
   

 

A University of Sussex PhD thesis 

Available online via Sussex Research Online: 

http://sro.sussex.ac.uk/   

This thesis is protected by copyright which belongs to the author.   

This thesis cannot be reproduced or quoted extensively from without first 
obtaining permission in writing from the Author   

The content must not be changed in any way or sold commercially in any 
format or medium without the formal permission of the Author   

When referring to this work, full bibliographic details including the 
author, title, awarding institution and date of the thesis must be given 

Please visit Sussex Research Online for more information and further details   



A Blockchain and IoT based 

Framework for Decentralised Smart 

Campus Environments 
 

 
 

By 
 
 
 

Manal Alkhammash 

 

 

 

A thesis submitted in fulfilment of the requirements for the degree of  

Doctor of Philosophy at the University of Sussex 

 

School of Engineering and Informatics  

Department of Informatics  

University of Sussex  

Brighton  

BN1 9QT 

 

 

October 2022



 I 

Abstract  

Rapid development in science and information technologies, such as the Internet of Things 
(IoT), has led to a growth in the number of studies and research papers on smart cities in recent 
years and, more specifically, on the construction of smart campus technologies. These 
technologies provide smart solutions or predictions with the convenience of sharing data. 
However, privacy and security aspects are major concerns because of the data being stored by 
a third party. Thus, an open research question is how to develop a smart campus that ensures 
data privacy and security.  

This thesis introduces, designs and evaluates a novel smart campus framework architecture 
based on IoT and blockchain technologies to provide a comprehensive guiding framework. The 
framework ensures the collection and aggregation of the data from various areas of the campus 
while increasing the security of the data, thereby providing better service to enhance the 
experience of the user. The study uses a design science research (DSR) approach to conduct 
the overall analysis.  

As a proof of concept, this framework is tested for integration of blockchain and other relevant 
technologies into a smart educational environment. Different case scenarios were implemented 
after determining the blockchain platforms that were the most suitable, based on consensus 
algorithms. Hyperledger fabric blockchain with a Raft consensus algorithm was used to 
decentralise a smart educational environment. A benchmark tool and relevant software were 
used to provide comprehensive results, including execution time, latency and resource 
utilisation.  

The results of this research are particularly useful in the context of developing a smart campus. 
It is expected that the proposed framework will have useful applications in a variety of fields, 
where it is necessary to determine whether a satisfactory level of IoT and blockchain 
technologies has been achieved and maintained in accordance with the relevant safety and 
security standards for storing and sharing data.  

Keywords: Smart campus, Blockchain, Internet of Things, Security, Privacy, comprehensive 
framework.      



 II 

Acknowledgement 

Today is the day when I finish my journey with my PhD thesis – one of the most challenging 

and exciting times of my life. I would like to thank the many people who assisted and supported 

me during the past few years while I was pursuing my thesis. Without their help, I would not 

have been able to finish.      

First, I want to express my gratitude to my supervisors, Dr Natalia Beloff and Prof Martin 

White for their fruitful guidance, supervision, suggestions and assistance since I started my 

studies.   

Warm and extensive thanks to my awesome husband and gorgeous daughter for their constant 

support and love during my PhD journey. My deep thanks also to my parents, sisters, brothers 

and other relatives for their encouragement and for believing in me. 

In the same context, my sincere thanks to the government of Saudi Arabia represented by Jazan 

University for their financial assistance to enable me to finalise my research. Many thanks also 

to the University of Sussex for providing me this wonderful opportunity to carry out a PhD in 

a deeply interesting area.  

Lastly, I would like to thank all my colleagues and friends for their help and advice through 

this journey.                



 III 

List of Publications 

Book Chapter: 

M. Alkhammash, M. Alshahrani, N. Beloff, and M. White, (2022) “Revolutionising the 

Approach to Smart Campus Architecture through IoT and Blockchain Technologies,” in 

TTBT2021, Springer International Publishing. 

Publications in Conference Proceedings: 

M. Alkhammash, N. Beloff, and M. White, (2020) “An Internet of Things and Blockchain 

Based  Smart Campus Architecture,” in Intelligent Computing, pp. 467–486. 

M. Alkhammash, N. Beloff, and M. White, (2022) “Evaluating Suitability of a Blockchain  

Platform for a Smart Education Environmnet,” in Intelligent Systems Conference (IntelliSys). 

 
 



 IV 

Abbreviations 

Term           Description 

API  Application Programming Interface 

AWS  Amazon Web Services 

BFT  Byzantine Fault Tolerant  

B2B   Business to business 

CA  Certificate Authority 

CFT  crash fault tolerance 

CLI  Command Line Interface 

CoAP  Constrained Application Protocol  

CPU  Central Processing Unit 

DAPP  Distributed Applications  

DLT  Distributed Ledger Technology  

DoS  Denial of Service 

DDoS  Distributed Denial of Service  

DPoS  Delegated Proof of Stake  

DSR  Design Science Research  

EOV  Execute-Order-Validate 

GIS  Geographical Information System 

HTTP  Hypertext Transfer Protocol  

ICT   Information and communications technology 

IEEE  Institute of Electrical and Electronics Engineers 

IoT  Internet of Things  

ISBN  International Standard Book Number 

IPFS  Inter Planetary File System 

ISO  International Organisation for Standardisation  

MQTT  Message Queue Telemetry Transport 



 V 

MSP  Membership Service Provider 

NFC  Near Field Communication 

PBFT  Practical Byzantine Fault Tolerance 

PoET  Proof of Elapsed Time 

PoS  Proof of Stake algorithm 

PoW  Proof of Work algorithm  

P2P  Peer to peer 

RFID  Radio Frequency Identification 

SDK  Software Development Kit  

SHA  Secure Hash Algorithms 

TPS  Transactions per Second 

 

 

 

 

 



 VI 

Table of Content 
ABSTRACT …………………………………………………………………………………………………………………………………..I 
ACKNOWLEDGEMENT ............................................................................................................... II 
LIST OF PUBLICATIONS ........................................................................................................... III 
ABBREVIATIONS ....................................................................................................................... IV 
TABLE OF CONTENT ................................................................................................................ VI 
LIST OF FIGURES ....................................................................................................................... IX 
LIST OF TABLES ......................................................................................................................... XI 
CHAPTER 1 INTRODUCTION ..................................................................................................... 1 

1.1. RESEARCH CONTEXT ..................................................................................................................... 1 
1.2. PROBLEM STATEMENT ................................................................................................................... 2 
1.3. RESEARCH QUESTIONS .................................................................................................................. 2 
1.4. RESEARCH OBJECTIVES ................................................................................................................. 3 

1.4.1. General Objectives ............................................................................................................... 3 
1.4.2. Specific Objectives ................................................................................................................ 4 

1.5. RESEARCH METHODOLOGY ........................................................................................................... 4 
1.6. CONTRIBUTIONS TO KNOWLEDGE ................................................................................................. 6 
1.7. THESIS STRUCTURE ....................................................................................................................... 6 
1.8. SUMMARY ..................................................................................................................................... 8 

CHAPTER 2 LITERATURE REVIEW ......................................................................................... 9 
2.1. SMART CAMPUS ............................................................................................................................ 9 

2.1.1. Smart Campus Concept ........................................................................................................ 9 
2.1.2. Smart Campus Background ................................................................................................ 10 

2.2. INTERNET OF THINGS (IOT) ......................................................................................................... 15 
2.2.1. IoT Terminology ................................................................................................................. 16 
2.2.2. Challenges of IoT ................................................................................................................ 17 

2.3. BLOCKCHAIN TECHNOLOGY ........................................................................................................ 18 
2.3.1. Blockchain Terminology ..................................................................................................... 18 
2.3.2. Blockchain Components ..................................................................................................... 20 
2.3.3. Blockchain Background and Generations .......................................................................... 24 

2.4. BLOCKCHAIN IN EDUCATION ENVIRONMENTS ............................................................................. 26 
2.4.1. Blockchain-based educational institutions ......................................................................... 27 
2.4.2. Blockchain-Based Learning Platforms ............................................................................... 28 
2.4.3. Blockchain-Based Library Management System ................................................................ 28 
2.4.4. Blockchain-Based Academic Records and Certificates ...................................................... 29 
2.4.5. Blockchain-Based Publishing ............................................................................................. 30 

2.5. SUMMARY ................................................................................................................................... 31 
CHAPTER 3 ANALYSIS OF SMART CAMPUS ARCHITECTURAL FRAMEWORKS ......... 33 

3.1. OVERVIEW OF CURRENT SMART CAMPUS FRAMEWORKS ........................................................... 33 
3.2. EXISTING PROBLEMS FOR CURRENT SMART CAMPUS FRAMEWORKS .......................................... 37 
3.3. PROPOSED A SMART CAMPUS ARCHITECTURAL FRAMEWORK .................................................... 40 
3.4. THE SMART CAMPUS ARCHITECTURAL FRAMEWORK ANALYSIS ................................................ 45 

3.4.1. Authorisation ...................................................................................................................... 46 
3.4.2. Trust .................................................................................................................................... 46 
3.4.3. Privacy ................................................................................................................................ 47 
3.4.4. Confidentiality, Integrity, and Availability (CIA) ............................................................... 47 



 VII 

3.5. CHALLENGES OF ADOPTING BLOCKCHAIN IN THE SMART CAMPUS ARCHITECTURAL 
FRAMEWORK ............................................................................................................................... 48 

3.6. SUMMARY ................................................................................................................................... 51 
CHAPTER 4 ANALYSIS OF BLOCKCHAIN PLATFORMS FOR SMART EDUCATION  

ENVIRONMENTS ................................................................................................... 52 
4.1. QUALITY REQUIREMENTS FOR BLOCKCHAIN-BASED SMART EDUCATION ENVIRONMENTS ........ 52 
4.2. PERMISSIONED VS PERMISSIONLESS BLOCKCHAIN NETWORKS FOR A SMART LEARNING 

ENVIRONMENT ............................................................................................................................. 55 
4.2.1. Permissionless blockchain network .................................................................................... 56 
4.2.2. Permissioned blockchain network ...................................................................................... 57 

4.3. COMPARING CONSENSUS MECHANISMS ...................................................................................... 60 
4.3.1. Compute- Intensive Consensus Algorithms ......................................................................... 61 
4.3.2. Capability Consensus Algorithms ....................................................................................... 61 
4.3.3. Voting Consensus Algorithms ............................................................................................. 63 

4.4. BLOCKCHAIN PLATFORMS ........................................................................................................... 67 
4.4.1. Quorum Platform ................................................................................................................ 68 
4.4.2. Corda Platform ................................................................................................................... 69 
4.4.3. Hyperledger Fabric Platform ............................................................................................. 69 

4.5. RESULTS OF A SUITABLE BLOCKCHAIN PLATFORM FOR SMART EDUCATION ENVIRONMENTS .... 72 
4.6. SUMMARY ................................................................................................................................... 72 

CHAPTER 5 A SMART CAMPUS FRAMEWORK ARCHITECTURE DESIGN ..................... 74 
5.1. TECHNOLOGIES STACK ................................................................................................................ 74 
5.2. HYPERLEDGER FABRIC ARCHITECTURE ...................................................................................... 76 

5.2.1. Architecture Components ................................................................................................... 77 
5.2.2. Creating the Fabric Network .............................................................................................. 79 
5.2.3. Transaction Flow in the Fabric Network ............................................................................ 82 

5.3. OFF-CHAIN STORAGE: IPFS ......................................................................................................... 85 
5.3.1. Transaction Flow for Integration of Hyperledger Fabric Blockchain and IPFS ................ 87 

5.4. SUMMARY ................................................................................................................................... 89 
CHAPTER 6 A SMART CAMPUS FRAMEWORK ARCHITECTURE IMPLEMENTATION 91 

6.1. DEPLOY HYPERLEDGER FABRIC NETWORK ................................................................................. 91 
6.2. LIBRARY MANAGEMENT SYSTEM CASE SCENARIO ..................................................................... 94 

6.2.1. Smart Contract (Chaincode) ............................................................................................... 99 
6.2.2. API .................................................................................................................................... 102 
6.2.3. Frontend ........................................................................................................................... 110 
6.2.4. Dashboard ........................................................................................................................ 112 

6.3. GENERATING A STUDENT CREDENTIAL REPORT SYSTEM CASE SCENARIO ............................... 116 
6.3.1. Smart contract (Chaincode) .............................................................................................. 120 
6.3.2. API .................................................................................................................................... 123 
6.3.3. Frontend ........................................................................................................................... 125 
6.3.4. Dashboard ........................................................................................................................ 127 

6.4. EVALUATION ............................................................................................................................. 132 
6.5. BROADER CONTEXT CASE SCENARIO: DEVELOPING A FRAMEWORK FOR THE ADOPTION OF 

BLOCKCHAIN IN THE HIGHER EDUCATION CERTIFICATION PROCESS IN SAUDI ARABIA ............ 138 
6.6. DISCUSSION ............................................................................................................................... 142 
6.7. SUMMARY ................................................................................................................................. 144 

CHAPTER 7 CONCLUSION AND FUTURE RESEARCH ...................................................... 146 
7.1. THE CONTEXT OF THE RESEARCH .............................................................................................. 146 
7.2. RESEARCH QUESTIONS .............................................................................................................. 146 
7.3. THE AIMS AND OBJECTIVES ...................................................................................................... 148 
7.4. CONTRIBUTIONS TO KNOWLEDGE ............................................................................................. 148 
7.5. SUMMARY OF THE THESIS .......................................................................................................... 149 
7.6. RESEARCH LIMITATIONS AND DIRECTIONS OF FUTURE WORK .................................................. 150 



 VIII 

REFERENCES ........................................................................................................................... 152 
APPENDIX.. ............................................................................................................................... 168 

 



 IX 

List of Figures 

FIGURE 2-1 BLOCKCHAIN STRUCTURE  ................................................................................................................... 19 
FIGURE 2-2 THE PROCESS OF SIGNING THE TRANSACTION  ..................................................................................... 23 
FIGURE 3-1 A NOVEL SMART CAMPUS FRAMEWORK  .............................................................................................. 41 
FIGURE 4-1 BLOCKCHAIN NETWORK CLASSIFICATIONS .......................................................................................... 56 
FIGURE 4-2 (A) PUBLIC BLOCKCHAIN NETWORK; (B) CONSORTIUM BLOCKCHAIN NETWORK; (C) PRIVATE 

BLOCKCHAIN NETWORK ................................................................................................................................ 56 
FIGURE 4-3 DECISION FLOW TO ADOPT A SUITABLE BLOCKCHAIN PLATFORM  ....................................................... 59 
FIGURE 5-1  TECHNOLOGIES STACK ........................................................................................................................ 75 
FIGURE 5-2 ORDER-EXECUTE ARCHITECTURE ........................................................................................................ 76 
FIGURE 5-3 EXECUTE-ORDER-VALIDATE ARCHITECTURE ....................................................................................... 77 
FIGURE 5-4 ENDORSER PEER VS COMMITTER PEER ................................................................................................. 78 
FIGURE 5-5 INNER COMPONENTS OF PEER’S LEDGER .............................................................................................. 78 
FIGURE 5-6 HYPERLEDGER FABRIC CHAINCODE ..................................................................................................... 79 
FIGURE 5-7 CREATING THE FABRIC NETWORK ........................................................................................................ 80 
FIGURE 5-8 ADDING ORGANISATIONS AS ADMINISTRATORS ................................................................................... 80 
FIGURE 5-9 CREATING A CHANNEL ......................................................................................................................... 81 
FIGURE 5-10  DEFINING PEERS ................................................................................................................................ 81 
FIGURE 5-11  ADDING FABRIC CLIENT APPLICATIONS AND CHAINCODE (SMART CONTRACT) ................................. 82 
FIGURE 5-12  COMPLETING THE FABRIC NETWORK ................................................................................................ 82 
FIGURE 5-13 HYPERLEDGER FABRIC TRANSACTION FLOW ..................................................................................... 85 
FIGURE 5-14 TRANSACTION FLOW FOR INTEGRATION OF HYPERLEDGER FABRIC AND IPFS ................................. 88 
FIGURE 6-1 DEFINITION OF BOOTSTRAPPING THE BLOCKCHAIN NETWORK ............................................................ 93 
FIGURE 6-2 LIBRARY MANAGEMENT SYSTEM CASE SCENARIO ............................................................................... 95 
FIGURE 6-3 A CODE SNIPPET OF THE CREATE BOOK FUNCTION IN THE SMART CONTRACT ...................................... 99 
FIGURE 6-4 A CODE SNIPPET OF THE QUERY ALL BOOKS FUNCTION IN THE SMART CONTRACT ............................ 100 
FIGURE 6-5 A CODE SNIPPET OF THE QUERY A BOOK FUNCTION IN THE SMART CONTRACT .................................. 100 
FIGURE 6-6 A CODE SNIPPET OF THE ISSUE A BOOK FUNCTION IN THE SMART CONTRACT .................................... 100 
FIGURE 6-7 A CODE SNIPPET OF THE RETURN A BOOK FUNCTION IN THE SMART CONTRACT ................................ 101 
FIGURE 6-8 A CODE SNIPPET OF THE DELETE A BOOK FUNCTION IN THE SMART CONTRACT ................................. 101 
FIGURE 6-9 A CODE SNIPPET OF THE QUERY ALL HISTORY FUNCTION IN THE SMART CONTRACT ......................... 102 
FIGURE 6-10 A CODE SNIPPET OF THE REGISTER FUNCTION IN API ...................................................................... 103 
FIGURE 6-11 A CODE SNIPPET OF THE LOGIN FUNCTION IN API ............................................................................ 104 
FIGURE 6-12 A CODE SNIPPET OF THE GET STUDENT FUNCTION IN API ................................................................ 104 
FIGURE 6-13 A CODE SNIPPET OF THE GET BOOK FUNCTION IN API ...................................................................... 105 
FIGURE 6-14 A CODE SNIPPET OF THE GET REPORT FUNCTION IN API .................................................................. 106 
FIGURE 6-15 A CODE SNIPPET OF THE ADD BOOK FUNCTION IN API ..................................................................... 107 
FIGURE 6-16 A CODE SNIPPET OF THE ISSUE A BOOK FUNCTION IN API ................................................................ 108 
FIGURE 6-17 A CODE SNIPPET OF THE DELETE A BOOK FUNCTION IN API ............................................................. 108 
FIGURE 6-18 A CODE SNIPPET OF THE ENROL ADMIN FUNCTION IN API ............................................................... 109 
FIGURE 6-19 A CODE SNIPPET OF THE REGISTER A USER FUNCTION IN API .......................................................... 109 
FIGURE 6-20 A CODE SNIPPET OF THE INITIALISE GATEWAY FUNCTION IN API .................................................... 109 
FIGURE 6-21 A CODE SNIPPET OF THE LOGIN FUNCTION IN FRONTEND ................................................................. 110 
FIGURE 6-22 A CODE SNIPPET OF THE REGISTER FUNCTION IN FRONTEND ............................................................ 111 
FIGURE 6-23 A CODE SNIPPET OF THE ADD BOOK FUNCTION IN FRONTEND .......................................................... 111 
FIGURE 6-24 A CODE SNIPPET OF THE ISSUE A BOOK FUNCTION IN FRONTEND ..................................................... 111 
FIGURE 6-25 A CODE SNIPPET OF THE RETURN A BOOK FUNCTION IN FRONTEND ................................................. 112 
FIGURE 6-26 A CODE SNIPPET OF THE DELETE A BOOK FUNCTION IN FRONTEND .................................................. 112 
FIGURE 6-27 LOGIN PAGE ..................................................................................................................................... 113 
FIGURE 6-28 SNAPSHOT OF USER DASHBOARD: (A) LIBRARIAN DASHBOARD (B) STUDENT DASHBOARD ............. 113 
FIGURE 6-29 SNAPSHOT OF THE ADD AND ISSUE A BOOK DASHBOARD ................................................................. 114 
FIGURE 6-30 SNAPSHOT OF THE BORROW A BOOK DASHBOARD ........................................................................... 115 
FIGURE 6-31 IPFS DASHBOARD ............................................................................................................................ 115 
FIGURE 6-32 LIBRARY MANAGEMENT SYSTEM CASE SCENARIO BASED THE SMART CAMPUS ARCHITECTURAL 

FRAMEWORK ............................................................................................................................................... 116 



 X 

FIGURE 6-33 STORING AND SHARING STUDENT RECORDS CASE SCENARIO ........................................................... 117 
FIGURE 6-34 A SEQUENCE DIAGRAM FOR STORING OR UPDATING STUDENT RECORDS ......................................... 118 
FIGURE 6-35 A SEQUENCE DIAGRAM FOR GENERATING A STUDENT CREDENTIAL REPORT ................................... 119 
FIGURE 6-36 A CODE SNIPPET OF THE CREATE A STUDENT FUNCTION IN THE SMART CONTRACT ......................... 121 
FIGURE 6-37 A CODE SNIPPET OF THE QUERY A STUDENT FUNCTION IN THE SMART CONTRACT .......................... 121 
FIGURE 6-38  A CODE SNIPPET OF THE QUERY ALL STUDENTS FUNCTION IN THE SMART CONTRACT .................... 122 
FIGURE 6-39 A CODE SNIPPET OF THE DELETE A STUDENT FUNCTION IN THE SMART CONTRACT ......................... 122 
FIGURE 6-40 A CODE SNIPPET OF THE QUERY ALL HISTORY FUNCTION IN THE SMART CONTRACT ....................... 123 
FIGURE 6-41 A CODE SNIPPET OF THE ADD STUDENT FUNCTION IN THE API ........................................................ 124 
FIGURE 6-42 A CODE SNIPPET OF THE GET STUDENT FUNCTION IN THE API ......................................................... 124 
FIGURE 6-43 A CODE SNIPPET OF THE DELETE RECORD FUNCTION IN THE API ..................................................... 125 
FIGURE 6-44 A CODE SNIPPET OF THE CREDENTIAL VERIFICATION FUNCTION IN THE API ................................... 125 
FIGURE 6-45 A CODE SNIPPET OF THE REGISTER FUNCTION IN FRONTEND ............................................................ 126 
FIGURE 6-46 A CODE SNIPPET OF THE ADD STUDENT FUNCTION IN FRONTEND ..................................................... 126 
FIGURE 6-47 A CODE SNIPPET OF THE SEARCH CREDENTIAL FUNCTION IN FRONTEND ......................................... 126 
FIGURE 6-48 A CODE SNIPPET OF THE SEARCH CREDENTIAL PAGE FUNCTION IN FRONTEND ................................ 127 
FIGURE 6-49 SNAPSHOT OF USER DASHBOARD: (A) ADMIN DASHBOARD (B) STUDENT OR THIRD-PARTY 

DASHBOARD ................................................................................................................................................ 128 
FIGURE 6-50 SNAPSHOT OF THE ADDING A STUDENT RECORDS DASHBOARD ....................................................... 128 
FIGURE 6-51 SNAPSHOT OF THE SEARCH PAGE ..................................................................................................... 129 
FIGURE 6-52 IPFS DASHBOARD ............................................................................................................................ 129 
FIGURE 6-53 SNAPSHOT OF THE STUDENT CREDENTIAL REPORT .......................................................................... 130 
FIGURE 6-54 SNAPSHOT OF THE STUDENT INVALID CREDENTIAL REPORT ............................................................ 131 
FIGURE 6-55 GENERATING A STUDENT CREDENTIAL REPORT CASE SCENARIO BASED THE SMART CAMPUS 

ARCHITECTURAL FRAMEWORK .................................................................................................................... 132 
FIGURE 6-56 HYPERLEDGER CALIPER ARCHITECTURE [243] ................................................................................ 133 
FIGURE 6-57 EVALUATING THE FIRST SCENARIO: WRITING TRANSACTIONS MODE ON THE NETWORK LATENCY AND 

THROUGHPUT .............................................................................................................................................. 135 
FIGURE 6-58 EVALUATING THE SECOND SCENARIO: READING TRANSACTIONS MODE ON THE NETWORK LATENCY 

AND THROUGHPUT ...................................................................................................................................... 136 
FIGURE 6-59 EVALUATING THE THIRD SCENARIO: WRITING AND READING TRANSACTIONS MODE ON THE NETWORK 

LATENCY AND THROUGHPUT ....................................................................................................................... 137 
FIGURE 6-60 ACTORS IN DASC [108] .................................................................................................................. 139 
FIGURE 6-61 HIGH-LEVEL CONCEPTUAL INFRASTRUCTURE OF DASC [108] ........................................................ 141 
FIGURE 6-62 BROADER CONTEXT CASE SCENARIO BASED THE SMART CAMPUS ARCHITECTURAL FRAMEWORK .. 142 
  



 XI 

List of Tables 

TABLE 1-1 RESEARCH METHODOLOGY ACTIVATES, BASED ON PEFFERS ET AL. DSR MODEL ................................... 5 
TABLE 4-1 SUMMARY OF BLOCKCHAIN NETWORK TYPES WITH THEIR FEATURES .................................................. 58 
TABLE 4-2 SUMMARY OF THE COMPARISON OF CONSENSUS ALGORITHMS FOR AN EDUCATION ENVIRONMENT ..... 67 
TABLE 4-3 SUMMARY OF THE COMPARISON OF BLOCKCHAIN PLATFORM FOR EDUCATION ENVIRONMENT ............ 71 
TABLE 6-1 ENVIRONMENT CONFIGURATION ........................................................................................................... 92 
TABLE 6-2  TESTING THE WRITING TRANSACTIONS MODE .................................................................................... 134 
TABLE 6-3 TESTING READING TRANSACTIONS MODE ........................................................................................... 135 
TABLE 6-4 TESTING WRITING AND READING TRANSACTIONS MODE ..................................................................... 137 

 



 1 

Chapter 1 Introduction 

This chapter presents an overview of the conducted research and context. Then it describes the 

research problem followed by the research objectives and questions that this thesis focuses on. 

Finally, it highlights the contribution to knowledge.     

1.1. Research Context  

Information and communications technology (ICT) development is a never-ending process, 

which has led to a growth in the number of studies and research papers on smart cities in recent 

years. The concept of a smart city is not only about constructing traditional infrastructure, such 

as a transportation system, but also involves ICT infrastructure in order to improve quality of 

life and enhance the profile of the city [1].  Globally, governments are working towards 

digitalisation with the development of smart cities to accommodate the projected rise in an 

average city’s population. From 2015–2050, the population in a city is expected to grow from 

55 per cent to 66 per cent, which will require the optimisation of resources and the use of 

technologies, such as IoT, to implement a sustainable and intelligent environment [2] for use 

with governance, public transport, traffic, etc. Therefore, the term ‘smart city’ can be generally 

defined as dynamically integrating the physical and the digital worlds, in which different data 

resources are automatically gathered in real time [1], [3], [4]. By utilising high-speed networks, 

the changes in the physical world can be captured and transferred to data centres so that they 

can be stored and processed [5]. This means that, in order to capture the necessary data, there 

needs to be significant numbers of sensors at diverse locations that can capture this ‘big data’. 

In addition, the Cloud needs to be utilised in order to store and analyse the data. 

Consequently, there are many areas that can be developed under the smart city framework to 

achieve the overall goal of improving citizens’ quality of life. There have been many 

contributions and research papers in different areas to develop smart systems, such as medical 

and health care [6]–[9], supply chain management [10], [11], traffic [12], [13], and education 

systems [14]–[16] that together can build smart cities.  



 2 

Since a smart campus constitutes an essential element of a smart city, and the concept of the 

smart campus comes from the notion of smart cities [17], many researchers have focused their 

attention on developing smart campuses, trying to address the topical question of how to 

develop an intelligent campus by contributing the same ideas and bases of intelligent cities 

[18]. Therefore, the aim of this thesis is to study different technologies and to design a novel 

architecture for a smart campus in order to develop an intelligent campus. Such a smart and 

intelligent campus architecture or framework is likely to exploit the IoT, blockchain, and smart 

contracts as part of its many technology solutions. 

1.2. Problem statement 

The rapid development in advanced technologies, such as IoT and blockchain, has led to a 

growth of interest in a number of application areas, including smart environments such as the 

smart campus, which can be considered as an example of a smart city. Despite such growth, no 

comprehensive guiding framework has been developed for emerging IoT and blockchain 

technologies deployment in the smart campus environment, particularly in relation to security 

and privacy aspects, as well as to the mitigation of known problems with IoT and blockchain 

in existing applications. In addition, the current smart campus systems rely on centralised 

architecture that is developed using a centralised server to manage and control connected nodes 

which suffers from various threats and complications that will be discussed in Chapter 3. 

Therefore, this thesis proposes a novel architectural framework for the IoT and blockchain 

applications deployed within a smart campus environment and comparing the main 

technologies involved. The framework also combines several innovative technologies, 

including infrastructure, storage and communication technologies to design various campus 

service systems, such as smart systems for learning, library, building, parking, waste and water 

management, etc. In addition, different case scenarios are implemented to demonstrate the 

performance and the applicability of the framework.   

1.3. Research Questions 

The main aim of this research is to propose and evaluate a comprehensive framework for a 

smart campus implementation focusing on security aspects. To achieve this objective of this 

study, it is necessary to answer the following research questions:  



 3 

• What technologies, including hardware and software, contribute to the building 

of a highly technological smart campus? An extensive literature review is conducted 

to understand the analysis of current innovative research relevant to a smart campus 

and the analysis of existing smart technologies and intelligent software/hardware 

system undertaken in different areas of a campus, such as learning and teaching, 

building management, waste management, energy management, water management, 

transportation, security, etc.   

• How can the smart campus technologies be characterised? A wide variety of 

architectures for a smart campus have been proposed with several goals. Most existing 

architectures for a smart campus generally rely on advanced technologies, such as IoT, 

which allow devices to interact with each other and analyse the acquired data for various 

purposes. These architectures are studied in more details to propose a smart campus 

architectural framework.    

• What methods can be used to develop a comprehensive framework for a smart 

campus implementation? Systematic comparative analysis is used to investigate the 

best technologies for implementation, including selecting blockchain platform, 

consensus algorithm, and off-chain storage. Then several use case scenarios of smart 

educational environment are modelled and evaluated as proof of concept.      

• What are the implications on the applicability of a comprehensive framework for 

a smart campus in the future? To answer this question, a novel framework that 

combines several innovative technologies and tests these technologies in a higher 

education certificating system for issuing authentic, verifiable and sharable student 

credentials has been develop. A collaborative book chapter with another PhD student 

named Mona Alshahrani has been prepared to answer this question.  

1.4. Research Objectives 

The research has several objectives that can be presented as the follows: 

1.4.1. General Objectives  

• Propose and evaluate a comprehensive framework for a smart campus implementation. 



 4 

• Ensure authorisation, trust in addition to the CIA triad of Confidentiality, Integrity, and 

Availability for the proposed framework data are main aspects in privacy and security 

requirements. 

1.4.2. Specific Objectives  

• Gain knowledge on related research work for a better understanding on smart 

campuses’ principles and concepts and determine their technologies.  

• Investigate the main features of emerging IoT and blockchain technologies to deployed 

to the smart campus environment to extract the domain knowledge.  

• Analyses the validity of distributing the smart campus applications and systems and 

gain new insights.  

• Implement choosing different case scenario to evaluate the applicability of a novel 

architectural framework.  

1.5. Research Methodology 

The research follows a Design Science Research (DSR) approach to conduct the overall study.  

The DSR approach has recently gained traction in the discipline of information systems 

research generally and in the current study particularly for the following reasons:   

• The approach’s fundamental principle is to solve existing research problems and 

improve the current state of knowledge by creating an artefact [19]. The artefact can 

lead to many different output forms, including design principles, constructs, methods, 

design theories, models, technological rules or any type of knowledge considering 

contributions [20].  In this research, the artefacts are proposed and evaluated for a 

comprehensive guiding framework for the implementation and development of a smart 

campus.  

• This approach provides a transparent roadmap and detailed guidance about artefacts, 

methods and roles. Hence, a study can produce outcomes that are considering relevant 

and rigorous [21].  Therefore, the approach can be used to apply analytical and synthetic 

perspectives and methods to present the profound study.    



 5 

• DSR can address problems faced by information system researchers in any stage.   

This research follows the DSR process model that adheres to the guidelines of Peffers et al. 

[19] , which consist of six activities or steps of: the identification of the research problem, 

which focuses on defining and establishing the research problem to pursue a solution; the 

objectives of a solution, which infers of possible solution for the previously defining research 

problem; the design and development, where the solution artefact is determined and created; 

the demonstration which aims to demonstrate the efficiency of the solution artefact for solving 

the research problem; the evaluation is where the artefact is measured and observed about how 

it can support the research solution; and communication, the final phase, where the problem 

and the artifact’s design and efficacy are shared with relevant researchers and audience.  

Table 1-1 describes how these activities have contributed to this research with a brief 

description.   

      Table 1-1 Research methodology activates, based on Peffers et al. DSR model  

Activity Title Description 

1- Identification the 
research problem  

During this step, the problem of the current deployment of the smart 
campus environment, particularly in relation to security and privacy, was 
defined, and the mitigation of known problems with IoT and blockchain 
in existing smart campus applications was determined.   

2- Objectives of a 
solution 

In this activity, the objectives of proposing the architecture that 
incorporates and exploits blockchain technology to overcome some of the 
prevalent issues for current applications and the implementations of 
different smart campuses’ areas were inferred.    

3- Design and 
development  

In this stage, a novel architectural framework for the IoT and blockchain 
applications were designed within a smart campus environment, 
comparing the main technologies involved.  

4- Demonstration  During this phase, the educational smart environment was implemented 
to demonstrate a proof of concept and the utility of the artefact.    

5- Evaluation In this stage, the proof-of-concept case scenarios was evaluated by using 
external software, and the results reported.  

6- Communication During this study, several academic papers have been published, and the 
researchers attended international conferences to communicate the 
research to the relevant scientific community.   

 



 6 

1.6. Contributions to Knowledge 

The main aim of this thesis is to propose and evaluate a comprehensive framework for a smart 

campus implementation, and this goal provides several contributions to the knowledge which 

can be summarised as follows:   

1 Analysis of the current innovative research relevant to a smart campus and of existing smart 

technologies and intelligent software/hardware system undertaken in different areas of a 

campus, such as learning and teaching, building management, waste management, energy 

management, water management, transportation, and security;  

2 Analysis of the best technologies including consensus algorithms, blockchain platforms 

and off-chain storages to use in different case scenarios as proof of concept;  

3 A novel, comprehensive smart campus architectural framework, using blockchain 

technology to handle the issue related to a centralised IoT technologies;  

4 Developing a systematic analysis method to determine which blockchain platform and 

consensus algorithms are suitable for blockchain-based smart education environments; 

5 Evaluation of the framework by measuring performance and security requirements; and 

6 Testing of the future applicability of the comprehensive framework for a smart campus in 

a boarder context (student certification scenario).  

1.7. Thesis structure 

This section presents a structured and brief description of this thesis, which consists of seven 

chapters. 

Chapter 1: This chapter presents an overview of the study context and describes its problem. 

In addition, it provides the research aims and objectives as well as the research questions. The 

chapter also presents a brief list of the research contributions to knowledge.        

Chapter 2: This chapter presents a literature review on smart campuses. This includes the 

concept of the smart campus and is followed by a study of each campus area in more detail 

with their current research. It then discusses recent innovative studies on smart campuses to 



 7 

understand how the smart campus is characterised and to identify the most well-thought-out 

and effective approaches, ideas and developed hardware and software systems for smart 

campuses. The chapter also reviews blockchain technology including its definition, 

terminology and a brief history. Furthermore, the chapter covers the use of blockchain 

technology in various systems and applications in smart educational environments.  

Chapter 3: This chapter analyses the various components of a smart campus, including 

architectures, platforms, and technologies with their limitations. In addition, it proposes a novel 

architectural framework for the IoT and Blockchain applications deployed within a smart 

campus environment, comparing the main technologies involved. Then, with particular 

consideration, it discusses security and privacy requirements.   

Chapter 4: This chapter acts as a guide in selecting and developing a suitable blockchain 

platform for experimenting with educational applications, such as students’ transcripts, 

certificates, credentials, or any other accomplishment data forms. Determining which 

blockchain platform to use requires discussing the quality requirements for blockchain-based 

smart education environments. Then this chapter reviews current and well-known consensus 

algorithms and provides a comparative analysis of all the platforms to choose a suitable one, 

according to the smart education software requirements. 

Chapter 5: The architecture and design of a novel framework is explained in this chapter. It 

provides an overview of the technologies stack required for the framework and the reasons for 

on-chain and off-chain data storage. Then, each on-chain and off-chain technology used is 

discussed independently with more detail regarding its components, design, and transaction 

flow.   

Chapter 6: The chapter presents the use of previous architectural design by implementing 

different case scenarios in smart campus, particularly a smart educational environment, as a 

proof of concept. In addition, it provides the testing environment with dissection to evaluate 

the framework.  

Chapter 7: This chapter presents an overview of the whole study and summarises the outcome 

of this thesis. In addition, it provides the resulting recommendations and the research 

limitations. It also discusses the directions for further research.      



 8 

1.8. Summary 

This chapter introduced the context of this research and outlined the importance of developing 

smart environments, particularly smart campuses. However, security and privacy concerns 

have become more prevalent due to the increasing number of connected devices. Therefore, 

there is a need to propose a new smart campus framework that combines the advantages of 

both the IoT and blockchain technology and that can be used as guide to develop various 

campus services, such as smart learning, smart building, smart parking etc. This chapter 

presents the research goal with its objectives, methodology, contribution to knowledge and the 

structure of this thesis. The next chapter will address the concept of the smart campus and study 

each campus area in more depth, including the technology used, the limitations and blockchain 

technology.  

 



 9 

Chapter 2 Literature Review 

This chapter covers the theoretical background and literature review of this thesis. It includes 

two parts to answer the first research question: ‘What technologies, including hardware and 

software, contribute to the building of a highly technological smart campus?’. The first part 

provides an overview of recent innovative studies on smart campuses. The section starts by 

addressing the concept of the smart campus, followed by studying each campus area and their 

current research to understand how the smart campus is characterised and find the current 

research gaps.  

In the second part of this chapter, blockchain technology will be explained in more detail. The 

term ‘blockchain’ will be defined first as a fundamental concept alongside studying the history 

and previous research on the subject, followed by clarifying blockchain’s essential 

components, such as smart contract, digital ledger and consensus and the way they work 

together. Furthermore, the section will address the different blockchain generations since their 

structures vary. In addition, this section will cover the use of blockchain technology in various 

systems and applications in smart educational environments while determining the gaps in 

recent research.   

2.1. Smart Campus 

This section presents the smart campus concept and an overview of its current publications and 

related areas. The research background is used to help to identify and classify diverse studies 

with a broad range of introduced smart campuses, proposed approaches and notions, developed 

hardware and software systems, designed technical platforms, etc.                

2.1.1. Smart Campus Concept 

Traditionally, a campus can be defined as a land or an area where different buildings constitute 

an educational establishment. A campus often includes classrooms, libraries, student centres, 

residence halls, dining halls, parking, etc. Nowadays, campuses have adopted advanced 

technologies, such as visual learning environments [22], [23] and timetabling systems [24], 

[25] in order to provide high-quality services for stakeholders (e.g. academics, students, 



 10 

administrators, and services functions) on campus and to monitor and control facilities. These 

developments should be evolving constantly in order to increase efficiency, cut operational 

costs, reduce effort, lead to better decision-making, and enhance the student experience [26]. 

Thus, the term ‘smart campus’ can be defined as a place where digital infrastructure can be 

developed and that has the ability to gather information, analyse data, make decisions, and 

respond to changes occurring on campus without human intervention [26], [27]. The authors 

in [28] define a smart campus as an environment where the structure of ambient learning spaces 

– application context based on virtual spaces – integrates social and digital services into 

physical learning resources. If we think of a smart campus as a holistic framework, it 

encompasses several themes, including but not limited to automated security surveillance and 

control, intelligent sensor management systems, smart building management, communication 

for work, cooperation and social networking, and healthcare. Several innovations have been 

proposed for smart campuses, ranging from developing a whole framework using technologies, 

such as mobile technologies, blockchain, the IoT, and the Cloud to assist learning to enhancing 

security systems utilising technologies, such as ZigBee and radio frequency identification 

(RFID) [29]–[32].  

2.1.2. Smart Campus Background 
Many studies and architectural plans with different goals have been undertaken on the subject 

of the smart campus [33]. This smart campus research largely breaks down into the following 

areas: teaching and learning, data analysis and services, building management and energy use 

on campus, campus data mining, water and waste management use on campus, campus 

transportation, and campus security.  

