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Abstract

This thesis looks at the three-dimensional dynamics of wave packets within the

context of atomic trapping. We study three-dimensional dynamics from a theoretical

standpoint, a field of high interest due to the emergence of quantum atom-based

technologies, including quantum atomic metrology. In particular, we look at the

dynamics of freely expanding wave packets at the point of release from an atom

trapping scheme consisting of different geometries. We derive a new methodology

for generating analytic expressions for the free expansion of these wave functions that

utilise the infinite summation of individually expanding and interacting Gaussian

distributions. We can then demonstrate that the resulting expressions show high

fidelity to results obtained through numerical simulation of the freely-expanding

Gaussian and hollow shell wave packets, validating the methodology used. The

advantages of these analytic expressions are three-fold. Firstly, the method does not

rely on intermediary time steps allowing for a quick system evaluation. Secondly,

having an analytic expression allows for a greater understanding of the system’s

behaviour. In particular, we can now analyse the system’s interference fringes and

more easily predict the impact various properties have on the overall system. Finally,

the analytical model is not subject to the pitfalls of numerical simulation such as

numerical drift, high dependence on the choice of time step and considerations such

as cross-boundary and boundary interactions. In developing these expressions, we

observe the emergence of interference fringes, particularly a region of high wave-

function density that developed in the centre of the hollow shell and toroidal wave

packets. Following on from this, we look at how an initial asymmetry in the starting

parameters of the system affects the resulting free expansion. In particular, we look

to simulate the effects of microgravity on the hollow shell and how tilting affects the

toroidal wave packet.

Additionally, this thesis studies atom dynamics in the hollow shell. We use a

Kapitza-style, driven inverted pendulum, technique to generate a stable region above

the equatorial plane in a classical atomic-scaled system. We demonstrated that it
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is possible to achieve a stable inverted position on an atomic scale, even when the

system has a degree of elasticity. We demonstrate that the capture angle for such

a system is quite broad and can even be just above the equatorial plane in some

cases. We demonstrate that achieving a stable inverted position for a wide range of

starting variables is possible. Additionally, we demonstrate that in-situ cooling of

the system may be possible by linearly reducing the driving frequency of the system.

This phenomenon is experimentally interesting since it may lead to a new technique

for systemic cooling, allowing for prolonged lifetimes and a reduction in evapora-

tion rate. We also demonstrate that it is possible to localise a pendulum through

multi-directional driving, allowing for more refined control and manipulation of the

system. After demonstrating the viability of an inverted pendulum on the scale of

an atom trapping scheme, we then took steps to improve the model to reflect an

atomic system better to see whether such a technique could be applicable in atomic

trapping systems. In testing this idea, we found that when modulating an atomic

quadrupole trap in the manner outlined for the mechanical system, the system did

not readily result in a stable region in the inverted position. Instead, we found that

throughout all the parameters tested, the trap operated in a linear regime when

vertically driven, meaning that for these parameters, the Kapitza-style driving was

insufficient to stabilise the north pole in this system. Instead, we were able to find

an alternative approach utilising a time-averaged adiabatic potential at the north

pole of the trapping potential, which led to stable systems and might be utilised

instead of the vertical Kapitza-style driving.
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Chapter 1

Introduction

At the turn of the 20th Century, a seismic shift in physics occurred due to the emer-

gence of quantum mechanics. It was developed to explain phenomena that classical

mechanics could not; its roots began towards the end of the previous century with

the quantisation of light by Max Planck [1] while he was studying black body radi-

ation. Albert Einstein later hypothesised that light consisted of individual particles

[2], later dubbed photons, in order to explain the photoelectric effect where light lib-

erates electrons from a material. Louis de Broglie [3] later proposed the theory that

matter can behave as both a wave and a particle under certain circumstances. This

concept was later built on by the work of Werner Heisenberg, Max Born, and Pascual

Jordan with the development of matrix mechanics [4, 5, 6] and Erwin Schrödinger,

who first developed wave mechanics and the well-known Schrödinger equation [7].

Werner Heisenberg went on to form the foundations of the uncertainty principle [8],

which was later expanded upon by Earle Hesse Kennard [9], and Hermann Weyl

(who attributed his result to Pauli) [10].

Since discovering quantum mechanics, there has been much interest in utilising

quantum mechanisms within technology. As such, a large variety of different ap-

plications have been considered and developed. These technologies utilise a range

of quantum phenomena to exceed the capabilities of purely classical systems. Pos-

sible applications include geosensing [11, 12, 13], the measurement of fundamental

constants [14, 15, 16, 17], studying microgravity [18, 19, 20], inertial navigation

1
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[21, 20, 22], quantum radar [23, 24] and medical and biological imaging [25, 26].

Many of these quantum technologies utilise atomic trapping schemes to isolate and

control groups of atoms in order to interrogate them and learn about the various

properties of the system. Many trapping schemes utilise a form of matter called

a Bose-Einstein condensate. This Bose-Einstein condensate is a gas consisting of

low-density bosons cooled to extremely low temperatures, close to absolute zero.

The theory of Bose-Einstein condensates was based on a paper by Satyendra Nath

Bose [27, 28] on quantum statistics that Albert Einstein used to predict the con-

densate’s existence [29]. What is special about a Bose-Einstein condensate is that it

consists of a large proportion of atoms that occupy the lowest quantum state. As a

result, the Bose-Einstein condensate will exhibit some quantum properties, particu-

larly wavefunction interference, which can be observed on a macroscopic scale. These

Bose-Einstein condensates were first isolated by Eric Cornell and Carl Wiemann [30]

using rubidium atoms in 1995, which was soon followed by Wolfgang Ketterle [31],

who managed the same feat with sodium. These Bose-Einstein condensates (BECs)

are now extensively used in quantum technology. In conjunction with the creation

of Bose-Einstein condensates, the manipulation and trapping of these atoms have

grown as a field of study, and the use of magnetic or laser fields to manipulate atoms

and molecules has led to the awarding of several Nobel prizes [32]. In particular,

laser cooling and trapping [33, 34, 35] has been utilised to trap billions of neutral

atoms and molecules and then cool them to temperatures just above absolute zero

so that quantum phenomena might be observed. Due to these techniques, the ultra-

cooled atoms are isolated from their environment, which is vital to maintain since

they would be lost immediately as they contact anything not in this state. Through

evaporative cooling of the most energetic particles, a Bose-Einstein condensate may

be observed in these trapping schemes.

The focus of this thesis has been to study the three-dimensional dynamics of wave

packets within the context of atom trapping schemes. With the field of quantum

technology and atomic trapping being an ever-broadening one, there are plenty of
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applications for which a clear and detailed understanding of the inner dynamics is

perhaps not fully explored. Therefore, we look to apply numerical and analytical

techniques to understand better two particular systems: the free expansion of wave

packets and an investigation into the feasibility of atomic trapping schemes utilising

an inverted elastic pendulum technique.

The first of these, the free expansion of three-dimensional wave packets, is an area

of interest since free expansion could be used to prove the presence of a Bose-Einstein

condensate within the atomic trap prior to release since the Bose-Einstein condensate

will form interference fringes. This expansion could be used as part of a validation

process. However, for this to be experimentally viable, we need to understand

how the wave packet expands. In particular, it is useful to know how the initial

trapping geometry affects the rate of expansion, the time it takes for visible fringes

to emerge and the expected emergent features. Additionally, the free expansion of

these wave packets allows for the potential exploration of other inherent properties of

the system, given that the resulting interference pattern is highly dependent on the

system’s initial conditions. Such a mechanism might be used to study microgravity

through the use of a hollow shell potential. In this system, microgravity should

warp the initial shape of the wave packet, which is then amplified in the generated

interference fringes. Some work looking at the free-expansion of toroidal wave-

packets has already been undertaken; of particular note, some papers have looked at

the two-dimensional free-expansion of ring wave-packets, [36, 37, 38], although some

of these results are dependent on limiting assumptions on the system. In addition to

this, C. Ryu et al. [39] have done some numerical simulations on thin toroidal wave-

packets in three dimensions. Although this is an area of interest, we are currently

unaware of any analytical expressions to describe the free-expansion behaviour of

these geometries in three dimensions. Additionally, we will explore some of the

properties of these free-expanding wave packets, particularly the interference fringe

behaviour and visibility, to better understand what to expect upon studying these

systems experimentally.
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Another area of interest is in applying the principles of the inverted pendulum

to an atom-trapping scheme to stabilise atoms around the north pole of a trapping

potential, a position which on its own is gravitationally unstable. The inverted

pendulum, also known as the Kapitza or Stephenson pendulum depending on the

source, is a well-known and established mechanical phenomenon. It consists of a

rigid pendulum with an oscillating pivot point such that the inverted position is

stable. First described by Andrew Stephenson in 1908 [40] the reasons for stability

were not fully understood until 1951 when P. L. Kapitza provided analytical insight

into the system [41, 42]. Landau and Lifshitz later published a paper equating

the stability to the pendulum being in an effective potential due to the driving of

the system [43]. The stability of this inverted pendulum system has been studied

extensively over the years, with many papers investigating various aspects of this

system [44, 45, 46]. A modified version of the system where we replace the fixed rod

with spring has been studied in both two [47, 48] and three dimensions [49]. Thus

far, the study of the inverted pendulum seems to have largely been in the context of

mechanical systems. We want to apply the inverted pendulum principles to systems

on the scale of atomic traps. In particular, we will consider a system on the scale

of an atom trap [50] that takes the form of a magnetic quadrupole [51, 52, 53].

A magnetic quadrupole trap dresses atoms in a quadrupole field leading to the

production of an adiabatic potential. Such a magnetic quadrupole confines atoms

within a system with a degree of elasticity. As such, we shall consider the system to

be in the form of an elastic pendulum for our initial model. Elastic pendulums also

have a long history, with the first known study of the elastic pendulum appearing

to have been made by A. Vitt and G. Gorelik in 1933 [54]. The elastic pendulum

has subsequently been a system of research interest with many papers looking at

the system, including the following sources [55, 56, 57].

In chapter 2 of this thesis, we will be looking at a methodology for generating

analytical expressions for the free expansion of three-dimensional wave-packets typ-

ical of the ones that one would see as a wave packet is released from an atomic trap.
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We employ a system of taking the integral over an infinite number of individual

Gaussian wave-packets that individually interact with one another and themselves.

During free expansion, a wave packet will undergo self-interactions leading to the

emergence of interference fringes. If observed, these fringes can be used to prove the

presence of a Bose-Einstein condensate in the original atomic trap, which helps to

validate the results obtained. We mainly focus on the toroidal and hollow shell wave

packets due to their quantum rotational and gravitational sensors applications. We

show how to extract the interference patterns from these expressions and determine

their visibility.

In chapter 3, we take our analytical expressions and compare our results to

those that can be achieved through numerical simulations, comparing the fidelity

of our results. Additionally, we appraise the impact of various initial conditions

on the behaviour of these systems and look at how best to optimise experimental

parameters to give the best chance of observing these phenomena. Finally, we take

a look at how atomic Gross-Pitaevskii [58] interactions in the system impact the

overall results. We narrow down under which conditions these may be considered

negligible and how they change the observed results.

In chapter 4, we apply the methodology to various systems and geometries to

further test the capabilities of this approach. We cover systems that form various

geometries and those in a state of asymmetry. Additionally, we study an approxi-

mation of the methodology where instead of taking an integral of an infinite number

of wave packets, we take a limited number of Gaussians and the accuracy one might

expect to obtain.

In chapter 5, we turn our attention to this thesis’s second area of study. In

this chapter, we will be looking at the feasibility of utilising an inverted elastic

pendulum mechanism on an atomic trapping scale. An inverted elastic pendulum

utilises a vertical driving motion to maintain a stable inverted position. We take a

classical system and scale it to the size of an atom trapping scheme. We then study

the stability of such a system by defining a stability region and testing its robustness
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when it comes to initial conditions.

In chapter 6, we look at variations in the system. In particular, we study a

multi-directional driving of the system, which allows for fine location control over

the pendulum allowing for a changing of the stable regions away from the inverted

position to other similarly gravitationally unfavourable positions. We also look at a

mechanism for reducing the driving frequency, which leads to in-situ cooling of the

system. This mechanism could provide a way to reduce the system’s total energy

through an alternative to evaporative cooling, which is the approach most used

presently but has downsides in the reduction of atoms within the system. We test

this phenomenon and ascertain what factors impact it and how much energy loss

one might expect through this mechanism.

In chapter 7, we then implement the Kapitza-style vertical driving of the system

to an atomic quadrupole trap. This system does not appear to produce stable

results with the same variables utilised in the mechanical atomic trapping scale

system. We found that this resulted from the system occupying a “linear” regime

over these parameters meaning that the atom was not stabilising at the north pole of

the trapping potential. We subsequently explore an alternative approach, utilising a

horizontal driving at the north pole, finding that this approach could produce stable

systems where a Kapitza-style driving could not.



Chapter 2

Three-dimensional expansion of

wave packets

2.1 Introduction

First demonstrated nearly thirty years ago [59, 60, 61], matter-wave interferome-

try provides the framework to make ever more sensitive and precise measurements,

achieving significant improvements over classical, light-based methods. Principally,

Bose-Einstein condensates (BECs) are used in matter-wave interferometry due to a

large proportion of atoms in a BEC occupying the lowest quantum state. Therefore,

a BEC will exhibit macroscopic quantum behaviour such as wave packet interfer-

ence. There are many possible applications of matter-wave interferometry including

geosensing [11, 12, 13], the measurement of fundamental constants [14, 15, 16, 17],

studying microgravity [18, 19, 20] and inertial navigation [20, 21, 22]. In this thesis

chapter, we will mainly use inertial navigation as our background; specifically, in-

ertial navigation that utilises Sagnac effect interferometry [62]. Briefly, the Sagnac

effect utilises two propagating wave packets injected into a ring-shaped waveguide.

These wave packets propagate in opposite directions around the ring, completing

several full cycles. Rotation of the system will induce a path difference between the

two wave packets so that a phase shift can be measured when they recombine. From

7
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this phase-shift, it is possible to calculate the angular velocity using the following

formula [63]:

Ω =
δϕλv

8πA
, (2.1)

with Ω the angular velocity, δϕ the phase shift, λ the wavelength of the wave packet

used, v the wave speed and A the enclosed area. It must be noted that, for matter-

waves, the measurement of the angular velocity does not depend on the velocity of

the atoms since this will cancel with the wavelength.

One of the key components required to achieve Sagnac effect in matter-wave

interferometry is a ring-shaped waveguide [64]. Due to how intrinsic these wave-

guides are there are a large number of groups working on their development [65, 66,

67, 68, 69, 70, 71, 72]. Two significant recent results are the successful manipulation

of two spin-states [73], which would allow controlled independent propagation of

two wave packets within the same guide, and the demonstration of a highly smooth

wave-guide which exhibits almost excitationless acceleration [74].

Another geometry of great experimental interest is that of the hollow shell. It

is believed that the hollow shell geometry lends itself well to studying micro-gravity

[75]. Although not terrestrially viable under Earth-like gravitational conditions,

these hollow shells could be used to measure and understand microgravity in orbit

above the earth. The resulting free-expansion interference patterns of the hollow

shells depend highly on the system’s initial conditions, making them an ideal can-

didate for the study of microgravity. As such there is a current experiment [76] in

situ at the NASA Cold Atom Laboratory (CAL) [77] aboard the International Space

Station (ISS). Some work has been done on these hollow shells previously, looking

at the expansion [78], critical temperature [79] and the breathing modes [80].

One area of interest with both geometries is the behaviour of the wave packets

under free expansion. As stated above, with the hollow shell, the free expansion

provides a framework by which microgravity may be studied. With toroidal wave

packets, the observation of self-interference fringes experimentally proves the pres-
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ence of a BEC within the system. Additionally, the free expansion of these wave

packets allows for the potential exploration of other inherent properties of the sys-

tem, given that the resulting interference pattern is highly dependent on the system’s

initial conditions. Some work looking at the free-expansion of toroidal wave packets

has already been undertaken; of particular note, some papers have looked at the

two-dimensional free-expansion of ring wave packets, [36, 37, 38]. However, some of

these results depend on limiting system assumptions. In addition to this, C. Ryu

et al. [39] have done some numerical simulations on thin toroidal wave packets in

three dimensions. Additionally, L. A. Toikka [38] looked at the free expansion of the

toroidal wave packet and was able to arrive at an approximate expression utilising

a manipulation of the Wigner function to describe the two-dimensional expansion

of such a system.

In this thesis chapter, we will derive expressions for the free-expanding toroidal

and hollow shell wave packets, obtaining expressions for the location and visibility of

the emergent interference fringes. The focus of the first part of this thesis is to derive

and then verify, through comparison to other techniques, equations to describe the

free expansion of both the toroidal and hollow shell wave packets. In this chapter,

we will assume that the wave packets are formed of a dilute gas and thus a system

with minimal atomic interactions.

2.2 The Free-Expansion of the Toroidal

wave packet

We recognised a lack of an analytic expression to describe the free expansion of a

toroidal wave packet, so we sought to derive our own. Furthermore, we hoped to

describe the free expansion of a toroidal wave-function that did not utilise Fourier

transforms of the function into momentum-space, such as in the Split-Step Fourier

Method (SSFM) [81]. Instead, we approximate the wave packet by utilising the

infinite summation of interacting Gaussians in real space. This approach is an
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extension of a method pioneered by J. Janszky [82] who utilised a similar approach

to Gaussian wave packets in phase space of a one-dimensional system. We build

upon this idea by employing the concept within real three-dimensional space to

generate our wave functions.

The basis of our methodology is constructing our wave packet geometry from an

infinite number of interacting and expanding individual Gaussian wave packets and

then integrating these through the geometry of the final wave function we wish to

create. The steps we outline here results in a wave function for the three-dimensional

wave packet. However, a similar approach could be used to produce a wave-function

density instead, details of which can be found in appendix A of this thesis. The

method detailed in this appendix is similar to the one outlined here but does not

include phase details since we are dealing with a density function. This other method

may be preferable depending on the system and if the shape of the wave packet is

the primary concern. We will start by utilising the toroidal wave packet geometry,

but this methodology may be applied to different systems and geometries. It must

be noted that some of the integration steps may not always be possible depending

on the geometry; however, a numerical integration, although not preferable, should

still render valuable results with the advantage of avoiding an iterative process to

understand the fate of the system.

Starting with our Gaussian wave packet, we know that this, while undergoing

free expansion, has a natural time-dependent spreading function. First, we need

to define a scaled time variable τ , scaled to the Gaussian wave packet’s dispersion

time. We define this scaled time variable, τ , as

τ =
t

td
, (2.2)

with td the dispersion time-scale and t the time in seconds. We define the dispersion

time-scale as

td =
2mσ2

0

h̄
, (2.3)
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where m is the mass of the wave packet, σ0 the initial width of the Gaussian at time

t = 0 and h̄ the familiar Planck constant, the mass we will typically be used for

numerical work in this thesis is the mass of rubidium-87 since it is commonly used

in atomic-trapping schemes due to its properties being conducive to the production

of a Bose-Einstein condensate. We can now, utilising our scaled time variable, write

a general expression for the natural spreading of a Gaussian wave packet in the

following manner:

σ(τ) = σ0
√
1 + τ 2. (2.4)

It is useful at this point to define a complex width with phase as such,

σ̃(τ) =
√
σ0σ(τ)e

iθτ/2, (2.5)

where θτ can be found from the scaled time τ using

tan(θτ ) = τ. (2.6)

If we start with a one-dimensional wave packet, located at the origin then this has

the following form:

ψGWP (x, τ) =

√
σ0

(2π)
1
4 σ̃(τ)

exp

(
− x2

4σ̃(τ)2

)
(2.7)

Substituting equation (2.5) into equation (2.7) we can rewrite equation (2.7) as

ψGWP (x, τ) =
1

(2π)
1
4

√
σ(τ)

exp

(
−iθτ

2

)
exp

(
−x

2(e−iθτ/2)2

4σ0σ(τ)

)
. (2.8)

In order to remove the nested exponential functions we will use equation (2.6) to

convert our exp(−θτ/2) function. We can rewrite equation (2.6) in terms of expo-
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nential function with

τ =
i (exp (−2iθτ )− 1)

(exp (−2iθτ ) + 1)
. (2.9)

We rearrange this function for the exponential and take the square root which results

in the following expression:

exp(−iθτ/2)2 =
1− iτ√
1 + τ 2

. (2.10)

We can rewrite the square root utilising equation (2.4), therefore,

exp(−iθτ/2)2 =
σ0 (1− iτ)

σ(τ)
. (2.11)

By substituting equation (2.11) into equation (2.8) we obtain the expression

ψGWP (x, τ) =
1

(2π)
1
4

√
σ(τ)

exp

(
−iθτ

2

)
exp

(
−x

2(1− iτ)

4σ(τ)2

)
. (2.12)

Equation (2.12) can be rewritten in the following manner:

ψGWP (x, τ) =
1

(2π)
1
4

√
σ(τ)

exp

(
− x2

4σ(τ)2
+ i

x2τ

4σ(τ)2
− iθτ

2

)
. (2.13)

Now that we have a one-dimensional equation we can formalise a two-dimensional

function with

ψ2DGWP (x, y, τ) =
σ0√

2πσ̃(τ)2
exp

[
−(x− x0)

2 + (y − y0)
2

4σ̃(τ)2

]
. (2.14)

Doing similar substitutions as we performed in the one-dimensional equation we can
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rewrite it in the following manner:

ψ2DGWP (x, y, τ) =
1√

2πσ(τ)
exp (−iθτ )

× exp

[
−(x− x0)

2 + (y − y0)
2

4σ(τ)2

]
× exp

[
iτ
(x− x0)

2 + (y − y0)
2

4σ(τ)2

]
.

(2.15)

Now that we have the basis for our methodology, we apply it to the toroidal

wave packet. We start with the two-dimensional expression but need to convert it

to polar coordinates. We centre the 2D GWP at the coordinates x0 = R cos(θ′),

y0 = R sin(θ′) and then integrate over the angle θ′, where R is the large radius

of the desired torus and θ′ is the angular location of one of the chosen Gaussian

distributions. We will start with the two-dimensional equation in the form of equa-

tion (2.14) and insert our wave packet locations x0 and y0. We then integrate this

function over the angle θ′, which is the same as taking the infinite summation of

Gaussians around a ring. This integral is performed between θ′ = 0 and θ′ = 2π

meaning that we have the expression

ψ2DGWP =
σ0√

2πσ̃(τ)2

∫ 2π

0

exp

(
−(x−R cos(θ′))2 + (y −R sin(θ′))2

4σ̃(τ)2

)
dθ′. (2.16)

Due to symmetry we are able to convert x→ r where r is the radial coordinate and

y → 0. Making these replacements and expanding our function we get the following

un-normalised expression for the two-dimensional torus:

ψ̃2dtorus(r, τ) =
σ0√

2πσ̃(τ)2

∫ 2π

0

exp

(
−r

2 − 2rR cos(θ′) +R2

4σ̃(τ)2

)
dθ′. (2.17)

We now use the Bessel function I0 integral identity

I0(z) =
1

π

∫ π

0

exp(z cos(θ)) dθ (2.18)

in order to integrate our expression. Utilising this expression we get a two-dimensional
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wave-function for the torus in the following form:

ψ̃2dtorus(r, τ) =
1

N

√
2πσ0
σ̃(τ)2

exp

(
−r

2 +R2

4σ̃(τ)2

)
I0

(
rR

2σ̃(τ)2

)
, (2.19)

where N is some normalisation factor. To find the normalisation factor N we must

solve the expression,

∫ ∞

0

|ψ2dtorus(r, τ)|2 2πr dr = 1. (2.20)

In doing so we obtain the expression

ψ2dtorus(r, τ) =
1√

2πσ(τ)
exp

(
−r

2 +R2

4σ̃(τ)2
+
R2

8σ2
0

− iθτ

) I0

(
rR

2σ̃(τ)2

)
√
I0

(
R2

4σ2
0

) (2.21)

for the normalised wave equation. To convert our two-dimensional model into a

three-dimensional model we simply multiply the two-dimensional torus by the one-

dimensional Gaussian wave packet, ψ3dtorus(r, z, τ) = ψ2dtorus(r, τ)ψGWP(z) giving

the following expression:

ψ3dtorus(r, z, τ) =
1√

2πσ(τ)
exp

(
−r

2 +R2

4σ̃(τ)2
+
R2

8σ2
0

− iθτ

) I0

(
rR

2σ̃(τ)2

)
√
I0

(
R2

4σ2
0

)
× 1

(2π)
1
4

√
σ(τ)

exp

(
− z2

4σ̃(τ)2
− iθτ

2

)
.

(2.22)

This expression may be simplified further to give

ψ3dtorus(r, z, τ) =
1

(2π)
3
4σ(τ)

3
2

exp

(
−r

2 +R2 + z2

4σ̃(τ)2
+
R2

8σ2
0

− 3iθτ
2

)

×
I0

(
rR

2σ̃(τ)2

)
√
I0

(
R2

4σ2
0

) . (2.23)

This equation appears to be in a similar form to that found by Toikka [38]; how-

ever, this approach utilises a truncated series expansion and an approximation of
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the ground state in order to generate the final expression. We found that our ex-

pression at time t = 0 is a better approximation of the ground state than a Gaussian

distribution placed at the torus radius. We found this by numerically simulating

the ground state and then comparing our equation at t = 0 to the simulated ground

state and the estimated ground state. This behaviour is partly because the ground

state estimate does not consider the curvature of the ring.

2.3 Limits of the toroidal wave equation

Having found an equation for the free-expanding torus, we want to look at how the

wave equation behaves in its limits. To study this behaviour we start by taking our

wave function and rewriting it to replace all terms of σ̃(τ) giving

ψ3dtorus(r, z, τ) =
1

(2π)
3
4σ(τ)

3
2

exp

(
−(r2 +R2 + z2)(1− iτ)

4σ(τ)2
+
R2

8σ2
0

− 3iθτ
2

)

×
I0

(
rR(1−iτ)
2σ(τ)2

)
√
I0

(
R2

4σ2
0

) .
(2.24)

Having now obtained an expression for the three-dimensional free-expanding

toroidal wave packet, we wish to understand how that wave packet behaves towards

its limits. In particular, we want to know how the wave packet behaves at r → 0

and as r → ∞. Furthermore, we want to understand which parts of the equation

dominate at each of these limits, which will help us better understand what is going

on with the system. So we start with our equation (2.24) we ignore any terms which

are not dependent on r. Additionally, we will ignore the normalisation constant

since we want to study the behaviour of the system. By ignoring these terms, we

are left with a simplified expression for the wave function with

ψ(r, z, τ) ∝ exp

(
−r

2(1− iτ)

4σ(τ)2

)
I0

(
rR(1− iτ)

2σ(τ)2

)
. (2.25)

As we can see, we have just an exponential function multiplied by the modified
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Bessel function dependent on the variable r. We will start by looking at the small

argument limit of both functions. For the Bessel function, the small argument limit

can be written as

lim
x→0

I0(x(A− iB)) = 1 +
x2

4
(A− iB)2 +O(x4). (2.26)

Whereas for the exponential function we get the following expansion:

lim
x→0

exp(−x2(a− ib)) = 1 + x2(−a+ ib) +O(x4). (2.27)

Substituting in our parameters for a, A, b and B we get the limits,

lim
r→0

I0

(
rR(1− iτ)

2σ(τ)2

)
= 1 +

r2R2

16σ(τ)4
(1− iτ)2 +O(r4), (2.28)

and

lim
r→0

exp

(
−r

2(1− iτ)

4σ(τ)2

)
= 1− r2

4σ(τ)2
(1− iτ) +O(r4). (2.29)

Multiplying these two functions together and only considering terms up to order r2

the small argument limit for our wave equation becomes

lim
r→0

ψ(r, z, τ) ∝ 1− r2

4σ(τ)2
(1− iτ)

(
1− R2

4σ(τ)2
(1− iτ)

)
+O(r4). (2.30)

In this small argument limit we can see that we have a parabola centred on the

origin and that we have no other peaks in this limit. In this limit we now have an

expression for the wave-function and may wish to find an expression for the wave-

function density. The complex conjugate of the small argument limit may be written

as

lim
r→0

ψ(r, z, τ)∗ ∝ 1− r2

4σ(τ)2
(1 + iτ)

(
1− R2

4σ(τ)2
(1 + iτ)

)
+O(r4). (2.31)
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Therefore the wave-function density takes an equation of the form:

lim
r→0

|ψ(r, z, τ)|2 ∝= 1− r2

2σ(τ)2

(
1− R2

4σ(τ)2
(
1− τ 2

))
+O(r4). (2.32)

We have an expression for the spreading of the wave-function in equation (2.4)

which we can substitute into equation (2.32) so that the small argument limit may

be written as

lim
r→0

|ψ(r, z, τ)|2 ∝ 1− 2r2

4σ2
0 (1 + τ 2)

(
1− R2

4σ2
0 (1 + τ 2)

(
1− τ 2

))
+O(r4). (2.33)

To progress beyond this point, we need to consider relative values for σ0 and

R. In atomic systems a reasonable value for these parameters might be σ0 ≈ 10−6

and R ≈ 10−5, therefore R2/4σ2
0 > 1. In fact, this statement is always true since

if the width was greater than the radius; then the resulting system would not be

in the form of a torus. Here we look at how the centre of the system evolves

with time; in particular, we want to demonstrate analytically that initially and at

early time values, the system will have a local minimum located at r = 0. This

minimum transforms as time progresses to a local maximum which we call the

central interference fringe. In the limit τ → 0, the ratio

1− τ 2

1 + τ 2
→ 1, (2.34)

whereas, in the limit τ → ∞, the ratio

1− τ 2

1 + τ 2
→ −1. (2.35)

These properties mean that the system will initially start as a parabola and will

subsequently transition into an inverted parabola. This behaviour is in agreement

with the emergence of a central fringe, as noted by C. Ryu et al. [39] in their analysis

of a thin toroidal wave packet. This inversion is a characteristic of the exponential

function dominating the system’s behaviour. Therefore, near the ring’s centre, the
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system’s dominant properties might be inferred from the exponential term. We can

now turn our attention to the large argument limit of our expression. Again we

look at our component functions, taking a limit of these as r → ∞. We know

the exponential will tend towards zero in this limit, which is expected. The Bessel

function will then operate as a variation on this. In the limit r → ∞, the Bessel

function can be approximated as

lim
x→∞

I0 (x(A− iB)) = cos
(π
4
+ x(B + iA)

)( 2√
−2πx(B + iA)

)

+O
(

1

x
3
2

)
.

