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Thesis summary 

Estimating spatiotemporal variation in disease exposure is critical to developing cost-effective 

and targeted strategies to reduce the burden of the disease. As The WHO is expecting to 

eliminate Chagas disease as a public health problem by 2030, being able to measure the local 

burden of the disease and the progress made thus far is critical. However, obtaining such 

information when there is no dedicated surveillance system set up to monitor incidence can 

be challenging.  

Cross-sectional prevalence studies provide information on past exposure but cannot be used 

directly to evaluate the epidemiological situation, especially for long-lasting diseases such as 

Chagas disease. However, the Force-of-Infection (FoI), i.e., the yearly per-susceptible rate of 

disease acquisition, can be estimated using age prevalence data and provide insight into the 

local temporal pattern of the disease. Such methodology, relying on localised surveys, can 

inform the dynamic of transmission locally, but extrapolating FoI estimates from them to assess 

the burden across the country requires robust statistical methods. In this thesis, we develop 

and implement a modelling process to, first, predict FoI in space and time from cross-sectional 

studies and, estimate the burden of the disease, while appropriately propagating uncertainties. 

Where such an approach has been used, typically mean or median FoI estimates are used as 

a dependent variable, ignoring the uncertain nature of such FoI being estimates rather than 

observations. Therefore, the first objective of this thesis was to account for such uncertainty 

both when fitting models and evaluating their predictive ability. We implemented a set of 

comprehensive analyses to assess the impact of this uncertainty on performance, by 

characterising the ability to estimate accurately the central trends while correctly characterising 

the level of uncertainty. We, then, compare the implementation and performance of this 

framework to Machine Learning methods to optimise the methodology. Finally, we, propose 

a modelling process where the predicted FoIs at a fine spatial resolution are used to estimate 

the burden of Chagas disease. 

The process, applied to the 76 serosurveys conducted in Colombia, showed a substantial risk 

of overconfidence when using median estimates to fit and evaluate models, instead of 
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accounting for the uncertain nature of estimated FoI. Machine Learning methods provided a 

more flexible and reproducible framework while recentring the uncertainty and are thus better 

suited to provide good burden estimates. Implementing the modelling pipeline, we estimated 

that the FoI varied considerably across Colombia, but temporal changes were less marked. 

Relying on predicted current and past exposure, 506,000 (95%CrI: 395,000-648,000) people 

were estimated to be infected by T. cruzi in Colombia in 2020, representing a 1.0% (95%CrI: 

0.8%-1.3%) prevalence in the general population and leading to an estimated 2,400 (95%CrI: 

1,900-3,400) deaths. We estimated a substantial increase in the burden of Chagas disease over 

time, resulting from the interplay between exposure and demography: a slight decrease in 

exposure was overcompensated by the large increase in population size and the gradual 

ageing of the population. 
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Chapter 1: Introduction 

Chagas disease causes, symptoms, and treatment 

Chagas disease is a Neglected Tropical Disease (NTD) caused by a protozoan parasite, 

Trypanosoma cruzi, and transmitted to humans by hematophagous vectors of the subfamily 

of the Triatominae insect (Figures 1.1 and 1.2) (1,2). T. cruzi has a high genetic diversity and is 

classified into six near-clades. This diversity is reflected by the large geographical extent of the 

parasite, i.e., it has colonised different types of habitats in Latin America through infection of 

a variety of triatomine species and mammal hosts, with some differences in pathogenicity and 

symptoms (2).   

Triatomines become infected by the parasite through blood meals on infected animals, 

including humans. The parasites develop in the triatomine’s digestive system and are excreted 

with faeces, which typically occur while the triatomine is feeding. The parasites, in the infected 

faeces, may be introduced into the body of the new host when he scratches the site of the 

bite (Figure 1.3) (2). Aside from this main mode of transmission, other transmission routes are 

possible and contribute to the spread of the disease. As the parasites circulate in the blood of 

the host, vertical transmission, from mother to foetus, is possible, as well as via organ 

transplant or blood transfusion. Finally, new infections via direct ingestion of the parasite, from 

contaminated food, has also been identified (3). 

 

 

Figure 1. 1: Tripasonoma cruzi. among red blood cells. 

Credit CDC (extracted from (1)) 

 

Figure 1. 2: Triatoma sanguisuga, one of the 138 

Triatomine species. Credit: CDC, courtesy of James 

Gathany (extracted from (1)) 
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In humans, the disease develops and can be characterised into phases. Shortly after infection, 

the acute phase starts and can last 4 to 8 weeks (4). Often asymptomatic, some mild symptoms 

can be observed like fever, inflammation or oedema around the bite location. Severe 

symptoms occur in less than 5% of cases and are characterised by cardiac manifestations 

(acute myocarditis, pericardial effusion) or meningoencephalitis (2). The acute phase seems to 

be more severe when the transmission has occurred by ingestion of the parasite (oral 

transmission route), e.g., when food or beverages have been contaminated by the infected 

triatomine or triatomines’ faeces. For severe acute cases contaminated orally, the risk of 

mortality may increase from 5-10% to 8-30% which is most probably related to the number 

of parasites entering the body, i.e. more than 600,000 units through the oral route while it is 

estimated between 3,000 and 4,000 units through the vectorial transmission route (5). The 

second stage of the disease is the indeterminate phase, which is asymptomatic, and chronic. 

It has traditionally been defined as a complete absence of clinical manifestations that can last 

10-30 years but recent studies have found cardiac or digestive abnormalities that are more 

complicated to detect and an excess of mortality compared to non-infected people (2,6). The 

third phase is the chronic symptomatic stage and the progression rate to this phase is 1.5%-

5.0% per year (2,7). Among all infected persons, cardiovascular symptoms leading to chronic 

heart failure or sudden deaths are observed in 25% of cases, digestive symptoms (mega-colon 

and mega-oesophagus) in 6% of cases and peripheral nervous involvement in 3% of cases 

(4). Cardiac symptoms are the most frequent and the most serious Chagas disease symptoms. 

Patients at an early stage (Chronic mild stage) will suffer from fatigue, dizziness, palpitations, 

shortness of breath that might have a limited impact on their daily life (2,8). When patients 

reach the chronic severe phase, the cardiac symptoms, i.e., dyspnoea, left ventricular 

dysfunction and congestive heart failure, are causing large morbidity as daily physical activity 

is compromised and medical care is required (2,8). While the physiological causes of the 

symptoms of the acute phase are well understood as they mainly rely on the inflammation 

processes, the physiological process involved in the indeterminate and chronic phases have 

not been fully elucidated. After entering the body, the parasite is nesting in cardiac, skeletal 

and smooth muscles tissues creating an inflammatory response and damages in these tissues. 

Recent consensus states that the progression of the disease might be related to a balance 
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between human immune response and the parasite persistence in the tissues which create a 

chronic inflammation (2). 

 

 

Figure 1. 3: Trypanosoma cruzi life cycle according to CDC (extracted from (1)). “An infected triatomine insect vector 

(or “kissing bug”) takes a blood meal and releases trypomastigotes in its faeces near the site of the bite wound. 

Trypomastigotes enter the host through the wound or through intact mucosal membranes, such as the conjunctiva 

. Common triatomine vector species for trypanosomiasis belong to the genera Triatoma, Rhodnius, and 

Panstrongylus. Inside the host, the trypomastigotes invade cells near the site of inoculation, where they differentiate 

into intracellular amastigotes . The amastigotes multiply by binary fission and differentiate into 

trypomastigotes, and then are released into the circulation as bloodstream trypomastigotes . Trypomastigotes 

infect cells from a variety of tissues and transform into intracellular amastigotes in new infection sites. Clinical 

manifestations can result from this infective cycle. The bloodstream trypomastigotes do not replicate (different from 

the African trypanosomes). Replication resumes only when the parasites enter another cell or are ingested by another 

vector. The “kissing bug” becomes infected by feeding on human or animal blood that contains circulating parasites 

. The ingested trypomastigotes transform into epimastigotes in the vector’s midgut . The parasites multiply and 

differentiate in the midgut and differentiate into infective metacyclic trypomastigotes in the hindgut  .” (1) 
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While all phases of the diseases are associated with excess mortality (6), most of the infected 

persons have no access to diagnosis and treatment (9). Moreover, once diagnosed, access 

and adherence to the treatment is a real challenge: treatment is long, require many visits to 

the health facilities, and  is associated with many side effects (3). Research on Chagas disease 

treatment has been slow over the last five decades and only two antiparasitic drugs are 

currently available (benznidazole and nifurtimox). While these medicines have shown their 

effectiveness to avoid vertical transmission, i.e. from mother to child during pregnancy, when 

treating women of child-bearing age, they do not appear to significantly improve the 

conditions of patients with mild and severe cardiomyopathies (2). The efficacy of the treatment 

seems to decrease with time from the infection. The duration of the treatment is between 60 

and 90 days for an adult, and associated side effects include anorexia, digestive intolerance, 

hypersensitivity, or psychological disorders (irritability, insomnia, disorientation). These side 

effects occurred in 43-96% of the cases with nifurtimox but are a little bit lower with 

benznidazole, and represent a major cause for treatment discontinuations, i.e. 15-75% of the 

cases for nifurtimox and 9-29% of the cases with benznidazole (2). 

Regarding Chagas disease diagnostic, direct observation by microscopy is only possible during 

the acute phase (10). During the indeterminate and chronic phases, serological tests are 

preferred as PCR suffer from a low sensitivity ranging between 50% and 70% (10). ELISA, 

indirect immunofluorescence, and indirect haemagglutination are the tests the  most often 

used to detect the parasite among asymptomatic with a screening process typically involving 

multiple testing for confirmation (10). 

Chagas disease control 

Chagas disease etiology and epidemiology have been first described in 1909 by Carlos Chagas 

(11). He rapidly identified that prevention relying on vector control was the best strategy to 

break the epidemiological cycle of the disease (12). Some triatomine vectors, e.g., T. infestans, 

are very efficient in colonizing human dwellings, hiding and nesting in house cracks and roofs 

during the day and feeding on humans during the night. Poor housing conditions were then 

identified as a major risk of house infestation and thus of Chagas disease infection (12). As a 

result, most of the efforts made to fight the disease have focused on entomological research 

with a first map of the triatomine species distribution across Latin America realized in 1919 (12). 
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It appeared that only three genera of triatomines can transmit T. cruzi (2) and that most of 

them are sylvatic, i.e. living in the forest while others species may live in peri-domiciliated 

areas, mainly in palm trees (13), and few are ‘domiciliated’. The peri-domiciliated vectors do 

not colonize houses but can enter the house at night to feed. Historically, in term of 

transmission to humans, the most problematic species are the domiciliated, i.e., able to 

colonize human dwellings, such as Triatoma infestans, and, to a lesser extent, Triatoma 

dimidiata and Rhodnius prolixus.  

Currently, Chagas disease control programs mainly rely on house improvement and 

insecticide spraying in houses, annexes and other types of building to eradicate the vector in 

domicile and peri-domicile areas (4,14). This strategy has shown its effectiveness, especially in 

contexts where the vectors are domiciliated, i.e. the vectors are living inside the buildings (4), 

but less for peri-domiciliated vectors (15). Improving awareness and engagement with 

communities affected has also been part of the programs in 12 of the endemic countries (4). 

Human socioeconomic factors play an important role to explain the risk of infection  as house 

infestation is more likely to happen in poorly built dwellings (16). This has led to an association 

between Chagas disease, poverty, and rurality, and, altogether, contributes to the 

stigmatisation of people having their house infested or being themselves infected by the 

parasite. The rural nature of the disease is however being questioned, with recent research in 

Peru showing that the vectors have started to settle in urban areas (17). In addition, human 

movements between rural and urban locations (short and long-term), as well as progressive 

urbanisation have contributed and continue to contribute to significant level of infection in 

urban environment, leading to continued bloodborne and congenital transmission, and 

substantial level of infection observed during blood screening in blood banks (screening being  

compulsory in most Latin American countries) (4,18). 

As the epidemiology of the disease and the clinical tools available are evolving and 

progressing (e.g., success of past vector-control program, improved diagnostics), the relative 

balance in cost-effectiveness between prevention and improved diagnostics and treatment is 

likely changing. In the next phase of the fight against Chagas disease, the identification of 

cases before they reach the symptomatic stages of the disease is likely to become critical to 

treat before permanent damages are caused by the parasites. Asymptomatic cases are 
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therefore a key population as up to 70% of them can stay asymptomatic for more than 30 

years (19). Identifying those populations would help reducing instance of bloodborne and 

congenital transmissions. However, progresses on the treatment therapies available to cure 

Chagas disease still have to be made to ensure treatment access and adherence by the 

patients.  

Chagas disease elimination challenges 

In 2012, the World Health Organization (WHO) set the elimination of Chagas disease 

transmission as a goal in its first neglected tropical disease roadmap (20). Currently, between 

5 and 18 million persons are estimated to be infected and the disease causes an estimated 

10,000 deaths per year in the 21 endemic countries in Latin America (Figure 1.4) (9,14). While 

scarce and highly uncertain, reliable estimates of the spatial and temporal pattern of the 

burden are essential for the governments and Health organisations coordinating the fight 

against the disease as it can inform targeted and cost-effective vector-control and screening 

interventions, as well as help monitor their needs for diagnosis and treatment supplies (21). 

The key challenges in estimating the burden of the disease include the lack of estimates of 

incidence trends due to the lengthy asymptomatic phase (14), the high level of spatial 

heterogeneities, as well as the potential for rapid changes in temporal patterns. 

The surveillance systems for the disease, when present, suffer from severe underreporting (14)  

e.g. in Colombia in 2021, 306 chronic and 172 acute cases have been reported, with only 170 

and 14 of them being confirmed respectively (22,23). Meanwhile,  estimations of the number 

of cases from WHO, Global Burden Model (GBM) and other authors ranged widely between 

186,000 and 438,000 for the 2005-2010 period (4,8,24,25). 

In the absence of incidence data, evidence of past exposure through seroprevalence surveys 

are often used to quantify the epidemiological situation. However, as Chagas disease is a long-

lasting disease, prevalence data are not reflecting the current epidemiological situation, with 

high prevalence potentially reflecting a high level of past transmission but little to no current 

circulation of the parasite. To overtake this challenge, the use of prevalence in children under 

5 years old have been identify as a strategy to observe the current transmission (21). However, 
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it requires a large number of participants as the prevalence in younger age classes is expected 

to be lower, e.g., they had less time to get infected. 

 

Figure 1. 4: Chagas disease, transmission by the principal vector, credit: PAHO, 2014. The colours on the map 

characterise the status of the vectorial transmission in the area: in red, areas where the vectorial transmission can 

occur and interruption of the transmission is not a goal; in dark orange, areas where the vectorial transmission occur 

but elimination effort are realised; in light orange, areas that are close to elimination of the vectorial transmission 

route; in yellow, areas where the vectorial transmission have been interrupted; in light green, areas where the 

principal vector have been eliminated; and in dark green, non-endemic areas. 

Opportunity raised by modelling 

The presence of the vectors has been traditionally used to assess the risk of Chagas disease. 

As a result, most of the studies interested in the spread and distribution of Chagas disease 

modelled Triatomines ((16,26–31) or (32)). Environmental variables also play an important role 
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as they define the ecological niche of the vector and can as well impact the infectiousness of 

the parasite itself (33). They were used to identify the potential geographical distribution of 

the triatomine species of interest (15,27,34–48), but also to assess the impact of climate change 

(29,49–53), urbanisation (17,54,55), deforestation  (56), and other environmental changes 

(28,55,57–60) on the risk of Chagas disease transmission. 

When modelling the transmission dynamics of an infectious disease, compartmental models, 

such as Susceptible and Infected (SI) models are typically used and this also applied to Chagas 

disease with models explicitly characterising the dynamics within and between hosts and 

vector populations (32). However, these models rely on ecological parameters, such as 

triatomine feeding behaviour, transmission rates by blood meal or survival of the parasite in 

the host, that needed to be estimated and as research on Chagas disease is limited these 

models might lack robustness (32). These parameters are then associated with different levels 

of uncertainty that need to be considered. First, the lack of research to characterise these 

parameters values increase uncertainty. Then, the diversity in potential host and vector creates 

high heterogeneities due to context-specific dynamics. These aspects hindered the 

widespread use of compartmental model to study Chagas disease transmission and make 

them informative about general dynamics but not the most suitable to inform policies.  

Another source of information used by modelling studies to inform prevention and control 

are seroprevalence surveys organised by government and NGOs. Those are typically 

conducted to estimate the local prevalence by age class, and represent, in our view, an under-

exploited resource for the modelling of Chagas disease. They have already proved useful to 

reconstruct past and present incidence patterns of Chagas disease (21). Using a catalytic model 

fitted to age-structured seroprevalence data, a seroprevalence survey is used to estimate the 

local Force-of-Infection (FoI), i.e., the rate of parasite acquisition, and its temporal 

heterogeneities (61–79). However, even if several serological surveys are available, the FoI 

estimates remain limited in space, making spatially resolved national estimates difficult to 

obtain. To a lesser extent, estimates of FoI from serosurveys also remain limited in time as they 

can only inform on exposure up to the time of the serosurvey and back to the time of birth of 

the oldest participants. As a result, such methods are typically used to characterise local 

dynamics but not to draw predictions at large spatial and temporal scales. 
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To be able to obtain FoI estimates at the national scale, predictive models can be applied to 

local FoI estimates from serosurveys. Such methods have already been used in several contexts 

such as dengue (66,80) or Yellow Fever (61). However, important assumptions have been 

made on the FoI to use it as a response variable in a predictive model. The FoI, and therefore 

exposure, is often assumed to be constant over time and age classes (66,78,80). If for Chagas 

disease the intensity of the transmission is not known to be influenced by age, the transmission 

intensity is likely changing over time, e.g., linked to the implementations of vector control 

interventions. Additionally, the uncertainty surrounding the FoI estimation by the catalytic 

model is generally ignored and only the average estimated FoI’s are used to fit the predictive 

models (61,80). This assumption has not yet been challenged in the literature as the 

incorporation of uncertainty in the input of predictive models raises technical challenges. 

Chagas disease in Colombia 

In Colombia, the goal of elimination of vectorial transmission was agreed on by 1997 (4).  Blood 

bank screenings were made mandatory in 1995 but became fully effective in 2003 (8). The 

vector control program has been decentralised at the departmental level with the most 

affected department being Arauca, Casanare and Santander (4). Rhodnius prolixus and 

Triatoma dimidiata are the two main vectors of Chagas disease in Colombia (37). While most 

of the country is defined as endemic by the WHO (Figure 1.4), the screening coverage, i.e., 

proportion of the at-risk population having received a test, was estimated at 1.2%. Access to 

treatment is also limited with only 0.3%-0.4% of infected people having received anti-parasitic 

treatment (8). 

A recent meta-analyses found a pooled prevalence of 2.0% (95%CI: 1.0%-4.0%) based on 12 

published studies (19). The highest prevalence was observed in the Orinoco region (in the 

department of Casanare, Yopal being the capital city (Figure 1.5)) with 7.0% (95% CI: 2.2%–

12.6%) but large spatial heterogeneity at the municipal level is observed (19).  

In Colombia, 109 serosurveys were conducted over 19 years (1995-2014) which represent 

around 6 serosurveys by year, 768 persons tested by serosurvey and a geographic coverage 

of 15 of the 32 departments (21). However, on the scale of the country, this gives a relatively 
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sparse picture of the prevalence level. Furthermore, only 75 of these serosurveys provide age 

prevalence data at the municipality level, covering 35 of 1122 municipalities. 

 

 

Figure 1. 5: Map of Colombia, credit: World Atlas 

Objectives and contribution to knowledge 

Even if national and international goals have been set and a large-scale intervention 

implemented, there is a crucial need to measure and monitor the progress made and assess 

where new efforts should be targeted. In contexts where the vectorial transmission is 

becoming under control, understanding the impact of interventions as well as local 

epidemiological patterns is necessary to adjust the fighting efforts to new challenges. In 

addition, having a better view of the burden of disease can help coordinate medical care and 

reach people that need them more efficiently. 
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The general aim of the project was to support governments in their fight against Chagas 

disease and is part of a larger research consortium that have already collaborated for over 6 

years with researchers from the university of Sussex, Imperial College London (UK), Princeton 

University (USA), the National Institute of Health in Colombia and Columbia University (USA) 

and with support from the Pan American Health Organization (PAHO). The consortium aims 

to use disease modelling methods to bring innovative and cost-effective solutions to guide 

the Chagas disease fight. In this context, information useful for Chagas disease research has 

been gathered and standardised. These data include entomological surveillance, prevalence 

recorded in blood banks and prevalence estimates measured through serosurveys. Thanks to 

cooperation with Colombian, Chilian and Paraguayan authorities, published and unpublished 

data are being processed. Colombia was the first participating country and has thus been 

used as a case study in this thesis. My work built on the results and progresses obtained by 

the consortium and in particular that of Cucunubá et al., where they used serosurvey data to 

estimate the local FoI.  

The aim of my thesis was to develop global geostatistical models of the risk of Chagas disease 

transmission using the Force-of-Infection as an input along with a set of relevant 

environmental and socioeconomic predictors to ultimately estimate the spatial and temporal 

heterogeneities in the burden of Chagas disease. 

In particular, the following questions needed to be addressed: 

What challenges are raised when using the FoI as a response variable and how they 

can be addressed? 

What types of biases are present in serosurvey data and what is their impact on the 

predictions? 

Are more flexible methods, such as Machine Learning, better suited to handle the 

challenges raised by the FoI? 

Is it possible to reliably estimate burden of disease estimates at an operational scale? 

In order to answer these questions, the specific objectives of this thesis project were: 
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- To develop a methodological framework to use the FoI as a response variable in 

predictive models. In particular, find how to integrate information, and propagate 

uncertainty, in the model and how to evaluate model performances. 

- To assess the potential of Machine Learning methods in this context. 

- To develop a predictive model that can be applied to other countries. 

- To optimize the compartmental burden of disease model developed by Cucunubá et 

al. and modify it to work at the municipal level. 

- To write programming code and communicate our results to stakeholders with various 

expertise, e.g., knowledge transfer and scientific collaboration. 

The thesis has been then organised into five chapters. The first chapter presents the context 

of the research. The second chapter aims to improve our understanding of the FoI when used 

on predictive models. Based on linear model methodologies, a modelling framework has been 

progressively built to face each of the challenges raised by the use of the FoI as a response 

variable. It results in a clearer view of the data, including its strengths, weaknesses, and biases. 

In the third chapter, the framework is optimized using advanced modelling techniques relying 

on Machine Learning. Results are confronted to assess the benefits and weaknesses of each 

method. The fourth chapter, relying on previous chapters, present a modelling pipeline that 

is effective in Colombia and can be adapted without major change to other countries. Finally, 

the fifth chapter present future work and the challenges that remain. 
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Chapter 2: Spatiotemporal variations in 

exposure: Chagas disease in Colombia as a 

case study 

Published in BMC Medical Research Methodology on the 13th of January 2022 (DOI: 

10.1186/s12874-021-01477-6). 

Abstract  

Age-stratified serosurvey data are often used to understand spatiotemporal trends in disease 

incidence and exposure through estimating the Force-of-Infection (FoI). Typically, median or 

mean FoI estimates are used as the response variable in predictive models, often overlooking 

the uncertainty in estimated FoI values when fitting models and evaluating their predictive 

ability. To assess how this uncertainty impacts predictions, we compared three approaches 

with three levels of uncertainty integration. We propose a performance indicator to assess 

how predictions reflect initial uncertainty. 

In Colombia, 76 serosurveys (1980–2014) conducted at the municipality level provided age-

stratified Chagas disease prevalence data. The yearly FoI was estimated at the serosurvey level 

using a time-varying catalytic model. Environmental, demographic and entomological 

predictors were used to fit and predict the FoI at the municipality level from 1980 to 2010 

across Colombia. 

A stratified bootstrap method was used to fit the models without temporal autocorrelation at 

the serosurvey level. The predictive ability of each model was evaluated to select the best-fit 

models within urban, rural and (Amerindian) indigenous settings. Model averaging, with the 

10 best-fit models identified, was used to generate predictions. 

Our analysis shows a risk of overconfidence in model predictions when median estimates of 

FoI alone are used to fit and evaluate models, failing to account for uncertainty in FoI 

estimates. Our proposed methodology fully propagates uncertainty in the estimated FoI onto 

the generated predictions, providing realistic assessments of both central tendency and 

current uncertainty surrounding exposure to Chagas disease. 
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Significance statement  

Estimating spatiotemporal variation in disease exposure is critical to developing cost-effective 

strategies to reduce disease burden. However, where there is no well-established surveillance 

system, it might be challenging to obtain such information. Serosurveys provide information 

on past exposure at a certain location but do not reflect the current situation, particularly for 

long-lasting diseases such as Chagas disease. The FoI provides insight into the temporal 

patterns of the disease and is particularly relevant for assessing spatiotemporal 

heterogeneities and interventions’ impacts. However, assessing incidence over countries and 

decades, when seroprevalence information remains limited, requires robust statistical 

methods. We developed a modelling framework that predicts FoI in space and time from 

serosurveys able to propagate uncertainties using Colombia as a case study. 