2.1.2.1. Smart Campus Learning Environments  

Much research has been focused on constructing smart campuses by developing suitable 

technologies and applications that involve teaching and learning. Therefore, the common 

purpose of designing and developing a smart campus has often been from a learning and 

educational perspective. Ng et al. [31] developed a novel holistic environment for a smart 

campus known as iCampus. The aim of their research is to propose a beginning-to-end lifecycle 

within the knowledge ecosystem in order to enhance learning. Atif and Mathew designed a 

framework for a smart campus that integrates a campus social network within a real-world 

educational facility [34]. The study’s goal was to provide a social community where knowledge 

could be shared between students, teachers, and the campus’s physical resources. Further, [1] 



 11 

proposed a model of a smart campus to enable stakeholders on the campus to shape and 

understand their learning futures within the learning ecosystem. Based on cloud computing and 

IoT, [35] stated the concept of a smart campus and demonstrated some issues that related to 

intelligence application platforms after establishment. However, these approaches were 

focused only on proposing a smart campus by using IoT technology which suffers from various 

threats and complications as will be discussed in section 3.2.  

2.1.2.2. Smart Campus Data Analysis and Service Orientation  

Other research has considered the development of smart campuses based on data analysis. 

According to [36], a smart campus should be able to gather data from a crowd and analyse it 

by using crowdsourcing technologies in order to deliver services of added value. In 2011, [37] 

explained the prototype of a smart campus implementation that uses semantic technologies in 

order to integrate heterogeneous data. However, some researchers have envisioned smart 

campuses from social networking aspects. For instance, [38] elaborated upon an architectural 

system that can be deployed on campus in order to support social interaction by using service-

oriented specifications. This will depend upon their proposed social network platform 

(WeChat) and an examination of its architecture, functions, and features. Xiang et al. developed 

a smart campus framework based on information dissemination [18]. However, these 

approaches did not address blockchain technology in order to eliminate centralisation.  

2.1.2.3. Buildings Management and Energy Efficiency on Smart Campuses 

Several of the current initiatives that are developing smart campuses have been based on high-

energy efficiency perspectives. In order to decrease the energy consumption of buildings, 

monitoring and controlling environmental conditions is essential, such as controlling both 

natural and artificial lighting, humidity, and temperature. An example of this is a project that 

was undertaken at the University of Brescia in Italy in 2015 that aimed to enhance energy 

efficiency inside buildings by monitoring lighting, temperature, and electrical equipment by 

using control systems, automation, and grid management. The project progressed in stages 

towards this goal. First of all, it aimed to reduce the consumption of the buildings’ energy by 

analysing possible actions. 

Then it attempted to implement different measures and evaluated their efficiency. 

Simultaneously, in order to enhance users’ awareness of energy consumption, a system for 

monitoring operational conditions was also developed. Finally, the project evaluated the energy 

balance between consumption and generation, renewable energy production, and energy 



 12 

reduction. The outcome displayed a significant energy consumption reduction of 37.3% while 

improving the buildings’ thermal properties [39].  

In addition, [40] proposed and implemented a web-based system to manage energy in campus 

buildings known as CAMP-IT. The system aimed to optimise the operation of energy systems 

in order for buildings to achieve goals of reducing energy consumption while at the same time 

enhance the quality of the indoor environment in terms of visual comfort and air quality. The 

modelling collected, controlled, and analysed the energy load for each building and for the 

campus as a whole. The results showed a reduction in energy consumption of nearly 30%. 

A smart building, which includes a sensor-controlling unit, security unit, energy provider and 

control unit, helps to produce and maintain a safer, comfortable and productive environments 

in the most cost-effective way possible. The above devices communicate using centralised and 

controlled architectures. All data have to be stored in a central operations unit to make decisions 

for energy consumption, which involve a luck of efficiency, security and scalability, as will be 

discussed in more details in Section 3.2.  Alternatively, decentralising these architectures could 

enhance the system security.  

2.1.2.4. Smart Campus Data Mining 

Additionally, some researchers have focused on applying interest mining, which is based on 

location, context awareness, proximity, and user profiles as well as other related information, 

to assist users in meeting their needs within the campus environment. In 2014, [41] studied 

web log mining, which is an essential technique in web data mining to determine users’ 

characteristic interests by developing a reliable and efficient method of data pre-processing. In 

2010, [42] proposed a data-mining method from e-learning systems to identify users’ interests 

and obtain information about learners’ logs and knowledge background. Along these lines, the 

model would be able to automatically recommend resources that may be of interest to 

individual students. However, protecting user profiles and preferences from leaking or hacking 

should be considered, as they are considered sensitive data. 

2.1.2.5. Water Management on Smart Campuses 

Regarding water and waste management, since they are considered expensive and important 

services on smart campuses, several research studies have focused on proposing management 

systems on campuses for these services in order to reduce the environmental and financial 



 13 

impact [26]. In terms of sustainable water management, there are three important pillars: water 

harvesting processes, water recycling, and water consumption reduction [43].  

Different approaches have been proposed to manage water. Some focused on controlling and 

monitoring the water level and water consumption on campus. For instance, [44] developed a 

water monitoring system to reduce water consumption on campus. The system designed a 

three-dimensional map of the campus and used a geographical information system (GIS) to 

display a water pipeline in the electronic map with detailed status information in real time. 

Therefore, the model can monitor water directly from pipelines; detect any problems that occur 

in the equipment, such as leaking; and analyse the amount of water consumption.  

In 2015, [45] developed a suitable system for medium-sized campuses to monitor the water 

balance in real time. The design used an ultrasound level sensor, a cloud software stack, and 

communication links and carefully considered industrial design. To be able to monitor the 

water, the system measured the water level in tanks by sending ultrasound pulses to the water’s 

surface. After observing the reflection, the sensors can estimate the distance and calculate the 

tank volume. Based on previous work, [46] developed an automatic water distribution system 

for large campuses so that each tank on the campus would have enough water to meet the local 

needs. The authors utilised ultrasonic ranging sensors, which are suitable for measuring water 

levels in large tanks, and a wireless network using sub-GHz radio frequency to connect sensors 

across long distances for further analysis.  

Moreover, many other experiments have proved efficient for developing water management 

systems, and they can be implemented on smart campuses to reduce water consumption [47]. 

For example, [48] developed a meter of a smart water that can provide a user with real-time 

reading information, analyse his consumption data, and present it in visual graphs to improve 

the readability. Simultaneously, the system monitors the consumption and alerts the user if 

there is unusual water usage. Therefore, the main goal of a water management system is water 

conservation by maintaining appropriate traceability of a water supply. This requires storage 

resources and high processing power. However, these approaches have not been discussed in 

light of the security mechanisms that should be used to protect the recorder data from being 

manipulated.  

2.1.2.6. Waste Management on Smart Campuses  

Similarly, numerous studies have been devoted to developing waste management systems. 

Authors in [49], [50] stated that general research studies in this area focused on developing 



 14 

waste tracks and bins with sensor devices attached to collect and analyse real-time data. This 

information can be used for several purposes, for example, for developing an efficient cleaning 

timetable and preventing overfilling of bins. Ebrahimi et al. [51] in 2017 investigated the 

current waste and recycling infrastructure on Western Kentucky University campus to 

determine whether it had an adequate service by using spatial techniques, such as GIS, to track, 

recognise, and visualise waste and recycling bins in a large-scale area. They used spatial 

information for analysis and decision making to reduce solid waste steam and improve the 

university’s recycling stream. Furthermore, they drew an accurate roadmap for a suitable waste 

management plan for the campus. Although most papers use different techniques for waste 

management systems on smart campuses, they are still at the primary stages, and they lack a 

generic model. According to Ahmad et al. [52], effective waste management needs close 

cooperation and coordination among relevant participants such as waste source owners, waste 

disposal facilities, collectors and shippers. However, the current waste management systems 

face a number of challenges due to the lack of sharing adequate waste data among the 

participating nodes. Because blockchain technology has traceable feature as well as share data 

in secure, effective and verifiable manner, it could be used to enhance waste management 

systems.   

2.1.2.7. Smart Transportation 

Recently, global positioning system (GPS) has become the most common method for streaming 

a location and tracking a moving object, such as a vehicle on the road. To improve the accuracy 

of GPS, external information is needed, such as Wi-Fi, digital imaging, and computer vision 

[53]. The authors in [54] developed a tracking system for buses using GPS devices that reported 

the buses’ locations every ten seconds. The location was sent from the server via SMS. The 

system also had safety features, such as the ability to send alerts or emergency reports when 

the vehicle crashed or was stolen. Other studies have tracked the location of a college bus using 

a mobile phone and Google Maps [55], [56]. Saad et al. [53] developed a real-time monitoring 

system for a university bus that used a GPS service to send the location of the bus to a cloud 

database every second. The system could also analyse data to estimate the bus’s arrival time. 

Generally, smart transportation and vehicles provide a range of services and applications. 

However, communication among devices is over a wireless medium that is vulnerable to 

various cyberthreats [57]. For examples, adversaries can manipulate information 

communicated between different nodes. One possible solution to solve this data security issue 

is to integrate blockchain platform to such environments to prevent unauthorised modification 



 15 

of data and allow sharing of data among trusted peers, such as IoT devices, organisations and 

individuals.  

2.1.2.8. Smart Security 

Many mobile applications have been developed for campus safety. Some of them allow users 

to contact campus security guards, such as EmergenSee and CampusSafe, whereas others, such 

as Guardly and CircleOf6, allow friends to contact each other [58]. These applications allow 

user location, photos, and situation descriptions to be shared with campus security guards. 

In addition, [59] also proposed a smart campus framework that includes several aspects, of 

which security was a notable one. They pointed out that a smart system can reduce burglaries 

by detecting glass breaking or any distinct sound; then, the system has the ability to alert 

security to the location. Also, the system may have the ability to reduce drug or alcohol abuse 

by alerting public safety to the presence of alcohol. 

Therefore, a smart campus can be described as an environment that has the ability to provide a 

suitable infrastructure in order to deliver services required in light of contextual awareness. In 

addition, it is a well-structured place that can generate huge amounts of information to a 

number of users by using their profiles and locations in order to best address their needs. 

Consequently, the desirable characteristics of a smart campus are accurate context awareness 

and ubiquitous access to networks, efficient and optimal utilisation, many varied resources, 

and the use of objective principles as a basis to make smart decisions or predictions.  

2.1.2.9. Summary 

All the above approaches and implementations are useful and contribute to build smart 

campuses; however, they rely on IoT technologies with a centralised system architecture, 

which lead to many issues and will be discussed in the next chapter with the proposed 

architecture that incorporates a distributed architecture exploiting blockchain technology to 

overcome some of the prevalent issues. Next, IoT technology is introduced in more details 

including its terminology and challenges.  

2.2. Internet of Things (IoT) 

Due to the continual growth of the Internet, connectivity and communication are ubiquitous. 

The integration of humans and devices has enabled connection to the Internet and data transfer 



 16 

automatically, which has created the so-called Internet of Things (IoT). IoT technology 

facilitates the global connectivity of computer networks, enabling the remote control of various 

‘smart’ objects to access specific services. IoT is an innovation that combines digital and 

physical components to enable novel business models and the creation of new products. With 

the efficient increase in broadband communication and power management, along with 

advances in microprocessors and increasingly reliable memory, it has become possible to 

digitalise functions and environments. Therefore, creating a smart world and the information 

thus generated may prove useful in various service domains, including smart cities, smart 

homes, and smart campuses.  

This section will explain IoT technology in more detail. It begins by assessing IoT technology 

terminology from different perspectives and identifies the one this thesis follows.  

2.2.1. IoT Terminology 

Over the years, researchers have defined IoT from different perspectives [60]. Some definitions 

have concentrated on the objects that connect to networks; others have focused on aspects 

related to IoT such as network technology and network protocols. Some descriptions of IoT 

focus on semantic challenges such as big data information, storage, and search. The European 

Commission defined IoT as an approach to developing smart environments through merging 

physical and virtual worlds [61]. The term IoT usually refers to a system of smart devices 

connected to the Internet with the ability to identify themselves and communicate with each 

other by collecting and sending data via the network [62]. Thus, it allows people, things, and 

processes to communicate and be connected in any place, at any time, using any service, and 

with any network. 

From a technological perspective, when devices embedded with sensors and chips such as tags, 

near-field communication (NFC), and radio frequency identification device (RFID) are to be 

identify, control, and manage the devices, they use IP addresses and other communication 

protocols such as Message Queue Telemetry Transport (MQTT) to communicate without 

human interfaces [63]. When devices connect to the Internet, they can start transmitting data 

to computing technologies such as the cloud, which is a powerful platform that integrates data 

analytics tools, data storage, and data delivery models to perform services for users and 

businesses. Once the data are received in the cloud, they are processed by relevant software 

and, in turn, valuable information is sent to the client. These data create a smart environment 

when they are used to make correct decisions, detect problems before they occur, and save time 



 17 

and money. Therefore, major IoT characteristics are perception, network, and intelligent 

processing.  

2.2.2. Challenges of IoT  

With the growing business requirement for service applications, there is a need to develop more 

devices and emerging technologies to ensure availability anytime, anywhere, as well as to 

propose protocols to solve compatibility issues and integration among heterogeneous objects 

that are connected to the network. With these developments, IoT has faced several challenges 

in terms of security and privacy. To solve these issues, it is necessary to revise the traditional 

IoT architecture, which consists of three basic layers: the perception layer, network layer, and 

application layer [64]. For example, many developments have occurred in terms of security 

measures in the perception layer, including adding access control for the connected devices 

(i.e., to protect privacy) and providing different encryption mechanisms (i.e., to encrypt the 

signal from electronic tags). In addition, the network layer has been altered to enable more 

dynamic topologies, end-to-end authentication, security routing, and the key agreement 

process, among other features. One example is developing the IPSec protocol and IEEE 

802.15.4 standard protocol to provide secure channels of communication between two devices. 

In the application layer, many mechanisms have now been developed to reduce the leakage of 

confidential information, as well as to bolster the robustness and security of information 

management (e.g., password management and resource management).  

Nowadays, the amount of the connected devices is assumed to be around 75 billion in 2025 

which is rapidly increases three times than in 2019  [65]. The exceptional growth in the system 

of IoT has created new opportunities by which methods allow information to be shared and 

accessed easily. Reyna et al. [66] highlights the cause of such initiatives as mainly the existence 

of the open data paradigm. These creative systems and methods face some significant 

vulnerabilities, such as a shortage of confidence and the leaking of data. As stated by Zheng et 

al. in [67], Internet of Things (IoT) is considered as one of the leading field in adopting 

blockchain technology. The blockchain can increase the efficiency of the IoT by providing a 

sharing service that is trusted, where we can benefit from a decentralised environment, in which 

the information is easily traceable and reliable. Using blockchain technology integrated with 

IoT will increase security whereas in any point of time the data’s sources can be recognised 

with guarantee the data immutability. As result of this integration, the IoT will provide secure 

environment where information can be securely shared between several participants [66]. This 



 18 

research will contribute to improving campus IoT security by merging it with blockchain 

technology, as discussed through this thesis.     

Next, blockchain technology is introduced in more details including its components, the way 

they work, and an overview history of the technology.   

2.3. Blockchain Technology 

Recently, blockchain technology research has become a trend in computer science, with 

growing attention from researchers and organisations. Since 2008, it has ranked among the top 

five technology trends and is considered the next revolution in technology as it provides 

solutions to the issues related to classical centralised architecture [68], [69]. Briefly, it acts as 

a distributed database recorded in blocks. Blocks of data are secured against revision or change, 

leading to increased security in the network [70], [71].  

This section will explain blockchain technology in more detail. It begins by assessing 

blockchain technology terminology from different perspectives and identifies the one this 

thesis follows. Next, blockchain components will be presented to explain the main features and 

mechanisms. After that, the history of the technology is delineated by explaining the different 

blockchain generations and clarifying to which generation the thesis belongs. 

2.3.1. Blockchain Terminology 

Narayanan et al. [72] indicated that the term ‘blockchain’ does not have a specific or standard 

definition. However, the term has described systems that resemble Bitcoin. There are various 

definitions of blockchain. For example, Coinbase is a cryptocurrency exchange, one of the 

largest platforms in the world, that provides blockchain as ‘a distributed public ledger that 

contains the history of every bitcoin transaction’ [73]. Coinbase clarifies blockchain from the 

perspective of digital currencies, while this technology is usable beyond financial applications.  

Other definitions focus on the primary technical components, such as transactions, digital 

ledger and cryptographic verification. For example, Sultan et al. [71] indicated that blockchain 

is ‘a decentralised database containing sequential, cryptographically linked blocks of digitally 

signed asset transactions, governed by a consensus model’. Kaal’s and Dell'Erba [74] defined 

blockchain as ‘… a shared digital ledger or database that maintains a continuously growing list 

of transactions’.  



 19 

Some definitions describe blockchain more broadly. Buterin [75], the founder of the Ethereum 

blockchain, one of the most common platforms, defined the technology as ‘a decentralised 

system that contains some kind of shared memory’. According to the National Institute of 

Standards and Technology, ‘blockchains are tamper-evident and tamper-resistant digital 

ledgers implemented in a distributed fashion and usually without a central authority’ [70]. This 

detailed description of blockchain covers a broader overview. This thesis will follow such a 

definition. It describes blockchain’s vital feature as distributed technology with an immutable 

and decentralised structure. The term ‘blockchain’ is applicable in different ways. For example, 

it can describe a suite of technologies, a data structure and an algorithm’s name. In addition, 

the term can describe distributed peer-to-peer systems as an umbrella term. In this thesis, the 

term refers to all interpretations of the blockchain.    

Therefore, Blockchain represents a distributed ledger that provides a transaction within a 

decentralised digital database. The transaction is verified and agreed upon by a network of 

computers before it is added and updated to the ledger. Blockchain allows parties to exchange 

assets in real-time without going through intermediaries [76]. A block in the ledger formed 

from a blockchain contains a transaction or a grouped set of transactions. Each block is linked 

to the previous block using the hash function and timestamp (see Figure 2-1). The first block 

differs from the other blockchain blocks and is known as a genesis block [77]. The block is 

hardcoded at implementation because it has unique characteristics, does not point to a previous 

block and does not hold any transactions. However, it contains details of network 

configuration.     

 

Figure 2-1 Blockchain structure [77]  



 20 

According to the above figure, the blockchain data structure shows the idea of a link list data 

structure as each block is referred to the preceding block. Both have a genesis element in the 

first part of the list, with no ancestor. However, noteworthy differences exist between them. 

Linked list data structures store data in a linear structure and use a pointer function to refer to 

the previous data. The linked list can be added to or deleted from data anywhere in the list [78], 

with no need for validators to check the update. The unique feature of the blockchain is that it 

is immutable and decentralised. A block in blockchain cannot be modified or manipulated since 

each block uses a hash function referring to its preceding block, and each block has a unique 

hash [79]. The hash function is a crucial algorithm that helps to validate and write the data into 

a blockchain. Each peer in the network has a copy of the blockchain ledger, and any changes 

in the network mean that the ledgers are synchronised and updated.  

The following section explains the principal technical blockchain technology components in 

more detail. 

2.3.2. Blockchain Components  

At a high level, numerous computer science mechanisms have helped to develop blockchain 

technology, such as the hash function and asymmetric-key cryptography. There are also 

components, such as blocks, distributed ledgers, consensus and transactions, that work together 

to build a secure and robust platform. Each component is explained as follows:     

2.3.2.1. Blocks 

A block is a crucial element in blockchain technology as data or transactions form in blocks. 

Each block links to the previous one to form a chain of blocks [80]. Blockchain uses the hash 

function to link the chain, which provides a unique signature for the block. If the transaction 

inside the block has been altered, the entire signature will change even if the data is altered one 

bit. This method helps to detect the altered block.  

Before explaining the data fields of a block, it should be noted that in the implementation stage, 

each blockchain platform can initialise its own data fields. However, it is typical that each 

block in blockchains consists of header, data and metadata, as in the following:  

• Block header: This consists of the block number in the blockchain. In some blockchains, 

it is referred to as block height. The numbering system uses integers starting from 0, which 

is the first block and also known as the genesis block, and for each appended block the 



 21 

number increases by 1. The block header also has the header hash value of its previous 

block as well as its current block hash, which represents a hash of all data blocks. 

• Block data: This data has all the transactions grouped in the block. Each transaction 

contains the header, which has the transaction metadata, such as the relevant smart contract 

name and version; the signature of the transaction initiator utilised to verify the transaction 

and to ensure the transaction is not tampered with; the proposal, which sees the input 

parameters sent to the smart contract by client application; the response, which is the result 

of the read and write set values of the smart contract; and the endorsement, which is the 

signed node response of transaction that satisfies the endorsement policy and refers to a list 

of endorsement responses for each transaction proposal. 

• Metadata: This contains information about the block not included in the block header, 

such as how to create the block, creation timestamp, the block size, the public key and 

signature of the creator. In addition, it indicates if the transaction was valid or invalid and 

had a random value of nonce, also called a counter, which is crucial to solving mining if 

the blockchain uses a mining process; otherwise, may this value not be included. 

2.3.2.2. Hash Functions 

The hash function is a cryptogram algorithm widely used in numerous areas, such as the 

financial industry, communication, data recognition and so forth. The algorithm is a one-way 

function that encrypts an input text with any dynamic length to produce the hash fixed-length 

output [79], [81].  The hash function has been involved in numerous applications related to 

data and system securities, such as password checking, authentication protocols and digital 

signatures, to provide protection. It has numerous features [82]: 

• One-way: It is easy to compute and obtain the input from the hash output. 

• Deterministic: This means that processing the same inputs produces the same hash 

outputs.  

• Collision-resistance: If one bit in the input is modified the hash output is also changed. 

Therefore, different inputs lead to different outputs.  

There are various types of the secure hash algorithms (SHA) family. In 1993, SHA-0 was the 

first SHA family developed by the US National Institute of Standards and Technology (NIST) 

[83]. SHA-1 [84] was then published in 1995 after discovering a significant weakness in SHA-

0. Both hashes encrypt input text up to 264-1 bits into 160 bits. Both also use 32 bits for word 

size and 512 bits for block size. However, SHA-1 computes hashing with extra steps that 



 22 

address the SHA-0 problems. SHA-1 is applied in common security tools and Internet 

protocols, such as SSL, SSH, S/MIME, TLS, IPsec and PGP [85]. In addition, it is used in the 

private sector as a protection scheme to hash sensitive information as well as being used for 

authentication and integrity realisation models [86].  

Between 2001 and 2004, SHA-2 variants were published by the NIST and demonstrated more 

robustness than the previous ones. The SHA-2 family includes four algorithms: SHA-224, 

SHA-256, SHA-384 and SHA-512. The former two algorithms accept the same block size as 

SHA-1 for input messages, which are 512 bits. However, they produce different output sizes: 

SHA-224 creates 224 bits, and SHA-256 generates 256 bits. The latter processes input 

messages up to 2128 -1 bits, and they increase the block size and the word size respectively by 

1024 bits and 64 bits. SHA-384 produces 384 output bits, while SHA-512 produces 512 output 

bits. In 2012, a public competition was opened by NIST to develop another hash algorithm. 

Keccak [87], the winner of this competition, developed SHA-3, which was chosen as the next 

secure one. SHA-3 has the same SHA-2 length, although its internal structure is different and 

more complicated than the previous SHAs to ensure security and enhance computation 

efficiency. SHA-2 and SHA-3 hash functions are both currently in use.   

Secure hashing algorithms are utilised in blockchain technology - commonly adopted is SHA- 

256 from the SHA-2 family [88] - to secure the networked system, specifically the identities 

and data shared in the network. Many papers have developed their own hashing algorithms or 

enhanced the existing secure hashing algorithms. However, both approaches are out of this 

thesis’ scope since the thesis analyses and uses the current blockchain platforms with their 

adopted secure hashing algorithms.    

2.3.2.3. Consensus Mechanisms  

In a distributed environment with no centralised authority, consensus mechanisms are required 

to ensure a dependable and trustable system. The consensus mechanism is a protocol that 

allows all mining peers responsible for appending valid transactions to the ledger to receive all 

submitted transactions and reach an agreement in the network. This protocol is considered the 

backbone of blockchain technology. There are numerous consensus algorithms that apply to 

various platforms of blockchain networks to ensure the consistency and integrity of stored data 

across geographically distributed peers, such as proof of work [89], Byzantine fault tolerance 

[90], proof of authority [91], and poof of stake [91]. Chapter 4 will discuss consensus 

mechanisms in more detail, including their types, functionalities and characteristics.                  



 23 

2.3.2.4. Transaction  

In a business environment, a transaction is used to describe a transfer from the seller to the 

buyer. In the blockchain, the transfer is documented in a ledger [92]. A transaction can describe 

any interaction among peers in the blockchain. For example, in the bitcoin blockchain, a 

transaction refers to the cryptocurrency transferred between peers in the network. The 

transaction’s life cycle begins when the user initiates and digitally signs it [93]. The digital 

signature employs the user's private key during the generation process since each participant 

in the blockchain has a private and public key, as shown in Figure 2-2. 

 

Figure 2-2 The process of signing the transaction [93] 

The signature generation algorithm uses the sender’s private key and the transaction value to 

create the user’s digital signature. The signature is then attached with the user transaction to be 

broadcast to other peers in the network in a phase known as a transaction request. Then, the 

transaction request needs to be vitrified and validated by the miner. The miner uses the sender’s 

public key in the validation process to add the transaction to the blockchain. When the network 

has more than one miner that works simultaneously, a consensus algorithm is required. When 

the transaction is added to the chain, it cannot be altered, although it can be reviewed.      

2.3.2.5. Ledger 

A ledger can be called for a list of transactions. In the past, old-style ledgers were registered 

using paper and pen to track transactions, such as exchanging services and goods. Ledgers then 

modernised by using digital databases which rely on a trusted centralised third party who 

owned the ledgers: centralised architecture leads to numerous issues, such as a single point of 

failure, distributed denial of service (DDoS) and denial of service (DoS) attacks, that are 

explained in more detailed in the next chapter. Recently, blockchain technology has allowed 

the distribution of ledgers instead of doing so in a centralised fashion. There is growing interest, 

and much research has been conducted to develop distributed ledgers to increase security, 

reliability and trust. Therefore, a distributed ledger is a replicated copy of a ledger distributed 



 24 

among nodes on the network[92].  In other words, data or assets in the distributed ledger can 

be recorded, shared and synced among peers that reach consensus. Thus, the information can 

be secured in the future, and all participant nodes are responsible for maintaining the ledger.    

2.3.2.6. Smart Contract 

In 1994, Nick Szabi [94] introduced the concept of a smart contract as a transaction protocol 

that can be computerised and run the contract terms. Later, he reused one of the primary 

blockchain components as a set of code or programming instructions that can be run by the 

participants in the blockchain network to handle the transferred data between peers and to 

ensure its consistent updates. This script works as an agreement between parties that requires 

independent execution and agreement on the terms of the contract backend before adding any 

transaction in the blockchain to increase trustworthiness, minimise malicious occurrences and 

eliminate human judgement. It also consists of several protocols that combine with user 

interfaces to secure and formalise relations in the network. Each peer has its own rules stored 

in smart contracts to negotiate the contract terms and execute the agreement. In addition, smart 

contracts have principles and objectives to design the terms derived from secure protocols, 

economic theory, legal principles and theories of reliability. Each smart contract has its unique 

address since it is stored on the blockchain, and any executed transaction stores this trackable 

address that cannot be altered.     

Originally, the smart contract was used in economic and financial services within a 

limited range of transactions. Recently, it has been deployed in a broader range and converted 

different contracts from different fields, such as education, supply chain and healthcare, into 

programmable scripts [95]. In addition, smart contracts can be either fixed or can be self-

programmed depending on the blockchain platform. Some platforms use different calls for 

smart contracts, including chaincode, as in Hyperledger Fabric, which will be addressed in 

more detail in Section 5.2.1.                 

2.3.3. Blockchain Background and Generations 

In 2019, Casino et al. [96] classified blockchain technology into three generations: Blockchain 

1.0, which started when Bitcoin was founded with all cryptocurrency transaction applications; 

Blockchain 2.0, which extended beyond digital cryptocurrency applications and included all 

applications with smart contracts; and Blockchain 3.0, which used blockchain applications in 

a broader context, such as healthcare, government, smart city and so forth. Blockchain 

technology is a trend that is growing quickly, and in 2020, the blockchain developed into its 



 25 

fourth generation [97]. Blockchain 4.0 is related to Industry 4.0, which supports all 

decentralised Blockchain 3.0 applications. The two can also communicate with each other.    

When this thesis was started, it was designed for Blockchain 3.0, then the most-current 

blockchain generation. By applying blockchain to decentralised current smart campus 

frameworks, the study was extended to store data on-chain and off-chain to increase the 

scalability, which is considered one of the 4th generation aims, and integrate into Industry 4.0. 

Both generations are still in their early stages, and experiences are maturing. The following 

sections briefly present the evolution of blockchain technology generations.  

2.3.3.1. Blockchain 1.0  

The vital blockchain’s technical elements, such as smart contract, byzantine fault tolerance and 

public key infrastructure, are not recent developments, and they have been identified 

individually since the 1980s and 1990s [72]. In 2008, Satoshi and Nakamoto [98] combined 

these components together into the blockchain system. They wrote a paper introducing a 

bitcoin and electronic cash that allows peers to send transactions directly without needing to 

go through central financial institutions or any third party. In that research, Nakamoto invented 

the ledger, which was named ‘a chain of blocks’. This chain of blocks involved developing a 

new version of cyber currency and electronic cash [99] and was later called blockchain in 2016 

[100]. In this generation, the idea was primarily designed to create digital cryptocurrencies and 

payment functionalities. However, the primary disadvantage was that transactions needed to 

be controlled. Since Nakamoto initially introduced blockchain technology, numerous other 

blockchain technologies have been studied and improved. 

2.3.3.2. Blockchain 2.0 

From 2010 to 2013, blockchain became commonly used in cryptocurrency applications, digital 

payments and currency transfers. The Ethereum platform [101] was proposed in the second 

level of blockchain, introducing the idea of the digital ledger or the smart contract, a self-

executed programme or computer protocol that works as an automatic agreement between 

nodes. A smart contract comprises all the conditions and clauses involved in financial services 

and applications and is transparent to all peers. Scalability and sustainability are the significant 

downsides for this generation.      



 26 

2.3.3.3. Blockchain 3.0 

Blockchain changed the finance industry services, but it also has influenced other areas, such 

as business [102], the health sector [103], and security [104]. At this level, smart contracts have 

been improved and can shift the blockchain towards a decentralised internet, which means 

integrating smart contracts, communication networks, data storage and open standard 

platforms. Many platforms have been developed, such as the Hyperledger framework [105], 

which can decentralise various applications called DApps. DApps run blockchain networks in 

the backend to decentralise the applications and have a frontend user interface coding in any 

programming language that can call the blockchain at the backend.           

2.3.3.4. Blockchain 4.0 

With the growth of decentralised applications, there is a requirement to integrate several 

architectures and services under one umbrella platform to communicate with each other. 

Therefore, users from different platforms can cross-chain communicate as they work as a single 

unit. With Industry 4.0, there is a requirement for seamless integration of various execution 

platforms with an increased degree of privacy and trust. There is also a requirement for 

increased scalability of blockchain networks [97]. Blockchain 4.0 fits with Industry 4.0 

requirements and allows the integration of business systems to operate cross-chain and ensure 

security. In other words, this generation of blockchain technology focuses on Blockchain 3.0 

and includes distributed databases and a public ledger. This development means they can 

operate in real-time business and meet industry logistics to fulfil the requirements of Industry 

4.0. The SEELE platform [106] is an example of this generation and allows individual 

blockchain systems to connect to each other while they operate independently. In addition, it 

supports linear scalability by operating a neural consensus algorithm and computes on-chain 

and off-chain.  

2.4. Blockchain in Education Environments  

The increased number of studies and developments of blockchain in recent years indicates that 

researchers have involved it in many different areas beyond finance and currency. Due to its 

properties of immutability, decentralisation, reliability and data provenance, it is a suitable 

technology for developing in various fields, such as smart education systems [107], [108]. 

Many studies have discussed its benefits to education systems and applications, including 



 27 

administration work, fee payment, library managements, academic records, certificates and 

publishing.  

This section presents blockchain-based education projects and classifies them based on their 

services to help understand how blockchain technology assists in this area and what kind of 

blockchain platforms and consensus algorithms have been used to develop the smart education 

framework that will undergo discussion in Chapter 4.   

2.4.1. Blockchain-based educational institutions    
Numerous educational institutions and universities deploy blockchain technology in their 

applications to support administration work, maintaining certificates and fee payment. For 

example, the University of Nicosia, Cyprus [109], [110] is considered the first university to use 

the blockchain to issue certificates and accept bitcoins for tuition fees. The university 

developed the Massive Open Online Course (MOOC) platform to teach its course on 

cryptocurrency and offered an MSc. degree in Digital Currency. The certificates are issued 

using PoW consensus algorithms and use the SHA-256 algorithm to generate an appended 

unique code to share without amends. The Maltese Education Institution developed a 

blockchain platform to store the credentials of its employees and learners. The platform uses 

the Hyperledger blockchain and PoW consensus algorithms to achieve the institution's 

objectives of allowing its users to manage and control their own data and share their credentials 

globally. In 2017, the Massachusetts Institute of Technology (MIT) [109] started to issue and 

verify digital certificates to their students and give them diplomas using the Blockcerts 

platform, which is based on the Bitcoin blockchain, with the support of a learning machine. 

The University of Birmingham [111] developed a blockchain platform named BTCert for 

issuing certificates based on the Bitcoin blockchain. BTCert resolves the issues related to 

Blockcerts, which have limitations related to authentication, by implementing a set of novel 

cryptographic protocols. Since 2015, Open-Source University [111] has offered a platform for 

academia, students and businesses. The platform uses the Ethereum blockchain and IPFS to 

authenticate the learners’ credentials and allows other employers and educational institutions 

to verify learners’ certificates. In addition, the platform uses a smart contract to support 

payment options.                         



 28 

2.4.2. Blockchain-Based Learning Platforms  

Many researchers have used blockchain technology in their learning platforms. For example, 

from 2018, Woolf University [112] was an early blockchain university designed to be a 

decentralised institution and increase transparency between lecturers and students. The 

university uses Ethereum and smart contracts to teach courses internationally and rewards both 

learners and academia. Dubai has launched the largest blockchain model for learning platform 

named Educhain [111], based on Ethereum and smart contracts to allow more than 400,000 

learners to use the platform. EduCTX  [113] is another project developed for the University of 

Maribor using the Ethereum blockchain and a Delegated Proof of Stake (DPoS) consensus 

algorithm to allow a higher educational institution to have a right to access the network and 

offer benefits for learners and academia. The decentralised platform allows students to verify 

the courses and means academia can issue and verify candidates’ certificates without a third 

party. In the application process, EduCTX allows institutions to validate applications and 

provide a digital certificate to their learners who attend workshops, lectures and training. Light 

Chain [114] is a blockchain platform for online quizzes. The framework evaluates the results 

and stores them on the blockchain to provide immutability for manipulation. SuccessLife [111] 

is a platform for organising global workshops and seminars. It contains hundreds of workshops 

and seminars across 30 countries and has over ten million participants.                         

2.4.3. Blockchain-Based Library Management System 

Library played an important role in intellectual developments and social enlightens. Many 

researchers have been focused to emerge new technologies to develop smart knowledge and 

shared services to the library systems whether they are public libraries or university libraries. 

Most of the current library systems are rely on third party and centralised architecture. The 

common services that library management systems provide are circulation, cataloging, 

reference, journals, and public consultation. These modules mostly shared central back-end 

databases to ensure control on their data [115]. However, these library services could face many 

practical issues, such as fast transmission speed, complex interaction types, huge amount of 

data and ensuring users’ privacy. In addition, the centralised structure of these institutions leads 

to be self-administrated and remained isolated which cause to less or poor usage of their 

resources. Therefore, with the features of blockchain technology including decentralised data 

structure and immutability of the network, it has been emerged in the field of developing library 

management systems to solve these problems.  



 29 

Although blockchain technology have been developed in different areas and applications, there 

are small number of studies in the field of blockchain based library managements and services 

[116], [117]. For example, Liu [115] used the advantages of blockchain technology to design 

a book management system and discussed theoretical the borrowing a book process function 

including entering the borrower information, generating the book borrowing, and transferring 

and returning the book. Cabello et al. presented a project idea named LibChain which 

blockchain technology was exploited to decentralise current library systems and eliminate the 

bureaucratic obstacles of library services for both providers and users. However, these schemes 

were discussed the idea without presenting implementation and experimental results.  In 

addition, Zeng et al. [118] developed book sharing system named BookChain. It used BCOS 

blockchain platform to enable students to borrow and returned their spare books. The system 

allows proper traces and supervision of each book in a campus without intermediate such as 

libraries since the book information and status stored in the ledger. Chiu et al. [117] proposed 

library system called LibBlock which aimed to provide decentralised, robust, adoptive and 

flexible e-library. The system emerged Ethereum blockchain technology and IPFS to enrich 

the efficiency of the current systems.         

2.4.4. Blockchain-Based Academic Records and Certificates 
Blockchain has been employed in the field of storing academic records and issuing and 

verifying educational certificates due to its characteristics of immutability and decentralisation. 

With blockchain technology, any respective educational institutes can update the ledger of all 

students’ achievements, grades and certificates. In the future, these documents will be easy to 

verify by checking the records ledgers. For example, Sony Corporation and Sony Global 

Education developed an education system, built on the IBM blockchain, to store and share 

students’ records among permissioned peers [119]. APPII [111] is a platform using the 

Ethereum blockchain to verify the academic qualifications and backgrounds of teachers and 

learners. APPII, in partnership with the Open University, uses a smart contract to verify users’ 

career history documents. In addition, Gradbase [120] is a platform for storing and verifying 

educational records and QR codes attached to students’ documents. The platform is based on 

the Bitcoin blockchain and PoW consensus algorithm to allow users to update and delete their 

professional and academic qualifications. The platform has a tie-up with LinkedIn for an 

additional feature. Stampery [111], [121] is another scheme to verify data using Bitcoin and 

the Ethereum blockchain. Binding both blockchains’ consensus algorithms with routing keys 

increases efficiency and scalability. TuringChain [122] is a project to track records to ensure 



 30 

sustainability and is unified for the education field instead of traditional educational 

certificates. It uses the Ethereum blockchain with AI to rely on the Turing test. Edgecoin [111], 

based on the Stellar blockchain and PoS consensus protocol, is used to store employment 

history, educational credentials and candidates’ skills. It uses smart contracts to automate 

recruitment processes. RecordsKeeper [110] is a system for issuing e-certificates and 

generating a receipt for an educational institution. The receipt number, along with key pairs, 

will be used to verify the certificates. RecordsKeeper was developed using the Multichain 

blockchain, which is a fork of the Bitcoin blockchain. DISCIPLINA [111] is an educational 

platform based on the Ethereum blockchain and the DPoS consensus algorithm that aims to 

help recruitment companies and academic institutions store candidates’ achievements and 

backgrounds. The platform developed a scoring system to allow institutions and employers to 

search for a potential candidate. Aastha et al. [123] developed a framework based on the 

Ethereum blockchain and IPFS to issue a digital certificate and verify it using student identities.   

2.4.5. Blockchain-Based Publishing      
The field of scientific publication is another area that can leverage blockchain technology. The 

main issue in this field is the system for submitting manuscripts. This is because, in most cases, 

the system provider is a third party that supports organisers of journals in terms of coordination 

and academic conferences in terms of the submission workflow, which starts from submitting 

the abstract and paper and moves onto arranging peer reviews and camera-ready submission.  

Although such systems have made the manuscript submission process more efficient, they have 

also raised concerns about potential dishonesty and technical weaknesses. For example, the 

naming scheme for all paper submissions made to Sheridan Printings, which is a software for 

conference management utilised by several conferences (e.g., ITS and TEI), was easily 

guessable for the 2004-2011 period. In particular, the naming scheme made it possible to 

retrieve all the documents submitted to a particular conference easily for anyone with the base 

URL [124]. Thus, in such cases, a researcher must trust the system when submitting their 

unpublished work, which leads to the possibility of data leakage or idea leakage. In addition, 

users must trust that anonymous peer reviewers and the program committee will not plagiarise 

or amend the results or findings.  