(2.36)

By substituting in our expressions for A and B we find that we have the limit to

the Bessel function of

lim
r→∞

I0

(
Rr

2σ(τ)2
(1− iτ)

)
=cos

(
π

4
+

rR

2σ(τ)2
(τ + i)

)(
2σ(τ)√

−πRr(τ + i)

)

+O
(

1

x
3
2

)
.

(2.37)

We can see from this that this part of the wave-function behaves like a cosine

function which the exponential function will suppress as r → ∞. Therefore, this

indicates that the further away from the centre, the more the Bessel function proper-

ties will dictate the shape of the wave function with a suppressive exponential term.

As time progresses, the width of the exponential term will increase, and, as a result,

the magnitude of the wave function will increase over time for parts of the wave

packet located away from the centre. This property is an expected result since the

wave function will become decreasingly localised and spread out as time progresses.
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2.4 Locations and visibility of the interference

fringes for the toroidal wave packet

We now want to look at the interference fringes, categorising their location and

relative visibility. We start yet again with equation (2.24). To find these properties

we need to take the density of the wave equation since the density represents what

an observer will see experimentally. The density function is found by multiplying the

wave equation by its complex conjugate, |ψ|2 = ψψ∗, for our toroidal wave equation

this results in the expression

|ψ3dtorus|2 =
1

(2π)
3
2σ(τ)3

exp

(
−(r2 +R2 + z2)

2σ(τ)2
+
R2

4σ2
0

) ∣∣∣I0 ( rR(1−iτ)
2σ(τ)2

)∣∣∣2
I0

(
R2

4σ2
0

) . (2.38)

From this, we need to isolate the oscillating properties of the function to isolate the

location of the various peaks. We know from the simulation that we expect a peak in

the centre at r = 0, but we do not have an expression for the other interference peak

locations, so we need to find this. The only sinusoidal component is the complex

Bessel function. We can approximate the Bessel function through the identity

|I0(A+ iB)|2 = |I0(A)|2|I0(iB)|2 + |2
∞∑
k=1

Ik(A)Ik(iB)|2 (2.39)

It can be stated that |Ik(A)|2 < |I0(A)|2 [83], in the small argument limit |I0(A)|2 →

1 and |Ik(A)|2 → 0 for k ≥ 1. We are therefore able to approximate the Bessel

function with a complex argument as

|I0(A+ iB)|2 ≈ |I0(A)|2|I0(iB)|2 (2.40)

For our system we can substitute in

A =
rR

2σ(τ)2
(2.41)



CHAPTER 2. 3D EXPANSION OF WAVE PACKETS 20

and

B =
−rRτ
2σ(τ)2

. (2.42)

This gives an overall approximation of the Bessel function of

∣∣∣∣I0(rR(1− iτ)

2σ(τ)2

)∣∣∣∣2 ≈ ∣∣∣∣I0( rR

2σ(τ)2

)∣∣∣∣2 ∣∣∣∣I0(−irRτ
2σ(τ)2

)∣∣∣∣2 . (2.43)

We can rewrite the modified Bessel function of the first order with imaginary argu-

ments in the form of a Bessel function of the first kind (J0) using I0(−ix) = J0(x).

In the large argument limit the Bessel function of the first kind can be written as

J0(x) =

√
2

πx
sin
(
x+

π

4

)
. (2.44)

As per equation (2.43) this term is squared giving a characteristic oscillatory be-

haviour in the form of a sine squared function. This sin2(x + π/4) function has

local maxima at x = πn− 3π/4 and a local minima at x = πn− π/4 with n being a

positive integer and represents the number of the fringe with the fringe closest to the

centre taking the number one, the next furthest out two and so on. We can obtain

the locations of these local maxima and local minima by rearranging them for r. By

equating the local maxima to the argument of the sine function in equation (2.44)

we find that

τRrmax

2σ(τ)2
= πn− 3π

4
, for n ≥ 1. (2.45)

Through rearranging terms we find that the radial location of the local maxima is

therefore located at

rmax =
2πσ(τ)2

τR

(
n− 3

4

)
, for n ≥ 1. (2.46)
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Similarly we can find a local minimum in a similar manner by equating the expression

for the local minima with the argument of the sine function in equation (2.44)

τRrmin

2σ(τ)2
= πn− π

4
, for n ≥ 1. (2.47)

Through a rearrangement of terms we find that we have an expression for the location

of the local minima for the system with

rmin =
2πσ(τ)2

τR

(
n− 1

4

)
, for n ≥ 1. (2.48)

We now have all the local maxima and local minima of the sin2 function and, by

extension, the Bessel proportion of the wave function; however, there is one more

peak that is not accounted for using this approach. Due to the exponential term,

there is another maximum located at r = 0. This peak effects the other peaks;

specifically, the first local maxima becomes superseded by the maxima located at

the origin. The first maxima from the Bessel function we disregard and replace with

a peak located at the origin. Therefore, overall, we have the following locations for

all of the local maxima and minima in the following manner:

rmax = 0, for n = 1, (2.49)

rmax =
2πσ(τ)2

τR

(
n− 3

4

)
, for n ≥ 2 (2.50)

and

rmin =
2πσ(τ)2

τR

(
n− 1

4

)
, for n ≥ 1. (2.51)

These then are substituted into our wave-function in equation (2.24) to find the

wave-function value at the local maxima and minima of the wave-function. The

visibility of the local maxima can then be calculated by measuring the relative
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difference between the local maxima and their adjacent minima. It must be noted

that after the first peak, all maxima have two adjacent minima that do not have the

same magnitude; therefore, to find the relative visibility, we need to consider both

and take the bigger of the two local minima. We define the relative visibility of each

maxima with respect to its adjacent minima as

ν =
|ψmax(r, z, τ)|2 − |ψmin(r, z, τ)|2

|ψmax(r, z, τ)|2 + |ψmin(r, z, τ)|2
. (2.52)

By substituting the locations of the local maxima and minima of the wave equation

into the density function, we obtain the following expressions for the density at these

locations:

ψmax(0, z, τ) =
1

(2π)
3
4σ(τ)

3
2

√
I0

(
R2

4σ2
0

)
× exp

(
−(R2 + z2)(1− iτ)

4σ(τ)2
+
R2

8σ2
0

− 3iθτ
2

)
, for n = 1

(2.53)

ψ3dtorus(rmax, z, τ) =
1

(2π)
3
4σ(τ)

3
2

I0
(
π
τ

(
n− 3

4

)
(1− iτ)

)√
I0

(
R2

4σ2
0

)

× exp

−

((
2πσ(τ)2

τR

(
n− 3

4

))2
+R2 + z2

)
(1− iτ)

4σ(τ)2


× exp

(
R2

8σ2
0

− 3iθτ
2

)
, for n ≥ 2

(2.54)
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ψ3dtorus(rmin, z, τ) =
1

(2π)
3
4σ(τ)

3
2

I0
(
π
τ

(
n− 1

4

)
(1− iτ)

)√
I0

(
R2

4σ2
0

)

× exp

−

((
2πσ(τ)2

τR

(
n− 1

4

))2
+R2 + z2

)
(1− iτ)

4σ(τ)2


× exp

(
R2

8σ2
0

− 3iθτ
2

)
, for n ≥ 1

(2.55)

Since we are looking at the relative visibility of the interference fringes we ignore

any common multiplier terms since these will cancel in the final result. In doing so

we simplify the wave equations at these local maxima and minima so that

ψ̃max(0, z, τ) = 1, for n = 1, (2.56)

ψ̃3dtorus(rmax, z, τ) =I0

(
π

τ

(
n− 3

4

)
(1− iτ)

)

× exp

−

((
2πσ(τ)2

τR

(
n− 3

4

))2)
(1− iτ)

4σ(τ)2

 ,

for n ≥ 2

(2.57)

and

ψ̃3dtorus(rmin, z, τ) =I0

(
π

τ

(
n− 1

4

)
(1− iτ)

)

× exp

−

((
2πσ(τ)2

τR

(
n− 1

4

))2)
(1− iτ)

4σ(τ)2

 ,

for n ≥ 1

(2.58)
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Figure 2.1: Visibility of the first four fringes against time graph for an initial torus
with R = 20 µm and width σ = 2 µm. The visibility is initially zero at time t = 0
since the location of the local maxima, as defined by the sinusoidal component of
the wave function, has a lower density than the location of the local minima but as
the wave packet expands and the fringes develop the density at the local maxima
will become greater than that of the local minima and the visibility of the fringe
will start to increase as time progresses. This, therefore, shows the point at which
the fringe emerges at the location specified.

In figure 2.1, we plot the time evolution of the peak visibility for the first four

interference peaks. From figure 2.1, we can see that initially, all fringes have zero

visibility, but as time progresses, the visibility increases, approaching an asymptotic

limit. We can see clearly that the first, central, fringe has the highest visibility

of just under 0.8, with all subsequent fringes having increasingly lower visibility.

Experimentally it is clear that to observe the fringes best, it is necessary to wait

for a short time, in this particular set-up, around 0.1 seconds, before imaging the

system. This required waiting time decreases as the initial radius and the ratio

between the initial and width decreases.
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2.5 Overall behaviour of the free expanding toroidal

wave packet

In the previous sections of this chapter, we have focused on specific properties of

the wave equation; we now want to look at the overall behaviour of the system. In

figure 2.2 and figure 2.3 we present some of the resultant graphs using our equation.

Whenever results are presented in this thesis chapter, we have used results consistent

with rubidium-87 (Rb-87) due to its prevalent experimental use. We also looked at

experimentally viable parameters on size and width wherever possible.

Figure 2.2: Cross-section of toroidal wave packet of radius R = 20 µm on the plane
z = 0 and at times (a) t = 0 s, (b) t = 0.033 s, (c) t = 0.067 s and (d) t = 0.1
s. These results are for the free-expansion of rubidium-87 with an initial width of
σ = 2 µm.
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Figure 2.3: Cross-section of toroidal wave packet of radius R = 20 µm on the plane
y = 0 and at times (a) t = 0 s, (b) t = 0.033 s, (c) t = 0.067 s and (d) t = 0.1
s. These results are for the free-expansion of rubidium-87 with an initial width of
σ = 2 µm.

From the cross-sections in figure 2.2 and figure 2.3, it can be seen that, after some

time, the free-expanding toroidal wave packet forms a central, high-density column.

C. Ryu et al. [39] also noted the presence of a central column when looking at the

expansion of thin tori. Our results demonstrate that this is not a unique property

of thin discs but also occurs with thicker toroidal wave packets. This central peak

results from interferences between parts of the wave packet at different sides of the

torus. This central peak or fringe, now that we have demonstrated its presence, is

something we want to study further in this section. The long-term behaviour of the

toroidal wave-packet mirrors is that once the fringes have emerged they will remain
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present, with the visibility of these fringes tending towards an asymptotic limit. As

the wave-packet expands the peak density of the wave-packet will decrease as it

spreads.

Having looked at the free expansion of a specific toroidal wave packet, we then

varied the radii of our wave packets and looked to see the time at which the central

column emerges. We define the emergence time as the time at which the wave-

function density at the centre exceeds that at the initial radius, so that the inequality

|ψtorus (r = R, z = 0, t)|2 < |ψtorus (r = 0, z = 0, t)|2 holds.

From figure 2.4(a), we see that as the radius of the torus increases, the time

taken for the emergence of the central column also increases non-linearly. We also

find a dependence on the ratio of the initial width (σ) and the wave packet’s initial

radius (R). In figure 2.4(b) we plot the ratio σ : R against the time of emergence.

We find that the time the central column emerges increases as the ratio σ : R

increases until it reaches a peak at approximately σ = 0.33R. This trend seems

to be independent of the initial radius. Upon reaching the peak, there is a fall in

the time taken for the central column to emerge. This property is consistent with

the fact that the central hole in the toroidal wave packet will begin to close for

larger widths. In theory, it would be best to design an experiment so that either

the width of the torus is very narrow or very broad to see the interferences as early

as possible; however, both of these approaches come with their own challenges. In

particular, if the width of the initial torus is increased too much, then the torus

ceases to be a torus, with the centre hole filling in. As a result, if the initial state

is too broad, the shape can best be described as a biconcave disc instead of the

desired torus. If, however, one wishes to generate a torus with a very narrow initial

width, then generating such a potential to trap the atoms begins to get challenging,

and there is a limit to how narrow it is possible to generate trapping potentials for

such an experiment. From figure 2.4(a), we note that to observe the emergence of

a central column experimentally, where a typical drop time of approximately 20 ms

is what might be typically expected on a benchtop experiment, an initial radius of
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(a)

(b)

Figure 2.4: Graphs showing the time at which the central peak emerges for Rb87.
(a) is generated with a fixed ratio of width σ to radius R. (b) is generated for a
fixed radius with a varying width to radius ratio.

approximately 10 µm would be required. By reducing the initial width of the wave

packet, it would be possible to observe this phenomenon for slightly larger initial
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radii. However, this drop time might be extended beyond the 20 ms through the use

of a drop tower such as the ZARM drop tower at the University of Bremen [84] and

the Einstein-Elevator at the Leibniz Universität, Hannover [85]. Additionally, longer

drop times might be achieved through parabolic flight such as the experiments being

performed by Bouyer et al. [86].

2.6 Variations on the symmetrical toroidal wave

packet

Having looked at the symmetrical torus, we now turn our attention to some slight

variations in the initial state. Firstly we will look at an initial system whose radial

width is different from the width in the z-axis. Therefore, this difference in the z-axis

width allows the study of flat tori like those considered by C. Ryu et al. [39] or for

a tall torus, which would more resemble a hollow tube. When sliced vertically, this

consideration would result in a torus-like geometry with an elliptical cross-section.

In this approach, we shall define two widths and two expansion rates by extension.

The first, which we shall label as σxy, is the initial width of the wave packet in x

and y and σz is the width in z. Later in this chapter, we will discuss what happens

if the system is such that the width is not the same in all directions. As a starting

point, we will be utilising our equation for the two-dimensional ring and multiplying

it with a Gaussian wave packet in the z plane with different widths and rates of

expansion in that direction. From equation (2.21) and equation (2.12) we have the

following expression for the two dimensional torus:

ψ2dtorus(r, τ) =
1√

2πσxy(τ)
exp

(
− r2 +R2

4σ̃xy(τ)2
+
R2

8σ2
0

− iθτ

) I0

(
rR

2σ̃xy(τ)2

)
√
I0

(
R2

4σ2
xy

) , (2.59)

with

σxy(τ) = σxy
√
1 + τ 2 (2.60)
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and

σ̃xy(τ) = σxy
√
1 + iτ . (2.61)

The Gaussian distribution in z can then be written as

ψGWP (z, τ) =
1

(2π)
1
4

√
σz(τ)

exp

(
−iθτ

2

)
exp

(
−z

2(1− iτ)

4σz(τ)2

)
. (2.62)

As we did before in section 2.2 the final wave-function is simply equal to

ψ3dtorus = ψ2dtorus(r, τ)× ψGWP (z, τ). (2.63)

This gives a final wave-function in the following form:

ψ3dtorus =
exp

(
R2

8σ2
0

)
exp

(
−3iθτ

2

)
(2π)

3
4σxy(τ)

√
σz(τ)

exp

(
−(r2 +R2)(1− iτ)

4σxy(τ)2
− z2(1− iτ)

4σz(τ)2

)

×
I0

(
rR(1−iτ)
2σxy(τ)2

)
√
I0

(
R2

4σ2
xy

) (2.64)

This process obtains an analytic function due to the wave-function’s separability

of the z-component. The resultant wave equation can be used to describe the free

expansion of a torus which is almost flat in the z direction, like the system studied

by C. Ryu et al. [39]. Alternatively, it can also be used to describe a tall torus that

stretches into the z direction.

Repeating the same process, but this time with a decoupling of the widths in x

and y, does not result in a function which can be analytically integrated so easily.

We start with the Gaussian wave packet in x, y and z with

ψGWP (x, τ) =
1

(2π)
1
4

√
σx(τ)

exp

(
−iθτ

2

)
exp

(
−x

2(1− iτ)

4σx(τ)2

)
, (2.65)
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ψGWP (y, τ) =
1

(2π)
1
4

√
σy(τ)

exp

(
−iθτ

2

)
exp

(
−y

2(1− iτ)

4σy(τ)2

)
(2.66)

and

ψGWP (z, τ) =
1

(2π)
1
4

√
σz(τ)

exp

(
−iθτ

2

)
exp

(
−z

2(1− iτ)

4σz(τ)2

)
. (2.67)

As before, we want theses Gaussians to be located on a torus therefore we need

to perform a transformation of the x and y coordinate such that they are Gaussian

distributions centred at x0 and y0 respectively. This relocation of the Gaussian gives

the wave packets in x, y and z as

ψGWP (x, τ) =
1

(2π)
1
4

√
σx(τ)

exp

(
−iθτ

2

)
exp

(
−(x− x0)

2(1− iτ)

4σx(τ)2

)
, (2.68)

ψGWP (y, τ) =
1

(2π)
1
4

√
σy(τ)

exp

(
−iθτ

2

)
exp

(
−(y − y0)

2(1− iτ)

4σy(τ)2

)
(2.69)

and

ψGWP (z, τ) =
1

(2π)
1
4

√
σz(τ)

exp

(
−iθτ

2

)
exp

(
−z

2(1− iτ)

4σz(τ)2

)
(2.70)

respectively. Taking the product of these three functions gives us a three-dimensional

Gaussian centred at x = x0, y = y0 and z = 0 with different widths in x, y and z.

The resulting combined three dimensional expression is therefore,

ψ3dGWP (x, y, z, τ) =
1

(2π)
3
4

√
σx(τ)σy(τ)σz(τ)

exp

(
−3iθτ

2

)
× exp

(
−(x− x0)

2

4σx(τ)2
− (y − y0)

2

4σy(τ)2
− z2

4σz(τ)2

)
× exp

(
iτ

[
(x− x0)

2

4σx(τ)2
+

(y − y0)
2

4σy(τ)2
+

z2

4σz(τ)2

])
.

(2.71)
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We can now set the location of the Gaussian by making the substitutions

x0 = R cos(θ′) (2.72)

and

y0 = R sin(θ′) (2.73)

The resulting expression we integrate through the angle θ′. Since the system is

asymmetric we are not able to use symmetry to simplify our expression as we did

in equation (2.17). Therefore, without a clear simplification, we are left with an

integral

ψ3dGWP (x, y, z, τ) =
1

(2π)
3
4

√
σx(τ)σy(τ)σz(τ)

exp

(
−3iθτ

2

)
×
∫ 2π

0

exp

(
−(x−R cos(θ′))2

4σx(τ)2
− (y −R sin(θ′))2

4σy(τ)2

)
× exp

(
iτ

[
(x−R cos(θ′))2

4σx(τ)2
+

(y −R sin(θ′))2

4σy(τ)2

])
× exp

(
− z2

4σz(τ)2

)
exp

(
iτ

z2

4σz(τ)2

)
dθ′

(2.74)

which does not appear to have an analytical solution or an identity that we can use

to solve the integration. Numerical integration would be the likely course of action

here. Although this would mean that we no longer have a purely analytic expression,

it would still have advantages over numerical simulation methods. These benefits

include the fact that it is a non-iterative approach, so errors associated with minor

discrepancies compound with each iteration. A result can be found for one specific

time value without finding all the intermediary values. We will be exploring other

systems where integration may not always be possible in chapter 4 of this thesis.
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2.7 The Free-Expansion of the Hollow Shell wave

packet

The methodology to form the three-dimensional hollow shell follows from the one-

dimensional Gaussian wave packet in equation (2.13). Although we detail the al-

ternative approach in appendix B, we will include an alternative method that finds

a wave-density function as we did with the toroidal wave packet. We start with a

three-dimensional Gaussian wave packet located at x = x0, y = y0 and z = z0. By

shifting the location of the Gaussian wave packet then we can rewrite the expression

as

ψ3DGWP(x, y, z, τ) =
σ

3
2
0

(2π)
3
4 σ̃(τ)3

× exp

(
−(x− x0)

2 + (y − y0)
2 + (z − z0)

2

4σ̃(τ)2

)
.

(2.75)

This Gaussian we locate on the surface of a sphere with

x0 = R sin(ϕ′) cos(θ′), (2.76)

y0 = R sin(ϕ′) sin(θ′) (2.77)

and

z0 = R cos(ϕ′). (2.78)
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We will then integrate through the angles θ′ and ϕ′ to generate our hollow shell wave

function. The resulting integral expression is in the form of the expression

ψhs(x, y, z, τ) =
σ

3
2
0

(2π)
3
4 σ̃(τ)3

1

N

∫ 2π

0

dθ′
∫ π

0

× exp

(
−(x−R sin(ϕ′) cos(θ′))2 + (y −R sin(ϕ′) sin(θ′))2

4σ̃(τ)2

)
× exp

(
−(z −R cos(ϕ′))2

4σ̃(τ)2

)
sin(ϕ′) dϕ′,

(2.79)

where N is a yet to be determined normalisation constant. Due to symmetry we

can set x = y = 0 and z = r. This substitution gives the modified expression

ψhs(r, θ
′, ϕ′, τ) =

σ
3
2
0

(2π)
3
4 σ̃(τ)3

1

N

∫ 2π

0

dθ′

×
∫ π

0

exp

(
−r

2 +R2 cos2(ϕ′)− 2Rr cos(ϕ′)

4σ̃(τ)2

)
× exp

(
−r

2 +R2 cos2(ϕ′)− 2Rr cos(ϕ′)

4σ̃(τ)2

)
sin(ϕ′) dϕ′.

(2.80)

This function may be expanded and simplified using the fact that R2 = R2 sin2(ϕ′)

cos2(θ′) +R2 sin2(ϕ′) sin2(θ′) +R2 cos2(ϕ′). This gives us the final integral

ψhs(r, θ
′, ϕ′, τ) =

σ
3
2
0

(2π)
3
4 σ̃(τ)3

1

N

×
∫ 2π

0

dθ′
∫ π

0

exp

(
−R

2 + r2 − 2Rr cos(ϕ′)

4σ̃(τ)2

)
sin(ϕ′) dϕ′.

(2.81)

Integrating with respect to θ′ gives us an extra 2π term since the function has no θ′

dependency. This leaves the following integral function:

ψhs(r, ϕ
′, τ) =

(2π)
1
4σ

3
2
0

σ̃(τ)3
1

N

∫ π

0

exp

(
−R

2 + r2 − 2Rr cos(ϕ′)

4σ̃(τ)2

)
sin(ϕ′) dθ′. (2.82)

To integrate this with respect to θ′ we can use the identity

∫ π

0

exp(−A+B cos(ϕ′)) sin(ϕ′)dϕ =
2

B
sinh(B) exp(−A). (2.83)
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Utilising this identity with

A =
R2 + r2

4σ̃(τ)2
(2.84)

and

B =
Rr

2σ̃(τ)2
(2.85)

for our system gives us the final integrated expression

ψhs(r, τ) =
4(2π)

1
4σ

3
2
0

Rrσ̃(τ)

1

N
exp

(
−R

2 + r2

4σ̃(τ)2

)
sinh

(
Rr

2σ̃(τ)2

)
. (2.86)

Utilising equation (2.5) and equation (2.10) we can remove the σ̃ term from our

expression by substituting

σ̃(τ)2 =
σ(τ)2

1− iτ
. (2.87)

The resulting expression for the free expanding hollow shell is therefore

ψhs(r, τ) =
4(2π)

1
4σ

3
2
0

Rrσ̃(τ)

1

N
exp

(
−(R2 + r2)(1− iτ)

4σ(τ)2

)
sinh

(
Rr(1− iτ)

2σ(τ)2

)
. (2.88)

To understand the behaviour of the system better we choose to rewrite the sinh

function with a complex argument in terms of hyperbolic and trigonemtric functions.

We achieve this by making the substitution

sinh(A− iB) = sinh(A) cos(B)− i cosh(A) sin(B). (2.89)
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This substitution gives us the un-normalised wave equation

ψhs(r, τ) =
4(2π)

1
4σ

3
2
0

σ̃(τ)rR

1

N

[
exp

(
−(r2 +R2)(1− iτ)

4σ(τ)2

)

×
(
sinh

(
rR

2σ(τ)2

)
cos

(
rRτ

2σ(τ)2

)

− i cosh

(
rR

2σ(τ)2

)
sin

(
rRτ

2σ(τ)2

))]
,

(2.90)

with the normalisation factor N taking the form

N =

√
32π2σ2

0

R2

(
1− exp(− R2

2σ2
0

)

)
. (2.91)

This gives us the following final equation for the wave-function:

ψhs(r, τ) =
exp

(
− iθτ

2

)
2

1
4π

3
4 r

√
σ(τ)

(
1− exp

(
− R2

2σ2
0

))
[
exp

(
−(r2 +R2)(1− iτ)

4σ(τ)2

)

×
(
sinh

(
rR

2σ(τ)2

)
cos

(
rRτ

2σ(τ)2

)

− i cosh

(
rR

2σ(τ)2

)
sin

(
rRτ

2σ(τ)2

))]
,

(2.92)

given σ̃(τ) =√
σ(τ)σ0 exp(iθτ/2).

2.8 Limits of the hollow shell wave equation

We now again wish to understand the properties of the system both close to and far

out from the origin. Taking our wave function in equation (2.92) we focus only on
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those terms which are dependent on the radial location r such that

ψhs(r, τ) ∝
1

r

[
exp

(
−r

2(1− iτ)

4σ(τ)2

)

×
(
sinh

(
rR

2σ(τ)2

)
cos

(
rRτ

2σ(τ)2

)

− i cosh

(
rR

2σ(τ)2

)
sin

(
rRτ

2σ(τ)2

))]
.

(2.93)

In the small argument limit as r → 0 the sine function tends towards 0 and the

cosine function tends towards 1. This therefore means in the limit r → 0

lim
r→0

ψhs(r, τ) ∝
1

r

[
exp

(
−r

2(1− iτ)

4σ(τ)2

)(
sinh

(
rR

2σ(τ)2

))]
. (2.94)

We can now separate out the various functions. In particular the hyperbolic sine

function has the following series expansion in this limit:

lim
r→0

sinh

(
rR

2σ(τ)2

)
=

rR

2σ(τ)2
+O(r3). (2.95)

This will cancel with the 1/r term leading to the expression

lim
r→0

ψhs(r, τ) ∝

[
exp

(
−r

2(1− iτ)

4σ(τ)2

)
R

2σ(τ)2

]
. (2.96)

Already we can see at the origin, like the toroidal wave packet, the exponential

term will dominate the properties of the wave-function. The exponential function

itself has a series expansion at r = 0, as seen in the toroidal wave packet, in the

following form:

lim
x→0

exp

(
−r

2(1− iτ)

4σ(τ)2

)
= 1− r2

4σ(τ)2
(1− iτ) +O(r4). (2.97)

Again, given the reappearance of the exponential function, initially, the system will

take the form of a parabola which, as time progresses, will invert, leading to the

emergence of the expected central interference fringe. Finally, in the large argument
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limit, the 1/r portion of the function and the exponential portion will suppress the

wave function further away from the origin. Therefore the characteristic behaviour

of the wave function in this limit is dictated by the cosine and sine functions.

2.9 Locations and visibility of the interference

fringes for the hollow shell wave packet

As before, we would like to know the location and relative visibility of the interference

fringes. Therefore, we define a complex conjugate of the above wave function as

follows:

ψhs(r, τ)
∗ =

exp
(
iθτ
2

)
2

1
4π

3
4 r

√
σ(τ)

(
1− exp

(
− R2

2σ2
0

))
[
exp

(
−(r2 +R2)(1 + iτ)

4σ(τ)2

)

×
(
sinh

(
rR

2σ(τ)2

)
cos

(
rRτ

2σ(τ)2

)

+ i cosh

(
rR

2σ(τ)2

)
sin

(
rRτ

2σ(τ)2

))]
.

(2.98)

The density function given by, |ψ|2 = ψψ∗, can now be found. We note that in order

to do this we must use the fact (sinh(A) cos(B)− i cosh(A) sin(B))(sinh(A) cos(B)+

i cosh(A) sin(B)) = 1
2
(cosh(2A) − cos(2B)). As a result we can rewrite the density

function as

|ψhs(r, τ)|2 =
1

(2π)
3
2 r2σ(τ)

(
1− exp

(
− R2

2σ2
0

))[ exp(−(r2 +R2)

2σ(τ)2

)

×
(
cosh

(
rR

σ(τ)2

)
− cos

(
rRτ

σ(τ)2

))]
.

