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Abstract

This thesis contributes to the crypto asset and blockchain empirical finance
literature in three key areas: (i) market risk modelling, by developing simple volatility
models which exhibit equal forecasting ability in terms of crypto asset tail risk
measure and volatility forecasts, when compared against complex models; (ii) market
manipulation, by extending a methodology derived from securities fraud litigation
studies to identify blockchain transactions with a manipulative effect on crypto asset
prices; (iii) crowdfunding via token offerings, by identifying factors of fundraising
success using regression models, and exploring how these factors vary across time.
Each of the above contributions is developed in a separate chapter.

Firstly, the market risk modelling chapter provides extensive backtests of hourly
and daily Value-at-Risk and Expected Shortfall forecasts regarded as best practice
in the industry and used for regulatory approval. Results demonstrate that simpler
models in the EWMA class are just as accurate as GARCH models for VaR and ES
forecasting, and similarly when using average scores generated from proper univariate
and multivariate scoring rules.

Secondly, the market manipulation chapter examines large blockchain transactions
of the tether stablecoin and assesses whether they produce positive abnormal returns
for bitcoin prices. The methodology is adapted from single-firm event studies used
in securities fraud litigation, using regression factor models. The chapter’s findings
can be useful in determining materiality and estimating damages in legal cases of
crypto asset market manipulation.

Finally, the tokenomics of crowdfunding chapter examines the fundraising success
of token offerings for the 2017 – early 2022 period, constituting one of the most
comprehensive studies in this topic. We proxy fundraising success with the amount
of funding raised and also by minimum funding target exceedance. Success factors
are derived from the venture, token and offering characteristics, as well as additional
common factors such as the price level of ether and the launchpad platforms used. The
findings of this chapter provide insights as to the evolution of token offering success
factors, with the choice of launchpad platform emerging as a new and significant
factor and to some extent overshadowing the determinants previously documented
in the relevant literature.
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Chapter One

Introduction

On 3 January 2009, the Sigscript field of the very first Bitcoin transaction contained

the hexadecimal string 5468652054696d65732030332f4a616e2f3230303920436861

6e63656c6c6f72206f6e206272696e6b206f66207365636f6e64206261696c6f75742

0666f722062616e6b73, which in ASCII text translates to: ‘The Times 03/Jan/2009

Chancellor on brink of second bailout for banks’, a laconic critique by the creator(s)

of Bitcoin on the handling of the 2008 global financial crisis. Bitcoin is referred to

(Antonopoulos, 2017) as ‘a network of trust that could also provide the basis for

so much more than just currencies’. Since 2009, the technological innovations first

introduced by Bitcoin have inspired a wave of disruptive innovation that ‘gives every

citizen [...] the ability to innovate in terms of financial instruments, payment systems,

and banking’ (Antonopoulos, 2016).

The emergence of crypto assets began in 2008 with the need for ‘an electronic

payment system based on cryptographic proof instead of trust’, as highlighted by the

pseudonymous author(s) (Nakamoto, 2008) of the Bitcoin whitepaper. Crypto assets

have since proliferated at an extremely high rate, largely driven by the low entry

barrier due to the open-source nature of most crypto asset software projects, and are

by now considered as a distinct asset class (Burniske and Tatar, 2018). The earliest

record of the crypto asset information aggregation website Coinmarketcap in 2013

listed only 7 crypto assets; by comparison, at the time of writing, the ECB financial

stability review (Hermans et al., 2022) reports 16,000 crypto assets in existence,

Coinmarketcap lists upwards of 9,000, while a more conservative estimate of 3,200 is

provided by Cryptocompare, another aggregation website.

https://www.blockchain.com/btc/tx/4a5e1e4baab89f3a32518a88c31bc87f618f76673e2cc77ab2127b7afdeda33b
https://coinmarketcap.com/
www.cryptocompare.com
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Similarly, at the time of writing, crypto asset use cases extend well beyond

‘cryptocurrencies’ such as the value transfer system application introduced by Bit-

coin.1 A crypto asset taxonomy report from Cryptocompare (2018) makes an initial

distinction based on fungibility, i.e. by whether units of a crypto asset are mutually

interchangeable;2 focussing on fungible crypto assets, the taxonomy distinguishes

between payment, utility and asset-security crypto assets, extending a similar frame-

work introduced first by FINMA (2018), the Swiss financial market supervisory

authority. The assumed primary functionality of payment crypto assets, such as

bitcoin and litecoin, is to be an alternative electronic cash system, also potentially

serving as a store of value. Utility crypto assets provide digital access to an appli-

cation or service, such as ether, EOS and dot which are the native ‘tokens’ used

to access and utilize respectively the Ethereum, EOS and Polkadot decentralized

platforms. Asset-security crypto assets are analogous to equities, bonds or financial

derivatives in that they encompass a participation in real physical underlying assets,

companies, or earnings streams, and are usually subject to much stricter regulation,

contrary to payment and utility crypto assets.

The academic literature on crypto asset and blockchain finance is equally bur-

geoning, with more than 2,200 relevant articles published since 2013 in finance,

economics, econometrics, business, management and accounting journals, and many

more conference and working papers.

This doctoral thesis develops three distinct topics in the area of crypto asset and

blockchain empirical finance: (i) crypto asset market risk modelling; (ii) crypto asset

market manipulation; and (iii) crowdfunding via token offerings. The remainder of

this introductory chapter provides brief definitions and an introduction to blockchain,

crypto assets and crypto asset markets, a broad overview of the literature on crypto

1Varied terminology is used by practitioners and academics, such as the earlier term ‘cryptocur-
rency’, sometimes shortened to ‘crypto’, as well as the more general term ‘crypto asset’ which is
preferred throughout this thesis. Note also, as clarified by Burniske and Tatar (2018), that Bitcoin
– capital ‘B’, denotes the platform that carries upon it the programmable money known as bitcoin –
lowercase ‘b’.

2Note that non-fungible crypto assets which bear characteristics of uniqueness are not covered
in this thesis, but nonetheless present interesting use cases such as digital collectibles and art.
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asset and blockchain finance and finally discusses the contributions of this thesis to

the relevant literature.

Blockchain and Crypto Assets

The concept of a blockchain traces back to the Bitcoin whitepaper (Nakamoto, 2008)

which refers to a ‘chain of hash-based proof-of-work’. Blockchain is a distributed

ledger of timestamped transactions, where data are stored in blocks which contain

information on one or more transactions; it stores data in an immutable manner and

its contents are auditable and verifiable by some or all stakeholders in the network.

For instance, the Bitcoin blockchain is the ledger that includes the entire history of

bitcoin transactions and circumvents the double-spend problem, i.e. the risk that a

unit of bitcoin could be spent more than once due to its lack of a physical substance

that would render such an attempt impossible.

The discussion provided in this section focuses primarily on public blockchains

which are used by the overwhelming majority of crypto assets. However, before

expanding on public blockchains, it is important to also note the existence of private

or permissioned blockchains and distributed ledger technologies (DLT); these are

not covered in this thesis, but have nonetheless attracted significant attention in

the space of enterprise software solutions and also in financial applications such

as central bank digital currencies (CBDCs). This is partially driven by potential

drawbacks of public blockchain systems such as reduced privacy due to the public

nature of all transactions, and scalability issues due to the data storage and processing

requirements.

Private blockchains and DLTs address these issues (Platt, 2017) by ‘relaxing’

the assumptions on transparency, security and immutability, and imposing data

segregation rules – i.e. limiting transaction visibility into channels or sub-ledgers,

and also channel independence – i.e. only requiring consensus on the state of a

channel/sub-ledger. Prominent private blockchains and relevant applications include

https://www.riksbank.se/en-gb/payments--cash/e-krona/technical-solution-for-the-e-krona-pilot/
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Corda by the R3 enterprise consortium, Quorum by ConsenSys, Hyperledger by the

Linux Foundation and Azure by Microsoft.

The suggestion of a public blockchain structure by Nakamoto (2008) provides

a solution to the ‘byzantine generals’ problem, a common problem in computer

networks involving the transfer of sensitive information over an unreliable network.

The manner by which participants in such a network reach an agreement as to

the current state of the blockchain ledger is called a consensus algorithm. Several

approaches exist to this issue, such as the proof-of-work approach used by Bitcoin and

several other crypto assets, the proof-of-stake approach, and other hybrid approaches

that include delegated proof-of-stake (DPoS), proof-of-burn, proof-of-authority etc.

In proof-of-work consensus, the users – called miners, create blocks of newly-

executed transactions and then expend energy and computational processing power

in order to solve an asymmetric difficulty problem by trial-and-error (Antonopoulos,

2017).3 The first miner to create a new block of transactions is rewarded with

newly-created units of the crypto asset, while the efforts of all other miners are

wasted. The difficulty of the proof-of-work problem is set arbitrarily so that the

average solution time is 10 minutes, which renders any attempt to alter previous

blocks in the blockchain very hard computationally, if not impossible.

Proof-of-stake is a different solution to the byzantine generals problem in which

holders of the crypto asset are perceived as holding stakes in the network, and may

cast stake-weighted votes to validate and include blocks of new transactions in the

blockchain. Users – called validators, stake their crypto asset holdings as collateral,

to be forfeited in case of laziness – i.e. creating empty blocks with no transactions,

or dishonesty – i.e. including invalid or double-spend transactions. Contrary to

proof-of-work, proof-of-stake does not involve wasted effort and is perceived on

the whole to be less energy-intensive. Proof-of-stake is a more complex consensus

mechanism than proof-of-work, and is considered to be more secure and better for

3The asymmetry of the proof-of-work problem is that the mathematical/cryptographic problem
is computationally hard and time-consuming to solve, but the validity of any potential solution can
be checked quickly and easily.

https://www.corda.net/
https://consensys.net/quorum/
https://www.hyperledger.org/
https://azure.microsoft.com/en-us/solutions/blockchain/#solution-architectures
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/


5

implementing new scaling solutions. Ethereum began with a proof-of-work consensus

in 2014 and has been developing a proof-of-stake implementation for several years,

but has not fully transitioned to it at the time of writing.

A crypto asset is a digital asset that uses web-based distributed public ledgers to

establish proof-of-ownership. Crypto assets may be deployed on their own native

public blockchain, or they may ‘piggy-back’ on other already-established blockchains

as ‘tokens’.4 Regardless of the native-blockchain vs. token distinction, it is also

important to note that the total supply of any crypto asset and also the method(s)

of new supply issuance can be set arbitrarily by the crypto asset developers, in stark

contrast to fiat currencies and more akin e.g. to equities.

For instance, new supply of bitcoin (BTC) is provided as a reward for mining; it

started at 50 BTC per block in 2009 and is set to halve approximately every four

years, causing the total supply of bitcoin to be capped at approximately 21 million

BTC. By comparison, at the launch of Ethereum in 2014, a total of 72 million ether

(ETH) – the Ethereum platform’s native crypto asset, were ‘pre-mined’ and sold to

prospective investors, while newly-created units of ether – approximately 2 ETH per

new block created, are awarded to blockchain validators. Moreover, and contrary to

bitcoin, there is theoretically no cap on the total amount of ether units that can be

created. However, in 2021 a potentially deflationary element was added to ether’s

supply schedule via ‘burning’ – i.e. a destruction mechanism, of ether transaction

fees to discourage Ethereum miners from raising the minimum Ethereum transaction

fee for users.

The specialised scope of blockchain in the context of Bitcoin, as a ledger of value

transfer transactions, is generalised by the Ethereum platform into a cryptographically

secure, transaction-based state machine. Ethereum was launched in 2014 and is

described in the corresponding yellow paper (Wood, 2014) as a project which ‘attempts

to build the generalised technology on which all transaction-based state machine

4Native-blockchain crypto assets are often referred to as ‘coins’ – an extension of the ‘cryptocur-
rency’ terminology; however, in this thesis we avoid the term ‘coins’, as it alludes primarily to the
payment crypto asset use case, while native-blockchain crypto assets may also belong to the utility
or asset-security type.



6

concepts may be built’. In other words, Ethereum and similar platforms can execute

computer code in an immutable and publicly verifiable manner, in the form of smart

contracts which were first introduced theoretically by Szabo (1997); smart contracts

can be deployed and executed by every participant in the network on the Ethereum

virtual machine (EVM), while all smart contract and ether transactions are embedded

in the Ethereum blockchain in return for fees payable to blockchain validators in the

form of ether.

Smart contracts can include crypto asset storage in escrow, payments in very

complex conditional or repetitive structures and even the creation of ‘tokens’, i.e.

crypto assets deployed on a non-native blockchain, potentially resulting in financial

contracts or even in decentralized corporate and organizational structures. The

generalised nature of smart contract platforms such as Ethereum have given rise to

numerous crypto asset and blockchain applications, which include – but are by no

means limited to: physical asset and commodity tokenization, content distribution

platforms, data exchange platforms, data processing services, decentralized crypto

asset exchanges, decentralized domain name systems, decentralized marketplaces,

decentralized social media platforms, decentralized applications, digital advertising,

digital asset management, platforms of digital content production, distribution

and management, distributed computing, distributed crowdfunding, distributed

data storage, distributed virtual private networks, gaming and gambling platforms,

identity verification applications, in-game currency applications, instant messaging,

internet of things applications, loyalty and reward points marketplaces, medical

record storage networks, peer-reviewed knowledge platforms, prediction markets,

price-pegged crypto assets such as stablecoins, and privacy-based payments systems.

Of the above applications, it is important to expand on stablecoins and decentral-

ized crowdfunding via token offerings, which both play an important role in crypto

asset markets and are the core focus of chapters 3 and 4.

Stablecoins constitute a subset of crypto assets whose price is stabilised via

price-pegs or other means. The main types of stablecoins are asset-backed and
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algorithmic. In asset-backed stablecoins, one or more traditional assets – such as

US dollar deposits, or crypto assets are held in reserve to support the stablecoin’s

price-peg. Asset-backed stablecoins may be over-collateralized or collateralized on a

1-to-1 basis; for instance, DAI holds a dynamic reserve of crypto assets in excess of

its total supply to act as a hedge against market volatility; on the contrary, tether

(USDT) was supposed to hold USD deposits on a 1-to-1 basis, but has recently

disclosed that its collateral also consists of commercial paper to a significant extent.

Algorithmic stablecoins are uncollateralized and instead employ a set of rules that

attempt to maintain a dynamic supply-demand equilibrium. For instance, the Terra

USD (UST) stablecoin has a built-in arbitrage mechanism with its ‘sister’ crypto

asset Luna – the native crypto asset of the Terra blockchain; in short, the creation

of new UST supply requires the ‘burning’ – i.e. destruction of Luna supply.

Stablecoins play a vital role in the crypto asset ecosystem by providing a liquidity

solution in the form of a ‘dollar proxy’ for crypto asset exchanges, many of which

are unregulated and don’t accept fiat currency deposits. For instance since 2019,

over 70% of bitcoin’s spot exchange daily traded volume is against a stablecoin –

tether (USDT), as reported by Cryptocompare. The systemic role of stablecoins in

the crypto asset market can also be seen in the total stablecoin supply, which has

increased significantly in recent years, as shown in Figure 1.1.

Another recent and striking example of stablecoins’ vital role in the crypto asset

ecosystem is the Terra USD/Luna meltdown in May 2022 which caused a crash in

the entire crypto asset market. A possible cause of the meltdown is assumed to be a

large volume of Terra USD (UST) withdrawals on the Terra ecosystem followed by an

immediate sell-off on crypto asset exchanges; this created downward price pressure

for the UST ‘stablecoin’. Traders attempted to exploit the UST/Luna arbitrage

opportunity, which would have restored the UST dollar peg, but the mechanism

collapsed due to a $100 million daily cap on UST burning for Luna. As UST could

not maintain its dollar peg, a massive sell-off ensued and the ‘dollar-pegged’ UST

even traded for a few cents. The Terra/Luna developers subsequently attempted to

https://cryptocompare.com/coins/btc/analysis/USD
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Figure 1.1: Stablecoin market capitalization

Jan 2017 Nov 2017 Sep 2018 Jul 2019 May 2020 Mar 2021 Jan 2022
10

50

100

150

190

M
ar
ke
t C

ap
 ($

 b
illi

on
) USDT

USDC
BUSD
UST
DAI
Other

Jan 2017 Nov 2017 Sep 2018 Jul 2019 May 2020 Mar 2021 Jan 2022
0%

20%

40%

60%

80%

100%

M
ar

ke
t C

ap
 (%

)

USDT
USDC
BUSD
UST
DAI
Other

Distribution of stablecoin market capitalization across largest stablecoins in billion USD (upper
panel) and relative to total capitalization (lower panel) between January 2017 – June 2022 based on
monthly frequency data obtained from Coinmarketcap. The stablecoins included are Tether (USDT),
USD Coin (USDC), Binance USD (BUSD), Terra (UST), Dai (DAI), and the Other category further
includes TrueUSD (TUSD), Pax Dollar (USDP), Neutrino USD (USDN), Decentralized USD
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restore the UST dollar peg via a $1 billion UST ‘burning’ to decrease the token’s

supply, but the attempt was unsuccessful: at the time of writing, UST – rebranded

as Terra Classic USD, trades at approximately $0.03.

Token offerings, i.e. crowdfunding via crypto assets have attracted significant

investor interest in 2017 – 2018 and also more recently in 2021 – 2022.5 A CoinDesk

article (Feign, 2021) defines token offerings as a method of fundraising for early-

stage crypto asset projects, where a start-up venture mints a certain quantity of

its own crypto asset or token and offers it to prospective investors in exchange for

other established crypto assets – such as ether, and sometimes also fiat currencies.

Cryptorank – a relevant information aggregation website, lists 3,500 token offerings

completed since 2015, while the token offerings research database (Momtaz, 2021)

5Various other terminology is used by academics and practitioners to refer to variants of
crowdfunding via crypto assets, the most popular of which are initial coin offerings (ICOs), initial
exchange offerings (IEOs), initial decentralized exchange offerings (IDOs) etc. Additionally, as
both native-blockchain crypto assets and tokens are used in crypto asset crowdfunding, the most
general term would be ‘initial crypto asset offering’, but the ICAO acronym is already used by
the International Civil Aviation Organization. This thesis therefore follows the more general term
‘token offerings’.

https://cryptorank.io/ico
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lists 6,400 such ventures. The total funding raised by token offerings since 2015 is

approximately $13 billion in USD-equivalent valuation, based on Cryptorank and

other sources. By comparison, a total of $286 billion was raised via IPOs in 2021

alone, and similarly the valuation of the global crowdfunding market – excluding

token offerings, in 2020 was $12 billion.

Crypto Asset Markets

The ECB financial stability review of May 2022 (Hermans et al., 2022) indicates

increasing investor demand for crypto assets, attributed inter alia to their frequent use

as an instrument of speculation, their unique characteristics such as programmability

and also potential benefits from portfolio diversification. Crypto asset markets

currently represent less than 1% of the global financial system in size, but are

nonetheless similar in size to the securitised sub-prime mortgage market that triggered

the global financial crisis of 2007-08.

Since 2013, the estimated capitalization of the entire crypto asset market as

reported in Coinmarketcap has increased from $1 billion in 2013, to almost $3 trillion

in late 2021 and again dropped to $1 trillion at the time of writing in mid-2022, as

also shown in Figure 1.2. By comparison, the current total market capitalization of all

constituent stocks in the Wilshire 5000 broad equity market index is approximately

$40 trillion and similarly the total market capitalization of all companies listed

globally has increased from $65 trillion in 2013 to $90 trillion in 2022. Moreover, at

the time of writing, only approximately 25 crypto assets have a market capitalization

comparable with that of a large-cap equity, and the top 10 large-cap crypto assets

currently account for more than 80% of the total crypto asset market capitalization.

Crypto assets are considered highly risky and speculative investments (Hermans

et al., 2022), with market risk and operational risk identified as the key risk types.

Market risk – which is the focus of Chapter 2, is a result of the extremely high

volatility exhibited by crypto asset prices – as shown for the dollar price of bitcoin

and ether in Figures 1.3 and 1.4. Operational risks include market manipulation

https://nasdaq.com/articles/a-record-year-for-ipos-in-2021
https://statista.com/statistics/1078273/global-crowdfunding-market-size
https://coinmarketcap.com/charts/
https://ycharts.com/indicators/wilshire_5000_index_market_cap
https://data.worldbank.org/indicator/CM.MKT.LCAP.CD?end=2020&start=2012
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Figure 1.2: Crypto asset market capitalization
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Total crypto asset market capitalization in billion USD (regular axis in upper panel, logarithmic
axis in lower panel) between July 2010 – July 2022 based on weekly frequency data obtained from
Coinmarketcap and Bitinfocharts.

– which is the focus in Chapter 3, and also misleading information, cyber attacks,

fraud and scams. In particular, several financial regulators such as the U.S. Securities

and Exchanges Commission (SEC) have issued warnings to potential investors on

the risks of participating in token offerings – of which the fundraising success is

examined in Chapter 4.

An industry report by Daye et al. (2019) identifies crypto asset exchanges as

one of the key participants in crypto asset markets, while a similar blog post by

Carter (2018) focusses on centralised spot exchanges (CEXs) and distinguishes

between ‘fiat on-ramps’ and ‘altcoin casinos’: fiat on-ramps – such as Coinbase

and Kraken, accept fiat currencies and as a result tend to be regulated and comply

with know-your-customer and anti-money-laundering (KYC/AML) regulations; in

contrast, ‘altcoin casinos’ – such as Binance, don’t accept fiat currencies, primarily

offer crypto-to-crypto and crypto-to-stablecoin traded pairs, and tend to be lightly

regulated at best.6

6Additionally, Daye et al. (2019) mention decentralized exchanges (DEXs) and also exchanges
offering crypto asset derivative products, which are not covered in this thesis.

https://bitinfocharts.com/
https://bit.ly/3PMkzOj
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Figure 1.3: Bitcoin (BTC/USD) price
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Figure 1.4: Ether (ETH/USD) price
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Figure 1.5: Total value locked in DeFi platforms
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2018 – June 2022 based on monthly frequency data obtained from DeFi Llama.

Another important participant in crypto asset markets are the so-called ‘DeFi’

(decentralized finance) platforms and applications that emerged in 2020. The DeFi

space comprises a variety of smart contract-based financial applications. Common

applications include: decentralized exchanges (DEXs) – such as UniSwap, Bancor and

Balancer; peer-to-peer lending platforms such as Aave and Compound; prediction

markets – such as Augur and Gnosis; and stablecoin issuers – such as Maker (Hertig,

2020). This multitude of financial applications has caused yet another wave of

disruption in the financial intermediation industry and allowed end users and retail

investors to participate in complex financial transactions that include: yield farming

– i.e. lending rate arbitrage, liquidity mining – i.e. the contribution to DEX liquidity

pools in exchange for fees, and ‘money legos’– i.e. the seamless combination of

multiple DeFi applications on the same ecosystem to carry out complex investment

strategies. DeFi platforms and applications have attracted significant investor interest,

as shown in Figure 1.5 which exhibits the evolution of the ‘total value locked’ (TVL)

metric – i.e. the dollar-equivalent of all funding onboarded and invested in DeFi

applications.

Having examined the key participants in crypto asset markets, we end this

overview with a discussion of the latest crypto asset trend – non-fungible tokens

(NFTs). While NFTs are in existence since early 2018 with the introduction of

Ethereum ERC-721 non-fungible token standard, the relatively recent development

of DeFi-related NFT marketplaces together with the emergence of several metaverse-

related gaming applications has caused a surge in interest. An NFT represents a full

https://defillama.com/
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or fractional ownership deed for digital assets that include – but are not limited to –

artwork, audio tracks, photographs and videos, profile pictures, collectibles such as

digital trading cards, web domain names, and e-sports, video game and virtual reality

items. Additionally, NFTs relate to and extend the concept of the metaverse – i.e. ‘a

future, more immersive version of the internet, which is envisioned to be experienced

via avatars in shared 3D spaces’. For instance, ‘The Sandbox’ is an Ethereum-based

video game allowing users to own pieces of NFT-based digital land and develop and

monetize custom locations and games within the Sandbox environment.

The Crypto Asset and Blockchain Finance Literature

As mentioned previously, the crypto asset and blockchain finance literature is bur-

geoning, with a total of 2,270 relevant articles published in a total of 534 academic

journals.7 Of this total, approximately 25% are published in 8 journals as follows:

11% in Finance Research Letters and between 2%–3% each in Economics Letters,

Research in International Business and Finance, International Review of Financial

Analysis, Applied Economics Letters, Financial Innovation, North American Journal

of Economics and Finance, and Technological Forecasting and Social Change. Addi-

tionally, as shown in Table 1.1, the rate of relevant article publication is increasing

significantly, with more than 100 new articles published every year since 2018 and

similarly more than 500 since 2020.

The above articles are classified into one or more of the following literature

streams: financial theory, financial applications, statistical models, behavioral fi-

nance, crowdfunding, other financial topics, economics topics, financial misconduct,

7Note that considering English language documents yields an initial sample of 2,453 articles,
reduced to 2,270 after removing less relevant articles. The following Scopus search query replicates
these results: TITLE-ABS-KEY ( ( "bitcoin" OR "Bitcoin" OR "ethereum" OR "cryptocurrency"
OR "cryptocurrencies" OR "cryptoasset" OR "crypto asset" OR "digital currency" OR "crypto
currency" ) ) AND ( LIMIT-TO ( DOCTYPE,"ar" ) ) AND ( LIMIT-TO ( SUBJAREA,"ECON"
) OR LIMIT-TO ( SUBJAREA,"BUSI" ) ) AND ( LIMIT-TO ( PUBYEAR,2019) OR LIMIT-
TO ( PUBYEAR,2018) OR LIMIT-TO ( PUBYEAR,2017) OR LIMIT-TO ( PUBYEAR,2016)
OR LIMIT-TO ( PUBYEAR,2015) OR LIMIT-TO ( PUBYEAR,2014) OR LIMIT-TO ( PUB-
YEAR,2013) OR LIMIT-TO ( PUBYEAR,2020) OR LIMIT-TO ( PUBYEAR,2021) OR LIMIT-TO
( PUBYEAR,2022) )

https://decrypt.co/resources/what-is-the-sandbox-the-ethereum-nft-metaverse-game
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Table 1.1: Overview of the crypto asset and blockchain finance academic literature

Year Count % Cumulative %

2013 1 0.04% 0.04%
2014 3 0.1% 0.2%
2015 24 1.1% 1%
2016 30 1.3% 3%
2017 44 2% 4%
2018 146 6% 11%
2019 374 16% 27%
2020 514 23% 50%
2021 629 28% 78%
2022 505 22% 100%

Distribution of articles by year in absolute, relative and cumulative relative count, based on a total
of 2,270 articles published between 2013 – August 2022 on crypto asset and blockchain finance
topics in finance, economics, econometrics, business, management and accounting journals.

regulatory topics, technology topics, and also other topics. The literature streams

are structured based on a total of 168 topics, as follows.

Financial theory includes topics on asset pricing such as factor models to explain

and/or predict crypto asset expected returns, price efficiency, market microstructure

and price discovery, crypto asset option pricing and risk premia estimation.8 Financial

applications include topics such as portfolio diversification with crypto assets, hedging,

crypto asset arbitrage, and risk management.9

Statistical models include topics such as the examination of crypto asset returns

stylized facts and distribution analysis, and volatility modelling and forecasting.10

Behavioral finance includes topics such as speculative investment behaviour, investor

8Other relevant topics in the stream of financial theory include: crypto asset valuation via
prospect theory, network value estimation based on Metcalfe’s law and studies on causality.

9Other relevant topics in the stream of financial applications include: safe-haven and store-of-
value properties of crypto assets, correlation with gold, market risk and forecasting of value-at-risk
and expected shortfall, credit risk, volatility contagion in crypto markets, event studies, crypto
asset fund management, crypto market crashes, crypto asset market liquidity, trading strategy price
performance, and crypto asset interest rates and convenience yield.

10Other relevant topics in the stream of statistical models include: extreme value theory
and heavy-tailed distribution applications, tail dependence models, extreme returns clustering,
intra-day price distribution characteristics, returns jumps and mean-reversion, returns second
moment characteristics, stochastic volatility models, volatility connectedness and spillover models,
cointegration and co-movement models, econophysics applications, endogeneity studies, price bubble
detection, and time series analysis models such as impulse response functions, the non-linear
autoregressive distributed lag model, quantile autoregression models and the Taylor effect.
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sentiment and attention and investor herding and herd effects.11 Crowdfunding

includes primarily topics on token offerings, initial coin and exchange offerings, and

blockchain project financing by venture capital firms. Financial misconduct includes

topics on market manipulation and criminal activities.12 Other financial topics

include stablecoins, non-fungible crypto asset tokens (NFTs), and decentralized

finance (DeFi).13

The economics stream includes topics such as macroeconomic and monetary policy

and economic integration of crypto assets.14 Regulatory topics include the effect of

regulatory approaches and policy uncertainty on crypto assets, insurance, tax and

accounting. Technology topics include crypto asset transaction costs, confirmation

time and double spending vulnerabilities, and transaction privacy and anonymity.15

Finally, the ‘other topics’ stream includes topics such as digital art, digital forensics,

health and Covid-19 related studies, and energy and supply chain applications.16

Table 1.2 exhibits the distribution of published articles across the 11 literature

streams discussed above. Financial applications, statistical models and technology

topics are the most highly-populated streams, with more than 600 articles included in

each case. Note that the same article may belong to multiple streams, which is the case

for approximately 33% of the articles examined. The multitude of topics and literature

11Other relevant topics in the stream of behavioral finance include: investor ambiguity aversion,
investor behavioral intention, characteristics and financial literacy of bitcoin users, and social media
and social networks monitoring, and impact of behavioral factors on crypto asset returns.

12Crypto asset-related criminal activities include: fraud and corruption, money laundering,
darknet and shadow economy activity, ransomware attacks and terrorist and hate group financing
via crypto assets

13The ‘other financial topics’ stream also includes: lending and microfinance, the effect of crypto
assets on banking and financial intermediation, central bank digital currencies (CBDCs), crypto
asset-based fan tokens, blockchain applications on Islamic and Shariah-compliant finance

14Other topics included in the economics stream include cash substitution by crypto assets,
currency competition, central banking and inflation.

15Other technology topics are: blockchain and full node analysis, blockchain splits (forks),
blockchain governance and data security, consensus algorithm performance and design, hash
function performance, distributed ledger system efficiency, crypto asset mining network analysis,
smart contract applications, transaction identification via user graph analysis, crypto asset adoption
and electronic cash acceptance, and crypto asset implementations as a payment system and medium
of exchange.

16The ‘other topics’ stream also includes augmented and virtual reality and internet of things
applications, analysis of crypto asset usage by social collectives, bibliometric and topic modelling,
case studies and narrative analysis, e-government and e-voting, education and job market studies,
tourism and land registration applications.
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Table 1.2: Literature streams in crypto asset and blockchain finance

Literature Stream Count %

Crowdfunding 119 5%
Economics topics 151 7%

Financial misconduct 154 7%
Other financial topics 242 11%

Behavioral finance 348 15%
Regulatory topics 380 17%

Other topics 487 21%
Financial theory 494 22%

Technology topics 633 28%
Statistical models 864 38%

Financial applications 939 41%
Number of articles in absolute and relative count classified into streams in the crypto asset and
blockchain finance literature, based on a total of 2,270 articles published between 2013 – August
2022 in finance, economics, econometrics, business, management and accounting journals; note that
articles may belong to multiple literature streams.

streams identified as part of this very broad survey indicates clearly the wide variety of

research topics covered by relevant academic articles, even when confining the survey

to articles published in finance, economics, econometrics, business, management

and accounting journals. For instance, extending the parameters of this survey to

further include conference papers and also subject areas such as computer science,

engineering and mathematics yields upwards of 12,000 articles, indicative of a cutting-

edge multidisciplinary research area with fewer than 15 years in existence.

Thesis Contributions and Structure

This doctoral thesis contributes to the crypto asset and blockchain empirical finance

literature in three key areas: (i) market risk modelling, developing simple volatility

models which exhibit equal forecasting ability in terms of crypto asset tail risk

measure and volatility forecasts, when compared against complex models; (ii) market

manipulation, by extending a methodology derived from securities fraud litigation

studies to identify blockchain transactions with a manipulative effect on crypto asset

prices; (iii) crowdfunding via token offerings, by identifying factors of fundraising
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success using regression models, and exploring how these factors vary across time.

Each of the above contributions is developed in a separate chapter, as follows.

Chapter 2 on market risk modelling provides extensive backtests of hourly and

daily Value-at-Risk (VaR) and Expected Shortfall (ES) forecasts regarded as best prac-

tice in the industry and used for regulatory approval. We test several exponentially-

weighted moving average (EWMA) volatility and covariance model specifications

and also introduce an asymmetric AEWMA model. We compare these specifications

against an even simpler equally-weighted moving average random walk benchmark

model and also against more complex univariate and multivariate GARCH specifica-

tions.

The forecasting accuracy of these models is assessed using data of both daily and

hourly frequency for bitcoin, ether, ripple and litecoin. We examine both the left-

and right-tail VaR and ES forecasts, with right-tail risk measures rarely covered in

the relevant literature. We backtest VaR and ES with the industry standard (Basel

Committee, 1996) traffic light test, as well as with more commonly-used VaR and

ES backtesting methods. We also extend the ES traffic light test to cover right-tail

ES backtesting. The models’ volatility and covariance forecasting performance is

also examined in terms of the entire distribution with scoring rules – the continuous

ranked probability score (CRPS) for univariate distributions and the energy and

variogram scores for multivariate forecasts.

The empirical results of this Chapter demonstrate that simpler models in the

EWMA class are just as accurate as GARCH models for VaR and ES forecasting, and

similarly when using average scores generated from proper univariate and multivariate

scoring rules.

Chapter 3 on market manipulation examines large blockchain transactions of

the tether stablecoin originating from the tether treasury and assesses whether they

produce positive abnormal returns for bitcoin prices. The methodology is adapted

from single-firm event studies used in securities fraud litigation, using regression

factor models. This methodology can be useful in determining materiality and
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producing damages estimates in legal cases of crypto asset market manipulation, as

damages reports in securities legal cases are often rejected unless an event study-based

methodology is used.

The hypothesis of significant positive abnormal bitcoin returns is examined with

both parametric and non-parametric tests for robustness. The linear regression

model used controls for the effect of past events in the estimation period and an

index model specification is used instead of the constant-mean returns approach

employed in the relevant literature. We further introduce a flexible event window

size approach to account for clustering in USDT outflow events from the tether

treasury, and exclude token platform swap transactions from the sample, as they are

not related to market movements.

Additionally, we provide a detailed description of the blockchain data retrieval

process from the Bitcoin/Omni Layer blockchain, based on the experience of setting

up and operating a blockchain node locally. This is an important contribution, as

only a small number of articles retrieve blockchain transaction data directly from the

corresponding blockchains, and none of these articles provide detailed explanations

on how this is achieved.

Chapter 4 on the tokenomics of crowdfunding examines the fundraising success

of token offerings for the 2017 – early 2022 period, constituting one of the most

comprehensive studies in this topic. We proxy fundraising success with the amount of

funding raised and also by the minimum funding target exceedance. Success factors

are derived from venture, token and offering characteristics, as well as additional

common factors such as the price level of ether and the launchpad platforms used.

The fundraising success determinants introduced in this Chapter include variables

that are not used in the relevant literature, such as the combination of token offering

supply and price to form the target market capitalization, and also the launchpad

platforms used by token offerings in 2021 – early 2022; we examine variables which

are used in the relevant literature – such as the holding of a token presale, but for

which the findings produce a lack of consensus as to the effect on fundraising success.
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We also provide alternate perspectives on commonly-used variables such as the token

offering rating and tax-haven domicile.

The chapter’s empirical results confirm and extend the findings in the relevant

literature for the earlier sample period 2017 – 2020. Notably, this study is – at the

time of writing, the first to identify the renewed activity of token offerings in 2021

– early 2022, with new all-time highs in the number of token offerings completed

per month observed in late 2021 and early 2022. This period of renewed activity

is accompanied by the emergence of initial decentralized exchange offerings (IDOs)

which have dominated the token offerings space, as well as a shift in the fundraising

success determinants, with the choice of launchpad platform emerging as a significant

success determinant in 2021 – early 2022.

Finally, Chapter 5 presents a summary of the results for each topic developed

together with relevant conclusions, and provides thoughts on potential further research

in crypto asset and blockchain finance.
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2.1 Introduction

The modelling and forecasting of volatility and quantile risk measures for crypto

assets is a fairly well-researched topic; just in the past year there are more than 100

academic papers published in this area of finance and similarly there are almost 350

papers when examining the past 8 years.1 Common modelling choices include several

variants from the generalised autoregressive conditional heteroscedasticity (GARCH)

family of models initially introduced by Bollerslev (1986) and also other models

such as the generalized autoregressive score (GAS) models introduced by Creal et al.

(2013) and mixture and regime switching specifications. A similar degree of variety

and complexity exists in the distribution assumptions for crypto asset returns: while

the normal distribution is used by some authors, the most common choices are

heavy-tailed distributions such as the Student-t; moreover, several papers employ

even more complex heavy-tailed and skewed distributions, such as the generalized

error distribution (GED), the Weibull, Beta, generalized hyperbolic, inverse Gaussian

and Johnson’s SU distribution.

However, this complexity in modelling choices for crypto asset volatility and

returns in the academic literature is in stark contrast with current practice among

retail investors in crypto asset markets; they sometimes do not even apply any risk

management apart from stop-loss limit orders placed at arbitrary price levels for open

positions.2 Moreover, the online sources that do discuss, use or provide forecasts

of volatility, Value-at-Risk (VaR) and/or Expected Shortfall (ES) mostly use very

1A relevant Scopus search yields 342 papers published between 2015 - early 2022 in Economics,
Econometrics, Finance, Business, Management or Accounting journals and 131 of these papers
were published in 2021 or early 2022. These results are produced with the following Scopus search
query: TITLE-ABS-KEY(("bitcoin" OR "Bitcoin" OR "ethereum" OR "ether" OR "Ethereum"
OR "Ether" OR "cryptocurrency" OR "cryptocurrencies" OR "cryptoasset" OR "crypto asset" OR
"crypto" OR "digital currency" OR "digital asset" OR "crypto currency") AND ("GARCH" OR
"EWMA" OR "Value at Risk" OR "VaR" OR "Value-at-Risk" OR "ES" OR "Expected shortfall"
OR "volatility" OR "covariance" OR "variance") AND ("modelling" OR "modeling" OR "model"
OR "models" OR "forecasting" OR "forecast" OR "forecasts" OR "estimation" OR "estimate" OR
"estimates")) AND (LIMIT-TO(DOCTYPE, "ar")) AND (LIMIT-TO(SUBJAREA, "ECON") OR
LIMIT-TO(SUBJAREA, "BUSI")).

2Note that the above refers to relatively unsophisticated retail investors that maintain unhedged
positions in crypto assets; it does not apply e.g. to investors or market makers that partially or
completely hedge their positions with derivatives.
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simple methodologies. For instance, Cryptodatadownload, a crypto asset market

data and analytics provider, produces daily 1% and 5% VaR and ES forecasts for

several crypto assets using a historical methodology over a 2-year period, i.e. the VaR

is forecasted as the corresponding quantile of the empirical returns’ distribution and

ES as the average of the returns’ observations that are lower than the corresponding

quantile. Also, a blog post by the crypto asset exchange OKEx presents a parametric

VaR estimation for bitcoin, under the assumption that its 1-minute returns follow a

normal distribution; the 1% and 5% VaR are then forecasted using the sample mean

and standard deviation of 1-minute returns over the past 7 days.3 Similarly, the

daily ‘Bitcoin Volatility Index’ is also calculated using the sample standard deviation

of returns over the past 30 and 60 days; and the bitcoin Fear & Greed Index and

a Forbes article (Bovaird, 2021) reporting on bitcoin’s volatility both appear to be

estimating volatility with a similar equally-weighted moving average.

Moreover, the estimation of volatility models such as GARCH requires the

availability of historical price data for a fairly long period.4 While some crypto

assets such as bitcoin or ether have been trading for long enough, the continuous

emergence of new coins and tokens that gain investor attention often means that

for some newer crypto assets, there may simply not be enough data available to

produce robust parameter estimates for GARCH models. For instance, at the time

of writing, the list of top crypto assets by market cap reported by Cryptocompare

includes Avalanche and Solana which have just over 1.5 years of available data and

also Terra which has only been trading for approximately 6 months. For such assets,

volatility models that can be ‘jump-started’ and produce forecasts without the need

for a lengthy estimation period, such as the RiskMetricsTM exponentially-weighted

moving average (EWMA) model (Longerstaey and Spencer, 1996), are ideal.

3Moreover, the OKEx blog mentions that ‘VaR is useful for calculating the maximum expected
loss on an investment’, which is a highly inaccurate interpretation of VaR, since VaR provides an
estimate of minimum loss over the risk horizon.

4The optimal length of the sample period to be used in GARCH model estimation is highly
dependent on the characteristics of the data used. For crypto asset volatility modelling, GARCH
model estimations using between 1-2 years of daily data is a common choice in the relevant literature,
given the frequent need for out-of-sample testing as well.

https://www.cryptodatadownload.com/analytics/var/BTC/
https://www.okex.com/academy/en/how-to-use-value-at-risk-var-to-manage-your-assets
https://www.buybitcoinworldwide.com/volatility-index/
https://alternative.me/crypto/fear-and-greed-index/
https://www.cryptocompare.com/coins/list/all/USD/1?sort=5&order=des
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In this chapter, we compare the out-of-sample performance of parametric volatility

and covariance models for bitcoin, ether, ripple and litecoin. In the following, Section

2.2 presents an overview of the relevant literature on crypto asset volatility and

covariance forecasting using parametric models, VaR and ES backtesting and also

crypto asset returns distribution forecast evaluation; in Section 2.3 we analyse the

models used and also the backtesting and forecast evaluation methodologies; Section

2.4 provides an overview of the daily and hourly historical data; Section 2.5 presents

the empirical results of VaR and ES backtesting for both the left and right tail of the

returns’ distribution and univariate and multivariate distribution forecast evaluation;

finally, Section 2.6 provides a summary of the results and conclusions.

2.2 Literature Review

In this section, we provide a summary of the academic literature on crypto asset

market risk modelling, focusing on papers that model the volatility and/or covariance

of crypto asset returns with parametric models and assess their in-sample and out-

of-sample performance. For ease of reference, the main characteristics of the most

relevant academic papers are summarized in Table 2.1. For each paper, we report the

assets examined and the sample period, the volatility and covariance models used

and also the distribution assumptions in each case and the in- and out-of-sample

methods used e.g. to determine the goodness-of-fit of competing models.

Table 2.1: Literature on crypto asset volatility and covariance forecasting

Author Assets
Sample

period
Models Distributions In-sample Out-of-sample

Bouoiyour and Selmi (2016) BTC 2011-2016

GARCH, EGARCH

APARCH, wCGARCH

CMT GARCH

Normal

AIC

BIC

HQ
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Author Assets
Sample

period
Models Distributions In-sample Out-of-sample

Chu et al. (2017)

BTC, XRP

LTC, XMR

DASH

DOGE

MAID

2014-2017

GARCH, IGARCH

GJR-GARCH, EGARCH

APARCH, CGARCH

TGARCH, AVGARCH

NGARCH, AGARCH

ALL GARCH

Normal

Student-t

GED, SU

gen. hyperbolic

inv. Gaussian

AIC

cAIC

corAIC

BIC

HQ

Katsiampa (2017) BTC 2010-2016
GARCH, APARCH

CGARCH, ACGARCH
Normal

AIC

BIC

HQ

Baur et al. (2018) BTC 2010-2015 EGARCH
Normal

Student-t
Parameters

Bonello and Suda (2018) BTC 2016-2018
GARCH

MS-GARCH

Normal

Student-t

AIC

BIC

DIC

Parameters

UC, CC

ER

Ardia et al. (2019) BTC 2011-2018

GARCH, GJR-GARCH

MS-GARCH

MS-GJR-GARCH

Normal

Student-t
DIC CC, DQ

Caporale and Zekokh (2019)
BTC, ETH

XRP, LTC

2010-2018

2013-2018

2015-2018

Single-regime/mix./MS

GARCH, GJR-GARCH

EGARCH, TGARCH

Normal

Student-t

GED

UC, CC, DQ

ER, ESR

MCS

Catania et al. (2019)
BTC, ETH

XRP, LTC
2015-2017

EWMA

TVP-VAR
Normal

MSE

Log score

MCS

Guesmi et al. (2019) BTC 2012-2018

GARCH, GJR-GARCH

EGARCH, FIGARCH

FIAPARCH, DCC

ADCC, cDCC, cADCC

Normal
AIC

BIC

Sosa et al. (2019) BTC 2010-2019

GARCH, EGARCH

TGARCH, APARCH

CGARCH, ACGARCH

Normal

GED

LL

AIC

HQ

Tiwari et al. (2019)
BTC

LTC
2011-2018

GARCH, GJR-GARCH

stochastic vol.

Normal

Student-t

MLR

Parameters



25

Author Assets
Sample

period
Models Distributions In-sample Out-of-sample

Trucíos (2019) BTC 2011-2017

GARCH, AVGARCH

GAS, GARCH-MIDAS

realised-GARCH

robust-GARCH

Normal

Student-t

GED, SU

gen. hyperbolic

inv. Gaussian

UC, CC, DQ

MSE, QLIKE, RLF

MCS

Troster et al. (2019) BTC 2010-2018

EGARCH, GJR-GARCH

APARCH, TGARCH

CGARCH, NGARCH

HGARCH, GAS

Normal

Student-t

GED, SU

AIC

BIC

UC, CC, DQ

RMSE

Wang et al. (2019) BTC 2013-2018
GARCH, EGARCH

CGARCH, ARJI
Normal LL Regression test

Acereda et al. (2020)
BTC, ETH

XRP, LTC

2010-2018

2013-2018

2015-2018

GARCH, CGARCH

NGARCH, TGARCH

Asymmetric

Student-t
Multi-level

Alexander and Dakos (2020) BTC 2013-2019

MS-GARCH

MS-GJR-GARCH

MS-EGARCH

Normal

Student-t

DIC

IC

Parameters

Bazán-Palomino (2020)

BTC, LTC

BCH, BTG

BCD, BTCP

2013-2019

2017-2019

2018-2019

EWMA

BEKK-GARCH

DCC-GARCH

Normal
Parameters

Residuals

Fantazzini and Zimin (2020)

BTC, ETH

XRP, LTC

XLM, eq. w.

portfolio

2016-2018

GARCH

DCC-GARCH

copulas

Normal

Student-t

UC, CC

ER, Multi-level

MCS

Hattori (2020) BTC 2016-2018

GARCH, IGARCH

GJR-GARCH

EGARCH, APARCH

Normal

Student-t

MSE

QLIKE

Köchling et al. (2020) BTC 2015-2018

GARCH, IGARCH

GJR-GARCH, EGARCH

APARCH, CGARCH

AVGARCH, TGARCH

NGARCH, AGARCH

Normal

Student-t

MSE, MIX, QLIKE

MCS

Liu et al. (2020)

BTC

ETH

LTC

until 2019
score-driven

EWMA

Normal

Student-t

Laplace

gen. Pareto

reflected Gamma

UC, CC, DQ

MCS
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Author Assets
Sample

period
Models Distributions In-sample Out-of-sample

Nekhili and Sultan (2020)

BTC, XRP

LTC, DASH

XMR, XLM

BCN

2014-2019

EWMA

TGARCH

SVCJ

Normal

Student-t

LL

AIC

CC, QL

ER

Segnon and Bekiros (2020) BTC 2013-2018

GARCH, GJR-GARCH

EGARCH, APARCH

FIGARCH

MS-GARCH

Normal

RMSE, MAE

MCS

LR

Catania and Grassi (2021)

606

large-cap

coins

until 2019
GAS

EGARCH

Student-t

gen. hyperbolic

Beta-skew-t

BIC

DQ

ER

MSE, QLIKE

CRPS

Maciel (2021)

BTC, ETH

XRP, LTC

XMR, DASH

2013-2018

2014-2018

2015-2018

Single-regime/MS

GARCH, EGARCH

TGARCH

Normal

Student-t

GED

DIC

CC, DQ, QL

FZL joint

DM

Silahli et al. (2021)

BTC, XRP

LTC, DASH,

min. var.

portfolio

2014-2019

Hist. VaR

EQMA

EWMA

GARCH

Normal

Weibull
UC, CC, DQ

Key characteristics of the relevant academic papers that assess the forecasting performance of
crypto asset volatility and covariance models. The columns indicate the author of each paper, the
crypto assets examined and the sample period, the models and distribution assumptions used, and
the in- and out-of-sample analysis performed.

As shown in Table 2.1, the crypto assets examined in relevant academic papers are:

bitcoin (BTC), ether (ETH), ripple (XRP) and litecoin (LTC), dogecoin (DOGE),

dash, monero (XMR), maidsafecoin (MAID), stellar (XML), bytecoin (BCN), bitcoin

cash (BCH), bitcoin gold (BTG), bitcoin diamond (BCD), bitcoin private (BTCP),

and also an equally-weighted and a minimum variance portfolio.5 The majority of

papers focus on bitcoin, ether, ripple and litecoin, which offer a historical period

of at least 5 years, as ether began trading in mid-2015. The above assets are also

consistently amongst the largest cap crypto assets, so they can be considered as
5Historical data for the above assets are obtained by the authors from the following sources:

blockchain.com, Binance, Bitstamp, Bloomberg, Brave New Coin, Coindesk, Coinmarketcap,
Cryptocompare, Gemini and Kraken.

https://www.blockchain.com/charts/market-price?timespan=all&format=json
https://bravenewcoin.com/data-and-charts/market-cap
https://www.coindesk.com/price/bitcoin/
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representative of the entire asset class. However, other authors examine a more

expanded crypto asset universe, such as Catania and Grassi (2021) who include in

their analysis a total of 606 crypto assets with at least 700 daily price observations

until September 2019. The sample frequency is almost invariably daily and the

sample period used in each paper often depends on the available historical data

for the assets included; for instance, Katsiampa (2017) and Baur et al. (2018) only

examine bitcoin, so their sample period begins in 2010, whereas Fantazzini and Zimin

(2020) use a sample period between 2016-2018, as they include ether in their analysis.

Having provided an overview of the crypto assets examined and sample periods

used by papers in the relevant literature, we now discuss in turn: the parametric

volatility and covariance models used and the corresponding distribution assumptions,

followed by the results from the in-sample and out-of-sample performance analysis;

finally we focus specifically on a small number of highly relevant papers and provide

the incremental contribution of this chapter.

2.2.1 Models

The vast majority of academic papers examining crypto asset volatility employ some

variant of the generalised autoregressive conditional heteroscedasticity (GARCH)

model introduced by Bollerslev (1986), with a normal or Student-t distribution

assumption for the returns.6

For instance, Dyhrberg (2016) uses a symmetric and an exponential normal

GARCH with explanatory variables on bitcoin returns to compare bitcoin with gold

and the dollar. Bouri et al. (2017) examine the hedging and safe-haven properties of

bitcoin and use a symmetric model with innovations that follow a generalised error

distribution (GED). Al-Khazali et al. (2018) compare the impact of macroeconomic

news on bitcoin and gold attempting several model specifications and find that the

optimal model is the exponential GARCH with normally distributed error terms.

6In the following, all GARCH-type models should be assumed to be of first order such as a
GARCH(1,1), unless otherwise stated.
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Corbet et al. (2018) examine the applications of bitcoin futures and use a symmetric

GARCH. Vidal-Tomás and Ibañez (2018) use a component GARCH to examine the

efficiency of bitcoin traded prices. Al-Yahyaee et al. (2019) study the diversification

effects of bitcoin and gold for crude oil and S&P 500 investments and use several

GARCH models including a fractionally integrated (FI) EGARCH model. López-

Cabarcos et al. (2020) analyse the effect of investor sentiment and S&P 500 and VIX

returns on bitcoin’s volatility using GARCH and EGARCH models.

Regarding the particular stream of the literature that examines the forecasting

performance of parametric crypto asset volatility models, as presented in Table

2.1, the standard modelling choices include the symmetric GARCH of Bollerslev

(1986) and asymmetric models such as the GJR-GARCH of Glosten et al. (1993),

the exponential GARCH (EGARCH) of Nelson (1991), the threshold GARCH

(TGARCH) of Zakoian (1994), the asymmetric power ARCH (APARCH) of Ding

et al. (1993) and, less often, the AGARCH of Engle and Ng (1993). These models

are in some cases extended further with distribution mixture and Markov switching

(MS) frameworks.7

Further to the above, certain authors use the component GARCH (CGARCH) of

Engle and Lee (1999) and variants such as its asymmetric extension ACGARCH,

the weighted component GARCH (wCGARCH) of Bauwens and Storti (2009) and

the component with multiple threshold (CMT) GARCH of Bouoiyour and Selmi

(2014). Still more complex volatility model choices include the H-GARCH and ALL-

GARCH of Hentschel (1995), the non-linear NGARCH of Higgins and Bera (1992),

the AVGARCH of Schwert (1990), the robust GARCH model of Trucíos et al. (2017),

the realised GARCH model of Hansen et al. (2012), the GARCH-MIDAS (mixed data

sampling) model of Engle et al. (2013), and also an autoregressive jump intensity

(ARJI) model and a stochastic volatility model with co-jumps (SVCJ). Similarly,

more complex distribution assumptions – beyond the normal and Student-t and

7In most cases, the models are estimated using maximum likelihood estimation (MLE), with
Markov chain Monte Carlo (MCMC) used in some cases for estimating regime-switching models;
an exception to this are Tiwari et al. (2019) who estimate their models using the cross-entropy
method of Rubinstein (1997) for calculating marginal likelihood.
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their skewed variants, include the generalized error distribution (GED), generalized

hyperbolic, Weibull, Laplace, Beta-skew-t, generalized Pareto, reflected Gamma,

inverse Gaussian and Johnson’s SU distributions.

After discussing the more complex end of the volatility modelling spectrum, we

now turn to simpler models such as RiskMetrics-type models which, by comparison,

are somewhat overlooked in the relevant literature. The RiskMetricsTM EWMA model

of Longerstaey and Spencer (1996) is quite popular in financial market applications

due to its simplicity and ease of use. As a result, some academic papers focus on

assessing the RiskMetricsTM model’s forecasting accuracy using traditional asset data.