Many research papers have proposed the use of blockchain systems to resolve these issues and 

to decentralise manuscript submission systems. For example, Gipp et al. [124] developed a 

scientific manuscript system named CryptSubmit to provide data integrity and security for 



 31 

submissions, which relied on the use of Bitcoin blockchain technology to verify timestamps as 

a tamper proof data point connected to each submission. Hepp et al. [125] proposed 

OriginStamp using Bitcoin blockchain technology for intellectual property protection, offering 

a novel method for timestamping and storing documents. Pozi et al. [126] proposed a 

framework based on blockchain technology that used PoW to measure writer contributions and 

to enable the paper to be accessed transparently. In addition, Andi et al. [127] used blockchain 

to design a plagiarism prevention model, along with digital signatures to protect the work and 

allow only reviews to access the paper without altering it. 

All the above projects and schemes use blockchain technology for their educational 

applications in different contexts and have varying aims, such as increasing their systems’ 

security, privacy, data integrity and data protection, enhancing transparency and responsibility, 

increasing trust and facilitating communication among parties. However, these studies have 

limitations that can be summarised as the following: 

• The studies used different blockchain platforms, mostly Bitcoin and Ethereum 

blockchains, with different consensus algorithms which lead us to conduct research, as 

will be discussed in Chapter 4, to help select and develop a suitable blockchain platform 

for experimenting with applications in educational environments, such as students’ 

transcripts, certificates, credentials or any other accomplishment data forms. 

• Most of the above studies had not addressed the scalability issue when the data size 

becomes too large to fit on the blockchain, which leads to increased transaction 

latency. In Chapter 5, the solution of this issue will be covered by storing most of the 

data off-chain using IPFS.  

• There are a few pieces of research, such as Open-Source University, that use off-chain 

storage. However, they developed them with the Ethereum blockchain, which is, 

according to this study, not a suitable type of blockchain to use in an educational 

environment, as will be discussed in more detail in Chapter 4.   

2.5. Summary  

This chapter presented an overview of the smart campus concept with a discussion of the 

primary technologies and platforms deployed in it. It studied eight domains in the smart campus 

and defined problem assets per domain. Then, the chapter presented an overview of blockchain 



 32 

technology and its components. All blockchain generations had been presented with their 

fundamentals to help categorisation in this thesis and to contribute to this field. Blockchain 

technology has grabbed the attention of academic and educational areas. By joining distributed 

ledgers, hashing mechanisms and cryptographic philosophy, data can be exchanged in an 

immutable and clear way. The chapter highlighted the benefit of the technology in this field 

and demonstrated the limitations of recent studies. The next chapter will propose the novel 

smart campus architectural framework.  

 



 33 

Chapter 3 Analysis of Smart 
Campus Architectural 
Frameworks 

Rapid development in advanced technologies, such as the internet of things (IoT) and 

blockchain, has led to a growth of interest in a number of application areas, including smart 

environments, such as a smart campus, which can be considered as an example of a smart city. 

Despite such growth, no comprehensive guiding framework has been developed for emerging 

IoT and Blockchain technologies deployment in the smart campus environment, particularly in 

relation to security and privacy aspects, as well as to the mitigation of known problems with 

IoT and Blockchain in existing applications. This chapter helps to answer the second research 

question: ‘How can the smart campus technologies be characterised?’ to propose a novel 

architectural framework for the IoT and Blockchain applications deployed within a smart 

campus environment by comparing the main technologies involved. Then, the framework will 

be discussed, with particular consideration to security and privacy requirements. 

3.1. Overview of Current Smart Campus 
Frameworks 

Many researchers have proposed different smart campus frameworks that would need to be 

reviewed and studied in order to develop the suitable smart campus framework. Most of these 

frameworks have been used IoT architecture to propose smart campus environment. The 

middleware layers -sitting between the hardware and sensors layer and the applications layer- 

in IoT architecture have almost the same functionalities; however, the underlying technologies 

are different. Thus, it is important to address these frameworks based on IoT architecture 

layers.    

Some researchers have been developed a smart campus framework using the traditional three-

tier structure. For example, Narendrakumar and Pillai [128] proposed the Smart Connected 

Campus framework to deploy and exploit IoT technologies in a campus setting in order to 



 34 

remotely monitor various campus activates. The architecture generates several features reliably 

and easily at run-time, such as water and temperature monitoring systems, a route map and on-

line resources, and integrates them all in a single platform. All the facilities are communicated 

and networked through IoT, enabling data generation at run-time and remote access to the data. 

The framework contains of three major components: sensor technologies, a cloud server, and 

Android mobile applications. In addition, authorised login credentials are used to authenticate 

data access. Furthermore, Hossain et al. [129] proposed a smart campus model based IoT 

technology, which included campus facilities, such as smart parking, smart classroom, smart 

buildings and cloud computing system. The model consists of three layers: a perception layer 

which is responsible for sensing data from IoT campus devices; a network layer which sends 

captured data to cloud storage and stores collected data via Wi-Fi or the internet; and lastly, an 

application layer, which provides services and applications to the end user. 

Zhe et al. [130] developed a smart campus-based information service. The framework 

integrates various service information systems with the individual’s location to unified 

information service on campus. The architecture uses the basic three-tier structure. The 

presentation layer, mainly based on the mobile applications to present the information, includes 

massages, location and statistics to users. The application layer comprises location applications 

and local information services. The data layer consists of three components: data source, 

including location data and different applications data; basic data, which is utilised to store 

basic and location information; and data interface, which supports the interaction between the 

system data and the location service platform. The study did not, however, mention blockchain 

technology.  

Moreover, Yan and Hu [131] constructed a smart campus framework-based data platform, 

providing the association with data analysis using Apriori algorithm as association mining 

algorithm. The framework consists of basic three-tier structure: the user interface, which shows 

the results of data mining; the middle layer, where data is processed; and the data layer where 

the data is stored in a database. In addition, Hu an Yan [132] proposed smart campus-based big 

data framework to offer cooperation and interconnection between different applications 

systems. In addition, the framework used cloud computing as big data storage and the K-Means 

algorithm to process the data.   However, all of these smart campuses used traditional databases, 

which suffer from third party issues that will be discussed in more detail in the next section, 

and blockchain could be the solution to storing the data.  The frameworks could use blockchain 

technology to increase the security and protect the data.  



 35 

Some studies have been developed smart campus frameworks using four IoT architecture 

layers. For instance, Agate et al. [133] designed a smart campus-based fog computing 

framework to enable data collection from various smart devices. The edge of the network 

enhanced the services available to users and improved the user experience in the campus. This 

framework based IoT architecture consists of four layers. The lowest layer of the framework 

includes various heterogeneous sensors, which are responsible for collecting raw data and 

sharing it with the higher layer. The next layer consists of fog entities, which received data 

transmission from edge devices using communication infrastructures, such as Wi-Fi, 

aggregating all data and sharing it with the cloud. The cloud layer computes and analyses the 

data, as well as being responsible for storing all information needed to display the collected 

data and results on the application layer. This approach focuses on integration of fog computing 

and IoT to improve the scalability of the system. However, such a system usually includes 

security and privacy issues.  

Enqing et al. [134] constructed a smart campus and three dimensional geographic-based 

platform to achieve data and service sharing, as well as the management of heterogeneous and 

multi-source data, such as spatial real data, information database and geographic information. 

The framework contains of four layers. The first layer is the infrastructure layer, which includes 

hardware, network devices and the operating system. Then the data service layer has different 

databases, such as a spatial real database, geographic information and other databases. Next, 

the platform function layer includes a basic function to support the 3D geographic information 

interface and the business function, which supports data interface, such as image and video 

queries. Lastly, the application layer is responsible for providing application and data services. 

This study did not cover blockchain technology.  

Lihong [135] constructed a smart campus based on IoT and deployed on Hadoop as cloud 

server. The framework provided resource sharing, dynamic understanding and information 

released real-time. The architecture was divided into four layers: a data layer, responsible for 

storing and classifying data based on business requirements and data characteristics; a system 

layer, comprising operating system and several subsystems, a central server hardware platform 

and the layer supports that connect other layers; a network layer, which includes the IoT 

networks that support different types of sensors for coverage and transmission of various 

resources and information on campus; and an application layer presents obtained data to users 

and provides interactive services through management processes and business rules. However, 

the framework did not study the integration of blockchain technology into its architecture.    



 36 

A five-layered IoT has also have been used to develop smart campus frameworks.  For 

example, Agarwal et al. [136] proposed a five-layered IoT smart campus framework that can 

be implemented in various cases. The first of the five layers is a sensor and data acquisition 

layer, which is responsible for capturing data in real time from different sensors then sending 

the data to the upper layers. A compute and infrastructure layer comes next, which consists of 

the required infrastructures, such as Wi-fi, Zigbee and BLE that are needed for network 

connectivity by gathering data from the previous layer and send it to the cloud or backend 

server. Then the platform layer is responsible for developing a unified layer to support 

communication among heterogeneous systems, integrate the data from various systems and 

define business rules. The application layer helps by defining and implementing different usage 

scenarios within the smart campus. Finally, a monitoring layer monitors the applications and 

creates alerts when needed. A dashboard and command centre can be set up to monitor 

applications on a regular basis. The framework of smart campus can help to implement 

different cases based on usage; however, it relies on IoT technologies and third parties to store 

the data, which leads to several issues that will be discussed in more detail in the next section.  

Lastly, some researchers have proposed a smart campus framework using seven IoT 

architecture layers. For example, Debauche at al. [137] presented (R)evoCampus as a smart 

campus architecture based IoT technologies. The seven layers consists of: infrastructure layer 

responsible for collecting environmental information or understanding an action; an 

information layer allows different objects to identify and communicate with connected devices; 

a communication layer, responsible for data transmission among connected devices using 

various technologies and protocols, such as Wi-Fi, 4G, and Zigbee; a connective layer, 

allowing interoperability and connectivity of exchange data among devices; a middleware layer 

safeguards the storing and processing of data in the cloud; a service layer delivers reliable and 

critical facilities for several applications, such as open data and weather station; and finally, an 

application layer provides various data consultations, visualisations and presentations to end-

users. However, the framework did not mention blockchain technology.  

In conclusion, all of the studies mentioned above have proposed smart campus frameworks 

based on IoT technologies. Each framework has been developed using different IoT 

architecture middleware layers, which mainly sit between the hardware and sensors layer and 

the applications layer. The middleware layers contain a set of functionalities, such as data 

storage, data management, and data processing, which are required when developing smart 

applications, since data is the heart of smart applications and IoT environments. Therefore, 



 37 

data has to be secured and must not be stored in third parties. This will be discussed in the next 

section in order to propose the smart campus framework, which stores data in a secure way, as 

well as using suitable IoT middleware layers, providing appropriate technologies and tools in 

each layer. 

3.2. Existing Problems for Current Smart Campus 
Frameworks 

Although the above existing smart campus frameworks provide different architectures with a 

different number of layers, they all relay on an IoT centralised architecture, which is developed 

using a centralised server, to manage and control connected nodes. In other words, a centralised 

architecture is a clint-server architecture, that typically has a centralised server cloud 

computing and clints that are represented by IoT nodes. The centralised server has many roles, 

such as processing data, managing task scheduling, dealing with all requests coming from the 

network and storing information.  

The centralised architecture provides several advantages, it allows a variety of devices to 

connect and communicate among each other under the management of the centralised unit and 

provides the needed identification and authentication for connected devices. The whole 

network, in this case, is easy to control and is maintained through central server. In addition, 

the architecture does not need to be installed in many workstations requiring software and 

hardware since most of the operations are done by the centralised unit, which also saves on 

costs.  

However, the centralised architecture suffers from various threats and complications. Khan 

[138] and Atlam and Wills [139] discussed these issues in details as summarised in the 

following:   

• Security: Many studies have been done and have confirmed that the most serious issue 

for the centralised system is security [140]. Since all the system operations are executed 

via a central unit and all data is saved in one place it increases the risks of being a target 

for different types of attacks. Denial of Service (DoS) and distributed denial of service 

(DDoS) attacks are most common information leakage attacks. Therefore, there is a 

high risk in storing sensitive data in a centralised server.  



 38 

• Privacy: Another vital issue that needs to be considered is privacy, since smart devices 

collect a massive quantity of confidential and personal information such as passwords, 

financial accounts etc., and is stored in centralised unit which usually belongs to third 

party and can easily be attacked. There are some examples that service providers attack 

the privacy of users [141], [142]. For instance, some third parties such as Facebook sell 

user information to marketing companies, which in turn use this information to analyse 

user behaviour in the network [142]. In addition, data can be altered or deleted from 

insider attacks that will affect data integrity. Thus, a secure method is necessary to 

provide privacy of information. 

• Single point of failure: When all operations, controls and storage is achieved by a 

centralised server, it can create a single point of failure which means when the central 

unit is down, the whole system will fail and will be unavailable [141]. The common 

way to avoid this issue is by adding redundant switches, servers, and network 

connections as a backup to work alternately when the original centralised server fails. 

Nevertheless, this approach has many issues, such as it is expensive to install the 

alternative requirements, and that there are synchronisation problems between the 

backup and the original server. 

• Scalability: Another main issue for a centralised architecture is scalability [141]. The 

centralised unit uses a central authority to process all commands and controls which 

can be scaled for small networks however, it can be impractical for large organisations 

such as campuses, that are distributed in different areas, which would increase the 

number of IoT devices needed. According to Piekarska and Halpin [143], there are 

concerns about the efficiency of operating and the scale of the IoT system with 

centralised architecture taking into account the increasing demands. In this case, 

transporting decisions for large organisations may suffer and not operate efficiently.         

Recently, blockchain technology has been involved in various application areas beyond the 

cryptocurrency domain since it has multiple features, such as decentralisation, support for 

integrity, resiliency, autonomous control, and anonymity [144]. In addition, blockchain shows 

several properties lead it to be a suitable technology to apply it for different applications as it 

is discussed in the following:  

• One of vital properties is that blockchain eliminates a central authority by using a 

distributed ledger that allow to achieve a distributed consensus in order to build a 



 39 

decentralised system to provide more efficiency for operating and controlling 

communication among all participating nodes.  

• Blockchain ensures immutability since an accepted transaction stored in distributed 

ledger in a block then each block have to reference its previous block to build a chain, 

therefore, any published block did not refer to its preceding block, it would be rejected 

by other nodes.         

• blockchain ensure data persistence since it is stored in a distributed way which means 

many copies of the same ledger shared, updated and synced among nodes. Even though 

if a new peer joins the blockchain system, it can reach of a full copy of the distributed 

ledge, therefore, the ledger is difficult to be lost or destroyed. Unlike cartelised systems 

who owned the ledger; they should provide data persistence by backing up the system 

and a user have no choice to trust them. 

• Data in blockchain is provenanced when the transaction or data stored in a distributed 

ledger, it needs to be processed through cryptographic mechanisms, such as hash 

functions and digital signatures. This process ensure tamper resistant and authenticity 

of the transactions. While on centralised system, a user has to trust the owner of the 

ledger and transactions not being altered.   

• Blockchain eliminates the single point of failure since data stored in and retrieved from 

the distributed ledger. While in the centralised platform if it goes down, which could 

lead to the failure of a whole system [139].  

• Another property of blockchain is transparency since all transactions are valid before 

adding to the blocks. If there was an invalid transaction made by a malicious peer, other 

nodes would detect and reject the transaction. Unlike a centralised model, a peer has to 

trust that received transaction is validation by the owner of the ledger.            

All these properties put it in the lead as a suitably advanced technology to apply to the smart 

campus framework. Therefore, deploying blockchain technology to the proposed smart campus 

framework will provide more benefits by managing the problems associated with a centralised 

IoT architecture, especially from a security perspective.  



 40 

3.3. Proposed a Smart Campus Architectural 
Framework  

A novel smart campus framework architecture based on IoT and Blockchain has been designed 

to provide a comprehensive guiding framework [107]. The main goal will be the collection and 

aggregation of the data from various areas of the campus while increasing the data security and 

providing a better service to enhance the experience of the user. To accommodate the different 

areas of the campus, several devices and sensors will be used. These will be distributed around 

the campus and will work simultaneously with an aggregation of networks and software to 

generate heterogenous data, which will be released as reliable and valuable data from the IoT. 

Thus, there is a need for the system to support several network protocols to provide scalable 

and reliable communication across the networks. In addition, the system needs to handle the 

previously discussed problems related to current smart campus frameworks, especially 

security.  

IoT architecture with six layers is applied for this framework. It employs Blockchain 

technology as a cross-layer component to eliminate the third party, decentralise the architecture 

and ensure data security. See figure 3.2. for the conceptual framework.  



 41 

 
Figure 3-1 A novel smart campus framework [107] 

The following subsections describe each layer in more detail: 

1 Physical Layer: 

On the lowest level of the proposed architectural framework, the physical layer, several sensors 

have been used to collect and share raw data with upper levels. There are two types of sensors 

in the system: deployed and wearable. The former is at fixed points in various areas of the 

campus such as RFID and GPS. They can be installed at these locations to gather environmental 

data, such as humidity, temperature and location. The wearable type of sensor can be used by 

individuals daily in items such as tablets and smartphones. When the sensors sense the physical 

campus environment the parameters are then converted to data signals to be handled on the 

Cloud for analysing. The layer also contains actuators operate in the opposite way: that are 

responsible for the physical action of converting data signals coming from the upper layers 

[145] perhaps as a response to sensor data stored on the blockchain, which is subsequently 

analysed and results in an actuator event. Thus, smart devices are defined as any hardware 

component that can be connected to the internet and can operate with or without wires.  

Application Layer

B
l
o

c
k

 
c
h

a
i
n

S
e

c
u

r
i
t
y

 
S
y
s
t
e

m

Business Layer

Data Layer

Platform Layer

Communication 

Layer

Physical Layer 

Campus Sensor Networks Devices Controllers

WIFI RFID NFC QR Bluetooth ZigBee

IEEE 802.11 IEEE 802.15.1 IEEE 802.15.4 IEEE 802.16 Mobile Communication

WIFI

WLANs

WI-MAXZigBeeBluetooth 2G, 3G, 4G

IoT Gateway

Public

Cloud

Hybrid 

Cloud

Private 

Cloud

IaaS PaaS SaaS

Data Storage

Student

Data

Lecturer

Data

Staff 

Data

Library

Data

Other 

Data

Visualisation and 

Decision Support

Analytics and 

Models

Mathematical 

Package

Data Mining Library

Data / Event Processing

Real Time Reasoning

MetadataCatalogs

Smart Building Smart Library Smart Classroom Smart Administration

Smart Water/Waste Management Dashboard Web/Portal

CoAp MQTT DSS HTTP AMQP



 42 

2 Communication Layer: 

The communication layer is sometimes known as the network layer or transmission layer [146], 

[147]. Since IoT is about interoperability and connectivity, there is a need for communication 

between objects. The different data sources that are provided by the perception layer need to 

be connected to the upper architecture layers to handle collected data. Devices and sensors use 

protocols and adequate communication technology to connect to the Internet. An application 

such as a smart campus has a variety of data sources, which require the use of diverse 

communication technologies. For example, Wi-Fi/IEEE 802.11 utilises radio waves to allow 

smart devices to exchange and communicate within a 100 m range with power efficiency and 

without utilising a router in some ad hoc configurations [63]. IEEE 802.15.1 standard uses 

short-wavelength radio to exchange data between smart devices and to minimise power, such 

as Bluetooth low energy (BLE), which operates for a longer period of time and within a 100 m 

range. Recently, BLE was considered a suitable technology to support IoT applications [148]. 

In addition, IEEE 802.15.4 is another communication technology protocol ideally suited for 

low high-message throughput, low cost, low data rate, and low power consumption and is also 

a good candidate for machine-to-machine (M2M), wireless sensor network, and IoT. This 

standard is used to produce Zigbee protocol for more reliable communication and a high level 

of security [63]. It can be used in applications that need low battery life and a low data rate. 

Cellular or mobile communication technology operates over long distances with high 

throughput data, such as 3G/4G/5G [149], and allows devices to connect to the Internet and 

communicate at a reliable high speed. This is a good technology to use for mobile devices 

applications. Thus, the communication level is responsible for broadcasting the data across the 

layers in the network, the initial connection setup and dealing with data transmission errors. It 

connects the various communication protocols and sensors to the internet via IoT gateways. 

The IoT gateway acts as a bridge for various smart devices within the internet or public 

communication networks [150]. When different sensing domain protocols communicate with 

each other or when sensing domain protocols communicate with a network domain protocol, 

the IoT gateway supports protocol conversion to enable them to communicate. In addition, it 

can identify, maintain, diagnose, configure and control smart devices. In other words, the IoT 

gateway for different networks acts as a proxy and solves the integration issues. 

Many have studied integrated Blockchain technology in this layer to provide security in 

communication. Biswas and Muthukkumarasamy [151] proposed a smart city framework that 



 43 

integrated smart devices with blockchain technology to support secure communication. The 

paper stated that the Blockchain needed to be integrated with the communication level, 

converting the transactions into blocks using Telehash to be sent to the network. This would 

provide privacy and security.  

3 Platform Layer: 

Generally, a smart environment based on IoT uses a large number of data sources, including 

actuators and sensors that produce big data, which need to extract knowledge by using complex 

computations, applying data mining algorithms, and managing the services and allocation tasks 

[152]. Traditional information systems are not effective for this as they are prone to data 

inconsistency and have no data sharing capacity [153]. Therefore, there is a need for advanced 

technology in the processing unit that can provide the resources needed and have the 

computational capability. Thus, cloud computing presents the suitable technology and a 

powerful computational resource for IoT to process, compute, and provide valuable results. 

Blockchain can be integrated with this layer to decentralise the system structure and can be 

used instead of cloud storage to store the data.  

4 Data Layer: 

Campus systems have a massive amount of data called ‘big data’ that needs to be placed in a 

data layer. The layer can store and retrieve data and contains all the data that the campus needs 

in a variety of forms. Instead of storing campus data over the network, Blockchain technology 

can be used to decentralise data storage and use a data warehouse to add privacy and security. 

5 Business Layer: 

Every organisation has specific objectives and goals that need to be accomplished. For this, 

they need to collect intelligence from analysed data and apply it to their business strategy and 

planning. This layer delivers an evaluation of the performance of existing services and 

applications and provides intelligence solutions. The success of an IoT system not only depends 

on the use of advanced technology but also depends on who the system delivers the services 

to, i.e. the users. The business layer is responsible for creating graphs, models and flowcharts 

based on analysed data, as well as creating business rules, process management and the process 

of decision making. 

6 Application Layer:  



 44 

This layer can consist of many different application types and services required by many 

different end users. It includes campus smart services such as learning, library, administration, 

building and parking. The analytical data is collected, and the information is presented in a 

visual form. Therefore, the application layer’s main objectives are to provide high-quality 

intelligent services to stockholders [154], [155] and allow users to interact with the system and 

visualise the data via an interface.  

In addition, it contains a set of protocols that are responsible for transmitting messages from 

the application layer. For example, Constrained Application Protocol (CoAP) is one-to-one 

communication protocol that is inspired by Hypertext Transfer Protocol (HTTP). It is a 

lightweight protocol, which is appropriate for deployment for machine-to-machine 

applications, particularly for communication in a local network and web services as it follows 

a request/response model which supports broadcast and multicast. CoAP is designed to limit 

fragmented messages by keeping the overhead small and causing as little traffic as possible 

[145]. Message Queue Telemetry Transport (MQTT) is also a lightweight protocol. It is used 

in a publish-subscribe-model [63]; therefore, it is appropriate for cloud/remote communication 

and for applications that involve short-range mobile communication, satellite links and dial-up 

connections. MQTT is widely used for battery-run devices as it is efficient, has a compact size, 

consumes less power and delivers information to multiple receivers at the same time. [145]. 

Thus, this protocol is able to provide an ideal messaging protocol for M2M and IoT 

communications due to its low bandwidth networks, low power, and low cost. Advanced 

Message Queuing Protocol (AMQP) is an open standard protocol that supports business 

applications and to transmit business messages on different platforms and focuses on a 

message-oriented environment. Data Distribution Service (DDS) is a publish–subscribe 

protocol for real-time communication [154]. Thus, merging these of communication protocols, 

that can each work in a different scenario and with a different device manufacturer, increases 

the efficiency of device communication and enables interoperation in smart applications. 

7 Blockchain Cross-Layer: 

Despite the benefits of IoT with connecting devices, it does have limitations in privacy and 

security as it relies on the centralisation of architecture, which leaves it open to attack. 

Blockchain technology recently merged with IoT technology. This has provided a decentralised 

ecosystem environment in several innovative cases beyond cryptocurrencies, such as 

healthcare, government and learning, with enhanced security and reduced risk. The large 



 45 

volume of data in any ecosystem environment needs to be stored in such a way that it is 

immutable, available and accessible. For example, student data in a higher education 

environment is created when a student enrols in a university. The data grows as their time at 

the university lengthens, and will include personal, courses, grades, finance and health 

information data. Student information needs to be accessible by different stockholders 

including administration, lecturers and finance. However, the information should be immutable 

and private. Therefore, a structure of storing student records should be accessible and 

maintainable. Blockchain allows parties to share a student record in real time with privacy, 

integrity and immutable features, which are all required in smart university systems. For more 

information about blockchain technology principles how it works see section 2.2. To decide 

which type of blockchain to use in the framework, the types will be addressed in a comparative 

analysis in chapter 4. 

To sum up, a smart campus includes applications, technologies and smart features, which can 

be implemented in any area of the campus. There have been numerous studies done on ways 

to implement systems to develop a smart campus [128]–[130], however, no standard design 

has yet been developed. the new framework provides a guiding architecture that may allow the 

integration of blockchain technology with existing technologies as a base to develop various 

smart systems further. The framework will be analysis in the next section using secondary 

sources.  

3.4. The Smart Campus Architectural Framework 
Analysis 

The main reason for developing a blockchain in 2008 was to address the potential problem 

related to stakeholders’ trust in various use cases, including financial and non-financial fields 

[156], [157]. It provides security requirements for the transactions by using several 

cryptography mechanisms, such as signature, asymmetric cryptography, and hash. A lot of 

research has explored whether blockchain technology meets the need for providing more 

secure, trusted, and immutable data by adopting the blockchain into existing software, such as 

in the financial industry [158] and healthcare fields [103], [159], [160]. However, integrating 

blockchain technology into education institutions is still in its early stages and needs more 

research. Therefore, this section discusses the security requirements for the proposed 

framework of a smart campus since the security aspect is the main concern in most of the recent 



 46 

blockchain applications. This aspect will be studied in more detail in the following sub-

sections, covering authorisation, trust and privacy in addition to the CIA triad of 

confidentiality, integrity, and availability.  

3.4.1. Authorisation 

Authorisation is one of the key security aspects and is a process of verifying a peer’s identity 

in order to use a system and communicate with each other [161]. There are many studies that 

have focused on user authentication with the majority of cases looking at data leaks and identity 

theft. The current authentication mechanisms, which have been used in most applications, vary 

from using a single factor, for example, a password or user ID, to using a multi-factor 

authentication, such as a smart card or biological characteristic. These traditional methods are 

not effective in providing appropriate protection and can cause various issues and damage, for 

example, recently passwords have been easily and frequently hacked [162]. Multi-factor 

authentication relies on centralisation or trusting third-party services, which, as was discussed 

previously, have high security risks. 

Recently blockchain has been used to improve protection against illegitimate access of several 

IoT applications without the need for centralised services. For example, Cha et al. [163] 

designed a blockchain gateway by integrating the blockchain in an IoT gateway to securely 

protect user preferences while connecting to IoT devices. This approach can raise the 

authentication level between the users and the connected devices. In addition, Sanda and Inaba 

[164] used blockchain technology with a Wi-Fi network to provide the authentication to the 

connected users and protect the network from malicious usage. The blockchain in this 

implementation was used to encrypt the communication and ensure security to the network. 

Therefore, the blockchain has the benefit of increasing the security of the authentication 

aspects. 

3.4.2. Trust 

Trust has been investigated in studies on the adoption of technologies that involve handling, 

storing, or processing sensitive information [165]. Blockchain technology ensures data 

persistence since it is stored in a distributed manner, which means many copies of the same 

ledger are shared, updated and synced among nodes. When a new peer joins the blockchain 

system, it can access a whole copy of the ledger, but it is more difficult to lose or destroy the 



 47 

ledger. Unlike cartelised systems that own the ledger, blockchain provides data persistence by 

backing up the system, meaning that users have no choice but to trust the system. 

3.4.3. Privacy 

Privacy is an essential aspect for most of the systems. The majority of the researchers have 

taken advantage of blockchain technology to increase the level of privacy in the IoT 

environment and protect the individual private data being revealed [166]. For example, 

Kianmajd et al. [167] presented a framework that integrates blockchain to preserve users’ 

privacy while using community resources. The framework highlighted that the decentralised 

environment of the blockchain can be used to increase the users’ data privacy. In addition, 

Zyskind et al. [168] structured a personal data management platform in order to provide privacy 

for users. The study proposed a protocol that integrated with a blockchain to produce ‘an 

automated trustless access-control manager’. The constructed platform achieved the privacy 

using encrypted data in the ledger and storing pointers to it instead of the transaction of the 

data itself to the network. Thus, personal data should be secured and controlled by the user and 

not be trusted to a third party. 

3.4.4. Confidentiality, Integrity, and Availability (CIA) 

Data confidentiality is an aspect of protecting data from unauthorised access. Since blockchain 

uses cryptography mechanisms, it offers confidentiality and protects data, such as bank account 

[156] and personal data [169], from parties that do not have permission. 

Data integrity is another security aspect that is concerned with assuring and preserving the 

consistency, reliability, and accuracy of the data [170]. In other words, the data stored in the 

database should be kept from changing throughout its lifecycle. In this case, through the use of 

various cryptography mechanisms, blockchain technology provides data integrity and promises 

to protect data from unauthorised change [171], [172]. An accepted transaction in Blockchain 

network is stored by a distributed ledger in a block and then each block must reference its 

previous block to build a chain, any published block that did not refer to its preceding block 

would be rejected by other nodes. Banerjee et al. [173] combined the blockchain with IoT 

devices’ firmware to maintain the integrity of shared data. Moreover, Liu et al. [174] 

implemented a framework for a data integrity service using blockchain to verify the integrity 

of IoT data without the need for a third party.  



 48 

Data availability is one of many important terms in any system and means ensuring that the 

required data is available and accessible when needed [175]. One of the benefits of blockchain 

technology with a decentralised structure and distributed ledger is that it is resistant to outages.  

To sum up, deploying blockchain technology to the proposed smart campus framework will 

provide more benefits by managing the problems associated with a centralised IoT architecture, 

especially from a security perspective. 

3.5. Challenges of Adopting Blockchain in the Smart 
Campus Architectural Framework  

The previous sections discussed the wide benefits of integrating blockchain technology into 

the novel smart campus architectural framework in relation to privacy and security aspects. 

However, blockchain technology is like any other advanced technology where challenges and 

issues can arise. Deploying blockchain to decentralise a smart campus framework has several 

major limitations that need highlighting. This section summarises these challenges and presents 

some current schemes for solving them. 

Although security is considered the most important blockchain attribute, the threat of attacks 

from malicious parties cannot be eliminated. Since data is saved in a ledger which is distributed 

and public, there is a concern about data leakage. For example, in cases where 51% of a 

network’s peers are malevolent, the blockchain’s security could fail [66]. This concern may 

lead to hesitation in adopting blockchain technology in the smart campus setting and using it 

to store and share sensitive personal information, such as student credentials. However, in such 

an environment the peers in the blockchain network are known, which leads to the creation of 

a trustable system to share data safely. There are different models of blockchain classified 

depending on who can access the network and who can generate transactions, such as 

permission and permissionless networks. Each of these blockchain networks has its own 

features and characteristics. Therefore, it is necessary to choose a suitable model to match the 

environment system’s needs. In this case, it is important to allow an authorised user to join the 

network in order to protect the security of the framework (for more details see chapter 4).   

Despite privacy being enhanced by using blockchain technology, at the same time it is 

considered a concern. Many blockchain platforms use asymmetric key cryptography, which 

consists of public and private keys to ensure privacy and protect the ledgers. This feature comes 



 49 

with the significant benefit of distributed systems in terms of protecting users’ personal data 

and not allowing any unauthorised communication access. Therefore, the user has total 

responsibility to securely store his private key to avoid its loss. This is different from lost 

password authentication mechanisms where systems can offer a password reset function. A 

stolen or lost private key means the loss of all personal data associated with it. This issue may 

cause blockchain to be unacceptable for adaptation. In the case of developing educational 

institutes, losing the private key would affect the whole system [176]. Since this is a popular 

issue in blockchain technology, wide attention from practitioners and researchers has done 

much to protect and manage user authority keys. For example, Lei et al. [177] proposed a 

scheme for managing keys and securing communication in heterogeneous network such as IoT. 

This framework used the autonomous vehicle as a case scenario for testing. The scheme 

initialised keys and transmitted them using a rekeying algorithm to improve security. Panda et 

al. [178] developed a scheme for key management to improve secure communication among 

entities, as well as increasing efficiency. This approach assigned and authenticated the system’s 

peers by using a one-way hash in the Ethereum platform. In addition, Pal et al [179] discussed 

different approaches to securing key management in the financial-based blockchain field where 

it can be studied, including local key storage, password-protected wallets, password-driven 

keys and offline key storage.  

Blockchain’s scalability is another concern that may be faced in distributed educational 

institute applications. This concerns the number of transactions and the amount of data that can 

be carried in a sole block. When the number of peers who join the network increases, this leads 

to an increase in the block size due to the increased size of the digital ledger [180]. Smart 

campus applications have to deal with and store a great deal of data, such as student records, 

staff information, data collected from smart devices, etc. This can cause the blockchain to grow 

excessively fast, which negatively affects the network’s performance [144]. The growth 

number of the block size requires an increased number of transactions that need to be shared 

among peers to verify them and is thereby time-consuming and has low throughput. Bitcoin 

technology, as an example, can deal with only up to seven TPS [181], which is considered a 

major challenge if it is deployed in real-time systems such as smart campus where it needs to 

handle millions of transactions.  

Many schemes and studies have focused on solving this problem. Some approaches used 

different techniques to enhance the validation phase in order to improve the slow speed of 

transactions. For instance, Bruce [182] developed a mini-blockchain method which can 



 50 

increase the transaction validation process by reducing the number of transactions. This method 

removed the old records that were stored in the node to speed the validation process. Other 

researchers focused on compressing the block size. For example, Marsalek et al. [183] reduced 

the size of the blockchain by proposing a compressible blockchain structure. Instead of storing 

a whole blockchain copy in a client’s device, the scheme reduced the size by encoded block 

data, thereby any later peers joining the blockchain have lighter data. A method was proposed 

to compress blocks in Bitcoin so that nodes could have less data size. This solution leads to a 

higher verification phase and lower processing memory and power. Wang et al. [184] increased 

permissioned blockchain scalability by reducing the block’s header size using signature 

aggregation algorithms with parallel proof of vote consensus mechanisms.  

Other approaches can increase blockchain scalability by using network sharding techniques 

where data is divided and stored by different peers. For instance, OmniLedger [185] was 

proposed to enhance the transaction speed of the blockchain-based UTXO data model by 

dividing the committees into different peers with each one storing and processing a different 

portion of data. Dang et al. [186] proposed AHL+, which developed sharding techniques to 

enhance the Hyperledger blockchain throughput. This scaling approach used a two-phase 

commit algorithm to support cross-shard transactions. ByShard [187] was developed using a 

multiple sharding transactions protocol to shard blockchain transactions that deployed the 

Byzantine consensus algorithm. Huang et al. [188] developed a resource allocation method for 

shared and scale permissioned blockchain networks in the PBFT environment.  

Other schemes exploit off-chain to lighten the network and reduce the block size. Madill et al. 

[189] proposed a ScaleSFL which is a federated learning framework-based blockchain. This 

model uses an aggregation solution using off-chain to decrease PoC communication overhead. 

Aumayr et al.  [190] designed Thora, a blockchain that supports the off-chain of multiple 

directional payments using payment channels. The off-chain channels allow users who do not 

have a creating payment channel to exchange cryptocurrencies; therefore, the transaction does 

not occur on the blockchain itself. In this thesis, the off-chain solution has been used to increase 

the scalability of the proposed framework to store data that do not need to be stored on-chain 

and to lighten the blockchain network (see chapter 5 for more details).                    

Since blockchain technology is a complex innovation, it may not be acceptable for deployment 

in smart campus areas. Blockchain is still in its early stages and is not well-developed in the 

field of education compared to areas such as cryptocurrencies and chain management [191], 



 51 

which leads to challenges in adapting it into practice. Several intelligent campus applications-

based blockchain technologies are proposed or have been developed; however, they are not 

widely applied in real life for reasons such as non-acceptance of the idea of decentralisation of 

their database, allowing public access, and not having control of their data. Lacking the 

comprehensive guiding framework to develop in such environments could be the main reason 

behind the concerns about deploying blockchain technology. Therefore, this study seeks to fill 

these gaps.          

3.6. Summary 

Recently, many researchers have focused on the study of developing smart and intelligent 

environments in many fields, such as smart cities, hospitals, and homes that mostly rely on IoT 

systems. The privacy and security aspects have been attracting research interest since they are 

considered the critical issues and challenges for connected IoT devices. This chapter analysed 

the various components of a smart campus, including architectures, platforms, and technologies 

with their limitations. Furthermore, a new smart campus architecture that combines the 

advantages of both the Internet of Things and blockchain technology was proposed. The 

framework considered as guide base to develop various campus services such as smart learning, 

smart building, smart parking etc. Moreover, this study discussed the security requirements for 

the proposed framework of a smart campus. Next chapter will be determined which blockchain 

platforms, based consensus algorithms, are most suitable for adopting into the framework 

particularly in a smart education environment.   



 52 

Chapter 4 Analysis of 
Blockchain Platforms for 
Smart Education 
Environments 

In the literature review in section 2.4, the thesis discussed the benefits of applying blockchain 

technology to various systems in a smart campus, particularly in education and learning fields, 

such as helping students distribute their credentials and certificates to prospective employers, 

disseminating published papers, building social collaborations and global interactions, and 

highlighting the benefits of using blockchain technology in such an environment. However, 

there is a lack of studies into which blockchain platforms, based consensus algorithms, are 

most suitable for adopting into a smart education environment.  

  Therefore, this chapter will address the third research question: ‘What methods can be used 

to develop a comprehensive framework for a smart campus implementation?’ It will act as a 

guide in selecting and developing a suitable blockchain platform for experimenting with 

applications, such as students’ transcripts, certificates, credentials or any other accomplishment 

data forms. To determine which blockchain platform to use requires discussing the quality 

requirements for blockchain-based smart education environments. The study then will review 

current and well-known consensus algorithms and provide a comparative analysis of all the 

platforms to choose a suitable one according to the smart education software requirements. 

4.1. Quality Requirements for Blockchain-Based 
Smart Education Environments  

Before analysing and comparing the current and common blockchain network frameworks, 

including their types and consensus algorithms applicable to the smart education environments, 

it is necessary to understand the software quality requirements for smart education systems. 

There is no doubt that different education use cases and scenarios lead to varying software 



 53 

quality requirements. However, most use cases have common technical issues and 

requirements; focusing on and discussing these in this section to find a suitable blockchain 

platform for a smart education environment are needed.  

According to ISO/IEC/IEEE International Standard [192] quality can be defined as ‘‘The 

degree to which a system, component, or process meets specified requirements’’. In addition, 

a quality requirement is ‘‘a requirement that a software attribute be present in software to 

satisfy a contract, standard, specification, or other formally imposed document’’ [192]. The 

education system consists of staff, faculties, and organisations that coordinate to achieve 

educational goals [193]. According to Ila and Kitapci [194] to achieve high efficiency in such 

a system, security, privacy, performance, integrity, scalability, interoperability, and usability 

have been identified as necessary quality software requirements for a smart education system. 

Therefore, Therefore, all requirements should to be fulfilled in this analysis.   

First, security is one of the main requirements in this smart education framework. Hussien et 

al. [195] stated that data transformation amongst parties must be executed in a secured and 

trusted environment. Since academic data is sensitive, the system must support a reliable and 

secure technique to verify, store and share student’s data. The system should be identifiable 

every user and their actions. In addition, the data in the system must be shared only with the 

intended recipient, including faculty members, students, and authorities, while limiting the data 

distribution. A fitting blockchain platform must apply authentication features, restrict data 

access, and allow only authorised organisations to access the stored data under specific rules.         

Second, closely associated to security is privacy. Logs in traditional blockchain mostly are 

publicly shared and disclosed by all peers in the network [196].  Privacy of academic data is a 

vital consideration in this framework. Academic data transactions should not be entirely 

transparent to every node, as with the traditional blockchain paradigm. Thus, a chosen 

blockchain platform should implement a robust set of privacy features.  

