies in L-GALAXIES are typically more massive. This is in accord with the finding
in VM20 that the modified Schechter functions appropriate for GAMA satellite galaxies
under-predict the number of massive satellites in L-GALAXIES.

3.4.3.2 Marked auto-correlation

For GAMA, L-GALAXIES and TNG, we also show the (stellar mass) marked galaxy auto-
correlation (Mg

A, brown symbols or lines), which helps in understanding some of the
differences in the group–galaxy cross-correlations. GAMA shows no systematic scale-
dependence (but large scatter) in Mg

A on scales r⊥ . 0.2h−1 Mpc, but then declines
systematically on larger scales, always lying below MGg

X . This makes sense, as Mg
A

indirectly contains group information through the presence of central galaxies, although
these will have lower masses than the groups.

TNG on the other hand shows a marked auto-correlation Mg
A which peaks on scales

0.1–0.5 h−1 Mpc and decreases slightly on smaller scales. The large enhancement
compared to GAMA and the TNG cross-correlation functions is likely to be due to the
apparent over-dependence of central galaxy mass on group mass in TNG reported by
VM20. The decreasing dependence on the smallest scales is consistent with the trends
in Mg

X , and shows that the most massive galaxies have a slight tendency to avoid group
centres.

L-GALAXIES shows a very different trend that the most massive galaxies are very
close together, with Mg

A still increasing at r⊥ ≈ 0.01h−1 Mpc. This matches the cross-
correlation result and also appears consistent with a slight trend in Henriques et al. (2017)
for the auto-correlation to be below SDSS in lower mass bins and above in higher mass
bins. This is likely to be the result of the supernova feedback used, as van Daalen et al.
(2016) find that the feedback strength affects the relative proportions of satellite galaxies
of different masses.

The general picture found from the marked correlations is one of agreement in the
group mass dependence of clustering, but disagreement in the galaxy mass dependence.
While the group mass dependence is a significant success in the positioning of galaxies
within groups in both TNG and L-GALAXIES, massive galaxies appear to be too
clustered, especially in L-GALAXIES.

3.5 Discussion

To put our results into context we discuss here the choice of group centre, which is the
main caveat to our work, and compare against previous works.

3.5.1 Choice of group centre

In this work we have considered group–galaxy cross-correlation functions in GAMA
down to scales smaller than the typical group size, so our results depend heavily on
the choice of group centre. We check here for effects due to possible misidentification of
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Figure 3.10: Effect of choice of GAMA group centre on our results. Upper panels show
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the group.
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group centre by using the three different definitions of group centre described in section
4.2.1 of R11.

R11 found the most reliable group centre to be the one we have used throughout this
work, the iterative centre. This was found by iteratively removing the galaxy furthest
from the centre-of-light of all remaining galaxies in the group, until only one galaxy
remains. The position of the final galaxy is taken to be the group centre. In most cases
this is the same as the second definition of group centre, the brightest central galaxy
(BCG), taken to be the brightest galaxy in the group. The third definition of group centre
corresponds simply to the group centre-of-light, which does not in general coincide with
a galaxy. Using mock catalogues, R11 showed the iterative centre to match the true centre
in ∼ 90% of cases, while the BCG showed large offsets in some cases, and the centre-of-
light only matched the true centre for groups where all members are detected.

To explore the effect of group centre choice on our results, we show in Fig. 3.10 the
relative bias brel of the four group mass bins and the marked cross-correlations for the
three definitions of group centre. On the left we show the iterative centre used elsewhere
in this work. This is in most cases the same as the BCG shown in the middle panel,
so the results are similar from these two options. However, the iterative centre shows
a more consistent picture for different group masses on small scales, while the BCG
shows a drop in bias for the most massive groups, suggesting the galaxy at the centre
of the gravitational potential of the group has been included in the cross-correlation. The
definition of group centre as centre-of-light is shown in the right panel, and this definition
shows significant evidence of mis-centring. The bias is seen to be peaked, with the peak
at r⊥ ≈ 0.1h−1 Mpc for the most massive groups, and on smaller scales for less massive
groups. The location of this peak is indicative of the mean offset of the central galaxy
from the centre-of-light.

A similar outcome is found by considering the marked correlations. Using group
mass as the mark, the iterative centre and BCG results are similar, but the centre-of-light
definition shows a negative mark on small scales related to the reduction in bias for the
more massive groups. When using galaxy masses as marks, the iterative centre and BCG
results both show no mark on scales less than the typical group size, but the centre-of-
light shows a positive mark, probably indicating the inclusion of the true central galaxy
in the cross-correlation.

Based on this, we are in agreement with the result of R11 that the iterative centre we
have used is the best reflection of the true group centre, as it does not display the offset
in peak bias associated with including the central galaxy in the cross-correlation.

3.5.2 Comparison with previous results

Finally, we compare our results to previous works, and calculate the average bias on large
scales.

Our finding of an increase in clustering amplitude with group mass on scales of
a few h−1 Mpc agrees with the results from the analysis of SDSS data by Wang et al.
(2008). These authors found that the bias relative to the lowest mass bin increases
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Figure 3.11: Large-scale relative bias, averaged over scales 2–10 h−1 Mpc, as a function
of halo mass for GAMA, the halo mocks, TNG300-1 and L-GALAXIES. Uncertainties are
calculated by jackknife of the average brel for GAMA, TNG and L-GALAXIES, and by
scatter between the 9 realisations for the halo mocks.

quadratically with mass, and we show a similar rise in our relative bias in Fig. 3.11,
with bias averaged over scales 2–10 h−1 Mpc. This trend is consistent with the results
from the simulations, albeit with a slightly higher normalisation. However, due to our
use of different, narrower, mass bins than Wang et al. (2008), the uncertainties from
GAMA are large, and the bias values are not directly comparable. In addition to the
large-scale bias, we show on smaller, intra-group, scales, which were not considered by
Wang et al. (2008), that the dependence of clustering amplitude on group mass becomes
significantly stronger.

This sharp increase in cross-correlation amplitude within the typical group radius
matches the results of Berlind et al. (2006), as does evidence for a flattening of the
cross-correlation on scales r⊥ . 0.3h−1 Mpc in our GAMA and TNG results. Berlind
et al. (2006) attribute this to either a core to the radial profile of satellite galaxies, or to
misidentification of the centre. We do not find evidence that the central galaxies are
incorrect in our data, so support the explanation of a central core to groups.

The result from the marked correlation functions that massive galaxies are associated
with massive groups is not surprising, and consistent with GAMA results from VM20.
More interesting is the lack of dependence of the mark on galaxy mass alone within the
radii of the smallest groups, in agreement with the results of Kafle et al. (2016) that there
is no mass segregation within GAMA groups. This is in contrast to the results from SDSS,
most recently in Roberts et al. (2015), that more massive satellites are generally closer to
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the group centre. Our approach of using the marked correlation is a new method to test
for mass segregation, but as our galaxy sample is volume-limited in r-band luminosity
and not in mass, our results are not directly comparable to these previous studies, and the
marked correlations must be interpreted with caution given that stellar masses increase
with group mass.

The lack of mass segregation also suggests a breakdown in self-similarity on group
scales, as the most massive groups are found to be the most clustered, but this trend does
not continue to galaxies within the groups. This suggests that while on inter-group scales
the galaxy distribution depends primarily on the dark matter distribution, within groups
baryon astrophysics has a significant effect.

3.6 Conclusions

In this work we have presented group–galaxy cross-correlation functions and mass-
weighted marked correlations for the GAMA survey, GAMA mocks, the TNG300-1
simulation, and the L-GALAXIES semi-analytic model. We used four group mass bins
with 12.0 < lgMh < 14.8 and cross-correlated with a volume-limited galaxy sample
with density 5.38× 10−3 h3 Mpc−3.

We found that the group–galaxy cross-correlation function (Fig. 3.8) increases
systematically with group mass and with decreasing scale below r⊥ ≈ 1h−1 Mpc. There
is no scale dependence on scales r⊥ & 1h−1 Mpc, but the correlation amplitude still
increases with group mass, indicating that more massive groups are embedded within
extended overdense structures.

Using marked correlations (Fig. 3.9), we saw that the cross-correlation has the
strongest group mass dependence at scales r⊥ ≈ 0.5h−1 Mpc, the typical group radius
(defined as projected separation to the most distant member galaxy from the group
centre). No direct dependence on galaxy mass was observed, but the combination of
group and galaxy mass causes an enhancement over the use of group mass only. This
leads us to conclude that massive satellite galaxies are generally found in massive
groups, but do not preferentially lie close to the central galaxy. Note that the central
galaxy coincides with the iterative group centre, and so central–group pairs are not
included in the group–galaxy cross-correlation functions presented.

3.6.1 Comparison to mocks and simulations

We used the GAMA mock catalogues to explore the effects of systematics in the data,
particularly the group mass estimates, and to examine the model used for the mocks.
Comparison of mocks using friends-of-friends and halo based group finding methods
suggests that the masses may be overestimated at high redshift and underestimated at
low redshift, although this only causes differences in the cross-correlation function in our
lowest mass bin,M1.

We have also compared our results against the TNG300-1 box from the IllustrisTNG
hydrodynamical simulation and to the L-GALAXIES semi-analytic model. In order to
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provide a fair comparison, we selected groups using a simple model of the GAMA
selection function.

The IllustrisTNG hydrodynamical simulation agrees well with our GAMA results in
all cross-correlation bins except the lowest mass bin where the GAMA results are least
reliable. It also displays very similar marked cross-correlations to GAMA, evidencing
accuracy in the distribution of galaxies around groups. The only significant difference
between TNG and GAMA we saw is in the marked galaxy auto-correlation, where the
enhancement in TNG appears to be the same over-dependence of central galaxy mass on
group mass seen in VM20.

The L-GALAXIES model was found to over-predict the mass dependence of the cross-
correlation, showing an increasing bias down to the smallest scales considered. This
was seen in the marked correlations to be driven by stronger clustering than GAMA of
the most massive galaxies, perhaps driven by inaccurate supernova feedback. Together
with the difficulties of modelling the infall of satellites without surviving subhaloes, this
results in too many galaxies in the inner parts of the haloes. Away from the group centre,
L-GALAXIES shows similar group bias to GAMA, demonstrating that the distribution of
galaxies in the outer regions of the haloes is realistic.

3.6.2 Future prospects

While the GAMA groups are expected to be more reliable than the SDSS groups used
in previous works, due to high spectroscopic completeness and the use of only the most
reliable groups with NFoF > 5, we are limited by the smaller area of the GAMA survey.
In future, the Wide Area VISTA Extragalactic Survey (Driver et al., 2019) is expected to be
able to produce a much larger sample of galaxy groups and so improve upon our results
by reducing the uncertainties and allowing the use of finer mass bins.
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Figure 3.12: Distribution of stellar masses in our galaxy samples from GAMA, TNG and
L-GALAXIES. The mock catalogues do not include stellar masses so are not shown.

Appendices

3.A Galaxy sample statistics

We desire our volume-limited GAMA, mock, TNG, and L-GALAXIES galaxy samples to
have comparable clustering statistics. In order to achieve this, they were defined to have
similar number-densities (Table 3.1). Here we show the stellar mass distributions and
auto-correlation functions of these samples.

The distributions of stellar masses in each sample (Fig. 3.12) show some variation.
This is not surprising, as the samples are volume-limited in r-band luminosity and not in
mass, and so variations in mass-to-light ratio will affect mass-completeness. Compared
to the GAMA sample, TNG shows a narrower peak but an over-abundance of the most
massive galaxies with log10(M?/h

−2M�) & 11.2. L-GALAXIES shows a shift to slightly
smaller masses than GAMA.

Fig. 3.13 shows the projected auto-correlation functions of the galaxy samples.
On small scales, GAMA and TNG agree well but the mocks show a slightly greater
auto-correlation and L-GALAXIES shows a lower auto-correlation. On the largest scales
GAMA shows the greatest clustering, but consistent within uncertainties with the
mocks.
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Figure 3.13: Projected auto-correlation functions of our galaxy samples from GAMA, the
mock catalogues, TNG and L-GALAXIES.

3.B Group selection in simulations

Here we compare four methods of selecting groups in mass bins from the TNG and
L-GALAXIES simulations, and the effect these methods have on estimated relative bias.
The four group selection methods compared are:

1. Random sampling to mimic GAMA group selection, the method described in 3.2.5
and used elsewhere in this work.

2. Spatial sampling to mimic GAMA group selection. Here we select groups within
a distance from the origin corresponding to the comoving distance at which the
fifth brightest member galaxy would have an apparent magnitude of mr = 19.8.
This removes the periodicity of the box, and we therefore calculate the correlation
function using the full Landy & Szalay (1993) estimator with random galaxies
distributed around the box. Uncertainties on this sample are estimated using
jackknife between 27 samples of equal volume selected by angle, and are larger
than those of the random selection due to the loss of periodicity.

3. Use only of GAMA mass bin limits, without further selection. This results in
an over-abundance of low-mass groups in a volume-limited simulation cube
compared to GAMA.

4. Adjustment of mass limits to match the mean group masses in GAMA (the method
employed in VM20).
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Figure 3.14: Relative bias for the 4 mass bins in the TNG simulations using different
selection options for groups. Clockwise from top left, the panels show the four group
selections (i)-(iv): upper left, the selection of groups throughout the volume based on
galaxy luminosities as used in this work; upper right, a group selection based on galaxy
luminosities and radial distance from box origin; lower right, the full group sample in
the volume-limited simulation; and lower left, the full group sample with low and high
mass groups removed to match GAMA mean masses.
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Comparing these different selection methods applied to TNG in Fig. 3.14, the
relative bias is consistent between the samples selected using methods (i) and (ii),
except for the smallest scales in M1. Bearing in mind that the groups in sample (i)
are randomly distributed throughout the TNG data cube, whereas those in sample
(ii) lie predominantly closer to the origin, this comparison illustrates that the spatial
selection of the groups has only minimal effect on the group–galaxy cross-correlation
function, and justifies our choice of random sampling (method i). The differences in very
small-scale clustering in M1 likely arise from sampling fluctuations, since the sample
(ii) TNGM1 groups are only taken from approximately 10% of the total volume.

Sample (iii), lower-right panel, shows very different results. The addition of many
low-mass groups forces the bias for the lower mass bins down, leading to anti-bias on all
scales forM1 and near the group edge forM2. This is likely due to theM1 TNG central
galaxies in this sample having a mean luminosity ≈ 0.2 mag lower than the comparison
galaxy sample. Using sample (iv), lower-left panel, increases the bias forM1 but it still
remains below that of sample (i).

The comparison of these selection methods has demonstrated the importance of
mimicking the selection function in GAMA and validated our approach to doing so.

3.C Effect of group selection on the cross-correlation

We show here that our GAMA cross-correlation results are not significantly affected by
group selection effects. Fig. 3.15 shows the cross-correlation for the M4 bin in the FoF
mock with different artificial selection effects introduced.

To check the effects of missing groups near the field edges, we select groups based
on the distance from the field centres. This results in a slight increase in cross-correlation
amplitude on large scales, but consistent within uncertainties. We also show the effects
of selecting low- and high-redshift groups. There are no significant shifts in either case.

The similarity of all the cross-correlations shown here (and similar results are
obtained for the other mass bins and the halo mock) demonstrates that our results are
robust to the effects of group selection.

3.D Marked correlations by rank

In order to check the effect of our choice of galaxy or group mass as a mark, we perform
an alternative marking using the rank ordering method of Skibba et al. (2013).

We sort the masses in ascending order and assign the rank as the position in the
sorted list. Results from using these ranks as marks are shown in Fig. 3.16. When
compared to the marked correlations using masses shown in Fig. 3.9, it is clear that
the amplitude of the marked correlations is reduced when using ranks. However, the
qualitative comparison between different weighting options and samples remains the
same.

The most notable difference is the TNG galaxy mass-weighted auto-correlation. In
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that case, using rank orderings brings the mark into agreement with GAMA on most
scales, suggesting that the enhanced mark seen in Fig. 3.9 is due to the differences in the
shape of the stellar mass function between TNG and GAMA in Fig. 3.12.

The other visible difference is that the cross-correlation weighted by galaxy masses
is greater than 1 when using ranks for GAMA and TNG. However, there is no scale
dependence, meaning this is not a signal of mass segregation. Instead it appears to
confirm the galaxies from our sample which are in the groups have slightly higher masses
than the average of the volume-limited sample.
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4
Exploring the effect of baryons on the
radial distribution of satellite galaxies
with GAMA and IllustrisTNG

S. D. Riggs, J. Loveday, P. A. Thomas,
A. Pillepich, D. Nelson, B. W. Holwerda

Abstract

We explore the radial distribution of satellite galaxies in groups in the Galaxy and Mass
Assembly (GAMA) survey and the IllustrisTNG simulations. Considering groups with
masses 12.0 ≤ log10(Mh/h

−1M�) < 14.8 at z < 0.267, we find a good agreement between
GAMA and a sample of TNG300 groups and galaxies designed to match the GAMA
selection. Both display a flat profile in the centre of groups, followed by a decline that
becomes steeper towards the group edge, and normalised profiles show no dependence
on group mass. Using matched satellites from TNG and dark matter-only TNG-Dark
runs we investigate the effect of baryons on satellite radial location. At z = 0, we
find that the matched subhaloes from the TNG-Dark runs display a much flatter radial
profile: namely, satellites selected above a minimum stellar mass exhibit both smaller
halo-centric distances and longer survival times in the full-physics simulations compared
to their dark-matter only analogues. We then divide the TNG satellites into those which
possess TNG-Dark counterparts and those which do not, and develop models for the
radial positions of each. We find the satellites with TNG-Dark counterparts are displaced
towards the halo centre in the full-physics simulations, and this difference has a power-
law behaviour with radius. For the ‘orphan’ galaxies without TNG-Dark counterparts,
we consider the shape of their radial distribution and provide a model for their motion
over time, which can be used to improve the treatment of satellite galaxies in semi-
analytic and semi-empirical models of galaxy formation.
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4.1 Introduction

In the ΛCDM model of the Universe, galaxies form in dark matter haloes. The dark
matter interacts only by gravity, forming structures into which gas collapses to form
stars and thus galaxies. However, this gravity-only model of structure is incomplete, as
the baryonic physics of the galaxies is known to affect the halo structures in which they
reside. One way in which this manifests is in the number and location of substructures,
which can host luminous satellite galaxies. This can be explored through the clustering
of galaxies or by the radial profiles of satellite galaxy locations within groups.

