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SUMMARY

Gravitational waves have had a long and interesting history, and recently have been exper-
imentally confirmed. This and the fact that many areas of physics are beyond the reach
of traditional observational prospects has been the catalyst to new space-based gravit-
ational wave detectors such as LISA being proposed and confirmed for the near future.
Cosmological phase transitions in the early Universe proceed through bubble nucleation
and collision if they are first-order which is thought to produce gravitational waves which
could be detected by these missions, and so a great effort is being expended to scrutinise
how these transitions would proceed and what their controlling factors are. Aspects of
these transitions are difficult to determine however due to most knowledge being limited
to the perturbative regime where couplings are weak, a limitation which is not necessarily
fulfilled by these scenarios.

In this thesis I study the nature of these phase transitions and the type of gravitational
waves they could produce, and then take advantage of the nature of the AdS/CFT corres-
pondence (also called the gauge/gravity duality or holographic principle) which translates
strongly-coupled field theories to weakly-coupled higher dimensional gravitational theories
to be able to reframe the difficult problems in these transitions into more easily tractable
versions. Using this approach I find techniques to determine the most important paramet-
ers that control the phase transition, generally scanning across a broad range of parameter
spaces to ascertain generic features, and then use these to establish whether detectable
gravitational wave signals will be produced in the models I consider.
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Chapter 1

Introduction

The physical Universe, as much as we have attempted to quantify and describe it, is still
a wild west in terms of how little we know. For years before the quantum revolution
physicists thought we knew almost “all there was to know”, and that physics was almost
finished as a field; how similar a position we are in now. In the century since quantum
mechanics was initiated we have learned much about the minutia of the particle world, and
our understanding of the peculiarities of gravity through general relativity has increased
immensely. However, even with crowning achievements such as the Standard Model,
we still recognise the incompleteness of our physical picture. How to reconcile gravity
and the three other fundamental forces in our distinct regimes, why gravity is so much
weaker comparatively, and whether the Universe realises all available symmetries or not
are still cavernous holes in our knowledge. Nevertheless intriguing theories pop up every
so often, and string theory presenting the AdS/CFT correspondence (or holography) is
one of them which can be utilised from subjects as diverse as superconductors all the way

to gravitational waves.

The study of gravitational waves is not a new one, but its ability to explore regions of
the cosmos previously invisible is hard to ignore. The recent experimental confirmation of
gravitational waves by the Laser-Interferometer Gravitational Wave Observatory (LIGO)
in 2015 [4] produced by the merger of two black holes in a binary black hole (BBH) system
has proven that gravitational wave astronomy is a worthwhile endeavour, and therefore
exploring physics in the new paradigm of detection by gravitation as well as the previously
unequalled detection by light is now a feasible goal. This has opened up new windows
for research in previously obstructed areas where light detection could no longer be relied
upon, such as in the early Universe which was opaque to light prior to recombination, or

in black hole systems where light cannot escape the intense gravitational fields.
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In this vein, the use of the AdS/CFT correspondence to study these areas is indeed a
relatively new venture but has so far been exceedingly successful. Its ability to translate
the problems of a strongly coupled regime in a field theoretic sense to a weakly coupled
gravitational sense has been invaluable for exploring areas that have been inaccessible to
conventional perturbation theory. From this, the area of strongly coupled field theories
which dictate gravitational wave spectra has flourished through the dual study of gravit-
ation in one higher dimension. Specifically, applying this technique to gravitational wave
production from first-order cosmological phase transitions has been of particular interest
due to the observational prospects of planned space-based detectors such as the Laser In-
terferometer Space Antenna (LISA) [5, 6], Taiji [7], and TianQin [8, 9]. As the Standard
Model electroweak phase transition is predicted to be a crossover [10, 11, 12], we would
not expect to observe gravitational waves due to a lack of a barrier separating the distinct
phases. However, there are numerous motivations to believe that beyond the Standard
Model effects would lead to the re-obtention of a first-order transition, and so a search for

gravitational waves in this manner is a search for physics beyond the Standard Model.

To fully understand what these signals represent we must delve deep into the dynamics
and energy content of the phase transitions, and this amounts to mastering the funda-
mental parameters which drive the transition; of which fortunately there turn out to be
relatively few. The important parameters boil down to five main quantities: the trans-
ition strength «, the nucleation temperature 7T),, the transition rate (in units of the Hubble
parameter) (3/H,, the bubble wall velocity vy, and the speed of sound ¢ (which has a
separate value for each phase present). Calculating each requires in-depth treatments of
a certain sector of phase transition physics; the transition strength and sound speed are
calculable from just the thermodynamic parameters, whereas the nucleation temperature
and nucleation rate require complicated field theory derivations to calculate the effective
potential of a bubble. The wall velocity as an out-of-equilibrium quantity requires com-
putation in terms of the microscopic theory, which can be challenging even for weakly
coupled theories [13, 14]. The calculation of these parameters then (barring vy,) shall be
the focus of my thesis. By using the holographic principle I will derive calculations to be
able to determine the values of four out of the five, even in strongly coupled theories, and
demonstrate the feasibility of detecting the signals they shall produce in the experiments
mentioned above. The wall velocity, being resistive to yielding its computation even in
weakly coupled theories, has not yet been fully ascertained. Due to this, in our work we

make use of the state-of-the-art treatments which are the most convincing as yet known.



1.1 Thesis Structure

There are three main pillars necessary for understanding the work done in this thesis: phase
transitions, gravitational waves, and the AdS/CFT correspondence through holography.
All of these work in harmony with their techniques and nuances being critical to the thesis
goal, and so we shall try and go as in-depth with the details as is necessary to have a good
understanding of their place in the research results.

In chapter 2 I go through some very basic concepts in general relativity and cosmology
which will be necessary such as the definitions of curvature tensors and density evolution
to understand the more complex ideas in later sections. I also briefly touch on black holes
and their properties including short derivations for the Hawking temperature Ty and the
Bekenstein-Hawking entropy Spg.

In chapter 3 I discuss the formulation of the Standard Model and its content including
the Higgs particle. I then proceed to discuss the Higgs’ interactions with other particles,
how mass can be acquired in the Universe through spontaneous symmetry breaking at
zero temperature, and how this sort of process is part of a larger set of unifications of the
fundamental forces. After this, a brief review of thermal field theory is given so as to be
able to explain how effective actions and potential can be derived at finite temperature,
and we show that the Higgs potential can be broken through thermal effects. I then
motivate beyond the standard model reasons as to why the electroweak phase transition
could be first-order, and describe the dynamics of the transition.

In chapter 4 I move on to gravitational waves and how to derive them from general
relativity as perturbations upon a flat background metric. I discuss the usual gauges which
reduce these equations to manageable levels, and then promote these arguments to curved
background spaces. I then go through the derivation of the gravitational wave spectrum,
detailing all factors which are generally accepted to influence the shape and intensity of
the spectrum and also how this relates to the signal-to-noise ratio. Finally I discuss the
main points of and how to calculate the quantities which characterise the spectrum: «,
B/Hy, Ty, vy, and 2.

In chapter 5 I now shift gears and begin a whirlwind tour of string theory and related
concepts. 1 start off giving some base properties for conformal field theories and then
anti-de Sitter spacetimes which are useful to keep in mind. I quickly speak a little about
supersymmetry as it plays an important role in constructing string theory. After this I
move on to describing the different types of string theories: bosonic and superstring, the

latter of which is divided up into five equally valid types. I detail that actually there is a



4

web of dualities (formed of S-dualities and T-dualities) which relate all of these theories
together under one umbrella named M-theory. From this discussion of dualities I spring-
board into one major type in chapter 6, namely the AdS/CFT correspondence. I relate
how this can be built up from a string picture and show this in the concrete case of N' = 4
supersymmetric Yang-Mills theory. Using this case I motivate how strongly coupled field
theories in d-dimensions can be translated into a weakly coupled gravitational theory in
d + 1-dimensions, then give a “holographic dictionary” which relates the main quantities
on both sides. Lastly I detail how there is a special treatment to renormalise these theories
to make them well-behaved, and then extend these arguments to finite temperature for

use in our papers.

That concludes the background theory, and the rest of the thesis is concerned with the

articles I published during my doctorate.

Chapter 7 is the first paper produced during my research. Using a master function

method and a potential built from a superpotential comprised of two variable quantities,
¢m and @@, a holographic model is explored. Using this holographic duality with a black
hole in the bulk, the thermodynamic properties of the system are found. Deforming the
potential by changing ¢y, g, the parameter space of important quantities is explored
such as latent heat, critical temperature, transition strength, and sound speed. Collating
all this information it is shown where gravitational wave signals could perhaps be detected
with the correct transition rate.

In chapter 8 we follow up on the work in the first paper by attempting to expand
upon what it was lacking. We derive a new method of calculating the effective potential
from holographic considerations, utilising “multi-trace deformations” to ensure that our
model has a first-order phase transition. We demonstrate how the effect of the number of
colours N will act on quantities important for gravitational wave signals, and produce a
parameter scan of the domain wall solutions.

Finally, chapter 9 is our latest paper. In this we use the newly detailed method of
calculating the effective action from the previous paper to explore a holographic model
in a more in-depth way. We numerically produce solutions to the holographic equations
and map out the parameter space by varying the multi-trace operator couplings. Effective
action found, we now fully calculate holographically both the transition rate and nucleation
temperature as well as the transition strength, and so we scan over all these quantities to

demonstrate whether gravitational waves will be able to be detected in this model.



Chapter 2

Cosmology and General Relativity

In this chapter we shall review some of the machinery which powers the later discussions.
General relativity is an integral part to all concepts in this thesis due to its ability to
describe the effects of gravity through spacetime curvature in much more extreme cir-
cumstances than the flat space that Newtonian gravity is formulated in. Many weird
and wonderful predictions have emerged out of general relativity such as the prediction of
black holes and gravitational waves, both of which have now been observed in nature. As
these concepts are of central importance to this thesis, we shall explore the very basics of
General Relativity here which is necessary for the gravitational wave analysis in chapter
4 as well as some basics of cosmology and black holes, which is necessary for chapters 4,

5, and 6.

2.1 General Relativity Preamble

General Relativity (GR) is built around the equivalence of reference frames. This is a
statement which at its heart describes that there are no “special observers” in the Universe,
and so the fundamental laws act equivalently no matter how the observer is moving in
relation to a reference point, or no matter how spacetime is curved around them. This

idea leads to the invariant quantity of the spacetime interval
ds?* = g datdz” (2.1)

which details how two points are related when they are separated by infinitesimal changes
in time ((dt)?) and space ((dz)?). How these points are related is dictated by the metric
tensor g,,,, which describes the underlying curvature of the spacetime in question. In

flat space this general metric simplifies to the flat space metric known as the “Minkowski
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metric”, labelled by 77,“,1. From this metric, curvature tensors can be constructed which
describe properties of the spacetime curvature such as the Christoffel symbols I',, the

Riemann tensor R”

Jwps the Ricci tensor R, and the Ricci scalar R. The Christoffel symbol

is comprised of the metric and its derivatives as

1
FZZ/ = ing (anTu + augﬂ/ - a‘rg;w) s (2.2)

and essentially measures the corrections needed when considering curved space (and so for
N this gives I'),, = 0). Using the definition for the connection, the Riemann curvature
tensor can be defined through

R,,=01,, =0, +1,,1I7, —T.I7, . (2.3)

From this we can construct other curvature quantities such as the Ricci tensor

Ry = R, = 0,1, — 0,10, + 0 1T, =1 T, , (2.4)

and contracting this with the metric we get the curvature invariant of the Ricci scalar
R =g¢""R,, . (2.5)

With those definitions in place we now have everything necessary to describe curvature in
a vacuum. The real power of general relativity however comes from the fact that we can
go beyond the vacuum, and we can equate this curvature to energy and mass distributions
in the form of the stress-energy (or equally named energy-momentum) tensor 7),,. This
allows us to explore the connection between spacetime and matter in the form of the

Einstein equation,

1
R, — §R9/w + Agu = /£2TW , (2.6)

where k2 is Einstein gravitational constant, related to the gravitational constant G through
k? = 8mG, and A is the cosmological constant. Often we will make use of the Hilbert
stress-energy tensor when considering gravity coupled to matter. In this way, the stress-
energy tensor is found through a functional derivative of the matter part of the action

Smatter = f ddx«/—gﬁmatter with respect to the metric. This produces the tensor

T N —2 5Smatter o 28£ma‘nter
py — Sakv - ogtv
v—g 0g g

+ g,ul/ﬁmatter . (2.7)

see appendix G



2.2 FLRW Cosmology

Shortly after the introduction of general relativity as a theory of gravitation, efforts were
made to explore exact solutions corresponding to physically interesting situations. In an
attempt to model the Universe, Friedmann [15, 16], Lemaitre [17, 18], Robertson [19, 20,
21], and Walker [22] devised a set of solutions based on the homogeneous, isotropic, and

expanding metric

dr?
1 — kr?

ds? = —dt* + a(t)> ( + 72 (df? + Sin29d¢>2)) : (2.8)

where a(t) is the scale factor which describes the expansion (or contraction) of the Universe,
and k is a constant representing the curvature of the space. This metric permits three

types of interesting solutions. If we first study a slight transformation of

k
ko= ro Ik, a— —= (2.9)

k| vk’

we can see that the metric remains the same. As k is now just a quantity divided by its
magnitude it can take only one of three values, namely -1, 0, and +1. The most familiar
scenario is when we set k = 0, which just reduces the metric to flat Euclidean space in
spherical coordinates. With k = 1 we have constant positive curvature which after a
transformation of r = siny can only be the metric of a closed 3-sphere. Finally, with
k = —1 we have constant negative curvature and after the transformation r = sinhy has
a metric of the open 3-hyperboloid.

Working through the curvature equations 2.4 and 2.5 produces

.. 1
Ry = 3% , R;; = ¥<ad +2a% + 2k)gij , (2.10)
and
6 . .
R= ﬁ(aa—i—aQ—i—k). (2.11)

It is normal to treat the constituents of the Universe as perfect fluids, which is described

by the energy-momentum tensor
T = (p+ p)uptin + PYpv (2.12)

where u” is the four-velocity of the perfect fluid, p is the energy density, and p is the
pressure. If we trace over this quantity, we see that we produce a combination of the

pressure and energy density alone as

Th = g" T = —p+3p . (2.13)
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From these and equation 2.6, we find conditions on the scale factor using the temporal

<d>2:’fp_k7 (2.14)

components:

and the spatial components:
K

6

(p+3p) . (2.15)

We will mostly just be interested in the temporal equation and so define the Hubble

parameter which dictates how the Universe is expanding or contracting as

H (2.16)

Il
e

It will be useful for later to categorise the ratio of the energy density to the “critical”
energy density in the Universe, peit, which is simply defined as the energy density found

from equation 2.14 when k = 0. Labelling this {2, it appears as

2
P Kp
Q= = —. 2.17
Perit 3H2 ( )

The equations can also be used to inform us how the quantities depend upon time or

temperature. If we utilise the necessity of conservation of energy, 0*T),, = 0, we see
p=-3H(p+p) . (2.18)

It is conventional to define a quantity known as the equation of state which relates the
pressure and energy density directly as p = wp, so the previous equation becomes (written

in a more useful form)

dlogp dloga

—-3(1 ) 2.19
I 1 +w)— (2.19)
where we have used that é% = %. A simple integration shows us that (if the equation

of state is constant) the energy density and scale factor can be related through
p o< a30Fw) (2.20)

which for instance in the radiation dominated case with w = 1/3 tells us the energy density
is diluted as p oc a ™.

As the expansion of the Universe will possibly have a large impact on physical quantities
we will be using, we want to understand how quantities will change in time during this

expansion. The cosmological redshift z (which determines expansion through wavelength

shift due to expanding space) can be related to the scale factor a through the relation

a(z) = ap(142)7", (2.21)
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where ag is the scale now (generally taken to be 1). As we know that the scale factor
has a time dependence, we can manipulate the redshift to determine its relation to time

through

ao

dz=d(1+2) =d (%) = —25da = —%Hdt = —(1+ 2)H(2)dt . (2.22)

We can also find a scaling of the temperature from the Universe expansion, which will be
useful later. Under this expansion the blackbody spectral shape is preserved, however the
total energy density and characteristic temperature decrease with the expansion. Thus

the temperature of the CMB as a function of redshift is:
T(z) =To(1+2) , (2.23)

where T is the temperature observed today. Taking the derivative with respect to z is

simply
dT
— =1 2.24
dz 0> ( )

which can then be converted to a differential with respect to time through the formula we

just found in eq. 2.22 as
dr To

el H
dt (14 2)

(2.25)

Finally we can re-enter the definition of temperature in eq. 2.23 to remove the constant
and find

dT
o= HOT. (2.26)

These relations can also now translate other quantities into the more useful temperature
dependent form. For instance, eq. 2.20 with w = 1/3 (radiation dominated) can now be
written as p oc 7% by noting that H o a2 is this case from eq. 2.14, which leads to the

relation a(T) oc T~ 1.

2.3 Black Holes

A hugely important facet that drops out of the study of general relativity is the discovery
of objects in the equations of zero size and infinite density (but finite mass), dubbed “black
holes” for their property of being so gravitationally intense that past a certain limit no
light-cone leads out of the object. The singularities appearing in general relativity come
about due to curvature invariants diverging, and black holes by definition have at least
one event horizon (however in some recent papers the possibility of a naked singularity

has been postulated [23, 24]). The event horizon shields the singularity of a black hole,
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future singularity r = 0

It It

past singularity » =0

~
~

Figure 2.1: Penrose diagram of a black hole showing the causal connections between
regions of spacetime. The label ¥ is spacelike infinity (r = oo), whereas i* and i~ are

future and past timelike infinity (¢ = +00), respectively. #+,.#~ are lightlike infinities.

and is a hypersurface separating spacetime points connected to infinity by a timelike path
from those which are not [25].

The Schwarzschild black hole is the simplest and first non-trivial solution found, de-
vised by Karl Schwarzschild in 1916 [26], and is a spherically symmetric vacuum solution
to the Einstein equation 2.6 surrounding a mass M, which in the usual four dimensions is

b

ds? = —h(r)dt® + G

dr? +r2dQ3 | (2.27)

where h(r) is known as a blackening factor and in four dimensions is parameterised by the

radius and horizon radius 7}, as

hr)=1- % . (2.28)
The horizon radius may also be described in terms of the mass and the gravitational
constant G through the relation

rn, = 2GM . (2.29)

The Penrose diagram (which captures the causal relations between different points in
spacetime [27]) for this sort of object in shown in fig. 2.1, with region I corresponding
to normal spacetime, with lines of constant time (red) or space (blue). The black hole
is region II with horizon at r, = 2G'M past which nothing can escape, and the true
singularity is the future singularity at » = 0. Region IV is a white hole, and region III is a

causally disconnected spacetime. As I will be considering higher-dimensional theories, it
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will be useful to see how this solution extends in D-dimensions. The metric now becomes

b

ds* = —h(r)dt* + ——dr* +r2dQ3,_,, (2.30)
h(r)
where the blackening factor is
B rp\ D—3
h(r) =1 ( . ) ; (2.31)

with the horizon radius in D-dimensions taking the form

167 MG

D-3 D

= . 2.32
" (D —2)Qp_» (2:32)

The quantity €2, is the volume of a unit-n-sphere,
o (n+1)/2
Qp=—, (2.33)
oT(h

where I'(n) is the Euler gamma function [28]

I(z) = /000 " e dx (2.34)

2.3.1 Hawking Temperature Ty

For years black holes baffled physicists with their seeming ability to be the one object
in the Universe to disobey normal rules of thermodynamics, specifically that once an
object passed the event horizon it was lost forever along with the information it carried
and the entropy in the Universe decreased, fundamentally opposing the second law of
thermodynamics that dS > 0. The reason for this was that classical black holes as were
known at the time were subject to the “no-hair theorem” [29, 30, 31], meaning that these
types of black holes could be categorised by only three quantities: the mass of the black
hole M, its angular momentum (whether it was rotating or not) .J, and its electric charge
Q. As the black hole’s properties did not include anything else such as entropy (no
“hairy” attributes with which to distinguish one black hole with the same M, J, and @
from another), when an object was absorbed these three quantities were changed but
the entropy S of the object and the information contained with that quantity vanished,
decreasing the entropy of the Universe. In 1972 however, Bekenstein showed relations
between black hole entropies and area [32] and in 1974 Hawking showed in landmark
papers that black holes do in fact radiate away [33, 34] which in doing so provide the
system with a mensurable temperature known as the Hawking temperature Ty. In proving
that black holes do indeed have usual thermodynamic quantities (beginning from either

the entropy or the temperature) then other normal thermodynamic quantities can follow,
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and the temperature being quantifiable as a change in entropy against internal energy
shows that the black hole must have an entropy associated with it or vice versa. We will
begin with the temperature, then move on to the entropy.

The derivation of this temperature is as follows: to begin, extend the metric to a more

general form in which the time coordinate is compactified (known as Eucilidean signature)

1
ds® = f(r)dr? + mdﬂ +72d03, , . (2.35)

For the quantities f(r) and g(r), we assume that at the horizon they go to zero at first

order, i.e. f(ry) = g(rp) = 0. Using this information, we can Taylor expand expand

around the horizon as
fr) = ') (r —ra) + O((r = r1)?),  g(r) =g (rn)(r —r1) + O((r —r4)?) . (2.36)

Noting that we have periodicity in 7 as well as the constraints of vanishing functions f
and g at the horizon rj, we see that this ensures regularity of Euclidean space. Entering

the forms of the expansion into the metric equation 2.35 we find

ds® = f'(rp)(r — rp)dr® + = dr? + 1203 o+ ... . (2.37)

g'(rn)(r —rn)

If we now perform a change of variables of

the metric can be rewritten as
ds? = Wﬁd# +dp*+ ..., (2.39)
and further, we can identify that setting the time coordinate to
dp =/ LRI 4, (2.40)

4

will take us to cylindrical coordinates. We can therefore integrate equation 2.40 remem-

bering that the time direction is compactified on a circle and periodic in the temperature

/Ogﬂdd): /OI/T \/de (2.41)

When integrated and rearranged, we arrive at the relation for the temperature of a black

hole,

to give

T
=

e (2.42)

Th
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2.3.2 Bekenstein-Hawking Entropy Sgy

If black holes have a temperature, we expect them to display properties common to other
thermodynamic systems also. We can see an analogy to the first law of thermodynamics

in the result that two neighbouring black hole equilibrium states are related by [35]
dM = 2 dA +QdJ (2.43)
8w

where M is the mass (or equally Energy in these units), & is the surface gravity (a quantity
related to the local proper acceleration defined through Killing vectors), € is the angular
velocity, and J is the angular momentum of the black hole. We can compare this to a

more familiar thermodynamic relation
dU =TdS + pdV (2.44)

where U is the internal energy, T' is the temperature, S is the entropy, p is the pressure,
and V is the volume. The thermodynamic analogy proposed in Bekenstein [36] and later
Hawking’s [34] papers were then that by analogy one could relate this as (for a non-rotating
black hole)

dM =TdS , (2.45)

and so through eq. 2.43 the temperature is directly related to the surface gravity and the

entropy is directly related to the area. This makes sense so far for the temperature we

calculated in the previous section, as the result we found is indeed simply related to the

surface gravity through Ty = k/2m. For the Schwarzschild black hole, the temperature

is given by eq. 2.42 with f(r) = g(r) = (1 — r/r) and from this we find a Hawking
1

temperature of Ty = (4nrp)~ . We can translate this into a mass dependence through

eq. 2.29 as
Ty = ﬁ , (2.46)
and so requiring S — 0 as M — 0 we can integrate and find
S =47 M*G . (2.47)
Finally we can relate this to the area of the black hole through the relations
A =4nr? = 167(MG)? (2.48)

and so this leads to the entropy of a black hole in terms of its horizon surface area A and
the gravitational constant G as the famous Bekenstein-Hawking entropy

A

SpH = el (2.49)
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This result is not limited to just Schwarzschild black holes, nor is it limited to just four
dimensions. We can promote this relation to a general relation for a black hole in any
dimension (which are the consequence of studying GR in different dimensions [37]) by

modifying it to
A
4Gp ’

Spa = (2.50)

where G p is just the gravitational constant in D-dimensions.
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Chapter 3

The Standard Model, Phase

Transitions, and Beyond

3.1 The Standard Model

The Standard Model, being the most complete model we have so far of the content of our

Universe, is a non-Abelian gauge theory comprised of the symmetries [38, 39, 40, 41, 42]
SU(3)C X SU(Q)L X U(l)y y (3.1)

with the subscript ¢ referring to the colour symmetry of SU(3), the subscript L referring to
how only the left-handed fermions transform under the SU(2);, group, and the subscript
Y referring to the weak hypercharge. Each segment of the group symmetries corresponds
to a section of the standard model: SU(3). corresponds to the strong interaction of the
coloured particles (in the form of quarks and gluons) through quantum chromodynamics
(QCD), whilst SU(2);, x U(1)y corresponds to the electroweak (EW) sector formed by
both electromagnetism and weak interactions. That both strong and electroweak forces
are introduced as gauge interactions is an essential feature of the Standard Model [43],
but as of yet the final force, gravity, is unable to be reconciled in this hugely successful
theoretical framework. The two main constituents which comprise the Standard Model
are bosons and fermions, distinct in their type of spin quantum number: integer spin
for bosons and half-integer spin for fermions. Due to this, these classes of particles obey
entirely different statistics and therefore have very different properties. Bosons obey Bose-
Einstein statistics while fermions obey Fermi-Dirac statistics, determining the possibility
of multiple occupancy of states. Further to these classifications, the Standard Model is

split up as such:



16

e Bosons:

— Gauge Bosons - Vector Bosons W* and Z°, photon v, gluons g
— Scalar Bosons - Higgs Boson ¢
o Fermions:
— Quarks and their antiparticles - Three generations of quarks: up, down (u,d);
charm, strange (c,s); top/truth, bottom/beauty (t,b)
— Leptons and their antiparticles - Three generations of leptons (e™, 4™, 77) and

lepton neutrinos (ve, vy, vr)

Let us first examine the fermionic section. The fermionic matter fields are chiral, allowing
for projection into components based on whether they are “left-handed” or “right-handed”.