For instance, Pafka and Kondor (2001) examine the VaR forecasting ability of the

RiskMetricsTM model using the 30 constituent stocks of the Dow Jones Industrial

Average equity index and argue that it performs well at higher significance levels

and for short-term risk horizons, but that its accuracy declines e.g. at the 1% level

and also for multi-period forecasts. Similarly, McMillan and Kambouroudis (2009)

examine 31 stock market indices and note that the RiskMetricsTM model produces

more accurate forecasts compared with GARCH at higher significance levels.8

Moreover, and specifically in the crypto asset financial literature, there is some

support for the use of integrated volatility models such as the EWMA: for instance,

Chu et al. (2017) and Köchling et al. (2020) examine an IGARCH model and find that

it provides the optimal in-sample fit for bitcoin and other crypto assets; similarly,

Bouoiyour and Selmi (2016) and Baur et al. (2018) find that bitcoin’s variance

process is integrated while using GARCH-type models. The forecasting performance

of EWMA volatility models is examined by Catania et al. (2019), Bazán-Palomino

8McMillan and Kambouroudis (2009) compare the 5% and 1% VaR forecasts of the
RiskMetricsTM and several GARCH models using the unconditional coverage (UC) and dynamic
quantile (DQ) tests of Kupiec (1995) and Engle and Manganelli (2004). At the higher significance
level of 5%, the accuracy of RiskMetricsTM VaR forecasts is generally on par with the GARCH
models used. However, the 1% VaR forecasts from the RiskMetricsTM model fail both backtesting
processes. The authors further examine volatility forecasting accuracy with respect to realized
volatility and find that more complex models approximate realized volatility more accurately than
RiskMetricsTM in most cases examined.
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(2020), Nekhili and Sultan (2020) and Silahli et al. (2021).9 Moreover, Liu et al. (2020)

consider several score-driven EWMA models based on the generalized autoregressive

score (GAS) model framework of Creal et al. (2013), while Trucíos (2019), Troster

et al. (2019) and Catania and Grassi (2021) also use GAS models.

Finally, it is worth noting that the forecasting performance of multivariate covari-

ance models is rarely examined and only in-sample, partly because the commonly-used

out-of-sample VaR and ES backtesting methodology is better suited to a univariate

setup. Bouri et al. (2017) are the first to examine crypto assets in a multivariate

context, using a dynamic conditional correlation (DCC) model to test the hedge

and safe-haven properties of bitcoin. The majority of relevant academic papers

focus on in-sample performance and use the DCC model of Engle (2002), while

some also make use of the earlier BEKK model of Engle and Kroner (1995). For

instance, Bazán-Palomino (2020) considers the relationship between bitcoin and

similarly structured crypto assets using the multivariate EWMA, BEKK-GARCH

and DCC-GARCH, while Guesmi et al. (2019) use the DCC model to examine bitcoin

as well as a number of traditional financial assets. Regarding the multivariate EWMA

model, Matkovskyy et al. (2020) also use it to examine the interdependence between

bitcoin, economic policy uncertainty and traditional financial assets, but none of the

relevant papers assess its forecasting performance for crypto assets. Other covariance

modelling choices reported in Table 2.1 include the asymmetric ADCC model of

Cappiello et al. (2006), the modified cDCC and cADCC of Aielli (2013), and also

multivariate extensions of the marginal densities using copula functions to model the

correlation structure and time-varying parameter vector autoregression (TVP-VAR)

models.

9Silahli et al. (2021) also examine an even simpler equally-weighted moving average (EQMA)
model as a benchmark, while Guesmi et al. (2019) and Segnon and Bekiros (2020) use fractionally
integrated models such as the FIGARCH and FIAPARCH.
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2.2.2 In-Sample Performance

Following the discussion of volatility and covariance modelling choices for crypto

assets, we now turn to the assessment of forecasting performance, starting with

in-sample analysis. This is usually performed using the Akaike (AIC), Bayesian (BIC)

and Hannan-Quinn (HQ) information criteria and also modified versions such as the

consistent AIC (cAIC) and corrected AIC (corAIC); other in-sample performance

criteria used in the relevant literature and shown in Table 2.1 include the direct

comparison of the log likelihood (LL), the marginal likelihood ratio (MLR) and

also, for models estimated via MCMC, the deviance information criterion (DIC) and

the Bayesian predictive information criterion (IC). Beyond these, certain authors

also examine the estimated model parameters and residuals to further illustrate the

characteristics of the assets examined.

Numerous papers explore the best specification for univariate GARCH models on

different types of financial data, see Engle et al. (2008) for a useful survey. Regarding

the choice of volatility models providing the optimal in-sample fit to the crypto

asset historical data examined, the results discussed below are often mixed and

in contradiction with each other; this suggests that the best in-sample fit highly

depends on both the assets and historical period examined in each case.

For instance, Bouoiyour and Selmi (2016) find that the APARCH and CMT

GARCH provide the best in-sample fit for bitcoin returns, depending on the historical

period examined. Chu et al. (2017) find mixed results on both the optimal model and

distribution assumption, depending on the asset examined.10 Katsiampa (2017) also

tests several parametric volatility models for the best in-sample fit on bitcoin returns

and all criteria indicate that the ACGARCH model is optimal; this is consistent

with Bouoiyour and Selmi (2016) whose in-sample analysis also indicates a model

with a transitory and a permanent volatility component. The in-sample analysis

of Baur et al. (2018) indicates the EGARCH model for bitcoin returns, and the
10The results of Chu et al. (2017) indicate that the normal distribution provides the best fit in

all cases except ripple which ‘prefers’ a skewed normal distribution when using the TGARCH or
the AVGARCH model. An IGARCH model is preferable for bitcoin, dash, litecoin, maidsafecoin
and monero; GJR-GARCH is optimal for dogecoin; a symmetric GARCH is preferable for ripple.
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authors note that using different asymmetric volatility models does not improve the

in-sample fit. Tiwari et al. (2019) compare the fit of GARCH and stochastic volatility

models for bitcoin and litecoin and find mixed results, concluding that crypto asset

returns do not exhibit any asymmetric volatility response, which is at odds with

the previous findings e.g. of Bouoiyour and Selmi (2016) and Katsiampa (2017).

Sosa et al. (2019) find that an EGARCH model with GED innovations provides the

best in-sample model fit for bitcoin, which is in contrast with the previous finding

of Katsiampa (2017). Troster et al. (2019) agree with Sosa et al. (2019) that a

GED assumption – instead of a normal, yields a significant improvement in the

goodness-of-fit metrics, but they further conclude that the hyperbolic HGARCH

model with GED innovations provides the best in-sample fit, which is again contrary

to previous findings.

In the class of regime-switching volatility models, Ardia et al. (2019) find that

a two-state Markov switching skewed Student-t GJR-GARCH provides a better

in-sample fit for bitcoin as measured by the DIC, compared with both non-switching

and three-state switching models; the authors propose that the two-state model

provides a better trade–off between fitting quality and model complexity and further

show for three–regime models that fitting gains are only observed for the normal

distribution. Alexander and Dakos (2020) also explore the in-sample fit of two-state

Markov switching GARCH models for bitcoin returns and show that the choice

between GARCH, GJR-GARCH and EGARCH depends on the exact source of data

used. More specifically, Alexander and Dakos (2020) examine the DIC and IC metrics

for the daily log returns on BTC/USD price data from Coingecko, Coinmarketcap,

Cryptocompare, Bitstamp and Kraken; Coingecko, Coinmarketcap and Bitstamp

data ‘prefer’ a 2-state skewed Student-t standard GARCH model, while the 2-state

skewed Student-t EGARCH provides a better in sample fit for Cryptocompare and

Kraken data.
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2.2.3 Out-of-Sample Performance

Out-of-sample forecasting exercises often focus on Value-at-Risk (VaR) and Expected

Shortfall (ES) backtesting, usually concentrating on the left tail of the returns’

distribution, i.e. to assess the risk of downward price movements on long crypto

asset positions.11 The more common backtesting methodologies for VaR forecasts

are the unconditional coverage (UC) test of Kupiec (1995), the conditional coverage

(CC) test of Christoffersen (1998) and the dynamic quantile (DQ) test of Engle and

Manganelli (2004); for ES, common backtesting methods include the exceedance

residual (ER) of McNeil and Frey (2000), the regression-based ESR test of Bayer and

Dimitriadis (2020) and the multi-level backtest approximation via VaR of Kratz et al.

(2018).12 It is also worth noting that the industry standard traffic light backtesting

framework of the Basel Committee (1996), e.g. as described by Costanzino and

Curran (2018) is overlooked by all relevant papers. Other methods of analysis include

the use of loss functions either in the model confidence set (MCS) process of Hansen

et al. (2011) or also in hypothesis tests of equal forecasting performance such as

the DM test of Diebold and Mariano (1995) and the regression test of Mincer and

Zarnowitz (1969).13 Finally, the use of proper scoring rules to evaluate crypto asset

returns density forecasts is much less common, with Catania and Grassi (2021) using

the continuous ranked probability score (CRPS) and Catania et al. (2019) using the

log score.

As noted previously for the in-sample analysis findings, the out-of-sample analysis

results in the relevant literature discussed below are again conflicting and depend

on the assets, sample periods and significance levels examined in each case. For

instance, Ardia et al. (2019) examine bitcoin and compare the VaR forecasting
11It is worth noting that the only relevant crypto asset paper that also assesses the performance

of right-tail VaR and ES daily forecasts for bitcoin, i.e. the risk of upward price movements on
short positions, is that of Stavroyiannis (2018), who examines the GJR-GARCH model.

12The test of Kratz et al. (2018) consists of a multinomial test of VaR exceptions at several
levels below the significance level used for ES. See Section 2.3 for a detailed description of selected
VaR and ES backtesting methodologies.

13Commonly-used loss functions include the MIX, quasi-like (QLIKE) and robust (RLF) loss
functions of Patton (2011), the mean absolute error (MAE), mean squared error (MSE) and root
mean squared error (RMSE), the quantile loss (QL) function of McAleer and Da Veiga (2008) and
the FZL joint VaR/ES loss function of Fissler and Ziegel (2016).
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accuracy of single-regime and Markov switching models using the CC and DQ tests,

concluding that only regime-switching models produce accurate VaR forecasts at

the 1% significance level; however, it is worth noting that 5% daily VaR forecasts

produced using the relatively simpler single-regime skewed Student-t GJR-GARCH

model also succeed the CC test – at the 5% significance level of rejecting the null

hypothesis – and the DQ test. Maciel (2021) compares the prediction performance of

Markov switching GARCH against single-regime GARCH models for several crypto

assets and is in favour of more complex models – similar to Ardia et al. (2019),

finding that overall, Markov switching models exhibit better results compared with

the corresponding single-regime models; however, despite this finding, the results of

Maciel (2021) are somewhat mixed.14 Caporale and Zekokh (2019) examine bitcoin,

ether, ripple and litecoin and backtest both VaR using the UC, CC and DQ tests

and ES using the ER and ESR backtests, also using the MCS process; their results

are highly mixed due to the exhaustive use of mixture and regime switching model

combinations, so that the distribution mixture symmetric GARCH is in some cases

found to be preferable to asymmetric and Markov switching specifications.15

It further appears that even when more complex and even regime-switching

volatility model specifications with heavy-tailed distribution assumptions produce

accurate out-of-sample VaR and ES forecasts, relatively simpler models can also

produce accurate results. For instance, Bonello and Suda (2018) also compare the

VaR forecasts for bitcoin using the UC and CC tests with single-regime and Markov

switching normal and Student-t GARCH models and find that both specifications

can produce accurate VaR forecasts at a 5% significance level. Troster et al. (2019)

use the UC, CC and DQ tests to backtest daily 1% VaR forecasts for bitcoin and

14For instance, Maciel (2021) finds no significant difference in forecasting performance between
single- and two-regime models for half of the assets examined when forecasting performance is
measured jointly for the 1-day-ahead 1% VaR and ES via the FZL loss function; similarly, the
corresponding VaR-only test via the QL loss function indicates equal predictive ability between
single- and two-regime models for all assets.

15The results of Caporale and Zekokh (2019) indicate that bitcoin and litecoin’s superior sets of
models (SSM) is dominated by symmetric GARCH models with a slight preference for mixture
models over Markov switching in the case of bitcoin; for ether, the only specification that produces
accurate VaR and ES forecasts is a mixture of Student-t GJR-GARCH and skewed Student-t
TGARCH, whereas the results for ripple are mixed.
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find that a Student-t GARCH model succeeds in all of the above backtests and

is therefore on par with more complex Student-t GARCH models attempted as

well as with the attempted GAS model specification.16 Trucíos (2019) evaluates

VaR forecasts for bitcoin between 2011 - 2017 and finds that out of six competing

models, only a robust bootstrap VaR method produces accurate forecasts at the 1%

significance level based on the UC, CC and DQ test. However, it should be noted

that only a small selection of the proposed models are backtested based on the MCS

process results.17 Moreover, in the preliminary results of a subsequent working paper,

Trucíos and Taylor (2022) use a more recent sample period and show that bitcoin

and ether VaR forecasts based on simpler volatility models such as the standard

GARCH may be considered accurate based on the CC and DQ tests.18

There also exist several cases where backtesting results promote the use of even

simpler models. For instance, Fantazzini and Zimin (2020) consider several crypto

assets and backtest VaR and ES; interestingly, they find that conservative VaR

forecasts are produced even when the normal distribution is used, and similarly

for ES backtesting, the ER test does not reject the null hypothesis of accurate ES

forecasts for almost any model.19 Acereda et al. (2020) find that bitcoin ES forecasts

are accurate only when using a non-normal distribution with at least two parameters

and more complex extensions of the standard GARCH model; for other crypto assets

however, the more complex model specifications do not outperform the simpler ones,

as long as heavy-tailed distributions are used instead of the standard normal. Silahli

16Beyond the standard GARCH model, Troster et al. (2019) also attempt the GJR-GARCH,
EGARCH, CGARCH, NGARCH, and HGARCH models.

17Trucíos (2019) only selects to backtest the more complex model specifications that are included
simultaneously in the MCS process superior sets of models based on four different realized volatility
measures and three different loss functions; these models are the AVGARCH of Schwert (1990) with
a symmetric and skewed GED assumption for innovations, the robust GARCH model of Trucíos
et al. (2017) with a bootstrap VaR methodology, a Student-t GAS model and the realised GARCH
model of Hansen et al. (2012).

18The working paper results of Trucíos and Taylor (2022) indicate that bitcoin 2.5% and 5%
daily VaR forecasts produced e.g. with a standard GARCH model succeed in two out of three VaR
backtesting methodologies and in all of the ES backtesting methodologies used. The only test that
GARCH fails e.g. for bitcoin’s 2.5% VaR forecasts is the VQ test of Gaglianone et al. (2011); for
ether, the same is observed for 2.5% VaR forecasts; for ether’s 5% VaR forecasts produced with the
standard GARCH, all of the VaR and ES tests are successful.

19Fantazzini and Zimin (2020) attribute these findings to the small sample size (2016-2018) and
the presence of excess kurtosis in the data.
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et al. (2021) also find that several simple benchmark models succeed in the UC, CC

and DQ VaR tests for several crypto assets.20

Focusing on EWMA models, there is again conflicting evidence as to their

forecasting accuracy. Silahli et al. (2021) find that the EWMA volatility model

with a normal distribution assumption produces accurate VaR forecasts using UC,

CC and DQ tests. Conversely, Liu et al. (2020) examine several crypto assets

and find that a score-driven EWMA model specification similar to the standard

RiskMetricsTM methodology (Longerstaey and Spencer, 1996) fails the backtesting

processes and is often excluded from the MCS process superior set of models. Nekhili

and Sultan (2020) compare the out-of-sample performance of stochastic volatility

model specifications against a benchmark RiskMetricsTM EWMA model and find

that the EWMA model produces accurate VaR forecasts at the 5% level, but not at

1%; for ES forecasts, the authors find that for almost all crypto assets examined, the

EWMA model produces accurate ES forecasts according to the ER test.21

Further to the forecasting accuracy of EWMA models, in a multivariate setting,

Silahli et al. (2021) find that a EWMA covariance model used to produce VaR

forecasts for the return on a minimum variance portfolio consisting of bitcoin,

litecoin, ripple and dash succeeds the UC, CC and DQ tests. Catania et al. (2019)

examine bitcoin, ether, ripple and litecoin in a multivariate forecasting setting, testing

several constant and time-varying parameter vector autoregression (VAR) models

against a simpler VAR-EWMA benchmark. They find that the mean squared error

(MSE) of forecasted volatilities against realized volatility and the MCS process using

the MSE loss function show that none of the multivariate models can significantly

outperform the VAR-EWMA benchmark at any forecast horizon; as discussed later,

20For instance, Silahli et al. (2021) find that even at a 10% significance level, seven benchmark
models succeed in the UC test, three succeed in the CC test and two succeed in the DQ.

21In the findings of Nekhili and Sultan (2020), the EWMA model’s VaR forecasts are remarkably
accurate for several crypto assets, given its simplicity compared with the other competing models.
However, it should be noted the EWMA does not pass the CC test for the 5% VaR forecasts of
litecoin and similarly for the 1% VaR of bitcoin, litecoin and stellar.
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these findings are somewhat in contrast with the authors’ results using the log score

as a measure of density forecast accuracy.22

Beyond VaR and ES backtesting, other out-of-sample methodologies also yield

mixed results as to the optimal out-of-sample fit. Wang et al. (2019) examine bitcoin

returns using a regression test against proxy measures of true volatility and find

that EGARCH has the highest forecasting accuracy out of all GARCH-type models

examined. Troster et al. (2019) compare the forecasts of various volatility models

using RMSE measured against realized bitcoin returns and find that a CGARCH

model with GED innovations provides the best out-of-sample forecasting accuracy.

Köchling et al. (2020) also search for the best out-of-sample volatility model fit on

bitcoin data using the MCS process and find that the IGARCH specifications are

included in all MCS superior sets of models. Hattori (2020) finds that models with

an asymmetric volatility response such as the EGARCH and APARCH exhibit higher

predictive ability; surprisingly, Hattori (2020) further finds that models assuming a

normal distribution perform better than models including a heavy-tailed distribution

assumption. Segnon and Bekiros (2020) find that a Markov switching multi-fractal

(MSM) model and also the FIGARCH model produce the most accurate volatility

forecasts for bitcoin at both short- and long-term horizons but note that according

to a likelihood ratio test, none of the models used can produce accurate density

forecasts.

Finally, we examine proper scoring rules, a rarely-used out-sample analysis method

even in the traditional finance literature. Regarding applications specific to crypto

assets, the papers by Catania and Grassi (2021) and Catania et al. (2019) are the

only relevant publications at the time of writing. Catania and Grassi (2021) use

the continuous ranked probability score (CRPS) to assess volatility forecasts and

compare the GAS model against an EGARCH, concluding that equal predictive

ability as measured by the DM test of Diebold and Mariano (1995) is the most

22For the EWMA model, Catania et al. (2019) assume a diagonal covariance matrix where
variances are estimated with EWMA with λ = 0.96, i.e. a joint distribution for the four crypto
assets with independent marginal densities.
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common outcome. Moreover, Catania et al. (2019) produce multiperiod point and

density forecasts for bitcoin, litecoin, ripple and ether returns with an expanding

window and use the predictive log score as a measure of density forecast accuracy,

which shows that most models outperform the EWMA benchmark, especially when

including additional explanatory variables such as the VIX or equity indices; note

that, as discussed previously, this finding is somewhat in conflict with the authors’

findings using the mean squared error (MSE) of forecasted volatilities against realized

volatility and the MCS process.

2.2.4 Focused Discussion and Contributions

Having examined the modelling approaches, the in-sample and out-of-sample perfor-

mance methodologies and the findings of the relevant crypto asset literature, we now

focus specifically on two highly relevant papers by Liu et al. (2020) and Catania and

Grassi (2021), following which, we summarize the specific contributions of the current

chapter. Liu et al. (2020) make extended use of EWMA-type models, including

several extensions based on the GAS framework and the paper by Catania and Grassi

(2021) is the only one using CRPS to assess the accuracy of density forecasts for

crypto asset returns.

Liu et al. (2020) consider several score-driven generalizations of the RiskMetrics

EWMA model to produce volatility and VaR forecasts for the daily log returns of

bitcoin, ether and litecoin. The authors assume that crypto asset returns follow a nor-

mal, Student-t, Laplace, double generalized Pareto or reflected Gamma distribution,

and volatility and other time-varying parameter dynamics are driven by the score of

the forecasting distribution and estimated via MLE. The model variant closest to the

RiskMetricsTM methodology of Longerstaey and Spencer (1996) is a EWMA variance

model with a normal distribution assumption and decay parameter estimated via

MLE in the GAS framework of Creal et al. (2013). VaR forecasts at 0.5%, 1%,

2.5% and 5% significance are calculated via the corresponding quantile function,

depending on the distribution assumption. The authors evaluate the VaR forecasts
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of each model using the UC, CC and DQ tests and also employ the model confidence

set process. The VaR forecasts produced by the model closest to the RiskMetricsTM

methodology fail most of the backtesting processes, especially at lower significance

levels; regarding the MCS process, the authors find that the above RiskMetrics-like

model ranks very low in the superior set of models (SSM) at lower VaR significance

levels and, curiously, that it is excluded from the SSM for 5% VaR – contrary to

all other relevant findings that simpler models produce reasonably accurate VaR

forecasts at higher significance levels.

Catania and Grassi (2021) backtest VaR and ES forecasts for a total of 606

crypto assets with at least 700 daily price observations, i.e. approximately 2 years of

historical data, until September 2019. The authors use score-driven (GAS) volatility

model specifications that incorporate several stylized features such as leverage effects,

long memory of the volatility process and time-varying higher order moments; it is

further assumed that crypto asset returns follow a generalized hyperbolic skewed

Student-t distribution as detailed in Aas and Haff (2006). As a benchmark model,

the authors use the Beta-Skew-t-EGARCH of Harvey and Sucarrat (2014), under the

rationale that score-driven models produce more accurate volatility estimates than

GARCH in the presence of extreme observations. The model parameters are updated

on a daily basis using an expanding window and 1-day-, 1-week- and 2-weeks-ahead

VaR and ES forecasts are produced at the 5% and 1% significance levels. Value-

at-Risk forecasts are backtested using the DQ test, while the ER test with 1,000

bootstrap replications is used for ES forecasts. The authors also use the continuous

ranked probability score (CRPS) to assess the density forecasts of crypto asset

returns.23 They find that score-driven specifications produce accurate 5% and 1% ES

and 5% VaR forecasts more often than the Beta-Skew-t-EGARCH benchmark, but

GAS models and the EGARCH benchmark are on par when backtesting 1% VaR.24

23Catania and Grassi (2021) also test the models on the accuracy of their VaR, ES and also
their variance predictions against the squared returns volatility proxy, using loss functions and the
DM test of Diebold and Mariano (1995), and also report the average VaR absolute deviations and
the resulting average daily capital requirements as per McAleer and Da Veiga (2008).

24Catania and Grassi (2021) find that score-driven specifications produce accurate 5% VaR
forecasts for approximately 70% of crypto assets examined, whereas the Beta-Skew-t-EGARCH
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Regarding density forecast evaluation via CRPS and the test of equal forecasting

performance, the authors find that outperformance of certain score-driven model

specifications against the benchmark occurs more often than underperformance.

However, even for these successful specifications, equal predictive ability is the most

common outcome. For instance, when examining the uniformly weighted CRPS of

the 1-day-ahead density forecast across all crypto assets, equal predictive ability

occurs in 83% of crypto assets examined, including the large-cap bitcoin, ether, ripple

and litecoin.

While both Liu et al. (2020) and Catania and Grassi (2021) examine several

volatility model specifications, the range of models examined is somewhat limited

in both cases. Liu et al. (2020) focus specifically on EWMA-type models and do

not test other more complex models such as GARCH specifications, nor simpler

model specifications that require no calibration such as an equally-weighted moving

average or a EWMA with an ad hoc value chosen for the decay parameter. Therefore,

their results are not conclusive with respect to the overall suitability of EWMA-type

models in forecasting crypto asset volatility compared with other more complex

or simpler models. By comparison, Catania and Grassi (2021) focus on highly

sophisticated GAS model specifications with a similarly sophisticated heavy-tailed

distribution assumption and test these against an already complex benchmark Beta-

skew-t-EGARCH model. Their findings e.g. on density forecast accuracy often

indicate that the benchmark is on par with the GAS specifications and in the absence

of testing on simpler benchmark models, it is not always clear whether the additional

modelling complexity ‘pays off’. It is important to note that, as discussed previously,

the above finding also extends to VaR and ES forecasting, i.e. the VaR and ES

forecasting performance of highly complex GARCH and GAS model specifications

can be on par with relatively simpler models such as the standard GARCH. For

benchmark is accurate for approximately 60% of assets; however for 1% VaR, GAS models are
considered accurate for approximately 55% of assets, whereas the EGARCH benchmark is still
accurate for 60% of assets. Similarly, 5% ES forecasts are considered accurate for more than 90%
of crypto assets examined and the Beta-Skew-t-EGARCH benchmark is accurate for 70% of assets,
with slightly worse performance for 1% ES.
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instance, this is shown in the results of Bonello and Suda (2018), Troster et al. (2019),

Acereda et al. (2020), Silahli et al. (2021) and also in the working paper results of

Trucíos and Taylor (2022).

Finally, regarding the contributions of this Chapter to the crypto asset financial

literature, the main gaps in the area of crypto asset volatility and covariance forecast-

ing with parametric models are located in the non-existent use of hourly-frequency

data in volatility forecasting, the limited use of simpler and ad hoc models such as the

EWMA, the very limited testing performed on right-tail risk measures, the complete

absence of the industry standard traffic lights Value-at-Risk and Expected Shortfall

backtesting methodology, the scant literature on the comparison of out-of-sample

forecasting accuracy for multivariate models and the almost non-existent use of

scoring rules for density forecast evaluation.

While the complex end of the modelling spectrum is well-researched, there is

perhaps a limited scope for the application of such models from the perspective of a

practitioner, especially that of an unsophisticated one such as retail investors. The

EWMA model with ad hoc parameter choices is ideally suited for such use cases, as

it is easy to understand, validate, explain in a simple technical document, and does

not require long periods of historical data for calibration. Even when EWMA-type

models are used, there is conflicting evidence in the relevant literature as to the

accuracy of volatility, VaR, ES and density forecasts produced by them.

In this chapter, we test several EWMA model specifications with ad hoc parameter

choices and introduce an asymmetric AEWMA model similar to the AGARCH model

of Engle and Ng (1993). We compare these specifications against an even simpler

equally-weighted moving average random walk benchmark model and also against

more complex GARCH specifications, both in a univariate and a multivariate setting;

a heavy-tailed Student-t returns distribution assumption is used for all models except

the benchmark which assumes a normal distribution. We examine these models

using historical price time series of both daily and hourly frequency for bitcoin, ether,

ripple and litecoin, between August 2015 - August 2021 at the daily frequency and
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between January 2021 - July 2021 at the hourly frequency; daily data frequency is

the most common choice in the literature, but hourly data frequency is also well

worth examining given how volatile crypto assets are, to the extent that an hour in

the crypto asset market may almost be equivalent to an entire day in traditional

financial markets.

Regarding VaR and ES, we examine both the left- and right-tail measures; right-

tail VaR and ES backtesting are seldom covered in the relevant literature; given the

wide availability of margin trading on crypto asset exchanges, the risk of upward price

movements on short crypto asset positions can be measured via right-tail VaR and

ES. To backtest VaR and ES, we make use of the traffic light test which is an industry

standard (Basel Committee, 1996), as well as the more commonly-used CC test of

Christoffersen (1998) for VaR and the ER test of McNeil and Frey (2000) for ES; the

left-tail ES traffic light test is based on the methodology of Costanzino and Curran

(2018), which we further extend to cover right-tail ES backtesting. Beyond risk

measure forecast backtesting, we also examine the models’ forecasting performance

in terms of the entire distribution with scoring rules, using the continuous ranked

probability score (CRPS) for univariate distributions and the energy and variogram

scores for multivariate joint density forecasts.

2.3 Methodology

This Section provides an overview of the econometric methodologies used to measure

the forecasting performance of the competing models. The overall methodology

consists of producing 1-period-ahead volatility and covariance forecasts on a rolling

basis. These are then combined with parametric distribution assumptions to produce

forecasts for each asset’s returns distribution and also of the joint density. We

produce and backtest 1-period-ahead left- and right-tail Value-at-Risk and Expected

Shortfall forecasts for each asset, to assess the risk of both long and short positions
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on each asset. Similarly, 1-period-ahead distribution forecasts are evaluated via

univariate and multivariate proper scoring rules.

2.3.1 Volatility and Covariance Models

The following models are used to forecast each asset’s volatility: a ‘random walk’ n-

period equally-weighted moving average volatility model under a normal distribution

assumption; a RiskMetrics-type EWMA model following from the RiskMetricsTM

technical document (Longerstaey and Spencer, 1996) and also AEWMA, an asym-

metric extension to EWMA similar to the AGARCH model of Engle and Ng (1993),

both with a Student-t distribution assumption; the standard GARCH(1,1) model

of Bollerslev (1986) and the asymmetric EGARCH model of Nelson (1991), again

assuming that returns follow a Student-t distribution. Joint density forecasts are

produced via the covariance matrix forecasts for the random walk and EWMA mod-

els. Similarly, the GARCH and EGARCH models are combined with the dynamic

conditional correlation (DCC) model of Engle (2002) and Tse and Tsui (2002) and

also its asymmetric extension (ADCC) model of Cappiello et al. (2006).

Univariate Models

Let the return of each asset at time t be rt. For simplicity, it is assumed that the

returns of all assets follow a zero-mean process.25 The random walk benchmark

model further assumes that the price of each asset follows a random walk process

and therefore the return is:

rt = σtεt and εt ∼ N (0, 1) , (2.1)

where the volatility σt is estimated as the sample standard deviation of the returns

over the past n periods. Similarly, in the EWMA and GARCH models presented

25There is some support for the zero-mean assumption in the relevant literature as discussed
previously in Section 2.2; for instance, Köchling et al. (2020) find that GARCH model specifications
with a zero-mean assumption for bitcoin returns are very often included in the model confidence
set.
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below, returns are assumed to follow a zero-mean location-scale transformed Student-t

distribution with ν degrees of freedom:

rt =
√

ν − 2
ν

σtεt and εt ∼ tν , (2.2)

where tν denotes that standardized Student-t distribution with ν degrees of freedom

and σt is the standard deviation of rt.

The variance under the standard EWMA model with decay parameter λ is

calculated as:

σ2
t = (1 − λ)r2

t−1 + λσ2
t−1 . (2.3)

Based on the AGARCH model of Engle and Ng (1993), we introduce the asymmetric

EWMA model with a decay parameter λ and an asymmetric volatility response

parameter η. Under the AEWMA(λ,η) model, the variance is calculated as:

σ2
t = (1 − λ)(rt−1 − η)2 + λσ2

t−1 . (2.4)

In the standard (symmetric) GARCH(1,1) model, the conditional variance is

given by:

σ2
t = ω + αε2

t−1 + βσ2
t−1 . (2.5)

Similarly, in the Student-t EGARCH model, we have:

ln
(
σ2

t

)
= ω + g (εt−1) + βln

(
σ2

t−1

)
g(εt) = θεt + γ

(
|εt| −E[|εt|]

)
.

(2.6)

Regarding volatility forecasts, the random walk, EWMA and AEWMA models

described in equations (2.1), (2.3) and (2.4) do not assume a volatility term structure,

so their 1-period-ahead volatility forecast for time t is set equal to the corresponding

conditional volatility estimate for time t − 1. For the GARCH and EGARCH
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models the 1-period-ahead volatility forecast is obtained by updating the conditional

volatility equations (2.5) and (2.6).

Multivariate Models

In a multivariate setting, let rt be the (m × 1) vector of the m assets’ returns at

time t. The multivariate random walk benchmark model assumes that rt follows a

multivariate normal distribution:

rt ∼ N (0,Σt) , (2.7)

where the covariance matrix Σt is estimated as the sample covariance matrix of

assets’ returns over the past n days. For the EWMA and GARCH models and

following from their univariate counterparts, the vector of returns is assumed to

follow a multivariate location-scale transformed Student-t distribution with ν degrees

of freedom:

rt ∼ tν

(
0,

ν − 2
ν

Σt

)
, (2.8)

where Σt is the covariance matrix of rt, so that ν−2
ν
Σt is the distribution’s scale

matrix. The covariance matrix in the multivariate EWMA model with parameter λ

is given by:

Σt = (1 − λ)rt−1r′
t−1 + λΣt−1 . (2.9)

Similarly, the covariance matrix of the asymmetric EWMA with parameters λ and η

is calculated as:

Σt = (1 − λ)(rt−1 − η1)(rt−1 − η1)′ + λΣt−1 , (2.10)

where 1 is an (m × 1) vector of ones.
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In the DCC model and its asymmetric extension ADCC, the covariance matrix is

modelled as:

Σt = DtRtDt

Rt = diag(Qt)−1/2Qtdiag(Qt)−1/2 ,

(2.11)

where Dt is the diagonal matrix of variances jointly estimated with univariate

standard tGARCH or tEGARCH processes and Rt is the conditional correlation

matrix, which is modelled indirectly via the Qt matrix to ensure that the correlation

matrix is positive semi-definite. In the DCC model, Qt is given by:

Qt = (1 − a − b)Q̄ + aεt−1ε
′
t−1 + bQt−1 . (2.12)

Similarly, in the ADCC model Qt is calculated as:

Qt = (1 − a − b)Q̄ − gQ̄− + aεt−1ε
′
t−1 + bQt−1 + gε−

t−1ε
−′

t−1 , (2.13)

where εt is the vector of standardized errors, ε−
t are the zero-threshold errors, Q̄ and

Q̄− are the unconditional covariance matrices of εt and ε−
t .

The 1-period ahead covariance matrix forecasts are produced similar to the

volatility forecasts as described previously. For the multivariate random walk,

EWMA and AEWMA the 1-period-ahead covariance matrix forecast at time t is

set equal to the estimate at time t − 1 and for the DCC and ADCC models it is

obtained by updating the conditional covariance equation (2.11).

2.3.2 Value-at-Risk and Expected Shortfall

The forecasting accuracy of the volatility models presented in the previous Section

is assessed by producing Value-at-Risk (VaR) and Expected Shortfall (ES) rolling

forecasts and backtesting them against realized returns; VaR and ES forecasts are
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produced for the left and right tail of the returns distribution, to assess the risk

of both a long and short position on each asset. For each of the two quantile risk

measures, we use an ad hoc methodology based on the standard traffic light test

of the Basel Committee (1996) and also a standard backtesting method, i.e. the

conditional coverage (CC) test of Christoffersen (1998) for VaR and the exceedance

residual (ER) test of McNeil and Frey (2000) for ES.

VaR Backtesting

Value-at-Risk at a significance level α is defined as the α-quantile of the returns

distribution. Therefore, based on the rolling 1-period-ahead forecast Ft of the returns’

distribution for each asset at time t, the corresponding left- and right-tail VaR forecast

at level α is:

VaRt(α) =


−F −1

t (α) , for the left tail

F −1
t (1 − α) , for the right tail

(2.14)

where Ft is the cumulative distribution function (CDF) of the 1-period-ahead distri-

bution forecast for the return rt of each asset, so that F −1
t (α) is the 100α% quantile

of the distribution.

The ad hoc backtesting method for VaR is based on the traffic light approach of

the Basel Committee (1996), as described in Costanzino and Curran (2018), here

extended to both left- and right-tail VaR. The exceedance indicator XVaR
t (α) of each

1-period-ahead left- and right-tail 100α%-VaR forecast at times t = 1, ..., N is defined

as:

XVaR
t (α) =


1{rt≤−VaRt(α)} , for the left tail

1{rt≥VaRt(α)} , for the right tail
(2.15)

where 1{condition} denotes an indicator function, i.e. equals 1 if the condition is satisfied

and 0 otherwise. The cumulative number of VaR exceedances XVaR
N (α) over the entire

forecasting period t = 1, ..., N is then calculated as:
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XVaR
N (α) =

N∑
t=1

XVaR
t (α) . (2.16)

Under the null hypothesis that the VaR model is specified correctly, the total number

of VaR exceedances follows a binomial distribution with parameters N and α;26 we

approximate the binomial with a normal distribution as:27

XVaR
N (α) ∼ N (Nα, Nα (1 − α)) . (2.17)

Given the number of realized VaR exceedances xVaR over the forecasting period, we

also define the probability Φ(z) of obtaining xVaR or fewer exceedances, where z is

derived from the standard normal transformation of xVaR and Φ is the CDF of the

standard normal distribution.28 The traffic light colour zones are then defined as:

Green if Φ(z) < 0.95; Yellow if 0.95 ≤ Φ(z) < 0.9999; Red if Φ(z) ≥ 0.9999.

As described by the Basel Committee (1996), the three-zone approach is intro-

duced to mitigate the statistical limitations of backtesting and balance the two error

types: type I, i.e. the possibility that an accurate model is classified as inaccurate

based on its backtesting results; type II, i.e. the possibility that an inaccurate

model is not classified as such based on its backtesting results. In the green zone,

the backtesting results are considered consistent with an accurate model and the

probability of erroneously accepting an inaccurate model is low. In the red zone,

the backtesting results are highly unlikely to have resulted from an accurate model,

and the probability of erroneously rejecting an accurate is model is low. In the

26The null hypothesis that the VaR model is ‘specified correctly’ implies a joint hypothesis that
the time series of VaR exceedance indicators XVaR

t (α) is independent and identically distributed
(i.i.d.) and that the proportion of realized VaR exceedances is equal to the VaR significance level α.
Note that the above definition holds for both left- and right-tail VaR, as exceedances are defined
respectively based on the 100α% left and right tail of the distribution.

27The approximation of the binomial distribution with the normal is considered accurate based
on the rule-of-thumb that both Nα and N(1 − α) should be greater than 5, which is the case for the
analysis presented in Section 2.5, as we use N = 1, 704 in the daily frequency analysis, N = 1, 465
in the hourly frequency and α = 1%, 2.5% and 5%.

28As the number of realized VaR exceedances xVaR over the forecasting period is a realization of
the random variable XVaR

N (α) defined in equations 2.16 and 2.17, the probability of obtaining xVaR or
fewer VaR exceedances is given as: P

(
XVaR

N (α) ≤ xVaR
)

= P
(

XVaR
N (α)−Nα√

Nα(1−α)
≤ xVaR−Nα√

Nα(1−α)

)
= Φ(z),

where z ∼ N (0, 1).
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yellow zone, backtesting results could be consistent with either accurate or inaccurate

models, so additional information is required to determine whether the model used

is specified correctly.

The VaR forecasts are further backtested using the conditional coverage (CC)

test of Christoffersen (1998), for which the likelihood ratio test statistic LRcc is:

LRcc = αn1 (1 − α)n0(
n01

n00+n01

)n01 (1 − n01
n00+n01

)n00 ( n11
n10+n11

)n11 (1 − n11
n10+n11

)n10 , (2.18)

where: α is the significance level used in the VaR model; n1 is the number of

realized VaR exceedances; n0 = N − n1 is the number of realized returns that do

not exceed the VaR forecast; n00 is the number of non-exceedances preceded by a

non-exceedance; n01 is the number of exceedances preceded by a non-exceedance; n10

is the number of non-exceedances preceded by an exceedance; n11 is the number of

exceedances preceded by an exceedance.29 The asymptotic distribution of −2 ln LRcc

is chi-squared with 2 degrees of freedom and the null hypothesis of the CC test is that(
n01

n00+n01

)
=
(

n11
n10+n11

)
= α, suggesting that the VaR forecasting model is specified

correctly.

ES Backtesting

Expected Shortfall (ES) was introduced (Artzner et al., 1999; Acerbi and Tasche,

2002) to address the limitation of VaR in that it cannot capture tail risk beyond the

specified quantile of the returns distribution (Basel Committee, 2012). Expected

Shortfall is defined as the expected loss given that the corresponding VaR forecast is

exceeded.30 The 1-period-ahead ES forecast at level α for time t is calculated as the

average VaR past the threshold α:

29As in the case of the traffic light backtest, the conditional coverage test definitions hold for
both left- and right-tail VaR, as exceedances are defined respectively based on the 100α% left and
right tail of the distribution.

30This definition of Expected Shortfall applies to both left- and right-tail VaR given the definition
of left- and right-tail VaR exceedances in equation (2.15).
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ESt(α) = 1
α

∫ α

0
VaRt(p)dp . (2.19)

The ad hoc traffic light backtesting method for Expected Shortfall is introduced

by Costanzino and Curran (2018), as a generalization of the VaR traffic light backtest

of the Basel Committee (1996). Extending the discrete random variable representing

VaR exceedances, Costanzino and Curran (2018) introduce the ES generalized

exceedance indicator XES
t (α) ∈ [0, 1] for the left tail of the distribution; by applying

the same methodology to right-tail VaR, we can define XES
t (α) as:

XES
t (α) =



(
1 − Ft(rt)

α

)
1{rt≤−VaRt(α)} , for the left tail

(
1 − 1−Ft(rt)

α

)
1{rt≥VaRt(α)} , for the right tail

(2.20)

where Ft is the CDF of the 1-period-ahead distribution forecast at time t for the return

rt of each asset.31 Note that, compared with XVaR
t (α) defined in equation (2.15),

XES
t (α) includes an additional term:

(
1 − Ft(rt)

α

)
for the left tail and

(
1 − 1−Ft(rt)

α

)
for the right tail; this term determines the severity of each VaR exceedance, based on

the realized loss beyond the VaR level.32 The cumulative ES generalized exceedance

is then calculated as:

XES
N (α) =

N∑
t=1

XES
t (α) . (2.21)

Under the null hypothesis that the ES model is specified correctly, the distribution

of XES
N (α) is provided by Costanzino and Curran (2018) based on the binomial

31The definition of the ES generalized exceedance indicator in equation (2.20) is derived by
applying the definition of ES in equation (2.19) to the left- and right-tail VaR exceedance indicator
XVaR

t (α) defined in equation (2.15), i.e. XES
t (α) = 1

α

∫ α

0 XVaR
t (p)dp.

32Due to the severity term included in equation (2.20), realized returns that exceed the VaR
forecast but not the ES forecast receive a relatively low weight and XES

t (α) is dominated by more
severe exceedances, i.e. realized returns that most likely exceed both the VaR and ES forecasts.
For instance, a left-tail VaR exceedance of high severity occurs for a very large negative realized
return, so that (1 − Ft(rt)

α ) ≈ 1; conversely, for a left-tail VaR exceedance with low severity, the
realized return is close to the 100α%-VaR, so that Ft(rt) ≈ α and therefore (1 − Ft(rt)

α ) ≈ 0.
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and Irwin-Hall distributions;33 the authors further note that the distribution tends

asymptotically to a normal distribution for large forecasting periods, based on the

derivation of Costanzino and Curran (2015):34

XES
N (α) ∼ N

(1
2Nα, Nα

(4 − 3α

12

))
. (2.22)

Given the total realized ES generalized exceedances over the forecasting period xES,

the probability of obtaining xES or fewer ES generalized exceedances is Φ(z), where

z is again derived from the standard normal transformation of xES.35 The traffic

light colour zones are therefore again defined as: Green if Φ(z) < 0.95; Yellow if

0.95 ≤ Φ(z) < 0.9999; Red if Φ(z) ≥ 0.9999.

The ES forecasts are further backtested using the (raw) exceedance residual (ER)

test of McNeil and Frey (2000). The backtest is based on the ES-specified residuals

that exceed the VaR:

εt =


(−rt − ESt(α))1{rt≤−VaRt(α)} , for the left tail

(rt − ESt(α))1{rt≥VaRt(α)} , for the right tail
(2.23)

The ER test statistic is then calculated as the sample mean of εt:

µ̂ =



∑N

t=1 εt∑N

t=1 1{rt≤−VaRt(α)}
, for the left tail

∑N

t=1 εt∑N

t=1 1{rt≥VaRt(α)}
, for the right tail

(2.24)

33As noted previously for VaR, the null hypothesis that the ES model is ‘specified correctly’
implies a joint hypothesis that the time series of ES generalized exceedance indicators XES

t (α) is
i.i.d. and that for all p ∈ [0, α], the probability of VaR exceedances is P (rt ≤ −VaRt(p)) = p for
the left tail and P (rt ≥ VaRt(p)) = p for the right tail.

34Note that the derivation described in Costanzino and Curran (2015) yields the asymptotic
distribution of equation (2.22), whereas the distribution’s variance in equation (17) of Costanzino
and Curran (2018) is mistakenly omitting a factor of N . Regarding the accuracy of the normal
approximation, Clift et al. (2016) perform a simulation study and find that the approximation is
accurate for a forecasting period of length N = 250; this confirms that the normal approximation is
fit for use in our analysis, as we use forecasting periods that include over 1, 000 observations in
both the daily and hourly frequency analyses described in Section 2.5.

35As noted previously for VaR, the total realized ES generalized exceedances xES over the
forecasting period are a realization of the random variable XES

N (α) defined in equation (2.21) and
the corresponding probability is again obtained via the standard normal transformation.
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As the test statistic µ̂ does not have a standard distribution, we need to estimate its

distribution using a bootstrap simulation.36 The ER test’s null hypothesis is that

E [εt] = 0; this is tested against a 1-sided alternative that E [εt] > 0, suggesting that

ES is systematically underestimated.

2.3.3 Distribution Forecast Evaluation

Scoring rules measure the accuracy of probabilistic forecasts and allow for comparisons

between competing models. The models presented throughout this Section produce

volatility and covariance 1-period-ahead forecasts which are combined with parametric

distribution assumptions to forecast the marginal distributions and the joint density

for the 1-period-ahead returns of the four crypto assets examined. We therefore use

scoring rules to compare the accuracy of volatility and covariance forecasts between

competing models.

A scoring rule is a function S such that:

S : F × Ω −→ R ∪ {∞} , (2.25)

where F is a convex class of probability distributions on Ω. The scoring rule therefore

assigns a value to a forecasted distribution F ∈ F and an observation y ∈ Ω. Scoring

rules are negatively oriented, such that a lower score indicates a better forecast.

Moreover, for a scoring rule with the additional property of propriety, the expected

score is optimized if the true distribution of the observation is issued as a forecast.

A scoring rule S is proper if and only if for all distributions F and G with densities

f and g: ∫
f(y)S(F, y)dy ≤

∫
f(y)S(G, y)dy . (2.26)

We use the continuous ranked probability score (CRPS) for univariate distribution

forecasts and its multivariate extension, the energy score, for joint density forecast

evaluation. For multivariate forecasts, we also use the variogram score.
36In the results presented in Section 2.5, the distribution of the ER test statistic µ̂ is simulated

using 1,000 bootstrapped replications, similar to Catania and Grassi (2021).
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Evaluation of Univariate Distribution Forecasts

The continuous ranked probability score (CRPS) (Matheson and Winkler, 1976 and

Gneiting and Ranjan, 2011) generalizes the mean absolute error for the forecasted

cumulative distribution function (CDF) F of a continuous distribution and a realized

observation y:

CRPS(F, y) =
∫ +∞

−∞

(
F (z) − 1{y≤z}

)2
u(z)dz (2.27)

We choose a threshold weighting function u(z) = 1 to examine the entire distri-

bution, but emphasizing specific parts of the distribution is also possible since any

non-negative function can be used. Note that according to Gneiting and Raftery

(2007), CRPS can also be expressed as:

CRPS(F, y) = EF (X − y) − 1
2EF (X − X ′) , (2.28)

where X and X ′ are independent random variables with sampling distribution F ;

this representation leads to the energy score extension shown below.

Evaluation of Multivariate Distribution Forecasts

The energy score (ES) with unit index β generalizes the CRPS for multivariate

distributions and is defined (Gneiting and Raftery, 2007) as:

ES(F, y) = 1
2EF (∥X − X′∥) −EF (∥X − y∥) , (2.29)

where ∥.∥ denotes the Euclidian norm on Rn, X and X′ are independent (n × 1)

random vectors from a multivariate distribution with CDF forecast F and y =

(y1, ..., yn) is a realized observation. Moreover, if F is given via m discrete (n-

dimensional) samples X = (X1, ..., Xn), then the energy score is calculated as:

ES(F, y) = 1
m

m∑
i=1

∥Xi − y∥ − 1
2m2

m∑
i=1

m∑
j=1

∥Xi − Xj∥ . (2.30)



54

The variogram score of order p (VSp) is an alternative multivariate score

(Scheuerer and Hamill, 2015) calculated as:

VSp(F, y) =
n∑

i=1

n∑
j=1

wi,j

(
|yi − yj|p − 1

m

m∑
k=1

|Xi,k − Xj,k|p
)2

, (2.31)

using wi,j = 1 for all i,j, again to examine the entire multivariate distribution. We

use the commonly suggested values p = 0.5, 1, and 2. The variogram score with

p = 0.5 is more sensitive to small deviations e.g. compared with p = 2 and conversely,

the p = 2 variogram score tends to ‘punish’ large deviations more.

Comparison of Density Forecasts

Given the 1-period-ahead probability density function forecasts ft, gt and their

corresponding univariate or multivariate scores S(ft) and S(gt) produced on a rolling

basis over the out-of-sample period t = 1, ..., N , we compare the forecasting perfor-

mance of f and g directly using their average scores over the out-of-sample period.

Alternatively, we use the hypothesis test of equal performance described by Gneiting

and Ranjan (2011). If the average scores of f and g over the out-of-sample period

are S̄f
N and S̄g

N respectively, then the test of equal performance is based on the test

statistic

tN =
√

N
S̄f

N − S̄g
N

σ̂N

, (2.32)

where:

σ̂2
N = 1

N

N∑
t=1

(
S(ft) − S(gt)

)2
. (2.33)

The test statistic tN is asymptotically standard normal under the null hypothesis of

vanishing expected score differentials; therefore in case of rejection, f is chosen if tN

is negative and g is chosen if tN is positive.
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2.4 Data

We obtain daily and hourly frequency historical data on four of the largest cap crypto

assets as of 1 January 2021: bitcoin, ether, ripple and litecoin.37 Historical price data

are collected using the Cryptocompare API and are in the form of volume-weighted

(VWAP) close prices, averaged across multiple USD-denominated exchange-traded

prices for each crypto asset. Following from previous research (Alexander and Dakos,

2020), we choose to obtain the dollar-denominated VWAP price for each crypto

asset from Cryptocompare, due to the advantages in its calculation methodology

compared with other data sources.38

For the daily frequency analysis, the sample period is between 20 August 2015 -

31 August 2021. The rolling estimation window length is chosen to be 500 days; the

forecasting period therefore consists of 1,704 daily observations, between 1 January

2017 - 31 August 2021. For the hourly frequency analysis, the sample period is

between 1 January 2021 00:00 UTC - 1 July 2021 00:00 UTC, with an estimation

window length of 4 months, i.e. 2,882 hourly returns observations; the forecasting

period therefore consists of 1,465 hourly observations, between 1 May 2021 00:00

UTC - 1 July 2021 00:00 UTC. Note that on one occasion for daily returns and on

four occasions for hourly returns, the observations are considered as outliers and are

removed via linear interpolation on the corresponding price.39

Figure 2.1 shows the time-series of daily log returns for each crypto asset over the

entire daily frequency sample period August 2015 - August 2021. Bitcoin appears to

be considerably less volatile than the other assets with the exception of the ‘Black

37We exclude stablecoins such as tether (USDT) from our analysis, as their prices are almost
always very close to $1 and therefore present limited interest from a volatility modelling perspective.

38For instance, the Cryptocompare BTC/USD VWAP price is calculated using only the traded
prices and corresponding volumes of the direct BTC/USD currency pair, contrary to other data
sources that also employ a wide array of inferred prices via cross-rates and cross-rate volumes.

39The daily data outliers are successive XRP returns of +103% on 2 April 2017 and -65% on
3 April 2017. The hourly data outliers are: an XRP return of -22% on 1 February 2021 13:00
UTC; XRP returns of 21% and -21% respectively on 22 February 2021 05:00 UTC and 23 February
2021 08:00 UTC; consecutive LTC returns of -35% and 22% on 19 May 2021 at 12:00 and 13:00
UTC. Outliers are detected based on the behaviour of the remaining asset returns and also on large
return reversals indicative of deviations in some component of the volume-weighted average prices
(VWAP) used.
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Figure 2.1: Daily log returns of bitcoin, ether, ripple and litecoin
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Daily log returns on bitcoin, ether, ripple and litecoin VWAP USD prices obtained from Crypto-
compare. The sample period is 20 August 2015 - 31 August 2021.

Thursday’ crypto market crash on 11 March 2020 and volatility clusters are often

observed simultaneously across all four assets, as also confirmed the ARCH LM test

statistic in Table 2.2.

Table 2.2 presents an overview of summary statistics for the daily log returns of

bitcoin, ether, ripple and litecoin. All assets exhibit a relatively small mean, partly

due to the use of log returns, so that a zero-mean assumption is justified.40 The

sample skewness always has a magnitude below 1, so the assumption of symmetrical

40Given that the zero-mean assumption applies to all competing models used, the comparison of
forecasting accuracy is not affected by this choice.
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distributions for the returns is also justified. The high volatility (often above

100%) and positive excess kurtosis indicate that heavy-tailed distributions are to be

preferred.

Table 2.2: Sample statistics of daily returns on bitcoin, ether, ripple and litecoin

BTC ETH XRP LTC

Mean (%) 0.242% 0.360% 0.228% 0.178%
St. Dev. (% p.a.) 77.1% 121.9% 143.9% 109.1%
Skewness -0.83 -0.26 0.98 0.54
Ex. Kurtosis 12.07 6.81 11.41 13.04
Min. -48% -57% -54% -48%
Max. 23% 38% 62% 55%
LM 48.87 131.4 194.37 93.7

Summary statistics and 12th order ARCH LM test statistic of daily log returns on bitcoin (BTC),
ether (ETH), ripple (XRP) and litecoin (LTC) VWAP USD prices obtained from Cryptocompare.
The sample period is 20 August 2015 - 31 August 2021. The mean, minimum and maximum are
expressed in %, the daily standard deviation is annualized using a factor of

√
365.

Figure 2.2 shows the time-series of hourly log returns for each crypto asset over

the entire sample period January - June 2021. All returns exhibit volatility clustering

and extreme returns above 10% or below -10%, as also shown in the ARCH LM test

statistic and the minimum and maximum returns in Table 2.3.