Much of the importance of understanding the differences between a dark matter-only
(DMO) view of the Universe and a full-physics view comes from the use of galaxy
formation models built upon DMO simulations. Semi-analytic models of galaxy
formation (SAMs; e.g. Henriques et al., 2015; Lacey et al., 2016; Lagos et al., 2018) are one
of these. In many SAMs, satellite galaxies are split into two populations: Type 1s and
Type 2s. Type 1 satellites reside in resolved dark matter subhaloes, which have not been
disrupted, and it is assumed the locations of these are the same as in the underlying
DMO simulation. Type 2 satellites, or ‘orphan’ galaxies, are those which have persisted
beyond the lifetime of their host dark matter subhalo (see e.g. Pujol et al. 2017), meaning
the locations of these satellites are not available from the simulation itself, and require
additional modelling.

These Type 2 satellites are necessary as it has been found that DMO simulations
generically have too few subhaloes that would host galaxies in the inner regions of haloes,
compared to the number of galaxies seen in observations. For example, this is seen by
Angulo et al. (2009), where it is also noted that more massive subhaloes are less centrally
concentrated as they experience greater dynamical friction and merge quickly if they
are near the centre, and by Bose et al. (2020), who are unable to reproduce the satellite
population of the Milky Way from DMO simulations without Type 2 satellites. Further,
Behroozi et al. (2019) argue that without orphans the stellar masses of the other satellite
galaxies would need to be increased in a manner that is inconsistent with their known
evolution. However, Type 2s are often viewed as a resolution issue, and some studies
(e.g. Manwadkar & Kravtsov, 2021) have been able to avoid the need for them by using
only more massive subhaloes.

On the other hand, cosmological hydrodynamical galaxy simulations allow
exploration of the effects of baryons on structures directly. The addition of baryons,
hydrodynamics, and galaxy processes changes both the masses (e.g. Sawala et al., 2013;
Despali & Vegetti, 2017; Lovell et al., 2018) and the abundances (e.g. Schaller et al.,
2015; Chua et al., 2017) of (sub)structures, as well as the distributions (e.g. Marini et al.,
2021). In the Illustris simulation, the distribution of satellite galaxies from the centre
of their host halo has been considered by Vogelsberger et al. (2014b), where they show
that the number density of satellite galaxies is enhanced on small scales compared to
subhaloes in a DMO simulation. The distribution of galaxies around clusters is also
shown to be different for DMO and full-physics simulations by Haggar et al. (2021),
using THETHREEHUNDRED project. They show that DMO simulations both do not
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have a high enough subhalo density near the cluster centre compared to the full-physics
simulations, and have a subhalo density that is too low within groups of satellites which
reside at the cluster edge. Further, Nagai & Kravtsov (2005) find that differences between
simulations depend on the object selection due to tidal stripping and that the addition of
baryons slightly enhances satellite survival. However, baryons can also reduce satellite
survival due to disruption by a disc (e.g. Garrison-Kimmel et al., 2017).

The IllustrisTNG cosmological magnetohydrodynamical simulations (TNG,
Marinacci et al., 2018; Naiman et al., 2018; Nelson et al., 2018, 2019a; Pillepich et al.,
2018b; Springel et al., 2018) are a recent set of simulations consisting of 3 different box
sizes, each run at 3 different resolutions. The existence of dark matter-only counterparts
to each of these simulations provides the opportunity to explore the effect of baryons
on satellite galaxies in more detail and across a greater range of resolutions than has
previously been possible. This is particularly true for the highest resolution TNG50
simulation (Nelson et al., 2019b; Pillepich et al., 2019), which is designed to match the
resolution of zoom simulations while providing a much greater volume, enabling a
detailed look inside simulated galaxies and haloes.

Differences between the full-physics TNG and the DMO TNG-Dark runs have
been found in a number of studies, with Chua et al. (2021), Emami et al. (2021) and
Anbajagane et al. (2022) finding that the baryons change the properties of haloes,
including the shapes. Of most relevance to our study, Bose et al. (2019) show that the
distribution of satellite galaxies in the full-physics runs differs from that of subhaloes
in TNG-Dark, instead better matching the mass distribution of the host. They also
show that the distribution of full-physics satellites can be better reproduced by only
considering the few TNG-Dark subhaloes with the highest values of Vpeak, the maximum
circular velocity they had at any point in the past.

From an observational perspective, satellite galaxy radial distributions have been
inferred in several studies. With the Sloan Digital Sky Survey, Guo et al. (2012) explore
the dependence of the profiles on luminosity limits, and Wang et al. (2014) show there
is a colour dependence, while Tal et al. (2012) find the distributions can be best fit by
including a baryonic contribution near the centre. Budzynski et al. (2012) consider
the dependencies of cluster profiles on properties including halo mass and satellite
luminosity, comparing the profiles binned by halo mass to some earlier SAMs. This
follows the work of Hansen et al. (2005) which additionally looked at the profiles as a
function of group size. More recently, cluster profiles were explored by Adhikari et al.
(2021), who show differences in the distributions of galaxies of different colours.

The Galaxy and Mass Assembly survey (GAMA; Driver et al. 2009, 2011; Liske
et al. 2015; Baldry et al. 2018; Driver et al. 2022b) offers a suitable observational sample
of groups to determine the radial distribution of satellites and to compare against
simulations, as it has a high completeness in high-density regions. The stellar masses
of galaxies in groups has been explored by Vázquez-Mata et al. (2020), and Kafle et al.
(2016) find no evidence of variation in satellite galaxy masses with radial position.
Recently, Riggs et al. (2021, hereafter RBL21), explored the group–galaxy clustering in
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GAMA, finding evidence of a central core to the distribution of galaxies in groups, and a
good match between GAMA and TNG clustering results.

In this work we study the locations of satellite galaxies in the TNG simulations
and their DMO counterparts, comparing against observational results from the GAMA
survey. We do this by using the satellite profile of groups of galaxies, i.e. the number
density of satellites as a function of radial separation from the group centre. We examine
the differences between full-physics and TNG-Dark a) by selecting satellites above
fixed stellar mass limits, b) by identifying their analogue dark-matter subhaloes in the
DMO runs, and c) by distinguishing between satellites with and without matched DMO
subhaloes. We hence investigate the dependencies of these differences on host and
subhalo properties. Finally, we develop models to account for these differences and
to correct the satellite locations in DMO simulations. In Section 4.2 of this paper we
describe the GAMA and TNG data we use and we explain the methods used to select
galaxies and produce profiles; showing the resultant profiles for GAMA, TNG and the
TNG-Dark counterparts in Sections 4.3 and 4.4. We provide models for the differences in
satellite locations in Sections 4.5 and 4.6 and finally, in Sections 4.7 and 4.8, we discuss
our results and provide conclusions.

In this work group (halo) masses are expressed in log10(Mh/h
−1M�), takingMh to be

M200m, the mass enclosed by an overdensity 200 times the mean density of the Universe.
We denote the radius of a sphere associated with this overdensity as R200m. We generally
express stellar masses from IllustrisTNG in log10(M?/M�) using the simulation value of
h = 0.6774, for consistency with the mass limits given in Pillepich et al. (2018b). The
cosmology assumed for GAMA is a ΛCDM model with ΩΛ = 0.75, Ωm = 0.25, and
H0 = h100 km s−1Mpc−1.

4.2 Data, simulations and methods

4.2.1 GAMA survey

Our group sample from the GAMA survey is derived from the three 12 × 5 degrees
equatorial fields, G09, G12 and G15, of the GAMA-II survey (Liske et al., 2015). GAMA-II
has a Petrosian magnitude limit of r < 19.8 mag and is well suited to group-finding as it
is 96 per cent complete for all galaxies which have up to 5 neighbours within 40 arcsec.

The GAMA Galaxy Group Catalogue (G3Cv9) was produced from the GAMA-II
spectroscopic survey using the same friends-of-friends (FoF) algorithm used for
GAMA-I by Robotham et al. (2011, hereafter RND11). Group masses are estimates from
the total r-band luminosity of the group using the power-law scaling relation for M200m

determined in Viola et al. (2015, equation 37). This scaling relation is consistent with the
one recently determined by Rana et al. (2022).

We use the same selection of G3Cv9 groups as RBL21. Groups with 5 or more
members are selected, as RND11 find these richer groups to be most reliable. We select
these groups if they fulfill the requirements that they are at redshift z < 0.267 and have
a mass in the range 12.0 ≤ log10(Mh/h

−1M�) < 14.8. Additionally, we impose the
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requirement that GroupEdge > 0.9, selecting only those which are estimated to have at
least 90% of the group within the GAMA-II survey boundaries. This leaves us with a
sample of 1,894 groups with 17,674 galaxies, detailed in Table 4.1.

We select all galaxies within these groups, and identify the centrals using the iterative
central from RND11, namely the galaxy which remains after iteratively removing the
galaxy furthest from the centre of light of the remaining group members until only one
is left. All other galaxies within the groups are then satellites. The iterative centre was
shown to be most reliable in GAMA-I by RND11, and RBL21 confirmed this is also the
case in GAMA-II. In most cases the iterative central is the brightest galaxy of the group.

4.2.2 Mock group catalogue

To determine systematics within GAMA we use the mock catalogues created for GAMA-I
(mocks for GAMA-II are in development). The mock galaxy catalogues consist of 9
realisations of a lightcone created from the GALFORM (Bower et al., 2006) SAM run on
the Millennium Springel et al. (2005) DMO simulation. Further details about the creation
of these mocks are given in RND11.

Two different catalogues of mock groups have been created from the GALFORM
galaxy mocks, allowing us to explore any biases introduced by the group finding
algorithm in GAMA:

• The halo mocks (G3CMockHaloGroupv06) contain the intrinsic dark matter haloes
of the Millennium simulation which the mock galaxies reside in.

• The FoF mocks (G3CMockFoFGroupv06) contain groups derived by applying the
same FoF algorithm used for the GAMA groups to the mock galaxies.

Comparing the halo and FoF mocks allows us to explore how accurately the GAMA
FoF algorithm detects the intrinsic haloes, providing a way of qualifying the differences
between the group finding methods in observations (FoF mock) and simulations (halo
mock). This then informs us how directly comparable the GAMA observational sample
is to simulations such as TNG.

We select groups from both the halo mocks and FoF mocks using the
same criteria as GAMA, requiring redshift z < 0.267, halo mass in the range
12.0 ≤ log10(Mh/h

−1M�) < 14.8 and at least 5 members.

4.2.3 TNG simulations

We explore the effect of baryons with the IllustrisTNG cosmological magneto-
hydrodynamical simulations (TNG, Marinacci et al., 2018; Naiman et al., 2018; Nelson
et al., 2018, 2019a,b; Pillepich et al., 2018b, 2019; Springel et al., 2018), and their matching
TNG-Dark dark matter-only N-body simulations. The TNG simulations were run
using the AREPO code (Springel, 2010) and incorporate the key physical processes of
galaxy formation, including gas heating and cooling, star formation and feedback from



106

Ta
bl

e
4.

1:
N

um
be

rs
of

gr
ou

ps
an

d
ga

la
xi

es
in

ea
ch

m
as

s
bi

n
se

le
ct

ed
fr

om
G

A
M

A
,t

he
m

oc
k

ca
ta

lo
gu

es
an

d
th

e
G

A
M

A
-m

at
ch

ed
TN

G
30

0-
1

sa
m

pl
e.

V
al

ue
s

gi
ve

n
fo

r
th

e
m

oc
k

ca
ta

lo
gu

es
ar

e
th

e
m

ea
n

fr
om

th
e

9
re

al
is

at
io

ns
.

G
A

M
A

H
al

o
M

oc
ks

Fo
F

M
oc

ks
TN

G
30

0-
1

lo
g

1
0
(M

h
/
h
−

1
M
�

)
N

g
rp

s
N

g
a
ls

N
g
rp

s
N

g
a
ls

N
g
rp

s
N

g
a
ls

N
g
rp

s
N

g
a
ls

M
1

[1
2.

0,
13

.1
]

38
0

2,
20

4
35

2
2,

21
0

34
6

2,
27

2
36

8
2,

15
2

M
2

[1
3.

1,
13

.4
]

54
7

3,
64

6
38

3
2,

89
0

40
1

2,
77

5
40

4
2,

94
1

M
3

[1
3.

4,
13

.7
]

56
6

4,
72

3
36

6
3,

81
5

52
3

4,
23

3
41

3
3,

76
5

M
4

[1
3.

7,
14

.8
]

40
1

7,
10

1
30

6
8,

37
7

43
0

8,
20

5
46

7
8,

36
4

To
ta

l
[1

2.
0,

14
.8

]
1,

89
4

17
,6

74
1,

40
7

17
,2

91
1,

69
9

17
,4

86
1,

65
2

17
,2

22



107

supernovae and black holes. For a full explanation of the processes included we refer
the reader to Pillepich et al. (2018a) and Weinberger et al. (2017).

TNG consists of simulations at three different box sizes, each run at a variety of
resolutions. We primarily use the runs with the best resolution; TNG50-1 with box
size 35h−1 Mpc and baryonic mass resolution 5.7 × 104h−1M�, TNG100-1 with box size
75h−1 Mpc and baryonic mass resolution 9.4 × 105h−1M�, and TNG300-1 with box size
205h−1 Mpc and baryonic mass resolution 7.6× 106h−1M�. We additionally include the
runs at worse resolution in some of our analysis. The second tier of resolution, denoted
with -2, has baryonic masses 8 times larger than the -1 runs, and the third tier, denoted
with -3, has baryonic masses 64 times larger than the -1 runs.

We select galaxies from these simulations where SubhaloFlag equals 1, i.e. objects
identified as cosmological in origin (rather than a fragment or substructure formed within
an existing galaxy), and where the stellar mass within twice the half mass radius exceeds
107, 108 and 109M� for TNG50-1, TNG100-1 and TNG300-1 respectively, limits which
correspond to ≈ 100 stellar particles. We take the stellar mass of galaxies to be that
within twice the half mass radius, and for the total subhalo mass we take the mass of all
particles bound to the subhalo.

When comparing against GAMA we use TNG300-1, as this gives the largest sample
of high-mass groups. We select galaxies from the simulation snapshot at z = 0.2, close to
the GAMA mean redshift, and bring the stellar masses into agreement with the TNG100-1
resolution (as well as with GAMA) by multiplying by the resolution correction factor of
1.4 suggested by Pillepich et al. (2018b).

Elsewhere when looking at simulations of differing resolutions we use the snapshots
at z = 0 and we do not apply resolution corrections as we are interested in the direct
simulation outputs, and we mainly instead use the better resolution of TNG50-1 and
TNG100-1 to perform more detailed examinations of the satellite galaxies.

Each TNG run has a matching TNG-Dark run with the same box size and resolution.
These allow direct comparisons between the outcome of modelling the Universe in DMO
and that of including hydrodynamics and galaxy physics to model the baryons.

4.2.4 Group radial profile calculation

Profiles are derived for GAMA as a function of the projected radius r⊥, calculated in the
standard way (e.g. Fisher et al., 1994). The vector separation of a satellite at position rsat

from a group at rgrp, is given by s = rsat− rgrp and the vector to the midpoint of the pair
from an observer at the origin by l = (rsat + rgrp)/2. These are used to find the line-of-
sight separation r‖ = |s.l̂|, with l̂ being the unit vector in the direction of l, and this leads
to the projected separation r⊥ =

√
s.s− r2

‖. We do not apply any limits on the line-of-
sight distance, instead simply including all galaxies allocated to the groups (although we
note that this choice implicitly introduces limits due to the line-of-sight linking condition
in the RND11 FoF algorithm).

When measuring projected two-dimensional profiles for TNG we take the projection
to occur along the z-axis, but have checked that our results are not sensitive to the choice
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of projection axis. With TNG we can also measure three-dimensional profiles, which we
are unable to do for GAMA. All satellite galaxies which are members of the FoF group
are included, and distances measured relative to the centre of the FoF group.

When calculating profiles, we additionally divide the data into bins of group masses,
and include two different forms:

Firstly, the average group profiles, which we define as the density of galaxies as a
function of physical projected separation from the group centre. This is calculated for
each group mass bin by counting the number of satellites in radial bins and dividing by
the total number of groups in the mass bin.

Secondly, the normalised profiles, which we define as the density of galaxies using
separations as a fraction of the group R200m. The amplitudes of these are divided by the
number of galaxies in the mass bin. This can be used to look for differences in the shape
of the satellite distribution in different group mass bins, as it normalises out the trend for
more massive groups to be more extended and include more galaxies.

We calculate the uncertainties on profiles using jackknife resampling for GAMA and
TNG. For GAMA we split the sample into 9 samples in RA, and with TNG we divide the
boxes into 8 sub-cubes, showing uncertainties as the square root of the diagonal terms in
each covariance matrix. The mock catalogues contain 9 realisations of the GAMA survey,
and so we can estimate the uncertainties by using the scatter between the realisations.

4.3 Radial profiles from GAMA and TNG300-1

In this section we examine the satellite distribution of GAMA groups, and compare this
against a sample of groups and galaxies from TNG300-1 designed to match the GAMA
selection.

4.3.1 Selecting groups from TNG300-1 to match GAMA

When comparing against GAMA data, groups in TNG300-1 are chosen using a modified
form of the selection function in RBL21. This modification is necessary as RBL21 only
identify if groups have at least 5 visible galaxies, whereas with the simulated data we can
in principle identify all the visible galaxies in the chosen groups.

To select the group and galaxy sample we require galaxy luminosities, for which we
use the dust-corrected r-band luminosities of dust model C from Nelson et al. (2018). We
then perform the following procedure for galaxy and group selection:

1. Find the comoving distance at which each simulated galaxy has an observed
magnitude of mr = 19.8 mag.

2. Determine the selection probability by finding the volume of the GAMA lightcone
out to this comoving distance and dividing by the total GAMA volume for
z < 0.267. We additionally multiply the selection probabilities by 0.95 to account
for our GAMA redshift limit applying to a sample K-corrected to be 95% complete.
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Figure 4.1: Satellite galaxy projected radial profiles in the four mass bins listed in Table 4.1
for selected groups and galaxies from GAMA, the mock catalogues and GAMA-matched
TNG300-1. In all panels black circles show the GAMA results, blue downwards triangles
the FoF mocks, green upwards triangles the halo mocks and orange solid lines TNG300-1.

3. Assign each simulated group a random probability and select the galaxies whose
selection probability is greater than or equal to the random probability assigned to
their host group.

4. Include groups (and their constituent visible galaxies) only if at least 5 galaxies have
been identified as visible.

We show the mass function of the groups we have selected from GAMA, the
mocks and TNG300-1 in Appendix 4.A, demonstrating our group selection method
for TNG300-1 reproduces the expected shape of the mass function, although with
differences in the detail due to different underlying galaxy populations. Small
differences between GAMA and TNG are partly caused by nearby GAMA groups which
contain some galaxies below the mass resolution limit of TNG300-1, although we have
checked that the inclusion of these does not impact the derived profiles.