The projection operators for this chirality are defined as

1—’y5 PR:1+’y5

P p—
L 2 2

(3.2)

142~3 which are

where 79 is the product of the four other gamma matrices as 7> = i7%y
in turn formed through the Pauli matrices ¢ as 7 = 03 ® I, v' = i0? ® o'. With our

projection operators, if we act upon a fermionic field we retrieve the projected fields as

Y =Py, Yr=Pry. (3.3)

As the weak force only displays interaction with left-handed chiral fermions (a right-handed
fermion is neutral under the weak force) we see that the left-handed particles transform as
SU(2) doublets under weak isospin SU(2) transformations but the right-handed particles
are SU(2) singlets. Due to this distinction then, we shall denote our particle specifies as

follows: the quarks will be formed into the quantity

u C t

q% = ) ’ ) (34)

d S b
L L L

where a is the generation index, which will later be used as the SU(2) index. We will

therefore define a quantity with the up quark and quarks with similar properties as
uf = (ur,Cr,trR) (3.5)
and a quantity with the down quark and quarks with similar properties as

(}1/:1), = (dR7SR7bR) . (36)
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Similarly, the leptons will be formed into

e T
19— N , (3.7)

1% 14 1%
¢/ \"PM/p N7/ [

which have related right-handed quantities, with the leptons as

e(Il% = (eR7 /'LR7TR) ’ (38)

and the lepton neutrinos as
VLR = (Ve,va/u,R7V’T,R) . (39)

Now let us turn to the bosonic section. Looking back to the symmetry group of the
standard model we can identify the gauge fields related to the generators of the group

algebra as

SU(S)C X SU(Q)L X U(l)y s

L
8Go  3W¢ B,

where G} are the gluons which mediate the strong force and provide “colour” charge to
any particle which interact with them, of which there are eight spin-1 types; W are the
vector bosons which mediate the weak force, of which there are three spin-1 types; and
B,, which is a singular spin-1 particle that is related to the mediation of the hypercharge
interactions. From this then, we can write the Lagrangian of the Yang-Mills section of the

Standard Model with the interactions of the matter section as

1 1 1
Lsy D Lymy = —-G¢, G — W W — B, B*
o s o (3.10)
—iqy"D,q — iuy" Dyu — iE’y“Dud — iZ’y“Dul —iev'Dye ,
where
By, = 0,B, — 8,B,,
Wi, = OWS — OW, + greapeWiWy , a=1,2,3 (3.11)

G, = 0,GY — 0,G5 + g3fapyGLGY, a=1,... N}—1;
here N, is the number of colours which in the Standard Model is 3, €4, is the Levi-Civita
symbol (structure constant for SU(2)) and f,s, is the structure constant for SU(3) which
satisfy
[0a, 00) = 2i€qpeo. and [T T =ifuT¢ , (3.12)

where o, and T are the generators of the groups. It is useful to remember that the

positioning of these labels is arbitrary and can be changed with no change to the quantity
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i.e. f%¢ = fu.. Also present are go and g3 which are the coupling constants of the strong
and weak force respectively; the coupling constant to U(1) will relatedly be labelled g;.
The covariant derivatives contained in equation 3.10 act in various ways depending upon

the quantity they act on, so for completeness these are found by:

Duq* = (% + %BM — 5920aWy; — 293)\an> q*

2i
D = (@L + %B - %A G“) @ (3.13)

a 191 193 o\ a
D,d® = (au +9B, - QAQGH> de

for the quarks, and:
8“ + /Lgl Zg? Wa) la

=
- (aﬂ g > e | (3.14)

for the leptons. The varying factors in front of the B, terms simply arise from the different
hypercharges Y which is the generator of the U(1)y group.

As we can see, in equation 3.10 there are no mass terms. For our symmetry group of
SU(3).xSU(2), x U(1)y to be satisfied the Lagrangian we have formed must respect gauge
invariance. This requires that only singlet terms can be included in the SM Lagrangian,
precluding the ability for massive fermionic and gauge fields in this group initially.

The only other piece to now discuss is the final boson present in our previous discus-
sion, a scalar named the Higgs boson. Long theorised, the Higgs particle was finally truly
discovered in 2012 at CERN [44]. This scalar is hugely important to the Standard Model
for providing masses to the other particles and in the mechanism of spontaneous elec-
troweak symmetry breaking (EWSB), which will be discussed further in the next section.

The Higgs Lagrangian is given by

Lsvt O Litiges = — (Do) (D") — V(T9) | (3.15)

where V' is the most general renormalisable potential invariant under SU(2);, x U(1)y

which can be shown to be at tree level (up to constant redefinitions)

V() = 12dTo + No'9)? (3.16)
and the covariant derivative acting upon the Higgs is given by

Dué = (9, 2913 f@ AURTS (3.17)
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The masses therefore come through the interaction of the gauge fields and fermions with
the Higgs particle by spontaneous symmetry breaking (SSB), known as Yukawa interac-
tions, in which they acquire mass proportional to the vacuum expectation value (v.e.v.)

of the Higgs field. The Lagrangian piece produced from these interactions is
Lo D Lyukawa = 7 hut’d + §%hgd®d + Theed + lhyvd + hec. | (3.18)

where h,, hg, he, and h, are the 3 x 3 Yukawa coupling matrices and h.c. indicates the
inclusion of the hermitian conjugates of the terms. The Yukawa couplings reduce the
global symmetries of the gauged kinetic terms to four phase symmetries, baryon number
and the three lepton numbers [45].

Altogether then, we can write the Lagrangian of the Standard Model as

1 1 1
Lon = =GR, G — LW, W — 1B, B

— i@y Dypga — gy Dy — idg " Dyydg — ily* Dyl — iey* D e (3.19)

- (DM@JI(D“@ —V(¢'6) + Thyuld + Ghgd®¢ + 1°hee®d + 1" hy1°¢ + hec.
3.2 Symmetries and Breaking

We now wish to understand exactly how the symmetry is spontaneously broken and mass is
acquired in the Standard Model. Finding the minimum of the Higgs potential in equation

3.16 using 0V (¢)/0¢ = 0 gives the condition

6> = ¢l = e (3.20)

2\
For u? > 0 the potential is constantly positive, and so the minimum and therefore vacuum
expectation value will be zero. With the coefficient ;2 having a negative value instead the
minimum will be located wherever equation 3.20 is satisfied. As seen in figure 3.1 there is
in fact a continuous ring of degenerate minima which satisfy this condition, and the choice

of one of the infinite states breaks the SU(2);, symmetry by the mechanism
SU(Q)L X U(l)y — U(l)em s (3.21)

where U(1)en is the symmetry group of electromagnetism.

The Higgs doublet may be parameterised as

1 (o 1 [ ¢2+ids
¢=— = : 3.22
V2 g0 | V2 \ g +ign (322

which leads to

2
(@ + 01 + 03+ 03) = - . (3.23)



Figure 3.1: A schematic representation of the spontaneous symmetry breaking of the Higgs
mechanism. Before SSB, there is a single minimum of the potential with zero expectation
value, after SSB a new ring of minima (actually a 3-sphere for the Standard Model) appear

which have non-zero vacuum expectation values, shown by the black circular arrow.

We can label the real constant that minimises the scalar potential

2
v=1/odTp = —'l;—/\ (3.24)

and our U(1) rotational symmetry allows us to choose therefore the real uncharged part

of the doublet ¢y so we may write the doublet as

6= — 0 , (3.25)
V2 h(z) +v

where h is the scalar field with (h) = 0. Finally we can see that we acquire a non-zero

vacuum expectation value as
(6) = —= . (3.26)

How do the gauge fields we introduced previously correspond to the physical bosons? We

find that the electric charge Q =Y + T actually couples to the combination of

. QIWE + g2B,u
Vi + 95

which is the boson mediating the electromagnetic group U(1)em called the photon. Simil-

Ay , (3.27)

arly, the combination
B 92W3 — 1B,

Vi +93

7, (3.28)
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can be used to define the Z boson. Defining the “Weinberg angle” 8y through tan 6y =

g1/ 92 [46], these relations can be written as

A, = sin Oy W3 + cos Oy B, ,
! : ! (3.29)

2, = cos OWW;’ —sinfw B, .
Through the commutation relations [Q,T%] = [Q,Y] = 0 we recognise that this implies
both the photon and Z boson have neutral electric charge, and so we label the Z boson Z°.
Considering the other W gauge fields generated by 7" and 72 the commutation relations
now give [Q, Tt +4T?] = F(T* £ iT?), showing they hold electric charge. The W bosons
are then

1
W= —
V2

Looking at our Higgs covariant derivative in equation 3.17 we see that from interactions

Wy FW2) . (3.30)

with this Higgs particle the gauge bosons acquire mass through (truncating to terms

quadratic in the fields)

1}2

|D,¢)? = N (BW Wt (g7 + 93)ZuZ") + ..., (3.31)

where we can read off the masses as (using the definitions for the v, Z, and W fields in

equations 3.27, 3.28, and 3.30 respectively)

1 1
mwzgvgg, mZ:?u\/g%—i—g%, my =0, (3.32)

giving three massive gauge bosons and a massless photon exactly as expected.

Let us now consider these symmetries and concepts in a more realistic matter, where
temperature dependence plays a role. Temperature dependence clearly plays a funda-
mental part in modelling the properties of the Universe, and the symmetries held by the
Standard Model are obviously not exempt from that. Symmetry restoration at increasing
temperature takes multiple forms, not least of which includes the Higgs mechanism break-
ing the electroweak SU(2);,xU(1)y to only the electromagnetic symmetry U(1)en which
was just discussed. Previously thought of as completely separate forces, the electromag-
netic and weak force were shown to unify past the unification energy scale of 246 GeV (a
temperature of about 10'® K) into a single force in the Standard Model by Glashow, Salam,
and Weinberg. Indeed we could expect this sort of behaviour for all of the known forces of
the Standard Model as the temperature rises further. Georgi and Glashow showed that for
an SU(5) gauge group past about 10'* GeV (around 10?7 K) [47], there could be the the
unification of strong, weak, and electromagnetic forces known as the Grand Unified Theory

(G.U.T.); obtention of such a theory being prized as a main objective of modern physics.
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Figure 3.2: Energy scales and evolution of the fundamental forces, showing their possible

unifications in the early Universe.

Moving past even that is the possibility of an all-encompassing “Theory of Everything”
(T.O.E.) at extremely high temperatures which unifies all four forces into one fundamental
force from which everything can be derived. These unifications and approximate energy
scales are represented pictorially in figure 3.2.

We would like to look at what this temperature dependence could mean for the Higgs
mechanism we explored previously then. To do so we shall have to branch out into
quantum field theories at finite temperature known as thermal field theories, and so for

full understanding we shall now take a look at the basics of these TFTs.

3.2.1 Thermal Field Theory

For field theories at finite temperature, everything is derived from the partition function
Z. The partition function is a quantity which effectively describes the probability of

finding a system in a given state or the number of ways you can partition microstates,
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and in quantum field theory it is the generating functional of all correlation functions.
In considering these types of field theories we must take into account not only the usual
quantum fluctuations but also thermal fluctuations from interactions with the thermal
“bath”. The canonical partition function where the system can exchange heat with the

thermal bath and is therefore a function of temperature is defined as

Z(T) = Tr[e PH] | (3.33)

where 5 = 1/T is the inverse temperature and H is the Hamiltonian of the system; the
trace is taken over the full Hilbert space. We can therefore calculate expectation values
of operators through
1 ~
(O) = gTr[Oe_BH] , (3.34)
with Z normalising the operator. If we think about the form for the partition function

displayed in equation 3.33 we recognise that is appears very similarly to the form of the

unitary operator U = eiflt ip quantum field theory which describes how a system evolves

in time. If we therefore consider this operator between two points in time U(t1,ts) =
e~ (ti=t2) and perform a Wick rotation (the process of transforming from Minkowski to

Euclidean space by analytically continuing through ¢ — —i7) we see
U(ry, ) = e Hn=m) = =80 (3.35)

where [ has been identified with the imaginary time difference. We can also explore what
effects this sort of continuation would have on functions of interest such as the two-point
correlator. Looking at the correlation between two operators at different spacetime points

and inserting a complete set of states we find (using the cyclical nature of traces)

1 o N

{O(t1,x)0(t2,y)) = ng[O(tl,X)efﬁHeﬁH(’)(tz,y)e*BH]
= %Tr[(’)(tl,x>e—ﬁﬁei(—i5ﬁ)0<t2’y)e—i(—i,BH)]
1 (3.36)

= ET‘I'[O(tl, X)6_6H0<t2 - Z/Ba Y)]

= (O(t2 —iB,y)O(t1,%)) ,

which demonstrates that the thermal field theory has temporal dimension compactified
on a circle with circumference 8 = 1/T due to the periodic boundary conditions in t9

necessitated by equation 3.36. If we consider what this does to a Lagrangian, and taking
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the example of a real scalar field, we find when Wick rotating:
4 1 2, 1 2
L= [du= —5(@5(25) + 5(@'@ - V(o) (3.37)
t— —ir [P 5 (1 , 1 )
=i ar [ d (50000 + 500 - V(9) (3.38)
0

iy / &Ly . (3.39)

What we see therefore is that the implication of Wick rotating to obtain a thermal field
theory is that we always go from a Minkowskian theory to a Euclidean theory, and the
formalism of this technique is known as imaginary time formalism. Converting this then
to the quantum field theory description, the generating functional as we previously called

it can be written in Wick rotated imaginary time form as

Z:/D@*%:/Dmm(—éah/fma> (3.40)

where we have described it in path integral form. From this quantity then we may obtain
the desired thermodynamic observables of the free energy F', the average energy F, and

the entropy S through the standard relations of

F=-TlogZ,
1 R N

E:EﬁmeL (3.41)
OF 1 N F E

== =logZ+ —Tr[He P = 4+ = .

S 5T = 108 +TZ r[He 77| T+T

In this work we will always use these quantities per unit volume through

F E S

R 42
f V’p V’ S V’ (3 )

and so we can multiply the final relation in equations 3.41 by temperature and write the
relation

w=sT=p+p. (3.43)

3.2.2 Effective Actions and Potentials

With some idea of how to extend quantum field theories to finite temperature, let us see if
we can now calculate how higher orders in loops and thermal effects would alter the Higgs
mechanism in the Standard Model, which was first studied in [48, 49, 50, 51]. First we
will have to explore normal quantum one-loop corrections to get a feel of the machinery of

calculating these intricate processes, and then we will move on to the thermal analogues.
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To do this we shall need to look at the effective potential of the thermal situation, and
so need to understand some details about quantum generating functionals. In a quantum
field theory the generating functional determines correlation functions. There are multiple
types of generating functional, with Z[J] being the most fundamental type determining
all correlation functions which is most closely related to the partition function; here J(x)
is the source to the dual operator ¢(z). The other two we shall consider are W[.J] and

I'[¢]. We can define W[J] through its relation to Z[.J], and so is defined by
Z[J]) = W (3.44)

This functional contains the information of and generates the connected Green’s functions,
a subset of which that are important to us are the one-particle irreducible (1PI) Feyn-
man diagrams which can have an internal line cut and still stay connected. Specifically,
these 1PI diagrams are generated by the “effective action” I'[¢] which takes into account
quantum corrections to the classical action and is defined through a Legendre transform

of the connected generating functional as [52]
Tlg] = W] — / 2] (2)6(x) (3.45)

From this, the classical field or expectation value is found as

SWJ]
6J(x) -

<¢($)>J = Z[leo] /D¢ei5+f J(I)¢(I)d4x¢(x) _ (346)

We start from the Green’s functions which can be written in the suggestive form of the

n-point correlation functions as

G (zy,.. . 1) = (_Eg]n e 5 572 (3.47)

N

From this we see that we can now expand the generating functional Z[.J] in a power series
of J, to obtain its representation in terms of these n-point correlation functions (Green

functions) as
21 =703 /dxl e G () () Tz (3.48)
n=0

a similar thing can be done for W[J] if we modify the correlation function to the connected

Green’s functions ng) (z1,...,2y) to give

W =Y ;l/dxl o dz, G (1, xn) T (1) . T () (3.49)
n=0
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Finally we can extend this perturbative expansion to the effective action by now expand-
ing in powers of ¢ and considering the one-particle irreducible (1PI) Green’s functions

'™ (zy,...,z,) which are defined through

PO (g0 ) = fol) . M(‘;n)rm (3.50)
to give .
r(g) = 2) - /dxl o de T (@, ) Ban) - Ban) - (3.51)
Specifically, these Greel;s functions encode the 1PI n-point correlation functions due to
(@) dlen)hpr =T (@1, )| (3.52)

To define the effective potential we will need the effective action in terms of momentum,

so we will Fourier transform ") (zy,...,z,) as

n - d* i ipix n
™ (zy, ... x,) :/H <(27f)46p1 1) T (py,...,pa)(2m) 6™ (pr+ ...+ py) . (3.53)
=1

Combining this with equation 3.51 allows us to find the effective action in terms of mo-

menta as
I'[¢] = i % / ﬁ (d*zjp(x;)) /ﬂ <(§f_j;leipm> T (p1, . pe)(27) 6@ (o1 + ..+ py)
" - - (3.54)
Using the definition of the delta function in momentum space
8D (p1 + ... +pn) = / (3:54@“?1*-*%” (3.55)

instead gives

(g = 2 Yy H (d'a;0(a) | H ( {;jgz <>) PO (o, pn) , (3.56)

and then using a similar definition for the delta function in position space

d4pi i(x;—x)p;
5 (2 — ) :/<2ﬁ>4€<1 i (3.57)

collapses all integrals except one to leave
Iy = 1 on n
re=3 [ dsd @ p) (3.58)

The effective action may also be expanded in a derivative expansion in powers of the
external momenta around where all external momenta are zero [53] (which will be useful

later) as

116 = [ s (~Viald) + 520)0,00%0+ .. ) | (3.59)
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where Z(¢) is the kinetic term field renormalisation function which only takes the classical
value of one in the tree-level approximation (for perturbative calculations of this quantity
see [54, 55, 56]); this is defined in Minkowski signature. From these definitions then we

can immediately see that the effective potential V,g for a constant field ¢ is

r(g) = - / V() . (3.60)

Now we make the recognition that since equation 3.59 is expanded where the external mo-
mentum is zero if we consider a similar setup for equation 3.58 we may be able to perform
term-by-term matching to obtain an expression for the effective potential. Expanding

equation 3.58 around zero momentum then gives (showing first term only)

g =3 % /d4x{F(”)(0, L0 @) ) (3.61)
n=0

and so we can easily see match the effective potential with this initial term by comparing

3.59 and 3.61 to give

)
XQH:~—§:;%FWKQ.“,W$”. (3.62)
n=0

With this in hand, we can now look into loop corrections. We stress here that we
perform these calculations in a perturbative setting as it is necessary for conventional
quantum field theory, however this is not the only way. Indeed, later on we shall examine
the effective potential in a non-perturbative sense using holography. We can also briefly
mention the 1/N expansion which is present for perturbation theory, and will have a role
in our holographic discussions later. For theories with internal symmetry groups such as
O(N) and SU(N) (with rank N) we may explicitly introduce the factor 1/N into the self
interaction term and consider the large-N limit, in which we have treated N as a free
parameter. Perturbatively, we will find Feynman diagrams which generate factors of NV
to cancel these appearances of 1/N as well as diagrams which retain overall factors of
1/N and higher orders in this parameter; in the limit N — oo however only the O(N?)
contributions will remain. More realistically, for a physical theory such as QCD where
the number of colours is known and finite these terms in increasing orders of 1/N will not
disappear, and will instead act as the perturbation series around which the quantum field

theory can be expanded.

The zero-loop effective potential is simply the tree-level potential we already have for

the Higgs, which we shall modify slightly for nicer results to

A
széﬁ&+@&, (3.63)
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> TeM(0,...,0) =1®(0,0) + TW(0,...,0) + T®(0,...,0) + T®(0,...,0) + ...
n=1

Figure 3.3: Summation of all contributing 1PI Feynman diagrams, where dashed lines

correspond to scalar propagators and dots correspond to ¢* interaction vertices.

so for more insight into the effects of Vg we need to go to higher loop orders. The one loop
correction to the potential will be all contributions from one-particle irreducible Feynman
diagrams which we need to sum, and specifically as this theory has Zs symmetry we need

only consider diagrams with an even number of external legs, as depicted in figure 3.3.

Scalar Feynman Rules

Zero Temperature Finite Temperature
Scalar Propagator ma =", p) mv = (wn,p)
Vertex Function 2m)46@ (p;) —iB(2m)20® (7)o (wi)
oA
d4p o0 d3p |// T \I
Loop Integral — T — \ i
b ntest /(%)4 iT ) /(%)3 e el
n=-—00

Figure 3.4: Feynman rules for a scalar particle with ¢* interaction.

This can be represented formulaically as

re(o,...,0) = (227;)! / (i@ K;» > _n;ﬂe]n , (3.64)

where each part comes from the Feynman rules at zero-temperature laid out in figure

3.4. Specifically, the factor of (2n)! comes from the combinatorics of distributing 2n
particles in 2n external lines; the factor of 1/2n is a symmetry condition accounting

for indistinguishable rotations and reflections; the integral is a consequence of having to
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account for loop momentum; each vertex contributes a factor of —iA/2 (accounting for
symmetry of exchanging two external lines); and finally each propagator contributes a
factor of (i/(p? — m? + i€)). Inserting this expression in to the form for the effective

potential we found before in equation 3.62 we see that to one loop this is

— dp 1 2?2 1"
Vone-toop = Z;/ (27)% 2n [p2 —m? +ie

_ (3.65)
i / d*p \p? /2
=—— log |1 - ——F5—1 ,
2 ) (2m)4 p? —m? + ie
where in the second line we have used the relation log(1 —z) = — °°  £-. We now note

that the field-dependent effective mass can be defined through the second derivative of the
tree-level potential eq. 3.63, which gives
Ap?

mgﬂ = /.L2 + 7 . (366)

We can insert this (recognising that u? = —m? here) and Wick rotate for the one-loop
Coleman-Weinberg potential of

Vow = B / 2n)t log(pg + meg(9)) — 2/ (2m)? log(py, +m*) , (3.67)

where only the first term has any dependence upon the field.

These tools we have learned lead us nicely into promoting these arguments to thermal
considerations. We will simplify to considering just the neutral component of the Higgs
doublet (now labelled ¢) with the same dynamics and potential as before and see if we can
calculate the effective potential in this case. For the thermal case new Feynman rules can
be calculated, now for Euclidean QFT in periodic imaginary time (which has a relation
to temperature as previously discussed). In this formalism (known as the Matsubara
formalism [57]) instead of continuous values for the momenta there will be a discrete
spectrum. The Feynman rules generated from this approach are shown in fig. 3.4, and

applying these translates eq. 3.65 into

[e.9]

T d3
Ve b Z 2 2
= — 1 .
one-loop 2 / (27T>3 = Og( n ) (3 68)

with w? = p? + m2;(¢). If we just instead consider a function and its derivative

f)= 3t e, Aoy B (3.69)

n=-—00
we can use the definition for Bosonic Matsubara modes w,, = 27n3~! (which describe the
poles of the Bose-Einstein distribution) to write

Ofw) 28 (1 = @
X —W<2+Zn2+@2> | (3:70)

n=1
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where © = fw/27. The sum is well-defined and has a closed form representation as

00 —27ma

a 1 T e
- 3.71
nzz:la2+n2 20,—’_2—’_1*6727"“7 ( )

which we can plug-in to our expression 3.70 along with the definition for @ to find

Of(w) 1 e hw
o =28 <2 + 1_65w> . (3.72)

An integration of this gives us the relation (replacing 8 = 1/T sporadically and ignoring

the w independent constant)

o0

Z log(w? + w?) = % [% + T'log(1 — 6_6‘”)} , (3.73)

n=—oo

which we can enter into equation 3.68 to find the one-loop thermal effective potential as

V(o) = / (;ljgg B” + Tlog(1 — eBEp)]

(3.74)

Ey=1/pP+mZg=|ve?|
This thermal one-loop part can be split up into two sections then, the temperature inde-

pendent vacuum energy density which we define as Jo(meg) = [ Ep/2 and the thermal

part J7(meg) = [ Tlog(1—e PEr) so the thermal corrections to the effective potential are

V()T = Jo(mest) + Jr(Mest) (3.75)

where it can be readily identified that the temperature independent part is precisely what
we found for the zero-temperature one-loop corrections. The integral for the temperature
dependent part can be recast in spherical form with the substitution z = p/T and angular

dependence integrated out as

T4 00
Jr(Mheg) = —— / dz 22 log [1 - e—vxzﬂf“} o (3.76)
2 Jo y="5"
which has the large temperature (with respect to mass) expansion of
2Tt m2 1% mi.T m? MegeE 3
J =— offi”  _ _eff  __eff 1 - N G N
7 (me) 00 24 127 204m)2 %\ 4T i (877)

Inputting the equivalence of effective mass mef = 1?2 + \p?/2 we therefore see that the
finite temperature one-loop thermal corrections to the effective potential can be written
with the tree-level potential as

Veff:mree(T:o)qLVT:;(u%rzT,Z) A+ (3.78)
and so we can see that at high temperatures the thermal contributions to the effective

potential will dominate and the expectation value will be zero, but as the temperature
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decreases the symmetry will be spontaneously broken past the critical temperature T¢

which is defined through

A p?

T2 = - (3.79)
and past this point the system will develop an expectation value of v.
We also know that the effective potential is intimately linked to the free energy of the

system. In fact, the equation of state can be found through

2

f= *geff%T‘l + V(o) (3.80)
2

p= geff?;)ioT4 +Vr(9) - Tavg;T) : (3.81)

where geg is the effective number of relativistic degrees of freedom present in the Universe
at the temperature 7'; this is an important quantity, as it can change greatly as the
temperature drops due to expansion. For the Standard Model, this quantity is given
through

9ei(T) = Y o <?)4+; > g (?)4 ; (3.82)

bosons fermions

which is separated into two parts to represent the contributions of degrees of freedom from
bosons and fermions. In both terms we see a temperature dependence (7}, for each boson
and T for each fermion), which takes into account whether particles are relativistic or not

compared to the thermal bath of photons in which they are submerged.
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Figure 3.5: The evolution of the Standard Model degrees of freedom as temperature
decreases in the Universe, produced by a cubic spine of the data provided in Ref. [1] found

through lattice methods.
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In figure 3.5 we plot this dependency upon temperature, showing how the degrees
of freedom decrease as temperature drops in the early Universe towards times closer to
present day. We see for instance that above the value of the top quark mass (m; = 173
GeV) all particles are relativistic and therefore we have the maximum degrees of freedom
(for known particles).

