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Abstract

Itching is a condition that affects a substantial group of people. This condition may be

caused by different conditions, such as scabies, atopic dermatitis, or kidney failure; it can

also be a symptom of a malignant condition, such as lymphoma. So far, a scratch was being

detected by manually counting the occurances or using a bone-conducting microphone,

which is uncomfortably set up. Thus, there is a need for a next-generation system that

allows detecting scratches on multiple people simultaneously without invading patients’

lives. Wearable sensors allow the ability to directly collect the data asynchronously from

many people and detect activities by applying machine learning algorithms.

In this thesis, we propose using multimodal wearable sensors and combining the data

from Inertial Measurement Units (IMU), Electric Potential Sensor (EPS) and a micro-

phone using machine learning-based fusion for scalp scratch detection. In this thesis, we

describe the results on three problems: (1) the impact of fusing EPS and IMU for scratch

detection, (2) the ambient microphone’s ability to detect scratch, (3) the future direction

for next-generation scratch detection system.

We evaluated the fusion of EPS and IMU on a constrained dataset that mimics an

office worker’s daily activities, which we collected in the Wearable Technologies Lab at the

University of Sussex. We showed that multimodal fusion is superior to using a wrist-worn

IMU solely. For the (2) objective, we collected a small dataset from four people showing

that an ambient microphone can be a powerful modality for scratch detection.

Finally, we propose a clear direction for future research that involves a wide-scale

dataset collection, novel hardware, and powerful Deep Learning algorithms to power the

next generation scratch detection system.
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Chapter 1

Introduction

In this chapter, we are presenting the motivation for this thesis. Moreover, we detail the

contributions that have been made, that include a dataset collections, analyses and the

future direction for scratch detection. The work resulted in multiple publications detailed

below. We also give a thesis overview.

1.1 Motivation

We are interested to monitor scratching, because itching is a condition which affects a

substantial group of people. This condition may be caused by scabies, atopic dermatitis,

or kidney failure; it can also be a symptom of a malignant condition, such as lymphoma

[27]. Thus, we need an accurate and scalable monitoring system that is able to detect

scratches accurately and not bounding the subjects ability to live a daily life.

In this thesis, we are exploring wearable sensors, multi-modal fusion and the future

direction to create a next generation scratch detection system, that would allow for scalable

and accurate scratch recognition. Three main components are required to recognise human

activities using machine learning based methods:

• Sensors to collect the signals from the real world.

• Datasets to train and evaluate the scratch detection system.

• Software to detect scratching from the observed signals.

1.2 Research contributions

In this thesis we present five main contributions:
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Dataset ”Scratch in office environment” is a next generation dataset to evalu-

ate machine learning algorithms for fusion for scratch detection. It was collected in the

premises of the University of Sussex from 10 individuals performing daily activities. They

wore four IMU sensors and one EPS sensor. This dataset is first of the kind that allows

to explore the importance of different sensors and how the fusion can impact the accuracy

of daily activities and scratching events.

Analysis of the multimodal fusion on the dataset ”Scratch in office environment”

showed that we can achieve higher accuracies by combinining IMU, EPS and position of

the hand. Moreover, we showed that hand coordinate relative to the torso is the most

informative feature for human activity recognition.

Proof of Concept Dataset ”Sound of Scratch” was collected from four individu-

als to show the effectiveness of sound modality for scratch detection from a wrist-worn

microphone.

Analysis of sound importance for scratch recognition has been performed to

show that sound is a modality that can be used to detect scratch.

Future Direction for Scratch detection is proposed for the next generation scratch

detection system.

1.3 Publications

• Zygimantas Jocys, Arash Pouryazdan, and Daniel Roggen. Multimodal fusion of

IMUs and EPS body-worn sensors for scratch recognition. In Proceedings

of the 14th EAI International Conference on Pervasive Computing Technologies for

Healthcare (PervasiveHealth ’20). Žygimantas Jočys did all the dataset collections,

analyses and the writing of the paper, Arash Pouryazdan provided guidance with

respect to the EPS, Daniel Roggen provided guidance and reviewed the text in the

paper.

• Zygimantas Jocys and Daniel Roggen. Scalp scratch detection using a wrist-

worn microphone. Not published yet. Žygimantas Jočys did all the dataset collec-

tions, analyses and the writing of the paper, Daniel Roggen provided guidance and

reviewed the text in the paper.

• Lugoda, P., Costa, J. C., Garcia-Garcia, L. A., Pouryazdan, A., Jocys, Z., Spina, F.,

Salvage, J., Roggen, D., Münzenrieder, N.Coco Stretch: Strain Sensors Based

on Natural Coconut Oil and Carbon Black Filled Elastomers. Žygimantas
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Jočys collected the dataset and did the analysis related to the sensor’s applications

for human activity recognition.

1.4 Outline of the thesis

• Chapter 2: Literature review for Sensors, Human Activity Recognition,

Scratch detection. We review previously used techniques to detect scratches and

their limitations. Moreover, we evaluate different sensor modalities to potentially

fit on a wrist and be part of a wrist-worn scratch detection system. As a summary

in this section we provide a breakdown of current challenges for scratch detection

system, that are improved upon in this thesis.

• Chapter 3: Multimodal fusion of IMUs and EPS body-worn sensors for

scratch recognition. We present an investigation of sensors and algorithms to

realise a wearable scratch detection device. We collected a dataset, where each user

wore 4 inertial measurement unit (IMU) sensors and one electric potential sensor

(EPS). The dataset contained 813 scratching instances and 5 h 15 min of recorded

data. We investigated the trade-offs between the number of devices worn (comfort)

and accuracy.

• Chapter 4: Scalp scratch detection using a wrist-worn microphone. We

evaluate how sound, collected by a wrist-worn microphone, can be used to recognise

and distinguish scratch occurrences. We collected a dataset from 4 users, where

each user conducted different scratches in environments with different specifications.

Subsequently we performed different analysis to see how well scratch can be detected.

These results indicate that an ambient microphone may be one modality to include

for a future multimodal scratch detection device.

• Chapter 5: Future direction, large scale dataset collection, EPS based

localisation, next generation deep learning methods We propose next steps

for next generation hardware, dataset and software. First of all, we propose that the

future sensor should consists of a wrist-worn IMU,EPS and ambient microphone and

a neck-worn signal generator. Second, we provide guidelines for a real life dataset

collection, that could be a gold standard dataset to evaluate the efficacy of the

scratch detection system. Finally, we propose the general direction for deep learning

algorithms for more accurate human activity recognition.
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Chapter 2

Scratch detection

In this section, we review previously used techniques to detect scratches and their limita-

tions. Moreover, we evaluate different sensor modalities to potentially fit on a wrist and

be part of a wrist-worn scratch detection system. As a summary in this section we provide

a breakdown of current challenges for scratch detection system, that have improved upon

in this thesis.

2.1 Review of scratch detection methodologies

In previous works, an itch [5] was described as an irritating feeling that causes the desire

to scratch. A chronic itch can be a reaction of skin diseases, kidney failure, cancers,

and neurological disorders. Given that the disease might need urgent medical attention,

scratches should be monitored as they can lead to a faster disease identification.

Clinical and consumer goods trials using questionnaires and manually annotated ob-

served behaviour, are not effective methods of evaluating the efficacy of treatment for a

large numbers of users. For example, to evaluate if treatment improves an itching con-

dition, we would need to measure how much a participant scratches before and after the

treatment. In the early days, scratching was observed manually, without any technological

help. In research by [11], scratching was monitored in 40 hospital patients by the staff.

During this research project, the amount of scratching before and after treatment was

noted. Observing the changes in scratching occurences, the treatment can be evaluated

as effective, or not. However, this system is not suitable to be deployed on a large group

of people (hundreds). This test, if conducted with many people, would show the efficacy

of the treatment, if significantly reduced occurrences of scratching was witnessed after the

treatment.
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Another approach is to video record nocturnal scratches by using an infrared camera.

In one experiment, which was conducted with seven users [10], the infrared camera was

used, so that the user would not be interrupted during the night and the scratches were

annotated later.

Human activities have been commonly used to define human behavioural patterns. It

allows the quantitative evaluation of how much an activity occurs and to understand the

underlying relationships between activities. For effective human activity recognition, a

sensor system is needed to effectively perceive the environment and get enough informa-

tion to distinguish between activities. Human activity recognition is comprised of three

different parts: sampling from the sensor, feature extraction, and classification. In this

work, we will analyse and survey current sensor technologies and decide which ones are

the most suitable.

Currently, the most common approach to classify activities is to use accelerometers

[6]. It allows for the monitoring of activities without invading user privacy. Not only

does it allow for systems to be deployed on many users simultaneously, but accelerometers

also enable real-time and real-world monitoring without the need of an observer to invade

the subjects’ privacy. Triaxial accelerometers [20] on the wrist for scratch deployment

were noted to be successful and achieved high sensitivity (0.96) and specificity (0.92).

In this previous research, 12 people participated; they were monitored in a controlled

environment. The duration of the dataset collection was 140 s per user. Each person

scratched the back of his/her head, leg, and/or elbow and later walked and rolled around.

A similar work was done by detecting scratching by using mobile systems [14]; this method

achieved 90% accuracy.

However, even though a single modality has shown good results, there are many new

sensors, which can potentially be incorporated in such a system and increase the accuracy

of scratch detection.

For instance, acoustic sensors [17] have been used for scratch detection. The sound

sensor uses body conduction to record the sound from the wrist. The dataset was collected

on four volunteers over 6 h during the night. As the room was silent, it was easier to

distinguish between a scratch and no scratch, and a ‘determination ratio’ of 0.98 was

achieved.

Electric potential sensors (EPSs) were explored for scratch sensing [21]. This work

only reported a visual observation that EPS signals are correlated to a scratch, but the

authors did not demonstrate any automated activity recognition based on this modality.
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Machine learning models vary in complexity, computational time, and their ability to

generalise. Logistic regressions [20] and recurrent neural networks [16] have been used thus

far. In the research [16], 24 atopic dermatitis patients spent 2–5 nights in the hospital and

wore two accelerometer devices (GeneActiv, Activinsights Ltd.) on each wrist. Only two

classes were labelled: scratch or null class, and as the data needed to be split for each class

equally, a considerable amount of recording data was lost for the training of the model.

There is still room for new machine learning models and considerable progress needs to

be made with the current techniques.

In the previous works, all the currently collected datasets for scratch detection were

either very short (150 s) or very simplistic (two classes: scratch or null class), which does

not allow one to evaluate how the system would perform in a more realistic scenario.

Moreover, given that in each research, there was one sensor modality per dataset, there is

a need to explore different fusion options between different sensors.

2.2 Sensor technology overview

In the table below we review different sensor modalities and their application for scratch

detection.

Sensor Description

Acceleration Accelerometers [20] on the wrist for scratch detection have been

successful and achieved high sensitivity (0.96) and specificity

(0.92). Accelerometers measure the change in velocity. The

force caused by vibration or a change in motion (acceleration)

causes the mass to squeeze the piezoelectric material, which

produces an electrical charge that is proportional to the force

exerted upon it.
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Body-conduction micro-

phone

A body-conduction microphone is shaped like a wristwatch and

adheres to the skin of the dorsal portion of the forearm [17].

The key device embedded in this unit is the thin piezoelectric

element.

The fingertips and nails make specific sounds and imperceptible

vibrations when scratching the body surface. This detection

system detects imperceptible vibration from fingertips at the

wrists with a high sensitivity. To prevent invasion of the elec-

trical and mechanical noise from outside the measuring surface,

the piezoelectric element is sealed in a concave aluminum cap

(1-mm thick) with polyurethane gel and silicone sealant. Ad-

ditionally, the piezoelectric element adheres to the skin surface

with viscous polyurethane gel. Therefore, the body-conducted

sound energy is efficiently transmitted to the piezoelectric ele-

ment. The analysis program detects scratching behaviour based

on the acquired sound signal information.

Bone-conduction micro-

phone

A bone-conduction microphone [18] measures the mechanical

vibration between the nail and the skin that is scratched.

Scratching sounds, induced by the vibration, change according

to scratching intensity or skin condition. Therefore, the inform-

ation about the scratching sounds can help us to evaluate the

characteristics of scratching. In this study, a nail-mounted com-

pact microphone sensor for measuring human scratching sounds

was designed and fabricated. The power spectrum showed that

it can also be used to distinguish the intensity of the scratch.

Microphone A microphone converts sound into a small electrical current.

Sound waves hit a diaphragm that vibrates, moving a magnet

near a coil. In some designs, the coil moves within a magnet.

Other microphones, such as condenser microphones, work on

the principle of capacitance. A normal ambient microphone

could be integrated into an IMU and be used for scratch detec-

tion.
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Ultra wide band (UwB)-

based localisation two-

way-ranging (TWR)

In TWR, the distance from a tag to the anchor is obtained by

sending a packet back and forth. By measuring how long it took

for the packet to return, the tag can estimate the distance to the

anchor. For positioning, the tag initiates communication with

the anchors and ranges with the anchors, one by one. Once

the tag has ranged with at least three, ideally four anchors,

it can compute its position by trilateration. The platform is

commercially available at [2].

UwB-based localisation

time difference of arrival

(TDOA)

In TDOA mode, tags will periodically transmit a UWB blink,

with or without any scheduling or regard for other tags or an-

chors. Because the tag must only send a single UWB trans-

mission, the positioning can happen fast and at low power.

With the commonly used Aloha protocol, tags only send and

never receive resulting in incredibly low power consumption,

with battery lifetimes of several years. However, in order to

limit the interference with other tags, the update rate is some-

what limited. Alternatively, the tags can be scheduled, as in

TWR+, to achieve an even higher update rate. The platform

is commercially available at [2].

IMU-based localisation Four IMUs can be used together to localise each joint. The

IMUs are located on the torso, upper arm, lower arm and hand.

It uses quaternions to compute relative orientations and it uses

some predetermined limb lengths to compute the coordinates

of the hand related to the torso.

Wireless technology (Wi-

fi)

It uses multiple wi-fi broadbands to detect the changes in a

room, which can be used for scratch detection. It has shown,

nocturnal scratching can be detected with high accuracy. How-

ever, the main limitation is that if the position of the objects

inside the room changes, it cannot recognise the scratch. Wire-

less technologies have been applied to human activity recogni-

tion in [29].
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Pressure sensor on finger-

tip

Flexible pressure sensors [12] presented a sandwiched ultrathin

gold nanowire (AuNW)-impregnated tissue paper between two

thin polydimethylsiloxane sheets. The sensing mechanism is

due to pressing force-dependent contact between AuNWs and

interdigitated electrode arrays. Unlike a bulk rigid planar

metal, soft tissue paper has porous and rough surfaces with

hairy AuNWs. The number of AuNWs bridging finger elec-

trode pairs depends on the external forces applied. On applying

an external pressure, a small compressive deformation of tissue

paper enables more AuNWs in contact with finger electrodes,

leading to more conductive pathways. This caused an increase

in current when a fixed voltage of 1.5 V was applied.

Pressure sensor in clothes

to measure angles

The same sensor [12] can be used to sense the pressure created

in clothes (elbows, shoulders, knees). As scratching involves the

movements of joints, this sensor would allow the recognition of

changes related to scratching.

Bluetooth Bluetooth Low Energy (BLE) technology can be a very good

alternative for localisation. With the increasing distance

from the transmitter, the received signal strength decreases

and the travel time from the transmitter to the receiver in-

creases. Two basic approaches are used—triangulation and

fingerprinting. Triangulation uses estimation of the distance

from several transmitters based on signal attenuation and time

characteristics of the signal propagation. Fingerprinting is a

localisation method comprising of two phases. In the first

phase—learning—vectors are collected, which are composed of

received signal strength indicator (RSSI) values and optional

extra features measured by a measuring device in the known

locations. Indoor localisation has been shown effective [13].
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Electric potential sensor

(EPS)

An EPS [21] is classified as a capacitive sensor with the ability

to measure small variations in electric potential or an electric

field remotely and accurately. When a person scratches their

scalp, an electric charge is generated on the hair and the sensor

can detect this disturbance of the electric field.

EPS-based localisation EPS-based localisation [24] can be used to sense the phase of

the ambient electric field from a body-worn sensor with respect

to a reference. A signal generator could be worn around the

neck and used as a reference point.

Magnetic field-based local-

isation

Magnetic field has been used for localisation in Finexus [8].

Magnetic field (MF) sensing is one clear approach for continu-

ous, accurate and occlusion-free finger tracking. To localise

electromagnets, Finexus leverages techniques similar to those

used by the Global Positioning System (GPS). Intuitively, the

system first calculates the distance between the electromag-

net and four magnetic sensors, and then uses trilateration to

identify the electromagnet’s 3D position.

Camera Cameras have been used for scratch detection for a while, where

they manually annotate if the user scratches or not. In one ex-

periment [10] with seven participants, the infrared camera was

used to film them during the night, so that they would not be

interrupted during the sleep and the scratches were annotated

later.

Table 2.1: Sensor modalities, that could potentially be used for scratch detection with the

principles of how they work.

Following the sensor modality descriptions in Table 2.1, the next section compares

them to evaluate their suitability for human activity recognition and more specifically, for

scratch detection.

2.2.1 Suitability of sensors for naturalistic scratch detection

In this work, we want to evaluate what sensor modalities can be worn to collect data

throughout an entire day. To do this, the sensor device must be attached to the body
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without hindering the person’s daily activities, but it must still be able to capture import-

ant data for scratch detection.

For a thorough assessment of the sensor modalities suitability, we need to assess dif-

ferent properties regarding comfort, integration to the main platform, limitations, etc.

First of all, we want the sensor system to be comfortable. This means having the smallest

number of devices on the body. Ideally, they should be located on the wrist, as people are

used to wear watches and they should not bind the user to a location (the person should

not be put in a room but should be allowed to live their normal life). From the technical

side, the sensor modality need to have the ability to be easily integrated to the Bluesense

platform or be commercially available.

Sensor Number

of devices

for both

wrists

Comfortability

1

(uncomfortable)-

5 (comfort-

able)

Previous

work

on

scratch

detec-

tion

Located

on the

wrist

Sensitivity

to am-

bient

sig-

nals

1-5

Commercially

available

Integration

with

Blue-

sense 1

(com-

plicated)

- 3 (easy)

Location

inde-

pendent

IMU 2 5 ✓ ✓ 1 ✓ 3 ✓

Body-conduction

microphone

2 3 ✓ 2 1 ✓

Bone-conduction

microphone

2 1 ✓ 2 1 ✓

Microphone 2 5 ✓ 5 ✓ 3 ✓

UWB-based local-

isation

4 3 1 ✓ 1 ✓

IMU-based local-

isation

7 1 1 1 ✓

Wireless technology

(Wi-fi)

0 5 5 ✓

Pressure sensor on

fingertip

2 2 5 3 ✓

Pressure sensor in

clothes to measure

the angles

2 3 3 1 ✓

bluetooth localisa-

tion

3 4 ✓ 1 ✓ 1 ✓

EPS) 2 5 ✓ ✓ 4 ✓ 1 ✓

EPS-based local-

isation

3 3 4 1 ✓

Magnetic field-

based localisation

4 1 1 1 ✓

Camera 0 5 ✓ ✓ 1 1

Table 2.2: Pros and cons of each sensor modality, where the modalities in bold were

deemed suitable and are or will be tested with additional experiments. We graded based

on personal opinion the comfortability, sensitivity and integration of the signal.

In table 2.2, we scored all the sensors based on comfortability, sensitivity and integ-

ration to Bluesense. Comfortability was scored based on the following: If it can be worn
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on the only on the wrist like a watch it gets a score of 5, if it requires extra sensors or

a set up that is so uncomfortable that the user would not be able to pursue their daily

activities it gets a score of 1, everything in between gets scored based on personal opinion.

Sensitivity was evaluated based on experience of dealing with the sensor and evaluating

the signal when ambient noise is present or not, when considering the head scratching

signal of the particular sensor modality. The integration with Bluesense was graded based

on the development required for each modality.

Table 2.2 shows, that based on comfort, the possibility to integrate it to the Blue-

sense platform and the possibility to fit the sensors in one wrist-worn device, we chose to

investigate the following sensor modalities:

• IMU

• Microphone

• EPS

• EPS-based localisation

All of these sensors could fit onto the wrist; however, additional signal generators are

needed to include the hand location information in our system. We propose to attach the

signal generator to a collar using a badge-like case. Furthermore, IMU-based localisation

was tested as well, to evaluate the importance of hand coordinated relative to the torso

for scratch detection task.

2.3 Limitations of current scratch detection systems

To sum up the limitations of previously work that we are addressing in this thesis are the

following:

• No comprehensive dataset to train and test and evaluate scratch detection accuracy

in a real world scenario.

• No use of multiple modalities fused together to realise a sophisticated scratch detec-

tion system.