(2.99)

From this expression, we can extract the oscillatory cos term. As was the case with

the toroidal wave packet, we note that a central fringe emerges at r = 0. This

time the central fringe will supersede both the first local maxima and minima as

dictated by the cosine portion of the expression. For a function − cos(x) it has local
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maxima located at x = 2πn + π and local minima at x = 2πn. From this, we can

obtain an expression for the radial locations of these local maxima and minima by

equating the argument of the cosine function with the local maxima and minima

expressions for the cosine function. We can then rearrange these expressions for r

to find these locations. In particular, the local maxima of the cosine function gives

us the expression

2πn+ π =
rmaxRτ

σ(τ)2
, for n ≥ 2. (2.100)

This expression can then be rearranged for r giving

rmax =
πσ(τ)2

Rτ
(2n+ 1), for n ≥ 2. (2.101)

Similarly, the local minima of the cosine function gives us

2πn =
rminRτ

σ(τ)2
, for n ≥ 1, (2.102)

which can be rearranged for r to give

rmin =
πσ(τ)2

Rτ
(2n), for n ≥ 1. (2.103)

Now that we have the locations for our local maxima and local minima, we can

then substitute these back into our wave function to get the value of that function.

We use the same form of equation (2.52) as before. We must note that in order to

substitute in r = 0, we need to know the following limits:

lim
r→0

1

r
exp(−Ar2) sinh(Br) cos(Cr) = B (2.104)

and

lim
r→0

1

r
exp(−Ar2) cosh(Br) sin(Cr) = C. (2.105)
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Therefore, the wave equation at the local maxima and minima can be written as

ψhs(r = 0, τ) =
exp

(
− iθτ

2

)
2

1
4π

3
4

√
σ(τ)

(
1− exp

(
− R2

2σ2
0

))
×

[
exp

(
−(R2)(1− iτ)

4σ(τ)2

)(
R

2σ(τ)2
− iRτ

2σ(τ)2

)]
,

for n = 1,

(2.106)

ψhs(rmax, τ) =
Rτ exp

(
− iθτ

2

)
2

1
4π

7
4σ(τ)

3
2 (2n+ 1)

√(
1− exp

(
− R2

2σ2
0

))

×

[
exp

−

((
πσ(τ)2

Rτ
(2n+ 1)

)2
+R2

)
(1− iτ)

4σ(τ)2


×

(
sinh

(
π(2n+ 1)

2τ

)
cos

(
π(2n+ 1)

2

)

− i cosh

(
π(2n+ 1)

2τ

)
sin

(
π(2n+ 1)

2

))]
,

for n ≥ 2

(2.107)

and

ψhs(rmin, τ) =
Rτ exp

(
− iθτ

2

)
2

5
4π

7
4σ(τ)

3
2n

√(
1− exp

(
− R2

2σ2
0

))

×

[
exp

−

((
2nπσ(τ)2

Rτ

)2
+R2

)
(1− iτ)

4σ(τ)2


×

(
sinh

(πn
τ

)
cos (πn)− i cosh

(πn
τ

)
sin (πn)

)]
,

for n ≥ 1.

(2.108)

Since we are looking at the relative visibility we are able to cancel any common
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multipliers giving us the final expressions for the wave equations:

ψ̃hs(r = 0, τ) =

(
1

2σ(τ)
− iτ

2σ(τ)

)
, for n = 1, (2.109)

ψ̃hs(rmax, τ) =
τ

π (2n+ 1)

[
exp

−

((
πσ(τ)2

Rτ
(2n+ 1)

)2)
(1− iτ)

4σ(τ)2


×

(
sinh

(
π(2n+ 1)

2τ

)
cos

(
π(2n+ 1)

2

)

− i cosh

(
π(2n+ 1)

2τ

)
sin

(
π(2n+ 1)

2

))]
,

for n ≥ 2

(2.110)

and

ψ̃hs(rmin, τ) =
τ

2πn

[
exp

−

((
2nπσ(τ)2

Rτ

)2)
(1− iτ)

4σ(τ)2


×

(
sinh

(πn
τ

)
cos (πn)− i cosh

(πn
τ

)
sin (πn)

)]
,

for n ≥ 1

(2.111)

These terms can then be substituted into the visibility, ν, formula

ν =
ψmax(r, z, τ)− ψmin(r, z, τ)

ψmax(r, z, τ) + ψmin(r, z, τ)
. (2.112)

Giving us an expression for the relative visibility for each of the emergent interference

fringes. We can use this expression to plot this property of the system in figure 2.5.



CHAPTER 2. 3D EXPANSION OF WAVE PACKETS 42

Figure 2.5: Visibility of the first four fringes against time graph for an initial hollow
shell with R = 20 µm and width σ = 2 µm. The visibility is initially zero at time
t = 0 since the location of the local maxima, as defined by the sinusoidal component
of the wave function, has a lower density than the location of the local minima but
as the wave packet expands and the fringes develop the density at the local maxima
will become greater than that of the local minima and the visibility of the fringe
will start to increase as time progresses. This, therefore, shows the point at which
the fringe emerges at the location specified.

As in figure 2.1, we see in figure 2.5 that initially, the visibility of the fringes is

zero and then increases asymptotically. This time we observe that the first fringe

has greater visibility than in figure 2.1 whereas all subsequent fringes have lower

visibility than in figure 2.1. This lower visibility means the geometry of the hollow

shell wave packet suppresses subsequent interference fringes more than the toroidal

geometry. As with the torus, experimentally, a waiting time of approximately 0.1

seconds is required to achieve the highest visibility. As the initial radius and the

ratio between the initial radius and width decrease, this waiting time decreases.
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2.10 Overall behaviour of the free expanding hol-

low shell wave packet

Having established an expression for the visibility of the fringes, we now turn our

attention to results generated using our expression for the hollow shell. In figure 2.6

we plot our expression at various time values.

Figure 2.6: Cross-section of hollow shell wave packet of radius R = 20 µm on the
plane y = 0 and at times (a) t = 0 s, (b) t = 0.001 s, (c) t = 0.01 s and (d) t = 0.1
s. These results are for the free-expansion of rubidium-87 with an initial width of
σ = 2 µm.

As observed previously, the hollow shell will expand to form a high-density core

with the free expansion of a toroidal wave packet. However, due to the spherical

symmetry, this core will not extend out into a column like the toroidal case due to
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the spherical symmetry of the hollow shell geometry. The long-term behaviour of

the hollow shell wave-packet mirrors that of the toroidal in that once the fringes

have emerged they will remain present, with the visibility of these fringes tending

towards an asymptotic limit. As the wave-packet expands the peak density of the

wave-packet will decrease as it spreads.

2.11 Conclusions

In conclusion, we have derived expressions for the free-expansion of both the toroidal

(2.24) and hollow shell (2.92) wave packets in three dimensions. Additionally, we

have derived expressions for the fringe visibility for both systems, demonstrating

their asymptotic nature, allowing for a greater understanding of what might be ex-

pected experimentally. The visibility expressions might also help design experiments

to look specifically at the free expansion of these geometries to obtain high visibility

interference fringes.



Chapter 3

Numerical approach to the

dynamics of tori and hollow shells

3.1 Introduction to Methodology

The Split-Step Fourier Method (SSFM) [81] is a well-established pseudo-spectral

method used to solve non-linear differential equations. The method takes small

time steps, treating the linear and non-linear terms separately. The linear steps

are performed in momentum space, whereas the non-linear steps get performed

in position space; therefore, it is necessary to utilise Fourier transforms to switch

between the two. By repeated implementation of the algorithm, it is possible to

simulate the evolution of a wave function in time for any given potential. The

standard Split-Step Fourier Method takes the following form:

Ψ(r, t+∆t) = F−1

[
exp

(
−i∆tkh̄

2m

)
F
(
Ψ(r, t) exp

(
−i∆tV

h̄

))]
. (3.1)

With F the Fourier transform, F−1 the inverse Fourier transform, Ψ(r, t) the wave-

function at time t, ∆t the time step, k the momentum space coordinate, V the

potential function and m the mass of a single atom. After each step of the algorithm

we replace Ψ(r, t) with the output Ψ(r, t+∆t). For the free-expanding wave function

simulation, we assume that the wave packet is not in a potential and, therefore,

45
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V = 0. By making this substitution the equation (3.1) becomes

Ψfree-expansion(r, t+∆t) = F−1

[
exp

(
−i∆tkh̄

2m

)
F (Ψ(r, t))

]
. (3.2)

However, before we simulate the free expansion, we want to find the ground state of

the wave function. We could use an approximation of the ground state, assuming

that the wave function will form a Gaussian distribution with a width determined by

the initial width of the atomic trap; however, we have found that at least with our

spherically symmetric toroidal and hollow shell potentials, that this is not quite the

best as the curvature affects the overall shape. Instead, we choose to find the ground

state numerically and simulate the expansion from this numerically found ground

state once this has been found. The method we employ to find the ground state is an

imaginary time propagation [87] starting with a flat wave function that is uniform

within our simulated region. We will be replacing our t in the Split-Step Fourier

Method algorithm with −it. This imaginary time propagation causes a convergence

on the ground state, which we can then use as the input for the numerically simulated

expansion. Before substituting −it for t, we note using a variation on the standard

SSFM algorithm. Specifically, we will split the real space propagation portion into

two, and Strang splitting [88] the momentum space portion. This is due to this

approach being more accurate with Deiterding et al. [89] finding that this approach

has an accuracy of order O∆t2 compared to O∆t for the more common approach.

Since we aim to get as accurate results as possible without the simulation taking so

long, we decide to use this approach to have more accurate results without decreasing

the time step interval. We note that although we have utilised Strang splitting which

would appear to add an extra exponential term it is possible to combine the final

exponential of one iteration of the loop with the first exponential of the subsequent

iteration to reduce the number of exponentials evaluated to two. Coupling this with

the increased order of accuracy helps to contribute to a shorter run time for the

simulations compared to the non-Strang splitting approach. The algorithm to find
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the ground state is as follows:

Ψ(r, t+∆t) = exp

(
−
∆t
(
V + g |Ψ(r, t)|2

)
2h̄

)

×F−1

[
exp

(
−∆tkh̄

2m

)
×F

(
Ψ(r, t) exp

(
−
∆t
(
V + g |Ψ(r, t)|2

)
2h̄

))] (3.3)

We chose to stop the algorithm when the maximum difference between Ψ(r, t) and

Ψ(r, t+∆t) was less than 10−3 which seemed to give us the ground state to a suitable

degree of accuracy. Once we find the ground state, we can then numerically simulate

the system and compare it to our analytic expression.

3.2 Simulating results

We must be careful when utilising a numerical methodology like this, as there are

various pitfalls we need to avoid. Firstly, simulations of this nature tend to bal-

ance between ensuring high accuracy through smaller time steps and increasing the

density of data points used and reasonable run times to generate enough results in

a reasonable time. We used the University of Sussex’s High-Performance Comput-

ing (HPC) cluster, which allowed for a higher number of data points and smaller

time steps than might be reasonably utilised on a desktop computer. This access to

the HPC cluster also allowed for multiple simulations to run concurrently. Another

property we needed to be careful with was the size of the simulated box. Again,

we need to be careful because the boundary of the simulated box is continuous and

cross-boundary interactions can occur. Therefore, we need to ensure that the sim-

ulation box is large enough to make the cross-boundary interactions negligible, at

least during the emergence of the interference fringes. We found that a box size four

times the wave-packet initial diameter was sufficient to minimise cross-boundary

interactions over the simulated interval. However, it must be noted that the longer

the simulation continues beyond the emergence of the self-interference, the more sig-
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nificant the impact that the cross-boundary interactions have. Equally important is

to choose the correct point density while simulating our system, if the grid spacing

is not small enough then a portion of the wave function may lie at the boundaries

of momentum space causing aliasing to occur. We chose to use a 256 × 256 × 256

grid since we found that this gave a sufficiently small spatial grid spacing to pre-

vent aliasing from occurring over the course of our simulations. With our choice of

box size, and point density we find that the size of the wave packet is significantly

smaller in volume than the size of the momentum space simulated. Additionally,

we did not observe the emergence of artifacts within our simulations which would

indicate that the grid size selected was causing aliasing to occur. We now want to

compare the results from our equations to those generated using SSFM. We will

compare the density function from the density function generated through SSFM

with our density function and measure the fidelity, which indicates how much two

wave functions overlap. The formula we used to calculate the fidelity is [90]

F (ρ, σ) =

∣∣∣∣∫∫∫ √ψ∗
ρψσdxdydz

∣∣∣∣2 . (3.4)

We plot this fidelity for various starting conditions in figure 3.1.

From figure 3.1(a) and figure 3.1(c), we see that we have an initial fidelity of

slightly less than unity, which is universal across all the radii used. The reason for

this is that there is a slight discrepancy in the initial conditions of both models.

This discrepancy, as can be seen in figure 3.1(b) and figure 3.1(d), is dependent on

the ratio between the initial width and the initial radius. The smaller this ratio is,

the higher the initial fidelity measured. This trend indicates that the smaller the

ratio is, the more accurate our expression is. Despite this property, our results still

have relatively high fidelity for larger width/radius ratios. Across all radii used, we

get an initial increase in fidelity, with the fidelity being within 10−4 of one. A total

overlap of the two density functions indicates a total agreement in the limit where

the fidelity is one. In figure 3.1(a), we observe that the point of maximum fidelity

seems to correspond to the time at which the central column emerges in figure 2.4.
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(a) (b)

(c) (d)

Figure 3.1: The time-evolution of the fidelity when comparing our equations, equa-
tion (2.24) and equation (2.92), with those generated by the SSFM. (a) and (b)
compare our expression for a toroidal wave-packet with the results of the SSFM
with (a) at a fixed ratio of σ = 0.1R and (b) at a fixed width of σ = 8 µm. (c) and
(d) compare our expression for a hollow shell wave-packet with the results of the
SSFM with (c) at a fixed ratio of σ = 0.1R and (d) at a fixed width of σ = 8 µm.

This occurrence means we can have almost total confidence in our results for the

interference as we observe that our equations have a fidelity to the SSFM of one as

the central feature emerges. Upon reaching this maximum value, we observe a drop-

off in the fidelity. We largely attribute this drop in fidelity to one of the limitations

of the SSFM, namely periodic boundary conditions.

Indeed, we find in our SSFM calculations that we get significant cross-boundary

interactions occurring. These interactions increase in magnitude as time progresses.
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The cross-boundary interactions are model, not experiment, specific, this is a signif-

icant problem with this approach, but there is no such problem with our equations.

One approach to reducing this issue would be to use a larger simulation space; how-

ever, either the run time of the simulation must be sacrificed or the density of points

simulated over. Another approach would be to use absorbing boundary conditions,

eliminating cross-boundary interactions when using the SSFM. We found that when

the central column emerges, the density of the wave-function at the boundaries ap-

proached 0.1% of the maximum density within the volume before rapidly increasing.

In figure 3.1(a) and figure 3.1(c) we have a fixed ratio between the initial width and

radius across all radii. Therefore, the trends observed can be considered the same

but for a scaling factor. In figure 3.1(b) and figure 3.1(d) we fixed the width of the

initial wave-packet and plotted the fidelity for various different radii. We observe

that we still get similar trends with fixed σ/R ratios, as we still see an initial in-

crease in fidelity as it approaches one before dropping off. In figure 2.4 we found

that the rate of expansion was dependent on the ratio of the initial width to radius,

in figure 3.1(b) and figure 3.1(d) we also find that the fidelity is dependent on this

σ/R ratio. We notice that the fidelity drops sharply when comparing our hollow

shell models to our toroidal ones. This property was expected, given the spherical

symmetry of the hollow shell wave-packets, as more cross-boundary interactions will

occur initially as more of the wave-packet will hit the boundary when placed in the

same volume as the tori. Having plotted the time evolution of the fidelity, we now

focus on the fidelity at the time of emergence for the central fringe. We plot this

fidelity for various starting conditions in figure 3.2.

From figure 3.1, we observe that we have an overall very high fidelity when

comparing our equations to SSFM simulations with fidelity over 0.9997 for both

geometries when the initial radius is greater than 2.5 µm. With results this high, our

method appears to provide an excellent approximation of the systems in question.

We note from figure 3.1(a) and figure 3.1(b) that the fidelity is slightly higher for the

hollow shell when comparing them to similar toroidal systems. However, we note
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Figure 3.2: The fidelity of various simulations at the time of emergence for the
central fringe. We compare our analytical expressions to numerical simulations. We
then plot the initial radius against fidelity for wave-functions of various widths. In
(a) we plot the fidelity for the toroidal wave packets and in (b) we plot it for hollow
shells.
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that the fidelity seems to reach an asymptotic limit as the initial radius increases

in both geometries. We also note that the greater the initial width, the higher the

fidelity. This property means that for all but very narrow and very small systems,

our methodology produces results that are an excellent approximation for the free

expansion of such systems.

Overall, our results demonstrate that our analytic expressions are in close agree-

ment with the results obtained through the SSFM. Furthermore, the high fidelity

indicates that our equations provide viable alternatives to SSFM for these specific

wave packets. We also note that our equations have the advantage of not dealing

with cross-boundary interactions, which would not occur experimentally. Another

advantage of our approach is that we can separate it into expansion and interference

terms, allowing for a greater understanding of how the system behaves and the effect

changing specific initial parameters will have on it.

3.3 Gross-Pitaevskii interactions

One property present in a physical system that we have not yet explored is the

interaction energy between individual atoms. In a Bose-Einstein condensate, the

dynamics of the individual atoms will be dictated by three different energies, ki-

netic energy, the potential field and interaction energy. Our model and approach

have neglected this interaction energy and have just considered non-interacting ki-

netic particles in a potential field. However, in an actual system, the atoms that

form the Bose-Einstein condensate will be weakly interacting via atomic coupling.

The Gross-Pitaevskii equation [58, 91] is one way that these interactions can be

included in a wave equation. The Gross-Pitaevskii equation is a variation on the

non-interacting Hamiltonian that utilises a pseudo-potential model to include these

atomic interactions. If a system is perfectly condensed with all atoms in a Bose-

Einstein condensate state, or in other words, if all atoms occupy the lowest quantum

state with each atom having the same wave-function ϕ(r). The condensate can then
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be described by a mean-field utilising the Hartree-Fock method [92] such that,

Ψ(r1, r2 . . . rN) = ϕ(r1)ϕ(r2) . . . ϕ(rN). (3.5)

We must now define a mean-field energy, U0 as

U0 =
4πh̄2a12
m

, (3.6)

where a12 is the mean scattering length, andm is the mass of a single atom within the

condensate. The scattering length is a property that needs to be found experimen-

tally. The mean-field energy forms a pseudo-potential and gives us the Hamiltonian

of the system in the form

H =
N∑
i=1

(
p2
i

2m
+ V (ri)

)
+ U0

∑
i<j

δ(ri − rj). (3.7)

This Hamiltonian has the regular kinetic, p2/2m and potential V (ri) with an added

pseudo-potential U0 which sums all the interactions between atoms in the system and

δ the Dirac delta function. Then, utilising the Hartree-Fock method and assuming

the particle density is equal to the absolute square of the wave function, we arrive

at the following wave function:

(
− h̄2

2m
∇2 + V (r) + g |ψ(r)|2

)
ψ(r) = µψ(r), (3.8)

with g being the non-linear coupling constant. This wave-equation thus describes

the ground-state of the system. The mean-field energy is multiplied by the number

of atoms N giving the non-linear coupling constant as

g = NU0 =
4πh̄2Na12

m
. (3.9)

The addition of Gross-Pitaevskii to the Split-Step Fourier Method requires a small

adjustment to the algorithm. Previously we outlined a split-step Fourier method
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with imaginary time propagation and a potential term to find the wave-function

groundstate before performing the free-expansion simulation [89]. We will be util-

ising a similar method to simulate the Gross-Pitaevskii wave function. Again, we

will be utilising the two half steps in the potential term to have greater accuracy

without increasing the number of spatial points utilised. The only modifications we

need to make to the groundstate finding algorithm is an adjustment to the potential

term and a conversion to real-time propagation. The modification to the potential

term is a simple addition of the mean-field energy term multiplied by the current

wave-function density, meaning that we can make the transformation

V (r, t) → V (r, t) + g |ψ|2 (3.10)

in our algorithm. We will be utilising the scattering length of rubidium-87 as found

by Egorov et al. [93], since rubidium-87 is a common isotope used experimentally.

The algorithm we will be using in full therefore is as follows:

Ψ(r, t+∆t) = exp

(
−
i∆t

(
V + g |Ψ(r, t)|2

)
2h̄

)

×F−1

[
exp

(
−i∆tkh̄

2m

)
×F

(
Ψ(r, t) exp

(
−
i∆t

(
V + g |Ψ(r, t)|2

)
2h̄

))]
,

(3.11)

with F the Fourier transform and F−1 the inverse Fourier transform and ∆t the

time step and k the momentum space coordinate. Under the free expansion, the

potential term V is set to zero. Although this is relatively straightforward for the

Split-Step Fourier Method numerical approach, the same cannot be said for our

approach in chapter 2. This difficulty is because the Gross-Pitaevskii is a non-linear

differential equation, which makes solutions challenging to obtain. Solutions thus

far have been found for free-particle, sometimes called the Hartree approximation

[94] and the soliton [95, 96], but neither of these are applicable for our systems.

Additionally, there are a couple of approximations that have also been made in
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the Thomas-Fermi approximation [97, 98] and the Bogoliubov approximation [99].

The Thomas-Fermi approximation applies only if the atomic density is so large that

the kinetic energy term may be neglected. This kinetic energy term is usually com-

paratively negligible since, at ultra-cold temperatures, the atomic velocities are very

low, however, this assumption does not hold for the systems we are considering since

the number of atoms might reasonably be expected to be in the 104 atom range.

Therefore the kinetic energy term is not negligible when compared to the Gross-

Pitaevskii interaction term. The Bogoliubov approximation assumes that the wave

function may be approximated by adding a small perturbation to the wave function

at equilibirum. The free expansion of a wave function does not hold since the wave

function deviates considerably from the equilibrium. We, therefore, do not have an

established method of introducing Gross-Pitaevskii interactions into our methodol-

ogy. We, therefore, need to understand what effect the Gross-Pitaevskii interactions

have on the system and compare these to our original methodology, which omits

these considerations. That way, we can better define under what conditions our

approach remains a good approximation of the Gross-Pitaevskii expansion. We will

measure the numerical simulation’s fidelity or overlap with our analytic expressions.

In particular, we will be looking at the toroidal system and how the number of atoms

and the expansion rate affects our methodology compared to Gross-Pitaevskii nu-

merical simulations. In figure 3.3, we plot the infidelity against time for several

different systems with a different number of atoms. We have chosen to use infi-

delity, equal to one minus fidelity, since we can then put a log scale on the infidelity

axis to differentiate the different lines better.
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Figure 3.3: Here, we plot 1-fidelity against time for a different number of atoms.
These results are obtained by comparing a Gross-Pitaevskii numerical simulation to
our non-Gross-Pitaevskii analytical approach. In this simulation, we used a toroidal
wave packet with a radius of 50 µm and a width of 5 µm.

From figure 3.3, we see that the fewer the number of atoms, the higher the fi-

delity; this we expect since the more atoms, the more interactions and the more the

system will divert from the non-Gross-Pitaevskii system. Nevertheless, the fidelity

remains relatively high, with systems containing 104 atoms or fewer maintaining

a fidelity above 0.995. Even at 105 atoms, the fidelity does not drop below 0.9.

Therefore, this trend indicates that although Gross-Pitaevskii interactions affect

the overall system, this is often not significant until the emergence of interference

fringes. In figure 3.4, we plot the fidelity comparison for systems of a different ra-
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dius to see how Gross-Pitaevskii interactions impact this system. The smaller the

radius, the greater the Gross-Pitaevskii interactions and the greater deviation of

the system from the non-Gross-Pitaevskii system. We also see that the smaller the

radius, the faster the systems differ. In conjunction with our findings regarding

the number of particles, this result suggests that our analytic expression works best

when the wave packet is at a lower density, as was expected, and has a larger initial

radius. Our methodology in chapter 2 does not provide a straightforward way to

include any Gross-Pitaevskii interactions; however, results indicate the difference

between Gross-Pitaevskii and non-Gross-Pitaevskii systems is not significant with

the caveats outlined before. Suppose an expression was found for the free expan-

sion of a Gaussian wave packet with Gross-Pitaevskii interactions. In that case,

this could be utilised in our methodology to overcome discrepancies for the limited

shortcomings of our approach, particularly for small wave packets and systems with

a large number of atoms.
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Figure 3.4: Here we plot 1-fidelity against time for different initial radius’. These
results are obtained by comparing a Gross-Pitaevskii numerical simulation to our
non Gross-Pitaevskii analytical approach. We utilise a fixed width to radius ratio
of 0.1 and 103 atoms.

3.4 Conclusions

We have then demonstrated that our results mirror those achieved through the im-

plementation of the SSFM, with direct comparisons yielding a high fidelity across

all results. For most of the systems tested, we found that our fidelity exceeded

0.99 over the initial expansion of the system, with a consistent drop-off in fidelity

occurring as the wave function began to expand over the edges of the box, causing
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cross-boundary interactions to occur. Furthermore, we observed that in both sys-

tems, a high-density central peak emerges, which in the toroidal geometry produces

a central column. This central peak depended on the initial radius (R) and its ratio

with the initial width (σ). We noted a high fidelity at the time of emergence for the

central fringe in both systems, with fidelity over 0.9997 in most simulated systems.

In addition, we found that the larger the initial width and the larger the initial

radius, the higher the fidelity we recorded at the time of emergence for the central

fringe. Finally, we looked at the overall effect that Gross-Pitaevskii interactions had

on the overall behaviour of the system. We found that systems with a high density

of atoms deviated more from the results of our equations which did not include

such coupling. We also found that the smaller the initial radius was, the more the

Gross-Pitaevskii caused the simulations to deviate from our results. However, we

found that the fidelity remained relatively high, particularly in the larger and less

dense systems with fewer than 103 atoms and widths greater than 50 µm remaining

within 10−3 of a fidelity of one.



Chapter 4

Asymmetric freely-expanding

wave-packets

4.1 Introduction

In the previous two chapters of this thesis, we have been looking at two symmet-

ric systems; however, there is significant experimental interest in asymmetric sys-

tems. As discussed previously in this thesis, the interference fringe generated from

a freely expanding Bose-Einstein condensate depends on the system’s initial state.

This property can be utilised to determine the system’s original state after the free

expansion of the condensate. Therefore, understanding the dynamics of these asym-

metric systems is something we want to achieve with our methodology. Thus far, we

have just been considering symmetrical systems. Therefore it is equally important

to check that our approach is still valid when the system does not have this circular

symmetry. Demonstrating that our methodology is still valid in the asymmetric sys-

tem would further demonstrate the versatility of the approach used. In this chapter

of the thesis, we will be focusing on how gravity might affect the initial geometry of

both the hollow shell and toroidal wave packets. Firstly, we will be simulating the

effects of tilting the toroidal wave packet on the interference fringes generated by

adding a gradient to the width of the torus. This tilting will cause an asymmetry in

60
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the initial state, affecting the system’s dynamics and, in particular, the interference

fringes generated. Secondly, we will look at microgravity’s effects on the hollow

shell system. This micro-gravity will result in a deformation of the initial state, and

the subsequent interference pattern generated should be highly dependent on this

deformation. As a result, this might be used to study and measure micro-gravity

in experiments like those being tested at the NASA cold atom laboratory on the

International Space Station [77]. In this chapter, we will be looking at both sys-

tems, observing how the interference pattern is affected and testing the validity of

our methodology against numerical simulations of the same systems.

We note that due to the nature of the Gaussian distributions, it may not always

be possible to analytical solve the integral for the system. Therefore analytical

solutions may be restricted to systems with symmetry. We will have to employ

numerical integration to obtain our wave packets’ dynamics when this is the case.

This lack of an analytical solution to the integral does mean that extracting specific

properties like the location and the visibility of the fringes is more complex but does

not invalidate some of the other benefits of our approach over a purely simulated

system. In particular, we still are not required to find intermediary time values

and, as such, can identify the shape of the wave packet at any given time after the

point of release. Additionally, we do not have to consider the time step utilised, the

interactions with the simulation environment or numerical drift. When performing a

numerical integration of the system, we need to establish how quickly the numerical

integration converges to the solution and, therefore, how many spatial steps we must

perform to describe the system accurately. This chapter will examine two variations

of the initial state in tilted toroidal and tilted hollow shell wave packets. We aim

to demonstrate that our methodology might be applied to asymmetric systems,

detailing one particular approach to show our methodology’s versatility.
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4.2 Numerical integration of the tilted torus

In order to determine how quickly the numerical integration converges on the so-

lution, we will look at the two geometries we have outlined in chapters 2 and 3 of

this thesis, namely the hollow shell and the toroidal wave-packet. We have already

established that our analytical solution has a high fidelity or overlap compared to

the system’s simulated ground state. We will use this property to test the conver-

gence of the numerical integration. We use imaginary time propagation to find the

ground state for the hollow shell and toroidal system. We then compare a numerical

integration of the same system at time zero with various integration spatial steps

and measure the resulting fidelity or overlap between the numerically integrated sys-

tem and the numerically determined ground-state. We will then utilise this fidelity

result to determine the number of spatial steps we will be utilising in our numerical

integration of the system. When selecting the number of spatial steps, we needed to

consider the balance between the accuracy of the integration and the time taken to

perform the integration. This balance is essential with the hollow shell wave function

since this requires integration over both θ and ϕ. Therefore the run time can suffer

rapidly as the number of spatial steps utilised in the numerical integration increases.