So now we see that indeed in the early Universe when temperatures were high the
electroweak symmetry would be restored, and subsequently as the Universe expanded and
cooled this would be broken through a phase transition from symmetric to broken phase.
This leaves one very large question though: what type of transition would the Universe
undergo from this process? Depending on the shape of our potential the transition would
fall into one of two categories: in second-order transitions the phase transits continuously
from one state to another as the temperature decreases maintaining the Zo symmetry
throughout, whereas for first-order phase transitions the phase jumps abruptly and dis-
continuously from one state to the other with the potential retaining Zo symmetry only
forT=0and T > T..

To explore this we need to include higher order terms from 3.77. Going to the next
order, we have a cubic in meg. If we momentarily consider the limit in which the tree-level
Higgs potential has zero mass (i.e. u? — 0) we see that this gives an effective potential of

2 3/2
Vﬁc:;@z) ¢2—1;(;> / 6° + At + ..., (3.83)
and we recognise that the appearance of a cubic term with an opposite sign may indeed
be able to cause the potential barrier necessary to facilitate a first-order phase transition.
This would have far-reaching consequences.

In figure 3.6 we see the differences in the potential for a first- and second-order trans-
ition. At the critical temperature T, the minimum is still just at ¢ = 0 for the second-order
transition, and below that temperature a new minimum develops which is further from the
origin that the field rolls to, generating an expectation value and providing mass. For the
first-order transition however at the critical temperature there are two degenerate minima
separated by a potential barrier. Lowering the temperature further, the minimum not
located at the origin becomes the “true” minimum of the potential which would be most
energetically stable. For the field stuck at the “false” minimum at the origin blocked by
the hurdle there are but two options: thermally fluctuate over or quantum mechanically
tunnel through the potential barrier.

Let us examine what this would mean in practice for the physical situation of the Higgs

scalar undergoing a first-order phase transition. At high temperatures the Higgs field will



(a) Second-Order Transition (b) First-Order Transition

Figure 3.6: The progression of the effective potential as the temperature is lowered for a
first and second order phase transition. The second-order transition can be compared to
figure 3.1 as taking a 2D “slice” of the 3D potential plot, with the T' = 0 curve correspond-
ing to the spontaneously broken case with m? > 0 and the T' > T, corresponding to the
symmetric m? < 0 case, exemplified by the dominance of each term in the ¢? coefficient

in equation 3.78 for the respective regimes.

be in a symmetric potential with only one minimum at ¢ = 0, producing an expectation
value of (¢) = 0 as v = 0. Due to this, we see from equation 3.32 that no other particle
will gain mass and it is only the Higgs boson which will be massive. As the temperature
lowers a new “meta-stable” minimum appears, which is a false vacuum state compared
to the true ground state. At the critical temperature this minimum becomes equally as
energetically stable as at ¢ = 0; both states are now true vacuum states. Below T, the
minimum at ¢ = 0 is now the metastable vacuum with the other minimum being the true
vacuum. In this configuration it is possible for the field to overcome the barrier, and so
eventually a phase transition will occur as the field jumps from the symmetric minimum
to broken minimum. The presence of a potential barrier dictates that when this process
transpires a bubble of the new, true vacuum state phase will form which will be enveloped
by the false vacuum state; a bubble domain wall will emerge as an interface between the
two phases. For the Higgs scalar transitioning to the broken phase an expectation value is
now obtained exactly as previously discussed, and so inside these bubbles particles acquire

mass from the Higgs field. The nucleation, growth, and collision of these bubbles would
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therefore convert the Universe from a massless state to a massive one in a hugely energetic

process.
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Figure 3.7: The phase diagram of the Standard Model Higgs showing the regions of sym-

metric phase, broken phase, and the regions where different transitions will occur.

Here we must be careful then; does the cubic term in equation 3.83 dictate that there
must be a first-order phase transition? The quick answer is no. Although a cubic term
may indeed allow for a first-order transition, it does not necessitate it; the interplay
between coefficients in the effective potential will instead determine what type of transition
the electroweak symmetry breaking process will go through and so needs more detailed
analysis. We can frame this analysis instead as a consideration of the ratio of Higgs mass
to the W-boson mass (which we consider as mw =~ 80 GeV) at various temperatures. If
the ratio of the two is small (< O(1)), then the perturbative evaluation of the thermal
potential we just carried out is reasonably accurate and we find that there is indeed a
first-order phase transition. If we try to extend this perturbative analysis further (i.e.
for heavier Higgs masses which push the ratio past O(1)) we find that the perturbative
analysis breaks down due to Linde’s problem [58] which occurs as the gauge bosons that
are light near the EW symmetric phase cause the high temperature expansion parameter
becomes of the order of unity. However from lattice simulations we know [10, 59, 60, 61, 62]

that as the ratio increases past O(1) the strength of the transition will decrease eventually
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to zero at a critical point, after which the transition is second-order and then a crossover.
For the Higgs mass at zero-temperature the critical point will be at around 80 GeV, and
so the experimentally determined Higgs mass value of 125 GeV would mean that the
Standard Model electroweak phase transition would fall firmly into the crossover region
and no first-order transition would occur. In figure 3.7 we have plotted the phase diagram
detailing where transitions would be first-order, second-order, or crossovers depending on

the mass of the Higgs and the critical temperature.

3.2.3 Beyond the Standard Model Theories and Their Necessity

As we have seen, in the formulation of the Standard Model the electroweak phase transition
will undoubtedly be a crossover, no bubbles will be formed, and mass in the Universe will
be switched on smoothly and continuously. In many ways this would be a disappointing
conclusion for observational prospects; the energy release in bubble nucleation and collision
which would be present in first-order transitions and could leave a lasting observational

signature would be absent in this crossover case.

All is not lost in hoping these processes may still occur though, in fact we have nu-
merous reasons as to why we believe we would recover first-order electroweak transitions
in the physical Universe. To understand these, let us quickly re-examine some points of
the Standard Model. As we stated when we started this chapter, the Standard Model
in its current formulation is a marvel of theoretical ideas from large swathes of physical
understanding which have been masterfully pieced together, and the level of experimental
scrutiny it has stood up to is virtually unparalleled. But it is incomplete. First and fore-
most the Standard Model is fundamentally incompatible with General Relativity, a theory
which shares a similar level of prestige in its ability to stand up to scrutiny; any attempt to
renormalise General Relativity in a quantum field theoretic way inexorably leads to infin-
ites which dictate the conclusion that it is a non-renormalisable [63, 64] (however the SM
can be made into a theory with the symmetries of GR). In addition to this, the inability
for the Standard Model to supply any realistic particle candidate for dark matter (except
for the neutrinos, which still could only account for a fraction [65] and whose masses the
Standard Model fails to account for as well) or provide any explanation for dark energy
(the unknown form of energy that affects the expansion of the Universe) which together
constitute 95% of the total energy content leaves our knowledge of the majority of the
Universe severely lacking (see Ref. [66] for a succinct review with a large list of refer-

ences). Yet another large hole in the particle content of the Standard Model is the lack of
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significant amounts of antimatter. The Standard Model predicts that matter and antimat-
ter should be produced at relatively similar rates and yet we observe a huge dominance
of matter over antimatter with no mechanism of explaining this asymmetry [67, 68, 69].
These are but a few of the shortcomings of the Standard Model; a more comprehensive

study can be found in Ref. [70].

This long list of unexplained phenomena strongly motivates exploring Beyond the
Standard Model (BSM) theories which come in various classes and extend the Standard
Model in one particular way or another. They can appear as simple extensions to the
scalar sector, in which either new singlets [71, 72, 73, 74, 75] or doublets [76, 77, 78, 79]
are added which allow for strongly first-order transitions, or through strongly coupled
sectors leading to areas such as composite Higgs (see [80] for an overview). For example
in the well-known Minimally Supersymmetric Standard Model (MSSM) the cubic term
in the finite temperature effective potential is modified to be much larger through the
thermal loops of new bosonic modes of the light scalar supersymmetric top quark (stop)

81, 82].

A further class of extensions are the effective field theory models. In these cases, new
physics and degrees of freedom can be added at a scale not in the region of the electroweak
transition, and the effects studied through means of effective field theories. Higher orders
in powers of the Higgs field can be added such as in the Standard Model Effective Field
Theory [83, 84, 85] where these operators will be suppressed by the scale at which the
new physics is at. For instance, a dimension-6 operator (introduced by a ¢® term in the

potential) could be sourced by strongly coupled gravity [86].

A final set of extensions that we shall mention are ones arising from non-standard
numbers of spatial dimensions i.e. warped extra-dimensional models such as in Refs.
[87, 88, 89, 90, 91, 92]. These can provide well-motivated reasons for exploring theories with
higher dimensions such as the ability to produce strongly first-order transitions and also
solve other large discrepancies such as the hierarchy problem [93]. In these the radion (a
scalar produced from the five-dimensional part of the metric) undergoes a phase transition

which can trigger electroweak symmetry breaking in a first-order way.

What we can take from all these ways that there could realistically be a first-order
phase transition in the early Universe is that it is indeed well-motivated to continue on
probing what the Universe would look like if one had occurred; not only is it conceivable
but the possible relics left over from their existence would be tantalisingly rich in new

ways to explore physics. This seems like an avenue that should not be ignored, and so
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we continue under the assumption that a first-order phase transition will occur for the

electroweak symmetry from an unspecified mechanism.

3.3 Phase Transition Dynamics

As previously stated, in a finite temperature setup of a first-order transition past the
critical temperature the most energetically stable minimum will be the one separated from
the field by a potential barrier. This will in turn precipitate either a thermal fluctuation
[94, 95] or quantum tunnelling [96, 97] to the more favourable state; the choice of which
will have an effect on the dynamics of the situation and so therefore this needs to be
understood. To study the dynamics of this sort of electroweak phase transition then we
will consider a situation with a single scalar field which provides contributions to energy-

momentum through

T = 0u00,6 — gus (977020030 + V(9) ) . (3.89)

From our previous section we know we can construct the effective action in the Euclidean

metric for our situation, which in 4-dimensions and to first-order in derivatives is

I'(¢,T) = N? /0/3 dr /OOO >z (;Z(d})auwa“w + V(¢)> : (3.85)

where V(1) and Z (1) are the (as before) effective potential and non-canonical kinetic
function respectively. As we are considering field solutions which exist at the critical
points of the potential (specifically the minima) we are therefore searching for semiclassical
Euclidean instanton solutions which solve the quantum equations of motion from the
effective action, with different bubble type solutions coming from high and low temperature
limits influencing the boundary conditions in the imaginary time dimension.

When the temperature is identically zero we have exact O(4) symmetry; this is due to
8= % T—_m—; oo causing the infinite Euclidean time direction to act exactly the same as
the spatial directions. Tunnelling through the barrier in this case will be solely by quantum
fluctuations. We can write the coordinates as a single quantity through p = \/m
and integrate as a three-sphere S® to find the effective action of an O(4) bubble as

Lo = 27N? /Oo dp o (;Z(w) (2‘;’)2 + V(w)) , (3.86)

0

with the field obeying the equations of motion of the form

Py 3dp | 10,Z(Y) (w) 04V (1)

it pdp Tz \d) T Tzl (3.87)
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Very low but non-zero temperatures will also obey solutions of this form to a good ap-
proximation.

Conversely for very large temperatures our Euclidean time direction is compactified on
a circle and we lose the inherent 4d rotational symmetry, reducing to only O(3) rotational
symmetry. The tunnelling present in this case will instead be overwhelmingly dominated
by thermal fluctuations, producing a much more classical effect. This allows us to integrate
over our imaginary time coordinate, define the field dependence now as p = \/QT:CZ and

integrate as a two-sphere S? to write the action as

2 o) 2
Tow = T | dor? (;Z«m (%) +V<w,T>>, (3.85)

which minimising now gives the equation of motion for the bubble solution as

Ay 2dy  10,Z(1) (dw>2 OV (¥)

a2 oap T2z \do) Tz (3.89)

The final possible configuration is at finite but not “very large” temperatures, which will

be the majority of interesting solutions. Here the instanton solution interpolates between
the two limiting cases mentioned previously and enjoys the symmetry of neither.

When solving for the field profile of these cases the necessary boundary conditions are

WO g and  lim (o) = o , (3.90)
dp p=0 p—0

where 1) is the value of the field in the symmetric phase. In practice we will always
normalise the location of this minimum to be at the origin and so ¥y = 0.

As the majority of cases will be of the last type mentioned (“hybrid” solutions with
both quantum and thermal methods for the field to overcome the barrier) we must decide
which will be the dominant contribution to the vacuum decay. This is found through

which method has the largest probability of occurring, i.e.

p(t) = max [po), Po)] (3.91)

where pg 4y is the probability for an O(4) bubble to nucleate through quantum tunnelling
and po(3) is the probability for an O(3) bubble to nucleate through thermal fluctuation.

As these probabilities can be expressed as
PO(4) X e Tow and PO(3) X e To® (3.92)
this translates to the condition

F(t) = min [Fo(4),ro(3)] 5 (393)
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and so this must always be checked and taken into consideration when calculating quant-
ities derived from I'(¢).

With our knowledge about the phase transitions we will be encountering complete we
now want to see how these could be observed in the form of the gravitational waves they

would produce and their dependence upon the particularities of the transition.



40

Chapter 4

Gravitational Waves

Gravitational waves were first predicted by Poincaré in 1905 [98], and then by Einstein
as a consequence of his theory of general relativity in 1916 [99]. These are caused by the
disturbances of spacetime, and although all massive accelerating bodies produce them,
the signals from all but the most energetic processes are very weak. This extreme energy
needed to distort spacetime means they are produced by either large masses interacting
or during intensely energetic processes. The possibilities to produce gravitational waves
are therefore quite large, and although we are mainly concerned with the nucleation and
collision of Higgs bubbles other interesting processes can be explored such as their pro-
duction from preheating at the end of inflation (see e.g. [100, 101, 102, 103] for inflation
and e.g. [104, 105, 106, 107, 108, 109, 110, 111] for phase transitions with bubbles).

4.1 The Applications of General Relativity for Gravitational

Waves

In the absence of a gravitational source, we consider usual spacetime to be flat and de-

scribed by the Minkowski metric
N = diag(—1,1,1,1) . (4.1)

Due to the weak nature of the gravitational field that describes a gravitational wave, the
metric which describes a gravitational wave can be well described as a flat Minkowski
background with small linearised perturbations from the wave (as a simplified case to
explore the basic details of gravitational waves; one can also perform this analysis in a

cosmological background as we shall see later). This is expressed as

G = Muv + Py (4.2)
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where h,, is the tensor describing the perturbations with value |h,, | < 1. Using this
choice of metric, we can explore how these perturbations would appear and how they
would interact with matter through the Einstein equations defined in equation 2.6. To do
so we must first calculate our curvature quantities using the definitions given in equations

2.4 and 2.5. From these, we calculate the Ricci tensor as being

Ry = 5 (0,008 + 0,00hf) = 0,0, hyr — 0" 00y (4.3)

N

where the (1,1)-tensors are just raised with the Minkowski metric, ie. h§ = n*7Th,g.
Conventionally, the trace of the perturbation is labelled as h = hl, = hy,n*”. The Ricci

scalar follows simply from this quantity as
R =0"0"hy, — 0" 0,0,h . (4.4)

These quantities can be combined to the final form of

1
G = 3 (0,0,h, + 0p0uhy, — 0 0yh — Ohyy — 1 0°0" hpr + NuwOh) = 52Ty, (4.5)

where we have used the “box” notation for the d’Alembertian operator of L = n**0,0,.
With a complete expression for the field equations now found, we may consider ways to
simplify further. As general relativity is fundamentally a diffeomorphism invariant theory,
we can exploit picking certain “gauges” to reduce the number of terms. Specifically in this
situation, the metric that we chose of small perturbations around a flat background does
not completely specify the spacetime coordinate system as the metric being composed of
a flat background with a perturbation is not unique; the perturbation will be different
in other coordinate systems. Before we begin thinking about gauge choices, we will first

employ an often used quantity of

— 1

h,uu = h,uzx - inuuh ) (46)

known as the “trace-reversed” perturbation. Replacing all appearances of h,, in equation

4.5 using the trace-reversed perturbation this will now reduce our Einstein equation to
1 _ _ _ _
iemmeMmaﬁﬂmm@@M?JW@aMU:#nw, (4.7)

and now with a simplified expression we move on to gauge-fixing.

4.1.1 Transverse-Traceless Gauge

As our intention is to analyse gravitational waves, it seems only natural to consider sim-

plifications that mimic conventional waves and therefore satisfy the wave equation, or
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d’Alembert’s equation. In scalar form, this is expressed as the condition Ou = 0 where u
is a scalar function u(t, z,vy, z,...). For general relativity, this is replaced by the “harmonic

coordinate” condition

g’V VP =0, (4.8)

which simplifies to the condition
g =0 (4.9)
due to the covariant derivative acting upon a coordinate (i.e. V,z" = 9,2”, V,0, =

0,0, —1',,07). Recalling the definition of the Christoffel symbol in equation 2.2 this can
be written as
1

09" — 59’“’8%}“1, =0, (4.10)

and specifying this to our linearised perturbations (utilising that 0,7,3 = 0) produces
1
OuhPt — 58% =0. (4.11)

More succinctly, this gives the condition on the trace-reversed perturbation of

M hyy =0, (4.12)

which instantly greatly reduces the form of our Einstein equation for this perturbative

metric 4.7 to

1 -
— 5 = k2T . (4.13)

We immediately see that this is simply a wave equation for the trace-reversed perturbation
sourced by the energy-momentum tensor, which could be compared directly to d’Alem-
bert’s equation [Ju = 0 when in vacuum. The solution to equation 4.13 in vacuum is

simple to find, with the form of a plane wave as

huy = suyeikpzp 5 (414)

where k, is the wavevector k, = (—w,E) and ¢, is the gravitational wave polarisation
tensor. This tensor is symmetric (€., = €,,,), meaning that there are only ten independent

constituents. If we also consider our condition given in equation 4.12, we see that
kte =0, (4.15)

imposing four more conditions on our polarisation tensor, reducing the number of inde-
pendent constituents to six. A further thing we can glean from this solution is that when

inserting the solution 4.14 into the vacuum version of equation 4.13, it produces

kpkPhy, =0 . (4.16)



43

The only non-trivial solution to this is that (momentarily restoring constants for clarity)
kyk? = —%22 + k2 = 0, which tells us that gravitational waves must travel at the speed of
light in a vacuum.

We still also have a residual gauge freedom under the infinitesimal diffeomorphisms
at — ot + & and hy — hy — 0,8 — 0,€, with which we can reduce things. Consider
first that we are still operating under the harmonic condition of Oz#* = 0. For the diffeo-
morphism z# — x# 4 &#, this is true iff. 0&* = 0, dictating another plane wave solution

for this quantity. We write the solution to this as
EH = (Pethe” (4.17)

where (" is a 4-vector of constants. Let us now apply our diffeomorphisms to the trace-

reversed perturbation.

— 1
P = hyw — §nw,h

1
- (hlw - augv - 81/5#) - 577uyn”7(hm — pr — anp) (4.18)
= Py = ko™ = il Gue™ ™ iy G

kp2” allows this to

Inserting the form of E;w from equation 4.14 and dividing through by e
be cast as

v — € — tkuCy — 1k Cu + k™ (. (4.19)

Taking the trace of the expression as e}, = n/’c,,, this now becomes
ely — ey + 2ik" ¢, (4.20)

and we can choose to set k#(, = %EZ which causes both the polarisation tensor and EW
to be traceless, reducing our independent components by another four down to just two.
There are no more freedoms left to gauge away these two components, so these two are
what fully carry the physical information about the gravitational waves with the gauge
choices we have made. What does the tracelessness of the trace-reversed perturbation
imply? Tracing over equation 4.6 we can see that this must imply that A = 0, and so with
our gauge choices E,w and hy, coincide.

Solutions to equation 4.13 are well known to take the form of Green’s functions

hyw () = —2/12/d4y G —y")Tw(y”) , (4.21)

where the Green’s function satisfies the relation

9,0 G (zP — yP) = 6B (af — yP) . (4.22)
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The Green’s function which suffices for this condition is

Gla? —yf) = —— 207 71— (0 =y o’ ~ ") (4.23)

Cdrn|E— g
where 6(z) is the Heaviside step function. This gives the expression for the perturbations

2
K 3

=— | d
2 y

Py Ty (tr,9) , (4.24)

t—t,
where we have defined the retarded time as ¢, =t — |Z — ¢]. This is very informative, as
it shows to us that the perturbations are generated from all energy-momentum sources in

the retarded time past light-cone.

4.2 Gravitational Wave Spectrum

As we will be working with transverse-traceless quantities we also need to figure out how
to easily convert other important quantities such as the energy-momentum tensor into this
form, which requires the generation of a projection tensor to project these quantities out.
We construct

Pij(n) = i — niny (4.25)

which is transverse in that niPZ-j = 0 but not traceless, with P! = 2. It is also manifestly

symmetric under the exchange of ¢ <> 5. We can however use this to construct

5P ()Pua(m), (426)

Aijr(n) = Py(n)Pj(n) —
which is traceless when contracting over either the first or last pair of indices i.e. Aii o=
Aij’kk = 0, transverse for any index, and symmetric under (7, ) <> (k,l). For projection
operators we would also expect that when projection operators are contracted they form

another projection operator, which can be verified for both of these as

P’ (n)Py(n) = Pg(n) and AY } (0)Aijumn(n) = Agymn(n) . (4.27)

Therefore we can always project out our gravitational wave perturbation into the transverse-
traceless gauge through

it (k) = A% (k) hay(K) - (4.28)

4.2.1 Non-linear Considerations and the GW Stress-Energy Tensor

All calculations done in the previous section were a simplified version of the true picture.
The Universe is not always well described by a flat Minkowski metric, and because the

energy-momentum tensors in other theories such as scalar field theory or electromagnetism
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arise from quadratic terms of the fields (which we have ignored) we have implicitly assumed
that the gravitational waves do not carry energy that curves the spacetime. Now we have a
better grasp on the foundations of gravitational waves, we need to rectify these oversights.
We begin this treatment to promoting the metric to one in which the background can vary
with z#,

G () = g;w(a’) + hyw () (4.29)
If we contract equation 2.6 with the metric and input the relation we get of R = —x2T},,g"”

back into the same equation we can write the Einstein equations in the form of

1
R, = K* (TW — 2gWT) , (4.30)

where we have defined the quantity 17" = T},,g"”. The Ricci tensor due to its construction

can be split up into pieces with increasing order in the perturbations as

Ry =Ru+RY+RZ +..., (4.31)
where RW contains the Ricci tensor arising just due to the background curvature, RS,,) is
from the terms linear in A, and RELZ,,) is from the previously ignored terms quadratic in
hy. The reason for this choice of splitting is due to how it distributes the types of modes
present in the curvature. The background is expected to be varying slowly, and therefore
can be categorised as containing frequency modes in the lower end of the spectrum up
to some particular maximum f;"**. The gravitational wave perturbations however should
be high frequency modes characterised by frequency fgw, and as long as they obey the

condition

[y <L fow (4.32)

the two sets of modes should be distinguishable. For a more intuitive understanding,
consider a container of water. If you picked up one side of the container and then dropped
it, you would generate waves which propagated from one side to the other and then
back again. After a short while, these waves would have decreased in intensity to the
point of appearing as just slight undulations on the liquid surface; this represents the
slowly varying, low frequency background. If you then trickled some droplets of water
into the container from above you would see sharply defined ripples which are easily
discernible even with the liquid as a whole having a moving background; these are the
high frequency perturbations. If we push this metaphor even further, where the droplet
ripples are present there is a slight pushback on the varying background which will alter
how this background propagates further. This can be likened to how the presence of

gravitational waves inherently curves spacetime also.
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We can so far separate EW and RE}V) into two distinct frequency regimes then, the

low frequency background and the high frequency perturbations respectively, the latter
of which is of most import to us. What about Rl(ﬁ,)? Comprised of terms including two
factors of h,, means it will certainly have high frequency modes. However, there may also
be combinations where two high frequency modes have opposite magnitude wavevectors,

leading to the possibility of low frequency modes in this term as well. To deal with this,

we split up the Einstein equation 4.30 into

- 1
R = _[R,E?y)]low + K° <T,u1/ - 2g,uzzT)1 (4.33)
ow
and
1
RE}V) = _[R;(Ey)]high + 52 (T/U/ - QQMVT) , (434)
high

where we have truncated R, to second-order in perturbations. To explore these equations
in more detail we will have to calculate the actual forms of these curvature quantities.
Obviously, without specifying the form of g, then all we can say for the form of R, is
that it is equation 2.4 with the replacement I'(g,,) — f(yw,). Working through in orders

of the perturbation however gives

1 L L _
RY) = 3 (V' yhwp +V'Vohyy — VN by — VNV, 0) (4.35)
where ﬁu is the covariant derivative with definition ﬁphw = Ophyy — f;#hw — f;,hm,

and

1 _ o o o o
R®?) — fgf”gaﬂ{fvuhpavyhﬁ + 1po (VN b 4+ VsV by — V Vb — VsV uhir)

w9 2
+ ﬁphwﬁm#g — Vphl,oﬁgh,” — vphm—vyh#g + Vphmvﬁhw — thwﬁuh,,g
1— . — 1— . — -
— 5 VahorVshu + 5 VahpmVihys + §Vahmvuhl,5}
(4.36)

to second order in the perturbations. With the knowledge of how we have two main

regimes, we may introduce an intermediate scale f , which satisfies the inequality relation
[ < f < faw - (4.37)

The meaning of this scale is that it categorises a wave which would have completed many
periods by the time the background had completed one but only a very small fraction of
a period in the time of one full gravitational wave period. Due to this, if we consider
averaging over the scale of this intermediate frequency f then we notice that the low

frequency background will have barely changed and so will be approximately constant,
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however the gravitational wave will have completed many cycles and so will average to

zero. This allows equation 4.33 to be expressed as
_ 1
R,uzx = _<R;(¢2y)> + '%2<T;w - §guuT> ) (4'38)

where we have used the notation (x) to indicate that we are now averaging the quantity =
over many periods of the gravitational waves. If we apply a similar treatment to equation

4.34 we will instead find the condition
(RDYy =0 (4.39)

due to it being composed only of high frequency modes which will average to zero. The
averaged energy-momentum tensor can be defined in terms of an effective tensor TW with

its related trace T = Tw,ﬁ‘“’ as

1 _ 1
(TW - §QWT> =T — §<9W>T ) (4.40)

and we can then recognise that (g,.,) = (g, +hu) Will project out only the low-frequency
modes 50 (g,w) = g, Taking the trace over equation 4.38 against the background g,

and using equation 4.40 gives

R=g"Ry, = -g"(R}) - k’T | (4.41)
which can be rewritten as
R=—(R®) — kT (4.42)

using the definition g"” <R,(fy)> = (g™ ng}) = (R®). Combining equations 4.38, 4.40, and
4.42 into the Einstein equations in the background we finally arrive at

_ 1 — _ 1
Ru = SR = KTy — [(BE) = 57, (RP)] . (4.43)

What we can see from this equation is that the curvature of the background is formed
by two separate contributions: curvature from the matter present in the spacetime in
the low-frequency regime and also a completely matter non-dependent component which
arises due to the gravitational wave perturbations. We can make this even more obvious
by allowing the definition of a new tensor ¢,, through

1
o =~ (RE) ~ 15, B) (4.44)

which when inserted into equation 4.43 now allows the right-hand side to appear like a

conventional curvature-matter equivalence with two sources as

_ 1 _
Ry = 59 R = 52 (T + tw) - (4.45)
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The main takeaway from this analysis is that by including terms up to quadratic order in
the gravitational wave perturbation, just like including quadratic orders in other theories
such as scalar field theory or electromagnetism, we generate an effect on the curvature
in the background which acts exactly like an energy momentum tensor. This allows us
to explicitly define the energy-momentum tensor of the gravitational waves through the
tensor labelled ¢, and will be used as such from now on.