Introduction 

Between 5 and 18 million persons are estimated to be currently infected by Trypanosoma 

cruzi, the protozoan parasite causing Chagas disease, and between 4,200 and 33,000 per year 

are estimated to die in the 21 endemic countries in Latin America (14,81). These figures give a 

coarse picture of the epidemiological situation, which is problematic as reliable estimates of 

the spatial and temporal patterns of the disease burden are essential for governments and 

health organisations to assess progress towards control or elimination goals. Indeed, spatial 

estimates of exposure are critical to target vector control activities. Additionally, the current 

clinical burden depends on past exposure as people infected by T. cruzi may develop a chronic 

form of the disease, requiring long-term care. Temporal estimates of exposure to T. cruzi are 

essential to monitor diagnostic and treatment needs (21), and ultimately to coordinate 

intervention strategies (e.g. targeted vector control and screening interventions). Finally, 

temporal patterns in exposure can also be used to evaluate past control interventions and 

guide future planning.  

Estimating the burden of Chagas disease is challenging; there are no reliable measures of 

incidence, for example, in Colombia, only an estimated 1.2% of the at-risk population received 
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a screening test in 2008–2014 (3). The low level of detection is partly linked to the unspecific 

nature of early symptoms and the long-lasting asymptomatic period, i.e. asymptomatic or 

unspecific symptoms can last for over 10 years and around 50% of those infected may never 

reach the chronic phase (14). Moreover, the disease affects disproportionately poorer 

populations with limited access to the health system (12). 

As demonstrated for other infectious diseases with a relatively low proportion of symptomatic 

cases, burden estimates typically rely on exposure estimates, particularly the Force-of-

Infection (FoI), i.e. the per-susceptible rate of parasite acquisition (21). Seroprevalence surveys 

are typically used to reconstruct past and present incidence patterns in various locations and 

a geostatistical model smooths the estimated FoI over space (61,80).  

Where this framework has been applied, given the complexity of the inference and relative 

scarcity of ground-truth data, it is common to assume that exposure has been constant over 

time. Although this may hold for FoI estimates for dengue (66,78,80), yellow fever (61), rubella 

(71,75) and malaria (67), it is more challenging for Chagas disease, as its protracted nature and 

substantial spatial and temporal heterogeneities in the implementation of control measures 

lead to temporal and spatial heterogeneities in exposure.  

Additionally, predicting FoI spatial patterns relies upon point estimates of FoI, with 

geostatistical models smoothing the central estimates (61,66,80), often neglecting their 

uncertainty. This may generate over-confidence in FoI estimates and ultimately burden. 

Generating FoI and disease burden estimates that robustly incorporate uncertainty is essential 

to inform policy-relevant questions, from affected communities to stakeholders and policy-

makers (82). 

Here, we propose a framework to predict spatial as well as temporal variations in FoI that fully 

account for uncertainties at various levels, particularly, the uncertainty in estimated FoI. The 

framework is applied to 76 T. cruzi serosurveys in Colombia to obtain estimates of exposure 

across Colombia from 1980 to 2014 at the municipality level. The importance of propagating 

uncertainty in estimated FoI and its impact on model selection and prediction was then 

quantified.  
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Methods 

1. General approach 

Our general aim is to predict the FoI at the municipality level across Colombia using data from 

76 serosurveys (27 urban, 36 rural, 5 indigenous and 8 mixed as defined by the Colombian 

government) conducted between 1980 and 2014 (Supp. Figure 1 and Supp. Figure 2). 

Environmental, demographic and entomological predictors were available for each location. 

For each serosurvey, the full posterior distributions of the FoI were obtained using a catalytic 

model (21). As a serosurvey reflects exposure since the birth of the oldest participant, estimated 

FoIs include past and contemporary (to the serosurvey) estimates of FoI. The potential 

predictors included in the models were selected based on expert knowledge and preliminary 

analyses (Supp. Table 1 presents the full list of predictors considered). Log-linear models were 

fitted using a combination of these predictors. Due to temporal autocorrelation, a stratified 

bootstrapping was applied to fit the models using single-year FoI estimates (randomly chosen 

at each iteration). To avoid overfitting, a repeated random sub-sampling validation was 

applied by selecting multiple times and randomly using half of the serosurveys for either 

training or validation. The predictive ability of each model (i.e., central estimate across the out-

of-sample sets) was then evaluated to select the best models within urban, rural and 

indigenous settings. Finally, model averaging, with the 10 best models identified in the 3 

different settings studied, was used to produce predictions of FoI as described by (83). 

Typically median, or mean, FoI estimates are used as the dependent variable (61,66,80); 

however, ideally, the uncertainty in estimated FoIs should be accounted for when fitting the 

models and evaluating their predictive ability. To assess how this uncertainty impacted 

predictions, we compared three approaches incorporating different levels of uncertainty: 

A1. Central estimates of FoI are used, i.e., no uncertainty is accounted for as commonly 

used in the literature. The selection of the best model is based on the central trends. 

A2. Uncertainty in estimated FoI is used to quantify the model’s predictive ability but not 

for fitting. For a given model, the predictions remain the same. This approach 

potentially changes which models are selected as the best ones based on a more 

realistic measure of predictive ability. 
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A3. Uncertainty in estimated FoI is used for both fitting and quantifying the model’s 

predictive ability. Models are fitted and evaluated repeatedly using samples of the FoI 

posterior distribution leading to changes in both the predictions for a given model 

and which models are selected as the best. 

The uncertainty of the predictions was characterised using a coefficient of variation based on 

the Median Absolute Deviation (MAD-CV) accounting for the non-normality of the FoI 

distribution (84). A3, although computationally more intensive, appropriately propagates the 

uncertainty in FoI estimates in both the predictions and the model selection processes. 

2. Data input  

Chagas Disease Force-of-Infection 

From the 112 Chagas disease serosurveys conducted in Colombia, only 76 serosurveys were 

selected, where the catchment area was smaller than the municipality level. Indeed, 

serosurveys having a catchment area at the departmental level have been excluded to be able 

to run analyses at the municipality level. The Force-of-Infection (FoI) is the per-susceptible rate 

of parasite acquisition (21) and had been estimated using Bayesian inference (to account for 

diagnostic uncertainty) for all those 76 age-stratified serosurveys (21). Thus, for each 

serosurvey, we extracted the full posterior distribution of the estimated annual FoI from the 

year of birth of the oldest participant up to the year the serosurvey was conducted. The 

median and the 95% Bayesian Credible Intervals (CrI) were then extracted from the posterior 

distribution. The methodology used to calculate the FoI has been described elsewhere (21) 

and relies on estimating time-varying FoI based on catalytic models (85) (see SI for more 

details).  

Potential explanatory variables 

For each covariate, the geographical scale of interest was the municipality (ADM2) level when 

available or the departmental (ADM1) level, otherwise. The pool of variables tested related to 

both human population and environmental conditions (Supp. Table 1).  

The Trypanosoma cruzi seroprevalence in public blood banks by year and department was 

provided by the Pan American Health Organization (PAHO). The presence of Triatoma 

dimidiata and Rhodnius prolixus at the municipality level was obtained after combining records 
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from a national surveillance report of 2013 (86) and data from (37,46). We also extracted data 

on presence/absence of these two vector species, from which the proportion of municipalities 

infested for each department was calculated. Data on vector control interventions 

implemented in Colombia (1998–2014) were extracted from (87). Census data were obtained 

from the Colombia’s Department of Statistics (DANE) website (88). Climate variables were 

extracted from the Köppen-Geiger climate classification maps at a 1-km resolution (89). Finally, 

the map layer used was obtained from the Database of Global Administrative Areas (GADM) 

(https://gadm.org/ (90)). 

Other covariates included the setting of the survey (urban, rural, indigenous, or mixed 

population (including urban, rural and unknown settings); the year when the survey was 

conducted; an effect for years and decades (full details in Supp. Table 1). Indigenous settings 

comprised those with Amerindian populations mostly following traditional lifestyles as 

described in (21). Definitions for urban and rural populations followed the Colombian 

government criteria (88). 

3. Model selection strategy 

Due to temporal autocorrelation in estimated FoI, a stratified bootstrapping was applied to fit 

log-linear models using single-year FoI estimates (randomly chosen at each iteration).  

To avoid overfitting, the method of Leave-p-out cross-validation (with p=50%), while 

ultimately ideal, was unpractical given the computational cost. Instead, we used a repeated 

random sub-sampling validation by selecting multiple times and randomly half of the 

serosurveys for either training or validation. As the number of random splits increases, the 

repeated random sub-sampling validation results approach the exhaustive Leave-p-out cross-

validation. We used 10,000 splits to ensure convergence. The variation in the first and second 

5,000 out-of-sample predictive R2 values for the 10 best models varied by less than 1% in rural 

and urban settings (3% for indigenous settings). 

A total of 464 models, combining 27 covariates (including some 2-ways interactions), were 

evaluated using the above procedure. The combinations of variables have been built to be 

plausible and to reduce predictor collinearity. Thus, predictors representing the same 

information in different forms (ie, presence of Rhodnius prolixus and proportion of 

municipalities where R prolixus is present) were not included together in the same model. For 
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each model, the parameters were estimated using data from all settings (urban, rural, 

indigenous), but predictive performance (see below) was evaluated separately for each setting. 

For each setting, a model-averaging method (83) was used to account for structural 

uncertainties based on the 10 best models in each setting. Models’ weights based on predictive 

performance (see below) were used to obtain model-averaged predictions and maps. 

4. Modelling approaches and predictive performance  

We used 2 predictive performance indicators: 

- The standard predictive (out-of-sample) R² (91) (Eq. 1), 

 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝑅2 = 1 −  
∑(𝑦𝑖− 𝑦𝑖̂)2

∑(𝑦𝑖− 𝑦̅)2   (Eq. 1) 

 

- An overlap indicator estimating the percentage overlap between observed and 

predicted distributions (using the R-package overlap 1.5.4. (92)). 

The predictive R² compares the central estimate of the prediction against observations. The 

overlap indicator compares the full distribution of the predictions against the full distribution 

of the observations. Therefore, while the overlap indicator quantifies well the predicted 

uncertainty, the predictive R² focuses on the central trend in observations and predictions. 

Model selection relied on an average of both indicators and models’ weights were adapted 

from (83) (Eq. 2), 

𝑤𝑖 =
𝑒

(−
1
2

(max(𝐼𝑛𝑑)−𝐼𝑛𝑑𝑖))

∑ 𝑒
(−

1
2

(max(𝐼𝑛𝑑)−𝐼𝑛𝑑𝑟))𝑅
𝑟=1

  (Eq. 2) 

With 𝑅 being the total number of candidate models (here 10) and 𝐼𝑛𝑑 the performance 

indicator.  

Three modelling approaches were compared which differ in how much uncertainty in 

estimated FoI is accounted for while i) fitting the model and ii) assessing its predictive 

performance (for model selection). The 3 approaches were: 
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-  Approach 1 (A1): only the median FoI estimates were used as the response variable, 

i.e., no uncertainty is used (a common approach in the literature). In this approach, as 

the response variable is characterised by its median, only the predictive R² was used 

to select the best models. For comparison, the overlap indicator for each model was 

retrospectively estimated but not used. 

- Approach 2 (A2): Uncertainty in estimated FoI is used to quantify the model’s 

predictive ability but not for fitting. In this approach, while only the median FoI is used 

for fitting, both the predictive R² and the overlap indicator are used (averaged) to 

select the best models. 

- Approach 3 (A3): Uncertainty in estimated FoI is used when both fitting and 

quantifying model’s predictive ability. Each model is repeatedly fitted to the posterior 

samples of the estimated FoI, and the predictive R² and the overlap indicator are used 

(averaged) to select the best models. 

5. FoI prediction for the entire country 

The model average built for each setting was then used to generate FoI estimates in each 

municipality of Colombia for the years 1980, 1990, 2000 and 2010. The median FoI and its 

uncertainty were extracted. The uncertainty was characterised using a standardised coefficient 

of variation calculated using the standardised Median Absolute Deviation (MAD-CV) because 

the FoI values were not normally distributed (84). 

6. Comparing observations and predictions across serosurveys 

For each serosurvey, we compared, across years, the median and 95%CI (Confidence Interval) 

of the predicted FoI against the median and 95%CrI of the originally estimated FoI (21) (i.e. 

the dependent variable or ‘observed’ FoI). 

For each quantile of interest 𝑞𝑥 (i.e., median, 2.5%, and 97.5% percentiles, denoted 𝑞𝑚, 𝑞𝑙 and 

𝑞𝑢 respectively), we computed a distance between the ‘observed’ and predicted quantile (𝛿𝑞𝑥
). 

This distance was standardised by the interval between the observed median and observed 

upper (or lower) 95% CrI, 

{
𝛿𝑞𝑥

=
𝑞𝑥(𝑦̂)−𝑞𝑥(𝑦)

𝑞𝑥(𝑦)−𝑞𝑙(𝑦)
𝑖𝑓 𝑞𝑥(𝑦̂) < 𝑞𝑥(𝑦)

𝛿𝑞𝑥
=

𝑞𝑥(𝑦̂)−𝑞𝑥(𝑦)

𝑞𝑢(𝑦)−𝑞𝑥(𝑦)
𝑖𝑓 𝑞𝑥(𝑦̂) > 𝑞𝑥(𝑦)

  (Eq. 3) 
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When the predicted and ‘observed’ medians are equal, we expect 𝛿𝑞𝑚
= 0. If the predicted 

median was equal to the upper (or lower) 95%CrI of the ‘observed’ FoIs, then we would have 

𝛿𝑞𝑚
= 1 (𝛿𝑞𝑚

= −1). 

If the predicted and ‘observed’ upper (or lower) 95% CI/CrI were equal, then we expect 𝛿𝑞𝑢
=

1 (𝛿𝑞𝑢
= −1). A value 𝛿𝑞𝑢

= 2 would indicate that the interval between the median and upper 

CI in the prediction is twice as wide as the interval between the median and upper CrI in the 

observations. 

The change in the denominator reflects the non-symmetrical nature of the 95%CI.  

As it is rescaled, this measure of bias allows an assessment of the predictive ability of our 

approaches across serosurveys. For each year, we estimated the median and interquartile 

range in the bias. This was also done by setting. 

7. Spatial correlation and spatial heterogeneity tests 

The Spatial Correlation Diagnostic test from the PrevMap R-package (based on a permutation 

of locations (93)) and the Moran’s I test from spdep R-package (based on neighbourhood 

values (94)) were used to assess spatial auto-correlation for the best and second-best model 

in each setting. To analyse the spatial correlation independently from the temporal one, the 

tests were bootstrapped 200 times with stratification on the location (one value for each 

municipality by iteration).  

In order to assess the spatial heterogeneity among predictions, the Moran’s I test under 

randomisation from spdep R-package (94) was undertaken in each setting on the predicted 

FoI values at the municipality level. 

8. Availability of data and materials 

The datasets supporting the conclusions of this article are available in the repository in (95). 

Results 

1. Importance of accounting for the uncertainty in FoI 

When using only the central FoI estimates (A1), we obtained higher predictive R2 but the 

overlap between the predicted and estimated distribution was lower (Figure 2.1 and Supp. 
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Table 2). This is reflected in the 95% credible intervals (95%CrI) of the predicted FoI values 

being smaller than the 95%CrI in the original FoI estimates, indicative of substantial 

overconfidence in the models’ predictions (Figure 2.2). This overconfidence in predictions is 

likely propagated to municipalities where we do not have estimates of FoI, leading to 

widespread overconfidence nationally (Figure 2.2 and Figure 2.3). This simple approach also 

leads to reduced heterogeneity in both space and time (Figure 2.3). 

In contrast, when using the full estimated distribution of FoI for both fitting and model 

selection (A3), we observed a lower predictive R2 but a greater overlap between observations 

and predictions, indicating that both the central FoI estimates and their uncertainties are well 

characterised (Figure 2.1 and Figure 2.2). This is reflected in the 95%CrI of the predicted FoIs 

being much closer to the 95%CrI in the originally estimated FoIs (Figure 2.2 and Supp. Figure 

3). A3 did not, however, lead to higher uncertainty across municipalities, even where 

serological surveys have not been conducted. Using A3, we estimated that the MAD-CV in FoI 

predictions was greater than 2 in 25% of municipalities (compared to 31% and 27% in 2010 

for A1 and A2, respectively) (Supp. Table 3). Furthermore, the number of extreme MAD-CV 

values (above 5) is reduced in A3 (39, 81, 17 municipalities with MAD-CV above 5 in 1990 for 

A1, 2 and 3, respectively). In municipalities where serosurveys had been conducted, the median 

MAD-CV was higher with A3 (median MAD-CV= 1.29, 1.28 and 1.33 with approaches A1, A2 

and A3, respectively), but the maximum was lower (maximum MAD-CV= 2.76 for A3, 4.06 for 

A1 and 4.56 for A2) (Supp. Table 4). 

Table 2.1 summarised the advantages and disadvantages of each of the three approaches. 

Approach 1 and 2 are easy to implement and require a limited computational effort but are 

not able to fully represent the uncertainty around prediction and thus provide an over-

optimistic prediction. 

 

Table 2. 1: Advantages and disadvantages of the three approaches investigated. Approach 1: (A1) models fitted with 

median FoI estimates and selected based on predictive R2; Approach 2 (A2): models fitted with median FoI estimates 

and selected based on predictive R2 and overlap; Approach 3 (A3): models fitted with the full posterior distribution of 

FoI estimates and selected based on the predictive R2 and overlap. 

 Advantages Disadvantages 
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A1 Low computational time 

Low computational space 

Give good central estimates 

 

Under-estimate uncertainty 

Reduce heterogeneity 

 

A2 Low computational time 

Low computational space 

Give good central estimates 

 

Under-estimate uncertainty 

Reduce heterogeneity 

 

A3 Give good central estimates 

Give a good representation of the uncertainty 

Maintain heterogeneity 

Computationally demanding 

 

 

 

Figure 2. 1: Comparison of the predictive ability of the best-fit models for the three approaches investigated. 

Approach 1: (A1) models fitted with median FoI estimates and selected based on predictive R2; Approach 2 (A2): 

models fitted with median FoI estimates and selected base on predictive R2 and overlap; Approach 3 (A3): models 

fitted with the full posterior distribution of FoI estimates and selected based on the predictive R2 and overlap. Note: 

The overlap obtained for A1 is presented for comparison purpose and has been calculated using the same 

methodology as A2 but is never taken into consideration for the model selection 
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Figure 2. 2: Goodness-of-fit of the model averaging of the 3 modelling approaches for all serosurveys. The solid lines 

and envelopes show standardised distances between observations and predictions’ median (blue), and 95%CrI (upper 

bound in red and lower bound in purple). A perfect fit would translate in all coloured solid lines overlapping with the 

correspondingly-coloured dotted lines. A blue solid line overlapping the blue dotted line, together with a red and 

purple solid lines at 2 and -2 respectively would reflect a good central prediction with CrI in predictions twice as large 

as the CrI in the ‘observed’ FoI. Approach 1: models fitted with median FoI estimates and selected based on predictive 

R2; Approach 2: models fitted with median FoI estimates and selected based on predictive R2 and overlap; Approach 

3: models fitted with the full posterior distribution of FoI estimates and selected based on the predictive R2 and overlap.  
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Figure 2. 3: Force-of-Infection of Chagas disease in urban, rural and indigenous settings, Colombia, 1990. Main map, 

predictions per year and per susceptible individual; small map, Median Absolute Deviation (MAD) Coefficient of 

Variation) (n=1065 municipalities). Rows correspond to the 3 modelling approaches. Maps show model-averaged 

estimates (across the 10 best setting-specific models). Approach 1: models fitted using the median FoI estimates and 

selected based on predictive R2; Approach 2: models fitted with median FoI estimates and selected based on predictive 

R2 and overlap; Approach 3: models fitted with the full posterior distribution of FoI estimates and selected based on 

the predictive R2 and overlap.  
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2. Spatial and temporal predictions of FoI in Colombia 

In the following, we present results from Approach 3 (unless otherwise stated); this leads to a 

more accurate assessment of the variations in FoI and its uncertainty. No residual spatial 

autocorrelation in the FoI estimates was found for any of the models as assessed by methods 

developed in (93,94); therefore, municipalities’ predictions were obtained directly from 

estimated models’ parameters and sets of predictors. 

The FoI varied significantly by setting, with overall FoI predicted to be 9.1 and 11.8 times lower 

in urban and rural settings than in indigenous settings (respectively, FoI values of 2.2 x 10-3, 1.7 

x 10-3 and 2.0 x 10-3 per year and per susceptible individual).  

Between 1980 and 2010, the predicted FoIs showed a decreasing trend, with relative decreases 

of 23%, 0.07% and 7% in urban, rural and indigenous settings respectively. The decrease in 

predicted FoIs was statistically significant in urban and indigenous settings (Table 2.1 and Supp. 

Table 1), but not in rural settings.  

Spatially, rural FoIs showed a clear north-south gradient, with estimated FoI values per year 

reaching 0.05-0.01 in the north compared to 0.0001 in most southern municipalities (Figure 

2.4). In all settings, the uncertainty estimated was higher in most southern municipalities. In 

1990, the Moran’s I test under randomisation shows that there was spatial clustering in the 

predicted FoIs. The heterogeneity in predicted FoI was higher in urban settings (Moran’s I 

statistic value of 0.82) than in rural settings (Moran’s I statistic value of 0.93). In addition, the 

clustering effect seemed to decrease over time in urban settings, but not in rural ones (Moran’s 

I statistic in urban settings in 1980 is 0.82 while it is 0.78 in 2010). 
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Table 2. 2: Predicted FoI averaged across all Colombian municipalities in 1980, 1990 and 2010, the percentage of 

decrease between 1980 and 2010 (trend) for each setting and the spatial clustering effect given by the Moran’s I 

statistic for the test under randomisation in 1980, 1990, 2000 and 2010 (n=1065 municipalities). 

 Predicted FoI values  Moran’s I statistic 

 1980 1990 2010 trend  1980 1990 2000 2010 

 mean  

(sd) 

mean 

 (sd) 

mean  

(sd) 

%      

Urban 2.2 x 10-3  

(1.1 x 10-3) 

2.1 x 10-3  

(1.1 x 10-3) 

1.7 x 10-3  

(9.9 x 10-4) 

-23*  0.82 0.82 0.79 0.78 

Rural 1.7 x 10-3 (1.0 

x 10-3) 

1.7 x 10-3  

(1.0 x 10-3) 

1.7 x 10-3  

(1.0 x 10-3) 

-0.07  0.93 0.93 0.93 0.93 

Indigenous 2.0 x 10-2  

(4.5 x 10-3) 

2.0 x 10-2 

(4.5 x 10-3) 

1.8 x 10-2 

(4.4 x 10-3) 

-7*  0.91 0.91 0.90 0.90 

*Statistically significant at a 5% significance level according to Student’s t-test comparing FoI values between 1980 

and 2010  
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Figure 2. 4: Spatiotemporal trends in Chagas disease Force-of-Infection, Colombia, 1980–2010.  Main maps, 

predictions per year using approach 3 and model averaging; small maps, MAD Coefficient of Variation (n=1065 

municipalities) 
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3. Main predictors of Trypanosoma cruzi exposure 

Model complexity was similar across settings, with the number of predictors included in the 10 

best-fit models varying from 10–14 in urban settings, 7–13 in rural settings and 6–12 in 

indigenous settings (Figure 2.5). 

In urban and rural areas, the predictors selected in each of the 5 best-fit models were 

consistent, with small changes from one model to another; while in indigenous settings, 

models were more distinct.  

The urban-setting models always included the setting of the survey (urban, rural and 

indigenous) (S01), as well as its latitude (S05). Seroprevalence in blood banks and climate 

variables were included in 4 out of the 5 models. The level of poverty (D02) was selected and 

positively correlated with FoI in 3 models out of the 5 models. The interaction between the 

prevalence in blood banks and tropical climate (X05) was selected in 4 of the models. The year 

and the interaction between the amount of vector control interventions and the proportion of 

municipalities infested by Triatoma dimidiata were both included in one of the models. 

The rural-setting models always included the year when the serosurvey was conducted (S01), 

as well as the setting (urban, rural or indigenous) (S02) and its latitude (S05). Four out of the 

5 models included a climate variable. Blood bank and vector variables were only included 

once. Demographic, vector interventions and time variables were never selected in rural 

models, not even as interaction terms. Only two interactions were included; the interaction 

between prevalence in blood banks and tropical climate (X05), and the proportion of 

municipalities infested by Rhodnius prolixus and longitude (X11). 

The indigenous-setting models were far more varied. The year when the serosurveys were 

conducted (S01) was included in one model. The setting was always included (S02 and 

S03/S04) but one of the models used the indigenous setting (S03) and the urban setting (S04) 

against the others as risk factors. The effect of latitude (S05) was not as clear as for urban and 

rural settings. Poverty (D02) was the only demographic variable included directly, but the 

population density was included in interaction terms with the prevalence in blood banks (X03). 

