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Summary

This thesis considers the free energy principle (FEP) and its corollary, active infer-
ence, which form an explanatory framework that prescribes a Bayesian interpretation of
self-organizing systems. The FEP originated in the domain of neuroscience, where it un-
derwrote a unified theory that described perception, action and learning as emerging from
minimizing a single objective function - variational free energy. However, since its con-
ception, the FEP has transcended into physics and pure mathematics. Here, it presents
itself as a set of mathematical arguments culminating in an inferential interpretation of a
specific class of systems. The result has fundamentally changed the epistemological status
of the FEP, moving it from the world of empirical hypotheses to the unfalsifiable territory
of mathematical equivalences and tautological constructions. While the FEP may present
a historical development that further unravels the symmetries that govern the laws of
(our own) physics, its growth has left a range of epistemological confusion. In the current
thesis, we evaluate how to maneuver from the principles of the FEP to the processes it
purportedly explains. We identify four key areas in which the FEP can inform empirical
science: 1) The FEP can aid us in designing intelligent agents by providing novel function-
als that respect inherent uncertainty in the environment. We demonstrate equivalences
between active inference and reinforcement learning, offer a novel implementation of active
inference that utilizes amortized inference, and show that the proposed algorithm enables
efficient exploration while offering improved sample efficiency compared to modern rein-
forcement learning algorithms. 2) We describe how the FEP can help us understand the
nature of representation in living systems. Specifically, we show how the normative aspects
of the FEP promote learning representations oriented towards action rather than veridical
reconstructions of the environment. 3) We show how the FEP provides a framework for
modeling perception, action, and learning in systems that can be empirically measured.
An eye-tracking study demonstrates that an active inference model best explains human
information-seeking, offering insights into the underlying mechanisms of perception and
action. 4) In the final section, we ask whether active inference can inform the development
of novel process theories in computational neuroscience. A biologically-plausible learning
algorithm is developed and verified on various computer vision and reinforcement learning



vi

tasks. The resulting model explains a range of empirical phenomena and offers a new
perspective on the role of bottom-up information in perception. This thesis affirms the
role of the FEP and active inference as a generative framework for developing testable
scientific theories.



vii

Acknowledgements

I would like to acknowledge my supervisors, Anil Seth and Christopher Buckley. Their

passion for exploring new and novel ideas while respecting the integrity of science forms

the basis of my outlook on science. I would like to thank all co-authors, espcially Beren

Millidge, whom with much of this work was developed. I’d like to thank Karl Friston,

for enabling us all to engage in a historic moment in science, and the Sackler Centre

for Consciousness Science funding the PhD. Finally, I’d like to thank my partner, Mara

Martinovic.



viii

Contents

List of Figures xvii

1 Introduction 1

1.1 The free energy principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Thesis contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Implementing active inference 4

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 The free energy principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 Dynamical systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.2 Fokker-Planck equation . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.3 Non-equilibrium steady-state distribution (NESS) . . . . . . . . . . 6

2.2.4 Helmholtz decomposition . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Bayesian Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 Implementing the free energy principle . . . . . . . . . . . . . . . . . 10

3 A framework for designing intelligent agents 12

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3 Expected divergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3.1 Exploration & exploitation . . . . . . . . . . . . . . . . . . . . . . . 20

3.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4.1 Generative model & recognition distribution . . . . . . . . . . . . . . 22

3.4.2 Learning & Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4.3 Policy selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4.4 Trajectory sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4.5 Model details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4.6 Implementation details . . . . . . . . . . . . . . . . . . . . . . . . . . 29



ix

3.4.7 Environment details . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.6 Previous work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 A framework to investigate the nature of representation 37

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Learning action oriented models through active inference . . . . . . . . . . . 38

4.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3.1 Simulation details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3.2 The generative model . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3.3 The approximate posterior . . . . . . . . . . . . . . . . . . . . . . . 52

4.3.4 Inference, learning and action . . . . . . . . . . . . . . . . . . . . . . 53

4.3.5 Expected free energy . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3.6 Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.4.1 Model performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.4.2 Model accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4.3 Active and passive accuracy . . . . . . . . . . . . . . . . . . . . . . . 63

4.4.4 Pruning parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.4.5 Bad bootstraps and sub-optimal convergence . . . . . . . . . . . . . 65

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.5.1 Learning action-oriented models: good and bad bootstraps . . . . . 68

4.5.2 Exploration vs. exploitation . . . . . . . . . . . . . . . . . . . . . . . 70

4.5.3 Model non-veridicality . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.5.4 Active inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5 A framework for modeling perception, learning, and action 75

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.3.1 Behavioural results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.3.2 Observer results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.3.3 Predicting individual eye movements . . . . . . . . . . . . . . . . . . 91



x

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.4.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6 A framework for generating novel process theories 100

6.1 Hybrid Predictive Coding: Inferring, fast and slow . . . . . . . . . . . . . . 102

6.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.1.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.1.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.1.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.1.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.2 Control as hybrid inference . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.2.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.2.3 Control as Hybrid Inference . . . . . . . . . . . . . . . . . . . . . . . 138

6.2.4 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.2.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6.2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

7 Conclusion 146

Bibliography 148



xi

List of Figures

3.1 The test environments used in the current experiments. From left to right:

a mountain car subject to gravity must accelerate out of a ditch. Cup

Catch, where a cup must be actuated to catch a ball. Half Cheetah, where

a planar biped must run as fast as possible. Ant Maze, where a quadruped

must explore a maze. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 (A) Mountain Car: Average return after each episode on the sparse-

reward Mountain Car task. Our algorithm achieves optimal performance

in a single trial. (B) Cup Catch: Average return after each episode

on the sparse-reward Cup Catch task. Here, results amongst algorithms

are similar, with all agents reaching asymptotic performance in around 20

episodes. (C & D) Half Cheetah: Average return after each episode

on the well-shaped Half Cheetah environment for the running and flipping

tasks, respectively. We compare our results to the average performance

of SAC after 100 episodes of learning, demonstrating that our algorithm

can perform successfully in environments that do not require directed ex-

ploration. Each line is the mean of 5 seeds, and filled regions show +/-

standard deviation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 (A & B) Mountain Car state space coverage: We plot the points

in state space visited by two agents - one that minimizes the free energy

of the expected future (FEEF) and one that maximizes reward. The plots

are from 20 episodes and show that the FEEF agent searches almost all of

the state space while the reward agent is confined to a region reached with

random actions. (C) Ant Maze Coverage: We plot the percentage of

the maze covered after 35 episodes, comparing the FEEF agent to an agent

acting randomly. These results are the average of 4 seeds. . . . . . . . . . . 32

4.1 The coupling of learning and control. . . . . . . . . . . . . . . . . . . . 41



xii

4.2 Simulation & model details . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3 (A) Chemotactic performance: The average final distance from the

chemical source after an additional testing phase, in which agents utilized

the models learned in the corresponding learning phase. The average dis-

tance is plotted against the number of steps in the corresponding learn-

ing phase and is averaged over 300 models for each strategy and learning

duration. Note that the x-axis denotes the number of time steps in the

learning phase, rather than the number of time steps in the subsequent

testing phase. Filled regions show +-SEM. (B) Examples trajectories:

The spatial trajectories of agents who successfully navigated up the chemi-

cal gradient towards the chemical source. . . . . . . . . . . . . . . . . . . . 58

4.4 Model accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.5 Model complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.6 Overcoming bad-bootstraps . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.1 (A) Graphical representation of different forms of uncertainty. Model un-

certainty (left) entails uncertainty about which features distinguish a moth

from a butterfly. Belief uncertainty (middle) refers to the uncertainty about

the agent’s current perception. In this example, belief uncertainty arises

due to incomplete visual information. Model uncertainty can induce belief

uncertainty: not knowing the difference between moths and butterflies in-

duces uncertainty about an insect’s identity. Objective uncertainty (right)

describes uncertainty resulting from the environment itself (where the en-

vironment includes signals received at sensory surfaces). (B) A graphical

representation of the different information sampling strategies. Here, the

colored regions correspond to the regions of visual space which each strat-

egy favors. See main text for full description. (C) All strategies utilize the

active sensing process. Agents maintain a set of beliefs over task-relevant

variables (am I looking at a moth or a butterfly?). Using these beliefs and

prior knowledge about how these beliefs correspond to features, the strate-

gies score each region of visual space. Fixation then moves to the area

with the highest score, sampling a new feature. In turn, this new informa-

tion causes an update in beliefs, and the cycle begins again until subjective

uncertainty has been sufficiently minimized (or the task ends). . . . . . . . 78



xiii

5.2 Figure 1A) Experimental design. Participants begin the trial by fixating

on a central cross. At the start of the trial, all features were occluded

with blurred masks, though their (six) locations were indicated with small

crosses. Participants were then free to scan the image. The correspond-

ing feature was revealed at each fixation at a feature location (or a black

square if the location was occluded). The trial continued until three lo-

cations had been fixated (or three seconds had passed). Participants then

gave a category response and a confidence score. Finally, feedback was

provided specifying the correct category. Participants were free to re-scan

the locations they had fixated during that trial for up to five seconds, with

all non-occluded features now visible. B) The categories used in the ex-

periment. Each column represents a location, and each row represents a

category. C) Left) Percentage of correct trials and the average confidence

scores as a function of block. Middle) The average number of fixations

to locations with different occlusion probabilities. The percentages denote

the probability that the location would be occluded on that trial. For all

graphs, averages are over all participants, and shaded areas are +-SEM.

Right) Average inter-fixation interval (sec) as a function of block. D) An

example stimulus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.3 Example trial. The agent maintains beliefs over each category. Each possi-

ble location is evaluated according to the agent’s information strategy. The

agent selects an eye movement based on this strategy and samples infor-

mation from this position. Beliefs are then updated, and the cycle begins

again. Figure 3B) Left) Average predictive accuracy of the Bayesian ideal

observer model. The shaded line represents +- SEM. Correct predictions

are calculated based on whether a participant’s response was congruent with

the most probable category from the posterior. Middle) The total number

of trials where the Bayesian ideal observer model incorrectly predicted par-

ticipants’ responses as a function of participants’ confidence rating. Right)

Mean posterior entropy across all participants as a function of participants’

confidence responses. Posterior entropy was calculated from the distribu-

tion inferred by the Bayesian ideal observer at the end of each trial. . . . . 90



xiv

5.4 The amount of average information gained for each trial, averaged over

each block, for each strategy. The solid purple line represents the amount

of information gained by human participants; blue line represents a random

control. 4B) Percent of participant eye movements correctly predicted by

each strategy as a function of block. Shaded areas +-SEM. Figure 4C) From

left to right. The average percent of participant eye movements predicted by

each strategy for the first five blocks. The average percent of participant eye

movements predicted by each strategy for blocks five to ten. The average

percent of participant eye movements predicted by each strategy for the

last five blocks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.1 Bottom-up and top-down perception: One classical view of perception

is as a primarily bottom-up process, where sensory data x is transformed

into perceptual representations z through a cascade of feedforward feature

detectors. In contrast, predictive coding suggests that the brain solves

perception by modelling how perceptual representations z generate sen-

sory data x, which is a fundamentally top-down process. In HPC, sensory

data x predicts perceptual representations at fast, amortized time scales,

and perceptual representations z predict sensory data x at slow, iterative

time scales. Our “fast and slow” model casts this integration of bottom-up

and top-down signals in a probabilistic framework, allowing derivation of a

testable process theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.2 Hybrid predictive coding combines two phases of inference as follows.

(A) At stimulus onset, data x is propagated up the hierarchy in a feed-

forward manner, utilising the amortised functions fφ(·). These predictions

set the initial conditions for µ, which parameterise posterior beliefs about

the sensory data. (B) The initial values for µ are then used to predict the

activity at the layer below, transformed by the generative functions fθ(·).

These predictions incur prediction errors ε, which are then used to update

beliefs µ. This process is repeated N times, after which perceptual inference

is complete. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113



xv

6.3 Simultaneous classification and generation. (A) Classification accu-

racy on the MNIST dataset for hybrid predictive coding, standard predic-

tive coding and amortised inference. Each line is the average classification

accuracy across three seeds; the shaded area corresponds to the standard

deviation. The x-axis denotes the number of batches. (B) Generative loss.

The panel shows the averaged mean-squared error between the lowest level

of the hierarchy (which is fixed to the sensory data during testing) and the

top-down predictions from the superordinate layer, plotted against batches,

for HPC and standard PC. This metric provides a measure of how well each

model is able to generate data. The seeds used are the same as those used

in panel (A) (i.e. the data is from the same run). (C) Illustrative samples

taken from HPC at the end of learning. These images are generated by ac-

tivating a single nodes in the highest layer (corresponding to a single digit),

and performing top-down predictions in a layer-wise fashion. The images

correspond to the predicted nodes at the lowest layer. (D) As in (C) but

for standard predictive coding. . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.4 Fast inference (A) Classification accuracy of the hybrid predictive cod-

ing model and the bottom-up, amortised predictions as a function of num-

ber of batches. The asymptotic convergence demonstrates that placing an

uncertainty-aware threshold on the number of iterations has no influence

on (asymptotic) model performance. Plotted are average accuracies over 5

seeds and shaded regions are the standard deviation. (B) Average number

of iterations (for iterative inference) as a function of test batch. Amortised

predictions provide increasingly accurate estimates of model variables, re-

ducing the need for costly iterative inference. . . . . . . . . . . . . . . . . . 120



xvi

6.5 Classification accuracy under fixed iterations. (A) 10 iterations.

The accuracy of HPC and the amortised predictions is mostly unaffected

by the reduced number of iterations, whereas standard predictive coding

fails to classify at all. (B) 25 iterations. The classification accuracy of stan-

dard predictive coding slowly decreases over batches, illustrating a common

pathology observed in these simulations. (C) 50 iterations. Standard pre-

dictive coding approximately matches the performance of hybrid predictive

coding, but begins to decline later in training. (D) 100 iterations. There

are no significant differences between the accuracies of hybrid and standard

predictive coding. Together, these results demonstrate that hybrid pre-

dictive coding enables effective inference and maintains higher performance

with a substantially fewer amount of inference iterations required than stan-

dard predictive coding. Plotted are mean accuracies over 5 random network

initializations. Shaded areas are the standard deviation. . . . . . . . . . . . 122

6.6 Accuracy as a function of dataset size. (A) 100 examples. The ac-

curacy of hybrid predictive coding is lower than with the full dataset, but

still high given the minimal amount of data (0.17 percent). The accuracy of

the amortised predictions is significantly worse (B) 500 examples (C) 1000

examples. (D) 5000 examples. Together, these results demonstrate that

bottom-up, amortised inference is far more sensitive to a lack of data, com-

pared to the full hybrid architecture. Importantly, the poor performance of

amortised inference in the low data regimes does not affect the data efficient

learning of iterative inference. Plotted are the mean accuracies over 5 seeds.

Shaded areas represent the standard deviation. . . . . . . . . . . . . . . . . 124



xvii

6.7 Additional Properties of the HPC model. (A) Example evolution

of the label entropy over the course of an inference phase. The initial

amortized guess has relatively high entropy (uncertainty over labels) which

progressively reduces during iterative inference. This is consistent with

the viewpoint that the iterative inference phase refines the initial amor-

tized guesses. (B) The number of inference steps required over an example

training run. Due to the superior initialization provided by the amortized

connections, far fewer iterative inference steps are required. (C) Adaptive

computation time based on task difficulty. On a well learned task, the num-

ber of inference iterations required decays towards 0. However, when there

is a change in data distribution, additional iterative inference iterations are

adaptively utilized to classify the new, more challenging, stimuli. . . . . . . 125

6.8 Graphical model for control as inference. . . . . . . . . . . . . . . . . . . . . 133

6.9 (A) The onset of learning: Amortised predictions of qφ(at:T |st:T ) are

shown in red, where dots show µt:T and shaded areas show σ2
t:T , and the

distribution retrieved by iterative inference is shown in blue. Here, we see

that the amortised predictions are highly uncertain at the onset of learn-

ing, and thus have little influence on the final approximate posterior. (B)

At convergence: As the amortised network fθ(·) learns, the uncertainty

of its predictions decrease. Here, we plot the amortised predictions after

500 episodes. The fact that the amortised predictions are highly certain

means that the subsequent phase of iterative inference has little effect on

inference. (C) Adaptation to variable contingencies: We plot the av-

erage standard deviation σ2
t:T predicted by the amortised network as learn-

ing progresses, as well the average KL-divergence between the distributions

predicted buy the amortised network and the final distribution recovered

by iterative inference. As σ2
t:T decreases, the KL-divergence between initial

and final beliefs decreases, suggesting a gradual transition from iterative to

amortised inference. After 250 episodes, we change the reward structure

of the environment. It can be seen that the uncertainty of the amortised

predictions increases, leading to an increased KL-divergence between initial

and final beliefs. Our model adaptively modulates amortised & iterative

inference based on the uncertainty about environmental contingencies. . . 143



1

Chapter 1

Introduction

1.1 The free energy principle

The free energy principle (FEP) states that ‘things’ minimize (variational) free energy

1. This statement licenses a Bayesian interpretation to a particular class of systems that

persist over time. The notion of a system that maintains its form or structure provides a

plausible formalism for defining ‘things,’ as these systems are distinguishable from their

environment. Of particular interest are the subset of these systems that adaptively interact

with their environment to persist - known as self-organizing systems, with living systems

being a notable example. By persisting over time, self-organizing systems resist the second

law of thermodynamics. This remarkable process involves a sensitive interplay with the

environment to resist entropy’s dispersive forces. Describing such systems in the parlance

of physics represents one of the most significant undertakings in science and philosophy,

following in the footsteps of Galleio and Darwin in the naturalization of humanity.

A common approach is providing an account that tries to answer the ‘what dynam-

ics should a system embody to achieve self-organization?’. The FEP takes a different

approach, answering, ‘if we define what self-organizing systems are, what must their dy-

namics be?’. To achieve this, the FEP does two things: first, it defines what it means

for a system to be a ‘thing,’ and second, it determines the dynamics which realize that

definition. The definition of a ‘thing’ employed by the FEP is a probability density over

the states of some system. This probability density - termed the non-equilibrium steady

state (NESS) density - provides a probabilistic description of the system in terms of the

1This variational free energy is an information-theoretic quantity, as opposed to the Gibbs or Helmholtz

free energy. It is information-theoretic because it is a function of probability distributions that quantifies

a notion of distance or divergence in the relevant (information) geometry.
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states that it frequents. The intuition behind this description is that systems that which

do not persist in some measurable form will evade any meaningful description in terms of a

probability distribution over states. In contrast, systems that maintain measurable prop-

erties can be described, in abstract terms, as a probability distribution - as the measurable

properties which define that system arise from frequenting certain states. For example, if

you measured the average blood temperature of all systems we classify as mammals, you

would gather a probability distribution around 37 degrees. From this system description,

the FEP interprets the flow of systems states - their dynamics - as, on average, maximizing

the probability of its associated NESS density.

The second condition that the FEP introduces to its definition of ‘thing’ is a formal

definition of the system’s separation from its environment. The systems considered by the

FEP include their environment, such that the ‘thing’ becomes an aspect of the broader

system. However, we will continue to use ‘system’ to describe the ‘thing’ in question. This

fulfills the practical requirements of the definition - to discuss the system in question, we

need to identify which states belong to the system and which are external to the system.

The boundary defined by the FEP is not physical but statistical - defined in terms of

conditional independencies between states internal to the system and external states.

If a system exists over time, it will admit a probabilistic description of the states it

visits. If it did not, it would be indistinguishable as a system - it would be a ‘no’ thing.

The fact that we can provide an interpretation of a system’s dynamics in terms of this

probabilistic description - namely, that it, on average, looks to maximize the probability

of the states which define that system, is not surprising. Much like Hamilton’s principle

of least action, it is not a falsifiable theory about how ’things’ behave — it is a description

of ’things’ that are defined in a particular way.

In contrast, this thesis uses the FEP as a principled starting point that accounts for

the uncertainty living systems face to scaffold key questions in empirical science.

We identify four key areas in which the FEP can inform empirical science:

• The FEP can aid us in designing intelligent agents by providing novel functionals

that respect inherent uncertainty in the environment. We demonstrate equivalences

between active inference and reinforcement learning, offer a novel implementation

of active inference that utilizes amortized inference, and show that the proposed al-

gorithm enables efficient exploration while offering improved sample efficiency com-

pared to modern reinforcement learning algorithms.

• We describe how the FEP can help us understand the nature of representation in
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living systems. Specifically, we show how the normative aspects of the FEP promote

learning representations oriented towards action rather than veridical reconstructions

of the environment.

• We argue that the FEP provides a framework for modeling systems amenable to em-

pirical measurements. An eye-tracking study demonstrates that an active inference

model best explains human information-seeking.

• In the final section, we ask whether active inference can inform the development of

novel process theories in computational neuroscience. A biologically-plausible learn-

ing algorithm is developed and verified on various computer vision and reinforcement

learning tasks. The resulting model explains a range of empirical phenomena and

offers a new perspective on the role of bottom-up information in perception. This

thesis affirms the role of the FEP and active inference as a generative framework for

developing testable scientific theories.

1.2 Thesis contributions

This work includes the following published, submmited or in prepreation:

• Learning action-oriented models through active inference [Tschantz et al., 2019a]

• Scaling active inference [Tschantz et al., 2019b]

• Reinforcement learning through active inference [Tschantz et al., 2020a]

• Hybrid predictive coding, inferring fast and slow [Tschantz et al., 2022]

• Control as hybrid inference [Tschantz et al., 2020b]
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Chapter 2

Implementing active inference

2.1 Introduction

In this chapter, we describe the FEP from the perspective of physics. The material

presented here is based on [Friston, 2019a], which provides the most comprehensive and

most recent formulation of the principle. This section does not aim to be a comprehensive

overview of the FEP and abstracts away several mathematical nuances and proofs. Instead,

this section aims to provide a concise narrative demonstrating the logic underlying the FEP

in its principled form.