4.3.2 Average group profiles

In Fig. 4.1 we show for the first time direct results for radial distributions of satellite
galaxies in GAMA groups, calculating the average group profiles in the four mass bins
considered. In all the group samples used, increasing group mass leads to a greater
number of satellites and wider groups due to halo radius increasing with mass.

The shape of the profiles is such that they are almost flat on the smallest scales,
r⊥ < 0.02h−1 Mpc. With increasing scale there is then a gradual decrease in density until
r⊥ ≈ 0.5h−1 Mpc, where a rapid drop is visible.

Comparing with the profiles obtained from the mock catalogues allows us to
investigate the effects introduced by the use of the FoF group finder for GAMA. On
small scales the profiles are similar for the halo and FoF mocks, with the density
increasing to the smallest scales considered. The similarity of the mocks suggests that
GAMA is reliable at small halo-centric distances, in agreement with the conclusions of
Driver et al. (2022a), as the FoF algorithm accurately reproduces the intrinsic haloes.
However, it is noteworthy that the survey mocks and GAMA have a very different
behaviour. This is most likely driven by inaccuracies in the locations of orphan satellites
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in GALFORM (see e.g. Pujol et al., 2017), and this in turn provides further justification
for our objective of correcting for issues in mocks based on DMO simulations.

At the turnover radius beyond which the density drops in the M1 bin
(r⊥ ≈ 0.2h−1 Mpc), the FoF mocks have slightly more galaxies that the halo mocks.
This is probably due to chance alignments of galaxies on the sky being counted as small
groups, as this effect is not present in the higher mass bins, and the GAMA distribution
is therefore expected to be similarly boosted slightly on these scales. Beyond this
turnover radius, the FoF mocks drop off much faster than the halo mocks in all bins,
suggesting the outer edges of the groups are missed by the FoF group finder. At the
outer edges, GAMA and the FoF mocks display very similar results, and from this we
suggest that the true profile of GAMA groups (that is comparable to simulations) would
lie about where that of the halo mocks is on these scales.

Overall the mock comparisons tell us that GAMA profiles should be reliable on scales
smaller than the turnover, but likely underestimate the number density at the outer edge
of the groups.

The projected satellite galaxy profile of the GAMA-matched TNG300-1 sample is
consistent with GAMA on small scales where GAMA is reliable, with the flattening of
the profile at r⊥ ≈ 0.02h−1 Mpc being consistent between the two within uncertainties.

At face value the TNG300-1 profiles are always above the GAMA profiles on large
scales (r⊥ & 0.5h−1 Mpc). However, the differences seen between the halo and FoF mock
catalogues show that there are significant differences between the group membership in
simulated and observed groups on these scales. As we previously noted, correcting for
this difference in methods possibly leads to GAMA profiles which are similar to the halo
mocks on large scales. This suggests that the distribution of galaxies around groups in
TNG300-1 is similar to the observations across all scales, although with a slight excess of
galaxies around the edges of low mass groups.

We note that the flattening of the profiles on the smallest scales in both GAMA and
TNG300-1 could be affected by misidentification of the central galaxy in the groups,
although we do not see evidence of this. In GAMA previous studies (RND11 and RBL21)
find the iterative centrals we use are least impacted by mis-centring, and the central
usually corresponds to the brightest galaxy in the group. In TNG the central resides
at the centre of potential of the halo and is usually the most massive galaxy in the group.
Further, the fact that we see a flattening in both cases, and the consistency between the
mocks on these scales, supports the idea that it is a physical effect.

4.3.3 Normalised profiles

We investigate changes in the profile with group mass by normalising the satellite
distances by group radius R200m and the profile amplitude by the total number of
satellites.

The normalised profiles for GAMA and the GAMA-matched TNG300-1 sample are
shown in Fig. 4.2. We have not included the mocks here as the conclusions from these
remain the same as above, that GAMA profiles should be reliable on small scales but
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Figure 4.2: Satellite galaxy projected profiles in the four group mass bins for our
GAMA group sample and GAMA-matched TNG300-1 sample, calculated as a function
of normalised radius and then normalised by the total number of satellites. The vertical
dashed lines mark the radius R200m.

drop too rapidly on large scales.
There is no mass dependence visible in the normalised profiles for GAMA, with

the profiles being consistent across all scales in the mass bins we use. This suggests a
universal shape to the satellite distribution in GAMA galaxy groups, with the number
and average radial separation of galaxies depending only on the group mass.

TNG300-1 shows exactly the same result of no group mass dependence to the profile
shape. We can also see more clearly here that this trend continues to the edge of the
groups.

4.4 Comparing full-physics and DMO distributions

Here we explore the differences between satellite galaxy profiles of groups in TNG and
the equivalents from TNG-Dark runs, in order to determine the extent to which baryons
adjust the shape of the profile.

4.4.1 Groups and subhaloes from DMO runs

We make use of two methods to extract samples from TNG300-1-Dark to compare to the
full-physics run. Here, as we are just comparing between simulation runs, we do not
apply the group selection to match GAMA. Instead, we simply select all galaxies with
M? ≥ 109M� in groups with 12.0 ≤ log10(Mh/h

−1M�) < 14.8.
The simplest method to generate a sample of TNG300-1-Dark subhaloes that
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correspond to the selected luminous satellites is an abundance matching approach. We
perform this abundance matching using the maximum circular velocity (Vmax) of each
subhalo, as it is expected this will correlate better than halo mass with galaxy properties
(e.g. Zehavi et al., 2019). In this case we sort the subhaloes in the dark matter-only
simulation by their Vmax, and select those with the greatest Vmax so we have the same
number of dark matter subhaloes as there are galaxies above the resolution limit in the
full-physics run.

The second, more comprehensive, method we use is the subhalo SubLink matches of
Rodriguez-Gomez et al. (2015), selecting the matching subhalo from the dark matter-only
simulation for each of our selected TNG300-1 galaxies. These matches were generated
by determining the subhaloes containing the same particles, and calculating a matching
score by weighting these particles inversely by their rank ordered binding energy. For
each TNG satellite, the TNG-Dark subhalo with the highest matching score is taken to
be the best match. This can in some cases lead to multiple TNG galaxies matching to a
single TNG-Dark subhalo. We remove these duplicates from the TNG-Dark run so each
subhalo is only included once.

However, these duplicates are important for the TNG run as they allow us to split the
TNG300-1 satellites into the equivalent of Type 1 and Type 2 satellites in SAMs. Type 1
satellites are those contained in dark matter subhaloes, so all uniquely matched satellites
are automatically Type 1s. Type 2 satellites can then be considered as the unmatched
TNG satellites. A similar application of matching is used by Renneby et al. (2020).

We use Vmax to determine the type for duplicated matches at this stage for consistency
with the abundance matching method. The matched TNG300-1 galaxy with the highest
maximum circular velocity is taken to be the Type 1 (or this may be the central Type 0),
while all other matches are allocated as a Type 2 without a matching TNG300-1-Dark
subhalo.

These two choices of matching method therefore give us slightly different samples of
TNG-Dark subhaloes. In the first selection we have the same number of objects as TNG,
but they may not be contained in the same environments, whereas in the second selection
the subhaloes we select are known to be comparable to the TNG sample, but the number
of objects differs.

4.4.2 Radial profiles in TNG300-1-Dark

In Fig. 4.3 we compare the profiles of satellites in TNG300-1 against those from the
matched subhaloes in the TNG300-1-Dark simulation at z = 0.2. This is the sample used
in Fig. 4.1 but without the group selection method applied.

It is clear that on large scales there is a close agreement between TNG and TNG-Dark.
However, at small halo-centric distances, the density of TNG satellites is enhanced over
their matched subhaloes in the TNG-Dark simulation (solid blue vs. orange and green
dashed curves). In particular, the number density profile of the TNG-Dark subhaloes
flattens, while the TNG profile of luminous satellites continues to rise down to smaller
scales, albeit at a reduced rate. The two options for selecting subhaloes from the TNG-
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Figure 4.3: Satellite galaxy projected profiles at z = 0.2 for TNG300-1 compared to
equivalents from the TNG300-1-Dark run. The panels show the same mass bins as given
in Table 4.1, but now including all galaxies with M? > 109M� in groups, meaning
the amplitude of the TNG300-1 profile has increased relative to Fig. 4.1. Two different
methods of selecting matched TNG300-1-Dark subhaloes are used, as explained in
Section 4.4.1. We also show the TNG300-1 galaxies split by those which can be matched
to TNG300-1-Dark satellites and those which are unmatched (orphans).

Dark simulation are seen to be consistent, with the profiles matching within uncertainties,
suggesting this is not just a result of the matching scheme used.

This difference between TNG and TNG-Dark can be attributed to two effects, which
we also show in Fig. 4.3. Firstly, there is evidence of an inwards displacement in the
TNG simulation, with the directly matched (Type 1) satellites being closer to the centre
in TNG. Secondly, there is a population of galaxies that are not uniquely matched to
TNG-Dark subhaloes (Type 2s), suggesting that they have been merged or disrupted in
the TNG-Dark simulation but not in TNG. Both of these effects primarily affect scales
r⊥ . 0.1h−1 Mpc, but there is some impact out to at least r⊥ ≈ 0.5h−1 Mpc in the largest
groups. Together, these effects suggest baryons enhance both the rate of inwards motion
and the survival time of subhaloes that host galaxies.

We note that in all mass bins the dominant effect on the smallest scales is the
population of unmatched satellites, and that the contribution due to the inwards
displacement of matched satellites decreases as halo mass increases and the groups
become wider.

4.4.3 Radial profiles at differing resolutions

To explore the effect of resolution on the profiles in the TNG simulations, we measure
the average group profile in each of the TNG50-1, TNG100-1 and TNG300-1 simulations
at z = 0, and in their TNG-Dark equivalents. While we could compare resolutions by
using the different runs at identical box size, we choose to use the largest box available
at each resolution to give us a larger galaxy sample, although we show in Appendix 4.B
that the same conclusions are reached using different resolutions at the same box size.
To enable comparison between the different simulations we apply the same mass limit in
each case, M? ≥ 109M�, although the resulting low number counts for TNG50-1 make
comparisons involving it challenging. We show in Appendix 4.C that the choice of mass
limit only affects the amplitude of the profile, and that the full-physics runs show very
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close agreement when normalised. We have selected TNG-Dark subhaloes which are
equivalent to TNG satellites using the SubLink matching.

Fig. 4.4 shows the radial profiles from these samples in bins of host halo mass. In
group mass bins of increasing mass we see the profile increases in amplitude and extends
to greater radii, as we observed in GAMA.

It is apparent that there is a reasonable consistency between the different TNG
simulation resolutions in most group mass bins. The main exception is the least massive
bin where the majority of haloes contain no satellites with stellar mass above 109M�. We
also note that the most massive bins are subject to a high uncertainty due to containing
very few groups.

The agreement between the distributions of well-resolved satellites at differing
resolution matches the conclusions of Grand et al. (2021) with the AURIGA simulations.
However, as shown in that work, this consistency is likely to break down for satellites
with very few stellar particles.

Looking at the TNG-Dark results, we find the same effect noted before of flatter radial
profiles in the centres of groups than in the full baryonic runs, at least for subhaloes
matched to satellites with a given minimum stellar mass. However, such flattening
varies across simulations, with the DMO profiles becoming flatter at small distances for
progressively worse numerical resolution.

The implication of this is that the extent of the differences between TNG and TNG-
Dark are affected by the simulation resolution, and that this is driven by differences with
resolution across DMO runs—the full-physics runs are in much better agreement across
the three resolution levels; see also Fig. 4.21. Instead, the changes in the TNG-Dark
profiles for different resolutions are unlikely to be entirely physical and instead may
be the result of the numerical disruption effects found by van den Bosch et al. (2018).
However, there are still profile differences in TNG50-1, the highest resolution simulation,
(and these differences become more apparent if lower mass satellites are also included)
so there may be a physical effect at work here too. This could be due to the baryonic
feedback, which is known to change the shapes of the haloes (Chua et al., 2021), but
could also be related to the baryonic core keeping the satellites more bound and so less
prone to disruption (both physical and numerical). This would match the findings of
earlier works such as Weinberg et al. (2008). We return to the question of whether the
effects we see are physical or numerical in Section 4.7.3.

4.5 Fitting differences between full-physics and DMO runs

Having established that significant differences exist between satellite locations in the full-
physics and DMO runs, we now aim to create models to correct for these differences. To
create these models we use the runs with the best resolution, TNG50-1 and TNG100-1,
as these allow us to explore smaller scales and lower masses with more confidence.
Following this we use the runs at worse resolution to explore the dependence of the
required correction on simulation resolution.
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4.5.1 Splitting Type 1 and Type 2 satellites

We first split the satellite sample into Type 1s (which have a matching TNG-Dark
subhalo) and Type 2s (whose subhalo has disrupted or merged in TNG-Dark), with a
similar method to that which we used for TNG300-1-Dark in Section 4.4.1.

Using the SubLink matches of Rodriguez-Gomez et al. (2015) we select the matching
TNG-Dark subhalo for each full-physics galaxy. Uniquely matched satellites become
Type 1s. In the cases where the matches are not unique we assign the best match as
the Type 1, and all others as Type 2s. Here, we determine the best match by picking the
subhalo which has the highest matching score, as determined by the SubLink matching
algorithm.

To clean our sample further, Type 1 satellites are removed if the central and
satellite assignment differs between TNG and TNG-Dark, leading to 971 subhaloes
being excluded in the case of TNG50-1 (about 6% of the total). The excluded fraction
becomes smaller in the simulations with worse resolution. There are a few possible
reasons the type (central/satellite) can differ between TNG and TNG-Dark: either the
structure formation has occurred differently, the matching scheme is inaccurate, the
FoF algorithm has combined two close haloes, or the subhalo has been accreted earlier
in one simulation than the other. The majority of the subhaloes we remove have a
radial separation from the central exceeding the host R200m, suggesting they have either
only just been accreted or are part of neighbouring haloes joined by the FoF algorithm.
However, there are a small number closer to the central, suggesting different structure
formation or incorrect matching. We do not attempt to correct these matches, instead
just excluding these subhaloes.

We also exclude Type 1 satellites where the host halo mass differs enough
to suggest that they are attached to different groups. This choice of halo mass
difference is somewhat subjective, but we have determined that excluding cases where
| log10(MTNG

h /MDMO
h )| > 0.15 removes all clearly different hosts, while allowing for

some scatter between the simulations.
For TNG50-1 this gives us a sample size of 6,915 Type 1s, 781 Type 2s and 8,237 central

Type 0s with stellar massM? ≥ 107M�. This rises in TNG100-1 to 24,759 Type 0s, 16,842
Type 1s and 2,862 Type 2s with stellar massM? ≥ 108M�.

4.5.2 Model for Type 1s

We first consider the modelling of the Type 1 satellites, aiming to quantify the expected
difference in position between the subhaloes in the TNG and TNG-Dark runs. We
describe our model here, before giving the parameters for it in Section 4.5.4.

While the differences in satellite positions between full-physics and DMO runs may
depend on any properties of the subhaloes or host haloes, we find a simple model
adequately describes the differences. We first present this model, then explore the
reasons why we are able to exclude other dependencies.

Our model for the correction to Type 1 positions includes only the comoving radial
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Figure 4.5: Fitting to the difference between matched satellite positions in TNG50-1 and
the TNG50-1-Dark run at z = 0, with the data split into bins of host halo mass, given in
h−1M�, and galaxies shown forM? > 107M�. In each panel, the grey background points
show the scatter between exactly matched satellites. The blue points then show the result
of sorting the positions by distance from the centre. Finally, the red lines show our fit.

distance from the group centre. We model the correction to the position as a power law,

log10(rTNG/rDMO) = −(rDMO/a)b (4.1)

where rTNG is the radial position in the full-physics run and rDMO is the radial position
in the DMO run.

To determine the parameter values in this model we first sort the positions of the
satellites in ascending order independently for the TNG and TNG-Dark runs, then fit our
model to the sorted positions. This is done to produce an overall trend in the position
difference.

In doing this we are discarding the true associations between the TNG and TNG-Dark
runs, but without sorting the positions we would potentially fit to spurious trends caused
by orbital phases. Objects close to the centre in either simulation will be near pericentre,
and so a small difference in orbital phase between simulations will result in them being
further from the centre in the other. Therefore, without sorting the positions, we would
conclude that objects near the centre should always be moved outwards. Similarly, this
effect matters when considering possible dependencies on variables which may correlate
with radial position.

The position differences between TNG and TNG-Dark satellites, with the results of
applying this model in TNG50-1, are shown in Fig. 4.5. Note that while we have split
the sample into halo mass bins for this figure, we perform the fitting on the whole data
sample together and the fit parameters used are the same in each panel. The grey points
show there is a large scatter between the raw positions in the TNG and TNG-Dark runs,
but the sorted positions in blue show a clear trend for inwards displacement in the full-
physics case. Our fitted results are then shown in red, demonstrating a good match
between our model and the sorted data across the full range of halo masses.
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Figure 4.6: Dependence of the position difference of Type 1s on subhalo total mass and
baryonic mass at z = 0. Left panels show the dependence on subhalo mass in TNG50-1,
while the right panels show the dependence using the total subhalo masses of matched
TNG-Dark subhaloes. Upper panels show position differences of individual satellites,
and the lower panels the binned averages of these.

4.5.3 Dependencies on masses

We now discuss why we are able to exclude other dependencies from our model, despite
it being anticipated that the differences between TNG and TNG-Dark may depend both
on the properties of the subhalo and those of the host halo. Firstly we note that the aim
of our model is to explain the differences between the TNG and TNG-Dark simulations,
while also providing a method that can easily be applied to models such as SAMs and
HODs. For this reason we do not attempt to include all the possible dependencies in our
model (for example dependencies on the star formation rate, colours and gas fraction
of galaxies may be challenging to incorporate in SAMs). Additionally, the impact of
feedback from active galactic nuclei (AGN) and supernovae on subhaloes may not be
consistent between different hydrodynamic simulations, so we do not want to directly
consider these effects.

One of the simplest dependencies we expect is with mass, and halo mass, subhalo
total mass and subhalo baryonic mass may all have an impact.

In Fig. 4.6 we show the relation between subhalo baryonic mass and subhalo total
mass in TNG50-1 and for matched TNG-Dark subhaloes. The colour scaling represents
the position difference and shows a large scatter, and this spread increases at low total
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Figure 4.7: Residuals of the Type 1 position fitting model on TNG50-1 at z = 0 for galaxies
withM? > 107M�. The left panel shows the dependence on halo mass, while the right
panel shows the dependence on the relative stellar size of the central galaxy.

subhalo masses. To account for this, in the lower panels we split the sample into bins of
subhalo mass and colour the bins by the average position difference. On the left, using
the TNG subhalo masses, there is a trend for galaxies which have a high baryonic mass
for a given total subhalo mass to be closer to the group centre in TNG (having a lower
log10(rTNG/rDMO), coloured purple in Fig. 4.6). However, this trend is not present in
the right panels, using TNG-Dark subhalo masses. This shows that while the baryonic
fraction is related to the reduced halo-centric distances it is likely to be a secondary effect,
such that the closer proximity to the centre causes stripping of some of the subhalo dark
matter, so increasing the baryon fraction. The secondary nature of this effect, and the lack
of this effect in the TNG-Dark panel, means this is not an effect which we need to include
in our model.