Vector variables played an important role in the three models. These predictors were also 

included as interaction terms in X11 (the proportion of municipalities infested by R. prolixus 

and longitude) and X14 (T. dimidiata density and vector-control interventions). 
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While all the best-fit models selected for prediction in rural settings included a predictor 

specifying the year when the serosurvey was conducted (S01, Figure 2.5), this variable was not 

included in any of the best models for predictions in urban settings and was included in only 

one of the models for indigenous settings. Consistently, for a given year and municipality, the 

predicted FoI values from older serosurveys were higher than those of more contemporary 

serosurveys (Supp. Figure 4). The inclusion of the year of the survey as a predictor for rural 

settings highlights potentially a bias in sampling, with older serosurveys being less 

representative and biased toward municipalities with higher FoI (Supp. Table 6 and Supp. 

Figure 4). 

 

Figure 2. 5: Predictors included in the model averaging of the FoI of Chagas disease in Colombia. Models fitted with 

the full posterior distribution of FoI estimates and selected based on predictive R2 and overlap. For the full set of 

predictor variables see Supp. Table 1. 

Discussion 

We predicted spatial and temporal variations in FoI across Colombia based on estimated FoI 

from 76 serosurveys conducted between 1980 and 2014. Our analysis highlights the 

importance of accounting for the uncertain nature of the estimated FoI by demonstrating a 

substantial risk of overconfidence when using median estimates of FoI to fit and evaluate 

models, as typically done in the literature (61,66,80). We propose a novel methodology to fully 

propagate uncertainty from the estimated FoI onto the predicted one, giving a realistic 
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assessment of both the central tendency and uncertainty surrounding past and current 

exposure to Chagas disease across Colombia.  

Accounting for and communicating uncertainty in FoI estimates is critical to better inform 

public health and clinician stakeholders (82). It allows a better assessment of where information 

is missing, rather than giving a false sense of certainty. Our framework offers the opportunity 

to prioritise areas where serosurveys would be needed. In addition, where uncertainty is low, 

the models identified areas where we can be confident that populations have experienced, or 

are experiencing, high exposure to T. cruzi, which is critical to better inform focused 

interventions for patient diagnosis and care. 

The performances of the models obtained were good, with performance indicators measuring 

the predictive ability of both central trends and uncertainty, estimated to vary between 0.46 

and 0.67 for the five best-fit models (Supp. Table 2). When predicting FoI in new areas (where 

serosurveys have not yet been conducted), the uncertainty, characterised by the CV, can 

become much larger, while the median remains consistent across settings (in 1990, urban: 

median MAD-CV=1.48, range MAD-CV=0.32–8.19; rural: median MAD-CV=1.50, range MAD-

CV=0.24–11.00; indigenous: median MAD-CV=1.50, range MAD-CV=1.07–3.52). In contrast, 

Garske et al. obtained FoI predictions of yellow fever with a MAD-CV ranging from 0 to 3 

using central estimates of the FoI to fit their model. Using the same methodology (i.e., 

Approach 1), our results showed similar median uncertainty (urban: median MAD-CV=1.48, 

range=0.34–6.05; rural: median MAD-CV=1.51, range=0.23–11.98). To some extent, the 

relatively smaller uncertainty obtained in the context of yellow fever by Garske et al. might 

also be explained by their assumption of a constant FoI over time, rather than the time-varying 

FoI we used in this work for Chagas disease. Given the demographic and public health changes 

that have occurred in Colombia over the past decades (considerable rural-to-urban migration, 

housing improvements, scaled-up vector control, and more efficient diagnostic protocols), we 

believe that accounting for temporal variations in Chagas disease FoI is critical for our analysis, 

even at the ‘cost’ of increased uncertainty. 

At first glance, our analysis highlights some unexpected results. The effect of time was relatively 

weak, i.e., with FoI not showing a significant decrease in rural settings; as was the effect of 

rural vs. urban settings. Such results contrast with previous evidence, which showed a strong 
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temporal trend (21,32,96,97), and increased exposure in rural settings where vectorial 

transmission is much more prevalent (21,32,97). In terms of temporal trends, our final models 

always include time-varying variables, such as poverty levels and vector density, which have 

decreased over time, due to intervention implementation and general improvement of living 

conditions in the country. However, we showed that the year when the serosurvey was 

conducted impacted the estimated FoI, with older serosurveys biased toward high-risk areas 

(Supp. Figure 4). Regarding the lack of substantial differences in the level of exposure between 

rural and urban settings, the great population migration trends observed across the country 

are likely blurring this effect. Considerable rural to urban migration has taken place in 

Colombia, with one-third of the rural population aged below 40 in 1951 having migrated to 

urban settings by 1964, mostly to find better employment opportunities (98). More recently, it 

has been estimated that more than 3.5 million people had migrated to urban centres to 

escape violence in rural areas (99). Having lived for an extended period of time in rural settings, 

these migrants may well have been exposed to T. cruzi in rural areas but now account for the 

estimated FoI in urban settings. Unfortunately, the participants’ migration history was not 

recorded (or available) in the serosurveys used. Similar dynamics of migrations have been 

shown to explain a substantial burden of Chagas disease in both endemic (e.g. in Arequipa, 

Peru (17)) and non-endemic settings (100). 

Another spatial challenge is the scale at which the analyses have been conducted. Indeed, we 

demonstrate small-scale spatial heterogeneity in Chagas disease exposure between the 

municipalities within a department. And, while our approach was designed to be conservative 

by excluding serosurveys providing information only at the departmental level, we 

acknowledge that further small-scale heterogeneity may exist, i.e., differences could occur 

between villages of the same municipality. However, the municipal level is the operational 

level in the control of Chagas disease and is, therefore, the most useful level to characterize 

exposure in a way that actionable information can be extracted. Also, we found that most of 

the important variables for predictions were available at the municipality level (poverty 

indicator, vector density), but not disaggregated further. Thus, even if a small-scale analysis 

could provide some insights, technically and operationally, the municipal level remains the 

most relevant one. 
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While serosurveys provide invaluable information on exposure, our analysis highlights the 

importance of appropriate sampling strategies. Sampling decisions taken to collect the data 

have a clear impact on our ability to provide representative predictions over large spatial and 

temporal scales. One issue linked to sample representativeness is the location of the 

serosurveys. Indeed, the likely past focus on estimating exposure in high-risk populations may 

have created a selection bias that cannot be easily handled when modelling the data. In 

Colombia, this seemed especially true in rural settings (Supp. Figure 4). This bias likely explains 

much of the temporal trends that have been reported in previous studies (e.g. (21)). This 

highlights the problem of relying on surveys that were not designed to provide a 

representative sample but rather organised to confirm and quantify incidence in high-risk 

areas. Extrapolation to areas where no serosurveys have been conducted is then made more 

uncertain and needs to be interpreted accordingly. Another issue linked to sample 

representativeness is the targeted age groups of the surveys. In 2012, the World Health 

Organization set the elimination of (intradomicilary) Chagas disease transmission as a goal in 

its first neglected tropical disease roadmap; one of the indicators used to monitor progress 

towards this goal was the seroprevalence among under-five children, aiming to measure 

active transmission as opposed to past exposure (21,101). Unfortunately, such (narrow age-

range) sampling scheme hampers obtaining valuable information about past exposure, which 

for a chronic illness, such as Chagas disease, is crucial to target diagnosis and treatment. We 

argue that organising representative serosurveys and covering a broader age range is 

essential to obtain a reliable picture of the epidemiological situation and the impact of control 

interventions in endemic countries, particularly for infectious diseases that use serosurveys for 

the purposes of surveillance. 
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Chapter 3: Linear and Machine Learning 

Modelling for Spatiotemporal Disease 

Predictions: Force-of-Infection of Chagas 

Disease 

Published in PLOS Neglected Tropical Diseases on the 19th of July 2022 (DOI: 

10.1371/journal.pntd.0010594). 

 

Abstract  

Background: Chagas disease is a long-lasting disease with a prolonged asymptomatic period. 

Cumulative indices of infection such as prevalence do not shed light on the current 

epidemiological situation, as they integrate infection over long periods. Instead, metrics such 

as the Force-of-Infection (FoI) provide information about the rate at which susceptible people 

become infected and permit sharper inference about temporal changes in infection rates. FoI 

is estimated by fitting (catalytic) models to available age-stratified serological (ground-truth) 

data. Predictive FoI modelling frameworks are then used to understand spatial and temporal 

trends indicative of heterogeneity in transmission and changes effected by control 

interventions. Ideally, these frameworks should be able to propagate uncertainty and handle 

spatiotemporal issues. 

Methodology/Principal findings: We compare three methods in their ability to propagate 

uncertainty and provide reliable estimates of FoI for Chagas disease in Colombia as a case 

study: two Machine Learning (ML) methods (Boosted Regression Trees (BRT) and Random 

Forest (RF)), and a Linear Model (LM) framework that we had developed previously. Our 

analyses show consistent results between the three modelling methods under scrutiny. The 

predictors (explanatory variables) selected, as well as the location of the most uncertain FoI 

values, were coherent across frameworks. RF was faster than BRT and LM, and provided 

estimates with fewer extreme values when extrapolating to areas where no ground-truth data 

were available. However, BRT and RF were less efficient at propagating uncertainty.  
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Conclusions/Significance: The choice of FoI predictive models will depend on the objectives 

of the analysis. ML methods will help characterise the mean behaviour of the estimates, while 

LM will provide insight into the uncertainty surrounding such estimates. Our approach can be 

extended to the modelling of FoI patterns in other Chagas disease-endemic countries and to 

other infectious diseases for which serosurveys are regularly conducted for surveillance. 

Author Summary  

Metrics such as the per susceptible rate of infection acquisition (Force-of-Infection) are crucial 

to understand the current epidemiological situation and the impact of control interventions 

for long-lasting diseases in which the infection event might have occurred many years 

previously, such as Chagas disease. FoI values are estimated from serological age profiles, 

often obtained in a few locations. However, when using predictive models to estimate the FoI 

over time and space (including areas where serosurveys had not been conducted), methods 

able to handle and propagate uncertainty must be implemented; otherwise, overconfident 

predictions may be obtained. Although Machine Learning (ML) methods are powerful tools, 

they may not be able to entirely handle this challenge. Therefore, the use of ML must be 

considered in relation to the aims of the analyses. ML will be more relevant to characterise the 

central trends of the estimates while Linear Models will help identify areas where further 

serosurveys should be conducted to improve the reliability of the predictions. Our approaches 

can be used to generate FoI predictions in other Chagas disease-endemic countries as well as 

in other diseases for which serological surveillance data are collected. 

Introduction 

Chagas disease is a neglected tropical disease estimated to affect between 6 and 7 million 

persons worldwide. While only endemic in 21 countries in Latin America, the number of 

Chagas disease cases detected in Europe, North America, and the Far East has greatly 

increased, due to migration of infected populations (102). Being able to identify how the cases 

are distributed in space and whether the control interventions implemented have been 

successful is critical to identifying how resources should be allocated to eliminate the disease 

as a public health problem in the 2021–2030 time horizon (20). As a long-lasting and chronic 

disease, analyses based solely on the current prevalence of infection (typically measured as 
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seroprevalence) has limited scope. Indeed, the prevalence recorded at a given time does not 

reflect the current epidemiological situation, as infection may have occurred in the past. The 

Force-of-Infection (FoI), i.e. the rate at which susceptible individuals become infected, is a 

modelling-derived metric that can be used to understand changes in incidence in space and 

time as a result of deliberate control interventions and/or secular changes, including 

environmental change (85). However, the use of FoI raises its own challenges, particularly 

those regarding quantification and propagation of uncertainty when used as a response 

variable in predictive models. A catalytic model (fitted to age-structured seroprevalence data, 

often using Bayesian methods) has been used to obtain the FoI and thus, the FoI values for 

each serosurvey and each year are posterior distributions and not only single values (21). When 

the derived FoI is used to fit predictive models, the mean or median values of FoI are 

predominantly used, neglecting the uncertainty surrounding the estimated values (61,66,80). 

Furthermore, when a non-constant (e.g. a yearly-varying) FoI is assumed, each serosurvey 

analysed becomes a temporal series at a certain location, requiring specific and 

computationally-intensive methods to be included into predictive models (103). Machine 

Learning methods could represent a faster and more flexible framework to implement such 

models.  

Machine Learning (ML) methods are computational processes based on probabilities and 

algorithms that use prior knowledge to produce predictions. ML can handle non-linear and 

non-parametric models that are able to flout the linearity, normality (Gaussian distribution) 

and equal variance assumptions of statistical models (104). Essentially, ML methods make no 

assumptions about the statistical distribution of the data (104). 

These methods have previously been used in contexts in which those assumptions are 

challenged, such as spatial, temporal and spatiotemporal analyses of infectious diseases, e.g. 

mapping of human leptospirosis (105,106), severe fever with thrombocytopenia syndrome 

(107), lymphatic filariasis (108), or to identify individuals with a higher risk of HIV infection based 

on socio-behavioural-driven data (109).  

Two types of ML models have been extensively used in the context of infectious disease 

epidemiology, namely, Boosted Regression Trees (BRT) and Random Forest (RF). Although 

they are not spatial approaches (as data locations and sampling patterns are ignored to 
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produce estimates), they have shown potential in spatial modelling (110), in particular, when 

used with appropriate sampling strategies (111). Specifically, BRT and RF have been used to 

study the spatial spread of numerous infectious diseases, including epidemics among swine 

farms in the USA (112), Ebola case-fatality ratio (113), risk factors for visceral leishmaniasis 

(114,115), African swine fever (116), scrub typhus (117), dengue incidence (118), and dengue FoI 

(80). RF also proved its potential in modelling epidemics in a spatiotemporal framework, 

outperforming time series models (112). 

This paper aims to compare the performance of two ML methods, namely, BRT and RF, with 

a Linear Model (LM) framework we have previously developed (103) in their ability to predict 

the FoI of Chagas disease across space and time. We use detailed data from Colombia as a 

case study and describe the advantages and disadvantages of using such Machine Learning 

methods compared to Linear Model frameworks, specifically focussing on their ability to 

handle uncertainty on the response variable.  

Methods 

1. Data sources 

Current and past exposure to Chagas disease can be characterised by estimating the (time-

varying) Force-of-Infection (FoI), i.e. temporal changes in the per susceptible rate of parasite 

acquisition (21,85). Using results of 76 age-stratified serosurveys conducted at municipal level 

in Colombia between 1998 and 2014 (Supp. Figure 2), yearly-varying FoI values were 

estimated, for each serosurvey, by fitting a catalytic model to age-stratified seropositivity data 

(see (21) for details). For each serosurvey, FoI estimates, for the period ranging from the birth 

of the oldest participants to the year when the serosurvey was conducted, were obtained using 

a Bayesian framework to fit the catalytic model to data, thus allowing for extraction of the full 

joint posterior distribution of the yearly FoI estimates. We refer to those municipalities where 

at least one serosurvey was conducted as municipalities ‘in catchment areas’, whereas those 

municipalities for which serosurveys were not conducted, not available, or not used in our 

analyses, are referred as ‘out of catchment areas’. Supp. Figure 2 in the Supporting Information 

file depicts the geographical distribution of the available serosurveys (‘ground-truth’ data). 
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The predictors used in these analyses included demographic, entomological and climatic 

variables (recorded at the municipality level), contextual information about the serosurveys 

(location, year conducted and setting, i.e. urban, rural, mixed and indigenous (as defined in 

(21)), and information from public blood banks on the prevalence of Chagas disease and 

number of blood units tested (available at the departmental level). A full list and description 

of the predictors is available in Supp. Table 1 in the Appendix.  

2. Linear Model (LM) framework 

The LM framework relied on a list of plausible linear combinations of predictors that were then 

integrated into an ensemble model using model averaging with weights based on the 

performance indicators of each individual linear model. The 10 best models for each setting 

type (urban, rural and indigenous) were averaged and used to obtain FoI predictions. The LM 

framework has been fully described in (103). 

3. Machine Learning (ML) framework 

Both ML methods tested in this paper are based on decision trees. A decision tree is an 

intuitive process that builds an algorithm by generating a step-by-step tree, whereby the 

dataset is repeatedly split to make a decision at each node. The splitting relies on optimising 

a variable-specific threshold that best discriminates the data into two branches at each node. 

Sequentially, the entire dataset is divided by defining new variable-specific thresholds defining 

the nodes in the decision tree. 

The size of the tree, its complexity (reflecting predictors’ interactions), the number of 

observations in the terminal nodes and the criteria to stop the process are defined as model 

hyperparameters and form the basis of more complex designs. 

Boosted Regression Trees (BRT)  

Boosting Regression Trees (BRT) or Gradient Boosting Trees (GBT) are based on the building 

of a large number of small decision trees. The boosting aspect refers to fitting repeatedly very 

simple and basic classifiers, in which a different subset of the data is used for fitting at each 

iteration (104). The Gradient technique is used to reduce the variance in the model; 

sequentially, each new tree added to the model is fitted to explain the remaining variance 

from the previous trees. 



57 

 

  

While BRT is considered a robust ML method, including its use for spatiotemporal analyses 

(114,115,117,119), it is known as having a tendency to overfit, unless a very large amount of data 

is available (120). 

Random Forest (RF) 

Random Forest (RF), first described by Breiman in 2001 (121), consists of a large collection of 

decision trees (104). To grow an RF tree, random inputs and predictors are selected at each 

node (121), and this randomness is thought to reduce overfitting. RF is also considered a robust 

ML method that can handle outliers and noise while being faster than bagging- and boosting-

based methods (121). 

RF is not explicitly designed to explore spatial observations (110), and is known to produce 

suboptimal prediction when sampling is spatially biased and/or in the presence of strong 

spatial correlation (110). However, spatiotemporal resampling strategies and variable selection 

processes have been developed to overcome this challenge (111,122). 

4. Models’ workflow 

In order to assess the importance of integrating uncertainty on the response variable, we 

implemented two approaches The former relies on generating and assessing model 

predictions using the median estimates of the FoI for each serosurvey as an outcome (referred 

to as MedFoI). The latter seeks to propagate the uncertainty linked to the catalytic model-

derived ‘observations’ by accounting for the full posterior distribution of the FoI estimates 

(referred to as FullPostFoI).  

With the MedFoI approach, models are fitted to the median FoI estimates and the 

performance indicator, the predictive R2, is based on central tendencies only. With the 

FullPostFoI approach, models are fitted on the full posterior distribution of FoI estimates and 

the performance indicator is based both on central tendency and on the amount of overlap 

between the ‘observed’ and predicted distribution of the outcome. This allowed us to quantify 

the ability of the models to match the uncertainty surrounding the FoI estimates (i.e. the 

outcome) inherited from the catalytic model (Figure 3.1). The percentage of overlap was 

obtained using the “overlap” function from the Overlapping R-package (123) and provided 

the proportion of the area of two kernel density estimations that overlap (124).  
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Figure 3. 1: Graphical representation of the two modelling approaches used for each of the frameworks tested. The 

upper panel corresponds to MedFoI (fitted on median FoI); the lower panel depicts the FullPostFoI (fitted on full 

posterior FoI). The predictive R2 values are calculated on cross-validation sets for both approaches (see Figure 3.2). 

In the upper panel, the performance indicator, Ind, is the R2, based on central tendency alone; in the lower panel, 

both central tendency and percentage of overlap enter into the calculation of the performance indicator, Ind (as the 

arithmetic mean between R2 and percentage overlap). The percentage of overlap (% of overlap) represents the 

proportion of the ‘observed’ and predicted distributions that overlap.  

 

For the two approaches, we defined six different coefficients of determination (R2) linked to 

the sampling strategy. An R2 was estimated based directly on the data used to fit the models; 

a predictive R2 was estimated based on a proportion of the dataset that was not used to fit 

the models, i.e. the cross-validation (CV) set. In addition, both urban- and rural-specific 

predictive R2 were estimated based on the urban/rural data from the CV set. Finally, in the ML 

frameworks, a resample R2 was estimated based on out-of-sample data for each resample 

iterations (see Figure 3.2 for a schematic representation of these approaches). 
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Figure 3. 2:  Description of the modelling workflow for the Linear Models (LM) and the Machine Learning (ML) 

frameworks. ML framework include Boosted Regression Trees (BRT) and Random Forest (RF) methods). CV denotes 

cross-validation; Pred R2 urban and Pred R2 rural denote urban- and rural-specific predictive R2 values that were 

estimated based on the urban/rural data from the CV set; %Overlap indicates the proportion of the ‘observed’ and 

predicted distributions that overlap (see Figure 3.1), assessed over all settings and for urban and rural settings 

separately. 

 

While the LM framework necessitated transformation of the data to normalise them, ML 

methods should, in principle, be able to handle data without requiring normalisation (i.e. 

without requiring that their distribution is Gaussian). However, this process can help improve 
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the performance of the model and was, therefore, tested (i.e., ML approaches were used to 

predict the FoI values both on non-transformed and log-transformed scales). 

While the LM framework relies on a list of plausible and pre-defined linear models including 

interactions between factors (predictors), the ML framework is implemented in two steps, to 

be fitted only on the ten most important variables. At first, ML models were fitted using all the 

predictors available, then the importance/influence of each predictor was assessed, and the 

10 most influential factors were used in the second step, during which the models were fitted 

again, and predictions extracted.  

Finally, ML requires a tuning step, during which the best hyperparameters are selected. A 

detailed description of the tuning of hyperparameters and the comparison of several 

resampling strategies is available in Supp. Method 2, including details about the tuning of 

hyperparameters and the comparison of several resampling strategies. 

5. Indicators used to compare LM with ML frameworks 

The best ML models obtained were then compared with the LM framework previously 

developed (103) in terms of their performance indicators, predictions, and ability to propagate 

uncertainty. In addition to these aspects, the models’ ability to deal with temporal and spatial 

correlation, as well as their different computational aspects entered the comparison. 

To allow comparison of predictive ability across multiple serosurveys, the distributions of 

predictions were standardised to the ‘observations’, allowing us to visualise whether the 

median and confidence intervals of the predictions matched those (median and credible 

intervals) of the catalytic model-derived FoI ‘observations’. This process was performed at the 

serosurvey level to assess how much of the uncertainty inherited from the FoI calculation (via 

catalytic model fitting) was propagated into the predictions (see Supp. Method 3).  

The uncertainty in the predictions was quantified using the Coefficient of Variation based on 

the standardised Median Absolute Deviation (MAD-CV), as FoI values were not normally 

distributed (84). (Note that MAD-CV refers to coefficient of variation, whilst CV denotes cross 

validation.) 

The residual spatial correlation was assessed using the Moran’s I heterogeneity test from the 

“spdep” R package (94). For the LM framework, the Moran’s I test was applied on all the 
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residuals (originating from the cross validation (CV) and fitting sets) excluding those from the 

rural–urban mixed settings (as LM model selection was based on setting type and no model 

was explored, selected or averaged for mixed settings, and thus no predictions were produced 

for the ‘observed’ FoI values corresponding to such settings). For ML models, the Moran’s I 

test was applied to the residuals of the CV set. Residuals for a single year were used to exclude 

potential temporal autocorrelation, and for presentation purposes, we selected 2005 as the 

year with the largest number of independent FoI ‘observations’. 

The residual temporal correlation was tested using a Durbin-Watson test (DW) (125) (see Eq. 

4 for the DW statistic). In order to capture the residual correlation inherited from the estimation 

of the FoI values through fitting the catalytic model, the residuals being compared were always 

from the same serosurvey and for consecutive years. Thus, the DW statistic provided the 

residual serial correlation for a lag of one year, 

𝐷𝑊 =
∑  (𝑟𝑖 − 𝑙𝑎𝑔(𝑟𝑖))2𝑛

𝑖=0

∑ 𝑟𝑖
2𝑛

𝑖=0

 Eq. 4 

 

where 𝑟 denotes the residuals for 𝑖 serosurveys, 𝑙𝑎𝑔 is one year (for consecutive, yearly series 

of serosurveys), and 𝑛 the number of ‘observations’ tested. 

6. Availability of data and materials 

All ML analyses were run under the mlr3 framework (an object-oriented machine learning 

framework in R) (126) using R-4.0.3 software (127). The datasets used for these analyses are 

available in the repository of (95). 

Results 

1. Comparison of the performance of LM and ML frameworks 

The predictive R2 values for the LM framework obtained, on average, for its 5 best-fitting 

models, were 77% and 70%, with %overlap of 54% and 39% for urban and rural settings, 

respectively (103). For the ML frameworks, the MedFoI approach yielded substantially better 

predictive R2 values (ranging between 90% and 98%), but the degree of overlap between the 

distributions of the FoI ‘observations’ and the predictions was substantially lower (19%–25%), 
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reflective of a tighter distribution around the central estimates and thus indicating over-

confidence in the predictions when using such a simple approach (i.e. an approach that 

ignores the uncertainty linked to the outcome). The FullPostFoI approach gave a more 

balanced performance indicator, with predictive R2 values ranging between 39% and 70%, 

and %overlap between 22% and 42% (Table 3.1). For both BRT and RF methods, the use of 

log-transformation to normalise the distribution of the FoI ‘observations’ consistently led to 

improved results (Table 3.1), with predictive R2 values ranging between 59% and 70%, and 

%overlap between 34% and 42%.  