Furthermore, performance or operational cost is another essential aspect to consider and 

includes the cost of associated transaction, storage, maintenance, and management of the 

academic data. Generally, integrating blockchain technology into most applications reduces 

the operational cost of traditional third-party storage, such as cloud computing [197]. However, 

this quality requirement is critical while comparing blockchain platforms. According to Holbl 

et al. [113], processing and verifying students’ academic data needs additional operational cost 

that should take it into consideration. Since each block in the smart education framework 



 54 

contains qualitative and quantitative information, such as student records, learning outcome, 

course names, and course weights, a suitable blockchain platform is required to reduce 

computational costs and latency while storing and sharing data. 

In addition, data integrity is another important aspect and a key requirement that need to be 

aware of for any platform dealing with data [198]. refers to the consistency and accuracy of 

stored data over its life-cycle [199]. Commonly, blockchain technology with hash functions, 

copied ledger, and mining algorithms ensure integrity and security of stored data against 

tampering and manipulation unlike a centralised structured system that more likely to attack 

from malicious parties and system failure or interruption- as discussed in section 3.6. However, 

different blockchain platforms that use different consensus mechanism may affect the system 

in different ways. Therefore, each transaction in this system should be accountable and 

verifiable, and integrity should be the desirable goal.          

scalability is another requirement in the system. Scalability refers to the ability of a system to 

expand its existing capability of host volumes of data [199]. Generally, internet-scale systems 

should deal with a growing number of transactions and client requests. According to Mackenzie 

[200], network capability such as scalability is an essential requirement ambient intelligent 

systems along with power consumption and costs. Therefore, this smart education environment 

should support the rising number of students and their academic data as well as the different 

formats of this data, such as the student’s scales, pictures, or pdfs, while remaining stable and 

usable.  

Interoperability is an additional attribute that should be considered to ensure that the system 

can connect with other entities, such as processes, systems, software, or business units [201]. 

In the term of blockchain, Abebe et al. [202] defined interoperability as the transfer of values 

or data between ledgers with assurances of validity. Developing a framework that integrates 

with blockchain technology designed to be decentralised, with each entity able to 

communicate, does not mean that the system will not have interoperability difficulty. In 

addition, Khan et al. [203] stated that the framework should support smart contracts to allow 

invokes and calls among entities to accomplish blockchain interoperability. Therefore, 

comparing different blockchain platforms that deploy a smart contract is an important aspect 

to achieve interoperability.                    

Lastly, usability is another important requirement which focuses on develop a software that is 

easy to operate and control [204]. In the case of handling student’s data, several developed 



 55 

schemes require individuals in the blockchain network to manage their data, including public 

and private keys, to generate cryptographic signatures and authorise access to their private data. 

Nevertheless, a user-friendly interface should hide the back-end complexity of managing user’s 

key pairs when develop applications. Additionally, completeness is a part of the usability 

requirement that should be considered. This system, known as the end-to-end system, provides 

automation. The framework should allow faculty members, students, and authority institutions 

to easily upload, request, transfer, and validate data. For more automation, the suitable 

blockchain platform utilisable for the smart learning framework should support the execution 

of smart contracts. Not all blockchain platforms support smart contracts. However, it can 

facilitate the automation and programming of the rulesets that manage communication among 

stockholders. Since blockchain technology is still in its early stages, it is crucial to choose a 

fitting platform to be aware of the availability of programming languages and tools for 

developing smart contracts.           

Smart education environment software quality requirements can be achieved by utilising 

blockchain technology with different properties (as discussed in section 3.6), such as 

decentralisation, security, immutability, and autonomy. Therefore, if a suitable blockchain 

platform is selected correctly in a smart education system, it can help enhance the system’s 

security, ensure the privacy and integrity of data, and encourage individuals and organisations 

to share data. The next sections will study blockchain platform types and their characteristics, 

which are crucial to deciding which blockchain to adopt and comparing their consensus 

algorithms based on the requirements of smart education systems.  

4.2. Permissioned vs Permissionless Blockchain 
Networks for a Smart Learning Environment    

Blockchain technology networks can be classified into two different models: permissionless 

and permission networks [205]. A permissionless network is a network where any node can 

publish a block while a permissioned network is a network where a particular node can publish 

a block. In other words, a permission blockchain network controls the network, and a 

permissionless blockchain network means any peer can participate from the public internet – 

see figure 4-1. 



 56 

 
 

Figure 4-1 Blockchain network classifications 

According to the figure, a public blockchain is a type of permissionless blockchain network, 

while private and consortium blockchains are types of permissioned blockchain networks. Each 

of these blockchain networks has its features and characteristics (see figure 4-2) that will be 

discussed in more detail in the following sections.  

 
Figure 4-2 (a) Public blockchain network; (b) Consortium blockchain network; (c) Private blockchain network   

4.2.1. Permissionless blockchain network     

A permissionless or public blockchain network sees a decentralised ledger opened to any peer 

to join the network and publish a block without authority or permission, as can be seen in figure 

4-2 (a). This network is mostly open-source software and available to any user to download 

without permission and may execute millions of devices. Additionally, the network allows any 

peer to join, publish blocks, issue and validate transactions, and read the blockchain. Thus, any 

node in the permissionless blockchain network can access the ledger to read or write without a 

required user’s identity.  



 57 

This type of blockchain network applies consensus or agreement algorithms (which will be 

discussed later in more detail) that run in the blockchain’s protocol to prevent malicious peers 

from accessing the ledgers. Proof of work is one of the well-known consensus algorithms, and 

proof of stake is another approach. Since every node in the network applies a consensus 

mechanism to verify the transactions to increase the security, this leads to consuming a vast 

amount of resources, such as electricity and storage costs, in addition to producing low 

transaction throughput. Examples of permissionless or public blockchain networks are Bitcoin 

[89] and Ethereum [75] ; they are widely used in finance and cryptocurrency areas.  

4.2.2. Permissioned blockchain network  
A permissioned blockchain network means only an authorised user can publish blocks. The 

network has restrictions on who can access the blockchain and issue transactions. Different 

restriction rules can be applied to permissioned blockchain networks; it may allow any user to 

read the ledgers, restrict it to only authorised nodes or permission users, or it may allow any 

user to issue transactions in the network. A permissioned blockchain network can be open or 

closed source software. 

As permissionless blockchain network, permissioned blockchain network applies consensus 

algorithms such as Byzantine-fault tolerant to publishing blocks. However, they do not require 

maintenance or expense of resources. The particular reason for this is that a permissioned 

blockchain network requires a user’s identity to participate in the network. Therefore, the 

network has a level of trust with its participants since they are authorised. Additionally, these 

features of permissioned blockchain networks make consensus algorithms faster and result in 

lower operational costs (as discussed in more detail in the next section).  

 A permissioned blockchain network is suitable for organisations that are required to control 

their blockchain or organisations that are working together but do not fully trust each other. 

These organisations can establish the consensus algorithms based on which trust level they 

require. Besides trust, transparency can be achieved in this network and might be an asset to 

improve business decisions.  

Private and consortium blockchain networks are types of permissioned blockchain networks. 

The former is a network where only invited and selected nodes have permission to access the 

network. It has a distributed feature, although it is partially decentralised since a peer has to 

control permissions to validate transactions, change the rules, and write and read the ledgers, 



 58 

as can be seen in figure 4-2 (c). A reduced number of involving nodes helps efficiently consume 

resources and transaction throughput more than a public blockchain. Nevertheless, private 

blockchain networks affect security and trust because the trusted peer can simply be 

compromised and reduce the transparency and immutability of the network, leading to it being 

highly centralised (still, it benefits more than traditional databases). Ripple [206]and Eris [207] 

are examples of such a network. 

On the other hand, consortium blockchain networks combine the advantages of private and 

public blockchain networks, as can be seen in figure 4-2 (b). In a consortium blockchain, a 

selected number of peers have permission to join the network, however, all the invited nodes 

have rights to read and write to the ledger and verify transactions, which is similar to a public 

blockchain’s decentralised nature. In terms of transparency and immutability, its structure falls 

midway between the two previous chain models. Its features lead to enhanced efficiency 

compared to the public blockchain network. Additionally, nodes in the consortium blockchain 

compute their role by either endorsing peers responsible for executing the smart contract or 

committing peers responsible for committing the transactions, which helps to improve the 

network performance and throughput, unlike public blockchain networks that suffer from 

redundant computations. Furthermore, this network, compared to private networks, is more 

trustworthy and less vulnerable to threats of security since the network is not controlled by a 

single node to validate or authorise, write, and read to the ledger. Hyperledger [105] and Corda 

[208] are examples of consortium blockchain networks. Table 4-1 summarises the above-

discussed blockchain network types and their features.  

Table 4-1 Summary of blockchain network types with their features 

Criteria Public 
(permissionless) 

Private 
(permissioned) 

Consortium 
(permissioned) 

Network type Distributed Centralised Decentralised 
Peers joining the network Any peer Authenticate peers Authenticate peers 
Require membership services No Yes Yes 
Validate transaction by All peers Single peer Selected peers 
Trust level Not trusted Trusted/compromised Maximum trust 
Throughput rate Low High High 
Efficiency Low efficiency High efficiency High efficiency 
Energy consumption High Low Low 

    
To answer the addressed questions presented earlier in this chapter regarding which blockchain 

network platform can be used in the smart learning framework, software quality requirements 

have been discussed, and blockchain types have been presented with their features. 

Additionally, Pahl et al. [209]  developed a flow chart framework to assist in the decision-



 59 

making process to adopt a suitable blockchain platform, as shown in figure 4-3. The framework 

has been used to help find an appropriate blockchain network platform. The result is presented 

below:              

 
Figure 4-3 Decision flow to adopt a suitable blockchain platform [209] 

The framework helps answer two vital questions before using blockchain technology for any 

software: 1) whether blockchain technology is needed for the software; 2) if yes, which 

blockchain platform is more likely to be used? The flowchart is split into two parts; the first 

part aims to answer the former question, while the second part aims to answer the second 

question by examining which blockchain properties are needed. 

The first upper half of the flowchart addressed questions to help developers decide whether 

blockchain technology is needed in the application. The upper half checks if the system 



 60 

requires multiple parties. The involved parties either have the same roles, such as validators, 

writers, and readers, or different functions, such as writers and readers. The authors’ point of 

view is that if a party needs to fulfill all the roles then blockchain technology is not required to 

manage data. In this case, numerous parties are involved in the system, and each has a different 

role. For example, university faculties can validate transactions and read and write to the 

ledgers of a student’s data, a student can validate transactions and only read the ledgers, and a 

third authority, such as employers and insurers, can only read the ledger. Thus, the answer to 

this question is yes; the system has multiple parties with different roles. Then, the second 

criterion is if the parties interact with each other. If not, then a simple log is needed to record 

data by an independent party. In the study, all parties interact with each other. The last criterion 

of this part is a trusted third party. Blockchain technology is designed to eliminate third parties, 

such as cloud computing, since it leads to numerous issues, such as single point of frailer, 

DDoS, and DoS, as well as increased security, privacy, and integrity of data. Therefore, 

blockchain technology is needed for integration into the framework.  

After answering the first question, the bottom half of the flowchart leads to answering the 

second question, which determines the type of blockchain network that can be used. The first 

criterion is whether parties know each other (e.g., anonymity of parties). If a system interacts 

with anonymous users, then a permissionless public blockchain platform is the best fit for such 

an environment. However, the system interacts with users that know each other. Thus, a 

permissioned blockchain network is recommended as it has access restrictions to the network 

of this group and provides a faster consensus algorithm process and a higher transaction 

throughput rate. The next questions select between the two types of permissioned blockchain 

networks, namely private or consortium. The paper [209] named them ‘the public 

permissioned’ blockchain networks. The next criteria are related to public verifiability and read 

access. In the framework, public reading is needed in some cases, such as when a student wants 

to share his/her certificate with any party out of the network. Therefore, after examining the 

flowchart, a consortium blockchain network is the best fit for the smart learning framework. 

The next section compares consensus protocols.       

4.3. Comparing Consensus Mechanisms 

Since a blockchain network is a distributed ledger and not controlled by an authorised single 

node, verifying a transaction needs to reach a consensus or agreement among the majority of 



 61 

network peers. Thus, consensus algorithms are a mechanism utilised by various platforms of 

blockchain networks to ensure the consistency and integrity of stored data across 

geographically distributed peers. There are several different consensus algorithms between 

novels developed by researchers and existing open-sources implemented in platforms. This 

section focuses on existing adopted consensus algorithms that will be reviewed and compared 

to find a fitting blockchain platform for the system. The reasons for this stage are that many 

blockchain platforms have pluggable features and can run numerous different consensus 

mechanisms. Additionally, there is no perfect algorithm, and each one has its pros and cons. 

Therefore, studying consensus protocols and finding a suitable one for the system is crucial 

since they work behind blockchain platforms.       

To find a fitting blockchain platform, it is necessary to discuss different consensus algorithms 

with their functionalities and characteristics. To determine which consensus algorithm should 

be used on the system and to meet the requirements in section 4.2 requires higher fault tolerance 

and lower verification delays. There are hundreds of consensus algorithms categorisable into 

three groups: compute-intensive consensus algorithms, capabilities consensus algorithms, and 

voting consensus algorithms:  

4.3.1. Compute- Intensive Consensus Algorithms 

This type of consensus algorithm allows a contributing node to generate, add, and verify a new 

block in the blockchain. Additionally, these algorithms are energy-hungry, meaning miners in 

the network use their computing energy to win the lead to propose and mine a block in the next 

round. This type is designed to be applied in public blockchain networks, particularly 

cryptocurrencies such as Bitcoin [98], Dogecoin [210], and Litecoin [211]. Examples of 

compute-intensive consensus algorithms are proof of work (PoW) [98], Prime number PoW 

[212] and Delayed PoW [213]. Since a consortium blockchain is a suitable blockchain network 

for the system (as discussed in the previous section) and these consensus algorithms alongside 

it are developed for a public blockchain network, it requires high network bandwidth and high 

latency. Therefore, compute-intensive consensus algorithms are not a rational choice for the 

system. 

4.3.2. Capability Consensus Algorithms 

When the previous type of consensus algorithm consumes high energy, several consensus 

algorithms were developed to enhance these cons and elect a miner in the blockchain network 



 62 

based on non-computing capability. Numerous capability factors can be calculated to 

determine a miner of the network, such as the amount of digital currency owned by the miner, 

the amount of storage the miner has, and the miner's trust in the network. For example, Proof 

of Stake (PoS) [214], Delegated PoS [215], Proof of Elapsed Time (PoET), Proof of Stake 

Velocity [216], and Proof of Burn [217]. Since capability consensus algorithms were developed 

to address the issue of high-power consumption in compute-intensive consensus algorithms, 

they have the same use for public blockchain networks, such as cryptocurrency, that are 

unsuitable for the framework. However, there are some capability consensus algorithms that 

can be applied for a permissioned blockchain, such as PoET, which will be discussed in the 

next section. 

4.3.2.1. Proof of Elapsed Time (PoET) 

Proof of Elapsed Time (PoET) is a consensus algorithm to improve security developed by Intel 

and relies on a new processor instruction set named Intel Software Guard Extension (SGX). 

The PoET consensus algorithm has the same concept as the Nakamoto consensus mechanism 

processing in Bitcoin. Both algorithms need to elect a leader to propose a block in each round 

to be added to the chain. However, the difference lies in the method of selecting a leader. The 

Nakamoto algorithm uses a lottery mechanism to choose a leader, which consumes power to 

achieve proof, while PoET elects a leader by using the Intel SGX capability as a Trust 

Execution Environment (TEE). 

PoET is deployed on the Hyperledger Sawtooth platform, which is a software framework 

founded by Intel to create distributed ledger networks for a range of use cases [218]. Every 

validator node in the Sawtooth during each round requests a wait time from a trusted function 

in the SGX. The shortest waiting time is assigned for a validator selected as a leader for that 

round. In other words, electing the current confirming peer in the consensus utilises random 

waiting times for confirmation peers. Then the leader, e.g., the winning validator, can create a 

block that contains a series of transactions. Additionally, other validators validate the block 

validity before it is added to the blockchain.  

Therefore, the PoET consensus algorithm has helped the Sawtooth network to reach massive 

scalability with less computational power since it does need to solve intensive cryptographic 

puzzles. Additionally, its high throughput and low latency may be applied to the system. 

However, the main disadvantage for this algorithm is the required specific SGX hardware as 

well as its dependency on Intel, which developed SGX hardware and goes against the 



 63 

blockchain concept philosophy of being decentralised and not relying on third parties. Thus, 

PoET is not the best fit for the framework.         

4.3.3. Voting Consensus Algorithms 

 This type of consensus algorithm is deployed in a private and consortium blockchain network 

– the latest one has been chosen for the network and focused on. There is no need for 

participating nodes to generate and add a new block in the chain, and only authorised peers can 

participate in the process of consensus algorithm to generate and validate a new block. The 

voting consensus algorithm elects a miner to generate a block by using a voting system that 

ensures fairness among delegates based on an existing agreement. This consensus does not 

consume as much energy as compute-intensive consensus algorithms due to using a 

competitive approach to select the miner. It also eliminates the problem of the rich becoming 

richer, as seen in capability consensus algorithms, since the wealth dominance is selected to be 

the miner. Thus, it is well-suited for areas beyond cryptocurrencies. These algorithms are 

developed to address Byzantine fault tolerance. This happens when some of the nodes in the 

network behave maliciously or independent nodes fail. Byzantine fault tolerance in distributed 

systems reaches the desired consensus on the network despite nodes acting maliciously or 

failing. Voting consensus algorithms can be broadly categorised into two groups: Byzantine 

fault tolerance (BET); and crash fault tolerance (CFT) [90]. The former mechanism results 

from the problem of the Byzantine general discussed in more detail in reference [219]. The 

idea of BET in a blockchain network is to avoid complete failure of the network by reaching 

agreement among nodes on a single state, assuming that some of the peers could be failures. 

There are many protocols-based BET consensus; the well-known one is practical Byzantine 

fault tolerance, deployed for numerous blockchain platforms, while the latter one was 

developed to prevent the case of crashing/failing nodes due to software or hardware failures. 

Raft and Kafka are the famous algorithms-based CFT consensus.   

After viewing different types of consensus algorithms applied behind blockchain platforms, 

voting consensus algorithms are the best fit for the system since a permissioned blockchain is 

considered more trustworthy and confined. Therefore, their blockchains do not require mining 

or hashing procedures. Instead, they need to run massage-based consensus algorithms, which 

are lighter and fitting for areas beyond cryptocurrencies. To determine which consensus 

mechanism can be used, well-known voting consensus algorithm types under both BET and 

CET schemes will be compared in the following sections.  



 64 

4.3.3.1. Practical Byzantine Fault Tolerance (PBFT)   

In 1999, Castro et al. proposed Practical Byzantine Fault Tolerance [220]. The consensus 

algorithm is based on a Byzantine generals problem. The idea of the protocol is one central 

authority node rolling as a leader and selecting a group of nodes to be the backup nodes. In the 

network, all nodes should communicate with each other to reach a consensus or agreement, 

and all authority nodes should have the same copy of the ledger. The number of malicious 

nodes in the total nodes in the network deployed in the PBFT mechanism must not be greater 

than or equal to n/3.  

Generating a block in PBFT consensus, known as a view, requires four phases in each round. 

First, the leader node receives a request sent from the client to perform a transaction and 

generate a new block. Second, when the leader node receives all the request transactions, he 

will group them in a block to be broadcast to other nodes in the network. Then, the nodes verify 

and validate the transactions in the block. Additionally, each node computes the block’s hash 

to be sent to other backup nodes. Finally, each node waits to receive the same hash from at 

least two-thirds of nodes or f+1, where f represents the number of faulty or Byzantine nodes 

[221]. When the node collects the same hash, the new block will be added to the blockchain 

ledger of the node.  

Several blockchain platforms deploy PBFT in their consensuses, such as Hyperledger Fabric v 

0.6, Hyper ledger Iroha, and BigchainDB. The throughput transaction of PBFT consensus is 

better compared to compute-intensive consensus algorithms and capability consensus 

algorithms. However, PBFT requires an authority to elect the backup nodes and a leader, which 

leads to it being less decentralised. Therefore, PBFT is suitable for permissioned blockchain 

networks since they select their authority nodes. However, when the number of participating 

backup nodes increases, scaling becomes an issue because of the high communication 

messages required [222]. The increased number of transferred messages in PBFT consensus 

could lead to a rise in computing energy because of communication and network overhead. 

Additionally, PBFT can encounter Sybil attacks communication and network overhead. In 

addition, PBFT can be attacked by sybil attacks [223] where one adversary can create 

numerous faulty nodes without any certificate authority or control a fraction of the network to 

taint the outcome of the consensus to their favor. Therefore, PBFT has low latency, low 

computational overhead, and high throughput, which is suitable for the system. However, the 

high communication overhead in the network leaves it unsuitable for large networks and could 

be applied to small educational systems. 



 65 

4.3.3.2. Delegated Byzantine Fault Tolerance (DBFT) 

The DBFT mechanism was proposed in 2014 by the NEO blockchain platform [224]. The 

algorithm as PBFT, both utilise the voting process to select the nodes. However, DBEF does 

not require all nodes to participate in adding a new block, which adds more scalability to the 

network. A leader node in the DBFT refers to the speaker and the backup nodes are the 

delegates. A voting system is used to elect the delegates from whom a speaker is randomly 

selected. The next step sees a block generating and validation process similar to PBFT. Since 

the delegates are elected based on voting, there is a possibility that each participating node can 

vote for itself to be selected. Therefore, all the participants will be elected as delegates, which 

will lead the network to suffer from communication overhead issues.  

To reach the consensus in DBFT, the total number of failing or malicious nodes should be less 

than (2n-1)/3 in the network, where n is the total node. The consensus has many features that 

could be used for the system. However, besides the issue of communication overhead, the issue 

of Sybil attacks is the same here as PBFT. Additionally, the average latency in DBFT to 

generate a new block is 15 seconds, which is more than PBFT. Therefore, the DBFT consensus 

algorithm is not suitable for the system.    

4.3.3.3. Stellar Consensus mechanism    

The consensus was proposed by Mazieres and uses the Federated Byzantine Fault Tolerance 

(FBFT) consensus, which is a variant of PBFT, as the backbone of the algorithm [225].  Nodes 

in FBFT are intersected into groups named federates, and each group executes a local 

consensus algorithm. This approach allows everyone to join the network and participate in the 

agreement mechanism, i.e., the consensus opens to the public. Stellar consensus uses the same 

concept, also referred to as Quorum, by grouping nodes into sets that reach an agreement. A 

Quorum slice is a subset of a Quorum that helps one particular node reach the consensus 

process. Common nodes can be shared and overlapped among Quorum networks in a process 

known as intersection.   

Stellar consensus needs two phases for the voting process, namely nomination and ballot 

protocols. When executing the former step, candidate values, which are new values, are 

proposed for consensus and broadcast to all participating nodes in the Quorum network. Each 

node will vote for a value from the candidate values. Quorum slices then influence each other 

with the help of Quorum intersection. Then, the later stage is initiated to vote for either aborting 

or accepting the obtained values from the previous stage using federated voting. At the end of 



 66 

the process, aborted ballots for the current slot are rejected. The Stellar mechanism reaches the 

agreement stage when each group agrees then broadcasts to the other groups in the network. 

The method has low computational and high throughput requirements, which are desirable for 

the system. However, according to Pahlajani et al. [226], Stellar has security issues if the 

network selected is not a proper Quorum slice. Such a situation occurs because each subset 

group runs a local consensus among its nodes before the agreement propagates to the rest of 

the network using intersections. Additionally, the latency of this approach is not low compared 

to the other consensus. Therefore, this method is not suitable for the system.                                             

4.3.3.4. Raft consensus mechanism  

The communication overhead issue presented in PBFT is a common issue in BFT-based 

consensus. It is eliminated in the CFT-based consensus by allowing communication between 

the leader and the backup nodes without the need for the backup nodes to communicate with 

each other [221]. A well-known CFT-based consensus is Ralf, proposed by Ongaro et al. in 

2014 to provide security on a network against node crashes without addressing the safety 

situation against malicious attacks. The consensus provides correct operation if more than half 

the nodes in the network perform typically at a given time, e.g., t < n/2 where n is the total 

participating nodes and t is the number of crashing nodes. Each node in the network at any 

given time can be in any of the following states: follower, leader, or candidate. In the follower 

state, the following node simply and passively replies to the requests from the candidates and 

the leader. In the leader state, the leader is the node that receives transactions from the clients 

and generates the log transactions. There is a single leader in the Raft consensus. In the 

candidate state, a new leader is elected by the candidate node. The requests in the network have 

been carried out by using RPC calls: Request vote calls are used to select a leader and the 

candidate who initiates them during an election; Append entries calls are used for the 

replication of logs and the leader responsible for initiating it; and Install snapshot RPC calls 

are used to send a replication log from leader to followers.  

The Raft consensus mechanism solves the issue related to crash tolerance. However, it does 

not ensure network safety against malicious tolerance. The consensus can reach the agreement 

of up to 50% of the crash fault. Since all nodes in the system are known and have permission 

to access the network, malicious tolerance is low, and the crash fault is most crucial in the 

framework. Additionally, this consensus has low latency and high throughput, which means it 



 67 

is suitable for the system. Several blockchain platforms deploy Raft in their consensus, such as 

Hyperledger Fabric v 1.0 and Quorum.  

Table 4.4-1 presents a comparison of previous consensus approaches and their suitability. 

(Good) is the least suitable, and (Excellent) is the most suitable for this framework. 

Consequently, Raft has high scalability, unlike PBFT consensus algorithms that need two 

nodes to communicate multiple times to confirm a transaction. When the number of nodes 

increases, more communication is required, which decreases the synchronisation speed. 

Additionally, Raft has low latency compared to DPBFT and Stellar and does not require 

specific hardware, such as PoET. Thus, the Raft consensus algorithm is the most apt 

mechanism for the framework.      

Table 4-2 Summary of the comparison of consensus algorithms for an education environment 

Criteria Consensus Algorithms 

PoET PBET DPBFT Stellar Raft 

Latency Low Low Medium Medium Low 

Computing overhead Low Low Low Low Low 

Scalability High Low High High High 

Throughput High High High High High 

Adversary tolerance N/A <33% Fault 
replicas 

<33% Fault 
replicas 

Variable <50% Crash 
fault 

H/W required Yes No No No No 

Our suitability Good Very Good Good Good Excellent 
 

In the next section, the deployed Raft consensus mechanism into blockchain platforms will be 

discussed in more detail to select a fitting platform for the system.  

4.4. Blockchain Platforms  

An analysis of existing consensus algorithms considered the backbone of blockchain 

implementation has been studied in the previous section to choose the most suitable consensus 

mechanism for the smart learning framework. The analysis found that the Raft consensus 

algorithm is the most appropriate one to use in this case because most blockchain platforms 

have pluggable features. Therefore, different existing consortium blockchain platforms 

deploying a Raft consensus algorithm will be addressed and analysed according to their 



 68 

characterised design and transaction flow. Quorum, Coda, and Hyperledger Fabric are well-

known permissioned platforms that deploy the Raft consensus algorithm.  

  The Quorum blockchain platform [227] is a permissioned network that forked from Ethereum. 

The platform was founded by JP Morgan after changing core aspects in the Ethereum platform, 

such as privacy of transactions, the consensus algorithm, permissioned participants, and 

eliminating transaction fees. The Corda platform [228] is a permissioned blockchain developed 

by R3, and it is a semi-open-source blockchain. The platform uses a notary pool to reach 

consensus, and it is widely used in financial sectors since it is similar to traditional banking 

systems. Additionally, Hyperledger Fabric [229] is a permissioned network founded by Linux 

Foundation. It is an open-source blockchain proposed to meet the needs of business consortium 

networks. Additionally, the Fabric and Quorum platforms are open-source, whereas the Corda 

platform is semi-open-source, which means some part of the source is closed to provide secrecy 

in relation to sensitive business applications. Theoretically, the platform founders (JP Morgan, 

R3, Linux Foundation) all claim their frameworks have high performance, security, scalability, 

usability to develop a consortium chain, and the capacity to develop smart contracts. Therefore, 

they will be discussed in more detail in the following sections to compare, differentiate, and 

analyse them with additional criteria, such as architecture, focus, language, transaction rate, 

and so forth.   

4.4.1. Quorum Platform 
The Quorum platform [227] was founded by J.P Morgan and it was created based on the 

Ethereum blockchain. Ethereum is a permissionless blockchain network, which is a 

decentralised ledger that is open for the public to join and publish a block without needing 

permission. Therefore, each node participates to verify the transaction by running the PoW 

consensus algorithm. To enhance Ethereum efficiency, Quorum has been inherent as a 

permissioned version that has a limited number of nodes that run smart contracts and verify 

transactions. It is an open source that is mainly used for banking sectors [230].  In addition, it 

has a pluggable feature that allows it to execute different consensus protocol implementations. 

Quorum architecture consists of three main components [231]: Quorum node, which is 

responsible for communicating with users using a command-line interface as well as adding 

new blocks to the blockchain; transaction manager, which plays a role in communication with 

other transaction managers to verify transactions, and enclave, which is responsible for 

cryptography, including generating symmetric keys, decrypting and encrypting data. When a 



 69 

node initiates a transaction, all members involved vote on it, and it is then broadcast to all 

participants in the network if it has the majority of votes. Once transaction managers in the 

network receive the transaction, they will start matching the hash to validate the transaction. If 

it is valid, the transaction will be stored in the chain, otherwise it will be rejected.          

4.4.2. Corda Platform 
Corda [208] is a distributed permissioned globe blockchain platform that was introduced by 

R3. The platform is intended for processing and recording financial agreements, and most of 

its scenarios are drawn for the financial services [232]. Therefore, the measurable data, such as 

stock price and currency, is suitable for this platform. With the support of smart contracts in 

Corda, trading activities and financial workflow become more organised and automated. It 

enables interoperation among various organisations and systems on a single network [230]. 

Since it is a permissioned blockchain, each peer needs to validate their identity to access the 

network. The peer who is responsible for distributing the certificates and validating identities 

is named Doorman. Corda also has notary nodes; they play a role in validating the transactions 

or uniqueness without broadcasting globally, i.e. the transaction information is not stored to all 

peers’ ledgers in the network, only to the interest nodes.    

To add a transaction to the Corda blockchain, reaching a consensus is required. There are two 

parts of a consensus that are needed to update the ledger: validity and uniqueness. Validity is 

when each peer validates the transaction before signing it by checking all the necessary 

signatures and assuring that the associated smart contract is verified successfully. Uniqueness 

is related to notaries, which check the input states of the transaction to ensure they have a 

unique consumer, i.e. for the duration of the state’s lifecycle, notaries ensure that the state is 

not used as an input for more than one transaction to avoid double-spending.            

4.4.3. Hyperledger Fabric Platform 

The Hyperledger ecosystem, founded by the Linux Foundation, created the first consortium 

blockchain named Hyperledger Fabric [229].  It is an open source blockchain project that has 

been designed to fit different use cases in businesses and governmental organisations by 

ensuring privacy of a blockchain network. Maintaining multiple distributed ledgers within a 

system is a main feature of the platform. In addition, a crucial strength of the platform is its 

pluggable features and modular design. For instance, fabric ledger data does not depend on a 

specific format lead to be suitable for various case scenarios. The fully pluggable feature leads 



 70 

the consensus mechanism to use different algorithms. Therefore, different situations use 

different consensus mechanisms.         

Hyperledger Fabric consists of six main components: peers, orderer, endorser, shared ledger, 

chaincode and member service provider gossip network protocol [229]. Each of these 

components is involved in the consensus algorithm to validate transactions. The special entity 

of the Fabric consensus process is orderer, since it is responsible for generating a new block 

and attaching it to the ledger in the appropriate order. In addition, endorser is another entity 

that plays a role in the network. It is responsible for endorsing and validating a transaction, as 

well as checking whether any part of the network may execute a certain action in a ledger. 

Other participating peers involve themselves in the network by creating transactions. Since 

Fabric is a permissioned blockchain network, all its entities are authenticated and registered 

via a member service provider which provides roles by authorising and managing all 

participants’ identities in the network. Thus, using an identity provider leads to an increase in 

security policies to allocate actions to entities within a specific ledger.  

To sum up, table 4-3 presents a summary of the comparison of blockchain platform for 

education environment as the following:  

• Focus: Each blockchain framework is designed with a primary focus. Quorum and 

Corda are designed for the finance sector, while Hyperledger Fabric is built for 

business-to-business (B2B) and general purposes.     

• Languages: Supporting more general and popular languages will lead to more 

developers, and the system will become more adaptable. Quorum supports Solidity as 

it is forked from Ethereum. Corda supports Java and Kotlin, while Hyperledger Fabric 

support Go, Java and NodeJS. According to Cai et al. [233], stable and flexible 

implementation is important factor to be aware of while selecting a prospective 

blockchain platform.  Depend on  [234], JavaScript is the most popular language among 

professional developers.        

• Transactions rate: Measured as transactions per second (TPS), Corda tolerates 170 

TPS, Quorum handles a few hundred TPS, while Hyperledger Fabric can reach 2000 

TPS.  

• Architecture: Quorum is designed as order-execute architecture, meaning transactions 

are ordered first in the architecture and then executed sequentially on all peers in the 



 71 

same order, affecting the system throughput [235]. A smart contract in this architecture 

uses non-deterministic transactions. All peers in the blockchain network hold the same 

state; they operate the same transaction and return the same outcome to support domain-

specific languages, such as Solidity, to design smart contracts and do not support 

generic languages. On the other hand, Corda and Hyperledger Fabric use architecture 

based on the execute-order-validate (EOV) approach [235], which allows for 

transaction execution before ordering them to tolerate non-deterministic smart contracts 

in the blockchain network.                 

 
Table 4-3 Summary of the comparison of blockchain platform for education environment 

Criteria Blockchain Platforms 

Quorum Corda Hyperledger Fabric 

Founder JP Morgan R3 Linux Foundation 

Focus Banking Sectors Financial industry Enterprise &B2B 

Languages Solidity Java, Kotlin Go, Java, NodeJS 

Transactions Rate Few hundred TPS 170 TPS 2000 TPS 

Architecture Order-Execute EOV EOV 
 
In conclusion, after comparing the three aforementioned platforms including Corda, Quorum 

and Hyperledger fabric, they all theoretically could be utilised for the framework since they all 

have high performance, security and scalability, in addition, they all can be used to develop a 

consortium chain, they all deploy Ralf consensus algorithm, and they all have the possibility 

to develop smart contracts. However, due to Hyperledger Fabric overall positive reputation, 

active community, and considerable publicity make it the most suitable blockchain platform 

with a Raft consensus algorithm for this smart educational framework. In addition, a 

Hyperledger blockchain is widely used for businesses and enterprises. It is designed to support 

pluggable implementation of components delivering high degrees of confidentiality, resilience, 

scalability, and low latency. Hyperledger has a modular architecture and can be used very 

flexibly. Moreover, modular consensus protocols are been used, which permit a user to trust 

models and tailor the system for particular use cases. This platform runs smart contracts or 

chaincode, which is an executing programmable code that allows participants to write their 

own scripts without a middleman [236]. Next section will provide the discussion in detail of 

the results of using Hyperledger fabric to the system.      



 72 

4.5. Results of a Suitable Blockchain Platform for 
Smart Education Environments 

As a result, the Hyperledger Fabric blockchain platform, with the permission features of the 

network, provides various benefits to the smart education framework, particularly in sharing 

and storing data. 

• Transparent network: This smart education framework allows private channels 

between users to enable certain information to travel transparently and freely. For 

instance, a channel will involve the issuer, the verifier and the owner in order to allow 

a transparent flow of data among them. 

• Uniquely Identifiable documents: A document such as a student's grades, credentials, 

and certificates will be integrated with a unique identifiable hash of the document's 

participants, e.g., the owner, verifier, and issuer, that lead to being immune to 

tampering. If any changed happened to the hash, the Hyperledger on the verification 

stage will refuse the document since the hash not match with the saved original hash. 

• Customised access level: As the Hyperledger Fabric platform is a role-based 

blockchain, it requires customisation of the access level to the documents in the 

framework. 

4.6. Summary 

This chapter delivered a comprehensive comparative analysis of suitable blockchain platform-

based consensus algorithms. Since consensus algorithms are behind blockchain platforms, 

most of the performance and feature aspects of blockchain platforms are affected depending 

on the used consensus. Therefore, it is important to find an appropriate consensus for the 

architectural framework. To evaluate the different consensus algorithms that are most used, 

they should meet the quality requirements of the smart educational framework. The target 

consensus should have high security and scalability as well as low computing overhead and 

latency. The high throughput aspect is essential to enhance the operational costs. However, low 

latency is a more important since high throughput is the most significant feature for 

cryptocurrency, while low latency is an important feature for networks beyond cryptocurrency. 

As a result, the Raft consensus algorithm has been chosen. In addition, from the chapter 



 73 

analysis of blockchain platforms that were designed as permissioned blockchain to support 

multiple business areas and deploy Raft consensus, the Hyperledger Fabric was the most 

suitable platform. The proposed framework will be designed in the following chapter.  

 



 74 

Chapter 5 A Smart Campus 
Framework Architecture 
Design 

After proposing a novel framework for a smart campus, which was explained in Chapter 3, and 

determining a suitable consensus algorithm and blockchain platform for education 

environment, as discussed in Chapter 4, evaluating the framework is the next step. In order to 

do so, it is necessary to design the architecture for the implementation stage, which helps to 

continue answering the third research question. In the previous chapter, the study found that 

Hyperledger Fabric is an appropriate platform for the framework, since it delivers 

decentralisation, data integrity, and security. Therefore, in this chapter, the architecture and 

design of the novel framework is explained. Then, based on this design, implementing and 

evaluating different use case scenarios can be done.  

First, the chapter provides an overview of the technologies stack required for the framework 

and the reasons behind on-chain and off-chain data storage. Then, each on-chain and off-chain 

technology used will be discussed independently with more detail regarding its components, 

design, and transaction flow.                  

5.1. Technologies Stack 

In this section, the high-level architecture of the design and the main technologies used was 

proposed. Figure 5-1 shows the technologies stack. Hyperledger Fabric is used as a blockchain 

platform and Inter Planetary File System (IPFS) as decentralised off-chain storage. The model 

is immutable and content addressed, as well as ensuring security, privacy, and integrity of the 

data. 

 



 75 

 
Figure 5-1  Technologies stack 

On-chain: As was addressed in the previous chapter, Hyperledger Fabric is an ideal blockchain 

to store and share sensitive data while maintaining privacy and confidentiality within the 

network, since it allows only authorised participants to access the network [237], [238]. 

Because participants are identifiable and limited, Hyperledger uses lightweight consensus 

protocols rather than permissionless blockchain, which leads to better performance and 

throughput of transaction with lower latency and lower transaction confirmation costs [239]. 

In addition, Hyperledger is not a token blockchain, and therefore the environment 

implementation is less complex.  

Off-chain (IPFS): There are many limitations to using blockchain, such as the amount of data 

that can be stored in a single block, the potentially prohibitive cost of committing a transaction 

to a block, and the possible need to share information for verification. However, the data itself 

is not readable or confidential by all peers in the blockchain [240]. In addition, storing the data 

on-chain can cause the blockchain to grow excessively fast and negatively affect the network 

performance [144]. Thus, there is a need to utilise off-chain distributed storage systems such 

as MaidSafe, Storj and IPFS to offset these limitations. IPFS has been chosen to integrate with 

the architectural design because MaidSafe storage is still in alpha stage and Storj storage is a 

not a free service. IPFS is promised to offer a peer-to-peer distributed storage platform with 

high throughput [241]. In addition, data can be shared between organisations without editing 

or changing. 

IPFS has an interface that can interact with the system through the Application Programming 

Interface (API) part of the framework architecture. IPFS splits files into chunks and stores them 



 76 

in a distributed way to request and transfer them between nodes. When the data is stored off-

chain, the generated content-addressed hash that identified the data is stored on-chain. When 

the data is needed, a peer can utilise the corresponding addressed hash to access the data. In 

other words, data is not part of the blockchain, but a fingerprint of the data is stored on-chain, 

reducing chain growth as content-addressed hashes are commonly smaller represented data. 

Generally, SHA256 stored on-chain requires 32 bytes for any file size that represents in IPFS. 

Each part of the model is discussed in more detail in the following sections. 

5.2. Hyperledger Fabric Architecture 

Traditional blockchain platforms such as Bitcoin and Ethereum are designed as order-execute 

architecture [235]. In other words, transactions are ordered first in the architecture, then 

executed sequentially on all peers in the same order, as demonstrated in Figure 5-2. This 

architecture process cycle limits the scalability of the blockchain as well as affecting the 

throughput and performance that can be achieved by the network. Moreover, smart contract in 

this architecture uses non-deterministic transaction, which means that all peers in the 

blockchain network hold the same state, operate the same transaction, and return the same 

outcome. This is because this architecture supports domain-specific languages such as Solidity 

to design smart contracts and does not support generic languages such as Go and Java. 