From the results of this treatment, we discuss a generalized recipe to generate process

theories that implement the FEP and active inference explicitly. These are implementa-

tions of the principle which, unlike the FEP itself, provide measurable predictions which

can be falsified. Crucially, the validity of these process theories is separate from the valid-

ity of the FEP in the realm of physics, meaning that one can subscribe to the claim that

some process theory accurately describes a system without accepting the complete set of

claims by the FEP. As we have argued in the previous chapter, the primary strength of

the FEP and its corollary, active inference, is in providing a coherent framework for gener-

ating process theories that either describe systems of interest or provide effective methods

for implementing artificial agents. The recipe we provide will be used throughout the

thesis to derive two influential process theories, one based on partially observed Markov

decision processes (POMDP) [Friston et al., 2017a] and one couched in the parlance of

neural networks, known as predictive coding [Rao and Ballard, 1999a, Friston and Kiebel,

2009a]. Moreover, we provide two novel process theories - one based on amortized inference

[Kingma and Welling, 2013a], where the parameters of complex conditional distributions

(such as the likelihood and prior) are generated via arbitrary function approximators and
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optimized via backpropagation. The second novel process theory we introduce, termed

hybrid predictive coding, combines predictive coding - an iterative optimization procedure

- with amortized inference. This biologically plausible extension highlights how a system

can minimize free energy. Many of these - such as amortized inference - use approxima-

tions to approximate Bayesian inference (this is known as the amortization gap). From

the physics perspective, there is no a-priori reason to favor variational inference other

schemes that maximize model evidence. The question then becomes a hypothesis as to

whether approximations to inference can increase or decrease model evidence over some

sample of data (a poetic application of the FEP to itself). The degree to which the infer-

ence described by the FEP will be explicitly manifest in an intelligent system remains an

open question.

2.2 The free energy principle

We begin we the basic logic of the FEP. Recall that the aim is to describe every-‘thing’ in

the universe. The reasonable approach taken by the FEP is to (1) define a ‘thing’ in some

broadly accepted framework for describing the universe and (2), in the chosen framework,

work out what the dynamics that must be true for things to be things. Much of the work

left to be done in the FEP is refining and verifying (1). This is the aspect of the principle

that is ‘up for grabs’, as if the constraints imposed in the definition are too stringent to be

manifest in reality, the FEP becomes little more than a mathematical thought experiment.

However, if (1) is met with some degree of acceptance, (2) is relatively deflationary and

mostly tautological - it is just saying if you describe something a X, you can define it as,

on average, as a process that tends towards being like X. However, the magic of physics

is that redefinitions and tautologies can reveal new insights, and the promise of the FEP

is a description of systems that respects the stochastic nature of the universe.

2.2.1 Dynamical systems

The FEP assumes that the system being described can be expressed in terms of a random

dynamical system, meaning that the equations of motion have an element of stochasticity

to them. This implies a probability distribution over possible trajectories of the system’s

state. Formally, the FEP assumes a system can be described in terms of a Langevin

stochastic differential equation:

ẋ(τ) = f(x, τ) + ω (2.1)
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where x(τ) is the state of the system x at time τ , where x can be any dimensionality, and

ẋ(τ) is the change in x over time. Here, ω is the noise term and represents the stochastic

component of the dynamics. It is assumed to be normally distributed around zero, i.e.,

ω = N (ω; 0,Γ), with covariance Γ. Finally, f is the state-dependent flow, which can be

any arbitrary differentiable function and depends on the current state x and time τ . The

separation between states and noise follows from the speed at which the respective states

fluctuate, such that states with rapid fluctuations are consumed into the noise term ω

when their temporal correlations can be ignored. Together, the state-dependent flow f

and the stochastic noise term ω define the evolution of a system over time, ẋ(τ). This

formulation is highly general and can describe a wide range of systems. Fundamental

equations in quantum mechanics, statistical mechanics, and classical mechanics can be

derived from this starting point.

2.2.2 Fokker-Planck equation

Given that we are dealing with random dynamical systems, we can now consider the

probability distribution over states p(x, τ), which denotes the distribution over states x at

time τ . Moreover, we can consider how this distribution changes as a function of time, i.e.,

ṗ(x, τ). To do this, we utilize the Fokker-Planck equation, which can be used to describe

the evolution of probability distributions over time:

ṗ(x, τ) = L p(x, τ)

L = ∇ · (Γ∇− f)
(2.2)

where L is the Fokker-Planck operator, which depends on the state-dependent flow f and

the random fluctuations Γ covariance.

2.2.3 Non-equilibrium steady-state distribution (NESS)

The next step is to formalize the notion of systems that have measurable properties which

persist over time. The FEP states that such systems possess a global random attractor,

i.e., an attractor, as it is a random set. In other words, such systems will have a (random)

set of states it revisits, as if some system did not, it would be indistinguishable from the

environment and thus become no-‘thing’. We can describe the random set of states to

which some system converges in probabilistic terms, and specifically, in terms of its non-

equilibrium steady state (NESS) density pΦ(x), which is as a density that does not change
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as a function of time:

ṗ(x, τ) = L p(x, τ) = 0

=⇒ ṗ(x, τ) = L pΦ(x)
(2.3)

In general, any system with a global random attractor will tend towards a non-equilibrium

steady state:

lim
τ→∞

p(x, τ)→ pΦ(x) (2.4)

The resulting NESS density pΦ(x) forms the FEP, and all that follows. It provides a

probabilistic description of any system in that it prescribes which configuration of states

is most likely for that system (given that the system converges to NESS and can be

described in terms of Langevin dynamics). Moreover, the NESS density does not depend

on time by construction. The next step will be determining how this density is factored

into the state-dependent flow f .

2.2.4 Helmholtz decomposition

For all that follows, we will assume that the systems we are trying to describe have an

associated NESS density. Formally, we will assume that the actual density dynamics ṗ(x)

can be described in terms of NESS density dynamics ṗΦ(x, τ). We now wish to understand

the dynamics of a system at NESS. To do this, the Helmholtz decomposition is utilized,

which is a method for formulating the flow of a system f in terms of an anti-symmetric

matrix Q and a scalar potential U(x):

f(x) = (Q− Γ) · ∇x U(x) (2.5)

In this decomposition, Γ acts as a (curl-free) dissipative component that follows the gra-

dients of the scalar potential ∇x U(x) (and is equivalent to Γ in Equation 2.1), and Q

acts as a (divergence-free) solenoidal component which is directed orthogonal to the gra-

dient. This latter component counteracts the dissipative effects of the Γ term to maintain

NESS. In summary, the Helmholtz decomposition shows that the flow of a system can be

understood in terms of traversing a landscape defined by a scalar potential U(x).

It can be shown that for systems that at are NESS, the following equalities hold:

ṗ(x, τ) = ṗΦ(x) = 0︸ ︷︷ ︸
System at NESS

=⇒ pΦ(x) = exp(−U(x))

(2.6)

This means that we can write out the scalar potential function in terms of the NESS

density:

U(x) = − log pΦ(x) (2.7)
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These equalities demonstrate that, when a system is at NESS, the scalar potential

U(x) equals the negative log probability of states under the NESS density − log pΦ(x).

Given these equalities, we can rewrite the flow of states (Equation 2.5) in terms of the

NESS density:

f(x) = (Q− Γ) · ∇x − log pΦ(x)

= (Γ−Q) · ∇x log pΦ(x)
(2.8)

This fundamental result demonstrates that the flow of any random dynamical system at

NESS can be described as ascending the gradients of the (logarithm of the) NESS density,

thus maximizing the probability of states under the NESS density pΦ(x), or equivalently,

minimizing the surprisal of states − log pΦ(x).

One could stop here and still claim the physics of every ‘thing’. If a system has a

NESS, it will look as if it follows the gradients of the log probability of that NESS, and if

it does not have a NESS, it is indistinguishable from the environment (from the relevant

timescale). The free energy principle goes on to define the notion of Markov blankets. A

Markov blanket can be conceived of as a boundary between the system and its environment

and introduces a set of statistical dependencies that will later be exploited to rewrite

Equation 2.8 in terms of states the system has control over. This move aims to enable

one to write the internal dynamics as (conditionally) independent from the dynamics of

the surrounding environment and demonstrate the existence of a transformation between

internal and external states. This transformation can be interpreted as updating Bayesian

beliefs about external states. We can write down the dynamics in terms of a variational

free energy functional. Why make these moves? The primary reason is that evaluating

the log probability of the NESS (negative surprisal) is very hard.

Instead, the FEP applies the following interpretation to the dynamics of ‘active’ states

a and internal states µ:

fa(a) ≈ (Qaa − Γaa)∇aF

fµ(µ) ≈ (Qµµ − Γµµ)∇µF
(2.9)

This defines the FEP. The dynamics of a system’s internal states and active states will

look as if they are moving according to the gradients of variational free energy F .

2.3 Bayesian Inference

The following section clarifies the relationship between Bayesian inference and variational

free energy minimization. Moreover, we provide several decompositions of the variational
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free energy functional, demonstrating several notable qualities that feature prominently

throughout this thesis.

The task of Bayesian inference can be formalized as inferring latent variables z from

noisy and ambiguous data x (note the change in notation). These latent (or hidden)

variables represent the causes of the data, a concept that must be treated with care in the

context of the FEP. The free energy lemma in section 1 describes inference for external

states. However, the implied transformation ensures there is no one-to-one correspondence

between the model and the environment.

We can write the join distribution over these variables p(z,x) as p(z|x)p(z), allowing

us to write variational free energy as F :

F(x, z) = Eq(z)[ln q(z)− ln p(z|x)]− ln p(x)

= DKL[q(z)||p(z|x)]− ln p(x)
(2.10)

The derivation of the free energy principle involves several key insights about the re-

lationship between the generative model, the posterior distribution, and the likelihood

of observed data. One important observation is that the negative log-likelihood of ob-

servations, − ln p(x), remains outside the expectation in the first equality, as the prior

distribution p(z) does not depend on the approximate posterior distribution q(z). This

separation of terms allows for a more tractable expression of the free energy.

The second equality in the equation demonstrates that free energy can be expressed as

the KL-divergence between the approximate posterior distribution and the actual poste-

rior distribution, minus the log-likelihood of observations ln p(x). This formulation shows

that free energy is essentially a measure of how well the approximate posterior distribu-

tion q(z) approximates the true posterior distribution p(z|x), relative to the likelihood of

observed data. The KL-divergence term represents the degree of mismatch between the

two distributions, while the log-likelihood term represents the evidence for the observed

data given the model.

Because the KL-divergence is always non-negative, free energy will always be greater

than or equal to the negative log-likelihood of observations. In other words, free energy is

an upper bound on the negative log-likelihood of observations, which is sometimes referred

to as surprisal. When the posterior divergence term is equal to zero, the free energy is

equal to the negative log-likelihood of observations. This implies that minimizing free

energy will minimize surprisal, or equivalently, maximize Bayesian model evidence p(x).

An alternative expression of free energy can be derived through an alternative factor-
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ization of the generative model, allowing us to rewrite the following:

F(x, z) = Eq(z)[ln q(z)− ln p(x|z)]− ln p(z)

= Eq(z))[ln q(z)− ln p(x)]− Eq(z)[ln p(x|z)]

= DKL[q(z)||p(z)]− Eq(z)[ln p(x|z)]

(2.11)

The final equality demonstrates that free energy can be expressed as the KL divergence

between the approximate posterior and the prior probability of unknown variables minus

the conditional log probability of observations expected under the approximate posterior.

The first of these terms quantifies the complexity of the approximate posterior. It measures

how much the approximate posterior changed to account for some new observations (i.e.,

from prior to approximately posterior beliefs). The second term measures the accuracy

of the approximate posterior, as it quantifies how likely the observations are, given the

beliefs encoded by the approximate posterior. Therefore, minimizing free energy entails

a trade-off between minimizing the complexity of the beliefs encoded by the approximate

posterior and maximizing the accuracy of those beliefs.

Finally, we can rearrange free energy as:

F(x, z) = −H[z]− Eq(z)[ln p(z,x)] (2.12)

where H[z] is the Shannon entropy of the approximate posterior. The final equality

demonstrates that minimizing free energy entails maximizing the entropy of the approx-

imate posterior while also maximizing the expected energy. Maximizing the entropy of

the approximate posterior ensures that the approximate posterior provides a generic and

parsimonious explanation of the observed data, thereby ensuring that those explanations

are not based on highly specific (i.e., low-entropy) beliefs.

2.3.1 Implementing the free energy principle

The previous sections have demonstrated that the free energy principle describes all self-

organizing systems in terms of gradients flows of variational free energy. In order to

implement such a system, one must specify:

• The generative model p(z,x)

• The approximate posterior q(z)

Once these distributions have been described, free energy minimisation can be achieved

by finding the gradient of free energy with respect to z, and updating z based on this
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gradient in order to minimise free energy. Throughout the remainder of the thesis, various

examples of implementing the free energy principle will be described and demonstrated.

These examples will showcase the versatility and applicability of the principle in different

contexts, including machine learning, neuroscience, and cognitive science. By applying

the free energy principle in these contexts, researchers can gain a deeper understanding

of self-organizing systems and potentially develop new models and algorithms for learning

and inference.
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Chapter 3

A framework for designing

intelligent agents

3.1 Introduction

Both biological and artificial agents must learn to make adaptive decisions in unknown

environments. One prominent field addressing this issue is reinforcement learning (RL),

which suggests that agents learn a policy that maximizes the sum of expected rewards

[Sutton et al., 1998]. This approach has demonstrated impressive results in domains

such as simulated games [Mnih et al., 2015, Silver et al., 2017], robotics [Polydoros and

Nalpantidis, 2017a, Nagabandi et al., 2019] and industrial applications [Meyes et al., 2017].

In model-based reinforcement learning (RL), agents first learn a predictive model of

the world before using this model to determine actions [Atkeson and Santamaria, 1997a].

Encoding a model of the world affords several advantages, including the ability to per-

form perceptual inference [Ha and Schmidhuber, 2018a], implement prospective control

[Chua et al., 2018a, Schrittwieser et al., 2019a], quantify and actively resolve uncertainty

[Shyam et al., 2019], and generalize existing knowledge to new tasks and environments

[Hafner et al., 2018a]. As such, predictive models have been touted as a potential solution

to the sample inefficiencies of modern RL algorithms [Deisenroth and Rasmussen, 2011,

Schmidhuber, 1990a].

In contrast, active inference - an emerging framework from neuroscience - suggests that

agents select actions to maximize the evidence for a biased world model [Friston, 2010,

Friston et al., 2017a, 2016a, 2015a, 2012a, 2009a]. The biases that the model encodes

are congruent with the agent’s success. For instance, the model might assign a high

probability of receiving a reward, such that the evidence for this model is only maximized
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when receiving a reward. The resulting scheme casts perception, action, and learning as

emergent processes of (approximate) Bayesian inference and suggests a unified theory for

biological systems [Friston, 2019a]. This framework extends influential theories of Bayesian

perception and learning [Knill and Pouget, 2004a, L Griffiths et al., 2008] to incorporate

probabilistic decision making [Friston et al., 2009a], and comes equipped with biologically

plausible process theories [Friston et al., 2017b] which enjoy considerable empirical support

[Walsh et al., 2020].

Although active inference and model-based RL have their roots in different disciplines,

both frameworks have converged upon similar solutions to the problem of learning adaptive

behavior. For instance, both frameworks utilize similar methods for learning probabilistic

models, performing inference, and implementing model-based planning. This chapter

establishes formal connections between active inference and model-based RL by describing

both in a common probabilistic language. In doing so, we highlight several key differences

and similarities between the two approaches. This allows us to propose several ways active

inference can inform the development of novel RL approaches. Moreover, it allows us to

utilize RL methods to advance active inference models.

Conceptually, there are several ways in which active inference can inspire the field

of RL. First, active inference suggests that agents embody a generative model of their

preferred environment and seek to maximize the evidence for this model. In this con-

text, rewards are cast as prior probabilities over observations, and success is measured

in terms of the divergence between preferred and expected outcomes. Formulating pref-

erences as prior probabilities enables greater flexibility when specifying an agent’s goals

[Friston et al., 2012a, Friston, 2019a], provides a principled (i.e., Bayesian) method for

learning preferences [Sajid et al., 2019], and is consistent with recent neurophysiological

data demonstrating the distributional nature of reward representations [Dabney et al.,

2020]. Second, reformulating reward maximization as maximizing model evidence natu-

rally encompasses exploration and exploitation under a single objective, obviating the need

to add ad-hoc exploratory terms to existing objectives [Tschantz et al., 2019a, Schwarten-

beck et al., 2019, Friston et al., 2015a]. Finally, as we will show, active inference subsumes

several established RL formalisms [Hafner et al., 2020], indicating a potentially unified

framework for adaptive decision-making under uncertainty.

Translating these conceptual insights into practical benefits for RL has proven challeng-

ing. Current implementations of active inference have generally been confined to discrete

state spaces and toy problems [Friston et al., 2015a, 2017a,c], although see [Tschantz et al.,
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2019c, Fountas et al., 2020, Millidge, 2019a, Catal et al., 2019]. Therefore, it remained

challenging to evaluate the effectiveness of active inference in complex environments; as

a result, active inference has yet to be widely taken up within the RL community. To

alleviate this discrepancy, we present a novel model of active inference that applies to

high-dimensional control tasks with continuous states and actions and demonstrates prac-

tical benefits over traditional RL approaches.

Our model builds upon previous attempts to scale active inference [Millidge, 2019a,

Ueltzhöffer, 2018, Catal et al., 2019] by including an efficient planning algorithm, as well

as the quantification and active resolution of model uncertainty. Consistent with the

active inference framework, learning and inference are achieved by optimizing a bound

on Bayesian model evidence. In addition, policies are selected to minimize a functional

that scores the difference between expected and desired counterfactual futures [Friston

et al., 2015a]. We demonstrate that this unified normative scheme enables sample-efficient

learning, strong performance on complex control tasks, and a principled approach to active

exploration.

In what follows, we specify the general mathematical formulation of active inference,

and its relation to adjacent fields, before describing our implementation, which is applicable

in both partially-observed and fully-observed environments. We then present preliminary

results in three challenging fully-observed continuous control benchmarks, leaving the

analysis of partially-observed environments (i.e., pixels) to future work. These results

demonstrate that our algorithm facilitates active exploration over long temporal horizons

and significantly outperforms a strong model-free RL baseline in terms of both sample

efficiency and performance.

3.2 Formalism

Both active inference and RL can be formulated in the context of partially observed

Markov decision processes (POMDPs) [Murphy, 1982]. At each time step t, the state of

the environment st ∈ Rds evolves according to the stochastic transition dynamics st ∼

penv(st|st−1,at−1), where a ∈ Rda denotes an agent’s actions.

Reinforcement learning Traditionally, RL techniques looks to identify the policy

pθ(at|st) which maximises the expected sum of rewards [Sutton et al., 1998]:

Epθ(s1:T ,a1:T )

[
T∑
t=1

r (st,at)

]
(3.1)



15

where θ are the policy parameters, amd and pθ(s1:T ,a1:T ) denotes the probability of tra-

jectories under some policy parameters θ:

pθ(s1:T ,a1:T ) = p (s1)
T∏
t=1

pθ (at | st) penv (st+1 | st,at) (3.2)

Here, r(st,at) is the reward function that returns a scalar value.

There is a range of methods for solving the above problem posed by Equation 3.1.

First, RL algorithms can be classified as either model-free or model-based [Atkeson and

Santamaria, 1997b, Sutton et al., 1998], depending on whether they utilize a world model

- e.g., some approximation to penv(st|st−1,at−1). These models are then used to facilitate

action selection. In contrast, model-free approaches can be broadly categorized into either

policy optimization methods [Schulman et al., 2017a, 2015], which explicitly optimize the

policy parameters θ or Q-learning methods [Mnih et al., 2013], which approximate action-

value functions which are then used to determine optimal actions.

Control as inference The framework of control as inference [Levine, 2018] approaches

the problem of RL in terms of probabilistic inference, enabling researchers to derive prin-

cipled (Bayesian) objectives and draw upon a wide array of approximate inference tech-

niques. While the framework encompasses many different methods, they all aim to infer

a posterior distribution over actions, given a probabilistic model conditioned on observing

‘optimal’ trajectories. To reformulate the problem of RL in the language of probability

theory, we introduce an auxiliary ‘optimality’ variable O ∈ [0, 1], where Ot = 1 denotes

that time step t was ‘optimal’, in some user (or learned) sense of the word. Note that in

what follows, we drop = 1 for conciseness.

In control of inference, we generally assume that the agent encodes a generative model

over trajectories and optimality variables:

p (τ,O1:T ) = p (s1)
T∏
t=1

p (Ot | st,at) pλ (st+1 | st,at) p (at) (3.3)

where λ are the parameters of the dynamics model, which may be learned in a model

based context. We assume an uninformative action prior p (at) = 1
|A| . The optimality

likelihood p (Ot | st,at) describes the probability that some state-action pair (st,at) is

optimal. To draw equivalence with traditional RL objectives, this is usually defined as

p (Ot | st,at) = exp (r (st,at)).