Nested resampling, tested on the RF method with log-transformation, did not substantially 

improve model performance. Thus, the following subsections focus on the results obtained by 

fitting the frameworks on the full posterior distribution of the log-transformed FoI.  

Table 3. 1: Median cross-validation performance values for the two Machine Learning modelling methods 

investigated. 

  BRT   RF 

 All settings Urban Rural  All settings Urban Rural 

 non log non log non log  non log non log non log 

MedFoI              

  R2 (%) 98 95 95 96 94 90  98 96 90 98 93 93 

  Overlap 23 19 21 19 25 19  22 21 20 21 25 21 

FullPostFoI              

  R2 (%) 60 58 53 68 39 68  63 59 63 68 69 70 

  Overlap 25 36 24 34 22 36  40 42 42 42 40 42 

  Indicator 43 48 37 52 25 52  51 50 50 55 52 55 

MedFoI: models fitted on median FoI; FullPostFoI: models fitted on full posterior FoI, without (non) or with log-
transformation (log) of Force-of-infection (FoI) ‘observations’ (generated by fitting catalytic models to age-
stratified serological surveys for Chagas disease in Colombia, with yearly-varying FoI (103)). 

BRT: Boosted Regression Trees; RF: Random Forest methods; performance indicators are reported for either all 
settings (urban, rural, indigenous and mixed), urban, or rural settings separately. The predictive R2 values were 
calculated on cross-validation datasets and are expressed as percentage.  

Overlap: proportion (expressed as percentage) of ‘observed’ and predicted distributions that overlaps 
(reflective of the degree of dispersion around central tendency). For MedFoI models, the performance indicator 
is the value of R2 alone. Therefore % overlap is presented for comparison but was not used in fitting or selecting 
models. For FullPostFoI, the performance indicator is the arithmetic mean between R2 and % of overlap (see 
Figure 3.1). 

2. Comparison of the influence of predictor variables 

The factors selected for the ML models were consistent with those that had been selected for 

the LM framework (Table 3.2); a Spearman correlation test showed that there was substantial 

rank correlation of the predictors included among the three models investigated (with 
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Spearman rank correlation coefficient, rS, between LM and BRT = 0.50; between LM and RF = 

0.54, and between BRT and RF = 0.64, all p-values <0.05). 

The type of setting was the most important factor for both the LM and BRT. Latitude, year 

when the serosurvey was conducted, and population density also played an important role. 

Poverty, climatic and entomological features had a moderate role. 

For the ML frameworks, blood-bank and intervention-related features were less influential 

than for the LM framework. Generally, the year (temporal trend) seemed to play a greater role 

in the ML models. 

Table 3. 2: Standardized relative influence, importance and rank of the predictors included in Boosted Regression 

Trees (BRT) and Random Forest (RF) Machine Learning models and normalised number of times the predictors were 

used in the linear model (LM) framework and their rank when using the full posterior distribution of FoI estimates. 

Predictors BRT  RF  LM 

Code Name Influence Rank  Importance Rank  Used Rank 

 Serosurvey characteristics:       

S01 Year of the survey 0.20 2  0.17 1  0.05 4 

S02 Rural setting 0.03 11  0.03 11  0.14 2 

S03 Urban setting 0.03 10  0.04 7  0.15 1 

S04 Indigenous setting 0.20 1  0.12 4  0.15 1 

S05 Latitude 0.14 3  0.16 2  0.14 2 

S06 Longitude 0.04 8  0.09 5  0.02 7 

 Blood-bank data:        

B01 Seroprevalence 0.00 NU  0.03 14  0.04 5 

B02 Proportion of blood units 

screened 0.00 NU  0.03 10  0.01 8 

 Demography:        

D01 Population density 0.10 4  0.13 3  0.01 8 

D02 Poverty 0.07 6  0.01 15  0.04 5 

D03 

Rural Indigenous Population 

size 0.00 NU  0.03 9  0.00 NU 

 Climate:         

 Continuous        

C01 Polar climate frequency 0.03 12  0.00 18  0.04 5 

C02 Tropical climate frequency 0.03 9  0.04 8  0.01 8 

C03 Temperate climate frequency 0.04 7  0.00 17  0.00 NU 

C04 Arid climate frequency 0.00 NU  0.00 21  0.00 NU 

 Categorical        

C05 Tropical climate categorised NT      0.06 3 

C06 Polar Climate Presence 0.00 NU  0.00 NU  0.00 NU 

 Entomological data:        

 At departmental level       
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V01 R. prolixus geographical extent 0.00 NU  0.06 6  0.02 7 

V02 T. dimidiata geographical extent 0.00 NU  0.03 12  0.01 8 

V03 R. prolixus presence 0.00 NU  0.00 NU  0.00 NU 

V04 T. dimidiata presence  0.00 NU  0.00 NU  0.03 6 

 At municipality level        

V05 R. prolixus density 0.00 13  0.00 NU  0.01 8 

V06 T. dimidiata density 0.00 15  0.00 16  0.01 8 

V07 R. prolixus presence 0.00 NU  0.00 NU  0.00 NU 

V08 T. dimidiata presence 0.00 NU  0.00 20  0.00 NU 

 Interventions:        

 At municipality level       

I01 Intervention intensity 0.00 14  0.00 NU  0.00 NU 

I02 Intervention category NT   NT   0.01 8 

 At household level        

I03 Household intervention 0.00 NU  0.00 NU  0.00 NU 

I04 

Household intervention 

category NT   NT   0.01 8 

 Temporal factors:         

T01 Year 0.09 5  0.03 13  0.01 8 

T02 Decade 0.00 NU  0.00 NU  0.00 NU 

NU: Not used in the model; NT: not tested in the model. 

R. prolixus: Rhodnius prolixus; T. dimidiata: Triatoma dimidiata. 

The shade of green is associated to the rank of the predictors with darker green predictors having more 
importance. 

 

3. Comparison of spatial trends in predictions 

All methods showed generally similar spatial trends and comparable levels of uncertainty 

(Figure 3.3) for FoI prediction across Colombia (using the year 1990 for illustration as the 

pattern is consistent in time). Generally, FoI estimates were higher in northern and eastern 

municipalities and lower in the south of the country, with the latter being associated with 

higher uncertainty (Figure 3.3). The BRT framework predictions showed increased spatial 

heterogeneity, while predictions from the LM framework resulted in more spatially uniform 

predictions. 
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Figure 3. 3: Spatial distribution of the Force-of-Infection of Chagas Disease (per year and per susceptible individual), 

in Colombia. The predicted distribution was generated using two Machine Learning (Boosted Regression Trees (BRT) 

and Random Forest (RF)) methods and a Linear Model (LM) framework (main maps); the associated uncertainty 

(small map insets) presents the Median Absolute Deviation (MAD) Coefficient of Variation (MAD-CV). Predictions 

were obtained at the municipality level for urban and rural settings, in 1990.  

 

When comparing FoI predictions directly across the three methods, for urban and rural 

settings (Figure 3.4), we found good agreement between all of them, particularly between RF 

and LM. Generally, the BRT tended to predict higher FoI values in both settings. The patterns 

observed in the entire country seemed to follow what was observed in the catchment areas 

(municipalities where at least one serosurvey was conducted). 
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Figure 3. 4:  Comparison of predicted Chagas disease Force-of-Infection (FoI) values for urban or rural settings at 

municipality level, in Colombia for the year 1990. The values were obtained by two Machine Learning (Boosted 

Regression Trees (BRT) and Random Forest (RF)) methods and a Linear Model (LM) framework using log-transformed 

FoI estimates from the FullPostFoI approach (see Models’ workflow subsection in Methods and Figure 3.1 for a 

description of this approach). The upper panel presents the results for urban settings; the lower panel presents the 

results for rural settings. Purple-coloured dots denote municipalities where at least one serosurvey had been 

conducted (‘in catchment area’); teal-coloured dots denote municipalities where no serosurveys had been conducted 

or were not included in our analyses (‘outside catchment area’). The black solid diagonal line represents perfect 

agreement between the two frameworks being compared. 

 

4. Comparison of temporal trends in predictions across serosurveys 

When comparing ‘observations’ with predictions over time, all methods performed well 

regarding their ability to capture central trends (Figure 3.5). However, the LM framework was 
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better at capturing uncertainty, as the confidence bounds of the predictions mirrored more 

closely the credible intervals (CrI) of the ‘observations’. 

 

Figure 3. 5: Standardised comparisons of ‘observed’ and predicted distributions across serosurveys and by setting 

type. Comparisons were made for two Machine Learning (Boosted Regression Trees (BRT) and Random Forest (RF)) 

methods (upper and middle panels) and a Linear Model (LM) framework (lower panel) using log-transformed (log) 

Force-of-Infection (FoI) estimates from the FullPostFoI approach for urban and rural Chagas disease settings in 

Colombia across 9 decades. The solid lines and envelopes show standardised distances between FoI ‘observations’ 

and predictions, with purple-colour lines representing the median, and the pink and blue lines representing, 

respectively, the upper and lower bounds of the 95%CrI. If medians and 95% confidence bounds of the predictions 

matched exactly the corresponding measures for all the ‘observations’ across serosurveys, then the solid and dashed 

lines would fully overlap. 

 

The median uncertainty across municipalities (Table 3.3) was comparable using any of the 

methods and restricting the assessment to ‘in catchment area’ only (i.e., municipalities where 
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at least one serosurvey had been conducted) or not (‘out of catchment area’). However, for 

some municipalities, the uncertainty associated with the LM framework increased dramatically.  

Comparatively, the RF method produced more uniform uncertainty across predictions, with 

median and range similar to those yielded by the other (BRT and LM) methods, but with fewer 

municipalities with substantial uncertainty (defined as MAD-CV>2), and only a moderate 

number of municipalities with extreme uncertainty (defined as MAD-CV>5). 

Table 3. 3: Uncertainty across Chagas disease Force-of-Infection predictions for the three frameworks under 

comparison. The uncertainty was estimated using the Median Absolute Deviation Coefficient of Variation (MAD-CV) 

of the predictions for Colombia in 1990, in (urban and rural) areas where at least one serosurvey had been conducted 

(‘in catchment area’) and where no data were available or used in the analyses (‘out of catchment area’). The number 

of municipalities where MAD-CV is greater than 2 (substantial uncertainty) or greater than 5 (extreme uncertainty) 

is also included. 

  MAD CV values (range)   Number of 

municipalities 

MAD CV> 2 

 Number of 

municipalities 

MAD CV> 5   In catchment area  Out of catchment area   

 Urban Rural  Urban Rural  Urban Rural  Urban Rural 

BRT 
1.45  

(0.31-7.16) 

1.54 

 (0.39-5.40) 

1.48  

(0.31-7.41) 

1.48  

(0.17-6.32) 
338 335 

 
25 24 

RF 
1.47  

(0.48-5.28) 

1.45  

(0.40-5.29) 

1.48  

(0.47-5.24) 

1.49  

(0.44-5.22) 
145 198 

 
10 8 

LM 
1.60  

(0.70-2.73) 

1.29  

(0.44-2.76) 

1.48  

(0.32-8.19) 

1.50  

(0.24-11.00) 
284 266   6 11 

BRT: Boosted Regression Trees; RF: Random Forest; LM: Linear Model. 

5.  Residual spatial and temporal correlation 

While the ML-based methods did not show any significant spatial correlation in their residuals, 

this was not the case with the LM framework (Table 3.4). For all models, the DW test’s statistic 

(see Eq.4) showed a significant residual temporal correlation between residuals from the same 

serosurvey, with a stronger effect for serosurveys conducted in indigenous settings (Supp. 

Figure 5 in Appendix). 
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Table 3. 4: Spatial and temporal correlation test statistics and statistical significance of the spatial correlation test 

applied to the cross-validation residuals for the two Machine Learning (BRT, RF) and the Linear Model (LM) methods 

under consideration. 

 BRT  RF  LM† 

Spatial correlation test: 

Moran's I statistic 0.00  0.00  0.06* 

 

Temporal correlation test: 

DW statistic 0.06*  0.04*  0.00* 

BRT: Boosted Regression Trees; RF: Random Forest; LM: Linear Model. 

DW: Durbin-Watson statistic (see Eq. 1). 

†See methods for calculation of the LM residual correlation. 

*p-values significant et 5%. 

 

6. Computational aspects  

Computationally, RF and BRT required the least effort (31 and 42 hrs respectively, on standard 

laptop, with an i7-8565U processor and 16.0 GB RAM) (Table 3.5). By contrast, although 

implementation of LM required far fewer R-packages than the ML framework, it took over 

twice the time to run when compared to RF (72 hr). Also, the computer hard-drive space that 

was required to store ‘objects’ and model outputs was about 20 times higher for LM than for 

the ML framework. Finally, the overall implementation of the models was substantially simpler 

for the ML framework; particularly to make adjustments and updates.  

Table 3. 5: Comparison of computational aspects for the Machine Learning (Boosted Regression Trees (BRT), Random 

Forest (RF)) and Linear Model (LM) methods investigated. The methods under comparison used log-transformed FoI 

values from the FullPostFoI approach 

 BRT  RF  LM 

Number of R packages needed 20  20  6 

Time required for models to run (hr) 42.5  31.0  72.0 

Hard-drive space requirements (MB) 149  114  2,048 

BRT: Boosted Regression Trees; RF: Random Forest; LM: Linear Model. 

hr: hours; MB: Megabytes. 

Discussion 

Our comparative analyses indicated generally consistent results among the three modelling 

methods investigated to generate Chagas disease FoI predictions, namely, the linear model 
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(LM) framework we previously developed (103), and the two Machine Learning (ML) methods 

explored here (Boosted Regression Trees (BRT) and Random Forest (RF)). The predictors that 

were selected, as well as the location of the most uncertain FoI values were coherent and 

generally consistent among the three methods (Table 3.2, Figure 3.3, Figure 3.4). Not entirely 

surprising, RF was faster to run than BRT and LM (121) (Table 3.5).  

Based on the performance indicators used, RF performed best (Table 3.1) but did less well 

when considering the propagation of uncertainty in the FoI inherited from the catalytic model 

(Figure 3.5). Also, RF generated fewer municipality-level predicted values with substantial or 

extreme uncertainty (Table 3.3). All methods, when fitted on the median FoI alone (MedFoI 

approach), were unable to capture the uncertainty in the response variable (the FoI 

‘observations’ generated by fitting the catalytic model to the age-stratified serosurveys), 

leading to overconfident predictions (with high predictive R2 values but smaller % of overlap 

values). This highlights an important issue not fully addressed in the literature, as most 

publications using FoI data to infer spatiotemporal patterns of infectious disease incidence 

tend to use the central FoI estimates alone to fit predictive models (i.e., using what we labelled 

here as the MedFoI approach). We argue that neglecting to appreciate and propagate the 

uncertainty inherent in their estimation (61,66,80) may therefore lead to significant over-

confidence in predictions. This issue, already highlighted in our previous LM work (103), is not 

mitigated by implementing ML frameworks, and deserves careful consideration, not only from 

a methodological perspective, but importantly, when the results are applied in policy-relevant 

contexts (82). 

Indeed, quantifying and communicating uncertainty in FoI appropriately is critical when the 

results of predictive models are used to inform stakeholders and public health programme 

managers on the level of certitude associated with exposure risk or number of cases. Thus 

areas/populations for which exposure has been certainly high or low can be differentiated 

from those with exposure levels or number of cases that necessitate further investigation due 

to highly uncertain estimation. 

Even when the three methods showed good performance and generally good agreement at 

the serosurvey level (Figure 3.4), the residuals remained correlated in time (Table 3.4). Thus, 

the correlation inherited from the FoI calculation was not fully accounted for in any of our 
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methods, i.e., none of the predictors included was able to account for the full extent of this 

correlation.  

While the final ML models showed no evidence of residual spatial correlation (Table 3.4), the 

spatial extrapolation shown (Figure 3.3) should be interpreted with caution, as the (ground-

truth) serosurveys available had only been conducted in a relatively small number of 

municipalities and tended to be aggregated in the same area (Supp. Figure 2). When using 

RF, the degree of uncertainty inside and outside ‘catchment areas’ was consistent, suggesting 

reliable extrapolation. This contrasted with the LM framework, which predicted large 

uncertainty in some municipalities.  

Most of the earliest serosurveys (up to early 2000) seemed to have targeted high-risk 

populations (14), presumably because the perceived risk of Chagas disease transmission in 

those areas was higher and required improved situational awareness. However, using only 

such information to make predictions across Colombia would have led to higher predicted FoI 

in areas where no ground-truth data had been collected. By contrast, the most recent 

serosurveys (2010-2014) seem to have been conducted on more representative samples of 

the population, presumably motivated by providing a more realistic assessment of the 

epidemiological situation nationally and demonstrating progress in reducing vectorial 

transmission. We, therefore, included the year when the serosurvey took place to account for 

this bias and, in fact, this variable appeared to be one of the most influential in all three 

methods and particularly for BRT and RF (Table 3.2). This demonstrates the crucial importance 

of understanding the motivation behind the implementation of serosurveys in order to assess 

the sampling strategy and ultimately quantify potential biases that may interfere with the 

representativeness of FoI estimates. Indeed, in context where resources are limited, rational 

and cost-effective decisions have to be made to reach primary objectives of the survey even 

at the detriment of statistical representativeness of the sample of the population targeted. 

Finally, and regarding computational aspects, the LM framework required substantial user-

input to prepare the data for model fitting (including data transformation; choice of predictors 

included in each model; tests for spatial and temporal correlation, etc.). In contrast, ML 

frameworks were faster (particularly RF) and required less pre-processing of the data and 

hard-drive space (Table 3.5). These features render the ML models more flexible, more readily 
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updatable, and thus easier and simpler to be extended to other Chagas disease-endemic 

countries, and potentially to other infectious diseases, including neglected tropical diseases, 

for which serological surveys are regularly conducted as surveillance tools to assess 

epidemiological situation, incidence, and impact of control interventions across spatial and 

temporal scales (61,62,80).  

Concluding Remarks 

ML methods are increasingly used to derive computationally efficient algorithms for data 

analysis that are agnostic to the distributional properties of such data. They represent an 

attractive modelling tool for the generation of predictive maps of important infectious disease 

epidemiological metrics, such as the FoI. Most published literature on the subject use 

measures of FoI central tendency, neglecting to quantify, propagate and ultimately 

communicate the uncertainty appropriately. We show that the choice of modelling framework 

requires careful consideration according to the ultimate objectives of the modelling 

endeavour. If the aim is, for instance, to use the predicted FoI patterns to provide numbers of 

cases and estimates of the associated disease burden, ML framework (and particularly RF) 

would indeed be an optimal choice, as capturing the median (central tendency behaviour) 

may be sufficient and computationally efficient. However, if the objective is to identify areas 

where serological surveillance surveys are scarce and should be conducted to improve the 

reliability of FoI estimates and provide ground-truth data, we conclude that the LM framework, 

albeit more time-consuming and computationally intensive, would provide a better indication 

of where uncertainty is greatest. Although in this paper we focused on Chagas disease in 

Colombia as a case study, the modelling frameworks compared here can be applied to other 

Chagas disease-endemic countries and to infectious diseases (including neglected tropical 

diseases) for which age-stratified serological data are regularly collected. 
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Chapter 4: From Serological Surveys to 

Disease Burden: A Modelling Pipeline for 

Chagas Disease  

In preparation for submission to the 'Challenges in the fight against Neglected Tropical Diseases' 

issue of Philosophical Transactions B. 

Summary 

Background 

In 2012, the World Health Organization (WHO) set the elimination of Chagas disease 

intradomicilary vectorial transmission as a goal in its first neglected tropical diseases (NTDs) 

roadmap. After a decade, progress has been made, but the new 2021–2030 WHO roadmap 

on NTDs has set even more ambitious targets. The challenges raised require innovative and 

robust modelling methods to monitor progress towards these goals.  

Methods  

We have developed a modelling pipeline using local prevalence data to obtain national 

burden estimates at the municipality level while propagating uncertainty in ways that are 

consistent when aggregated across different locations to give a broader scale perspective. 

initially, local seroprevalence information is used to estimate the local trend in temporal 

exposure (quantified by the force-of-infection (FoI). Exposure estimates from such surveys are 

then used to predict spatiotemporal trends across larger geographical areas. Finally, large-

scale predicted exposure estimates (based on the fine spatial resolution), are used to estimate 

disease burden based on a disease progression model. 

Findings  

Using 76 serosurveys conducted in Colombia between 1990 and 2020, we estimated that the 

number of infected people would reach an estimated 506,000 (95% CrI: 395,000-648,000) in 

2020 with a 1.0% (95% CrI: 0.8%-1.3%) prevalence in the general population and 2,400 (95% 

CrI: 1,900-3,400) deaths (~0.5% of those infected). Temporally, the interplay between a slight 
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decrease in exposure was overcompensated by the large increase in population size and the 

gradual ageing of the population, leading to a substantial increase in the burden of Chagas 

disease over time. 

Interpretation 

The modelling pipeline has been initially built with Colombian data but can be used on other 

Chagas disease endemic countries or even on other long-lasting infectious diseases for which 

serosurveys are conducted. 

Research in context 

Evidence before this study 

Chagas disease, caused by infection with Trypanosoma cruzi, is a long-lasting disease. 

Therefore, current prevalence data do not truly reflect the epidemiological situation. For 

instance, high prevalence potentially reflects a high level of past transmission rather than 

current exposure. Using mathematical modelling, seroprevalence studies can be used to 

reconstruct temporal trends in the force-of-infection (FoI, the per-susceptible rate of parasite 

acquisition.)   

Therefore, age-stratified seroprevalence studies have the potential to provide a largely 

untapped resource to predict spatiotemporal trends in Chagas disease incidence, which can, 

in turn, be used to predict the burden of Chagas disease over time and space at a resolution 

much finer than that available from current national estimates.  

Added value of this study 

We present a modelling pipeline able to estimate the incidence and burden of disease. We 

collated information from 76 seroprevalence studies in Colombia, from published and 

unpublished sources between 1990 and 2020. Those studies were used to estimate local 

temporal trends in the FoI. Spatiotemporal predictive models were used to obtain FoI 

estimates over the last 7 decades at the municipality level across Colombia. Finally, those 

estimates were used in age-specific compartmental models linking infection to disease to 

estimate the burden of Chagas disease and its spatial and temporal heterogeneities.   
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Implications of all the available evidence 

Our study highlights the benefit of using currently available but largely under-utilised 

seroprevalence studies to inform the burden of Chagas disease. Our modelling pipeline relies 

on robust statistical modelling which propagates the various uncertainties at each step, 

providing a more realistic assessment of the past and current epidemiological situation.  

By providing age-specific and spatially resolved estimates of disease burden, we hope to assist 

public health professionals in the targeting of specific interventions (e.g. those targeting 

vectorial transmission vs. those targeting improvement in diagnosis and treatment).  

Introduction  

Chagas disease is a Neglected Tropical Disease (NTD) caused by the protozoan parasite, 

Trypanosoma cruzi.  Vectorial transmission (by reduviid, triatomine bugs) is the main (but not 

exclusive) transmission route. While Chagas disease is endemic in 21 Latin American countries, 

population migration has resulted in its globalisation. Infections can remain asymptomatic for 

many years, with 20-35%% of those infected eventually developing clinical manifestations and 

requiring medical interventions (4).  Such interventions (including treatment) aim at alleviating 

symptoms and/or reducing disease progression when possible. Disease control efforts have 

mainly focused on infection prevention (e.g., through vector control, education, and housing 

improvement) and on testing for prompt identification of asymptomatic cases (14). 

In 2012, the World Health Organization (WHO) set the elimination of intradomiciliated vectorial 

transmission in the Americas by 2020 as a goal in its first NTD roadmap (128). After a decade, 

progress has been made but the new 2021–2030 WHO roadmap on NTDs is even more 

ambitious, proposing that all routes of transmission be interrupted in nearly 40% of the 

endemic countries by 2030 (20). The application of innovative and robust statistical methods 

can help monitor the epidemiological situation and the progress to be made to meet this 

challenge. To this end, estimating the spatiotemporal variations in disease exposure is critical, 

but this is hampered by weak surveillance (14)  (e.g. in Colombia in 2021, 306 chronic and 172 

acute cases were reported, with only 170 and 14 of them being confirmed, respectively 

(129,130)). By contrast, estimations of the number of cases for the country from WHO, Global 
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Burden Model (GBM) and others ranged between 186,000 and 438,000 for the 2005-2010 

period (4,8,24,25). 

Cross-sectional, age-stratified serological surveys have been used to estimate past trends in 

exposure in the context of Chagas disease (21), dengue (66,72,76,80), malaria (70), 

schistosomiasis (69) and yellow fever (61). Provided enough surveys are available, predictive 

models can be used to estimate spatiotemporal trends in exposure for Chagas disease (103) 

and other infections (61,65,66,80). The crucial next step is that of linking such trends with 

models of disease progression so robust estimates of disease burden can be obtained to 

better target the necessary interventions (8). However, in some of the applications above 

mentioned, estimates of the FoI have been assumed to be constant over time (66,75,80) or 

only average FoI values have been used to fit predictive models (61,72,75,80), substantially 

neglecting the associated uncertainty. Therefore, appropriately propagating the uncertainty 

surrounding each step is essential for reliable estimation of disease burden.   