 

Figure 5-2 Order-execute architecture 

Hyperledger Fabric solves this problem in its innovation, as it uses architecture based on an 

execute-order-validation approach [235], The architecture is divided into three phrases: the 

execution phase, where a smart contract (chaincode in Hyperledger Fabric) is created and run 

on one or more endorsers to execute transactions; the ordering phase, where transactions are 

grouped and ordered to submit them to the ordering service using the consensus algorithm; and 

the validation phrase, where network peers verify blocks received from the orderer before 

updating their ledger. Such an architecture allows transactions to be executed before ordering 



 77 

it in the blockchain network to tolerating non-deterministic smart contracts. In later sections, 

Hyperledger Fabric’s architecture will be addressed in more depth. 

 
Figure 5-3 Execute-order-validate architecture 

5.2.1. Architecture Components  
Nodes in Hyperledger fabric have different roles and tasks assigned to them. They are 

categorised as client, peer, orderer, endorser, and committer.  

• Client is a node that creates the transaction and can be any specific organisation’s portal 

or application. The client can interact with the network by using the REST web service 

or Hyperledger Fabric SDK. It is responsible to invoke endorser peer to submit 

transaction proposals and receive endorsed transactions from endorser to broadcast it 

to the orderer peer. 

• Peer is a node that receives invocation transactions from the client and maintains the 

distributed ledger. A peer may have one of several different special responsibilities: 

either orderer peer, endorser peer, or committer peer.  

o Orderer peer is a node from the ordering service, which provides a 

communication fabric channel for the network (i.e., it is considered a 

broadcasting service to clients and peers for messages containing transactions 

delivered as blocks).  

o  Endorser peer is a peer that validates whether or not the transaction fulfils all 

the requirements after receiving it from the client application by checking the 

roles and certificate details of the requester. The endorser is responsible for 

executing the smart contract (called chaincode in Hyperledger Fabric), 

simulating the transaction’s outcome, and returning the outcome to the client 

after appending its cryptographic signature. Therefore, the endorser is eligible 

to approve or disapprove the request. Note that an endorser peer can play a 

committer peer role as well. Figure 5-4 illustrates the difference between an 

endorser peer and a committer peer.  

o Committer peer is a peer that commits the transactions and updates the local 

ledger. All nodes are committer peers by default.  



 78 

 
Figure 5-4 Endorser peer vs committer peer 

Each peer’s ledger consists of two main components, world state database and blockchain, as 

shown in Figure 5-5. The former – also known as a blockchain ledger state – is initialised and 

maintained by chaincode to store the latest state values for each blockchain’s transaction log. 

Currently, there are two different types of blockchain ledger state database supported by 

Hyperledger Fabric: LevelDB and CouchDB [229]. LevelDB (called the key-value database) 

is embedded and built into peer nodes by default and stores key range queries, key queries, and 

composite key queries. CouchDB (called the client-server model), meanwhile, is an optional 

alternative that allows the issuing of rich queries rather than using the keys to allow operations 

to be performed by ID. The latter will be used in the implementation, since it records each 

chaincode’s transaction data on a particulate channel.  

   

 
Figure 5-5 Inner components of peer’s ledger  

Chaincode is another important component in the architecture is the same concept of smart 

contract. It is a program code that can be implemented in three languages: Node.js, GO, and 

JavaScript. Smart contract or chaincode contains business logic, and it manages the world state 

database (i.e. to interact with the peer’s ledger by external application, the chaincode must first 

be invoked). The chaincode executes the get() operation to read the world state and the 



 79 

put() operation to state updates (see Figure 5-6). Therefore, chaincode must be instantiated 

on a channel as well as installed on an endorser peer.   

 
Figure 5-6 Hyperledger fabric chaincode 

Every transaction on fabric network is accrued in a channel, which ensures privacy by 

maintaining an Access Control List (ACL). When the channel is created, the ACL is created at 

the same time. Each channel can be viewed and utilised only by the channel’s participating 

peers.         

In a permissioned network such as Hyperledger Fabric, all peers that access information or 

create a new transaction are permitted. To control permissions, a certificate authority (CA) 

component is needed in order to issue identities to all participants in the network, including 

organisations, clients, and nodes. Hyperledger Fabric’s CA – named Fabric-CA – plays an 

important role in operating authorisation and managing identity. Fabric-CA utilises a public 

key infrastructure to generate x.509 certificates to each member of the organisation. One root 

certificate is generated for each organisation. For one-time transaction clients, in addition, 

Fabric-CA can generate temporary certificates.  

5.2.2. Creating the Fabric Network 
As shown in Figure 5-7, the first step to creating a network N is to develop an orderer peer. In 

the blockchain network, there is one orderer in the ordering service O1 that follows the network 

configuration policy. Fabric certificate authority CA1 generates certificates for organisation 

R1 to allow it to interact with the network and to be a part of it. In addition, these certificates 

are used by the organisation’s client applications to authenticate transaction proposals and by 

the organisation’s endorsers to issue digital signatures to represent their transaction results. 



 80 

Each organisation can utilise Fabric-CA, which is provided by default in Hyperledger Fabric, 

or can choose its own certificate authority company. 

 
Figure 5-7 Creating the fabric network       

Since Hyperledger Fabric is a permissioned blockchain, it is necessary to create an 

administrator, as shown in Figure 5-8. Org1 is initialised as an organisation that follows the 

administrative right policies in the network configuration. Org1 has permission to add another 

administrator, Org2. In this case, both Org1 and Org2 follow the same right policies in the 

network configuration. Org 2 must have certificates for its users to able to use the network by 

adding CA2.           

 
Figure 5-8 Adding organisations as administrators 

After this, the next step is defining a consortium. Organisations must be part of a consortium 

before adding them to a channel. Between Org1 and Org2, a new consortium is formed, and 

they must agree to the network’s governing policies. Creating a consortium between different 

organisations is mandatory for every transaction. Then a channel must be created and governed 

by channel configuration to allow consortium organisations to share the network infrastructure 

and communicate privately (see Figure 5-9).          



 81 

 
Figure 5-9 Creating a channel 

When peers are joined to the channel, there can be several peers owned by different 

organisations, as shown in Figure 5-10. P1 is a peer node that becomes part of the channel C1. 

P1, owned by Org1, maintains a ledger, and the channel C1 also has a copy of it. Physically, 

the ledger is held in P1, but logically it is stored on C1. In addition, P4, owned by Org2, is 

added to the channel C1 and has the same copy of the ledger.        

 
Figure 5-10  Defining peers 

The next step is installing client applications and smart contracts (chaincodes), as indicated in 

Figure 5-11. The client application, which is placed out the fabric network, is responsible for 

interacting with the ledger in a peer by generating transaction proposals. A smart contract in 

P1 assists client application A1 to access the ledger through P1. In other words, client 

application A1, which is owned by Org1, cannot access the ledger in P1 directly. It must invoke 

its smart contract first. The smart contract must be installed on every node in a network and 

instantiated at least in a node on an organisation. It must be installed on P1 as well as on the 

channel C1 in order to permit other components connected to C1 to be aware of the smart 

contract.   



 82 

 
Figure 5-11  Adding fabric client applications and chaincode (smart contract) 

To simplify the network that has been developed, as can be seen in Figure 5-11, there are two 

organisations connected to the fabric network through client applications. Each organisation 

has a peer node that is connected to a single ordering service on a channel. Connecting to a 

single channel means that there is only one logical ledger in the network. Thus, P1 and P4 have 

identical copies of the smart contract and the ledger. The network can be expanded by defining 

more organisations and peers that follow new consortiums, as well as creating more channels 

with channel configurations. Each channel in the same network retains separate policies. 

Ordering services on the same network can control multiple channels and can be multiple 

ordering services. More connected channels lead to the development of more smart contracts 

and logical ledgers.            

 

 
Figure 5-12  Completing the fabric network 

5.2.3. Transaction Flow in the Fabric Network      

As was explained earlier, the peers on Hyperledger Fabric host ledgers that can be invoked and 

queried by the peers’ applications via chaincodes. An invoked transaction requires updating 

the ledgers, which is a different process to a query transaction. Updating the ledger cannot be 

complete by a solo node; it needs the other peers on the network to approve the changes before 



 83 

applying it to the peers’ ledgers. Therefore, updating a transaction requires additional steps to 

process which called consensus more than a query transaction process which needs two phase 

steps to be done.   

• Proposal phase: This is the first step of transaction flow, which occurs between a client 

application and endorsing peers. The main aim of this phase is to generate a proposal 

and ask endorsing nodes to validate to the results thereof. When the application 

supported by SDK generates the transaction proposal, it sends it to the required set of 

chosen endorsing nodes, which is defined by endorsement policy. Each of these 

endorsers must independently generate a response to the transaction proposal by 

executing their chaincodes using the proposal as input argument. Executing the 

chaincode produces a transaction result including a read set, and write set (i.e. key pairs 

as an asset to update or create) and response value. The endorser does not change its 

local ledger at this stage. What it does do is to sign the proposal using its private key 

and return it back to the application. The first process of transaction workflow is ended 

when the application receives a number of signed transaction proposal responses.  

• Ordering phase: After the application receives proposal responses containing a set of 

values with endorsers’ signatures, it starts to verify the signatures and compares the 

results to ascertain whether they are same or not. If the proposal transaction invokes a 

query from the chaincodes, the application would determine the query results and would 

not continue to send the transaction to the ordering service (i.e. the invoke transaction 

process would end at this phase). If the proposal transaction asks ledgers to be updated, 

then the application sends the transaction to the ordering service after determining 

whether or not the endorsement policy has been completed. The ordering service 

simultaneously receives several transactions from different applications and channels 

in the network. If there are many orderers on the network, they collaborate together to 

form the ordering service. The transaction includes read/write sets attached with 

endorser signature, plus the channel ID. When the ordering service receives 

transactions, it arranges them chronologically by channel and packages them to 

generate blocks. These blocks will later be attached to the blockchain. Depending on 

what governs the configuration parameters, they determine the size and number of 

transactions that can be in a block, and the duration time holds up after arriving the first 

transaction before cutting a block for additional transactions. Note that the size of the 

block cannot exceed the maximum number of bytes. The blocks are then broadcasted 



 84 

to all peers per channel. Therefore, this phase depends on the ordering service, which 

is responsible for collecting authorised transaction updates and packaging them in 

blocks after ordering them to be ready for broadcasting. 

• Validation and committing phase: This stage is the last phase of the transaction flow, 

where the blocks are distributed and validated from the orderer to the peers, and the 

peers then commit them to their ledgers. When each peer in the channel receives a 

transaction as a block, the peer starts to validate it independently by checking if the 

endorsements match the chaincode’s endorsement policy to ensure it has been validated 

by the required endorsers. Because the orderer packages and sends every authorised 

transaction to peers without making any judgement on the content except checking the 

governs configuration transactions, as discussed previously, peers must check whether 

the transaction is valid or not. If it is invalid, the peers will tag it as an invalid block 

without updating their ledgers’ states. If it is valid, each peer on the channel appends 

the transaction block to its blockchain as well as updating its current state database 

using the write sets. It should be noted that validation in this phase is different than in 

the previous phase, where the client application receives transaction proposal responses 

and checks the endorsement policy before sending the proposal transaction. Thus, the 

peer in the validation phase is still able to dismiss the transaction in case the client 

application sends wrong transaction without checking the endorsement policy.  

In addition, this phase does not require execution of chaincodes for validation as in the 

first phase, which is an important feature of Hyperledger Fabric since chaincodes are 

applied on a required organisation’s endorsers and not throughout the network. In this 

way, the chaincode can be confidential to endorsers. However, the results of the 

chaincodes that form the transaction proposal responses are broadcasted to the 

channel’s peers whether they are endorsers or committers, which leads to increased 

confidentiality and scalability in the network. Finally, in this phase, each peer has to 

emit an event to the client application to notify it that the invoking transaction has been 

added to the blockchain immutably, as well as notifying whether the block was 

validated or not.  

The overall transaction flow of Hyperledger Fabric is shown in Figure 5-13. 

 



 85 

 
Figure 5-13 Hyperledger Fabric transaction flow 

To configure Hyperledger Fabric’s processes, the Docker platform has been used to run range 

of nodes. From the client, a transaction proposal can be created via a function from Hyperledger 

Fabric SDK, which must in turn be signed from the Fabric Certificate Authority (FCA). The 

FCA only has to be accessed when registering new certificates to allow a peer to join the 

network. After that, an endorser who hosts the ledger and chaincode receives transaction 

proposals to run the code and signs the proposal to return it to the client. The client then sends 

the transaction to the ordering service responsible for the ordering of blocks by running the 

consensus algorithm to validate a block and distribute it to the peers to update their ledgers. 

Next, IPFS as a decentralised off-chain storage component will be highlighted and discussed 

in terms of how it can be used in the model.    

5.3. Off-chain Storage: IPFS  

Off-chain storage is another important part of the model that refers to any storage that is located 

outside of blockchain. Since the distributed ledger in the blockchain has limitations in terms of 

how much data can be stored, large non-transactional data that leads to undesirable chain 

growth can be stored off-chain. Using off-chain storage also prevents degradation of 



 86 

Hyperledger Fabric’s performance in handling large data in the blockchain [240]. In practice, 

smart campus data is usually too large to store in a distributed ledger, and it is efficient to store 

it off-chain.  

Since the goal is to build distributed architecture, distributed off-chain storage has been used: 

specifically, IPFS. Large data, such as images, are stored in IPFS, and a small fraction of this 

data is stored in the blockchain ledger. Therefore, ledgers and chaincode functions are not 

affected by big data. In other words, the only thing that is recorded on-chain is a pointer or the 

address of the individual location field that is in IPFS.  

IPFS is a peer-to-peer protocol network for distribution and storage of data in a decentralised 

file system. IPFS breaks files of a size greater than 256KB into several blocks of 256KB, then 

refers to them using hash pointers. IPFS has many properties that are advantageous for the use 

cases, such as the following: 

• No file type restrictions: IPFS does not restrict on file formats, and all files are treated 

the same way as simple text format (i.e. it is unstructured data storage). For the 

architecture, this feature is vital, since smart campus data has multiple types and is 

spread widely. 

• Easy sharing of data: Since IPFS is distributed storage, its protocol provides a hash 

value for each file or data saved. This sharing protocol allows different peers and nodes 

in the network to share files easily. 

• Tamper proof: Data in IPFS can be found by content addressed not location addressed 

such as HTTP. To determine the file location in content-based storage, a content 

identifier is needed. IPFS creates a content identifier based on the data cryptographic 

hash (i.e. it is mostly a fingerprint of the data). In this case, it is extremely difficult to 

receive the same cryptographic hash when the file content is changed. Therefore, file 

content in IPFS cannot be overwritten, which ensure data integrity and a self-certifying 

storage system.  

Combining an off-chain storage system with a blockchain technique decreases some concerns 

in the architecture such as the following:  

• As data is stored off-chain and only its fingerprint hash is saved on-chain, this leads to 

a risk of data availability. In other words, data availability considered as an off-chain 

storage danger when data is not part of the blockchain. However, IPFS is a decentralised 



 87 

system and promises to ensure data availability by distributing and hosting data among 

different peers. Data can be fetched from any nearest peer in the network instead of 

fetching it from traditional client-server architecture.  

• Data can only be stored by peers that have permission to access data and does not need 

to be hosted by all peers in the network. For example, student data is only required to 

be held by IPFS peers that relate to the framework, and the lecturer can attach data to 

which only he or she has authorised access to the off-chain storage system. Therefore, 

there is the benefit of decreasing the amount of data that needs to be store by each peer.  

• Computation of off-chain storage heavily decreases the redundant computation needed 

to perform consensus in the network. Since on-chain holds only a fingerprint of the data 

that is stored off-chain, blockchain can process queries with less computation as most 

computation is done off-chain. 

5.3.1. Transaction Flow for Integration of Hyperledger Fabric 
Blockchain and IPFS  

Section 5.2.3 discussed a transaction flow for the Hyperledger Fabric network. The data in that 

case after the validation process will be stored in the peer’s ledger itself or on-chain, which 

will cause the blockchain to grow excessively fast and negatively affect the network 

performance as discussed earlier. Therefore, there is a need to utilise IPFS as an off-chain 

distributed storage system and integrate it with the framework. Thus, data that is stored off-

chain is non-transaction, which is usually too large in size to handle directly in blockchain.  

As can be seen in Figure 5-14, IPFS has been added to the previous transaction flow chart to 

provide off-chain storage.   

 



 88 

 
Figure 5-14 Transaction flow for integration of Hyperledger Fabric and IPFS 

The main components of the above figure and their roles are presented as follows:  

• User: The user is the actor who accesses or/and adds a data on the IPFS component. 

Depend on the user rights on the network, they can perform operations such as get, cat, 

or add on data. The operation command can be as follows: 
$ ipfs add mydoc.doc   

• Client application: The client application is responsible for interacting with the 

backend, including on-chain and off-chain storages. To access the data, the client 

application retrieves the data hash address from the Fabric Hyperledger blockchain after 

executing the chaincode. They then invoke IPFS to obtain the data information. While 

storing the data, the client application calls IPFS to store the data. Then it invokes the 

blockchain with the data hash address to execute and verify the transaction. In the 

implementation, Java Script API has been used. 

• REST Server: This component is necessary to allow the client application to connect 

to the Hyperledger Fabric network as well as the IPFS network by utilising a gateway 

and packing to implement the required methods for the front end side.  

• Hyperledger Fabric network: The fabric blockchain is explained in terms of its 

components and transaction flow in more detail in section 5.2.  

• Data: In the approach, data can be described as any object that is stored in IPFS. The 

data can be any type of file, such as document, video, audio, image, etc. There is no 

size limitation on IPFS.  

• IPFS network: The IPFS network is where the data is stored off-chain and its hash is 

generated to be stored on the blockchain. Since the system handles sensitive data, 



 89 

private IPFS is used in the implementation, in which all peers on the network know 

each other. All nodes in the private IPFS share a secret key known as the ‘swarm key’ 

to help them identify each other and allow them to respond only to the nodes inside the 

network.  

In Figure 5-14, two scenarios can occur in the proposed solution: uploading data and accessing 

data. Each will be discussed as follows:  

1 Uploading data: When an authorised user requests to upload a file to the network utilising 

add command, the client application invokes the private IPFS client to add the file in IPFS. 

IPFS in turn generates and returns the data hash. The IPFS client will invoke Hyperledger 

Fabric SDK through the application client to pass on the data hash and the file metadata, 

such as the user who added the file and the date and time of upload in order to store them 

on the blockchain. The Hyperledger Fabric SDK then will call the chaincode to update the 

blockchain. The blockchain network runs its process to verify and add the transaction into 

the ledger. When the ledger is updated, the user will receive an alert to say that the update 

has been successful. If it is not successful, the user will receive an alert of a failed process 

with the option to cancel or continue.  

2 Accessing data: To access or fetch the data stored in IPFS, the client application invokes 

Hyperledger Fabric SDK in order to invoke and run the chaincode to get the corresponding 

data hash that is stored on the blockchain. The chaincode returns the data hash as well as 

storing access metadata such as the accessed hash data and the node public address that 

accessed the data and timestamp to the ledger. Then the client application invokes the IPFS 

client and passes the corresponding addressed hash to read the data from the private IPFS 

network. IPFS then returns the file content to the user.                       

5.4. Summary  

This chapter presented the design of the smart education environment framework. The 

framework used Hyperledger Fabric blockchain to decentralise the system, and it delivers 

decentralisation, data integrity, and security. Since blockchain generally has scalability 

concerns when such an environment has massive amounts of data that can lead to excessively 

fast growth of blocks and negatively affect network performance, and to minimise the cost of 

transaction commitment, decentralised off-chain (i.e. IPFS) storage was used to store the data 



 90 

itself, and only transactions were executed on-chain. This design framework will be 

implemented in different case scenarios in the following sections.     



 91 

Chapter 6 A Smart Campus 
Framework Architecture 
Implementation  

After designing the smart education architectural framework using Hyperledger Fabric 

blockchain and interplanetary file system (IPFS) as a decentralised off-chain storage to store 

and retrieve data, this chapter presents the use of previous architectural framework by 

implementing different case scenarios in a smart campus – in particular, a smart educational 

environment as a proof of concept to continue answering the third research question. After that, 

the chapter will examine the fourth research question: ‘What are the implications of the 

applicability of a comprehensive framework for a smart campus in the future?’    

Deployment of Hyperledger Fabric network for the case scenarios is described in section 6.1.  

For implementation, Hyperledger Fabric version 2.3.2 was used as it was the latest version at 

the time this thesis was written. Section 6.2 illustrates the university library management 

system as the first case scenario using the proposed architectural framework. Section 6.3 

discusses the second case scenario of generating a student credential report, including storing 

student records and generating and sharing a student report. Section 6.4 presents the testing 

environment used to evaluate the framework. The source code for the implementations and the 

testing can be found at GitHub http://github.com/Manal979/Project , see Appendix. Section 

6.5 presents the applicability of the comprehensive framework for a smart campus in a broader 

context. Finally, section 6.6 provides overall results discussion.  

6.1. Deploy Hyperledger Fabric Network 

Setting up the network required installation of a series of Fabric prerequisites, including Git, 

cURL, NPM v8.1.0, NodeJS v16.12.0 and Go programming language. Then, the Fabric 

platform-specific configuration and binaries files were installed, which consists of the most 

important directories, /config and /bin. Lastly, the Hyperledger Fabric docker v20.10.7 and 

Docker compose v1.17.1 were installed. Docker was used to provide containers for each 



 92 

component, such as peers, orders and CA. Instead to use full physical or virtual machines, 

container technology provides more lightweight feature for the implementations and allows 

testing configuration files much faster.      

Table 6-1 Environment configuration 

Component Description 

CPU 

Memory 

Operating System 

Hyperledger Fabric 

NPM 

Node 

Docker 

Docker Compose 

CLI Tool 

DBMS 

Intel Core i7 

12 GB 

Ubuntu Linux  

v2.3.2 

v8.1.0 

v16.12.0 

v20.10.7 

v1.17.1 

Angular 

Couch DB 

Our building Fabric network contains two organisations, and each has two peers, which are the 

network participants or actors. All components connect to one channel and deploys a Raft 

consensus algorithm for three orderers, as can be seen in figure 6-1 YAML definition of 

bootstrapping the network. All certificates are managed by the CA authorities created for both 

organisations.   

fabric: 
  cas: 
  - “ca.org1” 
  - “ca.org2” 
  peer: 
  - “peer0.org1” 
  - “peer1.org1” 
  - “peer0.org2” 
  - “peer1.org2” 
  orderers: 
  - “orderer1.orderer” 
  - “orderer2.orderer” 
  - “orderer3.orderer” 
  settings: 
     ca: 
       FABRIC_LOGGING-SPEC:INFO 
     peer: 
       FABRIC_LOGGING-SPEC:INFO 
     orderer: 
       FABRIC_LOGGING-SPEC:INFO 



 93 

   netname: “project” 
Figure 6-1 Definition of bootstrapping the blockchain network 

Since setting up the network is reliant on multiple configuration files, configuration scripts and 

files were modified to meet the needs, as per the following: 

• Configtx.yaml: This file has configuration information and channel transaction files for 

developing the genesis block. The file consists of several sections: 

o Organisations: This section defines the individual organisations with their identity 

details, which are referenced in the configuration file. The details include the 

organisation’s name; Membership Service Provider (MSP) ID, which is responsible 

for handling all the cryptographic operations such as issuing, signing, verifying and 

chaining; MSPDir, which is a directory that contain the organisation’s crypto 

materials and MSP configuration; and Anchor peers, which are used to keep data 

sync between organisations’ peers in the gossip protocol by specifying the host and 

port of them; Finally, the orderers need to be defined. In the implementation, there 

are three orderers. 

o Orderer:  This section defines all the orderer parameters. These parameters include 

the orderer consensus algorithm; the port and host addresses; BatchTimeout, which 

is the time that the orderer needs to wait before creating a batch; MaxMessageCount 

which means the maximum size of a block; AbsoluteMaxBytes which is the 

absolute maximum number of bytes to permit in a block; and preferredMaxBytes, 

which is the preferred maximum size of bytes for a block.  

o Capabilities: This section is used in the case that the network nodes running 

different versions of Fabric code to avoid any impacts. Capabilities can be deployed 

in three different places, including channel, where both peer and orderer can 

communicate; Orderer, where capabilities can be applied in the orderer group; and 

application, where deployment to peers only.  

o Application: This section uses the application defaults, which is referred in the 

genesis block. 

o Profiles: This section is considered a vital part in the Configtx.yaml file since it 

combines all the previous configurations and describes the structure of the network. 

It contains of two parts: the first part is related to a channel configuration and the 

second part is related to genesis block configuration.   



 94 

• Crypto-config.yaml: This file has the generated certificates and key information for the 

organisations and their components. When the cryptographic generator tool (cryptogen 

tool) is used to generate key material and digital certificates for the network, this file is 

required.   

• Fabric-ca-config.yaml: Here, the CA server provided by Fabric was used to issue 

certificates for the entities, however, in real life, intermediate CA provided by any trusted 

enterprise CA should be used. This file contains the CA parameters including private and 

public keys that used for issuing and signing certificates. 

• Docker-compose.yaml: This file has the docker containers configurations for the network 

entities such as orderers, peers, cli and CouchDB.  These entities’ configurations include 

their ports, domains, addresses, paths, and other essential parameters that are important to 

set up the network correctly. In addition, this file is responsible for setting up CA 

containers.   

In the next section, the first case scenario will be presented in more detail. 

6.2. Library Management System Case Scenario   

Because the area of library management systems is slow to embrace new technologies [116], a 

library management system case scenario was used to demonstrate the smart educational 

architectural framework.  Library functionality has not changed over the decades. These is still 

in place a framework that saves enormous amounts of information and materials. Library 

systems traditionally need physical storage space and maintain their availability by providing 

physical accessibility to users. However, managing and storing such resources as articles, 

books and magazines can be very costly, and the facilities may need to collaborate with other 

organisations or operate with several branches. Although computers and digital devices provide 

extremely high information storage densities and do not suffer from the problem of a traditional 

library, the complexity of the library is less affected [115], [117]. The issues of records integrity 

and storage effectiveness are present in the digital library since the information infrastructure 

relies on centralised structure that may suffer from such attacks as single point of failure or 

DDoS, as explained in more detailed in Section 3.2.  In addition, the current centralised library 

systems may suffer from unauthorised access to materials. 



 95 

The blockchain technology that was presented in the literature review, particularly the 

Hyperledger Fabric blockchain, fits well with library management systems. It can eliminate a 

central authority by using a distributed ledger to build a decentralised system, therefore 

providing more security and efficiency for operating and controlling communication among all 

participating nodes to the library recourses and archives. Moreover, blockchain technology 

uses cryptographic mechanisms, as explained in Section 2.3.2. This can be tamper-resistant, 

with a potential use for scientific publications and journal articles that are stored in the library 

system to ensure that the materials have not been changed or altered. Because data are stored 

in and retrieved from the distributed ledger, the library systems can ensure data integrity and 

prevent a single point of failure. There are several studies that focus on emerging blockchain 

technology to different library management systems to increase their security, as was addressed 

in Section 2.4.3. However, there is no existing implementation for this type of platform.           

This section’s adoption of the Hyperledger Fabric and IPFS to the library management system 

has been used to extend the current theory studies. In this framework, multiple libraries can be 

joined to the network and books can be listed. Students who are enrolled in the network can 

see the metadata of books, and seamlessly check the availability of a book, borrow it, extend 

their loan, or return it. 

The implementation of this uses the Hyperledger Fabric blockchain (that was implemented in 

section 6.1) to store a book’s International Standard Book Number (ISBN), which is a unique 

identifier, and its IPFS hashes. In addition, the implementation uses a private IPFS network to 

store the book’s metadata, such as the book title, the author’s name, the publisher, and the 

publication year. Figure 6-2 shows the flow diagram of the proposed solution.    

 

Figure 6-2 library management system case scenario 

The diagram shows the architecture of the library management system based on off-chain 

storage. It is fully decentralised architecture, guaranteeing transparency and security as well as 



 96 

eliminating the trusted third party. There are two roles in the system, librarians and students, 

which are described as follows: 

• Librarians: The librarians from the library organisation have rights to read and write to 

the ledger. They are responsible for calling and executing the chaincode to store the books’ 

information on the blockchain. 

• Students: Students have rights to read the ledger without writing or updating it. Students 

can invoke the chaincode to access a book’s information, such as author and publisher 

name, book content and number of copies. In addition, students can borrow a book, check 

the availability, extend a book or return it. 

In figure 6-3, a sequence diagram explains the interaction between system components and the 

way the librarian stores the book’s data on the system.  

 

Figure 6-3 A sequence diagram for storing book information 
 

First, the librarian requests the creation of a book in the application layer by giving all the 

required information, such as book ISBN, title, author’s name, number of copies, publication 

year, and publisher name. The information is sent to the backend through the application layer. 

The backend segregates the data and calls IPFS to store the book title, author’s name, 

publication year, and the publisher’s name, while the book’s ISBN and the number of copies 

will be stored later in the ledger because the ISBN will be used as a key in the ledger to help 



 97 

fetch the book information from the IPFS. The number of copies is a changing variable that 

cannot be stored on IPFS, which is more suitable for storing static data. IPFS stores the data 

by distributing it across the network and returns the data hash to the backend layer. The data 

hash can be used as a fingerprint of the data to be stored on-chain and used later by other peers 

to access the data location on IPFS. The backend layer creates the transactions that contains 

the ISBN, the number of copies, the data hash and the data timestamp, and signs it digitally by 

utilising the user certificate authority, which is generated by Fabric-CA.  Then the transaction 

is sent to the Fabric Hyperledger blockchain to be stored in the ledger. The ‘endorser peer’ in 

the blockchain is responsible for executing the smart contract, simulating the transaction’s 

outcome – which consists of the world state and the read-write set – and returning the outcome 

to the backend after appending its cryptographic signature. The backend collects all the 

endorser peers’ transaction responses and verifies the validity of the endorsers’ signatures. 

After that, the backend creates the proposal and sends it to the ordering service to run the Raft 

consensus algorithm, verify the transaction, and create a block to be broadcast to all participants 

in the network. The peers, in turn, check the validity of the transaction block by verifying the 

endorser’s policies and determining whether the read set changed or not. After meeting all the 

validation requirements, the transaction block is then marked either valid or invalid, allowing 

the peers to update their ledger and append the transaction block in the blockchain. The 

backend is then notified that the block has been appended successfully. Finally, the application 

layer forwards the notification to the client and visualises the results.              

In Figure 6-4. a sequence diagram presents the interaction between the system components that 

enable the student to search for a desire book.  



 98 

 

Figure 6-4 A sequence diagram for searching for a desire book 

When a student requests to search for a book, they need to enter the ISBN for the book. The 

application layer will call the backend and pass the ISBN to it. The backend in turn will create 

a transaction proposal, which contains the ISBN and signs it digitally, utilising the user 

certificate authority, which is generated by Fabric-CA, and calling the blockchain endorsers 

through Fabric SDK to execute the query function in the chaincode. The endorser peer 

simulates the transaction’s outcome, which consists of the world state and the read set, and 

returns the outcome to the backend after appending its cryptographic signature. The backend 

collects all the endorser peer’s transaction responses and verifies the validity of the endorser’s 

signatures. In terms of reading a value, the value is the data hash that was generated by IPFS 

from the ledger; there is no need to call the ordering service because generating a block is not 

required. After the backend layer has the content-addressed hash, it will be sent to IPFS to fetch 

the book’s metadata. The book information will then be displayed to the student, and they can 

borrow a book, check its availability, renew a loan, etc.         

The next sections will describe the other requirements for implementation, including the 

scenario’s chaincode, API, frontend, and dashboard. 



 99 

6.2.1. Smart Contract (Chaincode)     

There are several transactions that can be performed in the network by the participants: 

Create book: The chaincode function createBook is the method to insert the book information 

into the ledger. It accepts parameters such as ctx, ISBN, copies, data hash, additional data, 

where ctx is transaction context to help provide access to the API, and additional data is the 

JSON metadata for recreating the IPFS data. The function ctx.stub.putState is used to create 

the state in the ledger. It accepts a key and value as parameter, where the key is the ISBN and 

the value is the JSON string of the book data – see figure 6- 3. 

      async createBook(ctx, isbn, copies,datahash, additionalData) { 
        console.info('============= START : Create Book ==========='); 
        additionalData = JSON.parse(additionalData);   
        const book ={ isbn, docType: ‘book’, copies, DataHash : datahash,    
        additionalData:additionalData 
        }; 
 
        await ctx.stub.puttState(isbn, Buffer.form (JSON.stringify(book)));  
        console.info('============= END : Create Book  ==========='); 
       } 

Figure 6-3 A code snippet of the create book function in the smart contract 

Query all books: this function is responsible for querying the book information from the 

ledger. As can be seen in figure 6-4, the function accepts parameters such as ctx and query, 

where query is a JSON object with a selector or filtering parameters. This function returns the 

array of the book as a ßresponse: [{_id, bookname,isbn, numberofcopies, yearofpublishing, 

author,publisher, timestamp, cid}]– see figure 6- 4. 

     async queryAllBook(ctx, query) {    
 console.info('======== START : QUERY ALL BookS TRANSACTIONS ========'); 
 let iterator = await ctx.stub.getQueryResult(query); 
 const allResults = []; 
 while (true) { 
  const res = await iterator.next();  
  if (res.value && res.value.value.toString()) { 
   console.log(res.value.value.toString('utf8'));  
   const Key = res.value.key; 
   let Record; 
  try {  
   Record = JSON.parse(res.value.value.toString('utf8')); 
  } catch (err) { 
   console.log(err); 
   Record = res.value.value.toString('utf8'); 
  } 
 allResults.push({ Key, Record }); 
 } 
 if (res.done) { 



 100 

  console.log('end of data'); 
  await iterator.close(); 
  console.info(allResults); 
  return JSON.stringify(allResults); 
 } 
 } 
console.info('============= END : QUERY ALL BookS TRANSACTIONS==========='); 
} 

Figure 6-4 A code snippet of the query all books function in the smart contract 

Query single book: This function retrieves the book data from the ledger by passing the ISBN.  

It uses the getState method to retrieve the state from the ledger. This function returns a book 

data object that contains {_id, bookname,isbn, numberofcopies, yearofpublishing, 

author,publisher, timestamp, cid} – see figure 6- 5. 

  async queryBook(ctx, isbn) { 
        console.info('============= START : QUERY A Book ==========='); 
        const bookAsBytes = await ctx.stub.getState(isbn); // get the book from        
        chaincode state 
        if (!bookAsBytes || bookAsBytes.length === 0) { 
           throw new Error(`${isbn} does not exist`); 
            } 
       console.log(bookAsBytes.toString()); 
       console.info('============= END : QUERY Book END ===========');  
       return bookAsBytes.toString(); 
   }  

Figure 6-5 A code snippet of the query a book function in the smart contract 

Issue a book: This method issues a book to the student through the ledger. The function accepts 

the inputs: ISBN; ‘issuedTo’ as a user ID; and ‘issuedOn’ as timestamp. Then it creates an 

issuance entry in the ledger and stores the transaction. Internally within the function, the 

availability of the book would be reduced by one – see figure 6-6. 

   async issueBook(ctx, isbn, issuedTo, issuedOn {  
 console.info('============= START : ISSUE Book ==========='); 
 const book = { 
  isbn,docType: 'Tbook', issuedTo: issuedTo, issuedOn: issuedOn,  
  status1:"Issued" }; 
 const bookAsBytes = await ctx.stub.getState(isbn); // get the book from  
 chaincode state 
 if (!bookAsBytes || bookAsBytes.length === 0) { 
  throw new Error(`${isbn} does not exist`); 
 } 
 const bookOld = JSON.parse(bookAsBytes.toString()); 
 bookOld.copies = bookOld.copies - 1; 
 await ctx.stub.putState(isbn, Buffer.from(JSON.stringify(bookOld))); 
 await ctx.stub.putState("t" + isbn, Buffer.from(JSON.stringify(book))); 
 console.info('============= END : ISSUE Book ==========='); 
  } 
 

Figure 6-6 A code snippet of the issue a book function in the smart contract 



 101 

Return a book: This method returns a book back to the library. It is primarily invoked from 

the student’s side. The function accepts the inputs: ISBN; ‘returnedBy’ as userId; and 

‘returnedOn’ as a timestamp. Then it creates a ‘book returned’ entry in the ledger and stores 

the transaction. In addition, the availability of the book would be incremented by one – see 

figure 6-7.     

   async returnedBook(ctx, isbn, returnedBy, returnedOn,status1 {  
 console.info('============= START : ISSUE Book ==========='); 
 const book = { 
  isbn,docType: 'Tbook', returnedBy: returnedBy, returnedOn:   
                 returnedOn, status1:"Returned" }; 
 const bookAsBytes = await ctx.stub.getState(isbn); // get the book from  
 chaincode state 
 if (!bookAsBytes || bookAsBytes.length === 0) { 
  throw new Error(`${isbn} does not exist`); 
 } 
 const bookOld = JSON.parse(bookAsBytes.toString()); 
 bookOld.copies = bookOld.copies +1; 
 await ctx.stub.putState(isbn, Buffer.from(JSON.stringify(bookOld))); 
 await ctx.stub.putState("t" + isbn + returnedBy, 
        Buffer.from(JSON.stringify(book))); 
        console.info('============= END : Return Book ==========='); 
        return { "status” :false };  
  } 
 

Figure 6-7 A code snippet of the return a book function in the smart contract 

Delete a book: This mothed deletes a book from the ledger. The function accepts ISBN as an 

input and removes the entry from the ledger. One blockchain feature is immutability, in which 

the data cannot be changed while it is stored. In the delete a book function, what actually 

happens is that the book is marked as ‘true’ so it does not appear in the system, while in the 

ledger’s history, is still exists – see figure 6-8          

  async deleteBook(ctx, isbn) { 
      console.info('============= START : Delete a Book ==========='); 
       const bookAsBytes = await ctx.stub.getState(isbn); // get the book from  
       chaincode state 
       if (!bookAsBytes || bookAsBytes.length === 0) { 
          throw new Error(`${isbn} does not exist`); } 
       const book = JSON.parse(bookAsBytes.toString()); 
       book.delete1 = 'true'; 
       await ctx.stub.deleteState(isbn); 
       console.info('============= END : Delete a Book ==========='); } 
 

Figure 6-8 A code snippet of the delete a book function in the smart contract 

Query history of a key: This is function specifically implemented to retrieve the information 

on the state changes. The function accepts the ISBN as the parameter and retrieves all the state 



 102 

changes that have happened to a specific key. This function returns an array of data changes 

occurred for the key – see figure 6- 9.   

   async getHistoryForKey(ctx, isbn) { 
 console.info('=========== START : QUERY ALL HISTORY FOR KEY ==========='); 
 let iterator = await ctx.stub.getHistoryForKey(isbn);  
        const allResults = []; 
        while (true) { 
           const res = await iterator.next(); 
           if (res.value && res.value.value.toString()) { 
               console.log(res.value.value.toString('utf8')); 
                
               const Key = res.value.key; 
               let Record; 
               try { 
                   Record = JSON.parse(res.value.value.toString('utf8')); 
               } catch (err) { 
                   console.log(err); 
                   Record = res.value.value.toString('utf8'); 
               } 
                allResults.push({ Key, Record }); 
             } 
             if (res.done) { 
                console.log('end of data'); 
                await iterator.close(); 
                console.info(allResults); 
                return JSON.stringify(allResults); 
             } 
           }  
           console.info('========== END : QUERY ALL HISTORY FOR KEY =========='); 
       } 
  } 

Figure 6-9 A code snippet of the query all history function in the smart contract 

Next the library management system’s APIs are implemented.    

6.2.2. API  
In the current implementation, the frontend and backend layers have been segregated. 

Middleware, or API, is the system that connects frontend with the blockchain and IPFS 

networks. The API layer leverages Fabric SDK to interact and perform various operations with 

the backend. APIs are implemented in the RESTful fashion and JSON data structure for both 

request and response. Next, API functions are presented:             

Register: The API layer extends the express module in NodeJS to expose http services. 

Register endpoint accepts the request interface and provide the response interface as an output. 