• No evaluation of ambient microphone for scratch detection.
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Chapter 3

Multi-modal fusion using EPS and

IMU

In this chapter we present an investigation of sensors and algorithms to realise a wearable

scratch detection device. We collected a dataset, where each user wore 4 inertial measure-

ment unit (IMU) sensors and one electric potential sensor (EPS). Data was collected from

nine users, where each user followed a 40-min protocol, which involved scratching different

parts of head, shoulder, and leg, as well as other activities such as walking, drinking water,

brushing teeth, and typing to a computer. The dataset contained 813 scratching instances

and 5 h 15 min of recorded data. We investigated the trade-offs between the number of

devices worn (comfort) and accuracy. We trained the k-NN and random forest algorithms

by using between 1 and 5 features per channel. We concluded that a scratch could be detec-

ted with 80.7% accuracy by using the random forest algorithm on hand coordinates, which

required four devices. However, an f1 score of 70% could be achieved with k-NN with IMU

and EPS data, which only required one device. Moreover, the fusion of IMU data with

EPS data improved the accuracy and reduced the deviation between the folds.

The novelty of this work is as follows:

• New dataset using four IMUs, 1 EPS, and hand coordinates with ten activities and

nine users with 813 scratches and a total of 5 h 15 min of recorded data. The novelty

of this dataset lies in the large number of sensor modalities, to push the machine

learning models to their limits and evaluate how well slightly different scratches

can be differentiated from other activities. The new dataset includes more scratch

locations as well as a more realistic NULL class.

• Observation that EPS data combined with IMU data reduce the error variance
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between the folds and increase the accuracy of human activity recognition.

• Comparison of the k-nearest neighbour and random forest algorithms by using dif-

ferent numbers of features scored by mutual information. Previous work has not

explored feature selection for scratch detection from different modalities.

• Exploration of trade-offs between accuracy, comfort, and the number of devices.

3.1 Multimodal scratch dataset

A new dataset was built using data collected from nine users. It contained two classes and

10 subclasses, which are shown in Table 3.1. These activities were chosen because of their

similarity to scratching in the frequency domain and because they occur in everyday life.

Each user wore four IMU sensors and one EPS.

Class Subclass

Scratch Top of the head

Back of the head

Side of the head

Shoulder

Leg

Null Null

Drink water

Brush teeth

Wash hands

Walk

Computer

Table 3.1: Ten classes of the dataset with a null class

As can be seen from Table 3.2, in all, we recorded 40 min of scratching and 5 h 15 min

of data. The dataset had ten classes, and some activities were performed simultaneously

in order to find the limits of the machine learning models and their ability to learn the

subtle differences between very similar activities. In our case, the subtle differences were

scratching the top of the head, back of the head, and side of the head.
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Dataset parameters

Age 22–40 years

Males 6

Females 3

Scratching instances 813

Total scratching time 40 min

Collection time per user 35 min

Total dataset time 5 h15 min

Table 3.2: Parameters of the dataset

The participants had different hair lengths, and there were six males and three females.

The diversity of the users’ biological features was needed to evaluate whether the model

could generalise enough to detect the same activities on unseen users. There were no

overweight or underweight participants; all of the participants had average body shapes.

It was also important to have a long duration and a diverse null class, so that the model

could learn the difference required to distinguish between scratching and other activities.

3.1.1 Sensor setup

The IMU is based on the BlueSense technology [23]. BlueSense gives the raw acceleration,

rate of turn, and magnetic field data and can provide the quaternion data, which encode the

orientation of the device. Moreover, the quaternion data from the four IMUs could be used

to obtain the approximate hand coordinates (explained in Section 3.1.1). Furthermore,

BlueSense can be extended with expansion boards containing additional sensors. For this

dataset collection we used an expansion board with an EPS sensor [21].

EPS and IMUs

The sensor configuration for each user is shown in Figure 3.1 (c). This configuration was

chosen in order to obtain the hand coordinates in the Cartesian system, the charge of the

electric field, and the IMU data.
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(a) IMU (b) Electric potential

sensor

(c) Sensor configuration during data col-

lection. Each person wore four IMUs

(on torso, upper arm, lower arm, and

hand) and 1 EPS device extended on the

IMU on the hand.

Figure 3.1: Imu (a) and EPS (b) were used for the data collection. They were attached

to the body by using four straps.

For this work, a device was a single object, IMU with EPS was one device, a sensor

was a sensor modality (IMU and EPS were two sensors). We referred to a channel as an

output of a sensor. Sensors can have one or more outputs. For example, in this situation,

an IMU had 13 channels. They were as follows: three channels of acceleration along the

x, y, and z axes; three channels of the rate of turn along the x, y, and z axes; three

channels of the magnetic field along the x, y, and z axes; and four channels indicating the

device orientation in quaternions. EPS had only one output channel, which represented

the electric potential.

The EPS, shown in Figure 3.1 (b), streamed the voltage data using the ADC channel

to Bluesense [23]. Once the electric field was disrupted [21], it could be observed in the

signal. Moreover, EPS had the ability to detect 50-Hz grid voltage when the computer

was connected to the power source, which allowed us to accurately detect typing to a

computer.

Hand coordinates

Hand coordinates were computed after the data collection. The quaternion data captured

the orientation of each sensor. The sensor positioning is shown in Figure 3.1 (c). By

getting the orientation of each sensor and by using a vector for each limb, we could sum

up all of the Cartesian coordinates of each joint to obtain the hand coordinates.
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3.1.2 Data collection

The dataset collection was approved by University of Sussex Ethical Committee, applica-

tion n. ER/ZJ70/1. The participants were recruited in the Engineering and Informatics

building for the participation in the data collection. During the data collection, the par-

ticipants needed to follow the defined protocol.

Figure 3.2: Duration of each activity in the collected dataset. The value of c denotes the

number of occurrences of each activity across the entire dataset.

We defined a protocol, displayed in Figure 3.3, which allowed us to collect a wide

variety of scratches. The data collection took place in the lab, and we attempted to

obtain the most naturalistic dataset with a varied null class. In particular, we collected

a dataset consisting of three different scratch locations on the head (top, side, and back)

and scratch locations on other parts of the body (leg and shoulder). The scratches were

performed with two different intensities (intense and moderate). In order to include a

realistic null class in the dataset, we asked the participants to walk for 20 s in the office in

between groups of scratches. In addition, we asked the participants to perform a number

of other hand gestures, including simulating washing hands and brushing teeth, drinking

water, and typing on a computer, as a way of including a more realistic set of activities to

evaluate how well scratch could be distinguished from the other activities of daily living.

The data collection was a tedious process and included many activities. An application

was used to show the current and the next activity on an IPad, using the application

‘Seconds’ [1]. Undesired deviation from the given protocol occurred during the collection.

However, the labels of activities were adjusted after the data collection to adjust to the
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Figure 3.3: Protocol of data collection. First, the scratches were performed at three differ-

ent intensities and all of the other activities for the null class were performed thereafter.

A scratch occurred for 3 s, and then, there was a 10-s break. It was repeated six times,

and before the next activity, a 20-s walk was performed.

deviations.

3.2 Human activity recognition pipeline

The human activity recognition process is a process that requires a specialised pipeline

for each case. The pipeline that we used for the human activity recognition in this study

is shown in Figure 3.4.
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Figure 3.4: Human activity recognition pipeline for scratch detection. The data were

sampled from the sensors and then preprocessed. The features with the highest MI score

were used for the classification task.

3.2.1 Data Cleaning and Pre-processing

The data were collected using five devices (four IMUs and one EPS). However, with the

additional development of the firmware, the IMUs and the EPS could be deployed using

only one device. Thus, in the later stages, the number of devices that required EPS and

IMUs was 1.

The sampling rates of the IMUs and the EPS were 100 Hz and 1 kHz, respectively. After

sampling, the data were stored on the local SD cards. All the devices were synchronised;

however, they did not log the data at exactly the same time. Because of the different time

stamps, an interpolation technique was considered. As the quaternion data had a value of

an angle, linear interpolation was not possible. Thus, an ASOF function was used. ASOF

merged the data according to the nearest timestamps rather than the equal timestamps.

A time delta equal to 10 ms was chosen: if the nearest timestamp was further than 10 ms,

then the function did not choose the nearest value and assigned NaN.

The EPS was very sensitive, and hence, the collected data had a considerable amount

of fluctuation. Thus, a low-pass Butterworth filter was applied to smooth the signal, and

then the signal was resampled to match the 100-Hz IMUs’ frequency.

3.2.2 Channels

Additional data, apart from the sampled data, were computed, in order to obtain more

information:
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• These additional data included the hand coordinates, which are described in Section

3.1.1.

• In the formula, m is any modality with the x, y, z projections and mxyz is the

magnitude, which was calculated to determine whether the magnitude could enable

the device to achieve a relatively high performance.

mxyz =
√

m2
x + m2

y + m2
z (3.1)

The magnitude was computed using formula 3.1 for the acceleration, rotation, and

hand coordinates.

Accx Quat0 Gyrx Handx EPS

Accy Quat1 Gyry Handy -

Accz Quat2 Gyrz Handz -

Accxyz Quat3 Gyrxyz Handxyz -

Table 3.3: Channels. All the channels used in activity recognition are displayed including

acceleration, rotation, orientation, hand coordinates, and the EPS.

Thereafter, sliding windows of the time series were generated with a window length of

0.4 s. This time was chosen on the basis of the fact that a scratch is an activity which

occurs for a short duration of time.

3.2.3 Feature Extraction

From the features shown in Table 3.3, we had to extract features from the sliding windows.

The features chosen for this case are shown in Table 3.4. The mean and the variance

enabled us to defines the distribution. The percentiles allowed us to detect the key points

in the distribution and avoid the outliers, contradictory to the minimum and the maximum

functions. The mean crossing rate and the zero crossing rate were used to evaluate how

periodic the signal was.

3.2.4 Feature Selection

Two of the most common methods used to select the most important features are the

filter and wrapper methods. As we had 17 channels, there were 170 unique features. The

wrapper method would take an unreasonable amount of time to find the best combination

of features. Therefore, the filter method that used the mutual information [9] algorithm

was used to select the features carrying the highest amount of information.
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Domain Features

Statistical Mean

Variance

Percentile 25%

Percentile 50%

Percentile 75%

Percentile 90%

Mean crossing rate

Zero crossing rate

Frequency Energy

Table 3.4: List of features

I(X;Y ) =
∑

y∈Y

∑

x∈X
p(X,Y )(x, y) log

(
p(X,Y )(x, y)

pX(x) pY (y)

)
(3.2)

where p (X,Y) is the joint probability mass function of X, and p(X) and p(Y ) are the

marginal probability mass functions of X and Y, respectively, where X is the bin of the

feature and Y is the class. For each feature, we created 100 equal-size bins and performed

a small correction by adding 10−10 to the division so that when there were empty bins,

division by zero was possible.

3.2.5 Machine Learning

As the range of the data varied considerably, all of the extracted features were normalised

as shown in equation 3.3.

nnormalized =
nfeature − µ

σ
(3.3)

In the equation, µ is the mean of the feature in the training set, nraw is the feature, and

σ is the standard deviation of the feature in the training set.

k-Nearest Neighbour

Next, k-nearest neighbour is a model which is fast to train and has a proven record of

successful applications in many areas. However, it is slow to compute predictions and is

very susceptible to outliers. Therefore, choosing too many correlated features or features

that did not bring valuable information toward the decision making, would only diminish
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the model’s ability to recognise activities. Therefore, the value of k was set as 100, and

the sklearn implementation was used.

Random Forest

Random forest is ensemble-based learning method. This model has seen considerable

success in regression and classification tasks. Given that the decision trees can distinguish

important features, a larger number of features will lead to more accurate predictions. For

the random forest model, we chose to use 100 trees. In this case, we used the random

forest algorithm from the sklearn Python library.

3.2.6 Performance measurement

Figure 3.5: K-fold cross-validation where the data from three unseen users were left out

for testing.

The goal of this project was to have a universal system for all the users. To achieve

this goal, we used a three-fold cross-validation. During the cross-validation, the users

were grouped into three groups of three users, and during each validation, each test was

performed on the groups of three.

In this research project, a confusion matrix and the macro f1 score were chosen to

evaluate the performance of the model and its ability to generalise. We chose to use the

macro score in order to see how well the model recognised each class.

F1c = 2 · precision · recall

precision + recall
(3.4)

F1Macro =

n∑

c=1

F1c (3.5)
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The macro f1 score was calculated using equation 3.5. The score for each class affected

the overall results. Because of the class imbalance in the dataset (40 min from 5 h 15

min was scratches, and the rest was null), using the macro f1 score, we achieved a high

performance when a majority of the data belonged to the null class.

Fine activity recognition

First, the models were tested to determine how well they could classify the ten classes. As

there were very similar classes and multiple activities took place at the same time, this

dataset was created to push the limits of the machine learning models.

Coarse scratch/non-scratch activity recognition

The 10-class classification task was meant to push the machine learning model to distin-

guish the subtle difference between the activities. By evaluating how well a scratch was

distinguishable from a complex null class, we could determine how well a scratch could

be detected in realistic scenarios. For this part of the experiment, the model was not re-

trained, but the labels were changed to either scratch or null. This implied that if ‘scratch

top of the head’ was confused with ‘scratch back of the head’, the f1 score would not be

reduced. The classes of the scratch and the null class are shown in Table 3.1.

3.3 Results

3.3.1 Most important features

With the use of mutual information, a heatmap of the most important features was pro-

duced; it is shown in Figure 3.6. For each channel, five features (which carried the highest

amount of information) were selected and are displayed in Table 3.6.
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Channel f1 f2 f3 f4 f5

Accx var 90 % 75% mean median

Accy mean 75 % 90% median 25%

Accz 25% mean median var 25%

Gyrx var 25 % 90% 75% median

Gyry var 90 % 25% 75% median

Gyrz var 90 % 75% 25% median

Quat0 var 90 % 75% 25% median

Quat1 75% 90 % median mean 25%

Quat2 90 75% median 25% mean

Quat3 var 90 % 75% median mean

Accxyz mean median energy 25% 75 % %

Gyrxyz var 90 % 75% mean median

Handx var 90 % 25% 75% median

Handy 25% median 75% 90 % mean

Handz 25% mean median 75% 90 %

Handxyz 75 % 90 % median 25 % mean

Eps mx0 var 90 % mean 75 %

Table 3.6: Selected features for each channel

Figure 3.6: Feature heat map based on mutual information. The lighter shade indicates

that the feature of the channel carried more information than the darker shade.

As can be seen, the variance carried the largest amount of information for most of the

channels, and the percentiles showed good performance as well. The results displayed in

Figure 3.6 revealed that the EPS carried the smallest amount of information as a channel.
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The mean crossing rate and the zero crossing rate were not informative features in most

of the cases.

3.3.2 Fine activity recognition results

In Table 3.5, the results are presented for the ten-class classification task using the k-NN

and the random forest models trained on a different number of features from 1 to 5 per

channel. The accuracy is shown as the mean and the standard deviation between the

folds.

Figure 3.7: F1 score vs. number of features for ten-class classification

k-NN

The best results were observed when only the hand coordinates with four features per

channel were used. The f1 score reached 62.7%. To achieve this result, four devices were

required. In contrast, with only the IMUs and the EPS, an f1 score of 52.3% was achieved

and only one device was required.

Combining the hand coordinates with the IMU or IMU+EPS data only worsened the

results.

An f1 score of 53.4% was achieved with one device (IMUs and EPS), while with only

IMUs, the best achieved result was 47%.

Random forest

The random forest model showed an overall better performance. The best performance

was observed when using hand coordinates with four features per channel, where an f1
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(a) Hand coordinates (b) IMU channel

(c) IMU and hand coordinates (d) IMU and EPS channel

(e) Hand coordinates, IMU, and EPS

Figure 3.8: Confusion matrices when the inputs were two features per channel and the

model was random forest.

score of 66.9% was achieved for the ten-class classification. However, this task required

the attachment of four devices on the body. We observed that the performance improved

with an increase in the number of features introduced.

An f1 score of 52.9% was achieved with one device (IMUs and EPS). Nonetheless, with

IMUs only, the best achieved result was 49%.
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In Figure 4.1, the confusion matrix shows which classes were mostly confused when

tested on the RF model using two features per channel. In all the confusion matrices,

note that ‘Scratch the top of the head’, ‘Scratch the side of the head’ and ‘Scratch the

back of the head’ were considerably confused. In Figure (b), it can be seen that ‘Brushing

teeth’ was confused with ‘Scratch the side of the head’ and vice versa, and in Figure (a),

‘Washing hands’ was confused with ‘Typing on a computer’. When both the modalities

were combined, as seen in Figure (c), the performance on these two classes drastically

improved. When EPS was introduced, in Figure (d), it can be seen that the number of

errors decreased in the scratch classes, as compared to when only IMUs were used.

3.3.3 Coarse scratch/non-scratch activity recognition results

It was very challenging to classify ten classes. However, to evaluate how well a scratch was

recognisable, it was sufficient to distinguish a scratch from any other activity. In Table

3.7, the results are presented for the binary classification task.

Figure 3.9: F1 score vs. number of features for binary classification

k-NN

The best result was achieved again by using the hand coordinates data. We achieved an

f1 score of 77.6%. With a single device (IMUs and EPS), we achieved an f1 score of 70%

with a standard deviation of 2.9%. By using only the IMUs, we achieved an f1 score of

62% with a standard deviation of 8.6%.

The EPS allowed us to reduce the standard deviation between the folds as compared to

the IMU results. However, four devices were required with the extracted hand coordinates
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to achieve the best results.

Random forest

The best score was achieved by using the random forest model with five features per

channel. It reached an f1 score of 80.7% for scratch detection. With only the IMUs and

the EPS, an accuracy of 69.8% was achieved, and the standard deviation between the folds

was only 7.2%. The use of only IMUs resulted in an f1 score of 63.8% with a standard

deviation of 10%.

The same behaviour as observed as that with the k-NN model. The EPS allowed us to

reduce the standard deviation between the folds as compared to the IMU results. However,

four devices were needed with the extracted hand coordinates to achieve the best results.

3.4 Discussion

3.4.1 Baseline Results

Currently, the standard approach toward human activity recognition is predicting an activ-

ity on the basis of the IMU data. In this work, the baseline results were achieved by using

the extracted features from the IMU data. Moreover, these results only required the

deployment of one device.

The baseline results of the new dataset were as follows:

• For the ten-class classification with k-NN, the best result was 47% ± 7.3%.

• For the ten-class classification with RF, the best result was 49% ± 8.5%.

• For the binary classification with k-NN, the best result was 62% ± 8.7%.

• For the binary classification with RF, the best result was 63.8% ± 10%.

3.4.2 Multimodal Fusion

The fusion of data between IMUs, EPS, and the extracted hand coordinates did not always

result in a better performance.

IMUs and EPS

IMUs and EPS required one device on the wrist. Fusing the data and classification from

the IMU and EPS data provided a slightly better performance than only using IMUs with
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the random forest and the k-NN models. Using the binary classification task with IMUs

and EPS resulted in an accuracy of 70% when using k-NN and 69.8% when using RF.

Moreover, with k-NN, the standard deviation decreased between the folds from 8.6% to

2.9%; it decreased from 10% to 7.2% in the case of the random forest model. Compared

with the baseline results, there was a small improvement in the f1 score. In both the cases,

fusing the IMU and EPS data decreased the standard deviation and improved the results

obtained using both the models, but not significantly. The reduction in the standard

deviation of the f1 score between the folds showed that the model’s ability to recognise the

activities was good for a diverse group of people. Moreover, as the EPS could be deployed

on the IMU located on the hand, it did not create additional discomfort.

IMU and hand coordinates

For the ten-class and binary classifications, combining these modalities yielded better

results than using only IMUs, but worse than when using only the hand coordinates.

Using RF and binary classification, IMU achieved an accuracy of 63.8% ± 10%; with only

the hand coordinates, the result was 80.7% ± 2.6%, and when combined, it achieved 69.6%

± 2.5%. The same behaviour was observed with k-NN and the ten-class classification task.

Each activity was associated more with a certain location relative to the torso than with

specific movements. Thus, additional information could be redundant and decrease the

accuracy. In this case, fusing the hand coordinates data with the IMU data did not provide

with any gains, as compared to the results achieved using only the hand coordinates data.

IMU, hand coordinates, and EPS

Combining all the modalities outperformed the use of only the hand coordinates data. For

the binary classification task using RF and binary classification, IMU achieved an accuracy

of 63.8% ± 10%; with the use of only the hand coordinates data, the result was 80.7% ±

2.6%, and with the use of IMU with the hand coordinates data, the model achieved an

accuracy of 69.6% ± 2.5%. Moreover, with the use of IMU, hand coordinates, and EPS

data, the model was able to achieve an f1 score of 73% ± 2.6%.