In this paper, we propose a modelling pipeline to produce robust municipal, departmental, 

and national estimates of the disease burden of Chagas disease, acknowledging the 

uncertainties associated with each step of the process, using Colombia as a case study. In 

Colombia, seroprevalence surveys have been conducted by governmental and non-

governmental organisations over time, providing a rich source of information to showcase our 

approach. We proceed to discuss its applications for estimating disease burden across the 

remaining Chagas disease endemic countries in the Americas, as well as for other infectious 

diseases for which seroprevalence surveys are conducted and models linking infection and 

disease can be formulated. 

Material and Methods 

1. The DICTUM platform 

With Pan-American Health Organisation (PAHO) support, the Decreasing the Impact of 

Chagas Disease Through Modelling (DICTUM) platform has been created to collate, 

standardise, and communicate data relevant to Chagas disease epidemiology, including 

information on serosurveys, vector surveillance and blood-banks screening. A key aim of the 

platform is to then exploit such a database to inform public health professionals on key 
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relevant aspects of its current epidemiology, e.g., to obtain estimates of the number of 

asymptomatic, chronic, and severe cases by age classes allowing targeting of diagnostics and 

treatments activities.  

The process of estimating the burden of Chagas disease using local serosurveys (Figure 4.1) 

involves three steps:  

1) Local seroprevalence information is used to estimate the local trend in temporal 

exposure (quantified by the Force-of-Infection (FoI). 

2) The estimates of exposure from various surveys are used to predict spatiotemporal 

trends across larger geographical areas. 

3) Large-scale predicted exposure estimates, at a fine spatial resolution, are used to 

predict the burden based on a disease progression model. 

Special attention is given to propagating all uncertainty between steps and at different spatial 

and temporal scales (Supp. Method 5).  
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Figure 4. 1: Modelling pipeline, from local serosurveys to National burden of diseases’ estimates. Using local 

prevalence data, the modelling pipeline use three consecutive models (FoI catalytic model, FoI predictive model and 
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compartmental burden of disease model) to obtain prevalence and burden of disease information across the country 

at the municipal level while propagating uncertainty from one model to another. The Catalytic model gets as input 

the prevalence by age class for each serosurvey and produced as output the FoI by year for each serosurvey. The 

Machine learning predictive model receives as input the FoI by year for each serosurvey and a set of environmental 

and demographic predictors, these are used to produce as output the FoI by year at the municipality level. The 

Compartmental burden of disease model then receives as input the FoI by year and the population size at the 

municipal level and produces as output the prevalence by year and by age class of different stages of the diseases 

(including the death) at the municipal level. 

 

2. Step 1: the FoI at the serosurvey level (catalytic model) 

We relied on 76 serological surveys (serosurveys) conducted in Colombia and organised at 

the municipality level (Supp. Figure 1). These age-specific seroprevalences were used to fit a 

Bayesian catalytic model and provide yearly estimates of the local FoI (i.e., in the catchment 

areas) from the birth of the oldest participants to the year the survey was conducted. For each 

serosurvey, the model estimates smoothed profile of the FoI relying on an autoregressive 

process, which allowed us to obtain yearly samples of the joint posterior distribution of the 

local FoI (see (21) and Supp. Method 1 for more detail).  

3. Step 2: Predictive model for the FoI at the municipal level  

Predictors included 

The second step aimed to predict the FoI in areas where no serosurveys have been conducted 

(i.e., outside of the catchment areas), to obtain yearly FoI predictions across the entire country, 

at the municipality level. 

Informed by previous studies (103,131) and in order to build a pipeline that could be applied 

in other countries, the predictors selected were available across Latin America and included 

characteristics of the serosurveys, as well as spatiotemporal environmental and demographic 

predictors. 

The setting where the serosurvey was conducted was included and defined as urban, rural, 

indigenous or mixed settings (composed of urban and rural settings). The urban/rural 

definition followed the government’s one (88).  None of the large urban centres with a 
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population of over 100,000 inhabitants in 1985 was included in the catchment area of the 

serosurveys, therefore the FoI predictions made relate to small to medium-size cities. 

The year when the serosurvey was conducted was included to correct for a selection bias in 

the early serosurveys, i.e. serosurveys organised before 2000 were more focused on high-risk 

populations (103), especially in rural settings. 

We allowed a temporal trend by including the ‘midpoint’  ‘years’ as a covariate but assume 

other predictors would account for spatial heterogeneities and therefore latitude and 

longitude were not included (111). 

In terms of environmental predictors, we focussed on climatic variables and indicators of the 

triatomine vectors. BioClim for Colombia were collated between 1979 and 2013 on a 1km2 

scale. Following the triatomine niche modelling literature (29–31,35,36,40,42,43,47,50,53,132), 

we focussed on relative day-night temperatures differences (Bio03), median minimum 

temperature (Bio06), and seasonality of precipitation (Bio15). We included additional 

predictors based on available literature that included median municipality elevation 

(27,42,43,47) and vegetation index (i.e. NDVI)(27,31,39,42,57). 

The year when a municipality has been certified free from infestation was used as a predictor 

of the model. Our analysis did not use further vector indicators 1) to keep the pipeline flexible 

in terms of country-specific information available, and 2) implicitly assuming that 

environmental variables included above would encapsulate such information. 

Finally, population sizes and proportions of the municipal population living in urban settings 

were also included along with an IPUMS indicator characterising the proportion of houses with 

unfinished floors (133), a proxy for poverty with relevance to Chagas disease (housing 

improvement being highly correlated with vector intra-domiciliary infestation (12)).  

A full description of the predictors is given in Supp. Table 8 and Supp. Method 4. 

Model definition 

We used the available collated data to predict the spatiotemporal trends in the FoI between 

1950 and 2020, at the municipality level across Colombia using a random forest regression 

model (126). Following previous work (131), a nested resampling has been applied for model 
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tuning with a spatial resampling strategy. Cross-validation (CV) was used to assess model 

performance and included half of the data, which were excluded from the fitting process. To 

propagate the uncertainty inherited from the calculation of the FoI, the fitting and 

performance evaluation was repeated with 100 bootstrap samples from the posterior 

distribution of the FoI. 

A composite performance indicator was used to assess performance and estimated as the 

mean of the coefficient of variation (R2)  calculated among the cross-validation (CV) set and 

the percentage of overlap between predicted and “observed” distributions of the FoI using 

the function “overlap” from package overlapping (123), as in (131). This performance indicator 

ensured that predictions reflected the central tendency, while also accounting for the 

uncertainty in the response variable. More detail on the modelling process is available in Supp. 

Method 5. 

As previously mentioned, serosurveys were not available for large cities, therefore our 

predictions of ‘urban’ exposure were representative of small to medium cities, and not of large 

cities. For the cities having a population size bigger than 100,000 in 1985 (based on DANE 

estimates (88)), the prevalence observed in blood banks was used to estimate a constant FoI. 

4. Step 3: from FoI to burden  

To estimate the spatiotemporal trends in the burden of Chagas disease in Colombia, we 

developed a model of disease progression, reflecting the life history of infections (Figure 4.2).  

The progression, or burden, model consists of an age-specific compartmental model that 

estimates the prevalence at each stage of the disease for each age class. This model use 

parameters that describe the disease progression and mortality (see Supp. Method 6).  

In the progression model, individuals may acquire the parasite at a rate specified by the 

municipality specific predicted FoI for a given year. Immediately after infection, while some 

may present no or mild symptoms, while a given proportion may develop acute symptoms, 

i.e., acute phase of Chagas disease, with symptoms including cardiomyopathy. Then cases 

who displayed mild or no symptoms will transition to the indeterminate phase, during which 

they will remain largely asymptomatic. Cases in the indeterminate and severe acute phase can 

then progress to the mild and thereafter severe chronic phases. 
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Individuals in the acute, chronic mild and chronic severe phases contribute most to the 

mortality associated with Chagas disease. Progression to mild and severe chronic phases (i.e. 

with mild or severe cardiomyopathy) may be linked to co-morbidity rather than T. cruzi 

infection itself. We, therefore, allowed all infected, and non-infected, to transition to those 

phases regardless of infection status. Digestive forms of Chagas disease (e.g. 

megaoesophagus or megacolon) were not included in this model as they are uncommon in 

Colombia (8). 

From this progression model, we tracked for each cohort the proportion of individuals in each 

stage, as well as the yearly proportion of the cohort deaths that were directly attributable to 

T. cruzi infection. Cohort size over time was informed by census data, while yearly mortality 

per cohort was informed by death line-listing.  

 

 

Figure 4. 2: Chagas disease burden model. Schematic representation of the compartmental model used to 

obtain the burden of disease. The model is taking into account comorbidity; indeed, patients can have 

heart diseases before getting infected by Chagas disease. For each compartment in the model, the 

prevalence by age class was calculated as long as the mortality caused or not caused by Chagas disease 

depending on if the progression was or not due to the disease. Details on the progression rates and 

compartments used are provided in Supp. Method 6. 

 

All the analyses have been realised on R studio (134). 
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5. Data Sharing 

The data will be made available on a repository upon publication. 

Results  

1. FoIs at the serosurvey level 

The seroprevalence data by age class were used to back-calculate the FoI using a catalytic 

model. Figure 4.3 presents a subset of the fitting process for the serosurvey with the largest 

and smallest sample sizes. The full 76 serosurveys are presented in Supp. Figure 6. 

 

Figure 4. 3: Catalytic model fit for the survey with, panel a: the largest sample size (n=1,680); and panel b: the 

smallest sample size (n=30). The upper panels represent the prevalence by age class observed as black dots and the 

inferred prevalence in pink. The lower panels represent the FoI along time in green. 

 

2. FoI Predicted yearly FoI at the municipal level  

The predictive model of the FoI showed good performances with a coefficient of variation (R2) 

on the cross-validation set of 64% in urban and 71% in rural areas. Model uncertainty was well 

propagated with predicted and observed FoI distributions showing a 59% overlap (Supp. Table 

9).  



84 

 

  

To accurately predict FoI’s, including “the year when the serosurvey was conducted” was, in 

term of importance (which represent how helpful the predictor has been to the models) 

reaching 99.2 (table 4.1). Accounting for settings was also key, especially distinguishing 

between indigenous vs. non-indigenous settings (importance of 87.7). Further accounting for 

differences between urban and rural settings had more marginal importance (around 11). All 

environmental (excluding NDVI) and demographic predictors substantially improve the fit, 

with importance ranging from 19.0 to 43.7. Both year and NDVI were associated with more 

limited improvement (approximately 10). 

Predicted FoI across Colombia showed similar patterns in urban and rural settings (Figure 4.4), 

with high spatial heterogeneity and a substantial decrease in exposure over time, especially in 

the Andean and northeast. The median of the municipal FoI ranged from 2.0x10-4 to 2.8x10-3 

in 1995 and 1.6x10-4 to 2.7x10-3 in 2020 in urban settings and from 2.1x10-4 to 2.8x10-3 in 1995 

to 1.6x10-4 and 1.8x10-4 to 2.8x10-3 in 2020 in rural settings. Uncertainty gradually decreased 

over time (with MAD-CV being greater than 2 for 9% and 8% of the municipality in 1995 and 

2020 across urban and rural settings) and was larger in the south (where fewer surveys were 

available). 
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Table 4. 1: Importance of the predictors used in the Random Forest model used to predict the FoI of Chagas 

disease in Colombia at the municipal level. 

Predictor Importance 

Serosurvey characteristics: 
 

Year when the serosurvey was conducted 99.2 

Setting type:  

Urban 11.1 

Rural 10.9 

Indigenous 87.7 

 
 

Temporal Coordinates:  

Year 11.7 

 
 

Environmental predictors:  

Year of certification for intradomiciliated vector elimination 34.7 

Isothermality (Bio3) 43.7 

Minimum temperature of the coldest month (Bio6) 26.8 

Seasonality of precipitation (Bio15) 36.4 

Normalized Difference Vegetation Index (NDVI) 9.9 

Elevation 29.3 

 
 

Demographic predictors:  

Population size 36.5 

Proportion of urban population 29 

Proportion of households with unfinished floor materials 19 
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Figure 4. 4:  Spatial distribution of the Force-of-Infection of Chagas Disease (per year and susceptible individual), in 

Colombia at the level of municipalities in 1995 and 2020. The predicted distribution was generated using a Random 

Forest model (main maps); the associated uncertainty (small map insets) presents the Median Absolute Deviation 

(MAD) Coefficient of Variation (MAD-CV).  
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3. Burden model over 1985-2020 

Chagas disease prevalence showed some spatial disparities with the northern part of the 

country generally being more impacted (Figure 4.5). The prevalence was higher in rural areas 

with median and Interquartile Range (IQR) prevalence across municipalities in 2020 of 1.26% 

[1.10%;1.45%] for urban and 1.36% [1.15%;1.57%] and rural settings. However, given the higher 

population size in urban settings (76% of the total population in 2020), 61% of predicted cases 

belonged to urban settings in 2020 (Supp. Figure 7 and Supp. Figure 8).  

While FoI showed an overall decreasing trend between 1995 and 2020, the prevalence was 

relatively stable with the national median prevalence and IQR across urban and rural settings 

being 1.0% (0.8%-1.2%) in 1995 and 1.0% (0.8%-1.3%) in 2020. A 6% decline in the prevalence 

in the acute stage was observed between 1995 And 2020, but this was compensated by a 13% 

increase in the predicted prevalence in the severe stage. 

 

Figure 4. 5: Spatial, temporal and age class distribution of the prevalence of Chagas disease in Colombia. a and b: 

Municipal prevalence in 2020 in urban and rural areas (main maps); the associated uncertainty (small map insets) 

represent the interquartile range divided by the median. c: Yearly national prevalence (median, solid line and 

interquartile, ribbon) from 1985 to 2020; each colour corresponds to a different disease stage. d:  National prevalence 

by age class (median, point and interquartile, error bar) in 2020; each colour corresponds to a different disease stage. 
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As the prevalence remain largely stable but the population increased by 39% between 1995 

and 2020 (Supp. Figure 9), the overall burden of Chagas disease was predicted to have 

significantly increased (Table 4.2).  We estimated the total number of cases across Colombia 

had increased by 43% between 1995 and 2020 reaching half a million cases. Between 1995 

and 2020, even larger increases of 57% and 79% applied to cases with severe cardiomyopathy 

and deaths attributable to Chagas disease respectively. These were driven by an increase in 

both population size and the gradual ageing of the population (Supp. Figure 9 and Supp. 

Figure 10).  

Large spatial heterogeneity and clustering in the burden were observed, with the three 

departments having the heaviest number of deaths attributable to Chagas disease in 1995 

Bogotá DC, Cundinamarca and Santander accounting for 31% of the deaths but only 25% of 

the total population. 
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Table 4. 2: Burden of Chagas disease in 1995 and 2020. 

Median (95%Credible Interval) 
   

 1995  2020 

Number of cases  
   

total 355,000 

(278,000-451,000) 
 

506,000 

(395,000-648,000) 

chronic mild 70,000 

(55,000-88,000)  

102,000 

(82,000-133,000) 

chronic severe 14,000 

(11,000-19,000) 
 

22,000 

(17,000-31,000) 
 

   
Prevalence % 

   
total 1.0 

(0.8-1.2) 
 

1.0  

(0.8-1.3) 

urban 0.7  

(0.6-0.9) 
 

0.8  

(0.6-1.1) 

rural 1.6 

 (1.1-2.1) 
 

1.6 

 (1.2-2.2) 

Children [0-5] 0.1  

(0.1-0.2) 
 

0.1  

(0.1-0.2) 

Older [>60} 1.8  

(1.4-2.3) 
 

1.5  

(1.2-2.0) 
 

   
Number of deaths 

   
total  1,400 

(1,100-1,900) 
 

2,400 

 (1,900-3,400) 

Bogotá..D.C. 160 

(64-443)  

238 

(93-700) 

Cundinamarca 142 

(101-200)  

240 

(164-341) 

Santander 129 

(87-173)  

210 

(142-248) 
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Discussion 

We have developed a modelling pipeline that uses local prevalence data to obtain national 

burden estimates at the municipality level. From the 76 serosurveys conducted in Colombia, 

we estimated that the number of infected people would reach an estimated 506,000 (95% CrI: 

395,000-648,000) in 2020 with a 1.0% (95% CrI: 0.8%-1.3%) prevalence in the general 

population and 2,400 (95% CrI: 1,900-3,400) deaths. Temporally, the interplay between a slight 

decrease in exposure was overcompensated by the large increase in population size and the 

gradual ageing of the population, both of which lead to a substantial increase in the burden 

of Chagas disease over time. The complex dynamics observed in the burden reflect the long 

progression of the disease. Large spatial heterogeneities in the burden indicated that spatial 

targeting of interventions could improve the cost-effectiveness of resource allocation. Our 

results could help such targeting, as we can predict locations where the impact of the 

reduction in vector transmission (exposure) would be optimal; and these locations may differ 

if the interventions considered relate to diagnosis and treatment. 

The performances of the FoI predictive models were good with cross-validation performances 

that would suggest limited overfitting (Supp. Table 9). However, the validation of the burden 

model with external data was more complex as sources are limited. Indeed, the surveillance 

system for Chagas disease cannot be used to validate our estimates as the reporting is 

extremely sparse, although, we observe that cases are detected in almost all departments of 

Colombia (Supp. Table 10). The four departments having reported confirmed chronic cases in 

2019 (Arauca, Santander, Cesar, and Boyacá) are representing only 14% of the severe cases in 

our results. These departments are endemic areas that most probably have infrastructures to 

make the diagnostic as well as staff and population more aware of the disease which is not 

the case in all of the country. In Colombia, in the general population, the prevalence of heart 

conditions has been estimated at around 11% (135). In 2019, a total of 41,848 deaths related to 

heart diseases have been reported across the country (88). If, as suggested by our models, 

2,400 of these deaths have been caused by Chagas disease, then Chagas disease would have 

accounted for 6% of the heart diseases related deaths in 2019, in Colombia, in line with 

Brazilian data, where Chagas disease was estimated between 1% and 21% of the in-patients 
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with heart failure (136). Also, our model estimates 88,226 deaths among people suffering from 

heart disease and 23,158 among people suffering from a severe heart condition. 

Our burden estimates compared well with estimates from the WHO (438 thousand cases 

estimated in 2010 and a 1.0% prevalence) (25) and Moncayo et al. (436 thousand cases 

estimated in 2005) (4). Disconcertingly, our estimated increase in the burden contrasted with 

a sharp decrease in burden predicted by WHO and Moncayo. Estimates from the GBD project 

(24) showed a similar temporal increase in burden in terms of deaths (143% increase between 

1995 and 2019, compared to our estimate, 71% for the deaths), but a much lower absolute 

burden with 170 (74-283) deaths predicted in Colombia (compared to 2,400 deaths for our 

central estimate). However, in term of prevalence and number of cases, the GBM predict a 

stable number of cases between 1995 and 2019 with 123,000 (106,000-144,000) cases and a 

decreasing prevalence from 0.34% (0.29%-0.39%) to 0.26% (0.22%-0.31%) between 1995 and 

2019, which is again far below our estimates. The estimates from the GBM as well as ours relied 

on demographic data and the demography in Colombia has shown a sharp increase during 

this period as well as changes in the shape of the age classes distribution with a population 

that is getting older (Supp. Figure 10). Indeed, the GBM at the global scale was estimating a 

3% decrease in Chagas disease-related deaths for the same period with a decrease in Brazil 

and Argentina, but not in the other endemic countries (24). The lower estimation from the 

GBM might be explained by the methodology used but also, our study is the first that 

comprehensively incorporated published and unpublished data.  

Our modelling pipeline is the first attempt to estimate the burden of Chagas disease in 

Colombia over a number of years at the municipal level. Serosurveys with a geographical 

extent that was higher than the municipality level were excluded from our analyses to be able 

to account for the small spatial heterogeneity in Chagas disease transmission and be able to 

provide estimates at the most operational level. Given the complex modelling tasks, major 

simplifications were made which could influence our results. First, while using information from 

serological surveys in indigenous populations to inform spatiotemporal trends in exposure, 

we did not include indigenous populations in our burden estimates. Since 1980, only 3 

serosurveys have been conducted in indigenous settings at the municipality level, and we felt 

this was wholly insufficient to map exposure in indigenous settings across the country. We 
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believe our overall estimates of burden would remain largely unaffected as only 0.6% of the 

population is estimated to live in indigenous settings, i.e., in traditional houses (88). However, 

improving our understanding of the spatial distribution of the burden in this setting would be 

critical as prevalences of up to 48.7% (95% CI 42.6% to 51.6%). have been measured in this 

setting in 2012 (21).  

We developed our pipeline to be flexible, robust, and transparent, with most variables used 

to predict FoI and estimate the burden being available across Latin America. However, our 

model currently doesn’t account for the influence of digestive morbidity and mortality. Indeed, 

digestive symptoms (mega-colon and mega-oesophagus) can be present in 6% of the cases 

(4)  but are only present in the Southern Cone of Latin America (2). Currently, our model only 

considers the vectorial transmission route; in contexts where the vectorial transmission has 

been interrupted, the model will need to integrate the other transmission routes, from mother 

to child during pregnancy, i.e., congenital, and by organ transplant or blood transfusion. While 

a significant reduction in the risk related to blood transfusion and organ transplant has been 

observed, it remains the main transmission route in non-endemic countries (18). Crucially in 

the case of congenital transmission, even if the diagnosis is made during the pregnancy, access 

to the treatment is often delayed after the delivery. Systematic screening of pregnant women 

has not been implemented yet and remains an important challenge in the fight against Chagas 

disease. Given the current low access to treatment, the model did not consider medical 

improvements that might help reduce mortality due to cardiomyopathy. Finally, there were 

important population movements in Colombia that are not accounted for in our model and 

thus people who tested positive in a municipality could have been infected in another place. 

This is probably explaining why our model showed FoI patterns that were quite similar in urban 

and rural areas while the vectorial transmission is expected to be stronger in rural areas.  

Getting additional prevalence data would help the validation of the modelling pipeline. 

However, sampling bias introduced by the sampling strategy chosen has to be considered, 

minimized or at least well documented. Indeed, we highlighted the importance of the year 

when the serosurvey was conducted as sampling tended to be directed toward at-risk 

populations for serosurveys before 2000. Also, sampling should be made in areas where the 

model suggests higher uncertainty so the model would be generally improved. If rural areas 
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are well represented, this is not the case for urban ones. Indeed, serosurveys conducted in 

areas defined as urban are not representative of densely populated cities. Organising 

serosurveys in large cities would help improve the estimates of the burden and are crucial as 

the population is migrating to cities; these large cities already represent 27% of the population 

(88) (Supp. Figure 9). At the moment, the modelling pipeline use prevalence information from 

blood banks for large cities, these cities account for 20% of the cases in 2020 while it was 

accounting for 17% of the cases in 1995. 

We are describing here this serial modelling process, using Colombia as a case study. 

However, the platform is hosting data from an increasing number of countries and the 

modelling process is ready to be implemented in other contexts. The inclusion criteria for new 

studies should only rely on the availability of the information necessary for the implementation 

of the model, and where possible include consideration of quality to ensure as much study as 

possible are included. Indeed, sampling strategies impact the results of the model in one 

direction or another depending on the population group or geographic area that is targeted. 

Thus, by pulling together surveys with different sampling designs, we might be able to cover 

a larger portion of the population and capture more variation. Currently, the pipeline includes 

the year when the serosurvey has been conducted to account for the sampling bias observed 

in Colombia which reflects the reason why the surveys have been conducted at different 

moments in time. However, in other countries, the use of some quality criteria could be 

relevant and used to associate a weight to each serosurvey depending on objective criteria 

defined to assess the level of quality associated with the survey. This could help reducing the 

impact of serosurveys’ bias on the overall models.  
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Chapter 5: Discussion 

Summary of findings  

This project aimed to develop global geostatistical models of the risk of Chagas disease 

transmission using the Force-of-Infection as an input along with a set of environmental and 

socioeconomic predictors in order to estimate the burden at a small scale over an entire 

country using Colombia as a case study. Age-stratified prevalence data obtained from 

serological surveys are often used to estimate the historical trends in the Force-of-Infection 

(FoI) for a given location (21). This metric help understand spatiotemporal trends in disease 

incidence and exposure (61–80). However, when the FoI is used to fit another model, the 

uncertainty surrounding this metric is often neglected, i.e. central estimates are used to fit 

predictive models instead of the full distribution of values (61,80). The first objective was then 

to develop and evaluate a methodology that accounted for the uncertainty in the FoI inherited 

from the catalytic model estimation. Methodologies, based on bootstrapping and model 

ensemble, were proposed to integrate the uncertainty, with new performance indicators 

developed to assess how well the uncertainty was propagated from one prediction to the 

other.  

Relying on the general framework developed, two modelling strategies were compared, the 

first based on linear models and model averaging, and the other based on Machine Learning 

algorithms. The two strategies confirmed that using central tendencies (mean or median) of 

the FoI, i.e., neglecting the uncertainty, leads to overconfident predictions.  