Table 2.3 shows the sample statistics of the hourly log returns for each crypto

asset over the entire sample period January - June 2021. The mean and skewness

are again relatively small, justifying the zero-mean and symmetrical distribution

assumptions for hourly returns.41 As expected, hourly returns are more volatile

compared with daily returns described in Table 2.2 and excess kurtosis is again

positive, so a heavy-tailed distribution should be preferable.

41Interestingly, while the hourly returns exhibit a consistent negative skewness across all four
assets, only the daily returns of bitcoin and ether follow this pattern.
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Figure 2.2: Hourly log returns of bitcoin, ether, ripple and litecoin
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Hourly log returns on bitcoin, ether, ripple and litecoin VWAP USD prices obtained from Crypto-
compare. The sample period is 1 January 2021 - 1 July 2021.
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Table 2.3: Sample statistics of hourly returns on bitcoin, ether, ripple and litecoin

BTC ETH XRP LTC

Mean (%) 0.004% 0.026% 0.028% 0.003%
St. Dev. (% p.a.) 104.5% 134.3% 183.6% 148.4%
Skewness -0.23 -0.80 -0.28 -0.57
Ex. Kurtosis 9.84 8.78 8.10 5.67
Min. (%) -11% -17% -18% -13%
Max. (%) 12% 9% 13% 8%
LM 270.11 664.11 614.90 278.92

Summary statistics and 12th order ARCH LM test statistic of hourly log returns on bitcoin (BTC),
ether (ETH), ripple (XRP) and litecoin (LTC) VWAP USD prices obtained from Cryptocompare.
The sample period is 1 January 2021 - 1 July 2021. The mean, minimum and maximum are
expressed in % and the hourly standard deviation is annualized using a factor of

√
24 × 365.

2.5 Empirical Results

In this Section we present and discuss the out-of-sample analysis for bitcoin, ether,

ripple and litecoin daily and hourly log returns, comparing the results of the EWMA-

type models against both the random walk benchmark and the more complex GARCH

models. We begin with the daily frequency analysis and first present the backtesting

of both left- and right-tail Value-at-Risk and Expected Shortfall forecasts in a

univariate setting, followed by the evaluation both the univariate and multivariate

density forecasts using scoring rules. The hourly frequency analysis is then presented

in the same order.

2.5.1 Daily Forecast Evaluation

As discussed in sections 2.3 and 2.4, we produce 1-day-ahead volatility and covariance

forecasts for the assets examined between 1 January 2017 - 31 August 2021, i.e. the

forecasting period includes 1,704 daily observations. For the random walk benchmark

model, forecasts are based on an equally-weighted 30-day moving average. EWMA

and AEWMA volatilities and covariances are calculated using ad hoc values of 0.925

and 0.94 for the decay parameter λ, where 0.94 is the standard value proposed in

the RiskMetricsTM framework; the AEWMA model further introduces an asymmetry
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parameter η which is set to ad hoc values of 1%, 2% and 3% for left-tail (long position)

VaR/ES forecasting and -1%, -3% and -5% for the right tail (short position).42 The

univariate GARCH and multivariate DCC model parameters are estimated with

maximum likelihood estimation (MLE) using a rolling estimation window of 500

daily observations and with model parameters updated on a daily basis.

Regarding the distribution assumptions, in the random walk benchmark model,

crypto asset returns are assumed to follow a zero-mean normal distribution. In the

EWMA and AEWMA models, a zero-mean location-scale transformed Student-t

distribution is used with ad hoc ν = 6 degrees of freedom, to produce a heavy-

tailed distribution; similarly, a multivariate Student-t with ν = 6 is assumed for

the joint distribution of bitcoin, ether, ripple and litecoin returns. The GARCH

and DCC models also assume respectively a univariate and multivariate Student-t

distribution, where the degrees of freedom parameter is estimated jointly with the

model parameters based on the 500-day rolling estimation window.43 GARCH and

DCC model estimations and forecasts and also some of the VaR and ES backtesting

methods are implemented using the rugarch and rmgarch R packages of Ghalanos

(2020) and Ghalanos (2019).44

VaR and ES Backtesting

Value-at-Risk and Expected Shortfall 1-day-ahead forecasts are produced for bitcoin,

ether and ripple at the 1%, 2.5% and 5% significance levels for both the left and right

tail of the returns distribution, to assess the risk of downward price movements on

long positions and also of upward price movements on short positions. VaR forecasts

are backtested using the traffic light test as described by Costanzino and Curran

42Additional testing of other AEWMA η parameter choices is shown in Table A1 of Appendix A
for the 1% daily VaR forecasts and the corresponding traffic light test.

43The daily returns exhibit some asymmetry in their sample statistics, but not always in the
same direction, as shown in Table 2.2. The asymmetric model specifications can still capture this
characteristic to some extent even with the symmetric distribution assumption that we use. Also,
the choice of a symmetric distribution simplifies the process of modelling the joint density for the
returns of bitcoin, ether, ripple and litecoin.

44The multivariate EWMA model is implemented using the RiskPortfolios R package of Ardia
et al. (2017), and the remaining EWMA and AEWMA specifications and also the traffic light
backtesting methodology are implemented using custom-written R code.
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(2018) and also the conditional coverage (CC) test of Christoffersen (1998). Similarly,

we apply the generalized traffic light test of Costanzino and Curran (2018) for ES

backtesting and also use the ER test of McNeil and Frey (2000).

VaR backtesting results at the 1%, 2.5% and 5% significance level are shown in

Table 2.4 for the left tail (long position) and in Table 2.5 for the right tail (short

position). For each asset we report the number of realized VaR exceedances xVaR,

the probability Φ(z) of obtaining xVaR or fewer VaR exceedances under the normal

distribution approximation described in equation (2.16) and the p-value of the CC

test statistic calculated as per equation (2.18).

As shown in Table 2.4 (upper panel) for 1% left-tail VaR, the random walk

benchmark produces significantly more VaR exceedances than the EWMA and

GARCH models across all assets. However, it should be noted that nearly all of

the models examined exceed the expected number of 17.04 exceedances for 1% VaR

with the exception of two AEWMA specifications and the EGARCH.45 The traffic

light zones are defined as per the Basel Committee (1996) framework described by

Costanzino and Curran (2018), based on the cumulative probability Φ(z) of obtaining

xVaR or fewer VaR exceedances: Green if Φ(z) is below 0.95, Yellow if it is greater

(or equal) than 0.95 and less than 0.9999; and Red if it exceeds (or is equal to)

0.9999. Based on these definitions, the VaR forecasts of several AEWMA models

and also the of tEGARCH model are in the green zone for all assets, with several

other specifications partly ‘in the green’. Moreover, the forecasts of several models

are often in the yellow zone; as per the Basel Committee (1996) standard framework,

backtesting results in the yellow zone could indicate an inaccurate VaR model, so

further testing should be performed.

Further to the ad hoc traffic light test for 1% left-tail VaR forecasts, we now

discuss the results of the conditional coverage (CC) test, where rejection of the null

hypothesis suggests that the VaR model used is not accurate. At the 10% significance

level for the rejection of the CC test’s null hypothesis of accurate VaR forecasts,

45The expected number of total VaR exceedances for 1% VaR is calculated based on equation
(2.17) using N = 1, 704 and α = 1%.
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several AEWMA specifications and also the EGARCH model appear to produce

accurate 1-day-ahead 1% VaR forecasts simultaneously for all assets examined; it

is also worth noting that e.g. the 1% VaR forecasts from the tAEWMA(0.925, 2%)

model are in the yellow zone for bitcoin, but the CC test results suggest that they

are in fact accurate.46

By comparison, for the right-tail daily 1% VaR backtesting results shown in Table

2.5, the results are similar for bitcoin and ether forecasts, in that several AEWMA

and both GARCH specifications are in the green zone. However, ripple and litecoin

VaR forecasts present more difficulties, with several models in the red zone, possibly

due to the positive sample skewness that ripple and litecoin exhibit as shown in Table

2.2. Even so, the forecasts of two AEWMA specifications are in the green zone for

all four assets, when the 1% right-tail VaR forecasts produced by the more complex

tEGARCH model are actually considered inaccurate for ripple, with a yellow zone

and rejection of the CC test’s null hypothesis at both 10% and 5% significance.

Similarly, Expected Shortfall backtesting results at 1%, 2.5% and 5% are shown

in Table 2.6 for the left tail (long position) and in Table 2.7 for the right tail (short

position). Here we report for each asset: the realized total ES generalized exceedances

xES as defined in equations 2.20 and 2.21; the probability Φ(z) of obtaining xES of

fewer ES generalized exceedances under the normal distribution approximation as

described in equation (2.22); and the p-value of the exceedance residual (ER) test

based on equation (2.24), where the test statistic’s distribution is simulated using

1,000 bootstrapped replications.

As with 1% daily VaR examined previously, daily 1% left-tail ES backtesting

results shown in Table 2.6 (upper panel) indicate that the random walk benchmark

produces significantly more ES generalized exceedances than the EWMA and GARCH

models. Here, the expected number of ES generalized exceedances at 1% significance

46Note that as the CC test for VaR and the ER test for ES have a null hypothesis of accurate
model specification, a lower significance level, e.g. 1% for the rejection of the null hypothesis means
that we are less strict about accepting the VaR and ES models as accurate. Conversely, for a higher
significance level, e.g. 10%, we are less strict about rejecting the null hypothesis of accuracy and
therefore more strict about accepting VaR and ES models as accurate.
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Table 2.4: Backtesting results for 1-day-ahead left-tail VaR

Daily 1% VaR Backtesting – Long position

BTC ETH XRP LTC
xVaR Φ(z) CC xVaR Φ(z) CC xVaR Φ(z) CC xVaR Φ(z) CC

Random Walk 38 1.0000 0.000∗∗∗ 38 1.0000 0.000∗∗∗ 28 0.9962 0.011∗∗ 33 0.9999 0.001∗∗∗

tEWMA(0.925) 27 0.9923 0.017∗∗ 28 0.9962 0.002∗∗∗ 22 0.8864 0.050∗ 24 0.9549 0.037∗∗

tEWMA(0.94) 28 0.9962 0.002∗∗∗ 27 0.9923 0.002∗∗∗ 20 0.7644 0.383 23 0.9266 0.044∗∗

tAEWMA(0.925, 1%) 30 0.9992 0.001∗∗∗ 28 0.9962 0.011∗∗ 20 0.7644 0.383 26 0.9854 0.023∗∗

tAEWMA(0.925, 2%) 24 0.9549 0.180 22 0.8864 0.291 17 0.4961 0.842 21 0.8325 0.499
tAEWMA(0.925, 3%) 17 0.4961 0.373 19 0.6834 0.723 15 0.3097 0.770 17 0.4961 0.842
tAEWMA(0.94, 1%) 28 0.9962 0.002∗∗∗ 25 0.9737 0.132 19 0.6834 0.404 23 0.9266 0.235
tAEWMA(0.94, 2%) 23 0.9266 0.235 20 0.7644 0.383 16 0.4001 0.832 19 0.6834 0.723
tAEWMA(0.94, 3%) 16 0.4001 0.325 19 0.6834 0.723 15 0.3097 0.770 17 0.4961 0.842

tGARCH 26 0.9854 0.086∗ 17 0.4961 0.842 13 0.1627 0.534 19 0.6834 0.723
tEGARCH 16 0.4001 0.832 16 0.4001 0.832 13 0.1627 0.534 14 0.2296 0.665

Daily 2.5% VaR Backtesting – Long position

BTC ETH XRP LTC
xVaR Φ(z) CC xVaR Φ(z) CC xVaR Φ(z) CC xVaR Φ(z) CC

Random Walk 58 0.9916 0.004∗∗∗ 63 0.9992 0.004∗∗∗ 54 0.9615 0.024∗∗ 58 0.9916 0.032∗∗

tEWMA(0.925) 54 0.9615 0.070∗ 56 0.9812 0.005∗∗∗ 46 0.7011 0.107 54 0.9615 0.024∗∗

tEWMA(0.94) 47 0.7526 0.112 55 0.9728 0.021∗∗ 43 0.5247 0.081∗ 50 0.8746 0.107
tAEWMA(0.925, 1%) 50 0.8746 0.107 54 0.9615 0.024∗∗ 44 0.5860 0.092∗ 51 0.9038 0.100∗

tAEWMA(0.925, 2%) 42 0.4629 0.265 44 0.5860 0.092∗ 35 0.1191 0.454 39 0.2882 0.497
tAEWMA(0.925, 3%) 35 0.1191 0.212 36 0.1529 0.555 28 0.0117 0.042∗∗ 29 0.0174 0.066∗

tAEWMA(0.94, 1%) 45 0.6452 0.329 54 0.9615 0.024∗∗ 41 0.4020 0.233 48 0.7990 0.113
tAEWMA(0.94, 2%) 41 0.4020 0.233 45 0.6452 0.101 32 0.0500 0.203 38 0.2377 0.131
tAEWMA(0.94, 3%) 32 0.0500 0.078∗ 33 0.0682 0.275 23 0.0012 0.003∗∗∗ 29 0.0174 0.066∗

tGARCH 54 0.9615 0.154 39 0.2882 0.846 42 0.4629 0.995 47 0.7526 0.670
tEGARCH 37 0.1924 0.658 37 0.1924 0.346 33 0.0682 0.113 39 0.2882 0.846

Daily 5% VaR Backtesting – Long position

BTC ETH XRP LTC
xVaR Φ(z) CC xVaR Φ(z) CC xVaR Φ(z) CC xVaR Φ(z) CC

Random Walk 87 0.5793 0.266 90 0.7032 0.027∗∗ 78 0.2118 0.170 85 0.4911 0.100∗

tEWMA(0.925) 91 0.7404 0.074∗ 86 0.5354 0.113 78 0.2118 0.008∗∗∗ 83 0.4034 0.357
tEWMA(0.94) 87 0.5793 0.266 82 0.3610 0.063∗ 70 0.0456 0.007∗∗∗ 87 0.5793 0.484

tAEWMA(0.925, 1%) 88 0.6222 0.283 87 0.5793 0.052∗ 75 0.1284 0.034∗∗ 81 0.3203 0.279
tAEWMA(0.925, 2%) 77 0.1810 0.282 78 0.2118 0.026∗∗ 62 0.0050 0.002∗∗∗ 74 0.1066 0.152
tAEWMA(0.925, 3%) 61 0.0036 0.016∗∗ 65 0.0124 0.003∗∗∗ 49 0.0000 0.000∗∗∗ 62 0.0050 0.023∗∗

tAEWMA(0.94, 1%) 88 0.6222 0.502 81 0.3203 0.018∗∗ 70 0.0456 0.021∗∗ 81 0.3203 0.130
tAEWMA(0.94, 2%) 76 0.1532 0.234 77 0.1810 0.057∗ 58 0.0012 0.001∗∗∗ 71 0.0572 0.029∗∗

tAEWMA(0.94, 3%) 60 0.0025 0.006∗∗∗ 63 0.0068 0.010∗∗ 48 0.0000 0.000∗∗∗ 62 0.0050 0.014∗∗

tGARCH 99 0.9375 0.002∗∗∗ 87 0.5793 0.125 85 0.4911 0.429 91 0.7404 0.710
tEGARCH 91 0.7404 0.030∗∗ 83 0.4034 0.612 73 0.0875 0.120 77 0.1810 0.139

Backtesting results for 1-day-ahead left-tail 1%, 2.5% and 5% VaR forecasts for bitcoin (BTC),
ether (ETH), ripple (XRP) and litecoin (LTC), based on an out-of-sample period between 1 January
2017 - 31 August 2021. For each asset, the first column denotes the models used, where the EWMA,
AEWMA and GARCH models are based on a Student-t distribution assumption and the degrees
of freedom for EWMA and AEWMA are set to the ad hoc ν = 6 and for GARCH the degrees of
freedom are estimated via MLE. The remaining columns denote: the total number of realized VaR
exceedances xVaR; the probability Φ(z) of obtaining the realized number of VaR exceedances; the
p-value of the CC test. For Φ(z), the traffic light zones are defined as: Green if the probability is
below 0.95, Yellow if it is greater (or equal) than 0.95 and less than 0.9999; and Red if it exceeds
(or is equal to) 0.9999. For the CC test, the null hypothesis is that the VaR forecasting model is
specified correctly and the p-values are denoted with ∗, ∗∗, ∗∗∗ if the null hypothesis is rejected at
the 10%, 5% and 1% significance level respectively.
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Table 2.5: Backtesting results for 1-day-ahead right-tail VaR

Daily 1% VaR Backtesting – Short position

BTC ETH XRP LTC
xVaR Φ(z) CC xVaR Φ(z) CC xVaR Φ(z) CC xVaR Φ(z) CC

Random Walk 37 1.0000 0.000∗∗∗ 50 1.0000 0.000∗∗∗ 57 1.0000 0.000∗∗∗ 44 1.0000 0.000∗∗∗

tEWMA(0.925) 28 0.9962 0.040∗∗ 27 0.9923 0.017∗∗ 50 1.0000 0.000∗∗∗ 34 1.0000 0.000∗∗∗

tEWMA(0.94) 28 0.9962 0.040∗∗ 28 0.9962 0.002∗∗∗ 53 1.0000 0.000∗∗∗ 33 0.9999 0.000∗∗∗

tAEWMA(0.925,-1%) 22 0.8864 0.291 27 0.9923 0.002∗∗∗ 46 1.0000 0.000∗∗∗ 35 1.0000 0.000∗∗∗

tAEWMA(0.925,-3%) 13 0.1627 0.534 15 0.3097 0.263 30 0.9992 0.000∗∗∗ 24 0.9549 0.037∗∗

tAEWMA(0.925,-5%) 5 0.0017 0.003∗∗∗ 4 0.0007 0.001∗∗∗ 17 0.4961 0.000∗∗∗ 11 0.0707 0.002∗∗∗

tAEWMA(0.94,-1%) 21 0.8325 0.343 28 0.9962 0.011∗∗ 47 1.0000 0.000∗∗∗ 33 0.9999 0.001∗∗∗

tAEWMA(0.94,-3%) 12 0.1099 0.397 14 0.2296 0.197 30 0.9992 0.000∗∗∗ 22 0.8864 0.050∗

tAEWMA(0.94,-5%) 4 0.0007 0.001∗∗∗ 4 0.0007 0.001∗∗∗ 18 0.5924 0.000∗∗∗ 10 0.0433 0.001∗∗∗

tGARCH 23 0.9266 0.283 16 0.4001 0.325 34 1.0000 0.001∗∗∗ 26 0.9854 0.086∗

tEGARCH 17 0.4961 0.842 13 0.1627 0.534 28 0.9962 0.032∗∗ 14 0.2296 0.665

Daily 2.5% VaR Backtesting – Short position

BTC ETH XRP LTC
xVaR Φ(z) CC xVaR Φ(z) CC xVaR Φ(z) CC xVaR Φ(z) CC

Random Walk 59 0.9945 0.055∗ 74 1.0000 0.000∗∗∗ 85 1.0000 0.000∗∗∗ 66 0.9999 0.002∗∗∗

tEWMA(0.925) 52 0.9277 0.091∗ 69 1.0000 0.000∗∗∗ 78 1.0000 0.000∗∗∗ 67 0.9999 0.002∗∗∗

tEWMA(0.94) 49 0.8397 0.111 64 0.9996 0.000∗∗∗ 73 1.0000 0.000∗∗∗ 62 0.9987 0.010∗∗

tAEWMA(0.925,-1%) 45 0.6452 0.329 59 0.9945 0.001∗∗∗ 75 1.0000 0.000∗∗∗ 64 0.9996 0.005∗∗∗

tAEWMA(0.925,-3%) 24 0.0020 0.005∗∗∗ 37 0.1924 0.003∗∗∗ 58 0.9916 0.000∗∗∗ 45 0.6452 0.101
tAEWMA(0.925,-5%) 10 0.0000 0.000∗∗∗ 23 0.0012 0.000∗∗∗ 39 0.2882 0.000∗∗∗ 27 0.0077 0.007∗∗∗

tAEWMA(0.94,-1%) 44 0.5860 0.735 56 0.9812 0.001∗∗∗ 69 1.0000 0.000∗∗∗ 61 0.9978 0.014∗∗

tAEWMA(0.94,-3%) 23 0.0012 0.002∗∗∗ 37 0.1924 0.003∗∗∗ 58 0.9916 0.000∗∗∗ 41 0.4020 0.633
tAEWMA(0.94,-5%) 10 0.0000 0.000∗∗∗ 23 0.0012 0.000∗∗∗ 39 0.2882 0.000∗∗∗ 27 0.0077 0.007∗∗∗

tGARCH 55 0.9728 0.148 49 0.8397 0.301 63 0.9992 0.007∗∗∗ 63 0.9992 0.011∗∗

tEGARCH 40 0.3433 0.918 44 0.5860 0.315 57 0.9873 0.078∗ 54 0.9615 0.230

Daily 5% VaR Backtesting – Short position

BTC ETH XRP LTC
xVaR Φ(z) CC xVaR Φ(z) CC xVaR Φ(z) CC xVaR Φ(z) CC

Random Walk 105 0.9861 0.011∗∗ 113 0.9990 0.000∗∗∗ 103 0.9761 0.000∗∗∗ 94 0.8360 0.455
tEWMA(0.925) 95 0.8620 0.166 118 0.9999 0.000∗∗∗ 106 0.9896 0.000∗∗∗ 97 0.9052 0.251
tEWMA(0.94) 89 0.6636 0.296 113 0.9990 0.000∗∗∗ 101 0.9605 0.000∗∗∗ 92 0.7751 0.499

tAEWMA(0.925,-1%) 82 0.3610 0.560 108 0.9944 0.001∗∗∗ 104 0.9817 0.000∗∗∗ 91 0.7404 0.511
tAEWMA(0.925,-3%) 42 0.0000 0.000∗∗∗ 63 0.0068 0.001∗∗∗ 87 0.5793 0.000∗∗∗ 71 0.0572 0.141
tAEWMA(0.925,-5%) 21 0.0000 0.000∗∗∗ 39 0.0000 0.000∗∗∗ 59 0.0018 0.000∗∗∗ 49 0.0000 0.000∗∗∗

tAEWMA(0.94,-1%) 81 0.3203 0.505 100 0.9500 0.016∗∗ 100 0.9500 0.000∗∗∗ 89 0.6636 0.749
tAEWMA(0.94,-3%) 45 0.0000 0.000∗∗∗ 61 0.0036 0.002∗∗∗ 81 0.3203 0.000∗∗∗ 71 0.0572 0.141
tAEWMA(0.94,-5%) 20 0.0000 0.000∗∗∗ 41 0.0000 0.000∗∗∗ 57 0.0009 0.000∗∗∗ 47 0.0000 0.000∗∗∗

tGARCH 121 1.0000 0.001∗∗∗ 109 0.9959 0.020∗∗ 109 0.9959 0.000∗∗∗ 115 0.9995 0.002∗∗∗

tEGARCH 100 0.9500 0.276 96 0.8850 0.392 102 0.9691 0.001∗∗∗ 100 0.9500 0.276

Backtesting results for 1-day-ahead right-tail 1%, 2.5% and 5% VaR forecasts for bitcoin (BTC),
ether (ETH), ripple (XRP) and litecoin (LTC), based on an out-of-sample period between 1 January
2017 - 31 August 2021. For each asset, the first column denotes the models used, where the EWMA,
AEWMA and GARCH models are based on a Student-t distribution assumption and the degrees
of freedom for EWMA and AEWMA are set to the ad hoc ν = 6 and for GARCH the degrees of
freedom are estimated via MLE. The remaining columns denote: the total number of realized VaR
exceedances xVaR; the probability Φ(z) of obtaining the realized number of VaR exceedances; the
p-value of the CC test. For Φ(z), the traffic light zones are defined as: Green if the probability is
below 0.95, Yellow if it is greater (or equal) than 0.95 and less than 0.9999; and Red if it exceeds
(or is equal to) 0.9999. For the CC test, the null hypothesis is that the VaR forecasting model is
specified correctly and the p-values are denoted with ∗, ∗∗, ∗∗∗ if the null hypothesis is rejected at
the 10%, 5% and 1% significance level respectively.



65

is 8.52 and, contrary to VaR, none of the models produce fewer ES generalized

exceedances than the expected value simultaneously for all four assets; however,

several AEWMA models and both GARCH models produce fewer than 8.52 ES

exceedances for left-tail 1% ES e.g. for ripple and litecoin.47 The traffic light zones

for ES are defined similar to VaR, based on Φ(z). According to the traffic light ES

test, forecasts based on two AEWMA specifications and also the tEGARCH model

are in the green zone for all assets examined, and the symmetric tGARCH performs

almost equally well with the exception of bitcoin. In the exceedance residual (ER)

test for ES, rejection of the null hypothesis suggests that the ES model used is not

accurate. The 1-day-ahead 1% ES forecasts produced several AEWMA models and

also the GARCH and EGARCH are considered accurate even at the 10% significance

level of rejecting the ER test’s null hypothesis.

By comparison, for the right-tail daily 1% ES backtesting results shown in Table

2.7, the results are similar for bitcoin and ether forecasts, i.e. multilpe AEWMA and

GARCH specifications are in the green zone. However, as observed in the case of 1%

right-tail VaR, ripple and litecoin ES forecasts again present difficulties, with several

models in the red zone. In spite of this, the forecasts of two AEWMA specifications

are yet again in the green zone for all four assets, and succeed the ER test at 10% or

5% significance.

Further to 1% VaR and ES, the daily right- and left-tail VaR and ES backtesting

results at 2.5% significance shown in tables 2.4, 2.5, 2.6 and 2.7 (middle panel) and

at 5% (lower panel), indicate that even more EWMA-type model specifications can

produce accurate forecasts at higher VaR and ES significance levels. For instance,

the left-tail 2.5% daily VaR forecasts of the tAEWMA(0.94, 2%) model are in green

and succeed the CC VaR backtest for all assets at the 10% significance level of

null hypothesis rejection. Similarly, in the 5% VaR and ES forecasts, all models

attempted, even the random walk benchmark are either in the green or yellow zone

and very often fail to reject the null hypothesis of the CC and ER tests, indicating

47The expected value of the total ES generalized exceedances for 1% ES is calculated based on
equation (2.22) using N = 1, 704 and α = 1%.
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Table 2.6: Backtesting results for 1-day-ahead left-tail ES

Daily 1% ES Backtesting – Long position

BTC ETH XRP LTC
xES Φ(z) ER xES Φ(z) ER xES Φ(z) ER xES Φ(z) ER

Random Walk 29.0 1.0000 0.00∗∗∗ 28.2 1.0000 0.00∗∗∗ 22.1 1.0000 0.00∗∗∗ 25.0 1.0000 0.00∗∗∗

tEWMA(0.925) 17.8 1.0000 0.08∗ 17.3 0.9999 0.11 14.8 0.9961 0.07∗ 15.1 0.9972 0.12
tEWMA(0.94) 17.6 0.9999 0.13 15.8 0.9990 0.13 12.9 0.9670 0.14 13.6 0.9833 0.15

tAEWMA(0.925, 1%) 18.3 1.0000 0.12 15.4 0.9982 0.19 13.5 0.9826 0.09∗ 14.2 0.9915 0.20
tAEWMA(0.925, 2%) 14.4 0.9935 0.23 13.2 0.9759 0.15 11.0 0.8534 0.16 11.6 0.9021 0.26
tAEWMA(0.925, 3%) 8.9 0.5623 0.36 11.5 0.8977 0.25 7.7 0.3664 0.27 9.0 0.5816 0.31
tAEWMA(0.94, 1%) 18.2 1.0000 0.09∗ 14.5 0.9939 0.20 11.9 0.9233 0.16 13.1 0.9733 0.19
tAEWMA(0.94, 2%) 14.2 0.9917 0.23 13.1 0.9726 0.14 10.0 0.7278 0.21 11.2 0.8720 0.18
tAEWMA(0.94, 3%) 8.3 0.4695 0.36 11.4 0.8867 0.27 6.8 0.2386 0.33 8.8 0.5496 0.28

tGARCH 12.6 0.9557 0.67 9.2 0.6134 0.55 7.5 0.3358 0.42 8.9 0.5690 0.69
tEGARCH 8.7 0.5369 0.61 8.3 0.4560 0.62 6.4 0.1866 0.65 7.5 0.3354 0.55

Daily 2.5% ES Backtesting – Long position

BTC ETH XRP LTC
xES Φ(z) ER xES Φ(z) ER xES Φ(z) ER xES Φ(z) ER

Random Walk 39.6 1.0000 0.00∗∗∗ 41.3 1.0000 0.00∗∗∗ 33.5 0.9995 0.00∗∗∗ 36.8 1.0000 0.00∗∗∗

tEWMA(0.925) 30.8 0.9947 0.08∗ 32.8 0.9990 0.08∗ 25.5 0.8689 0.14 30.3 0.9923 0.10
tEWMA(0.94) 30.0 0.9898 0.04∗∗ 31.2 0.9959 0.12 23.1 0.6855 0.20 27.6 0.9555 0.13

tAEWMA(0.925, 1%) 30.9 0.9949 0.06∗ 30.8 0.9944 0.12 23.6 0.7346 0.18 28.1 0.9650 0.13
tAEWMA(0.925, 2%) 25.8 0.8881 0.10 26.2 0.9059 0.08∗ 19.1 0.2781 0.20 22.3 0.6069 0.11
tAEWMA(0.925, 3%) 18.8 0.2557 0.35 21.5 0.5171 0.13 15.2 0.0517 0.23 17.9 0.1826 0.10
tAEWMA(0.94, 1%) 30.0 0.9898 0.03∗∗ 29.6 0.9867 0.15 21.6 0.5336 0.21 26.1 0.9021 0.13
tAEWMA(0.94, 2%) 25.1 0.8448 0.12 25.2 0.8512 0.12 17.6 0.1603 0.23 21.1 0.4757 0.13
tAEWMA(0.94, 3%) 18.5 0.2280 0.28 20.5 0.4154 0.09∗ 14.2 0.0278 0.18 17.2 0.1373 0.14

tGARCH 27.8 0.9596 0.66 22.2 0.5930 0.36 20.2 0.3806 0.67 24.1 0.7695 0.62
tEGARCH 20.2 0.3844 0.66 19.9 0.3566 0.56 15.7 0.0654 0.72 18.7 0.2392 0.75

Daily 5% ES Backtesting – Long position

BTC ETH XRP LTC
xES Φ(z) ER xES Φ(z) ER xES Φ(z) ER xES Φ(z) ER

Random Walk 56.8 0.9967 0.00∗∗∗ 58.3 0.9987 0.00∗∗∗ 50.0 0.9215 0.00∗∗∗ 53.7 0.9831 0.00∗∗∗

tEWMA(0.925) 52.7 0.9729 0.05∗ 50.7 0.9399 0.02∗∗ 44.1 0.6110 0.06∗ 49.9 0.9186 0.03∗∗

tEWMA(0.94) 50.3 0.9304 0.07∗ 49.5 0.9074 0.02∗∗ 40.7 0.3580 0.07∗ 48.1 0.8527 0.10∗

tAEWMA(0.925, 1%) 51.3 0.9512 0.07∗ 49.9 0.9185 0.04∗∗ 40.4 0.3393 0.11 47.7 0.8369 0.05∗∗

tAEWMA(0.925, 2%) 43.0 0.5325 0.11 44.2 0.6169 0.06∗ 33.5 0.0414 0.14 40.4 0.3339 0.12
tAEWMA(0.925, 3%) 32.7 0.0298 0.27 36.0 0.1036 0.10∗ 26.5 0.0011 0.17 31.5 0.0167 0.22
tAEWMA(0.94, 1%) 49.8 0.9171 0.09∗ 48.7 0.8801 0.02∗∗ 37.7 0.1723 0.14 46.0 0.7406 0.07∗

tAEWMA(0.94, 2%) 42.2 0.4698 0.12 43.5 0.5701 0.07∗ 31.5 0.0170 0.18 38.8 0.2337 0.14
tAEWMA(0.94, 3%) 32.0 0.0215 0.29 35.3 0.0822 0.09∗ 25.3 0.0005 0.26 30.4 0.0097 0.28

tGARCH 54.4 0.9881 0.46 42.9 0.5241 0.62 41.6 0.4268 0.68 47.3 0.8153 0.61
tEGARCH 42.0 0.4514 0.94 38.7 0.2299 0.74 34.7 0.0644 0.81 39.3 0.2644 0.78

Backtesting results for 1-day-ahead left-tail 1%, 2.5% and 5% ES forecasts for bitcoin (BTC), ether
(ETH), ripple (XRP) and litecoin (LTC), based on an out-of-sample period between 1 January 2017
- 31 August 2021. For each asset, the first column denotes the models used, where the EWMA,
AEWMA and GARCH models are based on a Student-t distribution assumption and the degrees
of freedom for EWMA and AEWMA are set to the ad hoc ν = 6 and for GARCH the degrees of
freedom are estimated via MLE. The remaining columns denote: the realized total ES generalized
exceedances xES; the probability Φ(z) of obtaining the realized total ES generalized exceedances;
the p-value of the ER test. For Φ(z), the traffic light zones are defined as: Green if the probability
is below 0.95, Yellow if it is greater (or equal) than 0.95 and less than 0.9999; and Red if it exceeds
(or is equal to) 0.9999. For the ER test, the null hypothesis is that the ES forecasting model is
specified correctly and the p-values are denoted with ∗, ∗∗, ∗∗∗ if the null hypothesis is rejected at
the 10%, 5% and 1% significance level respectively.
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Table 2.7: Backtesting results for 1-day-ahead right-tail ES

Daily 1% ES Backtesting – Short position

BTC ETH XRP LTC
xES Φ(z) ER xES Φ(z) ER xES Φ(z) ER xES Φ(z) ER

Random Walk 29.5 1.0000 0.00∗∗∗ 32.3 1.0000 0.00∗∗∗ 47.2 1.0000 0.00∗∗∗ 32.6 1.0000 0.00∗∗∗

tEWMA(0.925) 17.4 0.9999 0.09∗ 17.5 0.9999 0.14 33.1 1.0000 0.01∗∗ 21.7 1.0000 0.07∗

tEWMA(0.94) 16.1 0.9993 0.18 16.9 0.9998 0.25 31.5 1.0000 0.04∗∗ 20.4 1.0000 0.10
tAEWMA(0.925,-1%) 15.1 0.9971 0.06∗ 16.0 0.9992 0.29 31.9 1.0000 0.01∗∗∗ 19.8 1.0000 0.15
tAEWMA(0.925,-3%) 6.5 0.1979 0.73 7.0 0.2622 0.76 19.1 1.0000 0.03∗∗ 12.4 0.9474 0.35
tAEWMA(0.925,-5%) 1.7 0.0019 1.00 2.4 0.0050 0.90 11.6 0.8993 0.03∗∗ 5.9 0.1360 0.46
tAEWMA(0.94,-1%) 14.0 0.9899 0.08∗ 15.4 0.9982 0.43 30.4 1.0000 0.03∗∗ 18.5 1.0000 0.17
tAEWMA(0.94,-3%) 6.0 0.1441 0.69 6.4 0.1872 0.80 18.9 1.0000 0.02∗∗ 11.6 0.9014 0.31
tAEWMA(0.94,-5%) 1.6 0.0017 1.00 2.3 0.0044 0.93 11.5 0.8952 0.06∗ 6.0 0.1463 0.36

tGARCH 11.1 0.8568 0.90 7.2 0.2857 0.98 16.0 0.9992 0.81 12.5 0.9546 0.71
tEGARCH 6.8 0.2332 0.95 5.6 0.1061 0.99 13.0 0.9716 0.93 6.5 0.1960 0.71

Daily 2.5% ES Backtesting – Short position

BTC ETH XRP LTC
xES Φ(z) ER xES Φ(z) ER xES Φ(z) ER xES Φ(z) ER

Random Walk 40.0 1.0000 0.00∗∗∗ 51.0 1.0000 0.00∗∗∗ 62.0 1.0000 0.00∗∗∗ 47.0 1.0000 0.00∗∗∗

tEWMA(0.925) 30.3 0.9921 0.06∗ 35.2 0.9999 0.49 53.5 1.0000 0.00∗∗∗ 41.4 1.0000 0.01∗∗

tEWMA(0.94) 28.8 0.9780 0.08∗ 33.5 0.9995 0.45 51.1 1.0000 0.00∗∗∗ 38.9 1.0000 0.02∗∗

tAEWMA(0.925,-1%) 25.9 0.8897 0.12 31.4 0.9966 0.44 51.0 1.0000 0.00∗∗∗ 38.2 1.0000 0.03∗∗

tAEWMA(0.925,-3%) 13.0 0.0132 0.39 19.4 0.3086 0.72 35.2 0.9999 0.05∗∗ 24.9 0.8295 0.17
tAEWMA(0.925,-5%) 5.2 0.0000 0.79 8.4 0.0003 0.98 21.8 0.5488 0.23 13.6 0.0202 0.40
tAEWMA(0.94,-1%) 25.4 0.8648 0.14 30.5 0.9934 0.45 49.5 1.0000 0.00∗∗∗ 36.2 1.0000 0.05∗∗

tAEWMA(0.94,-3%) 12.5 0.0090 0.41 19.0 0.2730 0.73 34.9 0.9999 0.04∗∗ 23.8 0.7461 0.16
tAEWMA(0.94,-5%) 5.0 0.0000 0.80 8.0 0.0002 0.99 21.5 0.5190 0.22 13.3 0.0158 0.42

tGARCH 27.0 0.9368 0.88 21.1 0.4813 1.00 36.8 1.0000 0.41 32.3 0.9983 0.66
tEGARCH 19.5 0.3195 0.97 17.5 0.1571 1.00 31.9 0.9977 0.67 23.2 0.6909 0.96

Daily 5% ES Backtesting – Short position

BTC ETH XRP LTC
xES Φ(z) ER xES Φ(z) ER xES Φ(z) ER xES Φ(z) ER

Random Walk 61.7 0.9999 0.00∗∗∗ 70.2 1.0000 0.00∗∗∗ 79.1 1.0000 0.00∗∗∗ 63.5 1.0000 0.00∗∗∗

tEWMA(0.925) 53.6 0.9820 0.05∗ 63.9 1.0000 0.25 73.0 1.0000 0.00∗∗∗ 60.3 0.9997 0.00∗∗∗

tEWMA(0.94) 51.3 0.9511 0.07∗ 60.9 0.9998 0.24 70.5 1.0000 0.00∗∗∗ 58.9 0.9991 0.00∗∗∗

tAEWMA(0.925,-1%) 44.9 0.6702 0.14 56.7 0.9964 0.32 70.2 1.0000 0.00∗∗∗ 57.9 0.9983 0.00∗∗∗

tAEWMA(0.925,-3%) 23.5 0.0001 0.30 34.4 0.0591 0.42 53.1 0.9774 0.00∗∗∗ 42.5 0.4902 0.04∗∗

tAEWMA(0.925,-5%) 10.7 0.0000 0.65 20.6 0.0000 0.83 35.9 0.0986 0.03∗∗ 26.2 0.0009 0.26
tAEWMA(0.94,-1%) 43.9 0.5990 0.17 54.4 0.9883 0.26 68.1 1.0000 0.00∗∗∗ 56.5 0.9961 0.00∗∗∗

tAEWMA(0.94,-3%) 23.3 0.0001 0.45 34.1 0.0525 0.38 51.3 0.9519 0.00∗∗∗ 41.5 0.4150 0.05∗

tAEWMA(0.94,-5%) 10.4 0.0000 0.64 20.3 0.0000 0.91 35.5 0.0867 0.02∗∗ 25.4 0.0005 0.23
tGARCH 58.5 0.9988 0.96 49.1 0.8940 1.00 60.2 0.9996 0.30 61.1 0.9998 0.52

tEGARCH 45.2 0.6923 1.00 44.8 0.6596 1.00 55.8 0.9941 0.62 49.3 0.8993 0.91

Backtesting results for 1-day-ahead right-tail 1%, 2.5% and 5% ES forecasts for bitcoin (BTC),
ether (ETH), ripple (XRP) and litecoin (LTC), based on an out-of-sample period between 1 January
2017 - 31 August 2021. For each asset, the first column denotes the models used, where the EWMA,
AEWMA and GARCH models are based on a Student-t distribution assumption and the degrees
of freedom for EWMA and AEWMA are set to the ad hoc ν = 6 and for GARCH the degrees of
freedom are estimated via MLE. The remaining columns denote: the realized total ES generalized
exceedances xES; the probability Φ(z) of obtaining the realized total ES generalized exceedances;
the p-value of the ER test. For Φ(z), the traffic light zones are defined as: Green if the probability
is below 0.95, Yellow if it is greater (or equal) than 0.95 and less than 0.9999; and Red if it exceeds
(or is equal to) 0.9999. For the ER test, the null hypothesis is that the ES forecasting model is
specified correctly and the p-values are denoted with ∗, ∗∗, ∗∗∗ if the null hypothesis is rejected at
the 10%, 5% and 1% significance level respectively.



68

that the forecasts are accurate. In fact, when forecasting 5% 1-day-ahead left-tail

VaR, even the random walk benchmark, is in the green zone for all four assets and

succeeds in the CC test at 10% significance for half of the assets, suggesting that

producing 5% 1-day-ahead left-tail VaR and ES forecasts sometimes does not even

require a heavy-tailed distribution assumption, so that the simple moving average

volatility model is almost on par with the more complex GARCH and EGARCH

models and with EWMA-type models.

The 1-day-ahead VaR and ES backtesting results shown in this Section are

consistent with most of the findings in the relevant literature as discussed in Section

2.2, such as Liu et al. (2020) who focus on VaR backtesting and find that VaR

forecasts produced by RiskMetrics-type models are increasingly accurate as the VaR

significance level increases. Moreover, Catania and Grassi (2021) examine GAS

model specifications against an EGARCH benchmark for 606 crypto assets and find

that the additional modelling complexity introduced by the GAS framework ‘pays

off’ for 5% and 1% ES and 5% VaR with increased accuracy, but less so for 1%

VaR. In that respect, the results presented in this Section for 1-day-ahead VaR

and ES forecast backtesting are somewhat in agreement with Catania and Grassi

(2021) in that introducing additional modelling complexity may sometimes ‘pay off’

in increased forecasting accuracy, especially at lower significance levels; however, we

often find that AEWMA specifications are on par with EGARCH in terms of VaR

and ES forecasting accuracy even at the 1% significance level.

Distribution Forecast Evaluation

Having examined quantile risk measures, we now present the results on univariate and

multivariate scores to measure the accuracy of the competing models at forecasting

the entire distribution of crypto asset 1-day-ahead log returns. The continuous ranked

probability score (CRPS) is used to assess univariate density forecasts and joint

distribution forecasts are evaluated with the energy score and also with the variogram

scores of orders p = 0.5, 1 and 2. Given the parametric distribution assumptions in
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the models used, i.e. normal for the random walk model and Student-t for the EWMA

and GARCH specifications, the 1-day-ahead volatility and covariance forecasts fully

define the 1-day-ahead distribution of log returns for each asset and also their joint

distribution, allowing for the scores’ calculation. All univariate and multivariate

scores are calculated using the scoringRules R package of Jordan et al. (2019).

The CRPS is calculated via a closed form formula for the 1-day-ahead log returns

density forecast produced by each model, based on the corresponding realized return.

For comparison purposes, the CRPS is averaged across the 4.5-year forecasting

period. Table 2.8 reports the outright average CRPS for the random walk benchmark

model and the average scores of all other models are expressed as a percentage of

benchmark model’s average score. Due to the negative orientation of scoring rules,

relative scores below 100% suggest possible outperformance against the benchmark,

and vice-versa. Beyond an outright comparison of the average scores, we also use

the scores to perform pair-wise comparisons of forecasting accuracy and calculate

the tN test statistic of Gneiting and Ranjan (2011) for the hypothesis test of equal

forecasting performance as per equation (2.32) in Section 2.3.

As shown in Table 2.8, the random walk benchmark produces a higher average

CRPS compared with most other models, although none of them achieve an average

CRPS lower than 97% of the benchmark’s average score. Amongst them, the

tAEWMA(0.94,-5%) model produces the highest CRPS for its density forecasts

across all four assets examined. The model with the lowest average score is always

a GARCH specification: for bitcoin, ether and litecoin it is the tEGARCH and

for ripple it is the tGARCH. However, and more importantly, the tN test statistic

calculated between the highest and lowest average scores for each asset is always

below 0.15, so the null hypothesis of equal forecasting performance is always accepted

e.g. at the 5% and 10% significance levels.48 This suggests that all models examined,

48As discussed in Section 2.3, the null hypothesis for the test of equal forecasting performance is
that tN = 0, tested against the two-sided alternative that tN ̸= 0, where tN ∼ N (0, 1). Therefore,
if the null hypothesis is to be rejected e.g. at the 5% or 10% significance levels, then tN should be
outside the 2.5% or 5% right- and left-tail critical values which are respectively ±1.96 and ±1.64.
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even the random walk benchmark, produce equally accurate 1-day-ahead density

forecasts for the returns of bitcoin, ether, ripple and litecoin.

This important result extends the findings of Catania and Grassi (2021) that

equal forecasting performance between an EGARCH benchmark model and more

complex GAS models is the most common outcome when examining CRPS for a

large number of crypto assets. Our results on the equal forecasting performance test

based on the average CRPS of each model reported in Table 2.8 for bitcoin, ether,

ripple and litecoin daily returns density forecasts indicate that e.g. the EGARCH

model is no more accurate than the random walk benchmark for which volatility

forecasts are produced with a 30-day equally-weighted moving average.

Table 2.8: Average CRPS of 1-day-ahead univariate density forecasts

BTC ETH XRP LTC

Random Walk 0.02226 0.03010 0.03436 0.03141
tEWMA(0.925) 98.92% 98.79% 98.78% 99.04%
tEWMA(0.94) 98.96% 98.87% 98.84% 99.06%

tAEWMA(0.925, 1%) 99.18% 98.87% 98.76% 99.08%
tAEWMA(0.925, 2%) 99.74% 99.07% 99.02% 99.27%
tAEWMA(0.925, 3%) 100.89% 99.50% 99.62% 99.75%
tAEWMA(0.925,-1%) 98.99% 98.75% 98.69% 99.04%
tAEWMA(0.925,-3%) 101.17% 99.52% 99.39% 99.72%
tAEWMA(0.925,-5%) 107.00% 102.19% 101.75% 102.10%
tAEWMA(0.94, 1%) 99.23% 98.96% 98.80% 99.10%
tAEWMA(0.94, 2%) 99.80% 99.17% 99.09% 99.32%
tAEWMA(0.94, 3%) 100.97% 99.62% 99.70% 99.83%
tAEWMA(0.94,-1%) 99.04% 98.83% 98.72% 99.06%
tAEWMA(0.94,-3%) 101.22% 99.61% 99.45% 99.76%
tAEWMA(0.94,-5%) 107.04% 102.27% 101.84% 102.15%

tGARCH 98.85% 97.99% 97.57% 98.79%
tEGARCH 98.70% 97.95% 97.69% 98.60%

Average CRPS of 1-day-ahead univariate density forecasts for bitcoin (BTC), ether (ETH), ripple
(XRP) and litecoin (LTC) daily log returns, based on an out-of-sample period between 1 January 2017
- 31 August 2021. For the random walk benchmark model the average CRPS is reported outright
and the average scores of the remaining models are expressed as a percentage of the benchmark’s
score. The EWMA, AEWMA and GARCH models are based on a Student-t distribution assumption
and the degrees of freedom for EWMA and AEWMA are set to the ad hoc ν = 6 and for GARCH
the degrees of freedom are estimated via MLE.

In the case of multivariate distribution forecasts for the returns of bitcoin, ether,

ripple and litecoin, the energy score and variogram scores are calculated by drawing
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10,000 random samples from the forecasted joint density of log returns produced by

each model, based on the corresponding realized returns.49 Again for comparison

purposes, each score is averaged across the 4.5-year forecasting period. Table 2.9

reports the outright average scores for the random walk benchmark model and the

average scores of all other models are again expressed relative to the benchmark’s

average score. Again, the tN test statistic for the equal forecasting performance

hypothesis test of Gneiting and Ranjan (2011) is used to determine whether the

multivariate scores produced are significantly different between different models.

As shown in Table 2.9, the random walk benchmark produces a higher average

energy score compared with most other models, but the lowest average variogram

scores; contrary to the CRPS results, the highest multivariate average scores are

produced by the ADCC-tEGARCH. However, we again find that all models exhibit

equal forecasting performance: when calculating the tN test statistic between the

highest and lowest average multivariate scores, tN is always below 0.5 for all mul-

tivariate scores, so again, the null hypothesis of equal forecasting performance is

accepted e.g. at the 5% and 10% significance levels for all multivariate scores. As

noted previously for CRPS, these results indicate that all models examined, even the

random walk, produce equally accurate 1-day-ahead joint density forecasts for the

returns of bitcoin, ether, ripple and litecoin. It therefore appears that overall, at the

daily frequency for bitcoin, ether, ripple and litecoin, when volatility and covariance

forecasting accuracy are evaluated via proper scoring rules, none of the multivariate

or univariate parametric models attempted perform any better than the simplest

30-day EQMA random walk benchmark.

2.5.2 Hourly Forecast Evaluation

Following the discussion of out-of-sample results at the daily frequency, we now

present the same analysis performed on a more recent sample of hourly bitcoin,

49Random samples from the multivariate normal and Student-t distributions are produced using
the mvnfast R package of Fasiolo (2016).
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Table 2.9: Average multivariate scores for 1-day-ahead joint density forecasts

ES VS0.5 VS1 VS2

Random Walk 0.06727 0.04398 0.00618 0.000056
tEWMA(0.925) 98.47% 191.76% 336.85% 4593.03%
tEWMA(0.94) 98.57% 193.84% 339.93% 4604.34%

tAEWMA(0.925, 1%) 98.93% 197.14% 347.37% 4685.54%
tAEWMA(0.925, 2%) 99.18% 197.11% 347.20% 4678.14%
tAEWMA(0.925, 3%) 99.66% 197.15% 347.50% 4687.37%
tAEWMA(0.925,-1%) 98.88% 197.02% 346.98% 4677.30%
tAEWMA(0.925,-3%) 99.57% 197.10% 347.32% 4684.58%
tAEWMA(0.925,-5%) 102.07% 197.12% 347.27% 4681.18%
tAEWMA(0.94, 1%) 99.02% 198.55% 349.17% 4680.90%
tAEWMA(0.94, 2%) 99.23% 198.52% 349.15% 4680.95%
tAEWMA(0.94, 3%) 99.73% 198.46% 348.98% 4678.45%
tAEWMA(0.94,-1%) 98.90% 198.49% 348.87% 4674.88%
tAEWMA(0.94,-3%) 99.62% 198.47% 349.06% 4679.32%
tAEWMA(0.94,-5%) 102.16% 198.47% 348.90% 4676.97%

DCC-tGARCH 98.43% 192.49% 334.12% 4766.96%
DCC-tEGARCH 102.14% 270.39% 568.93% 17838.91%
ADCC-tGARCH 98.35% 191.65% 332.35% 4731.02%

ADCC-tEGARCH 102.19% 270.28% 569.76% 19283.66%
Average multivariate scores for 1-day-ahead joint density forecasts of bitcoin, ether, ripple and
litecoin daily log returns, based on an out-of-sample period between 1 January 2017 - 31 August
2021. Each row reports for each model the energy score (ES) and variogram scores (VS) of order
p = 0.5, 1 and 2. For the random walk benchmark model each average score is reported outright and
the scores of the remaining models are expressed as a percentage of the benchmark’s corresponding
average score. The EWMA, AEWMA and GARCH models are based on a Student-t distribution
assumption and the degrees of freedom for EWMA and AEWMA are set to the ad hoc ν = 6 and
for GARCH the degrees of freedom are estimated via MLE.
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ether, ripple and litecoin log returns. In the following, left- and right-tail VaR and

ES backtesting and also the calculation of univariate and multivariate scores are

performed using hourly log returns of bitcoin, ether, ripple and litecoin and an out-

of-sample period between 1 May 2021 00:00 UTC - 1 July 2021 00:00 UTC. Similar

to the daily frequency analysis, we produce 1-hour-ahead volatility and covariance

forecasts for bitcoin, ether, ripple and litecoin for a total of 1,465 hourly observations.

For the random walk benchmark model, forecasts are based on an equally-weighted

72-hour moving average; the EWMA and AEWMA forecasts are again produced

with λ set ad hoc to 0.925 and 0.94 and the AEWMA η parameter is now set to

0.7%, 0.8% and 0.9% for left-tail VaR and ES and to 0.2% and -0.2% for right-tail

VaR.50 GARCH models are calibrated using a rolling estimation window of 4 months,

i.e. 2,882 hourly observations. The same distribution assumptions as in the daily

frequency analysis are followed, i.e. a normal for the random walk benchmark, a

Student-t distribution for the EWMA and AEWMA with ad hoc ν = 6 and similar

for the GARCH models with the degrees of freedom parameter estimated jointly

with the model parameters via MLE.

VaR and ES Backtesting

Hourly left- and right-tail VaR backtesting results at the 1%, 2.5% and 5% significance

level are shown in tables 2.10 and 2.11, where we report the total number of realized

VaR exceedances xVaR over the forecasting period, the probability Φ(z) of obtaining

xVaR or fewer realized VaR exceedances and the p-value of the conditional coverage

(CC) test.

As shown in Table 2.10 for left-tail (long position) 1% hourly VaR, the AEWMA

models are the only ones that produce fewer than the expected 14.65 exceedances

for 1% VaR.51 The AEWMA models appear to produce accurate left-tail 1% VaR

forecasts, i.e. they are in the green traffic light zone and the CC test’s null hypothesis

50Additional testing of other AEWMA η parameter choices is shown in Tables A2 and A3 of
Appendix A for the 1% daily VaR forecasts and the corresponding traffic light test.

51The expected number of total VaR exceedances for 1% VaR is calculated based on equation
(2.17) using N = 1, 465 and α = 1%.
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of an accurate VaR model is accepted even at the 10% level of significance. By

comparison, it is worth noting that the left-tail 1% hourly VaR forecasts from the

tEGARCH models are in the yellow zone but considered accurate based on the

CC test, and the standard tGARCH forecasts are in fact not considered accurate.

The right-tail (short position) hourly 1% VaR backtesting results shown in Table

2.11 appear to favour simple model specifications even more; for instance, the 1%

right-tail VaR forecasts produced by the symmetric tEWMA models are considered

accurate based on both the traffic light and CC tests, and even the simplest random

walk benchmark model produces accurate 1% VaR forecasts for bitcoin and ripple,

on par with the more complex GARCH specifications.

