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Abstract

Analogous to yield curves in fixed income markets, commodity forward curves reflect mar-

ket participants’ views on future price levels and are the main inputs for pricing, risk

management, and project evaluations. This thesis focuses on a factor-estimation method

incorporating the joint dynamics of multiple commodity forward curves for a term struc-

ture model. First, we introduce PCA on PCA as the main tool to formulate the factor-

volatility functions with commonality, extending the Heath-Jarrow-Morton (1992) model

for multi-commodity modelling. The proposed factor estimation method is intuitive and

easy to implement as a direct extension of ordinary PCA. We demonstrate the estimation

procedure of common eigenstructures and analyse the loadings to give economic interpret-

ations to the identified common factors. Second, we apply our common factor model for

the pricing of commodity spread derivatives. Our contribution includes the option pricing

formula when one of the underlying assets is denominated in foreign currency units, which

has not been considered carefully in previous commodity literature. Third, we analyse

hedge ratios and their effectiveness with and without assuming common factors across

multiple forward curves. Empirical studies on each topic are carried out for European en-

ergy commodities or marine fuel products. We find that the existence of common factors

lowers the option prices and improves the minimum-variance hedge where appropriate.

These results have important implications for commodity producers, traders and financial

institutions that trade highly dependent underlying assets: neglecting common factors may

result in economic losses caused by mispricing financial contracts or mistreating inherent

risks.
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Overview

Pricing models evolve along with market transitions. For energy commodities, the market

transition accelerated in the mid-2000s, triggered by the advent of technology, liberalisa-

tion of energy sectors, regulatory requirements, rising concerns for climate change world-

wide, and so forth. In response to those shifts in energy markets, or perhaps foreseeing

their structural changes in the near future, we study the joint modelling of commodity

forward curves, for which the market boundaries have been eroding.

Until recently, the prices of energy commodities were regarded as market/commodity

specific. Traditional pricing models consider the stochastic processes of marginal com-

modities separately and associate them by correlation. On the other hand, recent devel-

opments in energy markets, as seen in the extended pipeline connections in European gas

markets and similar developments in electricity interconnectors, would have strengthened

the linkage of price levels considerably due to tighter supply/demand conditions, implicitly

suggesting that those substitutable commodities would be exposed to the same source of

uncertainties rather than separate ones. Hence, our research studies the impact of common

factors in the pricing and hedging of energy commodities.

This thesis is a self-contained piece of work, covering the topics of the fundamentals

of commodities, pricing theories, estimation methods, and applications. Chapter 1, titled

Classical Theory and Modelling Approaches, revisits classical theories and pricing

models for commodities to relate single-commodity models to multi-commodity models

introduced in the recent literature. This literature review identifies three subgroups of

multi-commodity models such that i) spot price models with common state variables, ii)

cointegrated forward price models, iii) forward price models with commonality in their

factor volatilities. This chapter provides clear positioning of our research that belongs

to the third approach, which has the potential to overcome the general challenges of

multi-commodity models that tend to be mathematically rigorous and computationally

expensive.

Generally speaking, the analysis of commodity forwards and futures is not straightfor-
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ward. The contracts are written on commodities (indexes) that refer to specific calendar

days/months/years in a year. The data sets are discontinuous as the contracts expire after

the period, requiring data interpolation or concatenation for mathematical modelling and

statistical analysis. To address such matters, the sections in Chapter 2, titled Notes on

Commodity Futures, provide useful information to clarify the specifications of futures

contracts and explain the rationale for the notation and interpolation method to analyse

the data. Albeit short, this chapter can be considered essential supplementary material

for this thesis.

Chapter 3, titled Principal Component Analysis on Multi-group Data, serves

as the foundation of the subsequent chapters. It suggests a factor estimation method for

multi-commodity forward curves, Principal Component Analysis on Principal Component

Analysis (PPCA), a two-stage procedure. In the first-stage PCA, the dimensionality of

forward curves is reduced, and the orthogonal factors are identified at a marginal level. In

the second-stage PCA, another PCA is applied to the cross-correlation matrix of principal

components to find the common orthogonal axis, from which we define common latent

factors. Working backwards from the common to marginal spaces, we derive an expression

for marginal covariance matrices consisting of common and marginal eigenvalues/vectors.

We apply the proposed factor estimation method to UK gas, Dutch gas, UK power, and

Dutch power forward curves to quantify their common factor structures. We investigate

the implications of the common latent factors with our own ranking algorithm and a

shrinkage method in linear regression analysis by Zou et al. (2006). Interestingly, both

approaches suggest that the most significant two common factors relate to the level and

slope of the four forward curves, with the third common factor being unique to Dutch

gas’s curvature factor.

Chapter 4, titled The Joint Modelling of Commodity Forward Curves , docu-

ments the model development procedure for a multi-commodity forward curve model using

PPCA. The proposed PPCA-based model is an extension of Heath et al. (1992) consisting

of a number of common orthogonal factors and one idiosyncratic factor that describe the

comovement of closely-linked commodities. In addition, it considers commodity-specific

dynamics via correlated idiosyncratic factors between forward curves. The model building

starts with applying PPCA to estimate the common factors. Subsequently, the idiosyn-

cratic factors and their correlations are calibrated to the covariance matrices estimated

by PCA. Using a PCA-based model as the calibration target makes it possible for our

PPCA-based model to have the same level of explanatory power as the benchmark model
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for marginal forward curves, an attractive feature since PCA-based forward curve mod-

els have widely been used in practice. In the empirical section, we estimate the model

parameters from the same European energy futures data and conduct simulation studies

to analyse the joint and marginal distributions estimated by the models with a varying

number of common factors. A general tendency of the PPCA-based models revealed by

the results is that two or three common factors sufficiently reproduce the marginal distri-

butions of forward curves compared to a PCA-based benchmark model with no common

factor. Moreover, the PPCA-based models stabilise the dispersion of commodity spreads

for some commodity pairs, as a result of enhanced common factor modelling.

In Chapter 5, titled Pricing Commodity Spread Derivatives, we turn our at-

tention to derivatives pricing by demonstrating the adaptability of the common factor

structures to the Margrabe (1978) formula that gives the price of an option to exchange

one asset for another. The complexity of the Margrabe formula is increased for the case

when one of the underlying assets is denominated by foreign currency units. The latter

type of options, named ‘quanto exchange options’ or ‘cross-currency exchange options’,

accommodate both cases for exchange rate conversion: (i) fixed by contract in advance, or

(ii) floating with the market FX rate. The empirical section presents the pricing results

for power to gas (spark) and foreign to domestic spreads while investigating the impact of

having common factors in the option pricing formula. As for spark spreads, our common

factor model calculates the option prices generally lower than a non-common factor model,

as the simulation outputs in the previous chapter indicated. It is also explained that the

fuel efficiency of production facilities influences the common factors’ impacts on option

prices; the price differences appear more significantly for at-the-money options. The res-

ults for foreign - domestic spreads show the negligible impact of FX adjustments on the

quanto option prices. On the other hand, FX adjustments are found to be important for

cross-currency exchange options as they directly affect the spread variance, therefore the

option prices.

Chapter 6, titled Common Factor Hedge in the Shipping Market, which is

the last chapter in this thesis, focuses on a cross-hedge problem in maritime finance. In

our study, a long position on a vessel fuel is cross-hedged by proxy fuel futures, for which

more liquid and established markets are available. We construct this hedge problem from a

consumer’s point of view and differentiate ourselves from the problem of portfolio managers

who aim to maximise their profits by a dynamic hedge. We implement the same models

introduced in earlier chapters to three subgroups of vessel fuels to calculate the minimum-



4

variance hedge ratios with and without common factors. Hedge effectiveness measures

suggest the improved performance of the cross hedge with the presence of common factors.

In addition, it is shown that the cross hedge achieves the most variance reduction when

the underlying fuel contract is hedged only by one proxy fuel instead of multiple proxy

fuels for the period under study. The confidence intervals of hedged cashflows are also in

line with these observations; the single proxy hedge best estimates the price risk.

Finally, in theConcluding Remarks, we summarise the contributions of our research

and make suggestions for future research.
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Chapter 1

Classical Theory and Modelling

Approaches

1.1 Economics of Commodities

The main determinants of commodity prices are supply, demand, and inventory. The

classical modelling of commodity prices stems from the Theory of Storage, which explains

the relationship between the spot price, forward price, and level of inventory for storable

commodities. When inventories are scarce, relatively small changes in production or con-

sumption can significantly impact prices and cause high volatility, and vice versa when

inventories are ample. Therefore, there exists an inverse relationship between the level of

inventory and price volatility (Fama and French, 1987; Ng and Pirrong, 1994; Geman and

Nguyen, 2005), related to market uncertainties.

To date, a number of authors have studied the Theory of Storage, extending the original

work of Kaldor (1939). The classical theory investigates the reasons why producers of

commodities store inventories even when the cost of storage is very high and introduces

the term convenience yield, which is the benefit that belongs to the holder of commodities

to meet unexpected demand or to take advantage of price rises in the future (Working,

1949; Brennan, 1958; Telser, 1958).

The fundamental cost-of-carry relationship summarises these concepts into a parsimo-

nious equation, where the forward price is equal to the spot price compounded by the carry

cost, including the cost of financing (interest rate), storage cost, and convenience yield.

When the sum of interest rate and storage cost exceeds the benefit of holding a commod-

ity, the commodity price in the future is higher than the current price of the commodity.

Hence, the forward curve will form an upward sloping shape known as contango. By con-
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trast, when the benefit of holding a commodity outweighs the interest rate plus storage

cost, the forward curve will be downward sloping in shape, known as backwardation.

The Theory of Normal Backwardation argues that forward prices are downward biased

estimates of the expected spot price in normal market regimes (Keynes, 1930; Hicks, 1946).

This theory is built upon the recognition that the market is net short, meaning that

the number of hedgers (producers) exceeds the number of speculators.1 Therefore, the

forward price should include a risk premium to compensate the risk-taking behaviour of

speculators. On the contrary, Bouchouev (2012) argues that normal backwardation no

longer holds in the current market environment for crude oil due to changes in the market

microstructure. In his view, investors are the hedgers who seek mitigation of risks in the

market. As a consequence, the normal contango appears in a market where investors pay

the risk premium.

Generally speaking, the volatility of a commodity price is low when a contract matures

in the distant future and is high when the contract matures in the near future since the

price will be more susceptible to the arrival of news. On the other hand, the price of a

distant maturity contract will not respond equally to the same news as the nearby con-

tract, as the markets’ expectations for increased production or availability of substitution

will stabilise the price fluctuations in the long run. These characteristics of volatilities

are known as the Samuelson Effect (Samuelson, 1965). The Samuelson Effect in volat-

ility relates to the concept of mean reversion in the price dynamics of commodities in

line with general economic theory: the price of goods eventually reaches equilibrium by

supply/demand adjustments. Towards equilibrium, the distribution of a mean-reverting

process stabilises, and the forward volatility decreases.

Bessembinder et al. (1995) conduct an empirical study to examine the existence of

mean-reversion in energy, agricultural, and financial markets, finding the most substantial

degree of mean-reversion in crude oil prices. By contrast, the authors find weak evid-

ence of mean-reversion for financial markets. Geman (2009) notes the prominence of the

Samuelson Effect in energy markets, in which the volatilities typically increase rapidly

several months before the expiry of contracts.

Some commodities have periodic patterns in production or consumption known as

seasonality, which could be regarded as an additional explanatory variable in the modelling

of commodity price processes (Fama and French, 1987). While seasonality of commodities

1Consumers can also be the hedgers since they enter into derivative contracts in order to hedge against
adverse price movements in the purchase of commodities. However, the classical theory regards that the
hedging needs are much more significant for commodity producers than for consumers.
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may exhibit yearly, half-yearly, monthly, or half-monthly cycles (Milonas, 1991; Sørensen,

2002), the periodicity of seasonality for energy commodities may increase daily, hourly,

or intra-hourly. For instance, the price of electricity depends on the day of a week (e.g.

weekday or weekend) or time in a day (e.g. baseload or peakload). The price changes

or returns of seasonal commodities fluctuate for periods where excess demand or supply

shortage occurs. Therefore, the volatility may also exhibit seasonal patterns, as evidenced

by Lucia and Schwartz (2002) in the study of the Nordic spot electricity market.

As for futures contracts, Swindle (2014) categorises two types of seasonal volatilities.

One is the seasonal volatilities associated with the maturity month, e.g. the volatility of

contracts maturing in January is always greater than the volatility of contracts maturing

in August for the UK natural gas market, where the demand for heating increases during

winter. By contrast, the second type of seasonality relates to the current time, e.g. the

average volatility of futures contracts traded in January is consistently higher than the

average volatility of futures traded in August.

Whether physical or financial, the prices of commodity contracts are linked to the

underlying physical assets. Therefore, it is essential for us to consider the economics of

commodities in the formulation of mathematical models.

1.2 Price Modelling

An early generation of commodity price models utilises the mathematical framework de-

veloped for equities, an extension of Black and Scholes (1973) and Merton (1973). While

the models ensure the non-negativity of an underlying asset and benefit from tractable

formulae in derivatives pricing, the models based on Geometric Brownian Motion (GBM)

cannot describe the mean-reverting behaviour of commodity price dynamics. Later models

such as the one-factor model of Schwartz (1997) circumvent the problem by specifying a

model based on the mean-reverting lognormal process.

Gibson and Schwartz (1990) and Schwartz (1997) develop a two-factor model in which

the convenience yield acts as a mean-reverting second factor in addition to the first factor

following a GBM.2 Further, Schwartz (1997) adds a risk-free interest rate into the three-

factor version of his model, nesting the Vasicek (1977) model. Mathematically equivalent

to Gibson and Schwartz (1990) and Schwartz (1997)’s two-factor model, however more

intuitive to interpret, Schwartz and Smith (2000) propose a two-factor model in which two

2Gibson and Schwartz (1990) propose the preceding version of Schwartz (1997)’s two-factor model. The
difference is that Schwartz (1997) provides an analytical solution whereas Gibson and Schwartz (1990) do
not.



8

latent state variables represent the short-term and long-term dynamics of a commodity

spot price. The underlying assumption is that the short-term factor fluctuates around

the mean level due to temporary shocks, whereas the equilibrium level will evolve in the

long run due to permanent changes in market fundamentals. Therefore, these short-term

and long-term dynamics are modelled via an Ornstein-Uhlenbeck (OU) process and an

Arithmetic Brownian Motion, respectively.

The convenience of the Schwartz and Smith (2000) type model is the flexibility in

expressing the log spot price as the sum of state variables that have their own dynamics.

It is also possible to assign more than one factor per state variable as in Cartea and

Figueroa (2005), in which the authors account for a jump effect in the mean-reverting

spot price of electricity with an OU process and a Poisson process. In addition, the

additivity of the Gaussian state variables can incorporate the seasonality of underlying

assets relatively easily into the model, for example, by using a deterministic seasonal

component (Sørensen, 2002; Lucia and Schwartz, 2002). Manoliu and Tompaidis (2002)

apply the Schwartz and Smith (2000) model to the analysis of natural gas forward prices,

in which the authors model the seasonal component by a periodic step function. Under a

similar model specification, Cartea and Williams (2008) estimate the seasonal component

by a second-order Fourier series to study the UK natural gas market in conjunction with

the storage problem.

Despite several advantages that the Schwartz and Smith (2000) type models offer, a

challenge arises in estimating the unobservable state variables and their parameter values,

as well as the market price of risk. Moreover, these models suffer from the general drawback

of spot price models that the model implied forward prices, which are obtained as the

conditional expectation of the spot price under an appropriate pricing measure, are not

consistent with the market price of forward contracts.

An alternative approach, namely the forward price modelling, overcomes these prob-

lems. The idea originates in the Heath–Jarrow-Morton (Heath et al., 1992, HJM hereafter)

framework for fixed income securities, which focuses on forward rates and describes the

evolution of bond prices by their volatilities. In an analogous commodity theory, the

forward price of a commodity is expressed as the sum of factor volatilities under the

risk-neutral pricing measure.3

To adapt the HJM framework to commodities price modelling, one can find the

3Under the assumption of constant interest rates and absence of credit risk, the price of forwards and
futures, and the associated pricing measures are equivalent. We shall impose these assumptions and use
the two terminologies ‘forward’ and ‘futures’ interchangeably throughout this thesis.
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functional form of factor volatilities endogenously through associated spot price mod-

els or estimate the functional forms from the market observed term structure of forward

prices/volatilities. In the former approach, when a single factor follows a GBM in a spot

price specification (e.g. Black and Scholes, 1973), the application of Ito’s lemma gives a

constant factor volatility in the corresponding forward price model. Alternatively, sup-

pose a spot price model is a one-factor model in which the log of the factor follows an OU

process (e.g. Schwartz, 1997 one-factor model). In that case, the constant volatility in

the forward price model is exponentially scaled by a decay parameter, which is the same

parameter as the speed of mean reversion in the spot price model. The decay parameter

controls the rate of decline in the magnitude of volatility with respect to time to maturity

in the forward price model; the volatility increases when the time to maturity of a forward

contract approaches zero and vice versa when the maturity is far ahead in the future. This

result sheds light on the relationship between the mean reversion in spot price and the

Samuelson Effect in forward volatility.

In the latter approach, Gabillon (1991) proposes a parametric model that segments the

factor volatilities for the short-end and long-end of commodity forward curves. Moreover,

his model incorporates the split personality, a characteristic known for the forward curves

of energy commodities for which the factors driving the short-end and long-end of forward

curves have little impact on each other. Swindle (2014) extends such approaches to the

modelling of seasonal volatility and introduces a model with exponentially scaled double

volatility functions explicitly separating the seasonal spot volatility and maturity month

related volatilities.

In the HJM framework, the number of factor volatilities and the functional forms

can vary depending on the model assumptions. In the meantime, it is likely that more

than one volatility function, with at least one exponentially decaying parameterisation,

are required to replicate the term structure of volatilities for energy commodities; see

Clewlow and Strickland (2000) who provide the generalisation of volatility functions for

commodity forward curves. The HJM type of forward curve model belongs to a family

of term structure models that simultaneously drives the whole set of forward contracts

by a relatively small number of factors. With that regard, Principal Component Analysis

(PCA) has been a popular technique that effectively captures the covariance structure of

multiple data series in a reduced dimension.

In the finance literature, PCA is first introduced by Litterman and Scheinkman (1991)

in the context of factor hedging for a portfolio of U.S. treasury securities. From the shape of
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eigenvector (factor loadings) plots, the authors name the first three principal components

(PCs) as the level, steepness, and curvature factors,4 which explain approximately 98%

of the total variation in the U.S. yield curve. Cortazar and Schwartz (1994) adapt the

PCA to the modelling of commodity forward curves, finding that the results of PCA on

copper data are similar to the patterns of principal component factors for the U.S. treasury

bonds in Litterman and Scheinkman (1991). Following the HJM framework, they describe

the dynamics of copper futures by three orthogonal factor volatilities in the valuation of

copper-linked contingent claims.

The resemblance of the first three principal component factors seems to be persistent

across different types of commodity forward curves. At the same time, Clewlow and

Strickland (2000) remark that seasonal commodities tend to demand additional PCs to

sufficiently reproduce the original data structure; For example, in their study, natural gas

requires five factors to explain 99% of the total variation, compared to four factors for

crude oil. Koekebakker and Ollmar (2005) observe that the forward curves require more

than ten factors to explain over 95% of variation for the Nordic electricity data. In response

to their findings, Borovkova and Geman (2008) argue that the PCA should be applied to

seasonal commodities with caution since seasonality could distort the outputs of PCA.

The authors introduce two ways of normalising data set in prior to PCA, by excluding

the deterministic seasonality from either the original price or returns data. Carmona and

Coulon (2014) demonstrate an alternative method that uses an instantaneous volatility to

normalise a covariance matrix to which PCA is applied.

Without using PCA, Chiarella et al. (2009) develop a two-factor regime-switching

forward curve model where the transition from one state to the other state is characterised

via a finite-state Markov Chain. In their model, the state-dependent factor volatilities

nest a deterministic seasonality component modelled by a truncated Fourier series. The

authors apply the Markov Chain Monte Carlo (MCMC) for the parameter estimation

and discover that the estimated factors behave similarly to PCA’s level and slope factors.

More recently, Thompson (2016) proposes a four-factor parametric model inclusive of a

stochastic seasonality factor and three volatilities representing the typical shape factors

of PCA. The model specification starts from identifying the number of orthogonal factors

and their functional forms using PCA, followed by the transformation of the uncorrelated

model to a correlated counterpart for which the factor volatilities are parametrically fitted

to the implied volatility of the Henry Hub natural gas options. Although these two HJM

4Other common names of the steepness factor are the tilt and slope factors. The curvature factor is
also known as the bending factor.
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type models do not directly obtain the model parameters from PCA, the estimation results

indicate the crucial roles of typical principal component factors in the volatility functions.

1.3 New Developments in Multi-commodity Models

From a modelling perspective, the complexity surges when the underlying asset increases

from a single commodity to multiple commodities because it requires describing the

cross-market dependence structures in a multi-dimensional space. However, many multi-

commodity models follow the fundamental assumptions and structures of single commodity

models that are introduced in the previous sections.

Several authors utilise the Schwartz and Smith (2000) type model, in which the spot

price is an exponential affine function of state variables, and assume one or more state

variables are shared between commodities. To estimate common factor structures of a

multi-dimensional spot price model, Cortazar et al. (2008) perform a special variant of

PCA by Flury (1988)5 that investigates the common eigenstructure of covariance matrices

between data groups. Their model aims to improve the pricing of futures for a commodity

using the information of other commodity futures for which liquid and longer maturity

data are available. Their multi-commodity models outperform single commodity models

for two pairs of crude oil and petroleum products when fitting the out-of-sample data.

Frikha and Lemaire (2013) propose a tailored model for the joint dynamics of UK gas

and power prices where the deseasonalised log spot prices are described by the sum of com-

mon and non-common OU processes under the physical measure. Their model considers

the statistical property of time series data for the auto-correlation and cross-correlation of

gas and power, to which the rate of mean-reversion parameters is calibrated. The authors

assign the normal-inverse Gaussian distribution to the non-common OU process to repro-

duce the leptokurtic distribution of data and compute the value of a gas-fired power plant

by simulation. The results suggest that the cross-correlation of gas and power does not

significantly change the value of the power plant; however, it reduces the Value-at-Risk

(VaR).

When time series data are cointegrated, the processes may wander apart in the short

run but are tied together in the long run. In the commodity literature, a number of au-

thors acknowledge the existence of a long-term relative price equilibrium when the assets

are the input/output in a production process (e.g. crude oil and jet fuel) or substitutes of

each other (e.g. natural gas and coal), just as for the same reasons why the price of com-

5Flury (1988)’s common PCA is explained in the next chapter.
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modities mean reverts. Since the concept of mean reversion closely relates to stationarity

in time series analysis, one could interpret cointegration as the long-term mean-reverting

relationship between a spread of commodities.

Paschke and Prokopczuk (2009) develop a cointegrated multi-commodity spot price

model where n-dimensional log prices are jointly described by one common and n − 1

correlated state variables. A commodity’s responsiveness to these latent variables depends

on the factor loadings estimated by the Kalman filter. In analysing crude oil, heating oil,

and gasoline prices, the authors identify one common stochastic factor that affects the

three commodities to a similar degree and the other factor that affects the commodities to

a varying degree. Their common factor model estimates the distribution of an oil refinery

value to be significantly narrower than a non-common factor model.

Nakajima and Ohashi (2012) introduce a cointegrating state variable to the Gibson and

Schwartz (1990) two-factor model adapting the original work of Duan and Pliska (2004)

to commodity markets. In contrast to the Gibson and Schwartz (1990) model in which the

stochastic convenience yield mean reverts to its equilibrium level, their multi-commodity

model assumes the existence of long-term linear relationships across cointegrated commod-

ities to which the prices mean-revert under the risk-neutral measure. Contrary to Duan

and Pliska (2004) who argue that the cointegration is only relevant when the volatility is

stochastic for equity options, Nakajima and Ohashi (2012) claim that cointegration does

influence the price of commodity derivatives even if the volatility is deterministic.

Similarly, Farkas et al. (2017) extend the Schwartz and Smith (2000) model to the mul-

tivariate space where the latent state variables are not only correlated but also cointegrated

across commodities. The authors derive an expression for driftless forward price dynamics

under the risk-neutral measure where the matrix of cointegrating vectors adjusts for the

decay parameters of factor volatilities. Their empirical analysis of weekly time series data

suggests that one common factor drives the long-term log-price levels of crude oil, heating

oil, and gasoline in agreement with Paschke and Prokopczuk (2009). In addition, it is

indicated by the Monte Carlo simulation that their model calculates lower prices for the

energy spread options compared to other models without cointegration, with the presence

of an upward-sloping term structure of correlations between the energy commodities.

Not surprisingly, the multi-commodity spot price models inherit the general drawbacks

of spot price models, such as estimating unobservable state variables for multiple assets,

often accompanied by involved estimation procedures resulting in a large set of parameters.

For example, Paschke and Prokopczuk (2009) report 58 parameters for their six-factor
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model for three commodities. Likewise, Nakajima and Ohashi (2012) require 55 parameters

for a model of three commodities with two linear relationships. Moreover, one may realise

that the forward prices obtained as the conditional expectation of the cointegrated spot

prices are not cointegrated under the risk-neutral measure in the sense that the stationary

linear relationships among assets are no longer linear or stationary in the corresponding

forward price models.

To address the last point, Benth and Koekebakker (2015) propose a class of pricing

measures under which both the log of spot and forward prices are cointegrated. Their mar-

ginal spot price model is exponentially affine in two state variables driven by the Arithmetic

Brownian Motion (ABM) for the shared non-stationary process and the Continuous-time

AutoRegressive Moving Average (CARMA) for the commodity-specific stationary process.

The authors derive a cointegrated forward curve model using the Musiela parameterisa-

tion and argue that the forward prices are asymptotically cointegrated when the time to

maturities of contracts are fixed. By a distinct model formulation, Casassus et al. (2013)

consider the linkage of commodities via convenience yield and their relative scarcity to in-

troduce the feedback effect on the price equilibrium that corresponds to an error-correction

mechanism of cointegration in their model, which stays cointegrated under the risk-neutral

measure.

In a discrete-time framework, Ohana (2010) directly introduces an error correction

mechanism to the drift of a forward curve model under the physical measure. His model

can be regarded as a discrete-time version of the HJM model, which relates the local

dependence structure to the short-term volatilities and correlations of forward curves us-

ing the Generalised AutoRegressive Conditional Heteroskedasticity (GARCH) model and

Gaussian copula. It also associates the global dependence structure with the level and

slope of forward curves to describe the long-term relationship between commodities. Eco-

nometric analysis reveals two global dependence structures for the US natural gas and

heating oil forward curves. The author investigates the lead-lag relationship between the

level and slope factors, finding the leading role of heating oil for the slope factors and the

symmetric relationship for the level factors.

Benmenzer et al. (2007) translate earlier work of Ohana (2010)6 into a continuous-

time framework. The forward curve model is transformed from the physical measure to

the risk-neutral measure via the market price of risk, including a matrix of cointegrating

vectors specified by a continuous-time counterpart of the Vector Error Correction Model

6Ohana (2010) is based on the PhD thesis of Ohana (2006).
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(VECM). Under the risk-neutral measure, the model reduces to the HJM type model,

where the correlation parameters represent the short-term dependence structure between

factors. Thus, the cointegrating relationship disappears under the risk-neutral measure

as required by no-arbitrage assumptions. Edoli et al. (2013) focus on the estimation of

cross-commodity correlations extending Benmenzer et al. (2007). Although their model

estimates the marginal term structures of WTI, Brent and Gasoil volatilities precisely,

their study does not further investigate the joint distributions.

The aforementioned multi-commodity spot and forward price models typically define

the dependence of multiple commodity prices with respect to common long-term factors,

mainly by cointegration. However, the majority of these models do not preserve the stable

long-term relationship of forward prices under the risk-neutral measure except for some

particular cases, such as when the forward contracts have a fixed time to maturity, as

discussed by Benth and Koekebakker (2015). Therefore, an alternative approach would

be to include the dependence structures of commodities directly into a driftless forward

price model under the risk-neutral measure. In other words, the forward curve modelling

reduces to the simultaneous modelling of volatility functions for multiple commodities. To

our knowledge, research in this direction of price modelling is yet scarce.

Previously, Tolmasky and Hindanov (2002) proposed a multi-commodity forward curve

model where regular patterns of correlation matrices are used to define the volatility

functions of seasonal and non-seasonal commodity forward curves. The authors argue that

their eigenstructures should also be similar when the within-curve correlation structures

are similar between a pair of commodities. Then, a correlation matrix could be factorised

as a constant multiplication of other correlation matrices to stylise the cross-commodity

dependence structures. Under a correlated representation of the HJM model, an empirical

study by Feron and Gruet (2020) also finds similarities in the behaviour and number of

factors required for six European electricity markets, which encourage the joint modelling

of energy forward curves by the proposed approach.

Close to the spirit of Tolmasky and Hindanov (2002), we develop a new framework to es-

timate the volatility functions of Heath et al. (1992) by analysing common eigenstructures

of multiple commodity forward curves. Compared to Tolmasky and Hindanov (2002),

we do not impose strong assumptions on the functional form of correlation/covariance

matrices to define the factor volatilities. Instead, we let the data speak for themselves if

such common structures exist in the dispersion of commodity forward curves. The theories

and factor estimation method are introduced in Chapter 3.
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Chapter 2

Notes on Commodity Futures

2.1 Commodity Futures

The price of commodity futures is a function of several time variables. These include the

pricing date t, last trading date L, price settlement date S or period [S1, S2], and the

delivery day T or period [T1, T2]. When and how the futures are settled and delivered (or

not delivered) broadly vary depending on the contract specifications defined by commodity

exchanges. However, the general order would be t ≤ L ≤ S ≤ T where T only happens if

the contract requires physical delivery, otherwise it is financially settled.

When we express the futures prices mathematically, F (t, T ) is probably the most

common choice of functional form that we see in other literature. Unless otherwise stated

by authors, it implies that the assumption of S = T is in place, and often also S1 = S2 =

T1 = T2. Therefore, other aspects of price determination processes such as the timing

of price settlement and duration of delivery are often ignored to simplify the modelling

framework, in which T is regarded as the maturity of the contract. In this thesis, we also

denote the price of futures by F (t, T ) for distinct types of commodity products.

The top table in Table 2.1 introduces the product names and the trade venues for

eight energy commodity futures that are used in the empirical analysis later in this thesis.