As outlined in a previous chapter of this thesis, the ground state for our wave func-

tion may be found numerically through imaginary time propagation utilising the

split-step Fourier methodology. Through iterating this approach, the wave function

will converge on the ground state for the system. To test our numerical integration,

we perform this ground state finding algorithm until the maximum change in the

wave function falls below a certain tolerance level. In our case, we utilise a maxi-

mum difference of 10−3, which is sufficiently smaller than the maximum amplitude

of the system, which typically is of the order 107 meaning that we obtain a ground

state that is accurate to approximately ten digits which we feel is sufficiently accu-

rate. This accuracy is an absolute accuracy of the system and not a relative error.

We then want to compare this ground state to our numerically integrated equation.

We will start by looking at the toroidal wave packet. The integral that we will be
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numerically testing is in the following form:

ψtorus =
σ

3
2
0

(2π)
3
4 σ̃(τ)3

exp

(
− z2

4σ̃(τ)2

)
×
∫ 2π

0

exp

(
−(x−R cos(θ′))2 + (y −R sin(θ′))2

4σ̃(τ)2

)
dθ′.

(4.1)

In order to numerically integrate our expression we shall replace the integration term

with a summation term which we need to evaluate such that

ψapprox =
σ

3
2
0

(2π)
3
4 σ̃(τ)3

exp

(
− z2

4σ̃(τ)2

)
×

nmax∑
n=0

1

2

(
θ′n+1 − θ′n

) (
Ψ
(
θ′n+1

)
+Ψ(θ′n)

)
,

(4.2)

with Ψ the integrand, nmax the total number of spatial steps used in the integration

which we are looking to determine. Typically, the angles at which the summation

is evaluated would be equally spaced and therefore,

θ′n =
2πn

nmax

(4.3)

and

θ′n+1 =
2π(n+ 1)

nmax

. (4.4)

The integrand therefore takes on the following form:

Ψ(θ′) = exp

(
−(x−R cos(θ′))2 + (y −R sin(θ′))2

4σ̃(τ)2

)
. (4.5)

We then renormalise the resulting function and find the fidelity or overlap between

the approximate wave function obtained through numerical integration and the

ground state found through numerical simulation. Finally, we calculate the fidelity

for these two wave functions using the same expression as before in equation (3.4).

Given that we want the fidelity to be as close to one as possible, we introduce
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the term infidelity, which is simply one minus the fidelity. With infidelity, the closer

to zero the value is, the better the result and the closer the two wave functions are

to perfectly overlapping one another. Plotting the infidelity for our toroidal system

as a function of the number of spatial steps, nmax, used in the integration, we obtain

figure 4.1 which we can use to see how quickly the numerical integration converges

on the ground state for the system.

Figure 4.1: Infidelity when comparing our numerical integration of the torus to the
simulated ground-state of the system. We utilise a torus with a radius of 20 µm and
a width of 2 µm.

From figure 4.1 we see that with just a single spatial step, the infidelity is very

high, almost at a value of one, but as the number of spatial steps increases, the

infidelity decreases until we reach an infidelity of approximately 10−7 at around

thirty-five spatial steps at which point the infidelity no longer begins to grow. This

plateauing of the infidelity is because we compare our numerical integration to a

simulated ground state. There is liable to be some discrepancy between the two

systems, with an infidelity of around 10−7 in this system. Due to the plateauing of

the infidelity, we will utilise thirty-six spatial steps in our numerical integration since
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the improvement in infidelity beyond this number of spatial steps becomes negligible.

To visualise how the number of spatial steps affects the overall shape of the wave

function, we plot the same system utilised to find the infidelity of the numerical

integration. In figure 4.4(a) we use nine spatial steps in the numerical integration

and in figure 4.4(b) we use thirty-six spatial steps to the numerical integration.

Our results become much smoother with the greater number of integration spatial

steps. By thirty-six spatial steps, we obtain a wave function that appears much like

what we might expect from a toroidal wave function, confirming what we see when

measuring the infidelity with the system’s ground state.

(a)

(b)

Figure 4.2: In (a), we plot the toroidal system with nmax = 9 spatial steps in the
integration. We see that there are 9 distinct Gaussian distributions spaced equally
around the ring. Each spatial step of the integration process adds an additional
Gaussian onto the ring with each Gaussian equally spread out. In (b), we increase
the number of spatial steps to nmax = 36 and observe that the wave function is a
lot smoother, hence the infidelity is much lower than in (a).

4.3 Numerical integration of the hollow shell

Now that we understand the toroidal wave function, we focus on the hollow shell.

The approach we use for this system is similar to the one utilised with the toroidal
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wave function; however, unlike with the torus, we have a double integral that we

must evaluate. The integral that we need to evaluate for the hollow shell takes the

following form:

ψhs(x, y, z, τ) =
σ

3
2
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3
4 σ̃(τ)3
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0
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×
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)
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)
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(4.6)

This function has a dependence on both θ′ and ϕ′, and as a result, we need to

integrate over both of these parameters. We therefore replace the two integrals with

summations such that

ψapprox =
σ
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(4.7)

with Ψ the integrand, nmax = mmax the total number of spatial steps used in the

integration which we are looking to determine. Typically, the angles at which the

summation is evaluated would be equally spaced and therefore,

θ′n =
2πn

nmax

, (4.8)

θ′n+1 =
2π(n+ 1)

nmax

, (4.9)

ϕ′
n =

πn

nmax

(4.10)
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and

ϕ′
n+1 =

π(n+ 1)

nmax

. (4.11)

With these substitutions the resulting integrand takes on the form of

Ψ(θ′, ϕ′) = exp

(
−(x−R sin(ϕ′) cos(θ′))2 + (y −R sin(ϕ′) sin(θ′))2

4σ̃(τ)2

)
× exp

(
−(z −R cos(ϕ′))2

4σ̃(τ)2

)
sin(ϕ′).

(4.12)

Again, we shall look at the infidelity of the system when comparing the numerical

integration to the ground state as shown in figure 4.3.

Figure 4.3: Infidelity when comparing our numerical integration of the hollow shell
to the simulated ground-state of the system. We utilise a torus with a radius of 20
µm and a width of 2 µm. All other parameters are appropriate for the trapping of
a rubidium-87 Bose-Einstein condensate.

We see that again, the infidelity is close to one for one spatial step in the numer-

ical integration, but this drops. We do not observe the same plateauing as in the

torus case in figure 4.1, but we observe a change in gradient at around twenty to



CHAPTER 4. ASYMMETRIC FREELY-EXPANDING WAVE-PACKETS 68

twenty-five spatial steps. With the hollow shell case, the spatial step size is critical

for a numerical method since, unlike in the toroidal case, we have a double integral;

as a result, the total number of spatial steps over the entire calculation is squared

since we need to do the integration in both θ′ and ϕ′. We do not want to select too

many spatial steps since the numerical integration run time will increase rapidly.

Equally, we want to maintain a good degree of accuracy so that we have confidence

in our results and so they reflect the system’s actual behaviour as best as possible.

As a compromise between these two considerations, we again select thirty-six spatial

steps since this is the first value with an infidelity lower than 10−5 giving us a strong

degree of accuracy without having to calculate too many spatial steps in total. We

wish to see how the number of spatial steps utilised in the numerical integration

affects the overall result. As in figure 4.4(a) and in figure 4.4(b), we will be using

the same initial radius and width, but this time in a hollow shell geometry. We will

also use both 9 and 36 spatial steps in the integration. Our results become much

smoother with the greater number of integration spatial steps. By thirty-six spatial

steps, we obtain a wave function that appears much like what we might expect from

a toroidal wave function, confirming what we see when measuring the infidelity with

the system’s ground state.
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(a)

(b)

Figure 4.4: In (a), we plot the hollow shell system with 9 spatial steps in the
integration. We see a distinct number of Gaussian distributions spaced equally
around the ring. Each spatial step of the integration process adds an additional
Gaussian onto the ring with each Gaussian equally spread out. We see in the x-
z graph for the nine spatial step integration that there is an asymmetry. This
asymmetry is due to selecting an odd number of spatial steps meaning that on one
side of the shell one Gaussian lies directly on the line z = 0 whereas at the other
end the Gaussian is either just above or below this plane, hence the asymmetry. In
(b), we increase the number of spatial steps to 36. Again, we observe that the wave
function is much smoother, hence why the infidelity is much lower than the system
with only 9 spatial steps in the numerical integration.

Having now selected the number of spatial steps we will be using in our systems’

numerical integration; we can now turn our attention to asymmetric variations in

these two systems.

4.4 Tilted ring trap

Having established our numerical integration methodology and spatial step number

selection, we now focus on variations on the toroidal wave packet. In particular,

we will use a tilted ring so that most of the wave function collects to one side.

We wish to characterise this tilting effect on the overall initial shape of the system
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and then observe the impact that this new geometry has on the overall interference

pattern generated when this new wave function is allowed to expand freely. We

know that these interference fringes are highly dependent on the initial state and

that properties of the original state might be obtained by studying the resulting

interference fringes. Therefore, we want to test whether this is the case and observe

any characteristic phenomena due to this asymmetry. Additionally, we look to

demonstrate that our methodology generates reliable results for such an asymmetric

system, further demonstrating the versatility of our approach.

We will apply a Gaussian weighting function in θ′ located somewhere on the

toroidal ring and with a standard deviation to achieve our tilted ring. This expo-

nential weighting is what we might expect to see for a tilted ring in the ground

state with a peak density at the point of lowest gravitational potential energy and a

Gaussian-like decrease in density the further away from this gravitational minimum.

We found that applying this Gaussian weighting function appeared to give a good

approximation of the ground-state when we applied a gravitational gradient to our

system. We tested this by adding a gravitational gradient to a potential and utilising

our imaginary time propagation to find the ground-state. This standard deviation

may be changed or manipulated to affect the amount of tilting that the torus un-

dergoes, with a smaller standard deviation leading to highly tilted tori. Specifically,

we will be multiplying our wave function with the following tilting function:

F (θ′) = exp

(
−(θ′ − θ0)

2

2σθ′

)
, (4.13)

with θ0 the location of the maximum amplitude of the wave function, we will assume

that θ0 = π so that the minimum width of the ring is located at x = R and y = 0,

where R is the radius of the ring and σθ′ the angular width of the Gaussian. This
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biasing gives us an overall wave function

ψtilted-torus(x, y, z, τ) =
σ

3
2
0

(2π)
3
4 σ̃(τ)3

exp

(
− z2

4σ̃(τ)2

)
×
∫ 2π

0

exp

(
−(x−R cos(θ′))2 + (y −R sin(θ′))2

4σ̃(τ)2

)
× exp

(
−(θ′ − θ0)

2

2σθ′

)
dθ′.

(4.14)

This expression does not have an analytical solution in its current formulation. We

utilise the numerical integration approach, as seen in section 4.2, to understand

how this system behaves as it undergoes free expansion. Before looking at this free

expansion, we first focus on the system’s initial state. In figure 4.5, we plot the wave

function at time zero for different tilting widths to see the initial state of the wave

function.
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(a) (b)

(c) (d)

Figure 4.5: Cross-section in the x-y plane of the tilted torus with varying tilt widths
at time t = 0 s. We utilise a torus that has a radius of 20 µm and a width of 2 µm.
All other parameters are appropriate for the trapping of a rubidium-87 Bose-Einstein
condensate. (a) σθ′ =

π
2
, (b) σθ′ =

π
4
, (c) σθ′ =

π
8
and (d) σθ′ =

π
16
.
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(a) (b)

(c) (d)

Figure 4.6: Cross-section in the x-z plane of the tilted torus with varying tilt widths
at time t = 0 s. We utilise a torus that has a radius of 20 µm and a width of 2 µm.
All other parameters are appropriate for the trapping of a rubidium-87 Bose-Einstein
condensate. (a) σθ′ =

π
2
, (b) σθ′ =

π
4
, (c) σθ′ =

π
8
and (d) σθ′ =

π
16
.

From figure 4.5, we can see that the majority of the wave packet is located in

the lower portion of the trapping geometry when tilted, but a portion of the wave

function remains located at the highest point in the trap. We can also see that as

the width of this biasing Gaussian decreases, the more we find the wave-function is

localised to the minimum position and the smaller the proportion of the ring that

the wave-function occupies. The wave function is asymmetric with this function,

indicating that it is possible to probe other systems with our methodology. If we

then take the same systems but check the evolution of their shape after the point of

release, we will observe the resulting interference fringes generated by this tilting.
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In particular, we shall be looking at the system when t = 0.05 seconds. At this time

in the symmetric system, the central fringe emerges.

(a) (b)

(c) (d)

Figure 4.7: Cross-section in the x-y plane of the tilted torus with varying tilt widths
at time t = 0.05 s. We utilise a torus that has a radius of 20 µm and a width
of 2 µm. All other parameters are appropriate for the trapping of a rubidium-87
Bose-Einstein condensate. (a) σθ′ =

π
2
, (b) σθ′ =

π
4
, (c) σθ′ =

π
8
and (d) σθ′ =

π
16
.
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(a) (b)

(c) (d)

Figure 4.8: Cross-section in the x-z plane of the tilted torus with varying tilt widths
at time t = 0.05 s. We utilise a torus that has a radius of 20 µm and a width
of 2 µm. All other parameters are appropriate for the trapping of a rubidium-87
Bose-Einstein condensate. (a) σθ′ =

π
2
, (b) σθ′ =

π
4
, (c) σθ′ =

π
8
and (d) σθ′ =

π
16
.

We can see in figures 4.7-4.8 that the first three systems still exhibit interference

fringes but are wildly different in appearance. In particular, we note in figures 4.7-

4.8(b) and figures 4.7-4.8(c) we get the emergence of some anti-nodes that appear

to radiate out from the centre of the ring. In figures 4.7-4.8(a), we get a clear wave

pattern forming that radiates from the centre, and we can see the remnants of the

high-density central region as noted in the symmetrical system. This central peak

has almost disappeared in figures 4.7-4.8(b) and does not appear to be present in

either figures 4.7-4.8(c) or figures 4.7-4.8(d). In figures 4.7-4.8(d) in particular, we

find that there appears to be little in the way of self-interference, indicating that
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the small proportion of wave-function located opposite the maximum amplitude

of the system is sufficiently small in this system that the interference fringes we

are familiar with seeing are no longer visible. If we look at the x-z plane, we see

the familiar vertical interference fringes in figures 4.7-4.8(a) that we observe in the

symmetrical system. However, for the following wave functions, this feature no

longer appears, and by figures 4.7-4.8(d), the wave function in this plane has the

appearance of a Gaussian wave-packet. As predicted, we see that the resulting

systems form significantly different outcomes under free expansion. This property,

therefore, could be utilised to understand the starting state of the system prior to

free expansion.

One property we are keen to take a closer look at is the emergence of these

anti-nodes that we observe in figures 4.7-4.8(c) in particular. In figures 4.9-4.11, we

focus on the anti-nodes of the system. In figures 4.7-4.8, we see that the anti-nodes

emerge when the initial width σθ′ is between π/2 and π/8 so we will focus in on this

area and extend the time scale of the simulation to see how the anti-nodes differ in

these systems.
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(a) (b)

(c) (d)

Figure 4.9: Cross-section in the x-y plane of the tilted torus with varying tilt widths
at time t = 0 s. This time we are focusing on the anti-nodes for the system. All
four of the following initial conditions appear to exhibit these anti-nodes as the wave
function expands. We note that all four of these systems initialise with a relatively
high density along the x = 0 line which is means that we observe these anti-nodes
emerge in these systems but not for an initial width of π/16. We utilise a torus that
has a radius of 20 µm and a width of 2 µm. All other parameters are appropriate for
the trapping of a rubidium-87 Bose-Einstein condensate. (a) σθ′ =

π
2
, (b) σθ′ =

π
4
,

(c) σθ′ =
π
6
and (d) σθ′ =

π
8
.
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(a) (b)

(c) (d)

Figure 4.10: Cross-section in the x-y plane of the tilted torus with varying tilt widths
at time t = 0.05 s. Again we see the emergence of these anti-nodes occurring with
(a) having a ripple like pattern, in (b) the contrast in this ripple increases, in (c)
the ripples break off forming diagonal pockets of low density and by (d) the number
of anti-nodes is reduced to two. We utilise a torus that has a radius of 20 µm
and a width of 2 µm. All other parameters are appropriate for the trapping of a
rubidium-87 Bose-Einstein condensate. (a) σθ′ =

π
2
, (b) σθ′ =

π
4
, (c) σθ′ =

π
6
and (d)

σθ′ =
π
8
.
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(a) (b)

(c) (d)

Figure 4.11: Cross-section in the x-y plane of the tilted torus with varying tilt
widths at time t = 0.1 s. By increasing the time value we can see how in (b) the low
density regions has begun to split off into a series of anti-nodes along the diagonal
as in (c). We utilise a torus that has a radius of 20 µm and a width of 2 µm. All
other parameters are appropriate for the trapping of a rubidium-87 Bose-Einstein
condensate. (a) σθ′ =

π
2
, (b) σθ′ =

π
4
, (c) σθ′ =

π
6
and (d) σθ′ =

π
8
.

In figures 4.10-4.11(a), we see that the anti-nodes do not appear to be present;

instead, we see the ripple of interference fringes emanating from the centre of the

ring out towards the region of lowest density in the initial state. When the angle σθ′

is decreased in figures 4.9-4.11(b) and 4.9-4.11(c) we see that the ripples observed in

figures 4.9-4.11(a) begin to form areas of increasingly low density that emanate from

the centre of the system. In figures 4.9-4.11(b) these low density regions look to be

in a similar location to the troughs in the ripple observed in figures 4.9-4.11(a). By

shrinking the angle σθ′ to
π
6
, these low-density regions break off into isolated spots
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located on either side of the x-axis and travel out diagonally. As time progresses,

the angle of these anti-nodes with respect to the x-axis increases. However, we see

that if the angle σθ′ becomes too small in figures 4.10-4.11(d) then the anti-nodes do

not begin to form. This lack of anti-nodes is due to the reduction in self-interference

within these systems. The characteristic anti-nodes can no longer form because they

are formed from this self-interference. In particular, the anti-nodes are a feature of

the asymmetry of the system and are dependent on the system’s initial state. This

feature appears to be unique to the asymmetric system since it is not a property we

observed in previous chapters of this thesis when considering the symmetric system.

This property is a clear indication of the asymmetry of the system. It might be used

to identify the system’s initial tilt or gradient since its behaviour depends on this

property.

In the latter part of this chapter, we will compare our analytical results with

numerical integration against those achieved utilising a numerical simulation of the

same initial state. However, before doing this, we want to look at the asymmetric

hollow shell system first.

4.5 Hollow shell with micro-gravity

Having demonstrated how the tilted ring wave function behaves, we now focus on the

second of our two models in the hollow shell. This system, in particular, is of interest

regarding experiments that aim to measure micro-gravity. Adding a gravitational

gradient to our system will result in a deformation of the ground state of the system

and, therefore, by extension, the interference pattern generated upon release from

the trapping potential. We will again be using the same approach discussed in the

toroidal geometry with a biasing function dependent on the angle ϕ′ where ϕ′ is the

angle to the vertical. By making this choice, we will assume that the gravitational

acceleration direction is directly down. The bias that we will be using takes the
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following form:

F (ϕ′) = exp

(
−(ϕ′ − ϕ0)

2

2σϕ′

)
, (4.15)

with ϕ0 = π and σϕ′ the width of the Gaussian. We use this function to multiply

our expression for the hollow shell prior to the integration to add a gradient or

bias to make the resulting wave-function asymmetric. With this bias we obtain an

expression for the wave equation in the following form:

ψtilted-hs(x, y, z, τ) =
σ

3
2
0

(2π)
3
4 σ̃(τ)3

∫ 2π

0

dθ′
∫ π

0

exp

(
−(x−R sin(ϕ′) cos(θ′))2 + (y −R sin(ϕ′) sin(θ′))2

4σ̃(τ)2

)
× exp

(
−(z −R cos(ϕ′))2

4σ̃(τ)2

)
exp

(
−(ϕ′ − ϕ0)

2

2σϕ′

)
sin(ϕ′) dϕ′.

(4.16)

This function does not appear to have an analytical solution, so we need to

numerically integrate the function using the algorithm outlined in equation (4.7).

Finally, we can obtain a wave function for our tilted hollow shell to see how this

system behaves under free expansion.
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(a) (b)

(c) (d)

Figure 4.12: Cross-section in the x-z plane of the tilted hollow shell with varying
tilt widths at time t = 0. We utilise a torus that has a radius of 20µm and a width
of 2µm. All other parameters are appropriate for the trapping of a rubidium-87
Bose-Einstein condensate. (a) σθ′ =

π
2
, (b) σθ′ =

π
4
, (c) σθ′ =

π
8
and (d) σθ′ =

π
16
.

In figure 4.12, we see that we are getting very similar results to those we obtained

for the toroidal system in figure 4.8, with a clear bias in the wave function at the

bottom of the shell. Given that we are applying the same weighting function to the

function, we expected this since the cross-section of both systems in an x-z or y-z

plane for the hollow shell system and the x-y plane in the toroidal system will be

largely similar. This similarity in the systems means we expect the starting system

to be similar in appearance. We would also expect that the cross-sections for both

systems might look fairly similar once expanded, at least when comparing the x-y

plane for the toroidal system and the x-z or y-z planes of the hollow shell systems.
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In figure 4.13 we plot the system at a time t = 0.05 seconds.

(a) (b)

(c) (d)

Figure 4.13: Cross-section in the x-z plane of the tilted hollow shell with varying tilt
widths at time t = 0.05 s. We utilise a torus that has a radius of 20 µm and a width
of 2 µm. All other parameters are appropriate for the trapping of a rubidium-87
Bose-Einstein condensate. (a) σθ′ =

π
2
, (b) σθ′ =

π
4
, (c) σθ′ =

π
8
and (d) σθ′ =

π
16
.

We can see clearly in figure 4.13 that we can make many comparisons to figures

4.7-4.8 with the wave function making a very similar appearance in both systems in

their retrospective planes. The real difference in the two systems arises in the x-z

plane of the toroidal system as the toroidal wave packet allows for the free expansion

in the z-direction due to the initial system not having portions of the wave function

in this direction. This property results in the vertical peaks observed in the first

free-expansion figures. In the hollow shell system, there is no such space for the wave

packet to expand into due to the symmetry, which means that we do not observe



CHAPTER 4. ASYMMETRIC FREELY-EXPANDING WAVE-PACKETS 84

this same phenomenon in this system. The key features of the anti-nodes emerging

and how if the initial biasing is too narrow, the interference fringes do not appear

to emerge are present in both systems. Having looked at both the hollow shell and

toroidal wave functions, picking out key features that emerge, we must now test

the rate at which the systems diverge from the numerical simulation to confirm the

accuracy of these results.

4.6 Comparison to the numerical simulation

Having demonstrated that we can obtain results for asymmetric systems, we now

want to compare our results to numerical simulations of the same systems. In doing

so, we can test the validity of our methodology against the numerical approach,

allowing us to see how the two approaches diverge over time and to what extent.

We will take each of our simulated systems at a time equal to zero to test this. We

will then numerically simulate these systems utilising the SSFM outlined in previous

chapters of this thesis. We will then compare these numerical simulations to our

integral at various time values up until the time of emergence of the central fringe

for the symmetric systems at t = 0.05 seconds. We will again look at the infidelity

between these two results as a function of time. This infidelity tells us the rate

of divergence between these two approaches. We are using the same starting state

for both the numerical simulation and the equation; therefore, at time zero, the

infidelity will also be zero but should increase as time progresses. For the tilted

toroidal system, when we plot this infidelity against time in figure 4.14, which we

will discuss below.
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Figure 4.14: Infidelity when comparing our numerical integration of the torus to
the simulated system at varying time values. All variables are consistent with those
used in figure 4.5 and figure 4.7. We limited the time frame of these simulations to
exclude cross-boundary interactions in the numerical simulation, which leads to a
divergence in the two models that is dependent on the simulation environment and
not the dynamical evolution of the system as would be observed experimentally. The
variations observed initially in the infidelity is likely due to numerical fluctuations
and are low in magnitude.

From this figure, we can see that the divergence in our two approaches is minimal

with a fidelity measuring of the order 10−11. This value indicates that there is little

difference between the numerically simulated results and those obtained through the

numerical integration of our analytical expression. However, as the wave function

reaches the time at which the central fringe emerges in the symmetric system, there

is an increase in infidelity. We were expecting to see this property due to the cross-

boundary interactions present in our simulation. Nevertheless, the two systems

remain in close agreement with one another with a high fidelity. In figure 4.14,

we see that the smaller the width of the biasing Gaussian, the greater the level of

infidelity as the time approaches t = 0.05 seconds. This property is likely because the
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initial state has a higher density as the same amount of wave function is contained

within a smaller volume due to the tilting. This increase in density leads to a greater

rate of expansion, and therefore one would expect the cross-boundary interactions

to be stronger at this time.

Figure 4.15: Infidelity when comparing our numerical integration of the hollow
shell to the simulated system at varying time values. All variables are consistent
with those used in figure 4.12 and figure 4.13. We limited the time frame of these
simulations so as to exclude cross-boundary interactions in the numerical simulation,
which leads to a divergence in the two models that is dependent on the simulation
environment and not the dynamical evolution of the system as would be observed
experimentally. The variations observed initially in the infidelity is likely due to
numerical fluctuations and are low in magnitude.

We repeat the same checks for the hollow shell. In figure 4.15, we plot the

infidelity over time for the hollow shells. Again we find that in figure 4.15 that the

infidelity drift over time is minimal with the same increase as the wave-function

approaches the time of emergence for the central peak in the symmetric system.

Furthermore, we again see that the more the wave-function is biased towards one

location, the quicker the divergence, again consistent with the higher density of the



CHAPTER 4. ASYMMETRIC FREELY-EXPANDING WAVE-PACKETS 87

initial state leading to a greater expansion rate. Overall, both results demonstrate

that the drift between the two approaches is minimal and that they are in close

agreement with one another.

4.7 Conclusions

We have shown how our methodology might be applied to an asymmetric system

whilst maintaining a high fidelity or agreement to numerical simulations of the same

system. We have found that it is not always possible to find an analytical solution

to the integral generated by our methodology. However, we have demonstrated that

a numerical integration method might be applied in these situations and that this

numerical integration converges upon the solution fairly quickly. In particular, we

found that, in the two types of systems that we have tested in this chapter, within

thirty-six spatial steps or Gaussians, the numerical integration of our equation has

an infidelity of less than 10−5 to the numerically simulated ground-state. This

infidelity indicates that the two approaches are in close agreement with one another,

with very little difference between the two systems. We then demonstrated that the

divergence of our analytical approach compared to numerical simulations of the same

asymmetric system is very small. This divergence does increase over time, but this

is likely due to cross-boundary interactions arising in the numerical simulations. We

have demonstrated the versatility of our approach and how it might be applied to

asymmetric systems whilst maintaining some of the advantages over the numerical

approach. These advantages include not requiring the evaluation of intermediate

time spatial steps. This non-iterative approach means minor inaccuracies do not

compound with the number of spatial steps while maintaining a high fidelity with

our numerical simulations. We will now turn our attention to a different system for

the remainder of this thesis, namely, looking at how the driving of a potential can

generate stable atom trapping schemes where the region of stability is unfavourable

without the driving.



Chapter 5

The atomic scale elastic inverted

pendulum

5.1 Introduction

The inverted pendulum, also known as the Kapitza or Stephenson pendulum, is a

well-known mechanical phenomenon whereby oscillations of a rigid pendulum may

lead to the inverted position becoming stable. First described by Andrew Stephenson

in 1908 [40], the reasons for stability were not fully understood until 1951 when P. L.

Kapitza provided the analytical insight [41, 42]. Landau and Lifshitz later described

this stability via an effective potential [43]. The stability of this inverted pendulum

has proven to be of high interest, with many papers dedicated to various aspects and

properties of the system [44, 45, 46]. Another pendulum phenomenon that has been

studied extensively is the behaviour of an elastic pendulum, with perhaps the first

study on it being made in 1933 by A. Vitt and G. Gorelik [54] with many subsequent

papers on this topic [55, 56, 57, 100]. The combination of the two pendulums has

received some study in both two [47, 48] and three dimensions [49, 100].