Similarly, hourly Expected Shortfall backtesting results are shown in Table 2.12

for left-tail (long position) ES and in Table 2.13 for the right tail (short position),

reporting the realized total ES generalized exceedances xES, the probability Φ(z) of

obtaining xES or fewer realized total ES generalized exceedances and the p-value of

the exceedance residual (ER) test.

The hourly left-tail (long position) 1% ES backtesting results shown in Table 2.12

indicate that some of the AEWMA models produce fewer than the expected 7.325

total ES generalized exceedances, although none of the models examined achieve this

across all assets examined.52 According to the traffic light ES test, only the forecasts

based on the tAEWMA(0.94, 0.9%) specification are in the green zone for all assets

examined, while the symmetric tEGARCH is ‘in the yellow’ for bitcoin and ripple.

The even simpler random walk benchmark and also the symmetric tEWMA models

yield ES forecasts that are in the red zone for some or all of the assets examined.

Interestingly, the ES exceedance residual (ER) backtest indicates that almost all

models attempted yield accurate ES forecasts even at the 10% level of rejecting the

ER test’s null hypothesis of a correctly specified ES model, with the sole exception

of the random walk benchmark. As noted previously for right-tail 1% VaR forecasts,

the right-tail 1% ES forecasts shown in Table 2.13 again favour simpler models, and

52The expected value of the total ES generalized exceedances for 1% ES is calculated based on
equation (2.22) using N = 1, 465 and α = 1%.
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forecasts produced even from the symmetric tEWMA model are on par with the

more complex GARCH specifications, with the random walk benchmark again being

the sole exception that produces inaccurate forecasts.

Moreover, as in the case of daily data, the 2.5% and the 5% left- and right-tail

VaR and ES backtesting results shown in tables 2.10, 2.11, 2.12 and 2.13 also indicate

that EWMA-type models, and sometimes even the random walk benchmark, can

produce accurate forecasts at higher VaR and ES significance levels and are therefore

again on par with the more complex GARCH models.

Distribution Forecast Evaluation

The hourly forecast distribution evaluation results are shown in Table 2.14 for CRPS

and in Table 2.15 for the multivariate scores. Similar to the daily forecast evaluation

shown previously, the random walk benchmark yields a higher average CPRS in the

univariate forecasting case compared with most other models and in the multivariate

case it exhibits the highest average energy score but the lowest average variogram

scores; a tEGARCH specification yields the lowest average CRPS for assets examined

except ripple for which tGARCH average CRPS is slightly lower, and similarly the

ADCC-tGARCH yields the lowest average energy score. Importantly and similar to

the discussion presented in the daily frequency analysis, the test of equal forecasting

performance does not distinguish between the models: the tN test statistic between

the highest and lowest average scores is always below 0.45, so the null hypothesis

of equal forecasting performance is accepted e.g. at the 5% and 10% significance

levels for all assets examined and for all univariate and multivariate scores.53 This

suggests that the equal forecasting performance identified previously based on the

average scores of daily returns density forecasts also holds at the hourly frequency:

i.e. all models examined, even the random walk benchmark, produce equally accurate

53As discussed in Section 2.3, the null hypothesis for the test of equal forecasting performance is
that tN = 0, tested against the two-sided alternative that tN ̸= 0, where tN ∼ N (0, 1). Therefore,
if the null hypothesis is to be rejected e.g. at the 5% or 10% significance levels, then tN should be
outside the 2.5% or 5% right- and left-tail critical values which are respectively ±1.96 and ±1.64.
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Table 2.10: Backtesting results for 1-hour-ahead left-tail VaR

Hourly 1% VaR Backtesting – Long position

BTC ETH XRP LTC
xVaR Φ(z) CC xVaR Φ(z) CC xVaR Φ(z) CC xVaR Φ(z) CC

Random Walk 36 1.0000 0.000∗∗∗ 36 1.0000 0.000∗∗∗ 38 1.0000 0.000∗∗∗ 36 1.0000 0.000∗∗∗

tEWMA(0.925) 29 0.9999 0.001∗∗∗ 29 0.9999 0.001∗∗∗ 29 0.9999 0.003∗∗∗ 26 0.9986 0.017∗∗

tEWMA(0.94) 28 0.9998 0.007∗∗∗ 27 0.9994 0.004∗∗∗ 27 0.9994 0.012∗∗ 24 0.9930 0.054∗

tAEWMA(0.925, 0.7%) 15 0.5366 0.340 15 0.5366 0.853 21 0.9523 0.174 14 0.4322 0.861
tAEWMA(0.925, 0.8%) 11 0.1689 0.557 14 0.4322 0.861 19 0.8733 0.280 13 0.3324 0.807
tAEWMA(0.925, 0.9%) 9 0.0690 0.264 13 0.3324 0.807 18 0.8105 0.325 13 0.3324 0.807
tAEWMA(0.94, 0.7%) 15 0.5366 0.340 15 0.5366 0.853 20 0.9200 0.227 14 0.4322 0.861
tAEWMA(0.94, 0.8%) 9 0.0690 0.264 14 0.4322 0.861 18 0.8105 0.325 14 0.4322 0.861
tAEWMA(0.94, 0.9%) 8 0.0404 0.154 11 0.1689 0.557 18 0.8105 0.325 12 0.2433 0.700

tGARCH 23 0.9858 0.087∗ 19 0.8733 0.429 26 0.9986 0.021∗∗ 24 0.9930 0.054∗

tEGARCH 21 0.9523 0.174 19 0.8733 0.429 22 0.9732 0.126 21 0.9523 0.216

Hourly 2.5% VaR Backtesting – Long position

BTC ETH XRP LTC
xVaR Φ(z) CC xVaR Φ(z) CC xVaR Φ(z) CC xVaR Φ(z) CC

Random Walk 55 0.9989 0.016∗∗ 55 0.9989 0.000∗∗∗ 58 0.9998 0.002∗∗∗ 54 0.9982 0.001∗∗∗

tEWMA(0.925) 59 0.9999 0.002∗∗∗ 52 0.9950 0.019∗∗ 54 0.9982 0.020∗∗ 52 0.9950 0.002∗∗∗

tEWMA(0.94) 57 0.9997 0.004∗∗∗ 51 0.9919 0.024∗∗ 52 0.9950 0.038∗∗ 50 0.9874 0.001∗∗∗

tAEWMA(0.925, 0.7%) 29 0.1010 0.364 38 0.5910 0.057∗ 35 0.3928 0.948 35 0.3928 0.409
tAEWMA(0.925, 0.8%) 26 0.0377 0.135 31 0.1733 0.578 34 0.3302 0.882 29 0.1010 0.232
tAEWMA(0.925, 0.9%) 19 0.0016 0.003∗∗∗ 29 0.1010 0.364 29 0.1010 0.364 28 0.0745 0.187
tAEWMA(0.94, 0.7%) 28 0.0745 0.272 36 0.4584 0.186 35 0.3928 0.948 34 0.3302 0.404
tAEWMA(0.94, 0.8%) 25 0.0259 0.089∗ 31 0.1733 0.578 32 0.2195 0.689 29 0.1010 0.232
tAEWMA(0.94, 0.9%) 21 0.0045 0.011∗∗ 28 0.0745 0.272 29 0.1010 0.364 25 0.0259 0.077∗

tGARCH 53 0.9969 0.037∗∗ 50 0.9874 0.031∗∗ 45 0.9195 0.376 44 0.8914 0.125
tEGARCH 48 0.9715 0.169 47 0.9587 0.134 42 0.8158 0.666 41 0.7680 0.237

Hourly 5% VaR Backtesting – Long position

BTC ETH XRP LTC
xVaR Φ(z) CC xVaR Φ(z) CC xVaR Φ(z) CC xVaR Φ(z) CC

Random Walk 82 0.8529 0.179 81 0.8236 0.086∗ 86 0.9368 0.142 82 0.8529 0.087∗

tEWMA(0.925) 89 0.9705 0.147 98 0.9985 0.000∗∗∗ 96 0.9968 0.003∗∗∗ 96 0.9968 0.001∗∗∗

tEWMA(0.94) 86 0.9368 0.330 94 0.9936 0.028∗∗ 93 0.9910 0.009∗∗∗ 97 0.9978 0.000∗∗∗

tAEWMA(0.925, 0.7%) 56 0.0193 0.098∗ 64 0.1337 0.042∗∗ 69 0.3052 0.802 67 0.2269 0.092∗

tAEWMA(0.925, 0.8%) 49 0.0018 0.008∗∗∗ 59 0.0438 0.008∗∗∗ 59 0.0438 0.194 61 0.0710 0.016∗∗

tAEWMA(0.925, 0.9%) 45 0.0004 0.001∗∗∗ 53 0.0076 0.000∗∗∗ 53 0.0076 0.029∗∗ 54 0.0105 0.009∗∗∗

tAEWMA(0.94, 0.7%) 53 0.0076 0.039∗∗ 66 0.1924 0.073∗ 67 0.2269 0.749 68 0.2646 0.042∗∗

tAEWMA(0.94, 0.8%) 48 0.0012 0.005∗∗∗ 59 0.0438 0.008∗∗∗ 61 0.0710 0.306 60 0.0561 0.034∗∗

tAEWMA(0.94, 0.9%) 45 0.0004 0.001∗∗∗ 53 0.0076 0.000∗∗∗ 55 0.0143 0.060∗ 55 0.0143 0.014∗∗

tGARCH 85 0.9205 0.344 89 0.9705 0.101 93 0.9910 0.051∗ 87 0.9504 0.035∗∗

tEGARCH 89 0.9705 0.184 83 0.8788 0.087∗ 93 0.9910 0.051∗ 79 0.7547 0.786

Backtesting results for 1-hour-ahead left-tail 1%, 2.5% and 5% VaR forecasts for bitcoin (BTC),
ether (ETH), ripple (XRP) and litecoin (LTC), based on an out-of-sample period between 1 May
2021 - 1 July 2021. For each asset, the first column denotes the models used, where the EWMA,
AEWMA and GARCH models are based on a Student-t distribution assumption and the degrees
of freedom for EWMA and AEWMA are set to the ad hoc ν = 6 and for GARCH the degrees of
freedom are estimated via MLE. The remaining columns denote: the total number of realized VaR
exceedances xVaR; the probability Φ(z) of obtaining the realized number of VaR exceedances; the
p-value of the CC test. For Φ(z), the traffic light zones are defined as: Green if the probability is
below 0.95, Yellow if it is greater (or equal) than 0.95 and less than 0.9999; and Red if it exceeds
(or is equal to) 0.9999. For the CC test, the null hypothesis is that the VaR forecasting model is
specified correctly and the p-values are denoted with ∗, ∗∗, ∗∗∗ if the null hypothesis is rejected at
the 10%, 5% and 1% significance level respectively.
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Table 2.11: Backtesting results for 1-hour-ahead right-tail VaR

Hourly 1% VaR Backtesting – Short position

BTC ETH XRP LTC
xVaR Φ(z) CC xVaR Φ(z) CC xVaR Φ(z) CC xVaR Φ(z) CC

Random Walk 19 0.8733 0.280 27 0.9994 0.009∗∗∗ 20 0.9200 0.313 24 0.9930 0.054∗

tEWMA(0.925) 16 0.6385 0.788 16 0.6385 0.788 20 0.9200 0.227 16 0.6385 0.788
tEWMA(0.94) 15 0.5366 0.853 15 0.5366 0.853 17 0.7314 0.683 16 0.6385 0.788

tAEWMA(0.925, 0.2%) 17 0.7314 0.683 17 0.7314 0.683 17 0.7314 0.683 16 0.6385 0.788
tAEWMA(0.925,-0.2%) 15 0.5366 0.853 16 0.6385 0.788 18 0.8105 0.557 17 0.7314 0.683
tAEWMA(0.94, 0.2%) 12 0.2433 0.700 17 0.7314 0.683 17 0.7314 0.683 16 0.6385 0.788
tAEWMA(0.94,-0.2%) 15 0.5366 0.853 15 0.5366 0.853 16 0.6385 0.788 16 0.6385 0.788

tGARCH 13 0.3324 0.807 12 0.2433 0.700 15 0.5366 0.853 13 0.3324 0.807
tEGARCH 12 0.2433 0.700 12 0.2433 0.700 13 0.3324 0.807 12 0.2433 0.700

Hourly 2.5% VaR Backtesting – Short position

BTC ETH XRP LTC
xVaR Φ(z) CC xVaR Φ(z) CC xVaR Φ(z) CC xVaR Φ(z) CC

Random Walk 37 0.5250 0.613 37 0.5250 0.382 38 0.5910 0.635 33 0.2721 0.382
tEWMA(0.925) 29 0.1010 0.364 33 0.2721 0.793 39 0.6545 0.246 30 0.1338 0.467
tEWMA(0.94) 29 0.1010 0.133 32 0.2195 0.689 40 0.7139 0.253 30 0.1338 0.467

tAEWMA(0.925, 0.2%) 26 0.0377 0.108 32 0.2195 0.689 36 0.4584 0.186 28 0.0745 0.272
tAEWMA(0.925,-0.2%) 29 0.1010 0.133 30 0.1338 0.467 40 0.7139 0.253 27 0.0536 0.145
tAEWMA(0.94, 0.2%) 25 0.0259 0.077∗ 32 0.2195 0.689 39 0.6545 0.637 28 0.0745 0.272
tAEWMA(0.94,-0.2%) 29 0.1010 0.364 31 0.1733 0.578 35 0.3928 0.518 27 0.0536 0.145

tGARCH 28 0.0745 0.272 30 0.1338 0.467 32 0.2195 0.689 25 0.0259 0.077∗

tEGARCH 25 0.0259 0.077∗ 29 0.1010 0.232 29 0.1010 0.232 26 0.0377 0.108

Hourly 5% VaR Backtesting – Short position

BTC ETH XRP LTC
xVaR Φ(z) CC xVaR Φ(z) CC xVaR Φ(z) CC xVaR Φ(z) CC

Random Walk 55 0.0143 0.014∗∗ 71 0.3937 0.919 62 0.0887 0.149 49 0.0018 0.008∗∗∗

tEWMA(0.925) 63 0.1096 0.338 72 0.4404 0.958 62 0.0887 0.023∗∗ 67 0.2269 0.032∗∗

tEWMA(0.94) 61 0.0710 0.216 75 0.5831 0.818 60 0.0561 0.034∗∗ 61 0.0710 0.114
tAEWMA(0.925, 0.2%) 56 0.0193 0.083∗ 70 0.3484 0.866 61 0.0710 0.047∗∗ 63 0.1096 0.031∗∗

tAEWMA(0.925,-0.2%) 61 0.0710 0.306 76 0.6292 0.827 62 0.0887 0.023∗∗ 64 0.1337 0.112
tAEWMA(0.94, 0.2%) 56 0.0193 0.049∗∗ 66 0.1924 0.677 59 0.0438 0.062∗ 57 0.0257 0.031∗∗

tAEWMA(0.94,-0.2%) 61 0.0710 0.306 74 0.5358 0.585 61 0.0710 0.047∗∗ 63 0.1096 0.192
tGARCH 59 0.0438 0.194 77 0.6735 0.451 60 0.0561 0.085∗ 55 0.0143 0.051∗

tEGARCH 62 0.0887 0.373 71 0.3937 0.654 55 0.0143 0.005∗∗∗ 54 0.0105 0.042∗∗

Backtesting results for 1-hour-ahead right-tail 1%, 2.5% and 5% VaR forecasts for bitcoin (BTC),
ether (ETH), ripple (XRP) and litecoin (LTC), based on an out-of-sample period between 1 May
2021 - 1 July 2021. For each asset, the first column denotes the models used, where the EWMA,
AEWMA and GARCH models are based on a Student-t distribution assumption and the degrees
of freedom for EWMA and AEWMA are set to the ad hoc ν = 6 and for GARCH the degrees of
freedom are estimated via MLE. The remaining columns denote: the total number of realized VaR
exceedances xVaR; the probability Φ(z) of obtaining the realized number of VaR exceedances; the
p-value of the CC test. For Φ(z), the traffic light zones are defined as: Green if the probability is
below 0.95, Yellow if it is greater (or equal) than 0.95 and less than 0.9999; and Red if it exceeds
(or is equal to) 0.9999. For the CC test, the null hypothesis is that the VaR forecasting model is
specified correctly and the p-values are denoted with ∗, ∗∗, ∗∗∗ if the null hypothesis is rejected at
the 10%, 5% and 1% significance level respectively.
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Table 2.12: Backtesting results for 1-hour-ahead left-tail ES

Hourly 1% ES Backtesting – Long position

BTC ETH XRP LTC
xES Φ(z) ER xES Φ(z) ER xES Φ(z) ER xES Φ(z) ER

Random Walk 25.5 1.0000 0.00∗∗∗ 24.0 1.0000 0.02∗∗ 29.0 1.0000 0.00∗∗∗ 26.8 1.0000 0.00∗∗∗

tEWMA(0.925) 19.3 1.0000 0.02∗∗ 13.5 0.9974 0.40 19.6 1.0000 0.02∗∗ 15.0 0.9998 0.29
tEWMA(0.94) 18.1 1.0000 0.04∗∗ 12.5 0.9904 0.37 18.1 1.0000 0.03∗∗ 14.6 0.9995 0.23

tAEWMA(0.925, 0.7%) 7.7 0.5745 0.26 8.0 0.6237 0.32 13.2 0.9961 0.11 8.5 0.7087 0.25
tAEWMA(0.925, 0.8%) 6.2 0.3000 0.21 7.1 0.4559 0.32 12.1 0.9848 0.13 8.0 0.6147 0.27
tAEWMA(0.925, 0.9%) 5.2 0.1713 0.21 6.1 0.2866 0.36 11.1 0.9575 0.13 7.3 0.4978 0.33
tAEWMA(0.94, 0.7%) 7.4 0.5201 0.33 7.4 0.5100 0.31 12.3 0.9876 0.14 8.5 0.7067 0.25
tAEWMA(0.94, 0.8%) 5.8 0.2419 0.14 6.4 0.3363 0.36 11.4 0.9681 0.14 7.8 0.5894 0.34
tAEWMA(0.94, 0.9%) 5.1 0.1589 0.16 5.6 0.2157 0.32 10.5 0.9225 0.21 7.2 0.4755 0.29

tGARCH 13.6 0.9977 0.24 9.7 0.8587 0.34 15.1 0.9998 0.28 12.4 0.9897 0.49
tEGARCH 12.1 0.9849 0.29 10.0 0.8881 0.36 13.4 0.9971 0.36 10.7 0.9401 0.40

Hourly 2.5% ES Backtesting – Long position

BTC ETH XRP LTC
xES Φ(z) ER xES Φ(z) ER xES Φ(z) ER xES Φ(z) ER

Random Walk 37.6 1.0000 0.00∗∗∗ 37.6 1.0000 0.00∗∗∗ 41.1 1.0000 0.00∗∗∗ 37.6 1.0000 0.00∗∗∗

tEWMA(0.925) 35.0 1.0000 0.05∗∗ 29.6 0.9994 0.12 33.1 1.0000 0.01∗∗ 30.2 0.9997 0.10
tEWMA(0.94) 33.4 1.0000 0.06∗ 28.4 0.9983 0.15 31.9 1.0000 0.04∗∗ 29.3 0.9992 0.11

tAEWMA(0.925, 0.7%) 16.3 0.2852 0.20 18.3 0.4942 0.35 22.0 0.8542 0.02∗∗ 17.9 0.4568 0.29
tAEWMA(0.925, 0.8%) 13.7 0.0918 0.27 16.3 0.2760 0.32 20.1 0.7014 0.04∗∗ 16.3 0.2787 0.26
tAEWMA(0.925, 0.9%) 11.3 0.0214 0.21 14.5 0.1365 0.37 18.5 0.5244 0.03∗∗ 14.9 0.1588 0.34
tAEWMA(0.94, 0.7%) 15.8 0.2295 0.22 17.6 0.4190 0.37 21.2 0.7987 0.05∗∗ 18.0 0.4662 0.28
tAEWMA(0.94, 0.8%) 13.3 0.0739 0.27 15.6 0.2204 0.34 19.5 0.6289 0.04∗∗ 16.4 0.2929 0.23
tAEWMA(0.94, 0.9%) 11.1 0.0185 0.32 13.9 0.0997 0.37 17.9 0.4528 0.05∗ 15.1 0.1731 0.19

tGARCH 28.4 0.9982 0.32 25.1 0.9749 0.39 26.0 0.9871 0.11 24.4 0.9616 0.18
tEGARCH 26.7 0.9923 0.28 23.4 0.9284 0.41 25.2 0.9768 0.13 23.6 0.9369 0.16

Hourly 5% ES Backtesting – Long position

BTC ETH XRP LTC
xES Φ(z) ER xES Φ(z) ER xES Φ(z) ER xES Φ(z) ER

Random Walk 52.3 0.9994 0.00∗∗∗ 52.9 0.9996 0.00∗∗∗ 56.8 1.0000 0.00∗∗∗ 52.8 0.9996 0.00∗∗∗

tEWMA(0.925) 54.4 0.9999 0.01∗∗ 51.5 0.9990 0.20 54.8 0.9999 0.04∗∗ 52.8 0.9996 0.14
tEWMA(0.94) 53.3 0.9997 0.01∗∗∗ 49.3 0.9957 0.18 53.0 0.9996 0.03∗∗ 51.0 0.9985 0.17

tAEWMA(0.925, 0.7%) 30.4 0.0980 0.21 34.2 0.3054 0.26 35.6 0.4161 0.13 33.9 0.2869 0.31
tAEWMA(0.925, 0.8%) 26.5 0.0185 0.26 31.0 0.1248 0.31 32.8 0.2121 0.09∗ 30.6 0.1080 0.35
tAEWMA(0.925, 0.9%) 22.8 0.0022 0.39 28.3 0.0437 0.35 30.3 0.0946 0.09∗ 27.7 0.0323 0.35
tAEWMA(0.94, 0.7%) 29.7 0.0777 0.18 33.8 0.2789 0.34 35.4 0.4032 0.12 33.2 0.2392 0.35
tAEWMA(0.94, 0.8%) 26.1 0.0152 0.26 30.7 0.1098 0.32 32.6 0.2055 0.13 29.9 0.0841 0.33
tAEWMA(0.94, 0.9%) 22.6 0.0019 0.39 28.0 0.0371 0.34 30.1 0.0894 0.12 27.1 0.0246 0.33

tGARCH 50.0 0.9971 0.08∗ 47.0 0.9841 0.32 49.3 0.9955 0.27 44.2 0.9398 0.30
tEGARCH 49.2 0.9953 0.17 45.1 0.9601 0.22 46.5 0.9788 0.44 41.1 0.8228 0.23

Backtesting results for 1-hour-ahead left-tail 1%, 2.5% and 5% ES forecasts for bitcoin (BTC),
ether (ETH), ripple (XRP) and litecoin (LTC), based on an out-of-sample period between 1 May
2021 - 1 July 2021. For each asset, the first column denotes the models used, where the EWMA,
AEWMA and GARCH models are based on a Student-t distribution assumption and the degrees
of freedom for EWMA and AEWMA are set to the ad hoc ν = 6 and for GARCH the degrees of
freedom are estimated via MLE. The remaining columns denote: the realized total ES generalized
exceedances xES; the probability Φ(z) of obtaining the realized total ES generalized exceedances;
the p-value of the ER test. For Φ(z), the traffic light zones are defined as: Green if the probability
is below 0.95, Yellow if it is greater (or equal) than 0.95 and less than 0.9999; and Red if it exceeds
(or is equal to) 0.9999. For the ER test, the null hypothesis is that the ES forecasting model is
specified correctly and the p-values are denoted with ∗, ∗∗, ∗∗∗ if the null hypothesis is rejected at
the 10%, 5% and 1% significance level respectively.
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Table 2.13: Backtesting results for 1-hour-ahead right-tail ES

Hourly 1% ES Backtesting – Short position

BTC ETH XRP LTC
xES Φ(z) ER xES Φ(z) ER xES Φ(z) ER xES Φ(z) ER

Random Walk 12.7 0.9931 0.03∗∗ 17.5 1.0000 0.02∗∗ 15.5 0.9999 0.00∗∗∗ 17.8 1.0000 0.00∗∗∗

tEWMA(0.925) 9.2 0.8055 0.34 9.3 0.8202 0.34 10.4 0.9182 0.33 9.7 0.8556 0.48
tEWMA(0.94) 8.4 0.6939 0.45 8.8 0.7503 0.33 9.3 0.8124 0.38 9.2 0.8069 0.54

tAEWMA(0.925, 0.2%) 8.3 0.6784 0.51 8.8 0.7441 0.48 9.5 0.8401 0.28 9.5 0.8423 0.53
tAEWMA(0.925,-0.2%) 8.7 0.7279 0.41 9.0 0.7721 0.37 9.8 0.8654 0.32 8.8 0.7425 0.65
tAEWMA(0.94, 0.2%) 7.5 0.5357 0.28 8.3 0.6684 0.52 8.6 0.7198 0.42 9.1 0.7866 0.59
tAEWMA(0.94,-0.2%) 8.0 0.6208 0.59 8.4 0.6874 0.35 8.9 0.7697 0.38 8.3 0.6749 0.64

tGARCH 5.2 0.1725 0.90 5.5 0.2016 0.65 6.9 0.4247 0.63 6.5 0.3559 0.80
tEGARCH 5.7 0.2282 0.62 5.4 0.1853 0.70 5.8 0.2510 0.69 7.4 0.5095 0.48

Hourly 2.5% ES Backtesting – Short position

BTC ETH XRP LTC
xES Φ(z) ER xES Φ(z) ER xES Φ(z) ER xES Φ(z) ER

Random Walk 22.5 0.8882 0.04∗∗ 25.7 0.9838 0.00∗∗∗ 23.5 0.9347 0.01∗∗∗ 24.5 0.9629 0.00∗∗∗

tEWMA(0.925) 18.6 0.5287 0.11 18.7 0.5401 0.26 21.7 0.8361 0.32 17.1 0.3589 0.19
tEWMA(0.94) 17.6 0.4173 0.21 18.4 0.5061 0.23 20.1 0.7001 0.44 16.8 0.3293 0.32

tAEWMA(0.925, 0.2%) 17.0 0.3564 0.12 18.3 0.5018 0.26 20.9 0.7686 0.19 16.7 0.3195 0.16
tAEWMA(0.925,-0.2%) 17.8 0.4388 0.20 17.2 0.3770 0.18 20.6 0.7465 0.41 16.7 0.3166 0.15
tAEWMA(0.94, 0.2%) 16.3 0.2767 0.15 18.0 0.4626 0.31 18.9 0.5725 0.49 16.4 0.2868 0.23
tAEWMA(0.94,-0.2%) 16.9 0.3422 0.30 16.8 0.3295 0.30 19.1 0.5930 0.34 16.4 0.2855 0.24

tGARCH 14.1 0.1120 0.82 14.5 0.1327 0.73 16.5 0.3046 0.44 13.7 0.0917 0.51
tEGARCH 14.2 0.1161 0.57 14.0 0.1088 0.71 15.0 0.1662 0.50 13.8 0.0977 0.47

Hourly 5% ES Backtesting – Short position

BTC ETH XRP LTC
xES Φ(z) ER xES Φ(z) ER xES Φ(z) ER xES Φ(z) ER

Random Walk 34.0 0.2973 0.01∗∗∗ 40.9 0.8090 0.03∗∗ 36.4 0.4816 0.01∗∗ 32.2 0.1800 0.00∗∗∗

tEWMA(0.925) 32.4 0.1891 0.49 36.3 0.4735 0.53 37.5 0.5752 0.12 32.8 0.2150 0.56
tEWMA(0.94) 31.8 0.1609 0.44 34.8 0.3539 0.69 36.2 0.4663 0.14 31.1 0.1281 0.42

tAEWMA(0.925, 0.2%) 29.6 0.0730 0.39 34.8 0.3516 0.58 35.7 0.4257 0.18 30.9 0.1179 0.57
tAEWMA(0.925,-0.2%) 31.3 0.1348 0.51 34.8 0.3569 0.71 37.1 0.5373 0.13 31.9 0.1671 0.51
tAEWMA(0.94, 0.2%) 28.8 0.0538 0.42 33.2 0.2407 0.55 34.5 0.3286 0.19 29.3 0.0654 0.45
tAEWMA(0.94,-0.2%) 30.8 0.1137 0.49 33.9 0.2847 0.72 35.9 0.4409 0.18 30.4 0.1002 0.55

tGARCH 29.1 0.0608 0.77 33.1 0.2356 0.97 31.9 0.1669 0.54 26.7 0.0206 0.68
tEGARCH 27.4 0.0279 0.85 33.0 0.2257 0.97 28.7 0.0511 0.63 27.6 0.0309 0.61

Backtesting results for 1-hour-ahead right-tail 1%, 2.5% and 5% ES forecasts for bitcoin (BTC),
ether (ETH), ripple (XRP) and litecoin (LTC), based on an out-of-sample period between 1 May
2021 - 1 July 2021. For each asset, the first column denotes the models used, where the EWMA,
AEWMA and GARCH models are based on a Student-t distribution assumption and the degrees
of freedom for EWMA and AEWMA are set to the ad hoc ν = 6 and for GARCH the degrees of
freedom are estimated via MLE. The remaining columns denote: the realized total ES generalized
exceedances xES; the probability Φ(z) of obtaining the realized total ES generalized exceedances;
the p-value of the ER test. For Φ(z), the traffic light zones are defined as: Green if the probability
is below 0.95, Yellow if it is greater (or equal) than 0.95 and less than 0.9999; and Red if it exceeds
(or is equal to) 0.9999. For the ER test, the null hypothesis is that the ES forecasting model is
specified correctly and the p-values are denoted with ∗, ∗∗, ∗∗∗ if the null hypothesis is rejected at
the 10%, 5% and 1% significance level respectively.
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1-hour-ahead univariate and multivariate density forecasts for the returns of bitcoin,

ether, ripple and litecoin.

Table 2.14: Average CRPS of 1-hour-ahead univariate density forecasts

BTC ETH XRP LTC

Random Walk 0.00613 0.00858 0.00920 0.00890
tEWMA(0.925) 99.25% 99.13% 98.44% 99.25%
tEWMA(0.94) 99.19% 99.11% 98.43% 99.22%

tAEWMA(0.925, 0.2%) 99.15% 99.04% 98.40% 99.16%
tAEWMA(0.925, 0.7%) 99.85% 99.01% 98.70% 99.16%
tAEWMA(0.925, 0.8%) 100.32% 99.12% 98.89% 99.28%
tAEWMA(0.925, 0.9%) 100.94% 99.30% 99.13% 99.46%
tAEWMA(0.925,-0.2%) 99.36% 99.20% 98.49% 99.32%
tAEWMA(0.94, 0.2%) 99.10% 99.02% 98.40% 99.14%
tAEWMA(0.94, 0.7%) 99.87% 99.04% 98.74% 99.20%
tAEWMA(0.94, 0.8%) 100.35% 99.17% 98.94% 99.33%
tAEWMA(0.94, 0.9%) 100.97% 99.35% 99.19% 99.52%
tAEWMA(0.94,-0.2%) 99.30% 99.17% 98.49% 99.28%

tGARCH 98.91% 98.82% 98.04% 98.89%
tEGARCH 98.56% 98.63% 98.10% 98.73%

Average CRPS of 1-hour-ahead univariate density forecasts for bitcoin (BTC), ether (ETH), ripple
(XRP) and litecoin (LTC) hourly log returns, based on an out-of-sample period between 1 May 2021
- 1 July 2021. For the random walk benchmark model the average CRPS is reported outright and
the average scores of the remaining models are expressed as a percentage of the benchmark’s score.
The EWMA, AEWMA and GARCH models are based on a Student-t distribution assumption and
the degrees of freedom for EWMA and AEWMA are set to the ad hoc ν = 6 and for GARCH the
degrees of freedom are estimated via MLE.

2.6 Summary and Conclusions

In this chapter, we conduct an out-of-sample analysis on bitcoin, ether, ripple and

litecoin using both daily and hourly log returns. Daily forecasts are produced between

January 2017 - August 2021 and hourly forecasts between 1 May 2021 - 1 July 2021.

Volatility is modelled using a simple equally-weighted moving average benchmark

model (random walk) and also RiskMetrics-type EWMA models, an asymmetric

EWMA specification and GARCH models. In order to produce multivariate density

forecasts, the correlation structure is modelled via the multivariate random walk and

EWMA models and also using the symmetric and asymmetric DCC models. The
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Table 2.15: Average multivariate scores for 1-hour-ahead joint density forecasts

ES VS0.5 VS1 VS2

Random Walk 0.01788 0.00519 0.00008 0.00000002
tEWMA(0.925) 98.67% 305.95% 895.48% 22178.19%
tEWMA(0.94) 98.69% 307.40% 900.18% 22158.81%

tAEWMA(0.925, 0.2%) 98.90% 314.23% 936.95% 23342.87%
tAEWMA(0.925, 0.7%) 99.06% 314.31% 936.87% 23342.93%
tAEWMA(0.925, 0.8%) 99.27% 314.33% 936.83% 23355.64%
tAEWMA(0.925, 0.9%) 99.46% 314.38% 937.20% 23350.47%
tAEWMA(0.925,-0.2%) 99.05% 314.13% 936.26% 23334.51%
tAEWMA(0.94, 0.2%) 98.88% 314.76% 936.31% 23135.99%
tAEWMA(0.94, 0.7%) 99.14% 314.68% 936.27% 23136.28%
tAEWMA(0.94, 0.8%) 99.21% 314.86% 936.89% 23144.19%
tAEWMA(0.94, 0.9%) 99.50% 314.75% 936.33% 23139.95%
tAEWMA(0.94,-0.2%) 99.03% 314.73% 936.40% 23144.35%

DCC-tGARCH 98.71% 312.46% 911.37% 21879.95%
DCC-tEGARCH 98.60% 313.16% 905.05% 21706.41%
ADCC-tGARCH 98.68% 311.88% 907.76% 21739.47%

ADCC-tEGARCH 98.62% 312.99% 902.99% 21720.21%
Average multivariate scores for 1-hour-ahead joint density forecasts of bitcoin, ether, ripple and
litecoin hourly log returns, based on an out-of-sample period between 1 May 2021 - 1 July 2021.
Each row reports for each model the energy score (ES) and variogram scores (VS) of order p = 0.5,
1 and 2. For the random walk benchmark model each average score is reported outright and the
scores of the remaining models are expressed as a percentage of the benchmark’s corresponding
average score. The EWMA, AEWMA and GARCH models are based on a Student-t distribution
assumption and the degrees of freedom for EWMA and AEWMA are set to the ad hoc ν = 6 and
for GARCH the degrees of freedom are estimated via MLE.
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1-period-ahead left- and right-tail Value-at-Risk and Expected Shortfall are forecasted

for each asset and at multiple significance levels. VaR forecasts are backtested using

the conditional coverage and the industry standard traffic light tests and similarly,

ES is backtested with the exceedance residual test and again a modified traffic light

test. Returns distribution forecasts are also assessed using the continuous ranked

probability score (CRPS) for each asset and multivariate scoring rules such as the

energy and variogram scores for the joint density forecasts of bitcoin, ether, ripple

and litecoin returns.

Overall, the daily left- and right-tail VaR and ES backtesting results are consistent

with the relevant literature as discussed in Section 2.2, such as Liu et al. (2020),

in that daily VaR and ES forecasting models are more accurate as the VaR and

ES significance level increases. Moreover, the daily backtesting results shown in

Section 2.5 extend the findings of Catania and Grassi (2021) to even simpler models

compared with the EGARCH benchmark used by the authors. Catania and Grassi

(2021) find that 1% daily left-tail VaR forecasts produced by an EGARCH benchmark

model are often on par with more complex GAS model specifications. Our results

for both daily and hourly VaR and ES forecasts for both the left and right tail show

that the asymmetric EWMA with ad hoc parameter choices are almost always on

par with a more complex EGARCH specification. This finding sometimes extends

to the simpler RiskMetrics-type symmetric EWMA specifications and even to the

equally-weighted moving average random walk model.

Regarding the evaluation of the returns density forecasts for bitcoin, ether, ripple

and litecoin, and the test of equal forecasting performance, all models examined, even

the random walk benchmark, are found to be equally accurate both at the univariate

and multivariate forecasting case and both at the daily and hourly frequencies. This

important result extends the findings of Catania and Grassi (2021) on crypto asset

returns distribution forecasting and indicates that when producing 1-period-ahead

forecasts for the univariate or multivariate daily or hourly returns distributions of

bitcoin, ether, ripple and litecoin, an EGARCH model with a Student-t distribution



83

assumption and e.g. an ADCC covariance model may be just as accurate as the

simple equally-weighted moving average volatility and covariance benchmark model.
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3.1 Introduction

This Chapter examines the topic of crypto asset market manipulation via tether

blockchain transactions, developing a methodology derived from securities fraud

litigation studies to identify blockchain transactions with a potentially manipulative

effect on crypto asset prices. Large blockchain transactions of the tether (USDT)

stablecoin originating from the (centralized) tether treasury are examined and

assessed as to whether they produce significant positive abnormal returns for bitcoin

prices, i.e. a material price impact. The methodology is adapted from single-firm

event studies used in securities fraud litigation, using regression factor models. The

results produced from this methodology can be useful in determining materiality and

estimating potential damages in legal cases of crypto asset market manipulation.

Tether (USDT) is the first and highest-cap stablecoin – i.e. fixed-price crypto

asset, established in 2015. Twomey and Mann (2020) provide an overview of tether’s

history until the end of 2018. They discuss its controversial banking and audit history,

its proven relationship with the Bitfinex crypto asset exchange, the allegations that

its 1-to-1 dollar peg has not always been backed by adequate dollar reserves and

the further allegations that non-collateralized tether tokens were used to artificially

inflate crypto asset prices or at least prevent them from dropping. All of these

allegations can be traced back to blog posts in 2017 and an online report providing

some analysis of tether’s effect on bitcoin prices.1 There followed other attempts

to examine tether’s on-chain activity such as the post of Vicati (2018) on Hacker

Noon and the paper of Griffin and Shams (2020) who first published their findings

on SSRN in June 2018.

Several interesting tether-related events took place since the beginning of 2019.

In April 2019 the New York Attorney General (NYAG) initiated a court case against

Bitfinex alleging that it had ‘borrowed’ $850 million of tether’s dollar reserve to

cover loses; this was followed by an admission by Bitfinex’s legal representatives that

1See e.g. the blog post on Medium by user Bitfinex’ed and a discussion of the online tether
report.

https://medium.com/@bitfinexed
https://bitcoinexchangeguide.com/tether-report/
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only 74% of tether’s supply was backed by USD reserves.2 Around the same time,

tether’s supply began to increase from approximately 2 billion USDT in late March

to 4 billion by mid-July 2019, to approximately 20 billion by early 2021, and even

surpassing 80 billion temporarily in mid-2022. The outcome of the NYAG case was

an out-of-court settlement in February 2021, in which Bitfinex and Tether – both

subsidiaries of the same Hong Kong-registered company iFinex, paid $18.5 million in

fines and agreed to cease USDT trading in New York, while not admitting to any

explicit wrongdoing.

Later in 2021, 49% of tether’s dollar reserves are revealed to be ‘unspecified

commercial paper’ (Protos, 2021b) and large amounts of newly-issued tether supply

were found to have been sent from the tether treasury to large crypto asset market

makers (Protos, 2021a). As tether-related legal cases are still ongoing and the extant

literature on stablecoins does not provide a simple and direct methodology that

could be applicable to such legal cases, this Chapter provides a methodology that

identifies stablecoin blockchain transactions with a potentially manipulative effect

on crypto asset prices.

In the following, Section 3.2 presents an overview of the relevant literature on

stablecoins and their effect on crypto asset prices and valuation; in Section 3.3

the regression factor models used to estimate abnormal bitcoin returns and the

hypothesis test methodology to determine their significance are discussed; Section 3.4

provides an overview of the hourly market and blockchain transaction historical data,

also providing a detailed description of the data retrieval process from a blockchain

node, based on the experience of setting up and operating a blockchain node locally;

Section 3.5 presents the empirical results of the regression factor models, focussing

on material USDT outflow events from the tether treasury towards crypto asset

exchanges and other unknown entities, i.e. events that produce significant positive

2Yet more cases were filed against tether and Bitfinex, even involving other crypto asset
exchanges such as Bittrex and Poloniex, as potential conduits in the alleged Bitfinex-instigated
scheme to manipulate crypto asset prices using tether.
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abnormal bitcoin returns; finally, Section 3.6 provides a summary and concluding

remarks.

3.2 Literature Review

The effect of stablecoins on crypto assets is an emerging topic in the crypto asset

financial literature; a relevant Scopus search yields 46 papers published between

2018 – mid-2022 in Economics, Econometrics, Finance, Business, Management or

Accounting journals and/or conferences, more than 90% of which are published

in or after 2020.3 Stablecoin finance is examined in a variety of contexts. For

instance, Hoang and Baur (2021) examine their price stability, their role in trading

facilitation and their safe-haven properties in the crypto asset class, while Wang

et al. (2020) study stablecoin properties as safe-havens, diversifiers and/or hedges

against traditional financial assets. Lyons and Viswanath-Natraj (2020) also explore

inter alia the dynamics of stablecoin price pegs, and Barucci et al. (2021) study

stablecoins as a store-of-value, beyond their role as safe-havens and in crypto asset

trading facilitation. Smith (2021) focuses on the use of stablecoins in DeFi lending

platforms and Hampl and Gyönyörová (2021) examine stablecoin risk characteristics

in relation to their potential characterization as cash-equivalent instruments under

international accounting standards.

However, an emerging stream in stablecoin-relevant financial research, which this

Chapter focuses on, studies the effect of stablecoins on crypto asset prices. Table

3.1 presents a summary of the most relevant papers in this stream, their research

questions, methodologies, assets examined and data and sample periods used.

As shown in Table 3.1, all relevant papers examine tether (USDT) and several

examine multiple stablecoins, which includes USD Coin (USDC), Paxos Standard

(PAX), Dai (DAI), Binance USD (BUSD), TrueUSD (TUSD), Huobi USD (HUSD),

3These results are produced with the following Scopus search query: TITLE-ABS-KEY ( (
"tether" OR "stablecoin" OR "stable coin" ) AND ( "cryptocurrency" OR "cryptoasset" OR "crypto
asset" ) ) AND ( LIMIT-TO ( SUBJAREA , "ECON" ) OR LIMIT-TO ( SUBJAREA , "BUSI" ) ) .
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Table 3.1: Literature of the effect of stablecoins on crypto assets

Authors Assets Research Questions Methodology Data Sample period

Kristoufek (2022) 28 stablecoins
14 crypto assets

Does the amount of stablecoins
in circulation reflect demand
factors in the market?

Is there evidence of suspicious
bubble-boosting dynamics?

VAR
VECM

Causality
tests

Daily market cap 2015-2020

Kristoufek (2021)
10 stablecoins

BTC, ETH
XRP

Examine the interaction between
stablecoins and major crypto assets

Directed
spillovers

VAR
VECM

Daily crypto asset
prices and

stablecoin supply
2016-2021

Ante et al. (2021a)
6 stablecoins
BTC, ETH
XRP, LTC

Do large stablecoin transfers
affect Bitcoin returns
and volume?

Event
study

Hourly crypto
asset returns
Stablecoin
blockchain

transactions

2019-2020

Ante et al. (2021b)
7 stablecoins
BTC, ETH
XRP, LTC

Analyze crypto asset returns
before and after issuance
of stablecoins

Event
study

Hourly crypto
asset returns
Stablecoin
blockchain

transactions

2019-2020

Grobys and Huynh (2021) USDT
BTC

Are jumps in USDT returns
Granger-causal for BTC returns?

VAR
Asymptotic
distribution

theory

Hourly BTC/USD
& USDT/USD

returns
2018-2021

Griffin and Shams (2020) USDT
14 crypto assets

Did USDT influence crypto asset
prices in 2017?

Linear
regression

Event
study

Hourly crypto
asset returns

BTC & USDT
blockchain

transactions

2017-2018

Lyons and Viswanath-Natraj (2020) USDT
BTC, ETH

Does USDT play a role via
intervention/ manipulation
in currency markets?

VAR
Impulse
response
functions

BTC/USD
& ETH/USD
daily returns

USDT blockchain
transactions

2017-2020

Wei (2018) USDT
BTC

Examine the impact of USDT
issuance on BTC valuation

VAR
Granger
causality

test

BTC/USD daily
returns

USDT blockchain
transactions

2016-2018

Key characteristics of the relevant academic papers that examine the effect of stablecoins on crypto
assets. The columns indicate for each paper the author(s), the crypto assets examined, the research
questions, the methodologies used, the type of data and sample period employed.
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Stasis Euro (EURS), QCash (QC), USDK, sUSD, Neutrino Dollar (USDN), Just

(JST), Gemini Dollar (GUSD), 1SG, Anchor (ANCT), USDQ, CryptoFrank (XCHF),

VNDC, USDJ, bitCNY, EURBase, EOSDT, Constant (CONST), USDx, bitUSD,

NuBits and Egoras Dollar. Similarly, the most common crypto assets examined are

bitcoin (BTC), ether (ETH) and ripple (XRP), with other assets included in some

cases, such as litecoin (LTC), bitcoin cash (BCH), bitcoin SV (BSV), cardano (ADA),

chainlink (LINK), binance coin (BNB), crypto.com coin (CRO), EOS, DASH, Stellar

(XLM) and Monero (XMR). The sample periods start in 2015 at the earliest and

often end in 2020 or 2021. The most common types of data examined are crypto

asset prices or returns and blockchain transaction flows, often aggregated at hourly

or daily frequency.

The research questions and hypotheses of the papers shown in Table 3.1 all revolve

around the effect of stablecoins – or often tether in particular – on crypto asset prices,

but do not always address the issue of market manipulation directly. Kristoufek

(2022) asks whether the amount of stablecoins in circulation reflects crypto asset

demand and whether it could be supported that increases in stablecoin supply are the

cause of crypto asset price bubbles; and similarly, Kristoufek (2021) also examines

the dynamic interaction between stablecoins and major crypto assets. In the above

articles, the author carefully avoids the issue of potential market manipulation, by

mentioning that any manipulative effect from stablecoin issuance – or lack thereof,

hinges upon the validity of fiat currency backing reserves, which is not examined by

the author; for instance, Kristoufek (2022) mentions that ‘if the backing is valid and

existent (but not necessarily a full backing), then the stablecoin influx signals an

increased demand in investment in crypto assets’.

Ante et al. (2021a) focus instead on specific large stablecoin transactions on

the relevant blockchains, and examine their effect on bitcoin returns and traded

volume; they develop multiple hypotheses as to the potential effect of such stablecoin

on-chain flows depending on their characteristics: for instance, they propose that

abnormal bitcoin trading volume should be lower for stablecoin transfers with high
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information asymmetry and higher for transfers with low information asymmetry;

and in a similar logic, positive subsequent (negative prior) abnormal bitcoin returns

are associated with stablecoin transfers where cryptocurrency exchanges are receivers

(senders) and/or stablecoin treasuries are senders (receivers). In a similar framework

and methodology, Ante et al. (2021b) examine the effects of stablecoin issuance on

crypto asset returns and trading volume. Again, the authors do not address the issue

of potential market manipulation directly, and instead develop hypotheses as to the

general informational content of stablecoin on-chain transactions.

The article of Griffin and Shams (2020), originally published on SSRN in 2018 is

one of the first papers to analyse tether and bitcoin transactions on their respective

blockchains and their influence on crypto asset prices in the 2017 bubble; specifically,

Griffin and Shams (2020) associate their framework to that of international capital

flow studies and ask whether tether supply is ‘pulled’, i.e. driven by legitimate

investor demand or ‘pushed’, i.e. used to create inflation in crypto asset prices.

Contrary to the articles mentioned previously, Griffin and Shams (2020) are much

more direct in framing their research questions and hypotheses along the issue of

potential market manipulation from stablecoins – tether in particular. Similar to

Griffin and Shams (2020), the research question of Wei (2018) addresses crypto asset

market manipulation directly, by asking whether tether issuance impacts bitcoin’s

valuation, particularly, during the late 2017 bull market period. In contrast, the

hypotheses of Lyons and Viswanath-Natraj (2020) focus primarily on tether’s price

peg, and only examine aggregate tether flows to the secondary market tangentially,

under a hypothesis that stablecoins are passive with respect to intervention in crypto

asset markets. Similarly, Grobys and Huynh (2021) do not focus directly on crypto

asset market manipulation, focussing instead on whether jumps in USDT/USD

returns are causal for bitcoin returns, in the context of market efficiency.

Having discussed the research questions and hypotheses in the relevant literature,

there now follows an examination of methodologies used and potential methodological

issues. The quantitative methodologies used to examine the above research questions
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and hypotheses are mostly related to the vector auto-regression (VAR) model and/or,

in the presence of cointegrating relationships, the vector error-correction model

(VECM), while another group of papers employ event study methodologies. The

choice of methodology very much depends on the nature of the research questions and

hypotheses under examination; however, an event study methodology appears more

appropriate, if the purpose is to determine whether stablecoins are the cause of crypto

asset market manipulation. Kristoufek (2022) uses the VAR/VECM framework and

further focus on analysing the interactions and causality between the market cap of

crypto assets and stablecoins, while Kristoufek (2021) follows a similar methodology

but instead focuses on the volatility decomposition and spillovers. Wei (2018) also

uses the VAR model framework to apply Granger-causality tests on bitcoin returns

and tether supply issuance; Grobys and Huynh (2021) also employ VAR with lagged

and interaction terms to test for the existence of a causal relationship between tether

price jumps and bitcoin prices, where jumps in returns are calculated based on

asymptotic distribution theory.4 Similarly, Lyons and Viswanath-Natraj (2020) also

apply a VAR model on stablecoin supply and crypto asset prices and use the local

projections method to calculate the impulse response functions.

Variants of event study methodologies combined with linear regression models

are used by Ante et al. (2021a), Ante et al. (2021b) and Griffin and Shams (2020), all

based on blockchain transactions of tether and/or other stablecoins and their effect

on the returns of bitcoin and/or other crypto assets; these methodologies and the

relevant findings are examined in more detail later in this section. It should also be

noted that the analysis on blockchain transactions performed by Ante et al. (2021a),

Ante et al. (2021b), Griffin and Shams (2020), Lyons and Viswanath-Natraj (2020)

and Wei (2018) is based on methodologies developed previously in a number of papers

that examine blockchain transactions of various crypto assets. For instance Somin

et al. (2018) analyse the transaction patterns of ERC-20 tokens on the Ethereum

4Grobys and Huynh (2021) calculate jumps as the difference between realized variance and
realized bi-power variation calculated using hourly returns, then encoded as binary jump variables
based on jump size significance.
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platform. Bovet et al. (2018) use blockchain transaction network metrics to identify

price bubbles in bitcoin. Maesa et al. (2017) also use network metrics such as in- and

out- degree to examine bitcoin user behaviour. Tasca et al. (2018) and Meiklejohn

et al. (2013) use network centrality measures and other methods to group bitcoin

addresses into user groups and identify the entities and business categories in the

bitcoin ecosystem such as miners, gambling services, black markets and exchanges.

With regard to potential methodological issues, in the papers presented in Table

3.1, it is important to make a distinction between the use of daily frequency market

data, as employed by Wei (2018), Lyons and Viswanath-Natraj (2020), Kristoufek

(2021) and Kristoufek (2022), and hourly frequency data as used by Ante et al.

(2021b), Ante et al. (2021a), Griffin and Shams (2020) and Grobys and Huynh (2021).

While daily frequency data may be suitable for use in some cases, such as in volatility

analysis applications, it is probably better to employ a higher frequency – such as

hourly, when it comes to the detection of potentially distortive stablecoin effects

on crypto asset prices. This is in part due to the overall significantly faster pace

of trading in crypto asset markets compared with traditional financial markets; for

instance, in the context of bitcoin spot and derivatives trading, Alexander and Heck

(2020) find that arbitrage opportunities exist for no more than 10-15 minutes, when

arising from price deviations between different exchanges due to a 10% hypothetical

price shock. Moreover, the majority of stablecoin transactions occur on the Ethereum

and TRON networks/smart contract platforms, for which the average block creation

time varies between 12-14 seconds for Ethereum and 3 seconds for TRON; even when

accounting for the confirmation lag commonly employed by crypto asset exchanges, i.e.

the creation of an additional 20-35 blocks on top of the particular block containing the

transaction of interest, this yields a transaction execution/finalization time between

1-10 minutes.

Another important methodological aspect is the source of data. In most cases the

use of traded or averaged prices is suitable. For instance, Lyons and Viswanath-Natraj

(2020) and Griffin and Shams (2020) calculate average crypto asset prices based

https://ethereum.org/en/developers/docs/blocks/#block-time
https://tronprotocol.github.io/documentation-en/introduction/dpos/#definition
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on traded prices from exchanges such as Bitfinex, Bittrex and Kraken.5 Similarly,

Grobys and Huynh (2021) obtain USDT/USD and BTC/USD price data from the

Bitfinex exchange, and Ante et al. (2021a) and Ante et al. (2021b) obtain price and

traded volume data on BTC/USD and other pairs from Bitstamp. However, the use

of Coinmarketcap as a data source requires careful treatment; Wei (2018) makes use

of aggregate traded volume data from Coinmarketcap and Kristoufek (2021) and

Kristoufek (2022) use the same source to obtain crypto asset and stablecoin market

cap data.

While the use of aggregated volume and simple- or volume-weighted average price

data is not necessarily problematic, the calculation methodology of such averaged data

may cause issues, and Coinmarketcap is a notable case in point, as also highlighted

in Alexander and Dakos (2020). The methodology of Coinmarketcap makes use of

cross-rates to infer traded volumes that are then also used in VWAP calculations.

For instance, in the calculation of aggregate traded volume and VWAP price for

the BTC/USD pair, Coinmarketcap not only includes all traded BTC/USD pairs

but also obtains the price and volume of all cross-rates e.g. the BTC/ETH pair and

in this case uses the ETH/USD price to convert them to USD, thus assuming that

all trades in the BTC/ETH pair are ultimately converted to USD, which is by no

means the case. The issue is even more evident when examining traded volume, as a

significant overlap can exist in the traded pairs used to calculate aggregate volume

for different crypto assets; for instance, the same top three traded pairs are used

(and therefore double-counted) for the daily aggregate traded volume (and VWAP

price) for bitcoin and tether on Coinmarketcap, namely the BTC/USDT spot pair

on Binance, OKEx and Huobi.