The dataset was biased to the location, implying that each activity in the dataset was

associated with a certain location relative to the torso and this particular feature worked

exceptionally well with this dataset. The fusion of the dataset did not bring a drastic

improvement in the accuracy but significantly decreased the standard deviation between

the folds, as compared to the baseline results. However, it still did not outperform the
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achieved results when only the hand coordinates were used.

3.4.3 Number of Features

As can be seen from Figures 3.7 and 3.9, there was an increase in the accuracy, but

later, the results plateaued. This might be caused by the mutual information algorithm,

which did not take into account the fact that certain features were correlated and that the

redundant information did not improve the performance. This was observed for both the

classifiers, with the exception of k-NN with IMU and hand coordinates.

3.4.4 Comfort and Accuracy Trade-off

To deploy a scratch detection system for clinical trials, the smallest number of devices

and the least invasive device must be chosen. Sensors set up with four devices (shown

in Figure 3.1) cannot be used in any medical or clinical study, as this set up will make

daily activities uncomfortable and there will be a higher risk of failure because of the large

number of devices in use.

For the data collection in the present study, four devices were used. In general, more

information gives better results. In Figures 3.5 and 3.7, it is shown that increasing the

number of devices produced better results with the exception of k-NN and hand coordin-

ates. However, discomfort is a major drawback for the deployment of a human activity

recognition system. If comfort is the priority: one device with IMUs and EPS on the wrist

might be sufficient with a 70% accuracy, and if accuracy is the priority, then with four

devices (as shown in Figure 3.1) should be used. Note that an f1 score of 80.7% could be

achieved by using only the hand coordinates.

3.4.5 Future Work

In Section 5, note that hand coordinates relative to the torso were needed to achieve

the best performance for this dataset. To build a comfortable system, new localisation

techniques should be explored, so that the sensors can fit on one wrist. We suggest to

explore localisation techniques, such as ultra wide band. For example, PosXYZ [7] needs

only two devices (thw slave and the master) to be deployed in such a system. The slave

device will be attached to the wrist, and the master device will be the reference point.

With the use of the ultra-wide-band technology, the location of the wrist as compared to

the torso can be computed and can be used for human activity recognition. Thus, the

hand coordinates will enable one to achieve higher accuracy, without needing four straps
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on the torso, upper arm, lower arm, and wrist, respectively.

Exploring different feature selection techniques, such as MRMR [26], can lead to higher

performance. MRMR is a minimum redundancy feature selection algorithm, which also

takes into consideration how redundant a feature is as compared to the other selected

features. Moreover, to determine what accuracy can be achieved for this dataset, an

investigation of deep learning models, such as DeepConvLSTM [19], can produce substan-

tially higher accuracy results.

Finally, new hardware can be developed for head scratch detection, such as EPS-based

glasses, which can work as a proximity sensor to detect when the hand is nearby, thus

increasing the recognition of head scratches.

Even though in this study, we explored feature-based fusion, decision-based fusion has

shown good performance as well [4]. Thus, exploring hierarchical classifiers with decision-

based fusion should be able to yield even better scratch detection results.

The four participants in the study [25] were smokers, and they needed to tap the

sensor to flag when the smoking happened. This gives the insight that in a similar study

for scratch detection, active learning should be incorporated so that a user will be queried

if he scratches and the scratch will be flagged.

3.5 Conclusions

During this experiment, we explored how the fusion of different sensor modalities contrib-

uted toward accurate scratch detection by using different numbers of features per channel

and common machine learning models, such as k-NN and random forest. For this task, a

dataset was built with the data collected for ten different activities to investigate the lim-

itations of each model and explore the trade-off between the number of sensor modalities,

number of features, and machine learning models.

The key results were as follows:

• The best baseline result for detecting a scratch with a simple IMU was an f1 score

of 63.8% obtained using RF, which required only one device.

• The best result obtained using one device was an f1 score of 70% for scratch detection.

It was achieved by using k-NN with IMU and EPS data.

• The best overall result was an f1 score of 80.7%. It was achieved for the binary scratch

detection using the hand coordinates data and the RF model, which required four

devices.
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• Fusing EPS data with IMU data consistently increased the accuracy and reduced

the deviation between the folds, as compared to using only the IMU data.

We found that hand coordinates alone enabled us to achieve the highest accuracy to

detect all the activities. However, this dataset was biased to perform well on these data as

each position was associated with a certain activity. However, with the current technology,

such a model would require four IMUs on the torso, upper and lower arms, and the hand.

Therefore, it is not convenient to use this setup on a large number of people.

For the best performance on this dataset, the hand coordinates data with five features

should be used to achieve the highest accuracy of 80.7% for detecting scratches. However,

if a comfortable system is a priority and accuracy can be sacrificed, then 70% accuracy

can be achieved with a single device using IMUs and EPS.
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Chapter 4

Scalp scratch detection using a

wrist-worn microphone

In this chapter, we evaluate how sound, collected by a wrist-worn microphone, can be used

to recognise and distinguish scratch occurrences. We collected a dataset from 4 users,

where each user conducted 20 scalp scratches, 10 shoulder scratches and 18 scalp scratches

with and without TV noise being played in the background. The classification was done by

training a random forest model with engineered features and was tested using leave-one-

user-out cross-validation. In a silent environment we achieved sensitivity of 83.75% ±

8.8% and specificity 78.5% ± 4% and in an environment with TV noise present sensitivity

decreased to 61%±20.45% and specificity 78%±9.6%. These results indicate that sound

may be one modality to include for a future multimodal scratch detection device.

Previous work used uncomfortable and hard to install body or bone conduction based

microphones (see sec 2). In this work, we explore to which extent a wrist-worn microphone

can be used for scratch detection. The novelties are:

• An evaluation of more comfortable wearable wrist-worn microphone’s ability to de-

tect scratch.

• An anotated dataset for scratch detection, which incorporates also different levels of

ambient noise.

• A frequency analysis of the scratch from the wrist worn microphone data.

• Analysis and visualisation of how the information of the extracted features change

when background noise is present and when it is not. We used Mutual Information

- based feature selection.
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• An evaluation of scratch detection algorithms.

4.1 Wearable Sensing platform

(a) (b)

Figure 4.1: The data collection platform is 30x30mm in size with connectors for additional

expansions (a). The microphone is on the skin-facing side when worn on the body (b).

The platform [22] used for data collection is an in-house wearable sensing research

platform. Its primary function is to be an Inertial Measurement Unit (IMU) and a digital

microphone, which can be expanded using expansion connectors for sensor research pur-

poses. The device is 30x30mm. It is based on an ARM Cortex M4 processor (STM32L496

from ST), which runs at 20MHz with our default firmware. The platform comprises a

9-axis inertial measurement unit (TDK Invensense ICM-20948), an digital MEMS mi-

crophone (ST MP34DT05-A), a micro-SD card, Bluetooth 2 and USB interfaces, a fuel

gauge for built-in power measurements (LTC2942), an EEPROM to store configuration

(M24128). The processor built-in real-time clock (RTC) is operated from a dedicated

32KHz quartz (10ppm frequency tolerance). The platform operates at 3V from a lithium

polymer battery (165mAh) with a LTC3553 voltage regulator. The expansion connectors

provide I2C, Serial Peripheral Interface (SPI), universal asynchronous receiver/transmitter

(UART), analog-to-digital converter (ADC) inputs and digital to analog converter (DAC)

output for expansion boards.

The device firmware has been designed for ease of use. It allows without any pro-

gramming to acquire the data from the built-in sensors or external ADC inputs through

a command line interface. Data can be streamed over Bluetooth or USB, or stored in the
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TV-series

(a) Data collection (b) The sensor was attached on

the wrist using a band.

Figure 4.2: The protocol contains 10 low-intensity, 10 high-intensity scalp scratches and

10 shoulder scratches which was recorded without any noise in the background. There

were 18 recordings with noise in the background.

SD card. The current firmware allows to acquire in isolation IMU data, sound data, or

analog inputs data from the expansion connector. It can also acquire multimodal data: i.e.

it can simultaneously acquire IMU, sound and analog inputs in a multiplexed streaming

and storage format. This is particularly relevant to acquire data for activity recognition

based on a combination of multimodal sensors. The sample rate of IMU, microphone and

ADC is fully configurable. The IMU data is also processed by the firmware to obtain the

device orientation in quaternions. All data is time-stamped using the internal RTC.

The microphone is omnidirectional. It has a 64dB signal-to-noise ratio and a -26 dbFS

sensitivity. It is on the bottom-side of the device (i.e. facing towards the skin if worn on

the wrist), but it is not in direct contact with the skin due to the case. The microphone

is clocked at 2MHz and provides a 1-bit digital pulse density modulation output, which

comes straight from its sigma-delta analog to digital converter. The data is converted to

an audio signal using a 3rd order Sinc filter, each with a decimation ratio of 82 which

yields a 16-bit 8KHz audio signal with a dynamic range has been experimentally tuned

for typical ambient sounds and speech (≤ dB).

4.2 Evaluation of scratch detection

The aim of this work is to evaluate the effectiveness of scratch detection from sound

collected by a wrist-worn microphone using three steps: data collection, analysis and
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classification.

4.2.1 Dataset collection

The aim of this protocol (Table 4.2) is to evaluate:

1. if scratching is detectable with the microphone in a silent environment (activities 1,

2 and 5)

2. if scratching is detectable when there is background noise (activities 3,4)

3. if scalp scratching (activities 1, 2) can be distinguished from shoulder scratching

(activity 5).

The dataset was collected from 4 users, as seen in table 4.1. To have a representative

evaluation we collected a dataset from 2 males with different hair lengths, as well as 2

females: one with loose hair and one with a tight pony tail.

User Gender Hair type Hair length

1 Female Straight (tight pony tail) 40cm

2 Male Black, straight 10cm

3 Female Straight loose 50cm

4 Male Straight loose 20 cm

Table 4.1: Characteristics of the participants in the dataset.

For the data collection each user wore a sensor (Figure 4.1) on their main hand (Figure

4.2 (b)). As it is common to wear watches and bracelets on the wrist it is also the most

adequate place for the device’s location. For large scale data collections the device is not

more invasive than a smart watch.

The protocol was shown on an Ipad using ”Seconds Pro” [1]. This was a constrained

recording. It was done to show that scratch can be recognised using wrist-worn microphone

and if it can be recognised with ambient noise present. The audio was recorded at 8kHz

and was stored to a SD card.
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Acitivity ID Activity Repetition Duration Wait time

1 Low intensity scalp scratch 10 3 s 7 s

2 High intensity scalp scratch 10 3 s 7 s

3 Low intensity scalp scratch while watching

TV-series (distance=50 cm, 1m, 2m)

3, 3, 3 3 s 7 s

4 High intensity scalp scratch while watching

TV-series (distance=50 cm, 1m, 2m)

3, 3, 3 3 s 7 s

5 Shoulder scratch 10 3 s 7 s

Table 4.2: Protocol of data collection used to collect the dataset. Each participant did 30

scalp scratches and 10 decoy scratches while scratching the shoulder rather than the head.

The wait time is the between scratches, where a person does nothing in order to visually

assess from the signal when the scratch occurs.

4.2.2 Signal Visualisation

High power [Au]

Low power [Au]

Figure 4.3: Spectogram of an excerpt of the recording (user 2). Three scratches (dashed

boxes) and the null class are visibile.

The spectogram was created by computing Fast fourier transforms of a sliding window of

1000 samples (0.125 seconds) with an overlap of 50%. The higher size of the window was

chosen as the noise originating from body movements is captured by the microphone, as

seen in the high intensity scalp scratch in figure 4.2(a). From the figure 5.4, it can be seen

that there is no observable clusters of dominant frequencies.
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Figure 4.4: The Mutual Information score is shown for each feature for data, that was

collected under three different conditions: without background noise (no TV), with back-

ground noise (with TV) and when these two datasets are combined. It can be seen, that

when the TV-series are on, the MI score drops compared to when the scratches occur in

a silent environment.

4.2.3 Feature Analysis

Two of the most common methods used to select the most important features are the

filter and wrapper methods. The wrapper method would take an unreasonable amount of

time to find the best combination of features from every permutation of the 85 features.

Therefore, the filter method that used the mutual information [9] algorithm was used to

select the features carrying the highest amount of information.

I(X;Y ) =
∑

y∈Y

∑

x∈X
p(X,Y )(x, y) log

(
p(X,Y )(x, y)

pX(x) pY (y)

)
(4.1)

where p (X,Y) is the joint probability mass function of X, and p(X) and p(Y ) are the

marginal probability mass functions of X and Y, respectively, where X is the bin of the

feature and Y is the class. For each feature, we created 100 equal-size bins and performed

a small correction by adding 10−10 to the division so that when there were empty bins,

division by zero was not occurring.

We show in figure 4.4, that the features extracted from the frequency domain (Fourier

transform) carries the largest amount of information in the silent background. However,

when TV noise are being played in the background (noisy), the amount of information

that each feature carries for scratch detection is smaller.

In the table 4.3 we show, that the top 5 features in the silent and noisy backgrounds.

It can be seen, that the MI scores are much lower from the data, which was collected with

TV-series in the background, compared to the data collected in a silent background. The



43

Silent background Noisy background

Order Feature MI score Feature MI score

1 FFT max 0.181 FFT max 0.083

2 stdD 0.173 75% 0.07

3 mx0 0.143 std 0.064

4 FFT 5% 0.137 fft max f 0.0602

5 FFT 75% 0.137 90 % 0.06

Table 4.3: The top features are shown with the associated Mutual Information score. FFT

maximum amplitude had the largest MI score in both cases. However, the top features

when noise is present have a much smaller MI score compared to the features extracted

from the data, which was collected in silence.

top feature FFT maximum amplitude carried the largest amount of information. A key

difference in both cases is that when TV-series are not present, top 5 features are from

the frequency domain, while when TV-series are not present two (75% and 90% of the

window) of the top 5 features are frequency invariant.

4.2.4 Classification

We trained a classification task using random forest (100 estimators with 5 max depth)

model with Gini impurity and leave-one-user-out cross-validation. To evaluate if a user-

independent scratch recognition model can be trained to work on unseen users, we train

on User 1, 2, 3 and test on User 4; and then we repeat this with different test users. For

the classification task we extracted the features (Table 4.4) from a sliding window. The

sliding window size is 1000 samples (0.125 seconds) with an overlap of 50%. The null class

contains everything except scratch. The labels were split into overlapping windows and

the dominant label in the window was chosen. We calculated sensitivity or specificity by

defining scratch as positives (P) and null class as negatives (N). To evaluate the perform-

ance we used sensitivity and specificity (Equation 1), with the F1weighted (Equation 2),

where ni is the class size and N is the total number of samples.

sensitivity =
PTrue

P
, specificity =

NTrue

N
(4.2)

F1weighted =
∑

i

2wi
precisioni recalli
precisioni + recalli

, wi =
ni

N
(4.3)
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Type Features Dimension

F DC component of FFT 1

Highest FFT value and frequency 2

Max, Min, Mean, std of the FFT values 2

Kurtosis, skewness of FFT 2

Percentiles 5, 25, 50, 75, 90 of FFT 5

T Mean, std 1

Percentiles 5, 25, 50, 75, 90 5

Auto-correlation (min,max,mean,std) 4

Mean-crossing rate 1

Kurtosis, Skewness 2

E Energy of 50 Hz bands 60

Total number of features 87

Table 4.4: We used 85 extracted features from the sliding windows of size 1000 (0.125 s)

and 50% overlap. T are the features extracted from the sliding window, F - from Fourier

transforms, E - energy of the frequency bands.

For the 1st aim (ref section 4.1) we trained and tested only on scratches (scalp and shoulder

scratches (Activities 1, 2, 5) are one class) with no TV-series present. The model achieved

sensitivity of 83.75%±8.8% and specificity of 78.5%±4%. F1weighted score was 82%. The

worst performance is obtained with User 1, where the sensitivity is 72%.

For the 2nd aim, where we trained on all the data, but tested only on the section where

TV-series (Activities 3, 4) are present. This yielded sensitivity of 61%±20.45%, specificity

of 78%±9.6% and a F1weighted score of 73.75%.

For the 3rd aim we wanted to evaluate if shoulder scratch can be distinguished from

scalp scratches. We performed a classification with 3 classes: scalp scratch, shoulder

scratch and null class (Activities 1, 2, 5). The model was trained and tested only on the

data where TV-series are not present in the background. We achieved that on average

scalp scratch was recognised with an accuracy of 43%±15.8%, shoulder scratch with an

accuracy of 39.25%±14.13%, null class 68%±14.54% and the F1weighted score was 65.4%.
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4.3 Discussion

The sensor platform is available to use with multiple sensor modalities. We show that

sound is a strong predictor and can be used for sensor fusion. The fusion should improve

the overall scratch detection. The dataset was collected from 4 users with different hair

styles. We showed that by doing leave-one-user-out cross-validation sensitivity can be

83.75% and specificity 78.5% in a silent environment. Compared to the body-conduction

microphone in [17] our performance is lower as our microphone captures the ambient sound

whereas the body-conduction microphone is isolated using a gel and needs to be tightly

fixed to the hand. Thus, there is a trade-off of comfort and performance.

Moreover, we observed that the MI scores of the features extracted from the data

collected with background noise are smaller than from the data collected in silence for

scratch detection. It means, if we were to use features selected in the silent environment

and were to use them for classification when there is ambient noise, the performance is

likely to degrade.

Furthermore, sound made by scratching is dependent on the type of the hair. For

example, the lowest performance was achieved on User 1, who had hair tied in a tight

pony tail. Another limitation is scratch detection when ambient noise is present. In this

case we achieved a sensitivity of 61%±20.45%.

We observed that scratches do not seem to have a particular frequency signature,

and thus filtering the ambient sound does not seem practical. When we listened to the

recordings, the scratch was audible despite the TV-series playing in the background. It

means that the sound of scratching is captured and more sophisticated algorithms, such

as Deep Learning could be tried. Microphone beamforming could help to enhance the

directional sensitivity of our device.

4.4 Conclusion

In this chapter, we show that sound can be used as a sensor modality to distinguish

scratch. In a silent environment the sensitivity and specificity are 83.75% and 78.5%.

On the other hand, in a noisy environment the sensitivity and specificity are 59.25% and

77.25%. Moreover, we came to the same conclusion by computing Mutual Information

scores to see the importance of the features. The features extracted from the data that

was collected with noise in the background had significantly smaller score compared with

the data that was collected in a silent environment. With the ambient noise the model
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with the chosen features is not reliable enough to detect scratches with a high accuracy. It

enforces the idea, that additional sensor modalities should be used together to distinguish

the scalp scratches, as it will allow to compensate when ambient noise is present.

Ambient noise is a challenge and appropriate techniques should be used to diminish

the impact of the noise on the predictions. A microphone would work extremely well for

scratches, where there is a limited amount of noise, but for real daily activities it is not

accurate enough to be deployed alone. However, it could significantly increase the scratch

detection accuracy if it would be fused with other modalities. Our research platform allows

us to jointly acquire sound and IMU [22] data and this will be explored in the future.
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Chapter 5

Future work

In this chapter, we propose next steps for next generation hardware, dataset and software.

First of all, we propose that the future sensor should consist of a wrist-worn IMU,EPS and

ambient microphone and a neck-worn signal generator. Second, we provide guidelines for

a real life dataset collection, that could be a gold standard dataset to evaluate the efficacy

of the scratch detection system. Finally, we propose the general direction for deep learning

algorithms for more accurate human activity recognition.

5.1 Next Generation Hardware

5.1.1 Proposed set-up

The case is made from plastic and the wristband is made from nylon, to reduce the risk

of an allergic reaction.
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(a) Sensor set up on the body (b) Sensor platform in the case

Figure 5.1: In figure (a), the participant wears the sensors on the wrists. In figure (b),

the case with the wrist band is shown.

5.1.2 Bluesense

The platform used for data collection is an in-house wearable sensing research platform.

Its primary function is to be an IMU and a digital microphone, which can be expanded

using expansion connectors for sensor research purposes. The device is 30x30 mm. It is

based on an ARM Cortex M4 processor (STM32L496 from ST), which runs at 20 MHz

with our default firmware. The platform comprises a 9-axis inertial measurement unit

(TDK Invensense ICM-20948), a digital MEMS microphone (ST MP34DT05-A), a micro-

SD card, Bluetooth 2 and USB interfaces, a fuel gauge for built-in power measurements

(LTC2942), an EEPROM to store configuration (M24128). The processor built-in real-

time clock (RTC) is operated from a dedicated 32KHz quartz (10ppm frequency tolerance).

The platform operates at 3V from a lithium polymer battery (165mAh) with a LTC3553

voltage regulator. The expansion connectors provide I2C, SPI, UART, ADC inputs and

DAC output for expansion boards.