The goal of control as inference is to maximise the marginal likelihood of optimality

p(O1:T ). While it is generally intractable to evaluate this quantity directly, it is possible to
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construct a variational lower bound L which can be evaluated and optimised through vari-

ational inference. To achieve this, we introduce an arbitary distribution over trajectories,

which we refer to the as approximate posterior :

q(τ) = q (s1)

T∏
t=1

q (st+1 | st,at) qθ (at | st) (3.4)

The variational lower bound L is then given by:

log p (O1:T ) = log

∫
p (τ | O1:T ) ds1:Tda1:T

= log

∫
p (τ | O1:T )

q(τ)

q(τ)
ds1:Tda1:T

= logEq(τ)
p (τ | O1:T )

q(τ)

≤ −DKL (q(τ)‖p (τ | O1:T )) = L

(3.5)

Maximising L with respect to the parameters of the approximate posterior provides

a tractable method for maximising the (log) marginal likelihood of optimality, and thus

reward. We can further simplify this bound by fixing q(s1) = p(s1) and q (st+1 | st,at) =

pλ (st+1 | st,at):

L = Eq(τ) [log p (τ | O1:T )− log q(τ)]

= Eq(τ) [log p (s1) + log p (O1:T | τ) + log pλ (s2:T | s1:T ,a1:T )

− log p (s1)− log qθ (a1:T | s1:T )− log pλ (s2:T | s1:T ,a1:T )]

= Eq(τ)

[
T∑
t=1

r (st,at)

]
+ H [qθ (a1:T | s1:T )]

(3.6)

where H[·] is the Shannon entropy, and where the last line is derived from the fact that

the terms pλ (st+1 | st,at) and p(s1) appear on both the numerator and denominator. The

inclusion of the action entropy term H [qθ (a1:T | s1:T )] provides several benefits, including

a mechanism for offline learning, improved exploration and increased algorithmic stability.

Empirically, algorithms derived from the control as inference framework often outperform

their non-stochastic counterparts.

Active inference Agents do not always have access to the true state of the environment,

but might instead receive observations ot ∈ Rdo , which are generated according to ot ∼

p(ot |̂st). As such, agents must operate on beliefs st ∈ Rds about the true state of the

environment ŝt.

In the same manner as control as inference, active inference suggests that agents en-

code and learn a generative model of their world, and use this model to facilitate action.
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However, unlike control as inference, active inference includes no explicit notion of opti-

mality. Instead, we assume that agent’s only encode a probabilistic model over trajecto-

ries. Moreover, active inference is usually considered in the context of partially-observed

environments (in contrast to the previous examples, which operate in fully observed en-

vironments). If know append observations o to trajectories τ o = {(ot, st,at)}Tt=1, and

assume that s refers to an agent’s beliefs, rather than the true environment state, we can

write out the generative model as:

p(τ o) = p (s1)
T∏
t=1

p (ot | st) pλ (st+1 | st,at) p (at) (3.7)

Additionally, active inference assumes that an agents approximate posterior is constructed

as follows:

q(τ |õ) = q (s1)
T∏
t=1

q (st+1|ot, st,at) qθ (at | st) (3.8)

where õ is a sequence of observations through time, õ = {(ot)}Tt=1. Given these definitions,

it is straightforward to derive a variational bound, here termed variational free energy F :

F = DKL

[
q(τ |õ)‖p(τ o)

]
≥ − ln p(õ)

(3.9)

Crucially, F is a bound on the marginal likelihood of observations p(õ), rather than

the marginal likelihood of optimality p(O). By minimising F , the approximate posterior

q(τ |õ) will converge towards an approximation of the (intractable) posterior distribution

p(τ |õ), thereby implementing a tractable form of (approximate) Bayesian inference [Blei

et al., 2017]. While this provides an efficient means for perceptual inference, it can also

incorporate learning in a straightforward manner. This is achieved by making the pa-

rameters of the generative model λ (i.e. the parameters of the transition model) random

variables and including them into the generative model. As these parameters are updated

on a slower time scale, we can rewrite the generative model as:

p(τ o, λ) = p (s1) p(λ)
T∏
t=1

p (ot | st) pλ (st+1 | st,at) p (at) (3.10)

and the approximate posterior as:

q(τ, λ|õ) = q (s1) q(λ)
T∏
t=1

q (st+1|ot, st,at) qθ (at | st) (3.11)

The variational free energy F can the be written as:

F = DKL

[
q(τ, λ|õ)‖p(τ o, λ)

]
(3.12)
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In summary, active inference is underwritten by a variational scheme which implements

perception and learning. However, the current description of active inference is unable to

support adaptive behaviour as it lacks any notion of ‘value’. To overcome this, active

inference proposes that an agent’s goals and desires are encoded in the generative model

as prior preferences for favourable observations [Friston, 2019b, Baltieri and Buckley,

2019], i.e. blood temperature at 37 degrees. Free energy then provides a proxy for how

surprising (i.e., unlikely) some observations are under the agent’s model. While minimising

Eq. 3.12 provides an estimate for how surprising some observations are, it cannot reduce

this quantity directly. To achieve this, agents must change their observations through

action. Acting to minimise variational free energy ensures the minimisation of surprisal

− ln p(õ), or the maximisation of the (Bayesian) model evidence p(õ), since free energy

provides an upper bound on surprisal. Active inference, therefore, proposes that agent’s

select policies in order to minimize expected free energy G [Friston, 2019b], where the

expected free energy for a given sequence of actions ã at some future time τ is:

−G(ã, τ) ≈ Eq(orτ |ã)[ln p(o
r
τ )]︸ ︷︷ ︸

Extrinsic value

+ H[q(orτ |ã)]− Eq(sτ |ã)

[
H[q(oτ |sτ , ã)]

]
︸ ︷︷ ︸

State information gain

+ H[q(sτ |ã)]− Eq(θ)
[
H[q(sτ |ã, λ)]

]
︸ ︷︷ ︸

Parameter information gain

(3.13)

The first term (extrinsic value) quantifies the degree to which the expected observations

q(orτ |π) are congruent with the agent’s prior beliefs (i.e., preferences) p(ort ). Note that in

active inference, there is no intrinsic delineation of reward signals - all observations are

assigned some a-priori probability. However, as RL environments specify a distinct reward

signal, we have defined the agent’s prior preferences over reward observations or only.

Moreover, as RL environments are constructed such that agents wish to simply maximize

the sum of rewards (rather than obtain any particular reward observation), we evaluate

extrinsic value as orτ ∼ q(oτ |ã), such that extrinsic value increases as larger rewards are

predicted. We refer the reader to [Catal et al., 2019] for an alternative formulation where

agent’s learn a specific prior distribution.

The second term (state information gain) quantifies the expected reduction in uncer-

tainty in beliefs over hidden states q(sτ ). In other words, it promotes agents to sample

data in order to resolve uncertainty about the hidden state of the environment. This term

is formally equivalent to a number of established quantities, such as (expected) Bayesian
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surprise, mutual information, and the expected reduction in posterior entropy [Friston

et al., 2015a, Tschantz et al., 2019a], and has been used to describe various epistemic

foraging behaviors, such as saccades [Parr and Friston, 2018a, Yang et al., 2019, Itti and

Baldi, 2009, Mirza et al., 2019] and sentence comprehension [Friston et al., 2018a]. In the

current paper, we conduct experiments in fully observed environments, and as such, do

not consider the state information gain term in our analysis.

The final term (parameter epistemic value) quantifies the expected reduction in un-

certainty in beliefs over parameters q(λ), and promotes agents to actively explore the

environment in order to resolve uncertainty in their model [Schwartenbeck et al., 2019,

Friston et al., 2017d, Tschantz et al., 2019a]. This term provides the agent with ‘known

unknowns’.

3.3 Expected divergence

There is no a-priori reason that active inference agents should minimise expected free

energy. Here, we propose an alternative objective which retains many of the benefits

afforded by expected free energy, but which has greater consistency with the variational

framework. We refer to this as the expected divergence F̃ , and suggests that agents look

to match their expected and desired beliefs about future states of affairs:

F̃ = DKL

(
q(τ o, λ)‖pΦ(τ o, λ)

)
(3.14)

where q(τ o, λ) represents an agent’s beliefs about future variables, and pΦ(τ o, λ) rep-

resents an agent’s biased generative model. Note that the beliefs about future variables

include beliefs about future observations, ot:T , which are unknown and thus treated as

random variables.
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To select actions, the goal is now to find q(ã) which minimizes F̃ . We show that:

F̃ = DKL

(
q(τ o, λ)‖pΦ(τ o, λ)

)
= Eq(o,s,λ,ã)[log q(o, s, λ|ã) + log q(ã)− log pΦ(o, s, λ, ã)]

= Eq(ã)

[
Eq(o,s,λ|π)[log q(ã)− [log pΦ(o, s, λ)− log q(o, s, λ|ã)]

]
= Eq(ã)

[
log q(ã)− Eq(o,s,λ|ã)[log pΦ(o, s, λ)− log q(o, s, λ|ã)]

]
= Eq(ã)

[
log q(ã)−

[
− Eq(o,s,λ|ã)[log q(o, s, λ|ã)− log pΦ(o, s, λ)]

]]
= Eq(ã)

[
log q(ã)− log e−

[
−Eq(o,s,λ|ã)[log q(o,s,λ|ã)−log pΦ(o,s,λ)]

]]
= Eq(ã)

[
log q(ã)− log e−DKL

(
q(o,s,λ|ã)‖pΦ(o,s,λ)

)]
= DKL

(
q(ã)‖e−DKL

(
q(o,s,λ|ã)‖pΦ(o,s,λ)

))
= DKL

(
q(ã) ‖e−F̃ã

)

(3.15)

such that

F̃ = 0⇒ DKL

(
q(ã) ‖

(
− e−F̃π

))
= 0 (3.16)

where

F̃π = DKL

(
q(o0:T , s0:T , λ|ã) ‖ pΦ(o0:T , s0:T , λ)

)
(3.17)

Thus, the free energy of the expected future is minimized when q(ã) = σ(−F̃π), or in

other words, policies are more likely when they minimise F̃π.

3.3.1 Exploration & exploitation

In order to provide an intuition for what minimizing F̃π entails, we factorize the agent’s

generative models as pΦ(o0:T , s0:T , λ) = p(s0:T , λ|o0:T )pΦ(o0:T ), implying that the model is

only biased in its beliefs over observations. To retain consistency with RL nomenclature,

we treat ‘rewards’ r as a separate observation modality, such that pΦ(ot:T ) specifies a dis-

tribution over preferred rewards. We describe our implementation of pΦ(ot:T ) in Appendix

3.4.5. In a similar fashion, q(ot:T |st:T , λ, ã) specifies beliefs about future rewards, given a

policy.

Given this factorization, it is straightforward to show that −F̃π decomposes into an
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expected information gain term and an extrinsic term1:

−F̃π ≈− Eq(o0:T |ã)

[
DKL

(
q(s0:T , λ|o0:T , ã)‖q(s0:T , λ|ã)

)]
︸ ︷︷ ︸

Expected information gain

+ Eq(s0:T ,θ|ã)

[
DKL

(
q(o0:T |s0:T , λ, ã)‖pΦ(ot:T )

)]
︸ ︷︷ ︸

Extrinsic term

(3.18)

Maximizing Eq.3.18 has two functional consequences. First, it maximises the expected

information gain, which quantifies the amount of information an agent expects to gain from

executing some policy. As agents maintain beliefs about the state of the environment and

model parameters, this term promotes exploration in both state and parameter space.

Second, it minimizes the extrinsic term - which is the KL-divergence between an agent’s

(policy-conditioned) beliefs about future observations and their preferred observations. In

the current context, it measures the KL-divergence between the rewards an agent expects

from a policy and the rewards an agent desires. In summary, selecting policies to minimise

F̃ invokes a natural balance between exploration and exploitation.

3.4 Methods

In cognitive and computational neuroscience, implementations of active inference agents

generally follow one of two approaches. The first considers the generative model and recog-

nition distribution Gaussian under the Laplace approximation and prescribes gradient-

descent updates that recurrently minimize free energy with each new observation [Friston

and Kiebel, 2009a, Buckley et al., 2017a, Baltieri and Buckley, 2019]. While this approach

is purported as biologically plausible and enjoys empirical support under the guise of pre-

dictive coding [Friston and Kiebel, 2009a, Clark, 2013a], it is not clear how, or at least

not straightforward, to extend this implementation to prospective free energy minimiza-

tion. The second approach employs discrete distributions (e.g., Categorical, Dirichlet)

that are updated via variational message-passing [Friston et al., 2015a]. While this ap-

proach provides an elegant framework for evaluating expected free energy, it can only be

applied in discrete state and action spaces, meaning it is not directly applicable to the

high-dimensional states and continuous actions considered in RL benchmarks.

In the current paper, we take an alternative approach and employ amortized inference

[Kingma and Welling, 2013b], which utilizes function approximators (i.e., neural networks)

1The approximation in Eq. 3.18 arises from the approximation q(s0:T , λ|o0:T , ã) ≈ p(s0:T , λ|o0:T , ã),

which is justifiable given that q(·) represents a variational approximation of the true posterior [Friston

et al., 2017b].
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to parameterize distributions. Free energy is then minimized with respect to the param-

eters of the function approximators and not the variational parameters themselves. This

approach is particularly well-suited to the current problem, as it allows us to leverage the

flexibility of neural networks to approximate complex distributions while also providing a

principled framework for evaluating expected free energy.

3.4.1 Generative model & recognition distribution

We consider a generative model p(õ, s̃, π, θ) over sequences of observations õ, hidden states

s̃, policies π and parameters θ:

p(õ, s̃, π, θ) = p(θ)p(π)

T∏
t=1

p(ot|st)p(st|st−1, πt−1, θ)

p(ot|st) = N (ot;µλ, σ
2
λ)

where [µλ, σ
2
λ] = fλ(st)

p(st|st−1, πt−1, θ) = N (st;µθ, σ
2
θ)

where [µθ, σ
2
θ ] = fθ(st−1, πt−1)

p(θ) = N (θ; 0, I)

p(π) = σ(−G(π))

(3.19)

where we have assumed that s0 is fixed. In Eq. 3.19, we have parametrized both the

likelihood distribution p(ot|st) and the transition distribution p(st|st−1, πt−1, θ) with func-

tion approximators. Specifically, the likelihood distribution is described by a multivariate

Gaussian distribution with a mean and covariance parameterized by some (potentially

non-linear) function approximator fλ(st). In contrast, the prior distribution is described

by a Gaussian with mean and variance parameterized by some function approximator

fθ(st−1, πt−1).

Amortizing the inference procedure offers several benefits. For instance, the number

of parameters remains constant for the size of the data, and inference can be achieved

through a single forward pass of a network. Moreover, while the amount of information

encoded about variables is fixed, the conditional relationship between variables can be

arbitrarily complex. In Eq. 3.19, the parameters of the transition distribution, θ, are

themselves random variables. In the current context, these parameters are the weights of

the neural network fθ(st−1, πt−1). This approach quantifies the uncertainty about these

parameters and casts learning as a process of (variational) inference [Blundell et al., 2015].

The prior probability of θ is given by a standard Gaussian, which acts as a regularizer



23

during learning. Although we have only considered distributions over the parameters of

the transition distribution θ, the same scheme could be applied to the parameters of the

likelihood distribution, λ. Finally, the prior probability of policies is a softmax function

of the negative expected free energy of those policies −G(π) [Friston et al., 2015a]. This

formalizes the notion that policies are a-priori more likely if they are expected to minimize

free energy in the future [Friston, 2019b].

To make active inference applicable to the tasks considered in RL, we treat reward

signals or as observations in a separate modality. Therefore, we extend the generative

model to include an additional scalar Gaussian over reward observations p(ort |st) with

unit variance and mean fα(st), where fα(st) is a fully-connected neural network with

parameters α.

We consider a recognition distribution q(s̃, π, θ) over sequences of hidden states st,

policies π and parameters θ:

q(s̃, π, θ) = q(θ)q(π)

T∏
t=0

q(st|ot)

q(θ) = N (θ;µξ, σ
2
ξ )

q(π) = N (π;µψ, σ
2
ψ)

q(st|ot) = N (st;µφ, σ
2
φ)

where [µφ, σ
2
φ] = fφ(ot)

(3.20)

The distribution q(st|ot) is a diagonal Gaussian with mean and variance parameterized

by some function approximator fφ(ot), while the variational posterior over parameters θ

and policies π are both diagonal Gaussians.

3.4.2 Learning & Inference

In order to implement learning, we derive the updates for ξ = {µξ, σ2
ξ}, φ, λ and α that

minimize free energy F . Given Eq. 3.19 and 3.20, the variational free energy F for a given

time point t can be defined as:

Ft(ot, ξ, φ, λ, α) =

Eθ∼q(θ)
[
Eq(st−1|ot−1)

[
DKL[q(st|ot)||p(st|st−1, πt−1, θ)]

]]
+ DKL

[
q(θ)||p(θ)

]
− Eq(st|ot)[ln p(ot|st)]

(3.21)

where we have followed [Friston et al., 2015a] and omitted the additional term DKL[q(π)||p(π)]

from the optimization of ξ, φ, λ, α, allowing us to ignore the dependency between hidden
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states and (the prior probability of) policies. We optimize q(π) with respect to F sepa-

rately, as described in the following section.

Eq. 3.21 can be minimized with respect to ξ, φ, λ, α using stochastic gradient descent.

Given some observation ot, the negative log-likelihood (third term) can be calculated by

mapping the observation to the variational parameters of q(st|ot), e.g., [µφ, σ
2
φ] = fφ(ot).

The reparameterization trick [Kingma and Welling, 2013b] is then utilized to obtain a dif-

ferentiable sample from q(st|ot)2, which is then passed through fλ(st), giving the parame-

ters of the likelihood distribution [µλ, σ
2
λ]. The negative-log likelihood of the observations

is then calculated under this distribution. Next, the parameter divergence (second term)

is calculated analytically, as both distributions are fully factorized Gaussians. Finally,

The state divergence (first term) is calculated by taking K samples from q(θ), again using

the reparameterization trick. For each sample θ(i) in K, a reparameterized sample from

the previous beliefs over hidden states q(st−1|ot−1) is propagated through fθ(i)(st−1, πt−1)

(where πt−1 refers to the action that was taken at the previous time step), giving the

parameters of the transition distribution. The KL-divergence term is then analytically

calculated for each sample in K and averaged.

This procedure is carried out in batched fashion over the available data set. At test

time, inference can be achieved by directly mapping observations to the variational pa-

rameters using fφ(ot). This approach to inferring hidden states is similar to that of a

variational autoencoder [Kingma and Welling, 2013b]. However, here the global prior has

been replaced with a prior based on the transition distribution. Moreover, the inference

of parameters θ is homologous to the Bayesian neural network approach to parameter

learning [Blundell et al., 2015].

Deriving updates for all parameters through a single (variational) objective function

offers several potential benefits. First, the learned latent space is forced to balance between

the compression of observations and (action-conditioned) temporal transitions. This is in

contrast to ‘modular’ approaches, whereby a latent space is first learned to compress

observations, and subsequently, a transition model is learned in this fixed latent space

[Ha and Schmidhuber, 2018a]. Moreover, this approach quantifies uncertainty in both

hidden states and model parameters, thereby quantifying both aleatoric and epistemic

uncertainty [Depeweg et al., 2017a,b].

2For a Gaussian N (x;µ, σ2), a reparameterized sample is obtained via x = µ+σ� ε, where ε ∼ N (0, 1)
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3.4.3 Policy selection

Under active inference, policy selection is achieved by updating q(π) to minimize free

energy F . Given the prior belief that policies minimize expected free energy, i.e., p(π) =

σ(−G(π)) (as specified in Eq. 3.19), free energy is minimized when q(π) = σ(−G(π))

[Friston et al., 2015a]. For discrete action spaces with short temporal horizons, G(π) can

be evaluated in full by considering each possible policy [Friston et al., 2017a]. However,

there are infinite policies in continuous action spaces, meaning an alternative approach is

required.

In the current work, we treat q(π) as a diagonal Gaussian with parameters ψ =

{µψ, σ2
ψ}. At each time step, we optimise ψ such that q(π) ∝ −G(π). While this so-

lution will fail to capture the exact shape of −G(π), agents need only identify the peak of

the landscape to enact the optimal policy. To optimize the parameters of q(π), we utilize

the cross-entropy method (CEM) [Hafner et al., 2018a, Chua et al., 2018a]. At each time

step t, we consider policies of a fixed horizon H, using notation πt:t+H = {at, ...,at+H}.

The distribution over policies is initialized as q(πt:t+H) ← N (πt:t+H ; 0, I) and optimized

as follows:

(i) Sample N policies from q(πt:t+H)

(ii) Evaluate −G(πt:t+H) for each sample πt:t+H (described in the following section),

returning a scalar value

(iii) Refit q(πt:t+H) to the top M samples

This procedure is carried out I times, after which the mean of the belief for the current

time step at = E[q(πt:t+Ht )] is returned. Moreover, this procedure is carried out after each

new observation. For the current experiments, H = 12, N = 1000, M = 100 and I = 10.

This process of predictive model control [Camacho and Alba, 2007] was selected for

consistency with previous computational models of active inference [Friston et al., 2017a],

where a distribution over policies is updated after each new observation. Alternative

approaches include optimizing a parametrized policy with respect to past evaluations of

expected free energy [Millidge, 2019a]. However, this approach is unsuitable for non-

stationary objective functions or active exploration [Shyam et al., 2019]. Alternatively, a

parametrized policy could be optimized with respect to imagined rollouts from a transition

model [Hafner et al., 2018a], which would enable active exploration [Shyam et al., 2019].