The overall findings of the literature shown in Table 3.1 are mixed, with some

papers finding that stablecoin flows have a significant effect on crypto asset prices,

while several others find no evidence of such a relationship. This observed lack of

consensus could stem from differences in the sample periods used, but also from the

5Lyons and Viswanath-Natraj (2020) and Griffin and Shams (2020) obtain data from the
CoinAPI provider.

https://coinmarketcap.com/
https://support.coinmarketcap.com/hc/en-us/articles/360043395912-Volume-Market-Pair-Cryptoasset-Exchange-Aggregate-
https://coinmarketcap.com/currencies/bitcoin/markets
https://coinmarketcap.com/currencies/tether/markets/
https://www.coinapi.io/
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nature of the stablecoin-related data examined. Depending on the methodology used,

it is often the case that initial datasets contain a very large number of stablecoin

transactions, which the authors then filter based on criteria such as the transaction

sender and/or receiver and the transacted amount; these selection criteria could

therefore result in the inclusion both of transactions with a manipulative effect

and also of transactions that have no significant effect on crypto asset prices. This

could in turn produce confounding effects in the methodologies used, resulting in the

observed lack of consensus.

Kristoufek (2022) determines that stablecoins issuance is not an ‘ignition point’

of crypto asset market bull runs, and therefore concludes that increasing stablecoin

supply mostly reflects an increasing demand for investing in crypto assets. Kristoufek

(2021) identifies volatility spillover dynamics between stablecoins and crypto assets,

but does not interpret them as signs of a ‘bubble-boosting mechanism’, as the

volatility spillovers towards stablecoins drop to zero during the 2019 period of low

crypto asset prices, which is contrary to the expectation under the bubble-boosting

hypothesis that spillovers both to and from stablecoins should increase. Kristoufek

(2021) instead concludes that increased stablecoins supply is a reflection of increasing

demand for investing in crypto assets.

Grobys and Huynh (2021) find that positive jumps in USDT/USD returns are

Granger-causal for BTC/USD returns, interpreting this as increased demand for

USDT causing the USDT/USD jump, then followed by large sell volume in the

BTC/USDT pair and resulting in lagged price drops; they also find that posi-

tive USDT/USD return jumps are associated with contemporaneous large negative

BTC/USD returns. Wei (2018) finds no evidence that tether issuance causes signif-

icantly positive subsequent bitcoin returns, while traded volume is also unable to

predict subsequent bitcoin returns; however, tether issuance events are followed by

subsequent increased traded volume for both bitcoin and tether, and tether volume

increases following days with negative bitcoin returns; the author also finds strong

autocorrelation in the time series of daily tether issuance, indicating that large tether
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issuance volume is spread out across several days either intentionally or due to time

clustering in the demand for tether. Lyons and Viswanath-Natraj (2020) find that the

impulse response functions of bitcoin and ether prices are not statistically different

from zero at a 5% significance level and at a horizon of up to 60 days; put simply,

the authors find that bitcoin and ether prices do not respond to tether flows from

the tether treasury towards the secondary market, and therefore conclude that there

is no evidence of stablecoin issuance driving crypto asset prices, instead finding that

stablecoin issuance responds to deviations of their dollar prices from the pegged rate.

In contrast with the above articles which find no significant effect of stablecoins

on crypto asset prices, the findings of Ante et al. (2021a), Ante et al. (2021b) and

Griffin and Shams (2020) are partially or fully in support of the hypothesis that

stablecoin flows and/or issuance have a significant effect on crypto asset prices. Ante

et al. (2021a) find significant abnormal BTC/USD returns over the 12 hours before

a stablecoin transfer. When broken down by transaction type, abnormal returns

are observed before transactions that originate from stablecoin treasuries, but not

after the transactions occur, except when flows are between unknown addresses.

Negative price effects occur prior to transfers to treasuries, due to the withdrawal of

capital from the crypto asset market and similarly, transfers between two crypto asset

exchanges are associated with negative returns. Similarly, Ante et al. (2021b) find

that crypto asset returns are significantly negative in the periods before stablecoin

issuances, while they stabilize with the issuance events.

Griffin and Shams (2020) find that only on days after new tether supply is issued,

bitcoin-tether concurrent flows from Bitfinex to Bittrex and Poloniex increase just

below round number thresholds in the bitcoin price but drop immediately after

the threshold; the authors find no such evidence in the bitcoin-tether flows to and

from other tether exchanges such as Binance, Huobi or OKEx. They further find

that bitcoin-tether flows below the threshold are significant only on days following

new tether issuance, indicating attempts to halt the downward price trend and,

through investor herding behaviour, create a price support level. A significantly
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higher ‘future’ bitcoin return is identified only on periods following tether issuance

and negative lagged bitcoin returns and bitcoin end-of-month daily returns are

negative and significantly lower in months with high tether issuance. The authors

observe significant reductions in Bitfinex’s bitcoin balance at the end of months

with high tether issuance, while finding no such effect on the bitcoin balances of the

top-20 crypto asset exchanges. The authors also explore alternative explanations

and hypotheses that may explain their findings, such as that demand for tether is

driven by fiat currency-holding investors seeking to invest in bitcoin, but find no

significant evidence to support them.

Having discussed the research questions, methodologies and findings of the relevant

papers shown in Table 3.1, there now follows a focussed discussion of the article

by Ante et al. (2021a), which is the most relevant as to the research question and

methodological framework examined in this Chapter, followed by a presentation of

the incremental contributions this Chapter introduces.

Ante et al. (2021a) use an event study methodology to calculate abnormal returns

and abnormal trading volumes potentially caused by blockchain stablecoin transfers,

based on cross-sectional studies e.g. by Chae (2005), Brown and Warner (1985)

and Armitage (1995). The authors distinguish between stablecoin transactions sent

to or from unknown addresses, crypto asset exchanges and stablecoin treasuries,

and suggest that they have varying effects on crypto asset prices. However, they

do not account for ‘chain-swap’ transactions, i.e. transactions that convert large

stablecoin quantities from one blockchain to another, which are quite common e.g.

for tether (USDT) which exists on multiple smart contract/token platforms; this may

be reducing the significance of results, as such transactions will register as events in

the methodology even though their purpose is purely technical, e.g. in cases where

one blockchain is highly congested and users wish to avoid high transaction fees, so

chain-swaps are not expected to have any price impact.

The expected return and trading volume are calculated by Ante et al. (2021a)

as the average over an estimation window that covers an observation period of
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150 hours to 15 hours before each stablecoin transfer, i.e. they are employing the

constant mean model. The expected return and volume are then compared with the

corresponding observed return and volume during a 25-hour event window, from -12

hours to +12 hours around each stablecoin transfer event, while different windows are

also examined for robustness. The abnormal return and volume are then calculated

as the difference between the expected and the observed return and volume, and

their significance is evaluated using t-tests and also the non-parametric Wilcoxon

signed rank test which assumes an equal likelihood of positive and negative abnormal

returns and volumes.

Having described the methodology of Ante et al. (2021a) and also of Ante et al.

(2021b) who follow a similar methodology, the discussion now focuses on the event

and event window design, a crucial methodological point, given the distribution of

stablecoin blockchain transaction flows. Event studies in traditional finance often

examine clearly-defined and discrete events such as earnings announcements or stock

splits; however, when the events examined are stablecoin blockchain transaction flows

which occur very frequently and are often clustered across time, a fixed-length event

window may sometimes either include unrelated returns in the event period or omit

clustered events that fall just outside the event window; similarly, overlaps in both

the event windows and observation periods may exist, even when aggregating the

data to an hourly frequency, so that e.g. the estimated effects of one event may occur

in the observation window of another event. These types of ‘contamination’ are to

be avoided if possible, to ensure that the abnormal effects can be fully explained by

the event examined; for instance Hakala (2017) includes additional controls for the

effect of past events in the estimation period. These issues are also acknowledged by

Ante et al. (2021a), who argue that such issues cannot be avoided, as their dataset

contains no non-overlapping events.

Another important issue in the methodology of Ante et al. (2021a) is the use of

the constant-mean model. While the constant-mean assumption may be suitable

for traded volume, it does not have sufficient explanatory power for crypto asset
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returns and therefore its ability to extract the abnormal return during an event may

be limited. For instance, a simple experiment using hourly BTC/USD historical

price data can show that the explanatory power of the constant-mean returns model

even on 1-hour ahead BTC/USD returns is usually quite small. Obtaining hourly

BTC/USD log returns based on historical price data from Bitstamp between April

2019 - March 2020, as used by Ante et al. (2021a), it is easy to calculate the 150-

hour moving average of the returns. The above sample period can then yield 8,636

estimations of the constant-mean returns model, i.e. a simple linear regression with

BTC/USD hourly log returns as the dependent variable and an independent variable

calculated as the 1-hour lag of the 150-hour moving average on BTC/USD log returns,

using 149 sample points in the estimation of each regression model. Given the above,

the estimated regression R2 is at most 0.22 but in 99% of estimations it is even below

0.08, with a fairly low average of 0.014 and a median of 0.008.

Finally, there follows an overview of the incremental contributions this Chapter

introduces to the crypto asset financial literature. Firstly, this is the first empirical

study to examine the materiality of tether token flows originating from the tether

treasury in causing positive abnormal bitcoin returns and ultimately estimating

damages incurred by the (allegedly) manipulative practices. The contribution of this

Chapter is denoted by the fact that a number of courts have rejected or refused to

admit into evidence damages reports or testimony by damages experts in securities

cases which fail to include event studies or ‘something similar’ (Fisch et al., 2017).

The methodology presented in this Chapter is adapted from the standard frame-

work of securities fraud litigation event studies, and the hypothesis of significant pos-

itive abnormal bitcoin returns is examined with both parametric and non-parametric

tests for robustness, while the materiality of each USDT outflow event from the

tether treasury towards crypto asset exchanges and other unknown entities is ex-

amined separately, to account for the possibility that a small number of potentially

manipulative events are ‘concealed’ amongst a much greater number of unrelated

events.
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The effect of past events in the estimation period is controlled for, as suggested

in the relevant literature, and abnormal returns are estimated using index model

specifications instead of the constant-mean returns approach. A flexible event

window size is employed to account for clustering in USDT outflow events from the

tether treasury, and chain swap transactions – that are executed in order to swap

USDT tokens between token platforms for rebalancing purposes and/or to avoid

network congestion – are excluded from the sample, as they are not related to market

movements.

The retrieval of transaction data from the Bitcoin/Omni Layer blockchain is

based on our own experience of establishing a local blockchain node and is examined

in significant detail, which also constitutes an important contribution, as most

researchers only use secondary blockchain data sources for crypto asset financial

research and any academic papers that make use of data obtained directly from a

blockchain do not provide detailed explanations on how this is achieved.

3.3 Methodology

This Section provides an overview of the econometric methodologies used to determine

the effect of USDT outflows from the tether treasury towards crypto asset exchanges

and other unknown entities on the price of bitcoin. As the methodology used is

adapted from securities fraud litigation event studies, there follows a brief discussion

which motivates this choice; subsequently an overview of the methodology is provided,

together with a clarifying differentiation from the standard cross-sectional event

study framework, followed by the event window construction, the index model

configuration and estimation, the abnormal returns hypothesis test and the price

effect and damages estimation.

As to the motivation of adapting the securities fraud litigation event study

framework, Dove et al. (2019) highlight the requirement by courts that plaintiffs

in a securities case should demonstrate the statistical significance of an event-date
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return, so this methodology is directly related the materiality inquiry in securities

fraud litigation, for which Baker (2016) mentions that it ‘should involve a fact-

specific analysis of whether a reasonable investor would hold the particular alleged

misrepresentation or omission to be significant in the context of the information

available to the market’. After the abnormal return and price effect are determined,

Baker (2016) also suggests that damages can then be estimated on an out-of-pocket

basis, i.e. ‘each purchaser of a security is entitled to the difference between the

price paid for the security and the price it would have traded at, had there been no

fraudulent misrepresentation or omission’.

The overall methodology employed in this Chapter consists of adapting the single-

company event study framework of securities fraud litigation studies, as described e.g.

by Gelbach et al. (2013), where an index model is used to determine the expected

return based on a broad market index and estimate the abnormal return caused by

the event(s) examined. The hourly return of the BTC/USD price is the dependent

variable in the regression model, and the expected return is determined based on

an index model estimated via linear regression, where various factors are considered

such as the hourly return on an equally-weighted market portfolio based on large

population of liquid crypto assets, the return on the cap-weighted MVIS Digital

Assets (MVDA) index, and also principal components extracted from the correlated

system of crypto asset returns.

The events examined are binary variables based on the occurrence of USDT

outflows from the tether treasury towards crypto asset exchanges and other unknown

entities, aggregated at an hourly frequency. As USDT outflows can be related to

different market players, e.g. as described in the investigative article of Protos

(2021a), events are examined on an individual basis and materiality is determined

separately for each one. Once material events are determined, the price effect is

estimated based on the average abnormal return in each case, and is then combined

with bitcoin’s traded volume to produce an estimate of the damage caused by the

USDT flow in question, as described by Baker (2016).
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It is important to note that while this methodology is somewhat similar to the

‘skeletal econometric structure of an event study’ described by Corrado (2011), it is

not directly relevant to the well-established cross-sectional event study methodology

as developed by Brown and Warner (1985) and examined by Armitage (1995). The

methodology presented in this Chapter differs from the standard cross-sectional event

study in several aspects. For instance, a single asset (bitcoin) is examined, so that

the significance of abnormal returns cannot be assessed using test statistics that

correct for cross-sectional variance. Also, the events examined (USDT outflows from

the tether treasury) are highly clustered and with non-standard duration, so that the

common fixed-length event window approach employed e.g. by Ante et al. (2021a)

is less preferable compared with a flexible variable-length window approach. For

the same reason, the model estimation period very often contains previous events,

which Ante et al. (2021a) acknowledge as unavoidable in their methodology, while

the methodology presented in this Section can account for this feature with the

inclusion of an additional control variable in the model.

As the purpose of this study is to determine whether and which USDT outflows

from the tether treasury cause positive abnormal bitcoin returns, the USDT outflow

events are examined separately, aggregated at the hourly frequency. Contrary to

the standard practice of defining a fixed-length event window around the time of

the event, a more bespoke approach is chosen to mitigate certain issues that occur

in the fixed-length event window approach, stemming from the fact that several

USDT outflow events span multiple consecutive hours and many such events are

clustered with as little as a single hour in-between. The approach chosen treats

USDT outflows from the tether treasury that occur on consecutive hours as a single

event. Additionally, and as it is reasonable to assume that the price effects of a

USDT outflow may not manifest within the same hour of the event and instead

begin slightly earlier e.g. due to insider information or with a slight delay e.g. due to

retail investor herding, it is important to include 1 hour before and after each USDT
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outflow to the corresponding event window; for this reason, USDT outflow events

that are 1 or 2 hours apart are also treated as a single event.

Following the overview of the methodology, we now formalize the index model

specification used to estimate abnormal returns. For each event i starting at time

tstart
i and ending at tend

i and for all t within the m-hour estimation period of event

i, i.e. t ∈
[
tend
i − m, tend

i

]
– where tend

i − m < tstart
i < tend

i , the return rBT C
it on the

BTC/USD average (VWAP) price following the specification of Gelbach et al. (2013)

is modelled as:6

rBT C
it = αi + βiXit + γiDit + δiD

(past)
it + εit , (3.1)

where separate regression models based on (3.1) are estimated for each event i to

account for the possibility that not all of the events may be material, and for the

regression model relating to each event i, the sample period is tend
i −m ≤ t ≤ tend

i ; Xit

represents the market factor discussed below and βi the corresponding sensitivity; Dit

is the binary variable set to 1 for all hours included in event i, i.e. for tstart
i ≤ t ≤ tend

i

and γi is the average abnormal return over the event period of event i; similarly D
(past)
it

is equal to 1 for all previous events j = 1, ..., i − 1 included the estimation period

t ∈
[
tend
i − m, tend

i

]
of event i and δ is the corresponding average abnormal return, so

the model specification controls for the effect of past events in the estimation period

as suggested by Hakala (2017), reducing the impact of previous unrelated events

occurring during the estimation period.

Regarding the market factor Xit in model (3.1), ideally a multi-factor model

extension of (3.1) would be used, such as the Fama-French 5-factor or the Carhart 4-

factor model. However, such well-developed factors do not exist for crypto assets, and

the corresponding equity-based factors are unfit for use as they refer to a completely

different market. The main choice for the market factor is therefore based on the

return of an equally-weighted ‘market portfolio’ consisting of all crypto assets with

6Note that the inequality tend
i − m < tstart

i < tend
i holds due to the choice of m to be 720 hours,

while none of the events in the sample last for more than 6 hours.
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available data and sufficient liquidity. Additional choices are also examined, such as a

market factor proxied by the return on the cap-weighted MVDA index which contains

the top 100 crypto assets, and also multiple factors in a multi-factor extension of

(3.1), obtained as the first few principal components from the correlated system of

all crypto asset returns with available data and sufficient liquidity.

The model specification in (3.1) can be estimated using OLS linear regression,

regardless of the market factor variant chosen. The estimation period for the

regression model of each event i ending at time tend
i is chosen to include all hourly

data in the 30-day period prior to the event’s end, i.e. m = 720 hours, so the

estimation period for each event i includes all t ∈
[
tend
i − m, tend

i

]
. This choice of

m is made so that the estimation period is large enough to allow for the proper

estimation of the model specification in (3.1) but small enough to avoid including

confounding effects from previous extreme returns.

The materiality of each USDT outflow event i in causing positive abnormal

bitcoin returns is determined based on the estimated average abnormal return γ̂i

defined in equation (3.1). A null hypothesis of a zero abnormal return is examined

versus the one-sided alternative that the abnormal return is positive. The one-sided

hypothesis test is better suited to our research question of whether USDT outflows

from the tether treasury are the cause of positive abnormal returns for bitcoin.

Moreover, Dove et al. (2019) also argue that ‘a one-tailed test is unquestionably

more appropriate in securities litigation as it improves statistical power and reflects

that the null hypothesis being tested is usually one-tailed’.

The simplest way to perform this hypothesis test is assuming that estimated

residuals of model (3.1) follow an independent and identically distributed (i.i.d.)

process and are also normally distributed. In this case, the hypothesis test for the

significance of the estimated average abnormal return γ̂i for event i is:

H0 : γ̂i

est.s.e.(γ̂i)
= 0 vs. H1 : γ̂i

est.s.e.(γ̂i)
> 0 , (3.2)
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where the γ̂i

est.s.e.(γ̂i) ratio is compared against the α% left-tail critical value of the

standard normal distribution.

However, the normal i.i.d. assumption for the residuals may be considered weak,

so the non-parametric SQ (sample quantile) test is also examined, as described

by Fisch et al. (2017) and Dove et al. (2019). The SQ test does not involve any

distributional assumptions for the residuals; in the raw residuals version of the SQ

test, the estimated average abnormal return γ̂i for each event i is compared against

the α% right-tail quantile of the estimated raw residuals. Similarly, the standardized

version of the SQ test is performed similar to equation (3.2) using the standardized

estimated abnormal return γ̂i

est.s.e.(γ̂i) compared against the α% right-tail quantile

of the standardized estimated residuals, i.e. the residuals scaled by the regression

standard error, per the standard practice as mentioned e.g. by Fisch et al. (2017).

Additionally, given the BTC/USD price Ptstart
i

at time tstart
i when USDT outflow

event i begins, an estimate of the price effect for the event can be obtained using the

corresponding estimated average abnormal return γ̂i from (3.1) as:

P Effect
i = γ̂iPtstart

i
. (3.3)

As mentioned previously, the price effect of each event can in turn be combined

with the corresponding bitcoin traded volume to produce an estimate of the damage

caused by the USDT outflow event i as:

Damagei = V BT C
i

2 P Effect
i , (3.4)

where V BT C
i is calculated as the total traded volume – expressed in BTC, of all

BTC/USD and BTC/USDT traded spot pairs at tstart
i , and divided by 2 to account for

the fact that only short positions in the corresponding traded pairs would be negatively

affected from a positive abnormal bitcoin return which causes a stabilization and

even a reversal of a downwards price trend.
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Figure 3.1: Hourly BTC/USD price and USDT supply
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Hourly BTC/USD VWAP price obtained from Cryptocompare (upper panel) and USDT supply
constructed based on blockchain transaction data (lower panel). The sample period is 4 April 2019
- 1 January 2021.

3.4 Data

This Section provides an overview of the data used for the application of the

methodology shown previously, and also a detailed discussion on data acquisition.

Overall, the sample period examined at the hourly frequency is 4 April 2019 - 1

January 2021, with the sample period’s start determined by the availability of relevant

blockchain transaction data. The sample contains two periods of significant increases

in bitcoin’s price, together with an increase in USDT supply from approximately 2

billion tokens to 20 billion, as shown in Figure 3.1.

As both market data and blockchain transaction data are required, each type is

discussed in separate subsections. Additionally, the acquisition process of blockchain

data is described in great detail, as they are an uncommon data type; a separate

analysis of the installation and data acquisition process is presented for the Omni

Layer blockchain node, the first platform – second-layer protocol on top of the Bitcoin

blockchain, on which USDT tokens were deployed. This constitutes an important

contribution as this method is employed by very few academic sources in the crypto
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asset finance literature and never described in detail, with most relevant papers

resorting to online blockchain explorers.

3.4.1 Market Data

Hourly frequency price and traded volume historical data are obtained from Cryp-

tocompare for the sample period of 3 March 2019 - 1 January 2021, i.e. with the

period’s start set one month prior to the earliest available blockchain transaction to

account for the 1-month estimation period in the models described in Section 3.3.

Cryptocompare is selected as the primary market data source, due to its reliable

price calculation methodology, as explained in Alexander and Dakos (2020). The

primary crypto asset examined is bitcoin, and additional hourly price data are ob-

tained on the cap-weighted MVIS Digital Asset (MVDA) index containing 100 crypto

assets and also on a large number of crypto assets to construct the equally-weighted

market portfolio. Specifically, the return on the equally-weighted market portfolio

is constructed as the average return on the USD-denominated prices of all crypto

assets ranked by market cap that exhibit a traded 24-hour volume of more than

$1 million on 1 January 2021 and have available historical data going back to the

sample period’s start. Additionally, all stablecoins and other price-pegged crypto

assets are excluded as well as any cases that exhibit extreme outliers, yielding a total

of 135 crypto assets included in the market portfolio.7

Table 3.4 presents the sample statistics for the ordinary returns on: bitcoin’s price,

the equally-weighted market portfolio based on 135 crypto assets, the MVDA index

7The crypto assets included in the market portfolio are: BTC, ETH, XRP, BNB, ADA, LINK,
DOGE, XLM, LTC, BCH, TRX, VET, THETA, EOS, NEO, BSV, MIOTA, XMR, OKB, XTZ,
SNX, ETC, XEM, NEXO, MKR, DASH, ENJ, ZIL, ZEC, MANA, DCR, KCS, ICX, BAT, ONT,
ZRX, RVN, QTUM, WAVES, IOST, SC, BNT, DGB, ZEN, OMG, DENT, FTM, CHSB, UQC,
STORJ, LRC, NANO, KNC, VTHO, STMX, BCD, NKN, POWR, AGI, FUN, IOTX, ELF, STEEM,
ARDR, POLY, KMD, WAN, ETN, BTM, REP, PPT, UTK, DNT, STRAX, MTL, ELA, SYS,
BLZ, AST, QKC, GAS, RLC, VITE, RDD, AION, ADX, DATA, LOOM, REQ, NRG, DBC, NULS,
FIRO, RCN, MITH, PIVX, RDNN, GRS, DOCK, QSP, GTO, NAS, CND, YOYOW, SKY, PRO,
NXT, NEBL, AMB, NCASH, QLC, GO, SWFTC, GVT, WABI, CDT, WTC, WPR, EGT, SNGLS,
TRUE., VIA, SNM, OST, EVX, MDA, POA, DLT, PAY, VIB, MTH, PST, STK, CTXC and
UBEX. The stablecoins and other price-pegged crypto assets exluded from the index are: Tether,
USD Coin, Wrapped Bitcoin, BUSD, Multi Collateral Dai, TerraUSD, Paxos Standard, True USD,
USDJ, sUSD, Tether Gold, Gemini Dollar, tBTC and Hive Dollar.
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and also the first four principal components extracted from the correlated system

of the 135 crypto assets included in the market portfolio. The equally-weighted

market portfolio and MVDA index returns both exhibit similar behaviour compared

with bitcoin returns, with slight differences in the extreme values, as shown by the

skewness and excess kurtosis statistics; this can also be observed in the corresponding

returns time series shown in Figure 3.2. The principal components shown in Table

3.4 are calculated based on the entire sample period, explain approximately 30% of

total variance in the correlated system of returns and are shown here for illustrative

purposes, as the principal components are calculated separately for each USDT

outflow event based on the crypto asset returns data from the corresponding 30-

day estimation period. Compared to bitcoin and the two market indices, the

principal components exhibit significantly different behaviour, as also shown in the

corresponding time series included in Figure B1 in Appendix B, indicating that their

use is perhaps less advisable.

Table 3.2: Summary statistics of hourly returns

BTC Eq. w.
Portfolio MVDA PC1 PC2 PC3 PC4

Mean (%) 0.02% 0.05% 0.01% 0.73% -0.75% -0.05% -0.24%
St. Dev. (% p.a.) 72.60% 77.87% 70.12% 1255% 1015% 993% 884%
Skewness 0.43 -1.51 -0.68 7.34 -3.29 2.45 1.18
Ex. Kurtosis 76.5 35.1 53.8 114 37.6 51.6 26.3
Min. -15% -16% -15% -75% -169% -142% -150%
Max. 20% 14% 15% 313% 79% 181% 161%

Summary statistics of hourly arithmetic returns on bitcoin (BTC), the equally-weighted market
portfolio based on 135 crypto assets, the cap-weighted MVDA index and also the first four principal
components extracted from the correlated system of the 135 crypto assets included in the market
portfolio, based on VWAP USD-denominated prices obtained from Cryptocompare. The sample
period is 3 March 2019 - 1 January 2021. The mean, minimum and maximum are expressed in %
and the daily standard deviation is annualized using a factor of

√
24 × 365.

Similarly, Table 3.3 presents a correlation analysis for bitcoin, the equally-weighted

market portfolio and the cap-weighted MVDA index, with the principal components

again included for illustrative purposes. It is observed that the returns on the

equally-weighted market portfolio are highly correlated (0.78) with bitcoin returns,

suggesting that it is suitable for use as a market index in model (3.1) described
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Figure 3.2: Hourly returns
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Hourly arithmetic returns on bitcoin, the equally-weighted market portfolio based on 135 crypto
assets and the cap-weighted MVDA index, based on VWAP USD-denominated prices obtained
from Cryptocompare. The sample period is 3 March 2019 - 1 January 2021.
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previously. The same observation can be made for the MVDA index, however, given

that it is calculated using a cap-weighted methodology which produces significant

weighting bias for a very small number of large cap crypto assets, including bitcoin,

the equally-weighted approach is considered as preferable. Again, the principal

components exhibit significantly different behaviour compared with the other data

and are, by construction, uncorrelated with each other.

Table 3.3: Correlation matrix of hourly returns

BTC Eq. w.
Portfolio MVDA PC1 PC2 PC3 PC4

BTC 1 0.78 0.94 0.07 -0.29 0.04 -0.71
Eq. w. Portfolio 0.78 1 0.82 0.22 -0.49 0.03 -0.84
MVDA 0.94 0.82 1 0.08 -0.31 0.03 -0.74
PC1 0.07 0.22 0.08 1 0 0 0
PC2 -0.29 -0.49 -0.31 0 1 0 0
PC3 0.04 0.03 0.03 0 0 1 0
PC4 -0.71 -0.84 -0.74 0 0 0 1

Correlation matrix of hourly arithmetic returns on bitcoin (BTC), the equally-weighted market
portfolio based on 135 crypto assets, the cap-weighted MVDA index and also the first four principal
components extracted from the correlated system of the 135 crypto assets included in the market
portfolio, based on VWAP USD-denominated prices obtained from Cryptocompare. The sample
period is 3 March 2019 - 1 January 2021.

3.4.2 Blockchain Data

Hourly frequency USDT outflows from the tether treasury are examined between 4

April 2019 - 1 January 2021, based primarily on data retrieved from the Whale Alert

online service. Whale Alert is chosen as a one-stop solution that covers multiple

crypto assets but only includes very large transactions.8. In the following, the

blockchain transaction data retrieval problem is described specifically for the case of

tether, which is deployed on a multitude of blockchains and smart contract platforms;

after motivating the use of a whale alert service as a data source, there follows a

description of the data retrieval process and a presentation of the relevant sample

statistics.
8The term ‘whale’ refers to entities with significant crypto asset holdings that often execute

very large transactions
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As of the sample period’s end on 1 January 2021, tether is deployed as a token

on the following blockchain protocols: the Omni Layer, a token platform running on

top of the Bitcoin protocol, since 2014; Ethereum, as an ERC-20 token since 2017;

TRON as a TRC-20 token, EOS and Liquid since 2019; Algorand and Simple Ledger

Protocol (SLP, a token platform on top of the Bitcoin Cash protocol) since 2020.

The direct approach for retrieving a full transaction history for tether is either to

find an online data provider that can offer this data reliably or set up full nodes for

all blockchains on which tether exists.

The tether token (USDT) is deployed on multiple platforms, very possibly to

avoid congesting a single token platform and the higher transaction fees that would

result from prolonged congestion. As of the sample period’s end on 1 January

2021, only the Omni Layer, Ethereum and Tron tether tokens have sufficient supply

and transaction volume to be considered important. Given the above, it would be

necessary to obtain relevant USDT transactions from the Omni Layer, which is

discussed in the next subsection, and also use Ethereum and Tron online blockchain

explorers similar to Lyons and Viswanath-Natraj (2020) or establish full nodes for

both of these blockchains.

Moreover, USDT supply and transaction volume can increase without significant

forward warning on any one of the other four token platforms where a tether token

is deployed, or indeed on any other fully decentralized token and smart contract

platform such as Waves, NEO, NEM and Stellar and also on crypto asset exchange

token platforms such as Binance Launchpad, Huobi Prime, OKEx Jumpsmart etc.

It is obvious that if significant tether supply and transaction volume appears on any

of these token platforms, any effort for tether transaction data retrieval will need to

include them as well. It is therefore becoming apparent that such an approach easily

scales out of proportion, hence the use of Whale Alert as a data source is warranted.

The colloquial term ‘whale’ in the crypto asset space refers to entities that hold

large proportions of a crypto asset’s total supply. Such entities are called ‘whales’

because they have the potential to cause sudden and massive price moves. Blockchain

https://en.bitcoinwiki.org/wiki/Whales
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transactions from such whales are worth monitoring especially if the funds are sent

to an exchange, as this can be an indicator of imminent large price movements.

For instance, 8,000 bitcoin were deposited on the BitMEX crypto asset derivatives

exchange immediately before a Distributed Denial of Service (DDoS) attack on the

same exchange, which coincided with a massive drop in bitcoin’s price on 13 March

2020.9 With this rationale, so-called ‘whale alert’ websites/applications have emerged,

monitoring multiple blockchains and alerting subscribers of large blockchain crypto

asset transactions, often with bot-generated messages on social media platforms and

messaging applications such as Twitter, Telegram and Discord.

Two important issues when examining blockchain transaction data are entity

identification and false-positives. As crypto asset wallet addresses are pseudonymous

and multiple addresses can be owned by the same entity, there is the obvious problem

of identifying ‘who-is-who’ on the blockchain; unless entities identify themselves as the

owners of particular addresses, researchers must resort to clustering algorithms and

heuristics to infer address ownership. False-positives occur when very large blockchain

transactions are detected that are not related to imminent market movements but

instead serve different purposes such as multi-address wallet rebalancing and, in the

case of USDT, chain swap transactions in which USDT tokens are swapped between

different token platforms via the tether treasury; importantly, crypto asset exchanges

often rebalance their cold-storage wallet addresses, producing such false-positive

whale transactions.

There exist several whale alert applications, such as Whale Alert, Bitcoin Block

Bot and Crypto Whale Bot. These applications monitor several crypto assets

including the large-cap bitcoin, ether and ripple and also all significant tether tokens

on the Omni Layer, Ethereum and Tron networks. Such applications also attempt

to identify known entities such as crypto asset exchanges and crypto custodians

that perform large blockchain transactions. This approach therefore bypasses the

issue of monitoring multiple data sources and also the issue of entity identification.

9See Dakos (2020) for a Medium blog post that provides additional detail.

https://whale-alert.io/
https://twitter.com/BtcBlockBot
https://twitter.com/BtcBlockBot
https://whalebot.io/
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Whale Alert is chosen as the source for blockchain transaction data, since it also

attempts to filter out false-positive whale transactions.10 The Whale Alert website

provides a detailed definition of a ‘large transaction’ separately for each crypto

asset monitored, also distinguishing between ‘known’ transactions where at least

one of the counterparties are known and ‘unknown’ transactions; for instance USDT

transactions are classified as large if they exceed $10 million in dollar value for known

transactions and $20 million for unknown transactions. Using this data source is

therefore analogous to the methodology of Ante et al. (2021a) and Ante et al. (2021b)

who only examine stablecoin transactions that exceed $1 million in value.

Whale Alert provides an API for data retrieval but only provides limited data

for free. It is therefore chosen to retrieve the alert messages sent on the Whale Alert

Telegram channel.11 The export channel history feature of the Telegram desktop

client is used to save the entire history of the channel in html files; the BeautifulSoup

Python library is then used to scrape the html files and save the transaction data in

tabular form. Note that the Whale Alert Telegram channel history goes back until 4

April 2019, which is a reasonable date to begin the sample period, given that USDT

supply started to increase near that time.12

Having discussed the motivation of using a whale alert service as the primary

source of blockchain transaction data, and also the data retrieval process, there

now follows a presentation of the relevant sample statistics. The data retrieval

yields an initial dataset of 16,813 crypto asset transactions reported by Whale Alert

on Telegram from 4 April 2019 until 1 January 2021, of which 3,425 are USDT

transactions. As the research question examined in this Chapter focuses on the effect

of USDT outflows from the tether treasury, the above sample is further limited to

1,196 transactions originating from the tether treasury addresses. Moreover, 150

10For instance, the other two bot applications, Bitcoin Block Bot and Crypto Whale Bot issued
an alert on a massive transaction of 43,995.332 BTC, worth more than $430 million, between
unknown entities on 11 June 2020 at 03:05:16 UTC; Whale Alert recorded the transaction but did
not issue any alert on it because it was identified as an internal rebalancing, with no change in
fund ownership before and after the transaction.

11Whale Alert also maintains a Twitter profile where all transaction alert messages are posted,
but retrieving data from Twitter is avoided, as this process has become notoriously difficult.

12See e.g. Alexander and Dakos (2019) for a Medium post in 2019 about increasing tether supply.

https://whale-alert.io/whales
https://docs.whale-alert.io
https://t.me/whale_alert_io
11 Jun 2020 03:05:16 UTC
https://twitter.com/whale_alert
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transactions are identified as chain-swaps, i.e. when USDT tokens are swapped

between different token platforms via the tether treasury, and are excluded from the

sample. This yields a final sample of 640 USDT transactions sent from the tether

treasury to crypto asset exchanges and a further 406 transactions sent from the

tether treasury to other unknown entities; the exchanges-unknown entity distinction

is followed, similar to the approach of Ante et al. (2021a). The dataset is then

re-sampled and aggregated to an hourly frequency, for which sample statistics are

shown in Table 3.4.

As shown in Table 3.4, USDT outflows from the tether treasury towards crypto

asset exchanges and other unknown entities total approximately 17 billion tokens,

with an average transaction size of 19 million towards exchanges and slightly smaller

(16 million) towards other unknown entities, and a corresponding maximum of 300 and

125 million respectively. Figure 3.3 shows the distribution of USDT outflows from the

tether treasury towards different entities, where more than 90% of outflows are either

directed towards Binance or unknown entities, justifying the exchanges-unknown

entity distinction used.

Table 3.4: Summary statistics of USDT outflows from the tether treasury

Exchanges Unknown

N 547 365
Total 10,778,372,775 5,973,600,014
Min. 1,498,500 2,797,200
Max. 300,000,010 125,000,000
Mean 19,704,521 16,366,027
St. Dev. 22,388,364 15,270,564
Skewness 8.52 3.09
Ex. Kurtosis 97 13

Summary statistics of USDT outflows (expressed in number of USDT tokens, approximately equal
to USD) from the tether treasury towards crypto asset exchanges and other unknown entities,
aggregated at the hourly frequency. The sample period is 4 April 2019 - 1 January 2021.

As mentioned previously in Section 3.3, USDT outflows from the tether treasury

that occur on consecutive hours are each considered as a single event. Out of 491

USDT outflows towards exchanges, 442 occur within a single hour, 42 occur within 2
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Figure 3.3: Distribution of USDT outflows from the tether treasury
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Distribution of USDT outflows from the tether treasury towards crypto asset exchanges and other
unknown entities, during the sample period 4 April 2019 - 1 January 2021. Note that a very small
fraction (well below 1%) is also sent to Kraken, Poloniex and Bitbank.

consecutive hours and 8 within 3 hours. Moreover, there are 56 pairs of events that

are a single hour apart and similarly 32 outflows are 2 hours apart, which are also

each collapsed to a single USDT outflow event, given the addition of 1 hour before

and after the USDT outflows to each event window, as also described in Section

3.3. Similarly, out of 325 USDT outflows towards other unknown entities, 293 occur

within a single hour, 29 occur within 2 consecutive hours and there is one case each

that occurs within 3, 5 and 6 consecutive hours. Moreover, there are 30 pairs of

events that are a single hour apart and similarly 25 events are 2 hours apart.

Following the above pre-processing, a total of 402 USDT outflow events from the

tether treasury towards exchanges are examined, and similarly 269 USDT outflow

events towards other unknown entities. Figures 3.4 and 3.5 indicate the hours on

which a USDT outflow event occurs (upper panel) and the size of each outflow

in million USDT (lower panel). In both cases, the event clustering is obvious,

fully justifying the flexible event window size approach and the inclusion of a

control variable for past events in the estimation period, as described in Section 3.3.

Additionally, it is observed that both the clustering and size of outflows increase

significantly following the Covid-related market crash of March 2020, as also shown

previously in Figure 3.1.
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Figure 3.4: USDT outflows from the tether treasury to exchanges
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USDT outflows from the tether treasury towards crypto asset exchanges. The upper panel shows
the flow indicator set to 1 on hours when USDT outflows occur, and the lower panel shows the
corresponding flow size in billion USDT. The sample period is 4 April 2019 - 1 January 2021.

Figure 3.5: USDT outflows from the tether treasury to unknown entities
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USDT outflows from the tether treasury towards other unknown entities. The upper panel shows
the flow indicator set to 1 on hours when USDT outflows occur, and the lower panel shows the
corresponding flow size in billion USDT. The sample period is 4 April 2019 - 1 January 2021.
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3.4.3 Tether on the Omni Layer

Having discussed the market and blockchain transaction data, this subsection focuses

on the data retrieval process of tether transactions from the Omni Layer, using a

full blockchain node that was established locally in a macOS server machine. To the

best of our knowledge, only a very small number of the published articles or working

papers in the crypto asset finance literature obtain their data directly from a locally

installed blockchain node.13 A detailed account of this data gathering process is

therefore provided, as an aid for further research on this topic.14 We begin with a

description of the data retrieval problem, followed by the approaches followed in

the relevant literature and then provide a detailed explanation of the data retrieval

methodology developed.

At the beginning of this research, tether only existed on the Omni Layer, a

digital token platform deployed as a second-layer protocol on top of the the Bitcoin

blockchain.15 There exists an online Omni Layer explorer with an application

programming interface (API), OmniAPI and this was considered initially for retrieving

tether transactions. However, there are several issues with this data source: it is

not possible to retrieve a full transaction dataset, i.e. all tether transactions that

occurred in a given time frame. Instead, the OmniAPI /v1/transaction/address

method allows the retrieval of all tether transactions involving a given Omni Layer

address, which then begs the question of which addresses should be examined. A

reasonable approach is to only examine transactions involving crypto asset exchange

addresses, some of which can be found in the tether rich list – a self-reported list on

the tether website.

The approach above is followed by Griffin and Shams (2020) in order to obtain

tether transactions; they obtained all past versions of this webpage saved on the

Wayback Machine, compiled a list of addresses-of-interest and queried OmniAPI for
13For instance, Easley et al. (2019) set up a full Bitcoin node to study the evolution of bitcoin

transaction fees and Daian et al. (2019) set up multiple full Ethereum nodes to examine frontrunning
and other manipulative practices on decentralized crypto asset exchanges deployed on Ethereum.

14While the primary source of blockchain transaction data used in this Chapter is Whale Alert,
the Omni Layer blockchain data retrieval is used for dataset verification purposes.

15Omni Layer token transactions are embedded inside small value bitcoin transactions.

https://omniexplorer.info/
https://api.omniexplorer.info/
https://wallet.tether.to/richlist
https://archive.org/web/
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the transaction history of each of these addresses. While reasonable, this methodology

potentially leaves certain gaps, as the information provided by OmniAPI and the

tether rich list may not be valid and fully up to date. The OmniAPI data source

is probably trustworthy, although it is worth mentioning that Omni Explorer and

Omni API are maintained by the Omni Layer development team and some of its

members also participate in the founding team of the tether token, indicating a

potential conflict of interest. As for the tether rich list, there is again a conflict of

interest but more importantly, there is no guarantee that this self-reported list of

addresses contains and will continue to contain accurate and complete information

and that there are no other important addresses beyond these reported in the rich

list.16 Instead, the approach followed here is to set up a full Omni Layer blockchain

node and retrieve the entire tether transaction history from the local copy of the

blockchain, as described e.g. by Vicati (2018) in a Hacker Noon blog post.

In the following, we discuss the technical process of setting up a full Omni

Layer blockchain node and configuring the client software to execute data retrieval

API methods; we then present and compare the available data retrieval methods,

we provide a detailed description of the most efficient method’s Unix bash script

implementation and execution, and finally we describe the structure of the retrieved

Omni Layer blockchain transaction data.

We use a macOS server machine and install the Omni Core client that implements

an Omni Layer node, using the instructions in the relevant Github code repository.

As per the instructions we start up the node using the omnicored executable and

let it download an up-to-date copy of the Bitcoin blockchain. Tether is an Omni

Layer token identified by the unique Omni Layer property ID #31, so we need

to retrieve all Omni Layer transactions for a given time frame and filter them to

obtain the tether transactions.17 In order to retrieve Omni Layer transactions,

Omni Core includes an API tool, omnicore-cli with several methods called RPC

16Griffin and Shams (2020) overcome this caveat by applying clustering algorithms and identifying
other addresses potentially owned by exchanges based on the list of known addresses.

17The majority of Omni Layer transactions are tether transactions so this is a relatively simple
task.

https://github.com/OmniLayer/omnicore
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(remote procedure call) commands to access the locally-stored blockchain database.18

Again following the Omni Core installation instructions on Github, we edit the

bitcoin.conf configuration file located inside the /bitcoin folder created by the

installation to include the line server=1. We then restart the node, again using the

omnicore executable file and at this stage we are ready to execute omnicore-cli

methods.19

There are several ways to set up a data retrieval routine but as omnicore-cli is

a command line tool, we choose to retrieve the transaction data with a Unix shell

script, also called a bash script. There is no direct omnicore-cli method to retrieve

the data for all Omni Layer transactions stored in the Bitcoin blockchain; instead a

two-step process can be followed: firstly, two methods are provided to retrieve a list

of hexadecimal transaction identifiers, henceforth called transaction IDs; we then

need to iterate through the list of transaction IDs and call another method that

retrieves the data for a single transaction, given its ID.

For the first step, the available methods for retrieving Omni Layer transaction

IDs are omni_listblocktransactions and omni_listblockstransactions. The

former takes a single integer number as input and returns a JSON array with the IDs

of the transactions included in the block at blockchain height equal to the integer

input; the latter takes two integers as input and returns the IDs of all transactions

included in blocks inside the blockchain height range designated by the two integers.20

As there is no obvious indication of which retrieval process is the most efficient,

we now present alternative data retrieval processes in algorithms 1 and 2, implement

them in Unix bash scripts and compare their performance in terms of execution time.

18As Omni Core is a fork of Bitcoin Core, the main client for the Bitcoin protocol, its functions
are very similar to those of Bitcoin Core. See Antonopoulos (2017) for detailed instructions on
operating the Bitcoin Core client.

19See the Omni Core documentation for a full list of available methods.
20JSON is a lightweight data-interchange format similar to csv. It contains sequential and/or

nested arrays of key-value pairs.

https://github.com/OmniLayer/omnicore/blob/master/src/omnicore/doc/rpc-api.md
https://www.json.org/json-en.html
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Algorithm 1: Data retrieval with double loop
Input: initialBlockHeight, finalBlockHeight

1 for each block between initialBlockHeight and finalBlockHeight do

2 call omni_listblocktransactions with current block height as

argumnent

3 for each transaction ID do

4 call omni_gettransaction with current transaction ID as argument

5 store transaction data into JSON file

6 end

7 end

Algorithm 2: Data retrieval with single loop
Input: initialBlockHeight, finalBlockHeight

1 call omni_listblockstransactions with initialBlockHeight and

finalBlockHeight as argumnents

2 for each transaction ID do

3 call omni_gettransaction with current transaction ID as argument

4 store transaction data into JSON file

5 end

In order to determine which algorithm is more efficient, we implement algorithms

1 and 2 as Unix bash scripts and compare their execution times for different block

height ranges as input, starting on block 636,791 which was mined on 29 June 2020.

On average, 144 blocks are mined on the Bitcoin blockchain per day but the

number of Omni Layer transactions included in each block can vary significantly; in

Q2-Q3 2020 there were between 5,000 - 10,000 Omni Layer transactions per day but

for instance in Q3 2019 there were as many as 100,000 transactions per day. In figure

3.6 we plot the execution time for the two algorithm implementations (left-hand

panel) and also the difference between the execution times (right-hand panel) against

the number of transactions retrieved. We observe that algorithm 1 is consistently
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faster and as the number of transactions retrieved grows, the difference in execution

time tends to increase.

An examination of the algorithms’ structure provides some indications as to

the reasons for the outperformance of algorithm 1. The main difference in the

structure of the two algorithms is in the first of the two omnicore-cli method

calls where algorithm 1 calls omni_listblocktransactions and algorithm 2 calls

omni_listblockstransactions, so the reason for the difference in execution time

is probably related to the construction of these two omnicore-cli methods. We

propose that algorithm 1 is faster because we access the blocks in the database

sequentially, while algorithm 2 seems to access blocks in a somewhat random order.

A detailed review of the Omni Core client source code written in C++ is beyond

the scope of this Chapter, so we provide the following details as an aid for further

research on this topic: the code segments that define the two methods are located in

the rpc.cpp file of the Omni Core Github repository; omni_listblocktransactions

first retrieves the relevant block from the blockchain database and then retrieves

the transaction IDs within, while omni_listblockstransactions makes use of a

function called GetOmniTxsInBlockRange which is defined in the dbtxlist.cpp file; in

turn, the function GetOmniTxsInBlockRange makes use of a leveldb Slice structure

to retrieve transaction IDs from multiple blocks.

Figure 3.6: Omni Layer data retrieval execution times

Left-hand panel: Execution time in seconds for algorithms 1 (double loop) and 2 (single loop),
against the number of transactions retrieved from the blockchain. Right-hand panel: Difference in
execution time in seconds between algorithms 1 and 2, against the number of transactions retrieved
from the blockchain.

https://github.com/OmniLayer/omnicore/blob/master/src/omnicore/rpc.cpp
https://github.com/OmniLayer/omnicore/blob/master/src/omnicore/dbtxlist.cpp
https://chromium.googlesource.com/external/leveldb/+/HEAD/doc/index.md
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Regardless of the exact cause for the difference in execution time, the increasing

trend in the difference between execution times shown in the right-hand panel

of Figure 3.6 indicates that the double loop implementation of algorithm 1 using

the omni_listblocktransactions method should be used to retrieve Omni Layer

transactions in bulk. We now present and describe in detail the bash script that

implements algorithm 1 for the retrieval of Omni Layer transactions:

#!/bin/bash

cd /Volumes/LocalDataHD/md451/bin/

### Create omni_output.json file to store the tx data

touch omni_output.json

### Put a [ symbol inside the json file to denote

### the beginning of a JSON array

echo "[" > /Volumes/LocalDataHD/md451/bin/omni_output.json

cd /usr/local/omnicore/bin/

### Obtain start and end block for data retrieval

### from user input

start_block=$1

end_block=$2

### Loop through the blocks based on user inputs

for ((i=start_block;i<=end_block;i++)); do

get_tx_ids=$(./omnicore-cli omni_listblocktransactions ${i})

length=$(echo ${get_tx_ids} | jq '. | length')
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### Loop through the tx id's contained in get_tx_ids

for ((j=0;j<=((length - 1));j++)); do

tx_id=$(echo ${get_tx_ids} | jq ".[$j]" | tr -d '"')

echo $(./omnicore-cli omni_gettransaction ${tx_id})

### Put a , after each entry unless it is the very last one

if [[ $i -lt $end_block || $j -lt $(((length - 1))) ]]; then

echo ","

fi

done

done >> /Volumes/LocalDataHD/md451/bin/omni_output.json

### Put a ] symbol inside the json file to denote the end

### of a JSON structure

echo "]" >> /Volumes/LocalDataHD/md451/bin/omni_output.json

echo Execution time: $SECONDS seconds.

The script begins with the line #!/bin/bash indicating to the operating system

to invoke the specified bash shell to execute the commands that follow in the script.

We then use the cd command to change the current directory to the folder where

we wish to store the output file of the script, omni_output.json and create the

file using the touch command. With the exception of the first line, all script lines

beginning with the # character are comments that are ignored in the execution and

serve in making the script easier to understand; we designate comments with ### for

increased legibility.

The echo command is used to print text to the terminal, but we also add the >

operator to print the [ character to the output file; we do so because a JSON file

always begins with this character. Following this, we change the current directory to
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/usr/local/omnicore/bin, where the omicore-cli binary executable is located.

The user must determine the initial and final block for the transaction data retrieval

by typing the script file name followed by two integers in ascending order on the

command line when executing the script. The identifiers $1 and $2 refer to these

two integer inputs and we use these identifiers to store the user-provided values to

the variables start_block and end_block.

We then build the outer loop where the loop counter i iterates through the

blocks between start_block and end_block; the double parentheses permit the

expansion and evaluation of arithmetic expressions. Inside the outer loop we call

the omni_listblocktransactions method for the current block i, which returns a

JSON array containing each transaction ID enclosed in double quotation marks; we

store the JSON array inside the variable get_tx_ids, where the $(...) structure

executes any command within the parentheses in a subshell and returns the output.

We also extract the length of the JSON array and store it in the variable length, to

be used in the inner loop. Here we use the echo command in combination with the |

operator to connect the standard output of one process (the echo command) to the

standard input of another, the jq command; jq is a command-line JSON processor

which we install from its Github repository and we use it to extract the length of

the JSON array stored inside the variable get_tx_ids.

We now introduce the inner loop where the loop counter j runs between 0 and

length - 1, since JSON array entries are numbered starting from 0. Inside the

inner loop we first use the | operator and jq to extract the jth element of the

JSON array stored inside get_tx_ids and then strip it of the enclosing double

quotation marks using the tr -d '"' command, storing the transaction ID in-

side the tx_id variable, ready to be used in an omnicore-cli method. We then

call the omni_gettransaction method with transaction ID as an argument and

use echo to append the transaction data JSON array returned in the output file

omni_output.json. Then we use another echo to append a comma character to the

output file in order to separate different JSON array entries; we nest this echo inside

https://github.com/stedolan/jq
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an if statement that causes all entries to be separated by commas except for the

very last entry, which does not need one and for which the outer loop counter i is

equal to the end_block variable and the inner loop counter j is equal to length - 1.

Here the echo commands ‘know’ that we wish to append the output to a file

because we include the >> operator outside the outer loop, immediately after the

second done statement that concludes the outer loop. We choose to include the

append statement outside the loop instead of including it after each echo command

to avoid opening and closing the output file multiple times, thereby making the

execution a little more efficient. Finally, we append a ] character to the output file

to signify the end of the JSON structure stored inside it and we print the execution

time in seconds to the terminal.

We store the entire script in a file, e.g. named data_retrieval, and change the

file’s access permissions with the chmod +x data_retrieval command to make the

file executable. To execute the script we need to navigate to the directory where the

script file is stored and type ./ on the command line followed by the file’s name and

then the two integers that designate the block range for which we wish to retrieve

data; e.g. executing ./data_retrieval 636791 636795 on the command line will

retrieve Omni Layer transaction data from 5 blocks.

The output file produced by the bash script implementation of algorithm 1 contains

multiple entries that contain all the metadata for each Omni Layer transaction, and

have the following structure:

{

"txid": "efc7575e06bf5d8bee50b2fbecc79645348820c69234f1b7c9ab485ff106

0e00",

"fee": "0.00003115",

"sendingaddress": "1G47mSr3oANXMafVrR8UC4pzV7FEAzo3r9",

"referenceaddress": "1KaUmoRvKGHJy7y6tMuSbvM1aZMusezrxQ",

"ismine": false,

"version": 0,
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"type_int": 0,

"type": "Simple Send",

"propertyid": 31,

"divisible": true,

"amount": "373.30000000",

"valid": true,

"blockhash": "00000000000000000004ca6b53bc9fe222e7a76f67c8876035340e7f

324655f6",

"blocktime": 1593398485,

"positioninblock": 1615,

"block": 636816,

"confirmations": 2577

}

The above metadata structure is similar to that of Bitcoin transactions. The txid

field contains the hexadecimal transaction ID. The fee contains the transaction fee

in BTC for the Bitcoin transaction that contains the Omni Layer transaction data.

The sendingaddress is the Bitcoin address of the transaction sender. The field

referenceaddress has various uses depending on the transaction type declared in

the type field and encoded in the type_int field; for transactions of type Simple Send,

the reference address denotes the transaction recipient’s address. The propertyid

is a unique number assigned to each Omni Layer token; 31 corresponds to tether.