It accepts {name, type, passwords, email} and responds with the registration status 



 103 

{status, message}. The password is stored in an encrypted function and utilises bcrypt 

from the crypto module of NodeJs – see figure 6-10.      

 app.post('/register', async function (req, res) { 
 let response; 
 if (req && req.body) { 
  let data = req.body; 
  try { 
     const salt = bcrypt.genSaltSync(10); 
     data.password = bcrypt.hashSync(data.password, salt); 
     const result = await usersCollection.insertOne(data); 
     console.log(`A user details was inserted with the _id:  
     ${result.insertedId}`); 
            response = { 
              status: true, 
              message: 'Registration Successful' 
             }; 
        } catch (err) { 
        response = { 
           status: false, 
           message: 'Failed to register the user' 
         }; 
        } 
      } else { 
        response = { 
        status: false, 
        message: 'Failed to register the user' 
      }; 
     } 
     res.send(response); 
 }); 

Figure 6-10 A code snippet of the register function in API 

Login: The primary objective of this endpoint is to authenticate the user and retrieve the 

relevant information from the database back to the application layer. The retrieved data 

includes user details, user type, etc. The endpoint accepts {email, password} as input and 

returns {status, message, data: userObject}. The password is compared with the 

encrypted value using the crypt method and authenticates the user – see figure 6-11. 

 app.post('/login', async function (req, res) { 
  const data = req.body; 
  const query = { 
email: data.email 
  }; 
 
  let response; 
 
  try { 
    let userAuth = await usersCollection.findOne(query); 
    const passValidation = bcrypt.compareSync(data.password,  
    userAuth.password); 
    delete userAuth.password; 
 
    if (passValidation) { 



 104 

      response = { 
        status: true, 
        message: 'User is authenticated', 
        data: userAuth 
      }; 
    } else { 
      throw false; 
    } 
  } catch (err) { 
    response = { 
      status: false, 
      message: 'Unable to authenticate the user', 
    }; 
  } 
  res.send(response); 
}); 

Figure 6-11 A code snippet of the login function in API 

Get student: This endpoint is indented to retrieve the registered student information back to 

the frontend application. This data primarily used to list the student information in the 

application and allow librarians to issue /assign books to the students. The API does not require 

any parameter in the request and responds with an array of student information. The response 

object would include {status, message, data: data}, and data would be an array of 

student record [{_id, name}]– see figure 6-12. 

 app.post('/getStudents', async function (req, res) { 
  const data = req.body; 
  const query = { 
    // hash: data.hash 
    type: 'student' 
  }; 
  let response; 
  try { 
    let studentData = await usersCollection.find(query).project({ 'name':   
    1 }).toArray(); 
    response = { 
      status: true, 
      message: 'Retrieved the data', 
      data: studentData 
    }; 
    console.log(response); 
  } catch (err) { 
    response = { 
      status: false, 
      message: 'Unable to retrieve the data', 
    }; 
  } 
  res.send(response); 
}); 

Figure 6-12 A code snippet of the get student function in API 

Get books: The endpoint is developed to support retrieval of listed book information from 

ledger and IPFS data store. The endpoint does not require input parameters, and it would 

produce a response with an array of books data. The response object would be {status, message, 

data} and the data would be an array of book information such as [{_id, bookname, 



 105 

numberofcopies, yearofpublishing, author, publisher, timestamp, cidObject]} 
– see figure 6-13. 

app.post('/getBooks', async function (req, res) { 
  const data = req.body; 
  console.log(data); 
  const query = { 
    // hash: data.hash 
  }; 
  let response; 
  let bookData = []; 
 
  try { 
    const library1Client = dlt.initDlt('library1', 'user1'); 
    library1Client.then(async (client) => { 
    console.log("Library 1 client initialized") 
    await client.evaluateTransaction('queryAllBooks',   
    '{\"selector\":{\"docType\":\"book\"}}').then((result) => { 

// console.log(`Transaction has been evaluated, result is:${result.toString()}`); 
 
        result = JSON.parse(result.toString()); 
        console.log(result); 
        result.forEach(element => { 
          console.log(element); 
          console.log(element.Record); 
          element = element.Record; 
          let additionalData = element.additionalData; 
          console.log(additionalData); 
          let singleBook = { 
            _id: additionalData._id, 
            bookname: additionalData.bookname, 
            isbn: element.isbn, 
            numberofcopies: element.copies, 
            yearofpublishing: additionalData.yearofpublishing, 
            author: additionalData.author, 
            publisher: additionalData.publisher, 
            timestamp: additionalData.timestamp, 
            cid: { 
              path: element.DataHash 
            } 
          } 
          bookData.push(singleBook); 
        }); 
    ... 

Figure 6-13 A code snippet of the get book function in API 

Get report: This API is limited to librarians, and it is used to fetch the report of borrowing 

status for the book. The API accepts data hash/ IPFS hash as the parameter and returns the 

report data. The response object is {status, message, data}, and the data would be an 

array of borrowed books and the borrowing timestamps. Data object object contains the 

following information: [{username, timestamp}]– see figure 6-14.   

 app.post('/getReport', async function (req, res) { 
  const data = req.body; 
  console.log(data); 
  const query = { 
    // hash: data.hash 
    datahash: data.datahash 
  }; 



 106 

  let response; 
  try { 
    let reportData = await transactionCollection.find(query).project({   
    'userName': 1, 'timestamp': 1 }).toArray(); 
    response = { 
      status: true, 
      message: 'Retrieved the data', 
      data: reportData 
    }; 
    console.log(response); 
  } catch (err) { 
    response = { 
      status: false, 
      message: 'Unable to retrieve the data', 
    }; 
  } 
  res.send(response); 
}); 

Figure 6-14 A code snippet of the get report function in API 

Add book: This endpoint is limited to librarian user roles and is primarily responsible for 

creating the book information in the blockchain and storing metadata in the IPFS. The API 

requires the parameters of {bookname, isbn, numberofcopies, yearofpublishing, 

author, publisher} in the request object and provides a response object that contains the 

status and IPFS hash. The response object would be in the form of {status, message, cid}. 

After receiving the request, it constructs a JSON object that has meta fields, including ISBN, 

title, year, author, and publisher. Then, the metadata is pushed to the IPFS using the function 

ipfs.add. In addition, the original request information and the IPFS hash are then pushed to 

the ledger with the key as the ISBN and the value as the data object. It utilises the 

submitTransaction method exported by the Fabric SDK– see figure 6- 15.  

    app.post('/addbook', async function (req, res) { 
  console.log(req.body); 
  const request = req.body; 
  let data; 
  let response; 
  let result; 
  let ipfsData = { 
    "content": { 
      ISBN: request.isbn, 
      Title: request.bookname, 
      Year: request.yearofpublishing, 
      Author: request.author, 
      Publisher: request.publisher 
    } 
  } 
 
  try { 
 
    const cid = await ipfs.add(JSON.stringify(ipfsData)); 
 
    data = request; 
    data.timestamp = Date.now(); 
    data.cid = cid; 
    console.log(data.cid) 
 



 107 

    result = await bookCollection.insertOne(data); 
    console.log(`A book details was inserted with the _id:  
    ${result.insertedId}`); 
// DLT Operations 
    const library1Client = dlt.initDlt('library1', 'user1'); 
    library1Client.then(async (client) => { 
      console.log("Library 1 client initialised") 
      await client.submitTransaction('createBook', data.isbn,  
      data.numberofcopies, data.cid.path, JSON.stringify(data)); 
    }); 

           ... 
Figure 6-15 A code snippet of the add book function in API 

Borrow book/ issue book/ return book: The borrow book and return book features are 

primarily intended for student roles, but to extend the functionalities, the issue book feature is 

made available for librarian users as well. In this endpoint, issue book is available at librarian 

dashboards, and using the functionality, a librarian can issue any books to the registered 

student. The borrow book button would be available for students in the student dashboard, and 

they can click this to have the book issued and assigned to their name. Once the book is 

borrowed, there will be an option to return the book by clicking on the return book button. The 

librarian will have complete visibility over the availability of books and information on who 

borrowed the book at any point in time. Issuance, borrow and return would be considered as 

transaction entries and recorded in the ledger as states. In addition, internally, it updates the 

availability of books whenever a borrow, issuance or return operation is triggered. The API 

expects parameters such as {bookname, isbn, datahash, recipientUser, operation} 

and generates a response object of {status, message}. Here, the operation value can be 

issue or return– see figure 6- 16.  

app.post('/issuebook', async function (req, res) { 
  const request = req.body; 
  let data; 
  let response; 
let result; 
 
  try { 
    data = request; 
    data.timestamp = Date.now(); 
    let userMapper = await usersCollection.find({ _id:  
    ObjectId(data.recipientUser) }).project({ 'name': 1 }).toArray(); 
    data.userName = userMapper[0].name; 
 
    const library1Client = dlt.initDlt('library1', 'user1'); 
 
    if (data.operation == 'return') { 
      // Removing from the transactions 
      result = await transactionCollection.deleteOne({ "datahash":  
      data.datahash, recipientUser: data.recipientUser }); 
 
      // DLT Request 
      library1Client.then(async (client) => { 
       await client.submitTransaction('returnBook', data.isbn,    
       data.recipientUser, data.timestamp, 'Returned'); 



 108 

       console.log("DLT Transaction Submitted"); 
      }); 
 
    } else { 
      result = await transactionCollection.insertOne(data); 
 
      // DLT Request 
      library1Client.then(async (client) => { 
       await client.submitTransaction('issueBook', data.isbn,  
       data.recipientUser, data.timestamp); 
        console.log("DLT Transaction Submitted"); 
      }); 
... 
 

Figure 6-16 A code snippet of the issue a book function in API 

Delete book: The delete book API is limited to librarian user roles and is used to delete the 

book information from the ledger. The API accepts {_id, isbn} as parameters and deletes all 

the information related to the book from the ledger. The response would be a simple object 

with {status, message} – see figure 6-17.   

  app.post('/delete', async function (req, res) { 
  const request = req.body; 
  let response; 
  let result; 
  console.log(request); 

 
  try { 
 
    if (request.type == 'book') { 
      result = await bookCollection.deleteOne({ "_id":   
      ObjectId(request.id) }); 
      await transactionCollection.deleteMany({ "isbn": request.isbn }); 
      await historyCollection.deleteMany({ "isbn": request.isbn }); 
 
      console.log(`Successfully deleted the book with the _id:  
      ${request.id}`); 
 
      const library1Client = dlt.initDlt('library1', 'user1'); 
      library1Client.then(async (client) => { 
 
        await client.submitTransaction('deleteBook', request.isbn); 
        console.log("DLT Transaction Submitted"); 
      }); 
... 

Figure 6-17 A code snippet of the delete a book function in API 

Enrol admin: Hyperledger fabric primarily uses a PKI model to authenticate client 

applications and their communications. To perform any operations, such as invoke or query, in 

the Hyperledger fabric network, an admin identity needs to be registered. This function 

involves a connection profile that contains the public certificates and gRPC endpoints. Once 

the enrolment is successful, it will create a wallet file for the enrolled admin, which can be 

consumed by the application to interact with the network with admin privileges. Admin users 

can enrol more admins and create users with different roles in the network – see figure 6- 18.  



 109 

   async function enrollAdmin(org) { 
      let adminUser = ‘admin’; 
      try { 
          // load the network configuration  
          Const ccpPath = path.resolve ( _dirname, ‘./’ , ‘ccp-generate’,  
          ‘connection- ${org}.json’); 
           Const ccp = JSON.parse(fs.readFileSync (ccpPath,‘utf8‘)); 
      ...} 
      ... 

Figure 6-18 A code snippet of the enrol admin function in API 

Register user: Once the admin credentials are created in the network, the wallet file can be 

consumed by the application to enrol user credentials to the network. Any operation on the 

network that includes invoke or query requires a user identity to be passed. Enrolment of a user 

ID requires the creation of a wallet file against the user identity – see figure 6-19. 

  async function registerUser(org, user) { 
      let adminUser = ‘admin’; 
      try { 
          // load the network configuration  
          Const ccpPath = path.resolve ( _dirname, ‘./’ , ‘ccp-generate’,  
          ‘connection- ${org}.json’); 
           Const ccp = JSON.parse(fs.readFileSync (ccpPath,‘utf8‘)); 
      ...} 
      ... 

Figure 6-19 A code snippet of the register a user function in API 

Initialise gateway: Fabric blockchain utilises the gateway model to discover the network 

topology. Before accessing the chaincode in the network, the gateway needs to be initialised. 

This function helps the application to initialise the gateway and allows the application to 

discover the network topology. The initDlt function initialises an instance of the gateway, 

which requires a user identity to be passed to for the connection. Once the network instance is 

initialised, by passing the channel name and chaincode name, the contract instance can be 

created. Application would be able to use the contract instance to invoke or query on the 

blockchain network – see figure 6-20. 

  async function initDlt(org, user) { 
      try { 
          // load the network configuration  
          Const ccpPath = path.resolve ( ‘ccp-generate’, ‘connection-${org}.json’); 
           let ccp = JSON.parse(fs.readFileSync (ccpPath,‘utf8‘)); 
           // Create a new file system based wallet for managing identitites. 
           Const walletPath = path.join (process.cwd(),‘wallet/${org}’);  
           Const wallet = await Wallets.newFileSystemWallet (walletPath); 
           Console.log(‘Wallet path:${walletPath}’); 
      ...} 
      ... 

Figure 6-20 A code snippet of the initialise gateway function in API 



 110 

In the next section, frontend implementation for the case scenario is provided. 

6.2.3. Frontend 

The web application of the library management system case scenario consists of features to 

register the identity of a librarian or student, list books, query books, and enable the borrowing 

and returning of books. The frontend internally leverages the API layer, IPFS storage and 

Hyperledger Fabric network to record transactions, maintain book information and store 

relevant metadata. The implementation of each feature is as follows:  

Login: This section is for capturing user inputs such as email address and password via the 

web interface. It utilises the Angular form control to have the input from the user and process 

it in the backend. When the user click on the submit button, it calls the doLogin() function to 

process the request. Internally it makes the API call the API service to authenticate the user– 

see figure 6- 21.   

... 
 ngOnInit(): void { 
   this.titleservice.setTitle(‘Login – Library Portal’); 
   if (sessionStorage.getItem(‘currentUser’)) { 
   this.router.navigate ([‘/user/dashboard’]); 
   }  
 
   this.loginFprm = this.formBuilder.group ({ 
      email:[ ‘’, [Validators.required]],  
      password: [‘‘, [Validators.required]],}); 
   } ... 

    Figure 6-21 A code snippet of the login function in frontend 

 Register: The register page is indented to onboard new users into the system, whether 

librarians or students. It captures basic user information such as email, name, password, and 

type of user to proceed with the registration process. User type can be either librarian or student. 

When a user clicks on the submit button, it trigger the doRegister() button. Then, internally, 

it calls the register end point from the API service to onboard the user to the system – see figure 

6-22. 

... 
 ngOnInit(): void { 
   this.titleservice.setTitle(‘Login – Library Portal’); 
   if (sessionStorage.getItem(‘currentUser’)) { 
   this.router.navigate ([‘/user/dashboard’]); 
   }  
 
   this.loginFprm = this.formBuilder.group ({ 
      name:[ ‘’, [Validators.required, Validators.min (1)]], 



 111 

      type:[ ‘na’, [Validators.required]], 
      email:[ ‘’, [Validators.required, Validators.email]],  
      password: [‘‘, [Validators.required], Validators.min (1)],}); 
   } ... 

Figure 6-22 A code snippet of the register function in frontend 

Add book: In the current implementation, only librarians can add books into the platform. 

They can trigger the add book operation to get started with the book listing, and as part of the 

data collection, they have to provide necessary information about the book, such as name, 

ISBN, year of publication, author, publisher and number of copies. The issue action triggers an 

API call to the backend API service, which records the information in the blockchain as well 

as IPFS. The information is stored in the IPFS and then generates the hash. The hash and ISBN 

are stored in the blockchain ledger – see figure 6-23. 

 < input type= “test” fromControlName=”bookname” class=”form-control” id= ”name” 
   Placeholder= ”Title” > 
       </div> 
       <div class = “mb-3”> 
            <label for= “isbn” class= “form-label” > ISBN #</label> 
            <input type = “text” class “form-control” id= “isbn” placholder= “ISBN     
             number” fromControlName= “isbn” 
        </div> 
...       

Figure 6-23 A code snippet of the add book function in frontend 

Issue book: As part of the implementation, a user with a librarian role can issue/assign books 

to the students registered in the platform. The operation internally calls the IssueBook API to 

perform the assignment operation in the background – see figure 6-24. 

  public doIssueBook () { 
       (document.querySelector( ‘.btn-submit’) as HTMLInputElement).  
        setAttribute (’disabled’,’’); 
 
        let data: any = this.issueBookForm.value; 
       data.bookname = this.singleBookName; 
       data.isbn = this.singleIsbn; 
       data.datahash = this.single.Datahash; 
       data.operation = this.operation;  
 ...   

Figure 6-24 A code snippet of the issue a book function in frontend 

Return book: Book returning is limited to student user roles. If any book is assigned to a 

student or they have borrowed the book in the past, then the option for return would be enabled. 

Once they click on return book, internally it calls the issueBook API with a type of return. On 

the API side, the book information would be sent back to the availability pool of books, and 

the available number of copies would increase by one – see figure 6-25. 



 112 

  public returnBookModal ( bookName: any, isbn: any, datahash: any) {   
       this.singleBookName = bookName; 
       this.singleIsbn = isbn; 
       this.single.Datahash= datahash; 
       this.operation = “return” ; 
   } 

Figure 6-25 A code snippet of the return a book function in frontend 

Delete book: Any book information recorded in the platform can be deleted by the librarian 

user role. The user can click on the delete button, and internally, it calls the delete API and 

removes all the information associated with the book from the ledger – see figure 6-26. 

  public deleteBook ( id: any, isbn: any) {   
       let data = { id, type: “book” , isbn: isbn} 
       const url: any = “delete “;  
       this. apiService.doPostRequest(url, data). Subscribe ( 
       (response: any) => { 
          if (response.status) { 
          this.toastr.success (response.message);  
          this.getBooks(); 
          } else {   
            This.toastr.erroe (response.message); 
          }  
  ... 
      

Figure 6-26 A code snippet of the delete a book function in frontend 

Next, the system dashboard will be presented.      

6.2.4. Dashboard  

 This section presents various snapshots of user clients who interacted with system. The user 

can initialise a request to the API, which in turn submits the transaction to the blockchain 

network and IPFS storage. The network invokes the smart contract to the corresponding 

function to execute the transaction. When it is performed, the function returns the response to 

the user. Figure 6-27 shows the web dashboard utilised to register the user based on his/her 

role.  



 113 

 

Figure 6-27 Login page 

The user can be a librarian or a student; therefore, two web dashboards are implemented, 

respectively – see figure 6-28.             

 

 

Figure 6-28 Snapshot of user dashboard: (a) Librarian dashboard (b) Student dashboard 

 

The dashboard page contains information on the books listed in the system along with the 

availability or remaining copies. To enable search, sorting and filter features, the Material 

(a) 

(b) 



 114 

Table Library from Angular is being utilised. It accepts a data source as a JSON input and 

presents data in a tabular structure where it can be sortable, filterable and searchable. The table 

primarily contains the ISBN, name, number of copies, author, publisher, year of publication 

and data hash. In addition, the librarian can perform certain operations such as adding a new 

book, deleting a book, checking IPFS metadata, checking the report of book borrowings and 

assigning a book directly to a registered user. Students can perform limited operations, such as 

borrow, return a book and check the IPFS metadata. In addition, the dashboard is powered with 

three main functions: getBooks(), which returns the listed books in the ledger; getStudents(), 

which returns the registered students; and getBorrowStatus(), which returns the borrowing 

status of students for each book. 

The snapshot of add and assign a book dashboard, where the librarian can add the book details 

to the network and issue it to a registered user, can be seen in figure 6-29. The book metadata 

will be stored off-chain, and its ISBN will be stored on-chain along with the number of book 

copies and data hash. The dashboard then presents the notification generated from the 

blockchain to notify the user that the book has been added. It can then be assigned to a 

registered user.   

 

Figure 6-29 Snapshot of the add and issue a book dashboard 

Figure 6-30 shows a snapshot of the borrow a book dashboard, which is available in the student 

dashboard. The student can view the book details and borrow it.       

     



 115 

 

Figure 6-30 Snapshot of the borrow a book dashboard 

There is an IPFS icon where both a librarian and a student can check the book metadata that 

is stored off-chain. Figure 6-31 presents the private IPFS network where book information is 

stored, and then it generates its hash data value – for example: 

QmdE5i6EsEmxVV1E1ShZxJabuaPTy6wqqmDSmaYu3Gv7kV. After generating the data 

hash, it would be stored in the blockchain to be linked to access the information.     

 

Figure 6-31 IPFS dashboard  

Therefore, the above implementation of the library management system case scenario presents 

the use of proposed smart campus architectural framework, as can be seen in figure 6- 32. 



 116 

 

Figure 6-32 library management system case scenario based the smart campus architectural framework   

The following section will develop a second proof of concept based on the proposed 

architectural framework.  

6.3. Generating a Student Credential Report System 
Case Scenario 

Student credentials, such as transcripts, certificates and letters of recommendation, are 

important documents that accompany an individual for life. Students each year gain one or 

more academic credentials in their portfolio. These credentials have to be issued and shared 

carefully. Most higher education institutions have their own department that is responsible for 

dealing with and managing student transcripts and certificates. Currently, educational 



 117 

institutions use different approaches to ensure that credentials are tamper-proof and legitimate, 

including attaching security hologram labels, assigning a unique number, pasting student 

photos and adding a registration number [242]. Using this strategy to authenticate the 

credentials has become time consuming and quite complicated. In addition, similar 

complexities occur in verifying the credentials from any authorised entities. In applying for a 

job, for instance, third parties, such as a company that needs to validate a student’s certificate 

or transcript, may contact the educational institution for confirmation. Despite having a lengthy 

process, the entire system is still insecure, and fraudulent credentials are challenging to deal 

with. Sensitive information, such as student credentials, should be issued and shared only with 

a sufficient level of security and privacy.     

Since the designed model is immutable as well as ensure security, privacy, and integrity to 

store and retrieve the data as discussed previously, it has been used for storing and sharing 

student records in the form of a report after verification. Figure 6-33 shows the flow diagram 

of the proposed solution.  

 
 

Figure 6-33 Storing and sharing student records case scenario 

The diagram displays the concept of storing on-chain and off-chain as well as retrieving the 

data from the off-chain. The system uses the Hyperledger Fabric network that was deployed in 

section 6.1. The case scenario allows different stakeholders with different roles to access the 

system to store and share student records. There are three main actors/organisations: 

• Teacher/administrator: This is an important actor in the use case. A university 

requires teachers and administrations to have permission to access, update and delete 

student data and records. 

• Student: Students can access and download their record report but do not have 

permission to change the data. 



 118 

• Third party: Third parties including finance, insurers and placement offices can view 

student reports but do not have permission to change the records. A student can share 

his/her credentials for claims. 

In figure 6-34, a sequence diagram explains the interaction between system components and 

how student records are added on the network. 

 

 
Figure 6-34 A sequence diagram for storing or updating student records 

First, an authorised user from the university, such as a teacher or an administrator, requests to 

add a student record to the system through the application layer, with all required information 

such as a student ID, the student’s first name, last name, program, department, school, and the 

student’s records. This information is sent to the backend through the application layer. The 

backend segregates the data and calls IPFS to store the student’s information in a distributed 

fashion and return the data hash to the backend layer; the student ID will be stored later in the 

ledger since it will be used as a key for the stored value, to help fetch the student’s metadata 

from the IPFS.  The backend layer creates the transactions that contains the student ID, data 

hash and data timestamp, and signs transactions digitally utilising the user certificate authority, 

which is generated by Fabric-CA. Then the transaction is sent to the Fabric Hyperledger 

blockchain to be stored in the ledger. The endorser peer in the blockchain is responsible for 

executing the smart contract, simulating the transaction’s outcome (which consists of the world 



 119 

state and the read write set), and returning the outcome to the backend after appending its 

cryptographic signature. The backend collects all the endorser peer’s transaction responses and 

verifies the validity of the endorser’s signatures. After that, the backend creates the proposal 

and sends it to the orderers from the ordering service to run the Raft consensus algorithm, 

verify the transaction, and create a block to be broadcast to all nodes in the network. The peers 

in turn check the validity of the transaction block by verifying the endorsers’ policies and 

examining the read set to see whether they changed or not. After meeting all the validation 

requirements, the transaction block is then marked either valid or invalid, allowing the peers to 

update their ledger and append the transaction block in the chain. The event is sent to notify 

the backend that the block has been appended successfully. Finally, the application layer 

forwards the notification to the client and visualises the results.  

In figure 6-35, a sequence diagram displays how a student retrieves and reads his or her records 

from IPFS, which are presented as a report. 

 
Figure 6-35 A sequence diagram for generating a student credential report 

 
The Hyperledger Fabric blockchain discussed earlier provides several mechanisms to ensure 

the security and privacy of its network, such as controlling the access of each organisation or 

stakeholder through Fabric CA and putting chaincode restrictions on access and operation. 

Therefore, only a student or an authorised third party can request a student report. The 



 120 

application layer will call the backend and pass the student ID to the backend in order to access 

its content-addressed hash that is stored in the ledger. The backend, in turn, will create a 

transaction proposal, which contains the student ID, and which signs it digitally, utilising the 

user-certificate authority generated by Fabric-CA and calling the blockchain endorsers through 

Fabric SDK to execute the query function in the chaincode. The endorser peer simulates the 

transaction’s outcome, which consists of the world state and the read set, returning the outcome 

to the backend after appending its cryptographic signature. The backend collects all the 

endorser peer’s transaction responses and verifies the validity of the endorser’s signatures. In 

terms of reading a value, the value is the data hash that was generated by IPFS from the ledger; 

there is no need to call the ordering service because generating a block is not required. After 

the backend layer has the content-addressed hash, it will be sent to IPFS to fetch the student 

metadata. The system then presents the student information as a report that includes the status 

of the credentials, the data hash, the QR code (which is an encoded version of the original data), 

and the signatures that are generated by creating SHA256 of the original record. 

The next sections present the implementation in more detail, including the scenario’s chaincode 

API, frontend and dashboard.    

6.3.1. Smart contract (Chaincode)  

The case scenario is implemented with a chaincode that provides a set of functions to allow the 

different organisations to interact with each other. Once the chaincode is installed, all of the 

existing contracts will be available on its configuration channel. Each user can invoke and 

execute the smart contract based on his/her role. These functions are listed as follows: 

Create student: The chaincode function createStudent is the method to insert student 

information into the ledger. It accepts parameters such as ctx, studentId, signature, 

datahash and additionalData. Here, ctx is the context of contract instance, and 

additionalData is the JSON metadata for recreating the IPFS data. ctx.stub.putState is the 

function used to create the state in the ledger. It accepts a key and a value as parameters, where 

the key is studentId and the value is a JSON string of the student data, which includes the 

records – see figure 6- 36.  

    async createStudent(ctx, studentId, signature, datahash, additionalData) { 
        console.info('============= START : Create Student ==========='); 
        additionalData = JSON.parse(additionalData);   
        const student ={ StudentId: studentId, docType:‘student’, signature:  
        signature, DataHash : datahash, additionalData:additionalData 



 121 

        }; 
        await ctx.stub.puttState(srudentId, Buffer.form (JSON.stringify(student)));  
        console.info('============= END : Create Student  ==========='); 
       } 

Figure 6-36 A code snippet of the create a student function in the smart contract 

Query student: This function retrieves student data from the ledger by passing the studentId. 

It uses the getState method to retrieve the state from the ledger. This function returns a student 

data object which contains {studentid, firstname, lastname, program, department, 

school, attendance, transcripts, cid}, as in figure 6-37.   

     async queryStudent(ctx, studentId) {    
 console.info('======== START : QUERY A STUDENT ========'); 
 const studentAsBytes = await await ctx.stub.getState (studentId); // get  
         the student from chaincode state  
 if (!studentAsBytes || studentAsBytes.length ===0) { 
           throw new Error(`${studentId} does not exist`); 
            } 
       console.log(studentAsBytes.toString()); 
       console.info('============= END : QUERY Student END ===========');  
       return studentAsBytes.toString(); 
   }  

Figure 6-37 A code snippet of the query a student function in the smart contract 

Query All student: This function is responsible for querying the student information from the 

ledger. The function accepts parameters such as ctx and query, where query is a JSON object 

with selector or filtering parameters. This function returns the array of student data as a 

response: [{studentid, firstname, lastname, program, department, school, attendance, 

transcripts, cid }]– see figure 6-38. 

      async queryAllStudent(ctx, query) {    
 console.info('======== START : QUERY ALL STUDENTS TRANSACTIONS ========'); 
 let iterator = await ctx.stub.getQueryResult(query); 
 const allResults = []; 
 while (true) { 
  const res = await iterator.next();  
  if (res.value && res.value.value.toString()) { 
   console.log(res.value.value.toString('utf8'));  
   const Key = res.value.key; 
   let Record; 
  try {  
   Record = JSON.parse(res.value.value.toString('utf8')); 
  } catch (err) { 
   console.log(err); 
   Record = res.value.value.toString('utf8'); 
  } 
 allResults.push({ Key, Record }); 
 } 
 if (res.done) { 
  console.log('end of data'); 



 122 

  await iterator.close(); 
  console.info(allResults); 
  return JSON.stringify(allResults); 
 } 
 } 
console.info('============= END : QUERY ALL STUDENTS TRANSACTIONS==========='); 
} 

Figure 6-38  A code snippet of the query all students function in the smart contract 

Delete student: This method deletes student records from the ledger. The function accepts 

studentId as an input and removes the entered student information from the blockchain. 

However, the student data is not actually deleted – it remains intact, as the transaction is marked 

as deleted so as not to appear in the system. In the ledger’s history, it still exists – see figure 6- 

39.   

  async deleteStudent(ctx, studentId) { 
       console.info('============= START : Delete Student ==========='); 
       const studentAsBytes = await ctx.stub.getState(studentId); // get the  
       student from chaincode state 
       if (!studentAsBytes || studentAsBytes.length === 0) { 
          throw new Error(`${isbn} does not exist`); } 
       await ctx.stub.deleteState(studentId); 
       console.info('============= END : Delete Student ==========='); } 
 

Figure 6-39 A code snippet of the delete a student function in the smart contract 

Query history of a key: This function retrieves information on state changes. The function 

accepts studentid as the parameter and retrieves all the state updates that have happened to a 

specific key. This function returns an array of data changes that have occurred for the key– see 

figure 6-40. 

   async getHistoryForKey(ctx, studentId) { 
 console.info('=========== START : QUERY ALL HISTORY FOR KEY ==========='); 
 let iterator = await ctx.stub.getHistoryForKey(studentId);  
        const allResults = []; 
        while (true) { 
           const res = await iterator.next(); 
           if (res.value && res.value.value.toString()) { 
               console.log(res.value.value.toString('utf8')); 
                
               const Key = res.value.key; 
               let Record; 
               try { 
                   Record = JSON.parse(res.value.value.toString('utf8')); 
               } catch (err) { 
                   console.log(err); 
                   Record = res.value.value.toString('utf8'); 
               } 
                allResults.push({ Key, Record }); 
             } 



 123 

             if (res.done) { 
                console.log('end of data'); 
                await iterator.close(); 
                console.info(allResults); 
                return JSON.stringify(allResults); 
             } 
           }  
           console.info('========== END : QUERY ALL HISTORY FOR KEY =========='); 
       }} 

Figure 6-40 A code snippet of the query all history function in the smart contract 

6.3.2. API 

As per the first case scenario, the API was used as a middleware layer to connect the frontend 

with the blockchain and IPFS networks. It leverages Fabric SDK to interact and perform 

various operations with the backend. In addition, APIs are implemented in the RESTful fashion 

and JSON data structure for both request and response. APIs are presented in more detail as 

follows:             

Register: For API register user, the same implementation in figure 6-9 is used. 

Login: For login, see figure 6-10 where the same login API is used.      

Add student: The endpoint is responsible for creating user credentials in the system. It 

internally requests relevant calls to the IPFS for storing the data and Hyperledger Fabric for 

inserting the data hash. This endpoint accepts data in the form of a JSON structure {studentid, 

firstname, lastname, program, department, school, attendance, transcripts} where the 

transcript is an array of objects in the form of {moduleTitle, mark}. The code internally 

aggregates the scores and then calculates the percentage. If the percentage is above 70, the 

outcome would be first class. Similarly, if the percentage is above 60, 50 or 40, the outcomes 

would be upper second class, lower second class and third class, respectively– see figure 6-41. 

    app.post('/addStudent', async function (req, res) { 
  console.log(req.body); 
  const request = req.body; 
  let data; 
  let response; 
  let result; 
  let ipfsData = { 
    "content": { 
      studentid: request.studentid, 
      firstname: request.firstname, 
      lastname: request.lastname, 
      program: request.program, 
      school: request.school, 
      attendance:request.attendance, 
      transcripts:request.transcripts 
    } 
  } 



 124 

 
  try { 

 
    const cid = await ipfs.add(JSON.stringify(ipfsData)); 
    data = request; 
    data.timestamp = Date.now(); 
    data.cid = cid; 
    // Hashing it for the info 
    Data.signature= crypto.createHash ('sha256').update(ipfsData). 
    digest('hex’); 
...}  
... 

Figure 6-41 A code snippet of the add student function in the API 

Get student: This endpoint is intended to retrieve the student information back to the frontend 

application. This data is primarily used to list the student information and create credentials to 

appear for the student. The API does not require any parameters in the request and responds 

with an array of student information. The response object is in the form of {status, message, 

data: data}, and the data would be an array of student records [{studentid, firstname, 

lastname, program, department, school, attendance, transcripts, cid}], where the 

transcript is an array of objects in the form of {moduleTitle, mark}– see figure 6- 42.  

app.post('/getStudents', async function (req, res) { 
  const data = req.body; 
  console.log(data); 
  const query = { 
    // hash: data.hash 
  }; 
  let response; 
  let studentData = []; 

        ... 

       }... 

Figure 6-42 A code snippet of the get student function in the API 

Delete record: The delete student API is limited to the admin user role and is used to delete 

the student information from the ledger. The API accepts {_id, studentid} as parameters and 

deletes all the information related to the student from the ledger. The response would be a 

simple object with {status, message}– see figure 6-43. 

  app.post('/delete', async function (req, res) { 
  const request = req.body; 
  let response; 
  let result; 
  console.log(request); 

 
  try { 
      result = await studentCollection.deleteOne 
      ({”_id”:ObjectId(request.id)}); 
      Console.log ('successfully deleted the student with the _id: 
      ${request.id}'); 
...  



 125 

 
}); 

Figure 6-43 A code snippet of the delete record function in the API 

Credential verification: Credential verification endpoint accepts studentid as the input and 

sends it to the ledger to retrieve the data hash. Then, it fetches the data that is stored in the IPFS 

using the data hash. The function then internally computes the hash of the data to ensure that 

the data is digitally verified. This function also generates a Quick Response (QR) code, which 

contains the credential information as an additional feature – see figure 6-44. 

app.post('/verify', async function (req, res) {  
 
... 

Function (dltResult) { 
    Let studentData= JDON.parse(dltResult.toString()); 
    if (studentData.length > 0) { 
       StudentData= studentData[0]; 
    } 
  if (studentData && studentData.DataHash) {  
     Let ipfsCID= studentData.DataHash; 
     Axios.get(’${IPFS_URL}:8080/ipfs/’ +ipfsCID) 
     .then (resonse=>  {  
      Let ipfsResponse = response.data; 

 ... 
Figure 6-44 A code snippet of the credential verification function in the API 

Initialise gateway: The gateway needs to initialise to be able to access the blockchain. See 

figure 6-19 for more details.  

The following section presents the frontend implementation for the case scenario. 

6.3.3. Frontend 

The frontend of the generating student report case scenario has a web application to interact 

with the backend. The web application internally leverages the API layer, IPFS storage and 

Hyperledger Fabric network to record transactions, maintain student information and store 

relevant metadata. It consists of features to register the identity of an administrator or student, 

create student records and search or query student records, as well as a certificate search page 

and a credential verification page. The implementation of each feature is explained in more 

detail below: 

Login: For the login user function, the same implementation in figure 6-20 was used.  

Register: To register a new user, whether an admin or a student, in the system, the 

doRegister() function has been implemented. The submit button triggers the function that in 



 126 

turn calls the register end point from the API service to register the users. Basic information is 

needed, such as name, email, password and user role – see figure 6-45. 

<div class= “card align-middle”> 
     <div class= “card-body”> 
          <form [formGroup]= ”registerForm” (ngSubmit)= ”doRegister()” 
            Autocomplete= ”off”> 
              <div class = “mb-3”> 
                <label for= “name” class= “form-label” > Full name </label> 
                <input type = “text” formControlName= ”name” class= ”form-      
                 control” id= ”name” placeholder= ”Full name”>  
       </div>  ...       

Figure 6-45 A code snippet of the register function in frontend  

Add student: This functionality is primarily for the admin of the institution. By using this 

functionality, one can create a student record by populating information such as student ID, 

name, academic institution, department, course and transcript. The transcript is powered by a 

dynamic form where the user can add any number of modules and achieved marks. Internally, 

the system calculates the outcome and the overall percentage – see figure 6- 46.  

public doAddStudent(){  
       if (this.addStudentForm.invalid) { 
           this.observables.changeformValid (true); 
           return; 
        }  else { 
           (document.querySelector(’.btn-submit’) as   
            HTMLInputElement).setAttribute (’disabled’, ’ ’); 
           const data: any = this.addStudentForm.value; 
           console.log (data); 
           const url: any = ”addStudent”; 
           this.apiService.doPostRequest(url,data).subscribe((response: any) =>  
{ ...      

Figure 6-46 A code snippet of the add student function in frontend 

Search credential: The search page is primarily intended for students and authorised third 

parties who require access to credentials. This screen accepts unique student IDs and retrieves 

the credentials from the backend. Internally, the system verifies the hash of the data and ensures 

the credentials are digitally valid – see figure 6- 47.  

... 
public doStearch(){  
       const data: any = this.searchForm.value; 
       if (data && data.search) { 
          this.router.navigate ([’/user/verify/’ + data.search]); 
            }... 

Figure 6-47 A code snippet of the search credential function in frontend 

Credential verification Page: This page is the result of the search credential page. It carries 

the status of the credential, data hash, QR code, which is an encoded version of the original 



 127 

data, and the signatures that are generated by creating SHA256 of the original record – see 

figure 6-48. 

Public fetCertificate() { 
        const url: any = ”verify”; 

  Let data = {  
  studentid: this.studentId 
 }    
 This.apiService.doPostRequest(url,data).subscribe ((response:any) => { 
    if (response.sratus) { 
    this.studentData = response.data; 
    this.signature = response.signature; 
    this.verificationStatus = response.verificationStatus; 
    this.qrcode= response.qrcode; 
}    ... 

Figure 6-48 A code snippet of the search credential page function in frontend 

In the next section, the dashboard of the case scenario is provided.  

6.3.4.  Dashboard 

In this section, several snapshots of user clients who interacted with the system are presented. 

The user can initialise a request to the API, which in turn submits the transaction to the backend, 

including the blockchain network and IPFS storage. The network invokes the smart contract to 

the corresponding function to execute the transaction. When performed, the function returns 

the response to the user. In this case scenario, the user can be an administrator, student or third 

party such as finance, insurers and placements office. Therefore, two web dashboards were 

implemented, respectively – see figure 6- 49.         

  

 
 

(a) 



 128 

 
 
 

Figure 6-49 Snapshot of user dashboard: (a) Admin dashboard (b) Student or third-party dashboard 

The above dashboard page contains information on the student credentials created in the system 

along with academic information. The dashboard uses Material Table Library from Angular to 

enable search, sorting and filter features. It accepts a data source as a JSON input and presents 

data in a tabular structure where it can be sortable, filterable and searchable. The table primarily 

contains the student ID, name, program, department, school, total mark, outcome and data hash. 

In addition, admin can perform certain operations such as adding student records, deleting 

students and checking IPFS metadata. Students can view the digitally verified credentials and 

check the IPFS metadata. The dashboard is powered with functions such as getStudents(), 

which returns the listed students in the ledger.  

The snapshot in figure 7-50 presents the adding a student record dashboard, where the admin 

can add student details and records to the network. The student’s academic metadata will be 

stored off-chain, and the student’s ID will be stored on-chain along with the data hash generated 

in the IPFS. The dashboard then presents the notification generated from the blockchain to 

notify the user that the student has been added.  

 
Figure 6-50 Snapshot of the adding a student records dashboard 

(b) 



 129 

The search page snapshot in figure 6-51 is for students and authorised third parties who require 

access to credentials. This screen accepts unique student IDs and retrieves the credentials from 

the backend after verification.  