The effectiveness of these approaches depends on the complexity of the value function



26

relative to the transition dynamics [Dong et al., 2019], as well as the stationarity of the

value function.

3.4.4 Trajectory sampling

To evaluate the expected free energy for a given policy −G(π), it is first necessary to

evaluate the expected future beliefs conditioned on that policy q(s̃t:t+H , õt:t+H |π). The

fact that the transition model is probabilistic, and the parameters of the transition model

are random variables, induces a distribution over future trajectories [Friston et al., 2015a].

Several approaches exist to approximate the propagation of uncertain trajectories [Chua

et al., 2018a]. For instance, one can ignore uncertainty entirely and propagate the mean of

the distributions, or one can explicitly propagate the complete statistics of the distribution

[Deisenroth et al., 2015]. In the current work, we utilize a particle approach [Chua et al.,

2018a, Hafner et al., 2018a], whereby a set of Monte Carlo samples are propagated. In

particular, we consider B samples from the parameter distribution θ(i) ∼ q(θ), and for each

sample in B, propagate J samples through the transition model s
(j)
t ∼ p(st|st−1, πt−1, θ

(i)).

We pass all samples through the respective model and average to infer observations and

rewards.

Evaluating beliefs about the future We factorize and evaluate the beliefs about the

future as:

q(st:T ,ot:T , θ|π) = q(θ)
T∏
t=τ

q(oτ |sτ , θ, π)q(sτ |sτ−1, θ, π)

q(oτ |sτ , θ, π) = Eq(sτ |θ,π)

[
p(oτ |sτ )

]
q(sτ |sτ−1, θ, π) = Eq(sτ−1|θ,π)

[
p(sτ |sτ−1, θ, π)

]
(3.22)

where we have here factorized the generative model as:

p(oτ , sτ , θ|π) = p(oτ |sτ , π)p(sτ |sτ−1, θ, π)p(θ) (3.23)

The full algorithm for inferring q(π) is provided in Algorithm 3.4.4.
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Algorithm 1 Inference of q(π)

Input: Planning horizon H — Optimisation iterations I — Number of candidate policies

J — Current state st — Likelihood p(oτ |sτ ) — Transition distribution p(sτ |sτ−1, θ, π) —

Parameter distribution P (θ) — Global prior pΦ(oτ )

Initialize factorized belief over action sequences q(π)← N (0, I).

for optimisation iteration i = 1...I do

Sample J candidate policies from q(π) for candidate policy j = 1...J do

π(j) ∼ q(π)

−F̃ jπ = 0

for τ = t...t+H do

q(sτ |sτ−1, θ, π
(j)) = Eq(sτ−1|θ,π(j))

[
p(sτ |sτ−1, θ, π

(j))
]

q(oτ |sτ , θ, π(j)) = Eq(sτ |θ,π(j))

[
p(oτ |sτ )

]
−F̃ jπ ← −F̃ jπ + Eq(sτ ,θ|π(j))

[
DKL

(
q(oτ |sτ , θ, π(j))‖pΦ(oτ )

)]
+ H[q(sτ |sτ−1, θ, π

(j))]− Eq(θ)
[
H[q(sτ |sτ−1, π

(j), θ)]
]

end

end

q(π)← refit(−F̃ jπ)

end

return q(π)

3.4.5 Model details

In the current work, we implemented our probabilistic model using an ensemble-based

approach [Chua et al., 2018b, Fort et al., 2019, Chitta et al., 2018]. Here, an ensemble

of point-estimate parameters θ = {θ0, ..., θB} trained on different batches of the dataset

D are maintained and treated as samples from the posterior distribution p(θ|D). Besides

consistency with the active inference framework, probabilistic models enable the active

resolution of model uncertainty, capture both epistemic and aleatoric uncertainty, and help

avoid over-fitting in low data regimes [Fort et al., 2019, Chitta et al., 2018, Chatzilygeroudis

et al., 2018, Chua et al., 2018a].

This design choice means that we use a trajectory sampling method when evaluating

beliefs about future variables [Chua et al., 2018b], as each pass through the transition

model p(st|st−1, θ, π) evokes B samples from st.

Fully observed model The model presented in the preceding sections is the most gen-

eral formulation, applicable in both partially-observed and fully-observed environments.
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In what follows, we describe an implementation for the fully-observed case, leaving an

analysis of the partially-observed case for future work.

To adapt the generative model for fully-observed environments, we utilize a fixed

identity covariance for the likelihood distribution p(ot|st), and parameterize the mean

as µλ = fλ(st) = E[st], thereby encoding the belief that there is a direct mapping between

states and observations. For the transition distribution p(st|st−1, πt−1, θ), we parame-

terize the mean as fθ(st−1, πt−1) and utilize a fixed unit variance. In all experiments,

fθ(st−1, πt−1) is a feed-forward network with two fully connected layers of size 500 with

ReLU activations, which defines the dimensionality of p(θ) and q(θ).

Note that by treating the variance of the transition distribution as fixed, the evaluation

of the parameter epistemic value is significantly simplified. Specifically, the second entropy

term in parameter epistemic value becomes constant under policies, such that we need only

evaluate the first entropy term H[q(sτ |π)] = H[Eq(θ)[q(sτ |π, θ)]]. We use five samples from

q(θ) to evaluate the expectation in this entropy term throughout. Finally, we treat the

variance of q(st|ot) as a fixed unit parameter and parameterize the mean as µφ = fφ(ot) =

ot, thereby encoding the belief that there is a direct mapping between observations and

states. Note that this means that the parameters of λ and φ are fixed and are thus excluded

from the optimization scheme.

Transition model We implement the transition model asN (st; fθ(st−1), fθ(st−1)), where

fθ(·) are a set of function approximators fθ(·) = {fθ0(·), ..., fθB (·)}. In the current paper,

fθi(st−1) is a two-layer feed-forward network with 400 hidden units and a swish activation

function. Following previous work, we predict state deltas rather than the next states

[Shyam et al., 2018].

Reward model We implement the reward model as p(oτ |sτ , θ, π) = N (oτ ; fλ(sτ ),1),

where fλ(sτ ) is some arbitrary function approximator3. In the current paper, fλ(sτ ) is

a two-layer feed-forward network with 400 hidden units and a ReLU activation func-

tion. Learning a reward model offers several plausible benefits outside the active inference

framework, as it abolishes the requirement that rewards can be directly calculated from

observations or states [Chua et al., 2018b].

Global prior We implement the global prior pΦ(o) as a Gaussian with unit variance

centered around the maximum reward for the respective environment. We leave it to

3Formally, this is an observation model, but we retain RL terminology for clarity.
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future work to explore the effects of more intricate priors.

3.4.6 Implementation details

We initialize a dataset D for all tasks with a single episode of data collected from a random

agent. We train the ensemble transition and reward models for each episode for 100 epochs

using the negative-log likelihood loss. We found cold-starting training at each episode to

lead to more consistent behavior. We then let the agent act in the environment based on

Algorithm 3.4.4 and append the collected data to the dataset D.

We list the full set of hyperparameters below:

Hyperparameters

Hidden layer size 400

Learning rate 0.001

Training-epochs 100

Planning-horizon 30

N-candidates (CEM) 700

Top-candidates (CEM) 70

Optimisation-iterations

(CEM)

7

3.4.7 Environment details

The Mountain Car environment (S ⊆ R2A ⊆ R1) requires an agent to drive up the side of

a hill, where the car is underactuated requiring it first to gain momentum by driving up the

opposing hill. One reward is generated when the agent reaches the goal and zero otherwise.

The Cup Catch environment (S ⊆ R8A ⊆ R2) requires the agent to actuate a cup and

catch a ball attached to its bottom. One reward is generated when the agent reaches

the goal and zero otherwise. Finally, the Half Cheetah environment (S ⊆ R17A ⊆ R6)

describes a running planar biped. For the running task, a reward of v−0.1||a||2 is received,

where v is the agent’s velocity, and for the flipping task, a reward of ε−0.1||a||2 is received,

where ε is the angular velocity. The Ant Maze environment (S ⊆ R29A ⊆ R8) involves a

quadruped agent exploring a rectangular maze.

3.5 Results

To determine whether our algorithm successfully balances exploration and exploitation,

we investigate its performance in domains with (i) well-shaped rewards, (ii) highly sparse
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Figure 3.1: The test environments used in the current experiments. From left to right: a

mountain car subject to gravity must accelerate out of a ditch. Cup Catch, where a cup

must be actuated to catch a ball. Half Cheetah, where a planar biped must run as fast as

possible. Ant Maze, where a quadruped must explore a maze.

rewards, and (iii) a complete absence of rewards. We use four tasks in total. For sparse

rewards, we use the Mountain Car and Cup Catch environments, where agents only

receive a reward when the goal is achieved. We use the challenging Half Cheetah envi-

ronment for well-shaped rewards, using both the running and flipping tasks. Finally, we

use the Ant Maze environment for domains without reward, where no rewards exist and

success is measured by the percent of the maze covered.
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Figure 3.2: (A) Mountain Car: Average return after each episode on the sparse-reward

Mountain Car task. Our algorithm achieves optimal performance in a single trial. (B)

Cup Catch: Average return after each episode on the sparse-reward Cup Catch task.

Here, results amongst algorithms are similar, with all agents reaching asymptotic perfor-

mance in around 20 episodes. (C & D) Half Cheetah: Average return after each episode

on the well-shaped Half Cheetah environment for the running and flipping tasks, respec-

tively. We compare our results to the average performance of SAC after 100 episodes of

learning, demonstrating that our algorithm can perform successfully in environments that

do not require directed exploration. Each line is the mean of 5 seeds, and filled regions

show +/- standard deviation.

For environments with sparse rewards, we compare our algorithm to two baselines, (i)

a reward algorithm, which only selects policies based on the extrinsic term (i.e., ignores

the parameter information gain), and (ii) a variance algorithm that seeks out uncertain

transitions by acting to maximize the output variance of the transition model. Note

that the variance agent is also augmented with the extrinsic term to enable comparison.

For environments with well-shaped rewards, we compare our algorithm to the maximum

reward obtained by a state-of-the-art model-free RL algorithm after 100 episodes, the

soft-actor-critic (SAC) [Haarnoja et al., 2018], which encourages exploration by seeking

to maximize the entropy of the policy distribution. Finally, we compare our algorithm for

environments without rewards to a random baseline, which conducts actions randomly.

The Mountain Car experiment is shown in Fig. 1A, where we plot the total reward ob-

tained for each episode over 25, where each episode is at most 200 time steps. These results

demonstrate that our algorithm rapidly explores and consistently reaches the goal, achiev-

ing optimal performance in a single trial. In contrast, the benchmark algorithms were, on

average, unable to successfully explore and achieve good performance. We qualitatively

confirm this result by plotting the state space coverage with and without exploration (Fig.

2B). Our algorithm performs comparably to benchmarks on the Cup Catch environment

(Fig. 1B). We hypothesize that this is because, while the reward structure is technically
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sparse, it is simple enough to reach the goal with random actions. Thus the directed

exploration afforded by our method provides little benefit.

Figure 1 C&D shows that our algorithm performs substantially better than a state-

of-the-art model-free algorithm after 100 episodes of the challenging Half Cheetah tasks.

Our algorithm thus demonstrates robust performance in environments with well-shaped

rewards and considerably improves sample efficiency relative to SAC.

Finally, we demonstrate that our algorithm can perform well in environments with

no rewards, where the only goal is exploration. Figure 2B shows that our algorithm’s

rate of exploration is substantially higher than that of a random baseline in the ant-maze

environment, resulting in a more substantial portion of the maze being covered. This

result demonstrates that the directed exploration afforded by minimizing the free energy

of the expected future proves beneficial in environments with no reward structure.

These results show that our proposed algorithm - which naturally balances exploration

and exploitation - can successfully master challenging domains with various reward struc-

tures.
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Figure 3.3: (A & B) Mountain Car state space coverage: We plot the points in

state space visited by two agents - one that minimizes the free energy of the expected

future (FEEF) and one that maximizes reward. The plots are from 20 episodes and show

that the FEEF agent searches almost all of the state space while the reward agent is

confined to a region reached with random actions. (C) Ant Maze Coverage: We plot

the percentage of the maze covered after 35 episodes, comparing the FEEF agent to an

agent acting randomly. These results are the average of 4 seeds.

3.6 Previous work

Deep active inference Previous work has explored the prospect of scaling active in-

ference using amortized inference. In [Ueltzhöffer, 2018], the authors parameterized both

the generative model and recognition distribution with function approximators and used
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evolutionary strategies to optimize the free energy functional when gradients were not

available. Similarly, [Millidge, 2019a] utilized amortization to parametrize distributions

and also amortized action by learning a parameterized approximation of the expected free

energy bound. Finally, [Catal et al., 2019] extended previous work to include a specific

planning component based on CEM. The authors focused on the problem of learning the

prior distribution over reward observations p(or) and demonstrated that this could be

implemented in a learning-from-example framework.

Our work builds upon these previous models by incorporating model uncertainty and

its active resolution. In other words, we extend the previous point-estimate models to

include complete distributions over parameters and update the expected free energy func-

tional so that these distributions’ uncertainty is actively minimized. This aligns our im-

plementation with the canonical models of active inference from the cognitive and com-

putational neuroscience literature [Friston, 2019b]. Moreover, it enables us to evaluate

the feasibility of active exploration under the scaled active inference framework, apply the

model to more complex control tasks, and obtain increased sample efficiency relative to

previous models.

Model-based RL The model presented in the current work bears several resemblances

with model-based approaches to RL. First, variational autoencoders have been used exten-

sively to map observations into a compressed latent space, thereby simplifying the problem

of action selection and learning a forward transition model [Ha and Schmidhuber, 2018a,

Hafner et al., 2018a, Igl et al., 2018, Karl et al., 2016, Kaiser et al., 2019, Barron et al.,

2018, Watter et al., 2015]. Moreover, the CEM algorithm is a popular method for imple-

menting planning in model-based RL [Hafner et al., 2018a, Chua et al., 2018a, Nagabandi

et al., 2017]. Recent work has additionally highlighted the importance of using a prob-

abilistic dynamics model in order to capture epistemic uncertainty [Chua et al., 2018a,

Hafner et al., 2018a, Deisenroth and Rasmussen, 2011, Yarin Gal et al., 2016, Kahn et al.,

2017, Vuong and Tran, 2019]. The success of these approaches has demonstrated that

deterministic models are prone to model bias, which can lead to overfitting in low data

regimes. Most approaches either utilize Bayesian neural networks [Depeweg et al., 2017b],

ensembles of deterministic networks [Chua et al., 2018a], dropout [Yarin Gal et al., 2016] or

Gaussian processes [Deisenroth et al., 2015] in order to capture uncertainty. In the current

work, we opted for Bayesian neural networks to ensure consistency with the variational

principles espoused by the active inference framework. However, note that ensembles can

be explicitly Bayesian with minor modifications [Pearce et al., 2018].
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Information gain Identifying scalable and efficient exploration strategies remains one

of the critical open questions in RL. Model-free methods, such as ε-greedy or Boltzmann

choice rules [Sutton and Barto, 1998], utilize noise in the action selection process or uncer-

tainty in the reward statistics [Agrawal and Goyal, 2012, Speekenbrink and Konstantinidis,

2015a].

Using intrinsic measures to encourage exploration has a long history in RL [Schmid-

huber, 1991, 2007, Storck et al., 1995, Oudeyer and Kaplan, 2009, Chentanez et al., 2005].

Recent model-free and model based-intrinsic measures that have been proposed in the liter-

ature include policy-entropy [Rawlik, 2013, Rawlik et al., 2013, Haarnoja et al., 2018], state

entropy [Lee et al., 2019], information-gain [Houthooft et al., 2016, Okada and Taniguchi,

2019a, Kim et al., 2018a, Shyam et al., 2019, Teigen, 2018], prediction error [Pathak et al.,

2017], the divergence of ensembles [Shyam et al., 2019, Chua et al., 2018a], uncertain state

bonuses [Bellemare et al., 2016, O’Donoghue et al., 2017], and empowerment [de Abril and

Kanai, 2018, Leibfried et al., 2019, Mohamed and Rezende, 2015]. Information gain has

a substantial history outside the RL framework, going back to [Lindley, 1956, Still and

Precup, 2012, Sun et al., 2011].

A more robust approach [Osband et al., 2016] is to construct a model of the world,

allowing the agent to evaluate which parts of state space it has (and has not) visited.

For instance, [Bellemare et al., 2016] construct a pseudo-count measure for estimating

state visitation frequency in continuous state spaces. Alternatively, an explicit forward

model of the transition dynamics can be learned. This allows for measures such as the

amount of prediction error [Stadie et al., 2015, Thrun, 1992, Chentanez et al., 2005, Meyer

and Wilson, 1991] or prediction error improvement [Lopes et al., 2012] to be utilized for

exploration.

If the learned model (implicitly or explicitly) captures probabilistic features, then

information-theoretic measures can be used to guide exploration (see [Aubret et al., 2019]

for a review). In [Still and Precup, 2012], the authors derived an information-theoretic

measure to maximize the predictive power of the agent. In contrast, in [Mohamed and

Rezende, 2015], the authors derived an objective function to maximize the mutual infor-

mation between actions and future states of the environment (i.e., empowerment).

Of particular relevance to the current work is the use of information gain to promote

exploration, which has been demonstrated to outperform alternative measures such as

prediction error [Hester and Stone, 2017]. From a theoretical perspective, information

gain helps overcome what is known as the ‘TV problem’ [Itti and Baldi, 2009], where
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(unpredictable) noise in the environment is mistakenly treated as epistemically valuable.

This is because information gain considers the amount of information provided for beliefs

instead of the amount of information provided by the signal per se.

Information gain can be traced back to [Lindley, 1956], who used it to quantify the

information gained from some experiments. [Sun et al., 2011] developed a Bayesian frame-

work to maximize information gain via dynamic programming. However, the experiments

were limited to discrete state spaces using tabular MDPs. In [Houthooft et al., 2016], the

authors utilized Bayesian neural networks to quantify the information gained from some

(action-conditioned) transition. This work was further extended in [Barron et al., 2018],

where the amount of information gained was quantified for a latent dynamics model.

In parallel with the current work, [Shyam et al., 2019] looked to maximize expected

information gain, which entails an active approach to exploration. This is in contrast to

the majority of exploration strategies in RL, which are reactive, in the sense that they

must first observe an informative state before being able to gather information [Shyam

et al., 2019]. This can lead to problems of over-commitment, whereby informative parts of

state space must be unlearned once the relevant information has been gathered. However,

[Shyam et al., 2019] optimized expected information gain offline, whereas the current

model uses an online approach. Finally, The use of nearest-neighbor entropy estimators

for information gain has been explored in [Mirchev et al., 2018, Depeweg et al., 2017b].

3.7 Discussion

We have presented a model of active inference that can scale to continuous control tasks,

complex dynamics, and high-dimensional state spaces. The presented model can be trained

via a single objective function, expected free energy, that captures epistemic and aleatoric

uncertainty and prescribes goal-directed and information-gathering behavior via a single

normative drive.

Our model makes two primary contributions. First, we showed that the whole active

inference construct could be scaled to the kinds of tasks considered in the RL literature.

This involved extending previous models of deep active inference to include model uncer-

tainty and expected information gain. Second, we highlighted the overlap between active

inference and state-of-the-art approaches to model-based RL. These include the use of

variational inference for the compression of observations, the use of variational inference

for learning distributions over parameters, the use of probabilistic models of dynamics,

the use of prospective planning in latent space, and the active resolution of uncertainty.
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While active inference defined the properties of living systems from first principles

[Friston, 2019b], and model-based RL has attempted to engineer adaptive agents through

the most effective means available, both perspectives have converged on similar solutions.

Our work has exploited this convergence to show that active inference provides a prin-

cipled and unified theoretical framework to contextualize the various developments in

model-based RL. This perspective by itself offers little practical benefit. However, active

inference offers two potentially novel perspectives from which model-based RL can benefit.

The first is casting reward as (prior) probabilities. This provides a principled framework

for learning reward structure (i.e., reward shaping), for assigning rewards (i.e., probability)

across multiple observation modalities Juechems and Summerfield [2019], and for learning-

from-demonstration [Catal et al., 2019]. The second perspective casts exploration and ex-

ploitation as two components of a single imperative to maximize expected Bayesian model

evidence. This perspective can potentially recast the exploration-exploitation dilemma as

a problem of optimizing parameters to maximize model evidence. We leave a practical

investigation of this perspective to future work.



37

Chapter 4

A framework to investigate the

nature of representation

4.1 Introduction

In this chapter, we demonstrate that active inference can provide a novel framework for

reasoning about the kinds of representations employed by living systems. As discussed in

Chapter 2, the FEP provides a Bayesian interpretation of the states of a self-organizing

system. The FEP thus suggests that signs of representation should be widespread, and

beings that form complex representations of their sensory data are no surprise. Indeed,

one could argue for this a priori, although the details will depend on the particulars of

evolution - or, more abstractly, the paths some sub-systems take.

In the previous chapter, we saw that the FEP interprets the dynamics of self-organizing

systems as approximate Bayesian inference. It is first worth restating the role of Bayesian

inference in this context. The internal states µ are said to parameterize a distribution

qµ(z), and their dynamics lead this distribution to approximate the posterior distribution

p(z|x). Here, z are the unknown causes of the sensory data x. In the broader literature,

these random variables are sometimes called latent variables, highlighting that they cap-

ture the latent factors of variation in the data. In the literature surrounding the FEP,

referring to them as environmental variables is common. This is not necessarily true when

considering an explicit generative model parameterized by an agent. The FEP provides

a parsimonious explanation for why representations exist - they are in service of keeping

the system at NESS. While we have seen that the FEP cannot say anything about the

particulars of systems, we can make informed speculation based on our knowledge of av-

erages and the environment. This is like predicting an eye, given knowledge of light and
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evolution. This chapter focuses on how the FEP promotes frugal representations of the

environment.