Fig. 4.5 has already demonstrated that our model works across different halo masses,
so we are able to exclude halo mass as an explicit part of our model. However, there is
a residual effect of halo mass on the position differences. In the left panel of Fig. 4.7 the
median difference between the sorted position in the TNG simulation and our model is
plotted. To smooth this we use overlapping mass bins, and the errorbars are calculated
using jackkknife. It is clear that there is some halo mass dependent residual. Comparing
this to Fig. 4 of Weinberger et al. (2017) shows a very similar trend to that of the difference
in halo masses between TNG and TNG-Dark. In that work, this is attributed to the
effect of stellar and AGN feedback, and so it is likely our residual is present for the same
reasons. In particular, the drop atMh ≈ 1012h−1M� is likely due to the onset of feedback
from supermassive black holes at this mass scale in TNG.

We also show the comparison here of the outcome of performing our fitting
procedure using normalised radial distance (r/R200m), rather than the comoving radial
separation (r). For much of the mass range the discrepancy associated with the two
separation options is comparable. However, using normalised distances a clear split is
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seen, with overestimation in haloes of log10(Mh/h
−1M�) . 12, and underestimation

in more massive haloes. This gives a slight advantage to using comoving separations
in low-mass haloes, with normalised distances only showing a clear advantage for
log10(Mh/h

−1M�) & 14. This motivates our usage of comoving separations in our
model.

One further dependence can be seen in the right panel of Fig.4.7 where we show the
residual as a function of the relative stellar size of the central galaxy in the host halo,
defined as the stellar half mass radius divided by the halo radius. While a similar fitting
discrepancy is seen using comoving and normalised radii it is likely the stellar size of the
central galaxy, which is proportionally smaller in lower mass haloes (see Pillepich et al.,
2018b), is also part of the explanation for the residual halo mass dependence seen in the
left panel.

4.5.4 Model fitting at different resolutions

We then repeat the fitting procedure in different simulations to investigate the effect of
resolution. The upper panels of Fig. 4.8 show the parameters as a function of the dark
matter particle mass in the TNG-Dark simulation MDMO, when all resolved galaxies are
used in each case. The uncertainties shown are calculated by jackknife between sub-cubes
of each simulation.

It is seen that the pivot radius, a, increases, while the power scaling, b, decreases. A
linear function of log10MDMO is a reasonable fit to both of these parameters. Applying a
linear fit we find

a = −0.039 + 0.0074 log10MDMO (4.2)

and
b = 0.35− 0.22 log10MDMO. (4.3)

The overall correction required is enhanced at worse resolution, as seen in the lower
panel of Fig. 4.8. It may be hypothesised that this is due to including haloes and subhaloes
of differing masses in each simulation selection. However, the lower panel of Fig. 4.8 also
shows the fit does not shift substantially if the better resolution simulations are restricted
to only use the most massive galaxies, and therefore this is a true effect of the resolution.

4.5.5 Redshift dependence

Finally, we examine whether our model depends on the redshift at which it is applied. We
repeat the fitting of equation 4.1 at a series of snapshots in the run with the best resolution
of each box size, and we show the results of this fitting in Fig. 4.9.

In TNG50-1 and TNG100-1 there is no systematic trend visible in the parameters at
different redshifts, with the parameters consistent with the redshift zero result in most
instances. In TNG300-1 there is a trend for the pivot radius to increase and the power
scaling to decrease with redshift, which is largely attributable to the degeneracy in the
fitting of the two parameters. Overall, we therefore expect that the fitting parameters we
found at redshift zero will be sufficient for any applications at higher redshifts.
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Figure 4.8: Fitting the radial position change of Type 1 satellites for different resolutions
at z = 0. Upper panels: Fitting parameters from equation 4.1 for the Type 1s in
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used in each TNG-Dark simulation. Galaxies with & 100 stellar particles are selected
from each simulation. Lower panel: The radial position of Type 1 satellites in the full-
physics simulations as a function of radial position in the DMO simulations for different
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Figure 4.9: The fitting parameters from equation 4.1 for Type 1 satellites as a function of
redshift for the run with the best resolution of each box size.

4.5.6 Subhalo mass differences

Our result in Fig. 4.6 that the radius change is related to the subhalo mass from the full-
physics simulation but not in DMO suggests a systematic difference in the masses as
well as the positions of satellites, as previously found by comparisons of full-physics and
DMO simulations by Sawala et al. (2013). Following on from this, we briefly consider
here what correction would be required for the masses.

We see in the left panel of Fig. 4.10 that in TNG50 the total mass identified by Subfind
(Springel et al., 2001) as belonging to the subhalo is reduced. We speculate that this mass
difference may be partly a physical effect due to ram-pressure stripping (e.g. Ayromlou
et al., 2019, 2021), but also a numerical effect due to the ability of Subfind to distinguish
the structures (e.g. Onions et al., 2012).

We apply a similar fitting for mass change to that which we used for radial position
change,

log10(MTNG
sub /MDMO

sub ) = −(MDMO
sub /am)bm , (4.4)

and follows a power law about a pivot mass am. The red line in the left panel of Fig. 4.10
shows the outcome of fitting this function, successfully reproducing the typical mass
difference.

Similarly to the radius change, the mass change could depend on a number
of the properties of the subhalo and host halo, as well as simulation resolution.
Additionally, we expect a covariance between the mass and radius change. However, to
be consistent with the corrections we provide for radius change we again apply only a
one-dimensional fitting. This gives us am = 2.2 × 108h−1M�, bm = −0.55 for TNG50-1,
and am = 1.2× 109h−1M�, bm = −0.98 for TNG100-1.

The resolution dependence is somewhat more complicated than it was for radii. The
right panels of Fig. 4.10 show the fitting parameters in different runs. In the runs at the
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Figure 4.10: Fitting the mass change of Type 1 satellites between the TNG and TNG-Dark
runs at z = 0. Left panel: The difference in mass of satellites of mass M? > 107M�
in TNG50-1 and TNG50-1-Dark. The grey background points show the scatter between
exactly matched satellites, blue points show the result of sorting the masses, and the red
line the fit. Right panels: The dependence of the mass fitting parameters on simulation
resolution, each simulation using galaxies with & 100 stellar particles.

lower end of the MDMO range, a trend is seen for pivot mass am to increase and power
bm to decrease as MDMO increases. However, in the runs with worse resolution (higher
MDMO) the pivot mass and minimum resolved satellite mass converge, and the fitting
method breaks down. For this reason, our results from TNG100-2 and TNG300-1 are not
in agreement, and we are unable to fit to TNG300-2.

Consequently, while we note that satellite masses are reduced in the TNG simulation
relative to TNG-Dark, and that this change can be approximated by equation 4.4, we do
not provide fits for simulation resolution.

4.6 Fitting the locations of unmatched satellites

For the unmatched Type 2 satellites, we want to know their radial locations after they
are no longer found in the DMO simulation. Our sample here consists of the residual
satellites from the cases where multiple TNG galaxies match to one TNG-Dark subhalo.
Note that in our fiducial matching algorithm all TNG galaxies map to a TNG-Dark
subhalo, so if the corresponding subhalo in TNG-Dark has already merged into a central,
then the mapping will be to that central. As a result, all TNG satellites are included in
either the Type 1 or Type 2 sample, except for the small number rejected earlier due to
differences in the host halo of the matched subhaloes.

We take two approaches to explore their radial distribution. Firstly, we consider the
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radial profile of the Type 2s at a single snapshot. Secondly, we look at the radial motion
between snapshots.

4.6.1 Radial profiles of unmatched satellites

Positions of Type 2 satellites at a single snapshot can be selected by using fits to their
radial distribution. As shown in Fig. 4.3, the Type 2s are generally distributed much
closer to the central galaxy than the Type 1s, and this gives a different profile shape.

Rather than fitting to these profiles directly, we fit the cumulative distribution of the
number of satellites as a function of distance from the centre. This directly provides
a distribution from which satellite positions can be drawn. We examine distances and
profiles in three dimensions as we are only considering simulated galaxies.

Desiring a profile from which we can readily draw samples, we find that the
cumulative distribution is well fit by assuming the galaxy number counts of Type 2s
follow a log-normal distribution

N(r/R200m) = Nsatsexp

(
−(log10(r/R200m)− log10(rs/R200m))2

2σ2

)
. (4.5)

This implies the number density profile of Type 2s can be determined from this using

n(r/R200m) =
N(r/R200m)√

2π34σ(r/R200m)3 ln(10)
, (4.6)

where Nsats is the total number of satellite galaxies, r is the radial position of the satellite,
rs is a scale radius and σ is the distribution width. We note that an Einasto profile
(Einasto, 1965) is also able to fit the data, but that we select the log-normal approach
due to the comparative ease of drawing random samples from it.

Applying this fit we find the average parameters for the three simulations are
rs/R200m = 0.18 and σ = 0.43. We note that due to fitting in terms of r/R200m this
depends on the halo mass estimate used. If, instead of using an overdensity of 200 times
the mean density, we use 200 times the critical density then rs/R200(c) increases to 0.30
but σ does not change.

In Fig. 4.11 we show the outcome of this model fit. In the upper panel we show the
cumulative number of satellite galaxies in TNG50-1, TNG100-1 and TNG300-1, and in the
lower panel we show the number density profile. We have not set matching mass limits
in this case, instead selecting all Type 2s above the stellar mass limit for each simulation
and then normalising by the total number and the haloR200m. It is immediately apparent
that there is a very similar distribution of Type 2 satellites in the different resolution
runs, and these agree well with fits given by equation 4.6. Slight discrepancies in the fits
are visible on the smallest and largest scales, particularly in TNG300-1 where the tails
are underestimated due to the profile shape differing slightly from that of TNG50-1 and
TNG100-1. However, in the range 0.02 . r/R200m . 1 our fitting is seen to work well for
all the simulations.

In Fig. 4.12 we then examine whether the fits depend on halo or stellar mass. We
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Figure 4.11: Fitting to the distribution of Type 2 satellite galaxies in TNG, as a function
of distance normalised by halo radius at z = 0. The upper panel shows the cumulative
distribution and the lower panel the number density profile. Solid lines show the Type 2
satellites of TNG, and dashed lines show the fits using equation 4.6, which assumes the
number counts follow a log-normal distribution.
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select Type 2 satellites in evenly spaced bins of halo and stellar mass and recalculate the
profile fits in each bin. The changes in the parameters are all relatively small, with a
slight reduction in rs/R200m in low mass haloes, and for the highest mass galaxies. This
consistency is expected from our earlier conclusions that the overall normalised profiles
do not depend on halo mass. We do not consider the dependence on subhalo total mass,
as this would have no equivalent in the case of SAMs, where these satellites are not
contained in subhaloes. Additionally, we show the redshift dependence to this fitting,
which leads to a slight reduction of σ at higher z.

In SAMs, the number of Type 2 satellites is known. However, in some simpler
empirical models the number of Type 2 satellites would need to be input in order to
apply these profiles to DMO simulations. Despite the over-simplifications of halo
occupation distribution models (HODs; see e.g. Hadzhiyska et al., 2020), we fit the
number of Type 2s per group, NT2

Ngrp
, with a simple three parameter model,

NT2

Ngrp
=

(
Mh/h

−1M� −M0

M1

)α
. (4.7)

This model is illustrated in Fig. 4.13. The left panels show the three parameters of
equation 4.7 as a function of the stellar mass cut applied to the galaxy sample,M?,min, for
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the number counts in the TNG simulations as solid lines, and the model results as dashed
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2s: TNG50-1 is shown for log10(M?/M�) ≥ 7, TNG100-1 is shown for log10(M?/M�) ≥ 8
and TNG300-1 is shown for log10(M?/M�) ≥ 9.

TNG50-1, TNG100-1 and TNG300-1. It can be seen that the fits are relatively insensitive to
the simulation choice, but there is a dependence on the stellar mass of selected galaxies,
which we have fit with the black dashed lines, given by

M0 = 104.84(M?,min/M�)0.724,

M1 = 109.50(M?,min/M�)0.404,

α = 1.11.

(4.8)

This stellar mass dependence is a result of an increased number of satellites per group and
the inclusion of satellites in lower mass groups, both resulting from a lower minimum
mass threshold. However, the lack of dependence on the simulation resolution is more
surprising, as it means that even with improved resolution we are still finding some
massive galaxies lose their subhalo to become ‘orphaned’.

The right panel of Fig. 4.13 then shows the number of Type 2 satellites per group, and
the fits resulting from equations 4.7 and 4.8. While the number of satellites is reproduced
for intermediate halo massesMh ≈ 1012.5h−1M�, the fitting is less accurate at either end
of the mass scale, particularly the most massive haloes have the number of Type 2s over-
estimated. As we are only interested in knowing the approximate number of Type 2s, we
do not attempt to correct this further.
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4.6.2 Modelling Type 2 radial motion

The second approach we consider for determining the location of Type 2 satellites is to
trace and model their radial motion. To do this we take all the galaxies we have assigned
as Type 2s at redshift zero, and find the difference in position from earlier snapshots. We
restrict ourselves to galaxies that remain satellites at earlier snapshots, and which reside
in haloes which differ in mass by less than 0.15 dex between snapshots.

We once again use comoving distances in our analysis. We choose to do this as these
are the natural units of the simulations, and by using them we avoid the need to account
for the changing value of h over time. However, we note that given that groups will
not expand at the same rate as the Universe, we could instead use proper distances to
minimise the effects of the expansion in our model.

Fitting a relationship between successive snapshots and propagating this over time
invites an increasingly large error on each iteration. Instead, we look at the change in
radial separation of Type 2s from their host across a range of time steps. Given an initial
radial distance at an earlier time, this can then be applied to generate radial distances
at later times. By implication, the application of this means the positions of satellites
at successive snapshots are not directly related, but instead they are both related to the
radial separation at the starting time.

Strictly, we are then concerned only with the radial change since a certain starting
time, that at which the satellite was last identified as a Type 1. However, this is very
restrictive on the number of satellites available at each snapshot, and has a strong
dependence on the criteria used to identify the galaxy type. Instead, we consider the
radial change from all snapshots at which the galaxy remains a satellite (Type 1 or Type
2). Regarding the number which remain Type 2s on tracing back from redshift zero,
about 90% of the Type 2s are still Type 2s after a single timestep, dropping to 50% after
slightly over 2 Gyr (15 snapshots), and decreasing slowly for greater times.

Having found the historical locations of the satellites, we can then consider
statistically the distribution of possible radial movements of a galaxy at a given initial
position. This allows us to estimate the positions of Type 2s over time by drawing
randomly from this distribution.

To find this distribution we first calculate for each galaxy the probability, λ, that a
galaxy at the same initial radial distance has experienced more radial motion towards
the centre of the group. We calculate this by examining all galaxies starting in a bin of log
radial location centred on the selected galaxy with width 0.1 dex, and determining the
fraction that move inwards by the same or a greater proportion (equal or lower value of
log10(rend/rstart)), giving a λ value in the range 0 < λ ≤ 1.

Due to the small number of Type 2 satellites in TNG50-1, we instead focus on
TNG100-1 when developing our model. In Fig. 4.14 we show the radial movement of
Type 2 satellites in TNG100-1 between z = 0.01 and z = 0. We colour the points by their
λ value, and highlight in red the ones with λ ≥ 0.95 which we use to fit the upper power
law described below. We also show the prediction of the model given below for λ = 0.5,
showing the satellites tend to move slightly inwards on average between these times.
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Figure 4.14: Movement of Type 2s between the final two snapshots of the TNG100-1
simulation, z = 0.01 and z = 0, plotted against their starting location at z = 0.01. Galaxies
are shown for massesM? > 108M� and colour-coded by the probability of a galaxy at
a similar starting location moving further inwards. We highlight in red the ones which
move furthest outwards. The black dashed line then shows the prediction of the model
given in Table 4.2 for λ = 0.5.

Typically we see that Type 2 satellites gradually move towards the halo centre over
time, but that there is a chance that they move away from the centre. In particular, those
which begun close to the centre (and so close to the pericentre of their orbit) are more
likely to move outwards.

In order to account for the shape of this distribution, and the possibilities of both
outwards and inwards movement, we model this as a sum of power laws. We choose this
as it provides a relatively simple model for the entire distribution, whereas fitting in bins
of radius would require more parameters, and fitting an overall trend would ignore the
spread of orbits the satellites are seen to be following. A power law model was selected
as it approximately visually matches the shape of the contours of equal λ, but we note
that this is a problem where machine learning methods for analytic expressions might be
useful, in a similar manner to Krone-Martins et al. (2014).

Our power law sum consists of an upper power law which describes the maximum
outwards movement possible, and a lower power law describing the inwards motion.
This may then be expressed in the form

log10(rend/rstart) = u(t)r
v(t)
start − C(λ, t)r

D(λ,t)
start , (4.9)

where rstart is the initial radial location, rend is the final radial location and t is the time
between the snapshots. The first term in this equation is our upper power law, and the
second term the lower power law.
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Figure 4.15: Parameters of the model given in Table 4.2 used to fit the movement of z = 0
Type 2 satellites between snapshots in TNG100-1. The left panels show the lower power
law parameters as a function of the distribution location λ, with different colours showing
different starting redshifts and dashed lines showing fittings from Table 4.2. The other
panels show the parameters as a function of time between snapshots, with the fittings
overplotted as dashed lines.

Our procedure for fitting this is as follows. We fit the galaxies with λ ≥ 0.95 with a
single power law urv. Then in bins of width 0.05 in λwe fit the lower power lawCrD. For
both of these fittings we use only galaxies at rstart > 0.01h−1 Mpc, to avoid biasing the fit
with the very few on the smallest scales which may be affected by the spatial resolution
of the simulation.

In the left panels of Fig. 4.15 we show the dependence of the lower power law
parameters C(λ) and D(λ) on the distribution percentile across different time periods.
The two components of the lower power law can be fit as a function of the distribution
percentile as C(λ, t) = c(t)(− log10 λ)f(t) and D(λ, t) = d(t) + g(t)λ.

Finally, we fit this as a function of the time between snapshots in Gyr, with
0.136 < t/Gyr < 10. The right hand 6 panels of Fig. 4.15 show the dependencies of
the parameters on time between snapshots. In considering the time dependence, our
primary requirement is that parameters u and c tend towards zero at small times, to give
no instantaneous satellite movement (although for times t < 0.136 Gyr, shorter than the
minimum this model is fit for, it would be more appropriate to just set zero movement).
We include the time dependence of the parameters with a summary of the model in
Table 4.2.