For the most part, those studies of the inverted pendulum were in the context of

a mechanical system; in contrast, we are interested in seeing whether this mechanism

might apply to an atomic system to generate atomic trapping schemes with stable

88
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gravitationally unfavourable positions. In particular, we will consider a system on

the scale of a magnetic quadrupole atom trap [50, 51, 52, 53]. A magnetic quadrupole

generates an adiabatic potential which confines atoms with a degree of elasticity so

our model will reflect this through use of the elastic inverted pendulum. Therefore,

we aim to demonstrate the feasibility of the elastic inverted pendulum on an atomic

trapping scale, understanding the stability regions. In figure 5.1, we show a diagram

of the approximate system we shall be using in this chapter. This figure assumes

that the pendulum has a radial trapping frequency ω and a spring constant κ. The

pendulum is driven vertically with u = A cos (Ωt) with A the driving amplitude and

Ω the driving frequency. Finally, we consider the system to have a radial trapping

frequency ω. We shall be using a comoving Cartesian reference frame to minimise

erratic movement, which can cause problems when numerically simulating systems

of this nature. In section 2 of this chapter, we will derive the equations of motion

for an inverted elastic pendulum. We will then, in section 3, look at how the system

behaves and test the system’s stability, including varying the starting conditions, to

demonstrate the system’s robustness. Also, in section 3, we will look at two different

driving methods which demonstrate interesting results, namely multi-dimensional

driving, which leads to finer pendulum bob localisation and linearly reduces the

driving frequency leading to total system energy loss. In this chapter, we will use

m as the mass of the pendulum, θ as the pendulum’s angle with the vertical, r the

length of the pendulum, ℓ0 as the rest length of the pendulum and u as the current

height of the pendulum’s fulcrum above the rest height. Now that we have defined

the system, we need to define the system’s equations of motion.

5.2 Equations of Motion

Starting with the two-dimensional system, we will be using many of the same steps

as utilised by Lynch [100] as a guide. Using a comoving reference frame as the

resulting equation can be approximated as a Mathieu equation [101] gives us some
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x

z

u

r

θ

m

Figure 5.1: Diagram of the inverted elastic pendulum inside a co-moving Cartesian
reference frame. θ is the angle of the pendulum to the vertical, u is the time depen-
dent vertical displacement of the pendulums fulcrum, m the mass of the pendulum
and r the time-dependent length of the pendulum consisting of a rest length ℓ0 and
an extension δℓ.
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insight into regions of stability. Mathieu equations are in the following form:

∂2y

∂x2
+ (a− 2q cos(x))y = 0. (5.1)

Mathieu functions tend to appear in periodic oscillation problems and are, therefore,

well studied with clearly defined regions of stability and instability. For example, in

figure 5.2, the grey-shaded areas are unstable, whereas the white areas are stable.

A characteristic Mathieu function defines the bounds on each region.

Figure 5.2: Graph showing the first four stable regions of the Mathieu equation. The
areas that are shaded grey are unstable whereas those in white are stable solutions
to the Mathieu equation.

Most of the literature on the inverted pendulum utilises a polar coordinate sys-

tem. Here we present this approach to this system before discussing why we have

chosen not to use this in obtaining our results. In polar coordinates, the Lagrangian

of the system can be written in the following manner when in the comoving ref-

erence frame; note that in this reference frame, in such a system, the acceleration
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of the pivot point is added to the gravitational acceleration in the z−direction of

the pendulum bob. The reason for choosing a comoving frame is two-fold; firstly,

in the comoving frame, the dynamics of the pendulum will be less erratic since,

in the lab reference frame, there are two motions, one from the oscillation of the

pendulum pivot point and the second from the oscillations due to the spring. In the

comoving frame, we have just the spring dynamics to deal with, and as a result, the

behaviour is less erratic. This choice of coordinates makes simulating the system

easier since erratic behaviour often means that minor errors compound quicker to

deviate the system from what might be observed experimentally. Secondly, from

an analytic perspective, the choice of the comoving frame allows for a linearisation

later, which we will be using to find an approximate region of stability for the sys-

tem. We start here in the comoving frame by defining a Lagrangian equation for the

system. The Lagrangian is simply the difference between the system’s kinetic and

potential energy. The kinetic energy is in the form 1
2
mv2. There are two sources

of potential energy, gravitational and spring energy, with gravitational energy mg

and spring potential 1
2
κδx where δx is the relative extension from the rest length.

In the comoving reference frame, the acceleration of the pivot point is added to

the gravitational acceleration. All of this leads to the following expression for the

two-dimensional Lagrangian of a driven spring pendulum in polar coordinates:

L =
m

2

[(
dr

dt

)2

+

(
r
dθ

dt

)2
]
−m

(
g +

d2u

dt2

)
r cos θ − κ

2
(r − ℓ0)

2, (5.2)

where κ is the spring constant of the system and all other variables as defined

previously. Setting u = A cos (Ωt) with A the amplitude of oscillation and Ω the

frequency. We can utilise Lagrangian mechanics to obtain equations of motion for

the system. The Euler-Lagrange equations for a Lagrangian state that,

d

dt

(
∂L

∂ẋ

)
− ∂L

∂x
= 0, (5.3)

where x is a time-dependent variable, ẋ the time-derivative of this variable and
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L is the Lagrangian function. If we start with our initial Lagrangian for a two-

dimensional elastic pendulum in polar coordinates,

L =
m

2

[
ṙ2 + r2θ̇2

]
−m (g + ü) r cos θ − κ

2
(r − ℓ0)

2, (5.4)

we can then derive the equations of motion for this system. Firstly, we will consider

the equations of motion for r. The first or derivative of the Lagrangian in terms of

r gives us

∂L

∂r
= mr

(
∂θ

∂t

)2

−m

(
g +

∂2u

∂t2

)
cos(θ)− κ(r − ℓ0) (5.5)

and the second order derivative gives us

d

dt

∂L

∂ṙ
= mr̈. (5.6)

Substituting these expressions into equation (5.3) gives us an equation of motion for

the system in r of

∂2r

∂t2
= r

(
∂θ

∂t

)2

−
(
g +

∂2u

∂t2

)
cos(θ)− κ

m
(r − ℓ0). (5.7)

Next we look at the θ term. We find that the first order derivative of the

Lagrangian is

∂L

∂θ
= mr

(
g +

∂2u

∂t2

)
sin(θ) (5.8)

and the second order derivative is

d

dt

∂L

∂θ̇
=

d

dt
mr2

∂θ

∂t
= mr2

∂2θ

∂t2
+ 2mr

∂r

∂t

∂θ

∂t
. (5.9)
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This gives the following expression for the time evolution of θ:

∂2θ

∂t2
=

1

r

(
(g + ü) sin(θ)− 2ṙθ̇

)
(5.10)

The driving term u we will substitute with a cosine driving term of

u = A cos(Ωt) → ü = −AΩ2 cos(Ωt), (5.11)

with A the driving amplitude and Ω the driving frequency. This driving motion gives

the final expression for the equation of motion in the comoving reference frame of

∂2r

∂t2
= r

(
∂θ

∂t

)2

−
(
g − AΩ2 cos(Ωt)

)
cos(θ)− κ

m
(r − ℓ0) (5.12)

and

∂2θ

∂t2
=

1

r

(
(g − AΩ2 cos(Ωt)) sin(θ)− 2

∂r

∂t

∂θ

∂t

)
. (5.13)

If we assume that the effect that the spring has on the system is negligible, then

the equations may be linearised [48] in the following manner to obtain an of motion

the angle θ that is in the form of a Mathieu equation. The linearization results in

the expression

∂2θ

∂τ 2
− 1

1− ω2
0/ω

2
s

[
ω2
0

Ω2
− A

ℓ0
cos (τ)

]
θ = 0, (5.14)

whereby τ = Ωt, ω0 =
√

g
ℓ0

is the oscillating frequency and ωs =
√

κ
m

the spring

frequency. Details of this linearization may be found in works by Ryland and

Meirovitch[49] and Mazzilli [47]. The equation of motion for the radius can also

be linearised. Arinstein and Gitterman [48] in their paper created a dimensionless

relative contraction of the pendulum (R) in the following form:

R =
r

ℓ0
−
(
1 +

ω2
0

ω2
s

)
. (5.15)
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The linearised equation of motion for the relative contraction is in the following

form,

∂2R

∂τ 2
+
ω2
s

Ω2
R = A cos(τ) (5.16)

With the equations of motion for the angle θ in the form of a Mathieu equation,

we can apply Mathieu equation knowledge to obtain an expression for the stable

regions of the system. A typical Mathieu equation takes the form of the expression

w′′ + (a− 2q cos (2z))w = 0. (5.17)

Comparing this to our expression for θ in equation (5.14) we find that we have

a = − g

Ω2
(
ℓ0 − g

ω2

) (5.18)

and

q = − 2A

ℓ0 − g
ω2

. (5.19)

Redoing the Mathieu stability plot in figure 5.2 to reflect the parameters of

our system, we then obtain a Mathieu stability plot utilising the properties of the

inverted elastic pendulum in figure 5.3 for the parameters A and g
Ω2 . The Mathieu

equation has well-established stability regions, determining initial system conditions

leading to a stable inverted elastic pendulum. In addition to this, Landau and

Lifshitz [43] also state that for a pendulum to be stable in the inverted position, the

inequality

A2Ω2 > 2gℓ0 (5.20)

must be satisfied. In addition to this condition, there are a further two conditions
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Figure 5.3: Stability of the equations of motion for the inverted pendulum. This
graph was generated using g = 9.81 ms−1, ω = 2.5×104 rad/s and ℓ0 = 1×10−5 m.
The gray regions represent unstable variable combinations. In figure 5.4 we zoom in
on the highlighted box which is where we might expect to find atom-trapping scale
systems.

which we must consider. Firstly the driving amplitude must be less than the length

of the pendulum. If this is not the case, the system quickly becomes overdriven

and, therefore, more chaotic. Secondly, the driving frequency must be less than

the trapping frequency. Otherwise, the system begins to break down. With these

conditions established for the classical mechanical system, we can now turn our

attention to a system consistent with an atom trap scale. With a system consistent

with atom trapping, we have a fixed mass m ∼ 10−25. We might reasonably expect

a broad range of feasible conditions for an atomic system. In table 5.5, we outline

approximate ranges for the variables that one might reasonably expect to utilise

experimentally. We have then focused on testing systems that fall within these

ranges. With the above parameters, the system returns values of a and q in the
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Figure 5.4: The grey regions represent unstable variable combinations. The red
region is the predicted stable region within which we might expect to find a typical
atomic system. We plot the stability regions of the Mathieu equation with our
linearised equations of motion; the square represents the area where we might expect
atomic systems to lie.

Mathieu equation, which are both negative for the most part. These quantities

mean that the system lies in and around the first stability zone of the Mathieu

equation, the boundary conditions of which are as follows [102]:

a0(q) = −1

2
q2 +

7

128
q4 − 29

2304
q6 +

68687

18874368
q8 + · · · (5.21)

and

a1(q) = 1 + q − 1

8
q2 − 1

64
q3 − 1

1536
q4 +

11

36864
q5 +

49

589824
q6

+
55

9437184
q7 − 83

35389440
q8 + · · · .

(5.22)

A significant problem with this approach is that the system has to be linearised
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Ω 102 < Ω < 105 rad/s
ω 103 < ω < 106 rad/s
ℓ0 10−6 < ℓ0 < 10−2 m
A 10−8 < A < 10−3 m

Figure 5.5: Table showing the variable ranges over which the Mathieu equation is
stable for our particular setup.

to obtain equations of motion. It is unclear whether this approximation will hold on

the scale of an atomic trapping system; thus, any stability regions obtained using

this method can only serve as a guide. Thus far, we have confined our pendulum

to two dimensions. As the system is a pendulum, we can expect it to behave with

an oscillatory motion. If the system is initially in the xz-plane, we would expect

the motion to remain in this plane provided that the system is not initialised with

an initial velocity in the ϕ-direction azimuthal angular direction. However, given

that we want to study a system intended to emulate an experimental system, we

want to introduce initial velocities in ϕ to see how the system behaves if the system

is not initially at rest to test the robustness of the system. We will be covering

this robustness in more detail later in this chapter, but we present the equations

of motion here. An additional benefit to simulating the system in three dimensions

is being able to simulate the system with an initial velocity in ϕ, which does not

appear to affect the stability of the system but does make it easier to see the path

of the pendulum as it evolves over time when plotted. This velocity allows us to see

and understand the dynamics of the pendulum better when the pendulum follows a

fairly consistent path and therefore overlaps itself over several cycles.

Additionally, we choose to utilise a Cartesian coordinate system over the perhaps

more natural spherical coordinate system. This choice is because in polar coordi-

nates, if the pendulum is primarily confined to an x− z-plane, when the pendulum

passes over the vertical, the value of ϕ very rapidly will flip from positive to negative.

This rapid shift in ϕ can lead to problems while simulating the system. Therefore,

we choose to utilise a Cartesian coordinate system to avoid these problems. The La-

grangian in a three-dimensional Cartesian coordinate system in a lab-based reference



CHAPTER 5. ATOMIC ELASTIC INVERTED PENDULUM 99

frame is as follows:

L =
m

2

[(
∂x

∂t

)2

+

(
∂y

∂t

)2

+

(
∂z

∂t

)2
]
−mz

(
g − AΩ2 cos (Ωt)

)
− κ

2

(√
x2 + y2 + z2 − ℓ0

)2 (5.23)

We now apply Lagrangian dynamics principals to find the equations of motion.

These equations of motions can be found utilising Lagrangian mechanics which states

that

d

dt

∂L

∂ẋ
− ∂L

∂x
= 0, (5.24)

d

dt

∂L

∂ẏ
− ∂L

∂y
= 0 (5.25)

and

d

dt

∂L

∂ż
− ∂L

∂z
= 0. (5.26)

By substituting in the Lagrangian in equation (5.23) to the above expressions we

can find the equations of motion for the system. Firstly, the first derivative of the

Lagrangian in terms of x results in the expression

∂L

∂x
= κx

(
1− ℓ0√

x2 + y2 + z2

)
(5.27)

and the second derivative gives the expression.

d

dt

∂L

∂ẋ
= m

∂2x

∂t2
(5.28)

From these we therefore find the equation of motion for the system in x is

∂2x

∂t2
=
κx

m

(
ℓ0√

x2 + y2 + z2
− 1

)
. (5.29)
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The same process can be repeated for both y

∂2y

∂t2
=
κy

m

(
ℓ0√

x2 + y2 + z2
− 1

)
(5.30)

and z

∂2z

∂t2
=
κz

m

(
ℓ0√

x2 + y2 + z2
− 1

)
− g + AΩ2 cos(Ωt) (5.31)

with results analogous across the three coordinates. The equation of motion in the

z coordinate has an additional cosine term which is the result of the vertical driving

of the system.

Having acquired equations of motion in the comoving reference frame in Carte-

sian coordinates, we now want to understand the system’s dynamics. We have

already outlined a linearisation in polar coordinates to find a stability region util-

ising a Mathieu equation. However, we have identified that this has utilised an

approximation based on the assumption that the spring component does not signif-

icantly impact the system’s dynamics. In our atomic scale system, it is not clear

whether this is a valid approximation that we can make. If we do not make the

linearisation approximation, the equations are in a form without a straightforward

way to form the equation for the time evolution of x, y and z. Therefore, we want

to test whether the linearisation is appropriate and produces accurate results. To

test this, we will be utilising a numerical simulation approach. One consideration

we want to make when choosing our methodology is that we wish to include an

adaptive time step into our algorithm. The desire for an adaptive time step is due

to a pendulum system with periods of both high and low velocities.

While at a high velocity, we want the time step to be smaller to reduce errors,

whereas, at low velocity, we want to have larger time steps to ensure simulation

run-time is not too high. A typical approach for numerical simulation is utilising

a Runge-Kutta approach [103]. The standard Runge-Kutta algorithm does not

naturally include an adaptive time step, but we can use a modified version of this,
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namely, the Runge-Kutta-Fehlberg algorithm (RKF45) [104]. This algorithm utilises

anO(h4) with anO(h5) error estimator where h is the time step. The error estimator

is used to set the adaptive time step by comparing the error estimator to a user-

defined acceptable error range. When using this method, we want to be using both

an upper and lower bound on this error since if the error is too small, one can afford

to increase the time step to improve run times. Suppose it is above the acceptable

error threshold. In that case, the time step can be reduced, and the current iteration

is repeated until the error returns to an acceptable level. This RKF45 algorithm

starts with an expression for the initial state of the system in

∂yi
∂x

= fi (x, y1, y2, · · · yn) . (5.32)

From this we calculate the following intermediary steps so that

k1 = hf (x, y) , (5.33)

k2 = hf

(
x+

1

4
h, y +

1

4
k1

)
, (5.34)

k3 = hf

(
x+

3

8
h, y +

3

32
k1 +

9

32
k2

)
, (5.35)

k4 = hf

(
x+

12

13
h, y +

1932

2197
k1 −

7296

2197
k2 +

7296

2197
k3

)
, (5.36)

k5 = hf

(
x+ h, y +

439

216
k1 − 8k2 +

3680

513
k3 −

845

4104
k4

)
(5.37)

and

k6 = hf

(
x+

1

2
h, y − 8

27
k1 + 2k2 −

3544

2565
k3 +

1859

4104
k4 −

11

40
k5

)
. (5.38)
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This results in a new value of y in the form:

y(x+ h) = y(x) +
16

135
k1 +

6656

12825
k3 +

28561

56430
k4 −

9

50
k5 +

2

55
k6 (5.39)

An estimation of the truncation error can be found by substituting these same

intermediary steps into the expression

TE =

∣∣∣∣ 1

360
k1 −

128

4275
k3 −

2187

75240
k4 +

1

50
k5 +

2

55
k6

∣∣∣∣ . (5.40)

This truncation error can help us check whether the step size is too large and adjust

this accordingly. Applying our Runge-Kutta-Fehlberg algorithm to these equations

of motion, we can simulate the evolution of our system. For full details, please refer

to the appendix C. The reason for this change in the coordinate system and refer-

ence frame is that the simulation time dramatically reduces, and the movement in

the coordinates x, y and z are less erratic than their spherical coordinate counter-

parts. We can convert our results into spherical coordinates if desired using a simple

coordinate transformation. The Runge-Kutta method works for first-order differ-

ential equations; therefore, we have to rewrite each of the expressions as first-order

differential equations by introducing the following identities:

X =
∂x

∂t
, (5.41)

Y =
∂y

∂t
(5.42)

and

Z =
∂z

∂t
. (5.43)

As a result we now have six, interdependent, first order differential equations with
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the other three accompanying expressions being

∂2X

∂t2
=
κx

m

(
ℓ0√

x2 + y2 + z2
− 1

)
, (5.44)

∂2Y

∂t2
=
κy

m

(
ℓ0√

x2 + y2 + z2
− 1

)
(5.45)

and

∂2Z

∂t2
=
κz

m

(
ℓ0√

x2 + y2 + z2
− 1

)
− g + AΩ2 cos(Ωt). (5.46)

We have used MATLAB run on the University of Sussex’s High-Performance

Computing cluster (HPC) for our numerical simulations. The HPC allowed us to

perform multiple simulations simultaneously, and the time it takes to run the simu-

lations is shorter than possible on a conventional desktop computer. For this thesis,

we set a tolerance range of 10−3 > error > 10−6; this tolerance range seemed to

give a good balance between efficient run times and accuracy. We also wanted to

prioritise accuracy over run time when possible; as such, our requirements were more

stringent on the upper bound so that if any of the six equations fell above the toler-

ance, then the whole step was rejected, and the time step decreased. On the other

hand, we only increased the time step with the lower bound if every equation fell

below the tolerance. This decision was to ensure that we did not end up in a loop

whereby one parameter fell below the minimum tolerance and, therefore, the time

step was increased, only to find that this caused one of the equations to have too

large an error and the time step having to be decreased back down to the previous

increment. One valuable property to study is the energy of the system. Since all

equations thus far have been in the comoving frame, we need to convert our param-

eters back into the lab frame. Since this system is only being driven vertically, the x

and y portions do not need to be modified, but the equations in z must be changed.
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In particular,

zlab = zcomoving + A cos(Ωt) (5.47)

which, when differentiated, gives us

(
∂z

∂t

)
lab

=

(
∂z

∂t

)
comoving

− AΩ sin(Ωt). (5.48)

The equations for the kinetic and potential energy in the lab reference frame, utilising

the comoving values for x, y and z are as follows:

KElab =
m

2

((
∂x

∂t

)2

+

(
∂y

∂t

)2

+

((
∂z

∂t

)
− AΩ sin(Ωt)

)2
)

(5.49)

and

PElab =mg (zcomoving + A cos(Ωt))

+
κ

2

(√
x2 + y2 + (zcomoving + A cos(Ωt))2 − ℓ0

)2

.
(5.50)

The system’s total energy in the lab reference frame is the sum of these two expres-

sions.

5.3 Numerical simulations of the elastic inverted

pendulum

Now that we have the equations for motion and our numerical simulation method-

ology, we can generate results based on a wide range of variables. We put limits on

the four variables Ω, ω, A and ℓ0 that fall within what we consider experimentally

viable for an atom trap. The variables we selected were the same as seen in Table

5.5. Testing various combinations of these variables will help us build an image of

this system’s stable regions. For our simulations, we consider a system stable if it

remains above the horizontal over a period of one second. By remaining above the
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horizontal over a period of one second, the system is demonstrating that the me-

chanics involved can maintain its inverted position over the time period since, with

the absence of driving in the initial system, the pendulum will naturally fall below

the horizontal due to the effects of gravity much before the one second has elapsed.

Figure 5.6 shows the typical path of a stable set of variables and is what we might

expect to see in similarly stable systems:

Figure 5.6: Typical trajectory of a stable system in three dimensions with the fol-
lowing parameters. The initial angle θ = π

4
, driving frequency Ω = 16000 rad/s,

ω the radial trapping frequency 25000 rad/s, rest length 2.5 × 10−3 m and driving
amplitude A = 2.5× 10−5 m. These four parameters were selected because we con-
sider this to form a very stable system. By this, we mean that despite the relatively
large angle of θ = π

4
, the pendulum remains in the vertical position, oscillating side

to side, over a period of one second. The blue represents the start of the simulation
and the red the end; yellow is somewhere in the middle with our colour scale. Ad-
ditionally, we have induced a velocity, initially in the y-direction of 1 ms−1. This
velocity ensures that the typical path will rotate around the vertical axis to improve
the clarity of the diagram. This velocity does not seem to affect the stability of the
pendulum.
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Figure 5.6 shows that the typical path forms a shell-like path that avoids the

pole. We can see little variation in the x-z plane, where the system forms a smooth

arc. However, we observe that in the y-z plane, the system will vary, forming a

shell-like path that avoids the pole. We might expect these variable ranges to lead

to results in and around the Mathieu equation’s first stability region. We note that

if we simulate a system and find that it is stable at a fixed initial angle θ, we would

expect, given that we initialise the system at rest, that the system is also stable

when initialised at a smaller initial angle. Using the upper and lower bound of the

first stable region of the Mathieu equation and the inequality

A2Ω2 > 2gℓ0, (5.51)

which defines the stable inverted positions. We obtain a good idea of which com-

binations we might expect to be stable. We can then test these using our numer-

ical simulations to determine the validity of these conditions, given that we made

some assumptions in generating these conditions. We then compare the theoreti-

cally stable variable combinations with simulated results. Firstly we will look at

the two-dimensional case. Each time we simulated the two-dimensional system, the

pendulum was initially at rest and placed at θ = 10−5. The red points represent

combinations of variables that remain stable for one second under these conditions

in figure 5.7. The black dots refer to theoretically stable variable combinations that,

when simulated, produced unstable systems. The opacity of the black dots is de-

pendent on the number of variable combinations, which proved unstable. Plotting

all two-variable combinations together produces figure 5.7, In the top-left graph of

figure 5.7, we can see a well-defined line of an unstable variable combination of vari-

ables where ω > Ω. This line, therefore, indicates that to improve the chances of

stability, ω has to be greater than Ω. This condition is not a hard and fast rule since

some combinations defy this inequality but remain stable. Additionally, when we

look at the bottom right results, we see a clearly defined line again. This time, it

would appear that ℓ0 must be two orders of magnitude greater than A. Repeating
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Figure 5.7: Theoretically stable combinations of variables were simulated stable in
the two-dimensional system. The axis of the above graphs utilises a logarithmic
scale so that we might capture a wide range of highly varying different systems, all
of which the Mathieu model predicts to be stable. The red dots represent variable
combinations that we found to be stable, and the black dots represent systems that
theoretically should be stable but proved not to be when simulated. The opacity on
the black dots corresponds to the number of systems with the darker the dots, the
more the number of systems we predict stable, but we find are simulated unstable.

the same simulations in three dimensions produces the same results as expected,

with an equal number of stable and unstable points as in the two-dimensional sim-

ulations. Other than the two trends mentioned prior, the only other thing to note

from our results is that there does appear to be a slight tendency that the smaller

the values of A and ℓ0, the more likely the system is to be unstable. The graphs

in the top middle, top right, bottom left, and bottom middle all have darker zones

that increase in intensity as the value of A and ℓ0 decreases.

5.4 System robustness

One important principle to understand is how robust the stability of the inverted

pendulum systems is. In particular, we need to ascertain whether the system is
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not precisely at rest or the starting location of the pendulum is not at the precise

angle. These are important considerations to make if such a system is experimentally

viable.

Figure 5.8: Histogram of the percentage difference between the number of stable
systems over the number of unstable systems over a range of angles between zero and
π
2
. In total, we simulated 12200 systems. Once simulated at a random initial angle,

we allocated the results into 40 bins representing different initial angles and then
sorted these into stable and unstable results. In each of these tests of robustness,
we are utilising the systems we simulated in figure 5.7, which we found to be stable
at an initial angle of θ = 10−5 radians and at rest. All systems were initialised at
rest.

In our idealised system, it is essential to understand how robust the system

is and how dependent it is on the starting conditions. Does a slight deviation

of the starting conditions lead to an unstable system? For example, suppose a

system is sensitive to the starting conditions. In that case, it may be experimentally

challenging, whereas we describe it as robust if it is relatively unreactive to such

changes in initial conditions.

When discussing robustness, two properties may vary from the ideal experimen-
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tally, the initial positions and velocities. We start by looking at the system’s response

to an initial velocity in the r direction. In figures 5.9-5.10 we look at what happens

when an initial velocity in r is introduced into the system. In figure 5.9, we took ap-

proximately twelve thousand systems that we had demonstrated to be stable when

initialised without any initial velocities. We gave each one a randomised starting

velocity within a range of ±100 ms−1. In this figure, we can see that there are more

systems stable the closer the initial velocity in r is to zero, with a sharp peak at this

value of over twice as many stable systems to unstable systems around this value.

As the velocity increases, so do the chances that the system becomes unstable, with

around a third of systems with an initial velocity of approximately ±100 ms−1 being

unstable. If we repeat this process over a shorter range of velocities as in figure 5.10,

we see that with a low initial starting velocity, most systems will be stable in this

range. This property indicates that the system is relatively unreactive to an initial

velocity in the r direction at low velocities. However, if the velocity increases, the

system is more likely to become unstable. This feature is likely due to the system’s

increased energy, leading to instability emerging.
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Figure 5.9: Histogram of the percentage difference between the number of stable
systems over the number of unstable systems over a range of initial velocities in
r between ±100 ms−1. In total, we simulated 12200 systems. Once simulated at
a random initial angle, we allocated the results into 40 bins representing different
initial angles and then sorted these into stable and unstable results. In each of these
tests of robustness, we are utilising the systems we simulated in figure 5.7, which we
found to be stable at an initial angle of θ = 10−5 radians and at rest. These systems
were initialised with only a component of velocity in r and were static in both θ and
ϕ.
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Figure 5.10: Histogram of the percentage difference between the number of stable
systems over the number of unstable systems over a range of initial velocities in
r between ±1 ms−1. In total, we simulated 12200 systems. Once simulated at a
random initial angle, we allocated the results into 40 bins representing different
initial angles and then sorted these into stable and unstable results. In each of these
tests of robustness, we are utilising the systems we simulated in figure 5.7, which we
found to be stable at an initial angle of θ = 10−5 radians and at rest. These systems
were initialised with only a velocity component in r and were static in both θ and
ϕ.

Repeating this test with an initial velocity in θ, we find a similar trend emerges.

In figure 5.11, we see a peak in the number of stable systems as the initial velocity

nears zero rad/s but drops off as the initial velocity increases. By focusing on smaller

initial velocities in figure 5.12, we again see that most systems remain stable when

only a small initial velocity is applied to the system, which agrees with the results
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observed with the initial velocities in r.

Figure 5.11: Histogram of the percentage difference between the number of stable
systems over the number of unstable systems over a range of initial velocities in
θ between ±600 rad/s. In total, we simulated 12200 systems. Once simulated at
a random initial angle, we allocated the results into 40 bins representing different
initial angles and then sorted these into stable and unstable results. In each of these
tests of robustness, we are utilising the systems we simulated in figure 5.7, which we
found to be stable at an initial angle of θ = 10−5 radians and at rest. These systems
were initialised with only a velocity component in θ and were static in both r and
ϕ.
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Figure 5.12: Histogram of the percentage difference between the number of stable
systems over the number of unstable systems over a range of initial velocities in
θ between ±60 rad/s. In total, we simulated 12200 systems. Once simulated at
a random initial angle, we allocated the results into 40 bins representing different
initial angles and then sorted these into stable and unstable results. In each of these
tests of robustness, we are utilising the systems we simulated in figure 5.7, which we
found to be stable at an initial angle of θ = 10−5 radians and at rest. These systems
were initialised with only a velocity component in θ and were static in both r and
ϕ.

However, if we repeat the test with an initial velocity in ϕ, we find that no such

trend emerges, with most systems stable even with an initial velocity of 6000 rad/s.

Since the velocity is tangential to the direction of gravity, it does not appear to have

much impact on the system’s overall stability. Of course, some systems will become

unstable, but this is due to the increase in the system’s total energy rather than the
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dynamics induced by this new velocity.