Converging theories suggest that organisms learn and exploit probabilistic models

of their environment. However, it remains unclear how such models can be learned in

practice. The open-ended complexity of natural environments means that it is gener-

ally infeasible for organisms to model their environment comprehensively. Alternatively,

action-oriented models attempt to encode a parsimonious representation of adaptive agent-

environment interactions. One approach to learning action-oriented models is to learn on-

line in the presence of goal-directed behaviours. This constrains an agent to behaviourally

relevant trajectories, reducing the diversity of the data a model need account for. Unfortu-

nately, this approach can cause models to prematurely converge to sub-optimal solutions,

through a process we refer to as a bad-bootstrap. Here, we exploit the normative frame-

work of active inference to show that efficient action-oriented models can be learned by

balancing goal-oriented and epistemic (information-seeking) behaviours in a principled

manner. We illustrate our approach using a simple agent-based model of bacterial chemo-

taxis. We first demonstrate that learning via goal-directed behaviour indeed constrains

models to behaviorally relevant aspects of the environment, but that this approach is

prone to sub-optimal convergence. We then demonstrate that epistemic behaviours fa-

cilitate the construction of accurate and comprehensive models, but that these models

are not tailored to any specific behavioural niche and are therefore less efficient in their

use of data. Finally, we show that active inference agents learn models that are parsimo-

nious, tailored to action, and which avoid bad bootstraps and sub-optimal convergence.

Critically, our results indicate that models learned through active inference can support

adaptive behaviour in spite of, and indeed because of, their departure from veridical rep-

resentations of the environment. Our approach provides a principled method for learning

adaptive models from limited interactions with an environment, highlighting a route to

sample efficient learning algorithms.

4.2 Learning action oriented models through active infer-

ence

In order to survive, biological organisms must be able to efficiently adapt to and nav-

igate in their environment. Converging research in neuroscience, biology, and machine

learning suggests that organisms achieve this feat by exploiting probabilistic models of
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their world [Doll et al., 2012, Dayan and Berridge, 2014, Botvinick and Weinstein, 2014,

Dolan and Dayan, 2013, Conant and Ashby, 1970, Friston, 2013, Kuvayev and Sutton,

1996, Deisenroth, 2011]. These models encode statistical representations of the states and

contingencies in an environment and agent-environment interactions. Such models plau-

sibly endow organisms with several advantages. For instance, probabilistic models can be

used to perform perceptual inference, implement anticipatory control, overcome sensory

noise and delays, and generalize existing knowledge to new tasks and environments. While

encoding a probabilistic model can be advantageous in these and other ways, natural envi-

ronments are extremely complex and it is infeasible to model them in their entirety. Thus

it is unclear how organisms with limited resources could exploit probabilistic models in

rich and complex environments.

One approach to this problem is for organisms to selectively model their world in a

way that supports action [Seth, 2015, Seth and Tsakiris, 2018, Baltieri and Buckley, 2017,

Clark, 2015a, Pezzulo et al., 2017, Gibson, 2014]. We refer to such models as action-

oriented, as their functional purpose is to enable adaptive behaviour, rather than to rep-

resent the world in a complete or accurate manner. An action-oriented representation of

the world can depart from a veridical representation in a number of ways. First, because

only a subset of the states and contingencies in an environment will be relevant for be-

haviour, action-oriented models need not exhaustively model their environment [Baltieri

and Buckley, 2017]. Moreover, specific misrepresentations may prove to be useful for

action [Wiese, 2017, McKay and Dennett, 2009, Mendelovici, 2013, M. Zehetleitner and

Schönbrodt, 2015], indicating that action-oriented models need not be accurate. By re-

ducing the need for models to be isomorphic with their environment, an action-oriented

approach can increase the tractability of the model learning process [Verschure et al., 2003,

Montúfar et al., 2015, Thornton, 2010, Ruesch et al., 2011, Lungarella and Sporns, 2005,

2006], especially for organisms with limited resources.

Within an action-oriented approach, an open question is how action-oriented models

can be learned from experience. The environment, in and of itself, provides no distinction

between states and contingencies that are relevant for behaviour and those which are

not. However, organisms do not receive information passively. Rather, organisms actively

sample information from their environment, a process which plays an important role in

both perception and learning [Yang et al., 2018, Gottlieb and Oudeyer, 2018a, Lungarella

and Sporns, 2005, Friston et al., 2012b]. One way that active sampling can facilitate

the learning of efficient action-oriented models is to learn online in the presence of goal-
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directed actions. Performing goal-directed actions restricts an organism to behaviourally

relevant trajectories through an environment. This, in turn, structures sensory data in

a behaviorally relevant way, thereby reducing the diversity and dimensionality of the

sampled data (see Fig-4.1). Therefore, this approach offers an effective mechanism for

learning parsimonious models that are tailored to an organism’s adaptive requirements

[Montúfar et al., 2015, Barandiaran, 2017, Verschure et al., 2003, Lungarella and Sporns,

2005, 2006, Egbert and Barandiaran, 2014].
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Figure 4.1: The coupling of learning and control.

(A) Goal-directed cycle of learning and control: a schematic overview of the cou-

pling between a model and its environment when learning takes place in the presence

of goal-directed actions. Here, a model is learned based on sampled observations. This

model is then used to determine goal-directed actions, causing goal-relevant transitions

in the environment, which in turn generate goal-relevant observations. (B) Maladap-

tive cycle of learning and control: a schematic overview of the model-environment

coupling when learning in the presence of goal-directed actions, but for the case where a

maladaptive model has been initially learned. The feedback inherent in the online learning

scheme means that the model samples sub-optimal observations, which are subsequently

used to update the model, thus entrenching maladaptive cycles of learning and control

(bad bootstraps). (C) Observations sampled from random actions: The spread of

observations covers the space of possible observations uniformly, meaning that a model of

these observations must account for a diverse and distributed set of data, increasing the

model’s complexity. The red circle in the upper right quadrant indicates the region of ob-

servation space associated with optimal behaviour, which is only sparsely sampled. Note

these are taken from a fictive simulation and are purely illustrative. (D) Observations

sampled from sub-optimal goal-directed actions: Only a small portion of observa-

tion space is sampled. A model of this data would, therefore, be more parsimonious in its

representation of the environment. However, the model prescribes actions that cause the

agent to selectively sample a sub-optimal region of observation space (i.e outside the red

circle in the upper-right quadrant). As the agent only samples this portion of observa-

tion space, the model does not learn about more optimal behaviours. (E) Observations

sampled from optimal goal-directed actions: Here, as in D, the goal-directed nature

of action ensures that only a small portion of observation space is sampled. However,

unlike D, this portion is associated with optimal behaviours.
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Learning probabilistic models to optimise behaviour has been extensively explored

in the model-based reinforcement learning (RL) literature [Polydoros and Nalpantidis,

2017b, Atkeson and Santamaria, 1997a, Ha and Schmidhuber, 2018b, Deisenroth, 2011].

A significant drawback to existing methods is that they tend to prematurely converge to

sub-optimal solutions [Chua et al., 2018a]. One reason this occurs is due to the inherent

coupling between action-selection and model learning. At the onset of learning, agents

must learn from limited data, and this can lead to models that initially overfit the envi-

ronment and, as a consequence, make sub-optimal predictions about the consequences of

action. Subsequently using these models to determine goal-oriented actions can result in

biased and sub-optimal samples from the environment, further compounding the model’s

inefficiencies, and ultimately entrenching maladaptive cycles of learning and control, a

process we refer to as a “bad-bootstrap” (see Fig-4.1).

One obvious approach to resolving this problem is for an organism to perform some

actions, during learning, that are not explicitly goal-oriented. For example, heuristic

methods, such as ε-greedy [Watkins, 1989], utilise noise to enable exploration at the start

of learning. However, random exploration of this sort is likely to be inefficient in rich

and complex environments. In such environments, a more powerful method is to utilize

the uncertainty quantified by probabilistic models to determine epistemic (or intrinsic,

information-seeking, uncertainty reducing) actions that attempt to minimize the model

uncertainty in a directed manner [Stadie et al., 2015, Houthooft et al., 2016, Sun et al.,

2011, Friston et al., 2015a, Burda et al., 2018, Friston et al., 2017a]. While epistemic

actions can help avoid bad-bootstraps and sub-optimal convergence, such actions nec-

essarily increase the diversity and dimensionality of sampled data, thus sacrificing the

benefits afforded by learning in the presence of goal-directed actions. Thus, a principled

and pragmatic method is needed to learn action-oriented models in the presence of both

goal-directed and epistemic actions.

In this paper, we develop an effective method for learning action-oriented models. This

method balances goal-directed and epistemic actions in a principled manner, thereby en-

suring that an agent’s model is tailored to goal-relevant aspects of the environment, while

also ensuring that epistemic actions are contextualized by and directed towards an agent’s

adaptive requirements. To achieve this, we exploit the theoretical framework of active in-

ference, a normative theory of perception, learning and action [Friston and Stephan, 2007a,

Friston, 2010, Friston et al., 2016b]. Active inference proposes that organisms maintain

and update a probabilistic model of their typical (habitable) environment and that the
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states of an organism change to maximize the evidence for this model. Crucially, both

goal-oriented and epistemic actions are complementary components of a single imperative

to maximize model evidence - and are therefore evaluated in a common (information-

theoretic) currency [Friston et al., 2015a, 2016b, 2017a].

We illustrate this approach with a simple agent-based model of bacterial chemotaxis.

This model is not presented as a biologically-plausible account of chemotaxis, but instead,

is used as a relatively simple behaviour to evaluate the hypothesis that adaptive action-

oriented models can be learned via active inference. First, we confirm that learning in

the presence of goal-directed actions leads to parsimonious models that are tailored to

specific behavioural niches. Next, we demonstrate that learning in the presence of goal-

directed actions alone can cause agents to engage in maladaptive cycles of learning and

control - ‘bad bootstraps’ - leading to premature convergence on sub-optimal solutions.

We then show that learning in the presence of epistemic actions allows agents to learn

accurate and exhaustive models of their environment, but that the learned models are

not tailored to any behavioural niche, and are therefore inefficient and unlikely to scale to

complex environments. Finally, we demonstrate that balancing goal-directed and epistemic

actions through active inference provides an effective method for learning efficient action-

oriented models that avoid maladaptive patterns of learning and control. ‘Active inference’

agents learn well-adapted models from a relatively limited number of agent-environment

interactions and do so in a way that benefits from systematic representational inaccuracies.

Our results indicate that probabilistic models can support adaptive behaviour in spite of,

and moreover, because of, the fact they depart from veridical representations of the external

environment.

4.3 Methods

Active inference is a normative theory that unifies perception, action and learning under

a single imperative - the minimization of variational free energy Friston [2010], Friston

et al. [2016b]. Free energy F(φ, o) is defined as:

F(φ, o) = KL[Q(x|φ)||P (x, o)]

= KL[Q(x|φ)||P (x|o)]− lnP (o)
(4.1)

where KL is the Kullback-Libeler divergence (KL-divergence) between two probability

distributions, both of which are parameterized by the internal states of an agent. The

first is the approximate posterior distribution, Q(x|φ), often referred to as the recognition
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distribution, which is a distribution over unknown or latent variables x with sufficient

statistics φ. This distribution encodes an agent’s ‘beliefs’ about the unknown variables x.

Here, the term ‘belief’ does not necessarily refer to beliefs in the cognitive sense but instead

implies a probabilistic representation of unknown variables. The second distribution is the

generative model, P (x, o), which is the joint distribution ozver unknown variables x and

observations o. This distribution encodes an agent’s probabilistic model of its (internal and

external) environment. We provide two additional re-arrangements of Eq-4.1 in Appendix

1.

Minimizing free energy has two functional consequences. First, it minimizes the di-

vergence between the approximate posterior distribution Q(x|φ) and the true posterior

distribution P (x|o), thereby implementing a tractable form of approximate Bayesian in-

ference known as variational Bayes [Hinton and van Camp, 1993]. On this view, perception

can be understood as the process of maintaining and updating beliefs about hidden state

variables s, where s ∈ S. The hidden state variables can either be a compressed repre-

sentation of the potentially high-dimensional observations (i.e. representing an object), or

they can represent quantities that are not directly observable (i.e. velocity). This casts

perception as a process of approximate inference, connecting active inference to influential

theories such as the Bayesian brain hypothesis Knill and Pouget [2004b], Gregory [1980]

and predictive coding Rao and Ballard [1999b]. Under active inference, learning can also

be understood as a process of approximate inference Friston et al. [2016b]. This can be

formalized by assuming that agents maintain and update beliefs over the parameters θ of

their generative model, where θ ∈ Θ. Finally, action can be cast as a process of approx-

imate inference by assuming that agents maintain and update beliefs over control states

u, where u ∈ U , which prescribe actions a, where a ∈ A. The delineation of control states

from actions helps highlight the fact that actions are something which occur ‘in the world’,

whereas control states are unknown random variables that the agent must infer. Together,

this implies that x = (s, θ, u). Approximate inference, encompassing perception, action,

and learning, can then be achieved through the following scheme:

φ∗ = arg min
φ

F(φ, o) (4.2)

In other words, as new observations are sampled, the sufficient statistics φ are updated

in order to minimize free energy (see the Methods section for the implementation used

in the current simulations, or [Buckley et al., 2017a] for an alternative implementation

based on the Laplace approximation). Once the optimal sufficient statistics φ∗ have been

identified, the approximate posterior will become an approximation of the true posterior



45

distribution Q(x|φ∗) ≈ P (x|o), meaning that agents will encode approximately optimal

beliefs over hidden states s, model parameters θ and control states u.

The second consequence of minimizing free energy is that it maximizes the Bayesian

evidence for an agents generative model, or equivalently, minimizes ‘surprisal’ − lnP (o),

which is the information-theoretic surprise of sampled observations (see Appendix 1).

Active inference proposes that an agent’s goals, preferences and desires are encoded in the

generative model as a prior preference for favourable observations (e.g. blood temperature

at 37) Friston et al. [2009b]. In other words, it proposes that an agent’s generative model

is biased towards favourable states of affairs. These prior preferences could be learned

from experience, or alternatively, acquired through processes operating on evolutionary

timescales. The process of actively minimizing free energy will, therefore, ensure that these

favourable (i.e. probable) observations are preferentially sampled Friston et al. [2012c].

However, model evidence cannot be directly maximized through the inference scheme

described by Eq-4.2, as the marginal probability of observations P (o) is independent of

the sufficient statistics φ. Therefore, to maximize model evidence, agents must act in

order to change their observations. This process can be achieved in a principled manner

by selecting actions in order to minimize expected free energy, which is the free energy

that is expected to occur from executing some (sequence of) actions Friston et al. [2015a,

2014].

Expected free energy

To ensure that actions minimize (the path integral of) free energy, an agent’s generative

model should specify that control states are a-priori more likely if they are expected to

minimize free energy in the future, thus ensuring that the process of approximate inference

assigns a higher posterior probability to the control states that are expected to minimize

free energy Parr and Friston [2018b]. The expected free energy for a candidate control state

Gτ (φτ , ut) quantifies the free energy expected at some future time τ given the execution

of some control state ut, where t is the current time point and:

Gτ (φτ , ut) = EQ(oτ ,xτ |ut,φτ )[lnQ(xτ |uτ , φτ )− lnP (oτ , xτ |ut)]

≈ EQ(oτ ,xτ |ut,φτ )

[
lnQ(xτ |ut, φτ )− lnQ(xτ |oτ , ut, φτ )

]︸ ︷︷ ︸
(Negative) epistemic value

−EQ(oτ ,xτ |ut,φτ )

[
lnP (oτ )

]︸ ︷︷ ︸
(Negative) instrumental value

(4.3)
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We describe the formal relationship between free energy and expected free energy in Ap-

pendix 2. In order to evaluate expected free energy, agents must first evaluate the ex-

pected consequences of control, or formally, evaluate the predictive approximate posterior

Q(oτ , xτ |ut, φτ ). We refer readers to the Methods section for a description of this process.

The second (approximate) equality of Eq-4.3 demonstrates that expected free energy

is composed of an instrumental (or extrinsic, pragmatic, goal-directed) component and

an epistemic (or intrinsic, uncertainty-reducing, information-seeking) component. Note

that under active inference, agents are mandated to minimize expected free energy, and

as both the instrumental and epistemic terms are in a negative form in Eq-4.3, expected

free energy will be minimized when instrumental and epistemic value are maximized.

We provide a full derivation of the second equality in Appendix 3, but note here that

the decomposition of expected free energy into instrumental and epistemic value affords

an intuitive explanation. Namely, as free energy quantifies the divergence between an

agent’s current beliefs and its model of the world, this divergence can be minimized via

two methods: by changing beliefs such that they align with observations (associated with

maximizing epistemic value), or by changing observations such that they align with beliefs

(associated with maximizing instrumental value).

Formally, instrumental value quantifies the degree to which the predicted observations

oτ - given by the predictive approximate posterior Q(oτ , xτ |ut, φτ ) - are consistent with

the agents prior beliefs P (oτ ). In other words, this term will be maximized when an

agent expects to sample observations that are consistent with its prior beliefs. As an

agent’s generative model assigns a higher prior probability to favourable observations (i.e.

goals and desires), maximizing instrumental value can be associated with promoting ‘goal-

directed’ behaviours. This formalizes the notion that, under active inference, agents seek

to maximize the evidence for their (biased) model of the world, rather than seeking to

maximize reward as a separate construct (as in, e.g., reinforcement learning) Friston et al.

[2009b].

Conversely, epistemic value quantifies the expected reduction in uncertainty in the

beliefs over unknown variables x. Formally, it quantifies the expected information gain for

the predictive approximate posterior Q(xτ |ut, φτ ). By noting that that x can be factorized

into hidden states s and model parameters θ, we can rewrite positive epistemic value (i.e.

the term to be maximized) as:
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EQ(oτ ,sτ ,θ|ut,φτ )

[
lnQ(sτ |oτ , ut, φτ )− lnQ(sτ |ut, φτ )

]︸ ︷︷ ︸
State epistemic value

+

EQ(oτ ,sτ ,θ|ut,φτ )

[
lnQ(θ|sτ , oτ , ut, φτ )− lnQ(θ|φτ )

]︸ ︷︷ ︸
Parameter epistemic value

(4.4)

We provide a full derivation of Eq-4.4 in Appendix 4 and discuss its relationship to

several established formalisms. Here, we have decomposed epistemic value into state epis-

temic value, or salience, and parameter epistemic value, or novelty Schwartenbeck et al.

[2018]. State epistemic value quantifies the degree to which the expected observations

oτ reduce the uncertainty in an agent’s beliefs about the hidden states sτ . In contrast,

parameter epistemic value quantifies the degree to which the expected observations oτ

and expected hidden states sτ reduce the uncertainty in an agent’s beliefs about model

parameters θ. Thus, by maintaining a distribution over model parameters, the uncer-

tainty in an agent’s generative model can be quantified, allowing for ‘known unknowns’ to

be identified and subsequently acted upon Friston et al. [2017a]. Maximizing parameter

epistemic value, therefore, causes agents to sample novel agent-environment interactions,

promoting the exploration of the environment in a principled manner.

Summary

In summary, active inference proposes that agents learn and update a probabilistic model

of their world, and act to maximize the evidence for this model. However, in contrast to

previous ‘perception-oriented’ approaches to constructing probabilistic models Baltieri and

Buckley [2017], active inference requires an agent’s model to be intrinsically biased towards

certain (favourable) observations. Therefore, the goal is not necessarily to construct a

model that accurately captures the true causal structure underlying observations, but is

instead to learn a model that is tailored to a specific set of prior preferences, and thus

tailored to a specific set of agent-environment interactions. Moreover, by ensuring that

actions maximize evidence for a (biased) model of the world, active inference prescribes a

trade-off between instrumental and epistemic actions. Crucially, the fact that actions are

selected based on both instrumental and epistemic value means that epistemic foraging

will be contextualized by an agent’s prior preferences. Specifically, epistemic foraging will

be biased towards parts of the environment that also provide instrumental value, as these

parts will entail a lower expected free energy relative to those that provide no instrumental

value. Moreover, the degree to which epistemic value determines the selection of actions

will depend on instrumental value. Thus, when the instrumental value afforded by a set
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of actions is low, epistemic value will dominate action selection, whereas if actions afford

a high degree of instrumental value, epistemic value will have less influence on the action

selection. Finally, as agents maintain beliefs about (and thus quantify the uncertainty

of) the hidden state of the environment and the parameters of their generative model,

epistemic value promotes agents to actively reduce the uncertainty in both of these beliefs.

4.3.1 Simulation details

To test our hypothesis that acting to minimize expected free energy will lead to the learning

of well-adapted action-oriented models, we empirically compare the types of model that are

learned under four different action strategies. These are the (i) minimization of expected

free energy, (ii) maximization of instrumental value, (iii) maximization of epistemic value,

and (iv) random action selection, where the minimization of expected free energy (i)

corresponds to a combination of the instrumental (ii) and epistemic (iii) strategies. For

each strategy, we assess model performance after a range of model learning durations.

We assess model performance across several criteria, including whether or not the models

can prescribe well-adapted behaviour, the complexity and accuracy of the learned models,

whether the models are tailored to a behavioural niche, and whether or not the models

become entrenched in maladaptive cycles of learning and control (‘bad-bootstraps’).