Now with a relation for what the energy-momentum tensor of the gravitational waves
is, we want to try and compute it fully. We have already derived an expression for R,(El,)
(equation 4.36), but the covariant derivatives mean that utilising this will be very unwieldy
in our calculations. Fortunately, for all purposes in which we will be required to calculate
t,,, we will be considering the gravitational wave as being greatly removed from its source,
and so it will be well approximated by the background curvature instead being flat space.

This approximation amounts to the substitution V,, — 9, as I'[n,,] = 0, and so equation

4.36 simplifies to

1711
(2~ |=
Ry 212

O hEDphay — OTHEDphry — OnhPTDyhpyy + OrhPT Dol — OehPTBuhy,  (4.46)

Oyuhpr Oy hP™ + 1T 0,0, hpr + WP 0,0 by — B0, 0rhyy — P78, 00N,

1 1 1
= 50hDphya, + S0P hD, iy +5 0 hDyhp

This is still obviously a very complicated expression to be able to use, but we have already
explored methods to reduce the complexity of equations involving the perturbation h,,
through making the right gauge choices. Either by projecting out or simply considering
our gauge restrictions of 0*h,,, = 0 and h = 0 this leaves (leaving off the TT superscript

TT
on h,, for now)

11
R(?) = 5 | 3OuhorOuh?™ + 70,0, hor + NPT DpOr iy — P70, 0rhy

(4.47)
— W70, 0:hpy + O hED hry — OTHED sy,
and
1
R® = 1 Oulor 0T (4.48)

A further simplification can be implemented through noticing that we can reframe the
notion of our taking the average over many period intervals in the sense of an integration.
Due to this, we may perform integration by parts and reuse the gauge conditions along

with the wave equation 9,0°h,, = 0 to write the averaged quantities as

(RE) = — 4 (Ouhyr 0,177) (4.49)
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and

(R®y =0. (4.50)

Entering these into equation 4.44, the energy-momentum tensor for the gravitational waves
is now simply

1 T
tﬂl’ - 4—/{2(8ﬂhm@yh’) > . (451)

For detection of gravitational waves we will be concerned with the energy produced found

through the energy density p, the temporal component of the energy-momentum tensor

1 . .
p = tOO = 47,{2<hp7—hp7-> . (452)

Because of our gauge condition 9*h,, = 0 and projecting into the transverse-traceless

gauge using equation 4.28 we see that ¢, is only dependent upon the modes h;g-T, and so
this reduces to the important result (restoring T'T superscript)
L oapp i TT
Pgw = @U%’j (t, X)hij (t,x)) . (4.53)

Due to the assumed stochastic nature of the generation of gravitational waves, we may

write the averaged quantity as
(A" (KR (8,K) = Py (¢, k) (2m)*6 (k + K) (4.54)

where P;(t,k) is the spectral density of the time derivative of the perturbations in the
metric. Taking the Fourier transform of 4.54 to get an expression in position space, we
now find that the gravitational wave energy density is

1 dkk?
o= 113 | gz Palst) (455)

which we can put into the more useful (for our purposes) frequency dependent quantity

through k =27 f as
Pew = ;/dfoPh(f)- (4.56)

Finally we obtain the power spectrum of the gravitational wave energy density parameter
which is conventionally defined as the energy density per logarithmic frequency interval
scaled by the critical density pcriy through

1 dpgw 7

Qo = =
& (f> Perit d IOg f KQpcrit

£2P(f) - (4.57)

All that is left to for the gravitational wave part of the analysis now is to categorise the

spectral density of the perturbations in the situation of bubble nucleations and collisions.
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4.2.2 Characterising the Spectrum

The aim of this work is to study cosmological first-order phase transitions, which will have
a scalar field stuck in a metastable state which will undergo thermal and quantum phase
transitions to the new stable state, which is separated by a potential barrier. These trans-
itions will nucleate bubbles, which are surrounded by a hot relativistic plasma composed
of early Universe particles. Therefore, the energy-momentum tensor of the model we are
considering contains a classical scalar field ¢ which is coupled to ideal fluid. This allows
us to write the tensor as just a combination of the EM tensors defined previously in 2.12

and 3.84 as
v % ]‘
T =T + 15" = 0"90"¢ — 59" 0a00% + (p + p)u"u” +pg"” . (4.58)

As the gravitational waves are sourced only through the spatial components of the EM
tensor in transverse-traceless gauge, we can instead consider a simplified tensor which

sources our model as

S (4.59)

The field and fluid components respectively are

Ti(?‘ = 0;00;¢ , 7= (p+ p)uu; =7 (p + p)viv; (4.60)

where we have used the definition that w; = ~v; with v being the Lorentz factor and
v; being the 3D velocity vector. To recover the physical perturbations when using this
simplification we must project out using our operator in equation 4.26, and so we can
write our metric perturbations for this model as

,sinfk(t —t')] ki

- (k,t) (4.61)

t
hij(t, k) = 262 Ay (k) / dt
0

with the sin[k(t — t')]/k coming from the Green function. This can then be differentiated
with respect to time and averaged over to give the necessary quantity for the power

spectrum as

(hET (8, )RS (1, X)) = 4k / t dtydtacosk(t —t1)|cos[k(t — ta)]Aij p (k) (177 (k, t)7F (K, 1)) .

’ (4.62)

In this last equation we have used the simplification that unless the transition undergoes

strong supercooling the scalar contribution is negligible due to the vast majority of the
Kl ~ -kl

energy going into the fluid, and so 7% ~ 7. We now introduce what is known as the

unequal time correlator (UETC) for the shear stress of the fluid denoted II?, which is
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defined through the relation
Nija (k) (77 (k1) 7 (K t2) ) = 112 (e a, £2) (27)%0 (K + ) (4.63)

If we enter this definition into equation 4.62 and compare that to 4.54, we see that the

quantity we desire of P;(k,t) is found through

P, (k,t) = 4r* / " dtadtacos[(t — t)]cos[h(t — )] (k. t1,12) | (4.64)
0

which for the large periods that we are averaging over can instead be reduced to
t
Ph(k, t) = 2/<L4 / dtldtg COS [k (tl - tg)] H2 (k’, tl, tg) . (465)
0

We can now define the overall amplitude of the fluid shear stress by the root mean square

(RMS) four-velocity Uy as

2 3
4.
U; = wV/d 3:7‘ , (4.66)

where W is the averaged enthalpy density and V is the volume being averaged over (with
an analogous quantity for the field, Ud), being constructed with TZ-(? instead). Using this
definition and that p is the average energy density and p is the average pressure, the amp-
litude of the source of gravitational waves is expected to be approximately [(ﬁ + ﬁ)Uﬂ 2,
with its length scale being the size of the bubble R,. From this then, the unequal time

correlator can be estimated as
2 _ 77212 p3ne
T2 (k, b1, t2) [(p—l—p)Uf} RS2 (kR.,2) | (4.67)

where 12 is a dimensionless function of k, ¢1, and t» and we have made the substitution
z = k(t1 — t2). Using this estimation for the unequal time correlator as well as the same

z substitution in equation 4.65 leaves the spectral density as
Py (k,t) = 26" [(p + p)UF]* th™ R / dz cos(2)I1? (kR,, z) . (4.68)

If we introduce a dimensionless “spectral density” for the gravitational waves gW(kR )

which is defined through

cos )
kR,) = kR, 4.69
PovlkR) = 1 % (kR,. 2 (469)
we can instead write the spectral density as
Py (k,t) = 45" [(p + p)UF]* t R By (kR..) . (4.70)

Noting that the adiabatic index is given by the relation I' = 14 p/p and that the quantity
P = perit is related to the Hubble rate we may recast the spectral density in terms of the

frequency as

P, (f) = 36 H! [TU?)* tR Py (fR.) . (4.71)
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With many simplifications achieved we remember that our full gravitational wave spectrum
is equation 4.57, and making use of the relation between critical energy density and Hubble

rate again this gives

Quulf) = 120[TO2 2 (ot (HuR) (PR Py (FR) (4.72)
which we can integrate to find

Ol = [ uuldiog £ = SITOPP(H0 (1 R, (4.73)

where ng is defined as (with substitution z = fR)

Oy = 4n /O " dea?P(a) . (4.74)
What other contributions can we elucidate? If we now consider the timescales for these
gravitational waves, we can label the approximate lifetime of the gravitational wave source
as t = 7. It was demonstrated in [112] that the suppression due to this finite lifetime
can be well-modelled in an expanding radiation-dominated Universe in which the source
is constant and shuts off after time 74, by taking this lifetime as (to a first approximation)

1
rn=H'(1- —— |, (4.75)
V14 21wHy

where 74y is the non-linear soundwave timescale which can be described through 7y, =~
R, /v K from the non-linear terms in the fluid equations. This modifies the power spectrum

form to

_ 1/ )
Oly = 3[TUZ2(H.R,) (1 - K ) Ol . (4.76)

To obtain the amplitude of the gravitational wave power spectra today, the power spectrum
must be modified by including a factor to normalise {24y, of
1/3
Fyyp = %Q%Ogo (if) / (4.77)
where ), o is the current density of photons, go is the current degrees of freedom, and
g« is the effective degrees of freedom. Inputting the value for gy and (2, this gives us a
numerical form with related uncertainty (mostly from value of Hy used to calculate €2, o)

in terms of g, of

1/3
100) . (4.78)

Gx

Including this modification we can write the integrated power spectrum as

Fawo = (3.57£0.05) x 107° (

Qéw,o

VKY2 +2H,R,

1/4 _
= 3Fp 0 K2(HyR,) (1 - K ) Ol | (4.79)
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where we have also used the definition that K = FUfQ, which is known as the kinetic
energy fraction. As U? is dependent upon the fluid velocity and enthalpy, both of which
are dependent upon the wall speed and transition strength, the kinetic energy fraction
will also be controlled by these. Taking the derivative of ngD takes us back to {lgy 0, but
as we can see from equation 4.74 the frequency dependence is now isolated in the term
ng. We may therefore write that the derivative of this quantity is formed of a numerical

constant and a factor which is dependent on the frequency. This is frequently modelled as

= OuwC(fRy) (4.80)

where C(s) is the spectral shape function which describes the acoustic gravitational wave
power spectrum using broken power laws. Numerous studies have been dedicated to
modelling this shape function in great detail, however a simpler case which is used for the
basis of the LISA group spectrum shape [113] is found as

Cs) = ° <4+7352>7/2 . (4.81)

The other quantity ng is found to have numerical value of ng = 1.2 x 1072 from
numerical simulations [114], where it reproduces the peak amplitude for an intermediate

strength transition at high wall speed; this leaves

K1/4
VK2 +2H,R,

We would also like to incorporate the peak frequency into the formula due to its ubiquity

Qw0 = 3Fgw 0K (HuRx) (1 - ) QuwC(fRy) . (4.82)

across models. To calculate the peak frequency today we begin with the frequency scale
of when the spectrum was produced, which is f = R;'. This relationship allows us to
translate the dependency of the spectral shape into a ratio of the frequency over the
peak frequency. Frequencies emerging from cosmological spectra will be subjected to large
redshifting, which is taken into account through

1

o=1

fp = afp . (4.83)

Due to the conservation of the entropy with comoving volume 4 (ag(T)T®) = 0, we may

then rewrite this as

13
w=(im5) 7o (430

where T, ¢ is the photon temperature today and we have used the definition that a(to) = 1.

Inserting a factor of H,, in the numerator and denominator and using the definition of f,,

1/3
o 9o T’y,O 1
Joo = <g<Tn>> T (HR) H - (4.85)




54

Using eq. 2.14 at the nucleation temperature with & = 0, k% = 87rMp_2, and p = %T‘l

from the explanation at the end of sec. 2.2 we find (in a conventional form)

:40\/5%7‘_3( 1 )( T, )(g*)l/(iw

Ipo GeV , (4.86)

3 H,R, 100GeV 100 Mp
and we can finally use the values T, o = 2.725 K [115], go ~ 3.36, and Mp = 1.22 x 10°

GeV as well as the conversion from GeV to Hz as 1 GeV = 2.418 x 10?3 Hz to leave

1 Ty gx \1/6
~ 2 Hz . 4.
Jp0 =26 <HnR*> <100GeV> (100) anad (4.87)

The most recent modifications to {2g,, come through the recent findings that the value of

the sound speed and reheating of the metastable phase will also have a significant effect
on the gravitational wave signal.

In Refs. [116, 117] it was shown that the efficiency factor keg (a quantity related
to the kinetic energy fraction), which was determined from solving the hydrodynamic
equations of the gravitational wave system is parameterised by only four variables: the
transition strength, the wall velocity, and the speed of sound in both the symmetric and
broken phases. Taking into consideration the dependency on sound speed departure from
c? = 1/3 means substituting the kinetic energy fraction in equation 4.82 by

3
K — Kgksv = 1 (1 + ?) aghg(cs, ag, Vw) (4.88)
+

where p; and py are the pressure and energy density in the symmetric phase respectively,
ag is the strength parameter found through the “pseudotrace” 0 =p—p/c2, and kg is the
efficiency factor in this sound-speed dependent model also found through the pseudotrace.

In Ref. [118] it was found that a deficit in the kinetic energy was produced due to
“droplets” of the metastable phase being reheated by energy transfer from the scalar field
to the fluid. This has the effect of slowing the bubble walls, causing the gravitational wave
signal to be suppressed. In our models we introduce this through the suppression function

defined as
Qg

Y(vy, ) = , (4.89)

where Qg is the power spectrum found through the simulations in Ref. [118] and Qg exp is
the expected power spectrum found by the LISA Cosmology Working Group in Ref. [119].
It is customary to present the power spectrum with a factor of the observed Hubble
parameter today h squared, and so multiplying by that on both sides we find the complete

form of the power spectrum as

K1/4 3 f
h? Qg = 2.0611h2 Fyy 0 Kéiggy (HaRy) | 1 — — GKSV QgwC <f> (g, )
VEY2 + 2H, R, PO

(4.90)
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4.2.3 Signal to Noise Ratio (SNR)

Other than characterising the actual signal that will be received by the gravitational wave
detector, the other consideration for practical experiments will be whether the detector
itself is able to discern the signal from background noise due to its inherent sensitivity.
The quantity used to measure this sensitivity is gens, Which corresponds to the expec-
ted experiment sensitivity for a given configuration. This sensitivity is dependent upon
noise based considerations such as the noise in the optical metrology system (or position
noise) and the acceleration noise of a single test mass [120]. Obviously this varies from
detector to detector, and so each experiment produces an in-depth determination of their
apparatus’ sensitivity. Specifically, in this thesis we consider the detection possibilities
of three missions: LISA, Taiji, and TianQin. The LISA experiment and Taiji share very
similar sensitivity thresholds (found in [121] and [7]), but TianQin will be focussed on a
different parameter space, so its sensitivity calculation can be found in ref. [122]. Once

the sensitivity is known, the signal-to-noise ratio can be calculated through the relation

Frmax h Qew (£) r
SNk = \/ /mm h? Qsens(f) 7 (491)

where the ratio is squared and integrated over the frequency range in question. This is

combined with the total duration time of the experiment mission 7.

4.3 Parameters of the Gravitational Wave Generating Phase

Transition

4.3.1 Transition Strength o

The first parameter that we shall explore is the transition strength, broadly denoted by
a. It is useful to quantify the strength of the transition as we can broadly classify types
of transition by the value of this quantity, and we do this by considering the ratio of the
difference in potential energy of the scalar field (trace anomaly) in both phases versus the
enthalpy in the symmetric phase. The trace anomaly is defined as proportional to the

trace of the energy-momentum tensor through the relation

1
0= guT" =

; Lo—3p) (4.92)

4
and so we define our transition strength from this as

4D 0.0,
9_3ws_3 W

(4.93)
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which also serves as a definition for A. An ultra-relativistic plasma for example which
has equation of state p/p = 1/3 will therefore have no trace anomaly and zero transition
strength in all cases. We can also rephrase this in terms of the effective potential, which can
be more useful in situations where the potential is known directly. If we remember that the
effective potential evaluated at the minima is simply the free energy, then f = —p = V.
Recalling the definition of the enthalpy in terms of the entropy and temperature and also

that the entropy can be written as a derivative of the pressure,

Op oVr
= T g Ti = —T‘ . 4'94

w=s aT or (4.94)

Using the other definition for the enthalpy now in terms of the energy density and pressure

(equation 3.43) we can write the energy density as

oV
p:w—p:—Ta—;—i—VT, (4.95)

and so combining these together gives the trace anomaly in terms of the effective potential

as

6 i <4VT(¢) - T%‘?) , (4.96)

with the transition strength now being able to be written as

1A (o) - T5F)

4.97)
v (
3 T

o=

S
Other definitions of the transition strength exist which are instead in terms of the latent

heat
L= IOS(TC) - pb(Tc) (4'98)

labelled as a, or in terms of just the free energy or energy density in the numerator. As a

quantity describing the strength at nucleation, the transition strength will always be eval-

uated at the nucleation temperature T;, unless otherwise stated. As mentioned previously,

the value we calculate for the transition strength categorises the type of transition that is

undergone. The transition labels are not rigidly set and flow continuously from one type
» o«

to the next, but if we split the spectrum up into “weak”, “intermediate”, “strong”, and

“very strong” then we can roughly define them as

weak: a < 0.01,
intermediate: a ~ 0.1 ,
strong: v ~ 1,

very strong: a > 1 .
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4.3.2 Transition Rate

We also wish to know how quickly bubbles will appear in our system, as this will affect
how quickly our space will fill up and how quickly we shall see collisions. The probability

of nucleation per unit time per unit volume is [123]
p(t) = At)e T (4.99)

whose time dependence is related to the non-zero cooling rate in the expanding Universe,
meaning the expression can equally be cast into a form dependent upon temperature also.
The pre-exponential factor is a non-trivial quantity and requires special treatments to
understand in depth, first being derived in [97]. As we know from section 3.3 there will
be two types of bubble depending on the temperature, which alters the symmetries: O(3)
symmetric and O(4) symmetric bubbles. We therefore need to study both cases. For an

O(3) symmetric bubble this pre-factor will take the form (in the static case)

T 3/2 T 9.9i 11 -1/2
A=T1 (29O det'[-0,0" + V(¢ T)] : (4.100)
o det[—0;0" + V"(0,T)]

where the notation det’ indicates that zero eigenvalues are not considered when taking
the determinant of the quantity. Correspondingly, for an O(4) symmetric bubble this

pre-factor will be

_ (Tow’ (det' =00 + V"(9)]\ /?
A_< 27 ) <det[—8i8i+w(0)]> : (4.101)

The difference in powers of action between these two is due to the zero modes of the
operator —9,0" + V" (¢). Each zero mode produces a factor of (Fo(n)/Qﬂ') 1/2, with the
O(3) bubble containing three zero modes and the O(4) four zero modes. The transition

rate is then defined through the relation

log (p(t)) , (4.102)

and considering that as previously mentioned for an expanding Universe the temperature
decreases as (from eq. 2.26)
ar
o= —H(T)T (4.103)

we can therefore translate this definition into a transition rate dependent upon temperature

in units of the Hubble rate of

H(BT) - T%Fb(T) . (4.104)
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4.3.3 Nucleation Temperature 7T},

The temperature at which bubbles are defined to nucleate T}, requires a strict definition
for how this quantity is determined, and so to state it plainly the definition I will use is

that

The phase transition, and therefore when a bubble is nucleated, occurs when
the probability of nucleation per unit volume p(t) reaches one bubble per Hubble

volume per Hubble time.

In equation form, this translates to stating that nucleation happens when p = H*. Re-
membering from the previous section on cosmology that for the early Universe when
temperatures are high and the energy density is dominated by a relativistic plasma which
goes as p = %Q*T4, we can write the Hubble rate as [124]

8 k B 47r3g* T4

H2= ", — il
sM2’ T 2T 45 M

(4.105)

where Mp is the Planck mass, k is the Gaussian curvature of the Universe which we set to
zero in the second equality, and a is the scale factor. Setting Eq. 4.99 equal to the square

of Eq. 4.105 to satisfy our definition for nucleation, we have

Am3g.\? T8
— = A(T)e " . 4.1
(5 57 - A (4.106)
For the O(3) bubble, this is
arg \* T8, (Tow\*? ¢
~ __T —Lo) 4.107
(%) 3 (5) (107

which we can rearrange to

Amdg, T 3 Lo
210g< 15 > + 4log <m> = 2log( o ) — Lo (T) . (4.108)

The first and third term in Eq. 4.108 are both small compared to the second and fourth

term so can be discarded, leaving the relevant equation at the nucleation temperature of

Lo (Tn) = 4log (A;P) . (4.109)

Due to the logarithmic nature of the result, for any temperature around the range of the
electroweak phase transition range of about 100 GeV - 1 TeV we gain the same result
that the action at the nucleation temperature is about 150. Due to this then, we specify
that the nucleation temperature is defined as the temperature at which the bubble action

reaches 150.
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4.3.4 Wall Velocity vy,

To attempt a calculation of the wall velocity, we begin with the energy-momentum tensor

of the model as before. The energy-momentum tensor of the fluid is given by

d*p p'p”
T = —_— 4.110
f /(271_)3 po f(pvx) ’ ( )

where p# is the four-momentum and f(p, ) is the distribution of the particles which make
up the fluid. This is for a more generalised fluid, but for a perfect fluid in local equilibrium
with a distribution

1

eq
e (4.111)

this simply reduces to the form used before in equation 2.12. The measure used in equation

4.110 can always be recast as

d3p 1 d*p
— 2= —=5(p? 2) 0 (p® 4.112
/(2703])0 /(277)4 (p —|—m) (p) ) ( )
which is often useful as it demonstrates that it transforms as a scalar under Lorentz

transformations.

If we consider how the particle distribution will evolve in time, we make the substitu-

tions:
(1) = (1) + dl‘;{ﬂ dr = 2#(1) + p“n(;) dr ,
dnir) (4.113)

(1) = (1) + dr = pH(7) + F*(7)dT

dr
where F* is the four-force. Particle distributions without collisions must be constant
when considering infinitesimal changes in time due to the conservation of particle number

in infinitesimal phase space volume, and therefore we can write

(o) + oyt + - ar) = o) (4114)

If, however, there are collisions, we must include the “collision function” C[f] into this
which describes the possibility of scattering removing and adding particles to the phase

space volume element as
(0 + Pr@anete + 20 ) < poran c. @

Taylor expanding the left-hand side to linear order in dr = 0, this gives the relation

of(p,x)  p'0f(p,x)

e (4.116)

n
f <p“ + Fhdr, ot + pdT) = f(p,z) + F*
m
which we can insert in to equation 4.115 and rearrange to give

<mFu8; - p“@u> 0(p")0(p* +m*) f(p,x) = C[f] - (4.117)
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Here we have inserted the factor 6(p°)d(p? + m?) which is the on-shell condition which
ensures that the differential equation is consistent. A further condition we impose is that

particle number and momentum are conserved which is enforced through

3
/ (;lyr]))3 zll)oa(p’x)c[f] =0, (4.118)

where Z(p,x) is any function constructed out of arbitrary sub-functions as Z(p,z) =

¢(z) + wy(z)p*. If we multiply both sides by the momentum and integrate, we find

d* d* 0

with both sides equalling zero due to the condition 4.118. Manipulating just the rightmost

“aﬂ) 65 + 1) f(pr) , (4.119)

equation then, we can write this as

y d°p d3p p“p _
_mF /(2) +8/ . pz) =0, (4.120)

where we have used integration by parts on the first term with the relation dp*/dp” = ),

and pulled the derivative out of the front of the second term then used equation 4.112
on both. Our definition for the fluid energy-momentum tensor in equation 4.110 can be

inserted for

dp 1 1 W
—mF /2W32E :c)+§aqu =0, (4.121)

and finally, using the definition for the force and the substitution dm/dm? = (2m)~! this

leaves
m? dp 1
v
o, TH — _;)st
f do (2m)3 2F

fp, ). (4.122)

The overall energy-momentum must be conserved, so
0T = 0, T} + 9,1} = 0. (4.123)

As we have just found out what the second term in that equals, we now work through the
derivative of the field EM tensor. Using 3.84,

OuTY = 00" 60”6 + 0"60,0"6 — 0" (9" 0a0050 + V(9))
(4.124)

= 09 (0"0u0 — 0V (0)) -
From the conservation equation 4.123 then and the result of the derivative of the fluid
EM tensor equation 4.122; this implies a relation of (after dividing through by a common

factor)
dm? d3p
d¢ | (2n)32E

0up — 9V (¢) = — f(p,z), (4.125)
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i.e. that the non-conservation of the fluid energy-momentum much be compensated for
through a term in the conservation of the scalar field. The distribution can be decomposed
into

flp,z) = fYp,z) +0f(p,x), (4.126)
where f®I(p,z) is the equilibrium distribution function and §f(p) is the departure from
equilibrium. This allows equation 4.125 to be rewritten as

B dm? d3p
do (2m)32F

00> — 05V (6) = 5/ (p0) + V(6. T),  (4127)

and we can combine the components of the potential into the “thermal potential” Vi (¢, T) =

V(o) + V (¢, T) to leave

_dm2 d3p
do (2m)32E

"Dy — V() = 5f(p,a) . (4.128)

Linear response theory gives us an indication of what the right-hand side should analog-
ously act like, with the integral behaving proportionally to the gradient of the scalar field
as
[ o1 2) = 9,0 (4120)
— ) =nu . .
(2m)32E )\t = O
This quantity can be thought of as a “friction” term; as the particle distributions deviate
from equilibrium, this term will in effect slow the wall as it attempts to expand. If we use
this ansatz, we can explore what this will mean for the wall speed then. Our equation of

motion is

00, — D V() = —n D) , (4.130)

and we can consider the wall moving in just the z-direction to simplify this to
02¢ — 0V (¢) = —ijyv0.¢ (4.131)

where we have absorbed the dependence on mass as 7 = ndm?/d¢. As we can see, we
now have an equation in terms of the velocity for the situation. In practical terms though,
many things are still unknown and exceedingly difficult to calculate effectively. The ansatz
in equation 4.129 is phenomenologically motivated, and the exact details of the relation are
elusive. Further to this, the calculation would require solving a coupled system involving
Boltzmann equations for particle species with a large coupling to the Higgs field [119].
Whilst this has indeed been done somewhat for the standard model [125] and minimally
supersymmetric standard model (MSSM) [126], these analyses are valid only for small
deviations from equilibrium, ¢ f(p,x) < fU(p,x), which correspond to weakly first-order

phase transitions. In our work we will consider far beyond just weak transitions, so there
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is effectively no realistic and accurate method as of yet for calculating the wall speed

generally.