Categories A to C classify the products by the last trading day, settlement method, delivery

period, and contract type (physical or financial) as described at the bottom of the table.

In Chapters 3 – 5, we look at the European natural gas and electricity data that all

belong to category A, in which L = S < T1 < T2 and the delivery takes place uniformly

in the interval [T1, T2] during the contract month. The exchanges offer trade venues

for the month, quarter, season, and year (calendar) contracts throughout a year. Using

the February 2020 contract of UK natural gas futures as an example, it is listed on the
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exchange until 30th January 2020, and the floating price is settled on the same day. The

delivery of the underlying asset is due every day between the 1st February and the 29th

February 2020. One possible way of writing the futures would be F (t, S, T1, T2). Instead,

we set S = T = [T1 + T2]/2 and simplify the notation to be F (t, T ). In this way, we are

treating the February 2020 contract as the price of natural gas futures that matures in

the middle of February with immediate delivery. The same assumption is applied to the

rest of category A products.

Chapter 6 deals with a hedging problem with financially settled fuel futures in the

shipping market. In Table 2.1, category B products are the financial futures for ‘bunkers’

that are marine fuels used to run vessels, written on the daily price assessments of Platts.1

For bunker fuels, Platts’s index reflects the market value of the fuels supplied one to eight

days forward from the date of assessment.2 By contrast, the category C product is the

financial futures on the price of another futures contract: the first nearby physical contract

of the NYMEX Light Sweet Crude Oil Futures (WTI).

Despite the name ‘futures’, both category B and C products are, in fact, calendar

swaps. As a rule, the floating price of a calendar swap is determined as the arithmetic

average of the underlying index for which the price settlement occurs during the contract

month. If we choose to model the calendar swap as the arithmetic average, it would

require separate calculations of the daily futures prices for the settlement period [S1, S2]

as is done in Lucia and Schwartz (2002). Instead, we approximate the nature of calendar

swaps by setting T = [S1 + S2]/2. The replacement of [S1, S2] by a single maturity T

eases the computation of the price dynamics while adapting the delivery-time effect to the

futures price (Benth and Koekebakker, 2015). For these reasons, we set the mid-point of

the settlement period as the maturity of the category B products and denote the calendar

swaps by F (t, T ).

The category C product requires further clarification to define the maturity date since

the contract month of a calendar swap does not necessarily represent the value of the

underlying commodity for the contract month. To see the point, let us compare the

January 2020 contract of any European bunker fuel futures in category B and the WTI

Financial Futures in category C. For the former contract, the floating price is determined as

the arithmetic average of Platt’s daily index between 1st and 31st January 2020 in which

the trade terminates the 31st January 2020. Hence, the January 2020 contract would

1https://www.spglobal.com/platts/en
2It is one to eight days for the Rotterdam bunker fuels and three to seven days for the US Gulf Coast

bunker fuel.

https://www.spglobal.com/platts/en


17

reflect the average price of the underlying spot asset between around the 2nd January and

8th February, including the time lag in the forward price assessment; see Footnote 2. By

contrast, the January 2020 contract of category C futures represents the average price

of the physical commodity in February 2020 and March 2020 weighted by trading days,

as the underlying index is another futures contract; it alters from the first nearby to the

second nearby futures during the settlement period.3 Swindle (2014) notes:

‘[For WTI swaps], the floating price is comprised of roughly a two-thirds weight-

ing of one contract price and a one-third weighting of the following contract...While

simple enough in concept, this causes a bit of headache in the design of risk

systems in that a WTI swap for a single contract month will have nonzero delta

exposure to two distinct futures prices.’

(Valuation and Risk Management in Energy Markets, p.18)

The compounded feature of calendar swaps, which is the average settled futures on

another futures, makes the concept of the maturity date complicated. In our example, the

underlying contracts of the January calendar swap are the February and March futures that

have their own delivery schedule in the contract months, and the timing of delivery depends

on the agreement between the buyer and seller of the contracts. Therefore, to make the

problem simple enough, yet reasonable, we regard the middle of the next contract month

as the maturity of the category C product, e.g., the maturity of the January calendar swap

is mid-February.

3WIT physical futures (NYMEX product name: Crude Futures) typically expire 3 to 4 business days
before the 25th calendar day of a month. In our example, it is the 21st January 2020. Therefore, the
January contract of the WTI Financial Futures refers to the price of February physical futures between
1st–20th January and March physical futures between 21st–29th January.
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Table 2.1: Contract specifications of commodity futures.

Category Product Names Exchange Unit of Trading

A UK Natural Gas Futures ICE Futures Europe GBp/1000 Therm
A Dutch TTF Gas Futures ICE Endex EUR/MWh
A UK Base Electricity Future (Gregorian) ICE Futures Europe GBP/MWh
A Dutch Power Base Futures ICE Endex EUR/MWh
B European FOB Rdam Marine Fuel 0.5% Barges (Platts) Futures NYMEX USD/1000 MT
B European 3.5% Fuel Oil Barges FOB Rdam (Platts) Futures NYMEX USD/1000 MT
B Gulf Coast HSFO (Platts) Futures NYMEX USD/1000 BBL
C WTI Financial Futures NYMEX USD/1000 BBL

GBp...GB pence sterling, GBP...GB pound sterling, MWh...Megawatt hour, MT...Metric ton, BBL...Barrel

Category Last Trading Day Settlement (S, [S1, S2]) Delivery Type Maturity Approximation for T

A Two business days before the first
calendar day of the delivery month,
quarter, season, or calendar.

Takes place on the last trading day. Every day during
the contract period.

Physical T = (T1 + T2)/2

B The last business day of the contract
month.

The arithmetic average of the daily
price index during the contract month.

N.A Financial T = (S1 + S2)/2

C The last business day of the contract
month.

The arithmetic average of the first
nearby physical futures price for each
business day during the contract
month.

N.A Financial T ≈ 1/12 + (S1 + S2)/2
(Middle of next calendar month)
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2.2 Interpolation of Data

The difficulty with commodity futures data arises from the fact that traded contracts

expire. It is not possible to buy and hold a ‘shortest maturity futures’ without rolling the

position each month. For instance, for the European energy futures that are introduced in

the previous section, the first-to-expire futures in January refers to the February contract

that requires the delivery of an underlying asset during the contract month. After the last

trading day in January, the February contract is no longer available in the market, and

the March contract becomes the first-to-expire contract.

The non-continuity of futures data introduces an extra complexity in the modelling of

commodity price dynamics. As a remedy, many authors concatenate one price series on top

of the other to produce continuous data. However, the data will be non-stationary, and the

estimated parameters will be unstable as the volatility of each contract will rise towards

the last trading day, as predicted by the Samuelson Effect. In addition, the statistical

property of the data will be susceptible to the decision on which day to concatenate (roll)

the data. The choice of roll day and its impact on the first two moments of price and

return are discussed in detail in Ma et al. (1992).

One way of dealing with this issue in data analysis is to construct continuous time

series data with a fixed time-to-maturity by the standard linear interpolation method.

f(t, t+ τi) =
(Ti+1 − (t+ τi))F (t, Ti) + ((t+ τi)− Ti)F (t, Ti+1)

Ti+1 − Ti
, Ti ≤ t+ τi ≤ Ti+1

(2.1)

where t is the current time, τi, i = 1, ..., N are constant maturities typically corresponding

to 30 days, 60 days etc., and F (t, Ti) are the active futures contracts in the market with

fixed maturity dates Ti, i = 1, ..., N . In fact, f(t, t + τi) is the weighted average of two

active futures contracts

f(t, t+ τi) = α(t) F (t, Ti) + (1− α(t)) F (t, Ti+1) (2.2)

where α(t) = Ti+1−(t+τi)
Ti+1−Ti

. Thus, f(t, t+ τi) can be seen as a portfolio of positions in two

active futures if the contracts are infinitely divisible.

When we wish to ‘realise’ the returns of this portfolio, it requires the rebalancing of

positions at a designated frequency. However, the returns calculated are not realisable

since the weight α(t) changes at each observation. Galai (1979) proposes an alternative
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data construction method for equity option indexes that offers continuity of data, as well

as realisability of returns. The idea is to fix the weight α(t) between t and t+ 1 to derive

a new weight β(t) = α(t)·F (t,Ti)
F (t, Ti+1)

to interpolate the returns of original data instead of prices

r̃(t) = β(t) ri(t) + (1− β(t)) ri+1(t) , (2.3)

where

β(t) =
α(t) · F (t, Ti)

F (t, Ti+1)

ri(t) =
F (t, Ti)− F (t− 1, Ti)

F (t− 1, Ti)
.

One can retain the time series of fixed time-to-maturity contracts from the interpolated

realisable returns utilising the general price-return relationship:

f̃(t, t+ τi) = f̃(t− 1, t− 1 + τi)(1 + r̃(t)) (2.4)

The question for us is which of Eq. (2.2) or Eq. (2.3) to use to interpolate our data.

Alexander et al. (2013) argue that the Galai (1979)’s interpolation by return (or price

differences where appropriate) is the only method that can recognise the value of money

invested in the portfolio of assets. Hence it should be used for investment analysis, such

as the calculation of hedge ratios.

While their arguments are relevant in constructing continuous data for the class of

assets for which the maturity falls on a single trading day, we cannot directly apply the

concepts to commodity futures data. As discussed in the previous section, it is inevitable

for us to simplify the complex trading mechanism of commodity futures to define the ‘price’

and ‘maturity’. Therefore, some degree of approximation has already been introduced in

the futures price F (t, Ti) and the precision that Galai (1979)’s method offers will be

diminished as a consequence.

For that reason, we choose to use Eq. (2.2) in our analysis. Having said that, we

remark that there is no single right or wrong method for interpolating commodity futures

data. It all depends on the objective of the research and the property of the underlying

processes that we want to incorporate in a modelling framework.
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Chapter 3

Principal Component Analysis on

Multi-group Data

3.1 Introduction

As discussed earlier, existing multi-commodity models are heavily dependent on math-

ematical assumptions accompanied by a large set of model parameters, most of which

do not preserve the intended dependence structures of several commodities for their for-

ward/futures prices under the risk-neutral measure. By taking an alternative route, we

directly start from the risk-neutral measure and introduce the multi-commodity depend-

ence structures to the factor volatilities of an established forward curve model. The main

objective is to reduce the complexity of multi-commodity modelling caused by computa-

tionally expensive parameter estimation.

The factor estimation method to be presented in this chapter is a straightforward

extension of PCA, which has been a widely adopted method in many fields in science since

the pioneering work of Pearson (1901) and Hotelling (1933). PCA allows us to transform

multi-dimensionally correlated data into a reduced set of orthogonal data, significantly

decreasing the complexity of problems. Technically, it can be seen as an optimisation

problem subject to constraints on the orthonormal eigenvectors, although one can attain

identical solutions algebraically.

The main objective of Chapter 3 is to suggest a variation PCA to analyse more than

one data set, and differentiate this approach from other conventional approaches to find the

common eigenstructures in data. To start with, we briefly sketch the derivation of ordinary
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PCA using the algebraic approach.1 Subsequently, we introduce the base examples for

the multi-group PCA commonly found in other finance literature. The empirical section

applies our proposed method to the UK and Dutch energy commodities to investigate how

the common eigenstructures relate to the latent factors that jointly drive their forward

curves.

3.2 Principal Component Analysis (PCA)

Let X = (x1,x2, · · · ,xN ) ∈ RM×N be a matrix where xi ∈ RM×1 are column vectors of

daily zero-mean (log) returns for a set of forward curve data with maturity T1, · · · , TN . M

is a positive integer representing the number of observations in data. Define the sample

covariance matrix of X:

Σ = M−1X′X (3.1)

PCA is based on the spectral decomposition of the symmetric matrix Σ∈ RN×N ,

Σ = VΛV−1, (3.2)

where V∈ RN×N is the eigenvector matrix of Σ and Λ ∈ RN×N is the diagonal matrix

whose entries λ1, λ2, · · · , λN are the eigenvalues of Σ corresponding to each column vector

of unit length in V. When Σ is a positive definite matrix and the eigenvalues are all

distinct, V is an orthogonal matrix and V−1 = V′.

Λ = V′ΣV (3.3)

In PCA, the eigenvalues (and corresponding eigenvectors) are ordered from the largest to

smallest to define a new set of orthogonal data known as the principal components (PCs)

P = XV, (3.4)

where P = (p1,p2, · · · ,pN) ∈ RM×N is a matrix consisting of M × 1 orthogonal column

vectors pj , and V is the reordered eigenvector matrix. Note that the variance of P is

M−1P′P = T−1(XV′)′XV′ = V′ΣV

= Λ.
(3.5)

1See Jolliffe (2011) for the general introduction of PCA, and Alexander (2008a) and Alexander (2008b)
for various applications of PCA in finance.
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The implication of Eq. (3.4) is that V linearly transforms the original returns data to

orthogonal axes that maximise the total variation of the sample covariance matrix. Sub-

sequently, one can obtain the principal component representation of original data reversing

the relationship:

X = PV′ (3.6)

PCA achieves dimension reduction when we use the first n(< N) columns ofV discard-

ing the rest of the eigenvectors in Eq. (3.4). Similarly, we obtain the principal component

approximation of the covariance matrix using the first n columns of V and n×n elements

of Λ in Eq. (3.2). The cumulative sum of the first n (≤ N) eigenvalues in (the reordered)

Λ represents the explanatory power of the first n PCs, known as the total variation.

The convenience of PCA can be found in its orthogonal representation of original data,

in which the key components represent approximations to the original data/covariance

matrix while benefiting from dimension reduction. These advantageous features of PCA

become notable when we analyse forward curves of multiple commodities, as we shall

evidence in the following sections.

3.3 PCA on Multi-group Data

To extend PCA to more than one set of forward curve data (i.e. multi-group data), let

us consider two M ×N zero-mean (log) return matrices X1 and X2 that follow the same

definitions as previously the single forward curve case. For the sake of simplicity, we set

the number of forward curves to be two, assuming the same number of rows and columns

for the matrices.

3.3.1 Conventional Approaches

Correlated PCA

The first approach performs separate PCA calculations for each data set and solely in-

corporates the dependence structures by correlation. Denote the cross-covariance matrix

by Σ12. It gives the principal component representation of the cross-covariance matrix by

the spectral decomposition Eq. (3.2):

Σ12 = M−1X′
1X2 = V1Λ

1/2
1 R12Λ

1/2
2 V′

2 (3.7)
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In the equation above, R12 ∈ RN×N denotes the cross-correlation matrix of PCs:2

R12 =


ρN1

...

ρ21

ρ11

ρN2

...

ρ22

ρ12

· · ·

. . .

· · ·

· · ·

ρNN

...

ρ2N

ρ1N


(3.8)

For an approximation of the cross-covariance matrix, the first nk(< N) columns of Vk,

nk × nk, elements of Λk, and the corresponding elements of R12 are used for k = 1, 2 in

Eq. (3.8). Note that the columns in Γk := VkΛ
1/2
k are orthogonal within data sets; however,

those columns are correlated by R12 between data sets. The extension to k > 2 data

(matrices) is straightforward and involves the pair-wise estimation of the cross-correlation

matrices Rkl.

Joint PCA

The joint PCA follows the same procedure as the ordinary PCA described in Section 3.2

except that it applies the spectral decomposition to the sample covariance matrix of a

pooled data set Y = (X1,X2) ∈ RM×2N . In contrast to the correlation-based approach,

the joint PCA technique seeks orthogonal axes that jointly maximise the total variation

of the pooled covariance matrix. Hence, the eigenvalue, eigenvector, and the resulting

principal components are shared by the pooled data set.

As is the case for ordinary PCA, the joint PCA approximates the original pooled

data set (and the covariance matrix) when we retain n (< 2N) columns of the common

eigenvector matrix in the decomposition. In other words, one can approximate X1 and

X2 from the joint PCA representation of Y.

Common Principal Components

The correlated PCA and joint PCA are two contrasting approaches regarding the common

eigenstructures of covariance matrices; the former method implies no commonality for the

eigenstructures of multi-group data, whereas the latter method assumes perfect common-

ality in the eigenstructures of the pooled data set. However, the real-life data may only

sometimes be ideally suited to either of these cases.

Flury (1988)’s hierarchical analysis, by contrast, classifies covariance matrices into five

levels of similarities by their eigenstructures. The hierarchy of similarities ranges from

2This matrix is not symmetric, and the diagonal elements are not unity.
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the equality (level 1) to arbitrary (level 5) with three additional levels of similarities:

proportionality of covariance matrices (level 2), Common Principal Components (CPC,

level 3), and partial Common Principal Components (pCPC, level 4). He argues that

different types of PCA should be applied to multi-group data according to the similarity

levels of the covariance matrices.

Level 1 is the equality where the eigenstructures are the same between covariance

matrices. In level 2, the proportionality of covariance matrices assumes one or more co-

variance matrices are a constant multiple of other covariance matrices. In level 3, CPC

assumes shared eigenvectors for all covariance matrices, however unique eigenvalues for

each data group. In the subsequent pCPC at level 4, not all but some eigenvectors are

assumed to be shared across covariance matrices. The last level is arbitrary, where co-

variance matrices do not share any eigenstructures. Therefore, PCA should be applied

separately to covariance matrices.

In the finance literature, CPC and pCPC have been used in various applications. The

examples include the calibration of model parameters for a lognormal forward rate model

(Alexander, 2002), the modelling of implied volatility surface where options with different

maturity groups share the common eigenstructures (Fengler, 2006), and the identification

of common factors for the joint modelling of commodity prices (Cortazar et al., 2008).

Besides the contributions of Flury (1988)’s common principal component analysis,

a group of researchers have identified the limitations, such as its heavy dependence on

distributional assumptions, which could lead to inconsistent outcomes in the similarity

analysis and non-convergence of solutions arising from the computational complexity in

the parameter estimation procedure (Houle et al., 2002; Eslami et al., 2011). Moreover,

it may potentially misspecify the common factor structures in forward curve modelling,

as the term structures of forward curves are typically characterised by the same shape

factors, even between unrelated commodities.

3.3.2 PCA on PCA (PPCA)

As an alternative to previous approaches, we suggest a flexible estimation method to

search for the common eigenstructures in several forward curves. The proposed method is

a straightforward extension of the traditional PCA that we name PCA on PCA (PPCA).

The concept of PPCA is finding the orthogonal axes which explain the common variation

of PCs across data (instead of the common variation within data), motivated by the

two-stage PCA originally introduced by Alexander and Chibumba (1996) in the context
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of modelling a large cross-asset GARCH covariance matrix. By contrast, our research

features in estimating unconditional volatilities for the HJM type forward curve models.

We explain how to measure the explanatory power of PPCA and provide interpretations

to the common principal components, neither of which are explored topics in the original

literature.

PPCA on Covariance Matrix

Suppose that we have performed PCA on the sample covariance matrices of X1 and X2

as in Section 3.2, from which we obtain two M ×N matrices of PCs P1 and P2. Suppose

further that we select the first nk (< N), k = 1, 2 significant PCs from each matrix.

To perform PPCA, define P̂1 ∈ RM×n1 and P̂2 ∈ RM×n2 , concatenate the matrices in

P̂ = (P̂1, P̂2) ∈ RM×n∗
where n∗ = n1 + n2, and compute the covariance matrix of PCs

Σ̂ = M−1P̂′P̂ ∈ Rn∗×n∗
to apply the spectral decomposition to the covariance matrix.

Σ̂ = UΩU′ (3.9)

The Principal components of Principal Components (PPCs), Q ∈ RM×n∗
, are defined

as3

Q = P̂U, (3.10)

where U ∈ Rn∗×n∗
and Ω ∈ Rn∗×n∗

are the eigenvector and eigenvalue matrices of Σ̂.

Using the matrices, we obtain an expression for the PPC representation of PCs analogous

to Eq. (3.6):

P̂ = QU′ (3.11)

PPCA achieves dimension reduction if we use the first m (< n∗) columns of U discarding

the rest of the columns in Eq. (3.10).

Having calculated the PPCs, one can obtain the PPC representation of the original

data by reversing the matrix operations; firstly, expressing the marginal PCs with respect

to PPCs, and secondly, expressing the original data with respect to the PPC representation

of PCs. To do so, we rely on the partition of the common eigenvector matrices as follows.

Denote the submatrices of U by U1 ∈ Rn1×n∗
and U2 ∈ Rn2×n∗

where the rows in U

are partitioned by the number of PCs (nk) used in the first stage PCA. Similarly, denote

3Assume that we have ordered the eigenvalues and corresponding eigenvectors from the largest to
smallest in Eq. (3.9).
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the submatrices of P̂ by P̂1 ∈ Rn∗×n1 and P̂2 ∈ Rn∗×n2 . Then,

Q = P̂U

= P̂1U1 + P̂2U2

(3.12)

and

P̂k = QU′
k. (3.13)

Eq. (3.13) is the PPC representation of PCs. Recall that the principal component repres-

entation approximates the original data when nk < N :

Xk ≈ P̂kV̂
′
k

Thus, we can find the PPC representation of the original data by combining these results

all together for k = 1, 2

Xk ≈ QU′
kV̂

′
k , (3.14)

as well as the PPC approximation of the covariance matrix:

Σk ≈ M−1(QU′
kV̂

′
k)

′(QUkV̂
′
k)

= M−1(V̂kUkQ
′QUkV̂

′
k)

= V̂kUkΩUkV̂
′
k

(3.15)

Note that Ω ∈ Rn∗×n∗
is indeed the variance of PPCs:

M−1(Q′Q) = M−1(P̂U)′P̂U

= U′(M−1P̂′P̂)U

= U′Σ̂U = Ω

(3.16)

The fewer m (< n∗) we use in the second stage PCA, the greater the degree of approxim-

ation in Eqs. (3.14) and (3.15).

A number of remarks can be made from the results above. First, PPCs are defined

as the linear combination of marginal PCs in the second line of Eq. (3.12), where Uk,

k = 1, 2, act as the loading matrix for the marginal PCs. Second, it is evident in Eq. (3.14)

that marginal data set includes the same PPCs on the right-hand side of the equation.

Likewise, the marginal covariance matrices share the same eigenvalue matrix in their PPC

approximations as shown in Eq. (3.15). These results are particularly important for us to
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justify why PPCs are regarded as common factors in our modelling approach.

PPCA on Correlation Matrix

Thus far, we have suggested the PPC matrix Q to be the common component in our

approach. Nevertheless, there is a general tendency that the outputs of PCA are influenced

by variables with large volatilities when the decomposition is applied to a covariance matrix

(Alexander, 2008a). If this happens, the most important components we find through

the second stage of PCA may not necessarily represent the common eigenstructures of

multi-group data. A solution to this problem is to perform the second stage PCA on the

cross-correlation matrix of PCs. In other words, we perform PPCA on the cross-covariance

matrix of standardised PCs by dividing the original PCs by their standard deviations.

Denote the standardised P̂ by P̄ = (P̄1, P̄2) ∈ RM×n∗
, where

P̂k = P̄kΛ̂
1/2
k (3.17)

for k = 1, 2. By spectral decomposition, the covariance matrix of P̄ decomposes into

Σ̄ = ŪΩ̄Ū′, (3.18)

where Ū ∈ Rn∗×n∗
and Ω̄ ∈ Rn∗×n∗

are the eigenvectors and eigenvalues of Σ̄ ∈ Rn∗×n∗
.

The derivation of (standardised) PPCs follows Eqs. (3.10) – (3.13) in basically the same

way, except that P̄ replaces P̂. However, the differences emerge in Eq. (3.14) and Eq. (3.15)

to express the original data and covariance matrices, as we need to unstandardise the PCs

by Λ̂
1/2
k based on the relationship in Eq. (3.17):

Xk ≈ Q̄Ū
′
kΛ̂

1/2
k V̂′

k (3.19)

Σk ≈ V̂kΛ̂
1/2
k ŪkΩ̄ŪkΛ̂

1/2
k V̂′

k (3.20)

The following equation links the decomposition of marginal covariance matrices by (i)

PCA, (ii) PPCA on the cross-covariance matrix of PCs, and (iii) PPCA on the cross-

correlation matrix of PCs. Note that Ω and Ω̄ are exactly the same for all marginal

covariance matrices.

Σk = VkΛkV
′
k = VkUkΩU′

kV
′
k = VkΛ

1/2
k ŪkΩ̄Ū′

kΛ
1/2
k V′

k (3.21)

The equalities become approximations when we do not retain all components in the two-
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stage PCA, and the degree of approximation increases as we move from the left to the

right in the equation. On the other hand, the model better captures the commonality in

eigenstructures towards the right of the equation.

Explanatory Powers of PPCA

The total variation typically measures the explanatory power of PCA. Many authors use

the total variation as a rule-of-thumb method in financial modelling to determine the

number of PCs required to analyse multivariate data. The interpretation is that if, for

example, it is 90% for the n most significant PCs, they explain 90% of dispersion in

the original data structure. At the same time, the rest of 10% can be regarded as the

reconstruction error arising from omitting insignificant PCs, often left intentionally as

‘residuals’ or ‘noise’ components.

Mathematically, the ratio of cumulative eigenvalues of the first n (≤ N) most significant

eigenvectors to the total sum of eigenvalues gives the total variation explained by PCA.

Total Variation Explained (%) = 100×
∑n

i=1 λi∑N
i=1 λi

, (3.22)

where λi is the i-th largest eigenvalue. Or equivalently,

Total Variation Explained (%) = 100× tr (Σ̃)

tr (Σ)
, (3.23)

where Σ̃ denotes the PCA estimate of a covariance matrix. Eqs. (3.22) and (3.23) are

invariant under the ordinary principal component transformation. Nonetheless, Eq. (3.22)

cannot directly be applied to PPCA in which two types of eigenvalues Λk and Ω (or Ω̄)

are compounded in the two-step matrix operations; see Eq. (3.21). For that reason, we

use Eq. (3.23) to measure the explanatory powers of PPCA in the subsequent analysis,

substituting Σ̃ by the PPCA estimate of a covariance matrix.

3.4 Empirical Study

3.4.1 Data

We apply PPCA to analyse the common factors in the forward curve dynamics of European

energy commodities. The data set consists of ICE futures for UK gas and power, as well

as Dutch gas and power introduced in Section 2.1. The data window covers two years,

from 1st July 2016 to 29th June 2018, obtained through Bloomberg®.
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(a) Gas

(b) Power

Figure 3.1: Time series of the first-month and fourth-quarter prices.
The data cover daily settlement prices between 1st July 2016 to 29th June 2018. The
solid and dotted lines represent the front-month and fourth-quarter futures, respect-
ively. All prices are expressed in EUR/MWh.

Fig. 3.1 depicts the time series of front-month contracts (solid lines) and fourth-quarter

futures (dotted lines) for the UK and Dutch gas power, where the fourth-quarter futures

are on average one year to maturity. The trading units of UK energy futures are converted

into EUR/MWh to make a comparison with Dutch energy futures for illustrative purposes.

Fig. 3.2 shows the log returns. In Fig. 3.1, the energy prices exhibit common movements,

having peaks and troughs around the same periods. Moreover, the fluctuations of returns

tend to synchronise, as observed in Fig. 3.2 . The front-month futures are more volatile

than the fourth-quarter contracts, as predicted by the Samuelson Effect. Note that the

spikes in returns, most notably happening with the quarter futures in April and October,

are caused by the rolling of the underlying contracts.4

The comovements of UK and Dutch gas futures are more noticeable than power futures,

probably due to the pipeline connections of the physical markets. In addition, the price of

4Section 2.2 discusses the rationale for data interpolation to avoid this issue.
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gas is susceptible to weather conditions, as seen in December 2017 when the front-month

UK gas futures spiked with the arrival of news of the freezing weather known as ‘the

Beast from the East’. During the observation period, the decline of supply inflow from

the European gas markets caused the price rise in the UK power futures in late 2016;

generally, price shocks in gas markets affect the price of power futures since natural gas is

one of the primary fuels to generate electricity.

As for the trade mechanism of futures, the exchanges list month, quarter, season, and

calendar (year) contracts simultaneously throughout the year for the UK and Dutch gas

futures. The quarter contracts start from January, April, July, October, covering a three-

month delivery period. Likewise, the season contracts start from April and October for

a six-month delivery period. The year contracts start from January every year for the

delivery of the entire calendar year. The UK power futures are listed similarly, except for

the absence of year contracts. For the Dutch power futures, it is the season contracts that

are not traded in the market.5 Table 3.1 illustrates the quote patterns of the UK gas,

Dutch gas, and UK power futures for an eighteen-month window. Table 3.2 separately

shows the quote patterns of Dutch power futures.

The exchanges set the maturities of these contracts five to six years ahead of today.

However, the liquidity ceases at the short-end: typically after several months for month

contracts, a few quarters for quarter contracts, a few seasons for season contracts, and a

few years for calendar contracts. For example, using the monthly contracts alone would

be insufficient to construct a forward curve with long enough maturity horizons. Instead,

using calendar contracts only will lead to a forward curve with stepwise increments every

twelve months, creating an artificially stale data series that is not very useful in time series

analysis.

Due to the short liquidity horizons of listed contracts, it is plausible for us to use

more than a single frequency of contract where necessary to construct a time series of

forward curve data with the desired maturity horizon. Nevertheless, complexities arise

when contract delivery periods overlap while the quote patterns shift every month. For

instance, in March, when the nearby month contracts are listed for the first six months,

the first and second quarter contracts and the first season contracts are also listed on

the exchange. Similarly, the trading periods of the third and fourth quarters, the second

season, and a part of first year contracts overlap during the month.

5The information is based on as of July 2018. The quote structures of European energy futures at ICE
have changed since then. As of June 2022, quarter, season, year, and any period of month contracts can
be traded for Dutch gas and power futures. For the details, see https://www.theice.com/energy.

https://www.theice.com/energy
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(a) First month

(b) Fourth quarter

Figure 3.2: The first-month and fourth-quarter log returns.
The time series of returns are calculated as the log differences of daily settlement
prices for the period of 1st July 2016 to 29th June 2018 using the same price
data as Fig. 3.1.
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Table 3.1: Quote patterns of UK gas, Dutch gas, and UK power futures at ICE.

M...Month, Q...Quarter, S...Season, Y...Calendar. The row labels show traded contracts by
calendar month. The column labels represent the contract months of futures for an eighteen-
month window. The shaded areas represent a non-overlapping forward curves. Dark grey
cells are where mapping is applied. Note that year contracts are not available for UK power
futures.
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Table 3.2: Quote patterns of Dutch power futures at ICE.

M...Month, Q...Quarter, Y...Calendar. The row labels represent contract types by calendar
month. The column labels show the contract months for an eighteen-month window. The
shaded cells follow the same definitions as in Table 3.1.
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To resolve these issues, we construct non-overlapping forward curves month by month

as illustrated by the shaded cells in Tables 3.1 and 3.2, based on the following principles.