Among all the predictive modelling approaches tested, the drivers of transmission were 

consistent. Environmental factors related to the presence of vectors, as well as socio-economic 

data and information on vector control interventions, demonstrated their usefulness to 

characterise Chagas disease exposure. Furthermore, serosurvey features, such as the setting 

(urban, rural, indigenous) and the year when the serosurvey was conducted were consistently 

found to be the most influential factors independently of the modelling method used. A much 

higher prevalence and FoI were observed in people living in the indigenous setting. Also, the 

year when the serosurvey was conducted was included to control for a sampling bias, i.e., 
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older serosurvey focusing on high-risk populations. This highlights the paramount importance 

of the quality of the data (e.g., representativeness) above the complexity of the model.  

We also demonstrated that the two modelling approaches, Machine Learning and Linear 

models, can be used in conjunction depending on the objectives of the analyses. The Linear 

Model framework performed better to identify areas where the uncertainty was high and such 

a framework would therefore be recommended to guide the implementation of new 

serosurveys. On the other hand, the Machine Learning framework showed the best 

performance to obtain good central estimates and a general picture of the current 

epidemiological situation. 

Based on the results obtained, a new Machine Learning model using the Random Forest 

method and a set of predictors available across Latin America was developed to estimate the 

burden of Chagas disease. A standardised modelling pipeline was then proposed to estimate 

the burden of Chagas disease from the prevalence data obtained locally. First, local 

seroprevalence information is used to estimate the local trend in temporal exposure 

(quantified by the FoI). Then, the estimates of exposure from various surveys are used to 

predict spatiotemporal trends across larger geographical areas. Finally, large-scale predicted 

exposure estimates, at a fine spatial resolution, are used to predict the burden based on a 

disease progression model. While the modelling pipeline was initially built and implemented 

for and with Colombian data, its flexible nature means that it could easily be applied to other 

Chagas disease endemic countries or even for other long-lasting diseases where serosurveys 

are conducted.  

Relying on predicted current and past exposure, 506,000 (95%Crl:395,000-648,000) people 

were estimated to be infected by T. cruzi in Colombia in 2020, representing a 1.0% 

(95%Crl:0.8%-1.3%) prevalence in the general population and leading to an estimated 2,400 

(95%Crl:1,900-3,400) deaths this year. Temporally we observed a substantial increase in the 

burden of Chagas disease over time, suggesting a complex interplay between a slight 

decrease in exposure being overcompensated by the large increase in population size and 

the gradual ageing of the population. 
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Future work and limitations 

1. Extension of the modelling pipeline to Chile and Paraguay 

Within the Decreasing the Impact of Chagas Disease Through Modelling (DICTUM) platform 

and in collaboration with PAHO and the governments, published and unpublished data have 

been gathered for Chile (245 serosurveys extracted) and Paraguay (433 serosurveys 

extracted). The local FoIs have already been estimated (manuscripts in preparation) and, as 

the predictors used in the modelling of the FoI at the municipality level in Colombia are also 

available in these countries, the Machine Learning model is ready to be applied in these two 

new contexts. Future efforts will therefore concentrate on applying the models to these two 

countries and comparing models’ performance and relevance in new contexts. Being able to 

rely on the results from three different countries will then help us showcase the usefulness of 

our approach in Colombia, Chile and Paraguay, but also in other countries that might be 

interested to join the effort. 

However, in applying our framework to other countries in Latin America, the disease 

progression model associated with the burden estimates may require some adjustments. 

Currently, it does not account for the symptoms, morbidity and mortality associated with 

digestive aetiology as they are rare in Colombia. However, these symptoms have been 

observed in Chile and can represent up to 21% of chronic patients, so they will need to be 

considered (2). A preliminary literature search revealed that the morbidity associated with 

these symptoms is different from the cardiac ones and the mortality is mainly related to an 

increased risk of cancer (2). In addition, cardiac and digestive symptoms co-occurrence have 

been observed in 5% to 20% of the patients with cardiac involvement (2). Gathering robust 

estimates of progression and excess mortality associated with digestive symptoms will be 

challenging, the literature seems extremely scarce and mainly based on migrant populations 

in non-endemic countries, which may suffer from a selection bias (137–140). 

On the other hand, including in the framework countries with a much lower level of vectorial 

transmission, e.g., Chile, would increase the relative importance of correctly characterising 

vertical transmission, i.e., transmission from mother to child during pregnancy. Indeed, 

congenital transmission can occur in endemic and non-endemic countries. Even if most of the 

infected newborns are asymptomatic, symptoms such as respiratory distress syndrome, 
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myocarditis, meningoencephalitis can happen and the neonatal death rate can be as high as 

2% (2). Obtaining estimates of disease progression in this context is challenging as research 

efforts have been focused on the other transmission routes. However, new studies have 

emerged in the last few years raising awareness of this upcoming issue so more data might 

be available in the future (141–143). 

Finally, including an increasing number of surveys from different countries may necessitate 

reviewing inclusion criteria. Indeed, political and practical choices made when designing 

serosurveys can generate sampling bias and increase the risk of having serosurvey of various 

levels of quality (e.g. representativness). A conservative approach should be preferred to be 

able to exploit all of the information available. However, a weight system could be 

implemented based on a list of objective quality criteria, giving more weight to the serosurveys 

of the highest quality, ie with rigorous sampling strategies and diagnostic workflow. 

2. Validation of the models 

Our analyses concluded that serosurveys conducted before the ’00s were more focused on 

high-risk populations. Ideally, to validate our results, new data from representative serosurveys 

(i.e., that have been conducted without sampling bias) would be used to assess the robustness 

of our work. Having representative serosurveys conducted in the general population without 

assumptions on the expected prevalence would help us better understand the impact of 

sampling biases in previous serosurveys. The sampling biases observed in our data are linked 

to the focus on populations that were known to be more exposed to Chagas disease risk, i.e., 

the presence of vectors in houses, in the early stages of the control program's implementation. 

Consequently, it caused a temporal and spatial issue when all the serosurveys were 

aggregated. Even if we have addressed and quantified the temporal issue by adding a specific 

predictor in the model, one potential remaining problem is that this variable is likely to be 

“absorbing” a part of the true temporal trend. Indeed, in the FoI estimates calculated by 

Cucunubá et al., a sharp decrease in FoI over years was observed while this is not the case in 

our models (21).  

Regarding the limited geographical extent of the catchment area, this issue might create 

overfitting in the predictive model and complicate the extrapolation of the model to areas 

where there is no information. This is why special attention was given to the predictors' ranges 
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within and outside the catchment areas and a spatial resampling strategy was applied. Indeed, 

predictors ranges in the catchment areas cover well overall trends in Colombia except for the 

population sizes. High population density areas observed in the large cities are not 

represented in the catchment areas. Therefore, the FoI in these large cities has been treated 

slightly differently in the burden model. 

Another avenue for model validation could involve being more inclusive in the use of 

serosurveys, and in particular making use of those that only provide geographical information 

at the departmental level, rather than the municipal level. Currently, those were excluded from 

the analyses. As some may be representative enough to reflect the prevalence across entirely 

new departments (i.e., a department for which we currently have no single municipal level 

survey), they could prove very useful for cross-validation.  Finding a way to include information 

available at the departmental level would help improve geographic representativeness. This 

might involve contacting the serosurvey’s project manager to obtain more details about their 

catchment area and thus retrospectively collect more information about the surveys. This 

approach could prove to be much cheaper than organising new serosurveys. 

3. Development of Models built at a very fine scale 

Another interesting improvement would be to produce models at a smaller scale. The main 

benefit of using a 1-10 km2 spatial scale instead of the municipal one would be to dissociate 

urban and rural areas within the municipalities. The definition of urban and rural often 

represents a technical issue as the administrative definition is not matching the operational 

and ecological ones. In Colombia, there is one urban area for each municipality, meaning that 

some areas defined as ‘urban’ would have been defined as a village in an ecological context. 

A modelling approach based on a fine spatial grid could resolve this issue. The setting type of 

the square, i.e., based on ground truth delimitation, could be used to attribute the “observed” 

FoI within the square, i.e., attributing the FoI “observed” in urban parts of the municipality to 

squares defined as urban. Then, predictors, at the square level as well, could help discriminate 

between urban and rural squares based on environmental and demographic criteria and give 

a better understanding of the factors that impact the transmission independently of the setting 

type.  
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Working at a smaller scale could also help understand whether the somehow counter-intuitive 

consistency observed in the estimated exposure between urban and rural areas is caused by 

this definition issue.  Indeed, the vectors have not settled in urban areas in Colombia (37,86). 

Another potential explanation for the lack of observed differences in exposure between urban 

and rural settings could lie in migration or the increasing level of urbanization and the long-

lasting nature of Chagas disease. Areas defined as urban nowadays might have been defined 

as rural 10 or 20 years ago, thus, some infections currently recorded in an urban setting might 

have occurred in a rural setting many years ago. Similarly, infections recorded in an urban 

setting might have occurred in a rural setting many years ago due to mass migration from 

rural to urban settings. 

Exploring such hypotheses would be insightful but is hindered by the availability and quality 

of the data needed for the models, or rather lack of thereof. The predictors used in the FoI 

predictive models can be found at small spatial scales (1-25 km2), however, the demographic 

data are raising several challenges. First, the quality of the censuses is not consistent in time 

with older censuses having less robust methodologies. In addition, population data estimated 

from these censuses are not accounting for these inconsistencies and are not providing 

estimates with uncertainty either.  Regarding the number of deaths, a line-listing was used in 

the burden model (88). However, the data were not available for the entire period of interest 

(1985-2020), being available only from 1993. Also, the reliability of these data might need to 

be questioned. Comparing these data to the population’s estimates could help understand if 

there is a large underreporting and if it is localized in certain areas or not. 

4. Consideration for the effect of the treatment in the model 

Within the modelling pipeline, some enhancements can be realised. In particular, while the FoI 

predictive models were accounting for the vector control interventions, the FoI predictive and 

burden models did not consider the impact of treatment and medical care on the 

epidemiology and burden of disease. The treatment is an important aspect of the Chagas 

disease fight and its cost was estimated to reach, in Colombia, between $46 and $8,000 per 

patient depending on the stage and the severity of the disease (144). The recovery of the 

patients from Chagas disease has also been neglected. Nevertheless, treatments have been 

distributed to persons diagnosed with Chagas disease. The treatments distributed in the 90s 
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might be partly responsible for the reduction of the FoI observed in serosurveys conducted in 

the same areas but at a more recent time. However, no data can help validate this assumption 

as there are no records of the number of persons successfully treated. As treatment becomes 

hopefully much more accessible in the future, adding this aspect to the model will become 

critical. 

Also, incorporating the treatment to the burden model could help understand the impact of 

this intervention on the epidemiology of the disease and be able to assess at which stage of 

the disease we should aim to treat infections to keep the best cost-effective ratio. Indeed some 

cost-effectiveness studies found that treating 5% of the cases yearly would significantly reduce 

the health and economic burden of the disease (145).  However, this is, at the moment, not 

the most important factor in disease burden reduction as access to treatment is still 

complicated and about 20% of chronic patients will never seek care (3,144). In addition, the 

drugs available are causing several side effects that lead to low medical adherence (2). From 

a technical point of view, there are very little data available to assess how many treatments 

have been distributed and where. Also, medical improvements to manage patients with acute 

and severe Chagas disease symptoms have been implemented (12) but, again, the data are 

scarce, leading to challenges in quantifying their impact. 

5. Consideration for the specificity of large cities in the models 

Understanding Chagas disease epidemiology in cities or highly urbanized areas remains a 

challenge that will need to be addressed, especially as the population in Latin America is 

becoming increasingly urban (98).  

At the moment, our models use the prevalence observed in blood banks to estimate the FoI 

in large cities, i.e., cities with a population size above 100,000 in 1985. However, data from 

blood banks may not be representative of the entire population. They are typically biased 

toward healthy individuals, a selection bias called the healthy donor effect (146). In Colombia, 

the blood should have been screened for Chagas disease since 1995 and a questionnaire is 

filled out by the applicant-donors to reduce the risk of collecting blood from people infected 

by T. cruzi (147). Given such pre-selection of donors, the prevalence observed in blood banks 

could be underestimating the true prevalence in the general population. 
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While using blood banks prevalence is a strong assumption, no other data were available in 

large cities. Across Latin America, studies on Chagas disease in urban areas are scarce and 

unbiased prevalence studies in highly urbanized areas are even scarcer. A recent study in Rio 

de Janeiro (Brazil) has demonstrated the insight that studies in highly urbanised areas can 

provide (148). They observed that a large portion of the infections was carried by people over 

65 years old and even more interesting, that the geographical origins of the infected persons 

are different depending on their age indicating that interventions have been successful (148). 

This type of study, which explicitly account for migration patterns, can give insight into the 

past exposure patterns across the country. Given this long-lasting nature, a representative 

survey conducted in 2022 could inform about the level of exposure in the ‘80s, i.e., relying on 

prevalence among those 40 and over. Therefore, unlike fast progressing diseases, we still have 

an opportunity to quantify the relatively long-term exposure pattern for Chagas disease. 

However, estimations of historical FoI trends need to be adjusted on the life expectancy of the 

targeted population back in time to account for the survival bias. Indeed, people infected with 

Chagas disease have a lower chance to reach elder age as they could have died from the 

disease. Also, the disease is mostly affecting vulnerable and poor populations that have a 

lower life expectancy. On a more technical side, there is a possibility that diagnostic tests are 

waning as time from the infection is going by. Identification of people that had been infected 

a long time ago might be more challenging but more research in this area is required to assess 

the probabilities associated. 

Finally, in some context, vectorial transmission has been observed in urban settings (148–152) 

which represent a new threat that will need to be monitored. In contexts where no vectorial 

transmission has been observed in cities, the FoI predicted will need to reflect migration, 

urbanization, mother-to-child transmission and blood-borne transmission. Integrating these 

aspects into the modelling pipeline would represent a substantial improvement but this is, 

again, hindered by the availability and quality of the data that would be required. 

6. Development of burden model for the indigenous setting 

In Colombia, only a few studies have been conducted in indigenous settings (21). Thus, 

extrapolation of the exposure and estimation of the burden of disease was not possible in this 

setting. In addition, the characteristics of their exposure may differ substantially from the rural 
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and urban populations, possibly requiring different predictors. However in Colombia, 

prevalence as high as 48.7% (95% CI: 42.6% to 51.6%) have been recorded in indigenous 

populations in 2012 (21), likely linked to increased exposure to vectors due to their traditional 

housing and proximity with wildlife habitat. Including these populations in the modelling 

pipeline, would therefore be critical. However, again, more serosurveys would need to be 

organised in these settings to unveil the real burden of disease in areas. 

Implications of research  

Obtaining reliable burden estimates, at the relevant operational scale is crucial for disease 

control programs. This can improve the visibility of the progress made as well as identify the 

locations where more efforts are needed, and thus guide targeted and cost-effective 

interventions. When traditional surveillance systems suffer from severe underreporting, new 

approaches have to be developed to inform such interventions. This might involve surveillance 

based on symptoms (153), hospital admissions (154,155), sewage water analyses (156), animal 

surveillance (157,158) or even using serological surveys, i.e. serosurveillance (159).   

We proposed a modelling pipeline that uses seroprevalence data to obtain burden estimates 

while also providing information on the locations where more serosurveys should be 

conducted. The level of analysis, the municipal level, is the most operational level for control 

programs (86). Also, we identified areas with an estimated high burden of disease that were 

not previously identified as being endemic. Such municipalities may lack experience with 

Chagas disease (e.g., prevention, diagnostic and treatment) and are probably not as well 

prepared as the ones known to be endemic to detect cases and implement the relevant 

interventions. Indeed, while positive blood samples in blood banks have been reported from 

every department and notifications are coming from all departments in the country, the 

surveillance bulletins suggested that most of the confirmed cases are reported from 

departments known to be at risk, e.g., 70% of the confirmed cases are reported from 

Santander, Casanare, Boyacá and Arauca (Supp. Table 10)(129,130). This seems to suggest that 

locations that were traditionally less impacted might not be confirming cases because of a lack 

of infrastructure. They might also be more likely to misdiagnose a case as the medical staff is 

not considering the disease. Our analyses suggest that dedicated investigations might be 

required in these areas to confirm the epidemiological situation. 
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Finally, the modelling pipeline presented here could be applied to other diseases that suffer 

from a weak surveillance system and require innovative methods to disentangle the underlying 

epidemiological situations and estimate their burden. Serosurveillance is routinely used for 

malaria and Hepatitis B, C and D (159). Also, cross-sectional and outbreak-based serosurveys 

are conducted for diseases such as Chagas disease but also Nipah (160), Japanese Encephalitis 

and Dengue fever (161). These types of surveys can inform on the prevalence of asymptomatic 

disease in the population as well as the exposure level for multiple diseases all at once (159). 

Challenges  

Chagas disease is a Neglected Tropical Disease (NTD), and as for other NTDs, many 

epidemiological challenges but also technical and political ones are hampering the fight 

against the disease. 

From an epidemiological point of view, the diversity in triatomine species as well as their ability 

to colonise different habitats, being domiciliated, peri-domiciliated or even sylvatic means that 

the entomological surveillance cannot be relaxed. Indeed, triatomines are able to colonise 

urban areas (17,148–150,152,162) and, on the other hand, deforestation is creating new 

opportunities for sylvatic species to evolve into new ecological niches in peri-domiciliated 

areas (13,38,56,163). This phenomenon would not be critical if humans were the only host for 

T. cruzi. Eliminating the parasite in the human population would be achievable. Unfortunately, 

T. cruzi has a large animal reservoir in the wildlife as well as in domesticated animals (164–

167). Such multi-host dynamics make T. cruzi eradication out of reach. It also means that 

substantial efforts need to be maintained over time to handle the burden of disease in humans 

and avoid upsurges, and those might need to be re-evaluated and adapted to face upcoming 

changes in the dynamics and behaviour of vectors. 

From a technical point of view, triatomine resistance to insecticide might represent an 

increasing problem (2). Also, entomological surveillance has low sensitivity, with staff requiring 

training and experience to increase the chance of finding a bug in a house (4,163). New 

research is required to assess the most effective vector control strategy, in particular, 

improving house insecticide spaying strategies (168), test new approaches (169) and work 

within a framework that brings together all of the vector control programs to increase 
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efficiency and save resources (170). On another note, the drugs available to treat T. cruzi 

infection are not very effective when the patients have reached the mild and severe forms of 

the disease (2). This implies that the care of the patients suffering from these forms of disease 

is becoming a growing issue. Again, research is necessary to find new treatment strategies. 

From a political point of view, the main challenges are related to resource allocation, 

organization of care and lobbying to obtain better treatment options. First of all, Chagas 

disease is not and will not become a priority in the upcoming years, therefore, resources 

allocated will remain limited. However, there are other areas where substantial improvement 

could be achieved. In particular, the access to the diagnostic and treatment could be 

simplified. Currently, in Colombia, the proportion of the population at-risk that has been tested 

for Chagas disease is about 1.2% (3). Also, only 0.3%-0.4% of the infected persons have 

received an antiparasitic drug (3). Advances would require governments’ buy-in to better 

organise and communicate the availability of medical services for Chagas disease patients but 

also, with support from PAHO and WHO to stimulate the pharmaceutical industry to develop 

new treatments with fewer side effects. Also, as progress has been made and certificates 

distributed to attest to the elimination of intradomiciliated transmission, fewer serosurveys are 

organised. If the cost-benefit of these surveys become minor as the prevalence is reducing, 

new strategies will need to be found to continue the surveillances. 

COVID-19 will also probably represent another important challenge for Chagas disease 

patients, researchers and stakeholders.  First, new research is necessary to understand how 

COVID-19 affect people with Chagas disease. Indeed, people suffering from the severe form 

of the disease could be more at risk of the severe outcome due to COVID-19 but also, as 

Chagas disease is a multisystemic disorder, COVID-19 might have a strong impact on infected 

people at any stage of the disease (171). Some studies have looked at the risk of hospitalization 

for patients coinfected by SARS-CoV2 and T. cruzi and observed a worsening of the symptoms 

for patients with severe Chagas disease but the analyses still lack robustness (171–174). In 

addition, and perhaps more critically, the pandemic has and continues to disrupt health 

services and probably reduced the chances of diagnosis and the speed at which treatment 

can be delivered as several consultations are necessary. 
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Conclusions 

The elimination of Chagas disease transmission has been set as a goal by the World Health 

Organization within its first neglected tropical disease roadmap in 2012 (128). Considerable 

efforts have been implemented in Colombia and other Latin American countries and their 

impacts are visible with a reduction in Chagas disease prevalence in some areas and 

elimination of the vector of main concern (4), but long-term efforts are required and highlight 

the need to improve the sustainability and cost-effectiveness of control programs. On the 

other hand, the long-term nature of the disease can be harnessed. Serosurveys that will be 

conducted over the next years will still be able to characterise the exposure pattern of the last 

6-7 decades. If they are conducted based on the needs of research, i.e., with an emphasis on 

representativeness and collecting information on the individual potential exposure and 

migration pattern, we may still be able to effectively characterise and monitor the progress 

that has been made in the last decades, and which interventions would be key to reduce 

further the burden of Chagas disease. Random large-scale sampling strategies might seem 

unpractical where resources are limited. However, creative and adaptative design can help 

approximate those strategies. Indeed, the two main points in the representativeness required 

in the context of Chagas disease are the age range of the participants that need to be varied 

and the geographical extent of the survey that needs to be maximised, ie a larger number of 

municipalities covered. An new approach could be to sample persons (patients or not) in 

emergency unit in major hospitals. Asking for current residence and migration history would 

help covering a larger number of municipalities and all ages could be included. Again, a 

sampling bias would be created, ie only person able to go to hospital could be included, but 

increasing the diversity of study design would help capturate more information. 
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Supplementary Tables 

Supp. Table 1 :Variables tested as factors in the geospatial analyses of Chagas disease in Colombia 

Name Description Spatial scale Data Source 

Serosurvey 
characteristics: 

   

Year of the survey Year when the serosurvey was conducted ‒ (21) 

Setting Setting of the serosurvey: urban, rural, 
indigenous or mixed 

‒ (21) 

Latitude latitude of the centroid of the catchment 
area of the serosurvey 

‒ (21) 

Longitude longitude of the catchment area of the 
serosurvey 

‒ (21) 

Blood banks data: 
   

Seroprevalence Number of blood units positive for 
Trypanosoma cruzi divided by the number 
of blood units tested. Data aggregated for 
1993–2010 by department  

Department PAHO 

Proportion of blood 
units screened 

Number of blood units tested for T. cruzi 
divided by the number of blood units 
received. Data aggregated for 1993–2010 
by department 

Department PAHO 

Demography: 
   

Population density Estimates of the annual population size at 
municipality level from the government 
divided by the surface of the municipality 
in km2 extracted from GDAM shapefiles 

Municipality (88) 

Poverty Proportion of households with deficit from 

1993 census for 1950‒1999 and from 

2005 census for 2000‒2014 

Municipality (88) 

Rural Indigenous 
Population size 

Population size of the indigenous 
communities living in rural areas from 
2005 census 

Department (88) 

Climate: 
   

Continuous 
   

Polar climate 
frequency 

Number of pixels defined as polar climate 
divided by the total number of pixels in 
the municipality 

Municipality (89) 

Tropical climate 
frequency 

Number of pixels defined as tropical 
climate divided by the total number of 
pixels in the municipality 

Municipality (89) 
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Temperate climate 
frequency 

Number of pixels defined as temperate 
climate divided by the total number of 
pixels in the municipality 

Municipality (89) 

Arid climate frequency Number of pixels defined as arid climate 
divided by the total number of pixels in 
the municipality 

Municipality (89) 

Categorical 
   

Tropical climate 
categorized 

Tropical climate frequency categorized as 

follows: low (<10%), medium (10%‒

60%), large (60%‒90%) and extra‒large 
(>90%)  

Municipality (89) 

Entomological data: 
   

At Departmental level 
   

R. prolixus 
geographical extent 

Number of municipalities where 
Rhodnius prolixus is present divided by 
the number of municipalities in the 
department. Combined data from National 
report of 2013 and more recent data from 
Parra-Henao et al. 

Department (37,46,86) 

T. dimidiata 
geographical extent 

Number of municipalities where 
Triatoma dimidiata is present divided by 
the number of municipalities in the 
department. Combined data from National 
report of 2013 and more recent data from 
Parra-Henao et al. 

Department (37,46,86) 

R. prolixus presence Presence of R. prolixus in the department 
(yes/no). Combined data from National 
report of 2013 and more recent data from 
Parra-Henao et al. 

Department (37,46,86) 

T. dimidiata presence  Presence of T. dimidiata in the department 
(yes/no). Combined data from National 
report of 2013 and more recent data from 
Parra-Henao et al. 