4.3.5 Sound Speed c?

Finally, let us turn to the sound speed. The quantity itself is important in phase transitions
of this sort as it will determine the hydrodynamics associated with the motion of the
bubble walls [127] and which type of situation our fluid is in; deflagration, hybrid, or
detonation. The conformal value of the speed of sound is ¢ = 1/3 which corresponds to
a relativistic plasma and is the value most often used to approximate. Whilst useful for
estimations, this value cannot account for any models with more realistic particle physics.
For general equations of state for example the sound speed is temperature dependent and
differs depending on whether you are in the symmetric or broken phase. We define the

speed of sound as
o _ Op/OT
7 0p/OT

noting that this can take two forms of ¢, and cg, ¢ for the value in the broken and symmetric

¢ (4.132)

phases respectively.
How does this quantity actually affect the hydrodynamics then? Let us consider once
again the energy-momentum tensor of the fluid from equation 2.12 and take the quantity

u, 0, TH. Projecting along the flow direction of the fluid with u,0,u* = 0 gives
Op(u'w) —u,0'p =0, (4.133)
and projecting perpendicular to the flow direction gives
w’uHwoyu, —u,dl'p =0 . (4.134)

For bubble solutions we may reformulate the situation into a spherically symmetric bubble,
which can be well described by the parameter £ = r/t (where r is the bubble centre distance
and t is the time since the nucleation of the bubble) due to the system being “self-similar”,
i.e. the system appears the appears constant in the reference of this parameter £&. We

may therefore express the gradients as
U O = —%(5 — )0, W' = %(1 — &0)0 (4.135)

which when used in equations 4.133 and 4.134 give us

0,
(€= 0)% =2g + L= 70(E ~ )]0

5 (4.136)
(1= v§) = =72(¢ — v)ev
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Using our definition we presented for the speed of sound in equation 4.132 we find that

one combination of these two formulae gives

ov 2v c?
9 eP(1—ve) 2 =2 157
where
_f-v
pv,8) = 5 ol (4.138)

which is the fluid-velocity when Lorentz transformed. The other combination of the two
formulae along with what was just found in equation 4.137 gives

?g =w (1 + cé) 72“’22 . (4.139)
As we can see, the sound speed heavily influences the profiles of the velocity and the en-
thalpy, and it is usual to define the type of transition that is undergone in reference to the
speed of sound. There are three types of solutions which are allowed by the hydrodynamic

equations as mentioned previously: deflagration, hybrid, or detonation.

Deflagration - In this type, the wall is subsonic (vy, < cg’b). The fluid forms a “shock”

in front of the wall pulling the bubble outwards, while the fluid behind the wall is at rest.

Detonation - In this type, the wall is explosive in nature. The bubble wall velocity
is supersonic (vy > cz »)» and is being pushed out from behind through a rarefaction wave

whilst the fluid in front is at rest.

Hybrid - A combination of both as the name suggests, the hybrid solution has elements
of a detonation and deflagration by containing a shockwave and a rarefaction wave. The
dependence on the sound speed is more complicated, and the wall velocity falls in the
range larger than the broken phase sound speed but smaller than the Jouguet velocity

defined through [117]

1 3ag(l — 2 + 3¢2
1/cs + 3csag
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Chapter 5

String Theory, Anti-de Sitter
Spacetimes, and Conformal

Theories

5.1 Conformal Field Theories

Conformal Field Theories (CFTs) are an integral part to exploring the dualities of string
theory. These are a class of quantum field theories which retain their symmetry under

conformal transformations, i.e. those transformations that respect

g/w(x) — g,:w(x,) = Q(x)gw,(a:) (5'1)

by leaving the metric invariant up to a scale change (where Q(z) is the scale transforma-
tion). This scaling symmetry preserves angles and the causal structure as well as inherently
preserves the Poincaré group symmetries (briefly described in appendix H) as the metric
transforms like g, (2') = g, () such that the symmetry of the full group of transforma-
tions is SO(2, d).

By taking the infinitesimal coordinate transformation z# — z# 4 ¢*(x) we see that the

metric will transform as
ds? = ndatde’ — (N, + Ouey + O,€,)dadz” 5o
= ds® + (Ou€y + Opey)datda”

and to satisfy the the condition in equation 5.1 that this transformation appears as an

overall multiplicative factor to the metric we require

Ou€v + Ou€y = (5.3)
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where a is the constant of proportionality. Tracing over both sides then fixes the constant
as a = %8“6# and taking a double derivative of eq. 5.3 then gives the condition (known as
the Killing equation)

(MO + (d —2)0,0,)0,€” =0 . (5.4)

As can be seen there is a special case for this condition at d = 2, however we shall limit
our discussion to the cases of d > 2. From equation 5.4 we recognise that for d > 2 the
quantity €, can be at maximum second-order in z (due to the requirement that D3¢ =0)
and so this determines the possibilities for transformations. The most general form that

€, can take is

en(2) = ap +w¥, 2y + Avy + by, 2” — 22,00 (5.5)
with each term representing a set of specific transformations as follows:

e ay,: These represent usual translations.

v

%y These represent Lorentz transformations.

°w
o Az,: These represent scale transformations (also known as dilatations).

o byx,2” — 2x,b,2P: These are the “special conformal transformations”, where b, is

an arbitrary constant 4-vector.

We can associate generators with each of these, and so we find that the generators of the
translations are P, the generators of the rotations are M, the generator of dilatations
is the operator D, and the generators of the special coordinate transformations is the
operator K.

Together these transformations form the “conformal transformations” and satisfy the
conformal algebra which is comprised of the Poincaré algebra along with the commutation

relations
[M;u/a Kp] = i(nupKV - nupKu) )

[D,Pu] =P, ,

[D7K,U«] = _ZK/L ) (5 6)
[D,MM,,] =0,
[KH’KV] =0,

(K, P = —2i(nuwD — Ju) .

What does a quantum field theory with these properties look like then? The fields in
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these CFTs will transform in irreducible representations of the conformal algebra. Under

dilatations  — Az the fields would transform as

o(z) = \2o(z) | (5.7)

where A is the scaling dimension of the field. In a simple theory with for example just a
scalar field and quartic interaction these dilatation transformations would indeed leave the
action invariant then, but the inclusion of a mass term would break the invariance. If we
explore the symmetries we see that the translations and Lorentz transformations will give
conserved currents as usual of the energy-momentum (EM) tensor 7}, and the current
Nywp = 2, 1,,—x,1;, respectively through Noether’s theorem. The new symmetries of the
dilatations and special conformal transformations will also be associated with conserved

currents, given by

Jf =Tz’ and Jii = :CQTW — 2x,2P Ty, . (5.8)

If we work through these currents we see that conservation of the energy momentum tensor
0*T,,, = 0 automatically conserves N, if the EM tensor is symmetric. The conservation

equations for the new currents with these conditions are
D K
orJ, =T and 0"J, =-2T/xz,, (5.9)

and so we see that the requirement for conformal invariance in a field theory is that the
energy-momentum tensor is traceless, i.e. T,’f = 0.

When is this condition satisfied in a quantum field theory? Through renormalisation
we discover that the couplings can run, that is that they have a dependence upon some

energy scale p through the beta function

_ %

(5.10)
where g is the set of couplings of a theory; this necessitates the presence of the renorm-
alisation group (RG) and its ability to flow in a quantum field theory. When considering
renormalisation, we renormalise our fields as ¢, = Z;l/ 2d>0, where Zy is the field renor-
malisation factor and ¢q is the bare field (i.e. the one which appears in a Lagrangian).

Our previous scaling dimension of the field in equation 5.7 will subsequently be modified

to the form

A= Dy +(g) (5.11)

where A is the original classical scaling dimension and v(g) is the anomalous dimension

given by
1 p 0z,

V(g) = 37, op (5.12)
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s

Figure 5.1: A sketch of an RG flow with a UV fixed point (shown as a red dot). The
shape of the flow indicates that the coupling grows with energy scale up to a certain point
at which the flow reverses and the coupling shrinks. The arrows indicate the flow towards

the fixed point.

Due to this, some theories with classical conformal invariance do not maintain their con-
formal invariance when promoted to a quantum mechanical setting. Theories which are
classically scale invariant but lose this property under quantum mechanics are said to
acquire a trace anomaly when'

TH A0 . (5.13)

If in quantum field theories classical scale invariance is broken by these quantum consid-
erations at different energy scales, is it ever possible to obtain a conformal field theory?
By examining equation 5.10 we see that the field theory continues to be conformal (scale
invariant) only when £(g) = 0, i.e. when the coupling has no dependence upon . These
are known as fixed points of the renormalisation group flow, and it is where we will loc-
ate our CFTs. From this condition then we can find quantum field theories which are

conformal in two ways:

o The theory has value 5(g) = 0 for all couplings, and are known as finite theories.
These theories do not “flow”, and so are conformal even at the quantum level, with
the coupling tracing out a line (or manifold) of fixed points. A theory of particular
importance in this class is that of N'= 4 SYM (Supersymmetric Yang-Mills) theory,
where the contributions to the beta-function from scalars and fermions precisely

balances out the contribution of the gauge fields to at least third-order in loops

"however this property alone does not imply that the theory was originally classically scale invariant.
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[128, 129, 130, 131]. We shall explore this in more details later.

o The theory has particular points g, which satisfy 3(g.) = 0, known as the “fixed
points” of the renormalisation group. Here the theory can flow at different energy
scales and therefore will contain a trace anomaly, but at these fixed points we will
recover the CFT with 7)) = 0 and the RG equation reduces to the Ward identity for

dilatations. An example of such a theory is shown in figure 5.1.

The restriction to a CFT imposes quite stringent limitations on the correlation func-
tions for this type of quantum field theory. Enforcing invariance of the action leads to the
dilatation Ward identity as just mentioned which takes the form

Z (mya + Ai) (p1(z1)P2(w2) ... ¢i(x1) - . . Pul(Tn)) =0, (5.14)

7 M
— ox;
where A; is the scaling dimension for each particular field ¢;. The invariances present in

conformal transformations therefore restrict the forms of the two- and three-point func-

tions, which can be found as [132]

1
(O(21)O(x2)) = (71 =222 (5.15)
and
C
{O(21)0(22)O(3)) = (21 — 2) D1+ 8285 () — 533)—12A?)1+A2+A3 (11 — a3)81-B2+8s
(5.16)

where O; are the operators and A; are their scaling dimensions as mentioned previously;

higher point functions are determined entirely in terms of these.

5.2 Anti-de Sitter Spacetimes

Due to the vital role that anti-de Sitter spacetimes play in the correspondence which
we utilise in this work, we need to understand some of its basic properties. The de Sitter
(and the related Anti-de Sitter) spacetimes are maximally symmetric manifolds with either
positive or negative constant curvature respectively (in the form of a positive or negative
cosmological constant); in this work we will focus on anti-de Sitter spacetimes. The action
which anti-de Sitter space corresponds to is the Einstein-Hilbert action of

§— - </Mdd+1x\/?g(R—2A)—2/

C 167Gy oM

d%;ﬁK) , (5.17)

where G441 is the (d + 1)-dimensional gravitational constant, A is the cosmological con-

stant, M is the manifold and OM is the boundary of the manifold. The second term is
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the Gibbons-Hawking-York (GHY) term for bounded surfaces where v, is the induced
metric of the surface and K = K*"+,, is the trace of the extrinsic curvature. This action

will give vacuum field equations of
1
RNV - iRgMV + Ag,uy =0 5 (518)

which can be contracted to find the Ricci scalar of

d+1
R=2-""A. (5.19)

Replacing this in the field equations now gives the Ricci tensor

2
RNV = ﬁAgMV . (520)

To understand the meaning of this sort of geometry we must embed it. To do so

we consider embedding in R", specifically we embed (n + 1)-dimensional AdS,,+1 as a

submanifold in the flat space (n + 2)-dimensional flat space manifold R"*? with metric

d
ds® = undXMdXN = —dX§ + ) " dX} —dX],, . (5.21)
=1

This means that the AdS can be defined as the hyperboloid in this space with equation

d
— L =nqunXMXN = X3+ X7 - X3, (5.22)
=1

where L? is a quantity defined as the radius of the AdS space. With some basic definitions
now complete we can explore some properties of this type of space. We may transform
the space into the type originally considered by Maldacena [133] and follow his work by

taking the parametrisation

L2 2
Xo=— <1+ T2+ 2 +L2)> :

2r L4
Xi:%, ie{l,....d—1},
i 2 (5.23)
Xo= 1 <1+ ﬁ(—t2+£‘2 —L2)> ,
Xap1 = %t ;

where we note now that we only cover half of the spacetime due to the restriction of r > 0
leading to “local coordinates”. These local coordinates are presented in the form of a
Poincaré patch, and from this we see that we can write the metric as

ds* = L—zdr2+ﬁ da*dx” (5.24)
=2 L217W xhaxr” , .



70

with the usual definition for the d-dimensional flat metric 7,,. Finally we can make

another substitution, this time of z = L?/r, to transform the metric into
L2
ds® = gMNdde:vN = ;(sz + N datdx”) . (5.25)

If we construct the curvature tensors through the usual methods using this metric we find

that the Ricci tensor is

d
R[,LV = _ﬁguu y (526)

and therefore comparing this form with the form from the field equations in 5.20 we can

see that the cosmological constant is simply

d(d—1)

A=—
2L2

. (5.27)

Finally for completeness we recognise that this definition for the cosmological constant

would transform the Ricci scalar into

d(d+1)

R=-="%

. (5.28)

How can we view these descriptions of AdS spacetime? We see from equation 5.25
that we may treat it as flat spacetime with the usual temporal and spatial components
t,Z, along with an extra dimension parameterised by the coordinate z which due to its
domain and appearing as an overall factor takes the metric from infinitely small to infin-
itely large. Further to this we recognise that for constant values of z we are left simply
with flat spacetime multiplied by an overall conformal factor, and in this way we can see
the AdS space as being built of infinitely many slices of flat spacetime stacked on top of
each other; for example in the specific case of AdSs we have infinitely many versions of
normal 4-dimensional flat Minkowski spacetime built together to form the fifth dimension.
We demonstrate an idea of how this would appear in figure 5.2. If we look at the limiting
cases of the AdS space we see that as the extra dimension takes the limit z — 07 we have
a second-order singularity but also this case is conformally equivalent to the Minkowski
metric and so we can describe the anti-de Sitter space as having a conformal Minkowski
space at infinity. We also see that in metric 5.24 there will be a singularity at » — 0T,
equivalent to z — oo for metric 5.25. As this singularity only occurs in the r dependent
metric it is obvious that it is a coordinate singularity rather than a true curvature singu-
larity, however we can still glean some interesting information from it. To cover the full
spacetime we would also need another Poincaré patch in the region r € {—00,07} (equi-
valent to z € {07, —oo}), and so we can deduce that the coordinate singularity present in

that limit is actually demonstrating the presence of a Poincaré horizon.
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Figure 5.2: A sketch of AdS space. At z = 0 we have the coordinate horizon and at z — oo
we have the Poincaré horizon. Each “plane” that can be seen represents taking a slice of
the manifold OM at that z = const and seeing that it is flat Minkowski space; there are

infinitely many of these.

At finite temperature, this description also must include a black hole in the spacetime,
which will be discussed later.

With basic properties of both conformal field theories and anti-de Sitter spacetimes in
hand then we shall move on to one other necessity for the discussion of strings, the idea

of supersymmetries.

5.3 Supersymmetry (SUSY)

Another extension to the Standard Model which contains a new class of symmetries and
was a major influence on the development of string theory is supersymmetry, also known as

SUSY. Similarly to conformal theories this is an extension of Poincaré algebra with extra
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symmetries which are known as “supersymmetries”, and in fact we may state that including
supersymmetry enhances the conformal group to a conformal supergroup which extends
the conformal algebra to a superconformal algebra. However the similarities end there. In
1967 Coleman and Mandula put forth their “no-go theorem” [134] which effectively states
that there is no non-trivial way to combine spacetime and internal symmetries. This can
be bypassed by the consideration of “anti”-commuting symmetry generators instead of the
ones we are used to, and the main effect of these is that a supersymmetric transformation
alters the spin by 1/2, i.e. the supersymmetric generators @) act on the quantum states

by turning a boson into a fermion and vice versa through
Q|boson) = |fermion) and @Q|fermion) = |boson) . (5.29)

As supersymmetry is important to string theory as a whole but not integral to our work
we shall only go briefly through the most important points. Supersymmetry extends
the Poincaré algebra with the addition of anticommuting generators which are spinors
in nature that we can denote by Q% for the left-handed spinor and Qg for the right-
handed spinor. The index « is the spinor index and a = 1, ..., N denotes the number of
independent supersymmetries, which for this discussion we shall restrict to N' = 1. The

algebra (also called the superalgebra) for this situation is given by

{Qa, Qp} = {Qa, Q) =0
[Qa, P"] = [Qa, P*] =0
{Qa, Qa} = 204, P, (5.30)
[Qas M) = (0")3Qp
QM) = ()5Q"

where €54 and €,4 can be used to raise and lower spin indices and we have defined the
quantities o/ = (06" —0¥5") and 6" = 1(5+ 0" — 5" 0") which are formed of the Pauli

matrices o# and their barred counterparts 6# defined through (/)% = eyge, 5(0") 55

5.4 String Theory

String theory in certain formulations has been a contender for a Grand Unified Theory
(and possibly a Theory of Everything) for many years due to its ability to explain links
between areas of physics much more elegantly than many other theories that have come
before it. However it did not first start like this, and it certainly was not intended as such.

String theory began in earnest in the 1960’s as an attempt to explain the nature of hadrons



73

through the strong nuclear force such as in references [135, 136]. It was quickly discarded
however as even though it had some success explaining desired properties it also predicted
the existence of anomalies such as a massless spin-2 particle, something not observed nor
expected in experiments. Further to this, the newly formulated quantum chromodynamics
(QCD) had proven to be exactly what was needed to explain the strong force, moving focus
away from string theory. This property of a massless spin-2 particle was later realised to be
the perfect candidate for the graviton, and that along with multiple other characteristics
led theorists to study string theory now as a basis for quantum gravity. Let us go through
some of the basics that lead us to the enthralling and integral dualities of string theory.
Where string theory differs from the conventional view of particles in the Universe is
that “normal” particles were thought to be pointlike, that is have no spatial dimensions
(which in itself is one of the reasons for the large number of infinities present); string
theory posits that the fundamental constituents are instead formed of one-dimensional
“string-like” objects, which can be either open or closed in nature. Whereas a traditional
point-like particle will trace out the familiar one-dimensional worldline as it moves through
spacetime, a string will instead trace out a two-dimensional “worldsheet”. The excitations
of these particular objects (like the excitations of a violin string corresponding to a note

or overtone) correspond to the spectra of particles.

5.4.1 Bosonic String Theory

This was the first incarnation of string theory, and it is named as such as it can only
attempt to explain the bosonic sector. There are two main topologies present in bosonic
string theory: open and closed strings. Open strings will have two endpoints whereas
closed strings will obviously have no endpoints. A fundamental string is a particular case
of a p-brane, which in more familiar language is just a p-dimensional object which moves
through spacetime. In particular, a point particle as is usual is identified as being a p =0
brane and a string can be identified as a one-brane (i.e. with p = 1). These strings or
one-branes are especially important as their quantum theories are renormalisable.

There are two equivalent ways of writing the string theory action at a classical level
in terms of the spacetime embedding of the string worldsheet X (o, 7), where o and 7 are
the two parameters necessary to specify a point on a two-dimensional worldsheet. These

are the Nambu-Goto action (using the convention d?¢ = dodr)

— 1 2~ M N
SNg— 27‘('0//Ed O'\/ det(gMN(‘)aX 85X ), (531)

which has a more readily distinguishable physical interpretation but is difficult to quantise
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due to its square-root form (where here gpsn is the metric on the (d 4+ 1)-dimensional
spacetime), and the Polyakov action

1

4o

Sp =

/ﬂﬂ&w—hwngNayxMa@XN (5.32)
%

which is more predisposed to quantisation. The Polyakov action is built upon an auxiliary
worldsheet metric h,g, and both actions contain as an overall factor the inverse string
tension or “Regge slope” o which is related to the string tension 7" through 7' = 1/(27a/).
Through dimensional analysis we can also associate the Regge slope to the natural length

scale of the model as

o =12, (5.33)

where [ is the string length. In many ways this string length can be thought of as the
only meaningful scale and parameter in string theory.

As previously mentioned, this type of theory permits open and closed strings. These
are subject to certain boundary conditions, namely Dirichlet and Neumann conditions.
In a closed string the embedding functions are periodic i.e. X*(o,7) = XH(o + 7, 7)
(where we choose that the coordinate o has bounds —7 < ¢ < ), but for an open string
we can have either Neumann conditions at the end of the string (which corresponds to
X,lc = —m,m] = 0) or Dirichlet conditions (which corresponds to X,[oc = —7] = a,
X, [0 = 7] = b where a, b are constants).

It does not make sense for the open strings to have free endpoints on nothing and just
end anywhere, and so this allows us to introduce new dynamical objects called “D-branes”
which are named after the requirement for Dirichlet boundary conditions (also called Dp-
branes where p is the spatial dimension) which these endpoints live on. These branes
have tension and so are affected by gravity and interactions with other objects; they are
meaningful stringy objects in their own right.

For any sort of theory which attempts to describe the Universe we expect to be able to
quantise it, and so we do the same with this theory. Under this procedure, the quantum
operators form what is known as the “Virasoro algebra” [137]. Introducing light-cone

coordinates on the worldsheet of

ct=r+0, (5.34)

we may decompose the worldsheet solution X* into left-moving (X} (o)) and right-
moving (X};(c7)) waves. The Virasoro generators Ly, and Ly, are formed from the modes

of the left-movers and right-movers of the string o/, and &', which are each described

n
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by a conformal field theory, and the quantum version of this algebra satisfies

C
[Lyns L) = (m — 1) Lypyyn + — 2

m(m
12

— 1)0m+n,0 (5.35)

where c is the central charge, also equal to the spacetime dimension ¢ = D. Only with
the choice of spacetime dimension D = 26 does the string spectrum under this algebra
not contain the non-physical negative norm states, and so this is known as the critical
dimension.

This is not the only way to find the dimension necessary for bosonic string theory.
Another way is to consider that under a scale transformation on the curved worldsheet we

find that the trace of the energy-momentum tensor goes as

TH o (D —26)R (5.36)

which leads us to the conclusion that to remove the trace anomaly and maintain the
symmetries found classically then bosonic string theory can only be quantised if we make
the choice D =d+1 = 26.

In the end though it was found that bosonic string theory is obviously unsuitable for
a realistic description of nature: not only can it not account for fermions, it has a severe
problem with tachyonic states. Although thought to be a theory killer for a long time,

string theory eventually underwent another revolution as we shall see next.

5.4.2 Superstring Theory

The next step in the evolution is superstring theory, which attempts to solve some of
the difficulties on bosonic string theory. The discovery of supersymmetry in 1971 and its
properties mentioned in section 5.3 led to the incorporation of SUSY into string theory as
superstring theory initially by Ramond [138] and also by Neveu and Schwarz [139]. There
are two main ways to accomplish this, either by the Ramond-Neveu-Schwarz (RNS) form-
alism or the Green-Schwarz (GS) formalism, which are equivalent in certain circumstances.
We shall explore the RNS formalism. The key difference between the bosonic string and the
superstring is the addition of fermionic modes on its worldsheet, and so we include the fer-
mionic fields ¥# (7, o) which are two-component spinors W (r,0)T = (¢ (,0),¢/ (1, 0)).

We do so by slightly modifying the previous string action into
1 _
S=-5- / A0 (0, X100 X, + 0" p"0,0,,) | (5.37)

where we have set the string tension to T = 1/7 (or equivalently o/ = 1/2), and the

quantity p® is the two-dimensional equivalent of the Dirac matrix satisfying {p®, p%} =
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218 (see appendix I). Similarly to as is usual, the conjugate field is defined through
" = wrtip0 with (U#)! being the Hermitian conjugate of the fermionic field. Under the

transformations
OXH = €lipd Ut = ePH |
(5.38)
OUH = p®9, X e |
where € is an infinitesimal Majorana spinor formed of two real Grassmann numbers e_, e

through

€= (5.39)

we find that the action is invariant (up to boundary terms which can be dropped with
suitable boundary conditions), and so we see that these transformations mix bosons and
fermions and therefore the action is inherently supersymmetric.