For instance, if we are in February, the delivery period of the second quarter contract (Q2)

overlaps that of the fifth to seventh month (M5-M7) contracts starting in July. Then the

following relationship should hold by no-arbitrage

M5 +M6 +M7

3
= Q2 , (3.24)

and we can rearrange the formula to obtain a theoretical price of the M7 contract (M7*),

where the liquidity is thin for the actual contract:

M7∗ = 3×Q2−M6−M5 (3.25)

For other contracts, we utilise similar relationships to obtain

MQ∗ = (3×Q2−M6)/2 (3.26)

Q4∗ = (6× S2− 3×Q3)/3 , (3.27)

where MQ∗ and Q4∗ represent two-month equivalent Q2 and three-month equivalent S2

respectively, replacing the actual Q4 contract in the latter case.

We use listed contracts including the first to sixth months (M1-M6), second and third

quarters (Q2-Q3), and second to fifth seasons (S2-S5) for the UK gas, Dutch gas, and UK

power futures to map the data.6 Instead, we select the first to sixth months (M1-M6),

second to sixth quarters (Q2-Q6), and first and second years (Y1-Y2) for the Dutch power

futures to adapt different quote patterns.7

Once we obtain the non-overlapping forward curves, we linearly interpolate the data

to construct continuous price data with fixed time to maturities by setting τ =(30, 60, 90,

120, 150, 180, 210, 240, 360, 540) days from the average time to maturity of the mapped

contracts. Fig. 3.3 shows the interpolated forward curves in their original units of trad-

ing. We take the log differences of interpolated price series to calculate the returns and

covariances for PPCA.

6Some liquid contracts such as Q1 and S1 are regarded as redundant despite their high volume of trades
since these contracts are quoted parallel to more liquid and higher frequency contracts. For instance, in
March, M1-M6 are prioritised over Q1, Q2, and S1.

7Although some contracts do not appear in the figures, they are necessary to calculate the theoretical
futures over eighteen-month maturity contracts.
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(a) UK gas (b) Dutch gas

(c) UK power (d) Dutch power

Figure 3.3: Interpolated forward curves with fixed time to maturities.
Prices are shown in the original units with fixed time to maturities: 30, 60, 90, 120, 150, 180,
210, 240, 360, and 540-days for the period of 1st July 2016 to 29th June 2018.

Fig. 3.4 depicts the volatilities of log returns by time to maturity in days. The volat-

ilities range between 0.1 and 0.4 and exhibit the Samuelson Effect. As explained in Sec-

tion 1.1, the Samuelson Effect refers to the volatilities of nearby contracts being always

higher than those of distanced maturity contracts. This is because a market shock will im-

mediately cause a supply/demand imbalance and increase the trade volumes of short-term

futures more significantly than for long-term futures. However, we observe an exception for

Dutch power, for which the decay in volatilities is non-monotonic, indicating the market’s

distinctive supply and demand patterns from the rest of the energy markets.

3.4.2 Results

Marginal PCA

The primary aim of the first-stage PCA is to reduce the dimensionality of forward curve

data. Our preliminary analysis indicates the minor impact of seasonality in the outputs

of PCA. Therefore, we perform PCA on the covariance matrix of the interpolated forward
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Figure 3.4: Term structure of volatilities.
The annualised standard deviation of log returns calculated from fixed time-to-maturity
contracts.

curve data without deseasonalisation.8

Fig. 3.5 depicts the first three eigenvectors of the four energy forward curves. These

eigenvectors represent the stylised shape factors of forward curves: the ‘level’, ‘slope’, and

‘curvature’, while the concavity in the second eigenvectors may introduce some degree of

bending effects in the slopes.

The first eigenvectors are visually very similar between the forward curves, implying

that these forward curves react very similarly to a shock in the European energy markets.

Meanwhile, the loadings of UK power futures indicate their higher responsiveness to short-

term shocks than others, especially at the shortest end of the term structure. As for the

second eigenvectors, the slopes are relatively steeper for Dutch gas and power than UK gas

and power. These results suggest a wider spread between the short-term and long-term

contracts in a situation of contango/backwardation for the Dutch energy futures. The

similarities of eigenvectors seem to diminish when we consider the first, second, third, · · · ,

N -th PCs in descending order.

Table 3.3 reports the cumulative eigenvalues. The first three PCs explain over 97%,

98%, 92%, and 90% of the total variation in the forward curves of UK gas, Dutch gas,

UK power, and Dutch gas, respectively. Generally speaking, the higher the correlation of

contracts, the lower the number of PCs required, and vice versa. The explanatory powers

of PCs are typically lower for power than gas data given the same number of PCs due to

the non-storability of the commodity that lowers the correlations between contracts with

8We conjecture that the relatively short data horizon and smoothing effect of interpolation contribute
to the non-significant seasonality effects on our data. With regard to the latter point, Swindle (2014)
reaches a similar conclusion in the application of PCA to US natural gas forward curve data.
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(a) UK gas (b) Dutch gas

(c) UK power (d) Dutch power

Figure 3.5: The first three eigenvectors of fixed time-to-
maturity forward curves by PCA.
The dotted line with squares, crosses, and triangles depict the eigen-
vectors associated with PC1, PC2, and PC3, respectively.

different maturities.

PPCA

The PPCA tries to find the common PC factors that contribute to the joint dynamics of

closely related commodity forward curves. To define what are meant by common factors,

let us recall the relationship between PPCs and marginal PCs in Eq. (3.12):

Q = P̂U

= P̂1U1 + P̂2U2

For instance, if the elements in the first column of U2 were all zero, the first PPC (the first

column in Q) would solely be determined by the PCs of the first forward curve. Then, the

first PPC would not be a common component to both forward curves. Instead, we would

like to find an ideal situation where a subset of marginal PCs from all forward curves

exhibits an approximately equal size of entries to a column vector of U (or corresponding

columns in U1 and U2) to treat the PPC as a common factor.

In our analysis, we use three marginal PCs per forward curve (i.e. twelve PCs in total)
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Table 3.3: Explanatory powers of PCA.

nk 1 2 3 4 5 6 7 8 9 10

Ug Explained % 83.64 11.33 2.34 1.15 0.55 0.42 0.24 0.16 0.12 0.05
Cumulative % 83.64 94.97 97.32 98.47 99.01 99.43 99.67 99.83 99.95 100.00

Dg Explained % 88.93 7.41 1.71 1.07 0.33 0.23 0.15 0.08 0.05 0.02
Cumulative % 88.93 96.34 98.06 99.13 99.47 99.70 99.85 99.93 99.98 100.00

Up Explained % 75.63 11.77 4.97 2.79 1.83 1.30 0.85 0.49 0.23 0.14
Cumulative % 75.63 87.40 92.36 95.15 96.99 98.29 99.14 99.64 99.86 100.00

Dp Explained % 75.36 11.47 3.76 2.86 2.21 1.70 0.99 0.91 0.45 0.27
Cumulative % 75.36 86.84 90.60 93.46 95.66 97.37 98.36 99.27 99.73 100.00

Ug...UK gas, Dg...Dutch gas, Up...UK power, Dp...Dutch power. nk represents the number of PCs.
The marginal and cumulative explanatory powers are shown in % for each forward curve.

to uniformly cover over 90% of total variations across data. Fig. 3.6 reveals the outputs of

PPCA on the cross-correlation matrix of PCs, in which the top plot shows the eigenvalues

along with the total variation explained (%) on the x-axis in descending order. In the same

figure, the bottom plots show the corresponding eigenvectors that are the column vectors

of Ū, generally called loading vectors. The black markers are the entries (loadings) of

the j-th loading vector, where every set of three consecutive ticks indicates the first three

marginal PCs of the UK gas, Dutch gas, UK power, and Dutch power, respectively.

From the magnitude of eigenvalues, we conjecture that the first three PPCs are the

key factors responsible for the joint evolution of commodity forward curves. After the

fourth PPCs, the eigenvalues decline sharply, and the eigenvectors tend to represent only

one or two of the four forward curves. When we retain the first three PPCs, they cover

67% of the total variation in the cross-correlation structure, and the explanatory powers

for original (marginal) data accumulate to 86.61% (UK gas), 87.97% (Dutch gas), 70.38%

(UK power), 51.45% (Dutch power).

In contrast to Fig. 3.6, the eigenvalues in Fig. 3.7 highlight only one key component

when we apply PPCA to the cross-covariance matrix of PCs, covering approximately 71%

of the total variation in the cross-covariance structure. There is a tendency that the

eigenvectors show the dominance of power futures since the volatilities of unstandardised

PCs introduce idiosyncrasies of marginal forward curves to the common eigenspace. When

one PPC is retained, the total variations of the marginal forward curves are: 77.82% (UK

gas), 81.64% (Dutch gas), 60.66% (UK power), and 41.94% (Dutch power).

Table 3.4 summarises the cumulative % of the total variations explained by PPCA on

the cross-correlation matrix (top) and cross-covariance matrix (bottom) of PCs for varying
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Figure 3.6: Eigenvalues and eigenvectors by PPC on the cross-
correlation matrix of PCs.
Ug...UK gas, Dg...Dutch gas, Up...UK power, Dp...Dutch power. PPCA is
performed on the cross-correlation matrix of the first three PCs from each
forward curve. The top figure shows the eigenvalues and total variation
explained (%) on the second x-axis. The bottom subfigures show the cor-
responding eigenvectors, where every set of three consecutive black squares
marks the loadings of marginal PCs for a forward curve.

numbers of PPCs shown in the first row.9 As expected, the explanatory powers of the first

few PPCs are notably lower for power futures in both PPCA. This is because idiosyncratic

components account for unique dynamics in the power forward curves.

We make a couple of remarks for the results. First, when we retain all PPCs (m = 12)

from the second stage PCA, the explanatory powers are identical between PCA, PPCA on

the cross-covariance matrix and PPCA on the cross-correlation matrix (of PCs). Second,

the explanatory power of PPCA on the cross-correlation matrix is lower than that of PPCA

on the cross-covariance matrix since PPCA on the cross-correlation matrix intentionally

discards the idiosyncratic volatilities of PCs and the degree of approximation increases.

However, in exchange, it improves the common principal component analysis without the

9Table 3.4 reports nk = 3 PCs for k = 1, · · · , 4 due to limitations in space. However, Eq. (3.23) can be
used to calculate the total variations by any combination of nk PCs.
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Figure 3.7: Eigenvalues and eigenvectors by PPC on the cross-
covariance matrix of PCs.
Ug...UK gas, Dg...Dutch gas, Up...UK power, Dp...Dutch power. PPCA is
performed on the cross-covariance matrix of the first three PCs from each
forward curve. The top figure shows the eigenvalues and total variation
explained (%) on the second x-axis. The bottom subfigures show the cor-
responding eigenvectors, where every set of three consecutive black squares
marks the loadings of marginal PCs for a forward curve.

noise brought by idiosyncratic volatilities. When we compare PCA and PPCA in general,

PCA explains the total variation ofmarginal data better than PPCA, while PPCA explains

the common variation of multiple data better than PCA by the designated model structure

in Eq. (3.21).

3.4.3 Interpretation

We perform PPCA on the cross-correlation matrix of PCs in order to extract the most crit-

ical common movements across data, from which we would like to obtain some meaningful

interpretations for the common latent factors. Since the j-th PPC is defined as a linear

combination of marginal PCs, it is crucial to study the elements in the j-th loading vector

of Ū to infer the implications of the common latent factors. However, the challenge arises

when the loading vectors consist of many non-zero elements that are not insignificant. We
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Table 3.4: Cumulative explanatory powers of PPCA.

Corr

m 1 2 3 4 5 6 7 8 9 10 11 12

Ug (%) 75.29 83.73 86.61 87.04 88.22 88.74 90.44 93.00 93.80 94.13 95.02 97.32
Dg (%) 79.43 85.16 87.97 88.10 88.64 88.80 89.72 90.37 92.68 95.96 96.36 98.06
Up (%) 60.69 68.50 70.38 72.42 74.12 75.45 81.12 85.08 87.21 91.69 92.20 92.36
Dp (%) 45.63 49.89 51.45 59.24 63.63 68.02 71.79 90.20 90.51 90.52 90.55 90.60

Cov

m 1 2 3 4 5 6 7 8 9 10 11 12

Ug (%) 77.82 83.62 88.25 91.78 92.65 94.11 95.40 96.30 96.40 96.90 97.17 97.32
Dg (%) 81.64 83.68 87.40 92.10 92.21 92.92 95.80 96.46 96.54 96.96 97.73 98.06
Up (%) 60.66 62.80 74.66 83.60 83.83 87.24 88.68 91.24 91.92 92.35 92.36 92.36
Dp (%) 41.94 68.33 78.63 79.30 86.46 87.29 87.49 87.92 89.95 90.57 90.60 90.60

Ug...UK gas, Dg...Dutch gas, Up...UK power, Dp...Dutch power. The cumulative total variations
of PPCA on the cross-correlation matrix of PCs (top) and PPCA on the cross-covariance matrix
of PCs (bottom) for varying numbers of PPCs (m), representing the explanatory powers of PPCs
with respect to the dispersion of price returns.

handle this problem by two approaches: a categorical ranking and a shrinkage method.

In the first approach, the PPC loadings are classified into seven categories, G = (level,

slope, curvature, gas, power, UK, Netherlands) indexed by k = 1, · · · , 7 for the shape

factors, types of commodities, and location. Define the indicator matrix

1 =





G1 1 0 0 1 0 0 1 0 0 1 0 0

G2 0 1 0 0 1 0 0 1 0 0 1 0

G3 0 0 1 0 0 1 0 0 1 0 0 1

G4 1 1 1 1 1 1 0 0 0 0 0 0

G5 0 0 0 0 0 0 1 1 1 1 1 1

G6 1 1 1 0 0 0 1 1 1 0 0 0

G7 0 0 0 1 1 1 0 0 0 1 1 1

, (3.28)

for which the rows are labelled Gk for clarification. The (k, i)-th element equals 1 if ūij

(for any j) belongs to category Gk, and 0 otherwise. When Ū is pre-multiplied by 1, it

leaves the only relevant elements in Ū with respect to Gk

C = 1Ū , (3.29)

which is a 7× 12 matrix.10

10Recall that the dimension of Ū is 12× 12 in our empirical study.
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Define C̄kj as the categorical contribution to the j-th PPC

C̄kj =

∑12
j=1 | ckj |

nkj
∑12

i=1 | ūij |
, (3.30)

where ckj are the elements in the k-th row of C and nkj is the number of non-zero elements

in the same row. In the equation above, the sum of absolute values of ckj are divided by nkj

to calculate the average category-wise contribution relative to the j-th PPC expressed by∑12
i=1 | ūij |. By ranking these categorical contributions in descending order, we nominate

the most reasonable category to define the common factors.

Table 3.5 reveals the results. The shape factors are ranked at the top for all the PPCs,

suggesting that the commodity forward curves share the common shape factors regardless

of the type of commodities and location. Interestingly, the level and slope factors are

ranked at the top for PPC1 and PPC2, respectively, while the remaining shape factors are

ranked at the bottom. For more detailed interpretations, one may consider subcategories.

For example, PPC2 could be a combination of the slope and gas factors from the top two

factors in the ranking. In the case of PPC3 and PPC4, they may be curvature factors for

the Netherlands, albeit for different commodities (gas or power).

It is also possible to combine categories when the top C̄jk are non-declining in value. For

example, for PPC5, the slope, curvature, and power factors are ranked as top three with

loadings 0.1150, 0.1118, and 0.1037, respectively. In this case, PPC5 could be a common

factor representing the slope and curvature of power forward curves. These interpretations

are convincing when we refer back to Fig. 3.6 for the graphical representations of ūij (black

markers) in the eigenvector plots.

The second approach relies on the Sparse PCA (SPCA), which is a family of shrinkage

methods in linear regression analysis (e.g. ridge and LASSO) introduced by Zou et al.

(2006). SPCA writes PCA as a regression problem and shrinks the loadings of PCs towards

zero if they are thought to be negligible. Hence, it improves the interpretability of PCA.

argmin
A,B

M∑
i=1

∥xi −AB′xi∥22 +
n∑

j=1

λ1j∥vj∥1 + λ2

n∑
j=1

∥vj∥22

s.t. A′A = In

(3.31)

In the optimisation problem, the first term represents the reconstruction error between

the original data xi and the PC representation of data, where xi denotes the ith row in

M × N data set. Both A and B are M × n matrices where n is the number of PCs. If
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Table 3.5: Ranking of category-wise contributions to PPCs.

PPC1 PPC2 PPC3 PPC4

1 Level 0.2119 Slope 0.1730 Curvature 0.1728 Curvature 0.1619

2 UK 0.0846 Gas 0.0932 Gas 0.1048 Power 0.1382

3 Gas 0.0835 UK 0.0871 Netherlands 0.0844 Netherlands 0.0928

4 Power 0.0832 Netherlands 0.0796 UK 0.0823 UK 0.0738

5 Netherlands 0.0821 Power 0.0735 Slope 0.0633 Level 0.0595

6 Curvature 0.0199 Curvature 0.0624 Power 0.0619 Slope 0.0286

7 Slope 0.0182 Level 0.0146 Level 0.0139 Gas 0.0285

PPC5 PPC6 PPC7 PPC8

1 Slope 0.1150 Curvature 0.1214 Slope 0.1261 Level 0.1478

2 Curvature 0.1118 Power 0.1133 Power 0.0992 Power 0.1318

3 Power 0.1037 Slope 0.1113 UK 0.0926 Netherlands 0.0891

4 Netherlands 0.0925 Netherlands 0.0914 Level 0.0755 UK 0.0776

5 UK 0.0741 UK 0.0753 Netherlands 0.0740 Curvature 0.0580

6 Gas 0.0630 Gas 0.0533 Gas 0.0675 Slope 0.0442

7 Level 0.0233 Level 0.0173 Curvature 0.0484 Gas 0.0349

PPC9 PPC10 PPC11 PPC12

1 Curvature 0.1346 Level 0.1089 Slope 0.1848 Level 0.2015

2 Gas 0.1244 Gas 0.0981 Gas 0.1200 Gas 0.1308

3 UK 0.0941 UK 0.0962 UK 0.0981 UK 0.0936

4 Level 0.0940 Curvature 0.0763 Netherlands 0.0686 Netherlands 0.0730

5 Netherlands 0.0726 Netherlands 0.0704 Level 0.0538 Power 0.0358

6 Power 0.0423 Power 0.0685 Power 0.0467 Slope 0.0329

7 Slope 0.0214 Slope 0.0648 Curvature 0.0113 Curvature 0.0156

The ranking of C̄jk by Eq. (3.30) for the seven categories: shape (level, slope, curvature),
types of commodities (gas, power), and location (UK, Netherlands).

A = B, B is the eigenvector matrix, and it reduces to an ordinary PCA. In other cases,

B is a sparse eigenvector matrix that is proportional to A. The second term is the L1

penalty that suppresses less significant loadings for the jth column (vj) of the eigenvector

matrix with a tuning parameter λ1j . The larger the λ1j , the more severe the penalty for

the jth PC loadings. The last L2 penalty term is necessary to have a unique solution when

N ≫ M .11

In our study, we apply SPCA to the standardised PCs to obtain simplified eigenvectors,

leaving the only significant elements in Ū. The ‘spca’ function of the R package ‘elasticnet’

(Zou and Hastie, 2020) is used to compute SPCA with the default value of λ2 = 10−6.

We retain 1/3 of variables per eigenvector and set zero everywhere else; keeping a certain

number of variables is an alternative way of setting the L1 penalty introduced by the

11According to Zou et al. (2006), it is advisable to set a small positive number for λ to avoid collinearity
in regression even when the number of variables (N) is smaller than the number of observations M .
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authors.

Table 3.6 compares the loading vectors of the original PPCA (top) and sparse PPCA

(bottom) for UK gas, Dutch gas, UK power, and Dutch power. We can see that SPCA

selects the first marginal PCs for PPC1, the second marginal PCs for PPC2, and the third

marginal PCs for PPC3 as the primary factors to explain the common eigenstructures in

the bottom table. The retained loadings indicate the accountability of the shape factors

in explaining the joint dynamics of commodity forward curves, in agreement with the

previously obtained results by the categorical ranking. On the other hand, the variables

may have weaker associations with PPCs where the loadings are close to zero, such as the

loadings of Dutch power for PPC2 and UK power for PPC3. As for PPC4, PC3 of Dutch

power dominates the loading vector with a remarkably high value of 0.98. Therefore, it

could be a non-common factor representing the curvature of the Dutch power forward

curve alone.

Lastly, we comment on the explanatory power of SPCA. The total variation of SPCA

cannot be calculated in the usual way since the sparse eigenvectors are not orthogonal.

Zou et al. (2006) propose the adjusted total variation using the QR decomposition, which

is shown in the top two rows in the second half of Table 3.6. Note that, in the table,

the (adjusted) total variations refer to the explanatory powers of the model for the cross-

correlation of PCs, not the explanatory powers for original data. As a side-effect of the

shrinkage method, the adjusted total variation does not sum to unity even if we account

for all the components. Moreover, the explanatory power declines by approximately 6%

compared to the original PPCA.
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Table 3.6: Comparison of original and sparse PPC loading vectors.

Explained % 27.31 21.94 17.95 7.11 6.98 5.93 4.32 3.48 2.18 1.34 1.01 0.42
Cumulative % 27.31 49.26 67.21 74.32 81.31 87.24 91.56 95.04 97.22 98.57 99.58 100.00

PPC1 PPC2 PPC3 PPC4 PPC5 PPC6 PPC7 PPC8 PPC9 PPC10 PPC11 PPC12

Ug PC1 0.5240 -0.0275 -0.0333 0.0723 0.0623 0.0042 -0.1852 -0.2704 0.1539 -0.1393 -0.1526 0.7352
PC2 0.0149 0.5198 -0.2035 -0.0601 -0.2957 -0.2416 -0.1877 -0.0256 0.0963 -0.1038 0.6904 0.0787
PC3 0.0250 0.1845 0.5745 -0.1050 0.1993 -0.1729 -0.0283 0.0972 0.6389 0.3682 0.0104 -0.0237

Dg PC1 0.5219 -0.0491 -0.0620 -0.0364 0.0057 -0.0092 -0.0950 -0.1325 0.3039 -0.4691 -0.0702 -0.6132
PC2 0.0174 0.5043 -0.2600 -0.0641 -0.2651 -0.0487 -0.3336 0.0042 -0.0362 0.2999 -0.6192 -0.1229
PC3 0.0597 0.2147 0.5182 -0.0379 0.2683 -0.3440 -0.2921 -0.0010 -0.5757 -0.2622 -0.0527 -0.0421

Up PC1 0.4928 0.0637 0.0031 0.1125 0.0855 0.0531 0.2523 -0.3394 -0.3262 0.5962 0.2215 -0.2015
PC2 -0.1112 0.4666 -0.0822 0.1170 0.2113 -0.1886 0.7134 -0.1909 0.0664 -0.2674 -0.2086 0.0663
PC3 -0.0108 0.1397 0.3999 -0.5065 -0.4365 0.4977 0.1738 -0.2584 -0.0842 -0.1360 -0.0208 0.0513

Dp PC1 0.4292 0.0163 -0.0471 -0.3020 -0.1167 -0.1108 0.3043 0.7580 -0.1257 0.0106 -0.0330 0.1097
PC2 0.0256 0.3654 -0.1194 0.0100 0.5621 0.6628 -0.1638 0.2285 -0.0078 -0.0517 0.1203 -0.0028
PC3 0.0897 0.1312 0.3230 0.7740 -0.3931 0.2308 0.0426 0.2324 -0.0039 -0.0855 -0.0165 -0.0112

Explained % 26.43 18.87 14.44 7.12 7.09 6.73 4.21 3.77 2.09 1.56 1.04 0.45
Cumulative % 26.43 45.30 59.73 66.86 73.95 80.68 84.89 88.67 90.76 92.32 93.36 93.81

PPC1 PPC2 PPC3 PPC4 PPC5 PPC6 PPC7 PPC8 PPC9 PPC10 PPC11 PPC12

Ug PC1 -0.5545 0 0 0 0 0 0.0001 -0.1933 0 -0.3592 0 0.7246
PC2 0 -0.6354 0 0 0 0 0.1544 0 0 0 -0.7565 0
PC3 0 0 0.7663 -0.0190 -0.0024 0 0 0 0.6420 0 0 0

Dg PC1 -0.5739 0 0 0 0 0 0 -0.1952 0 -0.3989 0 -0.6890
PC2 0 -0.6614 0 0 0 0 0.3969 0 0 0 0.6365 0
PC3 0 0 0.6422 -0.0051 0 -0.0006 0 0 -0.7667 0 0 0

Up PC1 -0.5075 0 0 0 0 0 0 -0.1739 0 0.8437 0 -0.0140
PC2 0 -0.3985 0 0 0 0 -0.9048 0 0 0.0001 0.1499 0
PC3 0 0 -0.0005 -0.1812 0.7436 0.6437 0 0 0 0 0 0

Dp PC1 -0.3250 0 0 0 0 0 0 0.9457 0 0 0 0.0024
PC2 0 -0.0002 0 0 -0.6545 0.7561 0 0 -0.0014 0 0.0021 0
PC3 0 0 0.0178 0.9832 0.1370 0.1181 0 0 0.0083 0 0 0

Ug...UK gas, Dg...Dutch gas, Up...UK power, Dp...Dutch power. The top table reports the loadings of marginal PCs by
PPCA on the cross-correlation matrix of PCs. The bottom table shows the sparse loadings by SPCA.
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3.5 Summary

PCA is a traditional yet powerful tool that focuses on the key components contributing

to the variations of data under orthogonal systems. In this chapter, we reviewed the

extensions of PCA for more than one data group: correlated PCA, joint PCA, and Flury

(1988)’s common PCA and its variations. Several authors have employed these methods

for the analysis and modelling of financial data. Such examples include modelling yield

curves, volatility surfaces of equity options, and commodity forward curves.

In practice, we tend to overlook the implicit assumptions of the simplest multi-group

PCA (e.g. correlated PCA). On the other hand, more sophisticated models (e.g. CPC)

have burdens in that they are heavily dependent on the model assumptions or are sub-

ject to high computational expenses, limiting the applicability of the multi-group PCA

for practical use. Our proposed method, by contrast, is the generalisation of the two-

stage PCA (Alexander and Chibumba, 1996), so-called PPCA, which is a distribution-free

method that does not require heavy computation and finds the common eigenstructures

of multi-group data only if they exist. We derived the succinct expression for the com-

mon eigenstructures and discussed why the second stage PCA should be performed on the

cross-correlation matrix of PCs.

In the empirical study, the categorical ranking of PC loadings identified the common

shape factors in the forward curves of UK gas, Dutch gas, UK power, and Dutch power.

The numerical analysis of PC loadings by SPCA suggested similar interpretations for the

first three common eigenvectors. We shall utilise these results in the formulation of a

forward curve model in the next chapter.
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Chapter 4

The Joint Modelling of

Commodity Forward Curves

4.1 Introduction

The aim of Chapter 4 is to adopt the common factor structures by PPCA in the HJM

model (Heath et al., 1992), a popular framework for modelling commodity forward curves

amongst industry practitioners and academics. The convenience of the HJM model centres

on its ability to describe the evolution of the whole term structure of forward prices by the

sum of volatility functions, typically estimated by PCA; see Clewlow and Strickland (2000).

Its extension for multi-commodity forward curves is proposed by Tolmasky and Hindanov

(2002) who impose strong conditions, including that a correlation matrix is a constant

multiplication of other correlation matrices. Their model assumption resembles level 2, the

proportionality of covariance matrices, in Flury (1988)’s hierarchical similarity analysis.

In Chapter 3, we argued that real-life data may not always fit into Flury (1988)’s stylised

eigenstructures, suggesting an alternative approach to quantify the dependence structure

of commodity forward curves by PPCA. In this chapter, we are going to demonstrate how

to extend the HJM model for a single forward curve to multiple forward curves with the

orthogonal representation of factor volatilities using PPCA.

As mentioned earlier, the PCA-based forward curve model has been used widely.

Therefore, the potential users of the PPCA-based model may wish to achieve the same

model performance as the PCA-based model at a marginal level while benefiting from en-

hanced common factor structures in the joint modelling of those marginal forward curves.

We estimate additional factors from insignificant PPCs, representing the uniqueness of

forward curves, and include them in the PPCA-based forward curve model to achieve the
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objectives.

The empirical section conducts a simulation study to compare the distributional prop-

erties of the PCA and PPCA-based models with varying number of common factors and

examine whether the inclusion of common factors improves the joint modelling of forward

curves. The impacts are analysed before and at maturities of forward contracts to consider

the time-to-maturity effect in the distributions of five commodity spreads.

4.2 Forward Curve Models

4.2.1 The PC Model

The following term structure model is the generalisation of Heath et al. (1992)

dFk(t, T )

Fk(t, T )
=

nk∑
j=1

σkj(t, T )dZ
Q
kj(t) , (4.1)

where Fk(t, T ), k = 1, · · · , K, represent the price of forward contracts1 in the k-th forward

curve of interest with maturity T , σkj(t, T ), j = 1, · · · , nk, are the factor volatilities that

govern the dynamics of the forward curves, and ZQ
kj(t) are the Q-Brownian motions asso-

ciated with the factors. These Brownian motions can be either correlated or uncorrelated,

depending on the model assumptions. We shall denote uncorrelated Brownian motions by

Z(t) and correlated Brownian motions by W (t) hereafter. Eq. (4.1) reduces to a single

forward curve model when k = 1.

Suppose that PCA is used to estimate the orthogonal factor volatilities. Then, it gives

another expression for Eq. (4.1) with the eigenstructures:
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 (4.2)

We denote this PCA-based model by PC(nk), where nk (≤ N) is the number of principal

components used for a marginal forward curve model. Excluding the Brownian motions,

the right-hand side of Eq. (4.2) is the square root equivalent of Eq. (3.2), Γk := VkΛ
1/2
k ,

where vij are the elements in the eigenvector matrix Vk and λj are the diagonal elements

1In this chapter, we treat forward and futures, as well as the associated pricing measures interchangeably.
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in the eigenvalue matrix Λk.
2

When we expand the right-hand side of the equation, it is easy to see that the j-th

element in the i-th row of Γk corresponds to the volatility of the j-th orthogonal factor:



dFk(t,T1)
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 (4.3)

Therefore, the i-th forward contract is expressed as the sum product of row vectors in Γk

and the uncorrelated Brownian motions ZQ
kj(t), which is the right-hand-side of Eq. (4.1).