Department (37,46,86) 

At Municipality level 
   

R. prolixus density Number of R. prolixus specimens found 
divided by the number of households in 
the municipality. Data extracted from the 
National report of 2013 

Municipality (86) 

T. dimidiata density Number of T. dimidiata specimens found 
divided by the number of households in 
the municipality. Data extracted from the 
National report of 2013 

Municipality (86) 

R. prolixus presence Presence of R. prolixus in the municipality 
(yes/no). Combined data from National 
report of 2013 and more recent data from 
Parra-Henao et al. 

Municipality (37,46,86) 
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T. dimidiata presence Presence of T. dimidiata in the 
municipality (yes/no). Combined data 
from National report of 2013 and more 
recent data from Parra-Henao et al. 

Municipality (37,46,86) 

Interventions: 
   

At Municipality level 
   

Intervention intensity Number of municipalities where 
interventions were organized divided by 
the number of municipalities in the 
department for the following time periods: 

before 1996, 1996‒2000, 2001‒2010 and 

2011‒2014. 

Department (87) 

Intervention category Municipality-level intervention intensity 
categorized as follows: no intervention 

(0%), low (0%‒25%), medium (25%‒

50%), high (50%‒75%), very high 
(>75%) 

Department (87) 

At Household level 
   

Household intervention Number of households having received 
interventions divided by the total number 
of households in the department for the 
following time periods: before 1996, 

1996‒2000, 2001‒2010 and 2011‒2014 

Department (87) 

Household intervention 
category 

Household-level intervention intensity 
categorized as follows: no intervention 

(0%), medium (0%‒10%), high (>10%) 

Department (87) 

Time: 
   

Year Year of the FoI value ‒ ‒ 

Decade Decade of the FoI value defined as 

follows: 1[1900‒1909], 2[1910‒1919], 

3[1920‒1929], 4[1930‒1939], 5[1940‒

1949], 6[1950‒1959], 7[1960‒1969], 

8[1970‒1979], 9[1980‒1989], 10[1990‒

1999], 11[2000‒2009], 12[2010‒2014] 

‒ ‒ 

  



127 

 

  

Supp. Table 2: Final performances of the 5 best models for each of the three settings investigated for the 3 different 

approaches 

  Approach 1   Approach 2   Approach 3 

 Urban Rural Ind.  Urban Rural Ind.  Urban Rural Ind. 

1st models            

 Indicator 0.827 0.781 0.672  0.638 0.541 0.637  0.670 0.5475 0.526 

Predictive R² 0.827 0.781 0.672  0.718 0.768 0.672  0.776 0.708 0.505 

Overlap - - -  0.558 0.314 0.601  0.563 0.387 0.546 

2nd models            

 Indicator 0.821 0.781 0.649  0.631 0.536 0.619  0.667 0.5430 0.524 

Predictive R² 0.821 0.781 0.649  0.827 0.685 0.642  0.777 0.599 0.500 

Overlap - - -  0.435 0.387 0.595  0.556 0.487 0.548 

3rd models            

 Indicator 0.821 0.778 0.642  0.630 0.535 0.606  0.654 0.5425 0.464 

Predictive R² 0.821 0.778 0.642  0.821 0.771 0.617  0.771 0.721 0.402 

Overlap - - -  0.439 0.298 0.595  0.537 0.364 0.526 

4th models            

 Indicator 0.819 0.776 0.623  0.626 0.534 0.599  0.652 0.5425 0.460 

Predictive R² 0.819 0.776 0.623  0.802 0.771 0.615  0.741 0.718 0.404 

Overlap - - -  0.449 0.297 0.582  0.562 0.367 0.515 

5th models            

 Indicator 0.818 0.771 0.617  0.625 0.533 0.597  0.628 0.5415 0.456 

Predictive R² 0.818 0.771 0.617  0.719 0.776 0.649  0.781 0.728 0.402 

Overlap - - -  0.531 0.289 0.545  0.474 0.355 0.510 

Ind. = Indigenous. 

Supp. Table 3: Number of municipalities where the MAD Coefficient of Variation of the predictions of the model 

averaging is above 2 for each of the 3 approaches and for predictions in 1980 and 2010. 

  Approach 1   Approach 2   Approach 3 

 1980 2010  1980 2010  1980 2010 

 n % n %  n % n %  n % n % 

Urban 163 15.31 243 2282  359 33.71 354 33.24  286 26.85 299 28.08 

Rural 285 26.76 284 26.67  271 25.45 275 25.82  266 24.98 265 24.88 

Indigenous 341 3202 334 31.36  337 31.64 348 32.68  239 22.44 236 22.16 

               
Total 789 24.69 861 26.95   967 30.27 977 30.58   791 27.76 800 25.04 

 

Supp. Table 4: Median values of the MAD Coefficient of Variation (MAD-CV) of the predictions of the model averaging 

in areas where serosurveys have been conducted (in catchment area) and where no data were available (out of 

catchment area) and number of municipalities where the MAD-CV is greater than 5 

 Median MAD-CV values (range)  Number of municipalities with MAD-CV> 5  

  in catchment area out catchment area  urban rural all 
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A1 1.29 (0.43-4.06) 1.49 (0.23-11.98)  2 14 39 

A2 1.28 (0.44-4.56) 1.49 (0.16-12.12)  9 13 81 

A3 1.33 (0.44-2.76) 1.49 (0.24-11.00)  6 11 17 

 

Supp. Table 5: Predicted FoI averaged across all Colombian municipalities and among municipalities where 

serosurveys have been conducted and used in the analyses in 1980, 1990 and 2010, the percentage of decrease 

between 1980 and 2010 (trend) 

 All Municipalities  Municipalities in catchment area 

 1980 1990 2010 trend  1980 1990 2010 trend 

 mean  

(sd) 

mean 

 (sd) 

mean  

(sd) 

%  mean (sd) mean  

(sd) 

mean (sd) % 

Urban 2.2 x 10-3  

(1.1 x 10-3) 

2.1 x 10-3  

(1.1 x 10-3) 

1.7 x 10-3  

(9.9 x 10-4) 

-23*  2.2 x 10-3  

(9.6 x 10-4) 

2.1 x 10-3  

(9.1 x 10-4) 

1.6 x 10-3  

(8.7 x 10-4) 

-25* 

Rural 1.7 x 10-3 

(1.0 x 10-3) 

1.7 x 10-3  

(1.0 x 10-3) 

1.7 x 10-3  

(1.0 x 10-3) 

-0.07  1.7 x 10-3  

(6.3 x 10-4) 

1.7 x 10-3  

(6.3 x 10-4) 

1.7 x 10-3  

(6.3 x 10-4) 

-0.10 

Indigenous 2.0 x 10-2  

(4.5 x 10-3) 

2.0 x 10-2 

(4.5 x 10-3) 

1.8 x 10-2 

(4.4 x 10-3) 

-7*  2.3 x 10-2 

(2.9 x 10-3) 

2.3 x 10-2 

(2.9 x 10-3) 

2.1 x 10-2 

(3.0 x 10-3) 

-9* 

*Statistically significant at a 5% significance level according to Student’s t test comparing FoI values between 1980 

and 2010  

NB. The average FoI estimates are significantly higher before 2010 than after 2010 in all settings 

(Supp. Table 6) meaning that the year when the serosurvey was organised impacted all the 

settings with the greater impact in the rural settings.  

Supp. Table 6: Comparison of the observed FoI of Chagas Disease for serosurveys organised before and after 2005 

in urban, rural, indigenous and mixed settings, Colombia, 1998-2014. 

  2010 

 Before   After   t-test 

 n min med mean max  n min med mean max  p_value 

Urban 

36
8 

0.000
5 

0.002
9 

0.003
1 

0.008
9 

 
42

1 
0.000

3 
0.001

2 
0.001

7 
0.005

5 

 
<< 

0.001 

Rural 

43
3 

0.000
5 

0.003
5 

0.005
3 

0.016
6 

 
56

6 
0.000

2 
0.000

8 
0.001

3 
0.006

4 

 
<< 

0.001 

Indigeno
us 

23
0 

0.019
6 

0.027
9 

0.034
2 

0.077
2 

 18 0.019
6 

0.020
1 

0 
0203 

0.021
5 

 << 

0.001 

Mixed 99 
0.001

9 
0.006

1 
0.005

1 
0.007

5   
21

8 
0.000

1 
0.000

6 
0.002

5 
0.008

1   

<< 

0.001 
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Supp. Table 7: predictors used in Random Forest predictive model of the Force-of-Infection of Chagas disease at the 

municipal level in Colombia. 

Name Description time span time unit space unit Source 

Serosurvey 

characteristics: 
     

Year when the 

serosurvey was 

conducted 

    (21) 

Setting type urban/rural/indigenous of mixed    (21) 

      

Spatiotemporal 

Coordinates: 
     

Year year of concern    (21) 

      

Environmental 

predictors: 
     

Year of certification 

Year when the municipalities have 

been certified free from 

intradomiciliated vector. Municipalities 

without elimination year have been set 

to 1900 

2009-

2019 

total 

period 
Municipal (175) 

Isothermality Bio3  1979-2013 
total 

period 
1km (176) 

Minimum temperature 

of the coldest month 

Bio6 

 1979-2013 
total 

period 
1km (176) 

Seasonality of 

precipitation Bio15 
 1979-2013 

total 

period 
1km (176) 

NDVI 

Vegetation indicator. Years before 

1981 received values of 1981 and year 

after 2013 received values of 2013 

1981-2015 year municipal (177) 

Elevation STRM DEM   1km  (178)  

      

Demographic 

predictors: 
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Population size 
Estimated total population by 

municipality 

1985-

2020 
year municipality (88) 

Proportion of urban 

population 

Proportion of the municipal 

population defined as urban 

1985-

2020 
year municipality (88) 

Unfinished floor 

Median percentage of households in 

the geographic unit that have a 

dirt/unfinished floor 

1973, 

1985, 1993 

and 2005 

year municipality (133) 

 

 

The Random Forest predictive model showed good performance within each bootstrapping 

loop with R2 calculated on the training and validation set being around 0.92. When looking 

at all of the bootstrapped models and the entire posterior distribution of the response variable 

(FoI), the performance still is good with a general R2 of 0.627 while the one calculated only 

on the cross-validation sets is 0.625. 

Supp. Table 8: Performances of the Random Forest models 

 
urban 

 
rural 

 
cross validation R2 0.64 

 
0.71 

 
proportion of overlap 0.59 

 
0.59 

 
performance indicator 0.61 

 
0.65 

 

 

Supp. Table 9: Comparison of the number of cases at the departmental level obtain through the modelling pipeline 

or the surveillance system in 2019 

 

 

Median estimates from model pipeline 

Confirmed cases from 

the surveillance system 

Department Total  Acute  Asymptomitic Chronic mild  Chronic severe  Acute  Chronic  

Antioquia 54,488 2,399 38,210 11,433 2,381 4 0 

Atlántico 15,381 753 10,862 3,135 675 4 0 

Bogotá, D.C. 27,503 1,255 19,639 6,240 1,353 0 0 

Bolívar 20,812 962 14,508 4,222 895 0 0 

Boyacá 18,579 752 13,208 3,852 847 0 21 

Caldas 9,786 397 6,804 2,087 453 0 0 

Caquetá 4,861 229 3,431 993 194 0 0 
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Cauca 22,707 973 15,865 4,746 973 0 0 

Cesar 11,699 563 8,265 2,406 510 3 22 

Córdoba 21,548 949 15,222 4,487 964 0 0 

Cundinamarca 39,343 1,705 27,543 8,097 1,831 0 0 

Chocó 4,659 227 3,223 939 198 2 0 

Huila 11,989 530 8,396 2,446 512 0 0 

La Guajira 19,354 1,068 13,586 3,908 809 0 0 

Magdalena 15,337 719 10,747 3,117 674 0 0 

Meta 13,862 621 9,898 2,793 529 1 0 

Nariño 20,377 862 14,378 4,231 964 0 0 

Norte de Santander 25,326 1,156 17,880 5,054 1,027 0 0 

Quindio 3,456 143 2,431 740 150 0 0 

Risaralda 6,293 268 4,356 1,328 293 0 0 

Santander 27,245 1,177 18,935 5,840 1,267 0 33 

Sucre 10,244 449 7,232 2,110 461 16 0 

Tolima 14,827 587 10,448 3,081 652 0 0 

Valle del Cauca 25,545 1,112 17,619 5,307 1,077 0 0 

Arauca 3,707 170 2,593 737 156 0 91 

Casanare 6,152 281 4,348 1,259 272 28 0 

Putumayo 3,664 165 2,589 757 166 0 0 

Archipiélago de San 

Andrés 864 37 601 185 35 0 0 

Amazonas 584 31 414 113 22 0 0 

Guainía 319 18 231 59 11 0 0 

Guaviare 1,005 46 717 191 37 0 0 

Vaupés 327 20 237 59 11 0 0 

Vichada 1,598 91 1,122 310 65 0 0 
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Supplementary Figures 

In Colombia, 109 serosurveys were conducted after 1980 and they only provide information 

on the catchment area, either at Municipality or Departmental levels. The presence of 

domiciliated vectors, which transmit most of the infection, can vary greatly from one area to 

another. Even at the village level, vector infestation strongly depends on the materials used to 

build houses, as well as on knowledge of the risk and vector control activities. Therefore, in 

these analyses, we only used the serosurveys with information on the location at municipality 

level. Being able to use all the data available as well as using a smaller geographical scale 

would provide a more coherent model. This is not possible within the linear framework but 

some more advanced methods, such as machine learning, could handle this issue. 

From the 76 serosurveys used in the analyses, 27 were conducted in urban settings, 36 in rural 

settings, 5 in indigenous settings and 8 were mixed (including urban, rural, and unknown 

settings). 
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Supp. Figure 1: Locations and sample sizes of Chagas disease serosurveys conducted in Colombia with information 

on the location at the departmental level, from 1998 to 2014. The grey boundaries delimitate the Departments. 
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Supp. Figure 2: Locations and sample sizes of Chagas disease serosurveys conducted in Colombia with information 

on the location at the municipality level, from 1998 to 2014. The grey boundaries delimitate the Departments. 
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Supp. Figure 3: Goodness of fit of the model averaging of the 3 modelling approaches for each setting (urban, rural 

and indigenous). The lines and envelopes are the distance between observations and predictions’ median (blue), and 

95%CI (upper bound in red and lower bound in purple); Approach 1: models fitted with median FoI estimates and 

selected based on Predictive R2; Approach 2: models fitted with median FoI estimates and selected based on Predictive 

R2 and overlap; Approach 3: models fitted with the full posterior distribution of FoI estimates and selected based on 

the Predictive R2 and overlap.  
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Supp. Figure 4 :Averaged observed FoI values by year for serosurveys conducted before 2010 in blue (n=39) and after 

or in 2010 in pink (n=40) for a) urban, b) rural and c) indigenous settings. 

 

 

Supp. Figure 5: Comparison of residual serial correlation for Boosted Regression Trees (BRT), Random Forest (RF) 

and Linear Model (LM) models built on the log scale based on the FullPostFoI approach. Each line corresponds to 

one serosurvey. 
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Supp. Figure 6: Observed and predicted prevalence using the catalytic model. The figure numbering corresponds to 

the code in the table A. 
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Table A: Characteristics of the serosurveys included in the analyses 

Code Year  Setting type Department Municipality Sample 

size 

Diagnos

tic test 

Survey ID 

1 2013 rural Guainía Puerto Inírida 363 ELISA . COL-035-82 

2 2014 indigenous Magdalena Santa Marta (Dist. Esp.) 287 ELISA . COL-035-92 

3 2007 indigenous Magdalena Santa Marta (Dist. Esp.) 418 ELISA . COL-035-96 

4 2000 indigenous Magdalena Santa Marta (Dist. Esp.) 493 ELISA IFI COL-035-97 

5 2010 mixed Antioquia Turbo 66 ELISA . COL-035-81 

6 2013 urban Santander Coromoro 146 ELISA . COL-035-54 

7 2013 rural Santander Coromoro 354 ELISA . COL-035-53 

8 2014 mixed Santander Curití 1152 ELISA . COL-035-55 

9 2014 mixed Santander Encino 454 ELISA . COL-035-56 

10 2014 rural Santander Gámbita 573 ELISA . COL-035-57 

11 2014 urban Santander Gámbita 162 ELISA . COL-035-58 

12 2013 rural Santander Guadalupe 390 ELISA . COL-035-60 

13 2013 mixed Santander Guadalupe 291 ELISA . COL-035-59 

14 2013 urban Santander Guadalupe 80 ELISA . COL-035-61 

15 2014 urban Santander Guapotá 103 ELISA . COL-035-63 

16 2014 rural Santander Guapotá 351 ELISA . COL-035-62 

17 2013 urban Santander Mogotes 330 ELISA . COL-035-65 

18 2014 urban Santander Mogotes 775 ELISA . COL-035-67 

19 2013 rural Santander Mogotes 523 ELISA . COL-035-64 

20 2014 rural Santander Mogotes 428 ELISA . COL-035-66 

21 2013 rural Santander Oiba 263 ELISA . COL-035-69 

22 2013 mixed Santander Oiba 30 ELISA . COL-035-68 

23 2013 urban Santander Oiba 457 ELISA . COL-035-70 

24 2014 mixed Santander Onzaga 40 ELISA . COL-035-71 

25 2014 urban Santander San Joaquín 173 ELISA . COL-035-73 

26 2014 rural Santander San Joaquín 305 ELISA . COL-035-72 

27 2013 rural Santander Suaita 1014 ELISA . COL-035-74 

28 2013 urban Santander Suaita 419 ELISA . COL-035-90 

29 2014 rural Santander Suaita 61 ELISA . COL-035-75 

30 2008 urban Boyacá Tipacoque 81 ELISA . COL-035-37 

31 2008 mixed Boyacá Tipacoque 377 ELISA . COL-035-35 

32 2008 rural Boyacá Tipacoque 467 ELISA . COL-035-36 

33 2007 urban Boyacá Chinavita 277 ELISA . COL-035-15 

34 2007 rural Boyacá Chinavita 274 ELISA . COL-035-14 
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35 2007 urban Boyacá Chitaraque 92 ELISA . COL-035-17 

36 2007 rural Boyacá Chitaraque 803 ELISA . COL-035-16 

37 2008 urban Boyacá Covarachia 392 ELISA . COL-035-30 

38 2008 rural Boyacá Covarachia 323 ELISA . COL-035-29 

39 2009 rural Boyacá Cubara 79 ELISA . COL-035-39 

40 2009 indigenous Boyacá Cubara 85 ELISA . COL-035-38 

41 2007 indigenous Boyacá Cubara 212 ELISA . COL-035-18 

42 2007 urban Boyacá Cubara 285 ELISA . COL-035-20 

43 2007 rural Boyacá Cubara 689 ELISA . COL-035-19 

44 1998 urban Boyacá Guateque 356 ELISA . COL-001-02 

45 1998 rural Boyacá Guateque 333 ELISA . COL-001-01 

46 2009 urban Boyacá Miraflores 1035 ELISA . COL-035-41 

47 2009 rural Boyacá Miraflores 853 ELISA . COL-035-40 

48 2007 urban Boyacá Moniquira 205 ELISA . COL-035-22 

49 2007 rural Boyacá Moniquira 590 ELISA . COL-035-21 

50 2011 urban Boyacá Moniquira 311 ELISA . COL-035-50 

51 2010 urban Boyacá Moniquira 134 ELISA . COL-035-46 

52 2011 rural Boyacá Moniquira 760 ELISA . COL-035-49 

53 2010 rural Boyacá Moniquira 561 ELISA . COL-035-45 

54 2007 rural Boyacá Paya 124 ELISA . COL-035-23 

55 2010 mixed Boyacá Boavita 154 ELISA . COL-035-44 

56 2007 rural Boyacá Pisba 140 ELISA . COL-035-24 

57 2007 urban Boyacá San Eduardo 84 ELISA . COL-035-26 

58 2009 urban Boyacá San Eduardo 87 ELISA . COL-035-43 

59 2007 rural Boyacá San Eduardo 166 ELISA . COL-035-25 

60 2009 rural Boyacá San Eduardo 200 ELISA . COL-035-42 

61 2008 rural Boyacá San jose de Pare 484 ELISA . COL-035-31 

62 2008 urban Boyacá San jose de Pare 364 ELISA . COL-035-32 

63 2007 urban Boyacá Santa maria 50 ELISA . COL-035-28 

64 2007 rural Boyacá Santa maria 508 ELISA . COL-035-27 

65 2010 urban Boyacá Soata 741 ELISA . COL-035-48 

66 2008 urban Boyacá Soata 1680 ELISA . COL-035-34 

67 2011 urban Boyacá Soata 311 ELISA . COL-035-52 

68 2008 rural Boyacá Soata 121 ELISA . COL-035-33 

69 2010 rural Boyacá Soata 76 ELISA . COL-035-47 

70 2011 rural Boyacá Soata 158 ELISA . COL-035-51 

71 2013 rural Casanare Aguazul 926 ELISA IFI COL-035-79 
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72 2011 rural Casanare Támara 1597 ELISA IFI COL-035-77 

73 2011 rural Casanare Yopal 1400 ELISA IFI COL-035-78 

74 2009 urban Casanare Nunchía 528 ELISA IFI COL-005-02 

75 2009 rural Casanare Nunchía 1338 ELISA IFI COL-005-01 

76 2013 rural Casanare Nunchía 1215 ELISA IFI COL-035-80 

 

 

 

Supp. Figure 7: Spatial, temporal and age class distribution of the number of Chagas disease cases (per year and per 

individual), in Colombia. a and b: Municipal number of cases in 2020 in urban and rural areas (main maps); the 

associated uncertainty (small map insets) present the median divided by the interquartile. c: Yearly national number 

of cases (median, solid line and interquartile, ribbon) from 1985 to 2020; each color corresponds to a different disease 

stage. d:  National number of cases by age class (median, point and interquartile, error bar) in 2020; each color 

corresponds to a different disease stage. 
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Supp. Figure 8: Spatial distribution of the number of Chagas disease chronic cases (per year and per individual), in 

Colombia. Municipal number of cases in 2020 for chronic mild and chronic severe cases (main maps); the associated 

uncertainty (small map insets) presents the median divided by the interquartile.  
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Supp. Figure 9: Population size by year between 1985 and 2020 at the national level in Colombia. Urban population 

in blue, large cities population in red (i.e., cities with above 100,000 inhabitants in 1985) and total population in black 

Population increased by about 39% between 1990 and 2020. 

In 2020, urban population represented 76% of the total population while the population in 

the large cities (i.e., cities with above 100,000 inhabitants in 1985) represented 27% of the total 

population. 

 

Legend: 

--- Total population 

--- Urban population 

--- Large cities population 
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Supp. Figure 10:  Population size by age classes in 1990 and 2020 at the national level in Colombia. 
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Supplementary method 

Supp. Method 1: Models used to estimate the Force-of-Infection: Extracted from Z. M. Cucunubá, “Modelling the 

epidemiology and healthcare burden of Chagas disease in Colombia,” Imperial College of London. (2017) 

 

There are 1122 municipalities in Colombia, but the study area only covered 34 of them. 

 

  

Figure a: Spatial distribution of Chagas disease serosurveys conducted in Colombia at ADM2 level, 

1980‒2014. Left panel, municipalities where at least one serosurvey has been conducted in green and 

municipality where no survey has been conducted in orange; right panel, locations, setting type and 

sample sizes of the serosurveys. 

 

Models used to estimate the Force-of-Infection: Extracted from Z. M. Cucunubá, “Modelling 

the epidemiology and healthcare burden of Chagas disease in Colombia,” Imperial College of 

London. (2017) 

“Descriptive prevalence results are reported as percentages and accompanied by 95% 

binomial (exact) confidence intervals (95% CI). For the force-of-infection models, we consider 

that if the rate of infection acquisition―here the rate of seroconversion―is constant over 

time, infection (sero)prevalence will increase monotonically with age as cumulative exposure 

increases. Formally, 𝑃𝑎 =  1 −  𝑒𝑥𝑝(−𝑎) , with Pa the age-specific seroprevalence and  the 
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force-of-infection (the per susceptible incidence or FoI) as originally described by Muench, 

1959 [9, 10]. More generally, the FoI may fluctuate over time t, modifying the seroprevalence 

age profiles. For a survey completed at time  , 𝑃𝑎, =  1 −  𝑒𝑥𝑝 (− ∫ 𝑡𝑑𝑡
𝑡=

𝑡=−𝑎
). Therefore, a 

serosurvey completed at time  , and including ages from {amin , amax} , is informative on 

exposure (and FoI) between  -  amax   and  . Other modelling assumptions included: a) no 

age-dependency in transmission [76], b) no seroreversion [76], and c) no specific migration 

due to Chagas infection status [11, 12].” 

Based on the above, we used the posterior distribution of the FoI fitted with time-varying FoI 

(𝑖) following:” 

𝑃𝑎, =  1 −  𝑒𝑥𝑝 (− ∑ 𝑖

𝑖=

𝑖=−𝑎=1

)    

 

Models were fitted on a Bayesian framework using Stan’s No-U-Turn Sampler (179) with four 

Markov chains and 20,000 iterations on each and with 50% of these iterations discarded as 

“warm-up”.  