Once again there are various types of boundary conditions possible in the model,
however in this case the choice of boundary conditions will split the theory into two sectors.
For open strings, the Ramond (R) sector consists of choosing boundary conditions at one

end of the string that specify

Yh(o=m)=¢!" (o =), (5.40)

and this will give rise to fermions. The Neveu-Schwarz (NS) sector instead consists of

choosing the boundary conditions

Yh(o=m) =Y (o =m), (5.41)

and this will give rise to bosons. Thus the open string allows for four distinct sectors
corresponding to the choice of boundary conditions on each end of the string: R-R, R-NS,
NS-R, and NS-NS. For closed strings the boundary conditions are instead given by

Yi(o) =ty (o+7), (5.42)

with the difference in signs leading to periodic or antiperiodic boundary conditions for the
+ or — case respectively.

Performing a similar analysis as for the bosonic case we can again try and quantise the
theory. In this case we now instead can form the “super-Virasoro algebra”, and we obtain
two different versions of the algebra for the two different sectors caused by the boundary
conditions. There is a supercurrent associated with the symmetries of the superstring
action 5.37 given by

(6% 1 o
Ja = *5(,050 V) a0 X", (5.43)
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which is formed by two independent components J_ and J;. We will generate two sets
of modes associated with this supercurrent depending on which sector we are in: the
modes F), are associated with the Ramond sector and the modes G, are associated with
the Neveu-Schwarz sector. In the Ramond sector therefore we can construct the super-

Virasoro algebra as [138]

D
[Liny Ln] = (m —n) Ly n + §m35m+n,0 )

m
D
{meFn} = 2Lm+n + §m25m+n70 5

and in the Neveu-Schwarz sector we can construct the super-Virasoro algebra as [140]

D
[Lin, Ln] = (m —n) Lyqn + g(mg - m)5m+n,0 )

[Lim, Gr] = <% - T) Gm+r (5.45)
D 1
{GT, GS} = 2Lr+5 + 5 <T2 — 4) 5r+s,0 N

where the central charge in this situation is related to the spacetime dimension through
¢ = D+ D/2. The indices m,n refer to integers m,n € Z and the indices r, s refer to half
integers r,s € Z + %

Once again there is a particular choice of spacetime dimension in which the string
spectrum does not contain the negative norm states, and so for superstring theory the
critical spacetime dimension is D = 10.

With the significantly more realistic string theory consisting of bosons and fermions
now produced we are in a much more solid place theoretically, however the tachyonic mode
still persists and the spectrum is not properly spacetime supersymmetric. Fortunately, it
was discovered in 1977 by Gliozzi, Scherk and Olive that further conditions through the
GSO projection should be imposed on the spectrum of the RNS string which leads to
the removal of tachyon and further to a truly supersymmetric theory in ten-dimensional
spacetime [141, 142]. This discovery lead to the first superstring revolution as it is named,
which began in 1984.

In this treatment quantities are constructed called “G-parity operators”, which are
defined through a number operator counting fermions F' (specifically Fiyg in the NS sector

and Fg in the R sector) as
G = (_1)FNS+1 _ (_1)2?«11/2 b, b+l (5.46)

in the NS sector and
G =T11(—1)" = Iyq (1)1 dondn (5.47)
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in the R sector, where I'1; is the ten dimensional analogue of the Dirac matrix 75 in four
dimensions (see appendix I for properties and details) and d,,, b, are Grassmann-valued
Fourier modes found when Fourier expanding the superstrings. When applying I'1; to a
spinor, the values

Iyl =40 (5.48)

are defined as having either a positive (+W¥) or negative (—W) chirality. With this pro-
jection we must make some choices, namely that we have both the left- and right-moving
sectors in which we must choose which G eigenstate to project out independently, and this
must be done in both the R and NS sectors. In making this choice we actually separate
our theory out into two distinct types of string theory, named type ITA and IIB. The dis-
tinctions are as such: in type ITA string theory the left- and right-moving R-sector ground
states have the chirality chosen to be opposite, whereas in type IIB string theory the left-
and right-moving R-sector ground states have the chirality chosen to be the same. There
is a rich structure for each of these types of string theory which is beyond the scope of
this thesis, so with the basics definitions covered we shall move onto what other possible

types of string theory there are.

5.4.3 Further String Theories

As we have just seen, we have already found two consistent but distinct types of string
theory. This at first glance seems unfortunate, surely if the purpose of string theory
is to try and construct the one overarching “theory of everything” there should not be
ambiguity about the fundamental properties. In fact, this may not even be the worst part
of it; there actually turns out to be even more types of string theory which are completely
consistent and one cannot say that one type is “more fundamental” than any other. The

possible ten-dimensional theories are:
o Typel
o Type ITA
e Type IIB
o Heterotic SO(32)
e Heterotic Eg x Eg

We saw where the type ITA and IIB theories came from, but what about the others? There

is in fact a close relationship between type I and type II string theory, specifically type 1B
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string theory. An orientifold projection in string theory requires physical states be invari-
ant under a mirror symmetry. If we orientifold type IIB string theory we arrive at type 1
string theory [143, 144] by considering that type IIB orientifolds are generalised orbifolds
that involve world-sheet parity reversal along with geometric symmetries of the theory.
The orientifold procedure results in an unoriented closed string theory. Consistency then
generically requires introducing open strings that can be viewed as starting and ending
on D-branes [145]. In particular, Type I compactifications on toroidal orbifolds can be
viewed as Type IIB orientifolds with a certain choice of the orientifold projection [146].
The other two types of string theories mentioned, SO(32) and Eg x Ejg, are closed
string theories and are known as heterotic string theories. They are called this due to their
composition: they are assumed to be the combination of a supersymmetric chiral piece
and a non-supersymmetric piece i.e. made up of both bosonic strings and superstrings,
and were first proposed in ref. [147]. In these types of models the left-moving degrees of
freedom of the 26-dimensional bosonic string theory are combined with the right-moving

degrees of freedom of the 10-dimensional superstring theory.

5.4.4 Dualities of String Theory and M-Theory

We now know that there are five distinct types of string theory possible. How do we
reconcile this and decide which one should describe the Universe? Whilst exploring string
theory and how the observable dimensions will be reduced down to the usual four, the
idea of compactification popularised by Kaluza and Klein was investigated. Following
this procedure then, a spatial dimension in the theory (which we choose to be X d) is
compactified on a circle, meaning that it is periodic. For superstring theory this will mean
our spacetime shall be topologically equivalent to the product of 9-dimensional Minkowski
spacetime and a circle of radius R, that is R®! x S}%. What will this mean for our boundary

conditions? The non-compactified boundary conditions shall stay the same as
X*(o=0,7)=X"(o=2m71), (5.49)
but the S' compactified dimension will now have condition
X% o=2m,7)=X%o=0,7)+27RW , WETZ, (5.50)

where W is known as the winding number. The winding number describes how many
times a string has wound around the compactified dimension, and in what direction. This
allows the winding number to take any positive or negative integer value, as demonstrated

in figure 5.3.
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Figure 5.3: d + 1-dimensional spacetime with the spatial dimension d compactified on
a circle S with radius R. The dark black curves show strings living on the spacetime
winding around the compactified dimension. The closed string on the left has winding
number W = 2, the open string in the middle has a positive non-integer winding number,

and the closed string on the right has winding number W = —1.

In this type of compactification the momentum will be quantised for X° as

p’ == (5.51)

and what we will find then is that a string with n units of momentum, a winding number

of W, and N, Ng total number of oscillators on the left and on the right has a total mass

given by
2 2 2
L W-R 2
M =mt e "‘J(NL'*'NR_Z) ; (5.52)
and a level matching condition of
Nr — N =nW . (5.53)

What we can see from equation 5.53 is that under the exchange of meaning of the mo-

mentum 7 and the winding number W it is invariant. What about equation 5.527 Under

the same exchange the mass is not equivalent, however if we also simultaneously make

the exchange R — o'/ R we recover the same form as we had previously, and this sec-

ondary substitution does not alter the level matching condition. We call this duality the

“T-duality” (for target-space duality), and it is described through the exchanges
T:R©H x Sp+— RV X SL

(5.54)
T:W<+—n.

What this means is that the winding-mode excitations in the description compactified on

a circle of radius R correspond to momentum levels in the dual description compactified
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on a circle of radius R. Exchanging the winding and momentum amounts to exchanging
the bosonic field X¥ +X% with X/ — X% and the superstring field ¥* with ¥ which will
reverse the GSO projections, meaning that under the T-duality one type of type II string

theory gets converted into the other as:
Type IIB compactified on S' with radius R <— Type ITA compactified on S with radius R .

This remarkable duality led to the second superstring revolution and to to the realisa-
tion of other dualities. Shortly after it was found that the distinction between the Eg x Eg
and SO(32) heterotic theories only exists in ten dimensions, and after toroidal compactific-
ation there is a single moduli space demonstrating that the Eg x Eg and SO(32) heterotic
theories are also related by a T-duality [25].

In 1994 a further duality was proposed in ref. [148] named “S-duality” in reference to
its relating strong couplings and weak couplings. In string theory, this relates the string
coupling gs (which is the genus of the string worldsheet or equivalently the expansion in
string loop number) to 1/gs. A special case is one of a string theory model which exhibits
both T- and S- type dualities, and is dual to N’ = 4 SYM; we shall study shortly. For
the type I superstring and SO(32) heterotic string the low-energy effective actions can
actually be related by a transformation ® — —® (where @ is the dilaton), along with a
rescaling of the metric as [149]

Guv — e_ég/w . (5.55)

From this it can be seen that the SO(32) heterotic and type I string theories in ten
dimensions are dual to each other as descriptions of the same quantum theory in different

regions of parameter space. Also, due to the relation

gs = (e®) (5.56)
where (e®) is the vacuum expectation value of the dilation field, we see that the exchanging
of the sign of the dilaton implies that the string coupling of the type I superstring is the
reciprocal of the string coupling of the heterotic SO(32). This provides the duality that
a strong-coupling region of one theory can be described by dynamics of solitonic states
which is equivalent to the weak-coupling dynamics of elementary states of the other [150].

The S-duality also appears in a surprising way, in that it was found that type IIB
string theory with the string coupling constant g is actually equivalent to the very same
theory with the coupling 1/gs.

Finally, one may ask whether there is any sort of description of the other two super-

string theories under this S-duality. What is found is that they (the type IIA superstring
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and the Fg x Fg heterotic string) exhibit an eleventh dimension at strong coupling which
grows as gsls (shaped as a circle for type ITA and a line for Eg x Eg) and thus approach
a common eleven-dimensional limit. The theory that emerges is known as M-theory (for
magic or mystery), and although it is not hugely well-understood it has garnered much
interest and study as its possibility of being the all-encompassing theory which we seek.
Explorations of it are plentiful and could fill many pages, but as interesting as it is we
do not need details of it for this work. All else we shall say on this topic is that the low
energy effective theory for M-theory is 11-dimensional supergravity (also called SUGRA,
however other dimensions do also have SUGRA also), which is somewhat special since it
is the highest possible dimension if one requires that there be no massless state with spin
higher than two [151]. We direct the interested reader to reviews [152, 153, 154] for more

details.

11D SUGRA

Figure 5.4: The consistent types of string theory as branches of M-theory with the dualities

relating them.

So we have found that all consistent string theories are related in what is known as the

“web of dualities” (which is depicted in figure 5.4) and we no longer have to make a choice
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of which is the correct one to describe the Universe. That this is the case is remarkable, as
many of these theories appear to have totally different properties and explain very different
effects yet are related by “simple” dualities. Of particular interest to us is the S-duality.
Many areas of physics are limited in their ability to explain physical phenomena due to
relying upon perturbation theory which is only valid in the weak coupling regime, despite
numerous very important physical aspects existing only at strong coupling. A duality
therefore which could translate easily calculable perturbation results into the strongly
coupled regime would be very useful if we could formulate the situation in a “stringy”

context, and this is what we shall explore in the form of the AdS/CFT correspondence.
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Chapter 6

AdS/CFT Correspondence a.k.a.
Holography

We may wonder: “If string theory is truly meant to describe the Universe, surely we should
experience some of these dualities in the physics we know now such as in quantum field
theory, which string theory should reduce to in the low-energy limit.” This is indeed the
case. The S-duality, for instance, is present in a non-stringy context in electromagnetism
under the exchange of E — B and B — —C%E which shows that under the exchange of the
electric and magnetic fields the theory is invariant (in vacuum, magnetic monopoles are
required for the non-vacuum case). The Lagrangian coupling in this instance goes from
L x g% to £ o g2, and so we see that this is precisely an S-duality due to the relation of
strong to weak coupling.

This line of reasoning also led to the AdS/CFT correspondence being formulated in
1997-98 in Refs. [133, 155, 156], which at the heart of it is built upon the properties of D-
branes. If we recall the D-branes we mentioned earlier which we defined as p-brane objects
on which open strings could end with Dirichlet boundary conditions we can explore a few
of their important properties. One such property is that the massless spectrum of open
strings on a Dp-brane for type II string theory is maximally supersymmetric U(1) gauge
theory in p+ 1 dimensions; the internal excitations of the Dp-branes sources a gauge field
described by the Dirac-Born-Infield action (an action describing electromagnetism with a
limiting field strength). If we consider instead when NN of them are in coincidence we enjoy
a U(N) gauge theory on their world-volume [157]. This is due to the fact that we have
N? open string subsectors linking one D-brane to another as they can start and end on

any combination of the D-branes, which in the limit when they are stacked on top of each

S
(N) ~ U(J\%);U(l)

other will all have massless modes and we thus obtain the reduction of U



85

gauge theory from ten dimensions to d = p 4+ 1. Further to this, as the U(1) subgroup
decouples, then due to the composition of U(N) we actually identify the our duality
as being (supersymmetric) Yang-Mills theory with gauge group SU(N) (see Polchinski’s
lectures [158] for much greater detail on D-branes, or reviews such as [159, 160, 161]).

Obviously, as we have begun this analysis considering string-based objects there must
be a fully string theory description of these interacting D-branes too which may lead to
some other way of viewing the system. As we have said previously these D-branes are
fully dynamic objects, and for a large amount of these D-branes (corresponding to large
N) this stack is a heavy object embedded into a theory of closed strings existing in the
entire spacetime which contains gravity. In fact it is deeper than that; as strings can split
and join freely two open strings which reside on the same D-brane can come together,
merge into a closed string, and therefore are no longer bound to the brane and can travel
unhindered in the spacetime bulk. These p-branes therefore emit Hawking radiation [162]
which corresponds to all closed string fields that can move in the bulk, and therefore permit
a gravitational description through supergravity coupled to massive modes of these strings,
which in the limit of low energy would simply be a supergravity description.

This is the crux of the field theory/gravity correspondence. There are multiple equally
valid descriptions of the theory which link very different concepts springing from a string
theory setup, both describing a gravitational theory and a gauge theory. We shall now
proceed to a specific example to get a feel of this correspondence. For overall reviews of

the AdS/CFT correspondence see e.g. [163, 164, 165, 166, 167].

6.1 N =4 Supersymmetric Yang-Mills Theory

Let us look at this correspondence in the concrete and famous example of N'=4 Super-
symmetric Yang-Mills (SYM) theory. For N coincident Dp-branes the metric and dilaton

backgrounds may be expressed in the following simple string frame form [132]:

p
ds? = H=Y2(r) [—dt2 + Z:(daﬁi)2 + HY2(r) [dr? + r2dQ§,p] , (6.1)
i=1

where dQ%_, is the (8 — p)-dimensional sphere metric and H(r) is the warp-factor defined

through
L7r
r7—p

H(r)y=1+

. (6.2)

The warp factor is related to the dilaton through the relation

e? = HE /() . (6.3)
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Let us specify to the p = 3 case, meaning that we are now considering a stack of D3-branes
in type IIB string theory (type IIB as type ITA describes even integer p-branes and IIB
describes odd integer p-branes due to consistency of boundary conditions!) which as a
consequence of the reduction lives in d = p + 1 = 4. This stack of D3-branes give rise
in particular to N=4 SYM. The quantity A describes the number of supersymmetries
present, and the gauge group of this theory is SU(N), with N being the rank of the gauge
group and the number of D-branes.

Exploring the various limits of the bulk we see that as r — co we have H — 1, and
so the metric reduces to flat 10-dimensional Minkowski. In the opposite limit as r — 0
however the warp factor goes as H(r) ~ L*/r*, and so the metric becomes

2 12
ds® = T3 wdrt dz” + ﬁer + L2dO2 . (6.4)
If we then make the familiar substitution r = L?/z we transform the metric to the form
12
ds? = ?(dz2 + Nudztdz”) + L2032 (6.5)
which if we compare with the metric 5.25 we see that the first term is simply AdSs and
so the metric is the product space of AdS5 x S°.

From the point of view of the supergravity background solution, the gauge theory lives
in the original metric (before taking the r — 0 limit). Therefore in the new AdSs x S°
limit space we can say that the gauge theory lives at r — 0o, or z — 0, which as we have
proven when analysing AdS space, is part of the real boundary of global AdS space, and
in Poincaré coordinates z — 0 is a Minkowski space. Therefore the gravity theory lives
in AdS5 x S°, whereas the Super Yang-Mills theory lives on the 4 dimensional Minkowski
boundary of AdS5 parametrised by t and .

This is the reason as to why this correspondence is known as the holographic principle
[168, 169, 170, 171, 172]; the entire information content of a quantum supergravity theory
in a given volume can be encoded in an effective field theory at the boundary surface of
this volume, and therefore just like a hologram a d + 1-dimensional picture can be built
solely out of d-dimensional information.

We need to explore the limits of this space and the couplings present also. We have a
relation of the radius of the space compared to the string length as

<£L8>7_p _ (2\/7?)5_13 T <7;p) gsN | (6.6)

!Technically all integer branes are possible in both type IIA and type IIB, however only odd branes are
stable for type IIB and only even branes are stable for type ITA due to being BPS objects.
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which for our D3 brane case simplifies to

(f)4 = 47gsN . (6.7)

However we can also remember that the string coupling and Yang-Mills coupling can be
related through 9\2(1\/[ = 4mgs, and further that the 't Hooft coupling of the dual gauge
theory is simply A = g%MN , allowing the string length and radius to be related through

2

(i) - \15 . (6.8)
What can we glean from this relation? When the field theory is described by weak coupling,
the radius of curvature L must be small compared to ¢, and therefore the gravitational
geometry is strongly curved. However when the gravitational background is weakly curved
(and therefore more easily tractable) the radius of curvature is large, and therefore the field
theory is strongly coupled, which is something we shall discuss in the following section.

This is the heart of why the AdS/CFT correspondence is so useful: when usual per-
turbation methods break down for field theories in the strong coupling regime, the problem
can be translated into a weakly curved gravitational theory which is easily solved so long
as the right identifications are made for dual quantities.

One further consideration we need to make is the limits of validity of this analysis.
Depending on our regime, there could be possible corrections from either quantum gravity
effects or from string effects that we wish to avoid. We can think about the quantum grav-
ity effects in terms of the (ten-dimensional) Planck length and how our radius compares

to it. We find the relation between the two as

lp 8 7t
) “ane (6:9)

which is gained from examining the coefficient of the ten-dimensional Einstein-Hilbert
action. If we are to avoid having quantum gravity corrections we must require then that
Ilp/L — 0, and complementing this to avoid “stringy” corrections we must require that
ls/L — 0 at the same time. From these restrictions then we see that this discussion is

only valid in the limits where
N>1, and A>1 (6.10)

if we do not compute corrections from these effects.
An interesting limit to work in is the 't Hooft limit, which consists of taking N — oo
whilst also keeping the 't Hooft coupling fixed at a constant value. This corresponds to

considering only planar diagrams (Feynman diagrams which can be drawn on a sphere
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with zero handles i.e. h = 0 when considering topological surfaces) whilst non-planar
diagrams will be subleading effects categorised by 1/N? behaviour. This is due to the
fact that there are fewer colour index contractions (or “loops”) for non-planar diagrams
which have the same momentum structure as their planar counterparts, and as these index
contractions provide factors of NV this leads to the non-planar diagrams being suppressed

in comparison.

6.2 Holographic Dictionary

From the dualities we have explored we can now form a “holographic dictionary” which
translates quantities from one limit of the duality to the other and is necessary if we
wish to correctly identify what processes in field theory look like in their gravitational
description.

It is useful to first look at the symmetry groups of the two separate theories. The
isometry group of AdSgy; is given by SO(2,d), the same as the conformal group in (d —
1,1) dimensions, and the symmetry group for the sphere S is the usual SO(6). The
32 supersymmetries present are inherently halved with the inclusion of the D3 branes
which break 16 Poincaré supersymmetries, however near the horizon these are joined by
16 conformal supersymmetries enhancing the overall symmetry group to SU(2,2[4).

For the N' = 4 SYM theory we find a global symmetry group which is described by
the superconformal group SU (2,2|4), and also for this supergroup the bosonic subgroup is
found through the product of the R-symmetry group and conformal group as SO(2,4) x
SO(6)r [173], and so for our case with d = 4 the symmetry groups coincide.

This is a large piece of evidence in the AdS/CFT correspondence’s favour; completely
identical group structures would already innately suggest an isomorphism between two
theories without the arguments we have just put forward. With this structure we can feel
justified in relating quantities and operators on both sides.

We begin the dictionary by stating the famous Witten-GKP relation [155, 156] (GKP

here referring to Gubser, Klebanov, and Polyakov)

Zololcrr = Zp|dolstring » (6.11)

which allows us to relate the partition function of type IIB string theory with the generat-
ing functional of CF'T correlation functions. This is the strongest version of this relation,
however more frequently the weaker version is considered which relates solutions of type

I1B supergravity containing leading asymptotic behaviour near the conformal boundary as
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acting as the generating functional for connected correlation functions with an operator
O. This uncovered equivalence between the fundamental quantities of both theories is
once again a large piece of supporting evidence for the AdS/CFT correspondence.

For this duality to be useful, we wish to relate the observables on both sides, which
will be e.g. the matter fields on the supergravity side and the operators on the field theory
side. We can try and explore this in the simplest case, that of the scalar field. If we again
recollect the AdS metric 5.25 and remember the equation of motion for a scalar as

<\/1_798M\/ng“”a,, — m2) $(z,x) =0, (6.12)
and Fourier transform to a plane wave decomposition ¢(z,z) = e?"%1g¢,(2) we find a

relation for the scalar field of
2282%(,2) —(d—1)20,¢p(2) — (nw,p“p”z2 + m2L2)¢p(z) =0. (6.13)

As we care mostly about the case at z — 0, we consider this limit and see that the field

behaves as ¢,(z) ~ 22, which when inputted into 6.13 and then taking the limit z — 0

2
Ai:gi\/dz—i—m?ﬂ, (6.14)

where A4 correspond to the two distinct solutions possible as roots from the condition

leads to the condition

A(A —d) =m?L? (6.15)

and are related through A_ = d— A,. We can therefore expand the boundary behaviour
of the field as
Bz, ) = G ()2 + Ga(w) 2™ + ..., (6.16)

where ¢; and ¢o are as yet undetermined general quantities. We see from the metric
5.25 that AdS should have a dilatation invariance under the simultaneous transformations
x — Az and z — Az, and so for the scalar field to be invariant we must require that ¢
and ¢9 transform as

p1(z) = A2 ¢ ()

Pa(z) = A2 a(z) = A2 () |

and thus recalling eq. 5.7 we see that this is simply telling us that ¢; has conformal

(6.17)

dimension A_, whereas ¢ has a different but related dimension. As we can see then, there
seems to be an exact linkage between the group representations as well as the conformal
dimension and mass, and so from this we can make the identification that a scalar field

of mass m? in AdS is dual to a conformal scalar operator O of dimension A on the field
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theory side. Further to this, by dimensional analysis we may identify ¢9 as the vacuum
expectation value for this dual scalar field theory operator O, and ¢; as the source for this
operator.

An important point to note is that in AdS space scalar fields can be stable even for
negative masses due to the shape of the potential. This leads to what is known as the

Breitenlohner-Freedman bound [174, 175], which states that stable solutions can exist for

d2
m?L? > —— . (6.18)
4
In addition, the unitarity bound for scalars A > (d — 2)/2 which requires all states in a
representation have positive norm limits the solution to only the one we have previously
presented, however in the range
2 2

— dz <m?L? < _dZ +1 (6.19)

both types of solution are permissible, meaning that the how we identified the source and
the vacuum expectation value of the field theory operator can be interchanged. This will
be especially important for our work later.

Although the arguments we have put forth are specifically for the scalar field, this type
of reasoning can be generalised for fields of higher spin. From this we can find meanings
for the fermionic fields, gauge fields, and metric tensor living on the gravitational side for
the field theory dual.

If we put all of these duality relations together then we can form the “holographic
dictionary” which relates important quantities from both dual theories, and these dualities

are summarised in Table. 6.1.

Field Theory on Boundary Gravity in Bulk
Generating Functional Z[¢g(x)] = | Partition Function Z[¢po(z)] =
(exp fp A 0(2)O(2)) f,, Dbexp(~S[p(x). gun)
Scalar Operator O Scalar Field ¢
Fermionic Operator O, Dirac Field ¢
Symmetry Current J, Maxwell Field A,
Energy-Momentum Tensor 7}, Metric Tensor g,
Scalar Operator Dimension A Mass of Field m?

Table 6.1: The holographic dictionary, relating field theory and gravity quantities.
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6.3 Holographic Renormalisation

In quantum field theories, divergences of multiple types are commonplace. There are two
main divergence types, namely infrared (IR) divergences and ultraviolet (UV) divergences.
The IR divergences appear from theories containing massless particles such as photons
where arbitrary amounts can be present, whereas UV divergences come from the fact
that undetermined momenta can be as large as possible, or the distance between any two
positions in spacetime can be made as small as possible. Studying CFTs means that we
will inherently have to figure out how to deal with these divergences also.

Some in-depth treatments of the particularities of holographic renormalisation are
found in Refs. [176, 177, 178, 179, 180, 181], and we shall utilise these in our explanations.
As they are used frequently for this section they shall not be referenced every time they
are necessary, so we direct the reader to these for all more in-depth explanations necessary.
Due to the correspondence we have just studied, we recognise that when we speak of UV
divergences on the field theory side, this will actually translate over to IR divergences
on the gravitational side, and similarly QFT IR divergences relate to gravitational UV
divergences. Mainly we shall be interested in correlation functions on the field theory side
which suffer from UV divergences, and so this shall translate to finding ways to deal with
IR or near boundary divergences gravitationally. Further to this, renormalisation and the
renormalisation group through the dictionary can be related to the idea that the radial
coordinate of a spacetime with asymptotically AdS geometry can be identified with the

RG flow parameter of the boundary field theory [182].