The device firmware has been designed for ease of use. It allows without any pro-

gramming to acquire the data from the built-in sensors or external ADC inputs through

a command line interface. Data can be streamed over Bluetooth or USB, or stored in the

SD card. The current firmware allows to acquire in isolation IMU data, sound data, or

analog inputs data from the expansion connector. It can also acquire multimodal data: i.e.

it can simultaneously acquire IMU, sound and analog inputs in a multiplexed streaming
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and storage format. This is particularly relevant to acquire data for activity recognition

based on a combination of multimodal sensors. The sample rate of IMU, microphone and

ADC is fully configurable. The IMU data is also processed by the firmware to obtain the

device orientation in quaternions. All data is time-stamped using the internal RTC.

(a) IMU (b) Electric Potential Sensor

Figure 5.2: The data collection platform is 30x30mm with connectors for additional ex-

pansions (a). The microphone is on the skin-facing side when worn on the body (b). The

values of the resistors and capacitors will be determined by the wanted frequency of the

signal.

IMU

The ICM-20948, also known as inertial measurment unit, is a multi-chip module (MCM)

consisting of two dies integrated into a single QFN package. One die houses a 3-axis

gyroscope, a 3-axis accelerometer, and a Digital Motion ProcessorTM (DMP). The other

die houses the AK09916 3-axis magnetometer from Asahi Kasei Microdevices Corporation.

The ICM-20948 is a 9-axis MotionTracking device all in a small 3x3x1 mm QFN package.

This chip is integrated to the Bluesense sensor platform and the data can be recorded to

the SD card.

Microphone

The microphone is omnidirectional. It has a 64 dB signal-to-noise ratio and a -26 dbFS

sensitivity. It is on the bottom-side of the device (i.e. facing towards the skin if worn on

the wrist), but it is not in direct contact with the skin due to the case. The microphone

is clocked at 2 MHz and provides a 1-bit digital pulse density modulation output, which

comes straight from its sigma-delta analog to digital converter. The data is converted to
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an audio signal using a 3rd order Sinc filter, each with a decimation ratio of 82 which

yields a 16-bit 8 KHz audio signal with a dynamic range has been experimentally tuned

for typical ambient sounds and speech ( ¡90dB).

5.1.3 EPS

EPS technology

EPS is design to measure electrophysiological signals, such as ECG and EMG with a flat

frequency response from 0.2 Hz to 20 kHz. The sensor has 20 Gohm of input resistance

and input capacitance of 15 pF. This allows remote measurement of small variations in

voltage signals and the ambient electric field non-invasively. Capacitive sensors have been

used in the environment for human-computer interaction with limited work on body-worn

sensor, except where the authors carried out a similar experiment using another type of

body-worn capacitive sensor to detect walking and jogging. However, their design topology

suffered from saturation due to the static charge built up while EPS was DC-stable, which

means it recovers from saturation without the need to switch circuitry. It has previously

been shown that EPS can also measure the amount of static charge build-up.

(a) EPS circuit (b) EPS on Bluesense

Figure 5.3: EPS circuit (a) and the EPS on bluesense (b) are used.

EPS-based localisation

The same EPS will be used for localisation with a signal generator. A CMOS 555 timer

IC produces a 50% duty cycle square wave. Its output is sent to a low-pass RC filter

that filters out the harmonics, leaving only the fundamental sine wave. Some distortion is

common as it’s difficult to completely eliminate the harmonics. A more selective LC filter

can be used to improve sine wave quality.
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Figure 5.4: The CMOS 555 timer IC produces a 50% duty cycle square wave and the RC

circuit is used as a filter.

5.1.4 Device case

The initial case design is shown in Figure 5.5. Case parts (a) and (b) will be adapted after

finalising the EPS design and when the exact height of the Blusense is known, gaps in the

case sides will be added to allow resistless air flow (needed for the microphone).

(a) Top case (b) Bottom case (c) Wrist band

Figure 5.5: The (a) and (b) parts of the case will be built using the 3D printer and the

wristband (c) will be bought from Amazon [3].

5.1.5 Set-up instructions

1. Make sure that the battery is charged and there is a compatible SD card.

2. Turn on Bluesense.

3. Calibrate it.

4. Format the SD card.

5. Attach the EPS extension board.

6. Start logging.
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7. Collect the dataset.

8. Quit logging.

9. Export the data.

5.2 The immediate tasks for finalising the sensor platform

Some of the tasks are not finalised and will need to be done in the future:

• EPS-based localisation and detailed characterisation of the needed frequencies and

voltages.

• Exploration of making the sound anonymous by removing certain frequencies but

keeping the ones needed for scratch detection.

• Testing the full device for the dataset collection.

5.2.1 Sensor production

Each part of the proposed device will need to be manufactured and assembled together.

The Bluesense platform is already available with the integrated IMUs and microphone; a

custom EPS will be built for the specified frequencies. Moreover, given that the required

characterisations will be achieved for EPS-based localisation, the circuit can be built in

the lab. The goal should be to build three pairs of devices for this stage.

5.2.2 EPS-based localisation

The EPS-based localisation technique has been shown to be feasible for this task in recent

work [24]. In this work, we want to be able to use a signal generator to see, if it can be

used as a proximity sensor around the neck and if it could work as a localisation technique

in the scalp scratch recognition task. To evaluate this idea’s suitability the following steps:

1. Characterise the voltages needed for proximity detection using EPS.

2. Characterise the frequencies needed so no interference occur with the noise signals

from the main grid.

3. Evaluate the usability of this sensor modality for scratch detection by placing the

signal generator on the neck and using the EPS on the wrist.
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5.2.3 Testing

When the sensor platform is ready, the data collection should be tested and Bluesense

configured for the different sample rates of the different sensor modalities. The testing

procedure protocol will include 3x3 s scratches with a 5 s rest in between, 10 s of walking

and 3x3 s scratches. Then, each individual modality should be checked if scratching and

walking can be distinguished solely from the signal. Moreover, it should be tested how long

the sensor platfrom can record at the chosen sampling rates and indentify the limitations

of the battery and the SD card, as it will be important to be aware of these limitations

during the data collections.

5.3 Comprehensive real world dataset collection

Currently, there are no gold standard datasets that would allow to evaluate scratch detec-

tion systems in a real world scenario. We need to have such a dataset to have unbiased

performance evaluation. Such a system, would need to consist of a varied and long null

class and imperfect and varied ” natural scratches” done by different types of people with

varied types of hair, skin, bodytypes. Moreover, we would need to record a high variaty

of scratches, which can differ in frequency, speed and type of movement.

Thus, we propose to collect a scratch detection dataset at least from 20 people and

of two parts: constrained dataset collection (30 min), real-life dataset collection (2h).

The constrained dataset collection will be used to evaluate the properties of scratch and

identify the limitations of each sensor for the application of scratch detection. The real

world dataset collection would be collected in a real world scenario, where the participant

will have a high level objectives, that the person would need to accomplish and during

these two hours the person will be recorded and his scratch will be annotated afterwards.

5.3.1 P1: Constrained dataset collection

During the constrained dataset collection we want to collect scratches in environments,

that would allow to assess the limitations of the sensor as well as identifying different

scratching modes. We propose the following scenario for the constrained scratch detection

to identify the limitations of the sensors:
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Electric Potential Sensor

To identify the limitations of EPS for scratch detection, we need to see how well scratch

can be recognised with different levels of electric field noises.

Thus the scenario will be the following to identify the limitations:

• 5 sets of scratch while walking on the carpet

• 5 sets of scratch while being next to the computer with 50 Hz main grid.

• 10 sets at different distance from a white noise generator.

• 10 sets at different distance from a pink noise generator.

This scenario will allow to characterise the limitations of the EPS sensor for scratch

detection and to identify the applicability domain of EPS for localisation and scratch

detection.

Microphone

To make a comprehensive review of sensor’s ability to detect scratch, we need to identify

all the limitations of an ambient wrist-worn microphone for scratch detection. We will use

the following scenario to identify the limitations:

• 5 sets of scratch while walking on the carpet

• 5 sets of scratch while scratching with music in the background

• 10 sets at different distance from a white noise generator using a local sound source

with decibels measured at each position.

• 10 sets at different distance from a pink noise generator using a local sound source

with decibels measured at each position.

Inertial Measurement Unit

To identify the limitations of a wrist-worn microphone for scratch detection, we need to

measure how well scratch can be recognised from other similar activities.

We will use the following to identify the limitations:

• 5 sets of scalp scratch

• 5 sets of hair comb.
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• 5 sets of drinking tea.

• 5 sets putting earphones inside the ears.

• 5 sets of putting glasses on.

5.3.2 P2: Real-life dataset collection

The expected duration for this session is 2 hours. Participants would be asked to per-

form higher order tasks on the university campus which would also be video recorded.

Participants would be followed by an annotator, who would use wearable glasses to film

everything to later annotate the scratch and non-scratch activity ground truths. Examples

of higher order tasks include: “Find a book on Deep Learning in the library” or “Go to

the canteen and drink a cup of tea”.

During all these auxiliary activities we are going to monitor the amount of natural

scratch that is occurring. The data collection will be filmed with smart glasses in order

to annotate afterwards. The annotation happens from the recorded video, where the

annotator specifies what activity happens on the video in that particular time. Even

though no personal information would be collected during the data collection, several

videos would be recorded. Given that the dataset (anonymised sensor data without the

video) would be made public, the users would be asked if some screenshots and video

extractions can be used for presentations during conferences. If they do not agree with

the above the video would be deleted after annotation. From Inertial Measurement Unit

Electric Potential data the user cannot be identified. We would remove certain frequencies

so that from sound (collected by microphone data) people would not be identifiable.

5.4 Next generation machine learning models for multi modal

fusion

In this thesis, we only explored classical machine learning methods and we did not have

the opportunity to explore deep learning models for scratch detection. It has been shown,

that deep learning is a powerful tool for human activity recognition, but it has not been

adapted for multimodal fusion. We propose a conceptual framework for next generation

deep learning models for human activity recognition that allows for easier transfer learning

between modalities and would not require to retrain the model from scratch when a new

modality is introduced.
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A key problem with the current state-of-the-art Deep Learning models is that if you

add an additional modality it requires to retrain the model completely, simply because

your input shapes do not match. When in reality you need to be able to model the

temporal relationships between different modalities. It means, that when you add a new

modality you would need to fine-tune a part of it to let the model learn, how the signal

from the new modality is related to the signal from the existing modalities.

This is a crucial feature needed for life-long learning as such a system needs to have the

ability to effortlessly add and substract different sensors without needing to retrain the

whole system. Thus, we propose to investigate the combination of graph neural networks

and transformers.

5.4.1 Deep Convolutional Transformers

The goal of this work is to evaluate if the adaptation of the transformer architecture can

allow achieve better accuracy for human activity recognition. Moreover, the transformer

has been used only as a sequence-to-sequence model, thus as it is learning how to return

the sequence and not a scalar classification is not ideal and means how to reduce the

dimensionality are needed for an effective learning.

In this experiment we would experiment with different dimensionality reduction tech-

niques to identify the best way of aggregating different signals.

For the moment state-of-the art human activity recognition. can perform as well as

an LSTM for human activity recognition and to evaluate the trade-offs for this particular

application. The current state-of-the-art model for human activity recognition uses Deep-

ConvLstm from [19] and with slight variations better performances have been a achieved

with similar architectures. As Transformers seem to be much more effective for sequence-

to-sequence task we want to adapt the sequence-to-sequence model for human activity

recognition in the Transformer paper [28], they presented that the transformer excelled

current state-of-the art models by the following components:

1. Training times.

2. Memory requirements.

3. Performance trade-offs.

In the figure 5.6 we propose an By increasing the width of the window we will observe

how the performance changes when we use the transformer encoder instead of the LSTM.

We are going to test if the self-attention is able to remove the vanishing gradient problem
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Figure 5.6: We will explore architecture based on DeepConvLSTM and we will use a

transformer followed by an LSTM,GRU, Sum, Pooling or average functions to see how the

performance differs.

for the LSTMs and if the LSTM can be changed to a simpler dimensionality reduction

function.

The main evaluation will be done on the Opportunity dataset, but to collaborate the

tests will also be performed on Skoda. The Novelty of this work will be the the evaluation

of the novel architecture (with Transformers) for human activity recognition.

• The goal is to evaluate the dimension reduction techniques, as shown in the figure

5.6, from the computed new embeddings for time-series classification. We will eval-

uate how each different dimensionality reduction technique affects the performance

of the classifier.

• The datasets that are going to be used are: PAMAP, OPPORTUNITY and Scratch

in office environment.

• The benchmark It will be compared against different dimensionality reduction

techniques and known benchmark results such as DeepConvLSTM.

• The problem is that transformers are sequence-to-sequence models and it has not

been explored how well different techniques can reduce the dimentionality.

• Our approach is to use the convolutional layers from the DeepConvLSTM and

add a transformer encoder, which will compute the representation of the change in

with respect to other changes. Different dimensionality reduction techniques will be

explored on the output from the transformer encoder to understand the trade-offs

between performance of the model and computational costs.

• Contributions:

– Evaluate dimensionality reduction algorithms for transformer decoder.
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– See if vanishing gradients can be avoided with self-attention as the input would

be a sum of all the timepoints. So during training and forward pass during

timestep t the model will have information about timestep t-N.

– Laying the foundations for 4.2.3 section, where we will explore how we can have

multimodal fusion and effective dimensionality reduction techniques will need

to be used.

5.4.2 Investigation of Transformers

The goal of this experiment is to improve and adapt the transformers architecture for

human activity recognition. The main limitations are that the universal transformer [28]

is not extremely effective: does not learn the local dependencies and the memory require-

ments expands quadraticaly with the length of the windows, we need to explore different

architectures to adapt the functionality for ies, as in the paper [15]. We will develop a

custom querying algorithm with the local CNNs that will allow use less training time and

learn short term dependencies. The goal is to optimise the Transformers performance for

Human activity recognition from wearable sensor data. This will be evaluated on Oppor-

tunity, Skoda and the Scratch dataset . The novelty of this work, will be a novel variant

of transformer adapted for human activity recognition.

Figure 5.7: We will explore different ways how to effectively compute the keys and queries

for optimal human activity recognition.

Causal convolutions [15], shown in Figure 5.7, in the multi-head attention are used

to learn the local context of the signal where the attention was applied on using causal

convolutions. Rather than using convolution of kernel size 1 with stride 1 (matrix multi-

plication), we employ causal convolution of kernel size k with stride 1 to transform inputs
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(with proper paddings) into queries and keys. Note that causal convolutions ensure that

the current position never has access to future information. By employing causal convolu-

tion, generated queries and keys can be more aware of local context and hence, compute

their similarities by their local context information, e.g. local shapes, instead of point-wise

values, which can be helpful for learning accurate relations.

In this, part we would like to explore if we can split long series into non-overlapping

windows and apply causal convolutional neural networks with a layer of perceptron to

learn the deep the representations of past series, these representations would to fit longer

time-series and incorporate more information without consuming unreasonable amounts

of memory.

For this part we will compare to the results achieved with a transformer without local

convolutions and to the state-of-the-art models.

• The goal is to evaluate different ways how to compute the keys, queries and values

for 1D signal and to evaluate how it affects the performance.

• The datasets that are going to be used are: PAMAP, OPPORTUNITY and Scratch

in office environment.

• The benchmark Different ways how to compute keys, querries and values will be

compared.

• The problem is that the transformer model is not able to learn local relations, thus

we will investigate different approaches of how we can investigate different metrics.

• Our approach is to explore the following ways how to compute Q, K, V for better

classification accuracy and computational performance:

– Traditional way - the self-attention is computed on raw points.

– Convolutions- self-attention is computed the 1D CNN output.

– Causal convolutions - self-attention is computed on the point and convolutions

related to the previuos points.

– Attentive convolutions- the self-attention is computed on points that are com-

puted from the product of the 1D CNN output and the points.

Moreover, we will explore how it affects the prediction, by using it as a sequence-to-

sequence model and predicting the future series.

• Contributions:
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– Evaluate how different ways of compute keys affect the performance and the

computational requirements.

– Evaluate how it different Q, V, K affects the prediction of time-series.

5.4.3 Transformers for Fusion

Figure 5.8: We show a new multi-tasl architecture that leverages a contrastive loss will

allow to effectively retrain models as the same encoder will be used. Moreover, we propose

to use a GNN where the edge will be distance between representations. It will allow for

the model to effectively learn the needed features in ensemble.

The goal will be to investigate different fusion techniques for data which is sampled

at different rates from different sensor modalities. More over, as the information lies

in different domains it is important that each model learns the needed features in each

domain. Fusion of different sensors that has different sample rates has not been explored

widely. We want to investigate different techniques for effective and transparent fusion

of different sensor modalities. For this part we will investigate fusion techniques on the

Scratch dataset. The following steps will be explored:

1. Decision fusion. Majority vote of models from different sensor modalities.

2. Before final layer concatenation. We will concatenate the representations of

different sensor modalities and pass them together through the final MLP layer.

3. Before final layer sum. We will sum the representations of different sensor mod-

alities and pass them together through the final MLP layer.

4. Dilated and strided convolutions to match the dimensions in the trans-

former. As the sampling rates are different dilated and strided convolutions should

enable to match the dimensions and feed together to the transformer.
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5. Graph neural network. Once we are able to compute the representations we

can use a graph neural neural network to learn what makes the activity an activity.

The graph consists of nodes and edges, where the node is the representation that

is being learned for the signal and the and edge will be a distance between the

representations. We will explore different distance to see which one allows to learn

the relations the best. We will test Euclidian, Wasserstein, Cosine distances.

The steps 1, 2, 3 will be used as a benchmark to see if the model is able to recognise

the activities when we are learning the modalities together, these are the most common

approach in feeding data from different sensor modalities. We will do a more in depth ana-

lysis in how 2 and 3 are different as concatenations allows for a better recall for the model,

while summing allows to learn more complex relations between the sensor modalities.

While the sampling rates are different of different sensor modalities. For example

motion is captured at 250Hz, while Audio is captured at 16 kHz and EPS at 3 kHz. It

means that different size windows should be chosen and different features are learned.

Thus, with step 2 we will manually adjust the strided and dilated convolutions for an

optimal performance to compute the queries and keys before feeding to the transformer.

However, as HAR is a complicated problem for transfer learning, because the informa-

tion lies in different domains for each sensor modality. We will investigate if we can learn

a more general approach using contrastive loss.

• The goal is to evaluate the new architecture presented in figure 5.8.

• The datasets that are going to be used are: PAMAP, OPPORTUNITY and Scratch

in office environment.

• The benchmark will be used DeepConvLSTM and the work done in the previuos

section. Moreover, we will compare the proposed fusion technique with the different

fusion techniques mentioned earlier.

• The problem is that fusion techniques use nowadays do not enforce learning the

relations between different modalities.

• Our approach will comprise of multiple steps and the model will be developed and

tested incrementally.

1. The first step is too evaluate what performance can be achieved once we use this

network with similar sensor modalities or same modalities at different locations.

For this task we will only use the acceleration and gyroscope data.
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2. The second step is too evaluate if the same transformer and encoder can benefit

from additional sensor modalities, where the information is in the different

domains. For this task we will use Scratch in office environment dataset and

we will add sound and EPS data to see if the same encoder can learn how to

relate those.

3. If the same encoder does not work, we will use a subset of the data to evaluate

on which set of features the information lies and we will use different encoders

to learn in the frequency domain and in the ”normal” domain.
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Chapter 6

Conclusions

In this chapter, we discuss the contributions made and their impact to human activity

recognition, scratch detection, multi-modal fusion. Finally, we discuss the limitations of

the work.

6.1 Summary of achievements

During the past decade we had many technological advances. Yet, previously scratch

detection relied on human annotators, then they relied on cameras until later on wearable

sensors were introduced. Wearable sensors allow to monitor the amount of scratch that

occur in daily uninterrupted human life during a prolonged period of time.

Moreover, each sensor modality has it’s own applicability domain and naturally there

will be false predictions. Using multimodal fusion we increase the accuracy of scratch

detection. During this thesis we focused on sound, electric field, motion and hands position

relative to the torso, which are the modalities that can be used individually to detect

scratching.

To this day, in the field, data is a key limitation to create more sophisticated human

activity recognition pipelines. Data recording is expensive. Data annotation requires to

recruit participants, video record their activities and later on annotated.

In this thesis we made the following contributions:

• In the 2nd chapter we did a comprehensive review of methods for scratch detection

and of sensor modalities that can be used for human activity recognition and in

particular scratch detection. Moreover, we systematically reviewed the pros and

cons of each sensor modality and it’s potential to be used on a wrist-worn device.

Finally, we summarised the main limitations of the previuos work, which we are
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adressing in this thesis.