Figure 5.13: Histogram of the percentage difference between the number of stable
systems over the number of unstable systems over a range of initial velocities in ϕ
between ±6000 rad/s. In total, we simulated 12200 systems. Once simulated at
a random initial angle, we allocated the results into 40 bins representing different
initial angles and then sorted these into stable and unstable results. In each of these
tests of robustness, we are utilising the systems we simulated in figure 5.7, which
we found to be stable at an initial angle of θ = 10−5 radians and at rest. These
systems were initialised with only a component of velocity in ϕ and were static in
both r and θ.

The final property that we wish to examine is the effect stretching or compressing

the system in its initial state has on the overall stability. By stretching or compress-

ing the system, we are introducing more energy into the system and, therefore,

would expect that this will lead to some systems becoming unstable. In figure 5.14,
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we test whether the amount the system is compressed or extended affects whether

or not the system remains stable or whether the act of doing so alone is enough to

induce instability.

Figure 5.14: Histogram of the percentage difference between the number of stable
systems over the number of unstable systems over a range of initial extensions in the
initial length of the pendulum between 75% and 125% of the initial rest length of
the pendulum. In total, we simulated 12200 systems. Once simulated at a random
initial angle, we allocated the results into 40 bins representing different initial angles
and then sorted these into stable and unstable results. In each of these tests of
robustness, we are utilising the systems we simulated in figure 5.7, which we found
to be stable at an initial angle of θ = 10−5 radians and at rest. All systems are
initialised at rest.

We can see that in figure 5.14 that there does not appear to be any significant

increase in the number of unstable systems when stretching or compressing the initial
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state, with around two-thirds of all systems remaining stable with any amount of

compression or extension. As a result, we can conclude that the amount the system

is compressed or stretched does not significantly impact the stability over this range.

We note that if the system is compressed or stretched in the extreme by over a factor

of two in either direction, then the system tends to be unstable since the amount of

potential energy introduced into the system is, therefore, very high. We have not

extensively tested this level of compression since the more that the initial state is

stretched or compressed in its initial state, the more rapidly that the system will

oscillate, which can lead to a significant increase in the time it takes to simulate

the system with our adaptive time step algorithm. Since we are considering slight

variations to the initial state to simulate, not quite initialising the system with the

exact parameters, we did not feel that we needed to explore beyond the ranges we

have looked at here.

Overall, we find that the system can be relatively robust regarding the initial

conditions. We found that the most significant contributor to instability is the

starting angle of the system, with a larger starting angle much more likely to end up

being unstable when simulated. We also found that, in general, the system is likely

to remain stable if initialised with a starting velocity; however, if the system has too

high a starting velocity in r or θ, then we see that the system tends to become more

unstable. The system did not seem to be particularly sensitive to the amount of

compression/extension of the initial state nor the initial velocity in ϕ indicating that

these do not affect stability beyond introducing more kinetic and potential energy

into the system.

5.5 Conclusion

In conclusion, we have demonstrated that it is possible to have a stable elastic

pendulum in the inverted position on the scale of an atomic trap. We have shown

that such an elastic system can be stable in two and three dimensions. We also

demonstrated systemic cooling by reducing the system’s driving frequency. Further



CHAPTER 5. ATOMIC ELASTIC INVERTED PENDULUM 117

investigation into this cooling mechanism is required. In particular, we want to test

this cooling on models that consider the collisions between atoms and the geometry

of a oblate spheroid to reflect an experimental system closer. Another aspect we

looked at was the robustness of the stable system. We found that, in general, the

system was not overly dependent on the starting velocities of the system except that

the velocity in θ needed to be directed towards the pole to avoid the system becoming

unstable. We were able to show that the system is dependent on the starting angle

θ and radius r. The larger the starting angle θ, the more likely the system was to

be stable, and the further the starting radius was from the rest length, the more

unstable the system appeared to be. Finally, we developed equations of motion

to describe the shaking of the system in three dimensions. We then tested several

scenarios. Of note, we found that by shaking the system at the same frequency

and amplitude in all three dimensions; it was possible to isolate the pendulum

to one relatively localised point, finding that it oscillated between π
4
and π

2
. This

localisation indicates potential for different results depending on the system’s driving

mechanism and requires further investigation. We hope to study some more exotic

shaking motions to see what is possible in future research. We will also improve

our model by changing to a oblate spheroid geometry and introducing collisions of

atoms within the system.



Chapter 6

System variations on the inverted

elastic pendulum

In the previous chapter, we looked at the feasibility of an atomic trapping scale

inverted elastic pendulum as a possible mechanism for generating new atomic trap-

ping schemes where a wave packet inside a trapping potential may occupy locations

that would otherwise be gravitationally unfavourable to it. This chapter will take

these same systems and vary some of the system’s parameters and conditions to

observe new phenomena, which may prove experimentally helpful. In particular, we

will cover three different system types; firstly, we shall look at a possible method

for in-situ cooling of the trapped atoms through the linear reduction in the driving

frequency. We will look at systems where the driving is performed in multiple direc-

tions instead of just in the vertical. Finally, we will be looking at systems that start

with a high angular velocity in the ϕ direction and see what path these pendulums

take. All three of these variations might be of interest experimentally as they allow

for the creation of stable systems and fine control over the pendulum beyond what

is possible with a Kapitza mechanism.
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6.1 Systemic cooling

One of the current issues with atomic trapping schemes is their longevity. Once

a Bose-Einstein condensate is placed within a potential field, the BEC will begin

to heat up, and the system’s total energy increases. If overheated, the atoms will

cease to be a BEC anymore, leading to a loss of the quantum properties needed to

measure the system. As such, a method of evaporative cooling is commonly used

whereby the higher energy atoms of the system are allowed to evaporate off, leaving

behind those atoms in a lower energy state. This property leads to a steady loss of

atoms from the system over time which reduces the lifetime of the atomic trapping

scheme. This evaporative cooling is the primary mechanism used to prolong the

BEC’s lifetime. However, suppose another method of in-situ cooling for atomic

traps can be found. In that case, it is worth exploring as an option to be used

in conjunction with the evaporative cooling process. While studying our inverted

elastic pendulum system, we found that we were able to see a reduction in the

system’s total energy by linearly decreasing the trapping frequency of the system,

provided that the system was initially in a stable inverted position and that the

final system was also stable if the pendulum had been initialised in this state. In

particular, we define a time-dependent driving frequency

Ω(t) = Ω0 − δΩt, (6.1)

where Ω0 is the initial trapping frequency, and δΩ is the change in Ω per second.

We then replace the Ω term in equation (5.46). We make the substitution after

the equations have been found using Lagrangian mechanics. This approach is an

approximation since the driving frequency is time-dependent; however, we justify

this by looking at the second derivative of the driving term of the equation,

∂2

∂t2
cos ((Ω0 − δΩt)t) =2δΩ sin ((Ω0 − δΩt)t)

− (Ω0 − δΩt)2 cos ((Ω0 − δΩt)t) .

(6.2)
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For systems on an atomic trapping scale Ω0 ≈ 105 rad/s and δΩ ≈ 104 rad/s, as

a result, 2δΩ ≪ (Ω0 − δΩt)2 for time t ≤ 1 which is the time scale over which we

apply the change in driving frequency. Since there is a limit to which the driving

frequency may be reduced and still have a stable system if a longer time was desired

for the reduction in the driving frequency, the rate at which the frequency decreases

would have to scale inversely to the time. If we now simulate the system utilising

our familiar Runge-Kutta-Fehlberg algorithm with this replacement, we can study

the system’s dynamics. In figure 6.1, we plot the evolution of the system in which

the driving frequency linearly reduces, This property could lead to in-situ cooling of

Figure 6.1: Systemic cooling with the following parameters used to generate figure
5.6. The initial angle θ = π

4
, driving frequency Ω = 16000 rad/s, the radial trapping

frequency 25000 rad/s, rest length 2.5×10−3 m and driving amplitude A = 2.5×10−5

m. Additionally, we reduced the driving frequency by 5000 rad/s over one second
of simulation. The time evolution of the radius graph is plotted in the co-moving
frame, whereas the total energy we derive for the lab reference frame.

atoms within a Kapitza-style atom trap by modifying the driving frequency. This

cooling phenomenon seems to occur by smoothly reducing the driving frequency

in a system where all variable combinations are stable. Starting in an unstable

configuration or increasing the driving frequency leads to heating and instability.

With a smooth change in the driving frequency, the system’s average total energy

decreases linearly over time. We observed this phenomenon in both two and three

dimensions. The drift observed in the polar angle is down to the system’s tolerances

since reducing the tolerances also reduces the angular drift.

We acknowledge that the system we are testing is only an approximation utilis-
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ing a mechanical system with certain assumptions made, including that the system

is a spherical atom trap and there is no heating due to particle interactions. Nev-

ertheless, in this idealised system, we have shown that systemic energy loss due to

vertical oscillations is possible and requires further investigation using models that

reflect experimental methods more closely. One additional test of these results is to

verify that we see this same property emerging when we look at this system using a

different approach. In the following section, we will derive an approximate expres-

sion for the time evolution of the relative contraction R and the angle θ utilising the

Mathieu approximation as used by Arinstein and Gitterman [48].

6.2 Time-dependent equations for R and θ utilis-

ing the linearised Mathieu approximation

Demonstrating the energy loss in utilising a different approach is essential in es-

tablishing the phenomenon as more than a quirk of the methodology employed.

Unfortunately, the nature of the equations of motion does not allow for precise an-

alytical expressions for the time-dependent evolution of the radius and angle of the

system. In this section, we derive an approximate form for these expressions. In

the next section, we will introduce a time-dependency to the driving frequency to

verify our results. We start with the equations of motion that we found in a previous

chapter in the form of equation (5.16) and equation (5.14). We shall make a couple

of substitutions to make the analytic process easier. Firstly, we define a pendulum

frequency as

ω2
0 =

g

ℓ0
. (6.3)
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Next, we define a relative contraction of the pendulum, as in equation (5.15), in the

following manner:

R =
r

ℓ0
−
(
1 +

ω2
0

ω2

)
. (6.4)

Finally we define a dimensionless time quantity as,

τ = Ωt. (6.5)

Making these substitutions and linearising the second order differential equations

as outlined by Ryland and Meirovitch [49] and Mazzilli [47] giving the following

expressions for R as in equation (5.16) and θ as in equation (5.14) in the comoving

reference frame:

∂2R

∂τ 2
+
ω2

Ω2
R = A cos(τ) (6.6)

and

∂2θ

∂τ 2
− 1

1− ω2
0

ω2

[
ω2
0

Ω2
− A

ℓ0
cos(τ)

]
θ = 0. (6.7)

Firstly, let us solve for R; we know that the solution has the following form with

c1 and c2 being constants that initial conditions can define

R(τ) =
AΩ2 cos(τ)

ω2 − Ω2
+ c1 cos

(ωτ
Ω

)
+ c2 sin

(ωτ
Ω

)
. (6.8)

We assume that the system is initially placed with the pendulum having no extension

and is therefore at its rest length ℓ0. Therefore, at τ = 0 and r = ℓ0,

R(0) =
ℓ0
ℓ0

−
(
1 +

ω2
0

ω2

)
. (6.9)
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Simplifying fully this expression gives us

R(0) = −ω
2
0

ω2
, (6.10)

Substituting in τ = 0, we get the following expression for constant c1 once we have

rearranged the expression:

c1 = −ω
2
0

ω2
− AΩ2

ω2 − Ω2
(6.11)

This expression, therefore, gives the following expression for the time-dependent

relative contraction of the system,

R(τ) =
AΩ2 cos(τ)

ω2 − Ω2
−
(
ω2
0

ω2
+

AΩ2

ω2 − Ω2

)
cos
(ωτ
Ω

)
+ c2 sin

(ωτ
Ω

)
. (6.12)

We now need a second known system state to find an expression for c2. We will

assume that the system is initially at rest, meaning that at τ = 0, the velocity of R

is R′(τ) = 0. Taking the derivative of equation (6.12), we find

R′(τ) = −AΩ
2 sin(τ)

ω2 − Ω2
+
ω

Ω

(
ω2
0

ω2
+

AΩ2

ω2 − Ω2

)
sin
(ωτ
Ω

)
+
ωc2
Ω

cos
(ωτ
Ω

)
. (6.13)

Substituting in τ = 0 and R′(0) = 0 we find

0 =
ωc2
Ω
. (6.14)

Since ω
Ω
̸= 0, c2 = 0, therefore, we have a time dependent expression for the relative

contraction of the pendulum in the form of

R(τ) =
AΩ2 cos(τ)

ω2 − Ω2
−
(
ω2
0

ω2
+

AΩ2

ω2 − Ω2

)
cos
(ωτ
Ω

)
. (6.15)

We can now convert this expression back to an expression for the length of the
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pendulum in terms of time t in the comvoing reference frame giving the expression

r(t) = ℓ0

[
AΩ2 cos(Ωt)

ω2 − Ω2
−
(
ω2
0

ω2
+

AΩ2

ω2 − Ω2

)
cos (ωt) +

(
1 +

ω2
0

ω2

)]
(6.16)

as the time dependent length of the pendulum. We now seek to find an expression

for the angle θ. We first recognise that we have an expression for the angle θ that

is in the form of the following Mathieu expression:

∂2θ

∂τ 2
+ [α + β cos(τ)] θ = 0, (6.17)

with

α = − 1

1− ω2
0

ω2

ω2
0

Ω2
(6.18)

and

β =
1

1− ω2
0

ω2

A

ℓ0
. (6.19)

The solution to this Mathieu equation is therefore

θ(τ) = c1Ce
[
4α,−2β,

τ

2

]
+ c2Se

[
4α,−2β,

τ

2

]
, (6.20)

with Ce the even Mathieu characteristic function and Se the odd Mathieu charac-

teristic function. Substituting back in α and β with a fixed initial angle θ0, giving

the following expression at τ = 0:

θ0 = c1Ce

[
− 4

1− ω2
0

ω2

ω2
0

Ω2
, − 2

1− ω2
0

ω2

A

ℓ0
, 0

]

+c2Se

[
− 4

1− ω2
0

ω2

ω2
0

Ω2
, − 2

1− ω2
0

ω2

A

ℓ0
, 0

]
.

(6.21)

We know that we can remove the odd characteristic function from equation (6.21)
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since

Se [4α, −2β, 0] = 0. (6.22)

This therefore gives the following expression for the constant c1 in the form of

c1 =
θ0

Ce

[
− 4

1−
ω2
0

ω2

ω2
0

Ω2 , − 2

1−
ω2
0

ω2

A
ℓ0
, 0

] . (6.23)

Again we are now assuming that the system is initially at rest, therefore, at τ = 0,

θ′ = 0. This gives us the expression

0 = c2
Ω

2
Se′

[
− 4

1− ω2
0

ω2

ω2
0

Ω2
, − 2

1− ω2
0

ω2

A

ℓ0
, 0

]
. (6.24)

Therefore c2 = 0 and

θ(τ) =
θ0

Ce

[
− 4

1−
ω2
0

ω2

ω2
0

Ω2 , − 2

1−
ω2
0

ω2

A
ℓ0
, 0

]

× Ce

[
− 4

1− ω2
0

ω2

ω2
0

Ω2
, − 2

1− ω2
0

ω2

A

ℓ0
,
τ

2

]
.

(6.25)

Substituting back in our expression for τ we arrive at the following expression for θ

in the comoving reference frame gives us

θ(t) =
θ0

Ce

[
− 4

1−
ω2
0

ω2

ω2
0

Ω2 , − 2

1−
ω2
0

ω2

A
ℓ0
, 0

]

× Ce

[
− 4

1− ω2
0

ω2

ω2
0

Ω2
, − 2

1− ω2
0

ω2

A

ℓ0
,
Ωt

2

]
.

(6.26)



CHAPTER 6. VARIATIONS ON THE INVERTED PENDULUM 126

6.3 Adding a time-dependency to the driving fre-

quency

Now that we have approximate expressions for R and θ we now look to add a time-

dependency to the driving frequency. To do this we will be making the substitution

Ω = Ω0 − δΩt, (6.27)

where Ω0 is the initial driving frequency and δΩ is the decrease in driving frequency

per second. Making this substitution into equation (6.16) and equation (6.26) results

in the expressions

r(t) =ℓ0

[
A (Ω0 − δΩt)2 cos((Ω0 − δΩt) t)

ω2 − (Ω0 − δΩt)2

−

(
ω2
0

ω2
+

A (Ω0 − δΩt)2

ω2 − (Ω0 − δΩt)2

)
cos (ωt) +

(
1 +

ω2
0

ω2

)] (6.28)

and

θ(t) =
θ0

Ce

[
− 4

1−
ω2
0

ω2

ω2
0

(Ω0−δΩt)2
, − 2

1−
ω2
0

ω2

A
ℓ0
, 0

]

× Ce

[
− 4

1− ω2
0

ω2

ω2
0

(Ω0 − δΩt)2
, − 2

1− ω2
0

ω2

A

ℓ0
,
(Ω0 − δΩt) t

2

]
.

(6.29)

We can now find potential, kinetic and total system energy expressions. These can

be found by substituting these new expressions for r and θ into

Ep = mg (r cos(θ) + Az cos((Ω0 − δΩt) t)) +
1

2
κ (r − ℓ0)

2 (6.30)
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and

Ek =
1

2
m

[(
r
∂θ

∂t
cos (θ) +

∂r

∂t
sin(θ)

)2

+

((
∂r

∂t
cos(θ)− ∂θ

∂t
r sin(θ)

)
− Az (Ω0 − δΩt) sin((Ω0 − δΩt) t)

)2
] (6.31)

Sometimes it is useful to rewrite the Mathieu function as an expansion. We can do

this if we assume that the following term is much less than one,

1 ≫

∣∣∣∣∣− 2

1− ω2
0

ω2

A

ℓ0

∣∣∣∣∣ (6.32)

This inequality will hold for atomic trapping schemes, and therefore, the expansion

holds. The expansion of the Mathieu function [105] is as follows:

Ce (ar(q), q, z) ∝ cos(rq) +
q

4

(
cos((r − 2)z)

r − 1
− cos((r + 2)z)

r + 1

)
+
q2

32

(
cos((r − 4)z)

(r − 2)(r − 1)
− 2(r2 + 1) cos(rz)

(r − 1)2(r + 1)2

+
cos((r + 4)z)

(r + 2)(r + 1)

)
+O(q3),

(6.33)

with r a property of the Mathieu even value [106] which itself can be written as an

expansion in the following manner:

ar(q) ∝ r2 +
q2

2(r − 1)(r + 1)
+O(q4). (6.34)

With both of these approximations, we can have an expression for the even Mathieu

characteristic function that is easier to manipulate. Therefore we can obtain an

expression for the total energy of the system. Finally, we can plot this equation as

a time function to see if we observe the same drop in system energy observed with

our numerical simulation.
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Figure 6.2: Systemic cooling using the Mathieu approximation for the system with
the same parameters as used to generate figure 5.6. The initial angle θ = π

4
, driving

frequency Ω = 16000 rad/s, the radial trapping frequency 25000 rad/s, rest length
2.5 × 10−3 m and driving amplitude A = 2.5 × 10−5 m. Additionally, we reduced
the driving frequency by 5000 rad/s over one second of simulation. These input
conditions are the same as those used in our simulation in figure 6.1.

In figure 6.2, we plot the time evolution of the total energy using the same pa-

rameters as utilised when we numerically simulated figure 6.1. We are not expecting

to achieve the same result in both graphs since the two approaches are different and

are based on different system assumptions; however, we would expect them to ob-

serve similar trends, particularly a loss of energy. In both figure 6.2 and figure 6.1,

we observe that over one second that the maximum amplitude of the total energy

decreases over time. This trend indicates that this property is not a consequence of
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our approach since it is present in two different approaches to the system, so we can

be fairly confident that this is a physical property of the system.

6.4 Multi-directional driving

One related system we can test using a similar methodology is multi-directional

shaking, where we drive the system in both the vertical and horizontal planes. We

choose to look at such a system since the ability to drive the system in multiple

directions opens up the possibility of localising a pendulum to a specific region that

is not necessarily located directly in the vertical position. This approach opens up

the possibility for greater control over the pendulum’s behaviour. Simulating such

system driving is essential, and observing the effects from a numerical approach.

In the case of three-dimensional shaking of the atom trap, we will be using a non-

moving reference frame. We used the co-moving frame initially with the vertically

oscillating pendulum. This choice is because the resulting equations approximate

a Mathieu equation that tells us about the system’s behaviour and predicts stable

configurations of variables. However, when we shake the system in three dimensions,

the system is unlikely to be in the form of a Mathieu equation. We already saw that

some simplifications are necessary to get an equation in the form of a Mathieu

equation in the single-dimensional shaking. Adding more shaking dimensions will

likely lead to even more simplification of the system to obtain the Mathieu equation

form. Therefore, we will abandon this approach and continue in the stationary

frame. The Lagrangian of the system is similar to that shown in equation (5.23)

but with additional driving terms so that

L =
m

2

[(
∂x

∂t

)2

+

(
∂y

∂t

)2

+

(
∂z

∂t

)2
]
−mz

(
g − AzΩ

2
z cos (Ωzt)

)
+mxAxΩ

2
x cos(Ωxt) +myAyΩ

2
y cos(Ωyt)−

κ

2

(√
x2 + y2 + z2 − ℓ0

)2
.

(6.35)
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From this Lagrangian we obtain the following equations of motion

∂2x

∂t2
=

κxℓ0

m
√
x2 + y2 + z2

− κx

m
+ AxΩ

2
x cos(Ωxt), (6.36)

∂2y

∂t2
=

κyℓ0

m
√
x2 + y2 + z2

− κy

m
+ AyΩ

2
y cos(Ωyt) (6.37)

and

∂2z

∂t2
=

κzℓ0

m
√
x2 + y2 + z2

− κz

m
− g + AzΩ

2
z cos(Ωzt). (6.38)

We can now simulate the system using the same Runge-Kutta-Fehlberg algorithm

outlined previously. If we take a stable system like that which we used to generate

figure 5.6 but introduce a driving at the same frequency, amplitude and phase in

both the x and y directions as well, we instead produce figure 6.3. In this figure,

we can see that the system remains stable and confines the pendulum bob to a

specific region on the surface of a sphere. In addition, we note the exclusion of two

wedges from the spherical cap the pendulum is tracing out with its path. These

wedges seem to be a driving feature since we ran the simulation for 10 seconds and

the pendulum bob traced over the rest of the spherical cap multiple times during

the simulation. The fact that we are still able to produce a stable system with an

exotic driving scheme indicates that this may prove to be an area of future research

which is beyond the scope of this paper but indicates that this is something worth

pursuing with the possibility for fine control over the pendulum bob. In addition to

testing these two systems, we were also able to test a system with vibrations only in

the x and y directions; however, this did not prove to be very stable; although we

had a few oscillations, the system quickly decayed from any stable position. Further

investigation of other vibrational systems should now be possible with our current

equations of motion. Further exploration is required to find other possible vibrating

schemes that could lead to the emergence of a stable system.
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Figure 6.3: Typical trajectory of a stable system in three dimensions with the follow-
ing parameters. The initial angle θ = π

4
, driving frequencies Ωx = Ωy = Ωz = 16000

rad/s, the radial trapping frequency 25000 rad/s, rest length 2.5× 10−3 m and driv-
ing amplitude Ax = Ay = Az = 2.5 × 10−5 m. The colour scale goes from blue at
time t = 0 seconds through yellow to red at t = 10 seconds. The graph shows a
typical path over 10 seconds with both plots taken simultaneously but at different
angles.

6.5 Conclusions

In this chapter, we looked at some variations on the mechanical Kapitza pendulum

on an atomic trapping scale. In particular, we looked at a mechanism by which

the system’s total energy is reduced through the reduction in the vertical driving

of the pendulum. We demonstrated that this approach leads to stable systems that

remain in the inverted position but whose total energy is reduced while the driving

frequency of the system is similarly reduced. We then demonstrated that this result

could also be seen numerically utilising the linearised approximation of the system,

further confirming our results. Additionally, we looked at a variation on the driving

scheme whereby the system is driven in multiple directions. We found that we were

able to control the location of the pendulum through the use of this multi-directional

driving, and it could be an approach that is used to manipulate the location of a

pendulum.



Chapter 7

The atomic Kapitza pendulum

and an alternative approach

7.1 Introduction

Having explored the mechanical Kapitza system for an elastic pendulum on the

scale of an atomic trapping scheme, we now focus on replicating this result in a

system that better reflects existing trapping schemes. In particular, we look at an

atomic trapping scheme in the quadrupole. In this scheme, an atom is trapped

within a potential shell with an oblate spheroid geometry. Furthermore, this shell is

governed by an instantaneous dressed potential [65, 51] for such a system as given

by the following expression:

V (x, y, z, t) = m′
F h̄

√
[ω0(x, y, z, t)− ωrf (t)]

2 + (Ω0(x, y, z, t))2 +mgz, (7.1)

where ω0 is the Larmor frequency, ωrf (t) is the RF frequency, and Ω0 is the Rabi

coupling frequency. Additionally, m′
F is the magnetic quantum number of the total

atomic spin in the rf-dressed frame. In our case, we are looking at a system con-

taining rubidium-87 atoms, which, in its ground state, has an F value of either 1

or 2. Typically we choose m′
F = F . For this purpose, we will set mF = 1. The

other constants in our expression are h̄, the familiar reduced Planck constant, m, the

132
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mass of our rubidium-87 and g, the gravitational acceleration. The dressed potential

is then dependent on the following frequencies: ω0, the Larmor frequency, ωrf the

radio frequency and Ω0 the Rabi frequency. Each of these frequencies are functions

dependent on the system. Here we will consider the case of a quadrupole field used

by Lesanovsky and von Klitzing [65]. We do not have a spherical trap; instead, the

trapping geometry forms an oblate spheroid whose major radius is twice the length

of its minor radius. Another related system is an Ioffe-Pritchard trap [107], which is

similar to the quadrupole except that this is in the form of a oblate spheroid. We will

not be investigating the latter system in this thesis. However, the general principles

applied here for the quadrupole should carry through to the Ioffe-Pritchard system,

albeit with a slightly different geometry. In these trapping schemes, the atoms are

contained within and manipulated within this potential. In particular, a modulation

to the rf-field might be introduced to manipulate the atom’s positioning within the

potential. One particular approach is to modulate the rf-field in the z-direction to

generate a potential where an atom might be trapped at the equator of the potential

rather than at the south pole.

In our eventual system, we will be looking to shake the potential such that

we can maintain a stable region in the inverted position; as such, we will include

this shaking from the off. In addition to this, the conventional atomic trapping

scheme as outlined by Garraway and Perrin [51] and Lesanovsky and von Klitzing

[65] generates a trapping scheme which has a hole located at the north pole of the

system this is something we wish to avoid with our trapping scheme since this is the

desired location for the atoms in our new trap, as such this will have to be adapted.

We start by writing expressions for the Larmor frequency,

ω0(x, y, z, t) = α
√
x2 + y2 + 4(z − z0(t))2 (7.2)

with

α =
gFµBb

′

h̄
. (7.3)
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In this expression for α µB is the Bohr magneton, b′ the gradient of our quadrupole

and gF is the Landé g factor. The Landé g factor is typically ±1/2 for a system

that utilises rubidium-87. The modulation of the quadrupole means that we might

consider the centre of the quadrupole field to oscillate vertically in lab frame so that

z0(t) =
Bm

2b′
sin(ωmt), (7.4)

with Bm the modulation amplitude for the B-field and ωm the modulation frequency.

In our new model, we propose utilising a constant radio-frequency. This constant

radio-frequency differs from the system described by Lesanovsky and von Klitzing

[65], whose rf-field oscillated with the following behaviour:

ωrf (t) = ωrf

√
1 +

(
αBm

b′ωrf

)2

sin2(ωmt), (7.5)

where ωrf the rf modulation frequency. Finally, we look at the Rabi frequency term.

Again our approach differs from Garraway and Perrin [51] and Lesanovsky and von

Klitzing [65]. In these works, the Rabi frequency is defined as

Ω0(x, y, z, t) =
|αBrf |
2b′

√
1− uz(ρ, z, t)2, (7.6)

where Brf is the magnitude of the Rabi frequency and uz the direction of the mag-

netic field. For a linearly polarised system, uz can be written as

uz(ρ, z, t) =
−2(z − z0(t))√
ρ2 + 4(z − z0(t))2

. (7.7)

We note that in this system, Brf is non-static and is defined as,

Brf = B1

√
1 +

(
αBm

b′ωrf

)2

sin2(ωmt). (7.8)

A system driven in such a way will generate a stable region located at the equator

if the driving frequency, ωm, is much greater than the rf-coupling frequency Ω0. In
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this regime, the system acts as if it were under a potential that can be found by

taking the time average of the modulating potential field with

VTA(r) =
1

τ

∫ τ

0

Vm(r, t)dt, (7.9)

where τ is the period of modulation and is equal to τ = 2πω−1
m . This is referred

to as a Time-Averaged Adiabatic Potential and has been realised experimentally

[65, 108, 73, 109]. The net outcome is that, through modulation, it is possible

to generate a stable system. We collect all the above terms together to form a

Lagrangian for the system to find the equations of motion. We can then utilise our

Runge-Kutta-Fehlberg algorithm to simulate the system’s dynamics and see how it

behaves. The Lagrangian for the system takes the following form:

L =
m

2

((
∂x

∂t

)2

+

(
∂y

∂t

)2

+

(
∂z

∂t

)2
)

−mgz

−m′
F h̄

α2γ(t)B2
1

4b′2

(
1− 2ζ(t)√

x2 + y2 + 4ζ(t)2

)2

+
(
ωrfλ(t)− α

√
x2 + y2 + ζ(t)2

)2] 1
2

.