To renormalise our theory we effectively need to find a way to rid ourselves of the
divergences which plague the action due to our choice in Lagrangian. To do this we employ
the use of subtracting “counterterms” which are of the same form as the terms already
considered in the non-renormalised Lagrangian. We can consider this type of process as
a type of “reparameterisation”, but really the idea behind why this sort of procedure is
fine to do is that we are not adding terms in the ad hoc sense that we have just decided
they are necessary and we pluck them from nowhere. Instead, we realise that the way we
have formulated the theory is in a non-ideal way, and therefore because of this we receive
divergences which tell us we must find a way to reparameterise the theory which removes
these. Ergo, to obtain physically meaningful quantities we cancel these divergent terms

by related counterterms which are strictly dictated by our theory.

As we shall only be considering the use of scalar operators and the energy-momentum

tensor (corresponding to scalar fields coupled to gravity) in our papers I shall stick to dis-
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cussion of these elements in terms of holographic renormalisation, which means considering
how to renormalise massive scalars and the metric.

To calculate well-behaved quantities therefore we need to regularise and then renorm-
alise the action, through

Sren = Sreg + Sct . (620)

We construct the regularised action Sies by simply choosing a cutoff point for the bulk
coordinate in the theory labelled ¢ > 0, which if we took to its true limit of ¢ = 0 would
lead to divergences. After regularisation we work through the machinery of holographic
renormalisation to locate the divergences fully, then apply constrained counterterms to
remove these divergences. Once removed, we finally take the limit ¢ — 0 and obtain a
renormalised, finite result.

For a scalar field ¢ coupled to gravity, we shall be considering a base action of the form

1 </ 4/ —G [RG +G‘“’8M¢81,¢+2V(¢)] / d%ﬂK) )
M 2 9

S|G, ¢ = §7Ga
(6.21)

M
where the cosmological constant is absorbed into the definition of the potential V' (¢), G .,
is the d+ 1-dimensional metric with determinant G' = det G, and related Ricci scalar R,
and the second term is the GHY term explained previously. This will be recast in terms
of the boundary fields and their leading falloffs which are of most importance (in our case

9(0),ab a0d ¢(g)), and then regularised with the cutoff €, leaving a regularised action as

Sreg [9(0)7 ¢(0)5 €] = Shon-ren [9(0)7 ¢(0)} . (6.22)

Tr5=¢€

This action will contain the express divergences which must be dealt with, along with
the finite terms which dictate the theory and terms of higher order in e which will be
irrelevant after renormalisation. With the divergent terms located we can construct the

action containing the counterterms Sct, which will be fashioned as

Set [g(x’ 6)7 ¢(xv 6); 6] = *Sreg [9(0)7 ¢(O); E](9(6)<60 ) (623)

i.e. it is formed of the negative of terms with a factor of epsilon of order less than . Whilst
the regularised action is expressed in terms of the leading boundary expansion coeflicient,
the counterterm must be expressed in terms of the full fields living on the boundary
(which are dependent upon these coefficients and simplify to them in the full limit) to
satisfy covariance. Finally with the counterterms removing any possible divergences we
combine the regularised action with the counterterms and take the full limit of € — 0 to

determine the renormalised action

Sren [9(0)7 ¢(O)] = lg% (Sreg [9(0)7 (Z)(O); 6] + Set [g(a:, 6)7 ¢(:U7 6); d) : (624)

€
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This renormalised action therefore defines for us a generating functional for renormalised
correlation functions. After this renormalisation process, we can vary the renormalised

action with respect to the fields to find

3Srenlgtorr 0] = [ d“%ﬁ( To)dgih + (0)og ) (6.25)

which now allows us to determine the one-point operators through the relations

1 6Sren

= e (6.26)

and
2 5Sren

= 6.27
V9(0) 59(3) () (6.27)

It will also be useful to express these relations in terms of the full fields on the boundary,

which we shall detail later. We now turn to some concrete examples. Although we will
require the full action of Einstein-Hilbert gravity coupled to scalars, we will study each

piece of the action individually and will then combine in a later section.

6.3.1 Einstein-Hilbert Gravity

As gravitation makes up a large area of our study, we must determine how to deal with
the metric in terms of renormalisation. For holography we shall be dealing with Einstein-
Hilbert gravity, which will take the action introduced earlier in eq. 5.17 with cosmological

constant A giving

1
Spg = ——— </ d™ay/—g(Rg — 2A) — 2/ ddx\/—vK) : (6.28)
16mGar1 \Jm OM
where again R¢ is the Ricci scalar of the full d + 1-dimensional metric G, which has a
related Ricci tensor Rfjl,. The variation of this action produces the Einstein equations

1
RG, — S B6Guw — AGuy =0, (6.29)

which we wish to solve to be able to determine information about our operators and
boundary falloffs. For the AdS metric we have been considering with a generalised d-
dimensional sector appearing as
1.2
ds* = = (dz2 + gap(z, z)dm“dmb> , (6.30)

we may expand gqp as

9ab(7, 2) = 9(0).ab(®) + 2°9(2) b (@) + - .. + 2900 a0 (2) + 2 gy ap(2) log 22 + ..., (6.31)
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with the logarithmic piece appearing only in even dimensions for d. This metric and ex-
pansion are useful and will be the metric we employ for holographic renormalisation in
one of our papers, however it is conventional to switch to another metric for the renor-
malisation arguments, which we shall follow. All results found are transferable between
metrics. For this we make the substitution p = 22, which transforms the metric to the

Fefferman-Graham form [183]

L2 L2

ds®> = Gdatdx” = 17 dp? + 7gab(x, p)dm“dmb , (6.32)

where now the d-dimensional part is given by

9ab(@,p) = 9(0)an(®) + - -+ P 9@y v () + pPhigyaplog p+ .. . (6.33)
This metric and expansion lead to the following Einstein equations

P29, — 2(9'97" 9 )ab + Tr(9™ "9 ) 9] + L*Rap(9) — (d — 2) gz — Tr(g™ ' g')gap = 0
VaTr(g'g") = Vg =0
Tr(g~'g") - %Tr(g‘lg’g‘lg/) =0,
(6.34)
where a prime denotes a derivative with respect to p and V, is the covariant derivative
with respect to g.p. If we consider these equations order by order in p we may find the
coefficients in the expansion of 6.33. At leading order we may set p = 0 in the first equation

of 6.34 to retrieve
1 1
9(2),ab = i—2 (Rab - 2(d—1)Rg(0)’“b> ) (6.35)

and this can be repeated further for higher orders. Using what we have found so far then,
we can regularise the action by setting a cutoff € > 0, entering our metric expansion, and

integrating. This gives a regularised action of

SEH,reg = ! </ dde\FG(RG + 2A) — 2/
p>e

167TGd_|_1 p=¢€

d%ﬁK)

) (6.36)

d 1
_ d _a 1 B
167Gy / @ [ /p dr pd/2+1\/§+ /2 (4p9p\/9 2d\/§)] :
which can be shown in its divergent form as [177]

1

SEreg = ————
EH,reg 167TGd+1

/ddm‘\/g»o (e*d/2a(0) + 67d/2+1a(2) +...—log ea(d)> +0(%) , (6.37)

where the functions a(p) are conventional and in terms of constants or curvature quantities,

such as

2(d—1) R L?

o) = 72 a(2) = 2(d _ 1)’ Q) = 2(d _ 2)2

1
<RabRab - d—1R2> . (638)
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By eq. 6.23 we see that our counterterms must be the negative of these divergent terms
living at the boundary, and so we induce a metric at the boundary p = e through 4, =
(L?/€)gap, which has determinant v = (L??/e?)g. As we have actions in terms of 9(0), We
will need to invert eq. 6.33 to find them in terms of . Inverting as a perturbative series,

we find

1 B 1 _ _
V90) = Vel <1 —5€ r[3"(9(0%9(2)) + §62[(Tf(9(0;9(2)))2 + TT(g((&g(z))Q] +.. > . (6.39)

This allows us to now write our counterterms at the boundary, which is given by (after a

lot of calculation)

1 1
=1 €d— 1)+ ——
S 16ﬁGd+1/p:€ﬁ[( )+ 5= Rb]
(6.40)
o (RO — L pi) Clogeay +
(d—4)(d—2)2" et 4(d—1) R

where Rgg) and R[y] are the Ricci tensor and scalar based on 7, respectively. When
restricting to a particular dimension, the number of applicable terms changes. For even
dimensions, only the first d/2 terms must be kept along with the logarithmic term; for
odd dimensions, only the first (d 4+ 1)/2 terms are to be kept. With our actions now in
terms of the induced metric, we can look to the form of the energy-momentum tensor.

The form presented earlier can be modified to be in terms of the full field through

(T = — S5ten 2 Oreg + S) (6.41)
VI© 095 () =0/g dge(w,€)

From this we can recast this in terms of the induced metric on the boundary p = € by the

relations presented earlier,

. L2 2 §(Speg + Set) , L=z
=t (e 5 ) = (1) o

where Tgb is the energy-momentum tensor at the boundary p = €. This boundary tensor

can be split into its two constituent parts as T, = T,,® + T<f, arising from Syeg and Se
respectively. We can find general forms for both of these energy-momentum tensor pieces
so as to be able to find the full tensor. The first piece, 778, is the much simpler of the
two. From the definition in eq. 6.37 we can write it as being comprised of the extrinsic

curvature tensor K, and its trace as

reg 1
ab 871G 41

! (1 — dgab(xa 5) - aegab(x’ 6) + gab($a 6) Tr[g_l(a:, e)aegab(xv 6)]) .

(Kab - KP)/ab)
(6.43)

- 8TG 41 €



96

Moving on to the counterterm piece, we can now make use of the counterterm action we
found earlier in eq. 6.40 and therefore take the functional derivative with respect to the

induced metric to find

1 1
ct — d—1
1 d—
— | =V?Rg + 2Rapeqa R + VaVbR
(d—4)(d—2)? [ 2(d—-1)
L _ 1 ecd % 72 a(d)
Q(d_l)RRab 5 ab <RdR 4(d_1)R d_lv R)] T loge ) ,

(6.44)
where the term T;lfd) corresponds to the energy-momentum produced when considering
the term proportional to a(g) in eq. 6.40. It can be shown that for even dimensions this

term is related to the term appearing in the expansion of the metric of i) through

d

a

T = —5haab - (6.45)
Finally with these relations for 7;® and TS we can move on to calculating (T,;). For this
part we shall specify d = 4, as that is the case we shall actually want to consider in the
papers (to replicate the realistic 4D world) and each dimension has very different results.
To do so we shall also need to rewrite both expressions in terms of g(g), which will require

inverting the Ricci tensor. This is found through

1
Rao[] = Rap [900)] + € (2Rac l9)] B [900)] — 2Racva [90)] B [9(0)]
) (6.46)
*gvava [90)) + V*Ray [900)] = 5V R [900)] 9(O)ab> +0(e) -

Combining our results and taking the functional derivative, we arrive at the result (where
we have now dropped all arguments in the curvature tensors, which are to be understood

as all calculated from g(q))

(T [900)]) =

1 1 B ) .
87Gt1 g%[ <_g(2)ab +9(0)ab Tr(9(0)9(2) + 5 e = 49(0)abR>

+ log € (*Qh(4)ab — T;b(d)>
1 _
= 29(1)ab — M(ayab — 92)ab Tr(9 g ) 9(2)) = 39()ab Tr(g((ﬁg@))?

C Ci 1
3 <RacRb — 2Rupea R — gvava + V2R — 6V2R(0)ab>

1 1 cd 1 2
_19(2)1117]% + gg(O)ab <RcdR - éR >:| .

(6.47)
We can see that straight away our formula for Tséd) in eq. 6.45 specified for d = 4 will

remove the logarithmic divergence. Employing another result we have found, we can input
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the value of gy, we found in eq. 6.35 to see that the 1/e divergence is removed. Finally

using the first Einstein equation in 6.34 we can calculate l(4)qp, and from this we find

1, _ 1 _
h(g)ap = 5(9@9(2))31) ~ 390t Tﬁ”(g(oiga))2
1 _
t3 <cha9(2)bc + VVi92)ac — V292000 — VaVs Tr(g((ﬁg(z)))
1

8 48 16 96 96 32

(6.48)
Entering this expression as well, all divergences have now been removed and we can take

the limit of € — 0 to calculate the fully renormalised energy-momentum tensor of

2
Tp) = — =
(Tap) S7Gan

1 _ _ 1, _
(g<4>ab - < | (Trlg)9)) = Trlo)92)?| - 5(o0)90)%

) (6.49)
—i—zg(g)’ab Tr(g(_()%g(g)) + (scheme dep. h(4))> .
As we can see, in the d = 4 case we have retained an undetermined tensor g(4),, which

is exactly as expected. Scheme dependent terms can also enter through local finite coun-

terterms.

6.3.2 Massive Scalar Field

One of the major components we will need to renormalise is a scalar field. We can consider
the action of a massive scalar field

Sy = % / ™o/ ~G (G* 9,00, ¢ + m*¢?) | (6.50)

where m is the scalar mass and G = det G,,. As we will later be examining scalars in
potentials we may think of this case as a scalar with potential V' (¢) = —m?¢?. Obviously
when more complex potentials are explored there will be extra terms to be renormalised.

For the AdS metric we have been reviewing of

L2
ds® = o) (d,22 + gabd:r“dxb) (6.51)

we shall take the ansatz of the scalar field to be
o(z,2) = zdiAq;(x, z), (6.52)

where we expand the field &(a:, z) around the AdS boundary at z = 0 as

d(x,2) = g0y (x) + P2hay (@) + ... + 2% (x) . (6.53)

Once again however we switch to the Fefferman-Graham form, which causes the expansion

of the field to change to
$(w,p) = p=N(x, p) | (6.54)

1 1 1 1 1 1
= —Rapea R4+ —V, VR — —V2Ryy, — ﬂRRab + (VQR + —R*— RCdRCd> 9(0)ab -
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and
O(z,p) = d0)(2) + poa) (@) + ... + p ) (2) . (6.55)

A massive scalar field must obey the related Klein-Gordon equation
(O —m?)¢ =0, (6.56)
where g is the Laplacian

Oa¢ = (VGG™d,9) . (6.57)

1
—0

a o
Entering the definition for ¢ in eq. 6.54 with expansion eq. 6.55, we therefore find that

the scalar field must satisfy the relation

) ) ’ (6.58)
— (d = A)pg(z, p)d,log g — 2p° 0,0 (x, p)Dplog g — 4p* Db (x, p)

where Og¢ = ﬁ@a(\/ﬁgababgb), g = det gqp. We can explore this relation order by order

to find out more. In the limit p — 0 we see that we find
(m2L2 — A(A — ), p) = 0., (6.59)

which corresponds to the scalar mass condition found previously in eq. 6.15; this must be
satisfied even when p # 0. Applying this condition we can continue examining eq. 6.58,

and so inputting the expansion in eq. 6.55 gives

0@.) = 55— =g (Owdo @+ (d = Mow(@) Tlaglse) (660

where Uy, is the Laplacian with respect to gy and Jacobi’s formula of %det At) =
(det A(t)) - Tr (A(t)_1 . %gt)) has been utilised. This analysis may be recursively applied
by differentiating eq. 6.58 and entering the form found for each expansion coefficient.

As an aside let us quickly look at the limit g, — d4p, such as is the case for locally

regular AdS. In this limit eq. 6.60 simplifies to

1
P2)(,p) = mﬂ@(o)(@ ) (6.61)

where Os = 6%°9,0,. If we compute the recursion as mentioned in this case, we see that

there is a general formula of

1
Pan) (T, p) = 202D —d— o) Osdan—2)(z, p) - (6.62)

Evidently, there is a problem with the general form at a particular terminating point

satisfying 2A — d — 2n = 0 which will also appear in the specific forms at 2A — d —
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2 = 0 due to the denominator becoming zero. This will only occur in even dimensions
when the conformal dimension is an integer or in odd dimensions when the conformal
dimension takes a half-integer value. In these situations the expansion must be modified

(2A—d)/2

by introducing a logarithmic term at the p order as

3w, p) = d(o) (@) +pd(e) (@) +. ..+ P2V 2($on_g) (@) +log(p)2a—a)(x)) +- . . (6.63)
However, when we enter this expression back into the scalar field equation we find this
means that ¢a_g) is no longer determined by the equations of motion, but ¢(3a_g) is

through the relation

B 1 A—d/2

Reverting back to the general form of the metric the situation is similar and ¢@aa_q) will
not be determined, however we can find ¢(3a_g) such as in the case 2A — d = 2, which is
given by
1 1 _
¢(2) = 4 (Dgo¢(o) (z) + ) (d—2) ¢>(0) () Tr(g(oig@))) . (6.65)

We can now move on to regulating and renormalising the scalar case. Integrating
over the bulk past the finite cutoff p > €, we find (using integration by parts and the
Klein-Gordon equation 6.56)

1

Spwes =5 | AT aVG (G 0,00,6 +m?¢?)
p>e
-2 / A" VG ¢(x,€) (~Oa +m?) p(x,€) — E / Az GgPP(x, €)0ed(x, €)
2 p=e 2 p=¢€

1 - _ -
=141t / Az g(x, €)e?/?A [2(d — N)d*(z,€) + €, €)0cp(x, e)] .
p=¢
(6.66)
We may now write this in a way that exemplifies the divergent terms by expanding out

the fields, giving the regularised action as

S¢reg = L1 /dda: 9(0) (ed/%Aa(o) + ed/Q*AHa(g) +...— logea(m,d)> + 0O(%)
(6.67)
where the functions a(,) are again conventional and in terms of the leading boundary
fall-off ¢g), e.g.

1 1
Q) = _i(d - A)d’%o), 2 =73 Tl"g(z)éf)%o) + (d = A+1)90)P(2) - (6.68)

As we have that A > d/2 there will be only a finite number of divergent terms that

need renormalisable treatments when we finally take the limit € — 0; if there were to be
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infinitely many that needed counterterms we would call the theory non-renormalisable. At
this point we know exactly which terms will cause our divergences, and so we know that our
counterterms must be exactly those which cancel them out. As we stated previously, our
counterterms need to be constructed with the fields living at the boundary for covariance,
and so we require ¢g), ¢(2), €tc. in terms of ¢(x,€). To calculate these we invert eq. 6.54

with expansion 6.63, giving (with some caveats depending upon the value of 2A — d)

1
_ —(d=A)/2 A
b0y (T) =€ (qﬁ(w,e) 20A —d—2) Lo(z,€) + .. > . (6.69)
With these inversions, we can write the counterterms as’
d—A
Set = /ddaz\f’y [2¢2(:1:,6)
+ m (¢(xaf)Dv¢($7f) + mR[’Y]ﬁs (3376)> +...
(6.70)
Similarly to the pure gravity case, we can write the one-point function as
Oy= L O8en iy, 1 gt ) (6.71)
VI0) 00y (x)  =0/g  p(z,€)
which can then be put in terms of the boundary v, as
LY 1 §(Sreg + Set)
= li — > : 72

6.3.3 Scalar-Gravity System

With both sectors understood in terms of holographic renormalisation we can move on to

the situation where we include a coupled scalar+gravity system through
Stot = SEH + S¢ , (6.73)
which allows for a backreaction of the scalar field satisfying the Einstein equations

1
Ry — 3Gy R = AG = 87GT,,, . (6.74)

2This is valid when we have the condition A < d/2 + 2, except when the condition 2A —d = 1. In this
case, the coefficient of the term in parentheses is modified from 1/[2(2A —d — 2)] to —1/4loge.
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If we take eq. 6.32 to be the metric we consider again, along with eq. 6.33 to be the

expansion of the d-dimensional part, we find the Einstein equations

p290—2(997"9) y + Tr (97'9") gow) + Rav(9) — (d —2)gh, — Tr (97 '9") ga

A —d)A
= 87TGd+1pd7A71 |:(d—1)¢29ab + Paa¢8b¢:|
-1 7 b 1 d—A—1 d—A
VaTr(g7'g") — VPguy = 167G at1p 5 $0ud + p0,$0at
) 1y, o [dA—d)(A—d+1)
Tr(97'9") = 5 Tr (97'9'g™"g') = 167G usp™ 272 { =T ¢
+(d = D)ppdpd + 92 (9,0
(6.75)

which obviously reduce to equations 6.34 in the limit ¢ = 0 as it should do. In this
system, much of the machinery we have presented is still applicable, except now we must
contend with backreaction. We therefore will have to solve the coupled equations 6.75
and 6.58 which will involve inserting both sets of expansions, for the scalar field and the
metric. Although the exact details will be very case specific, generally the formulae we have
derived do apply except with certain extensions to take into consideration the role of the
scalar field. Specifically for example, when working through the Einstein equations 6.75
we will now find that the falloffs of the metric expansion will depend upon the boundary

coefficients of the field which relate to the source and vacuum expectation value of the

field.

Field Theory on Boundary Gravity in Bulk
Generating Functional W[.J] Regularised Action Sreg[]
Renormalised Generating Functional Wyep[J] Renormalised Action Syey[¢]
RG Flow Bulk radial geometry evolution

Table 6.2: The additions to the holographic dictionary from holographic renormalisation.

Finally, we note a few of the dictionary discoveries we have made along the journey
during holographic renormalisation in table 6.2; remembering these will help with under-

standing how quantities have been related during the research later in the thesis.

6.4 Fluid/Gravity Correspondence

A caveat that we have so far left out is that all of our considerations for the duality so far

have necessarily been at zero temperature; an energy scale drops out of the discussion due
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to conformality ensuring physics is the same at any energy scale. Naturally for physical
problems we expect to be able to describe things in terms of a temperature, and so we
need to find a way to incorporate this. Fortunately, we have already come across the
constituent ideas necessary for this type of discussion. In subsection 3.2.1, we discussed
that to translate QFT from zero temperature to finite temperature we needed to Wick
rotate the time direction, and therefore the temporal dimension becomes compactified on
a circle. We find that for string theory, this takes our stack of D-branes to a stack of black
D-branes, the string theory description of black holes in extended dimensions.

This promotes the supergravity background metric 6.1 to (specifying to d = 4,p = 3)
3 .
ds* = H-'2(r) | = f(r)dt® + > (da®)?| + H'2(r) [f7(r)dr® + r2dQ3] (6.76)
i=1

where dQ% is the 5-dimensional sphere metric, H(r) is the warp-factor defined the same

as in 6.2 with p = 3, and f(r) is the blackening factor defined through
Th
fr)=1-—=2—, (6.77)

which is specified at p = 3 for our case. Taking similar limits as for the zero-temperature
case, as 7 — 00 we again recover exactly the same situation with flat Minkowksi at the
boundary. In the other limit at /L < 1, we can again take H(r) ~ L*/r* and rewrite
the metric as

L? 2 5 ~ A\
ds? = = |- <1 — z4> dt? + Z(dw’)2 + (1 - z4> dz?
i=1

h h

+ L2d02 (6.78)

where we have used the substitution z = L?/r and 2z, = L?/r,. As we can see, the metric
is almost identical to what we found previously, with all sectors sharing the same radius
L. In fact, if we remember at the very beginning of our discussion the form of eq. 2.30
with D = 5, we see that the anti-de Sitter portion of the metric has simply been modified
to also contain a Schwarzschild black hole. Our space has therefore been modified to
AdSs-Schwarzschild xS? when considering the inclusion of temperature effects.

We may even check that our usual determination of temperature is still valid. As we
said previously, to find a temperature we must Wick rotate and so we take 7 = it and also
define a new coordinate

(6.79)

This leaves our metric looking like

3
d2—4—p2d2 L dz')? + dp? 6.80
5—227+Z22(3:)+p+..., (6.80)
h h =1
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to lowest order in p, where . .. signifies the higher order terms and also the 5-sphere metric

which is unaffected. We may make a further identification of the time coordinate as
2
d¢ = —drt (6.81)
Zh
which is a direct comparison of eq. 2.40 and near the horizon this leaves us with

ds? = dp® + p*de? . (6.82)

Again periodicity must be imposed to avoid a conical singularity, and so integrating eq.

o T o
/ dp = / 2 (6.83)
0 0 Zh

means we find a Hawking temperature for this setup of

6.81 exactly like eq. 2.41 as

Ty =— , (6.84)

which is plainly just 2.42 with a particular choice of f(r) and g(r). With the temperature
of the system in hand, all other thermodynamic quantities can follow from it, and so we
can form a complete thermodynamic picture of a QFT from the thermal description of the
black hole on the gravitational side. This leads to questions such as what phase transitions
in a field theory translate to for a black hole system. This is obviously dependent upon
the type of phase transition the system is experiencing, but generically what it indicates
on the gravitational side is an instability of the black hole system [184, 185].

Overall then we have found that at finite temperature the AdS/CFT correspondence
must contain a black hole in its interior which provides thermodynamics through the usual
black hole thermodynamic relations. We list these additions to the holographic dictionary

in Table 6.3.

Field Theory on Boundary Gravity in Bulk
Finite-Temperature Field Theory AdS-Schwarzschild
Temperature T Hawking Temperature Ty
Phase Transition Black Hole Instability

Table 6.3: Extended holographic dictionary at non-zero temperature.

Evidently this case we have studied is specific to N' = 4 SYM theory and we have
found a thermodynamic theory from it; this is known as the top-down approach. There

are in fact two ways to go about studying the AdS/CFT correspondence:
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e Top-down: In this approach one starts with a superstring theory and tries to find a

field theory similar to their real-world problem.

e Bottom-up: In this approach one starts with the field theory they want to study and

attempts to construct a string theory which approximates the situation.

In our papers we shall always be using the bottom-up approach.
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Chapter 7

Paper I: Gravitational Waves from

a Holographic Phase Transition

Abstract

We investigate first order phase transitions in a holographic setting of five-dimensional
Einstein gravity coupled to a scalar field, constructing phase diagrams of the dual field
theory at finite temperature. We scan over the two-dimensional parameter space of a
simple bottom-up model and map out important quantities for the phase transition: the
region where first order phase transitions take place; the latent heat, the transition strength
parameter «, and the stiffness. We find that « is generically in the range 0.1 to 0.3, and is
strongly correlated with the stiffness (the square of the sound speed in a barotropic fluid).
Using the LISA Cosmology Working Group gravitational wave power spectrum model
corrected for kinetic energy suppression at large o and non-conformal stiffness, we outline
the observational prospects at the future space-based detectors LISA and TianQin. A TeV-
scale hidden sector with a phase transition described by the model could be observable at

both detectors.
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7.1 Introduction

Spontaneous symmetry breaking of gauge theories is a fundamental ingredient of nature,
which can manifest itself in the early Universe as a phase transition [186, 187]. In partic-
ular, when temperatures were in the range 100-1000 GeV, there may have been a phase
transition associated with the breaking of the electroweak symmetry. If this was a first or-
der transition, gravitational waves would have been produced through bubble nucleation,
collision and counter-propagating sound waves (see e.g. [188]). There is a strong possibility
that they would be of the right frequency to be observed by a space-based gravitational
wave detector such as LISA (Laser Interferometer Space Antenna) [189]. LISA will be
sensitive to gravitational waves in the frequency range 1 to 10 mHz with characteristic
strains of order 10~2!, and hence to phase transitions occurring at around 10~2 seconds
after the big bang (see e.g. [2]).