• In the 3rd chapter, we investigated sensors and algorithms to realise a wearable

scratch detection device. The work consisted of two parts: a dataset collection and

analysis of different algorithms for the multimodal fusion. We collected a dataset

from nine users containing 813 scratching instances and 5 h 15 min of recorded data.

We concluded that a scratch could be detected with 80.7% accuracy by using the

random forest algorithm on hand coordinates, which required four devices. However,

an f1 score of 70% could be achieved with k-NN with IMU and EPS data, which only

required one device. Moreover, the fusion of IMU data with EPS data improved the

accuracy and reduced the deviation between the folds.

• In the 4th chapter, we evaluated how sound, collected by a wrist-worn microphone,

can be used to recognise and distinguish scratch occurrences. We collected a dataset

from 4 users, where each user performed different scratches. The classification was

done by training a random forest model with engineered features and was tested using

leave-one-user-out cross-validation. In a silent environment we achieved sensitivity

of 83.75% ± 8.8% and specificity 78.5% ± 4% and in an environment with TV

noise present sensitivity decreased to 61%±20.45% and specificity 78%±9.6%. These

results indicate that sound may be one modality to include for a future multimodal

scratch detection device.

• In the 5th chapter, we proposed that the future sensor should consists of a wrist-

worn IMU,EPS and ambient microphone and a neck-worn signal generator. Second,

we provided guidelines for a real life dataset collection, that could be a gold standard

dataset to evaluate the efficacy of the scratch detection system. Finally, we proposed

the general direction for deep learning algorithms for more accurate and flexible

human activity recognition.

6.2 Limitations

Each of our contributions presents limitations, either in terms of assumptions made, or

in terms of results obtained. We discuss these limitations in the following subsections

and present related perspectives to address these issues in chapter 5 where we present the

future direction.
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6.2.1 Limitations of the collected datasets

We have collected two datasets and we are highlighting the limitations of each dataset.

IMU and EPS

This dataset was collected in a constrained environment from a limited amount of people.

The participant was instructed to perform scratches, which did not allow to collect natural

scratches. Moreover, it was collected in one isolated environment and the sensor modalities

were not pushed to the limits. Thus, in Chapter 5 we wrote the guidelines for gold standard

dataset, which would be collected from a large number of people in a natural setting.

Microphone

This dataset was collected in a constrained environment from only four people with very

few scratching occurrences. It was done to evaluate the feasibility of the sensor modality,

however we would need more experiments to evaluate the limitations of scratch detection.

6.2.2 Limitations of the analysis

For both methods we only used traditional machine learning methods to assess the feasib-

ility of using and combining sensor modalities. In Chapter 5, we propose next generation

deep learning methods for more accurate human activity recognition using state-of-the-art

techniques. These new methods should allow more easily retrain models when new sensor

modalities are introduced.
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ABSTRACT
In order to develop and evaluate the extent to which itching affects
a person’s daily life, it is useful to develop automated means to
recognise the action of scratching. We present an investigation
of sensors and algorithms to realise a wearable scratch detection
device. We collected a dataset, where each user wore 4 inertial
measurement unit (IMU) sensors and one electric potential sen-
sor (EPS). Data were collected from nine users, where each user
followed a 40-min protocol, which involved scratching different
parts of head, shoulder, and leg, as well as other activities such as
walking, drinking water, brushing teeth, and typing to a computer.
The dataset contained 813 scratching instances and 5 h 15 min of
recorded data. We investigated the trade-offs between the number
of devices worn (comfort) and accuracy. We trained the k-NN and
random forest algorithms by using between 1 and 5 features per
channel. We concluded that a scratch could be detected with 80.7%
accuracy by using the random forest algorithm on hand coordi-
nates, which required four devices. However, an f1 score of 70%
could be achieved with k-NN with IMU and EPS data, which only
required one device. Moreover, the fusion of IMU data with EPS
data improved the accuracy and reduced the deviation between the
folds. This expanded the state-of-the-art method by opening up
new trade-offs between accuracy and comfort for future research.

KEYWORDS
Scratch detection, feature selection, machine learning, activity
recognition, sensor technologies.
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1 INTRODUCTION
Itching is a condition which affects a substantial group of people.
This condition may be caused by scabies, atopic dermatitis, or kid-
ney failure; it can also be a symptom of a malignant condition,
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such as lymphoma [19]. Scratching occurs as a result of itching, but
the itching is increased while scratching. Scratching also produces
wounds on the skin, which create even more discomfort. Thus,
itching and scratching are correlated [8].

Furthermore, atopic dermatitis causes a high intensity of itching
followed by a period of respite. The amount of scratching which
occurs over night and the impact that it has on the skin cannot
be evaluated by the user himself as he is not consciously aware
of it. We need a system which can, during such flares, warn the
user to apply the treatment on the affected area. Such a system will
improve the user’s sleep quality by reducing the intensity of the
cycle: itching, scratching, more intense itching.

Moreover, automatic monitoring for atopic dermatitis clinical tri-
als will enable a more accurate measurement of how the frequency
and the intensity of scratching change before and after the user
starts treatment.

In previous research, acceleration sensors with simple models
such as logistic regression [14] and more complex deep learning
models [11] showed good success in detecting a scratch. In this
paper, we present a new systematic approach toward the evaluation
of the required sensor modalities and the complexity of machine
learning models to successfully detect scratches. The novelty of
this work is as follows:

• Survey of previous scratch detection work to evaluate the
dataset required to represent the daily lives of humans.

• New dataset using four IMUs, 1 EPS, and hand coordinates
with ten activities and nine users with 813 scratches and
a total of 5 h 15 min of recorded data. The novelty of this
dataset lies in the large number of sensor modalities, to push
the machine learning models to their limits and evaluate
how well slightly different scratches can be differentiated
from other activities. The new dataset includes more scratch
locations as well as a more realistic NULL class.

• Observation that EPS data combined with IMU data reduce
the error variance between the folds and increase the accu-
racy of human activity recognition.

• Comparison of the k-nearest neighbour and random forest
algorithms by using different numbers of features scored by
mutual information. Previous work has not explored feature
selection for scratch detection from different modalities.

• Exploration of trade-offs between accuracy, comfort, and the
number of devices.

2 RELATEDWORK
In previous works, an itch [3] was described as an irritating feeling
that causes the desire to scratch. A chronic itch can be a reaction
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of skin diseases, kidney failure, cancers, and neurological disor-
ders. Given that the disease might need urgent medical attention,
scratches should be monitored as they can lead to a faster disease
identification.

In the early days, scratching was observed manually, without any
technological help. In the research [9], scratching was monitored
on 40 patients in the hospital by the staff. During this project, the
amount of scratching occurring before and after the treatment was
noted. Observing the change in the scratch quantity before and
after the treatment allows one to evaluate the extent to which the
treatment reduces the occurrences of scratches. This system is not
suitable for deployment on a large group (hundreds) of people.

Another approach is to video record nocturnal scratches by using
an infrared camera. In one experiment, which was conducted with
seven users [7], the infrared camera was used, so that the user
would not be interrupted during the night and the scratches were
annotated later.

Currently, the most common approach to classify activities is
to use accelerometers [4]. It allows for the monitoring of activities
without invading user privacy. Not only does it allow for systems to
be deployed on many users simultaneously, but accelerometers also
enable real-time and real-world monitoring without the need of an
observer to invade the subjects’ privacy. Triaxial accelerometers
[14] on the wrist for scratch deployment were noted to be successful
and achieved high sensitivity (0.96) and specificity (0.92). In this
previous research, 12 people participated; they were monitored in
a controlled environment. The duration of the dataset collection
was 140 s per user. Each person scratched the back of his/her head,
leg, and/or elbow and later walked and rolled around. A similar
work was done by detecting scratching by using mobile systems
[10]; this method achieved 90% accuracy.

However, even though a single modality has shown good results,
there are many new sensors, which can potentially be incorporated
in such a system and increase the accuracy of scratch detection.

For instance, acoustic sensors [12] have been used for scratch
detection. The sound sensor uses body conduction to record the
sound from the wrist. The dataset was collected on four volunteers
over 6 h during the night. As the room was silent, it was easier to
distinguish between a scratch and no scratch, and a ‘determination
ratio’ of 0.98 was achieved.

Electric potential sensors (EPSs) were explored for scratch sens-
ing [15]. This work only reported a visual observation that EPS
signals are correlated to a scratch, but the authors did not demon-
strate any automated activity recognition based on this modality.

Machine learning models vary in complexity, computational
time, and their ability to generalise. Logistic regressions [14] and
recurrent neural networks [11] have been used thus far. In the re-
search [11], 24 atopic dermatitis patients spent 2–5 nights in the
hospital and wore two accelerometer devices (GeneActiv, Activin-
sights Ltd.) on each wrist. Only two classes were labelled: scratch or
null class, and as the data needed to be split for each class equally,
a considerable amount of recording data was lost for the training
of the model. There is still room for new machine learning mod-
els and considerable progress needs to be made with the current
techniques.

In the previous works, all the currently collected datasets for
scratch detection were either very short (150 s) or very simplistic

(two classes: scratch or null class), which does not allow one to
evaluate how the system would perform in a more realistic scenario.
Moreover, given that in each research, there was one sensor modal-
ity per dataset, there is a need to explore different fusion options
between different sensors.

We incorporated four IMUs, extracted the hand coordinates, and
used EPS for scratch detection during the dataset collection. More-
over, there is a need for a challenging dataset, which has multiple
classes and represents a more realistic world. A more complex
dataset will allow to evaluate how different sensor modalities con-
tribute toward an efficient and effective human activity recognition.

3 MULTIMODAL SCRATCH DATASET
A new dataset was built using data collected from nine users. It
contained two classes and 10 subclasses, which are shown in Table
1. These activities were chosen because of their similarity to scratch-
ing in the frequency domain and because they occur in everyday
life. Each user wore four IMU sensors and one EPS.

Class Subclass
Scratch Top of the head

Back of the head
Side of the head

Shoulder
Leg

Null Null
Drink water
Brush teeth
Wash hands

Walk
Table 1: Ten classes of the dataset

As can be seen from Table 2, in all, we recorded 40 min of scratch-
ing and 5 h 15 min of data. The dataset had ten classes, and some
activities were performed simultaneously in order to find the limits
of the machine learning models and their ability to learn the subtle
differences between very similar activities. In our case, the subtle
differences were scratching the top of the head, back of the head,
and side of the head.

Dataset parameters
Age 22–40 years
Males 6
Females 3
Scratching instances 813
Total scratching time 40 min
Collection time per user 35 min
Total dataset time 5 h15 min

Table 2: Parameters of the dataset

The participants had different hair lengths, and there were six
males and three females. The diversity of the users’ biological fea-
tures was needed to evaluate whether the model could generalise
enough to detect the same activities on unseen users. There were no
overweight or underweight participants; all of the participants had
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average body shapes. It was also important to have a long duration
and a diverse null class, so that the model could learn the difference
required to distinguish between scratching and other activities.

3.1 Sensor setup
The IMU is based on the BlueSense technology [16]. BlueSense
gives the raw acceleration, rate of turn, and magnetic field data and
can provide the quaternion data, which encode the orientation of
the device. Moreover, the quaternion data from the four IMUs could
be used to obtain the approximate hand coordinates (explained
in Section 3.1.2). Furthermore, BlueSense can be extended with
expansion boards containing additional sensors. In this work, we
used an expansion board with an EPS sensor [15].

3.1.1 EPS and IMUs. The sensor configuration for each user is
shown in Figure 1 (c). This configuration was chosen in order to
obtain the hand coordinates in the Cartesian system, the charge of
the electric field, and the IMU data.

(a) IMU (b) Electric potential sensor

(c) Sensor configuration during data collection. Each person
wore four IMUs (on torso, upper arm, lower arm, and hand)
and 1 EPS device extended on the IMU on the hand.

Figure 1: Imu (a) and EPS (b) were used for the data collec-
tion. They were attached to the body by using four straps.

In this work, a device was a single object, IMU with EPS was
one device, a sensor was a sensor modality (IMU and EPS were
two sensors). We referred to a channel as an output of a sensor.
Sensors can have one or more outputs. For example, in this work,
an IMU had 13 channels. They were as follows: three channels of
acceleration along the x, y, and z axes; three channels of the rate
of turn along the x, y, and z axes; three channels of the magnetic
field along the x, y, and z axes; and four channels indicating the
device orientation in quaternions. EPS had only one output channel,
which represented the electric potential.

The EPS, shown in Figure 1 (b), streamed the voltage data using
the ADC channel to Bluesense [16]. Once the electric field was
disrupted [15], it could be observed in the signal. Moreover, EPS
had the ability to detect 50-Hz grid voltage when the computer
was connected to the power source, which allowed us to accurately
detect typing to a computer.
3.1.2 Hand coordinates. Hand coordinates were computed after
the data collection. The quaternion data captured the orientation
of each sensor. The sensor positioning is shown in Figure 1 (c). By
getting the orientation of each sensor and by using a vector for
each limb, we could sum up all of the Cartesian coordinates of each
joint to obtain the hand coordinates.

3.2 Data collection
This work was approved by University of Sussex Ethical Committee,
application n. ER/ZJ70/1. The participants were recruited in the
Engineering and Informatics building for the participation in the
data collection. During the data collection, the participants needed
to follow the defined protocol.

Figure 2: Duration of each activity in the collected dataset.
The value of c denotes the number of occurrences of each
activity across the entire dataset.

We defined a protocol, displayed in Figure 3, which allowed
us to collect a wide variety of scratches. The data collection took
place in the lab, and we attempted to obtain the most naturalistic
dataset with a varied null class. In particular, we collected a dataset
consisting of three different scratch locations on the head (top, side,
and back) and scratch locations on other parts of the body (leg
and shoulder). The scratches were performed with two different
intensities (intense and moderate). In order to include a realistic
null class in the dataset, we asked the participants to walk for 20 s in
the office in between groups of scratches. In addition, we asked the
participants to perform a number of other hand gestures, including
simulating washing hands and brushing teeth, drinking water, and
typing on a computer, as a way of including a more realistic set of
activities to evaluate how well scratch could be distinguished from
the other activities of daily living.

The data collection was a tedious process and included many
activities. An application was used to show the current and the next
activity on an IPad, using the application ‘Seconds’ [1]. Undesired
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Figure 3: Protocol of data collection. First, the scratches were performed at three different intensities and all of the other
activities for the null class were performed thereafter. A scratch occurred for 3 s, and then, there was a 10-s break. It was
repeated six times, and before the next activity, a 20-s walk was performed.

deviation from the given protocol occurred during the collection.
However, the labels of activities were adjusted after the data collec-
tion to adjust to the deviations.

4 HUMAN ACTIVITY RECOGNITION
PIPELINE

The human activity recognition process is a process that requires
a specialised pipeline for each case. The pipeline that we used for
the human activity recognition in this study is shown in Figure 4.

Figure 4: Human activity recognition pipeline for scratch de-
tection. The data were sampled from the sensors and then
preprocessed. The features with the highest MI score were
used for the classification task.

4.1 Data Cleaning and Pre-processing
The data were collected using five devices (four IMUs and one EPS).
However, with the additional development of the firmware, the
IMUs and the EPS could be deployed using only one device. Thus,
in the later stages, the number of devices that required EPS and
IMUs was 1.

The sampling rates of the IMUs and the EPS were 100 Hz and 1
kHz, respectively. After sampling, the data were stored on the local
SD cards. All the devices were synchronised; however, they did
not log the data at exactly the same time. Because of the different
time stamps, an interpolation technique was considered. As the
quaternion data had a value of an angle, linear interpolation was
not possible. Thus, an ASOF function was used. ASOF merged the
data according to the nearest timestamps rather than the equal
timestamps. A time delta equal to 10 ms was chosen: if the nearest
timestamp was further than 10 ms, then the function did not choose
the nearest value and assigned NaN.

The EPS was very sensitive, and hence, the collected data had a
considerable amount of fluctuation. Thus, a low-pass Butterworth
filter was applied to smooth the signal, and then the signal was
resampled to match the 100-Hz IMUs’ frequency.

4.2 Channels
Additional data, apart from the sampled data, were computed, in
order to obtain more information:

• These additional data included the hand coordinates, which
are described in Section 3.1.2.
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• In the formula, m is any modality with the x, y, z projec-
tions and mxyz is the magnitude, which was calculated to
determine whether the magnitude could enable the device
to achieve a relatively high performance.

𝑚𝑥𝑦𝑧 =
√
𝑚2
𝑥 +𝑚2

𝑦 +𝑚2
𝑧 (1)

The magnitude was computed using formula 1 for the accelera-
tion, rotation, and hand coordinates.

Accx Quat0 Gyrx Handx EPS
Accy Quat1 Gyry Handy -
Accz Quat2 Gyrz Handz -
Accxyz Quat3 Gyrxyz Handxyz -

Table 3: Channels. All the channels used in activity recogni-
tion are displayed including acceleration, rotation, orienta-
tion, hand coordinates, and the EPS.

Thereafter, sliding windows of the time series were generated
with a window length of 0.4 s. This time was chosen on the basis
of the fact that a scratch is an activity which occurs for a short
duration of time.

4.3 Feature Extraction
From the features shown in Table 3, we had to extract features from
the sliding windows. The features chosen for this case are shown
in Table 4. The mean and the variance enabled us to defines the dis-
tribution. The percentiles allowed us to detect the key points in the
distribution and avoid the outliers, contradictory to the minimum
and the maximum functions. The mean crossing rate and the zero
crossing rate were used to evaluate how periodic the signal was.

Domain Features
Statistical Mean

Variance
Percentile 25%
Percentile 50%
Percentile 75%
Percentile 90%

Mean crossing rate
Zero crossing rate

Frequency Energy
Table 4: List of features

4.4 Feature Selection
Two of the most common methods used to select the most impor-
tant features are the filter and wrapper methods. As we had 17
channels, there were 170 unique features. The wrapper method
would take an unreasonable amount of time to find the best combi-
nation of features. Therefore, the filter method that used the mutual
information [6] algorithm was used to select the features carrying
the highest amount of information.

I(𝑋 ;𝑌 ) =
∑
𝑦∈Y

∑
𝑥 ∈X

𝑝 (𝑋,𝑌 ) (𝑥,𝑦) log
(
𝑝 (𝑋,𝑌 ) (𝑥,𝑦)
𝑝𝑋 (𝑥) 𝑝𝑌 (𝑦)

)
(2)

where p (X,Y) is the joint probability mass function of X, and
𝑝 (𝑋 ) and 𝑝 (𝑌 ) are the marginal probability mass functions of X and
Y, respectively, where X is the bin of the feature and Y is the class.
For each feature, we created 100 equal-size bins and performed a
small correction by adding 10−10 to the division so that when there
were empty bins, division by zero was possible.

4.5 Machine Learning
As the range of the data varied considerably, all of the extracted
features were normalised as shown in equation 3.

𝑛𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝑛𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 − `

𝜎
(3)

In the equation, µ is the mean of the feature in the training set, nraw
is the feature, and 𝜎 is the standard deviation of the feature in the
training set.

4.5.1 k-Nearest Neighbour. Next, k-nearest neighbour is a model
which is fast to train and has a proven record of successful appli-
cations in many areas. However, it is slow to compute predictions
and is very susceptible to outliers. Therefore, choosing too many
correlated features or features that did not bring valuable informa-
tion toward the decision making, would only diminish the model’s
ability to recognise activities. Therefore, the value of k was set as
100, and the sklearn implementation was used.

4.5.2 Random Forest. Random forest is ensemble-based learning
method. This model has seen considerable success in regression and
classification tasks. Given that the decision trees can distinguish
important features, a larger number of features will lead to more
accurate predictions. For the random forest model, we chose to use
100 trees. In this case, we used the random forest algorithm from
the sklearn Python library.

4.6 Performance measurement

Figure 5: K-fold cross-validation where the data from three
unseen users were left out for testing.

The goal of this project was to have a universal system for all the
users. To achieve this goal, we used a three-fold cross-validation.
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ML model Modalities Number of devices Number of features
1 2 3 4 5

k-NN xyz 4 38.01±0.7% 59.3±2.5% 61.2±1.9% 62.7±1.9% 62.1±2%
IMU 1 41.4±6.7% 45.4±8.3% 46.3±7.8% 46.4±8% 47±7.3%

IMU+EPS 1 43.2±2.1% 50.3±2.4% 52±2.1% 52.7±2.2% 53.4±2.4%
IMU+xyz 4 43.8±6.2% 52.5±0.9% 55.9±3.2% 55.9±2.8% 56.3±28%

IMU+xyz+EPS 4 47.9±1% 52.2±1.7% 54±2% 54.7±0.2% 55.6±2%
Random forest xyz 1 55.1±2.5% 66.6±3.5% 66.7±3.2% 66.8±3.2% 66.9±3.2%

IMU 1 45.6±8.2% 47.7±8.4% 48.1±8.5% 48.4±8.6% 49±8.5%
IMU+EPS 1 45.2±4.2% 49.6±5.4% 50.6±5.7% 51.8±6% 52.1±5.8%
IMU+xyz 4 50.6±3.3% 52.6±4% 51.96±4.5% 52±4.6% 53.8±4.6%

IMU+xyz+EPS 4 56.3±2.2% 57.4±3% 57.8±3.1% 57.8±3.1% 57.8±3%
Table 5: Results table of the ten-class classification with the displayed Macro f1 score. Note that overall, a better performance
was achieved with the random forest model. Further, xyz is a simplified notation for the hand coordinates data.