We implement a simple agent-based model of bacterial chemotaxis that infers and

learns based on the active inference scheme described above. Specifically, our model im-

plements the ‘adaptive gradient climbing’ behaviour of E. coli. Note that we do not

propose our model as a biologically realistic account of bacterial chemotaxis. Instead, we

use chemotaxis as a relatively simple behaviour that permits a thorough analysis of the

learned models. However, the active inference scheme described in this paper has a degree

of biological plausibility [Friston et al., 2018a], and there is some evidence to suggest that

bacteria engage in model-based behaviours [Mitchell et al., 2009, Mitchell and Lim, 2016,

Freddolino and Tavazoie, 2012, Berg and Brown, 1972]. This behaviour depends on the

chemical gradient at the bacteria’s current orientation. In positive chemical gradients,

bacteria ‘run’ forward in the direction of their current orientation. In negative chemical

gradients, bacteria ‘tumble’, resulting in a new orientation being sampled. This behaviour,

therefore, implements a rudimentary biased random-walk towards higher concentrations

of chemicals. To simulate the adaptive gradient climbing behaviour of E. coli, we utilize

the partially observed Markov Decision Process (POMDP) framework [Puterman, 1994].

This framework implies that agents do not have direct access to the true state of the
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environment, that the state of the environment only depends on the previous state and

the agent’s previous action, and that all variables and time are discrete. Note that while

agents operate on discrete representations of the environment, the true states of the en-

vironment (i.e the agent’s position, the location of the chemical source, and the chemical

concentrations) are continuous.

At each time step t, agents receive one of two observations, either a positive chemical

gradient opos or a negative chemical gradient oneg. The chemical gradient is computed

as a function of space (whether the agent is facing towards the chemical source) rather

than time (whether the agent is moving towards the chemical source) Thar and Kuhl

[2003], and thus only depends on the agent’s current position and orientation, and the

position of the chemical source. After receiving an observation, agents update their beliefs

in order to minimize free energy. In the current simulations, agents maintain and update

beliefs over three variables. The first is the hidden state variable s, which represents the

agent’s belief about the local chemical gradient, and which has a domain of {spos, sneg},

representing positive and negative chemical gradients, respectively. The second belief is

over the parameters θ of the agent’s generative model, which describe the probability of

transitions in the environment, given action. The final belief is over the control variable u,

which has the domain of {urun, utumble}, representing running and tumbling respectively.

Agents are also endowed with the prior belief that observing positive chemical gradients

opos is a-priori more likely, such that the evidence for an agent’s model is maximized (and

free energy minimized) when sampling positive chemical gradients.

Once beliefs have been updated, agents execute one of two actions, either run arun or

tumble atumble, depending on which of the corresponding control states was inferred to

be more likely. Running causes the agent to move forward one unit in the direction of

their current orientation, whereas tumbling causes the agent to sample a new orientation

at random. The environment is then updated and a new time step begins. We refer

the reader to the Methods section for a full description of the agents generative model,

approximate posterior, and the corresponding update equations for inference, learning and

action.
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Figure 4.2: Simulation & model details

(A) Agent overview: Agents act in an environment which is described by states ψ,

which are unknown to the agent but generate observations o. The agent maintains be-

liefs about the state of the environment s, however, s and ψ need not be homologous.

Agents also maintain beliefs about control states u, which in turn prescribe actions a.

Finally, the agent maintains beliefs over model parameters θ, which describe the prob-

ability of transitions in s under different control states u. (B) Actions: at each time

step, agents can either run, which moves them forward one unit in the direction of their

current orientation, or tumble, which causes a new orientation to be sampled at random.

(C) Approximate posterior: the factorization of the approximate posterior, and the

definition of each factor. In this figure, x denotes the variables that an agent infers and φ

denotes the parameters of the approximate posterior. We refer readers to Methods section

for a full description of these distributions. (D) Generative model: the factorization

of the generative model and the definition of each factor. Here, λ denotes the parame-

ters of likelihood distribution and α denotes the parameters of the prior distribution over

parameters. We again refer readers to the methods section for full descriptions of these

distributions. (E) Free energy minimization: the general scheme for free energy min-

imization under the mean-field assumption. We refer readers to the Methods section for

further details. (F) Control state inference: the update equation for control state

inference, where Q̃ = Q(oτ , sτ , θ|ut). This equation highlights the difference between the

three action-strategies considered in the following simulations.
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4.3.2 The generative model

The agent’s generative model specifies the joint probability over observations o, hidden

state variables s, control variables u and parameter variables θ. To account for temporal

dependencies among variables, we consider a generative model that is over a sequence of

variables through time, i.e. x̃ = {x1, ..., xt}, where tilde notation indicates a sequence from

time t = 0 to the current time t, and xt denotes the value of x at time t. The generative

model is given by the joint probability distribution P (õ, s̃, ũ, θ|λ, α), where:

P (õ, s̃, ũ, θ|λ, α) = P (θ|α)

T∏
t=1

P (ot|st, λ)P (st|st−1, ut−1, θ)P (ut)

P (ot|st, λ) = Cat(λ)

P (st|st−1, ut−1, θ) = Cat(θ)

P (θ|α) = Dir(α)

P (ut) = σ(−G̃)

(4.5)

where σ(·) is the softmax function. For simplicity, we initialize P (st=0) as a uniform

distribution, and therefore exclude it from equation 4.5.

The likelihood distribution specifies the probability of observing some chemical gra-

dient ot given a belief about the chemical gradient st. This distribution is described by

a set of categorical distributions, denoted Cat(·), where each categorical distribution is

a distribution over k discrete and exclusive possibilities. The parameters of a categorical

distribution can be represented as a vector with each entry describing the probability of

some event pi, with
∑k

i=1 pi = 1. As the likelihood distribution is a conditional distri-

bution, a separate categorical distribution is maintained for each hidden state in S, (i.e.

spos and sneg), where each of these distributions specifies the conditional probability of

observing some chemical gradient (either opos and oneg). The parameters of the likelihood

distribution can therefore be represented as a 2 x 2 matrix where each column j is a cate-

gorical distribution that describes P (ot|st = j, λ). For the current simulations, we provide

agents with the parameters λ and do not require these parameters to be learned. The

provided parameters encode the belief that there is an unambiguous mapping between

spos and opos, and between sneg and oneg, meaning that λ can be encoded as an identity

matrix.

The prior probability over hidden states st is given by the transition distribution

P (st|st−1, ut−1, θ), which specifies the probability of the current hidden state, given beliefs
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about the previous hidden state and the previous control state. In other words, this dis-

tribution describes an agent’s beliefs about how running and tumbling will cause changes

in the chemical gradient. Following previous work Friston et al. [2015a], we assume that

agents know which control state was executed at the previous time step. As with the like-

lihood distribution, the prior distribution is described by a set of categorical distributions.

Each categorical distribution j specifies the probability distribution P (st|st−1 = j, θ), such

that P (st|st−1, θ) can again be represented as a 2 x 2 matrix. However, the transition dis-

tribution is also conditioned on control states u, meaning a separate transition matrix is

maintained for both urun and utumble, such that the transition distribution can be repre-

sented as a 2 x 2 x 2 tensor. Agents, therefore, maintain separate beliefs about how the

environment is likely to change for each control state.

We require agents to learn the parameters θ of the transition distribution. At the

start of each learning period, we randomly initialize θ, such that agents start out with

random beliefs about how actions cause transitions in the chemical gradient. To enable

these parameters to be learned, the generative model encodes (time-invariant) prior beliefs

over θ in the distribution P (θ|α). This distribution is modelled as Dirichlet distribution,

denoted Dir(·), where α are the parameters of this distribution. A Dirichlet distribution

represents a distribution over the parameters of a distribution. In other words, sampling

from this distribution returns a vector of parameters, rather than a scalar. By maintaining

a distribution over θ, the task of learning about the environment is transformed into a

task of inferring unknown variables.

Finally, the prior probability of control states is proportional to a softmax transfor-

mation of −G̃, which is a vector of (negative) expected free energies, with one entry for

each control state. This formalizes the notion that control states are a-priori more likely

if they are expected to minimize free energy. We provide a full specification of expected

free energy in the following sections.

4.3.3 The approximate posterior

The approximate posterior encodes an agent’s current approximately posterior beliefs

about the chemical gradient s, the control state u and model parameters θ. As with the

generative model, the approximate posterior is over a sequence of variables Q(s̃, ũ, θ|φ),

where φ are the sufficient statistics of the distribution.

In order to make inference tractable, we utilize the mean-field approximation to factor-

ize the approximate posterior. This approximation treats a potentially high-dimensional
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distribution as a product of a number of simpler marginal distributions. Heuristically, this

treats certain variables as statistically independent. Practically, it allows us to infer indi-

vidual variables while keeping the remaining variables fixed. This approximation makes

inference tractable, at the (potential) price of making inference sub-optimal. For inference

to be optimal, the factorization of the approximate posterior must match the factorization

of the true posterior.

Here, we factorize over time, the beliefs about the chemical gradient, the beliefs about

model parameters and the beliefs about control states:

Q(s̃, ũ, θ|φ) = Q(θ|φα)
T∏
t=0

Q(st|φst)Q(ut|φut)

Q(θ|φα) = Dir(φα)

Q(st|φst) = Cat(φst)

Q(ut|φut) = Cat(φut)

(4.6)

4.3.4 Inference, learning and action

Having defined the generative model and the approximate posterior, we can now specify

how free energy can be minimized. In brief, this involves updating the sufficient statistics

of the approximate posterior φ as new observations are sampled. To minimize free energy,

we identify the derivative of free energy with respect to the sufficient statistics ∂F(φ,o)
∂φ ,

solve for zero, i.e. ∂F(φ,o)
∂φ = 0, and rearrange to give the variational updates that minimize

free energy. Given the mean-field assumption, we can perform this scheme separately for

each of the partitions of φ, i.e φst , φut and φα

For the current scheme, the update equations for the hidden state parameters φs are

(see Appendix 5 for a full derivation):

φst = σ(lnP (ot|st, λ) + lnP (st|st−1, ut−1, θ)) (4.7)

This equation corresponds to state estimation or ‘perception’ and can be construed as a

Bayesian filter that combines the likelihood of the current observation with a prior belief

that is based on the previous hidden state and the previous control state. To implement

this update in practice, we rewrite equation 4.7 in terms of the relevant parameters and

sufficient statistics (see Appendix 5):
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φst = σ(lnλ · ~ot + θ̄ut−1 · φst−1)

θ̄ut−1 = EQ(θ|φα)[ln θ
ut−1 ]

= ψ(φut−1
αij )− ψ(

n∑
i=1

φut−1
αj )

(4.8)

Here, ~ot is a one-hot encoded vector specifying the current observation, θu specifies

the transition distribution corresponding to control state u, and ψ(·) is the digamma

function. Note that the parameters of the likelihood distribution λ are point-estimates of

a categorical distribution, meaning it is possible to straightforwardly take the logarithm of

this distribution. However, the beliefs about θ are described by the Dirichlet distribution

Q(θ|α), meaning that the mean of the logarithm of this distribution (denoted θ̄) must be

evaluated (leading to lines two and three of equation 4.8).

Learning can be conducted in a similar manner by updating the parameters φα (see

Appendix 5 for a full derivation):

φuα = αu +

T∑
t=1

[at−1 = ut−1] · ξφstφst−1
(4.9)

where [·] is an inversion bracket that returns one if the statement inside the bracket is true

and zero otherwise, and ξ is an artificial learning rate, set to 0.001 for all simulations. Note

that we update the parameters φα after each iteration, but use a small learning rate to

simulate the difference in time scales implied by the factorization of the generative model

and approximate posterior. This update bears a resemblance to Hebbian plasticity, in the

sense that the probability of each parameter increases if the corresponding transition is

observed (i.e. ‘fire together wire together’).

Finally, actions can be inferred by updating the parameters φut , where the update is

given by (see Appendix 5 for a full derivation):

φut = σ(−G̃) (4.10)

This equation demonstrates that the (approximately) posterior beliefs over control states

are proportional to the vector of negative expected free energies. In other words, the

posterior and prior beliefs about control states are identical.

4.3.5 Expected free energy

In this section, we describe how to evaluate the vector −G̃. This is a vector of negative

expected free energies, with one for each control state u ∈ U . As specified in the formalism,
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the negative expected free energy for a single control state is defined as −Gτ (ut), where

τ is some future time point, and, for the current simulations:

−Gτ (ut) = EQ(oτ ,sτ ,θ|ut,φτ )

[
lnQ(θ|sτ , oτ , ut, φτ )− lnQ(θ|φτ )

]︸ ︷︷ ︸
Parameter epistemic value

+ EQ(oτ ,sτ ,θ|ut,φτ )[lnP (oτ )]︸ ︷︷ ︸
Instrumental value

(4.11)

As described in the results section, we ignore the epistemic value for hidden states,

as there is no uncertainty in the likelihood distribution. Moreover, for all simulations,

τ = t+ 1, such that we only consider the immediate the immediate effects of action. This

scheme is, however, entirely consistent with a sequence of actions, i.e. a policy.

In order to evaluate expected free energy, we rewrite equation 4.11 in terms of pa-

rameters. By noting that EQ(oτ ,sτ ,θ|ut,φτ )[lnP (oτ )] = EQ(oτ |ut,φτ )[lnP (oτ )], we can write

instrumental value as:

EQ(oτ |ut,φτ )[lnP (oτ )] = φoτ · ρ (4.12)

where φoτ are the sufficient statistics of Q(oτ |ut, φτ ), and ρ are the parameters of P (oτ ),

which is a categorical distribution, such that ρ is a vector with one entry for each o ∈ O.

In order to evaluate parameter epistemic value, we utilise the following approximation:

EQ(oτ ,sτ ,θ|ut,φτ )

[
lnQ(θ|sτ , oτ , ut, φτ )− lnQ(θ|φτ )

]
≈ φsτ ·Wut · φst

Wut =
n∑
i=1

φ−1
αj − φ

−1
α

(4.13)

For details of this approximation, we refer the reader to Friston et al. [2017a]. For a given

control state ut, negative expected free energy can, therefore, be calculated as:

−Gτ (ut) = φsτ ·Wut · φst + δ(φoτ · ρ) (4.14)

where φsτ are the sufficient statistics of Q(sτ |ut, φτ ) and δ is an optional weighting term.

For all simulations, this is set to 1/10. To calculate equation 4.14, it is first necessary

to evaluate the expected beliefs Q(sτ |ut, φτ ) and Q(oτ |ut, φτ ). The expected distribution

over hidden states Q(sτ |ut, φτ ) is given by EQ(st|ut,φτ )

[
P (sτ |st, ut, θ)

]
. Given these beliefs

over future hidden states, we can evaluate Q(oτ |ut, φτ ) as EQ(sτ |ut,φτ )

[
P (oτ |sτ , λ)

]
.

4.3.6 Agents

All of the action strategies we compare infer posterior beliefs over hidden states, model

parameters and control states via the minimization of free energy. However, they differ in
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how they assign prior (and thus posterior) probability to control states. The first strategy

we consider is based on the minimization of expected free energy, which entails the following

prior over control states:

PEFE(ut) = σ
(
EQ(oτ ,sτ ,θ|ut,φτ )

[
lnQ(θ|sτ , oτ , ut, φτ )− lnQ(θ|φτ )

]
+ EQ(oτ ,sτ ,θ|ut,φτ )[lnP (oτ )]

) (4.15)

where σ(·) is the softmax function, which ensures that PEFE(ut) is a valid distribution. The

first term corresponds to parameter epistemic value, or ‘novelty’, and quantifies the amount

of information the agent expects to gain about their (beliefs about their) model parameters

θ. The second term corresponds to instrumental value and quantifies the degree to which

the expected observations conform to prior beliefs. Therefore, the expected free energy

agent selects actions that are expected to result in probable (‘favourable’) observations,

and that are expected to disclose maximal information about the consequences of action.

Note that in the following simulations, agents have no uncertainty in their likelihood

distribution, which describes the relationship between the hidden state variables s and the

observations o (see Methods). As such, the expected free energy agent does not assign

probability to control states based on state epistemic value. Formally, when there is no

uncertainty in the likelihood distribution, state epistemic value reduces to the entropy of

the predictive approximate posterior over s, see Friston et al. [2015a]. For simplicity, we

have omitted this term from the current simulations.

The second strategy is the instrumental, or ‘goal-directed’, strategy, which utilizes the

following prior over control states:

PInstrumental(ut) = σ
(
EQ(oτ ,sτ ,θ|ut,φτ )[lnP (oτ )]

)
(4.16)

The instrumental agent, therefore, selects actions that are expected to give rise to favourable

observations. The third strategy is the epistemic, or ‘information-seeking’, strategy, which

is governed by the following prior over control states:

PEpistemic(ut) = σ
(
EQ(oτ ,sτ ,θ|ut,φτ )

[
lnQ(θ|sτ , oτ , ut, φτ )− lnQ(θ|φτ )

])
(4.17)

The epistemic agent selects actions that are expected to disclose maximal information

about model parameters. The final strategy is the random strategy, which assigns prior

probability to actions at random. These models were chosen to explore the relative contri-

butions of instrumental and epistemic value to model learning, and crucially, to understand

their combined influence. We predict that, when acting to minimize expected free energy,

agent’s will engage in a form of goal-directed exploration that is biased by their prior pref-

erences, leading to adaptive action-oriented models. In contrast, we expect that (i) the
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instrumental agent will occasionally become entrenched in bad-bootstraps, due to the lack

of exploration, and (ii) the epistemic agent will explore portions of state space irrelevant

to behaviour, leading to slower learning. An overview of the model can be found in Fig-4.2

and implementation details for all four strategies are provided in the Methods section.

4.4 Results

4.4.1 Model performance

We first assess whether the learned models can successfully generate chemotactic be-

haviour. We quantify this by measuring an agent’s distance from the source after an

additional (i.e., post-learning) testing phase. Each testing phase begins by placing an

agent at a random location and orientation 400 units from the chemical source. The agent

is then left to act in the environment for 1000 time steps, utilizing the model that was

learned during the preceding learning phase. No additional learning takes place during

the testing phase. As the epistemic and random action strategies do not assign any instru-

mental (goal-oriented) value to actions, there is no tendency for them to navigate towards

the chemical source. Therefore, to ensure a fair comparison between action strategies, all

agents select actions based on the minimization of expected free energy during the testing

phase. This allows us to assess whether the epistemic and random strategies can learn

models that can support chemotactic behaviour, and ensures that any observed differences

are determined solely by attributes of the learned models.

Fig-4.3a shows the final distance from the source at the end of the testing phase,

plotted against the duration of the preceding learning phase, and averaged over 300 learned

models for each action strategy and learning duration. The final distance of the expected

free energy, epistemic and random strategies decreases with the amount of time spent

learning, meaning that these action strategies were able to learn models which support

chemotactic behaviour. However, the instrumental strategy shows little improvement over

baseline performance, irrespective of the amount of time spent learning. Note that the first

learning period consists of zero learning steps, meaning that the corresponding distance

gives the (averaged) baseline performance for a randomly initialized model. This is less

than the initial distance (400 units) as some of the randomly initialized models can support

chemotaxis without any learning. The final distance from the source for the expected free

energy, epistemic and random agents is not zero due to the nature of the adaptive-hill

climbing chemotaxis strategy, which causes agents to not to settle directly on the source,
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but instead navigate around its local vicinity. Models learned by the expected free energy

strategy consistently finish close to the chemical source, and learn chemotactic behaviour

after fewer learning steps relative to the other strategies.

Figure 4.3: (A) Chemotactic performance: The average final distance from the

chemical source after an additional testing phase, in which agents utilized the models

learned in the corresponding learning phase. The average distance is plotted against the

number of steps in the corresponding learning phase and is averaged over 300 models

for each strategy and learning duration. Note that the x-axis denotes the number of time

steps in the learning phase, rather than the number of time steps in the subsequent testing

phase. Filled regions show +-SEM. (B) Examples trajectories: The spatial trajectories

of agents who successfully navigated up the chemical gradient towards the chemical source.

4.4.2 Model accuracy

We now move on to consider whether learning in the presence of goal-oriented behaviour

leads to models that are tailored to a behavioural niche. First, we assess how each action

strategy affects the overall accuracy of the learned models. To test this, we measure

the KL-divergence between the learned models and a ‘true’ model of agent-environment

dynamics. Here, a ‘true’ model describes a model that has the same variables, structure

and fixed parameters, but which has had infinite training data over all possible action-

state contingencies. Due to the fact that the true generative process does not admit the

notion of a prior, we measure the accuracy of the expectation of the approximate posterior

distribution over parameters θ, i.e. E[Q(θ|φα)]. Fig-4.4a shows the average accuracy of the

learned models for each action strategy, plotted against the amount of time spent learning.

These results demonstrate that the epistemic and random strategies consistently learn the

most accurate models while the instrumental strategy consistently learns the least accurate
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models. However, the expected free energy strategy learns a model that is significantly

less accurate than both the epistemic and random strategies, indicating that the most

well-adapted models are not necessarily the most accurate.
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Figure 4.4: Model accuracy

(A) Model accuracy: The average negative model accuracy, measured as the KL-

divergence from a ‘true’ model of agent-environment dynamics. The accuracy is plotted

against the number of steps in the corresponding learning phase and is averaged over 300

models for each strategy. (B) Distributions of state transitions: The distribution

of action-dependent state transitions for each strategy over 1000 learning steps, averaged

over 300 models for each strategy. (C) Change in distributions: The average change in

each of the distributions of the full learned model, measured as the KL-divergence between

the original (randomly-initialized) distributions and the final (post-learning) distribution.