The standard model electroweak transition is known to be a crossover [10, 11, 12],
however, even minimal extensions may allow a first-order transition [190, 191, 192, 193,
194, 195, 196, 197, 198, 199]. One class of extensions invokes strong dynamics just above
the electroweak scale, which triggers electroweak symmetry-breaking, while addressing
the hierarchy problem (see e.g. [200, 201]). Strongly-coupled field theories are notoriously
difficult to study quantitatively. Holography is a technique for simplifying calculation
by translating these complex strongly-coupled field theories into more tractable weakly-
coupled gravitational theories [202, 167, 203].

Cosmological phase transitions in holographic models have been studied mostly in the
context of Randall-Sundrum models [87, 88, 89, 91, 204, 205, 206, 207, 208, 209, 210, 211,
212], where there is a first order phase transition between a black brane geometry and
a horizonless geometry. From the field theory dual point of view this is interpreted as a
confinement transition [156]. More recently in [213], this approach has been extended to
the confinement transition in a model based on a string theory construction, the Sakai-
Sugimoto model [214]. In addition [213] also studied chiral phase transitions in the same
model. The chiral transition is realised through probe branes in a fixed black brane
background entering the horizon [215, 216].

Gravitational wave production has been studied in Randall-Sundrum models [88, 206,
207, 208, 210, 211, 212], and recently in the context of the above-mentioned Sakai-Sugimoto
model [217]. It should be noted that all these studies are based on static configurations.
Dynamical evolution of strongly coupled theories close to a phase transition has been

studied in the context of applications to heavy ion collisions and condensed matter [218,
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219, 220, 221], including dynamical phase separation in three-dimensional [222, 223, 224]
and four-dimensional [225, 226, 227| theories.

In this paper we study a phase transition in a simple bottom-up holographic model, cal-
culating the equilibrium parameters which are most important in determining gravitational
wave signals. We scan over the two parameters of the model, showing that the transitions
are generically “intermediate” in strength in the classification of Ref. [118], meaning that
the transition strength parameter at the critical temperature (the fraction of the energy
available for conversion to kinetic energy and thereby gravitational wave production) is
a = 0(1071). Strong transitions (a = O(1)) are also possible with supercooling. We find
a strong correlation between « and the stiffness at the critical temperature, meaning that

the speed of sound can be quite different from 1/+/3.

We then study the implications for gravitational wave production and observation,
using the LISA Cosmology Working Group model [228] as a starting point. We take into
account recent work on kinetic energy conversion at strong transitions [118] and when the
stiffness is different from 1/3 [116], and include an improved treatment of the effect of the

finite lifetime of the source [112].

We find that the transitions in the holographic model are strong enough to be easily
seen at LISA (and the similarly configured Taiji [7]), and possibly even TianQin [122], if the
peak frequency is in the range of the maximum sensitivity. The condition of observability
constrains a combination of the transition temperature, the transition rate parameter, and

the wall speed.

The rest of this paper is organized as follows. In Section 7.2 we review the putative
first order phase transitions and their relation to properties of expanding bubbles in a
cosmological context. In Section 7.3 we will describe the holographic model [229] and
its black brane solutions. In Section 7.4 we compute the thermodynamic quantities of
interest from the holographic model. Equipped with the equation of state across the phase
transition, in Section 7.5 we make a scan over the free parameters of the holographic model
and find the regions of the parameter space in which a strongly first order phase transition
exists, and the relevant thermodynamic parameters for gravitational wave production. In
Section 7.6 we will determine if the signal as extracted from the holographic model is in
the sensitivity window of future gravitational wave detectors. We conclude in Section 5
with a discussion of our findings and some thoughts on future developments of our work.
Appendices A and B contain details of the holographic renormalisation and the numerical

procedures we implement, respectively, and Appendix C contains details of the power
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|9]

Figure 7.1: The thermal potential for varying temperatures. T' > T, is the limit in which
the potential is symmetric around ¢ = 0, T' = T5 is the temperature below which a second
minimum appears, T, is the critical temperature at which there are degenerate minima,
and T = T7 is where the first minimum at the origin disappears and the second minimum

becomes the only equilibrium state.

spectrum model, describing the modifications to that of Ref. [228] we have introduced.

7.2 First order phase transitions

First-order transitions from an ‘old’ to a ‘new’ phase proceed through the nucleation of
bubbles in the old phase, with an order parameter jumping discontinuously at the trans-
ition temperature. Coleman [96, 97] was the first to analyse how a metastable phase could
decay through vacuum quantum fluctuations via bubbles nucleating containing a stable
phase at zero-temperature in a cosmological setting. Later on Linde [94, 95| general-
ised Coleman’s work to bubbles nucleating at a non-zero temperature. Collision of these
bubbles would be an extremely energetic process, leading to gravitational waves being
produced in a possibly observable way [230]. Accurately estimating the power spectra of
the signal is of great import as detection of cosmological gravitational waves would be
strong evidence for physics beyond the Standard Model (see [228] for a review).
Fluctuations in the old phase trigger the nucleation of bubbles of the new phase.
These bubbles would then collide and merge until the Universe would saturate with the

new phase, at which time the phase transition would be complete. The generation of
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bubbles and whether conditions are right for them to proliferate is described by four main
parameters: transition strength «, transition rate 8, nucleation temperature Ty, and the
wall speed v,,. Recently, it has also been pointed out that the sound speed, controlled by
the stiffness dp/de is also important [231, 116].

The important temperatures in a phase transition are as follows. First, the critical
temperature 7., where the free energy of two competing phases first becomes equal, as
shown in Fig. 7.1. Bubble nucleation takes place at a lower temperature Ty < T, where
the phase transition actually takes place. Between these two temperatures the system is
in a supercooled state. The supercooled state can persist to a minimum temperature 77,
which may be zero.

Another important quantity of a first-order phase transition is the difference in the
trace of the energy-momentum tensor between phases, which is the energy available for
conversion to shear stress and so dictates the power of the gravitational wave signal. This
is quantified in a dimensionless transition strength parameter «, which we define below.
We first note that the plasma enthalpy w, pressure p, and energy density e are all related
by w = e 4+ p. We also introduce a useful quantity 6 that is proportional the trace of the

energy-momentum tensor:

1
93,17 - Z (es,b - Sps,b) ’ (71)

where the s/b subscripts represent quantities in the symmetric and broken phase, respect-

ively.! The transition strength parameter is then defined as

o= g(g;a‘) . (7.2)

Another quantity which is closely related is the latent heat, found at T, by
L =ey(Te) — en(Te) = 4(0s(12) — 0u(10)), (7.3)

with the second equality following from the definition of the critical temperature, p,(7T,) =
ps(T¢). If the latent heat is comparable to the radiation energy density of the universe, we
call the transition strongly first order. In terms of the transition strength, this happens
when a ~ 1. We also call @« ~ 0.1 intermediate, and a > 1 very strong, following
[232, 114, 118]. The parameter « is a primary focus in this paper, as it can be directly

accessed through a holographic calculation, and we will expand on it later.

"We use the terms “symmetric” and “broken” for the two phases, following the convention in gauge
theories. As we are considering cooling through the transition, the symmetric phase is the ‘old’ phase and

the broken phase is the ‘new’ phase.
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Bubble walls are assumed to expand at a constant speed vy, [233], which is determined
by how the wall interacts with the surrounding plasma in the interplay between bubble
expansion and frictional forces [234, 125]. Fluid friction is thought to prevent runaway
acceleration in phase transitions in gauge theories, although the details of the interactions
between the particles of the plasma and the wall are under debate [235, 236, 237]. Ref.
[238] recently showed that in confining transitions, the LO “leading order” pressure (the
pressure from the partial conversion of the quark’s momenta before entering the bubbles
into hadron masses [239]) is in principle enough to ensure bubble walls do not runaway
asymptotically. The wall speed is of particular importance as it impacts the kinetic energy
production, and hence the gravitational wave power.

Another important parameter is the transition rate

j= ()

where I'(¢)/V is the nucleation rate per unit volume in the symmetric phase. This is

; (7.4)

t=ty

evaluated at a time ?; which is at the temperature where the nucleation rate averaged
over the whole universe peaks, and can be used to define the nucleation temperature
[188]. From these quantities the scale of the theory in the form of the typical bubble
separation is set by

UV

R, x 3 (7.5)

The proportionality factor is an O(1) number, which specifically for weak transitions is
(8m)1/3. As it is not known what the factor is for all transition strengths, we will use this
number as a first approximation.

Finding 8 involves a calculation of the effective action for non-constant fields, which
is a straightforward procedure in a weakly coupled theory, but in a holographic set-up is
challenging enough to merit a separate treatment. Holographic methods for calculating
¥y in this theory do not yet exist. When studying gravitational wave production we will
therefore treat them as free parameters.? For studying gravitational wave power spectra

the more useful scale-setting combination is R..

7.3 Holographic setup

The gauge/gravity duality is a powerful tool to deal with strongly coupled gauge systems
and their phase structure, as strongly coupled systems on one side can be translated into

weakly coupled systems on the other. The duality provides a “holographic dictionary”

2In weakly coupled theories, there are interesting correlations between 3 and « [240, 241].



111

which describes an exact linkage between quantities on the d-dimensional field theory side
to quantities on the (d+ 1)-dimensional gravitational side, with surprising success in areas
such as heavy ion collisions [202, 167, 203]. Using the duality we are able to calculate
quantities relevant for gravitational wave production in phase transitions, which would
otherwise be very hard to compute.

The model consists of gravity coupled to a bulk scalar field, with the following action

Shon-reg = jg / d°z\/=g (f — % PO — V(<z>)> + ng /8 y d'z/—K , (7.6)
where the first term is the (4+1)-dimensional Einstein-Hilbert action and the last term is
the Gibbons-Hawking-York boundary term [242, 243], with -y representing the determinant
of the induced metric on the boundary and K giving the trace of the extrinsic curvature.
The potential for the scalar field V' (¢) is defined in terms of a superpotential W (¢) which
was introduced in this holographic setting by [244]. It is worth pointing out that the
system is not expected to be supersymmetric and invoking the superpotential is merely
a mathematical trick which allows to find solutions by solving a simpler set of first order
equations [245]. By analogy with supersymmetric systems we we will dub the solutions to
the first order system as “BPS” (Bogomol’nyi-Prasad-Sommerfield).

The general formula for the potential is as follows

V(g) =~ W)+ W(9)? (7.7

The superpotential is chosen as in [229], so as to provide the system with a first-order phase
transition. It is dependent upon two parameters that we will specify in the numerical

calculation (namely ¢pr and ¢g), and has the form

LW(¢) = -5 — 2 — L (7.8)

LB S (11 .
Lviey==s-=~% (3% 201, ¢Q>¢

1 6 s, 2 18) o 40
(12¢4 " Biva 3¢Q>¢ (3¢ b0 +¢Q)¢ 365

It is evident that both the potential and superpotential have a maximum at ¢ = 0. At

(7.9)

the maximum the second derivative of the potential (which determines mass) takes the
value m? = —3/L?. Following the usual holographic dictionary [246] for a massive scalar

in AdSs, the field ¢ is dual to a scalar operator O with a scaling dimension determined by

A(A —4)=m?L?. (7.10)



112

The larger solution determines the scaling dimension of the dual operator AL = 3. The
smaller solution corresponds to a coupling with dimension A_ = 1. We have deferred
details of the holographic renormalisation to Appendix A and hence speed forward to

discussing the solutions of the model instead.

LV ()

LW ()

Figure 7.2: Graphs of the superpotential W (¢) and potential V(¢) of the theory, with
interesting points shown. The superpotential and potential share the BPS extrema ¢;
and ¢4, whilst only the potential has the non-BPS extrema ¢ and ¢3. In this plot the

values used are ¢y = 0.5 and ¢g = 5.0.

The potential and superpotential share a minimum and a maximum, with the minimum
known as the BPS vacuum, but for some values of the parameters the potential also
contains two “non-BPS” extrema in between these points not present in the superpotential,
as seen in Fig. 7.2. The non-BPS minimum corresponds to a vacuum which persists to
zero temperature. Some values that realise this situation are the ones used in [229],
ém =~ 0.5797 and ¢ = 10.0; see also related study in [247]. At zero temperature there
can be solutions interpolating between the ¢ = 0 maximum close to the boundary and
either the BPS or the non-BPS minimum in the deep interior of the geometry. Each of
them correspond to different vacua of the dual field theory. At finite temperature there is
a competition between the phases associated to each of these vacua, but even for values of
the parameters where the non-BPS extrema are absent from the potential and there is a
unique vacuum at zero temperature, a new phase appears at large enough temperatures.

We will be interested in this last situation, so we only look at potentials for which
there are no extrema at ¢o,¢s (implying that at 7" = 0 there are less solutions) and
with values of ¢, < ¢4. Branches on the thermodynamic phase diagrams will arise from
heating up these vacua, with more discussion on the branch structure found in [229]. We

are interested in solutions interpolating between two AdS solutions, which is dual to RG
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flows from the UV fixed point at ¢ = 0 to the IR fixed point and so we are looking for
solutions where ¢ approaches the conformal vacuum ¢ = 0 at infinity due to this being
where the holographic duality is best understood. The reason for the IR fixed point is

that this guarantees that the zero-temperature solution is smooth in the deep IR.

7.3.1 Black brane solutions

In order to determine the thermodynamic properties of this system, we need to find a
family of black brane solutions. They can be parametrised by the horizon value of ¢
(denoted ¢y,), with ¢, approaching the value where the potential has a minimum at lower
temperatures and zero at higher temperatures. The zero temperature solutions for ¢
indicate that the field is monotonic with respect to the radial coordinate meaning we can
use the scalar field as a coordinate, and so we employ the same metric choice as [248],

which can be expressed in the Eddington-Finkelstein form as
ds? = 2 (—h(¢)dr? + dx?) — 2N IHBO) Lardg . (7.11)

The Einstein equations for this metric Ansatz are

A(6) - A(6)B(8) + 5 =0
W) + (44'(¢) = B'(9)(¢) = 0
gAl(@h/(@ + (64'(9)7 = Dh(9) +2e*P D L2V (¢) = 0 (7.12)
44'(¢) - B'(¢) + h(1<z>) (H(6) - 2POL2V'(¢)) = 0.

We observe that our scalar field is bounded by 0 < ¢ < ¢y, with the requirement that the
blackening factor goes to zero at the horizon h(¢y) = 0.

We emulate the master function procedure first introduced in [249], where by combining
the Einstein equations and derivatives thereof we can reduce the problem to only depend
on the “master function” and the potential. We consider a smooth “generating function”

which will be related to our metric components by

_ dA(9)
Go)=—35 (7.13)
Replacing this in the field equations and manipulating them we find
G'(9) d G'(g) 1 G'(9)
L AV dg) —4G(¢) - . (114
o+t w0\ o 5w Y G )

leaving us with a second order non-linear differential equation to solve. To reduce this to

first order equations more suitable for numerical integration, we introduce a new variable
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G/
HO) = G5

which when entered into the master equation, and after some further manipulation, yields

(7.15)

two differential equations to be solved:

G'(¢) = G(p)H (o) (7.16)
and
oo H(e) 2 8v1(¢) 1 4v1(9)
f“@_@+%$)2mw+m@+%m@+wwﬁ4“@0*sawﬂ'
(7.17)
Here we have set
O N - (7.18)

for brevity, with the last definition preemptively added. Further following the procedure of
[249], the next step is to find the series solution of the master equation around the horizon
®p, which translates to finding series solutions for both G(¢) and H(¢). By requiring that
the blackening factor goes to zero at the horizon, i.e., h(¢,) = 0, we can find an expression
for G(¢p) by combining the last two of the Einstein equations in (7.12) and evaluating
them at the horizon. Derivatives of the expression before horizon evaluation can give an

expansion up to any desired order. Taylor expanding around ¢y, therefore gives (denoting

Y(pn) =~")

4 4 1 vy — At 5
G(0) =~ [14 50— on) (2 10) | 4 00— 04) (719)
Y172
and
h h T h h h
vy — M 2 1 (3 =) 8, 2
H(g) = 1+w—¢m(r+ =23 8N Lo g2, (7.20)
70y L3 Ak (h—ap) 3"
with the condition for H at the horizon
dH 2 7 (-9 160f 3 4
~ tton) S S (r.21)
ds | 39y (=) 9 p 3

We also wish to know what is happening for these quantities at the other boundary in our
model, where ¢ — 0. Expansion for small ¢ of (7.19) and (7.20) gives a simple leading
behaviour

G(p) = —2=——4..., (7.22)

and

H(@)=—+... . (7.23)
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Once the master function is determined, the other metric quantities have a simple depend-
ence on it.
The first relation comes immediately from the definition of G(¢) (7.13), that we integ-

rate to obtain A(¢)

A(¢) = —log (1&) + /Od) <G(<P) + ;) de (7.24)

where A is an arbitrary constant which overall simply acts as a rescaling through the
magnitude of the scalar field non-normalisable mode. Rearranging the first of our field
equations (7.12) for B'(¢) and integrating gives us
¢ 2y
B¢:log(G¢)+/ : 7.25
() =1ox(GON + | 355 (7.25)

0

Finally, eliminating h'(¢)/h(¢) from the last two field equations in (7.12) leaves h(¢) in

terms of known quantities, taking the form

2B [2(4V (¢)) + 3G($)V' ()
3G7(9) '

With our differential equations and metric functions specified and our boundary conditions

h(¢) = — (7.26)

established in the form of horizon quantities (7.19) and (7.20), we now show how this
master function can be solved.

Analytic solutions to our system of equations are rare, only occurring for specially
selected master functions/potentials (see Ref. [250] where G(¢) = —1/(37)). Therefore,
as we are searching for specific solutions of a relatively complicated potential, we will need

to resort to numerical methods (see Appendix B).

7.4 Thermodynamics

The entropy and temperature in the dual field theory are determined by the Bekenstein-
Hawking entropy and Hawking temperature of the black brane. The entropy is propor-
tional to the area of the horizon while the temperature is proportional to the surface

gravity. These can be expressed in terms of metric components as

2 1 9y\/Grr
s= lim 2 \/(gre)?, T= lim — VI (7.27)
$dbn K2 o—=¢n 2T\ /Gog

Using the metric (7.11), we can read off the entropy density and temperature as follows
27‘( 3A(¢)h) eA(¢h)_B(¢h) ’
= — LT =——|h . 7.28
s= e, —] (7.29)
All of these functions are now readily evaluated at the horizon using the formulae

(7.24)-(7.26) found in Section 7.3. Evaluating h/(¢) at the horizon simply requires the use
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of either of the last two field equations in (7.12). Combining everything together, we find

the entropy density and temperature in terms of the master function

5= ig (fbf)gexp {3 /0 " <G(¢) + ;) d¢} (7.29)

T = _Awexp { /0 " (G(¢) ot 3(}2@) } . (7.30)

At zero temperature the theory becomes conformal at the fixed points (UV and IR), such

and

as the BPS-minimum ¢4, due to the zero temperature solutions being the vacuum solutions
which have (O) = 0,and therefore (T}/) = 0 which satisfies the condition for conformality.
It can be seen that the temperature must go to zero at this minimum by considering the
last Einstein equation in (7.12) and noting that for ¢ — ¢y = ¢4 we find h(¢pp = ¢4) =0
and V'(¢p, = ¢4) = 0. This readily leads to h'(¢p, = ¢4) = 0 which sets T" = 0 through
equation (7.28). We then expect the entropy density to tend to %g*T3 close to those

fixed points, where g, is the effective number of relativistic degrees of freedom of the

corresponding CFT. Defining a dimensionless and rescaled measure of the entropy

2 3 ®n

(7)o wmr = (mvan) = (L aw) o
we now have an expression purely depending on the master function and the potential.
We compare our calculation of s/T% with that obtained in [229] for particular values of
the parameters in the potential (¢ps ~ 0.5797,¢9 = 10.0) in Appendix B. Conformal
symmetry is achieved at high temperature, when the coupling to the scalar operator is
negligible compared with the temperature, and we approach the solution ¢ ~ 0 in the
gravity dual. Here our rescaled quantity tends to 1, and so this implies that our number
of degrees of freedom on the gravity side is

473

% - 27;; , (7.32)
which depends on the radius of curvature L and the five dimensional Newton’s constant
KkE = 87 Gs.

For the study of the phase transition, we will also need the energy density and pressure,
e and p. The pressure can be obtained directly from s and 7" using the thermodynamic
derivative

dp

5= (7.33)

which is easily integrable (numerically) to give

T ~ ~
p= /0 s(T)dT . (7.34)
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This is consistent with the holographic renormalisation analysis of Appendix A, in that the
vacuum contribution vanishes. The energy density is obtained through the thermodynamic
relation

e=Ts—p. (7.35)

Integrating numerically in this way introduces errors, which we checked by comparing to
the correct T* behaviour at high temperature and found matches well.

Another quantity we are interested in is the expectation value of the scalar operator.
As the energy-momentum tensor can be written as T),,, = diag(e, p, p, p), we may take the

trace and use the Ward identity>
(11) = —AO) (7.36)

to write

—(TF) =e—3p=AO) . (7.37)

We will fix units to m% /L3 = 1, so implicitly we are computing rescaled quantities such

as
~ /{2

(©0)="20), (7.38)

and similarly for the thermodynamic potentials. We plot the expectation value of the
scalar operator, as well as the free energy (f = —p) and the rescaled effective degrees
of freedom §, = g.k2/L? for various values of ¢¢ at fixed ¢ps in Fig. 7.3. These curves
are generated by varying the horizon value ¢y, which produces a different temperature for
each ¢y, point. The phase transition occurs between solutions where the order parameter is
(O) = 0 to solutions where (O) # 0. We first see that, as ¢¢ increases, f moves away from
its usual “swallow tail” first-order transition shape and the energy density and free energy
tend to the case with non-BPS extrema, i.e. with both phases persisting down to zero
temperature. The “kinks” in the swallow tail shape are a consequence of the positivity of
the entropy of solutions merging in configuration space. In the IR, the scalar field is non-
zero and will be most relevant to all physics considerations. In the UV region, however,
all operators tend to oc AT? and to very similar numeric values as well (no difference up
to the 13th decimal place for these examples). This is explained by noticing that in the
UV region we are considering the vicinity of ¢ — 0, which results in the potential acting

as

V($) = =3+0(¢°) , (7.39)

3For this particular model a possible contribution to the trace anomaly ~ A* vanishes, see, e.g., [251, 252]

and Appendix A.
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Figure 7.3: Free energy density f, rescaled degrees of freedom g,, and dimensionless scalar
condensate ((’3) over temperature for varying ¢¢g at constant ¢ ~ 0.58. The solid yellow
line on each plot shows the critical temperature 7T, the dashed yellow line on each plot
shows the last temperature at which the metastable phase exists 77, the green line shows

the stable phase, and the black dashed line on the middle row plots shows the asymptotic

value of g,.

independent of ¢y or ¢g values.

Recalling our definition for « (7.2) we now see that we have everything necessary for
its calculation, except for knowing how to split the energy density and the free energy into
their broken and unbroken phase sections. To do so we remember that the two different
branches of the free energy that cross each other on the free energy plot correlate to
the two different phases in question, and so the quantities we need are the sections of
these branches which exist simultaneously before the critical temperature T, as shown in
Fig. 7.4. The critical temperature is defined as the temperature at which this crossing
happens, in which it becomes energetically favourable to transition from one phase to the

other.
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Figure 7.4: Pressure, trace of the energy-momentum tensor, and enthalpy density for
¢g = 10.0 and ¢y = 0.7, with the different branches labeled. The green line shows the
stable phase, the solid yellow line shows T, and the dashed yellow line shows 7}.

7.5 Parameter scanning

With all definitions and calculation techniques set in place we can finally move to scan-
ning over the holographic parameters to see how varying these will change the quantities
relevant for gravitational wave spectra. The two “dials” we can turn in this theory are the
parameters in the potential, ¢»s and ¢g; varying these changes the shape of the potential
and therefore the black brane solutions and thermodynamic quantities derived from them.
Increasing ¢, effectively means bringing the two non-BPS extrema in the potential V(¢)
closer together, until at a certain value for each ¢g these merge as an inflection point
and then disappear completely. The approximate equation of the region with non-BPS

extrema is

bq 2 15045, (7.40)

which was found by a fit to the numerical solution of the equations V'(¢) = 0 and V" (¢) =
0.
We have chosen to explore parameter ranges without these non-BPS extrema, as they

produce a theory with a metastable minimum at 7' = 0. These are unattractive for
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cosmological model-building, as the Universe could instead be trapped in an eternally
inflating phase.

Fig. 7.5 shows the latent heat and the critical temperature of the phase transition over
a region in the (¢ar, ¢g) plane. The boundary of the region with non-BPS extrema is
marked with a dashed line. Where there is a first-order transition, 7. it is defined as the
temperature at which the free energy in both phases is equal. In the cross-over region T,
is defined as the temperature in which the ratio of the trace of the stress energy tensor to

the enthalpy (also known as the interaction measure I) peaks, where

e—3p
I= . (7.41)
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Figure 7.5: Filled contours of latent heat L in units of the critical temperature T, for
different values of the two scalar potential parameters on the left, and of the critical tem-
perature T, in units of the coupling for different values of the scalar potential parameters
on the right. The contours found past the crossover line on the critical temperature plot

are from the peak of the interaction measure.

Increasing ¢p; away from the region (7.40), the latent heat of the first-order transition
decreases until it vanishes, as seen in Fig. 7.5, at which point the theory presumably
undergoes a second-order phase transition. The region of cross-overs has the approximate

formula

¢q S 6505, (7.42)

obtained by a numerical fit. The boundary is marked with a solid line in Fig. 7.5. Increas-
ing ¢g however has the opposite effect, but much more slowly. As ¢¢g grows the system is
pushed into a stronger first-order phase transition with higher latent heat.

The measure of the strength of the phase tran