From another point of view, each column vector in Γk represents the term structure of

volatilities for the j-th orthogonal factor.

Clewlow and Strickland (2000) parametrically fit the column vectors using exponential

functions to express the Samuelson Effect in the term structure of volatilities. Thompson

(2016) extends the approach by introducing a parameterised forward curve model that

imposes the following functional form on uncorrelated three-factor volatilities

g1(t, T,X, α) = X1e
−α1(T−t) +X2e

−α2(T−t) +X3

g2(t, T,X, α) = X4e
−α1(T−t) +X5e

−α2(T−t) +X6

g3(t, T,X, α) = X7e
−α1(T−t) +X8e

−α2(T−t) +X9 ,

(4.4)

where gj( · ), j = 1, 2, 3 replace σkj(t, T ) in Eq. (4.1). In his model, the volatility functions

share the same exponents so that the linkage between the uncorrelated and correlated

factor structures are preserved; see Thompson (2016).

4.2.2 The PPC Model

We extend the general PC(nk) model by introducing common eigenstructures into the

volatility functions. Denote the PPCA-based forward curve model by

PPCk

( K∑
k=1

nk, nk, m, 1
)
, (4.5)

where
∑K

k=1 nk is the total number of marginal principal components used to perform

PPCA, and m is the number of common factors. The model includes one additional factor

in order to account for idiosyncratic behaviour of a commodity, denoted by 1. For example,

2Note that the eigenvalues and vectors do not show the subscript k for notational simplicity.
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when m = 2, n1 = 3, and n2 = 2 for K = 2, the marginal PPC models can be written as

PPC1(5, 3, 2, 1) and PPC2(5, 2, 2, 1), although we shall simply denote the two models

by PPC(5, n, m, 1) if n1 = n2.

As for the forward curve model, the stochastic differential equation is described by

m+ 1 factors consisting of m common and one idiosyncratic factor volatilities

dFk(t, T )

Fk(t, T )
=

m∑
j=1

σkj(t, T )dZ̄
Q
j (t) + σk,m+1(t, T )dW

Q
k (t), (4.6)

where Z̄Q
j (t) denotes the shared Brownian motions betweenK forward curves. In Eq. (4.6),

the Brownian motions WQ
k (t) are commodity-specific and are correlated across forward

curves. On the other hand, WQ
k (t) and Z̄Q

j (t) are uncorrelated (across and within forward

curves) by assumption. Below, we demonstrate the model building blocks by setting nk = 3

(the number of PCs used in the first-stage PCA) and m = 3 (the number of PPCs used

in the second-stage PCA on the cross-correlation matrix of PCs) for illustrative purposes.

Common Factors: the Backbone of the Model

We can write the eigenstructures of the m common factor volatilities in Eq. (4.6) as



dFk(t,T1)
Fk(t,T1)

dFk(t,T2)
Fk(t,T2)

...

dFk(t,TN )
Fk(t,TN )

 =


vN1

...

v21

v11

vN2

...

v22

v12

vN3

...

v23

v13




0

0

√
λ1

0

√
λ2

0

√
λ3

0

0



ū31

ū21

ū11

ū32

ū22

ū12

ū33

ū23

ū13




0

0

√
ω̄1

0

√
ω̄2

0

√
ω̄3

0

0



dZ̄Q

1 (t)

dZ̄Q
2 (t)

dZ̄Q
3 (t)

 ,

(4.7)

where ūij are the elements in the partitioned common eigenvector matrices Ūk and ω̄j are

the common eigenvalues in Ω̄. All forward curves share ω̄j and the uncorrelated Brownian

motions. Notice that the right-hand side of Eq. (4.7) (without Brownian motions) is the

square root equivalent of Eq. (3.20), Hk := V̂kΛ̂
1/2
k ŪkΩ̄

1/2. The implication of this model

is that when there is a shock in the j-th common system, it is transmitted to marginal

forward curves through the j-th factor volatilities; however, the responsiveness to the

common shock may differ between the forward curves.
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Idiosyncratic Components

For the estimation of the idiosyncratic factor volatility in Eq. (4.6), we consider an N × 4

matrix



dFk(t,T1)
Fk(t,T1)

dFk(t,T2)
Fk(t,T2)

...

dFk(t,TN )
Fk(t,TN )

 =


vN1

...

v21

v11

vN2

...

v22

v12

vN3

...

v23

v13




0

0

√
λ1

0

√
λ2

0

√
λ3

0

0



ū31

ū21

ū11

ū32

ū22

ū12

ū33

ū23

ū13

ū∗
34

ū∗
24

ū∗
14




0

0

0

√
ω̄1

0

0

√
ω̄2

0

0

√
ω̄3

0

0

√
ω̄∗
4

0

0

0



dZ̄Q

1 (t)

dZ̄Q
2 (t)

dZ̄Q
3 (t)

dWQ
k (t)



=


ηN1

...

η21

η11

ηN2

...

η22

η12

ηN3

...

η23

η13

η∗N4

...

η∗24

η∗14




dZ̄1(t)

dZ̄2(t)

dZ̄3(t)

dWQ
k (t)

 ,

such that the right-hand side of the first equation includes additional elements ū∗
4 =

(ū∗14, ū
∗
24, ū

∗
34)

′ and
√
ω̄∗
4. Therefore, our objective reduces to finding an optimal vector for

η∗
4 = (η∗14, η

∗
24, · · · , η∗N4)

′ in the second equation.

We propose two estimation methods to obtain the vector. The first method, which

we call local volatility fitting, sets the calibration target to be the square root variance

of a forward curve. That is, the PPC model intends to mimic the term structure of

volatilities estimated by the PC model. Since the (i, i)-th elements of the covariance

matrix in the original system and the uncorrelated system have one-to-one relationships

by construction,3 we can equate the PC estimate of volatilities (left) and PPC estimate

of volatilities (right)

(γ2i1 + γ2i2 + γ2i3)
1
2 = (η2i1 + η2i2 + η2i3 + η∗2i4 )

1
2 , (4.8)

where (γi1, γi2, γi3)
1/2 and (ηi1, ηi2, ηi3, η

∗
i4)

1/2 are the norm of i-th row vectors in Γ̂k (:=

V̂kΛ̂
1/2
k ) and H∗

k (:= Γ̂kŪ
∗
kΩ̄

∗1/2
k ), respectively. Therefore, solving for η∗i4, i = 1, · · · , N

in Eq. (4.8) gives the exact solution for the unknown vector η∗
4. The advantage of this

method is that it exactly replicates the term structure of volatilities estimated by the

PC(3) model. On the other hand, the downside is that it only focuses on the diagonal

entries of the covariance matrix, ignoring the covariance of forward contracts within a

forward curve.

The second method, local covariance fitting, sets the calibration target to be the PC

3See Eq. (3.21).
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estimate of an entire covariance matrix to circumvent the problem. In other words, it con-

siders not only the diagonal elements but also the off-diagonal elements of the covariance

matrix by minimising the Frobenius distance between two model covariance matrices to

find the optimal vector η∗
4

argmin
η4

√√√√ N∑
i=1

N∑
j=1

∥∥Σpc
(i,j) −Σppc

(i,j)

∥∥2
1
, (4.9)

where Σpc(i, j) and Σppc(i, j), i, j = 1, · · · , N , are the (i, j)-th elements in the model

covariance matrices by PCA and PPCA, respectively. Albeit an imperfect fit to the total

variation, it better captures the covariance structures of forward contracts within a curve.

Having obtained the complete H∗
k matrix by either method, the column vectors are fitted

parametrically to the functional form of Eq. (4.4) to describe the time decaying factor

volatilities.4

Factor Correlations

The idiosyncratic factor of the PPC model is derived from the ‘leftovers’ after extracting

m common factors for each forward curve. Due to the estimation method, they may

include residual cross-correlations. Thus, we impose the following model cross-covariance

structure to complete the model specification.

Supposing two forward curves, the model cross-covariance structure is given as

Cov
(
dF1(t, T )

F1(t, T )
,
dF2(t, T )

F2(t, T )

)
= Cov

( m∑
j=1

σ1j(t, T )dZ̄
Q
j (t) + σ1,m+1(t, T )dW

Q
1 (t),

m∑
j=1

σ2j(t, T )dZ̄
Q
j (t) + σ2,m+1(t, T )dW

Q
2 (t)

)

=

( m∑
j=1

σ1j(t, T )σ2j(t, T ) + ρ12σ1,m+1(t, T )σ2,m+1(t, T )

)
dt, (4.10)

where

dZ̄Q
j (t)dZ̄

Q
l (t) =


dt, if j = l

0, otherwise

dWQ
k (t)dZ̄Q

j (t) = 0

dWQ
1 (t)dWQ

2 (t) = ρ12dt ,

(4.11)

4The number of volatility functions required for a PPC model is m+ 1.
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for k = 1, 2 and j, l = 1, · · · , m. Alternatively, it can be expressed by matrices

Σppc
12 = V1Λ

1/2
1 Ū∗

1Ω̄
∗1/2
1 R̄12Ω̄

∗1/2
2 Ū∗′

2 Λ
1/2
2 V

′
2 , (4.12)

where

Σppc
12 : Model implied cross-market covariance matrix

Ω̄∗
k : Model eigenvalue matrix with an additional element

Ū∗
k : Model eigenvector matrix with an additional vector

and the factor cross-correlation matrix

R̄12 =


0

...

0

1

· · ·

. . .

. . .

0

0

1

. . .

· · ·

ρ12

0

...

0


∈ R(m+1)×(m+1) . (4.13)

The zero entries in R̄12 impose the model assumption in Eq. (4.11). The Brownian motions

of idiosyncratic factors are correlated by ρ12 which is the only unknown parameter in the

model.

The estimation of ρ12 relies on a similar technique to that of idiosyncratic factors;

we calibrate the unknown parameter as the residual component between the model cross-

covariance matrix of the PC and PPC models, minimising the objective function

argmin
ρ12

√√√√ N∑
i=1

N∑
j=1

∥∥Σpc
12(i,j) −Σppc

12(i,j)

∥∥2
1

s.t. − 1 ≤ ρ12 ≤ 1

(4.14)

whereΣpc
12(i,j) andΣppc

12(i,j), i, j = 1, · · · , N , are the (i, j)-th elements in the cross-covariance

matrix estimated by the PC and PPC models.

4.3 Implementation

4.3.1 Parameter Estimation

The model parameters are estimated from the same data set as in Section 3.4.1. Fig. 4.1

depicts the model volatilities as a function of time to maturity, in which the column
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labelled m = 0 refers to the PC(3) model with no common factor, and shows the three

factor volatilities in one figure. Other columns show the volatility of common factors for

the PPC(12, 3, m, 1) models for m = 1, 2, 3, where the m+1 volatility functions represent

the idiosyncratic factor, estimated either by the local volatility fitting (purple dots) or the

local covariance fitting (green dots) together with the fitted lines. Tables 4.1 – 4.3 report

the parameter values and root-mean-square error (RMSE). In the estimation procedure,

we obtain the parameters of common factor volatilities first, then impose the β1 and β2 as

constraints to calibrate the rest of the parameter values for the idiosyncratic factors. In

this way, the parameters of common factors are unaffected by choice of calibration method

for the idiosyncratic factors.

In Fig. 4.1, all models similarly calculate the term structure of volatilities for the

first three factors. On the other hand, the PPC models smooth out the term structures

overall, most notably when there is a hump in the shape of short-term volatilities, leading

to smaller fitting errors than the PC model. The estimated decay parameters are similar

between PC(3) and PPC(12, 3, 3, 1), indicating a high speed of mean reversion for both the

first and second factors, while other PPC models suggest relatively slow mean-reversion

rates for one or both of the factors.

In Fig. 4.1, the local volatility fitting estimates the idiosyncratic volatilities more con-

sistently than the local covariance fitting, regardless of the number of common factors.

Table 4.4 reports the model-implied factor correlations between UK gas (W1), Dutch gas

(W2), UK power (W3), and Dutch power (W4) forward curves implied by the estimation

method together with the Frobenius distance for the local covariance fitting. While the

magnitude of the correlation is on average higher for the local covariance fitting, both

methods estimate the sign and magnitude of correlation coefficients stably for m = 2, 3.

As for the PC(nk) model, the factor dependence structure is typically modelled by

the correlation of PCs across forward curves (cross-correlations). Table 4.5 shows the

historical estimation of the cross-correlation matrix for the PC(3) model. The cross-

correlation appears the strongest in the diagonal elements (93%, 86%, and 73% for PC1 –

PC1, PC2 – PC2, PC3 – PC3, respectively) of the UK gas – Dutch gas submatrix, possibly

due to the active trade flows between their physical gas markets. On the other hand, the

diagonal elements (60%, 39%, and 20%) of the UK power – Dutch power submatrix reveal

the weakest association of PCs albeit the same commodity, which probably reflects the

underdevelopment of the cross-regional power trades during the observation period.
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Figure 4.1: Factor volatilities and exponentially fitted curves.
The dots represent the model volatilities, and the lines are the fitted curves. The first column shows the result for the PC(3) model. The
second to the last columns show the results for the PPC(12, 3, m, 1) model with m = 1, 2, 3.
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Table 4.1: Exponentially fitted model parameters for the PC(3) and PPC(12, 3, 1, 1) models.

PC(3)

X1 X2 X3 X4 X5 X6 X7 X8 X9 α1 α2 RMSE

UK gas -2.182 2.415 0.167 4.843 -4.353 -0.065 -10.620 10.450 -0.055 5.622 5.403 0.0134
Dutch gas -1.664 1.808 0.169 2.354 -1.962 -0.043 -6.173 5.994 -0.037 6.601 6.228 0.0084
UK power -7.560 7.744 0.123 -2.616 3.018 -0.075 -17.061 16.305 -0.036 9.998 9.522 0.0127
Dutch power 0.271 -0.120 0.158 0.563 -0.129 -0.052 -9.073 8.697 -0.035 8.137 7.667 0.0101

PPC(12, 3, 1, 1)

Common Y1 Y2 Y3 β1 β2 RMSE

UK gas 0.179 0.104 0.130 6.169 1.359 0.0019
Dutch gas 0.116 0.129 0.094 7.979 0.767 0.0008
UK power 0.217 -0.364 0.484 4.042 -0.020 0.0032
Dutch power 0.206 -0.256 0.246 1.666 0.375 0.0052

Idiosyncratic Local vol I1 I2 I3 RMSE Local cov I1 I2 I3 RMSE

UK gas 0.192 -0.038 0.106 0.016 0.525 -0.124 -0.049 0.0162
Dutch gas 0.184 -0.040 0.100 0.013 -0.047 -0.008 0.079 0.0086
UK power 0.309 1.683 -1.662 0.012 0.447 3.280 -3.365 0.0125
Dutch power 0.290 -0.455 0.366 0.025 0.084 -0.142 0.186 0.0118

The parametric fit to the Thompson (2016)’s model in Eq. (4.4). Xi: fitted factor volatilities for the PC(3) model. αi: shared exponents.
Yi: fitted common factor volatilities for the PPC(12, 3, 1, 1) model. Ii: fitted idiosyncratic factor volatilities reported for the local volatility
fitting (left columns) and the local covariance (right columns). βi shared exponents. The RMSE reports the fitting errors.
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Table 4.2: Exponentially fitted model parameters for the PPC(12, 3, 2, 1) model.

PPC(12, 3, 2, 1)

Common Y1 Y2 Y3 Y4 Y5 Y6 β1 β2 RMSE

UK gas 0.606 -0.373 0.150 2.595 -2.309 -0.042 2.890 2.567 0.0096
Dutch gas 0.120 0.139 0.058 0.268 -0.095 0.003 5.031 0.389 0.0058
UK power 0.854 -0.638 0.113 3.154 -2.889 -0.021 2.889 2.658 0.0088
Dutch power 0.504 -0.411 0.114 1.694 -1.519 -0.021 2.852 2.616 0.0065

Idiosyncratic Local vol I1 I2 I3 RMSE Local cov I1 I2 I3 RMSE

UK gas 0.755 -0.637 0.071 0.010 0.862 -0.768 0.063 0.0066
Dutch gas 0.143 -0.052 0.091 0.010 0.126 -0.069 0.097 0.0096
UK power 1.986 -1.756 0.062 0.009 2.506 -2.280 0.050 0.0072
Dutch power 1.685 -1.599 0.135 0.018 0.747 -0.723 0.119 0.0106

The parameters are fitted to Eq. (4.4). Yi: fitted common factor volatilities. Ii: fitted idiosyncratic factor volatilities reported for
the local volatility fitting (left columns) and the local covariance (right columns). βi: the shared exponents. The RMSE reports
the fitting errors.
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Table 4.3: Exponentially fitted model parameters for the PPC(12, 3, 3, 1) model.

PPC(12, 3, 3, 1)

Common Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 β1 β2 RMSE

UK gas -2.202 2.428 0.154 0.963 -0.610 -0.079 -9.418 9.118 -0.035 5.622 5.382 0.0120
Dutch gas -1.797 1.930 0.153 0.154 0.095 -0.061 -4.812 4.528 -0.028 6.352 5.951 0.0077
UK power -5.361 5.461 0.126 -6.004 6.160 -0.052 -8.945 8.459 -0.012 9.962 9.448 0.0099
Dutch power -0.941 1.020 0.114 -1.124 1.310 -0.035 -3.580 3.329 -0.019 7.896 7.342 0.0065

Idiosyncratic Local vol I1 I2 I3 RMSE Local cov I1 I2 I3 RMSE

UK gas -0.108 0.209 0.062 0.004 -1.049 1.109 0.050 0.0018
Dutch gas 0.093 -0.009 0.057 0.004 -0.315 0.363 0.052 0.0029
UK power -2.827 3.060 0.055 0.006 -2.862 3.106 0.033 0.0026
Dutch power 2.456 -2.217 0.121 0.008 1.304 -1.209 0.112 0.0054

The parameters are fitted to Eq. (4.4). Yi: fitted common factor volatilities. Ii: fitted idiosyncratic factor volatilities reported for the
local volatility fitting (left columns) and the local covariance (right columns). βi: the shared exponents. The RMSE reports the fitting
errors.
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Table 4.4: PPC factor correlations.

Local volatility

Correlation

m = 1 m = 2 m = 3

W1 W2 W3 W4 W1 W2 W3 W4 W1 W2 W3 W4

W1 1 0.141 -0.053 -0.336 W1 1 0.200 -0.061 -0.448 W1 1 0.194 -0.067 -0.540
W2 1 -0.241 -0.145 W2 1 -0.300 -0.176 W2 1 -0.352 -0.248
W3 1 -0.184 W3 1 -0.235 W3 1 -0.252
W4 1 W4 1 W4 1

Local covariance

Correlation

m = 1 m = 2 m = 3

W1 W2 W3 W4 W1 W2 W3 W4 W1 W2 W3 W4

W1 1 -0.323 0.320 0.226 W1 1 0.314 -0.097 -0.671 W1 1 0.248 -0.093 -0.723
W2 1 -0.473 -0.252 W2 1 -0.421 -0.245 W2 1 -0.449 -0.316
W3 1 -0.233 W3 1 -0.328 W3 1 -0.334
W4 1 W4 1 W4 1

Frobenius distance

m = 1 m = 2 m = 3

W1 W2 W3 W4 W1 W2 W3 W4 W1 W2 W3 W4

W1 0.0437 0.0311 0.0555 W1 0.0162 0.0164 0.0194 W1 0.0054 0.0132 0.0144
W2 0.0222 0.0221 W2 0.0138 0.0129 W2 0.0128 0.0076
W3 0.0326 W3 0.0140 W3 0.0135
W4 W4 W4

W1...UK gas, W2...Dutch gas, W3...UK power, W4...Dutch power. Wk, k = 1, · · · , 4, represents the Brownian motions of
idiosyncratic factors. The top two panels report the model implied correlation coefficients for idiosyncratic factors by the
factor estimation method. The last column reports the Frobenius distance for the local covariance fitting given by Eq. (4.14).
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Table 4.5: Cross-correlation matrix of three PCs.

Ug Dg Up Dp

PC1 PC2 PC3 PC1 PC2 PC3 PC1 PC2 PC3 PC1 PC2 PC3

Ug PC1 1 0 0 0.928 0.024 0.071 0.829 -0.233 -0.095 0.599 0.046 0.121
PC2 0 1 0 0.005 0.857 0.078 0.052 0.565 0.048 0.084 0.324 0.054
PC3 0 0 1 -0.033 -0.092 0.733 0.037 0.141 0.438 0.012 0.051 0.310

Dg PC1 0.928 0.005 -0.033 1 0 0 0.771 -0.240 -0.072 0.677 0.008 0.058
PC2 0.024 0.857 -0.092 0 1 0 0.056 0.490 0.033 0.071 0.422 0.026
PC3 0.071 0.078 0.733 0 0 1 0.123 0.135 0.312 0.023 0.069 0.280

Up PC1 0.829 0.052 0.037 0.771 0.056 0.123 1 0 0 0.596 0.113 0.188
PC2 -0.233 0.565 0.141 -0.240 0.490 0.135 0 1 0 -0.113 0.393 0.049
PC3 -0.095 0.048 0.438 -0.072 0.033 0.312 0 0 1 0.033 0.017 0.195

Dp PC1 0.599 0.084 0.012 0.677 0.071 0.023 0.596 -0.113 0.033 1 0 0
PC2 0.046 0.324 0.051 0.008 0.422 0.069 0.113 0.393 0.017 0 1 0
PC3 0.121 0.054 0.310 0.058 0.026 0.280 0.188 0.049 0.195 0 0 1

Ug...UK gas, Dg...Dutch gas, Up...UK power, Dp...Dutch power.
The correlation coefficients are estimated from the time series of PCs calculated for the period of 1st July 2016 to
29th Jun 2018. The block diagonal elements are identity matrices representing the within-curve PC correlations.
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4.3.2 Simulation

To analyse the effects of common factors in a forward curve model, we first explain the sim-

ulation procedure for the PPC model. Suppose that PCA is performed separately on the

covariance matrix of forward contracts followed by PPCA on the cross-correlation matrix

PCs, from which we obtain the parametrically fitted factor volatilities and correlations as

reported above.

PPC Model Simulation

Outside the simulation loop:

1. Discretise Eq. (4.6).

2. Form a K × K matrix for the correlation of idiosyncratic factors5 and apply the

Cholesky decomposition to the matrix.

For each time step t in a simulation loop:

3. Generate standard normal random variables ε̄t = (ε̄1(t), · · · , ε̄m(t))′, ε̄j(t) ∼ N(0, 1)

for common factors.

4. Generate standard normal random variables εt = (ε1(t), · · · , εK(t))′, εk(t) ∼ N(0, 1),

for idiosyncratic factors.

5. Pre-multiply the lower-triangular Cholesky matrix to εt to correlate the random

variables for idiosyncratic factors.

For each forward curve at t:

6. Calculate the common and idiosyncratic factor volatilities from fitted parameters.

7. Assign the random variables in ε̄t and εt to the corresponding Brownian motions to

simulate the forward prices.

Next, we describe the traditional multi-commodity modelling with the model specific-

ation Eq. (4.1), which is a no-common factor model whose joint price dynamics with other

forward curves are typically captured by the correlated PCA described in Section 3.3.1.

This approach requires the generation of correlated random variables to relate the factors

5Such as the 4× 4 correlation matrices reported in Table 4.4.
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between forward curves. Such random variables are obtained by applying the Cholesky

decomposition to the cross-factor correlation matrix

Q = LL′ , (4.15)

where L ∈ Rn∗×n∗
is the lower-triangular Cholesky matrix and

Q =


RK1

...

R21

R11

RK2

...

R22

R12

· · ·

. . .

· · ·

· · ·

RKK

...

R2K

R1K


∈ Rn∗×n∗

. (4.16)

In Q, Rkl ∈ Rnk×nk are the cross-correlation matrices of PCs when k ̸= l and are identity

matrices when k = l.

The main inputs of the PC model simulation, therefore, are the exponentially fitted

parameters of factor volatilities and the cross-correlation matrix Q. As is the case for

the PPC model, the simulation of price paths involves discretisation of Eq. (4.1) and

assignment of correlated random variables to the factor volatilities of marginal forward

curves at time t. We summarise the simulation procedure as follows:

PC Model Simulation

Outside the simulation loop:

1. Discretise Eq. (4.1).

2. Apply the Cholesky decomposition to Q.

For each time step t in a simulation loop:

3. Generate the standard normal random variables εt = (ε1(t), · · · , εn∗(t))′, εj(t) ∼

N(0, 1), for all factors at a time.

4. Pre-multiply the lower-triangular Cholesky matrix to εt to generate correlated ran-

dom variables ε̃t = (ε̃1(t), · · · , ε̃n∗(t))′, ε̃j(t) ∼ N(0, 1).

For each forward curve at t:

5. Calculate the factor volatilities from fitted parameters.

6. Assign the random variables in ε̃t to the corresponding Brownian motions to simulate

the forward prices.
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Comparing the two simulation procedures, the most distinctive feature of the PPC

model can be found in the generation of random variables; the same sources of uncer-

tainty drive all forward curves simultaneously, unlike the traditional PC model in which

correlated, yet different sources of uncertainties affect the forward curve dynamics. Hence,

the PPC model would better suit an integrated market environment where commodities

are exposed to the same risks. Moreover, when m is very small relative to n∗(=
∑K

k=1 nk),

one can expect computational efficiency with the PPC model since it only requires m+K

factors in total, fewer than n∗ for the PC model.

The Monte Carlo simulation computes fixed time-of-maturity contracts with T =(30,

60, 90, 120, 150, 180, 210, 240, 360, 540) days for all forward curves. We set the starting

values of the forward curves flat and equal to the average of the last observation in each

data set. These values are 59.35 GBp/Therm, 21.94 EUR/MWh, 57.29 EUR/MWh, and

51.39 EUR/MWh for UK gas, Dutch gas, UK power and Dutch power, respectively. The

model forward curves are simulated 10,000 times, assuming 252 trading days in a year.

4.3.3 Results

The PPC models should produce identical marginal distributions as the PC model by

model design. Fig. 4.2 (local volatility fitting) and Fig. 4.3 (local covariance fitting)

depict the simulated distribution of five representative contracts, for which the prices are

transformed into log returns to visualise the distribution by box plots. The boxes indicate

the middle 50% of the distribution, covering approximately 99% of the distribution with

the whiskers. The x-axes display the number of common factors used in the PC(3) and

PPC(12, 3, m, 1) models, where m = 0 refers to the PC(3) model with no common factor.

These figures suggest that the overall distribution of simulated paths is consistent between

the PC and PPC models regardless of the factor estimation method. However, the PPC

model with m = 1 tends to underestimate the dispersion of log returns for short to mid-

term contracts, especially for the UK and Dutch power data. The simulated distribution

approaches the PC(3) benchmark as m increases to 3.

The subsequent analysis focuses on commodity spreads to investigate the impact of

common factors on the joint price distributions. The general definition of a commodity

spread refers to the price differential between two or more underlying assets with respect

to commodity types, quality, maturity dates, or locations.6 In the case of two distinct

6The practical importance of commodity spreads and their application in the valuation of physical
assets are discussed in Chapter 5.
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Figure 4.2: Simulated marginal distributions (local volatility fitting).
The x-axes indicate the number of common factors. The boxes cover the middle 50% of
the normal distribution with the mean values of log returns in red lines. The whiskers
stretch to approximately ±2.7σ from the mean to cover 99.3% of the distribution.

commodities, the time-t value of a commodity spread may be written as

V (t) = q1F1(t, T )− q2F2(t, T ) , 0 ≤ t ≤ T . (4.17)

Where necessary, the constants q1 and q2 adjust for differences in the currency or unit of

measurements between commodities, and sometimes for fuel efficiencies.

Table 4.6 summarises five commodity pairs of our choice including cross-commodity

(spread 1, 2, 5) and inter-regional (spread 3, 4, 5) spreads.7 As far as the inter-regional

spreads are concerned, the units of UK assets are converted into EUR/MWh with the

conversion factor of 1 Therm = 0.0293071 MWh and fixed foreign exchange rate of

GBP/EUR = 1.13035 prevailing at the last observation in our data set. As for the calcu-

lation of power – gas spreads, the price of gas is multiplied by the heat rate: h = 1/0.50

7We exclude the Dutch power – UK gas spark spread from our study since the physical trade flow of
natural gas was one way from the Netherlands to the UK before 2019.
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Figure 4.3: Simulated marginal distributions (local covariance fitting).
The x-axes indicate the number of common factors. The boxes cover the middle 50% of
the normal distribution with the mean values of log returns in red lines. The whiskers
stretch to approximately ±2.7σ from the mean to cover 99.3% of the distribution.

(= 1/fuel efficiency).8 When these adjustments are not necessary, q1, q2, or h are set

equal to 1. The last two columns in Table 4.6 show the adjusted units for each pair of

commodities. Except for the number of common factors in the models, we assume ceteris

paribus to simulate i) the spot spread payoff at the maturity of the forward contracts, ii)

the spread payoff of forward contracts ∆ days before the maturity, iii) the spread payoff

of forward contracts ∆ days after the inception. In other words, T , T − ∆, and t + ∆

substitute t in Eq. (4.17) for the conditions i) to iii) respectively, where we set ∆ = 90

days.

8The heat rate is defined as the inverse of a fuel efficiency rate. The fuel efficiency represents the
amount of fuel needed to generate one unit of electricity, and it varies depending on fuel types and power
generation plants. We use a typical fuel efficiency rate of 50% for European energy data in reference to
the Intercontinental Exchange website: https://www.theice.com/products/67738090/UK-Spark-Spread
and https://www.theice.com/products/81743160/Dutch-Spark-Spread-TTF.

https://www.theice.com/products/67738090/UK-Spark-Spread
https://www.theice.com/products/81743160/Dutch-Spark-Spread-TTF
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Table 4.6: Five commodity pairs.

Asset 1 Asset 2 Ccy 1 Ccy 2 Unit 1 Unit 2 Ccy* Unit*

1 UK power UK gas GBP GBp MWh Therm GBP MWh
2 Dutch power Dutch gas EUR EUR MWh MWh EUR MWh
3 UK gas Dutch gas GBp EUR Therm MWh EUR MWh
4 UK power Dutch power GBP EUR MWh MWh EUR MWh
5 UK power Dutch gas GBP EUR MWh MWh EUR MWh

The table shows five commodity pairs with units of measurements and currencies for
each underlying asset. Ccy∗ (Currency) and Unit∗ represent the adjusted units of meas-
urements and currencies used for the spread payoff. For UK assets, GBp and GBP refer
to pence sterling and pound sterling.