4.6.3 Interpreting the fitting

Our model has been designed to match the statistical distribution of satellite radial
positions. This means that for any individual satellite we are treating the orbital phase
as a random variable, and so the motion will not be accurately predicted from the
initial location of the satellite, but for the whole population the distribution should be
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Table 4.2: Details of the parameters of the model given in equation 4.9, used to fit
the movement of Type 2 satellites between snapshots in TNG100-1 with time steps
0.136 < t/Gyr < 10. The top half of the table gives the time dependence of the upper
power law, and the lower half of the table gives the dependence on time and distribution
position λ of the lower power law.

Section Model Parameters
Upper power law u(t)rv(t)

u(t) = t
u1+u2tu3

u1= 2.7 u2= 1.1 u3= 2.3
v(t) = (v1 + v2t)(1 + tv3) v1= -0.10 v2= -0.053 v3= -0.78

Lower power law C(λ, t)rD(λ,t)

C(λ, t) = c(t)(− log λ)f(t)
c(t) = t

c1+c2tc3
c1= 0.66 c2= 0.91 c3= 0.90

f(t) = f1 + f2t f1= 0.66 f2= -0.029

D(λ, t) = d(t) + g(t)λ
d(t) = (d1 + d2t)(1 + td3) d1= -0.094 d2= 0.015 d3= -0.67

g(t) = g1 + g2t g1= -0.27 g2= 0.074

reproduced. It also means that our model parameters have no direct physical meanings,
but we can still infer some information from them.

Firstly, considering the parameters at small timesteps, the shape of C(λ, t), which has
sharp upturn at lower end of the λ range, demonstrates that most satellites do not move
far, but that the distribution has a large tail of satellites with substantially greater radial
movement, perhaps those on first infall with radial orbits.

Looking at the time dependence, the strengths of the power laws, given by u(t) and
c(t), inform us of the relative probabilities of a satellite moving towards or away from
the group centre. Across a few snapshots, both u(t) and c(t) increase rapidly, showing
the satellites can have large radial movements on their orbits, but the overall population
does not have a significant inwards or outwards movement. At greater timesteps, u(t)

and c(t) both become smoother, with a gradual decrease in u(t) and an increase in c(t).
This shows a transition from the scatter associated with the orbital motion to an average
inwards motion for the satellite population.

This switch to an overall infall is also visible in d(t), which tends towards zero at large
times, showing that some of the radial dependence is washed out by the overall infall.
However, there is still some radial dependence, with g(t) changing sign at large times.
This sign change, and the growth of v(t), is indicative of a continued tendency for those
satellites which began close to the central to move outwards on average. This is to be
expected, as any satellites which began close to the central and moved inwards will have
merged into the central, and so not be included in our analysis.

These interpretations show that our model has encapsulated much of the expected
satellite motion, and should provide a practical method to predict the overall movement
of satellite populations.

4.7 Discussion and caveats

We further explore our results and models here, firstly via some tests of the application
of our models and then by discussing the interpretation and caveats of this work.
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4.7.1 Testing the Type 2 model for TNG subhaloes

The primary test of the model from Section 4.6.2 is the application of it to the traced
locations of the satellites over time. We show in Fig. 4.16 the profiles of satellites at
redshift zero in TNG50-1, TNG100-1 and TNG300-1 as solid lines in each panel, selected
with log10(M?/M�) ≥ 7 (TNG50-1), 8 (TNG100-1) or 9 (TNG300-1). The dotted lines
then show the radial distribution of these same satellites traced back to the redshift of the
column. If successful, our model should take the radial positions shown by the dotted
line in each panel, and reproduce the solid lines.

The blue shaded region in each panel shows the result of the application of our
model specified in Table 4.2. The model was applied 1,000 times, with a different set
of random λ values each time, and the shaded regions show the 95% region of the spread
of these results. In most cases, it can be seen that our model is successfully generating the
distribution of satellites at redshift zero. Discrepancies in our model are most apparent
on small scales when it is applied to TNG300-1, likely due to the different halo masses
sampled by it. More generally, there is a small tendency to move satellites too close to the
centre when starting at higher redshifts.

Fitting our model on Type 2 satellites in TNG50-1, TNG100-1 and TNG300-1 leads
to slightly different parameterisations, although the overall trends are similar between
them. These different fits are shown in Appendix 4.D. We show using the purple and
orange shaded regions the results of alternatively applying the model as fit on TNG50-1
or TNG300-1, demonstrating the comparable results of each.

We may anticipate some halo or stellar mass dependence to these fits, as dynamical
friction is a function of both of these (e.g. Binney & Tremaine, 1987). We show in
Fig. 4.17 the radial profile in four halo mass bins, starting at three different redshifts. It is
apparent that our model achieves reasonable success in every case, although there are
some minor discrepancies. In particular the model performs less well for halo masses
below 1012h−1M�, which is unsurprising given we have fewer Type 2s to fit in those
haloes.

Some of the differences are attributable to variation in the distribution locations as a
function of halo mass. We find that Type 2s in lower mass haloes are assigned λ values
which are on average less than 0.5, while the opposite applies to high mass haloes.

A similar picture emerges for stellar mass, with our model working well for the lower
mass satellites which are the most frequent, and slightly less well for higher masses.
Therefore we conclude that, while there are mass dependencies, these are small and so
our model is able to perform adequately without these extra dependencies.

4.7.2 Testing the full model on TNG300-Dark

The accuracy of the power law model for the inwards displacement of Type 1s given
in Section 4.5.2 plus the distributions of Type 2 satellites given in Section 4.6.1 can be
tested simply by application to the positions of TNG300-1-Dark subhaloes we selected in
Section 4.4.2. To do this we move the Type 1s radially inwards along the vector separating
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Figure 4.16: Radial distributions of Type 2 satellites in the TNG simulations, before
and after applying our model for their radial movement given in Table 4.2. The top
two rows show TNG50-1 profiles, middle two rows TNG100-1 profiles and lower two
rows TNG300-1 profiles. From left to right the panels show satellites tracked to higher
redshifts. The larger panels show the radial profiles, while the smaller panels show
the ratio of the predicted profiles to the true profile. We include resolved galaxies in
all groups, but show comoving distances as those are the input to our model. In each
of the larger panels the dotted line shows the distribution of satellites at the redshift
of the column and the solid line shows the distribution of the satellites at redshift
zero. The shaded bands in all panels show the 95% region for 1,000 applications of the
model predictions at redshift zero. The model predictions are calculated for the satellite
locations shown in the dotted lines, with random values of λ, and the different colours
show the prediction of the model when fit to the different simulations.
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Figure 4.17: The Type 2 profile fits in different group mass bins for TNG100-1. The rows
each show a different group mass selection, while the columns show satellites traced back
to different redshifts. The solid lines show the redshift zero positions of satellites starting
at the specified redshift, and the shaded regions show the 95% spread of the positions
predicted by our model over 1,000 applications.
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Figure 4.18: The outcome of the application of our model for Type 1 satellites on the
TNG300-1-Dark profile at z = 0.2, with the addition of the profile for Type 2 satellites,
shown as green dot dash lines, compared to the TNG300-1 profile (blue solid lines) and
the original TNG300-1-Dark profile (orange dashed lines) from Fig. 4.3.

them from the central, and add Type 2s randomly distributed in a sphere around the
central with the log-normal radial distribution given in Section 4.6.1.

In Fig. 4.18 we show the outcome of this test compared to the TNG and TNG-Dark
profiles of Section 4.4.2. On scales r⊥ ≥ 0.02h−1 Mpc our model accurately modifies
the TNG-Dark simulation to give it the same profile as TNG. On the smallest scales we
see a slight underestimation of the number of satellites, which is related to the slightly
different small-scale profiles seen amongst the TNG simulations in Fig. 4.11. While we
underestimate the profile for TNG300-1 on small scales in both Fig. 4.11 and Fig. 4.18, we
expect the simulations with better resolution to be more accurate on small scales—and
these were well reproduced in Fig. 4.11—so we do not try and correct the discrepancy
remaining here any further.

Overall the Type 1 model and the model for the Type 2 profiles is seen to accurately
reproduce the profile from the full-physics simulation. In future work we will test these
further, and also evaluate our model for Type 2 radial motion (Section 4.6.2), based on
tracing subhaloes across snapshots, by application directly to a semi-analytic model for
galaxy formation.

4.7.3 Physical interpretations

By comparing the TNG and TNG-Dark simulations, we showed that there are two
primary effects of baryons on the radial distribution of satellites (and subhaloes) in
groups.

Firstly, the comparison between satellites and their matched subhaloes in the
DMO runs shows that satellites in the full-physics simulations are located at smaller
halo-centric distances at the time of inspection than their surviving analogue subhaloes
in the DMO simulations. Secondly, the existence of a population of satellites with
no DMO matches suggests an increased survival time of satellites in full-physics
simulations. These effects are connected, as satellites that spent more time in their
current hosts are typically found closer to their host centres (Rhee et al., 2017).

The greater survival time of satellites in TNG can be explained by the inclusion of
a baryonic core to the satellites. Many studies (e.g. Smith et al., 2016; Joshi et al., 2019;
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Łokas, 2020; Engler et al., 2021) show that tidal stripping acts primarily on the dark matter
component of subhaloes, and that the baryonic component is not extensively stripped.
This central component can thus be postulated to keep the satellite bound beyond the
point it is disrupted in a DMO simulation, in agreement with Nagai & Kravtsov (2005).

This would seemingly be in contrast to the Chua et al. (2017) result that the addition
of baryons reduces the survival time, or the conclusion of Bahé et al. (2019) that baryons
make little difference to survival times. However, our findings are not necessarily
in tension with such results. Importantly, throughout this work we have focused on
satellite galaxies above a certain minimum stellar mass and on their analogues in the
DMO simulations, whereas Chua et al. (2017), for example, analyse the entire population
of subhaloes, whether luminous or not, and also include lower-mass ones. Secondly, our
orphan population, i.e. the satellites with no surviving DMO counterparts, is only a
small proportion of the total group–galaxy population and is biased towards the centre.
Instead, our results therefore seem to suggest that there is a strong radial dependence to
the effect of baryons on the survival of satellites. We cannot exclude, but do not think it
the case, that some differences across works may be due to different simulations using
different astrophysical feedback mechanisms.

Different survival times between works could also be related to the opposite effect to
that considered in this work: disruption caused by baryons. A suppression in the number
of substructures is known to occur due to the destruction of satellites by baryonic discs
(e.g. Garrison-Kimmel et al., 2017; Kelley et al., 2019). Our choice to select only galaxies
from the full-physics simulation and then determine their DMO analogues means we do
not account for this, but it will affect the relative survival times of full-physics and DMO
substructures.

An alternative explanation for the greater survival time we see is provided by Haggar
et al. (2021), who argue that the baryonic material in the centre of the subhaloes causes
a contraction of the surrounding dark matter distribution, as seen in other works (e.g.
Dolag et al., 2009; Adhikari et al., 2021). This leads to a more pronounced density contrast
between the subhalo and the host halo, making it easier for the halo finder to detect the
subhalo. If the differences are indeed due to the subhalo detection and tracking, then
this might in future be resolved by more advanced structure finders such as those of
Elahi et al. (2019a) and Springel et al. (2021), and alternative methods such as the merger
graphs of Roper et al. (2020).

A similar contraction argument can be used to explain the inwards displacement of
full-physics satellites. Baryons change both the concentration (e.g. Bryan et al., 2013;
Lovell et al., 2018; Chua et al., 2019) and shape (e.g. Rasia et al., 2004; Lin et al., 2006)
of haloes, which can change the location of the satellite galaxies in the potential of the
host. Contraction of the halo can then be suggested to lead to the satellite being further
out in the potential, and then falling inwards towards the halo centre to balance this.
Alternatively, it is possible that the baryons are increasing the drag force experienced by
the satellites, causing the orbits to reduce in size (e.g. Gu et al., 2016).

These explanations do not account for the resolution dependence to the position
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differences. Instead, the resolution dependence of the DMO results implies that the
inwards displacement is at least partly a numerical effect of the simulations, perhaps
due to gravitational changes associated with the reduced sampling of the distribution of
mass in the halo by the particles at poorer resolution.

Such degeneracies in the explanations should be remembered throughout. Overall,
when thinking about physical interpretations, we cannot definitively distinguish the
physical effects of adding baryons from numerical effects. While we have provided
some speculation for the reasons behind differences between full-physics and DMO
results, detailed explanations of the causes are beyond the scope of this work and do not
affect the empirical correction models we have presented.

4.7.4 Caveats

There are a number of assumptions and resulting caveats in the results and models we
have presented in this work. We discuss a few of the more important ones here.

4.7.4.1 Matching scheme

One of the primary sources of potential uncertainty in our work lies in the matching
between TNG and TNG-Dark satellites, and the distinction between Type 1 and Type
2 satellites. Due to the differences in structure formation between the full-physics
and DMO cases, it is not necessarily clear that matched satellites represent the same
structures.

One way of exploring this is by using an alternative matching scheme, and one exists
using the LHaloTree method of Nelson et al. (2015). The matches given by this method
are bijective, only matching objects where the object with the most matching particles is
the same for the TNG-Dark to TNG direction as for the TNG to TNG-Dark direction. This
provides a stricter criteria for the matching and leads to a reduced number of matched
satellites (Type 1s), particularly near the centre of haloes. This eliminates the need to
apply a correction to the locations of Type 1 satellites, but enhances the need for Type
2s. This, together with the abundance matching method we explored earlier, shows
that the balance between satellite types can be adjusted, but the differences between
the TNG and TNG-Dark profiles remain. For our purposes, as we are interested in the
expected positions of satellites placed in DMO subhaloes by a SAM, which is a one-way
matching, it is most appropriate for us to use the one-way SubLink matches we have
used throughout to select the types. In future, the effect of the matching scheme could be
further explored by also comparing to results from the Lagrangian matching scheme of
Lovell et al. (2018).

One further comment on the matching is that we found earlier that up to around 6%
of galaxies in each simulation are identified as a satellite in TNG or TNG-Dark but as
a central in the other. Rather than attempt to correct for this, we have simply excluded
these galaxies. We have not, however, removed any other satellites which may be in these
groups. Most of these were at large distances from the centre when a satellite, and our
analysis is not affected by these objects. This does, however, suggest some differences in
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either the structure formation or the numerical methods used, particularly the matching
scheme and group finder.

4.7.4.2 Other physical effects

While we have attempted to account for the most relevant physical dependencies and
processes in our analysis, there are others which we have not included.

For example, while we have considered dependencies on the masses of the hosts
and satellites, we have not included additional parameters such as those known to be
secondary parameters in assembly bias (e.g. Sheth & Tormen, 2004; Xu et al., 2021). These
may include local environment, halo shape and halo maximum circular velocity. Any of
these may impact the motion of satellites, but, aiming for simplicity in our models, we
choose not to pursue these secondary effects.

Finally, we note that throughout this work we have assumed that all the satellites are
directly associated with the central, and that they do not interact with other satellites.
This simplification ignores effects known to exist in simulations, including mergers
between satellites (Shi et al., 2020), the accretion of groups onto clusters (Haggar
et al., 2021), and more generally the pre-processing of satellites in other environments
(Donnari et al., 2021). We also note that we have not included any exclusion principle
for the satellites, and satellites could therefore lie arbitrarily close to each other when
implementing our models.

4.8 Conclusions

In this work we have explored the radial distributions of satellite galaxies in groups in
the GAMA survey and in the IllustrisTNG simulations. We have then compared the
distributions of satellites between full-physics and dark matter-only (DMO) simulations,
and developed models to characterise the differences.

For the GAMA survey, we showed the number density profile of all visible satellites in
groups of mass 12.0 ≤ log10(Mh/h

−1M�) < 14.8 at z < 0.267. We saw that an increasing
group mass leads to a greater number of satellites and more extended radial distributions.
However, normalising by the number of satellites and the group radius showed that there
is no mass dependence to the shape of the satellite radial profiles. By comparison to mock
catalogues constructed from DMO simulations, we identified that GAMA group profiles
are expected to be accurate for small scales, but that satellites on the edges of the groups
(r⊥ & 1h−1 Mpc), are missed by the group finding algorithm and so the profiles are
underestimated.

We selected galaxies and groups from the TNG300-1 simulation to replicate the
GAMA sample and showed that the profiles derived from these agree well with GAMA.
This agreement demonstrates the accuracy of the satellite population in TNG, and so we
can be confident that our subsequent modelling is performed on a realistic sample.

Comparing the full sample of group satellites above fixed stellar mass limits from the
TNG simulations to matched subhaloes from the equivalent TNG-Dark runs showed that
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the satellite profiles are much flatter in the DMO case. We attribute this to two connected
effects; an inwards displacement and a longer survival time of the satellites in the full-
physics case.

Following this, we developed empirical models to account for these effects. We
showed that the reduced halo-centric distances of matched satellites can be accounted
for with a simple power-law model, and that a similar model can also reproduce the
mass loss of these satellites. We fit the unmatched satellites which have endured longer
in the full-physics run via two methods. Firstly, we considered the shape of the radial
profile, finding it can be fit by a model of log-normal number counts. Secondly, we
considered the radial motion of unmatched satellites over time.

In future work, we intend to apply our models to semi-analytic galaxy formation
models, with the aim of improving their predictions of galaxy clustering. From a
simulation perspective, an expansion to this work would be to apply the same methods
to other simulations, such as EAGLE (Crain et al., 2015; Schaye et al., 2015), and the
use of alternative methods to find, track and match subhaloes. Observationally, more
reliable profiles of galaxy groups will be produced in future from the Wide Area VISTA
Extragalactic Survey (Driver et al., 2019). The use of different group finding algorithms
in observational data will also provide improvements, particularly around the edges of
groups.
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Figure 4.19: Mass function of selected groups in GAMA and the mock catalogues,
together with a sample from TNG300-1 designed to approximately match the GAMA
selection criteria. Vertical lines show the mass bins we use.

Appendices

4.A Group mass function

We show in Fig. 4.19 the mass distribution of selected groups from GAMA, the mocks
and TNG300-1. Groups in TNG300-1 are selected with the method given in Section 4.3.1.

The primary effect of this selection method is to reduce the number of low-mass
groups, and so the comparable shapes of the mass distributions of GAMA and TNG300-1
demonstrates the success of our selection method for TNG300-1 groups. Differences in
the mass distribution are visible between GAMA and TNG300-1, but these are mostly
at masses above the peak, where the selection function has less impact, and so this is
more likely related to differences in the underlying group and galaxy populations (see
e.g. Vázquez-Mata et al., 2020). Additionally, our earlier result that the halo mass does
not affect the profile shape suggests that the differences seen here are unimportant.