 
Figure 6-51 Snapshot of the search page  

The IPFS button is where both the admin and the student or third-party can view student 

metadata stored off-chain, such as student academic information and student credential 

information. Figure 6-52 presents the private IPFS network where student information is 

stored, and it then generates its hash data value. After generating the data hash, it would store 

data in the ledger to be linked to access the information.     

 
 
 

 
 

Figure 6-52 IPFS dashboard 

The system can view and download the student credential report that includes the student’s 

information, status of credentials, data hash, QR code, which is an encoded version of the 

original data, and the signatures that are generated by creating SHA256 of the original record 

– see figure 6-53.  

 



 130 

 
Figure 6-53 Snapshot of the student credential report 

In case the student data has been tampered, the hash validation will be failed between the 

blockchain and IPFS data store. Thus, the system can view the student credential report with 

invalid verification – see figure 6-54.  



 131 

 

Figure 6-54 Snapshot of the student invalid credential report 

After implementing the second case scenario of generating a student credential report, 

including storing student records and generating and sharing a student report, figure 6-55 shows 

where it can be pluggable in the proposed smart campus framework.     



 132 

 

Figure 6-55 Generating a student credential report case scenario based the smart campus architectural 

framework    

In the next section, the proposed architectural framework will be evaluated using a series of 

experimental tests.   

6.4. Evaluation 

To evaluate the proposed system, a series of experimental tests are carried out utilising different 

software tools to provide comprehensive results and to demonstrate the applicability of the 

framework. Several use case scenarios have been conducted with varying configurations to 

present different indicators. The indicators in this analysis for the network performance are 

throughput, which is defined as successful transactions completed in a second; transaction 



 133 

latency, which is the time that a transaction takes between submitting and receiving a response; 

and resource utilisation, which is visualised through graphs. According to Pongnumkul et al. 

[243], throughput and latency are the main quantifications to understand the existing 

blockchain performance and its limitations.   

For testing the blockchain network, Hyperledger Caliper [244] is used as a blockchain 

benchmark tool, which was developed by the Linux Foundation. This tool allows users to 

compute the network performance by configuring a use case script to generate the workload of 

a particular blockchain application and then generate reports, which are displayed as metrics. 

It stimulates a real-world application case scenario by sending all generating transactions in 

parallel to launch the required load, thereby displaying the performance reports. ‘Caliper 

architecture’ consists of three main layers (see Figure 6-56): the benchmark layer, which is 

responsible for defining test factors to evaluate the backend blockchain performance; the core 

layer, which plays a role in generating a performance report; and the adapter layer, which is 

responsible for the interaction between the Caliper framework and the Hyperledger Fabric 

blockchain network. With the help of Docker containers, Caliper is developed in the same 

virtual machine used to conduct the experiments – see Table 6-1. In addition, benchmark-

config.yaml was defined that contains benchmarking tests and defining workload file that has 

the workload functions in JavaScript. The source code of the testing can be found in  

https://github.com/Manal979/Project/tree/master/caliper   

 

Figure 6-56 Hyperledger Caliper architecture [244] 

To test the network performance, vary transaction rates are conducted in each executed round. 

There are six rounds, and each round has a different transaction rate, ranging from 50, 100, 



 134 

150, 200, 250 and 300 transactions per second (TPS) – small to mid-size universities support 

around 300 TPS. The fixed number of total transactions in each round is 1,000. In each round, 

the average transaction latency and transaction throughput are measured to be presented in the 

graph plots. Different transaction mode scenarios are used for testing, including writing 

transaction mode, reading transaction mode and writing and reading set transaction mode.  

As can be seen in table 6-2, the first testing case is for evaluating writing transactions where a 

ledger needs to be updated with random values by calculate transaction latency and throughput. 

Writing transaction latency can be presented as a mathematical formula:  

WTL= (Tc * NT) - ST 

 Where WTL is the time that the transaction takes for utilising the smart education network, Tc 

presents the time of transaction confirmation, NT is the network threshold change and ST is the 

transaction submit time. Transaction throughput can be presented as: 

WTT = TCT / TTS * NCN 

Where WTT is the number of successful writing transactions per second, TCT is the committed 

transaction in the system and TTS is the completed transactions, which is the result of 

subtracting the failed transactions from the total transactions at NCN committed participates. 

Table 6-2  Testing the writing transactions mode 

Parameter Configuration 

Number of Rounds 

Total transactions 

Transaction Rates 

Transaction mode 

six 

1000 per rounds 

50, 100, 150, 200, 250, 300 TPS 

Write 

 The below figure presents the average latency and throughput against the transaction rates for 

the writing transactions mode, where the latency is measured in seconds.   



 135 

 

Figure 6-57 Evaluating the first scenario: writing transactions mode on the network latency and throughput 

In each round, when the writing transaction rate rises, it leads to a gradual increase in the 

average latency time. The average throughput almost linear after 200 TPS. Generally, low 

latency leads to higher throughput.  

Our second test scenario focuses on evaluating reading or querying transactions by calculating 

transaction latency and throughput. In this scenario, all clients sending their query at the same 

time to a single node to generate the required read workload. The latency for reading 

transactions can be calculated by the mathematical formula: 

RTL = TR - ST 

Where RTL is reading transaction latency time, ST is submitting time and TR is response time 

when received. Reading transaction throughput is the total number of query transactions 

achieved in a second, which can be presented as: 

RTT = To – TS. To 

measure the reading transaction throughput, RTT , the total number of query or reading 

transactions, To, is subtracted from the total time in seconds, TS – see table 6-3. 

Table 6-3 Testing reading transactions mode 

Parameter Configuration 

Number of Rounds 

Total transactions 

Transaction Rates 

Transaction mode 

six 

1000 per rounds 

50, 100, 150, 200, 250, 300 TPS 

Read 

54

55

56

57

58

59

60

0
0.5

1
1.5

2
2.5

3
3.5

4

0 50 100 150 200 250 300 350

Th
ro

ug
hp

ut
 (T

PS
)

Av
er

ag
e 

La
te

nc
y 

(s
ec

)

Transaction Rate (TPS)

Average Latency (sec) Throughput (TPS)



 136 

The figure 6-58 presents the average latency and throughput against transaction rates for 

reading transactions mode. The latency in the figure is measured in seconds.   

 

Figure 6-58 Evaluating the second scenario: reading transactions mode on the network latency and throughput 

The evaluation results of the above figure indicate that the average latency increases without a 

major rise, while the transaction rates increase in each round. The average latency is near zero, 

and the system can handle 300 TPS without delays. This suggests that the system does not 

reach its maximum capacity and can support higher transaction rates. In addition, the increasing 

transaction rates had no significant effect on the average throughput. The throughput was 

almost flat in all rounds above 100 TPS. By submitting a varying load of reading transactions, 

the number of GET REST API calls increased in order to fetch data from both on-chain and 

off-chain, which caused a flattening throughput in this system capability. 

After testing the writing transactions and reading transactions against transaction rates of the 

proposed system, they can be compared. The average latency in the writing transaction mode 

is higher than the average latency in the reading transaction mode. This is because the writing 

transaction needs to verify the transaction and update the ledger by executing the smart contract 

and running the consensus algorithm. In contrast, the reading transaction requires execution of 

the smart contract to gain the information stored in the blockchain and IPFS.  

Our third test scenario focuses on evaluating reading and writing set transaction mode by 

calculating transaction latency and throughput. In this scenario, a mix of submitting read and 

write transactions was used. The clients send write transactions while they are in process, the 

read transactions are submitted to receive responses – see table 6-4.     

0
50
100
150
200
250
300
350
400

0

0.1

0.2

0.3

0.4

0.5

0 50 100 150 200 250 300 350

Th
ro

ug
hp

ut
 (T

PS
)

Av
er

ag
e 

La
te

nc
y 

(s
ec

)

Transaction Rate (TPS)

Chart Title

Average Latency (sec) Throughput (TPS)



 137 

Table 6-4 Testing writing and reading transactions mode 

Parameter Configuration 

Number of Rounds 

Total transactions 

Transaction Rates 

Transaction mode 

six 

1000 per rounds 

50, 100, 150, 200, 250, 300 TPS 

Read, Write 

The figure 6-59 presents the average latency and throughput against transaction rates for 

writing and reading transactions mode. 

 

Figure 6-59 Evaluating the third scenario: writing and reading transactions mode on the network latency and 

throughput 

Therefore, the system performance results showed that the system is lightweight since it avoids 

high network latency and low throughput. In addition, the system achieves the quality 

requirements for smart education systems that was discussed in section 4.1 as proof of concept 

for the architectural framework of a smart campus. The next section will present the future 

applicability of the framework in a broader context. 

 
 

  

38.5
39
39.5
40
40.5
41
41.5
42
42.5
43

0

1

2

3

4

5

6

0 50 100 150 200 250 300 350

Th
ro

ug
hp

ut
 (T

PS
)

Av
er

ag
e 

La
te

nc
y 

(s
ec

)

Transaction Rate (TPS)

Average Latency (sec) Throughput (TPS)



 138 

6.5. Broader Context Case Scenario: Developing a 
Framework for the Adoption of Blockchain in the 
Higher Education Certification Process in Saudi 
Arabia  

This section uses the proposed comprehensive framework for a smart campus (see figure 3.1) 

in a broader context to test its future applicability. The framework uses to develop a student 

certification framework, with higher education in Saudi Arabia acting as a case study [108]. 

This work has been produced and published in collaboration with another PhD student named 

Mona Alshahrani.      

Over recent decades, the expansion of research and development programs, alongside the 

growth of new educational schemes, has noticeably improved Saudi Arabia’s educational 

system. The Saudi Ministry of Education (MoE) has numerous key aims, one of which involves 

establishing an integrated services system that supports educational processes by improving 

performance and efficiency and promoting state-of-the-art technologies. In 1999, Saudi Arabia 

had only ten universities: by 2017, this figure had risen to 26, with the expectation being that 

more institutions will be set up to mirror Saudi Arabia’s population growth. According to 

estimates, the country’s 2012 population of 29.2 million would increase to 35.9 million by 

2020. In 2016, the number of university-age students in Saudi Arabia amounted to 

approximately 1.7 million, showing a marked increase from the 850,000 and 650,000 students 

recorded in 2009 and 2006, respectively. Such developments indicate that the Saudi higher 

education system has experienced significant changes in its capacity, international connections, 

graduate outcomes and research impacts.  Therefore, this joint paper aims to fill a gap in the 

applicability of the novel framework particularly in developing smart educational 

environments such as certification or credentialing systems in Saudi Arabia. the study posits 

that the proposed framework’s integration of all relevant actors, process and storage units 

shows its legitimacy; the framework also logically accounts for the principal obstacles in 

current systems, such as certificate fraud and dishonesty.  

Blockchains also exploit the property of immutability for student records, which the study 

believes will address critical challenges in current higher education institution credentialing 

processes. The existing design phase does not highlight any data storage concerns in a real-

world setting, which creates difficulties in analysing system scalability [108]. Under a scenario 



 139 

where a blockchain acts as a database to store student records, such as ID, name, date of birth, 

department, courses and badges achieved, the number of data points would overwhelm the 

chain and spread across the network’s nodes. Eventually, such a blockchain would encounter 

challenges maintaining and storing this information, potentially compromising system 

performance.  

Blockchain technology eliminates the need for third-party intermediaries and improves 

interactions between participants (as discussed in section 3.2). To resolve the identified 

problems and challenges in existing certificating systems in higher education, the second co-

author, Mona, proposed the structure and functionality of DASC based on the novel smart 

campus architectural framework. According to Figure 6-60, the DASC system comprises five 

principal actors: instructors, students, administrators, alumni and prospective employers. 

 
Figure 6-60 Actors in DASC [108] 

DASC [108] aims to maintain a log of student data, including skills, credits, badges and course 

registrations. The system should have the capacity to share student data with authorised 

stakeholders, such as prospective employers, university staff and university administrators. The 

system should also have a high level of transparency that enables higher education institutions 

to design and implement distinctive, personalised teaching methods for each student.  

Additionally, the DASC system should function as a standard information repository that 

collates students’ information – including digital certificates, achievements and transcripts– 

from different higher education institutions. Such a system would allow students to maintain 

authentic records in a long-term e-portfolio logging their certificates, courses, grades and 

achievements. Given that prospective employers could use the proposed system to verify the 

authenticity of a candidate’s qualifications and transcript, it will eliminate certificate fraud and 

dishonesty. 



 140 

The second co-author also conduct a survey to help improving the initially proposed model. 

Quantitative analysis indicated that the four influential factors (security and privacy, trust, 

social influence and efficiency) substantially impacted the acceptance of blockchain 

technology by students and prospective employers. This development illustrates the model 

structure’s validity, readiness for implementation and capacity to test user feedback. 

Figure 6-61 illustrates the DASC systems’s high-level conceptual infrastructure, with the 

blockchain represented as the left dashed box as on-chain transactions, connected to the front-

end system and centralised database systems as off-chain transactions. On-chain transactions 

occur directly on the distributed ledger network, while external off-chain transactions occur 

outside the distributed ledger. DASC system means students can view their credentials with a 

high level of integrity in a single location and decide whether to share this view with other 

stakeholders. According to the conceptual infrastructure, the DASC system enables 

interactions between prospective employers and front-end systems, overseen by system 

administrators who allocate the correct permissions.   



 141 

 

Figure 6-61 High-level conceptual infrastructure of DASC [108]  

The DASC system gathers information on students’ credentials and guarantees data integrity. 

The students can then give permission to share such information with external parties. In line 

with the conceptual infrastructure, it allows interactions between prospective employers and 

front-end systems controlled by system administrators giving the appropriate permissions. 

Since the system presents as a proof of concept of the smart campus architectural framework, 

see figure 6- 62, different case scenarios can be deployed in the system including posting a 

student’s certificate, verifying it and sharing it with prospective employers.   



 142 

 

Figure 6-62 Broader context case scenario based the smart campus architectural framework     

To sum up, the DASC system shows the applicability of the proposed smart campus 

architectural framework which combines blockchain and IoT technologies to provide more 

benefits by managing the problem associated with a current centralised IoT architecture 

particularly from a security perspective. Thus, the framework considered as guid base to 

develop various campus services, such as smart education, smart building and smart parking.  

Next, overall discussion will be provided.   

6.6. Discussion 

This novel smart-campus framework architecture was developed using the advantages of 

blockchain technology to provide benefits such as immutability, transparency, and data 

provenance by managing the problems associated with a centralised Internet of Things (IoT) 

architecture, especially from a security perspective. In addition, the framework provides 

availability, scalability, and flexibility by utilising an emerging IPFS platform. The system 

advantages can be summarised in the following ways: 



 143 

• Robust: The system is totally decentralised as both Hyperledger Fabric blockchain and 

IPFS platforms are storing data in a distributed fashion and do not require a centralised 

third party. In addition, the system avoids data redundancy. Data redundancy is 

considered a challenge that faces many smart-system environments and connected 

devices [245], leading to computational overhead and heavy communication on the 

network as well as an increased transactional workload on the user’s device [246],  

which results in an inefficient use of resources. In the IPFS platform, however, that data 

is segmented to be stored in the network and the platform does not use a redundancy 

mechanism. In frequent-access data mode, the system automatically stores the data on 

the server cache and removes the data that is not being accessed frequently, thereby 

managing the number of copies of the data content.       

• Efficient: The system provides flexibility in managing data storage and security in 

decentralised access, and it ensures data availability. Clients can retrieve data and 

perform queries from their local network in the smart campus, rather than data traveling 

to the headquarter traffic. Thus, the system can use and combine network resources, 

making storage more automated and efficient. Joining the system requires having a 

shared key; this enables the user to access the private IPFS network and to have a role 

in accessing the blockchain network and configured genesis file.   

• Immutability: Since every transaction in the system is stored in the ledger, each node 

has a full copy of it and each block is connected cryptographically to the previous block: 

all of this provides immutability, traceability, and security to the system as well making 

it hard to sabotage the stored data. In addition, the data that is stored off-chain is 

uniquely identified, so that any change to the data leads to a change in its hash, even if 

the change is only one character. The generated hash value from IPFS will be sealed 

using Hyperledger Fabric, onto its immutable ledger. Therefore, the system provides 

data integrity and immutability, and it is a suitable solution to prevent data tampering.  

• Scalability: With the use of distributed files, the system is able to scale its storage 

capability without interrupting its services especially for large organisations such as 

smart campuses that are spread over different locations, which would increase the 

number of IoT devices needed to help to process all commands and transport decisions 

efficiently.    



 144 

• Availability: The system deploys blockchain and IPFS as decentralised technologies 

that do not rely on central instance, thereby efficiently solving the problem of the single 

point of failure – where the whole system can be down and unavailable.    

• Integrity: The system guarantees data integrity. Data that is collected from network 

gateways has to be encrypted to store in the decentralised structure. In addition, a signed 

transaction cannot be modified or have its content changed by any entities. The 

connected peers do not have the right to access policies in the system or change the 

smart contract agreement. Thus, in the smart-campus framework, sensitive data – such 

as student information – can be shared between authorised peers without any alteration.   

• Privacy: The system-access control approach guarantees data ownership and data 

privacy of individuals. The use of the Hyperledger Fabric blockchain allows 

authenticated entities to access the network under predefined security policies and 

guidelines. Thus, malicious or unauthorised access is blocked, and is prevented from 

accessing the system. In addition, the use of the consensus algorithm prevents any 

illegal transactions from being validated or attached to the blockchain. Therefore, the 

system can monitor all transactions and detect any modification to the data. 

Overall, this analysis shows that the novel smart campus framework can safeguard its data and 

preserve itself against potential threats and attacks. In addition, the system has many useful 

features, such as security, privacy, scalability, availability, and integrity, all of which can be 

beneficial to develop smart campus services and applications. Thus, the scheme can deliver a 

promising solution for enhancing current smart-campus frameworks and applications.      

6.7. Summary 

This chapter presented a real implementation of different case scenarios on smart campuses – 

in particular, a smart educational environment as a proof of concept of the smart campus 

architectural framework. To examine the performance of the proposed scheme, Hyperledger 

Fabric blockchain, with its entities, were deployed on Amazon EC2 instances, where different 

authorised peers could interact with the system through a developed web application. In 

addition, using P2P private IPFS technology as off-chain storage has integrated the blockchain 

to provide a totally decentralised structure for storing and sharing data. The results of the 

implementation show that the framework achieved the quality requirements for a smart 



 145 

education system, as discussed in section 4.1, delivered in a lightweight and reliable manner. 

In addition, the chapter presented the applicability of a future comprehensive framework for a 

smart campus in a broader context case scenario, aiming to develop a student certification 

framework with higher education in Saudi Arabia. Furthermore, the chapter discussed 

extensive analysis and evaluations on several design aspects of the proposed smart-campus 

framework, which this study believes is an efficient solution and a step towards improving 

current smart-campus frameworks and applications.      

     



 146 

Chapter 7 Conclusion and 
Future Research 

This chapter provides an overview of the whole study, focusing on how to develop a smart 

campus, and summarises its results and achievements. In addition, this chapter highlights the 

study’s limitations and the directions of the further research.    

7.1. The Context of the Research  

The focus on smart campuses has been fuelled by the advancement of advanced technologies 

such as IoT, blockchain and machine learning, which enable data to be captured at the level of 

the infrastructure, generating valuable insights for the stakeholders. However, because of 

centralised architecture, there are still security and privacy issues in the current smart campus 

system that have been discussed in Chapter 2. 

In the last decade, blockchain technology research has become a growing trend in computer 

science, with increasing attention from various researchers and organisations. Since 2008, it 

has taken a place among the top five technology trends and is considered to be the next 

revolution in technology as it provides solutions to issues related to classical centralised 

architecture, particularly regarding security and privacy. Blockchain properties – including 

decentralisation, anonymity, resiliency, autonomous control, and support for integrity – put it 

in the lead as a suitably advanced technology to apply to the smart campus architectural 

framework. The aims and objectives of this study developed from this context.   

7.2. Research Questions 

the main aim of this research was to propose and evaluate a comprehensive framework for a 

smart campus implementation. To achieve this objective of this study, it was necessary to 

answer the following research main questions:  



 147 

• What technologies, including hardware and software, contribute to the building 

of a highly technological smart campus? Current state-of-the-art research relevant to 

smart campus has been conducted in order to gain knowledge on existing smart 

technologies and intelligent software/hardware systems in use in different campus 

sectors. In addition, recent smart campus frameworks and architecture have been 

analysed to determine their limitations, as shown in Chapter 2.      

• How can the smart campus technologies be characterised? A novel, holistic smart 

campus architectural framework (illustrated in Figure 3-1) was designed, implemented, 

and evaluated. The framework emerged the advantages of IoT and blackchin 

technology to eliminate current centralised issues. That is, these technologies can 

collect and aggregate data from various areas of the campus while increasing data 

security and providing a better service to enhance user experience. Integrating 

blockchain technology into education institutions is still in its early stages and needs 

more research. Security requirements for the proposed smart campus architectural 

framework from were analysed, focusing on issues of authorisation, privacy, 

confidentiality, integrity, and availability. 

• What methods can be used to develop a comprehensive framework for a smart 

campus implementation? A systematic analysis was conducted to determine which 

blockchain platform and consensus algorithms are suitable, dependant on the discussion 

of the quality requirements for blockchain-based smart education environments. As 

shown in Chapter 4, the Hyperledger Fabric platform, with Raft consensus algorithm, 

is an ideal blockchain for storing and sharing sensitive data such as that of educational 

institutes, maintaining privacy and confidentiality within the network. In addition, 

IPFS, as a form of distributed off-chain storage, was considered for use alongside 

Hyperledger Fabric to increase the blockchain scalability, as in Chapter 5. Thus, the 

designed model is immutable and content addressed, as well as ensuring the security, 

privacy, and integrity of the data. Different case scenarios were designed and 

implemented as proof of concept to facilitate a smart educational environment using 

Hyperledger Fabric 2.3.2 and a private IPFS network, as in Chapter 6.      

• What are the implications on the applicability of the comprehensive framework 

for a smart campus in the future? A series of tests were carried out, as in chapter 6, 

and another experiment was conducted for a boarder context (student certification 



 148 

scenario). As a result, the study showed the efficiency and the applicability of the novel, 

holistic, comprehensive framework for a smart campus. 

7.3. The Aims and Objectives  

The main goal of this study was to propose and evaluate a comprehensive framework for a 

smart campus implementation since no comprehensive guiding framework has been developed 

for emerging IoT and blockchain technologies deployment in this filed, specifically in relation 

to security and privacy issues and the mitigation of known problems with IoT and blockchain 

in existing applications.  

To attain the study’s main goal, it was necessary to separate it into several sections:  

• Determining appropriate technologies that can be utilised for the development of the 

framework by gaining knowledge on related research work and understanding smart 

campuses’ principles and concepts.    

• Extracting domain knowledge by investigating the main features of emerging IoT and 

blockchain technologies. 

• Gaining new insights by analysing the validity of distributing smart campus 

applications and systems. 

• Choosing different case scenario to be implemented and evaluated for the applicability 

of the holistic architectural framework.   

7.4. Contributions to Knowledge 

The main achievements of this research are summarised as follows:  

1 The research has presented in the literature review provides an analysis of the current state 

of the art relevant to smart campuses and the use of existing smart technologies in different 

campus sectors, such as education, building management, waste management, energy 

management, water management, transportation, and security. 

2 This research has analysed the best technologies including consensus algorithms, 

blockchain platforms and off-chain storages to use in different case scenarios as proof of 

concept.  



 149 

3 This research has developed a novel, comprehensive, smart campus architectural 

framework, using the advantages of blockchain technology to handle issues related to a 

centralised IoT architecture.  

4 This research has developed a systematic analysis method to determine which blockchain 

platform and consensus algorithms are suitable for blockchain-based smart education 

environment. 

5 This research has evaluated the framework by assessing performance and security 

requirements, which has shown that the system is lightweight since it avoids high network 

latency and low throughput. 

6 This research has tested the future applicability of the comprehensive framework for a 

smart campus in a broader context (student certification scenario). 

7.5. Summary of the thesis 

In this section, the summary of this thesis is as the follows:  

• Current state-of-the-art research relevant to smart campus has been conducted in order 

to gain knowledge on existing smart technologies and intelligent software/hardware 

systems in use in different campus sectors. In addition, recent smart campus 

frameworks and architecture have been analysed to determine their limitations, as 

shown in Chapter 2.      

• A novel, holistic smart campus architectural framework (illustrated in Figure 3-1) was 

designed, implemented, and evaluated. The framework emerged the advantages of IoT 

and blackchin technology to eliminate current centralised issues. That is, these 

technologies can collect and aggregate data from various areas of the campus while 

increasing data security and providing a better service to enhance user experience.      

• Integrating blockchain technology into education institutions is still in its early stages 

and needs more research. Security requirements for the proposed smart campus 

architectural framework from were analysed, focusing on issues of authorisation, 

privacy, confidentiality, integrity, and availability.  

• A systematic analysis was conducted to determine which blockchain platform and 

consensus algorithms are suitable, dependant on the discussion of the quality 

requirements for blockchain-based smart education environments. As shown in Chapter 



 150 

4, the Hyperledger Fabric platform, with Raft consensus algorithm, is an ideal 

blockchain for storing and sharing sensitive data such as that of educational institutes, 

maintaining privacy and confidentiality within the network.  

• IPFS, as a form of distributed off-chain storage, was considered for use alongside 

Hyperledger Fabric to increase the blockchain scalability, as in Chapter 5. Thus, the 

designed model is immutable and content addressed, as well as ensuring the security, 

privacy, and integrity of the data.  

• Different case scenarios were designed and implemented as proof of concept to 

facilitate a smart educational environment using Hyperledger Fabric 2.3.2 and a private 

IPFS network, as in Chapter 6.      

• A series of tests were carried out, as in chapter 6, and another experiment was conducted 

for a broader context (student certification scenario). As a result, the study showed the 

efficiency and the applicability of the novel, holistic, comprehensive framework for a 

smart campus. 

7.6. Research Limitations and Directions of Future 
Work  

Blockchain technology is a fairly new revolution and has shown successful results and 

adaptions in the area of digital cryptocurrencies. This study therefore took a step further and 

used blockchain beyond the financial filed. The research provides a solid basis for further 

study, particularly in decentralised system domains, and open new constitutes and avenues for 

future research. With the development of the holistic comprehensive framework for a smart 

campus and the achievement of the main objectives, the study concluded that blockchain 

technology with its characteristics is a great tool that can be used to decentralise campus 

systems, to eliminate IoT centralisation issues and to improve security and privacy. Since the 

research presented proof of concept for the framework, further study could include several 

developments in the systems of different areas of smart campuses, or in business systems in 

the development of smart city environments generally, taking into account their business needs 

and quality requirements.     

Blockchain technology is still in its early stages particularly in developing smart campuses 

systems where most of proposed applications are still not being implemented. Therefore, the 



 151 

research systematic analyses were focussed on the current well-known blockchain platforms 

and consensus algorithms, which is a mechanism utilised by various platforms of blockchain 

networks to ensure the consistency, availability and integrity of stored data across 

geographically distributed peers. There are several different novel blockchain platforms and 

consensus algorithms that was developed by researchers. However, this research focused on 

and analysed existing adopted consensus algorithms and open sources blockchain platforms 

which considered a research limitation. Novel ones were beyond the scope of this research and 

may provide the subject of another possible future research work.   

Integrating IoT and blockchain technology in the proposed architectural framework brought 

various benefits in increased security and privacy of educational data by storing it in a 

distributed and encrypted form. For a next step, integrating artificial intelligence (AI) 

technology such as neural networks, machine learning and deep learning into the architectural 

framework would be a great direction for further study. Recently, AI has shown a significant 

effect on among different areas, producing ‘smart’ activities and models. The three 

technologies of IoT, blockchain, and AI deliver unlimited, innovative possibilities on the 

future, offering benefits such as data-gathering through IoT devices, smart data analysis and 

advanced decision-making algorithms though AI, and time-stamped data storage through 

blockchain.              

 



 152 

References   

[1] L. Kwok, “A vision for the development of i-campus,” Smart Learn. Environ., vol. 2, 
no. 1, p. 2, 2015. 

[2] W. Villegas-Ch, X. Palacios-Pacheco, and S. Luján-Mora, “Application of a smart city 
model to a traditional university campus with a big data architecture: A sustainable 
smart campus,” Sustain., vol. 11, no. 10, 2019. 

[3] R. Szabo et al., “Framework for smart city applications based on participatory 
sensing,” in 4th IEEE International Conference on Cognitive Infocommunications, 
CogInfoCom 2013 - Proceedings, 2013, pp. 295–300. 

[4] A. Caragliu, C. Del Bo, and P. Nijkamp, “Smart Cities in Europe Smart Cities in 
Europe,” 3rd Cent. Eur. Conf. Reg. Sci., vol. 0732, no. November, pp. 1–15, 2015. 

[5] C. Perera, C. H. Liu, S. Jayawardena, and M. Chen, “A Survey on Internet of Things 
from Industrial Market Perspective,” IEEE Access, vol. 2, pp. 1660–1679, 2015. 

[6] M. I. Pramanik, R. Y. K. Lau, H. Demirkan, and M. A. K. Azad, “Smart health: Big 
data enabled health paradigm within smart cities,” Expert Systems with Applications. 
2017. 

[7] L. Catarinucci et al., “An IoT-Aware Architecture for Smart Healthcare Systems,” 
IEEE Internet Things J., 2015. 

[8] B. Farahani, F. Firouzi, V. Chang, M. Badaroglu, N. Constant, and K. Mankodiya, 
“Towards fog-driven IoT eHealth: Promises and challenges of IoT in medicine and 
healthcare,” Futur. Gener. Comput. Syst., 2018. 

[9] S. Amendola, R. Lodato, S. Manzari, C. Occhiuzzi, and G. Marrocco, “RFID 
technology for IoT-based personal healthcare in smart spaces,” IEEE Internet Things 
J., 2014. 

[10] E. M. Tachizawa, M. J. Alvarez-Gil, and M. J. Montes-Sancho, “How ‘smart cities’ 
will change supply chain management,” Supply Chain Manag., 2015. 

[11] J. Lukić, M. Radenković, M. Despotović-Zrakić, A. Labus, and Z. Bogdanović, 
“Supply chain intelligence for electricity markets: A smart grid perspective,” Inf. Syst. 
Front., 2017. 

[12] B. Ghazal, K. Elkhatib, K. Chahine, and M. Kherfan, “Smart traffic light control 
system,” in 2016 3rd International Conference on Electrical, Electronics, Computer 
Engineering and their Applications, EECEA 2016, 2016. 

[13] J. L. Galán-García, G. Aguilera-Venegas, and P. Rodríguez-Cielos, “An accelerated-
time simulation for traffic flow in a smart city,” J. Comput. Appl. Math., 2014. 

[14] P. K. Nair, F. Ali, and C. L. Lim, “Interactive Technology and Smart Education 
Article information :,” Interact. Technol. Smart Educ., 2015. 

[15] A. Alelaiwi, A. Alghamdi, M. Shorfuzzaman, M. Rawashdeh, M. S. Hossain, and G. 
Muhammad, “Enhanced engineering education using smart class environment,” 
Comput. Human Behav., 2015. 



 153 

[16] M. S. Ibrahim, A. Z. A. Razak, and H. B. Kenayathulla, “Smart Principals and Smart 
Schools,” Procedia - Soc. Behav. Sci., 2013. 

[17] W. Muhamad, N. B. Kurniawan, S. Suhardi, and S. Yazid, “Smart campus features, 
technologies, and applications: A systematic literature review,” in 2017 International 
Conference on Information Technology Systems and Innovation, ICITSI 2017 - 
Proceedings, 2018. 

[18] X. Dong, X. Kong, F. Zhang, Z. Chen, and J. Kang, “OnCampus: a mobile platform 
towards a smart campus Background,” Springerplus, vol. 5, 2016. 

[19] K. Peffers, C. Gengler, T. Tuunanen, and M. Rossi, “The Design Science Research 
Process: a Model for Producing and Presenting Information System Research,” Proc. 
first Int. Conf. Des. Sci. Res. Inf. Syst. Technol., no. May 2014, 2006. 

[20] S. Gregor and A. R. Hevner, “Positioning and presenting design science research for 
maximum impact,” MIS Quarterly: Management Information Systems, vol. 37, no. 2. 
2013. 

[21] P. Offermann, O. Levina, M. Schönherr, and U. Bub, “Outline of a design science 
research process,” in Proceedings of the 4th International Conference on Design 
Science Research in Information Systems and Technology, DESRIST ’09, 2009. 

[22] N. Ahern and D. M. Wink, “Virtual learning environments: Second life,” Nurse Educ., 
2010. 

[23] A. Alam and S. Ullah, “Adaptive 3D-Virtual Learning Environments: From Students’ 
Learning Perspective,” in Proceedings - 14th International Conference on Frontiers of 
Information Technology, FIT 2016, 2017. 

[24] H. Komaki, S. Shimazaki, K. Sakakibara, and T. Matsumoto, “Interactive optimization 
techniques based on a column generation model for timetabling problems of university 
makeup courses,” in 2015 IEEE 8th International Workshop on Computational 
Intelligence and Applications, IWCIA 2015 - Proceedings, 2016. 

[25] R. Mei, J. Guan, and B. Li, “University course timetable system design and 
implementation based on mathematical model,” in 2010 The 2nd International 
Conference on Computer and Automation Engineering, ICCAE 2010, 2010. 

[26] A. Abuarqoub et al., “A Survey on Internet of Thing Enabled Smart Campus 
Applications,” Proc. Int. Conf. Futur. Networks Distrib. Syst.  - ICFNDS ’17, pp. 1–7, 
2017. 

[27] Y. Khamayseh, W. Mardini, S. Aljawarneh, and M. B. Yassein, “Integration of 
Wireless Technologies in Smart University Campus Environment,” Int. J. Inf. 
Commun. Technol. Educ., vol. 11, no. 1, pp. 60–74, 2015. 

[28] Y. Atif, S. S. Mathew, and A. Lakas, “Building a smart campus to support ubiquitous 
learning,” J. Ambient Intell. Humaniz. Comput., vol. 6, no. 2, pp. 223–238, 2015. 

[29] Y. Chen, R. Zhang, X. Shang, and S. Zhang, “An intelligent campus space model 
based on the service encapsulation,” in LISS 2012 - Proceedings of 2nd International 
Conference on Logistics, Informatics and Service Science, 2013, pp. 919–923. 

[30] Y. Chen, X. Li, Y. Wang, and L. Gao, “The design and implementation of intelligent 
campus security tracking system based on RFID and ZigBee,” in 2011 2nd 
International Conference on Mechanic Automation and Control Engineering, MACE 
2011 - Proceedings, 2011, pp. 1749–1752. 



 154 

[31] J. W. P. Ng, N. Azarmi, M. Leida, F. Saffre, A. Afzal, and P. D. Yoo, “The intelligent 
campus (iCampus): End-to-end learning lifecycle of a knowledge ecosystem,” in 
Proceedings - 2010 6th International Conference on Intelligent Environments, IE 2010, 
2010, pp. 332–337. 

[32] P. M. Jackson, “Intelligent campus,” in SPCA 2006: 2006 First International 
Symposium on Pervasive Computing and Applications, Proceedings, 2007, p. 3. 

[33] B. Hirsch and J. W. P. Ng, “Education beyond the cloud: Anytime-anywhere learning 
in a smart campus environment,” 2011 Int. Conf. Internet Technol. Secur. Trans., no. 
December, pp. 718–723, 2011. 

[34] Y. Atif and S. Mathew, “A social web of things approach to a smart campus model,” 
in Proceedings - 2013 IEEE International Conference on Green Computing and 
Communications and IEEE Internet of Things and IEEE Cyber, Physical and Social 
Computing, GreenCom-iThings-CPSCom 2013, 2013, pp. 349–354. 

[35] Y. L. Liu, W. H. Zhang, and P. Dong, “Research on the Construction of Smart Campus 
Based on the Internet of Things and Cloud Computing,” Appl. Mech. Mater., 2014. 

[36] A. Adamkó and L. Kollár, “A system model and applications for intelligent 
campuses,” in INES 2014 - IEEE 18th International Conference on Intelligent 
Engineering Systems, Proceedings, 2014, pp. 193–198. 

[37] A. Boran, I. Bedini, C. J. Matheus, P. F. Patel-Schneider, and J. Keeney, “A smart 
campus prototype for demonstrating the semantic integration of heterogeneous data,” 
in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial 
Intelligence and Lecture Notes in Bioinformatics), 2011, vol. 6902 LNCS, pp. 238–
243. 

[38] Z. Yu, Y. Liang, B. Xu, Y. Yang, and B. Guo, “Towards a smart campus with mobile 
social networking,” in Proceedings - 2011 IEEE International Conferences on Internet 
of Things and Cyber, Physical and Social Computing, iThings/CPSCom 2011, 2011. 

[39] E. De Angelis, A. L. C. Ciribini, L. C. Tagliabue, and M. Paneroni, “The Brescia 
Smart Campus Demonstrator. Renovation toward a zero Energy Classroom Building,” 
in Procedia Engineering, 2015, vol. 118, pp. 735–743. 

[40] D. Kolokotsa et al., “Development of a web based energy management system for 
University Campuses: The CAMP-IT platform,” Energy Build., vol. 123, pp. 119–135, 
2016. 

[41] Y. Han and K. Xia, “Data preprocessing method based on user characteristic of 
interests for web log mining,” in Proceedings - 2014 4th International Conference on 
Instrumentation and Measurement, Computer, Communication and Control, IMCCC 
2014, 2014, pp. 867–872. 

[42] W. Kuang and N. Luo, “User interests mining based on topic map,” in Proceedings - 
2010 7th International Conference on Fuzzy Systems and Knowledge Discovery, 
FSKD 2010, 2010, vol. 5, pp. 2399–2402. 

[43] A. I. Amr, S. Kamel, G. El Gohary, and J. Hamhaber, “Water as an Ecological Factor 
for a Sustainable Campus Landscape,” Procedia - Soc. Behav. Sci., vol. 216, pp. 181–
193, 2016. 

[44] G. B. Shi, “The design of campus monitoring and managing system for watersaving 
based on webgis,” Proc. - 2017 IEEE Int. Conf. Internet Things, IEEE Green Comput. 



 155 

Commun. IEEE Cyber, Phys. Soc. Comput. IEEE Smart Data, iThings-GreenCom-
CPSCom-SmartData 2017, vol. 2018-Janua, pp. 951–954, 2018. 

[45] V. D. Kudva et al., “Towards a Real-Time Campus-Scale Water Balance Monitoring 
System,” in Proceedings of the IEEE International Conference on VLSI Design, 2015, 
vol. 2015-Febru, no. February, pp. 87–92. 

[46] P. Verma et al., “Towards an IoT based water management system for a campus,” in 
2015 IEEE 1st International Smart Cities Conference, ISC2 2015, 2015. 

[47] A. Alghamdi and S. Shetty, “Survey toward a smart campus using the internet of 
things,” in Proceedings - 2016 IEEE 4th International Conference on Future Internet of 
Things and Cloud, FiCloud 2016, 2016, pp. 235–239. 

[48] M. J. Mudumbe and A. M. Abu-Mahfouz, “Smart water meter system for user-centric 
consumption measurement,” in Proceeding - 2015 IEEE International Conference on 
Industrial Informatics, INDIN 2015, 2015, pp. 993–998. 

[49] S. Goenka and R. S. Mangrulkar, “Robust Waste Collection: Exploiting IOT 
Potentiality in Smart Cities,” i-Manager’s J. Softw. Eng., vol. 11, no. 3, pp. 10–18, 
2017. 

[50] F. Folianto, Y. S. Low, and W. L. Yeow, “Smartbin: Smart waste management 
system,” in 2015 IEEE 10th International Conference on Intelligent Sensors, Sensor 
Networks and Information Processing, ISSNIP 2015, 2015. 

[51] K. Ebrahimi, L. North, and J. Yan, “GIS applications in developing zero-waste 
strategies at a mid-size American university,” in International Conference on 
Geoinformatics, 2017, vol. 2017-Augus. 

[52] R. W. Ahmad, K. Salah, R. Jayaraman, I. Yaqoob, and M. Omar, “Blockchain for 
Waste Management in Smart Cities: A Survey,” IEEE Access, vol. 9. 2021. 

[53] S. A. Saad, A. A. B. Hisham, M. H. I. Ishak, M. H. M. Fauzi, M. A. Baharudin, and N. 
H. Idris, “Real-time on-campus public transportation monitoring system,” in 
Proceedings - 2018 IEEE 14th International Colloquium on Signal Processing and its 
Application, CSPA 2018, 2018. 