The divisible field shows whether the specific token is divisible and the amount

is the transacted amount. The valid field shows whether the transaction is valid

based on address balances and the blockhash is the hexadecimal identifier the block

containing the transaction. The time that the block was mined is contained in

blocktime, encoded as a Unix timestamp; in this case this transaction was mined on

Monday, June 29, 2020 2:41:25 AM. The position of the transaction inside the block

is shown in positioninblock and block shows the block’s height on the Bitcoin

blockchain. Finally, confirmations indicates how many blocks had been mined on
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top of the block containing the particular transaction, at the time of retrieving the

transaction data from the blockchain database.

3.5 Empirical Results

This Section presents and discusses the empirical results for the materiality analysis

of USDT outflow events originating from the tether treasury and directed towards

crypto asset exchanges and other unknown entities. As discussed previously in

Section 3.3, the methodology is adapted from the single-company event study model

framework for securities fraud litigation studies, assessing the materiality of each

USDT outflow even separately to account for the possibility that some – indeed

several – events may not be material, and also accounting for the effect of previous

events included in the estimation period. The factor model defined previously in (3.1)

is estimated via OLS linear regression using hourly frequency data, with an estimation

period of 720 hours (30 days), and is implemented in R using custom-written code.

The discussion focuses on results produced from the equally-weighted market

portfolio factor model specification, with is considered more suitable compared with

the cap-weighted MVDA index and PCA-based specifications, as discussed previously

in sections 3.3 and 3.4, while additional results from the cap-weighted MVDA index

and PCA-based model specifications are provided in Appendix B. Tables 3.5 and 3.6

present the events and corresponding estimates for which the alternate hypothesis

of a significant positive abnormal return is accepted at the 5% significance level

simultaneously for the parametric t-test and the raw and standardized SQ tests, to

ensure the strictest possible criteria in determining the materiality of USDT outflow

events. The t-test critical value is based on the standardized Student-t distribution

with the degrees of freedom parameter determined via the regression model; similarly,

the raw and standardized non-parametric SQ tests are obtained as described in (3.2)

of Section 3.3.
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Overall, out of a total of 671 USDT outflow events from the tether treasury

towards exchanges and unknown entities, 30 events are found to produce a significant

positive abnormal bitcoin return and therefore a material price effect. While this

result may appear surprising, it is for this reason that the materiality of each event

is examined separately, to avoid confounding effects from unrelated events which

may in some cases have biased the findings in the relevant literature, as discussed

previously in Section 3.2. Moreover, the total estimated damage from the 30 material

USDT outflow events amounts to $54 million, and given that each material event

causes a bitcoin price increase which is subsequently amplified by investor herding

and fear-of-missing-out behavioural trading patterns, it is very likely that the 30

identified material events may be enough to manipulate bitcoin prices to a significant

extent.

Regarding outflows towards exchanges, 19 USDT outflow events towards ex-

changes are considered material and included in Table 3.5. The significant events are

located primarily in Q2-Q4 of 2020 which is considered reasonable given the increase

in USDT outflows from the tether treasury in that period as shown previously in

Figure 3.4; the average event duration is 2.4 hours, with most events lasting 2 hours

and some cases of 4-hour and 6-hour events. The total USDT sent to exchanges in the

above events amounts to 407 million USDT, ranging between 5 million - 60 million.

The estimated average abnormal return for the above events ranges between 0.28% -

1.38% with an average value of 0.7%; by construction, all γ̂ estimates included in

Table 3.5 exceed their corresponding SQ critical value, and similar for the tγ and the

SQstd and Student-t critical values. The regression adjusted R2 ranges between 0.06

- 0.67 with an average value of 0.43. The estimated price effect ranges between $27 -

$268, with an average of $90. The P Effect/∆P ratio, which compares the price effect

against the total change in price during each event, often exceeds 1 in magnitude and

is often negative, indicating that the estimated price effect caused by the abnormal

return is comparable to the price change during event period and is very often in

the opposite direction of a downward price movement during the event period. This
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suggests that in several cases, the significant abnormal bitcoin return contributed

towards a negative price trend reversal. Finally, the total estimated damage amounts

to $23 million, ranging between $120k and $6.7 million.

Table 3.5: Material USDT outflows from the tether treasury to exchanges

Start End USDT γ̂ SQ tγ SQstd Adj. R2 Pstart ∆P PEffect Ratio Damage

2019-09-19 21:00:00 2019-09-19 23:00:00 4,995,000 0.008 0.005 3.81 1.30 0.52 10,277.6 3.5 85.3 24.6 385,221
2020-05-07 14:00:00 2020-05-07 16:00:00 10,000,000 0.006 0.006 2.45 1.23 0.57 9,506.1 126.6 60.5 0.5 1,037,029
2020-05-07 18:00:00 2020-05-07 20:00:00 12,000,000 0.007 0.006 2.75 1.25 0.56 9,806.1 -3.2 71.7 -22.3 1,266,315
2020-05-27 12:00:00 2020-05-27 14:00:00 24,000,000 0.010 0.009 2.96 1.64 0.53 9,151.1 4.3 90.3 21.2 1,224,616
2020-07-23 16:00:00 2020-07-23 18:00:00 23,000,000 0.005 0.003 4.38 1.33 0.52 9,631.6 -41.0 50.0 -1.2 457,699
2020-07-24 20:00:00 2020-07-24 22:00:00 30,000,000 0.003 0.003 2.39 1.30 0.49 9,627.4 -78.5 27.0 -0.3 119,379
2020-07-26 09:00:00 2020-07-26 11:00:00 10,100,000 0.007 0.003 6.29 1.31 0.43 9,846.6 132.0 72.3 0.5 747,881
2020-07-27 05:00:00 2020-07-27 07:00:00 12,000,000 0.011 0.003 7.42 1.19 0.28 10,299.7 -129.0 108.7 -0.8 889,257
2020-07-27 21:00:00 2020-07-27 23:00:00 35,000,000 0.008 0.003 4.38 1.10 0.13 11,120.3 -77.4 89.8 -1.2 1,104,155
2020-07-28 15:00:00 2020-07-28 19:00:00 27,000,000 0.006 0.004 3.48 1.11 0.07 11,172.8 -160.8 62.8 -0.4 480,057
2020-07-31 06:00:00 2020-07-31 08:00:00 18,000,000 0.005 0.004 2.04 1.17 0.08 11,152.5 -14.9 50.5 -3.4 313,457
2020-08-01 06:00:00 2020-08-01 08:00:00 15,000,000 0.008 0.005 3.68 1.34 0.09 11,648.1 34.3 97.7 2.9 1,329,122
2020-09-15 12:00:00 2020-09-15 14:00:00 19,000,000 0.005 0.004 2.96 1.43 0.67 10,914.9 -141.4 56.4 -0.4 458,476
2020-10-19 15:00:00 2020-10-19 17:00:00 10,000,000 0.006 0.003 5.38 1.37 0.67 11,804.9 -75.4 75.3 -1.0 817,733
2020-10-21 12:00:00 2020-10-21 16:00:00 29,000,000 0.003 0.003 3.53 1.43 0.63 12,423.1 417.5 43.0 0.1 583,482
2020-10-29 15:00:00 2020-10-29 17:00:00 15,000,000 0.005 0.004 2.93 1.50 0.56 13,440.6 148.8 65.1 0.4 444,188
2020-11-17 17:00:00 2020-11-17 23:00:00 60,200,000 0.008 0.008 4.97 1.79 0.47 17,795.5 -113.9 141.0 -1.2 1,857,423
2020-11-30 14:00:00 2020-11-30 16:00:00 26,000,000 0.014 0.008 4.82 1.55 0.52 19,494.6 -304.6 268.1 -0.9 6,741,367
2020-12-19 14:00:00 2020-12-19 16:00:00 27,000,000 0.009 0.007 3.17 1.49 0.58 23,304.2 679.2 202.2 0.3 2,945,704

Material USDT outflow events from the tether treasury towards exchanges and corresponding
estimates of the equally-weighted market portfolio index model, for which the alternate hypothesis
of a significant positive abnormal return is accepted at the 5% significance level simultaneously
for the parametric t-test – using a critical value based on the standardized Student-t distribution
with the degrees of freedom parameter determined via the regression model, and the raw and
standardized SQ tests. The columns denote: the start and end of each USDT outflow event, the
amount of USDT sent from the tether treasury, the estimated average abnormal return γ̂ during the
event, the raw SQ test critical value based on the 5% right-tail quantile of the estimated regression
residuals, the estimated t-ratio of the average abnormal return tγ , the standardized SQ test critical
value based on the estimated residuals scaled by their estimated standard error, the regression
adjusted R2, the BTC/USD price Pstart at the beginning of each event, the change in price ∆P
between the end and beginning of each event, the estimated price effect P Effect of each event, the
ratio P Effect/∆P and the estimated damage calculated as the product of the price effect and total
traded volume at the beginning of the event, divided by 2.

Similarly, 11 USDT outflow events towards other unknown entities are considered

material and included in Table 3.6. Again, the significant events are located primarily

in Q2-Q4 of 2020; the average event duration is 2.7 hours, with most events lasting

2 hours and some cases of 3, 4 and 5-hour events. The total USDT sent to these

unknown entities in the above events amounts to 350 million USDT, ranging between

5 million - 100 million. The estimated average abnormal return for the above events

ranges between 0.52% - 1.61% with an average value of 0.97%. The regression

adjusted R2 ranges between 0.47 - 0.77 with an average value of 0.58. The estimated

price effect ranges between $49 - $264, with an average of $125, and the P Effect/∆P
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ratio again often exceeds 1 in magnitude and is often negative. Finally, the total

estimated damage amounts to $30 million, ranging between $580k and $6.6 million.

Similar results are provided in Appendix B, in Tables B1 and B3 for the cap-weighted

MVDA index model and in Tables B2 and B4 for the PCA-based model.

Table 3.6: Material USDT outflows from the tether treasury to unknown entities

Start End USDT γ̂ SQ tγ SQstd Adj. R2 Pstart ∆P PEffect Ratio Damage

2019-05-13 17:00:00 2019-05-13 19:00:00 4,995,000 0.016 0.006 6.62 1.53 0.50 7,800.1 82.7 125.5 1.5 2,044,148
2020-04-23 14:00:00 2020-04-23 17:00:00 25,584,859 0.008 0.005 4.37 1.44 0.77 7,548.3 11.7 59.1 5.0 3,470,125
2020-04-29 20:00:00 2020-04-30 00:00:00 22,001,000 0.008 0.005 4.89 1.40 0.71 8,931.3 -115.1 70.7 -0.6 1,209,568
2020-05-07 17:00:00 2020-05-07 22:00:00 36,000,000 0.009 0.006 4.59 1.27 0.57 9,844.1 55.5 84.1 1.5 4,128,227
2020-06-01 23:00:00 2020-06-02 03:00:00 50,000,000 0.012 0.008 4.73 1.53 0.52 10,211.2 -116.3 119.1 -1.0 5,399,317
2020-07-22 22:00:00 2020-07-23 00:00:00 15,000,000 0.005 0.003 4.44 1.33 0.52 9,507.4 17.0 49.7 2.9 582,353
2020-10-21 14:00:00 2020-10-21 16:00:00 10,000,000 0.008 0.003 6.20 1.40 0.64 12,741.4 99.1 101.2 1.0 1,765,803
2020-10-21 22:00:00 2020-10-22 00:00:00 25,000,000 0.012 0.003 8.85 1.41 0.62 13,219.7 -298.0 156.7 -0.5 2,337,395
2020-11-20 16:00:00 2020-11-20 18:00:00 10,000,000 0.008 0.008 3.12 1.74 0.47 18,694.1 -110.7 152.1 -1.4 1,246,770
2020-11-30 14:00:00 2020-11-30 16:00:00 49,999,999 0.014 0.008 4.74 1.53 0.52 19,494.6 -304.6 264.3 -0.9 6,647,181
2020-12-19 17:00:00 2020-12-19 19:00:00 100,000,000 0.008 0.007 2.86 1.55 0.57 23,908.0 -96.4 190.4 -2.0 1,601,355

Material USDT outflow events from the tether treasury towards other unknown entities and
corresponding estimates of the equally-weighted market portfolio index model, for which the
alternate hypothesis of a significant positive abnormal return is accepted at the 5% significance
level simultaneously for the parametric t-test – using a critical value on the standardized Student-t
distribution with the degrees of freedom parameter determined via the regression model, and the
raw and standardized SQ tests. The columns denote: the start and end of each USDT outflow
event, the amount of USDT sent from the tether treasury, the estimated average abnormal return γ̂
during the event, the raw SQ test critical value based on the 5% right-tail quantile of the estimated
regression residuals, the estimated t-ratio of the average abnormal return tγ , the standardized SQ
test critical value based on the estimated residuals scaled by their estimated standard error, the
regression adjusted R2, the BTC/USD price Pstart at the beginning of each event, the change in
price ∆P between the end and beginning of each event, the estimated price effect P Effect of each
event, the ratio P Effect/∆P and the estimated damage calculated as the product of the price effect
and total traded volume at the beginning of the event, divided by 2.

The results described above are conceptually consistent with the findings of Ante

et al. (2021a), Ante et al. (2021b) and Griffin and Shams (2020), in that certain

stablecoin blockchain transactions are indeed identified as having a significant effect

on bitcoin’s price, often contributing towards a negative price trend reversal. Instead

of attempting to determine if tether transactions on the whole have a significant effect

on crypto asset prices, as attempted e.g. by Lyons and Viswanath-Natraj (2020)

and Wei (2018) who find no significant aggregate effect, the methodology presented

in this Chapter accounts for the possibility that only some of the USDT outflows

from the tether treasury may cause significant positive abnormal bitcoin returns and

therefore have a significant and potentially manipulative effect on bitcoin’s price.

The results presented in this section focus on such significant USDT outflows as
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indicated by the strictest materiality criteria, and provide actual estimates of the

corresponding price effect and damages caused.

3.6 Summary and Conclusions

This Chapter has examined the topic of potential bitcoin market manipulation

through large tether blockchain transactions originating from the centralized tether

treasury. The methodology draws from securities fraud litigation studies to determine

the materiality of price effects based on regression factor models and estimation of

abnormal bitcoin returns during each USDT outflow event. The key contribution

of this Chapter stems from the fact that damage estimates in securities fraud cases

are not accepted in court unless an event study-based approach is employed, and

the methodology developed is considered an improvement compared with similar

research examined in the literature review. Additionally, significant detail is provided

on the data retrieval process of blockchain transaction data, which are an uncommon

data type and their data retrieval techniques are sparsely covered in the relevant

literature.

Overall, the findings indicate that 30 out of a total 671 USDT outflow events

originating from the tether treasury produce a significant positive abnormal return

and therefore a material positive price impact indicative of price manipulation, based

on the equally-weighted market portfolio index model specification, while results

from alternate model specifications are also provided. The total damages from the

above material events are estimated at $54 million; by comparison, in the somewhat

relevant 2021 legal case where Bitfinex and Tether ‘deceived clients and market by

overstating reserves and hiding approximately $850 million in losses’, Tether agreed

in an out-of-court settlement with the New York Attorney General’s office to pay a

fine of $18.5 million in penalties.

Regarding the limitations and potential extensions of the methodology presented

here, it is important to note that intention to manipulate crypto asset prices cannot

https://ag.ny.gov/press-release/2021/attorney-general-james-ends-virtual-currency-trading-platform-bitfinexs-illegal
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be demonstrated with the methodology presented, and would instead be based

on evidence extracted from investigative research similar to the article of Protos

(2021a). Consequently, the estimated damages may be attributed to multiple offenders

depending on the specifics of the legal case; similarly, in an actual legal case, damages

would be estimated based on the actual traded volume transacted by the plaintiffs,

instead of the approximation used in the methodology developed in this Chapter.
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4.1 Introduction

This Chapter examines the fundraising success determinants of token offerings and

their evolution between 2017 – early 2022, using linear and probit regression models.

In this Section we first provide a brief introduction to token offerings and then a

short discussion on our research hypotheses.

Token offerings are decentralized crowdfunding campaigns. A token offering

is conducted by a start-up venture in order to raise funding for a blockchain- or

crypto-asset-related project at an early stage of development. A digital token is

issued using a smart contract blockchain platform such as Ethereum, or more recently

a crypto asset exchange token launch platform such as the Binance Launchpad or a

decentralized launchpad such as PancakeSwap.1

All aspects of the token itself and the offering’s design are defined in smart

contract code often written following commonly-used coding standards such as the

ERC-20 token standard on the Ethereum platform. Ideally, the token serves an

integral purpose in the venture’s ecosystem, which is very often to grant access to

an offered product or service; if this is the case, the token is classified as a utility.

More rarely, it may be that the token grants the holder cash-flows similar to stock

dividends or bond coupon payments; such crypto assets are classified as security

tokens and security token offerings (STO) are regulated more strictly in certain

jurisdictions. In fact, the increase in regulatory oversight for security tokens has

driven the majority of ventures to classify their token as a utility crypto asset. The

primary difference of a token offering compared with an IPO is that usually a token

does not afford its holders any ownership rights over a company (OECD, 2019).

For the duration of the token offering, a certain amount of token units (henceforth

tokens) are offered for sale to potential investors. Investors can deposit crypto assets

such as bitcoin (BTC) and ether (ETH) or on certain occasions fiat currencies to the

venture’s digital wallets and accounts, to receive the venture’s tokens at a predefined

1A digital token is a crypto asset that exists on a non-native blockchain. Note that in some
cases the crypto asset offered to prospective investors is deployed on a native blockchain created by
the venture.
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rate of exchange. This rate of exchange can include various rebates for early investors

(bonus scheme) or for advertising the offering on social media (bounty scheme). The

venture often sets a minimum and maximum fundraising target, but does not have

to do so. The minimum fundraising target, called a soft cap, defines a lower funding

boundary for the offering: if the token offering does not raise more funding than

the soft cap, it is usually cancelled and all funds are returned to investors. The

maximum fundraising target, called a hard cap, defines the upper funding boundary:

if the funds raised exceed the hard cap, the excess is often – but not necessarily,

returned to investors.

For instance, CoinPoker is an Ethereum-based poker platform. Its token is called

CHP (Chips) and is an ERC-20 token used on CoinPoker for all bets and payments

made to and from a user’s account, eliminating the lack of transparency prevalent

in traditional online poker platforms and simplifying deposits and withdrawals. A

total of 275 million CHP tokens were created, 75% of which were offered for sale

in the token offering. The CHP token sale took place between 19 – 29 January

2018 and investors could purchase CHP tokens at the rate of 4,161 CHP per ETH

(with rebates offered to early investors), approximately equivalent to a dollar price

of $0.2497 per CHP token. CoinPoker set a low soft cap of 15 ETH – equivalent to

$15,500 at the launch of the offering, and a hard cap of 93,839 ETH, equivalent to

$100 million; the token sale raised a total amount of 52,600 ETH – equivalent at the

time to $55.5 million.

A report by OECD (2019) summarizes the differences and similarities between

token offerings and more traditional funding channels such as IPOs, reward- and

equity-based crowdfunding and venture capital. While IPOs are used by established

companies with a revenue track record, token offerings are very often used by start-up

ventures that are not even incorporated. Token sales and equity- and reward-based

crowdfunding are quite similar funding mechanisms but there are some important

differences, such as the existence of a central counterparty in crowdfunding versus

the decentralized structure of token sales. However, this boundary is becoming less

https://coinpoker.com/
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clear in recent years with the emergence of token offering launchpad platforms on

centralised and decentralized crypto asset exchanges. Finally, venture capital (VC)

funding is considered complementary to token offerings, with VC funds participating

in several private token sales preceding the public token offering and often providing

ventures with expertise, networking and strategic advice.

Our research hypotheses focus on the specific characteristics of token offering

fundraising success determinants between 2017 – early 2022. We proxy fundraising

success with the amount of funding raised and also by whether the minimum funding

required, the soft cap, is exceeded. We examine factors derived from the venture,

token and offering characteristics, as well as additional common factors such as the

average price level and momentum of ether during each offering and the launchpad

platform, if used.

The sample used consists of 2,926 token offerings and covers the entire 2017

– early 2022 period, which – at the time of writing, constitutes one of the most

comprehensive studies on the subject. We introduce explanatory variables that

are previously omitted in the relevant literature, we discuss alternate perspectives

on variables already used, and we revisit variables for which there are conflicting

findings. Importantly, this study is the first relevant research to identify a revival in

the market of token offerings in the 2021 – early 2022 period, with a significant shift

in the fundraising success determinants.

The remainder of this Chapter is structured as follows: in Section 4.2 we review

the relevant papers in the token offering success literature and develop hypotheses

on the determinants of fundraising success; in Section 4.3 we discuss the data and

the construction of our variables and provide their sample statistics and a correlation

analysis; in Section 4.4 we present our regression model specifications, formalise the

interpretation of the results and discuss the process of standardising some of the

variables; Section 4.5 presents and discusses our empirical results based on regression

models examined separately for the 2017 – 2020 and 2021 – early 2022 periods.
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Finally, Section 4.6 summarizes our findings and provides suggestions for further

research.

4.2 Literature Review & Hypotheses Development

The majority of the business and finance literature that examines token offerings

focuses on the determinants of fundraising success and also post-offering token

performance. In this chapter, we focus on the fundraising success strand of the

literature. Note that the terminology used to describe token offerings in the relevant

literature is varied, due to the lack of standardization and the ever-changing nature

of the crypto asset space; authors very often refer to token offerings as ICOs (initial

coin offerings), but given the emergence of several variants such as STOs (security

token offerings), IEOs (initial exchange offerings) and more recently IDOs (initial

decentralized exchange offerings), we choose the more generic term ‘token offering’.

4.2.1 Literature Review

A relevant search for published and conference papers on the Scopus database yields

a total of 136 papers, 60% of which are published between 2020 – 2022.2 In the

following, we first discuss the theoretical framework of token offering fundraising

success as well the findings in the relevant literature, followed by the development of

hypotheses based on our primary research questions: ‘what are the determinants of

token offering fundraising success’ and ‘how do these determinants change over time

as the token offering space evolves’.

Table 4.1 provides a summary of the results for the relevant papers using the most

common model setup in the token offering fundraising literature: a linear regression

model using (log) amount raised as the dependent variable. For the commonly

2The full Scopus query used is: TITLE-ABS-KEY(("initial coin offering" OR "ICO" OR
"token offering" OR "initial exchange offering" OR "IEO" OR "security token offering" OR
"STO") AND ("success" or "fundraising" or "funding" or "crowdfunding" OR "performance"))
AND (LIMIT-TO(SUBJAREA,"BUSI") OR LIMIT-TO (SUBJAREA,"ECON")) AND (LIMIT-
TO(DOCTYPE,"ar") OR LIMIT-TO(DOCTYPE,"cp"))
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used explanatory variable, we show whether a paper reports a positive, negative

or insignificant effect, and also report each paper’s sample period, sample size and

linear regression R2, using the adjusted value where available.

Table 4.1: Empirical results in the token offerings literature
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Data start 4/14 5/16 1/13 1/13 1/13 7/14 1/14 11/16 1/17 4/17 8/15 8/15 8/15 1/15 1/17 1/13 1/15 3/16 1/15 1/14 1/16

Data end 2/18 5/20 11/18 12/17 10/17 1/18 10/20 3/19 1/18 10/18 7/18 4/18 12/17 9/18 3/18 9/17 3/18 3/18 3/18 12/17 5/18

N 200 428 980 166 272 664 357 1597 841 151 495 132 630 853 522 178 479 423 214 670 727

Price + o o o o o o

Supply + + + +

Github o o + + + + + o o

Whitepaper o + o o

Presale o + + o − − − + o o −

Rating + + + + + + +

Team size + + + o + + + + + + o

# Advisors o + o o

ETH + o + o o +

Bonus + o o − o o o o −

Distribution − − o o o − o −

Duration − o − − − o − − − o

R2 0.28 0.29 0.39 0.37 0.36 0.31 0.38 0.11 0.14 0.38 0.23 0.18 0.23 0.18 0.37 0.30 0.22 0.42 0.28 0.14 0.03

Empirical results in the relevant literature. Only results on linear regression models are included,
with log amount raised as the dependent variable. The first row lists the relevant papers; papers
denoted with ∗ use the actual amount raised instead; ∗∗ denotes the use of log(1 + Raised). Note
that several papers present results on multiple model specifications; whenever this is the case, we
only include the most informative one. The data sample period and size (N) used in each paper are
shown in rows 1-3; the final row shows the regression R2, using the adjusted value when available.
The remaining rows exhibit the results on relevant explanatory variables; a + (−) sign denotes
a positively (negatively) significant coefficient and an ‘o’ denotes insignificant coefficients. Note
that we combine the results on all variants of the token offering rating variable (Experts Rating,
Team Rating, Vision Rating, Project Rating) into one representative Rating variable, similar to
Bourveau et al. (2022).

The sample periods examined in the literature commonly span 2014 – 2018, with

only Campino et al. (2022) and Philippi et al. (2021) extending their sample into 2020,

and none of the papers examine token offerings in 2021. While a small number of

offerings takes place prior to 2017, e.g. Philippi et al. (2021) report approximately 70
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such cases, the number of token offerings rises significantly in mid-2017 and onwards;

despite this observation, several recently published papers shown in Table 4.1 do not

extend their sample period beyond 2017. The sample sizes examined vary significantly

between approximately 200 – 1,600 token offerings due to the use of alternate and

complementary data sources and the limited availability of data depending on the

variables examined; for instance, Lyandres et al. (2022) study the fundraising success

of 980 token offerings between 2013 – 2018 and also perform an extensive review

of data quality and availability on multiple online sources. We further note the

existence of the ‘Token Offerings Research Database’ (TORD) by Momtaz (2021),

a very promising attempt at creating a ‘one-stop’ data source for token offerings,

covering a variety of venture and offering characteristics on approximately 6,000

offerings with final sample size depending on data availability.

All papers included in Table 4.1 proxy token offering fundraising success by the

amount of funding raised in the offering, and almost all use a log transformation.

Other fundraising success proxies are also used in the literature such as: the amount

funding raised relative to the hard cap, as done e.g. by Roosenboom et al. (2020)

in an alternate specification and also by Lyandres et al. (2022); whether the soft or

hard cap are exceeded, used for instance by Sharma and Zhu (2020), Giudici and

Adhami (2019) and Roosenboom et al. (2020); the square root of the amount raised

used by Burns and Moro (2018); whether the amount raised exceeds zero (Blaseg,

2018) or a specific amount such as $10,000 (Lyandres et al., 2022) or $0.5 million

(Lee et al., 2018).3 Linear or non-linear (logit and probit) regression models are used

to explain the above success proxies, depending on whether the dependent variable

is continuous or binary. The commonly-used explanatory variables are derived using

the characteristics of the venture, the token offering and the token itself, the venture’s

social media activity, venture ratings from dedicated rating and ranking websites

and also market and sentiment factors.

3Post-offering performance proxies include: whether the token is trading on crypto asset
exchanges; the token’s return on the first day of trading and others.
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The theoretical framework of token offering fundraising success is based on similar

frameworks developed in the entrepreneurial finance literature. For instance, Thies

et al. (2021) suggest that the components of a token offering exhibit the typical

characteristics of crowdfunding and IPOs. Ahlers et al. (2015) examine funding

success on equity crowdfunding platforms and develop a framework in which the key

factors of a venture’s funding success are: (i) observable characteristics of venture

quality and (ii) reduced investor uncertainty. As investors are looking to maximize

their future returns, they will prefer to invest in high-quality ventures which are

more likely to provide higher returns. Ahlers et al. (2015) suggest that venture

quality is demonstrated to prospective investors via signals of human, social and

intellectual capital, and Baum and Silverman (2004) also present a similar argument

for startups that receive venture capital funding. Connelly et al. (2011) further argue

that an observable signal of venture quality also needs to be costly to produce, so

prospective investors are likely to disregard cheap signals as ‘cheap talk’. Parallel

to the concept of venture quality signals, reduction of investor uncertainty relating

to the proposed venture is also key: if prospective investors are not in possession of

sufficient and accurate information regarding a proposed venture, their assessment

of it is restricted and therefore they are less likely to invest. For instance, Ahlers

et al. (2015) suggest that a higher equity share retained by the venture launchers

and the availability of financial projections can reduce uncertainty and mitigate the

risk of asymmetric information.

In the following, we examine adaptations and extensions of the above theoretical

framework, for the case of token offerings. For instance, Bourveau et al. (2022)

and Blaseg (2018) focus on the role of information disclosure in reducing investor

uncertainty and driving token offering fundraising success. Czaja and Röder (2021)

extend the framework of Ahlers et al. (2015), viewing the level of investor familiarity

and attention relating to a proposed venture as a separate factor contributing to

higher funding amounts in token offerings. Venture quality signals are also examined

extensively in the context of token offerings. Philippi et al. (2021) suggest that
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technological, venture, and campaign characteristics act as signals of the venture’s

technological capabilities and Fisch (2019) proxies technological capability using

the existence of a technical whitepaper mentioning a patent and high Github ac-

tivity, suggesting that such indicators can serve as signals that reduce information

asymmetry.

Campino et al. (2022) propose that token offering projects can be viewed as

ventures operating in an ‘open systems model’, similar to crowdfunding ventures.

In this context, Campino et al. (2022) argue that providing prospective investors

with higher levels of quality information in the open systems relationships contribute

positively to the funding outcome of token offerings. Chen (2019) proposes that

highly credible and easily-interpretable signals have a positive effect on fundraising

success, similar to the proposal of Connelly et al. (2011). Thies et al. (2021) also

focus on signalling theory and distinguish between endogenous and exogenous signals,

i.e. signals that can or cannot be influenced directly by the emitter; they suggest that

both endogenous signals such as the choice of social media channels and exogenous

signals such as independent expert ratings can influence token offering funding success

and also moderate the effect of hype as proxied by the price of Bitcoin. Yen et al.

(2021) and Aggarwal et al. (2019) also suggest that external ratings strengthen the

credibility of information provided to prospective investors and Belitski and Boreiko

(2021) further interpret venture capital support, whitepaper publication and presence

on Github as venture quality signals that have a positive effect on fundraising success.

However, several authors caution of a potential negative aspect in the extended

use of venture quality signals to attract prospective investors. Ante and Fiedler

(2020) follow the concept of ‘cheap talk’ signals discussed by Ahlers et al. (2015)

and Connelly et al. (2011), somewhat similar to the endogenous-exogenous signal

distinction made by Thies et al. (2021); Ante and Fiedler (2020) suggest that signals

under the venture’s direct influence such as its website or social media channels may

indicate biased or potentially faked signals, while they argue that the use of false

signals by independent external parties seems less probable. Momtaz (2020a) focuses
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on moral hazard in signalling and suggests that token issuers could be incentivised

to bias signals of venture quality to their advantage, given the attraction of investors

to positive signals and the lack of institutional agents that detect and punish biased

signals; as a result, the token offerings of ventures that do not send biased signals

could in fact be less successful. Boreiko and Vidusso (2019) examine the token

offering ratings assigned by independent websites, suggesting that they could serve

as valid venture quality signals but also warn of moral hazard in the issuer-pays

model used by aggregator websites for token offering information.

Additionally, several authors examine venture and token offering characteristics

as fundraising success determinants that are not assigned to or only loosely related to

the previously discussed factors of venture quality characteristics, investor uncertainty

reduction and investor familiarity and attention. For instance, Roosenboom et al.

(2020) suggest that the use of bonus schemes and a longer planned offering duration

have a negative influence on fundraising success, in the sense that the venture issuers

display a lack of self-efficacy to potential investors. Amsden and Schweizer (2018)

consider the ETH/USD traded price and propose that when it is high, investors may

not wish to part with their ether holdings and be less incentivised to participate

in token offerings, while the volatility of the return on ether’s dollar price can be

an indicator of increased regulatory uncertainty about crypto asset investments in

general and in such cases, investors hasten to participate in an offering for fear of

missing out on a limited-time opportunity. Albrecht et al. (2020) propose that the

initial price setting of tokens has no major impact on the financial success of an

offering, as promising tokens could sell at the same price as underwhelming tokens,

and also suggest that online search trends regarding blockchain technology and

crypto assets are positively linked to fundraising success, analogous to the concept of

bandwagon effects, in which trends spread on a large scale, build positive feedback

loops, and pressure individuals to conformity.

Momtaz (2020b) argues that management team quality and the quality of the

venture’s profile have a positive effect on fundraising success, being at the core of
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principal-agent models; in the absence of effective corporate governance mechanisms,

poor managerial quality translates directly into agency costs and deters prospective

investors. Giudici and Adhami (2019) propose that attributing a legal jurisdiction

to the venture’s project improves fundraising success, serving as a lever for the

enforcement of investor rights. Giudici and Adhami (2019) further suggest that an

increased venture team size can attract prospective investors and increase funding

success, as more individuals share in the reputational risk of joining the venture.

Similarly, Blaseg (2018) also argues that increased disclosure about the commitment

of the venture team, as proxied by its size, positively affects funding success.

As described above, token offering fundraising success factors can be categorized

into various theoretical frameworks, and multiple and sometimes conflicting arguments

are presented as to the potential effect of these factors. This is also reflected in the

empirical results of the relevant literature, shown in Table 4.1. For example, the

Distribution variable reflects the share of total token supply offered to investors, so

a lower share implies higher equity retention by the venture, which in turn should

reduce investor uncertainty as suggested by Ahlers et al. (2015). However, only half

of the papers that examine this variable find a significant negative effect that would

be consistent with the above argument. Similarly, relative consensus is reached for

several variables, such as the negative effect of longer offering duration on the amount

raised, but even then there is often at least one finding of an insignificant or opposite

effect; for instance, Philippi et al. (2021), Roosenboom et al. (2020) and Blaseg (2018)

find that duration has no significant effect on the amount raised. Notable exceptions

to this are the rating variable, for which all papers find a significant positive effect,

and also the Supply variable which is used less extensively, possibly due to its high

negative correlation with the token’s initial price.

4.2.2 Hypotheses Development

Having examined the theoretical frameworks, hypotheses and findings in the relevant

literature, we now discuss the incremental contributions introduced in this chapter,
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followed by a presentation of our hypotheses on the determinants of token offering

fundraising success.

We employ the amount of funding raised and also – where possible, the soft cap

exceedance as success proxies. We select possible success determinants from the

characteristics of each token offering, the token’s technical structure, the venture’s

online and social media presence and also indicators relating to the overall token

offerings ecosystem and crypto asset market; we introduce explanatory variables that

are not used in the relevant literature, such as the combination of token offering

supply and offered price to form the token’s target market capitalization, as well as

the launchpad platform used by token offerings in 2021 – early 2022; we examine

explanatory variables in which there is lack of consensus amongst the relevant

literature – such as the token presale, and also offer new perspectives on existing

variables such as the token offering rating and tax-haven domicile.

We examine the entire 2017 – early 2022 period, which – at the time of writing,

constitutes the most comprehensive study on the subject in terms of sample period

coverage. We confirm and extend the findings in the relevant literature for the 2017 –

2019 period; we examine separately the evolution of success determinants during the

earlier 2017 – mid-2018 boom period, in the subsequent period of reduced investor

interest in token offerings, and we also identify the near total stand-still of the token

offering space during 2020 due to the Covid-19 pandemic. Importantly, this study

is the first to identify 2021 – early 2022 as a period of renewed investor interest in

token offerings, with December 2021 and January 2022 exhibiting new all-time highs

in the number of token offerings completed per month. We also identify a significant

shift in the token offering market with the emergence and near-complete domination

of initial decentralized exchange offerings (IDOs), as well as a shift in the fundraising

success determinants, with the launchpad platform used apparently playing a vital

role in explaining the fundraising success of token offerings in 2021 – early 2022.
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In the following, we first present the statement of each hypothesis, followed by a

brief discussion of the rationale and whether similar hypotheses are proposed in the

relevant literature.

H1: The fundraising success of token offerings increases with the target market cap

and decreases with the soft cap level.

We define the target market cap in an offering as the product of the token’s price and

its total supply, and suggest that it provides an equal basis of comparison between

tokens for investors, leading to a reduction in investor uncertainty. Price and Supply

are used independently in the literature, e.g. Roosenboom et al. (2020) use both the

token’s initial price and the token’s total supply as separate determinants in their

regression analysis, and similarly, Albrecht et al. (2020) suggest that the token’s

price in the offering has no significant impact on fundraising success; however, to the

best of our knowledge, no other papers in the relevant literature combine Price and

Supply in a single variable. A token’s initial price and its total supply are inversely

related: by setting the token’s price and its total supply the venture is actually

setting the target for the initial market capitalization of its token, calculated as the

product of total token supply and price; if a venture sells its tokens at a very low

price, it needs to sell a large number of them to raise sufficient funds, and vice versa.

We therefore propose that it is the combination of price and supply information that

allows comparisons between token offerings, reducing uncertainty and ultimately

driving the decision to invest in a token.

We now discuss the role of the soft cap level. The soft cap in an offering

represents the minimum funding required, ideally estimated by the venture based

on the expenses of creating a minimum viable product, including development and

operational expenses, wages, marketing costs and perhaps a provision for other

unexpected costs. Setting the soft cap too high can instil doubt to prospective

investors who may wait until the offering attracts enough funding before investing
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themselves. Moreover, ventures sometimes decide to lower their soft cap and instead

use funds of their own or raised via a token presale to balance the funding gap; this

may attract more investors as the venture is seen to have more ‘skin-in-the-game’,

again reducing investor uncertainty. For instance, Roosenboom et al. (2020) use

the soft cap in a logit regression model and find that it has a negative effect on the

probability of soft cap exceedance. Note that a lower soft cap may also have a positive

effect on the amount raised but we only use this variable to explain the probability

of soft cap exceedance, because several offerings in our sample are uncapped.

H2: The fundraising success of token offerings increases with signals of public credi-

bility, but only if they are genuine.

Several token offering and venture characteristics can be viewed as signals that are

used to reduce the asymmetry of information between a venture and prospective

investors. As mentioned previously, the use of signalling and asymmetric information

theory in explaining token offering fundraising success is extended from the crowd-

funding literature, based on much earlier studies by Akerlof (1970), Spence (1973),

Leland and Pyle (1977) and Spence (2002). The more recent studies of Baum and

Silverman (2004), Hsu and Ziedonis (2013) and Ahlers et al. (2015) emphasize that

crowdfunding ventures need to signal their technological capabilities and intellectual

capital effectively in order to reduce information asymmetry between investors and

the venture. In order to do so, ventures need to use signals that are observable

by investors and are costly to realize and imitate. High-quality ventures therefore

attract more funding if potential investors are able to distinguish them from ventures

of lower quality (Connelly et al., 2011). Extending from this literature, we examine

token offerings and distinguish between information availability and informational

content to characterize available signals as genuine or ‘cheap’ and examine whether

investors are sensitive to this distinction. For instance, the online availability of a
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venture’s source code or whitepaper are ‘cheap’ signals while an assessment of the

source code or whitepaper’s quality is a genuine one.

A venture launching a token offering can signal its quality to prospective investors

in several ways: a positive rating on independent rating and ranking websites

enhances the venture’s credibility, as such websites are often visited by prospective

investors. A successful token presale can serve as a proof-of-concept and provide

evidence of investor interest and belief in the venture’s success. A whitepaper provides

detailed general and technical information about the proposed project, while an

active presence on Github can help disseminate similar information on an on-going

basis. The public credibility and competence of the venture’s team members and

advisors, proxied by the size of these teams, can also have a significant effect in the

success of a venture’s toke offering.

As discussed previously, Boreiko and Vidusso (2019) warn about certain caveats

in token offering ratings, such as the issuer-pays model used by rating and ranking

aggregator websites such as ICObench. Interestingly, Hartmann (2018) in a Medium

article actually provides evidence that token issuers can purchase favourable ratings

for their offering! These fake ratings are purchased from unknown entities who

then post the favourable reviews on ICObench; it is even possible to dictate the

text content of such ‘expert reviews’ on ICObench. While ICObench claims to

apply stringent vetting of third-party experts registered on the website, Hartmann

(2018) suggests that ‘ICObench and other rating platforms at least approve of or

tolerate these dubious practices on their platforms’. Therefore, ratings may not have

a significant effect on fundraising success, as such revelations perhaps discourage

investors from trusting them.

Furthermore, hypotheses on signals of public credibility are quite common in the

relevant literature but the findings often show that such variables are insignificant in

explaining fundraising success, as shown in Table 4.1. Moreover, Momtaz (2020a)

warns of a bias caused by exaggerated or false signals and Ante and Fiedler (2020)

suggest that cheap signals should not be trusted by investors, although this is not
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always found to be the case. We believe that these warnings have merit, and wish to

test them on a more recent sample of token offerings. For instance, the availability

of a Github code repository and a whitepaper can be argued to be cheap signals, as

they only represent the availability of information and not its content.

Additionally, the overwhelming majority of token offerings in 2021 – early 2022

are conducted on centralized (IEOs) and decentralized (IDOs) exchange launchpads

such as Binance, Pancakeswap and Polkastarter, and these launchpad platforms

are quickly becoming key intermediaries in the token offerings ecosystem. Token

offering launchpad platforms are therefore becoming an important factor in venture

fundraising success, to the point that prospective investors perhaps consider offerings

conducted on well-known launchpad platforms as more credible.

H3: The fundraising success of token offerings increases with investor belief in the

crypto asset class, as well as investor attention and hype.

It is an established observation that large cap crypto assets, particularly bitcoin

and ether often drive the entire asset class. The dollar price of bitcoin and ether

and their return and/or momentum are often used in the relevant literature as

control variables; for instance, Amsden and Schweizer (2018) suggest that when the

dollar price of bitcoin and ether are higher, investors prefer to maintain their bitcoin

and ether holdings and are therefore less willing to invest them in token offerings.

Thies et al. (2021) also consider the hype effect of bitcoin’s price and propose that

higher fundraising success is caused by investor herding due to hype. We propose

additionally that the dollar price of ether acts as proxy for investor confidence in the

entire crypto asset class. Investors are therefore more likely to participate in token

offerings when the prices of bitcoin and ether are higher.

Increased hype may also attract prospective investors, and ventures that are active

on Twitter have the ability to engage with the investor community and attract larger

amounts of funding; alternatively, if investors are unaffected by Twitter-related hype,



148

then the availability of a venture’s Twitter profile should have no effect on funding

success. Finally, in order to examine the effect of investor attention around crypto

assets on offering fundraising success, we further introduce the Google search index

based on the number of Google web searches, Google news searches and YouTube

searches on the terms ‘Blockchain’, ‘Bitcoin’ and ‘Ethereum’.

H4: The fundraising success of token offerings is higher for ventures domiciled in a

tax-haven or with an undisclosed domicile.

Given the immensely speculative nature of the crypto token market, investors are

likely to worry less about token holder rights, legal recourse and dispute resolution

and instead prefer increased versatility to invest in and trade crypto tokens and

more favourable taxation schemes. As a result, they may prefer to invest in ventures

registered in offshore financial centres (OFC) i.e. tax-havens or with an unspecified

domicile, in order to avoid strict regulations on crypto tokens’ security classification,

taxation and trading. Despite this argument, the findings in the relevant literature,

e.g. by Amsden and Schweizer (2018), show that a tax-haven domicile has no

significant effect on funding success and Huang et al. (2020) further find that tax-

haven jurisdictions do not attract a larger number of token offerings.

Additionally, as more token offerings are conducted in launchpad platforms

of centralized and decentralized exchanges, offering investors the ability to trade

their tokens immediately on the exchange platform, it is possible that investors

are more interested on the regulatory status and domicile of such integrated token

launchpad/exchange platforms, in which case the domicile of individual ventures is

less important.
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H5: The fundraising success of token offerings are unaffected by the existence of a

bonus scheme, the token’s distribution and the duration of the offering.

A bonus scheme can give the impression of a venture desperate to attract funding

and may deter investors; however, if no other deterring factors are present, the price

rebates implied in the bonus scheme may in fact attract more investors. For instance,

the Ethereum offering included an implicit bonus scheme in 2014; for the first 14

days of the token sale, 1 BTC could buy 2,000 ETH and subsequently the price

increased linearly so that on the final day of the sale 1 BTC could buy 1,337 ETH.

There is no consensus about the effect of a bonus scheme in the relevant literature;

for instance Roosenboom et al. (2020) propose that bonus schemes negatively impact

fundraising success while Adhami et al. (2018) suggest the exact opposite. Token

distribution refers to the share of the token’s total supply that is offered to investors

in the public offering.

A lower token distribution means that the venture retains a significant share of

the tokens and therefore has more ‘skin-in-the-game’, consistent with the suggestion

of Ahlers et al. (2015) that a higher equity share retention by the venture reduces

investor uncertainty. However, if the share of tokens retained by the team is very

high, the project may be tempted to make a quick profit by ‘dumping’ its tokens on

the market once the token begins to trade on exchanges.

A very long offering duration may indicate that the venture is not confident of

raising the required amount within a short period, but on the other hand immensely

successful offerings such as that of EOS have lasted more than one year. A consulting

report by a Swiss law firm (Baker McKenzie, 2018) suggests that a realistic time

horizon for a legally compliant token offering is between 9 and 12 months, and

the token offerings in our sample have much lower average duration but with a lot

of dispersion within the sample. Again, as discussed previously, there is partial
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consensus in the relative literature that duration has a significant negative effect on

fundraising success.

4.3 Data

In this Section we discuss the data sources used to obtain our sample of token

offerings, together with an overview of data quality in the token offering space. We

then define the dependent and independent variables used in the regression models

and provide preliminary analysis in the form of sample statistics and a correlation

analysis.

We treat ICObench and Cryptorank as our primary data sources and create

Python-based webscrapers to collect a data sample of 6,613 offerings that take place

between January 2015 – January 2022. There are however significant gaps in several

variables in this dataset that limit our sample to 2,926 offerings: specifically, the

sample consists of 1,607 token offerings for the more recent January 2021 – January

2022 period; similarly for the January 2017 – December 2020 period, the final sample

consists of 1,319 offerings when examining the amount raised as a success proxy and

to 902 when we proxy success with soft cap exceedance, despite considerable efforts

made to fill in missing/unknown values from other ranking/rating websites such as

ICOdata, TokenData, ICOdrops, ICOrating and Neironix. Obtaining reliable data on

offerings ending in 2020 is especially difficult and we often resorted to manual data

collection from the above sources and launchpad websites such as Coinlist and also

from the following ranking and rating websites: Bestcoinlist, Cryptototem, Coincurb,

Coinpaprika and ICOmarks.4

As mentioned previously, Lyandres et al. (2022) perform an extensive review

of data availability and quality on token offerings, including several of the data

sources mentioned above and Momtaz (2021) provides an alternative source in

the token offerings research database (TORD). For instance, and similar to the

4We sporadically use the following sources as well: ICOholder, Cryptocompare, Smith and
Crown, ICOmarketdata, ICOstats, Coincodex and Cryptodiffer.

https://icobench.com/
https://cryptorank.io/
https://www.icodata.io/ICO/ended
https://www.tokendata.io/
https://icodrops.com/category/ended-ico/
https://icorating.com/
https://neironix.io/ico-rating?page=1
https://coinlist.co/
https://www.bestcoinlist.com/
https://cryptototem.com/
https://www.coincurb.com/
https://coinpaprika.com/
https://icomarks.com/
https://icoholder.com/
https://www.cryptocompare.com/
https://sci.smithandcrown.com/projects
https://sci.smithandcrown.com/projects
https://www.icomarketdata.com/stats
https://icostats.com/
https://coincodex.com/token-sales/
https://cryptodiffer.com/ended-ico


151

review of Lyandres et al. (2022), the TORD database of Momtaz (2021) (v3 at the

time of writing) provides available data on the amount raised for approximately

2,100 offerings and the overall supply for approximately 4,400 offerings. Note that

depending on additional data requirements, these samples may be smaller. For

example, compared with the Bancor token offering data examined by Lyandres et al.

(2022), the TORD database is consistent with the consensus value on the amount

raised ($153 million) but does not include data on the hard cap, total token supply

or number of tokens for sale, similar to many online sources such as ICObench.

Given that our analysis requires extensive coverage of the 2021 – early 2022 period,

we choose not to use the TORD database and instead rely on our own data collection

process described above. Even so, the difficulty in obtaining a complete dataset of

token offerings persists and is also apparent when examining the availability of data

on the 10 largest offerings by funding raised: EOS, LEO, Telegram Open Network,

Dragon Coin, Huobi, Hdac, Filecoin, Tezos, Sirin Labs and Bancor. Obtaining all

relevant data is only possible for Dragon Coin and Filecoin at the time of writing;

for the others it is only possible to obtain partial information, even when examining

alternate data sources. Moreover, we deliberately exclude Telegram Open Network

and LEO from our sample. Telegram Open Network does not strictly qualify as a

public token offering as it raised all of its funding during the presale and cancelled the

public offering. We also consider LEO as an outlier given some strange circumstances

surrounding its token offering such as the extremely hurried announcement of the

offering, the significant lack of technical detail until after the token sale was concluded

and the numerous legal issues and overall reputation of the Bitfinex exchange that

launched the LEO token sale.

Note that we use a somewhat different set of variables depending on the sample

period examined, 2017 – 2020 and 2021 – early 2022; this is because the characteristics

of token offerings are quite different in 2021, requiring an alternate model configuration

to explain funding success. The need for the above distinction is apparent when

examining the phases in the token offerings market since 2017: an initial boom
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period, a subsequent cool-off period, the pandemic period of 2020 and finally a period

of renewed interest in token offerings. The boundary between the first two periods

appears to be in Q2-2018 and this also means that the regression results for this part

of our sample are more directly comparable with findings in the relevant literature,

as most papers end their sample period in the second or third quarter of 2018. We

choose to treat offerings conducted during 2020 separately, as we expect that the

outbreak of the Covid-19 pandemic has a significant impact on crowdfunding via

token offerings, and the 2021 – early 2022 period of renewed interest is also examined

separately. The above distinctions are also visible in Figure 4.1.

In the upper panel of Figure 4.1, the number of token offerings that end in

each month shows a decline in June 2018; starting in January 2020 there is another

significant decline, concurrent with the worldwide decline in economic activity due

to the pandemic; this decline shows some improvement towards the end of 2020 and

the number of offerings peaks to new all-time highs within 2021. Similarly, as shown

in the lower panel of Figure 4.1, the total amount raised by token offerings in each

month confirms that the initial boom period seems to end in June 2018; the decline

in interest towards the beginning of 2020 is even more apparent in the funding raised.

Additionally, the funding raised within 2021 is lower compared with the 2018 boom

period, but given the larger-than-ever volume of token offerings, this could indicate

that token issuers are now driven less by greed and more by realistic budgeting.

4.3.1 Variables

Having provided an overview of available data sources on token offerings and our

own data collection process, we now discuss the dependent and independent variables

used in the regression models to test our hypotheses.

The dependent variables used in our regression models are the log of the amount

raised measured in USD (logRaised) and a binary variable indicating whether the

amount raised exceeds the offering’s soft cap. These are the most commonly-used
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Figure 4.1: Token offerings and funding raised between 2017 – 2022
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proxies for token offering fundraising success in the relevant literature as described

in Section 4.2.

These two funding success proxies are also complementary: using the amount

raised as a dependent variable in a linear regression restricts the sample in that

we need to exclude offerings with zero funding raised, to avoid biasing the results;

conversely, we can include such cases in the sample when we restrict it to capped

offerings and use the soft cap exceedance probability as the dependent variable in a

probit model.

Using the amount raised as a dependent variable is reasonable because more

funding can help a venture cover project costs which often increase due to delays or

other unforeseen circumstances. On the other hand, soft cap exceedance provides

a clear success-failure boundary for the offering; if an offering fails to reach its soft

cap, very often the token sale is cancelled and all funds are returned to investors.

Note that the soft cap exceedance proxy is used in the 2017 – 2020 dataset but not
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in the 2021 – early 2022 period, as none of the token offerings in 2021 include a soft

cap. We further choose not to use the hard cap in a similar variable; no adverse

consequence is incurred if an offering does not achieve its hard cap.5

The explanatory variables used in our regression models are logtCap, logSoftcap,

Rating, Team, Advisors, Presale, Github, Twitter, Whitepaper, ETH price, ETH

mom, OFC, Bonus, Distribution, Distribution-H, Google, logDuration, together with

additional control variables. We define the log of the target market cap logtCap as

logtCap = log(Price × Supply), where Price is the token’s initial offered price and

Supply is the total number of token units created. We define the variable in log

form to reduce its kurtosis and produce a (closer to) linear relationship with the

dependent variable logRaised. Similarly, the Softcap variable has a sample kurtosis

well above 100, so we use logSoftcap instead.

A venture’s rating on ICObench incorporates a variety of components obtained

directly from, or fact-checked by, independent third parties, rendering it a genuine

credibility signal. Rating is the average rating assigned to each project in ICObench,

which is a combination of two components: a rating assigned by ICObench based on

project and token offering characteristics such as transparency and team quality;6 a

rating based on the team, vision and product of each project, assigned by independent

experts registered on the ICObench website.7 The rating ranges from 1 to 5 and

allows for a single decimal digit. Note that several offerings ending in 2020 are not

listed on ICObench so we obtain similar ratings from rating websites, as described

above;8 note also that no ratings are available for token offerings in 2021 – 2022,

again indicating reduced investor interest in such metrics. Team and Advisors are

integer variables indicating the number of members in the venture’s team and its

advisory board.

5Due to the lack of regulation and standardization in the token offerings space, there is no
unified standard of conducting a token offering. There is no obligation to return all funds if the
soft cap is not reached or to return extra funds if the hard cap is exceeded; it is indeed common
practice, but projects can choose not to follow it.

6See the relevant methodolgy.
7See the information on ICObench experts.
8Such ratings often range between 1 - 10, see e.g. the ICOmarks rating methodology; where

this is the case, we rescale so that all ratings included in our sample range from 1 - 5.

https://icobench.com/ratings
https://icobench.com/faq#q-5-1
https://icomarks.com/rating
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Presale is a binary variable indicating whether a venture conducted a preliminary

token sale prior to the main offering. Github is a binary variable indicating whether

the venture’s Github profile was active at the beginning of the offering, a proxy for

the venture’s activity on Github. Each venture’s Github profile url is obtained from

the relevant page on ICObench or similar websites; the date of the profile’s first

Github commit is retrieved and compared with the offering’s start date to obtain

the binary variable. Similarly, Twitter is a binary variable indicating whether the

venture was active on Twitter at the beginning of the offering. It is constructed

in a similar manner by retrieving the date of creation for each venture’s Twitter

profile. Whitepaper is a binary variable indicating whether a venture’s whitepaper

is available on ICObench.