4.B Resolution dependence of TNG and TNG-Dark
distributions

We show here that the results of Section 4.4.3 still apply if we instead consider
different resolutions with the same box size. This minimises the impact of different
environments on our results, demonstrating the outcomes are not simply an effect of
cosmic variance.
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Figure 4.20: Normalised satellite profile of groups of mass 11 ≤ log10Mh < 15 and
galaxies withM? ≥ 109M� at z = 0 in TNG100-1, -2 and -3.

In Fig. 4.20 we show normalised profiles of satellites with M? ≥ 109M� for
TNG100-1, TNG100-2 and TNG100-3, each compared against subhaloes from the
equivalent TNG-Dark run, matched using SubLink. We see the same results as in Section
4.4.3, i.e. that resolution does not affect the distribution of full-physics satellites, but
improved resolution changes the distribution of the matched TNG-Dark satellites. While
the results from the worse resolution TNG-Dark runs are noisy, they flatten at larger
radii than TNG100-1-Dark, and cut off at larger scales.

4.C Stellar mass dependence of TNG radial distribution

In Fig. 4.21 we show that the normalised satellite profiles in TNG do not depend on the
simulation resolution or the stellar mass limit applied. We include TNG50-1, TNG100-1
and TNG300-1, each with a series of increasing minimum satellite masses. No change is
seen in the shape of these normalised profiles when these different cuts are applied.

This shows that while the inclusion of lower-mass satellites increases the number of
satellites, and so the amplitude of the average group profile, these additional satellites
are distributed in the same way as the most massive satellites.

4.D Type 2 model fitting at different resolutions

Here we show the parameterisations of the Type 2 model given in Section 4.6.2 for
TNG50-1, TNG100-1 and TNG300-1. For TNG100-1 and TNG300-1 we show in Fig. 4.22
the fits at each snapshot as solid lines with errorbars, and the overall relation with a
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Figure 4.21: Normalised satellite profile of groups of mass 11 ≤ log10Mh < 15 at z = 0
in TNG50-1, TNG100-1 and TNG300-1, with different stellar mass cuts on the galaxies
included.

dashed line of the same colour. With TNG50-1 we only show the overall relation, as the
scatter and uncertainties across individual snapshots are large.

It can be seen that the overall trends in the parameters as a function of time are the
same for each resolution. However, the exact values vary, particularly at larger timesteps
for v(t) and c(t). This is likely to show the covariances between our parameters, and also
perhaps an effect of different halo and stellar mass selections in the simulations.
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Figure 4.22: Parameters of the Type 2 model as a function of time, for TNG50-1 (purple),
TNG100-1 (blue) and TNG300-1 (orange). The solid lines with error bands show the
fits for each snapshot, and the dashed lines the fits as a function of time. We do not
show the individual snapshot fits for TNG50-1 for clarity, as they have large scatter and
uncertainty.
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5
Applying satellite position corrections
to SAMs

S. D. Riggs, J. Loveday, P. A. Thomas

Abstract

We explore the effects of modifying the radial distribution of satellite galaxies in
semi-analytic models of galaxy formation (SAMs) using models derived from the
IllustrisTNG simulations. The models used first adjust the positions of satellites in
dark matter subhaloes, then place ‘orphan’ satellites either in a log-normal distribution
or in locations empirically derived from their last known position. We implement
these models in the L-GALAXIES and SHARK SAMs and examine the resulting galaxy
clustering predictions, showing that both models for ‘orphan’ satellites improve the
agreement with the Galaxy and Mass Assembly (GAMA) survey relative to the standard
SAM implementations. However, in the case of SHARK we find that the number of
galaxies per group is less than in GAMA, making it difficult to compare the radial
distributions. In L-GALAXIES we find that the new models for satellite galaxies result
in changes to the galaxy stellar mass function, so we recalibrate L-GALAXIES, finding
we need to alter the parameters which determine the merger timescales and the star
formation in merger-driven starbursts.
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5.1 Introduction

In earlier chapters we have shown that the locations of satellite galaxies in groups are
very uncertain in semi-analytic models of galaxy formation (SAMs) and other models
based on dark-matter only simulations. This is especially true for the ‘orphan’ Type 2
satellites whose subhalo has merged or been disrupted, leaving an isolated galaxy. This
directly affects the radial profiles of groups and the clustering of galaxies, and can also
indirectly influence other observables.

The need for Type 2 satellites has been established in a number of works (e.g. Gao
et al., 2004; Guo et al., 2011; Behroozi et al., 2019; Bose et al., 2020), although there is
less agreement regarding the reasons for needing them. Despite their frequent use, there
is no single established method to account for Type 2s. Many different methods have
been used to incorporate them into SAMs, and some of these models were compared in
Pujol et al. (2017), where it is shown they lead to different predictions from the SAMs.
These methods commonly assume that the satellite orbits are determined solely by the
constituents and dynamics of dark matter subhaloes in a DMO simulation (e.g. Tollet
et al., 2017; Delfino et al., 2022). However, this assumption is poorly justified as the
baryonic components can contribute a significant fraction of the total mass of satellites
(e.g. Dvornik et al., 2020; Engler et al., 2021), and so the baryons are likely to affect the
satellite dynamics.

In an attempt to resolve some of the uncertainty around modelling satellite positions,
in Chapter 4 (Riggs et al., 2022, hereafter RLT22) we created models to account for the
differences between the locations of satellites in the full-physics IllustrisTNG simulations
(TNG, Marinacci et al., 2018; Naiman et al., 2018; Nelson et al., 2018, 2019a,b; Pillepich
et al., 2018b, 2019; Springel et al., 2018) and their equivalent subhaloes in the TNG-Dark
dark matter-only (DMO) simulations.

In a similar manner to that used in SAMs, we separated the TNG satellite galaxies into
Type 1s which are directly matched to subhaloes in the TNG-Dark runs and ‘orphan’ Type
2s whose equivalent TNG-Dark subhaloes have already merged with another subhalo.
The models we developed for these, together with the abbreviations we use for them in
this chapter, are as follows:

• The T1pl power law model for Type 1s. The Type 1 satellites are closer to the halo
centre than their equivalent TNG-Dark subhaloes, and this change can be fit with a
power law.

• The T2lg model for Type 2 positions. The radial distribution of Type 2s
approximately follows a log-normal distribution.

• The T2rm model for the radial motion of Type 2s. The radial motion of Type 2s was
empirically modelled, using the time since the satellite became a Type 2, the initial
radial location, and a uniform random variable.

Following the creation of these models, we now explore the outcome of applying
these satellite radial position corrections in SAMs. We do this using L-GALAXIES
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(Henriques et al., 2015) and SHARK (Lagos et al., 2018), which are the two SAMs we
explored in Chapter 2. The original goal of creating our satellite galaxy models was to
improve SAM predictions, and so this chapter provides an important test of whether we
have achieved this objective.

In order to test the accuracy of the results from our models we once again compare
the SAM outputs to the Galaxy and Mass Assembly survey (GAMA; Driver et al. 2009,
2011; Liske et al. 2015; Baldry et al. 2018; Driver et al. 2022b). In this case we consider
the accuracy of the SAMs in predicting the stellar mass function, radial distribution of
satellite galaxies, and projected galaxy clustering. We have chosen these observables as
the primary aim of our models is to improve the clustering predictions, but it is important
to check we do not degrade the accuracy of other predictions, particularly the stellar mass
function.

The layout of this chapter is as follows: in Section 5.2 we introduce the modified
versions of the SHARK and L-GALAXIES SAMs we use; in Section 5.3 we describe how
we compare these against GAMA; we present results from the SAMs in Sections 5.4 and
5.5; and finally we discuss our results in Section 5.6.

5.2 Semi-analytic galaxy formation models

The SAMs with which we test our galaxy position models are the same as those we use
in Chapter 2, the Lagos et al. (2018) version of SHARK and the Henriques et al. (2015)
version of L-GALAXIES. We run each of the SAMs on their native dark matter halo
catalogues. For SHARK this is the SURFS L210N1536 simulation (Elahi et al., 2018) and
for L-GALAXIES this is the Millennium simulation (Springel et al., 2005).

Here we remind the reader of the physics affecting satellite galaxies in these SAMs,
and then describe the impact that changing the locations of satellites is expected to have.

5.2.1 SHARK satellite physics

The standard version of SHARK contains Type 1 satellites at the locations of subhaloes
and Type 2s which have lost their subhaloes. The Type 2s are distributed according to the
Navarro et al. (1997, hereafter NFW) profile using the properties of the host halo.

SHARK is the easier of the two SAMs to implement the position corrections in, as the
internal physics does not depend on the satellite locations. This means that we are able
to change the positions as a post-processing step, and these corrections will not alter any
other galaxy properties.

The reason for this lack of internal position dependence is that SHARK does not
contain mechanisms for environmental stripping of cold gas and stars from satellites
or the possibility of complete disruption of galaxies. It instead only removes the hot
gas from satellites, which is done instantaneously when a galaxy becomes a satellite.
Additionally, while the time a satellite takes to merge with the associated central does
in principle depend on the satellite location, SHARK does not directly include this as it
chooses the timescales using a statistical distribution for satellite orbits.
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5.2.2 L-GALAXIES satellite physics

The Henriques et al. (2015) version of L-GALAXIES places Type 1 satellites in subhaloes,
and tracks Type 2 satellites using the position of the most-bound particle of the subhalo
they were last found in. Type 2 satellites are also given a further time-dependent inwards
radial displacement that means they reach the centre of the host halo at the time they
merge.

In the case of L-GALAXIES, the internal physics of the SAM depends on the locations
of the satellite galaxies. The outcome of this is that when applying our models that alter
the satellite positions we also adjust the number and properties of the galaxies produced
by the model.

The position dependence of the internal galaxy processes manifests in three ways:

1. The stripping of hot gas from Type 1 satellites.

2. The estimate of the merger timescale when a satellite transitions from Type 1 (or
occasionally Type 0) to Type 2.

3. The possibility of a Type 2 satellite being disrupted by tidal forces.

The first two of these are affected by the adjustment of the positions of Type 1 satellites,
and the last is affected by the model for Type 2 satellite positions.

Further, the final one also depends on modelling of the disruptive forces which
satellites are subject to and the implementation of these forces in the SAM. The standard
method during a snapshot for L-GALAXIES is to reposition the central galaxy, check for
disruption of satellites by estimating their peri-centre radius, then update the positions
of the remaining satellites. There are two reasons why it is not clear that this is physically
motivated.

Firstly, there is a strong justification for dealing with the satellite motion before
checking the disruption condition, as this checks if disruption has occurred by the end of
the satellite motion between snapshots, rather than at the previous snapshot. Secondly,
using the peri-centre radius implicitly assumes the satellite reaches peri-centre within a
single snapshot of the current time. This will not be the case for most satellites—Miki
et al. (2021) find that the orbital timescales of satellites around the Milky Way are mostly
in excess of a Gyr, which covers several snapshots in the Millennium simulation.

This leads us to adapt the disruption model in L-GALAXIES, as well as adjusting the
positions of satellite galaxies. Our modified disruption model makes two changes based
on our above arguments. Firstly, we move the time at which disruption may occur to
after the satellite positions are updated. Secondly, we calculate the disruption based on
the current position of the satellite, rather than an estimated peri-centre radius.

These two changes are expected to have opposite effects on the survival of satellites.
Calculating the satellite locations earlier reduces the distance of the satellite galaxy from
the central when the disruption condition is checked, increasing the tidal forces that
cause disruption, but this is partly counter-acted by using the current radius, as this is by
definition not smaller than the peri-centre radius.
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Table 5.1: Definition of volume-limited galaxy samples for GAMA data with different
magnitude cuts. The columns are absolute r-band magnitude limit K-corrected to
redshift 0.1, redshift limit, sample volume, number of galaxies selected, and mean
density.

Mlim zlim V Ngal n̄
[106 h−3 Mpc3] [10−3 h3 Mpc−3]

−20.00 0.267 7.93 42, 679 5.38
−19.00 0.181 2.62 38, 492 14.67
−18.00 0.121 0.81 19, 063 23.65
−17.00 0.078 0.23 7, 550 33.46

We note that the model for disruption used here is the instantaneous model which
is used in the standard form of L-GALAXIES, and originates from Guo et al. (2011).
An alternative gradual stripping model was developed by Henriques & Thomas (2010)
and Murphy et al. (2022) which is arguably more physical, but this model was also
implemented before the positions are altered.

5.3 GAMA comparison samples

We compare the results from our modified SAM models against the GAMA survey to
explore their accuracy. In this section we briefly describe the observational results we
compare against and the methods used for these comparisons.

We perform comparisons on the stellar mass function (SMF), the radial distribution of
satellite galaxies within groups, and the clustering of galaxies. The SMF is taken from the
most recent GAMA release by Driver et al. (2022b), and we also show the earlier GAMA
SMF from Baldry et al. (2012). The radial profiles giving the distribution of satellite
galaxies are those from RLT22. The groups used for the radial profiles have at least 5
members, masses 12.0 ≤ log10(Mh/h

−1M�) < 14.8 and reside at z < 0.267

We define new clustering samples with different densities of galaxies, based on the
volume-limited galaxy sample of Riggs et al. (2021). We do this as it allows a comparison
of the SAMs with less dependence on the masses of the galaxies output, and thus any
changes to these caused by our position models. The samples we use from GAMA are
defined in Table 5.1, using a series of cuts in r-band magnitude. The deepest of these
samples is the same as the one that we used in Riggs et al. (2021), while the other samples
were produced in the same way but using fainter magnitude cuts. To account for the
galaxies not all being observed at the same redshift we apply K-corrections to z = 0.1

and e-corrections of +Qez mag, where Qe = 1.0.

5.3.1 GAMA galaxy auto-correlation

In order to calculate auto-correlation functions from GAMA we need a sample of
random points to model any selection effects in the galaxy sample. We follow the same
method as Riggs et al. (2021), generating 10 times more random points than galaxies in
the survey mask of Loveday et al. (2018). Angular coordinates for these random points



149

are sampled using MANGLE (Hamilton & Tegmark, 2004; Swanson et al., 2008), while
the radial coordinates are drawn at random from a uniform distribution in comoving
volume modulated by the density-evolution factor of Loveday et al. (2015).

Galaxy auto-correlation functions were generated from these GAMA samples and
random catalogues using CORRFUNC (Sinha & Garrison, 2019, 2020). This calculates the
two-dimensional auto-correlation along (r‖) and perpendicular to (r⊥) the line of sight
with the Landy & Szalay (1993) operator,

ξ(r⊥, r‖) =
gg − 2gr + rr

rr
, (5.1)

for galaxy–galaxy pairs, gg, galaxy–random pairs, gr, and random–random pairs, rr,
with each of the pair counts normalised by the number of galaxies and randoms used in
them.

These were then projected along the line of sight using

wp(r⊥) = 2

∫ r‖max

0
ξ(r⊥, r‖)dr‖, (5.2)

integrating up to r‖max
= 40h−1 Mpc.

The GAMA samples with lower volumes are significantly affected by an integral
constraint on large scales. To correct for this we follow Roche & Eales (1999) by assuming
a power law behaviour for the correlation function,

wp(r⊥) = Ar−B⊥ − C, (5.3)

to estimate the integral constraint C which we then add to the correlation function.

5.3.2 Comparison methods

Our comparisons of simulations and observations are all performed close to the mean
redshift of GAMA, using the snapshot at z = 0.18 for L-GALAXIES and at z = 0.19 for
SHARK. While we note that not all of our GAMA clustering and group samples extend to
this redshift, we have checked that choosing lower redshift simulation samples does not
alter our conclusions.

To generate comparable samples of groups and galaxies to compare the radial profile
to GAMA we use the method of RLT22. This involves allocating a random location in
the GAMA lightcone to each simulated group, and then determining how many of the
constituent galaxies would have an observed magnitude brighter than mr = 19.8 mag at
that distance, and so be visible to GAMA. To match the GAMA selection, groups should
only be included if at least 5 of their galaxies are identified as being visible.

For these selected groups, the profiles are then calculated in terms of projected
distance to the centre of each simulated halo, taking the projection to occur along the
z-axis.

When comparing galaxy clustering, we set absolute magnitude limits in the SAM
outputs to produce galaxy samples of the same density as GAMA. The Henriques et al.
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(2015) version of L-GALAXIES produces dust-corrected magnitudes directly, so we use
those, but SHARK does not compute luminosities. To generate magnitudes for the SHARK

galaxies we choose to use the post-processing routines adapted from L-GALAXIES which
we set up in Chapter 2.

The clustering of galaxies in the simulations is computed using CORRFUNC as

ξ(r) =
gg

rr
− 1, (5.4)

where the normalised random pair counts rr are calculated from the total box volume V
and the volume of a spherical shell v(r) = 4

3π((r + dr)3 − r3), of radius r and thickness
dr, using

rr =
v(r)

V
. (5.5)

This is projected in the standard way,

wp(r⊥) = 2

∫ ymax

0
ξ
(

(r2
⊥ + y2)1/2

)
dy = 2

∫ rmax

r⊥

rξ(r)√
r2 − r2

⊥

dr, (5.6)

with a projection integral limit of rmax = 40h−1 Mpc. We do not apply an integral
constraint correction to the simulated results, as the boxes are sufficiently large that this
correction is negligible.

5.4 SHARK results

We now proceed to explore the impact of our satellite position corrections on the
predictions from the SAMs.

Considering SHARK, the movement of satellite galaxies works as a post-processing
step, which does not affect the other properties of the galaxies. This means that we do
not need to recalibrate the free parameters of SHARK, as we have not modified any of
the other predictions from it. Further, as the masses and luminosities of the galaxies are
unchanged, we only need to consider the results for the radial distributions and galaxy
clustering.

With SHARK, we compare four different runs of the SAM, progressively
implementing the models for satellite galaxies. These are as follows:

• The Lagos18 run, which uses the unaltered Lagos et al. (2018) version of SHARK.

• The T1pl run, which adds only the power law model for moving Type 1 satellites
radially inwards.

• The T1pl+T2lg run which places the Type 2s in a log-normal distribution as well as
moving the Type 1s.

• TheT1pl+T2rm run which implements the model for radial motion of Type 2s as
well as the model for Type 1s.
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Figure 5.1: The masses of groups in the GAMA survey compared to those selected from
the SHARK model. We show sampled SHARK groups with Ngals ≥ 5, the sample which
is designed to match the GAMA selection (GAMA also uses Ngals ≥ 5), and those with
Ngals ≥ 4, which provides a better match to the GAMA mass distribution.