Figure 4.4: The means of simulated UK power - UK gas spread
at the maturity of contracts (local volatility fitting).
The mean of simulated spread payoffs by the number of common factors, where
the solid black squares indicate the PC(3) model with no common factor (m =
0).

As represented by Fig. 4.4 for UK power – UK gas (other spreads yield very similar

plots), the mean values of simulated spread payoff stay constant across maturities, com-

plying with the martingale property of the underlying processes. For case i), Fig. 4.5

depicts the standard deviations by contract maturities (in days) for local volatility fitting

(left) and local covariance fitting (right). Except for UK gas – Dutch gas, the stand-

ard deviations are generally lower for the PPC models than the PC(3) model when local

volatility fitting is used to estimate the idiosyncratic factors. When the number of com-

mon factors increases, the dominance of idiosyncratic factors decreases in the PPC model,

which strengthens the power of common factors to lower the spread dispersion. On the

right column, local covariance fitting follows a similar tendency for the PPC model. How-

ever, the standard deviations seem less sensitive to the number of common factors used in

the model, providing stable outputs across maturities.
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Figure 4.5: Standard deviations of spread payoffs at the maturity
of forward contracts.
The left and right columns depict the standard deviation of simulated spread payoffs
by the factor estimation method and the number of common factors, where the solid
black squares indicate the PC(3) model with no common factor (m = 0).

The spread distributions exhibit more interesting patterns for forward payoffs. Fig. 4.6

depicts the standard deviation of case ii), where the time-to-maturity of the contracts is

the x-axis minus 90 days (and therefore there is no distribution for 30, 60 and 90 day

contracts). As seen in the left column, the PPC model with m = 1 increases the standard

deviation of the forward spreads, while the models with m = 2, 3 are relatively close to

the PC(3) model. On the other hand, in the right column, the PPC model by the local

covariance fitting estimates lower standard deviations than the PC(3) model, and the gap

between the common and non-common factor models widens for longer-term contracts.
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Figure 4.6: Standard deviations of spread payoffs 90 days before
the maturity of forward contracts.
The left (local volatility) and right (local covariance) columns depict the standard
deviation of simulated spread payoffs 90 days before the contract maturities shown
on the x-axis. There is no distribution for 30, 60 and 90 day contracts.

For case iii), the spread payoffs are calculated after 90 days from the starting time.

Hence, the standard deviations accumulate the same amount of time and depict decay in

their term structure as shown in Fig. 4.7. As suggested by case i), the PPC models lower

the standard deviation of spot payoffs (90-day contracts) compared to the PC(3) models

for both local volatility fitting and local covariance fitting. Meanwhile, the common factor

models exhibit distinct patterns in different parts of the term structure for UK gas – Dutch

gas, UK power – Dutch power, and UK power – Dutch gas due to the Samuelson Effect for

each commodity: a) the widest gap for the spot payoff, b) no/less significant differences

in the middle, c) widening gap at the long-end of the term structure. These tendencies
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Figure 4.7: Standard deviations of spread payoffs 90 days after the
inception of forward contracts.
The left (local volatility) and right (local covariance) columns depict the term
structure of standard deviations by simulated forward spreads. The 30-day and
60-day contracts have expired.

appear mostly when the PPC model consists of more than two common factors plus one

idiosyncratic factor estimated by the local covariance fitting.
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4.4 Summary

This chapter presented the building blocks for the joint modelling of commodity forward

curves, extending Heath et al. (1992). The proposed model, which consists of a few

common factors and one idiosyncratic factor per forward curve, employs a data-driven

factor estimation method by PPCA and imposes fewer assumptions on the eigenstructures

of factor volatilities compared to Tolmasky and Hindanov (2002).

We suggested two alternative methods to estimate the idiosyncratic factor volatility:

local volatility fitting and local covariance fitting. The PPC(12, 3, m, 1) model with

a number of common factors m = 1, 2, 3 indicated that the PPC model with m =

1 is often insufficient to reproduce the marginal distributions of the PC(3) benchmark

model. Irrespective of the factor estimation method by local volatility fitting or local

covariance fitting, it is likely that the PPC model requires at least two common factors to

adequately replicate the marginal distribution of forward curves for the European energy

data analysed.

The second part of the empirical study analysed the joint distribution of forward curves

for five commodity pairs, looking at mainly the standard deviations of the price spreads

by the number of common factors. Due to the focused common factor modelling, the PPC

models are expected to strengthen the dependence of related forward curves compared

to the benchmark PC model, therefore lowering the standard deviation of commodity

spreads. The effects of having common factors were insignificant when the local volatility

fitting estimated the idiosyncratic factors. By contrast, the common factors consistently

dampened the spread distributions in most cases when local covariance fitting is used to

estimate the idiosyncratic factors, adding downward pressures to the standard deviations

of the spot and forward payoffs.

These results highlighted the PPC models’ notable feature in stabilising the dispersion

of price spreads for closely linked commodities compared to the traditional PC model.

In the next chapter, we shall investigate the impact of including common factors when

pricing derivatives on multiple closely linked commodities.
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Chapter 5

Pricing Commodity Spread

Derivatives

5.1 Introduction

In the previous chapter, we proposed a new factor estimation method to introduce the

dependence structures of commodities in the volatility functions of an established forward

curve model. We demonstrated that the common factors in the PPC model potentially

stabilise the fluctuations of commodity price spreads compared to a non-common factor

model. As an extension of the modelling framework, Chapter 5 explores the impact of

common factors on options written on the spread of two commodities with a zero strike,

known as exchange options. We adapt the common factor structures to the Margrabe

(1978) formula and investigate how our previous findings affect the option prices. Fur-

thermore, we extend the option pricing formula for the trade where assets are denominated

by different currency units in response to the recent developments in energy markets, in

which the number of cross-currency transactions has risen due to improved trading in-

frastructure and transportation. To our knowledge, we are the first to extend Margrabe

(1978) formula for foreign – domestic spreads on commodity prices.

In general, a spread refers to the price difference between two or more underlying assets

or indexes, a vital measure for evaluating physical assets and managing risks in energy

markets. Such examples include a spark spread for the price of power and natural gas

representing the gross profit margin of gas-fired plants and a crack spread for the price of

crude oil and its byproduct estimating the gross processing margin of petroleum products.

A derivative contract on the spread of two underlying assets S1 and S2 with a fixed strike

K is called a spread option. The option holder has the right to obtain the difference in
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the asset values if it exceeds the strike price at expiry. Sometimes the strike price is set

to zero for simplicity and analytical tractability, then it becomes an exchange option with

payoff

V (T ) =
(
S1(T )− S2(T ))

+, (5.1)

where the notation ( · )+ indicates the positive spread.

The closed-form solution is derived in Margrabe (1978), who regards the pricing for-

mula as an extension of Black and Scholes (1973) and Merton (1973). However, the main

difference is that it includes two underlying assets that follow a bivariate lognormal dis-

tribution. The option can also be seen as a European call whose payoff is determined by

a stochastic exercise price. Based on this interpretation, Fischer (1978) derives a closed-

form formula using the capital asset pricing model, in which the fixed strike price in the

Black-Scholes formula fluctuates over time. While Margrabe (1978) and Fischer (1978)

give the no-arbitrage pricing of exchange options by portfolio replications, Stapleton and

Subrahmanyam (1984) use risk-neutral pricing in a discrete-time setting based on the ar-

gument that assets should return a risk-free rate of return in equilibrium regardless of

investors’ risk appetite.

Due to its analytical tractability and convenience as a direct extension of the Black-

Scholes formula, Margrabe (1978)’s approach has become the foundation for the valuation

of exotic spread options in the finance literature.1 The recent model by Benth and Koeke-

bakker (2015) extends the Margrabe formula for a cointegrated forward price model that

lowers the price of exchange options compared to a non-cointegrated model irrespective of

the slope of forward curves and the sign of correlation parameters. A distinct approach

by Carmona et al. (2013) incorporates the structural relationship of power and fuel in a

pricing model to capture shifts in the merit order and fuel supply curves. The valuation of

power plants shows that their model price diverges (resp. converges) from (to) Margrabe

(1978)’s price depending on the marginal fuel and merit order in a market.

In contrast to these models, we introduce the dependence structures of underlying

commodities directly into the model parameters of Margrabe (1978) without relying on too

many assumptions. Furthermore, we extend the pricing formula for the exchange options

whose underlying assets are denominated by different currencies in the context of increased

cross-border transactions of energy commodities facilitated by market integration.

1Those include the American exchange option of Carr (1995), the compound exchange option of Carr
(1988), and the barrier exchange option of Haug and Haug (2002). Note that a compound exchange option
gives the option buyer the right to buy an exchange option at T1 which gives the payoff (5.1) at T2,
(t < T1 < T2).
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When a spread depends on two assets quoted in different currencies, it requires con-

verting one asset’s value into the other asset’s currency unit to make the payoff under

a unified measure. While the currency adjustment is vital for that commodity spreads,

no other literature seems to have addressed the impact of the foreign exchange (hereafter

the ‘FX’) component on the option pricing formula.2 For an option written on a FX rate

with a fixed strike, the pricing formula is developed by Garman and Kohlhagen (1983).

Later, Reiner (1992) incorporates various FX structures, so-called the quanto mechanics,

in the Black and Scholes (1973) formula. However, his list of quanto options does not

consider the case when the strike price is stochastic, i.e. an exchange option on the spread

of foreign and domestic assets.

Section 5.3 in this chapter introduces two payoff structures for options that enable

the holder to exchange one domestic asset for another foreign asset at expiry. Therefore,

our study contributes to the literature by combining Garman and Kohlhagen (1983) and

Margrabe (1978) and adding two more variants of quanto mechanics to Reiner (1992). The

derivation of closed-form formulae is centred on the change of numéraire, highlighting the

model parameters associated with currency adjustment terms; it follows the risk-neutral

pricing introduced in Murakami (2015).

5.2 Adopting Common Factor Structures in Margrabe (1978)

5.2.1 A Brief Sketch of the Margrabe Formula

Assume the Black-Scholes economy where the market is frictionless, complete, and free of

arbitrage. Let (Ω, ℑ, P) be a probability space. Denote V (T ) for an ℑ(T )-measurable

random variable that represents the value of an exchange option at expiry T , where ℑ(t)

is a collection of sigma algebras indexed by time. Eq. (5.1) gives the terminal payoff of

the option with two ℑ(t)-measurable adapted stochastic processes {Si(t)}0≤t≤T , i = 1, 2.

In Margrabe (1978), the dynamics of the underlying assets are described by two cor-

related geometric Brownian motions that are jointly lognormally distributed:

dS1(t)

S1(t)
= µ1dt+ σ1dW

P
1 (t)

dS2(t)

S2(t)
= µ2dt+ σ2dW

P
2 (t)

dW P
1 (t)dW

P
2 (t) = ρdt ,

2One exception is treating the FX rate as a fixed conversion factor such as q1 and q2 in Eq. (5.13)
mentioned in Benth and Koekebakker (2015).
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where ρ is the constant correlation between the ℑ(t)-adapted P-Brownian motions. The

mean rates of return µi and volatilities σi are all constants for i = 1 , 2.

The risk-neutral pricing of exchange options assumes the existence of an equivalent

probability measure under which the discounted asset prices are martingales. When we

choose S2 as the numéraire, the value of an exchange option at t (0 ≤ t ≤ T ) can be

expressed as
V (t)

S2(t)
= EQS2

[
V (T )

S2(T )

∣∣∣∣ℑ(t)]
= EQS2

[(
S1(T )− S2(T )

)
S2(T )

+∣∣∣∣ℑ(t)]
(5.2)

V (t) = S2(t)EQS2

[(
S1(T )

S2(T )
− 1

)+∣∣∣∣ℑ(t)] , (5.3)

where EQS2 [ · ] denotes the expected payoff under the probability measure QS2 . Eq. (5.3)

is in fact the price of a European call written on the ratio of two tradable assets with a

unit strike, therefore there exists an analytical solution similar to the Black and Scholes

(1973) formula.

Following standard arguments, the stochastic differential equation of the underlying

process is given by the Itô-Doeblin formula

d

(
S1(t)

S2(t)

)
=

S1(t)

S2(t)

((
µ1 − µ2 − ρ12σ1σ2 + σ2

2

)
dt+ σ1dW

P
1 (t)− σ2dW

P
2 (t)

)
. (5.4)

The mean and variance of the linear combinations of Brownian motions are

EP[σ1W P
1 (t)− σ2W

P
2 (t)

]
= 0

Var
[
σ1W

P
1 (t)− σ2W

P
2 (t)

]
= σ2

1Var
[
W P

1 (t)
]
− 2 Cov

[
W P

1 (t)W
P
2 (t)

]
+ σ2

2Var
[
W P

2 (t)
]

=
(
σ2
1 − 2ρ12σ1σ2 + σ2

2

)
t ,

from which one can define a new Brownian motion:3

W P(t) :=

(
σ1W

P
1 (t)− σ2W

P
2 (t)√

σ2
1 − 2ρ12σ1σ2 + σ2

2

)
(5.5)

Thus, Eq. (5.4) can be rewritten as

d

(
S1(t)

S2(t)

)
= ν

(
S1(t)

S2(t)

)(
Θdt+ dW P(t)

)
, (5.6)

3The Lévy’s theorem states that a continuous martingale with expected value zero and quadratic vari-
ation t is a Brownian motion. W P satisfies these properties.
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where

ν : =
√
σ2
1 − 2ρ12σ1σ2 + σ2

2

Θ : =
µ1 − µ2 − ρ12σ1σ2 + σ2

2

ν
.

These results are used to find the new probability measure QS2 and the associated

Brownian motion WQS2 (t) := Θt+W P(t) by the Girsanov (1960) theorem with the Radon-

Nikodim derivative

Z =
dQS2

dP
= e−

1
2
Θ2T−ΘW P(T ) . (5.7)

Therefore, the underlying process is a martingale under the QS2-measure

d

(
S1(t)

S2(t)

)
= ν

(
S1(t)

S2(t)

)
dWQS2 (t) , (5.8)

leading to the solution

(
S1(T )

S2(T )

)
=

(
S1(t)

S2(t)

)
e−

1
2
ν2(T−t)+ν(W

QS2 (T )−W
QS2 (t)) . (5.9)

By substituting the right-hand side of Eq. (5.9) into Eq. (5.3), we can analytically solve

the expected payoff of the exchange option similarly to solving the expected payoff in the

derivation of the Black-Scholes formula for European options. The Margrabe (1978) price

of an exchange option is

V (t) = S1(t)Φ(d1)− S2(t)Φ(d2) (5.10)

d1 =
ln (S1(t)

S2(t)
) + 1

2ν
2(T − t)

ν
√
T − t

d2 = d1 − ν
√
T − t ,

(5.11)

where Φ( · ) is the cumulative standard normal distribution function. As a direct result of

S2 being the numéraire, the interest rate parameter r does not appear in the formula.4

For those assets paying continuous dividend or convenience yields, d1 changes to

d1 =
ln ( q1S1(t)

q2S2(t)
) + (δ2 − δ1 +

1
2ν

2)(T − t)

ν
√
T − t

(5.12)

and Eq. (5.10) extends to

V (t) = e−δ1(T−t)q1S1(t)Φ(d1)− e−δ2(T−t)q2S2(t)Φ(d2) , (5.13)

4We remark that for the valuation of commodity exchange options, it is questionable to take the spot
price S2 as the numéraire since they are often non-transparent or unavailable, and the short-selling of
assets is not possible. Hence, it is preferable to work with forwards and assume convergence of forward to
spot via F (T, T ) = S(T ).
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where δi are the carry costs and the constants qi are the conversion factors to adjust for

differences in units and fuel efficiencies for i = 1, 2.

On the other hand, the prices of forwards or futures are inclusive of these carry costs.5

The price of an exchange option written on two forward contracts F1(t, T1) and F2(t, T2)

with option expiry T (t ≤ T ≤ min(T1, T2)) is therefore,

V (t) = e−r(T−t)
[
q1F1(t, T1)Φ(d1)− q2F2(t, T2)Φ(d2)

]
(5.14)

d1 =
ln
( q1F1(t, T1)
q2F2(t, T2)

)
+ 1

2 ν̃
2(T − t)

ν̃
√
T − t

d2 = d1− ν̃
√
T − t ,

(5.15)

where ν̃2(T − t) is the variance of ln (F1(t, T1)
F2(t, T2)

) from t to T . This formula can be regarded

as a variation of the Black (1976) formula for a European call option on forward contracts

with a stochastic strike price.

5.2.2 Factor Volatilities in the Margrabe Formula

The generalisation of the variance term in Eq. (5.15) allows the pricing formula to flexibly

adapt to the multi-factor dependence structure of the underlying processes. Consider Eqs.

(4.1) – (4.2), where the i-th contract in the k-th forward curve is described by the sum of

orthogonal factor volatilities σkj . From those expressions, one can think of three possible

commodity spreads: (a) a calendar spread between two distinct forward contracts in the

same forward curve (identical k, distinct i), (b) a calendar spread of cross-market forward

contracts (both k and i are distinct), and (c) a cross-market spread of forwards with

identical maturity dates (distinct k, identical i).

In order to express the three types of spreads flexibly (i.e. any market and any ma-

turity), we modify the expression slightly to consider two arbitrary forward contracts for

k = 1, 2

dFk(t, Tl)

Fk(t, Tl)
=

n∑
j=1

σkj(t, Tl)dZ
Q
kj(t) ,

where Tl (≥ t) denotes forward maturities for the kth forward curve. We assume the

forward contracts are jointly lognormally distributed; however, any assumptions are yet

imposed on the cross-market factor dependence structures.

5Hereafter, we treat the terminologies for forward and futures, as well as the associated pricing measures
interchangeably to simplify our discussion.
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Denote Q̃ for an equivalent probability measure associated with the numéraire F̃ (t) :=

B(t)F2(t, T2),
6 where B(t) is the bank account such that B(0) = 1 and B(T ) = erT . The

value of an exchange option written on two forward contracts at expiry is then

V (t)

B(t)F2(t, T2)
= EQ̃

[
V (T )

B(T )F2(T, T2)

∣∣∣∣ℑ(t)]
= EQ̃

[
(F1(T, T1)− F2(T, T2))

+

B(T )F2(T, T2)

∣∣∣∣ℑ(t)] .

(5.16)

This pricing formula implies that we are effectively changing the probability from P to Q̃

with the Radon-Nikodim derivative

Z̃ =
dQ
dP

· dQ̃
dQ

=
dQ̃
dP

.

Therefore,

V (t) = e−r(T−t)F2(t, T2)EQ̃
[(

F1(T, T1)

F2(T, T2)
− 1

)+∣∣∣∣ℑ(t)] . (5.17)

Solving Eq. (5.17) is just analogious to the derivation for the exchange option on non-

dividend paying spot contracts. It requires the modelling of the distribution of F1(T,T1)
F2(T,T2)

,

or more specifically, the variance term that enters into the closed-form formula (5.15).

The application of the Itô-Doeblin formula to lnFk(t, Tl) gives the marginal distribu-

tion of the forward contracts

lnFk(T, Tl) = lnFk(t, Tl)−
1

2

∫ T

t

n∑
j=1

σ2
kj(u, Tl)du+

∫ T

t

n∑
j=1

σkj(u, Tl)dZ
Q
kj(u) (5.18)

with the conditional mean and variance given by

µk = lnFk(t, Tl)−
1

2

∫ T

t

n∑
j=1

σ2
kj(u, Tl)du

σ2
k =

∫ T

t

n∑
j=1

σ2
kj(u, Tl)du ,

(5.19)

where σkj denotes the volatility of the j-th orthogonal factor. Since the distribution of

6This numéraire is a tradable asset, as the quantity F̃ (t) := B(t)F (t, T ) can be replicated by a portfolio
of investments in a bank account and a forward contract. To see the point, we write the time-t value
of the forward contract V (t) using the risk-neutral pricing formula V (t) = e−r(T−t)EQ[S(T ) − F (0, T )] =
e−rT (ert)F (t, T ) − e−rT (ert)F (0, T ), where F (0, T ) is the initial price (strike) of the forward contract.
When B(t) = ert, we can rearrange and write the formula as F̃ (t) = erTV (t) + F (0, T )B(t). Hence, the
replicating portfolio for the numéraire consists of erT amount of forward contracts and F (0, T ) amount of
bank account both in long positions.
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lnFk(T, Tl) is jointly normal, the ratio is also normally distributed as

ln

(
F1(T, T1)

F2(T, T2)

)
∼ N

(
µ̃, , ν̃

)
, (5.20)

where µ̃ = E
[
ln

(F1(T,T1)
F2(T,T2)

)]
and ν̃ = Var

[
ln
(
F1(T,T1)
F2(T,T2)

)]
. Therefore, one can obtain the

variance from the general result Var[X − Y ] = Var[X] + Var[Y ]− 2 Cov[X,Y ]

ν̃2(t, T, T1, T2) =

∫ T

t

n∑
i=1

σ2
1i(u, T1)du+

∫ T

t

n∑
j=1

σ2
2j(u, T2)du

− 2

∫ T

t

( n∑
i=1

n∑
j=1

ρijσ1i(u, T1)σ2j(u, T2)

)
du , (5.21)

where i and j count the orthogonal factors for the first and second forward contracts.

The third term in Eq. (5.21) depends on the model and type of commodity spread.

For instance, for a calendar exchange option on a single commodity, it represents the

volatilities of orthogonal factors for the same forward curve (k = 1). When i = j in the

summations, both the PC and PPC models give the (i, j)-th factor correlations one and

zero otherwise. This simplifies Eq. (5.21) into

ν̃2(t, T, T1, T2) =
n∑

j=1

∫ T

t

(
σ1j(u, T1)− σ2j(u, T2)

)2
du . (5.22)

On the other hand, such a simplification cannot be applied to a cross-commodity exchange

option when k ̸= 1. In the PC model, the whole covariance term remains since the cross-

factor correlations are not necessarily zero when i ̸= j. In the case of the PPC model, it

imposes the model correlation structure as in Eq. (4.13). Therefore, not all but some of

the cross-factor covariances cancel out in the third term of Eq. (5.21).

5.3 Exchange Options on Foreign to Domestic Spreads

5.3.1 Quanto Exchange Options

Let us first consider the terminal payoff of an option

V (T ) =
(
X̄S1(T )− S2(T ))

+ , (5.23)

where S1 denotes an asset quoted in a foreign currency and S2 denotes an asset quoted

in a domestic currency. At option expiry, the value of S1 is converted into the domestic
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currency units by a predetermined conversion rate X̄, so that the payoff is made in the

domestic currency irrespective of the market FX rate. Therefore, it enables the option

holders to manage the FX risk effectively at the inception of trades. We shall call this type

of options as quanto exchange options naming after other financial products with similar

treatments for FX, including equity-linked FX options and quanto interest rate swaps.

Note that our quanto exchange option is distinctive from an energy quanto option that

refers to a volumetric option for energy commodities, where the payoff of an energy option

is compounded by another option payoff typically associated with a temperature index

representing demand on energy consumption. See Benth and Koekebakker (2015) for the

analytical pricing of energy quanto options written on HDD7 and natural gas futures.

The risk-adjusted pricing formula of a quanto exchange option is8

V (t)

S2(t)
= EQS2

[(
X̄S1(T )

S2(T )
− 1

)+∣∣∣∣ℑ(t)]. (5.24)

We derive the closed-form expression without considering convenience yields and other con-

version factors for simplicity. The rest of the model assumptions remain unchanged from

standard exchange options. Solving the expectation in Eq. (5.24) requires the knowledge

of the two underlying processes under the same probability measure, as they are quoted

in different currency units. The two possible choices of numéraire pairs are (Bf , Qf ) and

(Bd, Qd) associated with S1 and S2, respectively, where Bf and Bd are the foreign and

domestic bank accounts. We choose to use the latter measure in the following derivation.

Let the market FX rate9 be described by a geometric Brownian motion

dX(t)

X(t)
= µXdt+ σXdW P

X(t) , (5.25)

which is correlated with the domestic and foreign assets by ρ1X and ρ2X . We utilise the

zero-drift conditions of the two martingale processes S1(t)X(t)
Bd(t)

and
Bf (t)X(t)

Bd(t)
to find the

foreign asset dynamics under Qd. This leads to

dS1(t)

S1(t)
=

(
rf − ρ1Xσ1σX

)
dt+ σ1dW

Qd
1 (t) (5.26)

=
(
rd − α

)
dt+ σ1dW

Qd

1 (t) , (5.27)

7HDD is the acronym for Heating Degree Days. HDD is used as an index in the weather derivatives
market to account for the number of days and degrees that exceeded a specified temperature during a
contract period.

8See Footnote 4.
9Note that while this market FX rate is necessary for the change of numéraire, it is irrelevant to the

computation of the expected payoff in Eq. (5.23), for which the FX rate is fixed by contract.
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where α = rd − rf + ρ1Xσ1σX .

Thus, we can find the pricing formula of the foreign asset under the QS2-measure

analogously to the risk-adjusted pricing formula of an asset paying a continuous carry

cost:
S1(t)

S2(t)
= EQS2

[
S1(T )e

α(T−t)

S2(T )

∣∣∣∣ℑ(t)] (5.28)

S1(t)e
−α(T−t)

S2(t)
= EQS2

[
S1(T )

S2(T )

∣∣∣∣ℑ(t)] (5.29)

Applying the Itô-Doeblin formula to the left-hand side of Eq. (5.29) and following the

same derivation as for a standard exchange option, we obtain the closed-from solution for

the quanto exchange option

V (t) = e−α(T−t)X̄S1(t)Φ(d1)− S2(t)Φ(d2), (5.30)

where

d1 =
ln ( X̄S1(t)

S2(t)
) + (−α+ 1

2ν
2)(T − t)

ν
√
T − t

d2 = d1 − ν
√
T − t

ν2 = σ2
1 + σ2

2 − 2ρ12σ1σ2.

(5.31)

This is a special case of Eqs. (5.12) – (5.13), where S1 = X̄S1, δ1 = α, and δ2 = 0.

Our next aim is to derive the closed-form formula of quanto exchange options on

forwards. To do so, we first find the quanto forward price F̃1(t, T1) = EQd [X̄S1(T1)] from

Eq. (5.27), where the probability measure has been transformed from Qf to Qd for S1.

Since the stochastic differential equation can be treated similarly to the dynamics of a

non-quanto asset paying a continuous dividend yield, we can solve Eq. (5.27) with the

Itô-Doeblin formula:

S1(T1) = S1(t)e
(rd−α− 1

2
σ2
1)(T1−t)+σ1(W

Qd
1 (T1)−W

Qd
1 (t)) (5.32)

By definition, F̃1(t, T1) = EQd [X̄S1(T1)] and E[eY ] = eE[Y ]+ 1
2
Var[Y ] for Y ∼ N (µY , σ

2
Y ).

Thus, the quanto forward price is

F̃1(t, T1) = X̄S1(t)e
(rd−α)(T1−t)

= X̄S1(t)e
(rf−ρ1Xσ1σX)(T1−t)

= X̄F1(t, T1)e
−ρ1Xσ1σX(T1−t) ,

(5.33)
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where F1(t, T1) = S1(t)e
rf (T1−t) represents the standard (non-quanto) spot – forward cost-

of-carry relationship for a single currency case. Note that the forward price F1(t, T1) is

given in foreign currency units, whereas F̃1(t, T1) is given in domestic currency units. As

seen in the third line of Eq. (5.33), the covariance of the foreign asset and the market FX

rate results from the numéraire change applied earlier to the underlying foreign asset.

Eq. (5.33) facilitates the pricing of other quanto derivatives. As for quanto exchange

options on forwards, we can utilise the cost-of-carry like relationship (5.33) with Eqs.

(5.30) – (5.31) to obtain the closed-form formula, analogously transforming from the Black

and Scholes (1973) formula to Black (1976) formula, and vice versa. The quanto exchange

option formula on forwards with option expiry T (< T1) is therefore,

V (t) = e−rd(T−t)
[
X̄F1(t, T1)e

−ρ1Xσ1σX(T1−t)Φ(d1)− F2(t, T2)Φ(d2)
]
, (5.34)

where

d1 =
ln
( X̄F1(t,T1)

F2(t,T2)

)
− ρ1Xσ1σX(T1 − t) + 1

2 ν̃
2(T − t)

ν̃
√
T − t

d2 = d1 − ν̃
√
T − t .

(5.35)

In the formula, ν̃2(T − t) is the variance of ln
(F1(T,T1)
F2(T,T2)

)
from t to T , to which we can plug

in a model variance introduced in Section 5.2.2. We remark that the quanto adjustment

is only required for the drift term. Hence, the variance term remains unchanged from that

of non-quanto exchange options in Eq. (5.15).

5.3.2 Cross-currency Exchange Options

The payoff structure of the second option type, called cross-currency exchange options,

is similar to that of a quanto exchange option except that it lets the FX rate fluctuate

until the expiry of the option. At expiry, the value of a foreign asset is converted into a

domestic currency unit by the spot FX rate observed in the market.10

The payoff and the risk-adjusted pricing formula of this option are

V (T ) =
(
X(T )S1(T )− S2(T ))

+ (5.36)

V (t)

S2(t)
= EQS2

[(
X(T )S1(T )

S2(T )
− 1

)+∣∣∣∣ℑ(t)] . (5.37)

As before, we can obtain the closed-form solution of the exchange option by finding the

10The delivery dates of spot FX contracts vary between t+ 0 day and t+ 3 days in practice depending
on currency pairs. For simplicity, we assume that the delivery date of a spot FX contract is t + 0 day in
our discussion.
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distribution of X(T )S1(T )
S2(T ) under the Qd-measure.

Recall that
dS1(t)

S1(t)
=

(
rf − ρ1Xσ1σX

)
dt+ σ1dW

Qd
1 (t)

dS2(t)

S2(t)
= rddt+ σ2dW

Qd
2 (t),

and the dynamics of the FX process are given by

dX(t)

X(t)
= (rd − rf )dt+ σXdWQd

X (t),

which is the well-known result for the pricing of foreign currency options by Garman and

Kohlhagen (1983). The Brownian motions are assumed to be correlated by ρ1X , ρ2X , and

ρ12.