ETH price and ETH mom refer to ether’s dollar price and 30-day momentum,

i.e. the 30-day moving average of the returns multiplied by 100 to express in

percentage points for scaling purposes, averaged within the duration of each offering.

Bonus is a binary variable showing whether an offering includes a bonus scheme

rewarding early investors with rebates in the price paid for purchasing the token.

Google is based on the average number of combined searches averaged across Google,

Google News and YouTube on any of the terms ‘Bitcoin’, ‘Ethereum’ and ‘Blockchain’.

Distribution is the percentage of the token’s total supply offered for sale; while it is

a continuous variable, there is significant clustering around numbers ending in 0 and

5 (e.g. 65%). Additionally, for the 2021 – 2022 sample there is more information

available on all the shares of token supply for each venture, distributed e.g. to

investors via a token sale, retained by the development team, retained for market

making and/or liquidity provision and also airdropped for promotional or other

purposes; the above information is combined in the Distribution-H variable based

on the normalized version of Shannon’s H index as defined by Boydstun et al. (2014).

Offerings denotes the number of token offerings conducted by the same venture,

and is only used in the 2021– 2022 sample as it is becoming a common characteristic
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of token offerings. We also define logDuration as the log of the offering’s duration

in days to reduce the variable’s kurtosis.

OFC (Offshore Financial Center) is a binary variable that indicates if a venture is

domiciled in a tax-haven or has no registered domicile; Garcia-Bernardo et al. (2017)

define ‘sink’ OFCs as countries with small domestic economies that attract and retain

significant foreign capital and note that nearly all ‘sink’ OFCs are characterized

as tax-havens. Our list of tax-havens includes the following countries: Anguilla,

Bahamas, Belize, Bermuda, British Virgin Islands, Cayman Islands, Costa Rica,

Curacao, Cyprus, Gibraltar, Guyana, Hong Kong, Isle of Man, Jersey, Liberia,

Liechtenstein, Luxembourg, Malta, Marshall Islands, Mauritius, Monaco, Nauru,

Panama, Saint Kitts and Nevis, Samoa, Seychelles, Singapore, St. Vincent and the

Grenadines and Taiwan. We note that Singapore is not classified as a ‘sink’ OFC

by Garcia-Bernardo et al. (2017) but we choose to include it in this list; Singapore

is included by Zoromé (2007) in the list of countries that provide financial services

primarily to non-residents, it ranks as the third-most dominant tax-haven globally

according to Alstadsæter et al. (2018) and it also ranks very high in the Financial

Secrecy Index which ranks jurisdictions according to their secrecy and scale of offshore

financial activities; we pay particular attention to Singapore, as it is the most popular

venture domicile in our sample.

The additional control variables included in our regression models are as follows:

Accepts BTC, Accepts ETH, Accepts other and Accepts fiat indicate respec-

tively the accepted payment methods in each offering: bitcoin, ether, other crypto

assets and fiat money; quite reasonably, nearly all offerings accept ether since nearly

all tokens are deployed as smart contracts on the Ethereum blockchain. Capped

is a binary variable indicating whether the token offering includes a soft and/or

a hard cap. Ethereum-based is a binary variable indicating that the token is

launched on the Ethereum platform following an ERC token standard such as ERC

20. KYC and Whitelist are binary variables indicating whether any investor KYC

(know-your-customer) or pre-registration need to be completed prior to participation

https://fsi.taxjustice.net/en/
https://fsi.taxjustice.net/en/
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in the offering. IEO (initial exchange offering) is a binary variable used in the

2017 – 2020 sample period that indicates whether the token sale was launched on

a centralised token launchpad, as shown e.g. on the ICObench IEO list; for the

2021 – 2022 sample, we construct the Type control variable, indicating whether the

offering is an ICO, IEO or IDO, with the majority of offerings categorized as IDOs,

i.e. launched on decentralized exchange launchpad platforms.

We further construct industry-based control variables (High, Medium and Low)

using ventures’ categories as reported on ICObench for the 2017 – 2020 sample.

Assuming the level of investment needed for the development of projects in each

category, we form three groups representing ventures more likely to be invested in

by high-, medium- and/or low-income investors:

• High-income: Artificial Intelligence, Banking, Big Data, Business services,

DeFi, Electronics, Energy, Investment, Manufacturing;

• Medium-income: Art, Charity, Communication, Education, Fashion, Health,

Infrastructure, Internet, Legal, Media, Real estate, Retail, Software, Tourism;

• Low-income: Casino & Gambling, Entertainment, Sports, Virtual Reality.

High-income investors are likely to be venture capital and angel investor funds,

medium-income refers to retail investors and low-income refers to token purchases

for casual uses such as betting, gaming etc. Note that the overwhelming majority

of ventures list multiple categories as relevant, so there are overlaps between High,

Medium and Low and the variables do not have a unit sum for each offering, which

also avoids the ‘dummy variable trap’ of perfect collinearity between the constant

term and a sum of binary variables. We also note that it is even possible and perhaps

desirable for ventures to belong to all three categories as they are more likely to

attract funding from a larger pool of investors; however, this only occurs for 3% of

offerings in the 2017 – 2020 sample.

https://icobench.com/ieo
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Finally, for the 2021 – 2022 sample, we control for each venture category separately

using the Category variable and also examine the Platform control which denotes

the launchpad platform used in each offering, if any.

4.3.2 Sample Statistics

We now discuss the sample statistics of key variables, separately for the 2017 – 2020

and 2021 – early 2022 periods.

Sample Period 2017 – 2020

We first examine the sample statistics and correlations for continuous and other

non-binary variables: the dependent variable logRaised and the explanatory variables

logtCap, Rating, Team, Advisors, logDuration, Distribution, ETH price and ETH

mom.9 We also examine the correlations between these variables and again exclude

binary variables since their distribution includes only two possible values, causing

problems in interpreting the correlation coefficient.

In Table 4.2 we examine the sample statistics. The kurtosis of Raised and tCap,

i.e. before applying a log, is well more than 100 indicating that the variables contain

significant outliers; as shown in Table 4.2, the kurtosis of logRaised and logtCap

is at more reasonable values. Similarly, we use logDuration instead of Duration to

reduce the outlier effect in it; we attempt the same with Team and Advisors in case

their relationship with the dependent variable is non-linear but find that the effect of

outliers on the variables’ relationship with logRaised is small, i.e. variables’ pair-wise

correlations with logRaised do not change by much when applying a log.

In Table 4.3 we examine the correlations between all continuous and other non-

binary explanatory variables; we exclude from this analysis all pairs that include

binary variables, as the correlation coefficient does not have a meaningful interpreta-

9By ‘other non-binary variables’ we refer to any of the following: integer variables such as
Team and Advisors; discrete variables such as logDuration which by construction can only take the
values log1, log2, ... and Rating which ranges between 1-5 and takes values up to the first or second
decimal digit; variables that are theoretically continuous but exhibit significant clustering around
certain numbers, such as Distribution.
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Table 4.2: Token offerings sample statistics 2017 – 2020

Mean St. dev. Skew. Kurt. Min. Max.
logRaised 14.81 1.99 -0.98 4.78 5.24 20.72
logtCap 17.65 1.78 -0.34 16.28 0.65 33.75
Rating 3.4 0.6 -0.4 2.5 1.3 4.8
Team 9.54 6.54 1.92 9.14 1 54
Advisors 5.33 5.77 1.95 10.62 0 51
ETH price 420.82 244.01 0.73 2.85 10.10 1359.48
ETH mom 0.04 0.91 0.72 3.64 -2.65 3.98
Distribution 0.51 0.23 -0.36 2.61 0.00 1.00
logDuration 3.48 1.33 -1.09 4.2 0.00 6.78

Sample statistics for continuous and other non-binary variables based on a sample of 1,319 offerings
completed between January 2017 - December 2020.

Table 4.3: Token offerings correlation matrix 2017 – 2020

logRaised logtCap Rating Team Advisors ETH price ETH mom Distribution
logtCap 0.36* 1
Rating 0.17* 0.05 1
Team 0.19* 0.06 0.20* 1
Advisors 0.16* 0.06 0.31* 0.15* 1
ETH price 0.21* 0.10* -0.10* -0.00 0.09* 1
ETH mom 0.01 0.04 -0.10* -0.04 -0.09* 0.28* 1
Distribution -0.04 -0.21* -0.06 -0.03 0.02 0.10* -0.02 1
logDuration -0.08* 0.01 0.02 -0.01 0.05 -0.08* -0.20* 0.37*
* p < 0.01

Correlation matrix of continuous and other non-binary variables based on a sample of 1,319 offerings
completed between January 2017 - December 2020.

tion for such variables. As shown in the first column of Table 4.3, all variables exhibit

significant correlations with logRaised, except for ETH mom and Distribution. Some

of the pair-wise correlations between explanatory variables are significant, with the

largest in magnitude being 0.37 between logDuration and Distribution. To ensure

that multicollinearity is not an issue, we calculate the variance inflation factors (VIF)

as defined e.g. in Hair (2010), that measure how much the variance of each estimated

regression coefficient is increased because of collinearity with other explanatory

variables. We find an average VIF across all variables of 1.26 and all VIFs are below

2, which is suggested as the strictest threshold value for identifying multicollinearity.

We also include similar analysis for the smaller sample of 902 capped offerings.

Table 4.4 shows the sample statistics of continuous and other non-binary variables.
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Table 4.4: Token offerings (capped) sample statistics 2017 – 2020

Mean St. dev. Skew. Kurt. Min. Max.
logSoftcap 14.49 1.49 -0.44 4.91 7.53 21.74
logtCap 17.57 1.88 -0.7 19.62 0.65 33.75
Rating 3.4 0.6 -0.5 2.6 1.3 4.8
Team 9.73 6.67 1.79 8.42 1 54
Advisors 5.44 5.83 1.92 10.39 0 51
ETH price 416.27 244.08 0.69 2.8 95.8 1359.48
ETH mom -0.04 0.86 0.82 3.78 -2.33 3.29
Distribution 0.53 0.22 -0.41 2.82 0.00 1.00
logDuration 3.7 1.19 -1.23 5.25 0.00 6.78

Sample statistics of continuous and other non-binary variables based on a sample of 902 capped
offerings completed between January 2017 - December 2020.

Table 4.5: Token offerings (capped) correlation matrix 2017 – 2020

logSoftcap logtCap Rating Team Advisors ETH price ETH mom Distribution
logtCap 0.41* 1
Rating 0.04 0.08 1
Team 0.16* 0.06 0.19* 1
Advisors 0.10* 0.07 0.35* 0.17* 1
ETH price 0.07 0.06 -0.13* -0.00 0.05 1
ETH mom 0.01 0.04 -0.10* -0.00 -0.08 0.34* 1
Distribution -0.00 -0.24* -0.07 -0.04 -0.01 0.07 -0.02 1
logDuration 0.03 0.01 -0.01 -0.07 -0.03 -0.17* -0.21* 0.25*
* p < 0.01

Correlation matrix of continuous and other non-binary variables, based on a sample of 902 capped
ICOs completed between January 2017 - December 2020.

As previously mentioned, log transformations are again applied to Softcap, tCap

and Duration; the kurtosis of logSoftcap has a more reasonable value, as opposed

to well above 100 before applying a log. Table 4.5 shows the pair-wise correlations

between explanatory variables for the sample of 902 capped offerings; we do not

include correlations with the dependent variable of soft cap exceedance as it is binary.

Certain pair-wise correlations are significant but the VIFs of all variables are again

below 2, suggesting that multicollinearity is not an issue.
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Sample Period 2021 – 2022

Similarly, we show the sample statistics and correlation analysis for variables used in

the 2021 – early 2022 sample in Tables 4.6 and 4.7. As before, we note some cases of

high correlation between explanatory variables, but again the average and maximum

VIF values are below the threshold value of 2 for identifying multicollinearity.

Table 4.6: Token offerings sample statistics 2021 – 2022

Mean St. Dev. Skewness Kurtosis Min. Max.
logRaised 12.03 1.23 1.72 7.75 8.01 18.51
logtCap 14.31 1.53 0.5 3.84 7.27 21.53
ETH price 3350.57 905.3 -0.42 2.12 822.32 4810.97
ETH mom 0 0.01 0.34 2.87 -0.02 0.03
Google 33.56 9.76 1.62 7.14 17.28 97.33
Offerings 2.78 1.93 3.13 18.25 1 15
Distribution-H 0.26 0.4 0.93 1.91 0 0.99
logDuration 0.2 0.56 3.14 13.25 0 4.25

Sample statistics for continuous and other non-binary variables based on a sample of 1,607 offerings
completed between January 2021 - January 2022.

Table 4.7: Token offerings correlation matrix 2021 – 2022

logRaised logtCap ETH price ETH mom Google Offerings Distribution-H
logtCap 0.38*
ETH price -0.00 -0.25*
ETH mom -0.01 0.19* 0.02
Google 0.04 0.22* -0.26* 0.35*
Offerings -0.11* 0.09* 0.19* -0.08* -0.04
Distribution-H -0.05 -0.06 0.03 -0.01 0.01 -0.04
logDuration 0.14* 0.03 0.01 -0.02 -0.02 -0.03 0.00
* p < 0.01

Correlation matrix of continuous and other non-binary variables based on a sample of 1,607 offerings
completed between January 2021 - January 2022.

4.4 Models

This Section first presents the model specifications used to obtain empirical results.

We then formalise the interpretation of linear regression coefficients for certain special

cases and also provide details on the standardisation process used for some of the
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variables. Note that, as mentioned previously, we use separate model specifications

for the 2017 – 2020 and 2021 – 2022 sample periods.

For the 2017 – 2020 sample period, we choose a linear regression model to connect

the log amount raised for each token offering i with its possible determinants, as

shown in equation (4.1). Since soft cap exceedance is a binary variable, we must

use a binary choice model to connect it with possible determinants. Equation (4.2)

shows the probit model we use.10

logRaisedi = β0 + β1logtCapi + β2Presalei + β3Ratingi + β4Teami + β5Advisorsi +

β6ETH pricei + β7ETH momi + β8OFCi + β9Bonusi + β10Distributioni +

β11logDurationi + Controlsi + εi

(4.1)

Pr[Raisedi ≥ Softcapi] = Φ(γ0 + γ1logSoftcapi + γ2logtCapi + γ3Presalei + γ4Ratingi +

γ5Teami + γ6Advisorsi + γ7ETH pricei + γ8ETH momi +

γ9OFCi + γ10Bonusi + γ11Distributioni +

γ12logDurationi + Controlsi + εi)

(4.2)

The variable names in equations (4.1) and (4.1) are as defined previously in

sections 4.3 and 4.2, Pr denotes a probability and Φ(z) is the cumulative distribution

function of the standard normal distribution. The terms β1, γ1 and γ2 are used to

test H1 with an expected positive sign, except for γ2 which is expected to have a

negative sign; similarly, β2 to β5 and γ3 to γ6 are used for H2, with positive signs

expected for genuine signals of public credibility and insignificant coefficients or

even negative for cheap signals; β6, β7, γ7 and γ8 are used for H3 with an expected

10Note that we exclude the variables Github, Twitter and Whitepaper from both the linear and
probit models because they produce inconsistent results.
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positive sign; β8 and γ9 are used for H4 with expected positive signs; and β9 to β11

and γ10 to γ12 are used for H5, for which it is expected that the coefficients will be

insignificant. Control variables are as defined previously in Section 4.3.

Similarly, for the 2021 – 2022 sample period, we use a linear regression model as

follows:

logRaisedi = β0 + β1logtCapi + β2ETH pricei + β3ETH momi + β4Googlei+

β5Offeringsi + β6Distribution-Hi + β7logDurationi+

Type Controlsi + Category Controlsi + Platform Controlsi + εi

(4.3)

Again, the variable names in equation (4.3) are as defined previously. The term

β1 is used to test H1 with an expected positive sign; β2 to β4 are used for H3 with

expected positive signs; β6 and β7 are used for H5 and the Platform control variables

are used for H2 as described in Section 4.2.11

We now formalise the interpretation of linear regression coefficients when variables

are used in log form. We do so in order to provide analysis on the magnitude of the

variables’ effects, as well as their sign and statistical significance; most papers in the

relevant literature do not interpret the magnitute of regression coefficients, with the

exceptions of Aggarwal et al. (2019), Albrecht et al. (2020), Lyandres et al. (2022),

Blaseg (2018) and Lee et al. (2018) that provide brief coefficient interpretations but

do not explain the impact of standardization or the application of a log.

Let us assume that a dependent variable logY is used with a continuous inde-

pendent variable logX in a linear regression model logY = α + βlogX + ε. If the

11In order to render the results comparable across different variables, we apply standardization
within each sample period examined: 2017 – 2020 and 2021 – 2022. We standardize the dependent
variable logRaised and the explanatory variables logtCap, logSoftcap, Distribution, ETH price and
ETH mom, i.e. we de-mean them and impose a unit standard deviation. We do so because now the
changes in these variables can be expressed in multiples of each variable’s standard deviation and
the estimated coefficients are comparable across these variables. We avoid standardizing binary
variables and also variables with units that are already difficult to handle such as: Rating which is
measured in a Likert-type scale; Team and Advisors which are measured in ‘number of people’;
logDuration which is measured in log(Days).
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independent variable X changes by a factor δ, i.e. X∗ = δX, then this translates to

a change in Y by a factor δβ, i.e.

Y ∗ = δβY . (4.4)

This is because logY ∗ = α+βlogX∗ +ε and logX∗ − logX = logδ, so logY ∗ − logY =

β(logX∗ − logX) and therefore log(Y ∗

Y
) = βlogδ.

However, we may have the same dependent variable in a linear regression model

but with the independent variable not in log form, i.e. logY = α + βX + ε. Then

it is more reasonable to examine a change in X by δ units, i.e. X∗ = X + δ. This

change translates to a change in Y by a factor eβδ, i.e.

Y ∗ = eβδY . (4.5)

This is because logY ∗ = α + βX∗ + ε and X∗ − X = δ, so logY ∗ − logY = β(X∗ − X)

and therefore log(Y ∗

Y
) = βδ. Note that in this case, we often examine a change in X

by δ = 1 unit which translates to a change in Y by a factor of eβ. Equations (4.4)

and (4.5) hold for multivariate linear regressions, provided that all other independent

variables are unchanged.

We do not encounter such issues in probit regressions, as we calculate the

variables’ marginal effects explicitly due to the non-linearity of the probit model.

Specifically, we calculate the marginal effect at means (MEM), i.e. the effect on

soft cap exceedance probability from a one unit change in a non-binary independent

variable or a transition from 0 to 1 for a binary independent variable, when all other

independent variables are fixed at their mean values.
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4.5 Empirical Results

In the following, we discuss our findings in relation to the relevant literature. We

first provide and discuss the results for the January 2017 – December 2020 period,

followed by the more recent January 2021 – January 2022 period.

4.5.1 Sample Period 2017 – 2020

The linear regression model results with logRaised as the dependent variable are

shown in Table 4.8. We use the sample of 1,319 offerings as described in Section

4.3, which excludes approximately 200 offerings with zero funding raised, to avoid

bias in the model’s estimates. We present results for three sub-periods: 1 January

2017 – 30 June 2018, containing 589 offerings; 1 July 2018 – 31 December 2019,

containing 626 offerings; 1 January 2020 – 31 December 2020, containing 104 offerings;

for completeness, the entire 2017 – 2020 sample results are shown in Table C1 of

Appendix C. We expect the results on the first sub-period to be consistent with the

findings in the relevant literature due to significant overlap in the sample period.

We attempt a basic model configuration (i) which only includes the explanatory

variables related to our hypotheses and a full configuration (ii) which further includes

control variables; specifically for the third sub-period January – December 2020 which

only includes a small sample of 104 offerings, we only attempt the basic configuration

to avoid overfitting. Following common practice in the relevant literature we examine

three levels of significance at 10%, 5% and 1%. The regressions are estimated in

Stata using the ordinary least squares (OLS) method with heteroscedasticity-robust

standard errors; the standard errors are estimated using the Huber/White/sandwich

estimator, as described e.g. by Cameron and Trivedi (2009).

The linear model results are consistent across both configurations with almost

all variables that are significant in the basic model remaining significant in the full

model and the adjusted R2 very slightly improving in the full model. In the full

model setup using the first sub-period of the sample, the adjusted R2 of 0.286 is
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mostly consistent with the results of the existing literature, considering that the

majority of relevant papers end their sample period in Q2, Q3 or Q4 of 2018, e.g.

with the sample of Lyandres et al. (2022) going up to November 2018 as shown in

Table 4.1. Interestingly, the adjusted R2 is reduced significantly to 0.20 in the second

sub-period and even more so to 0.12 in the third sub-period, suggesting that in the

post-boom and Covid-19 pandemic periods, token offering characteristics are less

suitable as success determinants. Specifically for the third sub-period, we observe a

marked decrease between the R2 and its adjusted value from 0.21 to 0.11, indicating

no more explanatory variables should be used due to the small sample size. Note

that in all cases, the corresponding F-tests based on the estimated R2 values indicate

that the models presented in Table 4.8 outperform the constant-only model.

The probit regression model results with probability of soft cap exceedance as

the dependent variable are shown in Table 4.9, where we report the marginal effects

at means (MEM), i.e. the effect on soft cap exceedance probability from a one unit

change in each independent variable when all other independent variables are fixed at

their mean values. We use the smaller sample of 902 capped offerings, as described

in Section 4.3. This sample is again split in three sub-periods, with the entire sample

results shown in Table C2 of Appendix C. Note that as a result of showing the

marginal effects instead of the outright estimated coefficients, the results in Table

4.9 do not include the constant coefficient.

The probit regressions are estimated with the maximum likelihood estimation

(MLE) method and without the use of robust errors, as suggested by Cameron and

Trivedi (2009) to avoid the danger of misspecification in binary choice models. We

follow again the basic and full model setups considering any variable with a p-value

above 10% to be insignificant and find that results are mostly consistent across

setups, with some differences in the level of significance. Again we only estimate the

basic model specification for the third sub-period to avoid overfitting.

In evaluating the goodness-of-fit for the probit regression model, we use McFad-

den’s pseudo-R2 as discussed e.g. by Cameron and Trivedi (2009). It is defined as
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Table 4.8: Linear regression model parameters 2017 – 2020

Jan 2017 - Jun 2018 Jul 2018 - Dec 2019 Jan - Dec 2020

(i) Basic (ii) Full (i) Basic (ii) Full (i) Basic

Constant -0.931*** (-3.83) -0.937*** (-3.38) -0.224 (-1.00) 0.098 (0.35) -1.074* (-1.81)
logtCap 0.254*** (4.59) 0.264*** (5.06) 0.360*** (8.70) 0.348*** (8.01) 0.317** (2.58)
Presale -0.036 (-0.49) -0.042 (-0.57) -0.021 (-0.28) -0.012 (-0.15) -0.249 (-1.21)
Rating 0.393*** (6.11) 0.354*** (5.45) 0.088 (1.39) 0.100 (1.52) 0.100 (0.85)
Team 0.022*** (4.14) 0.021*** (3.87) 0.017*** (3.14) 0.018*** (3.10) 0.024** (2.26)
Advisors 0.005 (0.83) 0.004 (0.71) 0.007 (1.08) 0.009 (1.22) -0.003 (-0.11)
ETH price 0.167*** (3.83) 0.165*** (3.75) 0.166*** (2.84) 0.162*** (2.70) -0.266* (-1.77)
ETH mom -0.010 (-0.32) 0.000 (0.01) -0.048 (-0.86) -0.027 (-0.45) 0.175 (1.64)
OFC 0.162** (2.23) 0.166** (2.27) 0.211*** (2.97) 0.193*** (2.59) 0.064 (0.33)
Bonus -0.131* (-1.80) -0.150** (-2.03) -0.108 (-1.38) -0.109 (-1.35) -0.296 (-1.26)
Distribution -0.081* (-1.74) -0.079 (-1.61) 0.113** (2.54) 0.092** (2.03) -0.009 (-0.06)
logDuration -0.149*** (-4.65) -0.165*** (-4.95) -0.071*** (-2.62) -0.085*** (-2.84) 0.019 (0.32)
Accepts BTC 0.149* (1.79) 0.157* (1.95)
Accepts ETH -0.018 (-0.12) -0.178 (-1.02)
Accepts other 0.002 (0.02) -0.022 (-0.25)
Accepts fiat 0.192* (1.80) -0.162 (-1.57)
Capped 0.171 (1.35) -0.210 (-1.39)
Ethereum-based 0.033 (0.33) 0.006 (0.05)
IEO 0.386 (1.01) -0.204* (-1.69)
KYC -0.027 (-0.29) 0.046 (0.50)
Whitelist 0.119 (1.33) -0.009 (-0.13)
High 0.006 (0.07) 0.092 (1.22)
Medium -0.156** (-2.08) -0.075 (-1.05)
Low 0.043 (0.43) -0.073 (-0.64)

Observations 589 589 626 626 104
R2 0.292 0.314 0.209 0.226 0.210
Adj. R2 0.278 0.286 0.195 0.197 0.116

* p < 0.10 ** p < 0.05 *** p < 0.01
Estimated parameters for the linear regression model with logRaised as the dependent variable.
The sample period is divided into three sub-periods: 1 January 2017 - 30 June 2018, 1 July 2018
- 31 December 2019 and 1 January - 31 December 2020. The model specifications are: (i) Basic
which only includes the variables involved in our hypotheses; (ii) Full which further includes control
variables. The first column in each model specification displays the regression betas and the second
column displays the t-statistics in parentheses.

R2
McFadden = 1 − logL

logLc
, where logL is the maximum log likelihood of our probit model

and logLc is the value of the log likelihood in the intercept-only probit model. The

estimated value of McFadden’s pseudo-R2 is consistent across both model setups,

again improving in the full model. The full model specification’s pseudo-R2 in

the first sub-period of the sample is 0.193, somewhat consistent with the findings

in the relevant literature, considering the differences in sample size: for instance,

Roosenboom et al. (2020) use a sample of 185 offerings until December 2017 in a logit

regression with the same dependent variable and find a pseudo-R2 of 0.233; Bourveau

et al. (2022) use a similar model setup with a sample of 341 offerings until February

2018 and find a pseudo-R2 of 0.31. When examining the second sub-period, the
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Table 4.9: Probit regression marginal effects 2017 – 2020

Jan 2017 - Jun 2018 Jul 2018 - Dec 2019 Jan - Dec 2020

(i) Basic (ii) Full (i) Basic (ii) Full (i) Basic

logSoftcap -0.136*** (-4.09) -0.144*** (-4.22) -0.138*** (-4.83) -0.147*** (-4.99) -0.148 (-1.59)
logtCap 0.058* (1.72) 0.057* (1.69) 0.095*** (3.23) 0.101*** (3.23) 0.048 (0.60)
Presale (d) -0.027 (-0.46) -0.024 (-0.39) -0.025 (-0.52) -0.031 (-0.64) -0.101 (-0.74)
Rating 0.264*** (4.86) 0.255*** (4.50) 0.020 (0.51) 0.036 (0.85) -0.021 (-0.19)
Team 0.005 (1.21) 0.005 (1.20) 0.008** (2.06) 0.009** (2.22) 0.002 (0.18)
Advisors 0.001 (0.11) 0.000 (0.06) 0.004 (0.92) 0.006 (1.25) 0.006 (0.24)
ETH price 0.052 (1.31) 0.034 (0.82) 0.035 (0.83) 0.035 (0.78) 0.152 (0.78)
ETH mom 0.006 (0.26) 0.012 (0.46) -0.015 (-0.44) 0.014 (0.36) 0.036 (0.36)
OFC (d) 0.137** (2.27) 0.155** (2.50) 0.056 (1.18) 0.062 (1.28) 0.004 (0.02)
Bonus (d) -0.117** (-2.06) -0.123** (-2.10) -0.033 (-0.69) -0.026 (-0.51) -0.189 (-1.21)
Distribution -0.036 (-1.08) -0.036 (-1.03) 0.004 (0.16) -0.000 (-0.01) -0.008 (-0.11)
logDuration -0.078** (-2.23) -0.097*** (-2.65) -0.026 (-1.18) -0.047* (-1.94) -0.027 (-0.66)
Accepts BTC (d) 0.115* (1.67) 0.105* (1.80)
Accepts ETH (d) -0.153 (-1.47) -0.011 (-0.10)
Accepts other (d) 0.051 (0.72) -0.073 (-1.21)
Accepts fiat (d) 0.083 (0.94) 0.012 (0.20)
Ethereum-based (d) 0.008 (0.11) 0.008 (0.10)
IEO (d) -0.204** (-2.15)
KYC (d) 0.095 (1.33) -0.054 (-0.94)
Whitelist (d) -0.051 (-0.70) -0.021 (-0.40)
High (d) -0.070 (-1.19) 0.021 (0.42)
Medium (d) -0.064 (-1.07) -0.048 (-1.00)
Low (d) 0.087 (1.09) -0.029 (-0.42)

Observations 366 366 474 474 62
Pseudo-R2 0.161 0.193 0.055 0.072 0.215

* p < 0.10 ** p < 0.05 *** p < 0.01
Marginal effects at means (MEM) for the probit regression with soft cap exceedance as the dependent
variable. The sample period is divided into three subperiods: 1 January 2017 - 30 June 2018, 1 July
2018 - 31 December 2019, 1 January 2020 – 31 December 2020. The model specifications are: (i)
Basic which only includes the variables involved in our hypotheses; (ii) Full which further includes
control variables. The notation (d) next to a variable indicates that the corresponding marginal
effect is calculated for a discrete change of the binary variable from 0 to 1 and the constant term is
not included as MEM is not defined for constants. The first column in each model specification
displays the marginal effect and the second column displays the z-statistics in parentheses.

pseudo-R2 is reduced by more than half to 0.072, again suggesting that token offerings

characteristics are much less suitable for use as success determinants. Surprisingly,

in the third sub-period the pseudo-R2 is 0.22 but the null hypothesis that the model

specification outperforms a constant-only model cannot be rejected even at a 10%

significance level based on a likelihood ratio test statistic, so we do not consider this

value to be reliable; for comparison, we note that all model specifications in the first

and second sub-periods reject the null hypothesis.

We now discuss the results of both models for each research hypothesis in turn

and compare them to the findings of papers in the relevant literature. Note that we

refer to the parameter estimates for the basic model (i) in tables 4.8 and 4.9, unless



169

otherwise specified. Also note that we interpret parameter estimates and marginal

effects under the assumption that all other independent variables remain unchanged.

Consistent with our hypothesis (H1 ) that a project’s target market cap is a good

predictor of the actual amount raised in the token sale, the logtCap coefficient is

significant and positive in all model specifications and all sub-periods; we further

find that its effect is more pronounced during the post-boom and pandemic periods.

In the first sub-period of our sample, a 1-standard-deviation increase in logtCap

causes, all else being equal, a change of 0.254 standard deviations in logRaised, since

both the dependent variable and logtCap are standardized. According to equation

(4.4), we interpret the coefficient as follows: a 1% increase in tCap causes an increase

of 0.263% in the amount raised, since both variables are in log form. As mentioned in

Section 4.2, we cannot find any source in the relevant literature that uses this variable,

but some use the two components of logtCap, Price and Supply, in regressions that

explain logRaised. Roosenboom et al. (2020) find that log(1 + Price) is insignificant

in explaining log(1 + Raised) but they find the coefficient of log(1 + Supply) to be

positive and significant; Momtaz (2020a), Fisch (2019) and Amsden and Schweizer

(2018) also find the same for log(Supply) – see Table 4.1. In the second and third

sub-periods of our sample, the amount raised is more sensitive to changes in the

target market cap: a 1% increase in tCap causes the amount raised to increase

respectively by 0.359% and 0.316%.

Similarly, logtCap is significant in explaining the soft cap exceedance probability

in the probit regression; the effect is more pronounced during the post-boom period

but completely vanishes during the Covid-19 pandemic. During the first sub-period,

its marginal effect (at means) indicates that a 1-standard-deviation change in logtCap

increases the probability of soft cap exceedance by 0.058, i.e. by 5.8 percentage

points, assuming that all other explanatory variables are fixed at their mean values.

This somewhat contradicts the finding of Roosenboom et al. (2020) that neither Price

nor Supply are significant in explaining soft cap exceedance in a logit model; using a

similar model setup, Rasskazova et al. (2019) find that Price has a negative effect
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on soft cap exceedance, which partially confirms our result. When examining the

second sub-period of the sample, a 1-standard-deviation change in logtCap increases

the probability of soft cap exceedance by 9.5 percentage points.

In H1 we further propose that a higher soft cap level has a negative effect on the

probability of soft cap exceedance; indeed, we find a significant negative coefficient

for logSoftcap and the effect is again more pronounced during the post-boom period.

Its marginal effect as shown in Table 4.9 indicates that a 1-standard deviation

increase in logSoftcap causes the probability of soft cap exceedance to decrease by

13.6 percentage points in the first half of the sample and by 13.8 percentage points

in the second half. Roosenboom et al. (2020) also finds that a higher soft cap has a

negative effect on the probability of soft cap exceedance, confirming our result.

Given that both logtCap and logSoftcap are standardized and their marginal

effects coefficients are directly comparable, it seems that the magnitude of the soft

cap’s effect on the probability of soft cap exceedance is larger than that of the target

market cap, suggesting that setting a low soft cap is more important than accurately

choosing the token’s target market cap.

In H2 we assume that the amount raised and the soft cap exceedance probability

increase with signals of public credibility, as long as the signals are genuine. In

Section 4.2 we identify Rating and Presale as genuine signals and argue that Team

and Advisors can be considered as cheap signals.

Interestingly, Rating has a significant positive effect on logRaised and the proba-

bility of soft cap exceedance during the initial boom period of 2017 – mid-2018 but

not in the subsequent periods. The insignificance of Rating after June 2018 indicates

that investors may be taking notice of the allegations made by (Hartmann, 2018,

published on Medium on 14 June 2018), the warnings of Boreiko and Vidusso (2019)

that less trust should be placed on token offering ratings provided by ICObench

and similar aggregator websites and also the warning of moral hazard in venture

credibility signals by Momtaz (2020a).
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In the first sub-period of our sample, the Rating coefficient in the linear model is

positive and strongly significant; all else being equal, an increase in Rating by 1 unit

causes an increase of 0.393 standard deviations in logRaised, i.e. the amount raised

increases by 48.1% according to equation (4.5), since the Rating variable is not in

log form.

To justify this apparently very strong effect, note that we do not standardize

Rating and therefore a 1-unit change is quite significant in the 1-5 scale used in

the ICObench rating. The findings of papers in the relevant literature on Rating

mostly support our result for the linear model, with Boreiko and Vidusso (2019) also

finding a positive significance using the exact same variable and Roosenboom et al.

(2020), Aggarwal et al. (2019) and Fisch (2019) obtain similar results using individual

components of the ICObench rating. Only Momtaz (2020a) finds the expert rating

component to be insignificant and Fisch (2019) finds the project vision component to

be negatively significant. Similarly, the effect of Rating on the probability of soft cap

exceedance is significant only during the first sub-period of our sample. Assuming

that all other variables are fixed at their mean values, an increase in Rating by 1 unit

improves the probability of soft cap exceedance by 0.264, i.e. 26.4 percentage points.

When examining the second and third sub-periods of our sample, the coefficient

of Rating is not significant in explaining logRaised or the probability of soft cap

exceedance, even at a 10% level.

The effect of holding a token presale prior to the public offering has no effect

on logRaised or the probability of soft cap exceedance, both during and after the

2017 boom period, even at a 10% significance level. Given the mixed results in

the literature regarding Presale, our finding is in agreement with certain authors,

e.g. with Fisch, 2019, and in disagreement with others. Contrary to our finding,

Roosenboom et al. (2020) and Rasskazova et al. (2019) both find that Presale is

significant in explaining soft cap exceedance probability but disagree on the sign of

its coefficient.
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The variable Team maintains its significance during and after the 2017 boom

period and even during the Covid-19 pandemic in the linear model; in the probit

model its coefficient is insignificant in the first sub-period of the sample but significant

and positive in the second sub-period. In the first sub-period of the sample, if the

size of the venture’s team increases by 1, i.e. one more member is added to the

team, logRaised increases by 0.022 standard deviations and therefore the amount

raised increases by approximately 2.22%, according to equation (4.5). There is

overwhelming consensus over the positive significance of Team in the linear model,

as confirmed by Roosenboom et al. (2020), Amsden and Schweizer (2018), Aggarwal

et al. (2019), Ante and Fiedler (2020), Chen (2019), Lyandres et al. (2022) and

Bourveau et al. (2022). Bourveau et al. (2022) confirm our finding that team size is

insignificant in explaining the probability of soft cap exceedance, while Roosenboom

et al. (2020) and Rasskazova et al. (2019) find it to be significant. When examining

the second sub-period of our sample, an increase in team size by one member causes

a slightly smaller increase of 1.75% in the amount raised and an increase of 0.8

percentage points in the probability of soft cap exceedance; during the Covid-19

pandemic period, a one-member increase in team size causes a 2.43% increase in the

amount raised. The effect of Advisors is insignificant in all sub-periods, in both the

linear and the probit model. The results in the relevant literature are mixed but

mostly support our finding: Amsden and Schweizer (2018) find the effect of advisory

team size to be positive and significant in one linear model setup but insignificant in

another and Ante and Fiedler (2020) also find no significance.

We reiterate the importance of our finding that the token offering rating has

no explanatory power in the post-boom and pandemic periods, suggesting that

investors may be reducing their trust in ratings provided by ICObench and similar

aggregator websites. In the context of distinguishing between genuine and cheap

credibility signals, our results are mixed: Rating, a seemingly genuine signal, is

significant during the 2017 boom period but not so in the post-boom and pandemic

periods; Presale, another genuine signal, is always insignificant; venture team size,
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a cheap signal is mostly significant; advisory team size, another cheap signal, is

always insignificant. These results confirm the findings of Ante and Fiedler (2020),

suggesting that investors consider certain cheap signals to be reliable and may not

trust other signals, even if they are costly to produce.

The ETH price variable, i.e. the average ETH/USD price during each offering,

has a strong positive significance in the linear model in during and after the 2017

boom period, indicating that it captures investor trust in the entire crypto asset class;

however, its coefficient is significant and negative during the pandemic, suggesting

that offerings raised more funding in 2020 when ether’s price was lower. A 1-standard-

deviation increase in ETH price increases the amount raised by 18.2% during the

2017 boom period and by 18.1% in the post-boom period according to equation (4.5);

however during the pandemic period the same increase would cause the amount

raised to decrease by 23.4%. Moreover, ETH price is insignificant in explaining the

probability of soft cap exceedance and the variable ETH mom, i.e. the ETH/USD

average momentum, is insignificant in all model specifications. Amsden and Schweizer

(2018) find mixed results for ETH price, i.e. positively significant in one linear model

setup and insignificant in another and Boreiko and Vidusso (2019) confirm our finding

that ETH mom has no explanatory power.

Our hypothesis on investor preference for tax-haven-domiciled ventures is partially

confirmed; the OFC (offshore financial centre) variable remains significant in the

linear model before and after the 2017 boom but its effect is insignificant during the

pandemic period; in the probit model, it is only significant during the 2017 boom.

If a venture is domiciled in a tax-haven, the amount raised increases by 17.6% in

the first sub-period of the sample and by 23.5% in the second sub-period, according

to equation (4.5). Similarly, in the first sub-period of the sample the soft cap

exceedance probability increases by 0.137, i.e. 13.7 percentage points. This result is

in contradiction with all relevant findings in the literature, as Amsden and Schweizer

(2018) and Ante and Fiedler (2020) both find the tax-haven domicile variable to be

insignificant in explaining ICO success and Huang et al. (2020) find that tax-havens
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do not attract more token offerings compared with other jurisdictions. To justify

this contradiction, we note that such results very much hinge on the definition of

tax havens; as explained in Section 4.3, we choose to include Singapore as a tax

haven and this almost doubles the population of tax-haven-domiciled ventures in our

sample.

Our findings on the coefficients of the Bonus, Distribution and logDuration

variables show that they are important in the 2017 boom period, less important

in the post-boom period and insignificant during the pandemic period, partially

confirming our hypothesis that they have no effect on the amount raised or the

probability of soft cap exceedance. Interestingly, the sign of Distribution’s coefficient

flips from negative in the first sub-period to positive in the second.

In the first sub-period of the sample, all three variables have significant and

negative coefficients in the linear model: the inclusion of a bonus scheme decreases

the amount raised by 12.3%; an increase in Distribution by 1 standard deviation

decreases the amount raised decreases by 7.7%; an increase in logDuration by 1 unit

also causes a decrease in the amount raised by 13.8%. When examining the probit

model results for the first sub-period of the sample, only Bonus and logDuration

are significant: the inclusion of a bonus scheme decreases the soft cap exceedance

probability by 11.6 percentage points; a 1-unit increase in logDuration decreases the

soft cap exceedance probability by 7.8 percentage points.

We note that it is difficult to interpret what a change of 1 unit in logDuration

means for the original variable Duration. An illustrative example is that when

Duration increases by 1 day from its average value of 59 days, this translates to an

increase in logDuration of approximately 0.02 units; so based on the 2017 boom

period results mentioned, for the average token offering that lasts approximately 2

months, a 1-day increase in duration can decrease the amount raised by almost 30%.

The results in the relevant literature are mixed for Bonus and Distribution but

quite similar for Duration. Roosenboom et al. (2020) find a significant coefficient

for Bonus in their linear model but find the variable to be insignificant in their logit
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model, while Amsden and Schweizer (2018) also find an insignificant coefficient for

Bonus in a linear model. Amsden and Schweizer (2018) and Lyandres et al. (2022) find

Distribution to be significant, but Fisch (2019) finds the opposite. Roosenboom et al.

(2020) also find that (1 − Distribution), i.e. insider token retention, is insignificant.

The consensus on the negative significance of offering duration is quite strong

across papers in the relevant literature, see e.g. the discussions of Momtaz (2020a),

Roosenboom et al. (2020), Chen (2019), Fisch (2019) and Rasskazova et al. (2019) in

Section 4.2. When examining the second sub-period, Bonus is insignificant, partially

confirming our hypothesis. Distribution and logDuration have significant coefficients

in the second sub-period but only in the linear model. Interestingly, a 1-standard-

deviation increase in Distribution causes the amount raised to increase by 12%,

suggesting that when ventures offer a larger share of the token’s total supply to

investors, they tend to raise more funding. A 1-unit increase in logDuration in the

second sub-period causes a 6.9% decrease in the amount raised.

Finally, we present a discussion of the control variables. Note that we do not

include control variables in the third sub-period to avoid overfitting. Accepts BTC,

Accepts fiat, IEO and Medium are the only ones with significant coefficients.

Accepts BTC has a positive coefficient in both models and across both the first

and second sub-periods. Its effect is more pronounced in the post-boom period

for the linear model but less pronounced for the probit model; this is somewhat

surprising given that tokens in our sample are almost exclusively based on the

Ethereum platform; perhaps investors are negatively predisposed towards a token

offering if it does not accept bitcoin as a means of payment, since bitcoin is the

most influential crypto asset in the entire asset class. For instance, Rhue (2018) also

finds that Accepts BTC is positively significant but finds the same for Accepts ETH,

which we do not.

As previously mentioned, nearly all of the tokens in our sample are Ethereum-

based which perhaps explains why Accepts ETH and also Ethereum-based are not

significant variables, so investors possibly take these characteristics as a given. On the
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other hand, this suggests that tokens deployed on other smart contract platforms such

as EOS or NEO, are not at a disadvantage by the mere fact that they are not deployed

on Ethereum. Moreover, there are mixed findings about the Ethereum-based variable

in the relevant literature: Roosenboom et al. (2020) find it to be insignificant in a

logit model setup but positively significant in a linear model; Amsden and Schweizer

(2018) finds it to be insignificant in one linear setup and negatively significant in

another; Momtaz (2020a), Boreiko and Vidusso (2019) and Fisch (2019) find a

significant positive coefficient.

The effect of IEO is significant and negative but only in the post-boom period

between mid-2018 – 2019.12 Out of the industry-based binary variables High, Medium

and Low, only Medium is significant in the linear model and only during the 2017

boom period, indicating that the venture’s self-declared business categories have

no effect at all in the post-boom period. This suggests ventures more likely to be

invested in by medium-income investors such as retail investors and households raised

fewer funds during the boom period but this does not impact the probability of soft

cap exceedance; in the post-boom period, the project categories appear to have no

effect on fundraising success.

Finally, acceptance of fiat currency contributions is only positively significant

during the 2017 boom and only in the linear model, as also found by Momtaz (2020b),

Roosenboom et al. (2020) and Amsden and Schweizer (2018). We find that Capped

is not a significant variable and the findings of papers in the relevant literature are

again mixed. Our findings that KYC and Whitelist are insignificant agree with those

of almost all papers in the literature, except for Lyandres et al. (2022) who find that

both these variables are significant in explaining the amount raised.

12The IEO variable is excluded from the probit model in the 2017 boom period of the sample
due to high collinearity.



177

4.5.2 Sample Period 2021 – 2022

The linear regression model results for the sample of 1,607 token offerings completed

between January 2021 - January 2022 and with logRaised as the dependent variable

are shown in Table 4.10. Given that this recent period of the market is not examined

at all in the extant literature, we compare these results with our previous findings

on the fundraising success determinants of token offerings from the 2017 - 2020

period. We attempt a basic model configuration (i) which only includes the main

explanatory variables used in the 2017 - 2020 period, to the extent that they are

available. We then introduce additional controls for: the type of token offering (ii),

i.e. whether it is an IDO, an IEO or an ICO; the venture’s category (iii), such as

gaming, NFT, DeFi etc.; the launchpad platform (iv) used for each token offering,

such as PancakeSwap, Polkastarter, Binance etc. Finally, we include all of the above

variables and controls in the full model configuration (v). Again following common

practice in the relevant literature we examine three levels of significance at 10%, 5%

and 1% and estimate the linear regressions with OLS using heteroscedasticity-robust

standard errors.

As shown in Table 4.10, the results are consistent across all configurations with

almost all variables that are significant in the basic model remaining significant in the

full model. Interestingly, the inclusion of the Type and Platform controls provides

significant additional explanatory power, with an equally significant improvement in

the adjusted R2, from 0.20 in the Basic configuration to 0.54 in the Full configuration.

It is important to note that such a high adjusted R2 is not exhibited in any of the

results in the existing literature, nor in our own results for the 2017 - 2020 period of

the ICO market. This suggests that in the most recent IDO boom period of 2021 -

2022, the platform used to conduct a token offering together with the type of offering

prove to be most significant determinants of ICO fundraising success. Note also that

the corresponding F-tests based on the estimated R2 values indicate that the models

presented in Table 4.10 outperform the constant-only model in all cases.



178

Table 4.10: Linear regression parameters for the 2021 – early 2022 period

(i) Basic (ii) Type (iii) Category (iv) Platform (v) Full

Constant 0.245*** (5.25) 1.979*** (9.69) 0.309*** (3.09) 0.797*** (7.63) 1.896*** (8.12)

logtCap 0.444*** (11.60) 0.401*** (10.97) 0.428*** (10.86) 0.365*** (10.99) 0.315*** (8.56)

ETH price 0.152*** (5.70) 0.179*** (7.01) 0.154*** (5.10) 0.125*** (4.86) 0.165*** (6.28)

ETH mom -0.108*** (-4.41) -0.139*** (-5.93) -0.104*** (-4.03) -0.102*** (-4.57) -0.136*** (-6.17)

Google 0.013 (0.59) 0.026 (1.24) 0.015 (0.67) 0.016 (0.83) 0.018 (0.92)

Offerings -0.094*** (-7.10) -0.097*** (-8.08) -0.096*** (-7.41) -0.068*** (-6.23) -0.062*** (-5.47)

Distribution-H -0.095* (-1.77) -0.046 (-0.90) -0.082 (-1.49) -0.086* (-1.86) -0.044 (-0.97)

logDuration 0.206*** (4.53) 0.191*** (4.18) 0.214*** (4.56) 0.106** (2.41) 0.109** (2.55)

Observations 1607 1607 1607 1607 1607

R2 0.206 0.331 0.230 0.515 0.579

Adj. R2 0.202 0.327 0.208 0.488 0.544

Type

ICO (54) 0.000 0.000

IDO (1340) -1.731*** (-8.28) -1.353*** (-5.74)

IEO (213) -2.200*** (-10.26) -2.242*** (-4.84)

Category

Artificial (7) 0.712 (1.22) 0.324 (0.87)

Blockchain (153) 0.000 0.000

Business (3) -0.162 (-1.14) -0.132 (-0.92)

Cloud (9) 0.199 (0.76) 0.082 (0.60)

Crowdfunding (3) -0.455** (-2.55) -0.149 (-0.66)

Dapp (14) -0.251 (-0.69) -0.195 (-0.92)

Data (16) 0.554** (2.33) 0.122 (0.56)

DeFi (411) -0.079 (-0.76) -0.039 (-0.46)

Education (2) -0.541** (-2.33) 0.224 (1.12)

Energy (2) 0.809*** (7.43) 0.715*** (3.87)

Entertainment (32) 0.352 (1.33) -0.155 (-1.08)

Exchange (57) -0.045 (-0.33) 0.031 (0.29)

Fan (6) 0.297 (0.56) -0.846*** (-4.14)

Financial (34) -0.266* (-1.86) -0.291** (-2.26)

Gambling (13) -0.432** (-2.03) -0.220 (-1.11)

Gaming (586) -0.067 (-0.66) -0.107 (-1.26)

Healthcare (1) 0.269** (2.57) 0.139 (0.81)

IOT (1) -0.118 (-1.05) -0.200 (-0.67)

Insurance (10) -0.140 (-0.55) -0.215 (-1.26)

Market (3) -0.475** (-2.23) -0.228** (-2.02)

Marketplace (36) -0.050 (-0.30) 0.040 (0.37)

Media (8) -0.234 (-0.93) -0.024 (-0.13)
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(i) Basic (ii) Type (iii) Category (iv) Platform (v) Full

Meme (2) -0.512 (-0.73) 0.215 (0.57)

Mining (1) -0.582*** (-6.29) -0.242** (-2.50)

Network (5) 0.117 (0.15) 0.179 (0.44)

Non-Fungible (92) -0.209* (-1.83) -0.073 (-0.80)

Other -0.720*** (-6.90) -0.744*** (-3.27)

Predictions (3) -0.395*** (-3.80) -0.202 (-0.58)

Protocol (15) 0.142 (0.47) 0.094 (0.46)

Real (3) -0.278 (-0.87) -0.174 (-0.92)

Security (4) -0.075 (-0.30) 0.016 (0.16)

Social (17) 0.462 (1.28) 0.306 (0.87)

Tokenized (1) 0.247** (2.49) -0.645*** (-6.63)

Trading (28) -0.274* (-1.65) -0.015 (-0.13)

VR (15) -0.466*** (-2.80) -0.266** (-2.06)

Verification (1) 0.409*** (3.62) 0.372*** (3.93)

Wallet (11) -0.283 (-0.56) -0.609*** (-2.67)

Platform

A2DAO (DEX, 15) -1.003*** (-6.68) -0.692*** (-4.78)

AcceleRaytor (DEX, 13) -0.079 (-0.41) 0.230 (1.18)

AscendEX (CEX, 5) -1.160** (-2.57) 0.092 (0.15)

AvaXlauncher (DEX, 4) -0.701 (-1.61) -0.489 (-1.12)

Avalaunch (DEX, 13) 0.368** (2.44) 0.635*** (4.02)

BSCPad (DEX, 57) -0.553*** (-4.65) -0.283** (-2.38)

BSCStation (DEX, 36) -0.773*** (-7.46) -0.575*** (-5.10)

BSClaunch (DEX, 13) -0.907*** (-5.86) -0.792*** (-4.04)

BinStarter (DEX, 12) -0.509*** (-4.08) -0.273** (-2.20)

Binance (CEX, 7) 1.486*** (7.71) 3.032*** (6.48)

BitMart (CEX, 1) -2.111*** (-20.56) -1.005** (-2.43)

Bounce (DEX, 14) -1.613*** (-8.96) -1.316*** (-7.40)

BullPerks (DEX, 13) -0.838*** (-5.49) -0.597*** (-3.67)

Bybit (CEX, 7) -0.019 (-0.11) 1.181*** (2.66)

CardStarter (DEX, 12) -0.279* (-1.96) 0.100 (0.65)

ChainBoost (DEX, 18) -0.907*** (-6.57) -0.602*** (-4.24)

Conv. Fin. (DEX, 1) -1.722*** (-12.63) -1.399*** (-9.73)

CyberFi (DEX, 21) -0.633*** (-3.18) -0.350* (-1.76)

DAO Maker (DEX, 80) -0.608*** (-5.15) -0.289** (-2.41)

Dodo (DEX, 2) -0.286 (-0.55) -0.189 (-0.41)

DuckSTARTER (DEX, 50) -0.875*** (-7.89) -0.574*** (-5.12)

ETHPad (DEX, 6) -0.466** (-2.24) -0.263 (-1.21)

Enjinstarter (DEX, 26) -0.825*** (-7.89) -0.575*** (-5.55)

FTX (CEX, 6) -0.066 (-0.33) 1.244*** (2.81)

FantomStarter (DEX, 5) -0.910*** (-5.68) -0.565*** (-3.37)

FireStarter (DEX, 3) -0.265 (-1.51) -0.011 (-0.05)
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(i) Basic (ii) Type (iii) Category (iv) Platform (v) Full

GameFi (DEX, 35) -0.951*** (-6.54) -0.670*** (-4.52)

GameStation (DEX, 17) -0.816*** (-5.21) -0.579*** (-3.85)

GameZone (DEX, 10) -0.187 (-1.03) 0.045 (0.24)

Gamestarter (DEX, 13) -0.573*** (-2.84) -0.321 (-1.61)

Gate.io (CEX, 134) -1.493*** (-12.55) -0.300 (-0.73)

GenPad (DEX, 3) -0.852*** (-4.28) -0.515*** (-2.67)

Gnosis (DEX, 2) 1.502*** (6.43) 1.718*** (7.79)

Huobi (CEX, 19) -0.177 (-1.13) 0.993** (2.33)

Imp. Fin. (DEX, 8) -0.249 (-1.19) 0.011 (0.05)

Inf. Launch (DEX, 3) -1.003*** (-2.97) -0.654** (-2.06)

Infinity Pad (DEX, 9) -0.902*** (-8.19) -0.660*** (-5.49)

KickPAD (DEX, 7) -0.821*** (-5.35) -0.480*** (-3.10)

Kommunitas (DEX, 9) -1.065*** (-5.71) -0.814*** (-4.11)

Krystal GO (DEX, 13) -0.707*** (-4.50) -0.474*** (-2.92)

Kucoin (CEX, 13) -0.426** (-2.23) 0.789* (1.79)

LaunchZone (DEX, 16) -0.468*** (-2.86) -0.225 (-1.32)

Launchpool (DEX, 12) -0.235 (-1.07) 0.046 (0.20)

Lemonade (DEX, 2) -0.471*** (-4.30) -0.136 (-0.96)

Lightning (DEX, 8) 0.166 (1.27) 0.496*** (4.24)

MEXC (CEX, 10) -0.972*** (-5.18) 0.207 (0.47)

MISO (DEX, 8) 1.757*** (3.83) 2.259*** (4.61)

MoonEdge (DEX, 4) -0.712*** (-3.92) -0.410** (-2.40)

MoonStarter (DEX, 19) -0.955*** (-7.11) -0.680*** (-5.47)

OKX (CEX, 1) 0.778*** (6.56) 2.038*** (4.76)

OccamRazer (DEX, 17) -0.416*** (-2.95) -0.143 (-0.97)

Other (203) 0.000 0.000

PAID (DEX, 64) -0.434*** (-3.70) -0.155 (-1.34)

PancakeSwap (DEX, 14) 0.888*** (4.50) 1.374*** (7.23)

Polkabridge (DEX, 11) -1.371*** (-6.24) -1.109*** (-4.96)

Polkastarter (DEX, 88) -0.425*** (-3.65) -0.073 (-0.62)

Poolz (DEX, 61) -0.797*** (-7.21) -0.496*** (-4.69)

Probit (CEX, 4) -0.791* (-1.88) 0.874* (1.71)

Red Kite (DEX, 50) -0.780*** (-7.44) -0.486*** (-4.61)

Republic (DEX, 5) 2.693*** (8.90) 2.265*** (6.14)

Roseon Fin. (DEX, 11) -1.013*** (-6.03) -0.762*** (-4.72)

Scaleswap (DEX, 7) -0.917*** (-4.26) -0.667*** (-2.68)

Seedify (DEX, 34) -0.185* (-1.81) 0.090 (0.88)

SolRazr (DEX, 8) 0.416 (1.45) 0.668** (2.19)

Solanium (DEX, 22) -0.554*** (-3.27) -0.294* (-1.71)

StarLaunch (DEX, 3) 0.015 (0.07) 0.276 (1.48)

Starter (DEX, 18) -0.890*** (-5.50) -0.647*** (-3.94)

Synapse (DEX, 15) -0.730*** (-3.95) -0.518*** (-2.80)

TronPad (DEX, 7) -0.741*** (-7.33) -0.511*** (-5.06)
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(i) Basic (ii) Type (iii) Category (iv) Platform (v) Full

TruePNL (DEX, 21) -1.345*** (-8.92) -1.143*** (-7.10)

TrustPad (DEX, 55) -0.712*** (-6.55) -0.464*** (-4.22)

TrustSwap (DEX, 7) -0.491* (-1.71) -0.314 (-1.05)

Vent Fin. (DEX, 1) -0.525*** (-5.51) -0.269*** (-2.84)

WeStarter (DEX, 11) -2.120*** (-11.31) -1.802*** (-9.40)

Yellow Rd. (DEX, 5) -1.398*** (-5.16) -0.979*** (-4.48)

ZB (CEX, 1) -1.412*** (-15.19) -0.228 (-0.55)

ZENDIT (DEX, 34) -0.902*** (-6.06) -0.580*** (-3.91)

ZeeDO (DEX, 14) -1.034*** (-6.68) -0.726*** (-4.86)

Zel. Fin. (DEX, 1) -1.312*** (-11.23) -1.356*** (-6.93)

* p < 0.10 ** p < 0.05 *** p < 0.01

Parameters for the linear regression model with logRaised as the dependent variable. The sample
period is 1 January 2021 - 31 January 2022 containing 1,607 ICOs. The model specifications are:
(i) Basic, followed by additional specifications controlling for the token offering’s type (ii), category
(iii) and token offering platform (iv), and also a full specification (v) which contains all controls.
Note that control variable names include in brackets the number of offerings in each case and, for
the platform controls, whether the launchpad platform is a centralized (CEX) or decentralized
(DEX) exchange. The first column in each model specification displays the regression betas and the
second column displays the t-statistics in parentheses.