Refer to Methods section for a description of these distributions. (D & E) Reversed

preferences: These results are the same as for panels B & C, but for the case where

agents have reversed preferences (i.e. priors). The results demonstrate that the models of

expected free energy and instrumental agent are sensitive to prior preferences. (F) Ac-

tive/passive prediction error: The cumulative mean squared error of counterfactual

predictions about state transitions, over 1000 steps learning and averaged over 300 agents.
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Fig-4.4a additionally suggests that the epistemic and random strategies learn equally

accurate models. This result may appear surprising, as the epistemic strategy actively

seeks out transitions that are expected to improve model accuracy. However, given the

limited number of possible state transitions in the current simulation, it is plausible that

a random strategy offers a near-optimal solution to exploration. To confirm this, we

evaluated the accuracy of models learned by the epistemic and random strategies in high-

dimensional state space. The results of this experiment are given in Appendix 6, where

it can be seen that the epistemic strategy does indeed learn models that are considerably

more accurate than the random strategy.

We hypothesized that the expected free energy and instrumental strategies learned less

accurate models because they were acting in a goal-oriented manner while learning. This,

in turn, may have caused these strategies to selectively sample particular (behaviourally-

relevant) transitions, at the cost of sampling other (behaviourally-irrelevant) transitions

less frequently. To confirm this, we measured the distribution of state transitions sampled

by each of the strategies after 1000 time steps learning, averaged over 300 agents. Because

agents learn an action-conditioned representation of state transitions, i.e. P (st|st−1, ut−1, θ),

we separate state transitions that follow agents running from those that follow agents

tumbling. Here, the notion of a state transition refers to a change in the state of the

environment as a function of time, i.e. a positive to negative state transition implies that

the agent was in a positive chemical gradient at time t and a negative chemical gradient at

t+ 1. These results are shown in Fig-4.4b. Here, columns indicate the state at the previ-

ous time step, whereas rows indicate the state following the transition. The top matrices

display transitions that follow from tumbling, whereas the bottom matrices display tran-

sitions that follow from running. The numbers indicate the percentage of time that the

corresponding state transition was encountered. For instance, the top left box denotes the

percentage of time the agent experienced negative to negative state transitions following

a tumbling action. Note that the distribution of transitions encountered by the epistemic

and random strategies corresponds, within a small margin of error, to the distribution of

transitions encountered by a ‘true’ model, i.e. a model that has been learned from infinite

transitions with no behavioural biases. For the epistemic and random strategies, the distri-

bution is uniformly spread over (realizable) state transitions (running-induced transitions

from positive to negative and negative to positive gradients are rare for all strategies, as

such transitions can only occur in small portions of the environment). In contrast, the

distributions sampled by the expected free energy and instrumental strategies are heavily
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biased towards a running-induced transitions from positive gradients to again a positive

gradient. This is the transition that occurs when an agent is ‘running up the chemical

gradient’, i.e., performing chemotaxis. The bias means that the remaining transitions

between states are sampled less, relative to the epistemic and random strategies.

How do the learned models differ, among the four action strategies? To address this

question, we measured the post-learning change in different distributions of the full model.

This change reflects a measure of ‘how much’ an agent has learned about that particular

distribution. As described in the Methods, the full transition model P (st|st−1, ut−1, θ)

is composed of four separate categorical distributions. The first describes the effects of

tumbling in negative gradients, the second describes the effects of tumbling in positive gra-

dients, the third describes the effects of running in negative gradients, and fourth describes

the effects of running in positive gradients. Fig-4.4c plots the KL-divergence between each

of the original (randomly-initialized) distributions and the subsequent (post-learning) dis-

tributions. These results show that the expected free energy and instrumental strategies

learn substantially less about three of the distributions, compared to the epistemic and ran-

dom agents, explaining the overall reduction of accuracy displayed in Fig-4.4a. However,

for the distribution describing the effects of running in positive gradients, the instrumen-

tal strategy learns as much as the epistemic and random strategies, while the expected

free energy strategy learns substantially more. These results, therefore, demonstrate that

acting in a goal-oriented manner biases an agent to preferentially sample particular (goal-

relevant) transitions in the environment and that this, in turn, causes agents to learn more

about these (goal-relevant) transitions.

To further verify this result, we repeated the analysis described in Fig-4.4b and 4.4c,

but for the case where agents learn in the presence of reversed prior preferences (i.e. the

agents believe that observing negative chemical gradients is a-priori more likely, and thus

preferable). The results for these simulations are shown in 4.4d and 4.4e, where it can be

seen that the expected free energy and instrumental strategy now preferentially sample

running-induced transitions from negative to negative gradients, and learn more about the

distribution describing the effects of running in negative gradients. This is the distribution

relevant to navigating down the chemical gradient, a result that is expected if the learned

models are biased towards prior preferences. By contrast, the models learned by the

epistemic and random agents are not dependent on their prior beliefs or preferences.
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4.4.3 Active and passive accuracy

The previous results suggest that learning in the presence of goal-directed behaviour leads

to models that are biased towards certain patterns of agent-environment interaction. To

further elucidate this point, we distinguish between active accuracy and passive accuracy.

We define active accuracy as the accuracy of a model in the presence of the agents own self-

determined actions (i.e. the actions chosen according to the agent’s strategy), and passive

accuracy as the accuracy of a model in the presence of random actions. We measured both

the passive and active accuracy of the models learned under different action strategies

following 300 time-steps of learning. To do this, we let agents act in their environment for

an additional 1000 time steps according to their action strategy, and, at each time step,

measured the accuracy of their counterfactual predictions about state transitions. In the

active condition, agents predicted the consequence of a self-determined action, whereas,

in the passive condition, agents predicted the consequence of a randomly selected action.

We then measured the mean squared error between the agents’ predictions and the ‘true’

predictions (i.e. the predictions given by the ‘true’ model, as described for Fig-4.4a). The

accumulated prediction errors for the passive and active conditions are shown in Fig4.4f,

averaged over 300 learned models for each strategy. As expected, there is no difference

between the passive and active condition for the random strategy, as this strategy selects

actions at random. The epistemic strategy shows the highest active error, which is due to

the fact that the epistemic strategy seeks out novel (and thus less predictable) transitions.

The instrumental strategy has the lowest active prediction error, and therefore the highest

active accuracy. This is consistent with the view that learning in the presence of goal-

directed behaviour allows agents to learn models that are accurate in the presence of their

self-determined behaviour. Finally, the expected free energy strategy has an active error

that is lower than the epistemic and random strategies, but higher than the instrumental

strategy. This arises from the fact that the expected free energy strategy balances both

goal-directed and epistemic actions. Note that, in the current context, active accuracy

is improved at the cost of passive accuracy. While the instrumental strategy learns the

least accurate model, it is the most accurate at predicting the consequences of its self-

determined actions

4.4.4 Pruning parameters

We now consider whether learning in the presence of goal-directed behaviour leads to sim-

pler models of agent-environment dynamics. A principled way to approach this question
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is to ask whether each of the model’s parameters are increasing or decreasing the Bayesian

evidence for the overall model, which provides a measure of both the accuracy and the

complexity of a model. In brief, if a parameter decreases model evidence, then removing -

or ‘pruning’ - that parameter results in a model with higher evidence. This procedure can,

therefore, provide a measure of how many ‘redundant’ parameters a model has, which, in

turn, provides a measure of the complexity of a model (assuming that redundant parame-

ters can, and should, be removed). We utilise the method of Bayesian model reduction to

evaluate the evidence for models with removed parameters. This procedure allows us to

evaluate the evidence for reduced models without having to refit the model’s parameters.

We first let each of the strategies learn a model for 500 time-steps. The parameters

optimized during this learning period are then treated as priors for an additional (i.e.,

post-learning) testing phase. During this testing phase, agents act according to their

respective strategies for an additional 500 time-steps, resulting in posterior estimates of

the parameters.

Given the prior parameters α and posterior parameters φα, we can evaluate an approx-

imation for the change in model evidence under a reduced model through the equation:

∆F = ln B(φα) + ln B(α′)− ln B(α)− ln B(φα + α′ − α) (4.18)

where ln B(·) is the beta function, α′ are the prior parameters of the reduced model,

and F is the variational free energy, which provides a tractable approximation of the

Bayesian model evidence. See [Friston et al., 2017a] for a derivation of Eq-4.18. If ∆F is

positive, then the reduced model - described by the reduced priors α′ - has less evidence

than the full model, and vice versa. We remove each of the prior parameters individually

by setting their value to zero and evaluate Eq-4.18. Fig-4.5a shows the percentage of trials

that each parameter was pruned for each of the action strategies, averaged over 300 trials

for each strategy. For the instrumental and epistemic agents, the parameters describing

the effects of running in negative gradients and tumbling in positive gradients are most

often pruned, as these are the parameters that are irrelevant to chemotaxis (which involves

running in positive chemical gradients and tumbling in negative chemical gradients). In

Fig-4.5b we plot the total number of parameters pruned, averaged over 300 agents. These

results demonstrate that the expected free energy strategy entails models that have the

highest number of redundant parameters, followed by the instrumental strategy. Under

the assumption that redundant parameters can, and should, be pruned, the expected free

energy and instrumental strategies learn simpler models, compared to the epistemic and
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random strategies. These results additionally suggest that pruning parameters will prove

to be more beneficial (in terms of model complexity) for action-oriented models.

Figure 4.5: Model complexity

(A) Number of pruned parameters: Percentage of times each parameter was pruned,

averaged over 300 agents. A parameter was pruned if it decreased the evidence for agents

model. (B) Total pruned parameters: The average number of total number of pruned

parameters, averaged over 300 agents.

4.4.5 Bad bootstraps and sub-optimal convergence

In the Introduction, we hypothesized that ’bad-bootstraps’ occur when agents (and their

models) become stuck in maladaptive cycles of learning and control, resulting in an even-

tual failure to learn well-adapted models. To test for the presence of bad-bootstraps, we

allowed agents to learn models over an extended period of 4,000-time steps. We allowed

this additional time to exclude the possibility that opportunities to learn had not been

fully exploited by agents. (We additionally conducted the same experiment with 10,000-

time steps; results were unchanged). We then tested the learned models on their ability to

support chemotaxis, by allowing them to interact with their environment for an additional

1,000 time-steps using the expected free energy action strategy. To quantify whether the

learned models were able to perform chemotaxis in any form, we measured whether the

agent had moved more than 50 units towards the source by the end of the testing period.

After 4,000 learning steps, all the agents that had learned models using the expected

free energy, epistemic or random strategies were able to perform at least some chemotaxis.

In contrast 36% of the agents that had learned models under maximization of instrumental

value did not engage in any chemotaxis at all. To better understand why instrumental

agents frequently failed to learn well-adapted models, even after significant learning, we

provide an analysis of a randomly selected failed model. This model prescribes a be-

havioural profile whereby agents continually tumble, even in positive chemical gradients.
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This arises from the belief that tumbling is more likely to give rise to positive gradients,

even when the agent is in positive gradients. In other words, the model encodes the erro-

neous belief that, in positive gradients, running will be less likely to give rise to positive

chemical gradients, relative to tumbling. Given this belief, the agent continually tumbles,

and therefore never samples information that disconfirms this maladaptive belief. This

exemplifies a ’bad bootstrap’ arising from the goal-directed nature of the agent’s action

strategy.

Finally, we explore how assigning epistemic value to actions can help overcome bad

bootstraps. We analyse an agent which acts to minimize expected free energy, quantifying

the relative contributions of epistemic and instrumental value to running and tumbling.

We initialize an agent with a randomly selected maladapted model and allow the agent

to interact with (and learn from) the environment according to the expected free energy

action strategy (i.e using the E.F.E agent). In Fig-4.6a, we plot the (negative) expected

free energy of the running and tumbling control states over time, along with the relative

contributions of instrumental and epistemic value. These results show that the (negative)

expected free energy for the tumble control state is initially higher than that of the running

control state because the agent believes there is less instrumental value in running. This

causes the agent to tumble, which in turn causes the agent to gather information about the

effects of tumbling. Consequently, the model becomes less uncertain about the expected

effects of tumbling, thereby decreasing the epistemic value of tumbling (and thus the

(negative) expected free energy of tumbling). This continues until the negative expected

free energy of tumbling becomes less than that of running, which has remained constant

(since the agent has not yet gained any new information about running). At this point,

the agent infers running to be the more likely action, which causes the agent to run. The

epistemic value of running now starts to decrease, but as it does so the new sampled

observations disclose information that running is very likely to cause transitions from

positive to positive gradients (i.e., to maintain positive gradients). The instrumental

value of running (and thus the negative expected free energy of running) therefore sharply

increases in positive gradients, causing the agent to continue to run in positive gradients.

Note that this agent did not fully resolve its uncertainty about tumbling. This highlights

the fact that, under active inference, the epistemic value of an action is contextualized by

current instrumental imperatives.
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Figure 4.6: Overcoming bad-bootstraps

(A) Expected free energy: a plot of expected free energy for run and tumble control

states overtime for an agent with an initially maladapted model. This model encodes the

erroneous belief that running is less likely to give rise to positive chemical gradients, relative

to tumbling. Therefore, at the start of the trial, the instrumental value of tumbling (green

dotted line) is higher than the instrumental value of running (purple dotted line). The

epistemic value of both running and tumbling (brown and red dotted lines, respectively)

is initially the same. As the (negative) expected free energy for tumbling (orange line) is

higher than the (negative) expected free energy for running (blue line), the agent tumbles

for the first 900 time steps. During this time, agents gain information about the effects

of tumbling, and the epistemic value of tumbling decreases, causing the negative expected

free energy for tumbling to also decrease. This continues until the negative expected

free energy is for tumbling is lower than the negative expected free energy for running,

which has remained constant. Agents then run and gather information about the effects

of running. This causes the epistemic value of running to decrease, but also causes the

instrumental value of running to sharply increase, as the new information disconfirms their

erroneous belief that running will not give rise to positive gradients.

4.5 Discussion

Equipping agents with generative models provides a powerful solution to prescribing well-

adapted behaviour in structured environments. However, these models must, at least in

part, be learned. For behaving agents - i.e., biological agents - the learning of generative

models necessarily takes place in the presence of actions; i.e., in an ‘online’ fashion, during

ongoing behaviour. Such models must also be geared towards prescribing actions that are

useful for the agent. How to learn such ‘action-oriented’ models poses significant challenges
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for both computational biology and model-based reinforcement learning (RL).

In this paper, we have demonstrated that the active inference framework provides

a principled and pragmatic approach to learning adaptive action-oriented models. Un-

der this approach, the minimization of expected free energy prescribes an intrinsic and

context-sensitive balance between goal-directed (instrumental) and information-seeking

(epistemic) behaviours, thereby shaping the learning of the underlying generative models.

After developing the formal framework, we illustrated its utility using a simple agent-based

model of bacterial chemotaxis. We compared three situations. When agents learned solely

in the presence of goal-directed actions, the learned models were specialized to the agent’s

behavioural niche but were prone to converging to sub-optimal solutions, due to the in-

stantiation of ‘bad-bootstraps’. Conversely, when agents learned solely in the presence

of epistemic (information-seeking) actions, they learned accurate models which avoided

sub-optimal convergence, but at the cost of reduced sample efficiency due to the lack of

behavioural specialisation.

Finally, we showed that the minimisation of expected free-energy effectively-balanced

goal-directed and information-seeking actions, and that the models learned in the presence

of these actions were tailored to the agent’s behaviours and goal, and were also robust

to bad-bootstraps. Learning took place efficiently, requiring fewer interactions with the

environment. The learned models were also less complex, relative to other strategies. Im-

portantly, models learned via active inference departed in systematic ways from a veridical

representation of the environment’s true structure. For these agents, the learned models

supported adaptive behaviour not only in spite of, but because of, their departure from

veridicality.

4.5.1 Learning action-oriented models: good and bad bootstraps

When learning generative models online in the presence of actions, there is a circular

dynamic in which learning is coupled to behaviour. The (partially) learned models are

used to specify actions, and these actions provide new data which is then used to update

the model. This circular dynamic (or ‘information self-structuring’ [Montúfar et al., 2015])

raises the potential for both ‘good’ and ‘bad’ bootstraps.

If actions are selected based purely on (expected) instrumental value, then the resulting

learned models will be biased towards an agent’s behavioural profile and goals (or prior

preferences under the active inference framework - see Fig-4c & 4e), but will also be

strongly constrained by the model’s initial conditions. In our simulations, we showed that



69

learning from instrumental actions was prone to the instantiation of ‘bad-bootstraps’.

Specifically, we demonstrated that these agents typically learned an initially maladapted

model due to insufficient data or sub-optimal initialisation, and then subsequently used

this model to determine goal-directed actions. This resulted in agents engaging with the

environment in a sub-optimal and biased manner, thereby reintroducing sub-optimal data

and causing models to become entrenched within local minima. Recent work in model-

based RL has identified this coupling to be one of the major obstacles facing current

model-based RL algorithms [Wang and Ba, 2019]. More generally, it is likely that bad-

bootstraps are a prevalent phenomenon whenever parameters are used to determine the

data from which the parameters are learned. Indeed, this problem played a significant

role in motivating the (now common) use of ‘experience replay’ in model-free RL [Mnih

et al., 2013]. Experience replay describes the method of storing past experiences to be

later sampled from for learning, thus breaking the tight coupling between learning and

behaviour.

In the context of online learning, one way to avoid bad-bootstraps is to select actions

based on (expected) epistemic value [Schwartenbeck et al., 2018, Friston et al., 2017a,

Sun et al., 2011], where agents seek out novel interactions based on counterfactually in-

formed beliefs about which actions will lead to informative transitions. By utilising the

uncertainty encoded by (beliefs about) model parameters, this approach can proactively

identify optimally informative transitions. In our simulations, we showed that agents using

this strategy learned models that asymptoted towards veridicality and, as such, were not

tuned to any specific behavioural niche. This occurred because pure epistemic exploration

treats all uncertainties as equally important, meaning that agents were driven to resolve

uncertainty about all possible agent-environment contingencies. While models learned us-

ing this strategy were able to support chemotactic behaviour (Fig-3a), learning was highly

sample-inefficient.

We have argued that a more suitable approach is to balance instrumental and epis-

temic actions in a principled way during learning. This is what is achieved by the active

inference framework, via minimization of expected free energy. Minimizing expected free

energy means that the model uncertainties associated with an agent’s goals and desires

are prioritised over those which are not. Furthermore, it means that model uncertainties

are only resolved until an agent (believes that it) is sufficiently able to achieve its goals,

such that agents need not resolve all of their model uncertainty. In our simulations, we

showed that active inference agents learned models in a sample-efficient way, avoided be-
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ing caught up in bad bootstraps, and generated well-adapted behaviour in our chemotaxis

setting. Our data, therefore, support the hypothesis that learning via active inference pro-

vides a principled and pragmatic approach to the learning of well-adapted action-oriented

generative models.

4.5.2 Exploration vs. exploitation

Balancing epistemic and instrumental actions recalls the well-known trade-off between

exploration and exploitation in reinforcement learning. In this context, the simplest for-

mulation of this trade-off can be construed as a model-free notion in which exploration

involves random actions. One example of this simple formulation is the ε-greedy algo-

rithm which utilises noises in the action selection process to overcome premature sub-

optimal convergence [Watkins, 1989]. While an ε-greedy strategy might help overcome

‘bad-bootstraps’ by occasionally promoting exploratory actions, the undirected nature of

random exploration is unlikely to scale to complex environments.

The balance between epistemic and instrumental actions in our active inference agents

is more closely connected to the exploration-exploitation trade-off in model-based RL. As

in our agents, model-based RL agents often employ exploratory actions that are selected

to resolve model uncertainty. As we have noted, such actions can help avoid sub-optimal

convergence (bad bootstraps), especially at the early stages of learning where data is

sparse. However, in model-based RL it is normally assumed that, in the limit, a maximally

comprehensive and maximally accurate (i.e., veridical) model would be optimal. This

is exemplified by approaches that conduct an initial ‘exploration’ phase - in which the

task is to construct a veridical model from as few samples as possible - followed by a

subsequent ‘exploitation’ phase. By contrast, our approach highlights the importance of

‘goal-directed exploration’, in which the aim is not to resolve all uncertainty to construct a

maximally accurate representation of the environment, but is instead to selectively resolve

uncertainty until adaptive behaviour is (predicted to be) possible. Moreover, we have

demonstrated that goal-directed exploration allows exploration to be contextualised by

an agent’s goals. Specifically, we have shown that acting to simultaneously explore and

exploit the environment causes exploration to be biased towards parts of state space that

are relevant for goal-directed behaviour, thereby increasing the efficiency of exploration.

Therefore, our work suggests that acting to minimise expected free energy can benefit

learning by naturally affording an efficient form of goal-directed exploration.

This kind of goal-directed exploration highlights an alternative perspective on the
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exploration-exploitation trade-off. We demonstrated that ”exploitation” - traditionally

associated with exploiting the agent’s current knowledge to accumulate reward - can also

lead to a type of constrained learning that leads to ‘action-oriented’ representations of the

environment. In other words, our results suggest that, in the context of model-learning,

the ”explore-exploit” dilemma additionally entails an ”explore-constrain” dilemma. This

is granted a formal interpretation under the active inference framework - as instrumental

actions are associated with soliciting observations that are consistent with the model’s

prior expectations. However, given the formal relationship between instrumental value in

active inference and the Bellman equations [Friston et al., 2016b], a similar trade-off can

be expected to arise in any model-based RL paradigm.