By applying the Itô-Doeblin formula to X(T )S1(T )
S2(T ) we obtain an expression for the price

dynamics

d

(
X(t)S1(t)

S2(t)

)
=

X(t)S1(t)

S2(t)

((
σ2
2 − ρ12σ1σ2 − ρ2Xσ2σX

)
dt

+ σXdWQd
X (t) + σ1dW

Qd
1 (t)− σ2dW

Qd
2 (t)

)
(5.38)

and the variance of the linear combination of Brownian motions

Var
[
σXWQd

X (t) + σ1W
Qd
1 (t)− σ2W

Qd
2 (t)

]
=

(
σ2
X + σ2

1 + σ2
2

+ 2ρ1Xσ1σX − 2ρ2Xσ2σX − 2ρ12σ1σ2
)
t. (5.39)

Therefore, the closed-form solution of the option can be derived as it is done in Sec-

tion 5.2.1. The drift term disappears after the change of numéraire. The difference is that

the variance in the exchange option formula now includes the variance and covariance of

the three assets

ν2X := σ2
X + σ2

1 + σ2
2 + 2ρ1Xσ1σX − 2ρ2Xσ2σX − 2ρ12σ1σ2 , (5.40)

which replaces the variance of the standard Margrabe formula in Eqs. (5.10) – (5.11),

where S1 = XS1.

As for the cross-currency exchange option written on forward contracts, the terminal

payoff is

V (T ) =
(
X(T )F1(T, T1)− F2(T, T2))

+ . (5.41)
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At expiry, the value of a foreign forward contract is converted into a domestic currency

unit by the spot FX rate observed in the market. The pricing formula takes the domestic

bank account and the forward contract as the numéraire, as is the case for the standard

Margrabe formula written on two forward contracts:

V (t)

Bd(t)F2(t, T2)
= EQ̃

[
(X(T )F1(T, T1)− F2(T, T2))

+

Bd(T )F2(T, T2)

∣∣∣∣ℑ(t)] (5.42)

From previous derivations we learnt that what matters is the variance of ln
(X(T )F1(T,T1)

F2(T,T2)

)
that enters into the Margrabe formula. The closed-form formula of the cross-currency

exchange option is therefore,

V (t) = e−rd(T−t)
[
X(t)F1(t, T1)Φ(d1)− F2(t, T2)Φ(d2)

]
(5.43)

d1 =
ln
(X(t)F1(t,T1)

F2(t,T2)

)
+ 1

2 ν̃
2
X(T − t)

ν̃X
√
T − t

d2 = d1 − ν̃X
√
T − t ,

(5.44)

where

ν̃2X := σ̃2
1 + σ̃2

2 − 2ρ̃12σ̃1σ̃2 + σ2
X + 2ρ̃1X σ̃1σ̃X − 2ρ̃2X σ̃2σ̃X (5.45)

and

σ̃1 : Volatility of F1(t, T1)

σ̃2 : Volatility of F2(t, T2)

σX : Volatility of X(t)

ρ̃1X : Correlation between X(t) and F1(t, T1)

ρ̃2X : Correlation between X(t) and F2(t, T2)

ρ̃12 : Correlation between F1(t, T1) and F2(t, T2) .

It is worth noting that the variance of a cross-currency exchange option can be decom-

posed into

Total variance = Spread variance + FX add-on .11

One can easily introduce the factor dependence structures, for example Eq. (5.21), for the

spread variance. The add-on term consists of the variance and covariance terms associated

with the spot FX rate.

Due to the additional uncertainty brought in by the FX components, the risk manage-

11The two terms on the right-hand side correspond to the first three and second three terms in Eq. (5.45),
respectively.
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ment of option vega requires extra caution. The vega of a standard exchange option with

respect to the volatility of the first underlying asset is

∂V

∂σ1
=

∂V

∂ν
· ∂ν

∂σ1
. (5.46)

Geman (2009) discusses that the first quantity in the right-hand-side is the ordinary option

vega that is always positive; however, the sign of the second quantity

∂ν

∂σ1
=

1

ν
(σ1 − ρ12σ2) (5.47)

can be positive or negative depending on the relative size of σ1 and σ2, as well as the sign

and magnitude of ρ12. Thus, the sign of the vega is not always positive.

As for a cross-currency exchange option, Eq. (5.47) changes to

∂νX
∂σ1

=
1

νX
(σ1 + ρ1XσX − ρ12σ2) . (5.48)

The sign of the option vega depends not only on the parameters associated with Sf
1 and

Sd
2 but also on the parameters of spot FX rate, adding extra complexity to the risk factor.

The same argument also applies to the vega of the cross-currency exchange option with

respect to the second underlying asset.

5.4 Pricing

Table 5.1 updates Table 4.6 to display the type of commodity spreads in the first column.

The type ‘Spark’ stands for the spark spread that is the general terminology for the power-

gas spread often regarded as an approximation to the gross profit margin of a gas-fired

plant. It can be interpreted as a per unit of power output given an amount of input fuel

after adjusting for the fuel efficiency of a power generation plant.

We use the following formula to calculate a spark spread for the options, with the fuel

efficiency of 50% and the conversion factor of 1 therm =0.0293071 MWh:

Spark spread (Ccy∗/MWh) = Power price (Ccy∗/MWh)− Gas Price (Ccy∗/MWh)

Fuel efficiency(%)

Ccy∗ refers to the payoff currency in Table 5.1. The fuel efficiency of 50.0% means that a

generator spends 6,824 therms of gas to produce 1 kilowatt (= 3, 412 therms) of electricity.

In Table 5.1, ‘xCcy’ represents the spreads that include a foreign asset as one of the
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Table 5.1: Five types of commodity spreads.

Type Asset 1 Asset 2 Ccy 1 Ccy 2 Unit 1 Unit 2 Ccy* Unit*

Spark UK power UK gas GBp GBP Therm MWh GBP MWh
Spark Dutch power Dutch gas EUR EUR MWh MWh EUR MWh
xCcy UK gas Dutch gas GBp EUR Therm MWh EUR MWh
xCcy UK power Dutch power GBP EUR MWh MWh EUR MWh
xCcy/Spark UK power Dutch gas GBP EUR MWh MWh EUR MWh

The table shows the units of trades and currencies for each underlying asset. Ccy∗ (currency)
and Unit∗ represent the adjusted units and currencies used to calculate the spread payoff.
For UK assets, GBp and GBP refer to pence sterling and pound sterling.

underlying assets. We calculate quanto exchange options and cross-currency exchange op-

tions for these product types by the extended Margrabe formula presented in the previous

sections. In the following analysis, we regard the UK forward contracts as foreign assets

and convert the option payoff to EUR using the market quote for GBP/EUR.

The option prices are calculated for these five pairs of commodities using the same data

set and fitted parameter values as the previous chapters,12 in which the local covariance

fitting estimates the idiosyncratic factor for the PPC model. In addition, some of the

underlying assumptions are simplified, such as zero interest rates and flat forward curves

for the initial prices: 59.35 GBp/Therm, 21.94 EUR/MWh, 57.29 EUR/MWh, and 51.39

EUR/MWh for UK gas, Dutch gas, UK power and Dutch power, respectively. All options

expire five days before the maturities of the underlying forward contracts same as the

market convention. The results are reported for forward contracts with maturities T =(30,

90, 180, 360, 540) days due to limitations in space. Appendix A reports the full results,

including the 60, 120, 150, 210, and 270-day contracts.

5.4.1 Results for Spark Spreads

The economic relationship of gas and power suggests that these two commodities are

closely linked. Our guess is that the PPC model would better capture the comovement of

these commodities, therefore tightening the spread more than the PC model and lowering

the option prices. Fig. 5.1 depicts the model prices, and Table 5.2 reports the differences in

the option prices to indicate how much the PPC price is below or above the PC benchmark.

The standard deviations are separately shown in Table 5.3 by maturity. The results suggest

that the gap between the two model prices widens monotonically as the contract maturities

increase. However, for the UK spark spread, the PPC price is at most at an 18 pence

12See Section 3.4.1 and Section 4.3.
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Figure 5.1: The option prices of UK and Dutch spark spreads.
The spreads are calculated with the fuel efficiency rate of 50%. The options expire
five days before the maturities are shown on the x-axis. The y-axis shows the adjusted
units. The unit of UK gas is converted to MWh using the conversion factor: 1 therm =
0.0293071 MWh.

Table 5.2: Option prices of spark spreads.

Contracts 30d 90d 180d 360d 540d

Panel A: Up-Ug (GBP/MWh)

PC 16.814 16.866 16.903 16.949 16.998
PPC 16.791 16.793 16.798 16.807 16.819
diff -0.023 -0.073 -0.105 -0.142 -0.179
diff % -0.14 -0.43 -0.62 -0.84 -1.05

Panel B: Dp-Dg (EUR/MWh)

PC 7.753 8.021 8.262 8.675 9.068
PPC 7.518 7.614 7.794 8.175 8.552
diff -0.235 -0.408 -0.468 -0.499 -0.517
diff % -3.03 -5.08 -5.67 -5.76 -5.70

The relative difference is given by the formula: diff % = 100× (PPC price – PC price)
PC price .

Table 5.3: Standard deviations of spark spreads at option expiration.

Contracts 30d 90d 180d 360d 540d

Panel A: Up-Ug

PC 0.1478 0.1750 0.1871 0.1993 0.2100
PPC 0.0832 0.1155 0.1293 0.1421 0.1522

Panel B: Dp-Dg

PC 0.1189 0.1477 0.1687 0.2004 0.2278
PPC 0.0637 0.0975 0.1240 0.1615 0.1913

The standard deviations are given by Eq. (5.21). The options are assumed to expire five
days before the maturities of the underlying forward contracts.

(1.05%) discount to the PC price for the 540-day contract: the relative difference is rather

small.



88

The above result is caused by the moneyness of the spark spread options. Generally

speaking, moneyness is the price ratio of the underlying asset to its strike value, indicating

by how much the option is currently in the money or out of the money. The strike price of

an exchange option is not a fixed constant, yet the same concept applies, and fuel efficiency

is the crucial parameter determining the moneyness of spark spread options. Given the

initial prices and the fuel efficiency rates, both the UK and Dutch spark spreads happen

to be in the money in our example. Therefore, the option values mainly consist of their

intrinsic values, and the choice of stochastic models does not greatly influence the pricing

results as expected.

We re-examine the model prices of spark spread by moneyness, similarly to computing

the price of a European option for various strike prices. Table 5.4 reports the option

prices of the 360-day contracts using varying fuel efficiency rates ranging from 30% to

60% by 5% intervals. These efficiency rates represent four typical generating facilities: gas

turbine, steam generator, internal combustion, and combined cycle gas turbine (CCGT)

in ascending order of fuel efficiency. In Fig. 5.2, the black y-axis and lines represent the

option prices of the UK spark spread, and the blue y-axis and the lines are those for the

Dutch spark spread.

Above 50% efficiency, the UK spark spread is deep in the money, and the option prices

are indistinguishable between the two models. On the other hand, as the fuel efficiency

goes down, the price gap widens gradually towards the direction of ‘at the money’ around

35% efficiency. At most, the PPC price is a 1.3 pound discount to the PC price. Likewise,

the Dutch spark spread is at the money with the fuel efficiency of around 40%, where

Table 5.4: The option prices of 360-day spark spread by various fuel efficiency
rates.

Efficiency 30% 35% 40% 45% 50% 55% 60%

Panel A: Up-Ug (GBP/MWh)

PC 1.426 4.292 8.411 12.843 16.949 20.515 23.552
PPC 0.543 2.985 7.475 12.423 16.807 20.475 23.541
diff -0.883 -1.307 -0.936 -0.420 -0.142 -0.041 -0.011
diff % -61.93 -30.45 -11.13 -3.27 -0.84 -0.20 -0.04

Panel B: Dp-Dg (EUR/MWh)

PC 0.193 0.960 2.731 5.450 8.675 11.944 14.983
PPC 0.050 0.482 1.962 4.709 8.175 11.683 14.868
diff -0.142 -0.478 -0.769 -0.741 -0.499 -0.261 -0.115
diff % -73.88 -49.80 -28.14 -13.60 -5.76 -2.19 -0.76

The prices of UK and Dutch spark spread options that depict Fig. 5.2.
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Figure 5.2: The option price of 360-day spark spread by
various fuel efficiency rates.
The black y-axis and lines show the price of UK spark spread in GBP/MWh
for the PC (solid line) and PPC (dotted line) models. Similarly, the blue
lines and the y-axis on the left-hand side show the PC and PPC prices for
the Dutch spark spread.

we observe the maximum 77 cents difference between the two model prices. The options

become further out of the money with lower efficiency rates and depreciate in value,

notably for the PPC model. Table 5.5 updates Table 5.2 using the fuel efficiency that

approximately gives at-the-money option prices, in which the average price differentials

increase to 1.35 pounds (34.8%) for the UK spark spread and 85 cents (44.7%) for the

Dutch spark spread.

Lastly, we note the implication of the PCA and PPC modelling approaches in conjunc-

tion with the valuation of power plants. Suppose that a utility company in the Netherlands

wants to estimate the gross profit margin of a gas-fired power plant in one year. Suppose

further that the company owns a portfolio of power generation plants in Europe, with di-

versified fuel sources to generate electricity. At the time T (> t), if the cost of natural gas

exceeds the selling price of power, the company would not switch on the gas-fired plant,

and use alternative production facilities or procure electricity in the spot market to meet

their obligation to deliver electricity to the consumers. Therefore, the exchange option

can mimic the payoff value of the gas-fired power plant with the optionality to switch on

or off the generation facility.

For this example, Table 5.5 gives a rough estimate13 for the present value of the gas-

13For the sake of simplicity, we do not consider other operation and fixed costs in this example, hence
setting K = 0. In practical applications, those costs need to be included in the valuation, which can be
approximated by Kirk (1995), for example. In addition, electricity rates are generally lower at night and
higher during peak hours. This example simplifies these features using a ”base rate” per hour per day.
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Table 5.5: The (at-the-money) option prices of 360-day spark spread.

Contracts 30d 90d 180d 360d 540d

Panel A: Up-Ug (GBP/MWh)

PC 3.117 3.738 4.015 4.292 4.536
PPC 1.640 2.378 2.694 2.985 3.216
diff -1.477 -1.360 -1.321 -1.307 -1.321
diff % -47.38 -36.39 -32.91 -30.45 -29.11

Panel B: Dp-Dg (EUR/MWh)

PC 1.157 1.697 2.104 2.731 3.283
PPC 0.270 0.780 1.250 1.962 2.551
diff -0.886 -0.917 -0.855 -0.769 -0.733
diff % -76.64 -54.05 -40.61 -28.14 -22.32

Re-calculated option prices with 35% and 40% fuel efficiency rates, respectively for the
UK and Dutch spark spreads.

fired power plant with 40% fuel efficiency. Define the total notional amount:

QTN = Capacity of plant×Days in a contract period×Delivery hours per day

Consider a 500 MW generation capacity and 21 weekdays in a month. Using the results

from Table 5.4, the total notional amount is 252,000 MWh (= 500 MW × 21 days × 24

hours) and the present values of the month are

PVpc = QTN × 2.73 = 687, 960 EUR

PVppc = QTN × 1.96 = 493, 920 EUR .

The difference in value (194,040 EUR) is mainly caused by the PPC model’s common

factor structures. This example illustrates the possibility that ignoring common factors

results in overvaluing real assets.

5.4.2 Results for Spreads Including a Foreign Asset

Qunato Exchange Options

Quanto exchange options require three additional input parameters in addition to the

standard exchange options: the quanto rate, the volatility of spot FX, and the correlation

between the spot FX and the foreign asset. Although the quanto rate is purely contract-

based and does not necessarily relate to a market FX rate, the market participants may

refer to the forward FX rate in practice. We download the mid price of the spot GBP/EUR
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Figure 5.3: Spot FX rate and its rolling correlation with UK assets.
Top: the trajectory of the spot GBP/EUR exchange rate between 1st July 2016 and
29th June 2018. Bottom: the historical estimation of correlation coefficients between
the log returns of 30-day fixed time-to-maturity contracts and the spot GBP/EUR
foreign exchange rate. Ug, Up, and FX refer to UK gas, UK power, and GBP/EUR
spot FX rate respectively. The data covers a two-year period between July 2016 and
June 2018. The rolling window starts on 23 June 2017 taking 252 observation points
backwards at each day. The legend shows the minimum and maximum correlation
estimates in brackets.

FX rate from Bloomberg® to estimate the FX parameters. The quanto rate is set at

X̄ = 1.1226 in reference to the average forward FX rates over the maturity of the contracts

on 29th June 2018.14

The top figure in Fig. 5.3 depicts the price trajectory of the spot FX between 1st July

2016 and 29th June 2018, during which the GBP/EUR stably fluctuates between 1.1 and

1.2, with the historical volatility estimate of σX = 8.9%. According to our 252-day rolling

window analysis, the correlation between the FX rate and the spot UK contracts15 is

less than 20% in magnitude for both UK gas and UK power, as shown in the bottom of

Fig. 5.3, where the legend reports the minimum and maximum correlations. Therefore, in

this study, we set ρ1X = −0.2 for both UK gas and UK power.

Tables 5.6 – 5.7 report the standard deviations and option prices. It shows that the

PPC model calculates the option prices on average16 at 14 cents (11.0%), 68 cents (4.9%),

14It is the average forward FX (mid) rates with maturities T =(30, 60, 90, 120, 150, 180, 210, 240, 360,
540) days as at the pricing day.

15We regard the 30-day contract as a proxy for the spot price.
16Including all other maturity contracts. See Table A.5
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Table 5.6: Standard deviations of UK – Dutch spreads at option expiration.

Contracts 30d 90d 180d 360d 540d

Panel C: Ug-Dg

PC 0.0632 0.0811 0.0932 0.1108 0.1265
PPC 0.0427 0.0645 0.0779 0.0921 0.1031

Panel D: Up-Dp

PC 0.1715 0.2013 0.2163 0.2419 0.2661
PPC 0.0973 0.1362 0.1532 0.1778 0.1995

Panel E: Up-Dg

PC 0.1515 0.1792 0.1912 0.2058 0.2195
PPC 0.0829 0.1196 0.1329 0.1456 0.1562

The model standard deviations are given by Eq. (5.21). The options are assumed to
expire five days before the maturities of the underlying forward contracts.

Table 5.7: Option prices of quanto exchange options.

Contracts 30d 90d 180d 360d 540d

Panel C: Ug-Dg (EUR/MWh)

PC 1.051 1.191 1.291 1.438 1.571
PPC 0.906 1.061 1.166 1.281 1.372
diff -0.144 -0.130 -0.125 -0.157 -0.199
diff % -13.75 -10.94 -9.69 -10.90 -12.67

Panel D: Up-Dp (EUR/MWh)

PC 13.382 13.711 13.902 14.263 14.635
PPC 12.960 13.102 13.219 13.442 13.686
diff -0.421 -0.609 -0.683 -0.821 -0.949
diff % -3.15 -4.44 -4.91 -5.76 -6.48

Panel E: Up-Dg (EUR/MWh)

PC 10.162 10.572 10.766 11.017 11.260
PPC 9.534 9.784 9.925 10.081 10.224
diff -0.628 -0.789 -0.841 -0.936 -1.036
diff % -6.18 -7.46 -7.81 -8.49 -9.20

The price of quanto option using the quanto factor of 1 GBP=1.1226 and the correlation
coefficient of ρ1X = −0.2 for UK gas and power. The fuel efficiency is 40% for the
UK power – Dutch gas spark spread. The relative difference is given by the formula:

diff % = 100× (PPC price – PC price)
PC price .

and 84 cents (7.8%) discount to the PC model prices for the UK gas – Dutch gas, UK

power – Dutch power, and UK power – Dutch gas, respectively, in which the calculation

of the UK power – Dutch gas spark spread is based on a 40% fuel efficiency. For both UK

power – Dutch power and UK power – Dutch gas, the difference in model prices widens
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Figure 5.4: Quanto options with varying correlation coefficients
between the spot FX rate and the UK assets.
The calculation of quanto options uses a hypothetical correlation parameter: ρ1X =
−0.9, 0, 0.9 replacing the historical estimates of correlation coefficients −0.2. Other
input parameters are unchanged from the previous calculation in Table 5.7

as the maturity of contracts increases. On the other hand, UK gas – Dutch gas does

not follow the pattern; the gap between the two model prices narrows for the mid-term

options.

Fig. 5.4 illustrates the impact of the quanto adjustment on option prices. In the figure,

the correlation coefficient varies between −0.9 and +0.9, replacing the original value of

−0.2 to calculate the quanto adjustment terms. As we can see in the figure, when the

correlation (hence the quanto adjustment term) is negative, the option price is higher

than the value of options with zero correlation (no quanto adjustment). Conversely, when

the correlation is positive, the inclusion of the quanto adjustment term lowers the option

price. Nevertheless, the impact of quanto adjustment on the options is limited since we find

negligible differences even between the hypothetically high correlation and no correlation.

Cross-currency Exchange Options

We set X(t) = 1.1304 using the last observation in our data set and historically estimate

the FX volatility σX = 8.9%. The fuel efficiency of 40% is used for the calculation of

the UK power – Dutch gas spark spread. Contrary to the model assumption of constant

correlations, the empirical data suggests a term structure of correlation between the spot

FX rate and forward contracts in Table 5.8. We use these time-dependent correlation

coefficients to examine the relative impact of the correlation between the spot FX rate
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Table 5.8: Correlation coefficients between the spot FX rate and forward contracts.

Contracts

Commodities 30 60 90 120 150 180 210 270 360 540

UK Gas (%) -8.6 -10.2 -12.6 -13.9 -15.5 -15.6 -15.0 -15.8 -17.7 -18.5
Dutch Gas (%) 8.6 8.6 8.6 8.2 8.9 10.4 11.0 11.9 12.2 13.3
UK Power (%) -4.5 -4.1 -9.3 -8.5 -9.3 -9.9 -10.8 -13.3 -16.6 -15.8
Dutch Power (%) -0.3 2.7 2.7 5.1 5.9 7.1 9.7 11.2 9.3 8.4

The historical estimation of correlation coefficients between the log-returns of spot GBP/EUR
FX rate and the underlying forward contracts for a 2-year estimation window from July 2016 to
June 2018.

and the underlying forward contracts and the marginal volatilities on the option prices.

As explained earlier, the introduction of a stochastic FX rate can increase or decrease

the overall variance for a spread of commodities. Table 5.9 reveals the decomposition of

the total variance for the three commodity pairs that include a foreign asset. The FX

add-on is mostly negative, while it is negligibly small and has little impact on short-term

contracts. On the other hand, it imposes downward pressures on the spread variance

of longer-dated contracts. Therefore, the diminishing total variance lowers the value of

exchange options in Fig. 5.5 and Table 5.10, especially when the FX add-on accounts for

a large proportion of the total variance as seen in the PPC prices of the UK gas – Dutch

gas spread. Consequently, the option prices do not form a concave shape in Fig. 5.5, in

contrast to the prices of quanto exchange options in Fig. 5.4.
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Table 5.9: The variance of cross-currency spreads at option expiration.

Contracts 30d 90d 180d 360d 540d

Panel C: Ug-Dg

PC
Total var 0.0036 0.0052 0.0057 0.0068 0.0081
Spread var 0.0040 0.0066 0.0087 0.0123 0.0160
FX add-on -0.0004 -0.0014 -0.0030 -0.0055 -0.0079
PPC
Total var 0.0014 0.0029 0.0032 0.0032 0.0031
Spread var 0.0018 0.0042 0.0061 0.0085 0.0106
FX add-on -0.0004 -0.0013 -0.0028 -0.0052 -0.0075

Panel D: Up-Dp

PC
Total var 0.0296 0.0402 0.0460 0.0551 0.0680
Spread var 0.0294 0.0405 0.0468 0.0585 0.0708
FX add-on 0.0002 -0.0003 -0.0008 -0.0034 -0.0028
PPC
Total var 0.0097 0.0185 0.0232 0.0293 0.0382
Spread var 0.0095 0.0185 0.0235 0.0316 0.0398
FX add-on 0.0002 -0.0000 -0.0003 -0.0023 -0.0016

Panel E: Up-Dg

PC
Total var 0.0227 0.0311 0.0350 0.0376 0.0426
Spread var 0.0230 0.0321 0.0365 0.0424 0.0482
FX add-on -0.0003 -0.0010 -0.0016 -0.0047 -0.0056
PPC
Total var 0.0067 0.0135 0.0164 0.0173 0.0197
Spread var 0.0069 0.0143 0.0177 0.0212 0.0244
FX add-on -0.0002 -0.0008 -0.0012 -0.0039 -0.0047

The table shows the breakdown of spread variance for cross-currency exchange
options, where Total var = Spread var + FX add-on. In the table, Total var is
the variance that enters into Eq. (5.44), Spread var is the standard variance of
an exchange option, and FX add-on is the additional components that account
for fluctuations in spot FX rates.
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Table 5.10: The prices of cross-currency exchange options.

Contracts 30d 90d 180d 360d 540d

Panel C: Ug-Dg (EUR/MWh)

PC 1.139 1.229 1.256 1.309 1.370
PPC 1.008 1.098 1.121 1.120 1.111
diff -0.131 -0.130 -0.135 -0.189 -0.259
diff % -11.54 -10.61 -10.78 -14.42 -18.90

Panel D: Up-Dp (EUR/MWh)

PC 13.783 14.086 14.256 14.530 14.914
PPC 13.392 13.517 13.621 13.774 14.027
diff -0.391 -0.568 -0.636 -0.755 -0.887
diff % -2.84 -4.04 -4.46 -5.20 -5.95

Panel E: Up-Dg (EUR/MWh)

PC 10.527 10.890 11.056 11.169 11.376
PPC 9.955 10.155 10.267 10.300 10.402
diff -0.573 -0.736 -0.789 -0.869 -0.974
diff % -5.44 -6.76 -7.14 -7.78 -8.56

The prices of cross-currency exchange options by Eq. (5.44) that depict Fig. 5.5. The

relative difference is given by the formula: diff % = 100× (PPC price – PC price)
PC price .

Figure 5.5: The prices of cross-currency exchange options.
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5.5 Summary

This chapter looked at the pricing of exchange options on forward contracts whose price

dynamics are given by the Heath et al. (1992) model. Our study extended the Marg-

rabe (1978) formula to generalise the option pricing formula by adjusting the variance of

commodity spread to incorporate more sophisticated dependence structures for a pair of

commodities. Moreover, it introduced two types of exchange options that involve cross-

currency transactions: quanto exchange option and cross-currency exchange option. To

our knowledge, no other commodity literature addresses the change of measure for cross-

currency transactions within the Margrabe (1978) framework.

As the simulation study in the previous chapter implied, the PPC model calculated

option prices to be lower than the PC model due to the enhanced common factor structures

in the model variance. However, the reduction in option values varied between commodity

pairs and maturities depending on their loadings to the common factors. It also depended

on the fuel efficiency of spark spreads that determines the moneyness of the options; the

impact of common factors appeared most significantly for at-the-money options. The

valuation of a Dutch power plant provided an example in which omitting common factors

led to the overpricing of real assets.

For the exchange options that involve FX transactions, the pricing exercise indicated

that the FX adjustment is negligible for quanto exchange options. By contrast, the FX

adjustment is non-negligible for cross-currency exchange options to which the relative size

of the spread variance and FX add-on directly affects the spread variance in the pricing

formula. Together with the remark on the option vega (5.48) that increases the com-

plexity of risk management, our study raised awareness for latent risk factors that would

have yet to be recognised by the model users and commodity traders in the international

marketplace.
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Chapter 6

Common Factor Hedge in the

Shipping Market

6.1 Introduction

Bunker fuel refers to marine fuels classified by vessel types and chemical compositions.

In January 2020, the International Maritime Organisation (IMO) imposed the mandatory

requirement for bunker fuel with less than 0.5% (previously 3.5%) sulphur due to the rising

concern on the environment and health caused by maritime emission. While ‘IMO 2020’

promoted the new listings of futures products on the major exchanges,1 the new contracts

suffered from illiquidity and price instability that is not uncommon in emerging markets.

For the management of bunker price risk, this chapter studies the hedging of a low-sulphur

bunker fuel with and without the assumption of shared common factors between proxy fuel

futures. We analyse the bunker price hedge from shipowners’ view points in the market

transition period.

Earlier work on hedging, as in Johnson (1960), Stein (1961) and among many others,

implicitly or explicitly assumes the hedgers are commodity traders long on a physical

(spot) position and take an appropriate number of short positions in a futures market. If

the commodity price drops at a future time, the profit of selling the commodity decreases;

however, the gain from the futures trade offsets this loss. The minimum-variance hedge

ratio is the number of futures positions to trade to mitigate adverse price exposure when

using portfolio variance as the risk metric. If the hedge aims to maximise the expected

1Those include the Singapore Exchange (SGX), New York Mercantile Exchange (NYMEX), and Inter-
continental Exchange (ICE).
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return and minimise risk simultaneously, it is called the mean-variance hedge.2 It is often

the case that alternative futures are used when the attributes of the underlying and hedge

contracts do not exactly match in practice (cross hedge).

For bunker risk management, the discussion of cross hedge is initiated by Menachof and

Dicer (2001). They argue the superiority of a petroleum cross hedge against a conventional

cost adjustment factor3 for Rotterdam bunker fuel at the time, with the rolling window

estimate of minimum-variance hedge ratios. Later, Alizadeh et al. (2004) analyse the

effectiveness of cross hedges for three locational bunker fuels (Rotterdam, Singapore, and

Huston bunker fuels) using three petroleum futures (crude oil, gas oil, and heating oil

futures). Their study finds a tendency that the constant hedge ratios perform better than

dynamic hedge ratios in sample but the converse is the case for out-of-sample data.

While Alizadeh et al. (2004) regard shipowners as the hedgers whose aim is portfolio

optimisation, Wang et al. (2018) regard ship liners4 as the consumers of bunker fuel to

formulate the hedge problem. Their scenario-tree-based approach is designed to find an

optimal short-term hedge strategy using a swap contract while dynamically updating a

ship liner’s cost function. Despite the differences in problem formulations, both studies

employ a family of multivariate vector error correction GARCH (VECM-GARCH) models

to account for the cointegrating relationship between the underlying and hedge contracts.

Although there is ample literature for determining optimal hedge ratios in finance, only

a handful of studies focus on the hedging of bunker price risk. Given the scarcity of research

in this area, firstly, our study addresses the consumption problem of shipowners who buy

and consume bunker fuels rather than roll and reinvest the assets for portfolio management;

these differences are often overlooked in the modern hedge literature. Secondly, it analyses

the cross-hedge efficiency of bunker fuels, for which latent common factor models describe

the price processes. Since our modelling approach accounts for the whole term structure

of forward curves and their comovements when calculating hedge ratios, it introduces a

new perspective to the existing literature.