(7.10)

We define the parameters ζ(t), γ(t) and λ(t) as

ζ(t) = z − Bm

2b′
sin(ωmt), (7.11)

γ(t) = 1 +
αBm

b′ωrf

sin2(ωmt) (7.12)

and

λ(t) =

√
1 +

α2B2
m sin2(ωmt)

b′2 (ωrf )
2 . (7.13)

ζ(t) is a modification of the evolution of the z coordinate to include the vertical
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driving of the system and γ(t) and λ(t) two time dependent terms we have defined

in order to simplify the system.

Utilising Lagrangian mechanics this gives the following equations of motion for

the system:

∂x

∂t
= X, (7.14)

∂y

∂t
= Y, (7.15)

∂z

∂t
= Z, (7.16)

∂X

∂t
=− αh̄m′

Fx

m

×
α +

αB2
1γ(t)ζ(t)

2

b′2(x2+y2+4ζ(t)2)2
− λ(t)ωrf√

x2+y2+4ζ(t)2√
α2B2

1γ(t)

4b′2

(
1− 4ζ(t)2

x2+y2+4ζ(t)2

)
+
(
λ(t)ωrf − α

√
x2 + y2 + 4ζ(t)2

)2 , (7.17)

∂Y

∂t
=− αh̄m′

Fy

m

×
α +

αB2
1γ(t)ζ(t)

2

b′2(x2+y2+4ζ(t)2)2
− λ(t)ωrf√

x2+y2+4ζ(t)2√
α2B2

1γ(t)

4b′2

(
1− 4ζ(t)2

x2+y2+4ζ(t)2

)
+
(
λ(t)ωrf − α

√
x2 + y2 + 4ζ(t)2

)2 (7.18)

and

∂Z

∂t
=− g − αh̄m′

F ζ(t)

m

×
4α− αB2

1γ(t)(x
2+y2)

b′2(x2+y2+4ζ(t)2)2
− 4λ(t)ωrf√

x2+y2+4ζ(t)2√
α2B2

1γ(t)

4b′2

(
1− 4ζ(t)2

x2+y2+4ζ(t)2

)
+
(
λ(t)ωrf − α

√
x2 + y2 + 4ζ(t)2

)2 . (7.19)

From these equations of motion, we apply our Runge-Kutta-Fehlberg algorithm to



CHAPTER 7. ATOMIC KAPITZA AND ALTERNATIVE APPROACH 137

demonstrate its stability and dynamics. In figure 7.2 we plot a typical path of an

atom trapped in this potential.

Figure 7.1: Typical path of a stable system with the atom trapped at the equator of
the potential. We set the initial position of the atom at x = 1.2508 mm and z = 0
mm, setting Bm = 2.5 × 10−5 T, ωrf = 5.5 × 107 rad/s, Brf = 1.3191 × 10−7 T,
ωm = 1.6× 107 rad/s. The simulation covers the location of the atom over a period
of 0.5 seconds. The colour gradient starts at blue for t = 0 and goes through to red
at time t = 0.5 seconds.

In figure 7.2, we see that the atom’s location is limited to a subsection of the

potential shell near the equator. There is movement in both x and z, but the atom

oscillates and stabilises around the equator. We want to take this model and move

the stable region to the north pole of the system. We will first consider a purely
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vertically driven system such as the one utilised in the mechanical Kapitza system

to see if, in this new model of the system, a stable region can be maintained at the

north pole of the potential.

7.2 Vertically driven system

By utilising Kapitza mechanics to maintain a stable region at the north pole, some

changes need to be made. One of the first aspects that need to be changed is

that, in its existing state, the system has a hole located at the north pole, which

means that the atoms will not be trapped at the north pole and can escape the

trapping potential. We, therefore, require a change to the trapping geometry. In

particular, we want to adjust the Rabi frequency component so that the hole is

located elsewhere on the trapping surface. We introduce a circular polarisation to

the system to achieve this moving of the hole on the potential surface. A general

expression for an RF field applied in the x− y plane can be written in the following

vector form [69, 110]:

BRF = B0
RF


cos(ωt)

λ cos(ωt− α)

0

 (7.20)

The coupling is found by finding the perpendicular component B⊥ to a static B-field

by rotating from a coordinate system aligned along the quadrupole field to the lab

frame coordinate system. In doing this the following expression might be obtained

[69]:

(
B⊥

B0
RF

)2

=
λ2x2 + y2

x2 + y2
+

4z2

x2 + y2 + 4z2

(
x2 + λ2y2

x2 + y2

)
− 2λxy cos(α)

x2 + y2 + 4z2
+

4λz sin(α)√
x2 + y2 + 4z2

.

(7.21)
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In a circularly polarised system λ = 1 and α = ±π/2. This simplifies the previous

expression to

(
B⊥

B0
RF

)2

=1 +
4z2

x2 + y2 + 4z2
± 4z√

x2 + y2 + 4z2
. (7.22)

We want to choose whether α is positive or negative since it determines the nature

of the system. Since we are looking to create a maximum coupling at the north pole

of the trapping potential where z is positive. Given this, the correct polarisation of

the RF field, therefore, for resonance is. Therefore, α = π/2 gives us the expression

(
B⊥

B0
RF

)2

=1 +
4z2

x2 + y2 + 4z2
+

4z√
x2 + y2 + 4z2

. (7.23)

This can be further simplified so that

(
B⊥

B0
RF

)2

=

(
1 +

4z√
x2 + y2 + 4z2

)2

. (7.24)

The Rabi frequency term therefore takes the form of the expression

Ω0(x, y, z, t) =
|αBrf (t)|

2b′

√√√√(1 + 2z√
x2 + y2 + 4z2

)2

=
|αBrf |
2b′

(
1 +

2z√
x2 + y2 + 4z2

)
.

(7.25)

Since we are vertically driving the system, we need to modify the Rabi frequency

term so that the field is displaced vertically through the transformation z → z− z0,

with

z0 =
Bm

2b′
sin(ωmt). (7.26)
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This gives a final expression for the Rabi frequency in the following form:

Ω0(x, y, z, t) =
|αBrf (t)|

2b′

1 +
2
(
z − Bm

2b′
sin(ωmt)

)√
x2 + y2 + 4

(
z − Bm

2b′
sin(ωmt)

)2
 . (7.27)

In addition to this change in the Rabi frequency we choose to set the frequency and

magnitude of the rf-frequency to be constant meaning ωrf (t) = ωrf and Brf (t) =

B1. Substituting these expressions into our final result, we get an equation for the

potential,

V =gmz +m′
F h̄

α2B2
1

4b′2

(
1 +

2ζ(t)√
x2 + y2 + 4ζ(t)2

)2

+
(
−ωrf + α

√
x2 + y2 + 4ζ(t)2

)2] 1
2

,

(7.28)

with

ζ(t) = z − Bm

2b′
sin(ωmt). (7.29)

The resulting equations of motion for this system take on the following form:

∂x

∂t
= X, (7.30)

∂y

∂t
= Y, (7.31)

∂z

∂t
= Z, (7.32)
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∂X

∂t
=− αh̄m′

Fx

2m

×
2α− 2ωrf√

x2+y2+4ζ(t)2
−

αB2
1ζ(t)

(
−2ζ(t)+

√
x2+y2+4ζ(t)2

)
b′2(x2+y2+4ζ(t)2)2√

α2B2
1

4b′

(
1 + 2ζ(t)√

x2+y2+4ζ(t)2

)2

+
(
ωrf − α

√
x2 + y2 + 4ζ(t)2

)2 , (7.33)

∂Y

∂t
=− αh̄m′

Fy

2m

×
2α− 2ωrf√

x2+y2+4ζ(t)2
−

αB2
1ζ(t)

(
−2ζ(t)+

√
x2+y2+4ζ(t)2

)
b′2(x2+y2+4ζ(t)2)2√

α2B2
1

4b′

(
1 + 2ζ(t)√

x2+y2+4ζ(t)2

)2

+
(
ωrf − α

√
x2 + y2 + 4ζ(t)2

)2 (7.34)

and

∂Z

∂t
=− g − h̄m′

F

2m

×
8αζ(t)

(
α− ωrf√

x2+y2+4ζ(t)2

)
+

α2B2
1

b′2

(x2+y2)
(
−2ζ(t)+

√
x2+y2+4ζ(t)2

)
(x2+y2+4ζ(t)2)2√

α2B2
1

4b′

(
1 + 2ζ(t)√

x2+y2+4ζ(t)2

)2

+
(
ωrf − α

√
x2 + y2 + 4ζ(t)2

)2 . (7.35)

One aspect of this system that differs from the mechanical Kapitza system is

the potential term. In the z direction, we find that the system is in a harmonic

potential. With the change in the system, we need to make sure that this is still

the case with our new model. Since this is not automatically the case, this brings

more conditions on the stability, which potentially makes it more difficult to find a

stable system compared to the relative ease that we had in finding stable systems

for the mechanical system. Indeed, if we test a system that we know is stable in the

mechanical Kapitza regime in this new atomic Kapitza regime, we find the system

unstable.
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Figure 7.2: Typical path of an unstable system with vertical driving. The trapping
potential is initialised with the atom located at a distance from the centre of the
trap of 6.25 × 10−4m, a polar angle of θ = 10−5 and an azimuthal angle of ϕ =
−π/4, setting Bm = 2.5 × 10−5 T, ωrf = 2.75 × 107 rad/s, B1 = 1.3191 × 10−7 T,
ωm = 1.6× 104 rad/s. The simulation covers the location of the atom over a period
of 0.5 seconds. The colour gradient starts at blue for t = 0 and goes through to red
at time t = 0.5 seconds.

If we plot the individual components, we can see how the system is evolving

to understand how the system is unstable. We can see that in figure 7.3 that

the x component of the system exponentially increases over time, taking the atom

away from the inverted position until the atom passes over the equator when it

starts to oscillate across the southern hemispheroid meaning that the system is

not stabilised in the inverted position and is instead finding the gravitationally
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favourable position below the equator. In the mechanical Kapitza system, we expect

the atom to oscillate in x over the north pole instead of drifting away from the north

pole, highlighting that this new system is unstable.

Figure 7.3: Evolution in x for an unstable atom The trapping potential is initialised
with the atom located at a distance from the centre of the trap of 6.25× 10−4m, a
polar angle of θ = 10−5 and an azimuthal angle of ϕ = −π/4, setting Bm = 2.5×10−5

T, ωrf = 2.75× 107 rad/s, B1 = 1.3191× 10−7 T, ωm = 1.6× 104 rad/s.

In figure 7.4, we see that initially, the system oscillates in the z direction, which

is typically for the mechanical system; however, the maximum amplitude is slowly

decreasing over time, indicating instability. This decrease in amplitude increases

over time until the atom is no longer above the equator when it begins to oscillate

like a conventional pendulum, albeit one with more complex dynamics due to vertical
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driving. This result indicates that such a system is unstable when its mechanical

counterpart is stable.

Figure 7.4: Evolution in z for an unstable atom The trapping potential is initialised
with the atom located at a distance from the centre of the trap of 6.25× 10−4 m, a
polar angle of θ = 10−5 and an azimuthal angle of ϕ = −π/4, setting Bm = 2.5×10−5

T, ωrf = 2.75 × 107 rad/s, B1 = 1.3191 × 10−7 T, ωm = 1.6 × 104 rad/s. The
simulation covers the location of the atom over a period of 0.5 seconds.

We then tested a wide range of known stable conditions for the mechanical

Kapitza system in this new atomic Kapitza scheme and found that all of these sys-

tems became unstable. These findings indicate that finding stable systems in the

atomic trapping scheme appears to be significantly more challenging than for the

mechanical system and that other factors are involved in the stability of such a sys-
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tem. If we look at the Lagrangian of both systems, we might begin to understand

why this is the case. Both systems have the same kinetic energy term and gravi-

tational potential energy; however, the formulation of the spring term is different

between the two systems. In particular, the mechanical Kapitza system this spring

term is defined as

Vmech-spring =
κ

2

(√
x2 + y2 + ζ(t)2 − ℓ0

)2
, (7.36)

whereas the equivalent term in the atomic system takes the form

Vatomic-spring =m
′
F h̄

α2B2
1

4b′2

(
1 +

2ζ(t)√
x2 + y2 + 4ζ(t)2

)2

+
(
−ωrf + α

√
x2 + y2 + 4ζ(t)2

)2] 1
2

.

(7.37)

The mechanical system can be described to be in a harmonic regime which we can

demonstrate through an expansion of the brackets, which gives the expression for

the spring potential as

Vmech-spring =
κ

2

(
x2 + y2 + ζ(t)2 + 2ℓ0

√
x2 + y2 + ζ(t)2 + ℓ20

)
. (7.38)

This harmonic potential ensures the stability of the system when driven correctly.

We want to ensure that our atomic Kapitza system is similarly in an harmonic

regime as well. If we take a simplified version of the atomic spring potential, we get

the expression

V =
√

(λz)2 + Ω2
0. (7.39)

In the limit λ|z| ≫ Ω0 this becomes

V ≈ λ|z|. (7.40)
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As a result, the potential function is then in a linear regime which appears to be

unstable for our tested parameters, meaning that the Kapitza mechanics will not

maintain a stable region in the inverted position. If, instead, we have a limit whereby

λ|z| ≪ Ω0, then the potential term might be written in the following manner:

V = Ω0

√
1 +

(
λz

Ω0

)2

(7.41)

The Taylor expansion of this equation is as follows:

V = Ω0 +
λ2z2

2Ω0

+O(z4) (7.42)

In this regime, the potential is harmonic; therefore, through careful selection of

driving, a stable region might be found in the inverted position. This criterion is

an additional challenge to utilising the Kapitza mechanism for an atomic trapping

system. Relating this finding to our system, we find that, in general, the systems

that we have tested thus far are generally in the linear regime, and therefore the

resulting system is unstable. This system property makes finding a stable configu-

ration utilising vertical Kapitza driving challenging. None of our stable mechanical

systems tested in the previous chapters of this thesis has stable counterparts in the

atomic trapping scheme. If a stable region were found utilising this technique, it

would require the delicate balancing of multiple inequalities to obtain a stable con-

figuration. Having tested a wide range of systems that are of the correct scale for an

experimental system, we can conclude that either the stable system lies outside of

the range of parameters tested and therefore outside of expected system parameters

for an experimental system or that a stable system might still be found within this

range. However, the stability regions may be significantly smaller, making them

experimentally and numerically challenging to find. Instead, we focus on a different

configuration of the system to achieve trapping at the north pole of the potential

field. As such, we now focus on trying to achieve the same effect, namely a stabil-

isation around the north pole of the trapping potential that does not rely on this
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Kaptiza style driving to maintain stability.

7.3 Rapid horizontal driving at the north pole

Experimentally, there is an excellent degree of control over how the potential is

manipulated for an atomic trapping scheme. More complicated modes of control

than simple vertical driving might be considered to achieve a stable system at the

north pole of a trapping potential. One alternative approach we propose utilises

a horizontal driving in both x and y to generate a stable region at the north pole

of the trapping potential, much like a vertical driving can achieve a time-averaged

adiabatic potential at the equator [65, 51]. Indeed Lesanovsky and von Klitzing

[65] proposes a circular driving scheme to stabilise an atom within a dumbbell-

like structure. This paper uses a circular motion to achieve its results within the

same trapping potential. This system has zero coupling and thus a hole when the

atoms are at the north pole of the trapping potential. In this section of the thesis,

we will explore our own circular driving of the system with a modified potential

such as to avoid the presence of a hole; we will also show that the system exhibits

properties that indicate the formation of a time-averaged adiabatic potential located

around the north pole of the potential. We choose a polarisation of the magnetic

field tangential to the surface of the potential utilised in the stable system at the

equator. By making this choice, we obtain an expression for the system’s Rabi

frequency in the form of

Ω0(x, y, z, t) =
|αB1|
4b′

(
1 +

x+ y + 2z√
x2 + y2 + 4z2

)
. (7.43)

We then introduce a modulation in the x and y terms so that the Rabi frequency

becomes

Ω0(x, y, z, t) =
|αB1|
4b′

(
1 +

Xt + Yt + 2z√
X2

t + Y 2
t + 4z2

)
, (7.44)
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with

Xt =
Bm

2b′
sin(ωmt) (7.45)

and

Yt =
Bm

2b′
cos(ωmt). (7.46)

We will keep all the remaining terms the same as the Kapitza style inverted atomic

system to give an overall Lagrangian for the system in the following form:

L =
m

2

((
∂x

∂t

)2

+

(
∂y

∂t

)2

+

(
∂z

∂t

)2
)

−mgz

−m′
F h̄

α2B2
1

16b′2

(
1 +

Xt + Yt + 2z√
X2

t + Y 2
t + 4z2

)2

+
(
ωrf − α

√
X2

t + Y 2
t + 4z2

)2] 1
2

.

(7.47)

From this Lagrangian we derive the equations of motion for the system. These

equations of motions are

∂x

∂t
= X, (7.48)

∂y

∂t
= Y, (7.49)

∂z

∂t
= Z, (7.50)
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∂X

∂t
=− m′

F h̄

2m

[
α2B2

1

8b′2
(Y 2

t + 4z2 −Xt (Yt + 2z))

(X2
t + Y 2

t + 4z2)
2

×
(
Xt + Yt + 2z +

√
X2

t + Y 2
t + 4z2

)
+2Xtα

(
α− ωrf√

X2
t + Y 2

t + 4z2

)]

×

α2B2
1

16b′2

(
1 +

Xt + Yt + 2z√
X2

t + Y 2
t + 4z2

)2

+
(
ωrf − α

√
X2

t + Y 2
t + 4z2

)2− 1
2

,

(7.51)

∂Y

∂t
=− m′

F h̄

2m

[
α2B2

1

8b′2
(X2

t + 4z2 − Yt (Xt + 2z))

(X2
t + Y 2

t + 4z2)
2

×
(
Xt + Yt + 2z +

√
X2

t + Y 2
t + 4z2

)
+2Ytα

(
α− ωrf√

X2
t + Y 2

t + 4z2

)]

×

α2B2
1

16b′2

(
1 +

Xt + Yt + 2z√
X2

t + Y 2
t + 4z2

)2

+
(
ωrf − α

√
X2

t + Y 2
t + 4z2

)2− 1
2

(7.52)

and

∂Z

∂t
=− g − m′

F h̄

2m

[
α2B2

1

4b′2
(X2

t + Y 2
t − 2z (Xt + Yt))

(X2
t + Y 2

t + 4z2)
2

×
(
Xt + Yt + 2z +

√
X2

t + Y 2
t + 4z2

)
+8ζ(t)α

(
α− ωrf√

X2
t + Y 2

t + 4z2

)]

×

α2B2
1

16b′2

(
1 +

Xt + Yt + 2z√
X2

t + Y 2
t + 4z2

)2

+
(
ωrf − α

√
X2

t + Y 2
t + 4z2

)2− 1
2

.

(7.53)

We can then numerically simulate the system to check the system stability. For

example, in figure 7.5 we plot a typical path for a stable system in this regime.
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Figure 7.5: Typical path of an atom in a horizontally driven system and initially
located near the north pole of a quadrupole. We set the initial position of the atom
at a distance from the centre of the potential of 6.25× 10−4 metres and an angle to
the vertical of θ = π/32 radians, setting Bm = 2.5× 10−4 T, ωrf = 5.5× 107 rad/s,
Brf = 1.3191 × 10−7 T, ωm = 1.6 × 107 rad/s. The simulation covers the location
of the atom over a period of 1 second. The colour gradient starts at blue for t = 0
and goes through to red at time t = 1 second.

We can see that the atom remains stable around the north pole of the quadrupole

with oscillations in the x, y and z directions. We can better understand the system’s

dynamics by plotting the x and z components.
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Figure 7.6: Evolution in y of an atom in a horizontally driven system and located
near the north pole of a quadrupole. We set the initial position of the atom at a
distance from the centre of the potential of 6.25× 10−4 metres and an angle to the
vertical of θ = π/32 radians, setting Bm = 2.5 × 10−4 T, ωrf = 5.5 × 107 rad/s,
Brf = 1.3191 × 10−7 T, ωm = 1.6 × 107 rad/s. The simulation covers the atom’s
location over 1 second.
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Figure 7.7: Evolution in z of an atom in a horizontally driven system located near
the north pole of a quadrupole. We set the initial position of the atom at a distance
from the centre of the potential of 6.25 × 10−4 metres and an angle to the vertical
of θ = π/32 radians, setting Bm = 2.5 × 10−4 T, ωrf = 5.5 × 107 rad/s, Brf =
1.3191 × 10−7 T, ωm = 1.6 × 107 rad/s. The simulation covers the atom’s location
over 1 second.

From figures 7.6-7.7, we can see that the two components are oscillating back

and forth around the north pole of the quadrupole and do not exhibit the same drift

observed in the previous section with the vertically driven potential. This behaviour

demonstrates that this trapping scheme stabilises the atom around the north pole.

We note that the oscillations in the z direction decrease in magnitude over time;

however, there is no drift in the median position in z over time, meaning that the

system is stable over the interval simulated. This system is in marked contrast
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to the results we saw when looking at the vertically driven system, which would

immediately begin to drift away from the north pole when initialised. Given that

this approach is similar to the approach used to stabilise the equator, we expected

this result. We note that in the equator stabilised system, the atom oscillates a little

below the equator, largely due to gravitational sagging of the trapping potential. In

this system, this feature is not noticeable given that the sagging effect is symmetric

about the north pole and, therefore, will affect the atom symmetrically. Having

shown that this system behaves to stabilise the atoms at the north pole of the

trapping potential, we will now look to show that we have a time-averaged adiabatic

potential. To time-average the potential, we use the integral

Vta =
kωm

2π

∫ 2π
kωm

0

V dt, (7.54)

with k a whole integer representing the total number of full oscillation cycles to

integrate over. We note that the potential we have utilised does not appear to have

an analytical solution to the integration. Instead, we take the power series expansion

of the potential in t and utilise this in our integration. For this thesis, we will be

looking over the first four cycles to average out any variations; therefore, we set

k = 4. To demonstrate that this system does behave as a time-averaged adiabatic

potential, we expect to see that the time-averaged potential function will exhibit a

characteristic harmonic potential shape in x and y at the north pole of the trapping

potential. Additionally, the frequency of oscillations in x and y will be consistent

with a harmonic potential of a similar shape.
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Figure 7.8: The time-averaged potential field in z along the z-axis. With Bm =
2.5× 10−4 T, ωrf = 5.5× 107 s−1, Brf = 1.3191× 10−7 T, ωm = 1.6× 107 s−1.
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Figure 7.9: The time-averaged potential field in x at the north pole of the trapping
potential. With Bm = 2.5 × 10−4 T, ωrf = 5.5 × 107 s−1, Brf = 1.3191 × 10−7 T,
ωm = 1.6× 107 s−1.

In figure 7.8, we observe two local minima associated with the top and bottom

of the trapping potential. The potential energy is lower for the minima located in

negative z primarily since the gravitational potential energy is lower for this location

on the potential. In figure 7.9, we see that, indeed, the time-averaged potential does

appear to form a harmonic potential. This property would indicate that under this

time-averaging approach, we do observe that we have a harmonic potential, explain-

ing the emergence of a stable region at the north pole of the trapping potential.

To verify that this time-averaged harmonic potential is responsible for the systems

behaviour, we look at the number of oscillations per second observed in figure 7.6.

From this number of oscillations, we are then able to describe a harmonic potential

in the form of the expression

V =
1

2
mω2x2 (7.55)
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which has the same frequency of oscillations. We then plot this potential, with an

offset so that the minimum for this and the time-averaged potential are the same,

in figure 7.10.

Figure 7.10: The time-averaged potential field in x at the north pole of the trapping
potential is plotted in blue and a trapping potential consistent with the oscillations
observed in x is plotted in red. With Bm = 2.5 × 10−4 T, ωrf = 5.5 × 107 s−1,
Brf = 1.3191× 10−7 T, ωm = 1.6× 107 s−1.

In figure 7.10, we see that the two potentials appear similar, especially in the

region around the north pole. Since the system is not an harmonic oscillator and its

behaviour is more complex, we would expect that results do not perfectly line up

but should be consistent, and this is what we see here, with the two curves following

a similar line, particularly around the minimum. As a result, this indicates that,

indeed, the behaviour of the atom in such a system is being governed by a time-

averaged adiabatic potential.

Overall, we have demonstrated that such a system can be utilised to stabilise an

atom in an inverted position.
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7.4 Conclusions

In this chapter, we have demonstrated that, although a mechanical Kapitza system

will be stable on an atomic trapping scale when we apply the same driving to the

atomic system, the result appears to be unstable. Given the results outlined in

chapter 5 of this thesis which indicate that a system on this scale can be stable

we must conclude that the instability is a result of an-harmonicity in the potential

and not due to the choice of scale, or the use of atoms. Since this is a result of

the potential for the given system it may prove fruitful in future work beyond this

thesis to consider what changes might be made to the potential to resolve the an-

harmonicity given the indication that a stable system might be possible on this

scale. We have suggested that this is due to the quadrupole being in a linear regime

under the same input conditions as the mechanical system. Any stable systems that

utilise these mechanics will likely be challenging to find, both experimentally and

numerically. Instead, we have proposed an alternative approach utilising a horizontal

driving of the system in the x and y directions with a full Rabi coupling at the north

pole of the trapping potential, demonstrating that such a system can be stabilised

at the north pole of the quadrupole. This approach of multi-directional driving

was demonstrated previously in this thesis in the previous chapter for a purely

mechanical system on an atomic trapping scale, and we have also subsequently

demonstrated that this technique works for the atomic quadrupole. This approach

provides a mechanism by which the inverted position may be stabilised and keep

atoms in gravitationally unfavourable positions.



Chapter 8

Conclusions

In this thesis, we have been looking at the dynamics of atoms within the context of

atom trapping schemes.

In chapter two of this thesis, we have derived expressions for the free expansion

of both the toroidal (2.24) and hollow shell (2.92) wave-packets in three dimensions.

Additionally, we have derived expressions for the fringe visibility for both systems,

demonstrating their asymptotic nature, allowing for a greater understanding of what

to expect experimentally. The visibility expressions might also help design experi-

ments to look specifically at the free expansion of these geometries to obtain high

visibility interference fringes.

In chapter three, we then demonstrated that our results mirror those achieved

through the implementation of the Split-Step Fourier Method (SSFM), with direct

comparisons yielding a high fidelity across all results. We observed that in both

systems, a high-density central peak emerges, which in the toroidal geometry pro-

duces a central column. This central peak depended on the initial radius (R) and

its ratio with the initial width (σ). Additional simulations of the system were con-

ducted using the Gross-Pitaevskii equation and determined that the effects of this

non-linearity on the overall system were minimal, particularly for systems with fewer

than 104 atoms.

In chapter four, we looked at how our methodology might be applied to asym-

metric systems to demonstrate the versatility of our approach. We demonstrated
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how a numerical integration might be used when the system does not lead to an in-

tegral that has an analytic solution, showing that the numerical integration rapidly

converges upon the correct solution as the number of steps utilised increases. We

additionally showed that the divergence of our analytic expressions to the numerical

simulation was slow, further verifying the accuracy of our approach in the asymmet-

ric regime. Finally in this chapter, we identified the emergence of anti-nodes in the

free expansion of the asymmetric hollow shell and the torus. These anti-nodes were

highly dependent on the initial state and could be used experimentally to identify

the properties of the original system.

In chapter five, we have demonstrated the viability of an atomic trapping scale

inverted elastic pendulum. We have shown a broad range of variable combinations

on this scale that lead to a stable system. Additionally, we have demonstrated the

relative robustness of such a system such that a spread of starting conditions may

still result in stable systems. We have shown an approximate Mathieu stability zone

for these systems and then discussed and tested the reliability, showing that the

Mathieu stability may only be used as a guide due to the linearisation approxima-

tions necessary with this approach. We showed that a system is more stable if the

driving frequency is less than the radial trapping frequency and if the rest length

is significantly larger than the driving amplitude. We found that the overall initial

system velocity did not seem to affect stability except for a velocity in the θ direc-

tion, with the system relatively robust to initial velocities otherwise. The system

does, however, appear to be more dependent on starting angle and length with the

greater the starting angle, the more likely that system is to be unstable.

In chapter six, we looked at further variations on the mechanical Kapitza pen-

dulum. Specifically, we found a reduction in the system’s driving frequency and a

reduction in the system’s total energy as a function of time. This property we then

verified analytically utilising the linearised approximation of the system. We also

looked at how driving the system in multiple directions might be used to control the

location of the pendulum, moving the stable region away from the inverted position
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to other locations and maintaining its stability over the horizontal.

Finally, in chapter seven, we took our understanding of the mechanical Kapitza

pendulum and applied it to an rf-dressed three-dimensional quadrupole magnetic

field. We found that the vertical driving of this quadrupole did not produce a stable

system as straightforwardly as the mechanical system. One possibility for this is that

the system occupies a linear regime and not an harmonic one required for stability.

We instead proposed an alternative driving scheme to create a stable region at the

north pole of this quadrupole by driving the system in the x and y directions. We

showed that this system was able to stabilise the inverted position of this quadrupole

and therefore provides an alternative approach to trapping the atoms that stabilise

the north pole.