5.4.1 Satellite radial profiles

We first consider the effect of our models on the radial distribution of satellite galaxies
in SHARK. In order to compare these to GAMA we need to select a sample of groups
and galaxies that matches the GAMA selection. However, in doing this we encounter a
problem, which is illustrated in Fig. 5.1.

If we select groups which have 5 or more galaxies above the GAMA selection limit,
which should correspond to the GAMA group sample we use, we sample too few groups
with massesMh < 1014h−1M�. This suggests that the less massive SHARK groups have
too few bright galaxies relative to GAMA, so they are not picked by the selection function.

This is associated with the differences we saw in Chapter 2 between the conditional
satellite luminosity functions in SHARK, L-GALAXIES and GAMA. We therefore briefly
return here to the Schechter function fittings we performed for the satellite luminosity
functions in Chapter 2. In particular we are now interested in the amplitude φ?s of
the Schechter functions, as this will be the leading order term when determining the
number of galaxies observed in each group. We show these amplitudes in Fig. 5.2, and
it can be seen that they are lower for SHARK compared to L-GALAXIES, equivalent to a
statement that SHARK has fewer galaxies per group. Further, both SAMs show lower
amplitudes than in GAMA, and this difference approaches an order of magnitude
for SHARK. However, we caution that we previously showed the Schechter functions
are poor fits to the SAM luminosity functions and that Fig. 5.2 also shows there is a
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Figure 5.2: Amplitudes of conditional luminosity function parameters for satellite
galaxies in GAMA, L-GALAXIES (using Millennium) and SHARK. These are the Schechter
function results we calculated in Chapter 2. The upper panel shows 68% contour
regions for the amplitude and characteristic magnitude, while the lower panel shows
the amplitudes with non-marginalised 1-sigma errors.
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Figure 5.3: Radial distributions of satellite galaxies in the modified versions of SHARK,
compared to the GAMA results of RLT22. The upper panels show the average radial
profiles of the groups, while the lower panels show the ratio of each of the profiles in the
upper panels to that of the Lagos18 run.

significant degeneracy between the amplitude and the characteristic magnitude of the
luminosity functions. Relating this back to the group selection used here, the lower
SHARK conditional luminosity function amplitudes means fewer galaxies will be visible
per group for SHARK than GAMA and so fewer groups are selected.

To generate a sample of groups which better matches the GAMA groups we
reduce the minimum number of galaxies required to 4. It can be seen in Fig. 5.1
that this then produces a group number density that is more comparable to GAMA
for masses Mh . 1012.5h−1M�. While this sample still contains too few groups at
Mh ≈ 1013.5h−1M�, any further changes to the selection of groups will require selecting
groups using a different method than has been done for GAMA and may alter the radial
distributions, so we use this Ngals ≥ 4 sample.

In Fig. 5.3 we show the comparison of group profiles from SHARK against the RLT22
GAMA results. Due to the relatively low number of groups we have in our sample, the
results for the profiles are noisy. It is apparent that all of the models predict the profiles
with reasonable accuracy, and that there is not a clear preference for any of them above
the others. The models we have implemented show a slightly greater density of satellites
for r⊥ < 0.02h−1 Mpc than the standard SHARK model and, at least in the lower mass
bins, this appears to be driven by the movement of the Type 1 satellites.

On larger scales, r⊥ & 0.5h−1 Mpc all the SHARK models appear to agree reasonably
with GAMA. However, this is perhaps further evidence that the SHARK groups differ
from observed groups as in RLT22 we showed the GAMA profile is likely to be an
underestimate on larger scales. The profiles we show here therefore suggest the SHARK

groups are not sufficiently spatially extended.
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Figure 5.4: Clustering of galaxies in the modified versions of SHARK, compared to the
GAMA samples in Table 5.1. The upper panels show the two-point correlation function
for samples with different density cuts, and the lower panels show the ratio of these to
the results of the Lagos18 run.

5.4.2 Galaxy clustering

In Fig. 5.4 we compare the clustering of our SHARK samples to the results from GAMA.
These samples are selected in GAMA using a magnitude limit, and in SHARK by selecting
galaxies to match the density of GAMA galaxies in each sample. In the brightest sample
the SHARK magnitude limit is close to that of GAMA, at Mr−5 log h < −20.03, but in the
samples of lower brightness the magnitude limits match GAMA progressively less well.
In the faintest sample we use GAMA has Mr − 5 log h < −17 while the SHARK sample
has Mr − 5 log h < −17.77.

The results in all panels show that the Lagos18 version of SHARK under-predicts the
clustering on scales r⊥ . 0.1h−1 Mpc, but generally provides a good match to the GAMA
results on larger scales. This again demonstrates the problem which our models are
designed to address, as the small scales are those which are affected by the distribution
of galaxies in groups.

Looking at the predictions of our modified forms of SHARK it can be seen that our
models have indeed gone some way towards addressing the differences between the
clustering in the Lagos18 version and GAMA. The T1pl model shows identical results to
the Lagos18 version for r⊥ & 0.04h−1 Mpc but on smaller scales it shows an enhancement
of the clustering. This shows that moving the Type 1 satellites inwards has improved the
agreement with GAMA.

The two runs using modified Type 2 satellite locations give very similar outcomes,
and enhance the clustering further than the T1pl model. This leads them to agree
better with GAMA than either the original Lagos18 version or the T1pl model alone.
In particular, on small scales, the modified forms do not show the flattening seen in
the Lagos18 version, and this effect extends slightly further than in the T1pl model,
enhancing the clustering for r⊥ . 0.1h−1 Mpc in the two Type 2 satellite models.
Overall, it therefore appears that our models for satellite galaxy radial positions have
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improved the clustering predictions from SHARK.

5.5 L-GALAXIES results

We now consider the outcome of implementing our models in L-GALAXIES. In
L-GALAXIES the physics affecting satellite galaxies depends on their position relative to
the centre of the host halo, resulting in both the survival time and the stripping of the
gas changing when new models for the positions are included. We have also altered
the mechanism for satellite galaxy disruption which further impacts the survival of
satellites. Ultimately, our alterations lead to changes in the number of galaxies and their
masses.

The first test of our models is to run L-GALAXIES with the new models but keeping
the parameter values for the SAM as those determined by Henriques et al. (2015).
However, the changes we have made to the internal mechanisms of the SAM mean we
should also recalibrate the parameters of L-GALAXIES for the new models.

We examine a total of seven different runs of L-GALAXIES on the Millennium
simulation. These runs consist of four model versions using the original parameters
and recalibrated versions of three of these models. The first model is the unmodified
Henriques et al. (2015) version, the baseline against which we compare the modified
forms. Secondly, in the AD model we adjust the disruption mechanism to occur after
the recalculation of satellite positions, and at the current position rather than at the
peri-centre. This informs us on the impact of the modified disruption, before we adjust
the satellite position model. The final two models implement the models of RLT22
in addition to the adjusted disruption. Both of these runs move the Type 1 satellites
radially inwards using the power-law model. The AD+T1pl+T2lg model then adds the
Type 2s in a log-normal radial distribution, while the AD+T1pl+T2rm model implements
the empirical model for their radial motion.

In Table 5.2 we list these runs, together with the numbers of galaxies that are
produced, and the number of disruptions that occur in each run. Note that the number
of disruptions is a count of all occurrences, and so most of these will be of galaxies below
the mass resolution of the simulation output.

The number of galaxies output by each run is similar, although we see the
recalibration of the models can reduce the number of galaxies by more than 10% in some
cases. In contrast, the number of disruptions varies substantially between the models.
The alternative disruption mechanism causes an increase in the number of disruptions,
and the use of the log-normal profiles for Type 2s increases the disruptions slightly
further. However, the use of the radial motion model reduces the number of disruptions,
suggesting the galaxies do not fall far enough into the halo potential to be disrupted
before they are merged.
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Table 5.2: Details of the model versions used for L-GALAXIES, with the number of
galaxies output from them and the number of satellites that are disrupted.

Version or modifications Name Ngals(M? > 109M�) Disruptions
Henriques et al. (2015) Hen15 4.30 ×106 1.07 ×107

Adjusted disruption AD 4.34 ×106 1.47 ×107

+ Recalibration recal_AD 3.74 ×106 1.13 ×107

Type 2 log-normal profile AD+T1pl+T2lg 4.24 ×106 1.77 ×107

+ Recalibration recal_T2lg 3.81 ×106 1.53 ×107

Type 2 radial motion model AD+T1pl+T2rm 4.35 ×106 0.63 ×107

+ Recalibration recal_T2rm 3.89 ×106 0.57 ×107

5.5.1 MCMC analysis of L-GALAXIES

To explore the changes that are necessary to the parameters of L-GALAXIES due to our
model alterations we run Markov Chain Monte Carlo (MCMC) analysis. This MCMC
analysis for L-GALAXIES was developed by Henriques et al. (2009, 2013), and here we
simply repeat the approach used in Henriques et al. (2015). This uses observational
constraints on the stellar mass function at z = 0, 1, 2, 3 and the fraction of red galaxies
as a function of mass at z = 0, 0.4, 1, 2, 3 to fit the parameters. During the MCMC
L-GALAXIES is run on a representative sample of trees from the Millennium and
Millennium-II (Boylan-Kolchin et al., 2009) simulations (see Henriques et al., 2013). We
do not use the halo model approach used by van Daalen et al. (2016) to fit clustering
predictions as we are interested in the clustering outputs from our satellite galaxy
models and do not want to adjust the clustering further.

Our objective here is to explore which parameters are altered and how this affects
the predictions from the SAM. With this in mind, we do not run the MCMC formally
to produce likelihood regions, but instead we simply search for a solution with high
likelihoood. We cannot therefore claim to have conclusively determined the optimal
solution, but the changes in the parameters and predictions will be informative as to
the direction and magnitude of the shifts.

With our models for Type 2 positions we also note that the process is further
complicated by the random variables in the Type 2 location models. This results in two
levels of stochasticity, one from the MCMC and one from the models, which would
make it more challenging to attempt to produce parameter likelihoods.

5.5.2 MCMC parameter results

Before considering the predictions of the modified version of L-GALAXIES, we first look
at the new parameter values produced by the MCMC analysis. In Table 5.3 we list the
parameters explored in the MCMC, together with the values determined for them in
each of the models we use. We also include the parameters of the Henriques et al. (2020)
version of L-GALAXIES for reference, although we caution that the meaning of some
parameters is slightly different in that version.

In the AD and T2lg models one of the most apparent changes is a reduction of αDF,
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which defines the time taken for satellite galaxies to merge. The merger time is given by

tdf = αDF
r2

satV200c

GMsat ln Λ
, (5.7)

and so it varies linearly with the free parameter αDF. The change in αDF occurs as by
changing the disruption mechanisms we have increased the number of satellite galaxies
being destroyed, so we have altered the balance between satellite galaxies merging or
being disrupted. The reduced merger time suggested by the MCMC means that mergers
occur faster, and specifically they occur before the disruption condition is met in more
instances. However, it is worth noting that the merger time has not dramatically changed
between the Hen15 and T2rm models. This implies that in the radial motion model it
takes longer for satellite galaxies to move to a radial separation where disruption occurs
than it does in our other models, confirming what we saw for the number of disruptions
in each model.

The next significant parameter shift, which is present for all of three of our modified
models, is a reduction in αburst. This parameter defines the strength of the bursts of
star formation that occur during galaxy mergers, and the change in this parameter can
also therefore be ascribed to the alteration in the disruption and mergers of satellites.
The resulting reduction in the stellar mass formed during bursts would lead to less star
formation over the entire history of massive galaxies. However, this is balanced by an
increase in the in-situ star formation from the higher value of αSF, which defines the rate
of star formation from cold gas.

The other parameters used in the MCMC do not show trends which are consistent
between our model versions. The black hole feedback parameters (second section of
Table 5.3) are in most cases close to their values in Henriques et al. (2015). The supernova
feedback parameters (third section of Table 5.3) show some shifts for each of the models,
with the values changing most clearly for the AD model. Shifts in the supernova feedback
parameters are expected, as earlier studies with L-GALAXIES showed they affect satellite
galaxies (van Daalen et al., 2016; Henriques et al., 2015), but the inconsistent nature of the
shifts and the complexity of the feedback mechanisms makes it hard to provide detailed
interpretations of these parameters.

5.5.3 Stellar mass function

The first prediction to consider from L-GALAXIES is the stellar mass function, which
has changed due to the dependence of the physical models for environmental effects
on satellite galaxy positions. We show the stellar mass density, the stellar mass function
multiplied by mass, for the L-GALAXIES runs in Fig. 5.6. In the left panel we show each of
the models when run with the Henriques et al. (2015) parameters, while in the right panel
we show them using the recalibrated parameters. We choose to plot the mass density
function rather than the stellar mass function here to highlight differences around the
peak.

As we found in Chapter 2, the Henriques et al. (2015) version of L-GALAXIES
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Table 5.3: The parameters explored in the MCMC for L-GALAXIES. The columns give
the values from Henriques et al. (2015) and from Henriques et al. (2020), and the best fits
determined by the MCMC for each of our modified versions. The parameters in the table
are grouped by the processes they contribute to. The top section gives the star formation
parameters, the second section the black hole feedback parameters, the third section the
supernova feedback parameters, and the final section the parameters associated with
satellite galaxies. We mark in bold the parameters from our models that have shifted by
more than a factor of 2 from their value in Henriques et al. (2015).

Parameter Hen15 Hen20 recal_AD recal_T2lg recal_T2rm
αSF 0.025 0.060 0.072 0.063 0.057
Mcrit 0.24 0.14 0.58 0.35 0.48
αburst 0.60 0.50 0.096 0.15 0.23
βburst 1.9 0.38 1.5 1.8 1.7

kAGN[M�yr−1] 0.0053 0.0025 0.0096 0.011 0.0043
fBH 0.041 0.066 0.022 0.036 0.041

VBH[km s−1] 750 700 1100 1100 1200

εreheat 2.6 5.6 1.2 2.1 1.3
Vreheat[km s−1] 480 110 2200 640 680

βreheat 0.72 2.9 0.39 0.29 0.73
ηeject 0.62 5.5 0.38 1.1 0.79

Veject[km s−1] 100 220 190 110 65
βeject 0.8 2.0 3.8 1.5 0.3

γreinc[yr−1] 3.0× 1010 1.2× 1010 2.9× 1010 2.6× 1010 3.6× 1010

Zyield 0.046 0.030 0.023 0.018 0.024

Mrp[1010M�] 1.2× 104 5.1× 104 5.9× 104 1.7× 104 9.1× 103

αDF 2.5 1.8 0.29 0.43 2.3
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Figure 5.5: Stellar mass density function of the modified versions of L-GALAXIES,
compared to GAMA results from Baldry et al. (2012) and Driver et al. (2022b). The left
panel shows the outcome of the models using the parameters of Henriques et al. (2015),
while in the right panel we show the recalibrated versions.
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reproduces the SMF with reasonable accuracy compared to GAMA, although with a
slight underestimation at massesM? ≈ 1010.7h−2M�.

Modifying the disruption mechanism has a significant effect on the stellar mass
function before the recalibration is applied (AD model). The disruption primarily occurs
for galaxies with low masses, and it might therefore be assumed the main effect of
increased disruption would be to reduce the SMF at low masses. However, while the
number of low-mass satellites does change a small amount, differences are instead most
apparent atM? & 1010.5h−2M�. This increase in the masses of the most massive galaxies
occurs because increased disruption means low mass satellite galaxies no longer merge
with their central. This reduction in the number of mergers leads to less gas being
accreted by the super-massive black hole in the core of the central galaxy, reducing the
quenching effect of AGN feedback, and allowing the central galaxy to keep forming
stars, increasing the stellar mass.

Looking at the recalibrated version (recal_AD model) it can be seen that the MCMC
procedure is able to account for this change in the mass function and almost reproduce
the results of the standard Hen15 model. Considering only this low-redshift stellar
mass function then the changes due to the MCMC are perhaps not advantageous, as
without calibration the AD model matches the peak of the stellar mass function better,
although the recalibration does bring the number of galaxies with M? > 1011h−2M�

into better agreement with GAMA. However, the recalibration is not only making use of
low redshift stellar masses. The necessity of the changes is therefore likely to suggest an
incompatibility whereby the model cannot accurately reproduce both the SMF and the
galaxy red fractions simultaneously.

Having established the effect of the disruption mechanism, we can now consider
the effect of our models for satellite positions. Firstly, the log-normal model
(AD+T1pl+T2lg), which without calibration leads to a similar stellar mass function to
that of the AD disruption model. This implies that over the lifetime of a satellite the
probability of being disrupted remains about the same as the original model using
most bound particles. Secondly, the radial motion model (AD+T1pl+T2rm), which
dramatically reduces the number of high-mass galaxies compared to the AD model. This
is due to a substantially reduced number of disruptions, probably a result of satellites
remaining further from their group centre and never experiencing the full effect of the
tidal forces.

While the two new models for Type 2 positions predict very different stellar mass
functions before calibration, when the MCMC has been performed they give similar
predictions. As we saw for the recal_AD model, the MCMC tends to bring the stellar
mass function back towards the Hen15 prediction, and so all the recalibrated models
give underestimates compared to the GAMA stellar mass function. Despite the resulting
differences with GAMA, it is reassuring that the stellar mass function of the Hen15 model
can be reproduced from our adapted version of L-GALAXIES.
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Figure 5.6: Radial distributions of satellite galaxies in the modified versions of
L-GALAXIES using the parameters of Henriques et al. (2015), compared to the GAMA
results of RLT22. The upper panels show the average radial profiles of the groups, while
the lower panels show the ratio of the each of the profiles in the upper panels to that of
the Hen15 run.

5.5.4 Satellite radial profiles

We can now directly consider the distributions of satellite galaxies in the groups by
comparison to the GAMA profiles of RLT22. To do this we first need to apply the RLT22
selection function to choose a sample of groups and galaxies that is comparable to the
GAMA survey. In Fig. 5.2 we showed that the conditional luminosity functions for
L-GALAXIES satellites are closer to the GAMA results than for SHARK. This means we do
not need to adjust the group selection limit from the RLT22 method, and so select only
groups with a number of observed galaxies Ngals ≥ 5 for L-GALAXIES.

The radial profiles of these GAMA-matched L-GALAXIES samples are shown for the
models using the parameters of Henriques et al. (2015) in Fig. 5.6 and for the recalibrated
versions in Fig. 5.7. Firstly we note that for all models we find the same problem as
RLT22 on scales r⊥ & 0.5h−1 Mpc, that the group profiles determined from GAMA are
much lower than those of the simulations. However, as shown in RLT22, this is likely
to be due to differences in the group finding method, and does not represent a problem
with the L-GALAXIES results. On these scales the different L-GALAXIES runs display a
similar profile, although the radial movement model generally predicts a slightly reduced
number of satellites.