Regarding the explanatory variables included in the Basic configuration shown in

Table 4.10, we observe a significant positive effect of logtCap on fundraising success,

consistent with our hypothesis (H1 ) that the target market cap can predict the

actual amount raised in the offering. Interestingly, we further observe an increase

in the magnitude of the regression coefficient for logtCap to 0.44, compared with

the corresponding results from the 2017 – 2020 period with an average effect of 0.33,

which suggests that logtCap is now an even more significant predictor of fundraising

success in comparison with previous stages in the token offering market. Similarly,

the ETH price variable is found to have a positive effect, consistent with the earlier

2017 – 2019 periods and in contrast with the negative effect observed during the 2020

pandemic period; this is in line with our hypothesis H3 that the average ETH/USD

price level during a token offering has a generally positive effect on fundraising success.

Surprisingly and contrary to our hypothesis (H3 ), the average 30-day momentum of

ETH/USD returns during each offering have a significant negative effect on logRaised,

which could imply overall that the optimal timing for launching a token offering



182

in 2021 - 2022 was during the ‘cooling-off’ periods of negative momentum in the

ETH/USD returns. Additionally, we observe that the combined volume of Google web

searches, Google news searches and YouTube searches on the ‘Bitcoin’, ’Ethereum’

and ’Blockchain’ keywords has no significant effect on logRaised, indicating that

investors are no longer influenced by the overall investor attention to the crypto

asset space.

As expected, the number of token offerings launched by the same venture has a

negative effect on the amount raised, as the total funding required for the venture

is achieved from multiple offerings. Finally, the effect of distributing the token’s

supply shares more equally is relatively small and only significant in the Basic

model configuration, and the duration of the token offering now exhibits a significant

positive effect, contrary to our findings in the 2017 - 2020 period.

To further illustrate the additional effects of the Type, Category and Platform

controls included in models (ii) - (iv) of Table 4.10, we further examine their

coefficients added to the overall constant coefficient in each specification. This

provides an intuitive measure of comparison between the different types, categories

and platforms, in the form of the net offset in standard deviation units of the

dependent variable. In the Type model specification (ii), the constant coefficient

shown in Table 4.10 is 1.979; we choose the ICO type as base so its coefficient is zero

and the IDO and IEO coefficients are -1.731 and -2.2 respectively. The resulting net

offsets are therefore 1.979 for ICOs, 0.248 for IDOs and -0.221 for IEOs, while the

sample includes 54 ICOs, 1,340 IDOs and 213 IEOs. This suggests that although the

choice of conducting an ICO is no longer very common, these offerings tend to aim

for and raise more funding; similarly, IDOs are more prevalent in the sample and

although their offset is smaller than that of ICOs, it is still positive, indicating that

it is still possible to raise significant amounts of funding via IDOs; finally, for IEOs

the effect on logRaised is significantly negative, so that the net offset is also negative,

suggesting that IEOs are perhaps considered by token issuers more as a means of
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on-boarding their token to a crypto asset exchange and perhaps as a marketing tool,

rather than the primary means of fundraising.

We perform a similar analysis for the token offering platforms, showing their

net regression coefficient offsets in Figure C1 and the number of token offerings per

platform in Figure C2, both included in Appendix C, and show the combined scatter

plot in Figure 4.2. We see that the largest net offsets are achieved by relatively

less popular platforms such as Republic, MISO and Gnosis, while Gate.io which is

the most popular platform has one of the most negative net offsets. Given that a

larger number of token offerings in an IDO platform could attract more investors and

provide more liquidity at the trading stage, it may be advisable for token issuers to

compromise and list their offering in platforms such as PancakeSwap or Avalaunch,

which have a slightly lower net offset in terms of the funding raised but are somewhat

more popular.

Figure 4.2: Token offerings per launchpad platform and coefficients
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Scatter plot of the constant coefficients for the token offering launchpad platform based on the
linear regression model with logRaised as the dependent variable, against the number of token
offerings per platform shown in a logarithmic axis. Different colours are used to denote whether
the launchpad platform is a centralized (CEX in red) or decentralized (DEX in blue) exchange.
The sample period is 1 January 2021 - 31 January 2022 containing 1,607 offerings.

Finally, we rank-order the token offering categories by their corresponding net

regression coefficient offsets as shown in Figure C3 and show the number of token

offerings per category in Figure C4 – both included in Appendix C, and combine
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these two metrics in a scatter plot in Figure 4.3. The largest net offsets are observed

for categories such as Energy, Artificial (AI) and Data which only include 25 token

offerings in total, suggesting that less competition in the token offering category

allows the token issuers to capture more of the available funding in that space.

At the same time, very popular categories such as Gaming, DeFi, Blockchain and

Non-Fungible (NFT-related ventures) still have a positive net offset, indicating that

considerable funding is available in these spaces as well.

Figure 4.3: Token offerings per category and coefficients
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Scatter plot of the constant coefficients for the token offering category based on the linear regression
model with logRaised as the dependent variable, against the number of token offerings per category
shown in a logarithmic axis. The sample period is 1 January 2021 - 31 January 2022 containing
1,607 offerings.

4.6 Summary and Conclusions

In this Chapter we present empirical evidence on factors that influence the fundraising

success of token offerings between 2017 – early 2022. Following the relevant literature,

we proxy success with the amount of funding raised and – where possible, the

exceedance of the soft cap. Possible success determinants are selected based on the

offering characteristics, the token’s structure, the token issuers’ public profile and

online presence, and also indicative variables for the entire token offerings space and

crypto asset market.
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The chapter’s incremental contributions are as follows. We examine the entire

2017 – early 2022 period, which – at the time of writing, constitutes the most

comprehensive study on the subject in terms of sample period coverage. We introduce

success determinants that were not used previously in the relevant literature, such as

the token’s target market capitalization and the launchpad platform used by offerings

in 2021 – early 2022. We discuss different perspectives on variables such as the token

offering rating and tax-haven domicile; and we revisit variables for which there are

conflicting findings in the relevant literature – such as the token presale.

We obtain relevant data from ICObench and Cryptorank and use other ranking

and rating websites as supplementary data sources; the final sample size comprises

2,926 offerings, again constituting one the most comprehensive studies in this respect.

We compare and extend the findings in the relevant literature for the 2017 – 2019

period, with a separate examination of the earlier 2017 – mid-2018 period of significant

activity, and the subsequent mid-2018 – 2019 period of declining interest. We identify

2020 as a period of significantly reduced activity, due to the initial peak of the

Covid-19 pandemic.

Crucially, this Chapter is the first relevant research to identify a revival in

significant investor interest for token offerings during 2021 – early 2022, with new

all-time highs in the number of token offerings completed per month in late 2021 and

early 2022 and a significant shift with the emergence and near-complete domination of

initial decentralized exchange offerings (IDOs). Based on these market changes, our

findings for the 2021 – early 2022 period demonstrate a shift in the fundraising success

determinants, for instance with the launchpad platform used playing a significant

role in explaining token offering fundraising success.

We form hypotheses on the expected effect of several factors on fundraising success:

a higher target market cap has an expected positive effect on fundraising success; a

higher soft cap has a negative effect on the probability of soft cap exceedance; signals

of a venture’s public credibility have a positive effect on fundraising success but only

if they are genuine; increased investor attention and belief in the crypto asset class,
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as well as increased hype have a positive effect; a tax-haven or undisclosed venture

domicile has a positive effect; bonus schemes, token distribution and the offering’s

duration have no impact on fundraising success.

Having discussed the chapter’s contributions and research hypotheses, we end

this Section with a summary of the findings for the 2017 – 2020 and 2021 – early

2022 sample periods examined, grouped by hypothesis.

Consistent with our hypothesis (H1 ) that a project’s target market cap is a good

predictor of the actual amount raised in the token sale, the logtCap coefficient is

significant and positive in all sample periods and model configurations examined;

additionally, we find a significant negative coefficient for logSoftcap in the probit

model for the 2017 – 2020 period, again consistent with our suggestion in H1.

Our findings are mixed and not always consistent with our assumption (H2 )

that fundraising success only increases with genuine signals of public credibility;

more specifically, we identify Rating and Presale as genuine signals and argue that

Team and Advisors can be considered as cheap signals. Interestingly, Rating has a

significant positive effect in the 2017 – mid-2018 period but not in the subsequent mid-

2018 - 2020 periods, indicating that investors may be influenced by the allegations of

rating shopping, and the warnings of moral hazard and potentially skewed incentive

structures for rating websites, as highlighted in the relevant literature. On the

contrary, the effect of holding a token presale prior to the public offering has no

effect on fundraising success; a higher team size has a mostly positive effect, while

the advisory team size is insignificant in all cases. It therefore appears that token

offering investors may not be consistent in distinguishing between genuine and cheap

credibility signals, which confirms previous findings in the relevant literature.

Additionally, in the 2021 – early 2022 sample period, the model specification

that includes the launchpad platform control variable exhibits a very high R2 value,

suggesting that token offering launchpad platforms are now key intermediaries in the

ecosystem, and prospective investors possibly consider token offerings conducted on

established and reliable launchpad platforms as more credible.
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Regarding H3, the ETH price variable – i.e. the average ETH/USD price during

each offering, has a mostly positive effect on success during the 2017 – 2019 period,

indicating that it does capture investor trust in the entire crypto asset class. However,

the ETH price coefficient is negative in the linear model during the 2020 pandemic

peak period and it is insignificant in the probit model. During the 2021 – early 2022

period, the ETH price variable is again found to have a positive effect, consistent with

the assumption of H3. However, the ETH mom variable – i.e. the ETH/USD average

momentum, is insignificant in most cases and even has a negative effect in the 2021

- early 2022 period. Additionally, it appears that in the 2021 – early 2022 period,

investors are no longer influenced by the overall investor attention to the crypto

asset space, as proxied by the combined volume of Google web searches, Google news

searches and YouTube searches for the ‘Bitcoin’, ’Ethereum’ and ’Blockchain’ terms.

Our hypothesis (H4 ) on investor preference for tax-haven-domiciled ventures

is partially confirmed, in that the OFC (offshore financial centre) variable has a

mostly positive effect in the 2017 – 2019 period, but not in the 2020 pandemic period.

Moreover, regarding the most recent 2021 – early 2022 period, it is possible that

venture domicile is less important to prospective investors, compared e.g. to the

launchpad platform’s domicile.

Our findings on the coefficients of the Bonus, Distribution and logDuration

variables show that they are important in the early 2017 – mid-2018 period, less

important in the mid-2018 – 2019 period and insignificant during the 2020 pandemic

period; this partially confirms our hypothesis (H5 ) that they have no effect on

fundraising success. Interestingly, the sign of the Distribution variable’s coefficient

flips from negative in the 2017 – mid-2018, to positive in mid-2018 – 2019, so that

the suggestion of Ahlers et al. (2015) on equity crowdfunding that higher equity

retention by the venture should reduce investor uncertainty and increase fundraising

success is only partially confirmed for token offerings.

Finally, note that due to the significant differences in the characteristics of token

offerings in the 2021 – early 2022 period, the corresponding linear model configuration
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explaining fundraising success uses a somewhat different set of explanatory variables.

In fact, the 2021 – early 2022 sample results show that the model specification

including the launchpad platform control variable exhibits a very high R2 value,

compared against both earlier sample periods and results in the relevant literature.

This suggests that the launchpad platform used to conduct a token offering – together

with the type of offering, prove to be the most significant determinants of token

offering fundraising success in 2021 – early 2022.



189

Chapter Five

Summary and Conclusions

The ever-changing landscape of crypto asset markets poses several significant chal-

lenges. For instance, the extensive use of crypto assets as a speculative instrument

and the significantly faster pace compared with trading in traditional financial assets

creates an environment of highly volatile prices, so that market risk measurement

is both highly important and technically challenging. The lack of a regulatory

framework coupled with the significant operational risks in crypto asset investments

render market manipulation relatively easy to perform and even easier to get away

with. Also, the area of crowdfunding via token offerings has undergone significant

changes since 2017 when this space gained investor attention for the first time, so

the characteristics that render such ventures successful are quite different in 2022

compared with 2017. Challenges such as the above have attracted significant aca-

demic interest and formed a cutting-edge and very active research area, with more

than 2,200 relevant articles published since 2013 in finance, economics, econometrics,

business, management and accounting journals.

This doctoral thesis develops three distinct empirical finance topics, which study

and attempt to address the challenges highlighted above. Chapter 2 focuses on the

modelling of crypto asset market risk; Chapter 3 examines the potential manipulation

of crypto asset markets via stablecoins – tether in particular; and Chapter 4 studies

the fundraising success factors of crowdfunding via token offerings. In the following,

we provide a brief summary of the relevant findings and conclusions, ending with an

outlook on potential future developments in academic research for crypto asset and

blockchain finance.
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Crypto Asset Market Risk Modelling

In Chapter 2, we conduct an out-of-sample volatility, Value-at-Risk and Expected

Shortfall analysis on the daily and hourly log returns of the large-cap crypto assets

bitcoin, ether, ripple and litecoin. We model volatility with a range of simple, less

simple and complex models and examine particularly how simpler models with ad

hoc parameter choices perform against more complex models with regard to their

forecasting accuracy. The simplest model used is an equally-weighted moving average

model, which we use as a benchmark; we also use RiskMetrics-type EWMA models,

further introducing an asymmetric EWMA specification similar to an AGARCH

model but with ad hoc parameter choices; the forecasting performance of these

simpler models is compared against the more complex symmetric and asymmetric

GARCH models. Beyond volatility and quantile risk measure forecasts, the above

models are extended in a multivariate setting via the multivariate random walk,

EWMA and AEWMA models, and the symmetric and asymmetric DCC models to

produce forecasts of the entire covariance matrix of bitcoin, ether, ripple and litecoin

returns.

Daily forecasts are produced between January 2017 – August 2021 and hourly

forecasts between 1 May 2021 – 1 July 2021. The 1-period-ahead left- and right-tail

Value-at-Risk and Expected Shortfall are forecasted for each asset and at multiple

significance levels. VaR forecasts are backtested using the conditional coverage and

the industry standard traffic light tests and similarly, ES is backtested with the

exceedance residual test and again a modified traffic light test, for which we develop

an extension to right-tail ES forecasts. The accuracy of volatility and covariance

forecasts is also assessed using the continuous ranked probability score (CRPS) for

each asset and multivariate scoring rules such as the energy and variogram scores for

the joint density forecasts of bitcoin, ether, ripple and litecoin returns.

The results for daily and hourly left- and right-rail VaR and ES forecasts show

that the asymmetric EWMA models with ad hoc parameter choices are almost

always just as accurate as a more complex EGARCH specification. In fact, there are
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cases when the simpler RiskMetrics-type symmetric EWMA specifications and even

the equally-weighted moving average random walk model are found to be on par

with the EGARCH model. As for volatility forecasts, the test of equal forecasting

performance based on CRPS and multivariate scores shows that all models examined,

even the random walk benchmark, are equally accurate, both at the daily and hourly

frequencies. This important result extends previous findings in the relevant literature

that simpler models can sometimes outperform more complex ones in terms of

volatility and quantile risk measure forecasting accuracy, so the process of crypto

asset market risk measurement could be simplified significantly for practitioners.

Blockchain Transactions and Crypto Asset Market Manipulation

In Chapter 3 we examine the potential manipulation of crypto asset markets – partic-

ularly bitcoin, via large blockchain transactions of the tether stablecoin, originating

from the centralized tether treasury. The methodology introduced is adapted from

the framework of securities fraud litigation event studies, and determines the materi-

ality of price effects based on regression factor models, estimating abnormal bitcoin

returns during each USDT outflow event from the tether treasury.

The contributions of this chapter are as follows: an event study-based methodology

is developed for the determination of materiality and estimation of damages incurred

by potential market manipulation, which is a necessary component in relevant legal

cases, as damage estimates in securities fraud cases are generally not accepted in court

unless an event study-based approach is employed. The methodology developed is

considered an improvement compared with similar research examined in the literature

review, for instance by adopting a flexible-length event window approach to account

for the significant clustering of tether outflow events, also controlling for the effect of

past events. Additionally, based on the experience of deploying a blockchain node

locally, significant detail is provided on the retrieval process of blockchain transaction

data, for which the retrieval techniques are sparsely covered in the relevant literature.
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The main results are based on an equally-weighted market portfolio index model

specification, while results from alternative model specifications are also provided.

The overall findings indicate that between April 2019 – January 2021, 30 out of

671 USDT outflow events from the tether treasury towards crypto asset exchanges

and other unknown entities produce a significant positive abnormal bitcoin return

and therefore a material positive price impact indicative of price manipulation. The

total damages from the above material events are estimated at $54 million, when by

comparison, a legal case involving client and market deception resulted in Bitfinex and

Tether paying $18.5 million in fines. The indication of particular tether blockchain

transactions as having a significant effect on bitcoin prices is partially consistent

with the findings in the relevant literature, particularly for articles which employ an

event study-based methodology.

The Tokenomics of Crowdfunding

Chapter 4 presents evidence on the fundraising success factors of token offerings

between 2017 – early 2022. Fundraising success is proxied with the amount of funding

raised and – where possible, the exceedance of the minimum funding target. Success

factors are examined using linear and probit regression models and are selected

based on the token offering characteristics, the venture’s online presence, and also

representative variables for the entire crypto asset and token offerings market. We

have examined the entire 2017 – early 2022 period with a sample of 2,926 offerings,

which – at the time of writing, constitutes one of the most comprehensive studies in

the area of token offering fundraising success.

We identify a revival in token offering activity during the 2021 – early 2022

period and also the emergence of initial decentralized exchange offerings (IDOs). The

chapter’s hypotheses relate to the expected effect of potential factors on fundraising

success: a positive effect for: a higher target market cap, a lower soft cap, genuine

signals of venture public credibility, increased hype and investor attention and belief

in crypto assets, and a tax-haven venture domicile. Additionally, the existence
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of bonus schemes, the token’s supply distribution and the offering’s duration are

hypothesized to have no impact on fundraising success.

Our findings indicate that a token’s target market has significant explanatory

power, consistent with our hypothesis. Regarding signals of venture public credibility,

it appears that investors do not distinguish consistently between genuine and cheap

signals, which also confirms previous findings in the relevant literature. We also

find that token offering launchpad platforms in 2021 – early 2022 have become key

intermediaries, and investors perhaps interpret the use of established and reliable

launchpad platforms as a credibility signal for token offerings. Regarding investor

attention and belief, we find that the price of ether possibly captures investor trust in

the entire crypto asset class, but the results are not significant for ether’s momentum

and Google search volume.

Tax-haven-domiciled ventures are found to be more successful in fundraising

during the 2017 – 2019 period but not in 2020; additionally, as the majority of token

offerings in the 2021 – early 2022 period are issued on launchpad platforms, it is

possible that venture domicile is less important to prospective investors, compared

with the launchpad platform’s domicile. Finally, our findings on the effect of a bonus

scheme, the token’s supply distribution and the offering’s duration show that they

are somewhat significant in 2017 – 2019, but insignificant in 2020. Specifically for

the distribution variable, this indicates that the argument of investor uncertainty

reduction via higher equity retention does not hold consistently for token offerings.

Outlook

The role of the blockchain-enabled Web 3.0 has introduced ‘a parallel system of finance

of unprecedented flexibility and creativity in less than a decade’ (Weyl et al., 2022 ).

Even in the relatively short lifetime of crypto assets, multiple innovative concepts

have already been introduced: after the first wave of payment-type cryptocurrencies

such as bitcoin and litecoin, there came smart contract platforms such as Ethereum,

the surge in crowdfunding via token offerings, the development of several stablecoins,
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the decentralized finance (DeFi) wave with decentralized exchanges (DEXs) and

crypto asset lending platforms, and also the increased interest in digital collectibles

markets and metaverse-related applications made possible via non-fungible tokens

(NFTs) and relevant marketplaces. Crypto asset markets are in a continuous state of

flux, with ongoing developments both on the innovation side and on the regulatory

side. Future research in crypto asset and blockchain finance could therefore focus –

and is already beginning to focus, on such developments.

Similarly, regarding the topics developed in this doctoral thesis, further research

could again be motivated by ongoing and future developments, and could also focus

on features of these topics that were not developed as part of this thesis. For instance,

in the area of crypto asset market risk, crypto asset volatility could in the future

exhibit very different characteristics, such as becoming much lower after stricter

regulatory frameworks are in place; this potential development is not unrealistic

given upcoming regulatory framework updates, such as the European Union-related

Transfer of Funds Regulation (TFR) and Markets in Crypto Assets (MiCA) rules still

under discussion by the European Council, which may take effect over the coming

18 months (Chainalysis, 2022). In the area of market manipulation and stablecoins,

a study of the recent Terra USD/Luna meltdown which caused a downward spiral in

crypto asset markets (Shen, 2022) could potentially identify drivers of systematic

risk in crypto asset markets. Finally, in the area of crowdfunding via token offerings,

several studies examine the market performance of such tokens once these are listed,

but as this space is rife with scams and various types of rug pulls (Puggioni, 2022),

models that analyse such cases and could potentially estimate the probability of such

rug pulls would be of significant academic interest and also of significant value to

crypto asset investors.

Finally, ongoing research has the potential to generalize the concept of a blockchain

even further. For instance, Weyl et al. (2022) introduce the concept of ‘soulbound’

tokens which enable the creation of a ‘decentralized society’ (DeSoc), a pluralistic

ecosystem in which communities come together bottom-up, as emergent properties
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of each other to co-create plural network goods and intelligences. At the risk of

sounding cliché, the sky is the limit.
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Table A1: Further backtesting of daily left-tail 1% VaR for a short position

BTC ETH XRP LTC

tEWMA(0.925, 6) 0.9962 0.9923 1.0000 1.0000
tEWMA(0.94, 6) 0.9962 0.9962 1.0000 0.9999

tAEWMA(0.925, 1%, 6) 0.9992 0.9923 1.0000 0.9999
tAEWMA(0.925, 2%, 6) 0.9549 0.9737 1.0000 0.9999
tAEWMA(0.925, 3%, 6) 0.5924 0.8864 1.0000 0.9854
tAEWMA(0.925, 4%, 6) 0.0707 0.5924 0.9992 0.8325
tAEWMA(0.925, 5%, 6) 0.0036 0.1627 0.9549 0.2296
tAEWMA(0.94, 1%, 6) 0.9962 0.9854 1.0000 0.9999
tAEWMA(0.94, 2%, 6) 0.9266 0.9266 1.0000 0.9982
tAEWMA(0.94, 3%, 6) 0.2296 0.8325 1.0000 0.9854
tAEWMA(0.94, 4%, 6) 0.0251 0.5924 0.9992 0.6834
tAEWMA(0.94, 5%, 6) 0.0036 0.1099 0.9737 0.3097

tAEWMA(0.925, -1%, 6) 0.8325 0.9737 1.0000 1.0000
tAEWMA(0.925, -2%, 6) 0.4961 0.7644 1.0000 0.9923
tAEWMA(0.925, -3%, 6) 0.1627 0.2296 0.9982 0.9549
tAEWMA(0.925, -4%, 6) 0.0073 0.0139 0.8864 0.4001
tAEWMA(0.925, -5%, 6) 0.0017 0.0007 0.4961 0.0707
tAEWMA(0.94, -1%, 6) 0.7644 0.9854 1.0000 0.9999
tAEWMA(0.94, -2%, 6) 0.4001 0.7644 1.0000 0.9737
tAEWMA(0.94, -3%, 6) 0.1099 0.1627 0.9982 0.8864
tAEWMA(0.94, -4%, 6) 0.0073 0.0073 0.9266 0.4001
tAEWMA(0.94, -5%, 6) 0.0007 0.0007 0.5924 0.0433

Backtesting of daily left-tail 1% VaR for a short position on bitcoin (BTC), ether (ETH), ripple
(XRP) and litecoin (LTC). The table reports for each asset the VaR traffic light backtest probability
Φ(z) of obtaining the observed number of exceedances or fewer for the 1% right-tail VaR for various
EWMA and AEWMA model specifications with the Student-t degrees of freedom parameter set ad
hoc to ν = 6.
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Table A2: Further backtesting of hourly left-tail 1% VaR

BTC ETH XRP LTC

tEWMA(0.925) 0.9999 0.9999 0.9999 0.9986
tEWMA(0.94) 0.9998 0.9994 0.9994 0.9930

tAEWMA(0.925, 0.2%) 0.9998 0.9986 0.9994 0.9930
tAEWMA(0.925, 0.4%) 0.9858 0.8733 0.9986 0.8733
tAEWMA(0.925, 0.6%) 0.7314 0.6385 0.9732 0.6385
tAEWMA(0.925, 0.7%) 0.5366 0.5366 0.9523 0.4322
tAEWMA(0.925, 0.8%) 0.1689 0.4322 0.8733 0.3324
tAEWMA(0.925, 0.9%) 0.0690 0.3324 0.8105 0.3324
tAEWMA(0.925, 1%) 0.0404 0.1689 0.6385 0.1689

tAEWMA(0.925, 1.2%) 0.0056 0.0404 0.5366 0.0690
tAEWMA(0.925, 1.4%) 0.0026 0.0116 0.3324 0.0223
tAEWMA(0.925, 1.6%) 0.0011 0.0056 0.1110 0.0223
tAEWMA(0.925, 1.8%) 0.0011 0.0011 0.0223 0.0116
tAEWMA(0.925, 2%) 0.0011 0.0011 0.0223 0.0011

tAEWMA(0.925, -0.2%) 1.0000 0.9994 1.0000 0.9986
tAEWMA(0.925, -0.4%) 0.9967 0.9858 0.9998 0.9930
tAEWMA(0.925, -0.6%) 0.8733 0.8733 0.9930 0.9732
tAEWMA(0.925, -0.7%) 0.7314 0.8733 0.9858 0.9732
tAEWMA(0.925, -0.8%) 0.7314 0.6385 0.9732 0.9732
tAEWMA(0.925, -0.9%) 0.5366 0.5366 0.8105 0.9523
tAEWMA(0.925, -1%) 0.4322 0.3324 0.5366 0.6385
tAEWMA(0.94, 0.2%) 0.9994 0.9930 0.9967 0.9858
tAEWMA(0.94, 0.4%) 0.9732 0.8105 0.9967 0.9200
tAEWMA(0.94, 0.6%) 0.6385 0.5366 0.9732 0.6385
tAEWMA(0.94, 0.7%) 0.5366 0.5366 0.9200 0.4322
tAEWMA(0.94, 0.8%) 0.0690 0.4322 0.8105 0.4322
tAEWMA(0.94, 0.9%) 0.0404 0.1689 0.8105 0.2433
tAEWMA(0.94, 1%) 0.0223 0.0690 0.6385 0.2433

tAEWMA(0.94, 1.2%) 0.0056 0.0223 0.4322 0.1110
tAEWMA(0.94, 1.4%) 0.0026 0.0056 0.2433 0.0223
tAEWMA(0.94, 1.6%) 0.0011 0.0056 0.1110 0.0223
tAEWMA(0.94, 1.8%) 0.0011 0.0026 0.0223 0.0056
tAEWMA(0.94, 2%) 0.0011 0.0011 0.0223 0.0011

tAEWMA(0.94, -0.2%) 0.9998 0.9986 0.9994 0.9930
tAEWMA(0.94, -0.4%) 0.9858 0.9732 0.9994 0.9930
tAEWMA(0.94, -0.6%) 0.8105 0.7314 0.9967 0.9732
tAEWMA(0.94, -0.7%) 0.7314 0.6385 0.9732 0.9732
tAEWMA(0.94, -0.8%) 0.7314 0.4322 0.9200 0.9523
tAEWMA(0.94, -0.9%) 0.5366 0.3324 0.5366 0.8105
tAEWMA(0.94, -1%) 0.4322 0.1689 0.4322 0.7314

Backtesting of hourly left-tail 1% VaR on bitcoin (BTC), ether (ETH), ripple (XRP) and litecoin
(LTC). The table reports for each asset the VaR traffic light backtest probability Φ(z) of obtaining
the observed number of exceedances or fewer for the 1% left-tail VaR for various EWMA and
AEWMA model specifications with the Student-t degrees of freedom parameter set ad hoc to ν = 6.
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Table A3: Further backtesting of hourly right-tail 1% VaR

BTC ETH XRP LTC

tEWMA(0.925) 0.6385 0.6385 0.9200 0.6385
tEWMA(0.94) 0.5366 0.5366 0.7314 0.6385

tAEWMA(0.925, 0.2%) 0.7314 0.7314 0.7314 0.6385
tAEWMA(0.925, 0.4%) 0.2433 0.5366 0.4322 0.6385
tAEWMA(0.925, 0.6%) 0.0223 0.0690 0.1689 0.2433
tAEWMA(0.925, 0.7%) 0.0223 0.0404 0.1110 0.1689
tAEWMA(0.925, 0.8%) 0.0116 0.0404 0.1110 0.1110
tAEWMA(0.925, 0.9%) 0.0056 0.0404 0.1110 0.0690
tAEWMA(0.925, 1%) 0.0026 0.0116 0.0690 0.0116

tAEWMA(0.925, 1.2%) 0.0011 0.0056 0.0223 0.0056
tAEWMA(0.925, 1.4%) 0.0011 0.0011 0.0056 0.0056
tAEWMA(0.925, 1.6%) 0.0004 0.0004 0.0056 0.0011
tAEWMA(0.925, 1.8%) 0.0002 0.0002 0.0026 0.0002
tAEWMA(0.925, 2%) 0.0001 0.0002 0.0004 0.0002

tAEWMA(0.925, -0.2%) 0.5366 0.6385 0.8105 0.7314
tAEWMA(0.925, -0.4%) 0.4322 0.5366 0.6385 0.3324
tAEWMA(0.925, -0.6%) 0.1110 0.1689 0.2433 0.0690
tAEWMA(0.925, -0.7%) 0.0690 0.1110 0.2433 0.0404
tAEWMA(0.925, -0.8%) 0.0116 0.0690 0.1110 0.0404
tAEWMA(0.925, -0.9%) 0.0056 0.0690 0.1110 0.0404
tAEWMA(0.925, -1%) 0.0026 0.0116 0.1110 0.0404
tAEWMA(0.94, 0.2%) 0.2433 0.7314 0.7314 0.6385
tAEWMA(0.94, 0.4%) 0.1689 0.4322 0.3324 0.5366
tAEWMA(0.94, 0.6%) 0.0223 0.0690 0.1110 0.3324
tAEWMA(0.94, 0.7%) 0.0116 0.0404 0.1110 0.2433
tAEWMA(0.94, 0.8%) 0.0026 0.0404 0.1110 0.1110
tAEWMA(0.94, 0.9%) 0.0026 0.0404 0.0690 0.0223
tAEWMA(0.94, 1%) 0.0026 0.0116 0.0404 0.0223

tAEWMA(0.94, 1.2%) 0.0011 0.0056 0.0223 0.0056
tAEWMA(0.94, 1.4%) 0.0011 0.0011 0.0056 0.0026
tAEWMA(0.94, 1.6%) 0.0004 0.0004 0.0056 0.0004
tAEWMA(0.94, 1.8%) 0.0001 0.0002 0.0026 0.0002
tAEWMA(0.94, 2%) 0.0001 0.0002 0.0004 0.0002

tAEWMA(0.94, -0.2%) 0.5366 0.5366 0.6385 0.6385
tAEWMA(0.94, -0.4%) 0.3324 0.3324 0.5366 0.2433
tAEWMA(0.94, -0.6%) 0.0690 0.1689 0.1689 0.1110
tAEWMA(0.94, -0.7%) 0.0404 0.1110 0.1110 0.0404
tAEWMA(0.94, -0.8%) 0.0116 0.0404 0.1110 0.0404
tAEWMA(0.94, -0.9%) 0.0116 0.0223 0.1110 0.0404
tAEWMA(0.94, -1%) 0.0056 0.0116 0.1110 0.0223

Backtesting of hourly right-tail 1% VaR on bitcoin (BTC), ether (ETH), ripple (XRP) and litecoin
(LTC). The table reports for each asset the VaR traffic light backtest probability Φ(z) of obtaining
the observed number of exceedances or fewer for the 1% right-tail VaR for various EWMA and
AEWMA model specifications with the Student-t degrees of freedom parameter set ad hoc to ν = 6.
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Table B1: Material USDT outflow events from the tether treasury towards exchanges
(MVDA)

Start End USDT γ̂ SQ tγ SQstd Adj. R2 Pstart ∆P PEffect Ratio Damage

2019-09-24 20:00:00 2019-09-24 22:00:00 9,990,000 0.005 0.002 4.72 1.48 0.93 8,595.3 106.8 39.4 0.4 1,257,490
2020-03-16 17:00:00 2020-03-16 19:00:00 6,708,292 0.011 0.004 4.63 0.82 0.94 5,089.5 -134.9 58.2 -0.4 974,281
2020-03-17 14:00:00 2020-03-17 16:00:00 8,841,159 0.011 0.004 3.55 0.71 0.91 5,254.1 121.1 57.7 0.5 1,784,288
2020-07-26 09:00:00 2020-07-26 11:00:00 10,100,000 0.002 0.001 4.42 1.43 0.93 9,846.6 132.0 17.7 0.1 183,582
2020-07-27 05:00:00 2020-07-27 07:00:00 12,000,000 0.004 0.001 8.60 1.12 0.90 10,299.7 -129.0 46.2 -0.4 377,491
2020-07-27 21:00:00 2020-07-27 23:00:00 35,000,000 0.003 0.001 4.41 0.98 0.87 11,120.3 -77.4 34.6 -0.4 425,854
2020-08-01 06:00:00 2020-08-01 08:00:00 15,000,000 0.002 0.002 2.49 1.18 0.89 11,648.1 34.3 23.0 0.7 312,540
2020-09-15 12:00:00 2020-09-15 14:00:00 19,000,000 0.002 0.002 2.63 1.31 0.92 10,914.9 -141.4 24.0 -0.2 194,605
2020-10-19 15:00:00 2020-10-19 17:00:00 10,000,000 0.003 0.001 5.30 1.51 0.95 11,804.9 -75.4 29.8 -0.4 322,961
2020-10-27 15:00:00 2020-10-27 17:00:00 15,000,000 0.002 0.002 3.09 1.51 0.94 13,618.0 82.3 25.0 0.3 138,237
2020-11-30 14:00:00 2020-11-30 16:00:00 26,000,000 0.004 0.003 2.64 1.24 0.87 19,494.6 -304.6 77.0 -0.3 1,935,313

Material USDT outflow events from the tether treasury towards exchanges and corresponding
estimates of the cap-weighted MVDA index model, for which the alternate hypothesis of a significant
positive abnormal return is accepted at the 5% significance level simultaneously for the parametric
t-test – using a critical value on the standardized Student-t distribution with the degrees of freedom
parameter determined via the regression model, and the raw and standardized SQ tests. The
columns denote: the start and end of each USDT outflow event, the amount of USDT sent from the
tether treasury, the estimated average abnormal return γ̂ during the event, the raw SQ test critical
value based on the 5% right-tail quantile of the estimated regression residuals, the estimated t-ratio
of the average abnormal return tγ , the standardized SQ test critical value based on the estimated
residuals scaled by their estimated standard error, the regression adjusted R2, the BTC/USD price
Pstart at the beginning of each event, the change in price ∆P between the end and beginning of each
event, the estimated price effect P Effect of each event, the ratio P Effect/∆P and the estimated
damage calculated as the product of the price effect and total traded volume at the beginning of
the event, divided by 2.
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Figure B1: Hourly returns (PCA)
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Hourly arithmetic returns on the first 4 principal components, based on the returns on the USD-
denominated prices of 135 crypto assets obtained from Cryptocompare. The sample period is 3
March 2019 - 1 January 2021.
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Table B2: Material USDT outflow events from the tether treasury towards exchanges
(PCA)

Start End USDT γ̂ SQ tγ SQstd Adj. R2 VP CA Pstart ∆P PEffect Ratio Damage

2019-09-19 21:00:00 2019-09-19 23:00:00 4,995,000 0.007 0.007 2.37 1.33 0.01 0.51 10,277.6 3.5 76.1 21.9 343,632
2019-09-25 21:00:00 2019-09-25 23:00:00 5,000,000 0.010 0.007 2.99 1.18 0.05 0.45 8,602.1 -155.1 86.3 -0.6 551,071
2020-07-23 16:00:00 2020-07-23 18:00:00 23,000,000 0.004 0.004 2.83 1.32 0.16 0.53 9,631.6 -41.0 42.8 -1.0 391,880
2020-07-26 09:00:00 2020-07-26 11:00:00 10,100,000 0.005 0.003 3.70 1.32 0.10 0.51 9,846.6 132.0 53.0 0.4 548,080
2020-07-27 05:00:00 2020-07-27 07:00:00 12,000,000 0.008 0.004 5.36 1.40 0.10 0.54 10,299.7 -129.0 87.4 -0.7 714,884
2020-07-27 21:00:00 2020-07-27 23:00:00 35,000,000 0.008 0.004 4.42 1.23 0.09 0.55 11,120.3 -77.4 93.7 -1.2 1,151,813
2020-07-28 15:00:00 2020-07-28 19:00:00 27,000,000 0.006 0.005 3.79 1.26 0.05 0.55 11,172.8 -160.8 68.8 -0.4 525,536
2020-08-01 06:00:00 2020-08-01 08:00:00 15,000,000 0.008 0.005 3.56 1.35 0.07 0.52 11,648.1 34.3 95.1 2.8 1,294,061
2020-09-15 12:00:00 2020-09-15 14:00:00 19,000,000 0.005 0.004 3.00 1.35 0.65 0.46 10,914.9 -141.4 58.6 -0.4 476,152
2020-10-19 15:00:00 2020-10-19 17:00:00 10,000,000 0.007 0.003 5.08 1.24 0.56 0.38 11,804.9 -75.4 82.0 -1.1 890,514
2020-10-21 12:00:00 2020-10-21 16:00:00 29,000,000 0.003 0.003 2.97 1.31 0.51 0.38 12,423.1 417.5 41.9 0.1 568,026
2020-10-27 15:00:00 2020-10-27 17:00:00 15,000,000 0.005 0.004 2.53 1.26 0.36 0.38 13,618.0 82.3 66.5 0.8 368,121
2020-10-29 15:00:00 2020-10-29 17:00:00 15,000,000 0.006 0.005 2.83 1.29 0.35 0.37 13,440.6 148.8 77.5 0.5 528,110
2020-11-18 08:00:00 2020-11-18 10:00:00 14,500,000 0.011 0.009 3.17 1.54 0.04 0.42 18,219.1 33.8 200.9 6.0 1,898,746
2020-11-30 14:00:00 2020-11-30 16:00:00 26,000,000 0.016 0.010 4.53 1.57 0.22 0.38 19,494.6 -304.6 321.2 -1.1 8,075,951
2020-12-19 14:00:00 2020-12-19 16:00:00 27,000,000 0.008 0.007 3.03 1.55 0.57 0.50 23,304.2 679.2 195.5 0.3 2,848,536

Material USDT outflow events from the tether treasury towards exchanges and corresponding
estimates of the PCA-based 4-factor index model, for which the alternate hypothesis of a significant
positive abnormal return is accepted at the 5% significance level simultaneously for the parametric
t-test – using a critical value on the standardized Student-t distribution with the degrees of freedom
parameter determined via the regression model, and the raw and standardized SQ tests. The
columns denote: the start and end of each USDT outflow event, the amount of USDT sent from the
tether treasury, the estimated average abnormal return γ̂ during the event, the raw SQ test critical
value based on the 5% right-tail quantile of the estimated regression residuals, the estimated t-ratio
of the average abnormal return tγ , the standardized SQ test critical value based on the estimated
residuals scaled by their estimated standard error, the regression adjusted R2, the BTC/USD price
Pstart at the beginning of each event, the change in price ∆P between the end and beginning of each
event, the estimated price effect P Effect of each event, the ratio P Effect/∆P and the estimated
damage calculated as the product of the price effect and total traded volume at the beginning of
the event, divided by 2.

Table B3: Material USDT outflow events from the tether treasury towards unknown entities
(MVDA)

Start End USDT γ̂ SQ tγ SQstd Adj. R2 Pstart ∆P PEffect Ratio Damage

2019-05-13 17:00:00 2019-05-13 19:00:00 4,995,000 0.005 0.004 3.07 1.55 0.81 7,800.1 82.7 35.7 0.4 581,025
2020-03-17 16:00:00 2020-03-17 23:00:00 83,500,000 0.006 0.004 2.93 0.67 0.91 5,375.3 -37.6 30.0 -0.8 1,035,619
2020-03-20 02:00:00 2020-03-20 04:00:00 15,000,000 0.010 0.004 2.32 0.58 0.83 6,159.2 41.6 62.0 1.5 642,195
2020-10-21 14:00:00 2020-10-21 16:00:00 10,000,000 0.003 0.001 5.05 1.53 0.94 12,741.4 99.1 34.3 0.3 598,746
2020-10-21 22:00:00 2020-10-22 00:00:00 25,000,000 0.004 0.001 7.78 1.48 0.94 13,219.7 -298.0 56.8 -0.2 846,659
2020-11-30 14:00:00 2020-11-30 16:00:00 49,999,999 0.004 0.003 2.59 1.28 0.87 19,494.6 -304.6 75.4 -0.2 1,896,535
2020-12-19 17:00:00 2020-12-19 19:00:00 100,000,000 0.003 0.003 2.01 1.11 0.88 23,908.0 -96.4 69.7 -0.7 586,547

Material USDT outflow events from the tether treasury towards other unknown entities and
corresponding estimates of the cap-weighted MVDA index model, for which the alternate hypothesis
of a significant positive abnormal return is accepted at the 5% significance level simultaneously for
the parametric t-test – using a critical value on the standardized Student-t distribution with the
degrees of freedom parameter determined via the regression model, and the raw and standardized
SQ tests. The columns denote: the start and end of each USDT outflow event, the amount of USDT
sent from the tether treasury, the estimated average abnormal return γ̂ during the event, the raw
SQ test critical value based on the 5% right-tail quantile of the estimated regression residuals, the
estimated t-ratio of the average abnormal return tγ , the standardized SQ test critical value based
on the estimated residuals scaled by their estimated standard error, the regression adjusted R2,
the ratio of total system variance VP CA explained by the 4 principal components, the BTC/USD
price Pstart at the beginning of each event, the change in price ∆P between the end and beginning
of each event, the estimated price effect P Effect of each event, the ratio P Effect/∆P and the
estimated damage calculated as the product of the price effect and total traded volume at the
beginning of the event, divided by 2.
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Table B4: Material USDT outflow events from the tether treasury towards unknown entities
(PCA)

Start End USDT γ̂ SQ tγ SQstd Adj. R2 VP CA Pstart ∆P PEffect Ratio Damage

2019-05-13 17:00:00 2019-05-13 19:00:00 4,995,000 0.015 0.008 4.82 1.55 0.22 0.33 7,800.1 82.7 113.4 1.4 1,847,047
2020-04-23 14:00:00 2020-04-23 17:00:00 25,584,859 0.016 0.011 4.41 1.46 0.07 0.40 7,548.3 11.7 120.1 10.2 7,057,017
2020-04-29 20:00:00 2020-04-30 00:00:00 22,001,000 0.013 0.009 4.44 1.44 0.10 0.44 8,931.3 -115.1 112.7 -1.0 1,928,239
2020-05-07 17:00:00 2020-05-07 22:00:00 36,000,000 0.010 0.010 3.52 1.43 0.02 0.73 9,844.1 55.5 97.2 1.8 4,769,304
2020-06-01 23:00:00 2020-06-02 03:00:00 50,000,000 0.013 0.010 3.77 1.34 0.07 0.75 10,211.2 -116.3 131.6 -1.1 5,965,512
2020-07-22 22:00:00 2020-07-23 00:00:00 15,000,000 0.005 0.004 3.14 1.41 0.16 0.54 9,507.4 17.0 46.7 2.7 547,138
2020-10-21 14:00:00 2020-10-21 16:00:00 10,000,000 0.009 0.003 6.03 1.25 0.53 0.38 12,741.4 99.1 112.6 1.1 1,964,601
2020-10-21 22:00:00 2020-10-22 00:00:00 25,000,000 0.012 0.003 7.94 1.32 0.50 0.38 13,219.7 -298.0 161.3 -0.5 2,405,791
2020-11-30 14:00:00 2020-11-30 16:00:00 49,999,999 0.016 0.010 4.46 1.59 0.22 0.38 19,494.6 -304.6 316.6 -1.0 7,960,818

Material USDT outflow events from the tether treasury towards other unknown entities and
corresponding estimates of the PCA-based 4-factor index model, for which the alternate hypothesis
of a significant positive abnormal return is accepted at the 5% significance level simultaneously for
the parametric t-test – using a critical value on the standardized Student-t distribution with the
degrees of freedom parameter determined via the regression model, and the raw and standardized
SQ tests. The columns denote: the start and end of each USDT outflow event, the amount of USDT
sent from the tether treasury, the estimated average abnormal return γ̂ during the event, the raw
SQ test critical value based on the 5% right-tail quantile of the estimated regression residuals, the
estimated t-ratio of the average abnormal return tγ , the standardized SQ test critical value based
on the estimated residuals scaled by their estimated standard error, the regression adjusted R2,
the ratio of total system variance VP CA explained by the 4 principal components, the BTC/USD
price Pstart at the beginning of each event, the change in price ∆P between the end and beginning
of each event, the estimated price effect P Effect of each event, the ratio P Effect/∆P and the
estimated damage calculated as the product of the price effect and total traded volume at the
beginning of the event, divided by 2.
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Appendix C

Supplementary Material – The
Tokenomics of Crowdfunding

Figure C1: Token offering launchpad platform coefficients
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Constant coefficients for the token offering platform based on the linear regression model with
logRaised as the dependent variable. The sample period is 1 January 2021 - 31 January 2022
containing 1,607 offerings.
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Figure C2: Token offerings per launchpad platform
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Number of token offerings per platform. The sample period is 1 January 2021 - 31 January 2022
containing 1,607 offerings.

Figure C3: Token offering category coefficients
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Constant coefficients for the token offering category based on the linear regression model with
logRaised as the dependent variable. The sample period is 1 January 2021 - 31 January 2022
containing 1,607 offerings.
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Table C1: Linear regression results for the 2017 – 2020 period.

(i) Basic (ii) Full
Constant -0.696*** (-4.42) -0.584*** (-3.02)
logtCap 0.332*** (9.33) 0.327*** (9.40)
Presale -0.061 (-1.18) -0.070 (-1.33)
Rating 0.196*** (4.51) 0.190*** (4.32)
Team 0.021*** (6.00) 0.021*** (5.71)
Advisors 0.012*** (2.73) 0.011** (2.49)
Bonus -0.110** (-2.15) -0.124** (-2.34)
Distribution 0.076** (2.53) 0.062** (2.00)
logDuration -0.060*** (-3.01) -0.089*** (-4.00)
ETH price 0.182*** (7.63) 0.171*** (6.58)
ETH mom -0.041 (-1.60) -0.023 (-0.87)
OFC 0.187*** (3.73) 0.168*** (3.29)
Accepts BTC 0.208*** (3.63)
Accepts ETH -0.018 (-0.18)
Accepts other -0.088 (-1.51)
Accepts fiat -0.063 (-0.88)
Capped -0.013 (-0.14)
Ethereum-based 0.023 (0.30)
IEO -0.248*** (-2.61)
KYC 0.063 (1.03)
Whitelist 0.033 (0.61)
High 0.004 (0.08)
Medium -0.061 (-1.20)
Low -0.035 (-0.46)

Observations 1319 1319
R2 0.232 0.245
Adj. R2 0.226 0.232
* p < 0.10 ** p < 0.05 *** p < 0.01

Linear regression results with logRaised as the dependent variable. The model specifications are: (i)
Basic which only includes the variables involved in our hypotheses; (ii) Full which further includes
control variables. The first column in each model specification displays the regression betas and
the second column displays the t-statistics in parentheses. A sample of 1,319 ICOs is used and all
ICOs take place between 1 January 2017 - 31 December 2020.
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Table C2: Probit regression results for the 2017 – 2020 period.

(i) Basic (ii) Full
logSoftcap -0.131*** (-6.53) -0.141*** (-6.81)
logtCap 0.077*** (3.65) 0.075*** (3.52)
Presale (d) -0.018 (-0.53) -0.024 (-0.68)
Rating 0.106*** (3.62) 0.106*** (3.44)
Team 0.007** (2.50) 0.007** (2.47)
Advisors 0.004 (1.46) 0.005 (1.51)
ETH price 0.030 (1.61) 0.023 (1.17)
ETH mom -0.011 (-0.63) -0.001 (-0.08)
OFC (d) 0.093*** (2.61) 0.089** (2.46)
Bonus (d) -0.076** (-2.18) -0.073** (-2.02)
Distribution -0.015 (-0.82) -0.022 (-1.16)
logDuration -0.036** (-2.23) -0.057*** (-3.24)
Accepts BTC (d) 0.137*** (3.30)
Accepts ETH (d) -0.088 (-1.32)
Accepts other (d) -0.028 (-0.66)
Accepts fiat (d) 0.002 (0.04)
Ethereum-based (d) 0.056 (1.14)
IEO (d) -0.202*** (-2.60)
KYC (d) 0.031 (0.75)
Whitelist (d) -0.026 (-0.64)
High (d) -0.010 (-0.27)
Medium (d) -0.038 (-1.09)
Low (d) 0.001 (0.02)

Observations 902 902
Pseudo-R2 0.086 0.104
* p < 0.10 ** p < 0.05 *** p < 0.01

Probit regression marginal effects at means (MEM) with soft cap exceedance as the dependent
variable. The model specifications are: (i) Basic which only includes the variables involved in our
hypotheses; (ii) Full which further includes control variables. The notation (d) next to a variable
indicates that the corresponding marginal effect is calculated for a discrete change of the binary
variable from 0 to 1. The first column in each model specification displays the marginal effect and
the second column displays the z-statistics in parentheses. A sample of 902 ICOs is used and all
ICOs take place between 1 January 2017 - 31 December 2020.
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Figure C4: Token offerings per category
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Number of token offerings per category. The sample period is 1 January 2021 - 31 January 2022
containing 1,607 offerings.
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