During the cross-validation, the users were grouped into three
groups of three users, and during each validation, each test was
performed on the groups of three.

In this research project, a confusion matrix and the macro f1
score were chosen to evaluate the performance of the model and
its ability to generalise. We chose to use the macro score in order
to see how well the model recognised each class.

𝐹1𝑐 = 2 · precision · recall
precision + recall (4)

𝐹1𝑀𝑎𝑐𝑟𝑜 =
𝑛∑
𝑐=1

𝐹1𝑐 (5)

The macro f1 score was calculated using equation 5. The score for
each class affected the overall results. Because of the class imbalance
in the dataset (40 min from 5 h 15 min was scratches, and the rest
was null), using the macro f1 score, we achieved a high performance
when a majority of the data belonged to the null class.

4.6.1 Fine activity recognition. First, the models were tested to
determine how well they could classify the ten classes. As there
were very similar classes and multiple activities took place at the
same time, this dataset was created to push the limits of the machine
learning models.

4.6.2 Coarse scratch/non-scratch activity recognition. The 10-class
classification task was meant to push the machine learning model
to distinguish the subtle difference between the activities. By eval-
uating how well a scratch was distinguishable from a complex null
class, we could determine how well a scratch could be detected in
realistic scenarios. For this part of the experiment, the model was
not retrained, but the labels were changed to either scratch or null.
This implied that if ‘scratch top of the head’ was confused with
‘scratch back of the head’, the f1 score would not be reduced. The
classes of the scratch and the null class are shown in Table 1.

5 RESULTS
5.1 Most important features
With the use of mutual information, a heatmap of the most im-
portant features was produced; it is shown in Figure 6. For each
channel, five features (which carried the highest amount of infor-
mation) were selected and are displayed in Table 6.

Channel f1 f2 f3 f4 f5
Accx var 90 % 75% mean median
Accy mean 75 % 90% median 25%
Accz 25% mean median var 25%
Gyrx var 25 % 90% 75% median
Gyry var 90 % 25% 75% median
Gyrz var 90 % 75% 25% median
Quat0 var 90 % 75% 25% median
Quat1 75% 90 % median mean 25%
Quat2 90 75% median 25% mean
Quat3 var 90 % 75% median mean
Accxyz mean median energy 25% 75 % %
Gyrxyz var 90 % 75% mean median
Handx var 90 % 25% 75% median
Handy 25% median 75% 90 % mean
Handz 25% mean median 75% 90 %
Handxyz 75 % 90 % median 25 % mean
Eps mx0 var 90 % mean 75 %

Table 6: Selected features for each channel

Figure 6: Feature heat map based on mutual information.
The lighter shade indicates that the feature of the channel
carried more information than the darker shade.
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As can be seen, the variance carried the largest amount of infor-
mation for most of the channels, and the percentiles showed good
performance as well. The results displayed in Figure 6 revealed
that the EPS carried the smallest amount of information as a chan-
nel. The mean crossing rate and the zero crossing rate were not
informative features in most of the cases.

5.2 Fine activity recognition results
In Table 5, the results are presented for the ten-class classification
task using the k-NN and the random forest models trained on a
different number of features from 1 to 5 per channel. The accuracy
is shown as the mean and the standard deviation between the folds.

Figure 7: F1 score vs. number of features for ten-class classi-
fication

5.2.1 k-NN. The best results were observed when only the hand
coordinates with four features per channel were used. The f1 score
reached 62.7%. To achieve this result, four devices were required.
In contrast, with only the IMUs and the EPS, an f1 score of 52.3%
was achieved and only one device was required.

Combining the hand coordinates with the IMU or IMU+EPS data
only worsened the results.

An f1 score of 53.4% was achieved with one device (IMUs and
EPS), while with only IMUs, the best achieved result was 47%.

5.2.2 Random forest. The random forest model showed an overall
better performance. The best performance was observed when
using hand coordinates with four features per channel, where an f1
score of 66.9%was achieved for the ten-class classification. However,
this task required the attachment of four devices on the body. We
observed that the performance improved with an increase in the
number of features introduced.

An f1 score of 52.9% was achieved with one device (IMUs and
EPS). Nonetheless, with IMUs only, the best achieved result was
49%.

In Figure 9, the confusion matrix shows which classes were
mostly confused when tested on the RF model using two features
per channel. In all the confusion matrices, note that ‘Scratch the

top of the head’, ‘Scratch the side of the head’ and ‘Scratch the back
of the head’ were considerably confused. In Figure (b), it can be
seen that ‘Brushing teeth’ was confused with ‘Scratch the side of
the head’ and vice versa, and in Figure (a), ‘Washing hands’ was
confused with ‘Typing on a computer’. When both the modalities
were combined, as seen in Figure (c), the performance on these two
classes drastically improved. When EPS was introduced, in Figure
(d), it can be seen that the number of errors decreased in the scratch
classes, as compared to when only IMUs were used.

5.3 Coarse scratch/non-scratch activity
recognition results

It was very challenging to classify ten classes. However, to evaluate
how well a scratch was recognisable, it was sufficient to distinguish
a scratch from any other activity. In Table 7, the results are presented
for the binary classification task.

Figure 8: F1 score vs. number of features for binary classifi-
cation

5.3.1 k-NN. The best result was achieved again by using the hand
coordinates data. We achieved an f1 score of 77.6%. With a single
device (IMUs and EPS), we achieved an f1 score of 70% with a
standard deviation of 2.9%. By using only the IMUs, we achieved
an f1 score of 62% with a standard deviation of 8.6%.

The EPS allowed us to reduce the standard deviation between
the folds as compared to the IMU results. However, four devices
were required with the extracted hand coordinates to achieve the
best results.

5.3.2 Random forest. The best score was achieved by using the
random forest model with five features per channel. It reached an
f1 score of 80.7% for scratch detection. With only the IMUs and the
EPS, an accuracy of 69.8% was achieved, and the standard deviation
between the folds was only 7.2%. The use of only IMUs resulted in
an f1 score of 63.8% with a standard deviation of 10%.

The same behaviour as observed as that with the k-NN model.
The EPS allowed us to reduce the standard deviation between the
folds as compared to the IMU results. However, four devices were
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(a) Hand coordinates (b) IMU channel

(c) IMU and hand coordinates (d) IMU and EPS channel

(e) Hand coordinates, IMU, and EPS

Figure 9: Confusion matrices when the inputs were two features per channel and the model was random forest.
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ML model Modalities Number of devices Number of features
1 2 3 4 5

k-NN xyz 4 55.89±2.7% 75.7±3% 77.2±2.5% 77.6±2.7% 77.5±2.4%
IMU 1 59.3±5.5% 60.8±8.5% 61.8±8.4% 61.8±8.4% 62±8.6%

IMU+EPS 1 63.1±2.7% 67.8±2.9% 69.3±2.9% 69.6±2.8% 70±2.9%
IMU+xyz 4 74.9±1.4% 73.5±78.3% 72±3.6% 71.8±3.8% 70.6±5.11%

IMU+xyz+EPS 4 66±4.4% 70.3±4.5% 72.6±4.5% 72.7±4.5% 72.9±4.7%
Random forest xyz 4 67.7±2% 80.1±2.7% 80.4±2.3% 80.7±2.7% 80.7±2.6%

IMU 1 62.3±6.3% 63.3±8.7% 63.3±9.2% 063.8±10% 63.8 ±10%
IMU+EPS 1 62.09±1.7% 68.2±6.4% 69.5±6.8% 69.5±7.6% 69.8±7.2%
IMU+xyz 4 66.2±3.9% 69.6±2.7% 69.6±2.5% 67.9±3.3% 69±3.3%

IMU+xyz+EPS 4 71.6±3.3% 73.5±3.4% 73.7±3.3% 73.5±3.1% 73.1±3.6%
Table 7: Results table of binary classification with the displayed macro f1 score. Note that overall, a better performance was
achieved with the random forest model. Further, xyz is a simplified notation for the hand coordinates data.

needed with the extracted hand coordinates to achieve the best
results.

6 DISCUSSION
6.1 Baseline Results
Currently, the standard approach toward human activity recogni-
tion is predicting an activity on the basis of the IMU data. In this
work, the baseline results were achieved by using the extracted
features from the IMU data. Moreover, these results only required
the deployment of one device.

The baseline results of the new dataset were as follows:
• For the ten-class classification with k-NN, the best result
was 47% ± 7.3%.

• For the ten-class classification with RF, the best result was
49% ± 8.5%.

• For the binary classification with k-NN, the best result was
62% ± 8.7%.

• For the binary classification with RF, the best result was
63.8% ± 10%.

6.2 Multimodal Fusion
The fusion of data between IMUs, EPS, and the extracted hand
coordinates did not always result in a better performance.

6.2.1 IMUs and EPS. IMUs and EPS required one device on the
wrist. Fusing the data and classification from the IMU and EPS
data provided a slightly better performance than only using IMUs
with the random forest and the k-NN models. Using the binary
classification task with IMUs and EPS resulted in an accuracy of
70% when using k-NN and 69.8% when using RF. Moreover, with
k-NN, the standard deviation decreased between the folds from 8.6%
to 2.9%; it decreased from 10% to 7.2% in the case of the random
forest model. Compared with the baseline results, there was a small
improvement in the f1 score. In both the cases, fusing the IMU and
EPS data decreased the standard deviation and improved the results
obtained using both the models, but not significantly. The reduction
in the standard deviation of the f1 score between the folds showed
that the model’s ability to recognise the activities was good for a
diverse group of people. Moreover, as the EPS could be deployed on
the IMU located on the hand, it did not create additional discomfort.

6.2.2 IMU and hand coordinates. For the ten-class and binary clas-
sifications, combining these modalities yielded better results than
using only IMUs, but worse than when using only the hand coordi-
nates. Using RF and binary classification, IMU achieved an accuracy
of 63.8% ± 10%; with only the hand coordinates, the result was 80.7%
± 2.6%, and when combined, it achieved 69.6% ± 2.5%. The same
behaviour was observed with k-NN and the ten-class classification
task.

Each activity was associated more with a certain location rela-
tive to the torso than with specific movements. Thus, additional
information could be redundant and decrease the accuracy. In this
case, fusing the hand coordinates data with the IMU data did not
provide with any gains, as compared to the results achieved using
only the hand coordinates data.

6.2.3 IMU, hand coordinates, and EPS. Combining all the modali-
ties outperformed the use of only the hand coordinates data. For
the binary classification task using RF and binary classification,
IMU achieved an accuracy of 63.8% ± 10%; with the use of only the
hand coordinates data, the result was 80.7% ± 2.6%, and with the
use of IMU with the hand coordinates data, the model achieved
an accuracy of 69.6% ± 2.5%. Moreover, with the use of IMU, hand
coordinates, and EPS data, the model was able to achieve an f1 score
of 73% ± 2.6%.

The dataset was biased to the location, implying that each ac-
tivity in the dataset was associated with a certain location relative
to the torso and this particular feature worked exceptionally well
with this dataset. The fusion of the dataset did not bring a dras-
tic improvement in the accuracy but significantly decreased the
standard deviation between the folds, as compared to the baseline
results. However, it still did not outperform the achieved results
when only the hand coordinates were used.

6.3 Number of Features
As can be seen from Figures 7 and 8, there was an increase in the
accuracy, but later, the results plateaued. This might be caused by
the mutual information algorithm, which did not take into account
the fact that certain features were correlated and that the redundant
information did not improve the performance. This was observed



PervasiveHealth ’20, May 18–20, 2020, Atlanta, GA, USA Zygimantas Jocys, Arash Pouryazdan, and Daniel Roggen

for both the classifiers, with the exception of k-NN with IMU and
hand coordinates.

6.4 Comfort and Accuracy Trade-off
To deploy a scratch detection system for clinical trials, the smallest
number of devices and the least invasive device must be chosen.
Sensors set up with four devices (shown in Figure 1) cannot be
used in any medical or clinical study, as this set up will make daily
activities uncomfortable and there will be a higher risk of failure
because of the large number of devices in use.

For the data collection in the present study, four devices were
used. In general, more information gives better results. In Figures 5
and 7, it is shown that increasing the number of devices produced
better results with the exception of k-NN and hand coordinates.
However, discomfort is a major drawback for the deployment of a
human activity recognition system. If comfort is the priority: one
device with IMUs and EPS on the wrist might be sufficient with a
70% accuracy, and if accuracy is the priority, then with four devices
(as shown in Figure 1) should be used. Note that an f1 score of 80.7%
could be achieved by using only the hand coordinates.

6.5 Future Work
In Section 5, note that hand coordinates relative to the torso were
needed to achieve the best performance for this dataset. To build
a comfortable system, new localisation techniques should be ex-
plored, so that the sensors can fit on one wrist. We suggest to
explore localisation techniques, such as ultra wide band. For exam-
ple, PosXYZ [5] needs only two devices (thw slave and the master)
to be deployed in such a system. The slave device will be attached
to the wrist, and the master device will be the reference point. With
the use of the ultra-wide-band technology, the location of the wrist
as compared to the torso can be computed and can be used for
human activity recognition. Thus, the hand coordinates will enable
one to achieve higher accuracy, without needing four straps on the
torso, upper arm, lower arm, and wrist, respectively.

Exploring different feature selection techniques, such as MRMR
[18], can lead to higher performance. MRMR is a minimum redun-
dancy feature selection algorithm, which also takes into considera-
tion how redundant a feature is as compared to the other selected
features. Moreover, to determine what accuracy can be achieved
for this dataset, an investigation of deep learning models, such as
DeepConvLSTM [13], can produce substantially higher accuracy
results.

Finally, new hardware can be developed for head scratch detec-
tion, such as EPS-based glasses, which can work as a proximity
sensor to detect when the hand is nearby, thus increasing the recog-
nition of head scratches.

Even though in this study, we explored feature-based fusion,
decision-based fusion has shown good performance as well [2].
Thus, exploring hierarchical classifiers with decision-based fusion
should be able to yield even better scratch detection results.

The four participants in the study [17] were smokers, and they
needed to tap the sensor to flag when the smoking happened. This
gives the insight that in a similar study for scratch detection, active
learning should be incorporated so that a user will be queried if he
scratches and the scratch will be flagged.

7 CONCLUSIONS
During this experiment, we explored how the fusion of different
sensor modalities contributed toward accurate scratch detection
by using different numbers of features per channel and common
machine learning models, such as k-NN and random forest. For this
task, a dataset was built with the data collected for ten different
activities to investigate the limitations of each model and explore
the trade-off between the number of sensor modalities, number of
features, and machine learning models.

The key results were as follows:
• The best baseline result for detecting a scratch with a simple
IMU was an f1 score of 63.8% obtained using RF, which
required only one device.

• The best result obtained using one device was an f1 score
of 70% for scratch detection. It was achieved by using k-NN
with IMU and EPS data.

• The best overall result was an f1 score of 80.7%. It was
achieved for the binary scratch detection using the hand
coordinates data and the RF model, which required four
devices.

• Fusing EPS data with IMU data consistently increased the
accuracy and reduced the deviation between the folds, as
compared to using only the IMU data.

We found that hand coordinates alone enabled us to achieve the
highest accuracy to detect all the activities. However, this dataset
was biased to perform well on these data as each position was
associated with a certain activity. However, with the current tech-
nology, such a model would require four IMUs on the torso, upper
and lower arms, and the hand. Therefore, it is not convenient to
use this setup on a large number of people.

For the best performance on this dataset, the hand coordinates
data with five features should be used to achieve the highest ac-
curacy of 80.7% for detecting scratches. However, if a comfortable
system is a priority and accuracy can be sacrificed, then 70% accu-
racy can be achieved with a single device using IMUs and EPS.
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Abstract—Itching is a condition caused by different skin
diseases and automatically detecting it is useful to assess
severity or treatment efficacy. In this work, we evaluate how
sound, collected by a wrist-worn microphone, can be used to
recognise and distinguish scratch occurrences. We collected
a dataset from 4 users, where each user conducted 20 scalp
scratches, 10 shoulder scratches and 18 scalp scratches with
and without TV noise being played in the background. The
classification was done by training a random forest model
with engineered features and was tested using leave-one-user-
out cross-validation. In a silent environment we achieved
sensitivity of 83.75% ± 8.8% and specificity 78.5% ± 4%
and in an environment with TV noise present sensitivity
decreased to 61%±20.45% and specificity 78%±9.6%. These
results indicate that sound may be one modality to include
for a future multimodal scratch detection device.

Index Terms—Scratch detection, sound-based, microphone,
activity recognition, wearable sensing.

I. INTRODUCTION

In previous work, itch [1] was described as an irritating
feeling that causes the desire to scratch. Chronic itch can
be a reaction of skin diseases, kidney failure, cancers and
neurological disorders. Given that the disease might need
urgent medical attention, scratches should be monitored.

Scratches can be observed manually. In one study [2],
scratching was monitored on 40 patients in the hospital by
the staff. Observing the change of scratch quantity before
and after the treatment allows to evaluate how much the
treatment reduces the occurrences of scratches. That system
is not suitable to be deployed on a large group of people
(hundreds). Another approach is to video record nocturnal
scratches using an infrared camera. In one experiment,
which was done with 7 users [3], the infrared camera was
used, so that the user would not be interrupted during
the night and the scratches were annotated later. Both
of these approaches are invasive and require significant
human resources to be scaled. However, wearable sensors
allow non-invasive and scalable method for human activity
recognition.

Previous work used uncomfortable and hard to install
body or bone conduction based microphones (see sec 2).
In this work, we explore to which extent a wrist-worn

microphone can be used for scratch detection. The novelties
are:
• An evaluation of more comfortable wearable wrist-

worn microphone’s ability to detect scratch.
• An anotated dataset for scratch detection, which in-

corporates also different levels of ambient noise.
• A frequency analysis of the scratch from the wrist

worn microphone data.
• Analysis and visualisation of how the information

of the extracted features change when background
noise is present and when it is not. We used Mutual
Information - based feature selection.

• An evaluation of scratch detection algorithms.

II. RELATED WORK

Triaxial accelerometers [4] on the wrist for scratch de-
tection have been successful and achieved high sensitivity
(0.96) and specificity (0.92). They recruited 12 peopled and
they were instructed when to scratch. The duration of the
dataset collection was 140s per user. Each person scratched
the back of their head, leg, elbow, walked and rolled.
Research was done using the acceleration of wrist-mounted
mobile phone [5] to detect scratch, where 90% accuracy
was achieved. It was evaluated on three participants with
the ground truth captured with a infra-red camera during
one night.

A body-conduction based microphone [6] was used to
detect nocturnal scratching in acute dermatitis patients.
They used a piezoelectric microphone, which was placed
on the participants wrist. The sensor needs to be attached
tightly to a the hand, to avoid capturing the sound from
the movement of the watch. The data was collected from 4
atopic dermatitis patients and 8 healthy patients during the
night. They were filmed in order to annotate the scratches.
On average, healthy candidates were scratching for 2
minutes per night, while the users with atopic dermatitis
scratched for 24 minutes. The system had a correlation
coefficient of 0.98 between the automatically annotated
software and the ground truth.

Bone-conduction microphone [7] has been used for
scratch detection. The sensor measures the vibrations of



Acitivity ID Activity Repetition Duration Wait time

1 Low intensity scalp scratch 10 3 s 7 s
2 High intensity scalp scratch 10 3 s 7 s
3 Low intensity scalp scratch while watching TV-series (distance=50 cm, 1m, 2m) 3, 3, 3 3 s 7 s
4 High intensity scalp scratch while watching TV-series (distance=50 cm, 1m, 2m) 3, 3, 3 3 s 7 s
5 Shoulder scratch 10 3 s 7 s

TABLE I: Protocol of data collection used to collect the dataset. Each participant did 30 scalp scratches and 10 decoy
scratches while scratching the shoulder rather than the head. The wait time is the between scratches, where a person
does nothing in order to visually assess from the signal when the scratch occurs.

the fingernail while scratching. The power spectrum has
shown that it can also be used to distinguish the intensity
of the scratch. However, for longer data collections this
system is not practical because it requires a fixed sensor
on the fingernail and wires going from a fingernail to the
sensor platform.

In summary, sound can be a powerful predictor for
scratch detection. The limitation is that body and bone
conduction microphones require a specific set up, which is
uncomfortable for long duration data collection (multiple
days).