[54] M. Ramadan, M. Al-Khedher, and S. Al-Kheder, “Intelligent anti-theft and tracking 
system for automobiles,” Int. J. Mach. Learn. Comput, 2012. 

[55] S. Priya, B. Prabhavathi, P. Shanmuga Priya, B. Shanthini, and U. Scholar, “An 
Android Application for Tracking College Bus Using Google Map,” Int. J. Comput. 
Sci. Eng. Commun., 2015. 

[56] M. P. Suresh Mane and P. V. Khairnar, “Analysis of Bus Tracking System Using Gps 
on Smart Phones,” IOSR J. Comput. Eng., 2014. 

[57] M. Wazid, B. Bera, A. K. Das, S. P. Mohanty, and M. Jo, “Fortifying Smart 
Transportation Security Through Public Blockchain,” IEEE Internet Things J., vol. 9, 
no. 17, 2022. 

[58] J. E. Ferreira, J. A. Visintin, J. Okamoto, and C. Pu, “Smart services: A case study on 
smarter public safety by a mobile app for University of São Paulo,” 2017 IEEE 
SmartWorld Ubiquitous Intell. Comput. Adv. Trust. Comput. Scalable Comput. 
Commun. Cloud Big Data Comput. Internet People Smart City Innov. 
SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI 2017 - , pp. 1–5, 2018. 

[59] Y. Wang et al., “A smart campus internet of things framework,” in 2017 IEEE 8th 



 156 

Annual Ubiquitous Computing, Electronics and Mobile Communication Conference, 
UEMCON 2017, 2018. 

[60] S. Li, L. Da Xu, and S. Zhao, “The internet of things: a survey,” Inf. Syst. Front., vol. 
17, no. 2, pp. 243–259, 2015. 

[61] N. Mishra, P. Singhal, and S. Kundu, “Application of IoT products in smart cities of 
India,” in Proceedings of the 2020 9th International Conference on System Modeling 
and Advancement in Research Trends, SMART 2020, 2020, pp. 155–157. 

[62] A. Nayyar, V. Puri, and D.-N. Le, “Internet of Nano Things (IoNT): Next 
Evolutionary Step in Nanotechnology,” Nanosci. Nanotechnol., vol. 7, no. 1, pp. 4–8, 
2017. 

[63] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash, “Internet of 
Things: A Survey on Enabling Technologies, Protocols, and Applications,” IEEE 
Commun. Surv. Tutorials, 2015. 

[64] K. Zhao and L. Ge, “A survey on the internet of things security,” in Proceedings - 9th 
International Conference on Computational Intelligence and Security, CIS 2013, 2013, 
pp. 663–667. 

[65] D. Pennino, M. Pizzonia, A. Vitaletti, and M. Zecchini, “Blockchain as IoT Economy 
Enabler: A Review of Architectural Aspects,” J. Sens. Actuator Networks, vol. 11, no. 
2, p. 20, 2022. 

[66] A. Reyna, C. Martín, J. Chen, E. Soler, and M. Díaz, “On blockchain and its 
integration with IoT . Challenges and opportunities,” vol. 88, pp. 173–190, 2018. 

[67] Z. Zheng, S. Xie, H. Dai, X. Chen, and H. Wang, “An Overview of Blockchain 
Technology: Architecture, Consensus, and Future Trends,” Proc. - 2017 IEEE 6th Int. 
Congr. Big Data, BigData Congr. 2017, pp. 557–564, 2017. 

[68] F. Vidal, F. Gouveia, and C. Soares, “Analysis of blockchain technology for higher 
education,” Proc. - 2019 Int. Conf. Cyber-Enabled Distrib. Comput. Knowl. Discov. 
CyberC 2019, pp. 28–33, 2019. 

[69] K. Panetta and Gartner, “5 Trends Emerge in the Gartner Hype Cycle for Emerging 
Technologies, 2018 - Smarter With Gartner,” Gartner, 2018. . 

[70] D. Yaga, P. Mell, N. Roby, and K. Scarfone, “Blockchain Technology Overview,” 
arXiv. 2019. 

[71] K. Sultan, U. Ruhi, and R. Lakhani, “Conceptualizing blockchains: Characteristics & 
applications,” in Proceedings of the 11th IADIS International Conference Information 
Systems 2018, IS 2018, 2018. 

[72] A. Narayanan and J. Clark, “Bitcoin’s academic pedigree,” Communications of the 
ACM. 2017. 

[73] Coinbase, “Bitcoin Price,” Coinbase, 2018. 
[74] W. A. Kaal and M. Dell’Erba, “Blockchain Innovation in Private Investment Funds - 

A Comparative Analysis of the United States and Europe,” SSRN Electron. J., 2018. 
[75] V. Buterin, “Ethereum White Paper,” Etherum, 2014. 
[76] V. J. Morkunas, J. Paschen, and E. Boon, “How blockchain technologies impact your 

business model,” Bus. Horiz., vol. 2018, no. 2018, 2019. 



 157 

[77] O. Novo, “Blockchain Meets IoT: An Architecture for Scalable Access Management 
in IoT,” IEEE Internet Things J., 2018. 

[78] N. Parlante, “Linked List Basics,” Stanford CS Educ. Libr., 2002. 
[79] U. Gandhi, “a Review Towards Various Hash Algorithms and Their Comparative 

Analysis,” Int. Res. J. Eng. Technol., 2017. 
[80] Y. Hassanzadeh-Nazarabadi, A. Küpçü, and Ö. Özkasap, “LightChain: Scalable DHT-

Based Blockchain,” IEEE Trans. Parallel Distrib. Syst., vol. 32, no. 10, 2021. 
[81] P. P. Pittalia, “A Comparative Study of Hash Algorithms in Cryptography,” Int. J. 

Comput. Sci. Mob. Comput., 2019. 
[82] S. Verma, M. T. Scholar, and G. S. P. Head, “A Survey of Cryptographic Hash 

Algorithms and Issues,” vol. 1, pp. 17–20, 2015. 
[83] F. Chabaud and A. Joux, “Differential collisions in SHA-0,” in Lecture Notes in 

Computer Science (including subseries Lecture Notes in Artificial Intelligence and 
Lecture Notes in Bioinformatics), 1998. 

[84] P. Jones, “US secure hash algorithm 1 (SHA1) RFC 3174,” RFC 3174, 2001. 
[85] N. Sklavos and O. Koufopavlou, “Implementation of the SHA-2 hash family standard 

using FPGAs,” J. Supercomput., 2005. 
[86] R. K. Ibrahim, R. A. J. Kadhim, and A. S. H. Alkhalid, “Incorporating SHA-2 256 

with OFB to realize a novel encryption method,” in 2015 World Symposium on 
Computer Networks and Information Security, WSCNIS 2015, 2015. 

[87] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, “Keccak,” in Lecture Notes in 
Computer Science (including subseries Lecture Notes in Artificial Intelligence and 
Lecture Notes in Bioinformatics), 2013. 

[88] R. Martino and A. Cilardo, “Designing a SHA-256 processor for blockchain-based IoT 
applications,” Internet of Things, 2020. 

[89] R. Grinberg, “Bitcoin: An Innovative Alternative Digital Currency,” Hast. Sci. 
Technol. Law J., 2011. 

[90] C. Cachin and M. Vukolić, “Blockchain consensus protocols in the wild,” in Leibniz 
International Proceedings in Informatics, LIPIcs, 2017. 

[91] D. Tosh, S. Shetty, P. Foytik, C. Kamhoua, and L. Njilla, “CloudPoS: A Proof-of-
Stake Consensus Design for Blockchain Integrated Cloud,” in IEEE International 
Conference on Cloud Computing, CLOUD, 2018. 

[92] D. Burkhardt, M. Werling, and H. Lasi, “Distributed Ledger,” in 2018 IEEE 
International Conference on Engineering, Technology and Innovation, ICE/ITMC 
2018 - Proceedings, 2018. 

[93] L. Ismail, H. Hameed, M. Aishamsi, M. Aihammadi, and N. Aidhanhani, “Towards a 
blockchain deployment at UAE University: Performance evaluation and blockchain 
taxonomy,” in ACM International Conference Proceeding Series, 2019, vol. Part 
F1481, pp. 30–38. 

[94] K. Christidis and M. Devetsikiotis, “Blockchains and Smart Contracts for the Internet 
of Things,” IEEE Access. 2016. 

[95] M. Suvitha and R. Subha, “A Survey on Smart Contract Platforms and Features,” in 



 158 

2021 7th International Conference on Advanced Computing and Communication 
Systems, ICACCS 2021, 2021, pp. 1536–1539. 

[96] F. Casino, T. K. Dasaklis, and C. Patsakis, “A systematic literature review of 
blockchain-based applications: Current status, classification and open issues,” 
Telematics and Informatics. 2019. 

[97] U. Bodkhe et al., “Blockchain for Industry 4.0: A comprehensive review,” IEEE 
Access, 2020. 

[98] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System(HP),” Consulted, 
2008. 

[99] The Economist, “The great chain of being sure about things,” Econ., 2015. 
[100] B. Adam et al., “Enabling Blockchain Innovations with Pegged Sidechains, 

https://blockstream.com/sidechains.pdf,” URL http//www., 2014. 
[101] V. Buterin, “Ethereum White Paper: A Next Generation Smart Contract & 

Decentralized Application Platform,” Etherum, 2013. 
[102] A. Hughes, A. Park, J. Kietzmann, and C. Archer-Brown, “Beyond Bitcoin: What 

blockchain and distributed ledger technologies mean for firms,” Bus. Horiz., 2019. 
[103] G. G. Dagher, J. Mohler, M. Milojkovic, and P. B. Marella, “Ancile: Privacy-

preserving framework for access control and interoperability of electronic health 
records using blockchain technology,” Sustain. Cities Soc., 2018. 

[104] S. Huh, S. Cho, and S. Kim, “Managing IoT devices using blockchain platform,” in 
International Conference on Advanced Communication Technology, ICACT, 2017. 

[105] Hyperledger, “Hyperledger Whitepaper,” Publ. 
https//wiki.hyperledger.org/groups/whitepaper/whitepaper-wg, 2016. 

[106] P. Mukherjee and C. Pradhan, “Blockchain 1.0 to blockchain 4.0—The evolutionary 
transformation of blockchain technology,” in Intelligent Systems Reference Library, 
vol. 203, 2021, pp. 29–49. 

[107] M. Alkhammash, N. Beloff, and M. White, “An Internet of Things and Blockchain 
Based Smart Campus Architecture,” in Intelligent Computing, 2020, pp. 467–486. 

[108] M. Alkhammash, M. Alshahrani, N. Beloff, and M. White, “Revolutionising the 
Approach to Smart Campus Architecture through IoT and Blockchain Technologies,” 
in TTBT2021, Springer International Publishing, 2021. 

[109] J. Kaur and O. Jyotsna, “Blockchain Technology in Education Sector: A Review,” 
JAC  A J. Compos. Theory, vol. 8, no. 4, 2020. 

[110] O. S. Saleh, O. Ghazali, and M. E. Rana, “Blockchain based framework for 
educational certificates verification,” Journal of Critical Reviews, vol. 7, no. 3. 2020. 

[111] S. Murugesan and M. B. Lakshminarasaiah, “A survey on blockchain-based student 
certificate management system,” ACM Int. Conf. Proceeding Ser., pp. 44–50, 2021. 

[112] Broggi, Lilly, and Duquette, “Building the first blockchain university,” Woolf Dev. 
Ltd, 2018. 

[113] M. Holbl, A. Kamisalic, M. Turkanovic, M. Kompara, B. Podgorelec, and M. Hericko, 
“EduCTX: An Ecosystem for Managing Digital Micro-Credentials,” in 2018 28th 
EAEEIE Annual Conference, EAEEIE 2018, 2018. 



 159 

[114] A. Rachmat and Albarda, “Design of Distributed Academic-record System Based on 
Blockchain,” in Proceeding - 2019 International Conference on ICT for Smart Society: 
Innovation and Transformation Toward Smart Region, ICISS 2019, 2019, pp. 1–7. 

[115] X. Liu, “A smart book management system based on Blockchain platform,” in 
Proceedings - 2019 International Conference on Communications, Information 
System, and Computer Engineering, CISCE 2019, 2019. 

[116] S. Sharma and R. S. Batth, “Blockchain Technology for Higher Education Sytem: A 
Mirror Review,” in Proceedings of International Conference on Intelligent Engineering 
and Management, ICIEM 2020, 2020. 

[117] W. Y. Chiu, W. Meng, and W. Li, “LibBlock - Towards Decentralized Library System 
based on Blockchain and IPFS,” in 2021 18th International Conference on Privacy, 
Security and Trust, PST 2021, 2021. 

[118] J. Zeng, X. Dai, J. Xiao, W. Yang, W. Hao, and H. Jin, “BookChain: Library-free book 
sharing based on blockchain technology,” in Proceedings - 2019 15th International 
Conference on Mobile Ad-Hoc and Sensor Networks, MSN 2019, 2019. 

[119] S. G. Education and Sony Global Education, “Sony Develops System for 
Authentication, Sharing, and Rights Management Using Blockchain Technology,” 
Sony Corporation Sony Global Education, 2017. 

[120] B. Hameed et al., “A review of Blockchain based educational projects,” Int. J. Adv. 
Comput. Sci. Appl., vol. 10, no. 10, 2019. 

[121] R. Arenas and P. Fernandez, “CredenceLedger: A Permissioned Blockchain for 
Verifiable Academic Credentials,” in 2018 IEEE International Conference on 
Engineering, Technology and Innovation, ICE/ITMC 2018 - Proceedings, 2018. 

[122] Y. Zou, T. Meng, P. Zhang, W. Zhang, and H. Li, “Focus on blockchain: A 
comprehensive survey on academic and application,” IEEE Access, vol. 8. 2020. 

[123] A. Chowdhary, S. Agrawal, and B. Rudra, “Blockchain based Framework for Student 
Identity and Educational Certificate Verification,” in Proceedings of the 2nd 
International Conference on Electronics and Sustainable Communication Systems, 
ICESC 2021, 2021. 

[124] B. Gipp, C. Breitinger, N. Meuschke, and J. Beel, “CryptSubmit: Introducing Securely 
Timestamped Manuscript Submission and Peer Review Feedback Using the 
Blockchain,” in Proceedings of the ACM/IEEE Joint Conference on Digital Libraries, 
2017. 

[125] T. Hepp, A. Schoenhals, C. Gondek, and B. Gipp, “OriginStamp: A blockchain-backed 
system for decentralized trusted timestamping,” IT - Inf. Technol., vol. 60, no. 5–6, pp. 
273–281, 2018. 

[126] M. S. M. Pozi, G. Muruti, A. A. Bakar, A. Jatowt, and Y. Kawai, “Preserving Author 
Editing History Using Blockchain Technology,” in Proceedings of the ACM/IEEE 
Joint Conference on Digital Libraries, 2018, pp. 165–168. 

[127] Andi, R. Purba, and R. Yunis, “Application of Blockchain Technology to Prevent The 
Potential Of Plagiarism in Scientific Publication,” in Proceedings of 2019 4th 
International Conference on Informatics and Computing, ICIC 2019, 2019. 

[128] T. Narendrakumar and A. S. Pillai, “Smart connected campus,” in 2017 International 
Conference on Intelligent Computing, Instrumentation and Control Technologies, 



 160 

ICICICT 2017, 2018, vol. 2018-Janua, pp. 1591–1596. 
[129] I. Hossain, Di. Das, and M. G. Rashed, “Internet of Things Based Model for Smart 

Campus: Challenges and Limitations,” in 5th International Conference on Computer, 
Communication, Chemical, Materials and Electronic Engineering, IC4ME2 2019, 
2019. 

[130] H. Zhe, W. Xiaojun, and W. Qiang, “Research on campus information service 
platform based on locating system of campus wireless LAN,” Proc. - 2017 Int. Conf. 
Smart Grid Electr. Autom. ICSGEA 2017, vol. 2017-Janua, pp. 623–626, 2017. 

[131] H. Yan and H. Hu, “A study on association algorithm of smart campus mining 
platform based on big data,” in Proceedings - 2016 International Conference on 
Intelligent Transportation, Big Data and Smart City, ICITBS 2016, 2017, pp. 172–175. 

[132] H. Hu and H. Yan, “A study on discovery method of hot topics based on smart campus 
big data platform,” in Proceedings - 2016 International Conference on Intelligent 
Transportation, Big Data and Smart City, ICITBS 2016, 2017, pp. 176–179. 

[133] V. Agate, F. Concone, and P. Ferraro, “WiP: Smart services for an augmented 
campus,” in Proceedings - 2018 IEEE International Conference on Smart Computing, 
SMARTCOMP 2018, 2018, pp. 276–278. 

[134] J. Enqing, R. Peixiang, W. Huanjin, and S. Yanping, “Discussion on construction 
method of smart campus basic platform based on 3d geographic information 
technology,” in Proceedings - 2017 Chinese Automation Congress, CAC 2017, 2017, 
vol. 2017-Janua, pp. 7790–7794. 

[135] W. Lihong, “Research on the Construction of Smart Campus Social Platform Based on 
Hadoop,” in Proceedings - 2020 International Conference on Computer Engineering 
and Application, ICCEA 2020, 2020, pp. 214–217. 

[136] P. Agarwal, G. V. V. Ravi Kumar, and P. Agarwal, “IoT based framework for smart 
campus: COVID-19 readiness,” in Proceedings of the World Conference on Smart 
Trends in Systems, Security and Sustainability, WS4 2020, 2020, pp. 539–542. 

[137] O. Debauche, R. A. Abdelouahid, S. Mahmoudi, Y. Moussaoui, A. Marzak, and P. 
Manneback, “RevoCampus: A Distributed Open Source and Low-cost Smart 
Campus,” in 3rd International Conference on Advanced Communication Technologies 
and Networking, CommNet 2020, 2020. 

[138] M. A. Khan, “A survey of security issues for cloud computing,” Journal of Network 
and Computer Applications, vol. 71. pp. 11–29, 2016. 

[139] H. F. Atlam and G. B. Wills, “Intersections between IoT and distributed ledger,” 
Advances in Computers, 2019. 

[140] H. F. Atlam, E. El-Din Hemdan, A. Alenezi, M. O. Alassafi, and G. B. Wills, “Internet 
of Things Forensics: A Review,” Internet of Things, vol. 11, p. 100220, 2020. 

[141] H. F. Atlam, G. B. Wills, A. Alenezi, and M. O. Alassafi, “Blockchain with Internet of 
Things: Benefits, Challenges, and Future Directions,” Int. J. Intell. Syst. Appl., 2018. 

[142] C. Wang, S. Chen, Z. Feng, Y. Jiang, and X. Xue, “Block chain-based data audit and 
access control mechanism in service collaboration,” in Proceedings - 2019 IEEE 
International Conference on Web Services, ICWS 2019 - Part of the 2019 IEEE World 
Congress on Services, 2019, pp. 214–218. 

[143] H. Halpin and M. Piekarska, “Introduction to security and privacy on the blockchain,” 



 161 

in Proceedings - 2nd IEEE European Symposium on Security and Privacy Workshops, 
EuroS and PW 2017, 2017. 

[144] M. Chowdhury, S. Ferdous, and K. Biswas, “Blockchain Platforms for IoT Use-cases,” 
no. July, pp. 3–4, 2018. 

[145] H. Hejazi, H. Rajab, T. Cinkler, and L. Lengyel, “Survey of platforms for massive 
IoT,” in 2018 IEEE International Conference on Future IoT Technologies, Future IoT 
2018, 2018. 

[146] J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, and W. Zhao, “A Survey on Internet of 
Things: Architecture, Enabling Technologies, Security and Privacy, and Applications,” 
IEEE Internet Things J., 2017. 

[147] M. Leo, F. Battisti, M. Carli, and A. Neri, “A federated architecture approach for 
Internet of Things security,” in 2014 Euro Med Telco Conference - From Network 
Infrastructures to Network Fabric: Revolution at the Edges, EMTC 2014, 2014. 

[148] J. Decuir, “Introducing bluetooth smart: Part 1: A look at both classic and new 
technologies,” IEEE Consumer Electronics Magazine. 2014. 

[149] F. Samie, L. Bauer, and J. Henkel, “IoT technologies for embedded computing: A 
survey,” in 2016 International Conference on Hardware/Software Codesign and 
System Synthesis, CODES+ISSS 2016, 2016. 

[150] B. Kang, D. Kim, and H. Choo, “Internet of Everything: A Large-Scale Autonomic 
IoT Gateway,” IEEE Trans. Multi-Scale Comput. Syst., vol. 3, no. 3, pp. 206–214, 
2017. 

[151] K. Biswas and V. Muthukkumarasamy, “Securing smart cities using blockchain 
technology,” in Proceedings - 18th IEEE International Conference on High 
Performance Computing and Communications, 14th IEEE International Conference on 
Smart City and 2nd IEEE International Conference on Data Science and Systems, 
HPCC/SmartCity/DSS 2016, 2017. 

[152] R. Bryant, R. Katz, and E. Lazowska, “Big-Data Computing: Creating Revolutionary 
Breakthroughs in Commerce, Science and Society,” Comput. Res. Assoc., 2008. 

[153] I. K. Azeemi, M. Lewis, and T. Tryfonas, “Migrating to the cloud: Lessons and 
limitations of ‘traditional’ is success models,” in Procedia Computer Science, 2013, 
vol. 16, pp. 737–746. 

[154] R. Khan, S. U. Khan, R. Zaheer, and S. Khan, “Future internet: The internet of things 
architecture, possible applications and key challenges,” in Proceedings - 10th 
International Conference on Frontiers of Information Technology, FIT 2012, 2012. 

[155] Z. Yang, Y. Yue, Y. Yang, Y. Peng, X. Wang, and W. Liu, “Study and application on 
the architecture and key technologies for IOT,” in 2011 International Conference on 
Multimedia Technology, ICMT 2011, 2011. 

[156] M. Crosby, Nachiappan, P. Pattanayak, S. Verma, and V. Kalyanaraman, “Blockchain 
Technology - BEYOND BITCOIN,” Berkley Eng., 2016. 

[157] S. Davidson, P. De Filippi, and J. Potts, “Economics of Blockchain,” SSRN Electron. 
J., 2016. 

[158] C. Khan, A. Lewis, E. Rutland, C. Wan, K. Rutter, and C. Thompson, “A Distributed-
Ledger Consortium Model for Collaborative Innovation,” Computer (Long. Beach. 
Calif)., 2017. 



 162 

[159] M. Benchoufi, R. Porcher, and P. Ravaud, “Blockchain protocols in clinical trials: 
Transparency and traceability of consent,” F1000Research, 2018. 

[160] A. Azaria, A. Ekblaw, T. Vieira, and A. Lippman, “MedRec: Using blockchain for 
medical data access and permission management,” in Proceedings - 2016 2nd 
International Conference on Open and Big Data, OBD 2016, 2016. 

[161] M. Wazid, A. K. Das, R. Hussain, G. Succi, and J. J. P. C. Rodrigues, “Authentication 
in cloud-driven IoT-based big data environment: Survey and outlook,” J. Syst. Archit., 
2019. 

[162] A. Mhenni, E. Cherrier, C. Rosenberger, and N. Essoukri Ben Amara, “Double serial 
adaptation mechanism for keystroke dynamics authentication based on a single 
password,” Comput. Secur., 2019. 

[163] S. C. Cha, J. F. Chen, C. Su, and K. H. Yeh, “A Blockchain Connected Gateway for 
BLE-Based Devices in the Internet of Things,” IEEE Access, 2018. 

[164] T. Sanda and H. Inaba, “Proposal of new authentication method in Wi-Fi access using 
Bitcoin 2.0,” in 2016 IEEE 5th Global Conference on Consumer Electronics, GCCE 
2016, 2016. 

[165] V. Venkatesh, J. Y. L. Thong, and X. Xu, “A I S ssociation for nformation ystems 
Unified Theory of Acceptance and Use of Technology: A Synthesis and the Road 
Ahead,” J ournal, 2016. 

[166] A. H. Mohsin et al., “Blockchain authentication of network applications: Taxonomy, 
classification, capabilities, open challenges, motivations, recommendations and future 
directions,” Computer Standards and Interfaces. 2019. 

[167] P. Kianmajd, J. Rowe, and K. Levitt, “Privacy-preserving coordination for smart 
communities,” in Proceedings - IEEE INFOCOM, 2016. 

[168] G. Zyskind, O. Nathan, and A. S. Pentland, “Decentralizing privacy: Using blockchain 
to protect personal data,” in Proceedings - 2015 IEEE Security and Privacy 
Workshops, SPW 2015, 2015. 

[169] K. Peterson, R. Deeduvanu, P. Kanjamala, and K. Boles, “A Blockchain-Based 
Approach to Health Information Exchange Networks,” Proc. NIST Work. Blockchain 
Healthc., 2016. 

[170] S. Moin, A. Karim, Z. Safdar, K. Safdar, E. Ahmed, and M. Imran, “Securing IoTs in 
distributed blockchain: Analysis, requirements and open issues,” Futur. Gener. 
Comput. Syst., 2019. 

[171] K. Wüst and A. Gervais, “Do you need a Blockchain?,” IACR Cryptol. ePrint Arch., 
2017. 

[172] S. Apte and N. Petrovsky, “Will blockchain technology revolutionize excipient supply 
chain management?,” Journal of Excipients and Food Chemicals, 2016. 

[173] M. Banerjee, J. Lee, and K. K. R. Choo, “A blockchain future for internet of things 
security: a position paper,” Digit. Commun. Networks, 2018. 

[174] B. Liu, X. L. Yu, S. Chen, X. Xu, and L. Zhu, “Blockchain Based Data Integrity 
Service Framework for IoT Data,” in Proceedings - 2017 IEEE 24th International 
Conference on Web Services, ICWS 2017, 2017. 

[175] K. Scarfone and M. Tracy, “Guide to General Server Security,” Natl. Inst. Stand. 



 163 

Technol., 2008. 
[176] F. Loukil, M. Abed, and K. Boukadi, “Blockchain adoption in education: a systematic 

literature review,” Educ. Inf. Technol., vol. 26, no. 5, pp. 5779–5797, 2021. 
[177] L. Ao, C. Ogah, P. Asuquo, H. Cruickshank, and S. Zhili, “A Secure Key Management 

Scheme for Heterogeneous A Secure Key Management Scheme for Heterogeneous 
Secure Vehicular Communication Systems Secure Vehicular Communication 
Systems,” ZTE Commun., vol. 21, no. 3, 2016. 

[178] S. S. Panda, D. Jena, B. K. Mohanta, S. Ramasubbareddy, M. Daneshmand, and A. H. 
Gandomi, “Authentication and Key Management in Distributed IoT Using Blockchain 
Technology,” IEEE Internet Things J., vol. 8, no. 16, 2021. 

[179] O. Pal, B. Alam, V. Thakur, and S. Singh, “Key management for blockchain 
technology,” ICT Express, vol. 7, no. 1, 2021. 

[180] S. Tavonatti, D. Battulga, M. Farhadi, C. Caprini, and D. Miorandi, “An experimental 
evaluation of the scalability of permissioned blockchains,” in Proceedings - 2021 
International Conference on Future Internet of Things and Cloud, FiCloud 2021, 2021. 

[181] M. H. Nasir, J. Arshad, M. M. Khan, M. Fatima, K. Salah, and R. Jayaraman, 
“Scalable blockchains — A systematic review,” Futur. Gener. Comput. Syst., vol. 126, 
2022. 

[182] J. Bruce, “Purely P2P Crypto-Currency With Finite Mini-Blockchain,” Bitfreak.Info, 
no. May, 2013. 

[183] A. Marsalek, T. Zefferer, E. Fasllija, and D. Ziegler, “Tackling data inefficiency: 
Compressing the bitcoin blockchain,” in Proceedings - 2019 18th IEEE International 
Conference on Trust, Security and Privacy in Computing and Communications/13th 
IEEE International Conference on Big Data Science and Engineering, 
TrustCom/BigDataSE 2019, 2019. 

[184] Z. Wang et al., “A Data Lightweight Scheme for Parallel Proof of Vote Consensus,” 
Proc. - 2021 IEEE Int. Conf. Big Data, Big Data 2021, pp. 3656–3662, 2021. 

[185] E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, E. Syta, and B. Ford, 
“OmniLedger: A Secure, Scale-Out, Decentralized Ledger via Sharding,” in 
Proceedings - IEEE Symposium on Security and Privacy, 2018, vol. 2018-May. 

[186] H. Dang, T. T. A. Dinh, D. Loghin, E. C. Chang, Q. Lin, and B. C. Ooi, “Towards 
scaling blockchain systems via sharding,” in Proceedings of the ACM SIGMOD 
International Conference on Management of Data, 2019. 

[187] J. Hellings and M. Sadoghi, “Byshard: Sharding in a byzantine environment,” in 
Proceedings of the VLDB Endowment, 2021, vol. 14, no. 11. 

[188] H. Huang et al., “Elastic Resource Allocation Against Imbalanced Transaction 
Assignments in Sharding-Based Permissioned Blockchains,” IEEE Trans. Parallel 
Distrib. Syst., vol. 33, no. 10, pp. 2372–2385, 2022. 

[189] E. Madill, B. Nguyen, C. K. Leung, and S. Rouhani, ScaleSFL: A Sharding Solution 
for Blockchain-Based Federated Learning, vol. 1, no. 1. Association for Computing 
Machinery, 2022. 

[190] L. Aumayr, K. Abbaszadeh, and M. Maffei, “Thora : Atomic And Privacy-Preserving 
Multi-Channel Updates,” IACR, pp. 1–25, 2022. 



 164 

[191] S. Dangi, A. Aggarwal, and P. Rastogi, “Integrating Blockchain with Education: 
Proposed Model, Prospects and Challenges,” in Transformations Through Blockchain 
Technology, 2022. 

[192] Institute of Electrical and Electronics Engineers (IEEE), “ISO/IEC/IEEE International 
Standard - Systems and software engineering - Vocabulary [PDF file],” Iso/Iec/Ieee 
24765, 2017. 

[193] F. Peng and X. Jiang, “A novel education system requirements engineering 
methodology,” in ITME 2011 - Proceedings: 2011 IEEE International Symposium on 
IT in Medicine and Education, 2011. 

[194] M. B. Ila and H. Kitapci, “Selecting an effective information and communication 
technology architecture for an education system based on non-functional 
requirements,” in 8th IEEE International Conference on Application of Information 
and Communication Technologies, AICT 2014 - Conference Proceedings, 2014. 

[195] H. M. Hussien, S. M. Yasin, S. N. I. Udzir, A. A. Zaidan, and B. B. Zaidan, “A 
Systematic Review for Enabling of Develop a Blockchain Technology in Healthcare 
Application: Taxonomy, Substantially Analysis, Motivations, Challenges, 
Recommendations and Future Direction,” J. Med. Syst., 2019. 

[196] N. Satoshi and S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic cash system,” 
Bitcoin, 2008. 

[197] M. Han, D. Wu, Z. Li, Y. Xie, J. S. He, and A. Baba, “A novel blockchain-based 
education records verification solution,” in SIGITE 2018 - Proceedings of the 19th 
Annual SIG Conference on Information Technology Education, 2018. 

[198] H. Dai et al., “TrialChain: A blockchain-based platform to validate data integrity in 
large, biomedical research studies,” arXiv. 2018. 

[199] J. P. Miguel, D. Mauricio, and G. Rodríguez, “A Review of Software Quality Models 
for the Evaluation of Software Products,” Int. J. Softw. Eng. Appl., 2014. 

[200] B. Mackenzie, R. I. Ferguson, and X. Bellekens, “An Assessment of Blockchain 
Consensus Protocols for the Internet of Things,” in 2018 International Conference on 
Internet of Things, Embedded Systems and Communications, IINTEC 2018 - 
Proceedings, 2018. 

[201] F. B. Vernadat, “Interoperable enterprise systems: Architectures and methods,” in 
IFAC Proceedings Volumes (IFAC-PapersOnline), 2006. 

[202] E. Abebe et al., “Enabling Enterprise Blockchain Interoperability with Trusted Data 
Transfer (industry track),” in Middleware Industry 2019 - Proceedings of the 2019 
20th International Middleware Conference Industrial Track, Part of Middleware 2019, 
2019. 

[203] S. Khan, M. B. Amin, A. T. Azar, and S. Aslam, “Towards Interoperable Blockchains: 
A Survey on the Role of Smart Contracts in Blockchain Interoperability,” IEEE 
Access, 2021. 

[204] H. Y. Paik, X. Xu, H. M. N. D. Bandara, S. U. Lee, and S. K. Lo, “Analysis of data 
management in blockchain-based systems: From architecture to governance,” IEEE 
Access, 2019. 

[205] A. Shanker, “Public vs. private blockchains,” PC Magazine, 2017. 
[206] J. Schneider et al., “Blockchain - Putting Theory into Practice,” 2016. 



 165 

[207] J. King, “ERIS,” in ERIS, 2020. 
[208] M. Hearn, “Corda: A distributed ledger,” Whitepaper, 2016. 
[209] C. Pahl, N. El Ioini, and S. Helmer, “A decision framework for blockchain platforms 

for iot and edge computing,” in IoTBDS 2018 - Proceedings of the 3rd International 
Conference on Internet of Things, Big Data and Security, 2018. 

[210] S. Jeong, “Dogecoin,” in Paid: Tales of Dongles, Checks, and Other Money Stuff, 
2017. 

[211] Litecoin.info, “Litecoin,” litecoin.info, 2018. . 
[212] S. King, “Primecoin: Cryptocurrency with Prime Number Proof-of-Work,” King, 

Sunny, 2013. 

[213] D. Stone, “Delayed blockchain protocols,” arXiv. 2018. 
[214] QuantumMechanic, “Proof of Stake Instead of Proof of Work,” GitHub, 2011. 
[215] F. Yang, W. Zhou, Q. Wu, R. Long, N. N. Xiong, and M. Zhou, “Delegated proof of 

stake with downgrade: A secure and efficient blockchain consensus algorithm with 
downgrade mechanism,” IEEE Access, 2019. 

[216] L. Ren, “Proof of Stake Velocity: Building the Social Currency of the Digital Age,” 
2014. 

[217] K. Karantias, A. Kiayias, and D. Zindros, “Proof-of-Burn,” in Lecture Notes in 
Computer Science (including subseries Lecture Notes in Artificial Intelligence and 
Lecture Notes in Bioinformatics), 2020. 

[218] Hyperledger sawtooth, “Hyperledger Sawtooth,”  Https://Sawtooth.Hyperledger.Org. 
2019. 

[219] L. Lamport, R. Shostak, and M. Pease, “The Byzantine Generals Problem,” ACM 
Trans. Program. Lang. Syst., 1982. 

[220] M. Castro and B. Liskov, “Practical Byzantine Fault Tolerance,” Proc. Symp. Oper. 
Syst. Des. Implement., 1999. 

[221] L. Ismail and H. Materwala, “A review of blockchain architecture and consensus 
protocols: Use cases, challenges, and solutions,” Symmetry (Basel)., vol. 11, no. 10, 
2019. 

[222] M. Vukolić, “The quest for scalable blockchain fabric: Proof-of-work vs. BFT 
replication,” in Lecture Notes in Computer Science (including subseries Lecture Notes 
in Artificial Intelligence and Lecture Notes in Bioinformatics), 2016. 

[223] J. R. Douceur, “The sybil attack,” in Lecture Notes in Computer Science (including 
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 
2002. 

[224] Q. Wang et al., “Security Analysis on dBFT Protocol of NEO,” in Lecture Notes in 
Computer Science (including subseries Lecture Notes in Artificial Intelligence and 
Lecture Notes in Bioinformatics), 2020. 

[225] D. Mazieres and D. Mazières, “The stellar consensus protocol: A federated model for 
internet-level consensus,” Stellar Dev. Found., 2015. 

[226] S. Pahlajani, A. Kshirsagar, and V. Pachghare, “Survey on Private Blockchain 
Consensus Algorithms,” in Proceedings of 1st International Conference on Innovations 



 166 

in Information and Communication Technology, ICIICT 2019, 2019. 
[227] JP Morgan Chase, “Quorum Whitepaper,” New York JP Morgan Chase, 2016. 

[228] R. G. Brown, “The Corda Platform: An Introduction,” Corda Platf. White Pap., 2018. 
[229] E. Androulaki et al., “Hyperledger fabric,” 2018. 
[230] Z. Li, R. Y. Zhong, Z. G. Tian, H. N. Dai, A. V. Barenji, and G. Q. Huang, “Industrial 

Blockchain: A state-of-the-art Survey,” Robotics and Computer-Integrated 
Manufacturing, vol. 70. 2021. 

[231] M. El Ghamry, I. T. A. Halim, and A. M. Bahaa-Eldin, “Secular: A Decentralized 
Blockchain-based Data Privacy-preserving Model Training Platform,” in 2021 
International Mobile, Intelligent, and Ubiquitous Computing Conference, MIUCC 
2021, 2021. 

[232] A. I. Sanka, M. Irfan, I. Huang, and R. C. C. Cheung, “A survey of breakthrough in 
blockchain technology: Adoptions, applications, challenges and future research,” 
Computer Communications, vol. 169. 2021. 

[233] W. Cai, Z. Wang, J. B. Ernst, Z. Hong, C. Feng, and V. C. M. Leung, “Decentralized 
Applications: The Blockchain-Empowered Software System,” IEEE Access, 2018. 

[234] Stack Overflow Ltd., “Stack Overflow Developer Survey 2019,” Stack Overflow 
Insights, 2020. . 

[235] E. Androulaki et al., “Hyperledger Fabric: A Distributed Operating System for 
Permissioned Blockchains,” in Proceedings of the 13th EuroSys Conference, EuroSys 
2018, 2018. 

[236] V. Buterin et al., “A next-generation smart contract and decentralized application 
platform,” PLoS One, 2018. 

[237] L. S. Sankar, M. Sindhu, and M. Sethumadhavan, “Survey of consensus protocols on 
blockchain applications,” in 2017 4th International Conference on Advanced 
Computing and Communication Systems, ICACCS 2017, 2017. 

[238] S. Y. Lim et al., “Blockchain Technology the Identity Management and Authentication 
Service Disruptor: A Survey,” Int. J. Adv. Sci. Eng. Inf. Technol., 2018. 

[239] A. Badr, L. Rafferty, Q. H. Mahmoud, K. Elgazzar, and P. C. K. Hung, “A 
permissioned blockchain-based system for verification of academic records,” in 2019 
10th IFIP International Conference on New Technologies, Mobility and Security, 
NTMS 2019 - Proceedings and Workshop, 2019. 

[240] T. Hepp, M. Sharinghousen, P. Ehret, A. Schoenhals, and B. Gipp, “On-chain vs. off-
chain storage for supply- and blockchain integration,” it - Inf. Technol., 2018. 

[241] I. Baumgart and S. Mies, “IPFS - Content Addressed, Versioned, P2P File System 
(DRAFT 3),” Proc. Int. Conf. Parallel Distrib. Syst. - ICPADS, 2007. 

[242] R. A. Mishra, A. Kalla, A. Braeken, and M. Liyanage, “Privacy Protected Blockchain 
Based Architecture and Implementation for Sharing of Students’ Credentials,” Inf. 
Process. Manag., vol. 58, no. 3, 2021. 

[243] S. Pongnumkul, C. Siripanpornchana, and S. Thajchayapong, “Performance analysis of 
private blockchain platforms in varying workloads,” in 2017 26th International 
Conference on Computer Communications and Networks, ICCCN 2017, 2017. 



 167 

[244] J. Jeong, D. Kim, S. Y. Ihm, Y. Lee, and Y. Son, “Multilateral Personal Portfolio 
Authentication System Based on Hyperledger Fabric,” ACM Trans. Internet Technol., 
vol. 21, no. 1, 2021. 

[245] E. Mansour, F. Shahzad, J. Tekli, and R. Chbeir, “Data Redundancy Management in 
Connected Environments,” in Q2SWinet 2020 - Proceedings of the 16th ACM 
Symposium on QoS and Security for Wireless and Mobile Networks, 2020. 

[246] M. Sirajudeen Yoosuf, R. Anitha, and M. S. Yoosuf, “Low Latency Fog-Centric 
Deduplication Approach to Reduce IoT Healthcare Data Redundancy,” Wirel. Pers. 
Commun., pp. 1–23, 2022. 



 168 

 Appendix 

The source code for the implementations and the testing can be found at GitHub 

http://github.com/Manal979/Project.  

The Codebase: 

 


	PhD Coversheet
	PhD Coversheet

	Alkhammash, Manal