 

Prior for constant FOI model 

The prior for the FOI estimate in the constant model is based on a uniform distribution   

𝐹𝑂𝐼 ~ 𝑢𝑛𝑖𝑓𝑜𝑟𝑚(0,2) 

 

Prior for time-varying FOI model 

The prior for FOI estimate in the time-varying follows a 𝑛𝑜𝑟𝑚𝑎𝑙 distribution informed by the 

FOI value from the previous decade: 

 

𝐹𝑂𝐼 ~ 𝑛𝑜𝑟𝑚𝑎𝑙 (𝐹𝑂𝐼𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑦𝑒𝑎𝑟 , 𝜎) 

𝜎 ~ 𝑐𝑎𝑢𝑐ℎ𝑦 (0, 1) 

𝐹𝑂𝐼𝑓𝑖𝑟𝑠𝑡 𝑦𝑒𝑎𝑟  ~ 𝑛𝑜𝑟𝑚𝑎𝑙 (0, 1) 

 

And, the probability of a positive case at age  𝒂  follows a binomial distribution 

 

~𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑁𝑎 ,  𝑃𝑎) 
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Where 𝑁 is the total sample, and P the observed prevalence at age 𝒂 

 

Convergence and Posterior Predictive Checks 

Convergence was assessed by the use of Rˆ statistic, which measures the “within chain” 

variability (W) and compares to the “between chains” variability (B): 

Rˆ  =
√W +  

1
𝑛

 (B −  W ) W

𝑊
 

 

This method assumes that the chains have been simulated in parallel, each with different 

starting points, which are over dispersed with respect to the target distribution.  

If this metric is large, this suggests that either estimate of the variance can be further decreased 

by more simulations (180).  It is expected that in convergence, B → W =⇒ Rˆ → 1. 

 A value of Rˆ < 1.1 was considered enough to achieve convergence. We show the 

convergence plots for the two instances where a time-varying FI model fit the data the best. 

We also did posterior predictive checks and examined the residuals 

 

 
Supp. Method 2: Machine Learning tuning 

i. Resampling strategies  

Spatial only, temporal only and spatiotemporal resampling strategies were tested and 

compared to a standard random resampling strategy. Also, the resampling strategy that was 

developed for the linear framework (which consisted of selecting one value (i.e. year) for each 

serosurvey at each iteration) was tested (Table a). Values of between 5 and 50 folds (number 

of subsets the data are divided into) were tested and eventually set at 10 as no substantial 

changes were observed on the performance indicators. 

Table a: Resampling strategies tested 

Model Name Parameters used Task type Resampling method 

Random default parameters default Random 10 folds 

Temporal default parameters temporal  LTO: Leave Time Out 10 folds (122) 

Spatial default parameters spatial LLO: Leave Location Out 10 folds (122) 
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Spatiotemporal 
default parameters Spatiotemporal LTLO: Leave Time and Location Out 10 

folds (122) 

Custom default parameters default Custom stratified bootstrapping that only 

selects one FoI value for each of the 

serosurveys. Account for the temporal 

correlation inherited from a catalytic model 

used to obtain FoI estimates 

 

The Boosted Regression Tree (BRT) and Random Forest (RF) methods seemed unaffected by 

the resampling strategies, with only a marginal improvement in predictions (+/- 1%) (Table b). 

However, the custom resampling strategy showed substantially worse performance and signs 

of overfitting, with an extremely low Resample R2 when using both Machine Learning (ML) 

methods. This strategy had been developed for the Linear Model (LM) framework, but it 

performed poorly with the ML frameworks. ML seemed to suffer from a small number of 

observations selected at each iteration (n=76). However, ML was able to handle temporal 

correlation directly, by using specially designed spatiotemporal resampling methods. Thus, 

spatiotemporal resampling methods available within the ML framework can be a 

straightforward and efficient alternative to the stratified bootstrapping method used 

previously (103). The number of folds used in the resampling method did not impact the results 

and was set at 10. 

Table b: Median performance of Boosted Regression Trees (BRT) and Random Forest (RF) models for different 

resampling methods using median FoI (MedFoI) to fit the models and default parameters 

Model Name R2 Resample R2 

          

  BRT RF BRT RF 

Random 0.83 0.98 0.82 0.97 

Temporal 0.84 0.98 0.83 0.98 

Spatial 0.84 0.98 0.83 0.98 

Spatiotemporal 0.84 0.98 0.83 0.98 

Custom 0.50 0.66 -3.11 -1.27 
BRT: Boosted Regression Trees; RF: Random Forest methods; R2 is calculated on the entire dataset while the 

Resample R2 is calculated on the test set at each resampling iteration. 
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ii. Hyperparameters tuning 

ML hyperparameters define the structure and complexity of the models and can be optimised 

to better fit the requirements of the dataset. Hyperparameters are tuned before the model is 

trained and tested.  

Here, to minimize the computational time, the tuning of the hyperparameters was performed 

on the Median FoI only (MedFoI approach) and the list of hyperparameters tuned is presented 

in Table c. 

Table c: Hyperparameters tested for the Boosted Regression Trees (BRT) and Random Forest (RF) as described in the 

mlr3 framework (programming environment built on R to simplify the use of Machine Learning methods (126)) 

mlr3 name generic 

name 

function defaul

t value 

values 

tested 

BRT:     

interaction.dept

h 

Depth of 

trees 

Number of splits in each tree; also called the tree 

complexity., e.g. allows interactions between factors if 

set to 2. 

1 1,2 

n.minobsinnode Minimum 

node size 

Minimal number of observations in terminal nodes 10 5-100 

n.trees Number of 

trees 

The total number of trees that will be included in the 

model 

100 1000-

7000 

shrinkage learning 

rate 

Defines the pace at which the algorithm moves on the 

error surface 

0.001 0.001-

0.01 

train.fraction Training 

fraction 

Defines the proportion of the dataset that is used for 

fitting; the remaining proportion is used to evaluate 

the performance of the model 

1 0.90-0.50 

RF:     

ntree Number of 

trees 

Number of trees built 500 5-1000 

nodesize Minimum 

node size 

Minimal number of observations in nodes 5 1-100 

BRT: Boosted Regression Trees; RF: Random Forest methods  

The tuning process was applied in two steps. Firstly, a random search of 100 evaluations was 

implemented with a large set of values tested for each hyperparameter (Table c). Second, the 

search window was narrowed around the best values found at the first step and a grid search 

was applied with 100 further evaluations. 
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iii. Results of tuning 

Five and two hyperparameters were tuned for, respectively, BRT and RF models. Table d 

presents the hyperparameter values tested at each step of the process. 

Table d: Tuning process for ML frameworks’ hyperparameters 

R name abbreviatio

n 

default 

value 

 
values tested at step 

1 

values tested at step 

2 

BRT:      

interaction.dept

h 

dep 1 
 

1,2 2 

n.minobsinnode n.ob 10 
 

5-100 5--25 

n.trees n.tr 100 
 

1000-7000 3000-5000 

shrinkage shr 0.001 
 

0.001-0.01 0.004-0.009 

train.fraction t.fr 1 
 

0.90-0.50 0.75-0.90 

RF: 
     

ntree  500  5-2000 5-100 

nodesize  5  1-100 1-30 

 

The hyperparameters obtained from the tuning of the models (n.ob=5, n.tr=4556, shr=0.01, 

dep=2 and t.fr=0.82%) were used to obtain the final results. 

For RF, the cross validation R2 (CV R2), calculated on the cross validation set, gradually 

improved but reached a plateau after 25 trees and 5 nodes size; therefore, these values were 

used to fit the model. Higher numbers of trees and nodes size led to substantially larger 

computational cost but with marginal impact on model performance. 

 

Supp. Method 3: Comparing observations and predictions across serosurveys (extracted from (103)) 

“For each serosurvey, we compared, across years, the median and 95%CI 

(Confidence Interval) of the predicted FoI against the median and 95%CrI 

(Credible Interval) of the originally estimated FoI (21) (i.e. the dependent variable 

or ‘observed’ FoI). 
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For each quantile of interest 𝑞𝑥 (i.e., median, 2.5%, and 97.5% percentiles, 

denoted 𝑞𝑚, 𝑞𝑙 and 𝑞𝑢 respectively), we computed a distance between the 

‘observed’ and predicted quantile (𝛿𝑞𝑥
). This distance was standardised by the 

interval between the observed median and observed upper (or lower) 95% CrI, 

{
𝛿𝑞𝑥

=
𝑞𝑥(𝑦̂)−𝑞𝑥(𝑦)

𝑞𝑥(𝑦)−𝑞𝑙(𝑦)
𝑖𝑓 𝑞𝑥(𝑦̂) < 𝑞𝑥(𝑦)

𝛿𝑞𝑥
=

𝑞𝑥(𝑦̂)−𝑞𝑥(𝑦)

𝑞𝑢(𝑦)−𝑞𝑥(𝑦)
𝑖𝑓 𝑞𝑥(𝑦̂) > 𝑞𝑥(𝑦)

  (Eq. 3) 

When the predicted and ‘observed’ medians are equal, we expect 𝛿𝑞𝑚
= 0. If the 

predicted median was equal to the upper (or lower) 95%CrI of the ‘observed’ FoI 

values, then we would have 𝛿𝑞𝑚
= 1 (𝛿𝑞𝑚

= −1). 

If the predicted and ‘observed’ upper (or lower) 95% CI/CrI were equal, then we 

would expect 𝛿𝑞𝑢
= 1 (𝛿𝑞𝑢

= −1). A value 𝛿𝑞𝑢
= 2 would indicate that the interval 

between the median and upper CI in the prediction is twice as wide as the interval 

between the median and upper CrI in the observations. 

The change in the denominator reflects the non-symmetrical nature of the 95%CI.  

As it is rescaled, this measure of bias allows an assessment of the predictive ability 

of our modelling approaches across serosurveys. For each year, we estimated the 

median and interquartile range in the bias. This was also done by setting. 

Supp. Method 4: Predictive model for the FoI at the municipal level 

1. Serosurvey Characteristics 

1.1. Setting type  

Serosurveys were classified as urban, rural, indigenous, or mixed (urban and rural mixed 

population) depending on the setting where the serosurveys have been conducted. The 

settings’ definitions are matching Colombian’s government definition of urbanicity. Indigenous 

setting refers to people living in traditional villages. 
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Figure 4.1: Spatial distribution of Chagas disease serosurveys conducted in Colombia at ADM2 level, 1980‒2014. 

Upper left panel, municipalities where at least one serosurvey have been conducted in urban settings; upper right 

panel, idem for rural settings; bottom left panel, idem for indigenous setting and, bottom right idem for mixed setting 

(including urban and rural populations) 

3.3. Year when the serosurvey was conducted  
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Figure 4.2: Spatial distribution of the year when the serosurveys were conducted. Left panel, year of the first serosurvey 

conducted in the municipality; right panel, year when the last serosurvey have been conducted in the municipality. 

2. Environmental predictors  

2.1. Bio_03  

Description: Median Isothermality (quantifies how large the day-to-night temperatures 

oscillate relative to the summer- to-winter (annual) oscillations) 

Source: CHELSA (Climatologies at high resolution for the earth’s land surface areas) data  

Notes: Data processing is described here: https://www.nature.com/articles/sdata2017122. The 

Raw data is a raster with high spatial resolution, the median in each municipality has been 

extracted to create the dataset at the municipality level. 

 

 

Figure 4.3: Temporal distribution of the median isothermality in the study area (blue) and in entire Colombia (red) 

between 1950 and 2020. Top panel, municipal median (line) and range (ribbon); bottom panel, the proportion of 

missing values. 

https://www.nature.com/articles/sdata2017122
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Figure 4.4: Spatial distribution of the median isothermality at the municipal level for 1970, 1995 and 2010. Missing 

values appear in grey. 

  

2.2. Bio_06  

Description: Median minimum temperature of the coldest month. 

Source: CHELSA (Climatologies at high resolution for the earth’s land surface areas) data  

Notes: Data processing is described here: https://www.nature.com/articles/sdata2017122. The 

Raw data is a raster with high spatial resolution, the median in each municipality has been 

extracted to create the dataset at the municipality level. 

https://www.nature.com/articles/sdata2017122
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Figure 4.5: Temporal distribution of the median minimum temperature of the coldest month in the study area (blue) 

and in the entire Colombia (red) between 1950 and 2020. Top panel, municipal median (line) and range (ribbon); 

bottom panel, the proportion of missing values. 

 

 

Figure 4.6: Spatial distribution of the median minimum temperature of the coldest month at the municipal level for 

1970, 1995 and 2010. Missing values appear in grey. 
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2.3. Bio_15  

Description: Median seasonality of precipitation  

Source: CHELSA (Climatologies at high resolution for the earth’s land surface areas) data  

Notes: Data processing is described here: https://www.nature.com/articles/sdata2017122. The 

Raw data is a raster with high spatial resolution, the median in each municipality has been 

extracted to create the dataset at the municipality level. 

 

 

Figure 4.7: Temporal distribution of the median seasonality of precipitation in the study area (blue) and in entire 

Colombia (red) between 1950 and 2020. Top panel, municipal median (line) and range (ribbon); bottom panel, the 

proportion of missing values. 

https://www.nature.com/articles/sdata2017122
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Figure 4.8: Spatial distribution of the median seasonality of precipitation at the municipal level for 1970, 1995 and 

2010. Missing values appear in grey. 

 

3. Averaged NDVI 

Description: Averaged Normalized Difference Vegetation Index - NDVI (LTDR v5 - AVHRR) at 

municipality level  

Source: AidData GeoQuery (Goodman, S., BenYishay, A., Lv, Z., & Runfola, D. (2019). 

GeoQuery: Integrating HPC systems and public web-based geospatial data tools. Computers 

& Geosciences, 122, 103-112.).  

Notes: The original data have been aggregated at municipality level for 1981-2015 years by 

AidData GeoQuery (Goodman, S., BenYishay, A., Lv, Z., & Runfola, D. (2019). GeoQuery: 

Integrating HPC systems and public web-based geospatial data tools. Computers & 

Geosciences, 122, 103-112.). Original Remote sensing data used by AidData: Yearly value for 

Normalized Difference Vegetation Index (NDVI). Created using the NASA Long Term Data 

Record (v5) AVHRR data. In the analyses, the missing values before 1980 were replaced by the 

values for 1980 and the missing values after 2015 were replaced by the values of 2015. 

Aggregation processes: Created by aggregating daily data to monthly by taking the maximum 

value, then averaging the monthly data to get yearly values. All negative NDVI values were 

truncated to 0 and saturated pixels were adjusted to the max of the normal NDVI range 
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(10000). Original source: Pedelty JA, Devadiga S, Masuoka E et al. (2007) Generating a Long-

term Land Data Record from the AVHRR and MODIS Instruments. Proceedings of IGARRS 

2007, pp. 1021–1025. Institute of Electrical and Electronics Engineers, NY, 

USA.(http://ltdr.nascom.nasa.gov/ltdr/ltdr.html) 

 

Figure 4.9: Temporal distribution of the average NDVI in the study area (blue) and in the entire Colombia (red) 

between 1950 and 2020. Top panel, municipal median (line) and range (ribbon); bottom panel, the proportion of 

missing values. 

  

http://ltdr.nascom.nasa.gov/ltdr/ltdr.html
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Figure 4.10: Spatial distribution of the average NDVI at the municipal level for 1970, 1995 and 2010. Missing values 

appear in grey. 

 

3. Elevation  

Description: Median Elevation 

 Source: http://www.earthenv.org/topography (Amatulli, G., Domisch, S., Tuanmu, M.-N., 

Parmentier, B., Ranipeta, A., Malczyk, J., and Jetz, W. (2018) A suite of global, cross-scale 

topographic variables for environmental and biodiversity modeling. Scientific Data volume 5, 

Article number: 180040. DOI: doi:10.1038/sdata.2018.40.) 

Notes: The Raw data is a raster with high spatial resolution, the median in each municipality 

has been extracted to create the dataset at the municipality level. 

http://www.earthenv.org/topography
doi:10.1038/sdata.2018.40
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Figure 4.11: Temporal distribution of the median elevation in the study area (blue) and in the entire Colombia (red) 

between 1950 and 2020. Top panel, municipal median (line) and range (ribbon); bottom panel, the proportion of 

missing values. 

 

 

Figure 4.12: Spatial distribution of the median elevation at the municipal level for 1970, 1995 and 2010. Missing values 

appear in grey. 
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3. Certification year 

Description: Year when the municipality has been certified free of domiciliated vector  

Source: “Material para la homologación de la validación de municipios endémicos con 

interrupción de la transmisión vectorial domiciliaria de T.cruzi”.  

Notes: In the analyses, municipalities that have never been certified have received the value 

1900 to avoid having missing values. 

 

Figure 4.13: Temporal distribution of the certification year in the study area (blue) and in the entire Colombia (red) 

between 1950 and 2020. Top panel, municipal median (line) and range (ribbon); bottom panel, the proportion of 

missing values. 
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Figure 4.14: Spatial distribution of the certification year at the municipal level for 1970, 1995 and 2010. Missing values 

appear in grey. 

 

3. Demographic predictors 

3.3. Proportion of households with an unfinished floor 

Description: Median percentage of households in the geographic unit that have a 

dirt/unfinished floor  

Source: IPUMS International.  

Notes: This variable is derived from Census data. The Raw data is a raster with high spatial 

resolution, the median in each municipality has been extracted to create the dataset at the 

municipality level. In Colombia, censuses were organised in 1973, 1985, 1993 and 2005. Thus, 

years from 1950 to 1979 received data from 1973; years from 1980 to 1989 received data from 

1985; years from 1990 to 1999 received data from 1993 and years from 2000 to 2020 received 

data from 2005. 
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Figure 4.15: Temporal distribution of the median proportion of households with an unfinished floor in the study area 

(blue) and the entire Colombia (red) between 1950 and 2020. Top panel, municipal median (line) and range (ribbon); 

bottom panel, the proportion of missing values. 

 

 

Figure 4.16: Spatial distribution of the median proportion of households with an unfinished floor at the municipal 

level for 1970, 1995 and 2010. Missing values appear in grey. 
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3.3. Population size  

Description: Estimated size of the population. 

 Source: DANE  

Notes: projections realised for the period 1985-2020. In the analyses, missing values before 

1980 were replaced by the values in 1980. 

 

Figure 4.17: Temporal distribution of the population size in the study area (blue) and in the entire Colombia (red) 

between 1950 and 2020. Top panel, municipal median (line) and range (ribbon); bottom panel, the proportion of 

missing values. 
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Figure 4.19: Spatial distribution of the population size at the municipal level for 1970, 1995 and 2010. Missing values 

appear in grey. 

 

3.3. Proportion of the population living in urban settings  

Description: Proportion of the population living in urban settings  

Source: DANE  

Notes: projections realised for the period 1985-2020. In the analyses, missing values before 

1980 were replaced by the values in 1980. 
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Figure 4.19: Temporal distribution of the proportion of the population living in urban settings in the study area (blue) 

and the entire Colombia (red) between 1950 and 2020. Top panel, municipal median (line) and range (ribbon); bottom 

panel, the proportion of missing values. 

 

 

Figure 4.20: Spatial distribution of the proportion of the population living in urban settings at the municipal level for 

1970, 1995 and 2010. Missing values appear in grey. 
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Supp. Method 5: Models used to estimate the FoI across Colombia 

In order to integrate the uncertainty on the response variable, generation and assessment of 

the model predictions relied on the full posterior distribution of the FoI estimated with the 

catalytic model. The performance indicator used is based on the central tendency, the R2, and 

the amount of the “observed” and predicted distributions that are overlapping. The overlap 

has been calculated using the overlap function in the overlapping R-package (123). 

Using the mlr3 framework in R Studio (126,134), a nested resampling strategy has been applied 

to tune model hyperparameters and realise a spatial resampling. The two hyperparameters 

tuned were the number of trees with values tested between 5 and 50 and the final node size 

with values tested between 2 and 10. The number of trees is a parameter that limits the number 

of trees that will be built by the model and thus has to be limited to avoid overfitting. The final 

node size also impacts overfitting as it defines the minimal number of observations that can 

be let in a final node, i.e. that will not be split again. If the number of trees is large and the 

final node size is small, the model can overfit the data. 

Another way to limit overfitting is using a resampling strategy. Here, a 10 folds spatial 

resampling has been used, meaning the study area have been divided into 10 with each of 

them having the same number of “observations”. At each resampling iteration, one fold is 

excluded from fitting and used to calculate the Resample R2. A Training R2 can be calculated 

on the training set and having these two R2 of equivalent value show a limited overfitting and 

limited spatial correlation. 

On top of the nested resampling process, cross-validation has been realised by leaving half 

of the dataset aside. R2 calculated on the cross-validation set are used to assess overfitting in 

the model.  



167 

 

  

 

Figure 5.1: Description of the modelling workflow for the Random Forest (RF) model. CV denotes cross-validation; 

Pred R2 urban and Pred R2 rural denote urban- and rural-specific predictive R2 values that were estimated based 

on the urban/rural data from the CV set; %Overlap indicates the proportion of the ‘observed’ and predicted 

distributions that overlap, assessed over all settings and for urban and rural settings separately. 
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Supp. Method 6: Models used to estimate the Burden of disease: Extracted from Z. M. Cucunubá, “Modelling the 

epidemiology and healthcare burden of Chagas disease in Colombia,” Imperial College of London. (2017) 

“Compartmental Disease Burden Model 

Based on the characterisation of the population susceptible and infected by T. cruzi […], a 

progression model for Chagas disease was developed. The model uses information and 

parameters estimated to compare exposure to T. cruzi infection vs. other aetiologies of heart 

disease to estimate the specific burden due to Chagas disease.  The general structure of the 

model is presented in Figure 5.1 and the parameters in Table 5.3. 

 

Table 5.2. Disease stages included in the burden of Chagas disease model 

States Description 

Sa Susceptible (asymptomatic) stage with no heart disease 

Sm Susceptible stage with mild/moderate heart disease 

Ss Susceptible stage with severe heart disease 

Am Acute mild T. cruzi infection  

As Acute severe T. cruzi infection  

Ci Indeterminate chronic T. cruzi infection 

Cm Mild/moderate chronic chagasic cardiomyopathy  

Cs Severe chronic chagasic cardiomyopathy 
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Figure 5.1. Progression flowchart for the Chagas burden of disease model. 

t
 is the per susceptible rate of infection acquisition (the per susceptible incidence or force-

of-infection [..]);   is the proportion of those infected who develop severe disease ( −1  is 

the proportion with mild infection);   is the rate of progression from acute mild T. cruzi 

infection to the indeterminate chronic infection state (same rate applies from acute severe T. 

cruzi infection to the stage of mild/moderate chronic chagasic cardiomyopathy);   is the 

(background) death rate for susceptible asymptomatic individuals; the corresponding death 

rates for susceptibles with mild and severe (non-chagasic) CVD are m
 and s

 respectively 

(with 
  ms ); RRm is the relative risk of mortality and RRp is the relative risk of disease 

progression […]. Table 5.3 presents the parameter notation, definitions, units and sources. 

Table 5.3. State variables and parameters of the burden of Chagas disease model 
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 Definition Median Lower Upper Units Source 

t  Force-of-Infection    year-1 (8) 

  Background per capita death rate 

(country specific) 

0.018 0.017 0.019 year-1 (181) 

AsCFR 1 Case fatality ratio in severe acute 

phase 

0.07 0.03 0.138 proportion (182) 

a  Mortality rate of severe acute 

phase 

0.93 0.36 2.06 year-1 Estimated* 

m  Mortality rate of mild/ moderate 

chronic CVD 

0.06 0.04 0.09 year-1 (8) 

s  Mortality rate of severe chronic 

CVD 

0.28 0.19 0.36 year-1 (8) 

RRm  Relative risk of mortality 1.74 1.49 2.03 ratio (8) 









−

m

m



 1  

Excess mortality (relative to 

background) due to moderate 

CVD 

     









−

s

s



 1  

Excess mortality (relative to 

background) due to severe CVD 

     









−

s

m
s




 1  

Excess mortality (relative to 

moderate) due to severe CVD 

     

  Proportion of severe acute cases 0.01 0.005 0.02 proportion (182) 

 =  Duration of acute phase 4 2 8 weeks (182) 

 Progression rate from acute (mild 

or severe) phase 

13 6.5 26 year-1 [14] 

  
Progression rate from 

indeterminate to determinate 

cardiomyopathy 

0.008 0.001 0.01 year-1 (8) 

  
Progression rate from mild to 

severe cardiomyopathy 

0.01 0.001 0.04 year-1 (8) 

RRp  
Relative risk of disease progression 

due to Chagas 

4.39 

 

2.63 7.33 ratio (8) 

CVD: cardiovascular disease; NA: Not applicable.   )1/()(* AsAsa CFRCFR −−+=   

 

 

 
1 While mortality rate, a , is unknown, we found estimate of the case fatality ratio for the acute severe stage of the disease, 

i.e. ASCFR . By definition ASCFR  is the proportion of individual that dies, at a rate a + , without progressing, at 

rate  , to the mild stage. So we have: 
a

AS

a

CFR
 

  

+
=

+ +
, therefore ( )

1

AS

a

AS

CFR

CFR

  


+ −
=

−
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Stage Equations  
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