Through the research undertaken in writing this thesis, several avenues can now

be explored beyond the scope of the work presented here. Firstly, with the free

expansion of wave packets, we have demonstrated the versatility of our analytical

approach, which indicates that the methodology might be applied to a wide range

of different systems depending on the areas of experimental interest. Additionally,

we presented one type of asymmetry that our new methodology could study, but,

given how the interference pattern of any system is highly dependent on its initial

state, many more might be of interest. Furthermore, we compared our results to

numerical simulations, aiming to demonstrate what might be seen experimentally;

however, it would be a good test of both our methodology and our simulations

to compare these results to ones obtained through experiment. Secondly, other

trapping schemes might be tested with the inverted pendulum style trapping to

check whether stable configurations may be found more easily. Also, experimentally

testing our alternative approach to stabilising the atom utilising a horizontal driving

is of interest to check whether this might be an experimentally viable alternative.

Finally, a further investigation into what parameters might lead to a stable Kapitza-

style driving in the atomic system could provide insight into whether there is an

experimentally viable set of parameters where this mechanism might be applied to
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achieve stability at the north pole of the trapping potential.



Appendix A

Alternative method for the

toroidal wave-packet

In this appendix, we will be looking at an alternative method for finding equations

for the free-expanding three-dimensional torus. This approach utilises the wave-

function density and therefore omits any phase considerations. This methodology

may be preferable depending on whether the concern is just for the shape of the

wave function and what one might expect to see experimentally. The idea behind

this method of approach is the same basis as the other method used in the main part

of this thesis. With this second methodology, we start with the following expression

for a Gaussian wave-packet which was adapted from Pauli [111] by J.-M. Martin in

his thesis [112]. This expression is as follows:

ψ0(r, t, vr, v∆, kr, ωr,∆k) =
1√
N

exp

(
−(r− vrt)

2

4σ(t)2

)

× exp

(
i
v∆t

σ0

(r− vrt)
2

4σ(t)2
+ i (kr · r− ωrt)

)

× exp

(
− i

2
arccos

(
1

2σ(t)∆k

))
,

(A.1)

where r is a spatial coordinate, vr the initial velocity, kr is the momentum, ωr is

the trapping frequency and N is a general normalisation constant. In the specific

case we are looking at, namely the free expansion of a toroidal wave packet, we
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can impose certain conditions on the system. Firstly, we assume that the toroidal

wave-packet is initially static, therefore meaning vr = 0; we also impose that the

initial momentum of the system is also zero meaning kr = 0. Additionally, since we

are looking at free expansion, the trapping frequency can also be set to zero. At this

point, it is possible to make rewrite several terms in our expression so that they are

in terms of the constants σ0, h̄ and m with

∆k =
1

2σ0
(A.2)

and

v∆ =
h̄

2mσ0
(A.3)

For ease, we shall leave our ∆r(t)2 term in the following derivation, but it is

important to note that this can be expressed in terms of the same constants σr, h̄

and m such that

σ(t)2 = σ2
0 +

h̄2t2

4m2σ2
0

. (A.4)

Making all these substitutions results in the following expression:

ψ0(r, t, ωr) =
1√
N

exp

(
− r2

4σ(t)2

)
× exp

(
ih̄t

8mσ2
0σ(t)

2
r2 − iωrt−

i

2
arccos

(
σ0
σ(t)

))
.

(A.5)

This is the wave-function expression for a free Gaussian distribution located at

the origin. We want to now introduce a transformation to centre the Gaussian at a

location we will label r0 which gives the following expression for the wave-function:

ψ0(r, t, ωr) =
1√
N

exp

(
−(r− r0)

2

4σ(t)2

)

× exp

(
ih̄t

8mσ2
0σ(t)

2
(r− r0)

2 − iωrt−
i

2
arccos

(
σ0
σ(t)

))
.

(A.6)
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Since the system we are considering is built of an infinite number of interacting

Gaussian distributions, it makes sense to create a density matrix for two Gaussian

wave packets with

ρ0(r, r
′, t) = ψ0(r, t)× ψ†

0(r
′, t). (A.7)

Since we are only interested in the magnitude of the final wave-function in this

methodology we shall only be using terms on the diagonal when r = r′. By taking

the density matrix, all imaginary terms that are independent of the coordinate r

cancel giving the expression

ρ(r, t) =
1

N
exp

(
−(r− r0)

2 + (r− r′0)
2

4σ(t)2

)

× exp

(
ih̄t

8mσ2
0σ(t)

2

[
(r− r0)

2 − (r− r′0)
2
])

,

(A.8)

where N is some normalisation factor as yet undetermined. Now that we have a

general expression, let us rewrite it in Cartesian coordinates where

(r− r0)
2 = (x− x0)

2 + (y − y0)
2 + (z − z0)

2. (A.9)

We will assume that the Gaussian’s width is uniform in all directions, but this is not

a necessary assumption to make. Indeed, we will consider what happens when this

is not the case. Since the initial width is the same in all dimensions, the dispersion

expression σ(t) remains the same for each coordinate. Rewriting our equation (A.8)
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in Cartesian coordinates gives us

ρ (x, y, z, t) =
1

N
exp

(
−(x− x0)

2 + (y − y0)
2 + (z − z0)

2

4σ(t)2

)

× exp

(
−(x− x′0)

2 + (y − y′0)
2 + (z − z′0)

2

4σ(t)2

)

× exp

(
ih̄t

8mσ2
0σ(t)

2

(
(x− x0)

2 + (y − y0)
2 + (z − z0)

2))
× exp

(
−ih̄t

8mσ2
0σ(t)

2

(
(x− x′0)

2
+ (y − y′0)

2
+ (z − z′0)

2
))

.

(A.10)

We must now define the location of these Gaussian distributions. Our end result

we are aiming for is a toroidal wave-packet. As such we want these Gaussians to lie

somewhere on the torus. To do this we will set our initial locations in x, y and z as

follows:

x0 = R cos(θ), (A.11)

x′0 = R cos(θ′), (A.12)

y0 = R sin(θ), (A.13)

y′0 = R sin(θ′), (A.14)

and

z0 = z′0 = 0, (A.15)

where R is the distance to the origin, θ is the angle that at which the wave-function

is located and θ′ is the location of the interfering wave-packet. By setting r2 =

x2 + y2 and then expanding and simplifying our two functions we get the following
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expression:

ρ (r, θ, θ′, z, t) =
1

N
exp

(
−r

2 +R2 + z2

2σ(t)2

)
exp

((
1

2σ(t)2
− ih̄t

4mσ2
0σ(t)

2

)
Rr cos(θ)

)
× exp

((
1

2σ(t)2
+

ih̄t

4mσ2
0σ(t)

2

)
Rr cos(θ′)

)
.

(A.16)

This expression is for two interacting Gaussian wave packets. However, we want

instead to use an infinite summation of these to form our torus. To do this, we will

integrate θ and θ′ through the circumference of a torus. We then need to renormalise

the resulting expression giving us

ρtorus (r, θ, θ
′, z, t) =

1

N
exp

(
−r

2 +R2 + z2

2σ(t)2

)
×
∫ 2π

0

∫ 2π

0

exp

((
1

2σ(t)2
− ih̄t

4mσ2
0σ(t)

2

)
Rr cos(θ)

)
× exp

((
1

2σ(t)2
+

ih̄t

4mσ2
0σ(t)

2

)
Rr cos(θ′)

)
dθdθ′.

(A.17)

When we perform the integration, we must use the following identity,

I0(z) =
1

π

∫ π

0

exp(z cos(θ))dθ (A.18)

Using this and normalising expression we get the final expression for a toroidal

wave-packet in the following form:

ρtorus (r, z, t) =
1

(2πσ(t)2)
3
2 exp

(
− R2

4σ2
0

)
I0

(
R2

4σ2
0

) exp

(
−r

2 +R2 + z2

2σ(t)2

)

×
∣∣∣∣I0(Rr( 1

2σ(t)2
+

ih̄t

4mσ2
0σ(t)

2

))∣∣∣∣2 .
(A.19)

Rewriting this expression using the variables in the main part of this thesis, we find

that we get the same expression we found using the other methodology in equation

(2.38) for the wave-function density we obtain the expression

|ψ3dtorus|2 =
1

(2π)
3
2σ(τ)3

exp

(
−(r2 +R2 + z2)

2σ(τ)2
+
R2

4σ2
0

) ∣∣∣I0 ( rR(1−iτ)
2σ(τ)2

)∣∣∣2
I0

(
R2

4σ2
0

) . (A.20)
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Since we have demonstrated that we arrive at the same density function using either

of our approaches, we can conclude that either approach is valid, and therefore it

is a matter of preference as to which approach is used with the method used in the

main body of this thesis providing phase data whereas this approach does not.



Appendix B

Alternative method for the

hollow shell wave-packet

As with the toroidal geometry, we use the equation (A.10) as a starting point. We

therefore begin with the expression

ρ (x, y, z, t) =
1

N
exp

(
−(x− x0)

2 + (y − y0)
2 + (z − z0)

2

4σ(t)2

)

× exp

(
−(x− x′0)

2 + (y − y′0)
2 + (z − z′0)

2

4σ(t)2

)

× exp

(
ih̄t

8mσ2
0σ(t)

2

(
(x− x0)

2 + (y − y0)
2 + (z − z0)

2))
× exp

(
−ih̄t

8mσ2
0σ(t)

2

(
(x− x′0)

2
+ (y − y′0)

2
+ (z − z′0)

2
))

.

(B.1)

For a hollow shell wave-packet we locate the Gaussians on the shell such that the

wave-packets are centred at the following location:

x0 = R sin(ϕ) cos(θ), (B.2)

x′0 = R sin(ϕ′) cos(θ′), (B.3)
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y0 = R sin(ϕ) sin(θ), (B.4)

y′0 = R sin(ϕ′) sin(θ′), (B.5)

z0 = R cos(ϕ) (B.6)

and

z′0 = R cos(ϕ′), (B.7)

where R is the desired radius of the hollow shell, θ and θ′ the polar angle and ϕ

and ϕ′ the azimuthal angular location of the two wave-packets. The prime differen-

tiates between the two interacting wave packets. We can then take the above and

substitute it into our equation (A.10). In doing so we obtain the expression

ρ =
1

N
exp

(
−(x−R sin(ϕ) cos(θ))2 + (y −R sin(ϕ) sin(θ))2 + (z −R cos(ϕ))2

4σ(t)2

)
× exp

(
−(x−R sin(ϕ′) cos(θ′))2 + (y −R sin(ϕ′) sin(θ′))2 + (z −R cos(ϕ′))2

4σ(t)2

)
× exp

(
ih̄t

8mσ2
0σ(t)

2

(
(x−R sin(ϕ) cos(θ))2 + (y −R sin(ϕ) sin(θ))2

))
× exp

(
−ih̄t

8mσ2
0σ(t)

2

(
(x−R sin(ϕ′) cos(θ′))2 + (y −R sin(ϕ′) sin(θ′))2

))
× exp

(
ih̄t

8mσ2
0σ(t)

2
(z −R cos(ϕ))2

)
× exp

(
−ih̄t

8mσ2
0σ(t)

2
(z −R cos(ϕ′))

2

)
.

(B.8)

Having obtained this density function for two interacting Gaussians, we wish to

simplify the expression. If we consider the following term:

(x−R sin(ϕ) cos(θ))2 + (y −R sin(ϕ) sin(θ))2 + (z −R cos(ϕ))2. (B.9)
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As before, with the toroidal wave packet, we can utilise symmetry. This time, the

hollow shell is spherically symmetric, and as a result, we can define the system such

that x = y = 0 and z = r. With this substitution, the above expression can be

written as

(x−R sin(ϕ) cos(θ))2 + (y −R sin(ϕ) sin(θ))2 + (z −R cos(ϕ))2

→ R2 sin2(ϕ) cos2(θ) +R2 sin2(ϕ) sin2(θ) + r2 − 2Rr cos(ϕ) +R2 cos2(ϕ)

= r2 +R2 − 2Rr cos(ϕ).

(B.10)

With this knowledge, the density function can be simplified into the following form:

ρ (r, ϕ, ϕ′, θ, θ′, t) =
1

N
exp

(
−r

2 +R2 − 2Rr cos(ϕ)

4σ(t)2

)
× exp

(
−r

2 +R2 − 2Rr cos(ϕ′)

4σ(t)2

)
× exp

(
ih̄t

8mσ2
0σ(t)

2

(
r2 +R2 − 2Rr cos(ϕ)

))
× exp

(
−ih̄t

8mσ2
0σ(t)

2

(
r2 +R2 − 2Rr cos(ϕ′)

))
.

(B.11)

Now that we have the expression for two interacting Gaussian distributions lo-

cated on the hollow shell, we want to integrate through the angles θ, θ′, ϕ and ϕ′.

This integration is the equivalent of taking the sum of an infinite number of similar

Gaussians. All of these Gaussians we locate on the surface of a hollow shell. The

integral we will be evaluating is

ρ (r, ϕ, ϕ′, θ, θ′, t) =
1

N

∫ 2π

0

dθ

∫ 2π

0

dθ′

×
∫ π

0

∫ π

0

exp

(
−r

2 +R2 − 2Rr cos(ϕ)

4σ(t)2

)
× exp

(
−r

2 +R2 − 2Rr cos(ϕ′)

4σ(t)2

)
× exp

(
ih̄t

8mσ2
0σ(t)

2

(
r2 +R2 − 2Rr cos(ϕ)

))
× exp

(
−ih̄t

8mσ2
0σ(t)

2

(
r2 +R2 − 2Rr cos(ϕ′)

))
sin(ϕ) sin(ϕ′)dϕdϕ′.

(B.12)

Since the above function is independent in θ and θ′, these integrals will result in an



APPENDIX B. ALTERNATIVE APPROACH: HOLLOW SHELL 171

additional 4π2 term. Since we still need to find the normalisation factor, we will

absorb this term into N . The integral in ϕ and ϕ′ is not trivial. First of all, we

can extract terms independent of these two angles. This results in the following

formulation:

ρ (r, ϕ, ϕ′, θ, θ′, t) =
1

N
exp

(
−r

2 +R2

2σ(t)2

)
×
∫ π

0

∫ π

0

exp

(
Rr

2σ(t)2

(
1− ih̄t

2mσ2
0

)
cos(ϕ)

)
× exp

(
Rr

2σ(t)2

(
1 +

ih̄t

2mσ2
0

)
cos(ϕ′)

)
sin(ϕ) sin(ϕ′)dϕdϕ′.

(B.13)

We now integrate this function, we can do so using the integral identity

∫ π

0

exp (A cos(ϕ)) sin(ϕ)dϕ =
2

A
sinh(A). (B.14)

Performing these integrations we get the following expression:

ρ (r, t) =
1

N
exp

(
−r

2 +R2

2σ(t)2

)
× 4σ(t)2

Rr
(
1− ih̄t

2mσ2
0

) sinh

(
Rr

(
1

2σ(t)2
− ih̄t

4mσ2
0σ(t)

2

))

× 4σ(t)2

Rr
(
1 + ih̄t

2mσ2
0

) sinh

(
Rr

(
1

2σ(t)2
+

ih̄t

4mσ2
0σ(t)

2

))
.

(B.15)

We simplify this expression by absorbing any common multiplying terms that are

constant in r and t and performing the multiplication of terms we obtain the ex-

pression

ρ (r, t) =
1

N

16σ(t)4

R2r2
(
1 + h̄2t2

4m2σ4
0

) exp

(
−r

2 +R2

2σ(t)2

)

×
∣∣∣∣sinh(Rr( 1

2σ(t)2
+

ih̄t

4mσ2
0σ(t)

2

))∣∣∣∣2 .
(B.16)
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Normalising the density function gives us the following final expression:

ρ (r, t) =
1

√
2π

3
2 r2σ(t)

(
1− exp

(
− R2

2σ2
0

)) exp

(
−r

2 +R2

2σ(t)2

)

×
∣∣∣∣sinh(Rr( 1

2σ(t)2
+

ih̄t

4mσ2
0σ(t)

2

))∣∣∣∣2 .
(B.17)

This equation may be re-written as

|ψhs(r, τ)|2 =
1

(2π)
3
2 r2σ(τ)

(
1− exp

(
− R2

2σ2
0

))[ exp(−(r2 +R2)

2σ(τ)2

)

×
(
cosh

(
rR

σ(τ)2

)
− cos

(
rRτ

σ(τ)2

))]
.

(B.18)

Given that both approaches again lead to the same density function, it indicates

that either approach is valid.



Appendix C

Runge-Kutta-Fehlberg algorithm

The Runge-Kutta-Fehlberg algorithm uses a large number of rational coefficients

[104]. We detail the value of the coefficients here. The first lot of coefficients are

173
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used in the intermediary step between the time steps,

c20 = 1/4

c21 = 1/4

c30 = 3/8

c31 = 3/32

c32 = 9/32

c40 = 12/13

c41 = 1932/2197

c42 = −7200/2197

c43 = 7296/2197

c50 = 1

c51 = 439/216

c52 = −8

c53 = 3680/513

c54 = −845/4104

c60 = 1/2

c61 = −8/27

c62 = 2

c63 = −3544/2565

c64 = 1859/4104

c65 = 11/40

(C.1)
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The following coefficients are used to calculate the new values after the time step,

yc1 = 25/216

yc3 = 1408/2565

yc4 = 2197/4101

yc5 = −1/5

(C.2)

Finally these coefficients are used to calculate the error estimator,

zc1 = 16/135

zc3 = 6566/12825

zc4 = 28561/56430

zc5 = −9/50

zc6 = 2/55

(C.3)

The algorithm for the Runge-Kutte-Fehlberg algorithm for the inverted elastic

pendulum is as follows. We define xi, Xi, yi, Yi, zi and Zi as the initial values for

each parameter and xi+1, Xi+1, yi+1, Yi+1, zi+1 and Zi+1 as the values after one full

step. Finally we define δt as the time-step. The subscript on the a, b, c, d, e and f

terms indicate which step of the algorithm the equation is a part of.

a0 = δt (Xi) (C.4)

b0 = δt

(
κl0xi

m
√
x2i + y2i + z2i

− κxi
m

)
(C.5)

c0 = δt (Yi) (C.6)
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d0 = δt

(
κl0yi

m
√
x2i + y2i + z2i

− κyi
m

)
(C.7)

e0 = δt (Zi) (C.8)

f0 = δt

(
κl0zi

m
√
x2i + y2i + z2i

− κzi
m

+ AΩ2 cos(Ωt)− g

)
(C.9)

a1 = δt (Xi + c21b0) (C.10)

b1 = δt

(
κl0 (xi + c21a0)

m
√

(xi + c21a0)
2 + (yi + c21c0)

2 + (zi + c21e0)
2
− κ (xi + c21a0)

m

)
(C.11)

c1 = δt (Yi + c21d0) (C.12)

d1 = δt

(
κl0 (yi + c21c0)

m
√

(xi + c21a0)
2 + (yi + c21c0)

2 + (zi + c21e0)
2
− κ (yi + c21c0)

m

)
(C.13)

e1 = δt (Zi + c21f0) (C.14)

f1 = δt

(
κl0(zi+c21e0)

m
√

(xi+c21a0)
2+(yi+c21c0)

2+(zi+c21e0)
2

(C.15)

− κ(zi+c21e0)
m

+ AΩ2 cos(Ω (t+ c20δt))− g

)
(C.16)

a2 = δt (Xi + c31b0 + c32b1) (C.17)
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b2 =δt

(
κl0 (xi + c31a0 + c32a1)

m
√

(xi + c31a0 + c32a1)
2 + (yi + c31c0 + c32c1)

2 + (zi + c31e0 + c32e1)
2

− κ (xi + c31a0 + c32a1)

m

) (C.18)

c2 = δt (Yi + c31d0 + c32d1) (C.19)

d2 =δt

(
κl0 (yi + c31c0 + c32c1)

m
√

(xi + c31a0 + c32a1)
2 + (yi + c31c0 + c32c1)

2 + (zi + c31e0 + c32e1)
2

− κ (yi + c31c0 + c32c1)

m

) (C.20)

e2 = δt (Zi + c31f0 + c32f1) (C.21)

f2 =δt

(
κl0 (zi + c31e0 + c32e1)

m
√

(xi + c31a0 + c32a1)
2 + (yi + c31c0 + c32c1)

2 + (zi + c31e0 + c32e1)
2

− κ (zi + c31e0 + c32e1)

m
+ AΩ2 cos(Ω (t+ c30δt))− g

) (C.22)

a3 = δt (Xi + c41b0 + c42b1 + c43b2) (C.23)

b3 =δt

(
κl0 (xi + c41a0 + c42a1 + c43a2)

m

(
(xi + c41a0 + c42a1 + c43a2)

2

+ (yi + c41c0 + c42c1 + c43c2)
2 + (zi + c41e0 + c42e1 + c43e2)

2
)− 1

2

− κ (xi + c41a0 + c42a1 + c43a2)

m

) (C.24)

c3 = δt (Yi + c41d0 + c42d1 + c43d2) (C.25)
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d3 =δt

(
κl0 (yi + c41c0 + c42c1 + c43c2)

m

(
(xi + c41a0 + c42a1 + c43a2)

2

+ (yi + c41c0 + c42c1 + c43c2)
2 + (zi + c41e0 + c42e1 + c43e2)

2
)− 1

2

− κ (yi + c41c0 + c42c1 + c43c2)

m

) (C.26)

e3 = δt (Zi + c41f0 + c42f1 + c43f2) (C.27)

f3 =δt

(
κl0 (zi + c41e0 + c42e1 + c43e2)

m

(
(xi + c41a0 + c42a1 + c43a2)

2

+ (yi + c41c0 + c42c1 + c43c2)
2 + (zi + c41e0 + c42e1 + c43e2)

2
)− 1

2

− κ (zi + c41e0 + c42e1 + c43e2)

m
+ AΩ2 cos(Ω (t+ c40δt))− g

) (C.28)

a4 = δt (Xi + c51b0 + c52b1 + c53b2 + c54b3) (C.29)

b4 =δt

(
κl0 (xi + c51a0 + c52a1 + c53a2 + c54a3)

m

(
(xi + c51a0 + c52a1 + c53a2 + c54a3)

2

+ (yi + c51c0 + c52c1 + c53c2 + c54c3)
2 + (zi + c51e0 + c52e1 + c53e2 + c54e3)

2

)− 1
2

− κ (xi + c51a0 + c52a1 + c53a2 + c54a3)

m

) (C.30)

c4 = δt (Yi + c51d0 + c52d1 + c53d2 + c54d3) (C.31)
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d4 =δt

(
κl0 (yi + c51c0 + c52c1 + c53c2 + c54c3)

m

×
(
(xi + c51a0 + c52a1 + c53a2 + c54a3)

2 +

(yi + c51c0 + c52c1 + c53c2 + c54c3)
2 + (zi + c51e0 + c52e1 + c53e2 + c54e3)

2

)− 1
2

− κ (yi + c51c0 + c52c1 + c53c2 + c54c3)

m

)
(C.32)

e4 = δt (Zi + c51f0 + c52f1 + c53f2 + c54f3) (C.33)

f4 =δt

(
κl0 (zi + c51e0 + c52e1 + c53e2 + c54e3)

m

×
(
(xi + c51a0 + c52a1 + c53a2 + c54a3)

2

+ (yi + c51c0 + c52c1 + c53c2 + c54c3)
2 + (zi + c51e0 + c52e1 + c53e2 + c54e3)

2

)− 1
2

− κ (zi + c51e0 + c52e1 + c53e2 + c54e3)

m
+ AΩ2 cos(Ω (t+ c50δt))− g

)
(C.34)

a5 = δt (Xi + c61b0 + c62b1 + c63b2 + c64b3 + c65b4) (C.35)

b5 =δt

(
κl0 (xi + c61a0 + c62a1 + c63a2 + c64a3 + c65a4)

m(
(xi + c61a0 + c62a1 + c63a2 + c64a3 + c65a4)

2

+ (yi + c61c0 + c62c1 + c63c2 + c64c3 + c65c4)
2

+ (zi + c61e0 + c62e1 + c63e2 + c64e3 + c65e4)
2
)− 1

2

− κ (xi + c61a0 + c62a1 + c63a2 + c64a3 + c65a4)

m

)

(C.36)
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c5 = δt (Yi + c61d0 + c62d1 + c63d2 + c64d3 + c65d4) (C.37)

d5 =δt

(
κl0 (yi + c61c0 + c62c1 + c63c2 + c64c3 + c65c4)

m(
(xi + c61a0 + c62a1 + c63a2 + c64a3 + c65a4)

2

+ (yi + c61c0 + c62c1 + c63c2 + c64c3 + c65c4)
2

+ (zi + c61e0 + c62e1 + c63e2 + c64e3 + c65e4)
2
)− 1

2

− κ (yi + c61c0 + c62c1 + c63c2 + c64c3 + c65c4)

m

)

(C.38)

e5 = δt (Zi + c61f0 + c62f1 + c63f2 + c64f3 + c65f4) (C.39)

f5 =δt

(
κl0 (zi + c61e0 + c62e1 + c63e2 + c64e3 + c65e4)

m(
(xi + c61a0 + c62a1 + c63a2 + c64a3 + c65a4)

2

+ (yi + c61c0 + c62c1 + c63c2 + c64c3 + c65c4)
2

+ (zi + c61e0 + c62e1 + c63e2 + c64e3 + c65e4)
2
)− 1

2

− κ (zi + c61e0 + c62e1 + c63e2 + c64e3 + c65e4)

m

+ AΩ2 cos(Ω (t+ c60δt))− g

)

(C.40)

We now have all of the components necessary to calculate the next time step.

For this methodology we need both the fourth and fifth order approximations.

xi+1 = x+ yc1a0 + yc3a2 + yc4a3 + yc5a4 (C.41)
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xerror(i+1) = x+ zc1a0 + zc3a2 + zc4a3 + zc5a4 + zc6a5 (C.42)

(
∂x

∂t

)
i+1

=
∂x

∂t
+ yc1b0 + yc3b2 + yc4b3 + yc5b4 (C.43)

(
∂x

∂t

)
error(i+1)

=
∂x

∂t
+ zc1b0 + zc3b2 + zc4b3 + zc5b4 + zc6b5 (C.44)

yi+1 = y + yc1c0 + yc3c2 + yc4c3 + yc5c4 (C.45)

yerror(i+1) = y + zc1c0 + zc3c2 + zc4c3 + zc5c4 + zc6c5 (C.46)

(
∂y

∂t

)
i+1

=
∂y

∂t
+ yc1d0 + yc3d2 + yc4d3 + yc5d4 (C.47)

(
∂y

∂t

)
error(i+1)

=
∂y

∂t
+ zc1d0 + zc3d2 + zc4d3 + zc5d4 + zc6d5 (C.48)

zi+1 = z + yc1e0 + yc3e2 + yc4e3 + yc5e4 (C.49)

zerror(i+1) = z + zc1e0 + zc3e2 + zc4e3 + zc5e4 + zc6e5 (C.50)

(
∂z

∂t

)
i+1

=
∂z

∂t
+ yc1f0 + yc3f2 + yc4f3 + yc5f4 (C.51)

(
∂z

∂t

)
error(i+1)

=
∂z

∂t
+ zc1f0 + zc3f2 + zc4f3 + zc5f4 + zc6f5 (C.52)
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We then take the difference between the iterated function and the error approx-

imator for each equation. If this difference falls outside of the established error

range, then the time step is either decreased or increased, and the whole step is

repeated until it does fall within an acceptable range. Sometimes a system may

vary so rapidly that the result is wildly outside the accepted error range, and it can

be helpful to set a minimum acceptable time step so that the simulation may still

progress, but with the caveat that results might not be that accurate.



Appendix D

Equations of motion in Cartesian

coordinates

We start with the Lagrangian of the system in three dimensions with driving in

multiple directions,

L =
m

2

[(
∂x

∂t

)2

+

(
∂y

∂t

)2

+

(
∂z

∂t

)2
]
−mz

(
g − AzΩ

2
z cos (Ωzt)

)
+mxAxΩ

2
x cos(Ωxt) +myAyΩ

2
y cos(Ωyt)−

κ

2

(√
x2 + y2 + z2 − l0

)2 (D.1)

Applying Lagrangian mechanics to the system.

∂

∂t

∂L

∂ẋ
− ∂L

∂x
= 0 (D.2)

∂

∂t

∂L

∂ẏ
− ∂L

∂y
= 0 (D.3)

∂

∂t

∂L

∂ż
− ∂L

∂z
= 0 (D.4)
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Substituting in our Lagrangian we get the following equations,

ẍ =
κl0x

m
√
x2 + y2 + z2

− κx

m
+ AxΩ

2
x cos(Ωxt) (D.5)

ÿ =
κl0y

m
√
x2 + y2 + z2

− κy

m
+ AyΩ

2
y cos(Ωyt) (D.6)

z̈ =
κl0z

m
√
x2 + y2 + z2

− κz

m
+ AzΩ

2
z cos(Ωzt)− g (D.7)

Setting tolerance bounds and ascertaining whether or not the difference between

the fourth and fifth-order approximation falls outside of these bands can be used to

adjust the time step. For instance, if we found that the difference between the fourth

and fifth-order approximation was greater than our tolerance threshold, we can half

the time step and repeat the simulation over this new time step. Similarly, if all fall

below our tolerance bound, the time step may be doubled to ensure simulation run

times are as short as possible.
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[1] M. Planck, “Über das gesetz der energieverteilung im normalspectrum,” An-

nalen der Physik, vol. 309, no. 3, p. 553–563, 1901.
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