The remainder of this chapter is organised as follows. Section 6.2 formulates a hedge

problem for consumers of commodities and discusses how it differs from the hedge for

portfolio managers. Section 6.3 re-introduces latent factor models and extends the frame-

work for the calculation of minimum-variance hedge ratios. Section 6.4 performs empirical

2It is a well-known fact that these two hedge ratios are indifferent when the parameter of risk-aversion
is infinite for the hedger or the expected return of the hedge instrument is zero.

3Bunker Adjustment Factor (BAF), also called fuel adjustment factor, is an additional surcharge to
freight rates to adjust for bunker price fluctuations.

4A liner shipping company operates scheduled voyages on a sea route carrying passengers or cargo.
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analysis and parameter fittings, followed by Section 6.5, in which the hedge effectiveness

is evaluated. Section 6.6 summarises the results.

6.2 Bunker Price Hedge

6.2.1 Problem Formulation

Let us consider shipowners who earn money from lending their vessels to charterers for a

specified route at a predetermined freight rate. Denote S(Ti) for the freight charter rate

in month Ti (t < Ti). We use the following formula to represent the economic activity of

shipowners for the next N periods

V (t) =
N∑
i=1

e−r(Ti−t)E
[
αS(Ti)− hB(Ti)− C

]
, (6.1)

where B(Ti) denotes the fuel (bunker) price, C is the non-fuel costs such as port charges

and canal dues, α and h adjust for the type of vessel, cargo size and fuel consumption rate,

and r is the discount rate. For each period i, the cashflow excluding the discounting factor

calculates a similar quantity to the Time-charter Equivalent (TCE) rate, which represents

the net earnings of shipowners, typically in $/day. In addition to the TCE components,

we also consider other operating expenses and include them in C.5 On the cost side, the

main source of uncertainty is the bunker price since it fluctuates dynamically from period

to period.

Suppose that a shipowner enters into a hedge transaction in a futures market to sta-

bilise the cost of fuel. If contracts are available for the same type of bunker fuel, taking

a h long position in futures offsets a loss/gain in bunker procurement. However, it is not

uncommon that the sulphur contents and viscosity of bunker fuels or the delivery point

and maturity of futures are different from those of the underlying transaction. If that hap-

pens, the shipowner may need to rely on a cross hedge by buying ni amount of alternative

fuel futures that are highly correlated with the underlying bunker fuel, accepting the basis

risks.

Denote by F̃ (t, Ti) the price of alternative fuel futures at time t for a contract month

Ti and Ji = {d ∈ N | 1 ≤ d ≤ 30} for the set of trading days in the contract month. Since

bunker futures are typically settled as the arithmetic average of the underlying index

5Due to the high costs involved (hence rare occurrence), we ignore the optionality in the formula
associated with the possibility of ‘laying up’ the ship. Otherwise, Eq. (6.1) can be written as V (t) =∑N

i=1 e
−r(Ti−t)E

[
max(αS(Ti)− hB(Ti)− C, X)

]
, where X represents the layup cost.
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during a contract month,6 we can write the settlement price as

1

Mi

∑
d∈Ji

B̃(d) ,

where Mi is the size of Ji and B̃(d) is the price of the alternative fuel on day d. Therefore,

the present value of the hedged cash flow is

Ṽ (t) =

N∑
i=1

e−r(Ti−t)E
[
αS(Ti)− hB(Ti)− C + ni

(
1

Mi

∑
d∈Ji

B̃(d)− F̃
(
t, Ti

))]
, (6.2)

for which we impose the following simplifying assumptions: i) risk neutrality of agents, ii)

absence of credit risk, iii) absence of transaction costs, vi) independence of freight rates

and bunker prices, v) constant interest rate, and vi) absence of timing risk. As P = Q by

i), the expected payoff of the hedge cashflow is zero, and the hedge only affects its variance

and not the mean. Thus, the minimum-variance hedge ratio is indeed the optimal hedge

ratio (Benninga et al., 1984; Myers and Thompson, 1989).7 Moreover, the elimination of

timing risk leads to the single-day settlement of futures (instead of arithmetic average)

and the simultaneous occurrence of the underlying and hedge cashflows:

Ṽ (t) =
N∑
i=1

e−r(Ti−t)E
[
αS(Ti)− hB(Ti)− C + ni

(
B̃(Ti)− F̃ (t, Ti)

)
] (6.3)

Hence, as far as the month-by-month hedge8 is concerned, our problem reduces to

minimising the variance of cashflows by trading futures according to the optimal hedge

ratio

n∗
i = h · Cov[B(Ti), B̃(Ti)]

Var[B̃(Ti)]
, (6.4)

or more generally

n∗
i = h · Cov[F (s, Ti), F̃ (s, Ti)]

Var[F̃ (s, Ti)]
, (6.5)

where F (s, Ti) = EQ[B(Ti)] is the futures price of the underlying asset at s(≤ Ti).

6They are known as calendar swaps. See Section 2.1.
7The first assumption enables us to focus on the impact of model selection on the optimal hedge ratios

without concerning the risk preference of agents.
8Here, month-by-month hedge means hedging a cashflow in month Ti with a futures contract maturing

in the same month.
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6.2.2 Hedging from Consumers’ Perspectives

While Eq. (6.4) calculates the hedge ratio directly from the distribution of price levels,

other literature typically regards the changes in (log) prices as the risk and calculates the

hedge ratio for portfolio optimisation problems. The second approach is inappropriate

to hedge bunker price risks since shipowners are the consumers of bunker fuel and not

the portfolio managers who continuously hold positions in the underlying asset. Below,

we construct a minimum-variance hedge from the perspective of portfolio management to

make the point.

Suppose that a commodity is held in storage between t0 and t1. Then, the price change

in this position is ∆B = B(t1) − B(t0). If the stored commodity is hedged by n short

futures, the derivatives price also varies between the same period. Regarding the profit

and loss of the futures, the change can be written as e−r(T−t1)F (t1, T )−e−r(T−t0)F (t0, T ),

where the discount factors e−r(T−ti), i = 0, 1 adjust for the time value of money for

the cashflows since the payment occurs at T . When the time interval is small or the

interest rate is low, e−r(T−t0) ≈ e−r(T−t1), and we can replace the discount factors with

D(t0, T ) := e−r(T−t0). Therefore, the expected change in the hedged portfolio is

E[∆Ṽ ] = E[∆B]− nE
[
e−r(T−t1)(F (t1, T )− F (0, T ))− e−r(T−t0)(F (t0, T )− F (0, T ))

]
≈ E[∆B]− n D(t0, T ) E[∆F ].

(6.6)

The minimisation of Var[∆Ṽ ] with respect to n gives the minimum-variance hedge ratio:9

n∗ =
1

D(t0, T )

Cov[∆B,∆F ]

Var[∆F ]
(6.7)

Ederington (1979) notes that the mean-variance hedge can be interpreted as the portfolio

allocation between the spot and futures markets.10 In commodity markets, the portfolio

allocation involves holding commodity stocks at t0 and the sale and repurchase of futures

contracts to hedge the physical position over the hedge period unless the commodity is

delivered (Stein, 1961).

By contrast, our bunker hedge does not start from holding an underlying asset (or

9In fact, Eq. (6.7) and the hedge ratio by the variance and covariance of price levels are identical when we
consider a one-step hedge. Since B(t0) and F (t0, T ) are known quantities at t0, Var(∆F ) = Var(F (t1, T ))
and Cov(∆B,∆F ) = Cov(B(t1), F (t1, T )).

10Alternatively, when hedging a forward position with another (alternative) forward/futures, Eq. (6.6)
can be written as

n∗ =
D(t0, T1)

D(t0, T2)

Cov[∆F,∆F̃ ]

Var[∆F̃ ]
, (6.8)

where ∆F and ∆F̃ represent the change in the underlying and hedge positions, respectively.
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short futures) at t0 or carrying over the commodity during the hedge period. Instead,

the shipowner buys bunker fuel at t1 in the physical market and consumes the fuel for

immediate use. For an N -period hedge, the fuel cost accumulates, and the expected costs

sum to
N∑
i=1

E
[
B(ti)

]
= E[B(t1) +B(t2)+, · · · ,+B(tN )], (6.9)

for which the variance is minimised using futures contracts. On the other hand, the

expected price change in the portfolio approach is

N∑
i=1

E
[
∆B(ti)

]
= E[B(tN )−B(tN−1) +B(tN−1)−B(tN−2), · · · ,+B(t1)−B(t0)]

= E[B(tN )−B(t0)].

(6.10)

In an extreme situation, when two prices are the same at t0 and tN , the price change

in the portfolio approach is zero. However, this is not the case in the fuel consumption

problem, where the sum of all prices enters the calculation: the consumption problem is

path-dependent.

The path-dependency feature in the consumption problem highlights the reason why

the hedge ratios by price change cannot capture the inherent characteristics of our bunker

price hedge. In other words, while Var[∆V ] is an accurate representation of risk, Var[∆B]

fails to capture the cumulative exposure of monthly spot bunker purchases given by

Eq. (6.3). In general, the formulation of the hedge ratio (6.7) is only applicable for

market participants who are capable of continuously rebalancing their positions, which is

not always feasible in commodities markets due to liquidity, transaction costs, or physical

operations involved. As seen in the bunker consumption problem, the hedge ratio needs to

be obtained directly from the distribution of level data to account for the cumulative effect

in the price exposure when dealing with a sequence of future cash flows over a non-small

time interval.

6.3 Model

This section outlines the structures of common and non-common factor models by PCA

and PPCA for the calculation of hedge ratios. For some parts, we shall provide references

to the relevant equations and sections in the previous chapters instead of re-introducing

the notations and formulas.
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Notation

Denote the non-common factor model by PC(nk), where nk is the number of principal

components used in the forward curve model. Similarly, denote the PPC model by

PPC(
∑K

k=1 nk, nk, m, 1), where
∑K

k=1 nk is the total number of marginal principal com-

ponents used to perform the second-stage PCA, m is the number of common components,

and 1 refers to the additional idiosyncratic component: see Section 4.2.2. We set nk = n

for k = 1, · · · , K for simplicity.

Fuel Price Dynamics

The forward curve dynamics of bunker futures are described by the term structure model

(4.1):

dFk(t, T )

Fk(t, T )
=

n∑
j=1

σkj(t, T )dZ
Q
kj(t) , k = 1, · · · , K,

where Fk(t, T ), k = 1, · · · , K, represent the price of forward contracts in the k-th forward

curve with maturity T , σkj(t, T ), j = 1, · · · , n, are the factor volatilities that govern the

dynamics of the forward curves, and ZQ
kj are the Q-Brownian motions associated with the

factors. These Brownian motions can be either correlated or uncorrelated, depending on

the model assumptions.

Calculation of Factor Hedge Ratios

Section 5.2.2 shows that solving the multi-factor model gives us the marginal distribution

of log processes lnFk(s, T ) ∼ N
(
µk, σ

2
k

)
, t < s ≤ T , with

µk = E
[
lnFk(s, T )

]
= lnFk(t, T )−

1

2

∫ s

t

n∑
j=1

σ2
kj(u, T )du

σ2
k = Var[lnFk(s, T )] =

∫ s

t

n∑
j=1

σ2
kj(u, T )du,

and the covariance

Cov
[
lnF1(s1, T1), lnF2(s2, T2)

]
=

∫ min(s1,s2)

t

( n∑
i=1

n∑
j=1

ρijσ1i(u, T1)σ2j(u, T2)

)
du ,

where t < si < Tj ,∀ i, j ∈ {1, 2}, for which the forward curves are driven by the same

number of orthogonal factors. Since the computation of the hedge ratio (6.5) requires

the distributions of level price at some future date sk, we cannot directly substitute the
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variance and covariance of lnFk(sk, Tk) into the formula. Instead, we rely on the following

general results to obtain the variance and covariance of lognormal processes.

Let Yk = eXk be a lognormally distributed random variable where Xk ∼ N
(
µk, σ

2
k

)
.

Then the mean and variance of Yk are given by

µYk
= E

[
Yk

]
= eµk+

1
2
σ2
k

σ2
Yk

= Var
[
Yk

]
=

[
eσ

2
k − 1

]
e(2µk+σ2

k) ,
(6.11)

and the covariance of two lognormally distributed random variables is

Cov
[
Y1, Y2

]
= E

[
Y1Y2

]
− E

[
Y1

]
E
[
Y2

]
= e(µ1+µ2) · e

1
2
(σ2

1+σ2
2+2ρ12σ1σ2) − eµ1+

1
2
σ2
1 · eµ2+

1
2
σ2
2

= e(µ1+µ2) · e
1
2
(σ2

1+σ2
2)
[
eρ12σ1σ2 − 1

]
.

(6.12)

From the relationship above, the variance and covariance of Fk(s, T ), k = 1, 2 can be

found analytically for µk and σk:

Var
[
Fk(s, T )

]
=

(
Fk(t, T )

)2[
exp

{∫ s

t

n∑
j=1

σ2
kj(u, T )du

}
− 1

]
(6.13)

Cov
[
F1(s1, T1), F2(s2, T2)

]
=

(
F1(t, T1)F2(t, T2)

)
×
[
exp

{∫ min(s1,s2)

t

( n∑
i=1

n∑
j=1

ρijσ1i(u, T1)σ2j(u, T2)

)
du

}
− 1

]
(6.14)

Hence, one can obtain a succinct expression for the minimum-variance hedge ratio

from Eqs. (6.13) and (6.14):11

n∗
i =

h F1(t, T1)

F2(t, T2)
·
exp

{∫ min(s1,s2)
t

(∑n
i=1

∑n
j=1 ρijσ1i(u, T1)σ2j(u, T2)

)
du

}
− 1

exp
{∫ s2

t

∑n
j=1 σ

2
2j(u, T2)du

}
− 1

(6.15)

The covariance structure of Eq. (6.15) depends on the model of our choice; see Section 5.2.2

for the explanations.

Parameter Estimation

Both the PC and PPC volatility functions are exponentially fitted by the functional form

of Eq. (4.4); see Thompson (2016). The calibration results are evaluated by the matrix-

11F2(t, T2) is the hedge instrument in Eq. (6.15).
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wise root-mean-square errors (m-RMSE) between the model volatility σij and fitted factor

volatility σ̃ij , where the number of estimation points M equals to the number of maturities

multiplied by the number of factors in a model: M = N × n for a PC model or M =

N × (m+ 1) for a PPC model.

m-RMSE =

√∑N
i=1

∑n
j=1(σij − σ̃ij)2

M
(6.16)

6.4 Empirical Study

6.4.1 Preliminary Analysis

The hedger in this study is a shipowner who operates in the TC2 clean-tanker route

between Rotterdam and the US Atlantic coast. For the calculation of hedged cashflows

per day, the constant parameters are determined by the following formulas for Eq. (6.3)

α =
Cargo size× Flat rate

Number of days
× 1

100

h =
Fuel consumption

Number of days

C =
Other costs

Number of days
+ Daily operating expenses ,

for which we substitute typical values representing the TC2 route:12

Cargo size : 37,000 MT

Flat rate : 14.73 ($/MT)

Fuel consumption (per voyage) : 644 MT

Other costs (per voyage) : $ 88,884

Operating expenses (per day) : $ 6,000

Number of days (per voyage) : 28

Therefore, α = 194.65, h = 23, and C = 9, 174.43. A flat rate is published by the

Worldscale Association13 in January every year as a reference charter rate ($/MT) for a

standardised model ship running a particular route. On the other hand, a market freight

rate is quoted in the % value of the flat rate known as the Word Scale (WS). It fluctuates

day to day, reflecting the supply and demand on the route. We refer to the year 2019’s

12One can easily extend the analysis for other tanker routes by altering these values.
13https://www.worldscale.co.uk/

https://www.worldscale.co.uk/
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(a) RMI: Rotterdam 0.5% (b) LW: Rotterdam 3.5%

(c) WT: US Gulf coast 3.0% (d) VH: WTI crude

Figure 6.1: Interpolated forward curves with fixed time to maturities.
All prices are shown in $/1000 MT with fixed time to maturities: τi = (30, 60, 90, · · · , 540) days
for the period of 19th November 2019 to 20th October 2020.

flat rate and fix the market freight rate at WS 150 since the freight rate and bunker price

are independent by assumption, and therefore it does not influence the hedge ratio (6.15).

The fuel data consists of bunker futures that belong to categories B and C in Sec-

tion 2.1, whose names are denoted by the Bloomberg® ticker codes in the subsequent

analysis: European FOB Rotterdam Marine Fuel 0.5% (RMI), European 3.5% Fuel Oil

Barges FOB Rotterdam (LW), Gulf Coast HSFO (WT), and WTI Financial (VH). We

shall use their short names for labelling also: Rotterdam 0.5% (RMI), Rotterdam 3.5%

(LW), US Gulf coast 3.0%, and WTI crude. These price data are linearly interpolated

with a 30-day interval for every forward curve to construct the time series of 18 fixed

time-to-maturity contracts, where τi = (30, 60, · · · , 540) days in Eq. (2.1), to cover 231

trading days between 19th November 2019 and 20th October 2020.

Figure 6.1 visualises the interpolated RMI, LW, WT, and VH prices in $/1000 MT,14

in which the forward curves exhibit similar patterns. The price of VH was above $350 at

14For WT and VH, the trade units are adjusted from $/barrel to $/metric tonnes (MT) using the
conversion factor of 1 barrel = 6.7 MT.
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(a) 30 day (b) 510 day

Figure 6.2: Log returns of 30-day and 510-day fixed time-to-maturity con-
tracts.

a premium to LW and WT until the world’s demand for crude oil plummeted sharply due

to the first outbreak of the COVID-19 pandemic in March 2020. The forward prices of LW

and VH were in steep contango between early April and May 2020 until they reverted to

the pre-crisis level in June 2020. On the other hand, the nearby price of RMI was above

$500 in the introductory phase of the new IMO regulation in January 2020. Subsequently,

it jumped downwards in February 2020, followed by a gentle price rise towards $300 in

later months.

Fig. 6.2 depicts the log returns of the 30-day and 510-day contracts. The fluctuation

of returns synchronises across forward curves in a stressful period, for example, between

March and May 2020. Overall, the 30-day contracts exhibit greater volatility with log

returns in the range of −36% to +24% compared with −18% to +12% for 510-day con-

tracts. Table 6.1 reports the summary statistics of price levels and log returns.15 Notice

that the 30-day volatilities are smaller than the 90-day volatilities due to the average

settling method of the bunker futures that restrains radical price movements in the con-

tract month. In fact, the term structure peaks at 60 days with 68%, 84%, 84%, and 90%

volatilities for RMI, LW, WT, and VH.

Fig. 6.3 investigates the within-curve correlations of forward price log returns, where

the lower-triangle of a heatmap represents the off-diagonal elements of a correlation matrix.

The first columns of the heatmaps highlight the tendency that the farther the maturities,

the weaker the correlations due to the split personality of energy commodities.16 However,

15The table only reports the statistics for Ti = {30, 90, · · · , 510} with a 60-day interval due to limitations
in space, but the patterns are similar for the other maturities.

16It is said that the split personality is caused by different fundamentals affecting the short and long-
end of forward curves. Pilipovic (1998) argues that it is the current storage conditions that determine
short-term prices, whereas it is the expected long-term supply conditions that determine long-term prices.
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Table 6.1: Summary statistics of interpolated fuel prices and log returns.

RMI

Maturities 30 90 150 210 270 330 390 450 510

Price
Min 168 167.15 193.35 210.60 221.40 233.21 244.37 253.64 262.48
Max 575.61 556.94 540.05 525.16 511.29 499.07 485.93 473.68 462.18
Mean 333.74 337.73 341.25 344.05 346.07 348.13 349.93 351.23 352.35
SD 108.50 102.84 94.31 86.77 79.74 72.89 66.70 61.13 55.71
Return(%)
Min -19.73 -20.82 -18.25 -17.12 -15.96 -13.06 -12.51 -12.80 -13.63
Max 12.84 12.96 12.75 12.40 11.88 12.11 12.02 11.59 11.97
Mean -0.17 -0.18 -0.18 -0.17 -0.16 -0.15 -0.14 -0.14 -0.13
Volatility 57.09 64.08 58.02 54.43 51.80 50.38 48.96 46.81 46.09

LW

Maturities 30 90 150 210 270 330 390 450 510

Price
Min 101.99 100.20 117.15 126.53 134.91 143.95 151.98 159.05 165.31
Max 276.20 277.80 276.10 273.16 269.21 267.12 268.02 268 267.36
Mean 213.95 214.67 216.86 219.63 222.25 224.95 227.85 230.63 233.03
SD 46.53 44.06 39.57 36.90 34.57 32.26 30.49 29.09 28.02
Return(%)
Min -33.88 -33.39 -31.31 -28.80 -26.84 -24.25 -22.07 -19.30 -17.48
Max 21.21 18.96 16.95 15.93 14.87 13.67 12.42 11.31 11.20
Mean 0.08 0.12 0.10 0.08 0.07 0.06 0.05 0.03 0.03
Volatility 73.70 77.70 69.85 64.98 61.17 57.18 53.52 49.83 47.45

WT

Maturities 30 90 150 210 270 330 390 450 510

Price
Min 105.19 99.76 114.90 125.96 135.00 144.25 153.16 160.60 167.37
Max 302.44 299.36 295.81 292.32 288.57 284.95 285.42 286.29 288.70
Mean 229.50 227.25 228.81 231.28 233.78 236.42 239.42 242.34 244.92
SD 52.08 49.78 45.46 42.44 39.98 37.69 35.88 34.47 33.32
Return(%)
Min -36.03 -33.52 -30.78 -28.25 -25.95 -23.41 -21.24 -19.17 -17.56
Max 24.36 19.18 18.10 16.90 15.62 14.31 13.18 12.43 11.80
Mean 0.04 0.11 0.09 0.07 0.06 0.05 0.03 0.02 0.01
Volatility 77.50 79.31 71.64 65.97 61.57 57.41 53.59 50.44 48.02

VH

Maturities 30 90 150 210 270 330 390 450 510

Price
Min 101.91 132.86 160.67 176.01 187.13 195.71 203.08 207.90 212.12
Max 422.84 419.89 413.12 405.22 397.24 390.41 383.71 378.22 373.39
Mean 278.23 284.25 288.62 290.92 292.50 293.70 294.58 295.29 295.96
SD 79.87 72.14 65.22 60.06 55.57 51.92 48.79 46.24 43.96
Return(%)
Min -30.09 -31.10 -24.67 -22.55 -20.60 -18.81 -17.31 -16.02 -14.85
Max 21.89 19.56 16.74 14.08 12.10 10.42 9.32 8.29 7.39
Mean -0.14 -0.12 -0.11 -0.10 -0.09 -0.08 -0.08 -0.08 -0.07
Volatility 71.70 75.39 62.83 55.55 50.30 46.14 42.86 40.25 38.11

all combinations of contracts in a single forward curve are highly correlated, approximately

from 60% to perfect correlation.

In the next analysis, PCA is performed individually to the covariance matrices of

fuel forward curves. Table 6.2 reports the cumulative and marginal % of total variations
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(a) RMI: Rotterdam 0.5% (b) LW: Rotterdan 3.5%

(c) WT: US Gulf coast 3.0% (d) VH: WTI crude

Figure 6.3: Within-curve correlations of forward price log
returns.

Table 6.2: The cumulative percentage of total variation explained by PCA.

1 2 3 4 5 6 7 8 9 10

RMI Cumulative % 93.61 97.24 98.95 99.51 99.77 99.87 99.93 99.96 99.98 99.98
Marginal % 93.61 3.63 1.71 0.57 0.26 0.10 0.05 0.04 0.01 0.01

LW Cumulative % 94.41 97.71 99.51 99.79 99.93 99.97 99.98 99.99 99.99 100.00
Marginal % 94.41 3.30 1.80 0.28 0.13 0.04 0.02 0.01 0.00 0.00

WT Cumulative % 94.17 97.96 99.58 99.83 99.95 99.97 99.99 99.99 100.00 100.00
Marginal % 94.17 3.80 1.61 0.25 0.12 0.03 0.01 0.01 0.00 0.00

VH Cumulative % 91.65 97.66 99.66 99.91 99.96 99.99 100.00 100.00 100.00 100.00
Marginal % 91.65 6.02 2.00 0.25 0.05 0.03 0.01 0.00 0.00 0.00

The reported values are in % as the cumulative sum of first ten eigenvalues in the PCA.

captured by the ten most significant principal components, in which the explanatory power

of the first two components exceeds 97% for all the fuels. The marginal increments are

similar between RMI, LW, and WTI, whereas the additional contribution declines sharply

after the third component.

Fig. 6.4 depicts the eigenvectors corresponding to the first three largest eigenvalues.

The first eigenvectors seem visually identical, indicating the presence of a common level

factor for the forward curves. In the meantime, the factor loading of 30-day contracts

dominates a large proportion in the second and third factor loadings. The shape of the

third eigenvectors partially duplicates the second eigenvectors, and they do not form a
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(a) RMI: Rotterdam 0.5% (b) LW: Rotterdam 3.5%

(c) WT: US Gulf coast 3.0% (d) VH: WTI crude

Figure 6.4: The first three eigenvectors of fixed time-to-
maturity forward curves.

typical quadratic shape as the ‘curvature’ factor, but still reflect the case that the shortest-

and longest-end of the curve move in the same direction.

Fig. 6.5 shows the history of the first two PCs in level. In the top figure, the level factors

outline the comovement of original price trajectories in reduced dimensions (see Fig. 6.1),

highlighting the divergence of RMI – VH and LW – WT after the market crash in April

2020. On the other hand, the slope factors move steadily during the same observation

period in the bottom figure. In absolute value terms, the correlation coefficients vary

between 87.9% and 99.5% for the first principal components, 36.2% and 93.1% for the

second principal components, and remain below 11% for cross-components (P1 and P2 of

different fuels), as reported in Table 6.3.
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Table 6.3: Cross-correlation matrix of principal components.

RMI LW WT VH

PC1 PC2 PC1 PC2 PC1 PC2 PC1 PC2

RMI PC1 1 0 0.879 0.069 0.882 -0.092 0.887 -0.014
PC2 0 1 -0.088 0.501 -0.109 -0.468 -0.106 -0.362

LW PC1 0.879 -0.088 1 0 0.995 -0.039 0.917 0.002
PC2 0.069 0.501 0 1 -0.033 -0.931 0.053 -0.581

WT PC1 0.882 -0.109 0.995 -0.033 1 0 0.922 0.039
PC2 -0.092 -0.468 -0.039 -0.931 0 1 -0.062 0.555

VH PC1 0.887 -0.106 0.917 0.053 0.922 -0.062 1 0
PC2 -0.014 -0.362 0.002 -0.581 0.039 0.555 0 1

(a) First principal components (level factors)

(b) Second principal components (slope factors)

Figure 6.5: Time series of principal components in level.
The principal component representation of log returns are transformed into levels
using the relationship pt = pt−1 ex̃t , where x̃t is the principal component rep-
resentation of daily return on day t, and pt is the principal component in level.
The starting value (p0) is set equal to the first observation in the price data.
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6.4.2 Parameter Estimation

The fuels are divided into three panels to investigate the impact of common factors in

our bunker cross-hedge problem. In panel 1, the price risk of the low-sulphur bunker fuel

(RMI) is hedged with the high-sulphur bunker fuel (LW) contract that refers to the same

delivery point but with better liquidity. In addition to the base case, panels 2 and 3

consider WT and VH data that may potentially improve or diminish the performance of

the cross hedge. The underlying and hedge contracts remain the same in all three panels.

Underlying contract: RMI

Hedged by: LW

Data used:

Panel 1: RMI, LW

Panel 2: RMI, LW, WT

Panel 3: RMI, LW, WT, VH

(a) Panel 1: RMI, LW

Figure 6.6: PPC eigenvectors.
The plots of common eigenvectors. The
subfigure titles refer to the column num-
bers in the common eigenvector matrix Ū
in Eq. (3.18). Every set of two consecutive
ticks indicates the marginal PC loadings
for a forward curve.

(b) Panel 2: RMI, LW, WT (c) Panel 3: RMI, LW, WT, VH
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Table 6.4: The total variation explained by PPCA.

1 2 3 4 5 6 7 8

Panel 1 Cumulative % 47.09 84.73 97.09 100.00
Marginal % 47.09 37.64 12.36 2.91

Panel 2 Cumulative % 47.45 85.80 96.32 98.80 99.92 100.00
Marginal % 47.45 38.35 10.52 2.48 1.13 0.08

Panel 3 Cumulative % 46.91 81.22 89.47 96.10 97.97 99.20 99.95 100.00
Marginal % 46.91 34.31 8.24 6.64 1.86 1.23 0.75 0.05

We perform PPCA on the cross-correlation matrix (6.3) using two PCs from each fuel

forward curve to find the common eigenstructures. Fig. 6.6 reveals the common eigen-

vectors consisting of 2K, K = 2, 3, 4, marginal eigenvectors for panels 1 – 3, respectively,

for which the forward curve model can be denoted by PPC
(
2K, 2, m, 1

)
.17 In these figures,

every set of two consecutive ticks indicates the marginal PC loadings for a forward curve.

Noticeably, the factor loadings are equally significant among the first and second PCs,

while the unequal factor loadings become apparent after the third common eigenvectors

in panels 2 – 3. The latter observation suggests that the ‘common eigenvectors’ may no

longer be common to all the forward curves but instead dominated by factors from one or

two of the commodities. Table 6.4 reports PPCs’ explanatory powers by the eigenvalues.

The first two PPCs capture approximately 85% of the cross-market correlation structure

for panels 1 and 2, while slightly below 81% for panel 3. Adding the third PPC increases

the explanatory power to 97%, 96%, and 91%; however, its marginal contribution is less

than one-third of the second principal component.

In accordance with the results above, we suggest two common factors (i.e. m = 2)

for the PPC(2K, 2, m, 1), K = 2, 3, 4, models to compare the hedge performances with

a non-common factor model, PC(2), in the subsequent analysis. The formulation of the

forward curve models follows Section 4.2. We employ the local covariance fitting for the

estimation of idiosyncratic factors and parametrically fit the factor volatilities using the

functional form in Eq. (4.4).

Table 6.5 reports the estimated parameters by model. The fitted parameters X1 – X3

and X4 – X6 correspond to the 1st and 2nd PC factor volatilities. The PPC models report

Y7 – Y9 for the idiosyncratic factors in addition to Y1 – Y3 and Y4 – Y6. According to

m-RMSE, the exponential parameterisation works better for the PPC models than the

PC model.

17Recall the notation PPC
(∑K

k=1 nk, nk, m, 1
)
, where nk, m, 1 represent the number of PC factors,

common factors, and idiosyncratic factors, respectively. We use two principal components per forward
curve to perform PPCA. Therefore,

∑K
k=1 nk = 2K.