III. WEARABLE SENSING PLATFORM

(a)
(b)

Fig. 1: The data collection platform is 30x30mm in size
with connectors for additional expansions (a). The micro-
phone is on the skin-facing side when worn on the body
(b).

The platform [8] used for data collection is an in-house
wearable sensing research platform. Its primary function
is to be an Inertial Measurement Unit (IMU) and a digi-
tal microphone, which can be expanded using expansion
connectors for sensor research purposes. The device is
30x30mm. It is based on an ARM Cortex M4 processor
(STM32L496 from ST), which runs at 20MHz with our
default firmware. The platform comprises a 9-axis inertial
measurement unit (TDK Invensense ICM-20948), an digital
MEMS microphone (ST MP34DT05-A), a micro-SD card,
Bluetooth 2 and USB interfaces, a fuel gauge for built-
in power measurements (LTC2942), an EEPROM to store
configuration (M24128). The processor built-in real-time
clock (RTC) is operated from a dedicated 32KHz quartz
(10ppm frequency tolerance). The platform operates at 3V
from a lithium polymer battery (165mAh) with a LTC3553

voltage regulator. The expansion connectors provide I2C,
SPI, UART, ADC inputs and DAC output for expansion
boards.

The device firmware has been designed for ease of use. It
allows without any programming to acquire the data from
the built-in sensors or external ADC inputs through a com-
mand line interface. Data can be streamed over Bluetooth
or USB, or stored in the SD card. The current firmware
allows to acquire in isolation IMU data, sound data, or
analog inputs data from the expansion connector. It can also
acquire multimodal data: i.e. it can simultaneously acquire
IMU, sound and analog inputs in a multiplexed streaming
and storage format. This is particularly relevant to acquire
data for activity recognition based on a combination of
multimodal sensors. The sample rate of IMU, microphone
and ADC is fully configurable. The IMU data is also
processed by the firmware to obtain the device orientation
in quaternions. All data is time-stamped using the internal
RTC.

The microphone is omnidirectional. It has a 64dB signal-
to-noise ratio and a -26 dbFS sensitivity. It is on the bottom-
side of the device (i.e. facing towards the skin if worn
on the wrist), but it is not in direct contact with the skin
due to the case. The microphone is clocked at 2MHz and
provides a 1-bit digital pulse density modulation output,
which comes straight from its sigma-delta analog to digital
converter. The data is converted to an audio signal using
a 3rd order Sinc filter, each with a decimation ratio of 82
which yields a 16-bit 8KHz audio signal with a dynamic
range has been experimentally tuned for typical ambient
sounds and speech (≤ dB).

IV. EVALUATION OF SCRATCH DETECTION

The aim of this work is to evaluate the effectiveness
of scratch detection from sound collected by a wrist-worn
microphone using three steps: data collection, analysis and
classification.

A. Dataset collection

The aim of this protocol (Table I) is to evaluate:
1) if scratching is detectable with the microphone in a

silent environment (activities 1, 2 and 5)
2) if scratching is detectable when there is background

noise (activities 3,4)
3) if scalp scratching (activities 1, 2) can be distin-

guished from shoulder scratching (activity 5).



TV-series

(a) Data collection

(b) The sensor was attached
on the wrist using a band.

Fig. 2: The protocol contains 10 low-intensity, 10 high-intensity scalp scratches and 10 shoulder scratches which was
recorded without any noise in the background. There were 18 recordings with noise in the background.

The dataset was collected from 4 users, as seen in table II.
To have a representative evaluation we collected a dataset
from 2 males with different hair lengths, as well as 2
females: one with loose hair and one with a tight pony
tail.

User Gender Hair type Hair length

1 Female Straight (tight pony tail) 40cm
2 Male Black, straight 10cm
3 Female Straight loose 50cm
4 Male Straight loose 20 cm

TABLE II: Characteristics of the participants in the dataset.

For the data collection each user wore a sensor (Figure
1) on their main hand (Figure 2 (b)). As it is common
to wear watches and bracelets on the wrist it is also the
most adequate place for the device’s location. For large
scale data collections the device is not more invasive than
a smart watch.

The protocol was shown on an Ipad using ”Seconds
Pro” [9]. This was a constrained recording. It was done
to show that scratch can be recognised using wrist-worn
microphone and if it can be recognised with ambient noise
present. The audio was recorded at 8kHz and was stored
to a SD card.

B. Signal Visualisation

The spectogram was created by computing Fast fourier
transforms of a sliding window of 1000 samples (0.125
seconds) with an overlap of 50%. The higher size of the
window was chosen as the noise originating from body
movements is captured by the microphone, as seen in the
high intensity scalp scratch in figure 2(a). From the figure
3, it can be seen that there is no observable clusters of
dominant frequencies.

High power [Au]

Low power [Au]

Fig. 3: Spectogram of an excerpt of the recording (user
2). Three scratches (dashed boxes) and the null class are
visibile.

C. Feature Analysis

Two of the most common methods used to select the
most important features are the filter and wrapper methods.
The wrapper method would take an unreasonable amount
of time to find the best combination of features from
every permutation of the 85 features. Therefore, the filter
method that used the mutual information [10] algorithm
was used to select the features carrying the highest amount
of information.

I(X;Y ) =
∑

y∈Y

∑

x∈X
p(X,Y )(x, y) log

(
p(X,Y )(x, y)

pX(x) pY (y)

)

(1)
where p (X,Y) is the joint probability mass function of

X, and p(X) and p(Y ) are the marginal probability mass



Fig. 4: The Mutual Information score is shown for each feature for data, that was collected under three different
conditions: without background noise (no TV), with background noise (with TV) and when these two datasets are
combined. It can be seen, that when the TV-series are on, the MI score drops compared to when the scratches occur in
a silent environment.

functions of X and Y, respectively, where X is the bin of
the feature and Y is the class. For each feature, we created
100 equal-size bins and performed a small correction by
adding 10−10 to the division so that when there were empty
bins, division by zero was not occurring.

We show in figure 4, that the features extracted from the
frequency domain (Fourier transform) carries the largest
amount of information in the silent background. However,
when TV noise are being played in the background (noisy),
the amount of information that each feature carries for
scratch detection is smaller.

Silent background Noisy background
Order Feature MI score Feature MI score

1 FFT max 0.181 FFT max 0.083
2 stdD 0.173 75% 0.07
3 mx0 0.143 std 0.064
4 FFT 5% 0.137 fft max f 0.0602
5 FFT 75% 0.137 90 % 0.06

TABLE III: The top features are shown with the associated
Mutual Information score. FFT maximum amplitude had
the largest MI score in both cases. However, the top
features when noise is present have a much smaller MI
score compared to the features extracted from the data,
which was collected in silence.

In the table III we show, that the top 5 features in
the silent and noisy backgrounds. It can be seen, that
the MI scores are much lower from the data, which was
collected with TV-series in the background, compared to
the data collected in a silent background. The top feature
FFT maximum amplitude carried the largest amount of
information. A key difference in both cases is that when
TV-series are not present, top 5 features are from the
frequency domain, while when TV-series are not present

two (75% and 90% of the window) of the top 5 features
are frequency invariant.

D. Classification

Type Features Dimension

F DC component of FFT 1
Highest FFT value and frequency 2

Max, Min, Mean, std of the FFT values 2
Kurtosis, skewness of FFT 2

Percentiles 5, 25, 50, 75, 90 of FFT 5
T Mean, std 1

Percentiles 5, 25, 50, 75, 90 5
Auto-correlation (min,max,mean,std) 4

Mean-crossing rate 1
Kurtosis, Skewness 2

E Energy of 50 Hz bands 60
Total number of features 87

TABLE IV: We used 85 extracted features from the sliding
windows of size 1000 (0.125 s) and 50% overlap. T are
the features extracted from the sliding window, F - from
Fourier transforms, E - energy of the frequency bands.

We trained a classification task using random forest (100
estimators with 5 max depth) model with Gini impurity
and leave-one-user-out cross-validation. To evaluate if a
user-independent scratch recognition model can be trained
to work on unseen users, we train on User 1, 2, 3 and
test on User 4; and then we repeat this with different test
users. For the classification task we extracted the features
(Table IV) from a sliding window. The sliding window
size is 1000 samples (0.125 seconds) with an overlap of
50%. The null class contains everything except scratch.
The labels were split into overlapping windows and the
dominant label in the window was chosen. We calculated
sensitivity or specificity by defining scratch as positives (P)
and null class as negatives (N). To evaluate the performance



Test number Environment Classes User 1 User 2 User 3 User 4 Accuracy F1weighted

1 Silent Accuracy of scratch 72 % 97 % 83 % 83 % 83.75%±8.8% 82%±2.3%
Accuracy of null 83 % 75 % 74 % 82 % 78.5%±4%

2 TV-Series Accuracy of scratch 42 % 87% 40 % 75 % 61% ±20.45% 73.75% ±3.87%
Accuracy of null 81 % 62% 88% 81% 78%±9.6%

3 Silent Accuracy of scalp scratch 51 % 40% 20% 63% 43±15.8% 65.4%±9.23%
Accuracy of shoulder scratch 30 % 21 % 54% 52% 39.25%±14.13%

Accuracy of null 79 % 43 % 76 % 74 % 68% ±14.54%

TABLE V: The results of the classification show that in a silent environment scratch can be detected with 83.7% accuracy,
while the null class with 78%. With TV-series in the background scratch with 61% and null with 78%. Shoulder scratches
cannot be distinguished from scalp scratches. The accuracy is rate at which the model predicts the class correctly.

we used sensitivity and specificity (Equation 1), with the
F1weighted (Equation 2), where ni is the class size and N
is the total number of samples.

sensitivity =
PTrue

P
, specificity =

NTrue

N
(2)

F1weighted =
∑

i

2wi
precisioni recalli
precisioni + recalli

, wi =
ni

N

(3)
For the 1st aim (ref section 4.1) we trained and tested
only on scratches (scalp and shoulder scratches (Activities
1, 2, 5) are one class) with no TV-series present. The
model achieved sensitivity of 83.75%±8.8% and specificity
of 78.5%±4%. F1weighted score was 82%. The worst
performance is obtained with User 1, where the sensitivity
is 72%.

For the 2nd aim, where we trained on all the data, but
tested only on the section where TV-series (Activities 3, 4)
are present. This yielded sensitivity of 61%±20.45%, speci-
ficity of 78%±9.6% and a F1weighted score of 73.75%.

For the 3rd aim we wanted to evaluate if shoulder scratch
can be distinguished from scalp scratches. We performed a
classification with 3 classes: scalp scratch, shoulder scratch
and null class (Activities 1, 2, 5). The model was trained
and tested only on the data where TV-series are not present
in the background. We achieved that on average scalp
scratch was recognised with an accuracy of 43%±15.8%,
shoulder scratch with an accuracy of 39.25%±14.13%, null
class 68%±14.54% and the F1weighted score was 65.4%.

V. DISCUSSION

The sensor platform is available to use with multiple
sensor modalities. We show that sound is a strong predictor
and can be used for sensor fusion. The fusion should
improve the overall scratch detection. The dataset was
collected from 4 users with different hair styles. We showed
that by doing leave-one-user-out cross-validation sensitivity
can be 83.75% and specificity 78.5% in a silent environ-
ment. Compared to the body-conduction microphone in [6]
our performance is lower as our microphone captures the
ambient sound whereas the body-conduction microphone
is isolated using a gel and needs to be tightly fixed to the
hand. Thus, there is a trade-off of comfort and performance.

Moreover, we observed that the MI scores of the features
extracted from the data collected with background noise
are smaller than from the data collected in silence for
scratch detection. It means, if we were to use features
selected in the silent environment and were to use them for
classification when there is ambient noise, the performance
is likely to degrade.

Furthermore, sound made by scratching is dependent on
the type of the hair. For example, the lowest performance
was achieved on User 1, who had hair tied in a tight pony
tail. Another limitation is scratch detection when ambient
noise is present. In this case we achieved a sensitivity of
61%±20.45%.

We observed that scratches do not seem to have a par-
ticular frequency signature, and thus filtering the ambient
sound does not seem practical. When we listened to the
recordings, the scratch was audible despite the TV-series
playing in the background. It means that the sound of
scratching is captured and more sophisticated algorithms,
such as Deep Learning could be tried. Microphone beam-
forming could help to enhance the directional sensitivity of
our device.

VI. CONCLUSION

In this work, we show that sound can be used as a sensor
modality to distinguish scratch. In a silent environment
the sensitivity and specificity are 83.75% and 78.5%. On
the other hand, in a noisy environment the sensitivity and
specificity are 59.25% and 77.25%. Moreover, we came
to the same conclusion by computing Mutual Information
scores to see the importance of the features. The features
extracted from the data that was collected with noise in the
background had significantly smaller score compared with
the data that was collected in a silent environment. With
the ambient noise the model with the chosen features is not
reliable enough to detect scratches with a high accuracy. It
enforces the idea, that additional sensor modalities should
be used together to distinguish the scalp scratches, as it
will allow to compensate when ambient noise is present.

Ambient noise is a challenge and appropriate techniques
should be used to diminish the impact of the noise on the
predictions. A microphone would work extremely well for
scratches, where there is a limited amount of noise, but
for real daily activities it is not accurate enough to be



deployed alone. However, it could significantly increase
the scratch detection accuracy if it would be fused with
other modalities. Our research platform allows us to jointly
acquire sound and IMU [8] data and this will be explored
in the future.
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telemedicine,[21–23] and artificial skins.[24,25] 
Moreover, strain sensors have been 
integrated onto the surface of textiles 
showcasing their potential to become ubiq-
uitous in smart textile applications.[16,26] 
This results in the strain sensors coming 
into direct contact with human skin. 
Therefore, there has been a significant 
drive toward the development of bio-
compatible strain sensors. For instance, 
researchers have investigated the effects 
of ionic liquids and hydrogels to fabri-
cate stretchable strain sensors with low 
hysteresis.[27,28] However, most of these 
sensors have low gauge factors and high 
impedances, which in-turn complicates 
the sensors’ readout electronics, making 
them unsuitable for wearable applica-
tions. Although resistive strain sensors 
with high gauge factors have been fabri-
cated,[29,30] some of these sensors demon-
strate a limited strain range of 50%, while 
others were unable to go back to their 
original length once stretched. The nature 

of human motion requires the use of highly stretchable sen-
sors for activity monitoring. This has led to extensive work in 
developing strain sensing materials and sensors with high sen-
sitivities and wide strain ranges. Most of these sensing mate-
rials are fabricated utilizing harmful chemicals,[31–36] expensive 
equipment,[37,38] sophisticated mechanical designs,[36,39,40] or 
advanced low dimensional materials.[41–43]

Given the absence of inherently stretchable piezoresis-
tive materials, strain sensors are commonly synthesized by 
mixing elastomers and conductive materials. In this context 
Ecoflex is preferred as an elastomer due to its high stretch-
ability, biocompatibility, and easy fabrication. In addition, sen-
sors constructed using Ecoflex showcase a fast response and 
low hysteresis.[13,20,44] In the case of conductive fillers, a low 
cost conductive material is highly desirable for a large scale 
and inexpensive production of strain sensors. In this regard, 
carbon black (CB) has been preferred[13] in comparison to other 
fillers such as metal nanowire/nanoparticles,[19,45–47] carbon 
nanotubes/nanoparticles,[31,48] and liquid metals.[49] However, 
the poor dispersibility of CB in water complicates the formation 
of uniform and controllable CB conductive networks without 
resorting to potentially harmful solvents.[50] In general, non-
conductive solvents such as dimethyl dispersion solution,[31] 

A biocompatible inexpensive strain sensor constituting of an elastomer filled 
with natural coconut oil (CNO) and carbon black (CB) is presented here. Strain 
sensors are widely utilized for applications in human activity recognition, 
health monitoring, and soft robotics. Given that these sensors are envisioned 
to be present in a plethora of fields, it is important that they are low cost, 
reliable, biocompatible, and eco-friendly. This work demonstrates that CNO 
can be used to create conductive percolation network in elastomers, without 
the necessity for harmful chemicals or expensive machinery. The sensor has a 
gauge factor of 0.77 ± 0.01, and the sensing material has a porous morphology 
filled with an oily suspension formed of CNO and CB. Results indicate that 
the liquid filled porous structure can improve the reliability of these resistive 
strain sensors in comparison to sensors fabricated utilizing commonly used 
non-polar solvents such as heptane. Consequently, the sensor demonstrates a 
hysteresis of only 2.41% at 200% strain over 250 stretch/release cycles. Finally, 
to demonstrate the potential of this fabrication technique, a functionalized 
glove is developed and used to detect wrist motion. These easily manufactur-
able and cost-effective sensors enable wearable on-skin ergonomic interven-
tion systems with minimal impact on the environment.
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Advancements in flexible and stretchable electronics such as 
deformable transistors,[1–3] circuits,[1,3] sensors,[3,4] and energy 
harvesters[1,5] are currently paving the way toward innova-
tive wearable systems or soft robots.[6–12] In particular, con-
formable strain sensors enable a variety of applications such 
as physical activity monitoring,[13–17] motion capturing,[18–20] 
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chloroform,[32] Toluene,[33] Heptane,[34] hexane, and acetone[35] 
have been utilized during the preparation of CB-based elas-
tomer sensors. These solvents increase the dispersibility of 
the CB particles in the mixture. Nonetheless, most of these 
solvents are explosive or toxic and therefore are required to be 
handled with care when fabricating the sensors. Moreover, after 
the fabrication, traces of these chemicals will be present in the 
structure, and this could harm the wearer. Shintake et  al.[38] 
have created strain sensors with a stretchability of 500% and a 
gauge factor ranging from 1.62 to 3.37 by mixing CB in Ecoflex 
without the use of these harmful chemical. However, to syn-
thesize these sensors, expensive equipment such as planetary 
centrifugal mixers was utilized. Non-toxic but synthetic diluting 
agents such as silicone oil has been utilized in the synthesis 
of CB silicone strain sensors,[51] where the excess of silicone 
oil was evaporated after the CB particles were mixed in the 
silicone rubber. The material exhibited limited stretchability of 
155–164% which makes these sensors less preferable for smart 
textile application where a large working range is required.

Another important factor that affects the performance of 
elastomeric strain sensors is the constant friction between the 
solid-state conductors and the elastomeric molecules.[47,52,53] 
This leads to slippage and detachment among the conductors 
resulting in low repeatability of the sensor measurements. This 
can be addressed by utilizing liquid-state conductors, due to 
the ability of liquids to undergo virtually limitless and instan-
taneous deformation.[12,52] Therefore, we utilize eco-friendly 
coconut oil (CNO) instead of volatile solvents to create a par-
tially liquid and conductive percolation network in Ecoflex when 
mixed with CB. CNO is an inexpensive, non-hazardous, and 
environmentally friendly natural polymer. It is recognized as a 
cooking oil fit for human handling and consumption, which is 
why it is widely used across the food and cosmetic industries.[54] 
This oil, as with most of the other natural esters, consists of 
triglycerides.[55] These triglycerides contain different fatty acids 
that make the CNO comparatively conductive to other oils.[55] 
Previously, CNO mixed with grape seed oil was used to fabri-
cate a temperature sensor.[56] Large stretchability (≥100%) and 
great stability are also important factors for sensors that require 
wide strain detection range and long-term repeated usage.

An easily manufacturable, eco-friendly, and cost-effective 
fabrication technique for producing strain sensors with a large 
strain detection range and great stability, is presented in this 
work. This fabrication technique is well-suited for environ-
ments where standard, yet expensive, electronic and chemical 
fabrication facilities are not available, as is the case of schools 
and developing countries. These biodegradable devices are 
easily customizable and can be utilized to develop ergonomic 
intervention systems that can be used by everyone. Here, 
CNO was used to disperse CB and create conductive pathways 
encased in an Ecoflex structure, as shown in Figure  1. Fur-
thermore, scanning electron microscopy (SEM) images and 
energy-dispersive X-ray (EDX) spectral analysis of the fabricated 
sensors demonstrated that high CNO density areas displace the 
Ecoflex, resulting in interconnected tunnel-like CNO/CB path-
ways. These conductive liquid pathways lead to more reliable 
measurements for different strains, when compared to sensors 
fabricated using heptane. Moreover, the sensors demonstrated a 
hysteresis of only 2.41% at 200% strain over 250 stretch/release 

cycles. The response time and resistance drift with time and 
temperature of the sensor were also investigated. In addition to 
the characterization, a coconut strain sensor was attached to a 
textile glove and utilized to monitor wrist motion.