The differences between the models become most apparent on scales
r⊥ < 0.1h−1 Mpc. Prior to recalibration, at the smallest scales the Hen15 and
AD models display a much greater density of satellites than GAMA. This problem also
occurred in the GAMA mock catalogues used in RLT22, and was used there to add
justification to the need for new models of satellite positions. Following the recalibration,
the AD model agrees better with GAMA on the smallest scales, but at the cost of a
reduced amplitude on scales r⊥ ≈ 0.05h−1 Mpc which results in under-prediction
compared to GAMA.
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Figure 5.7: Same as Fig. 5.6 but for the recalibrated versions of L-GALAXIES.

In contrast, both of our models for Type 2s show flattening on small scales.
Additionally, a sharper turn increases the amplitude compared to the AD model at
r⊥ ≈ 0.05h−1 Mpc. The recalibration procedure has a relatively minimal effect on
the profile predictions from both of the models for Type 2s, leading only to a slight
amplitude reduction for the log-normal model.

The log-normal model displays a good match to GAMA, being generally consistent
within uncertainties for r⊥ < 0.03h−1 Mpc, the same scales where the original (most-
bound particle) model used in the Hen15 version becomes discrepant. This is to be
expected, as the log-normal distribution matches the results of TNG by construction. On
larger scales the results tend towards those of the Hen15 model.

The more interesting results here are those from the radial motion model, which we
were unable to test fully in RLT22. This displays a good match to GAMA for the two
lower mass bins, with a similar level of accuracy to the log-normal model. However,
it is clear that the differences between this model and GAMA increase as group mass
increases. In the highest mass bin, the predicted profile from this model exceeds GAMA,
and lies closer to that of the original Hen15 model results. Despite this, the results here
are encouraging, as the model is a significant improvement on the Hen15 model at low
masses.

5.5.5 Galaxy clustering

Finally, we compare the clustering of the galaxies in each of our L-GALAXIES runs, which
is shown in Fig. 5.8. We only show the clustering results for the final recalibrated models
as these represent the optimum scenarios, and the clustering predictions do not change
significantly when recalibrating the models. When considering the samples selected by
density to match GAMA, the same changes in the limiting magnitude occur as we saw
in SHARK. In the brightest sample the magnitude limit is about the same as GAMA,
whereas the faintest sample has Mr − 5 log h < −17.59 for the Hen15 model compared to
Mr − 5 log h < −17 for GAMA. We note that this may reflect the limited resolution of the
Millennium simulation, and perhaps indicates that these samples are less reliable from
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Figure 5.8: Clustering of galaxies in the modified versions of L-GALAXIES, compared
to the GAMA samples in Table 5.1. The upper panels show the two-point correlation
function for samples with different density cuts, and the lower panels show the ratio of
these to the results of the Hen15 run.

L-GALAXIES.
The comparison in the left panel of the Hen15 run and GAMA selected with

Mr − 5 log h < −20 is identical to the results shown in Fig. A2 of Riggs et al. (2021),
and shows that L-GALAXIES predicts a lower clustering amplitude for volume-limited
samples than that observed in GAMA. This trend of reduced clustering amplitude for
L-GALAXIES continues into the bins of greater density, but the agreement between
L-GALAXIES and GAMA improves in the higher density samples.

Similar results are found using the modified disruption, although the clustering
amplitude decreases for r⊥ . 0.1h−1 Mpc. This results in a greater difference in
amplitude between L-GALAXIES and GAMA but brings the shape of wp into better
agreement.

The agreement between L-GALAXIES and GAMA improves for our models
with modified satellite locations. The log-normal model shows slightly enhanced
clustering at r⊥ ≈ 0.05h−1 Mpc compared to the Hen15 run, and on the smallest scales
r⊥ . 0.02h−1 Mpc it displays the slight flattening which is seen in GAMA, likely related
to the flattening seen in the profiles at the centre of groups. However, the clustering is
still under-predicted relative to GAMA in most bins. This persists to large scales in the
brighter samples, and so will not be due solely to the positioning of satellite galaxies in
groups.

The radial motion model shows the best agreement with GAMA. The same effects
are seen as in the log-normal model, of enhanced amplitude and small-scale flattening,
but the amplitude is changed more significantly. This brings the results into closer
agreement with GAMA across all scales, albeit with some underestimation remaining
for the brighter samples. Interestingly, in the two faintest samples this model agrees
almost perfectly with GAMA at all scales, demonstrating a major success for our model,
although we caution that these samples will be the least reliable.
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5.6 Discussion and conclusions

In this chapter we have explored the outcome of including the models for satellite
positions from Chapter 4 in the L-GALAXIES and SHARK SAMs. These models firstly
move the Type 1 satellites, which are contained in subhaloes of the DMO simulations,
radially inwards. Then we included two models for the Type 2 satellites, those without
DMO subhaloes. One of the models for Type 2s places them randomly in a log-normal
radial distribution while the other moves them radially inwards from their starting
location with an empirical model.

5.6.1 Summary

Using SHARK we saw that the new models do not significantly change the radial
distributions of satellites from the standard model which assumes Type 2s are distributed
by the NFW profile, but that the new models do improve the small-scale clustering
predictions.

We determined one main problem with the use of these models in SHARK, which
is that the number of visible galaxies per group is less than in GAMA. This means the
predictions for radial distributions are subject to a large uncertainty, and so while all
the models agree reasonably with the GAMA profile, it is difficult to reach definite
conclusions about their accuracy. The low numbers of galaxies in groups can be
interpreted in a number of ways, as it could be evidence that galaxies are too faint,
galaxies merge too quickly, or that the groups are fragmented in the halo catalogue. It is
likely that a combination of effects are involved, but the determination of which aspects
of the SAM lead to this is beyond the scope of our investigation.

Despite the low numbers of galaxies per group and the similarity of the radial
distributions between models, when comparing clustering results between the modified
versions of SHARK they all show slightly enhanced clustering for r⊥ . 0.1h−1 Mpc
compared to the original version. This brings the predictions from the modified
versions into better agreement with GAMA. Much of the improvement results from the
movement of Type 1 satellites, but the addition of either model for Type 2s does provide
further improvements to the agreement with GAMA.

Using L-GALAXIES gives us a more reliable demonstration of the improvements that
are possible with our models, and we have shown that the models for updated satellite
positions improve the predictions for clustering and group profiles.

In addition to the satellite galaxy models, we also made slight modifications to
the mechanism for satellite disruption in L-GALAXIES, causing disruption to occur at
the current position rather than an estimated peri-centre. We showed this increases
the number of satellites that are disrupted and consequently reduces the amplitude of
the satellite radial distribution and galaxy clustering on small scales. This modified
disruption is not able to improve the clustering predictions alone, which requires
the addition of our modified models for satellite positions. We have shown that the
log-normal model gives the most accurate group profiles but continues to underestimate
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the clustering, while the radial motion model produces the most accurate clustering
predictions but does not fit the halo mass dependence of the group profiles.

Finally, we showed that recalibration of L-GALAXIES is necessary as the galaxy
masses depend on the satellite galaxy physics. We performed this recalibration using
MCMC. The most significant parameter changes this led to were a reduction in the time
taken for galaxies to merge, and a decrease in the strength of the starbursts that occur
due to these mergers.

5.6.2 Future prospects

Overall, the results we have shown indicate that our models do provide an improvement
over the standard methods of including satellite galaxies in SAMs. However, these
models can be further explored with L-GALAXIES, and also with other SAMs. In
L-GALAXIES we have chosen to use the Henriques et al. (2015) version and follow the
MCMC procedure used in that work, but this can be followed up by including the
satellite galaxy models in the more recent Henriques et al. (2020) version and using
additional MCMC observational constraints. Further, these models should be combined
with the more detailed disruption methods of Murphy et al. (2022), and extra parameters
can be included in the MCMC analysis, such as the mass ratio used to distinguish
between major and minor mergers.

Finally, the models we have presented here can themselves be improved further by
accounting for the remaining discrepancies, such as the remaining halo mass dependence
to the group profile, and the calibration of them using other hydrodynamical simulations
as well as IllustrisTNG.



165

6
Conclusions

In this thesis we have explored the distributions of galaxies within and around groups
in the GAMA survey and in simulations of the Universe. We have shown that in
simulations the clustering of galaxies on small scales is mainly determined by the
modelling of satellite galaxies, and that there is significant uncertainty around this.
Using comparisons between observations and a variety of types of simulation we have
explored the satellites of groups and developed models for their distributions.

6.1 Summary of results

In Chapter 2 we compared the semi-analytic galaxy formation models L-GALAXIES and
SHARK to results from the GAMA survey. We concluded that while both SAMs show
a reasonable agreement with observations, there is room for improvement in both. In
particular, we found that the modelling of orphan satellites, which have lost their host
subhalo, is a major source of uncertainty for galaxy clustering results.

We first compared SAM predictions for the stellar mass function, luminosity
functions and conditional one-point functions to GAMA. As part of this we modified
L-GALAXIES to run on the SURFS simulations, and adapted the luminosity post-
processing methods of L-GALAXIES to run on SHARK outputs. Using the same halo
catalogue for the two SAMs showed that they are calibrated to produce different
numbers of massive galaxies due to the different halo catalogues and trees they are
built upon. Then by generating luminosities we showed that the VIPERFISH method of
generating luminosities for SHARK agrees well with the L-GALAXIES methods for most
wavelength bands.

Subsequently, we compared the clustering predictions of the SAMs to GAMA and
interpreted this using the radial distribution of orphan satellites in the SAMs. SHARK

generally predicts lower clustering amplitudes than L-GALAXIES, and this appears to
be driven by lower satellite fractions in SHARK. We identified that clustering on scales
r⊥ & 0.5h−1 Mpc is mainly determined by the halo catalogue and that smaller scales
depend upon the orphan satellite galaxies.

In Chapter 3 we explored the clustering of galaxy groups in the GAMA survey, using
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the group–galaxy cross-correlation function and the first use of the marked correlation
function with groups. We found that on large scales the bias increases with group mass,
and so larger groups are contained in extended structures. On small scales we observed
an increase in the amplitude of the relative bias, and a flattening on the smallest scales
due to the core of the groups.

The GAMA group clustering results were compared against the IllustrisTNG
simulations and L-GALAXIES model to explore the galaxy distributions in these.
IllustrisTNG accurately predicts the GAMA results for the group–galaxy clustering, but
overestimates the marked galaxy auto-correlation function, which appears to show the
scatter in the relation between central galaxy masses and group masses is too small.
In contrast, L-GALAXIES exhibits significant discrepancies when compared to GAMA.
This is particularly true of the group–galaxy cross-correlation, which has a much greater
dependence on galaxy masses in L-GALAXIES than in GAMA, which we suggest is
associated with the supernova feedback mechanisms, although the uncertainty in the
locations of orphan satellite galaxies also contributes to an excess of galaxies in the inner
regions of the groups.

In Chapter 4 we explored the difference in the distribution of satellite galaxies
between the full-physics IllustrisTNG simulations and their dark matter-only
equivalents. We showed that the radial distributions of satellite galaxies in TNG groups
agree well with GAMA near the centre of groups and that the differences between
them near the edges of groups are most likely due to the friends-of-friends groups from
GAMA missing galaxies. When normalised, the profiles from GAMA and TNG both
show no dependence on group mass.

Comparing matched satellites between TNG and TNG-Dark runs we showed that the
number density of matched TNG-Dark subhaloes is lower than of full-physics satellites
in the centre of haloes. We determined that this is associated with two related effects
that occur when baryonic physics is included. These are that satellites in the full-physics
simulations are closer to the halo centre and have longer survival times.

We showed that the TNG satellites can be split into the equivalent of Type 1 (DMO-
matched) and Type 2 (orphan) satellites in SAMs by utilising matches between TNG
galaxies and TNG-Dark subhaloes, and we created models for the positions of each of
these satellite types. Comparisons of the directly-matched Type 1 satellites showed that
they are displaced inwards in the full-physics simulation in a manner that can be fit with
a power law. For the Type 2 satellites, which have no unique TNG-Dark equivalent,
we took two approaches, showing that they can be distributed in a log-normal radial
number density profile or that their radial motion can be modelled as a function of time
and a uniform random variable.

We tested these new models for Type 1 and Type 2 satellites in Chapter 5 by applying
them to the L-GALAXIES and SHARK SAMs. We found that our models do improve
the predictions for galaxy clustering when compared to results from the GAMA survey.
While the two approaches to modelling Type 2 satellites give slightly different outcomes,
they are both sufficiently accurate that either offers an accurate model for the satellite
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distributions.
While exploring these models we saw that the predictions for the stellar mass

function from L-GALAXIES change when the satellite galaxies models are changed.
Therefore we recalibrated the SAM, which demonstrated that the stellar mass function
of the Henriques et al. (2015) model can be recovered by changing the parameters which
are related to galaxy mergers.

6.2 Outlook

Throughout this thesis we have been working with both observations and simulations
which suffer from significant limitations and we have needed to make many
assumptions. We end this thesis by discussing a few of these and the prospects for
improvements and follow-up studies over the coming years.

In all chapters we have been comparing observations and simulations, and these
comparisons could be improved by measuring the properties of the groups and galaxies
from the simulations using the same methods as in the observations. This applies
particularly to the identification of groups, where making mock lightcone catalogues and
applying the group finding method used in the observations would largely eliminate
any problems associated with differences in the definitions of haloes and groups. This
would make it clearer where there are true differences between the galaxy and group
populations of the observations and simulations, and where the divergences we see are
from differing methodologies.

The clearest follow-up to the work we did in Chapter 2 would be to incorporate
clustering predictions in the observations used to constrain SAM parameters. This would
ideally be done using MCMC, but this is challenging due to the volumes needed for
clustering calculations. One way around this is to use the halo model, as done by van
Daalen et al. (2016). However, our results perhaps offer an alternative approach—use
only the smallest scales. We demonstrated that the large scales depend primarily on the
halo catalogue, so will not be changed by altering the SAM parameters, and are therefore
unnecessary in MCMC. While computing only small scales would prevent the use of the
projected clustering wp(r⊥), the three-dimensional clustering ξ(r) could be constrained
against hydrodynamical simulations such as TNG.

In Chapter 3 one of the primary sources of uncertainty was the group catalogues
from GAMA. The main way this can be improved upon will be the use of updated group
finding methods. These include newer methods such as those of Tempel et al. (2018) or
Tinker (2021) and the addition of photometric data to enlarge the regions in which group
finding can be performed (e.g. Wang et al., 2020; Yang et al., 2021). This will also allow
the results to be expanded to include groups with fewer galaxies and lower masses.

When considering the differences between satellite galaxies in full-physics and dark
matter-only simulations in Chapter 4 we concentrated only on the masses and radial
positions of the galaxies. However, these are only some of the properties that may
change. Arguably the most important quantity we did not consider is velocity, which
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baryonic physics is known to affect in some contexts (e.g. Kuruvilla et al., 2020), and the
satellite galaxy velocities must be different from the DMO subhaloes as the positions are
different. Exploring these velocity differences would be an interesting follow-up study.

Additionally, throughout this thesis but most notably when making the models for
satellite galaxy positions, we performed all the calculations assuming that satellites are
uniformly distributed in spherical haloes. However, as discussed in Pawlowski (2021),
satellites have been shown to be associated with each other in phase-space, forming
planes and lopsided distributions. Such effects are not directly accounted for in SAMs
(although they may be implicitly present for Type 1s) and improvements upon our
models for satellite positions should consider these associations.

At a more general level, the next generation of galaxy surveys will be able to
significantly improve upon the observational results we have presented in this thesis.
In particular, the upcoming Wide Area VISTA Extragalactic Survey (WAVES, Driver
et al., 2019) in the 4-metre Multi-Object Spectroscopic Telescope (4MOST, de Jong et al.,
2019) programme will provide a galaxy sample covering ∼ 1, 200 degrees2 and reaching
a Z-band magnitude of ∼ 21.1, making it both wider and deeper than GAMA. It will
make repeated observations of high-density regions to give a high completeness, so it
will be well-suited to studies of galaxy groups. Consequently, the results we have found
in this thesis for galaxy clustering, group clustering and satellite radial distributions will
be made more reliable.

Other surveys will also provide improvements on our results. The Dark Energy
Spectroscopic Instrument (DESI, DESI Collaboration et al., 2016) will provide a sample
of similar depth to GAMA across around 14,000 degrees2. This will produce much
more reliable estimates of the clustering on large scales, although it will have a lower
completeness on small scales and so not be as suitable for group studies. A further large
sample of galaxies will be provided by the Legacy Survey of Space and Time (LSST,
Ivezić et al., 2019), which expects to be able to explore properties of galaxy groups across
time.

Many of the possible improvements from simulations will come from
hydrodynamical simulations continuing to grow in size and complexity over the
next few years as the computational resources available for them increases. This
growth can be in two different directions: greater volume or improved resolution. The
TNG300-1 and TNG50-1 simulations represent steps in each of those directions, but
future simulations should be able to make further progress. Both of these improvements
are beneficial. Larger boxes will gradually be able to replace HODs and SAMs when
making mock galaxy surveys, which should consequently improve the accuracy of
the mocks. Then improved resolution will probe the internal structure of the galaxies
in more detail, providing more detailed tests of the physics of galaxy formation. In
addition, it will be increasingly possible to test this physics and the subgrid models
used to approximate it by running many smaller simulations, and it will perhaps also be
possible to use these to explore alternative theories of cosmology—testing whether it is
possible to disentangle cosmological effects from baryonic physics on small scales.
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Despite the improvements in hydrodynamical simulations, when exploring very
large regions, such as when creating mock catalogues for galaxy surveys or investigating
large-scale cosmological effects, SAMs will still arguably provide the best method for
the foreseeable future. Alternatives are being introduced, such as the method of Lovell
et al. (2022) which uses machine learning to map galaxies between hydrodynamical and
dark matter-only simulations and predict the baryonic component of a dark matter halo.
However, SAMs provide a clearer method with which to test the galaxies that could be
produced in universes with modified cosmologies, as has been tried by Fontanot et al.
(2013), albeit leaving uncertainties around the baryonic physics and the tuning of the
models. Furthermore, SAMs still have a fundamental advantage in that they can be used
to explore the effects of new physical and empirical models very quickly, as we have
explored for satellite galaxies. The uncertainty surrounding much of the astrophysics
involved in galaxy formation and evolution means further models will be required, and
the need to test these models means SAMs will continue to be a useful tool to explore
physical processes in the Universe.

6.3 Final remarks

In this thesis we have explored galaxy clustering on small scales and connected that to
the study of galaxy groups. We have shown that this is still a challenging area both
to determine from observations and to reproduce with simulations. Whilst there are
still many problems and assumptions to resolve, this is a worthwhile field to continue
exploring and should provide new insights as larger observational and simulated data
products become available over the coming years.
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