115

Table 6.5: Fitted parameter values of the PC and PPC models.

PC X1 X2 X3 X4 X5 X6 α1 α2 m-RMSE

RMI 0.363 -18.363 0.480 5.068 0.480 -0.274 0.848 54.052 0.0082
LW 0.584 -2.964 0.249 3.785 0.249 -0.155 0.963 29.022 0.0072
WT 0.600 -2.161 0.231 3.064 0.231 -0.144 1.071 24.845 0.0062
VH 0.836 -2.819 0.352 1.601 0.352 -0.114 2.703 20.743 0.0160

Panel 1 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 β1 β2 m-RMSE

PPC(4, 2, 2, 1) RMI 0.308 -16.309 0.347 0.433 2.587 -0.203 0.123 -3.695 0.062 0.889 52.673 0.0061
LW 0.580 -3.195 0.293 0.206 3.931 -0.148 0.136 -0.952 0.079 0.925 30.921 0.0056

Idio.Corr RMI/LW -0.965

Panel 2 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 β1 β2 m-RMSE

PPC(6, 2, 2, 1) RMI 0.292 -20.029 0.349 0.350 2.381 -0.156 0.173 -6.044 0.080 0.942 55.309 0.0054
LW 0.584 -2.929 0.305 0.226 3.810 -0.156 0.092 -0.603 0.056 0.950 29.490 0.0058
WT 0.579 -2.367 0.339 -0.254 -2.834 0.117 0.100 -0.242 0.047 1.058 25.181 0.0050

Idio.Corr RMI/LW -0.921
RMI/WT -0.891
LW/WT 0.814

Panel 3 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 β1 β2 m-RMSE

PPC(8, 2, 2, 1) RMI -0.287 23.588 -0.351 -0.329 -2.835 0.149 0.201 -7.069 0.071 0.950 57.277 0.0053
LW -0.584 2.898 -0.301 -0.223 -3.792 0.154 0.096 -0.933 0.075 0.947 29.619 0.0058
WT -0.575 2.398 -0.338 0.252 2.801 -0.114 0.118 -0.267 0.054 1.053 25.333 0.0049
VH -0.738 4.251 -0.344 0.263 2.072 -0.093 -0.205 1.151 -0.094 2.418 27.381 0.0115

Idio.Corr RMI/LW -0.625 LW/WT 0.870
RMI/WT -0.620 LW/VH 0.529
RMI/VH 0.236 WT/VH 0.505

The top panel shows the exponentially fitted parameter values for the volatility curves of the PC(2) model. The factor correlation matrix
is shown separately in Table 6.3. Panels 1 – 3 report the results of the PPC(2K, 2, 2, 1) models for K = 2, 3, 4. The rows under Idio.Corr
show the factor correlations. The last column reports the matrix-wise root-mean-square errors (m-RMSE) by Eq. (6.16).
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The same table reports the model implied idiosyncratic factor correlations at the bot-

tom of each panel. In absolute values, RMI/LW is close to perfect correlation in panel 1

(−97%). However, the correlation declines when other fuels are added in panels 2 (−92%)

and 3 (−63%). As for other fuel pairs, the estimation results reflect differences in fuel com-

position and product of origin. For example, the high sulphur fuels LW/WT are highly

correlated in panels 2 (81%) and 3 (87%), while RMI/VH are weakly correlated (24%) in

panel 3, being the most diverse fuels in terms of sulphur contents and location.

6.5 Cashflow Hedge

The hedge aims to achieve month-by-month variance reduction for the bunker purchase

cashflows in Eq. (6.3). The cashflows are assumed to occur on the 15th day of month Ti,

i = 1, · · · , 18, which is multiplied by 30 to convert the fuel consumption from daily to

monthly. The minimum-variance hedge ratios are given by Eq. (6.15), where s1 = s2 and

T1 = T2 in our case.

The hedge performances are evaluated by two measures: the Hedge Effectiveness (HE)

of Ederington (1979) and Relative Effectiveness (RE). The first measure quantifies the %

reduction made in the variance of hedged positions:

HE(Ti) =
Var[C(Ti)]− Var[C̃(Ti)]

Var[C(Ti)]
, (6.17)

where C(Ti) and C̃(Ti) denote the unhedged and hedged cashflows in period Ti. We use

the same formula and denote the hedged cashflows of the PC and PPC models by C(Ti)

and C̃(Ti) to determine the RE. A positive RE implies the superiority of a PPC model

over a PC model in risk reduction, and vice versa.

Table 6.6 reports the results of the cashflow hedge for nine representative months.18 It

also compares the hedge effectiveness with the näıve hedge ratio, which is ni = h = 23 in

Eq. (6.3), as the simple one-to-one hedge may perform better than more sophisticated but

computationally expensive hedge strategies (Alexander et al., 2013). We round down the

minimum-variance hedge ratios to the nearest integer; the hedged cashflows are subject

to position risk, which is the unhedged risk arising from omitting the optimal number of

futures contracts below decimal points. The RE is reported for the näıve and minimum-

variance hedges separately at the bottom.

In Table 6.6, the mean-variance hedge achieves several points higher HE than the

18The statistics include all eighteen months’ cashflows in the following analysis.
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Table 6.6: Comparison of variance and hedge effectiveness between models.

Maturities 30 90 150 210 270 330 390 450 510

PC(2)

Variance Unhedged 1.87 9.95 17.66 24.29 29.99 35.16 39.77 44.27 48.53
Näıve 1.82 5.22 8.21 10.52 12.36 13.98 15.38 16.76 18.17
MV 1.68 4.76 7.20 9.26 11.03 12.67 14.17 15.72 17.27

Hedge Ratio Näıve 23 23 23 23 23 23 23 23 23
MV 12.40 32.91 33.36 32.36 31.30 30.35 29.39 28.47 27.79

HE (%) Näıve 2.80 47.48 53.50 56.71 58.80 60.24 61.33 62.13 62.56
MV 10.38 52.18 59.21 61.88 63.24 63.98 64.36 64.49 64.42

Panel 1: PPC(4, 2, 2, 1)

Variance Unhedged 1.51 9.46 17.11 23.71 29.39 34.52 39.09 43.51 47.68
Näıve 0.97 3.71 6.03 7.70 8.93 9.94 10.70 11.38 12.05
MV 0.97 2.57 4.01 5.22 6.26 7.19 8.01 8.81 9.59

Hedge Ratio Näıve 23 23 23 23 23 23 23 23 23
MV 22.25 38.76 37.88 36.28 34.88 33.73 32.63 31.62 30.89

HE (%) Näıve 35.36 60.82 64.77 67.53 69.60 71.20 72.62 73.85 74.73
MV 35.40 72.85 76.55 77.98 78.68 79.18 79.52 79.75 79.89

RE (%) Näıve 46.57 29.08 26.59 26.80 27.70 28.89 30.41 32.15 33.72
MV 42.09 46.02 44.31 43.62 43.19 43.25 43.52 43.95 44.47

Panel 2: PPC(6, 2, 2, 1)

Variance Unhedged 1.68 9.62 17.25 23.84 29.50 34.61 39.13 43.50 47.59
Näıve 1.40 4.18 6.59 8.36 9.68 10.77 11.60 12.32 13.03
MV 1.36 3.32 4.91 6.25 7.41 8.43 9.32 10.19 10.97

Hedge Ratio Näıve 23 23 23 23 23 23 23 23 23
MV 16.66 36.58 36.45 35.16 33.92 32.85 31.82 30.85 30.15

HE (%) Näıve 16.74 56.50 61.80 64.95 67.19 68.89 70.37 71.67 72.62
MV 19.54 65.51 71.53 73.77 74.90 75.65 76.18 76.57 76.94

RE (%) Näıve 22.96 19.92 19.73 20.55 21.67 22.98 24.61 26.49 28.32
MV 19.26 30.29 31.82 32.47 32.84 33.46 34.23 35.17 36.48

Panel 3: PPC(8, 2, 2, 1)

Variance Unhedged 1.99 9.97 17.62 24.22 29.88 34.99 39.51 43.87 47.94
Näıve 1.77 4.67 7.19 9.06 10.47 11.63 12.53 13.33 14.10
MV 1.70 3.88 5.64 7.11 8.35 9.47 10.44 11.38 12.27

Hedge Ratio Näıve 23 23 23 23 23 23 23 23 23
MV 15.54 36.03 35.98 34.72 33.50 32.46 31.44 30.48 29.78

HE (%) Näıve 10.95 53.10 59.18 62.61 64.98 66.76 68.29 69.61 70.59
MV 14.21 61.09 67.98 70.63 72.04 72.94 73.58 74.05 74.40

RE (%) Näıve 2.86 10.54 12.39 13.88 15.31 16.80 18.53 20.47 22.41
MV -1.50 18.50 21.67 23.18 24.24 25.24 26.34 27.58 28.93

The table shows the results of näıve and minimum-variance hedges by model, in which MV stands
for the minimum-variance hedge. While HE (%) represents the Ederington’s effectiveness measure
given a model, RE (%) represents the relative performance of a PPC model with respect to the
PC(2) model for the same type of hedges.

naive hedge overall, for most of which the difference appears notably at the shortest end.

The minimum-variance hedge offers on average 3.91% more variance reduction than the

näıve hedge for PC(2). For PPC models, the mean-variance hedge is on average 8.06%,
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6.71% and 6.08% more efficient than the näıve hedge for panels 1 – 3, respectively. The

cashflow hedging works ineffectively at 30-day irrespective of model and hedge types. The

HE increases gradually after 30 day towards longer-term cashflows, and this tendency is

persistent between panels.

The RE quantifies the gain/loss in variance reduction brought by common factor ap-

proach. It is only negative for the minimum-variance hedged 30-day cashflow in panel 3,

meaning that the PC(2) model outperforms PPC(8, 2, 2, 1) model for the cashflow hedging

in month 1. The RE is always positive for the rest of cashflows; however, it declines as the

number of underlying assets increases in panels 2 and 3. The results of panel 1 highlights

the ability of our common factor approach to improve bunker price hedging when RMI

and VH are modelled together. On the other hand, it is unlikely that the inclusion of WT

and VH in panels 2 and 3 add any values to the common factor hedge.

Fig. 6.7 visualises the minimum-variance hedge by the PC(2) and PPC(4, 2, 2, 1)

models for monthly cashflows for purchasing of bunker fuels shown in shaded bars. In the

figure, the monthly cashflows (6.3) are standardised by h = 23 for an illustration. The dark

and light grey bars represent hedge positions by model, and the black line indicates the

initial level of the forward curve for LW. It shows that the PPC model calculates greater

cashflows than the PC model based on the minimum-variance hedge ratios in Table 6.6.

However, when we decompose the model covariances, the two models give similar levels of

marginal volatilities; hence, the implied model correlation is causing this behaviour. As a

result, when PPC models capture the comovement of contracts better than the benchmark

model via enhanced model correlation structures, the hedge ratios, which are the ratio of

the covariance to the variance of hedge instrument, increase in size, which better offsets

the risks in monthly cashflows.

To conclude our analysis, we construct the confidence intervals for the expected hedged

cashflows C̃(Ti) and unhedged cashflows C(Ti) by month. With the assumption of an

i.i.d normal distribution for the cashflows, which are the differences of two lognormally

distributed random variables, the 100(1 − α)% confidence intervals can be approximated

as

CI(1−α) =
[
µi − Zα/2σi/

√
df, µi + Zα/2σi/

√
df
]
,

where

µi = E
[
C(Ti)

]
, σi =

√
Var[C(Ti)], Zα/2 := Φ−1(1− α/2),

Φ is the standard normal cumulative distribution function, and df is the degree of free-
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Figure 6.7: Standardised cashflows of monthly fuel consumption and
hedge positions.
The cashflows are standardised by h = 23 for Eq. (6.3). Shaded bars: monthly cash
outflows for the purchase of RMI. Dark grey (PC(2)) and light grey (PPC(4, 2, 2, 1))
bars: the monthly cash inflows from the hedge positions. Black line: the initial level of
forward curve for LW.

dom.19

Fig. 6.8 depicts the confidence intervals, in which α = 0.1 and the expected cashflows

are expressed in thousands. As seen in Fig. 6.8a, the PPC(4, 2, 2, 1) model gives narrower

90% confidence intervals than the PC(2) model, precisely estimating the uncertainties

associated with the expected cashflows. On the other hand, when WT and VH are included

for the PPC(8, 2, 2, 1) model in Fig. 6.8b, the confidence intervals widen and approach

the PC(2) model’s intervals.20 In agreement with our earlier observation, these results

suggest that our common factor approach improves the management of bunker price risk

for RMI. However, including other fuel data improves neither the reduction nor estimation

of the price risk.

19Replace C(Ti) by C̃(Ti) for hedged cashflows.
20The PPC(6, 2, 2, 1) model produces a similar figure, whose 90% confidence intervals lie in between

the PPC(4, 2, 2, 1) and PPC(8, 2, 2, 1) models’ intervals.
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(a) Panel 1: PC(2) vs PPC(4, 2, 2, 1)

(b) Panel 3: PC(2) vs PPC(8, 2, 2, 1)

Figure 6.8: 90% confidence intervals of hedged and
unhedged cashflows by model.
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6.6 Summary

This chapter explored another application of PPCA for the hedging of bunker price risk in

the shipping market. The cross hedge aimed to reduce inherent risks associated with the

price fluctuation of the Rotterdam low-sulphur bunker fuel (RMI) using the high-sulphur

bunker fuel (LW) futures, for which a more liquid and established market was avail-

able. From a modelling perspective, we proposed a closed-form formula for the minimum-

variance hedge ratio that can accommodate the common factor structures of closely related

fuel futures in the expression. In addition, we argued why the calculation of hedge ratios

for commodity consumers should be distinguished from a portfolio management approach

that typically derives the hedge ratios based on the (log) differences of asset prices. The

proposed closed-form formula enables easy computation of minimum-variance hedge ratios

for log-normal processes in line with the argument.

We conducted an empirical study to find the best-performing hedge between three sub-

groups of marine fuels, comparing the PC(2) and PPC(2K, 2, 2, 1) models for K = 2, 3, 4

to analyse the effect of common factor modelling in the cross hedge. The results indicated

that the presence of common factors improves the hedge effectiveness and estimation of

price risk compared to a non-common factor model. The effectiveness measures suggested

that the PPC(4, 2, 2, 1) model, which assumes the existence of common factors between

RMI and LW, achieved the most variance reduction. On the other hand, other common

factor models, including the US Gulf coast high-sulphur fuel (WT) and West Texas Inter-

mediate crude (VH) futures, did not beat the base-case model. These results hinted the

weak association of RMI with these proxy futures at the introductory phase of the IMO

2020 regulation.
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Concluding Remarks

Advances in infrastructure and technology have accelerated the cross-market trading of en-

ergy commodities in recent years. When markets are affected by the same supply/demand

factors, this would strengthen the price dependence and comovement, which requires multi-

commodity price modelling. This thesis focused on developing a new factor estimation

method for the joint modelling of multi-commodity forward curves.

To begin with, it revisited the recent literature on multi-commodity price modelling

by classifying other authors’ approaches into three main categories: i) spot price models

where one or more state variables are shared among commodities, ii) forward price mod-

els including a shared error-correction mechanism in the drift under P, iii) forward price

models where the commonality of commodities is embedded in the factor volatilities under

Q. The spot price models of i) tend to result in large parameter sets, with the general

drawback of the model-implied forward price disagreeing with the market price. On the

other hand, the error-correction models of ii) cannot preserve the long-term equilibrium

relationship of the underlying assets under the risk-neutral measure. Therefore, our re-

search went in the direction of iii) in conjunction with the conventional risk-neutral pricing

theories for practical applicability and derivatives pricing, for which the literature seemed

scarce.

We selected PCA on PCA (PPCA) as the main tool to quantify common eigenstruc-

tures among several dispersion matrices for commodity term structure modelling, extend-

ing the previous work of Alexander (2002). The empirical sections analysed four forward

curves of UK and Dutch natural gas and power prices with the proposed factor estimation

method. The results highlighted the ability of PPCA to identify common factors when

they are likely to exist. When common factors are unlikely to exist, it shows the idiosyn-

cratic patterns of the factors via a distribution-free, data-driven method. We investigated

the qualitative aspects of common eigenvectors using a unique ranking algorithm, and the

sparse PCA of Zou et al. (2006). The results indicated the dominance of the level and

slope factors as the two most important common factors for the European energy forward
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curves.

PPCA is a parsimonious yet intuitive and useful tool with much potential in finance

applications. As for the price modelling (the ‘PPC models’ in the context of forward

curve modelling), we adapted the common factor structures to the volatility functions of

Heath et al. (1992) with a few common factors and one idiosyncratic factor per forward

curve. The simulation study showed that the PPC model with two or three common

factors is sufficient to mimic the marginal distribution of UK and Dutch energy forward

curves at a similar level to a benchmark model, while the idiosyncratic factor by local

covariance fitting provided desirable outcomes for the spread of commodities to stabilise

the fluctuation in the joint distributions.

The joint modelling framework is applied to the pricing of exchange options by Marg-

rabe (1978), in which we found the tendency of the PPC models to lower the option prices

compared with a non-common factor model due to the enhanced common factor struc-

tures in the model variance. In addition, we derived two variants of the Margrabe (1978)

formula when one of the underlying assets is denominated in foreign currency units. The

option pricing formula for exchanging foreign to domestic assets has yet to be considered

carefully in the previous commodity literature. Hence, we shed a spotlight on the subject,

showing the derivation of the FX adjustment terms for both cases: when the FX rate is

fixed or stochastic. The impact of the FX factor appeared more significantly for the latter

type of options than the former depending on the relative size of the spread variance and

FX add-on.

In the last chapter, we demonstrated another usage of PPCA for common factor

hedging in maritime finance, deriving a minimum-variance hedge ratio that appropri-

ately reflects the risk profile of a commodity consumption problem. We compared three

subgroups of fuels in the empirical analysis to find the most effective cross hedge. Our

findings suggested a cross-hedge can be improved by including common factors for most

seemingly related fuel products. However, increasing the number of hedge instruments did

not do any better than the most simple cross-hedge, in which an underlying fuel contract

is hedged by a proxy fuel future, due to the weak association of the underlying and other

proxy fuel futures. While our current study looked at a simple one-to-one hedge, exploring

this topic in multi-dimensional space would be interesting, assigning appropriate weights

to all the proxy fuels included in PPCA to calculate the hedge ratios.

This thesis revealed important findings for the participants of commodity markets, fin-

ancial institutions, and their regulators since ignoring common factors may cause economic
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losses due to mispricing assets or mistreating inherent risks in transactions. In future, one

may extend our research by examining the impact of common factors on the pricing of

other multi-asset derivatives, such as basket options or fixed income term structure mod-

els, where interest rates are exposed to the same macroeconomic shocks. Else, the PPC

model could be improved by estimating/calibrating the factor volatilities from/to implied

volatilities instead of historical volatilities. However, this approach depends on market

development, as many commodities’ implied volatilities are still unobservable in today’s

markets, as is the implied correlation of spread options that would be especially insightful

for those models.
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Table A.1: Option prices of spark spreads.
(Full reports of Table 5.2)

Contracts 30d 60d 90d 120d 150d 180d 210d 270d 360d 540d

Panel A: Up-Ug (GBP/MWh)

PC 16.814 16.844 16.866 16.882 16.893 16.903 16.911 16.927 16.949 16.998
PPC 16.791 16.792 16.793 16.795 16.796 16.798 16.800 16.803 16.807 16.819
diff -0.023 -0.052 -0.073 -0.087 -0.097 -0.105 -0.112 -0.124 -0.142 -0.179
diff % -0.14 -0.31 -0.43 -0.52 -0.57 -0.62 -0.66 -0.73 -0.84 -1.05

Panel B: Dp-Dg (EUR/MWh)

PC 7.753 7.916 8.021 8.110 8.189 8.262 8.332 8.470 8.675 9.068
PPC 7.518 7.560 7.614 7.672 7.732 7.794 7.857 7.984 8.175 8.552
diff -0.235 -0.357 -0.408 -0.439 -0.457 -0.468 -0.476 -0.487 -0.499 -0.517
diff % -3.03 -4.51 -5.08 -5.41 -5.58 -5.67 -5.71 -5.75 -5.76 -5.70

The prices of UK and Dutch spark spread options that depict Fig. 5.1. The relative difference is

given by the formula: diff % = 100× (PPC price – PC price)
PC price .

Table A.2: Standard deviations of spark spreads at option expiration.
(Full reports of Table 5.3)

Contracts 30d 60d 90d 120d 150d 180d 210d 270d 360d 540d

Panel A: Up-Ug

PC 0.1478 0.1659 0.1750 0.1805 0.1843 0.1871 0.1895 0.1937 0.1993 0.2100
PPC 0.0832 0.1049 0.1155 0.1216 0.1259 0.1293 0.1321 0.1365 0.1421 0.1522

Panel B: Dp-Dg

PC 0.1189 0.1374 0.1477 0.1558 0.1626 0.1687 0.1744 0.1852 0.2004 0.2278
PPC 0.0637 0.0845 0.0975 0.1076 0.1162 0.1240 0.1311 0.1441 0.1615 0.1913

The model standard deviations are given by Eq. (5.21). The options are assumed to expire five
days before the maturities of the underlying forward contracts.

Table A.3: The option prices of 360-day spark spread.
(Full reports of Table 5.5)

Contracts 30d 60d 90d 120d 150d 180d 210d 270d 360d 540d

Panel A: Up-Ug (GBP/MWh)

PC 3.117 3.530 3.738 3.864 3.949 4.015 4.070 4.164 4.292 4.536
PPC 1.640 2.137 2.378 2.517 2.616 2.694 2.757 2.858 2.985 3.216
diff -1.477 -1.393 -1.360 -1.347 -1.333 -1.321 -1.313 -1.305 -1.307 -1.321
diff % -47.38 -39.47 -36.39 -34.85 -33.76 -32.91 -32.26 -31.35 -30.45 -29.11

Panel B: Dp-Dg (EUR/MWh)

PC 1.157 1.501 1.697 1.853 1.986 2.104 2.216 2.429 2.731 3.283
PPC 0.270 0.568 0.780 0.954 1.108 1.250 1.382 1.628 1.962 2.551
diff -0.886 -0.933 -0.917 -0.899 -0.877 -0.855 -0.834 -0.801 -0.769 -0.733
diff % -76.64 -62.18 -54.05 -48.52 -44.19 -40.61 -37.62 -32.97 -28.14 -22.32

Re-calculated option prices with 35% and 40% fuel efficiency rates, respectively for the UK and
Dutch spark spreads.
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Table A.4: Standard deviations of UK – Dutch spreads at option expiration.
(Full reports of Table 5.6)

Contracts 30d 60d 90d 120d 150d 180d 210d 270d 360d 540d

Panel C: Ug-Dg

PC 0.0632 0.0751 0.0811 0.0857 0.0897 0.0932 0.0964 0.1024 0.1108 0.1265
PPC 0.0427 0.0566 0.0645 0.0701 0.0744 0.0779 0.0808 0.0858 0.0921 0.1031

Panel D: Up-Dp

PC 0.1715 0.1916 0.2013 0.2075 0.2121 0.2163 0.2205 0.2291 0.2419 0.2661
PPC 0.0973 0.1237 0.1362 0.1433 0.1486 0.1532 0.1576 0.1659 0.1778 0.1995

Panel E: Up-Dg

PC 0.1515 0.1700 0.1792 0.1847 0.1883 0.1912 0.1938 0.1987 0.2058 0.2195
PPC 0.0829 0.1078 0.1196 0.1258 0.1299 0.1329 0.1355 0.1399 0.1456 0.1562

The model standard deviations are given by Eq. (5.21). The options are assumed to expire five
days before the maturities of the underlying forward contracts.

Table A.5: Option prices of quanto exchange options.
(Full reports of Table 5.7)

Contracts 30d 60d 90d 120d 150d 180d 210d 270d 360d 540d

Panel C: Ug-Dg (EUR/MWh)

PC 1.051 1.143 1.191 1.229 1.262 1.291 1.317 1.367 1.438 1.571
PPC 0.906 1.001 1.061 1.104 1.138 1.166 1.189 1.230 1.281 1.372
diff -0.144 -0.142 -0.130 -0.125 -0.124 -0.125 -0.128 -0.137 -0.157 -0.199
diff % -13.75 -12.40 -10.94 -10.18 -9.82 -9.69 -9.70 -10.04 -10.90 -12.67

Panel D: Up-Dp (EUR/MWh)

PC 13.382 13.596 13.711 13.787 13.846 13.902 13.958 14.077 14.263 14.635
PPC 12.960 13.038 13.102 13.147 13.184 13.219 13.254 13.326 13.442 13.686
diff -0.421 -0.558 -0.609 -0.640 -0.662 -0.683 -0.704 -0.751 -0.821 -0.949
diff % -3.15 -4.10 -4.44 -4.64 -4.78 -4.91 -5.05 -5.33 -5.76 -6.48

Panel E: Up-Dg (EUR/MWh)

PC 10.162 10.429 10.572 10.659 10.719 10.766 10.810 10.893 11.017 11.260
PPC 9.534 9.679 9.784 9.847 9.891 9.925 9.955 10.008 10.081 10.224
diff -0.628 -0.750 -0.789 -0.813 -0.828 -0.841 -0.855 -0.885 -0.936 -1.036
diff % -6.18 -7.19 -7.46 -7.62 -7.72 -7.81 -7.91 -8.13 -8.49 -9.20

The price of quanto option using the quanto factor of 1 GBP=1.1226 and the correlation coefficient
of ρ1X = −0.2 for UK gas and power. The fuel efficiency is 40% for the UK power – Dutch gas

spark spread. The relative difference is given by the formula: diff % = 100× (PPC price – PC price)
PC price .
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Table A.6: The variance of cross-currency spreads at option expiration.
(Full reports of Table 5.9)

Contracts 30d 60d 90d 120d 150d 180d 210d 270d 360d 540d

Panel C: Ug-Dg

PC
Total var 0.0036 0.0048 0.0052 0.0056 0.0056 0.0057 0.0061 0.0065 0.0068 0.0081
Spread var 0.0040 0.0056 0.0066 0.0073 0.0080 0.0087 0.0093 0.0105 0.0123 0.0160
FX add-on -0.0004 -0.0009 -0.0014 -0.0018 -0.0024 -0.0030 -0.0031 -0.0040 -0.0055 -0.0079
PPC
Total var 0.0014 0.0024 0.0029 0.0032 0.0032 0.0032 0.0035 0.0035 0.0032 0.0031
Spread var 0.0018 0.0032 0.0042 0.0049 0.0055 0.0061 0.0065 0.0074 0.0085 0.0106
FX add-on -0.0004 -0.0008 -0.0013 -0.0017 -0.0023 -0.0028 -0.0030 -0.0038 -0.0052 -0.0075

Panel D: Up-Dp

PC
Total var 0.0296 0.0370 0.0402 0.0427 0.0445 0.0460 0.0471 0.0498 0.0551 0.0680
Spread var 0.0294 0.0367 0.0405 0.0430 0.0450 0.0468 0.0486 0.0525 0.0585 0.0708
FX add-on 0.0002 0.0003 -0.0003 -0.0003 -0.0005 -0.0008 -0.0015 -0.0026 -0.0034 -0.0028
PPC
Total var 0.0097 0.0157 0.0185 0.0206 0.0220 0.0232 0.0240 0.0258 0.0293 0.0382
Spread var 0.0095 0.0153 0.0185 0.0205 0.0221 0.0235 0.0248 0.0275 0.0316 0.0398
FX add-on 0.0002 0.0004 -0.0000 0.0000 -0.0001 -0.0003 -0.0008 -0.0018 -0.0023 -0.0016

Panel E: Up-Dg

PC
Total var 0.0227 0.0287 0.0311 0.0332 0.0343 0.0350 0.0356 0.0364 0.0376 0.0426
Spread var 0.0230 0.0289 0.0321 0.0341 0.0355 0.0365 0.0375 0.0395 0.0424 0.0482
FX add-on -0.0003 -0.0003 -0.0010 -0.0009 -0.0011 -0.0016 -0.0020 -0.0031 -0.0047 -0.0056
PPC
Total var 0.0067 0.0115 0.0135 0.0152 0.0160 0.0164 0.0168 0.0171 0.0173 0.0197
Spread var 0.0069 0.0116 0.0143 0.0158 0.0169 0.0177 0.0184 0.0196 0.0212 0.0244
FX add-on -0.0002 -0.0002 -0.0008 -0.0006 -0.0008 -0.0012 -0.0016 -0.0025 -0.0039 -0.0047

Total var = Spread var + FX add-on. Total var is the variance that enters into Eq. (5.44), Spread var is the variance
of an ordinary exchange option, and FX add-on accounts for fluctuations in spot FX rates.
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Table A.7: The prices of cross-currency exchange options.
(Full reports of Table 5.10)

Contracts 30d 60d 90d 120d 150d 180d 210d 270d 360d 540d

Panel C: Ug-Dg (EUR/MWh)

PC 1.139 1.208 1.229 1.249 1.251 1.256 1.278 1.293 1.309 1.370
PPC 1.008 1.071 1.098 1.121 1.121 1.121 1.138 1.138 1.120 1.111
diff -0.131 -0.137 -0.130 -0.128 -0.131 -0.135 -0.139 -0.155 -0.189 -0.259
diff % -11.54 -11.34 -10.61 -10.24 -10.45 -10.78 -10.90 -12.00 -14.42 -18.90

Panel D: Up-Dp (EUR/MWh)

PC 13.783 13.991 14.086 14.158 14.211 14.256 14.290 14.371 14.530 14.914
PPC 13.392 13.466 13.517 13.560 13.592 13.621 13.639 13.683 13.774 14.027
diff -0.391 -0.525 -0.568 -0.598 -0.618 -0.636 -0.651 -0.688 -0.755 -0.887
diff % -2.84 -3.75 -4.04 -4.23 -4.35 -4.46 -4.55 -4.79 -5.20 -5.95

Panel E: Up-Dg (EUR/MWh)

PC 10.527 10.785 10.890 10.982 11.028 11.056 11.082 11.118 11.169 11.376
PPC 9.955 10.082 10.155 10.219 10.251 10.267 10.281 10.292 10.300 10.402
diff -0.573 -0.702 -0.736 -0.763 -0.778 -0.789 -0.801 -0.826 -0.869 -0.974
diff % -5.44 -6.51 -6.76 -6.95 -7.05 -7.14 -7.23 -7.43 -7.78 -8.56

The prices of cross-currency exchange options that depict Fig. 5.5. The relative difference is given

by the formula: diff % = 100× (PPC price – PC price)
PC price .
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