The composite sensing material created by mixing Ecoflex, 
CNO and CB has a porous morphology, as shown in Figure 1b. 
CNO replaces conventional solvent-based methods to create CB 
conductive pathways within Ecoflex. Unlike solvents, the CNO 
does not evaporate and remains in the structure when the Eco-
flex solidifies. This creates a porous structure with a porosity 
of 35.3%. The pores were filled with an oily suspension con-
taining CB particles. To further clarify this, the sensing material 
was pressed to get the oily suspension out. Then an EDX spec-
tral analysis was conducted on the oily suspension to identify 
its composition. The results given in Figure  1c1 illustrate that 
the material contained mainly carbon and oxygen. In compar-
ison, the EDX analysis of the frame shown in Figure  1c2 dis-
plays high concentrations of silicon. Hence, it can be said that 
the CB and CNO were left in the pores of the material. Further-
more, it was also vital to identify if the porous structure without 
the oily suspension contained CB particles. For this reason, 
the material was pressed and thoroughly cleaned with IPA and 
water to remove the oily suspension. Afterward the sample was 
dried, it consisted of only the porous Ecoflex structure without 
any oil or solvent. This dried sample was dissected, and a high-
resolution SEM image of the cross section was obtained which 
is displayed in Figure 1d. As shown in Figure 1d, the structure 
contains well dispersed CB particles. This indicates that during 
the fabrication process some CB particles were also dispersed 
in liquid Ecoflex and once it cured these CB particles were 
trapped in the porous Ecoflex structure.

After the development of the individual wet sensors, a func-
tionalized glove was created and utilized for wrist motion detec-
tion. To achieve this, a single sensor was attached using Ecoflex 
to a wrist glove, as shown in Figure 1e. A volunteer was asked 
to perform four wrist movements, namely, extension, flexion, 
ulnar deviation, and radial deviation. Each wrist position 
was held for 30  s and in between each position the hand was 
returned to its original neutral position and held for 30 s. The 
data was recorded using a battery powered Bluetooth enabled 
Bluesense microcontroller, making this system completely stan-
dalone.[57] Although these were multidimensional movements 
the results shown in Figure 1f demonstrate that a single sensor 
can clearly distinguish extension and flexion from radial and 
ulnar deviations. Therefore, we proved the feasibility of using 
the wet sensor for wrist motion detection, which is beneficial 
for activity recognition and preventing carpal tunnel syndrome.

The simple fabrication technique of the CB/CO sensor is 
shown in Figure 2a, and this process is explained in detail in 
the Experimental Section. In order to characterize the proper-
ties of the composite material, the conductivity of the wet com-
posite material for different concentrations of CB ranging from 
0% to 12% was investigated and the I/V graphs are shown in 
Figure  2b. As observed in the graphs the best conductivity is 
obtained at 12% CB. At higher concentrations of CB the solu-
tion was too viscous to be efficiently mixed using a simple mag-
netic stirrer. For comparison purposes, 12% CB was mixed with 
Ecoflex without CNO and its I/V characteristics are displayed 
in Figure  2c. This material demonstrated a low conductivity 
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and the material did not have uniform electrical properties 
throughout its structure. Moreover, the electrical characteriza-
tion of the dried sample is given in Figure  2c. The observed 
conductivity of the dried sample is due to the CB particles dis-
persed within the porous structure. As demonstrated in the I/V 
graphs (Figure  2a,c), the wet sample has a better conductivity 
in comparison to the dried one. This increase in conductivity 
is due to the presence of the oily suspension comprising of CB 
and CNO in the wet sample. The results from the I/V graphs 
indicate that the 12% CB/CNO wet material has the best con-
ductivity when compared to the rest. Hence, to assess the feasi-
bility of using this CB/CNO wet composite material to measure 
strain, we fabricated and characterized a CB/CNO resistive 
strain sensor. The sensors constituted of the CB/CNO material 
encased and sealed within an Ecoflex structure as illustrated in 
Figure  1a. The necessity for the Ecoflex encasement was due 
to the oily exterior of the sensing material, which comprised 
of an oily suspension in the porous structure. Since the sen-
sors were fabricated using rigorous stirring, it was important 
to identify if the resistance of the sensors varied significantly 
in between different devices. Therefore, three different material 

batches were synthesized, and from each batch three different 
sensors were fabricated. The sensors had an average resistance 
of 235  ±  181  kΩ and the resistance of these sensors could be 
easily customized by changing the CB concentration as shown 
in the I/V graphs in Figure 2b–d. It was important to identify 
if stretching the CB/CO material brings about any changes 
in the surface morphology. Therefore, microscopic images 
were obtained from the surface of the material when it was 
relaxed and stretched to 100% strain, and they are displayed in 
Figure  2e,f. The images show that there are no cracks in the 
surface due to stretching. This was further clarified by the SEM 
image of the stretched material displayed in Figure 2g.

Further to the characterization of the composite material, 
individual CB/CNO strain sensors were fabricated. Figure  3a 
displays a microscopic image of a cross section taken from a 
CB/CNO strain sensor. From images of several cross sections 
we extracted a porosity of 35.3% and Figure  3b shows the 
analysis conducted on Figure  3a, where white areas represent 
the porous regions. In general, for bulk materials water satu-
ration and water evaporation method are more suitable how-
ever, for this material we utilized microscopic images because 

Figure 1. Carbon black dispersed in coconut oil can be used to fabricate sensors for smart textiles. a) Concept figure of a CB/CNO strain sensor encased 
in an Ecoflex structure. b) SEM image of the cross section of a CB/CNO sensor material. Here the regions with a higher carbon concentration are 
presented in yellow and cyan shows the regions with a higher silicon concentration. c1) Energy-dispersive X-ray (EDX) spectral analysis done on the 
oily material present within the pores of the composite material. c2) EDX analysis done on the surface of the sensor. d) Close-up image of the dried 
material where carbon is shown in green and silicon in red. e) The strain sensor integrated onto a textile glove and utilized for flexion, extension, ulnar 
deviation, and radial deviation. f) Results from wrist motion experiment where the response due to flexion, extension, ulnar deviation, radial devia-
tion, and neutral position are shown in the red, blue, yellow, green, and white regions of the graph, respectively. The graph was utilized to distinguish 
between flexion and extension.
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Figure 2. The fabrication technique and I/V characteristics of the CB/CO composite material along with microscopic images of the material when it 
is relaxed and stretched. a) Simple fabrication technique of the CB/CO sensors. b) I/V graphs for different concentrations of CB in CNO and Ecoflex 
material, from 0–12%. c) The I/V characteristics of the dried sample that contained 12% CB and the I/V characteristics of a mixture containing only 
12% CB and Ecoflex without CNO. d) The resistance measurements from the different materials compositions. Microscopic images of a surface 
of the CB/CNO sensor material when e) it is relaxed, f) when it is stretched to 100% strain, captured using a Dino-Lite premier digital microscope  
(New Taipei City, Taiwan). g) A SEM image of the stretched CB/CNO sensor material at 100% strain.
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the material contained sealed pockets of CB/CO within its 
structure. Moreover, to directly compare these strain sensors 
with those fabricated using heptane as a solvent, we manufac-
tured CB/heptane sensors with similar dimensions to CB/CNO 
sensors. The microscopic image of the cross section of a CB/
heptane sensor is displayed in Figure  3c and it demonstrates 
a less porous structure. The performance of strain sensors is 
commonly characterized by their gauge factor (sensitivity), 
stretchability, hysteresis, and response time.[36] The response of 
a resistive strain sensor assuming that the cross section of the 
electrode layers is uniform (Poisson ratio ≈ 0) can be expressed 
as follows:[38]
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where ρ is the electrical resistivity of the conductive elastomer; 
ρ0 is the reference resistivity; R0 is the reference resistance; 
l0, w0, and h0 are the length, width, and thickness of the elec-
trodes, respectively. When strained, the resistivity of CB/CNO 
material changes as a result of the breakdown and realignment 
of CB aggregates which alters the conductive paths within the 
material.[38,58] This alteration results in a change in resistance 
and the ratio of this relative change to the mechanical strain is 
known as the gauge factor, GFR. The GFR of a resistive strain 
sensor is given by the following equation.
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where ∆R is the change in resistance when compared to  
the unstrained resistance R0. The strain on the sensor is  
given by ε1.

The gauge factor measurements for the presented CB/
CNO sensor are shown in Figure  3d. The gauge factor of the 
sensor ranges from 0.21 ±  0.01 at 20% strain to 0.77 ±  0.01 at 
200% strain. The graph also demonstrates the repeatability of 
∆R/R0 for each strain and recovery step over ten cycles. The 
average standard deviation for each step is only 0.017. The 
gauge factors of the heptane sensors are 0.77 ± 0.58 at R20 and 
0.52 ±  0.05 at R200. The measurements over ten cycles for the 
CB/heptane sensors are shown in Figure 3e. The graph demon-
strated a lower repeatability of ∆R/R0 in comparison to the CB/
CNO sensors for strain steps over ten cycles. For the heptane 
sensor, the average standard deviation of ∆R/R0 was 0.112 for 
each step. This is significantly larger than the 0.017 obtained 
from the CB/CNO sensor. The performance of CB/CNO sen-
sors was superior to the fabricated heptane sensors which 

used hazardous chemicals. The superior performance of the 
CB/CNO sensor is due to the oily liquid nature of the mate-
rial. This reduces the friction in between the CB particles and 
the elastomer molecules which minimizes the detachment and 
slippage among these conductive CB particles.[12,47,52]

These sensors when utilized for detecting human motion 
must be able to withstand large strains. Hence, it is vital to 
measure the maximum stretchability that the sensor can 
endeavor. The CB/CNO sensors had a maximum stretch-
ability of 1035 ± 215% which can be regarded more than ade-
quate for detecting human motion. The change in resistance 
of a CB/CNO sensor when stretched to its rupture strain is 
displayed in Figure  3f. In real life applications, strain sen-
sors must also maintain their sensing characteristics without 
fatigue failure and minimal hysteresis. Therefore, the sensors 
were subjected to 250 stretch/release cycles at 200% strain to 
examine their long-term stability. The complete experimental 
results are presented in Figure 3g. A sample of seven cycles 
of the test is displayed in Figure  3h. The cyclic test veri-
fies that the strain sensor has a good mechanical durability 
against repeated stretch/release cycles at 200% strain with no 
signs of fatigue failure. The change in sensor resistance at 
R0 after 200 cycles was only −0.28  ±  0.07% and the change 
in R200 was 2.41  ±  0.06%. These percentage changes were 
similar to the measurements recorded from the CB/heptane 
sensor, where R0 and R200 changed from −3.52 ±  0.08% and 
1.26 ± 0.12%, respectively (shown in Figure 3i). Thereafter, a 
larger cyclic test of 1000 cycles at 200% strain was conducted 
on a CB/CO sensor to further understand its durability and 
stability. The results presented in Figure  3j indicate that 
these sensors are even functional after 1000 cycles. An over-
shoot was also observed during the cyclic tests in both the 
CB/CNO and CB/heptane sensors, as shown in Figure 3g–j. 
Therefore, an experiment was conducted on CB/CNO sensor 
to estimate the effects of overshoot on the measurements. As 
it can be seen in Figure 3k, the sensors’ overshoot increases 
with increasing strain. The average overshoot was calculated 
as 22.16 ± 4.51%.

For wearable applications, it is also vital to determine the 
response time of the sensors when subjected to step changes. 
The response time of the CB/CNO sensors was measured as 
1.11 ± 0.21 s at 100% strain. This response time is sufficient for 
3D human body shape reconstruction applications,[17,59] ergo-
nomic intervention systems for posture recognition,[16,60,61] and 
carpal syndrome detection.[62–64] Furthermore, the resistance 
drift of strain sensors can greatly hinder their usability in wear-
able applications.[65] Therefore, to observe the drift characteris-
tics, the CB/CNO sensor was stretched to 100% strain and left 

Figure 3. Microscopic images of the CB/CNO and CB/heptane sensors along with their performance. a) Close-up of the CB/CNO sensor material using 
a Dino-Lite premier digital microscope (New Taipei City, Taiwan). b) Image analysis conducted on (a) utilizing Image J, where white areas represent 
the porous regions. c) Close-up of the CB/heptane sensor material using the digital microscope. d) Change in resistance with response to strain over 
ten cycles for the sensor fabricated using CNO. e) Change in resistance with response to strain over ten cycles for the sensor fabricated using heptane. 
f) Resistance change recorded from a representative CB/CNO sensor when stretched up to its rupture strain of 1130%. g) Cyclic tests conducted on 
the CB/CNO sensor for 250 cycles at 200% strain and h) presents a section of the cyclic test. i) Cyclic tests conducted on the CB/heptane sensor for 
250 cycles at 200% strain. j) The first and the last 5 cycles from the stability and durability experiment where a CB/CO sensor was cycled at 200% for 
1000 cycles (the complete experimental measurements are given in Figure S2, Supporting Information). k) Increase in strain in steps of 20% up to 
200% to identify the overshoot in the sensor. l) Drift measurements from the sensor where the sensor was kept stretched for 15 min. m) Temperature 
response of the CB/CNO sensor. n) Cyclic measurements at 200% strain from a CB/CO sensor that was cooled to 10 °C.
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for 15.0 min. This is shown in Figure 3l. The initial measure-
ments were always obtained 5  min after the step change to 
ensure that the overshoot was not influencing the measure-
ments. Within a 10 min time window a drift of 2.04 ± 0.06% was 
recorded from the sensor. In addition, temperature also has an 
impact on the performance of most resistive strain sensors.[38] 
Therefore, we investigated the influence of temperature on the 
unstrained sensor. The maximum total change in ∆R/R25 of the 
sensor was measured as 8.32 ±  1.58%, when subjected to step 
changes of temperature from 25 to 55 °C at 5 °C increments. 
The results are shown in Figure 3m. Moreover, since CNO has 
a melting point of 24 °C it was important to identify the func-
tionality of the sensors at lower temperatures. Therefore, the 
same sensor that was utilized for the stability experiments was 
positioned within a fridge at 10 °C for 1 h. Then the sensor was 
taken out of the fridge and immediately cyclic tests at 200% 
strain were performed on the sensor. The results displayed in 
Figure 3n indicate that cooling the sensor had minimal impact 
on its performance. The sensor performance is not affected by 
lower temperatures because CO does not form into a complete 
solid at 24 °C; it forms into a thick, greasy material. This is due 
to the triglycerides in CNO consisting of a mixture of different 
fatty acids, and each of these fatty acids has its own melting 
point, and at 24 °C only some fatty acids solidify.[66]

This is the first time strain sensors have been successfully 
fabricated using CNO. The strain sensitive material synthe-
sized had a porous structure filled with an oily suspension con-
taining CB particles. These CB/CNO sensors produced more 
reliable measurements in comparison to CB/heptane sensors 
also presented in this work. Heptane is a non-polar solvent that 
has generally been utilized for mixing CB particles in elasto-
mers.[34] The sensors demonstrated a superior stretchability 
compared to the once fabricated using silicone oil.[51] Moreover, 
the gauge factor and temperature response were comparable to 
the resistive strain sensors manufactured by Shintake et  al.[38] 
using an expensive planetary centrifugal mixer. This paper has 
demonstrated that CNO can be used to replace harmful chemi-
cals such as heptane and expensive equipment in the creation 
of strain sensors. These strain sensors can be fabricated using 
inexpensive and easy-to-get-raw materials with minimal effect 
on the users’ health.

The sensors had a gauge factor of 0.77 ± 0.01, a stretchability 
of 1035 ± 215%, and a resistance drift of only 0.69% in R0 and 
2.41% in R200 after 250 cycles at 200% strain. Ultimately, the 
strain sensors were integrated onto a glove and successfully uti-
lized for detecting wrist motion. These sensors are a low-cost 
and easy to fabricate technique that can be utilized in the future 
to create strain sensors for wearable applications.

Experimental Section
Preparation of the Carbon Black/Coconut Oil Ecoflex Sensor: The 

sensors fabricated in this paper comprised of CB and CNO, encased in 
Ecoflex. The sensing material was fabricated by mixing liquid silicone 
elastomer Ecoflex (00-30 Smooth-on, Pennsylvania, United States), CNO 
(Pipkin, London, UK), and CB (Vulcan P, Cabot, Boston, Massachusetts, 
United States) in 10:5:1.2 by weight.

For the preparation of the material initially the CB was added to the 
CNO and heated over a water bath to 30 °C. It was crucial to maintain 

this temperature since the melting point of CNO is 24 °C. The solution 
was stirred for 0.5  h to ensure the release of the agglomerated CB 
particles. Then part B of Ecoflex was added to the solution and it was 
stirred rigorously for 3 h. Thereafter, the heating was turned off and the 
solution was left to cool at room temperature over the course of 1  h, 
during this time the solution was continuously stirred. This was done 
to ensure the solution was cooled when part A was added, since higher 
temperatures caused the Ecoflex to cure faster. Afterward, part A was 
added and the solution was stirrer for 1–2 min. Then the solution was 
degassed and poured into an Ecoflex mold for curing. The mold had 
dimensions of length 20 mm by width 5 mm by height 2 mm. Moreover, 
copper contact wires were inserted into the structure before it was fully 
cured. The wires were later used to connect the sensor onto the readout 
electronics. Thereafter a layer of Ecoflex was added on top to fully encase 
the sensing material.

Preparation of the Carbon Black/Heptane Ecoflex Sensors: The materials 
utilized for the CB/heptane sensors were heptane, Ecoflex, and CB 
(10:10:1.2). These samples were fabricated by stirring CB with heptane 
for 0.5  h. Afterward, part A of Ecoflex was added and stirred for 3  h. 
Finally, the part B of Ecoflex was added and stirred for an additional 3 h. 
As in the previous sample, the structure was degassed and encased in 
Ecoflex.

Porosity Estimation of the Carbon Black/Coconut Oil Ecoflex Sensor: The 
porosity of the material was estimated by quantifying the area of the 
dark spots in the microscopic cross sections of the CB/CNO sensors 
using the image analysis software tool Image J, as shown in Figure S1, 
Supporting Information.

Conductivity Experiments on the Composite Materials: The conductivity 
experiments were conducted using a Keysight B1500A parameter 
analyzer. The samples tested were positioned on top of two copper 
tapes positioned 5  mm apart attached onto a glass slide. The copper 
tapes were utilized as contact pads for the probes instead of the oily 
material. The thickness and width of the samples were both 5 mm.

Experiments to Measure the Performance of the Strain Sensors: For 
these experiments, the authors utilized a stretch system comprising 
of a stepper motor and a MCDC 3006 motion controller (Faulhaber, 
Schönaich, Germany). Here, one representative sample from each 
of the two types of sensors (CB/CNO and CB/heptane) was utilized. 
The measurements from the sensors were recorded using a digital 
multimeter (34465A, Keysight, Santa Rosa, CA, USA). The sensors 
were stretched every 10  min by 20% to 200% to determine the gauge 
factor. Measurements were taken every second. The average resistance 
measured by the sensor for each step was calculated from the average of  
the measurements obtained in between 9.5 and 10  min after the 
previous step. This was done to ensure that a steady state was reached 
before the measurements were obtained. For the experiment to obtain 
the maximum stretchability, six devices were stretched until there was 
complete rupture and infinite resistance between the two ends of the 
sensor. In the case of the cyclic tests the stretch system was utilized 
to stretch the sensor to 200% and it was left at that position for 60 s; 
thereafter it was released to its original length and left for 60  s. The 
total time for the completion of a single cycle was 131  s. The process 
was repeated for 250 cycles and the measurements were measured 
every 0.5  s utilizing the Keysight multimeter. The same procedure was 
utilized for the durability and stability experiments. In this case a CB/CO 
sensor was cycled for 1000 cycles at 200% strain. For the response time 
and drift experiments the stretch system was utilized to stretch the 
sensors by a step of 100% and relaxed. As in the previous experiment 
the measurements were measured every 0.5  s using the Keysight 
multimeter. The response of the sensors to different temperatures 
was evaluated using an EchoTherm IC50 digital Chilling/Heating Dry 
Bath (Torrey Pines Scientific Inc., Carlsbad, CA, USA). The temperature 
of the surface of the dry bath was changed from 25 to 55  °C in steps 
of 5  °C. In each step the temperature was maintained for 10 min. The 
average measurement was calculated from measurements obtained 
in between 9.5 and 10 min after the previous step. This ensured that a 
steady state had been reached when the measurements were obtained. 
For the experiment to evaluate the performance of the cooled sensors, 
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the sensor used for the durability and stability experiment was put 
inside a fridge at 10 °C for 1 h. Thereafter it was taken out and a cyclic 
test was performed on the sensor at 200% strain. For the wrist motion 
detection experiment, the sensor was connected to the ADC channel of 
a Bluesense microcontroller.[57] The change in voltage was measured 
using an analogue input of the microcontroller and transmitted through 
Bluetooth onto a computer. The data was processed and analyzed in 
Python. The experiments involving human subject have been performed 
with the full, informed consent of the volunteer.

Supporting Information
Supporting Information is available from the Wiley Online Library or 
from the author.
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