4.5.3 Model non-veridicality

In our simulations, models learned through active inference were able to support adaptive

behaviour even when their structure and variables departed significantly from an accurate

representation of the environment. By design, the models utilized a severely impoverished

representation of the environment. An exhaustive representation would have required

models to encode information about the agent’s position, orientation, the position of the

chemical source, as well as a spatial map of the chemical concentrations so that determining

an adaptive action would require a complex transformation of these variables. In contrast,

our model was able to support adaptive behaviour by simply encoding a representation of

the instantaneous effects of action on the local chemical gradient. Therefore, rather than

encoding a rich and exhaustive internal mirror of nature, the model encoded a parsimonious

representation of sensorimotor couplings that were relevant for enabling action [Baltieri

and Buckley, 2019]. While this particular ‘action-oriented’ representation was built-in

through the design of the generative model, it nonetheless underlines that models need

not be homologous with their environment if they are to support adaptive behaviour.

By evaluating the number of ‘redundant’ model parameters (as evaluated through

Bayesian model reduction), we further demonstrated that learning in the presence of goal-

directed behaviour leads to models that were more parsimonious in their representation

of the environment, relative to other strategies (Fig-5b). Moreover, we showed that this

strategy leads to models that did not asymptote to veridicality, in terms of the accuracy

of the model’s parameters (Fig-4a). Interestingly, these agents nevertheless displayed high

‘active accuracy’ (i.e., the predictive accuracy in the presence of self-determined actions),

highlighting the importance of contextualising model accuracy in terms of an agent’s
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actions and goals.

While these results demonstrate that models can support adaptive behaviour in spite

of their misrepresentation of the environment and that these misrepresentations afforded

benefits in terms of sample efficiency and model complexity, the active inference framework

additionally provides a mechanism whereby misrepresentation enables adaptive behaviour.

Active inference necessarily requires an organism’s model to include systematic misrep-

resentations of the environment, by virtue of the organism’s existence. Specifically, an

organism’s generative model must encode a set of prior beliefs that distinguish it from

its external environment. For instance, the chemotaxis agents in the current simulation

encoded the belief that observing positive chemical gradients was a-priori more likely.

From an objective and passive point of view, these prior beliefs are, by definition, false.

However, these systematic misrepresentations can be realized through action, thereby giv-

ing rise to apparently purposeful and autopoietic behaviour. Thus, under active inference,

adaptive behaviour is achieved because of, and not just in spite of, a models departure

from veridicality [Wiese, 2017].

Encoding frugal and parsimonious models plausibly afford organism’s several evolu-

tionary advantages. First, the number of model parameters will likely correlate with the

metabolic cost of that model. Moreover, simpler models will be quicker to deploy in the

service of action and perception and will be less likely to overfit the environment. This

perspective, therefore, suggests that the degree to which exhaustive and accurate mod-

els are constructed should be mandated by the degree to which they are necessary for

on-going survival. If the mapping between the external environment and allostatic re-

sponses is complex and manifold, then faithfully modelling features of the environment

may pay dividends. However, in the case that frugal approximations and rough heuristics

can be employed in the service of adaptive behaviour, such faithful modelling should be

avoided. We showed that such “action-oriented” models arise naturally under ecologi-

cally valid learning conditions, namely, learning online in the presence of goal-directed

behaviour. However, action-oriented behaviour that was adapted to the agent’s goals only

arose under the minimisation of expected free energy.

It is natural to ask whether there are scenarios in which action-oriented models might

impede effective learning and adaptation. One such candidate scenario is transfer learning,

whereby existing knowledge is reapplied to novel tasks or environments. This form of

learning is likely to be important in biology, as for many organisms preferences can change

over time. If the novel task or environment requires a pattern of sensorimotor coordination
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that is distinct from learned patterns of sensorimotor coordination, then a more exhaustive

model of the environment might indeed facilitate transfer learning. However, if adaptation

in the novel task or environment can be achieved through a subset of existing patterns

of sensorimotor coordination (i.e. in going from walking to running), then one might

expect an action-oriented representation to facilitate transfer learning, in so far as such

representations reduce the search space for learning the new behaviour. This type of

transfer learning is closely related to curriculum learning, whereby complex behaviours

are learned progressively by first learning a series of simpler behaviours. We leave it

to future work to explore the scenarios in which action-oriented models enable efficient

transfer and curriculum learning.

4.5.4 Active inference

While any approach to balancing exploration and exploitation is amenable to the ben-

efits described in the previous sections, we have focused on the normative principle of

active inference. From a purely theoretical perspective, active inference re-frames the

exploration-exploitation dilemma by suggesting that both exploration and exploitation are

complementary perspectives on a single objective function - the minimization of expected

free energy. However, an open question remains as to whether this approach provides a

practical solution to balancing exploration and exploitation. On the one hand, it pro-

vides a practically useful recipe by casting both epistemic and instrumental value in the

same (information-theoretic) currency. However, the balance will necessarily depend on

the shape of the agent’s beliefs about hidden states, beliefs about model parameters, and

prior beliefs about preferable observations. In the current work, we introduced an artificial

weighting term to keep the epistemic and instrumental value within the same range. The

same effect could have been achieved by constructing the shape (i.e. variance) of the prior

preferences P (o).

Active inference also provides a suitable framework for investigating the emergence

of action-oriented models. Previous work has highlighted the fact that active inference

is consistent with, and necessarily prescribes, frugal and parsimonious generative models,

thus providing a potential bridge between ‘representation-hungry’ approaches to cognition

espoused by classical cognitivism and the ‘representation-free‘ approaches advocated by

embodied and enactive approaches [Linson et al., 2018, Pezzulo et al., 2017, Clark, 2015b,

Kirchhoff Michael et al., 2018, Friston, 2013].

This perspective has been motivated by at least three reasons. First, active inference is
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proposed as a description of self-organization in complex systems [Friston, 2013]. Deploy-

ing generative models and minimizing free energy are construed as emergent features of a

more fundamental drive towards survival. On this account, the purpose of representation

is not to construct a rich internal world model, but instead to capture the environmental

regularities that allow the organism to act adaptively.

The second reason is that minimizing free energy implicitly penalizes the complexity

of the generative model (see Appendix 1). This implies that minimizing free energy will

reduce the complexity (or parameters) required to go from prior beliefs to (approximately)

posterior beliefs, i.e. in explaining some observations. This occurs under the constraint

of accuracy, which makes sure that the inferred variables can sufficiently account for the

observations. In other words, minimizing free energy ensures that organism’s maximize

the accuracy of their predictions while minimizing the complexity of the models that are

used to generate those predictions.

As discussed in the previous section, active inference also requires agents to encode sys-

tematic misrepresentations of their environment. Our work has additionally introduced a

fourth motivation for linking active inference to adaptive action-oriented models, namely,

that the minimization of expected free energy induces a balance between self-sustaining

(and thus constrained) patterns of agent-environment interaction and goal-directed explo-

ration.

4.5.5 Conclusion

In this paper, we have demonstrated that the minimization of expected free energy (through

active inference) provides a principled and pragmatic solution to learning action-oriented

probabilistic models. These models can make the process of learning models of natural

environments tractable, and provide a potential bridge between ‘representation-hungry’

approaches to cognition and those espoused by enactive and embodied disciplines. More-

over, we showed how learning online in the presence of behaviour can give rise to ‘bad-

bootstraps’ - a phenomenon that has the potential to be problematic whenever learning

is coupled with behaviour. Epistemic or information-seeking actions provide a plausible

mechanism for overcoming bad-bootstraps. However, to exploration to be efficient, the

epistemic value of actions must be contextualized by agents goals and desires. The ability

to learn adapted models that are tailored to action provides a potential route to tractable

and sample efficient learning algorithms in a variety of contexts, including computational

biology and model-based RL.
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Chapter 5

A framework for modeling

perception, learning, and action

5.1 Introduction

We move our eyes several times each second. These eye movements - saccades - reorient

our high-resolution fovea towards specific parts of the visual scene and play an essential

role in our ability to flexibly and adaptively process high-resolution visual information.

Eye movements are actively chosen based on several factors [Kollmorgen et al., 2010]. Un-

surprisingly, various properties of the visual scene influence saccade destinations [Peters

et al., 2005]. For instance, eye movements are biased towards areas of high local contrast

[Itti et al., 1998, Parkhurst et al., 2002, Li, 2002], object edges [Damiano et al., 2018],

and regions of semantic meaning [Henderson, 2017]. However, several lines of evidence

suggest a person’s internal state, such as goals [Yarbus, 1967, Rothkopf et al., 2007, Hay-

hoe and Ballard, 2005] and beliefs [Yang et al., 2016a,b], also influence eye movements

[Tatler et al., 2011]. Computational accounts of eye movements have predominantly fo-

cused on describing how scene-dependent (internal) factors drive fixations [Itti and Koch,

2000, 2001, Borji and Itti, 2013]. While these models have proven to predict eye move-

ments when participants freely view a scene, they fail to predict eye movements when

participants actively engage in a task [Hayhoe and Ballard, 2005, Henderson et al., 2007].

Identifying the computational mechanisms that underlie the task-related control of eye

movements through combinations of external and internal factors remains an important

open question.8

A valuable framework for addressing this question is that eye movements are selected

to sample task-relevant information from the environment in an active manner [Gottlieb
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and Oudeyer, 2018b, Gottlieb, 2018, Yang et al., 2016b, Friston et al., 2012d]. This

perspective suggests that people reorient their gaze to reduce uncertainty about task-

relevant variables. For example, people move their eyes towards an object before reaching

for it to reduce their uncertainty about its location [Land and Hayhoe, 2001]. Moreover,

people look at the head of an animal to efficiently reduce their uncertainty about the

animal’s identity [Quinn et al., 2009]. This view is further supported by evidence from eye

movements during walking [Domı́nguez-Zamora et al., 2018], visual search [Najemnik and

Geisler, 2005, Chukoskie et al., 2013], the categorization of abstract objects and patterns

[Renninger et al., 2007, Yang et al., 2016a], category learning [Nelson and Cottrell, 2007],

lightness judgments [Toscani et al., 2013], and the identification of a person’s gender

[Peterson and Eckstein, 2013].

These studies demonstrate that eye movements are biased towards parts of the visual

scene that provide the most information for the task at hand - an information sampling

strategy. However, it remains to be seen which information sampling strategies humans

employ. Therefore, we constructed an experimental paradigm that compares three promi-

nent information sampling strategies to discover which best describes human eye move-

ments. These information sampling strategies are normative because they prescribe what

should be done (regarding information-theoretic scores) instead of how it is done (i.e.,

a mechanistic account). From an information-theoretic perspective, the three strategies

broadly cover the full range of normative approaches to collecting information. In ad-

dition, many popular information-gathering algorithms used widely in both neuroscience

and machine learning can be considered exceptional cases of the strategies we consider.

Accordingly, our comparison is, therefore, in terms of normative schemes rather than the

specifics of neurocognitive implementation.

For an information sampling strategy to be effective, it must consider several types

of uncertainty. These types of uncertainty can be broadly divided into subjective uncer-

tainties and objective uncertainties. Subjective uncertainty, also known as epistemic or

reducible uncertainty [Kendall and Gal], refers to uncertainty due to a lack of knowledge.

Subjective uncertainty can be further decomposed into model uncertainty and belief un-

certainty. Model uncertainty refers to the uncertainty that derives from the agent’s model

of the world. In contrast, belief uncertainty refers to the uncertainty that derives from a

person’s current beliefs about the world. As a concrete example, consider a person trying

to identify whether an insect on their wall is a butterfly or a moth. In this context, model

uncertainty refers to uncertainty about which features differentiate butterflies from moths.
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In contrast, belief uncertainty refers to whether a particular insect is a butterfly or a moth.

In contrast to subjective uncertainty, objective uncertainty, also known as aleatoric

or irreducible uncertainty [Kendall and Gal, Yang et al., 2016b], refers to uncertainty

that is objectively ‘in the world’, either due to sensory noise or the natural variability of

the environment. For example, someone trying to identify an insect on their wall may

be exposed to objective uncertainty if a plume of smoke partially occludes their view.

An effective information sampling strategy should minimize subjective uncertainty while

avoiding objective uncertainty.

The effectiveness of an information sampling strategy will depend on the types and

levels of uncertainty present in a given task. Existing empirical studies of information sam-

pling have typically utilized tasks containing only a subset of the uncertainties humans

face in naturalistic settings. For example, studies have investigated information sampling

when participants are exposed to model uncertainty but not belief or objective uncertainty

[Nelson and Cottrell, 2007]. Other studies have investigated information sampling when

participants are exposed to belief uncertainty, but no model or objective uncertainty [Yang

et al., 2016a, Renninger et al., 2007, Peterson and Eckstein, 2013, Mirza et al., 2018a]. In

order to address this issue, we investigate eye movement strategies in a task that contains

subjective uncertainty ( both model and belief) and objective uncertainty. Specifically, we

investigate eye movement patterns while participants perform a perceptual categorization

task. They have to classify a visual stimulus consisting of multiple features as belonging

to one of four categories. Model uncertainty is introduced by preventing participants from

knowing which features define each category. Belief uncertainty is introduced by making

the categories themselves dependent on combinations of features, such that participants

were required to sample multiple features to identify the correct category. Finally, ob-

jective uncertainty is induced by occluding features in a probabilistic manner. We used

this task to compare three distinct information sampling approaches and quantify which

accounts best for participants’ eye movements.

The first information sampling strategy considered is what we term predictive sampling

[Luque et al., 2017, Griffiths et al., 2015, Quigley et al., 2017], where locations are sampled

based on the certainty of the subsequent outcome. Broadly, eye movements are biased in

predictive sampling towards locations where outcomes (i.e., the following visual stimulus)

are more certain. For instance, when looking for signs in an airport or train station, people

will look at a slightly elevated level, as they can be reasonably sure that this is where the

relevant information will be found. The rationale behind this strategy is that it is likely
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Figure 5.1: (A) Graphical representation of different forms of uncertainty. Model uncer-

tainty (left) entails uncertainty about which features distinguish a moth from a butterfly.

Belief uncertainty (middle) refers to the uncertainty about the agent’s current perception.

In this example, belief uncertainty arises due to incomplete visual information. Model

uncertainty can induce belief uncertainty: not knowing the difference between moths and

butterflies induces uncertainty about an insect’s identity. Objective uncertainty (right) de-

scribes uncertainty resulting from the environment itself (where the environment includes

signals received at sensory surfaces). (B) A graphical representation of the different infor-

mation sampling strategies. Here, the colored regions correspond to the regions of visual

space which each strategy favors. See main text for full description. (C) All strategies

utilize the active sensing process. Agents maintain a set of beliefs over task-relevant vari-

ables (am I looking at a moth or a butterfly?). Using these beliefs and prior knowledge

about how these beliefs correspond to features, the strategies score each region of visual

space. Fixation then moves to the area with the highest score, sampling a new feature.

In turn, this new information causes an update in beliefs, and the cycle begins again until

subjective uncertainty has been sufficiently minimized (or the task ends).

.

to avoid irrelevant and noisy information, which is helpful as it is more difficult to predict

an outcome when there is objective uncertainty in the environment. It avoids irrelevant

information by focusing on ‘understood’ aspects of the visual scene, i.e. it avoids areas

where model uncertainty is high (and thus predictions are uncertain) [Beesley et al., 2015].
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It achieves this by utilizing beliefs to predict which locations contain relevant information.

Several lines of evidence support the idea that eye movements (and attention) are drawn

to predictable parts of visual space [Rajsic et al., 2015, Quigley et al., 2017, Griffiths et al.,

2015, Beesley et al., 2015, Kruschke et al., 2005, Le Pelley et al., 2011].

The second strategy considered is what we term uncertainty sampling. In this ap-

proach, fixations are biased towards locations where the subsequent outcome is least cer-

tain [Pearce and Hall, 1980]. The rationale here is that uncertainty about the information

at a location offers an opportunity to reduce that uncertainty and gather new information.

This strategy thus favors locations with high objective uncertainty, which may be where

new information will be disclosed that helps reduce both belief and model uncertainty.

As with predictive sampling, several empirical studies have observed uncertainty sampling

in various contexts [Settles, 2012, Lewis and Catlett, 1994, Hogarth et al., 2008, Quigley

et al., 2017, Esber and Haselgrove, 2011].

In fact, some studies have reported evidence that both predictability and uncertainty

drive information sampling in humans [Beesley et al., 2015, Quigley et al., 2017, Haselgrove

et al., 2010, Esber and Haselgrove, 2011]. This apparent paradox can be resolved through

active inference [Friston et al., 2012e], a normative theory that prescribes a sampling

strategy that balances predictability and uncertainty in a Bayes optimal manner. Active

inference posits a unified account of perception, action, and learning, suggesting that

these functions arise from a more fundamental tendency to minimize an information-

theoretic quantity known as variational free energy [Friston, 2014, Friston et al., 2018b].

Formally, acting to minimize (expected) variational free energy is equivalent to acting to

maximize both instrumental and epistemic value. Instrumental value is maximized when

an agent samples observations that conform to prior beliefs, where these prior beliefs

are assumed to encode desirable states of affairs (i.e., body temperature at 37 degrees

centigrade). Epistemic value is maximized when an agent samples observations that reduce

their subjective uncertainty. Therefore, the final strategy we consider selects locations to

maximize epistemic value. We refer to the sampling strategy prescribed by active inference

as expected information sampling, as it acts to sample observations that will provide the

most information. This strategy is biased to locations where the expected outcome is

most certain, ensuring that irrelevant information is avoided, but is additionally biased to

locations where the expected outcome is most uncertain, ensuring that novel information

is sampled. From the perspective of reducing perceptual uncertainty, expected information

gain represents the optimal eye movement strategy [MacKay, 1992]. This is because, by
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definition, it samples locations that are expected to provide the most information, therefore

maximally reducing the uncertainty in the observer’s current beliefs (i.e., minimizing belief

or model uncertainty). This approach is equivalent to several established formalisms, such

as infomax [Butko and Movellan, 2010] and Bayesian surprise [Itti and Baldi, 2005].

Figure 1.b illustrates schematically how the three strategies relate. First, we sketch a

fictive scenario in which an agent must decide which part of the visual scene to sample

to reduce uncertainty about whether an insect is a moth or a butterfly. We suppose

that the agent knows that both butterflies and moths have tails and that butterflies have

antennas on their heads while moths do not. But we assume that the agent knows nothing

about the wings of either moths or butterflies. Given this scenario, predictive sampling

favors sampling the tail, followed by the head. This is because the agent is sure about

the outcome of sampling the tail (since they expect to see a tail in that location, whether

the insect is a moth or a butterfly) and also knows that sampling the head will result

in either an antenna or empty space. Uncertainty sampling instead favors sampling the

wings, followed by the head. This is because the agent is maximally uncertain about the

outcome of sampling the wings and is also uncertain about whether it will observe an

antenna or space at the head. Finally, expected information sampling favors sampling

the head. This is because expected information prefers locations for which the outcome

is most certain given the current beliefs, attributing value to both the head and the tail.

However, preference is weighted by the expected uncertainty associated with a location,

attributing value to the head and the wings. The combination of these terms results in

the agent preferring to sample the head. Moreover, as the head is the only part of the

animal that, to the agent’s knowledge, disambiguates between moths and butterflies, this

approach embodies the optimal solution to this task.

Inspired by this example, we ask which strategy humans used when faced with a

similar task, in which participants have to decide which of four categories a visual stimulus

belongs. Critically, participants were allowed to fixate on different regions of the stimulus,

with visual features being revealed in a gaze-contingent manner. Anticipating results,

we find that expected information sampling best describes participants’ eye movements

on a fixation-by-fixation basis. However, when participants are faced with high levels of

model uncertainty, both predictive sampling and expected information sampling describe

participants’ eye movements equally well.
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5.2 Methods

Participants

Twenty-three naive participants took part in the experiment. All participants were neu-

rologically healthy and had normal or corrected to normal vision. The experiment took

approximately 90 minutes and was formed of 15 blocks, each consisting of 15 trials. Four

participants were excluded for not reaching 70% accuracy by the end of the experiment,

indicating that they had failed to learn the task structure successfully, leaving 19 for anal-

ysis. All participants gave informed consent before participating, approved by the Sussex

research ethics committee.

Experimental apparatus and setup

Participants sat 43 cm before a 22” LaCie Electron 22 BLUE II monitor (1024 x 768

resolution, 100 Hz refresh rate). A chin and forehead rest was used to stabilize the head.

Eye-tracking was performed using an EyeLink 1000+ eye tracker at a sampling rate of

1000 Hz, and the eye tracker was re-calibrated at the start of each block.

Stimuli

The stimuli used in the experiment were presented as fictitious microorganisms. Each

stimulus consisted of features placed at six locations on an uninformative background.

These locations remained constant throughout the experiment and were separated uni-

formly by 10.6 degrees. Participants were informed that each microorganism had four

features, described as ‘organelles.’ Each stimulus (defined by four features at different

locations, with two blank locations) was generated from one of four categories, henceforth

referred to as A,B,C,D. A unique combination of feature-location pairs defined each

category. The categories were constructed so that no single feature-location pair could

uniquely define any category. This meant that participants were required to integrate

information efficiently over multiple fixations to classify the stimuli correctly.

While the relationship between categories and feature-location pairs was deterministic,

noise (i.e., objective uncertainty) was introduced by probabilistically omitting features

from each stimulus. Each location was assigned a constant probability of containing an

omitted feature (two locations had a 20% probability, two had a 50% probability, and two

had an 80% probability). Although the probability of occlusion for a location remained

constant across categories and trials, it was randomized across participants. This meant
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some locations were more likely to disclose information than others, irrespective of the

stimulus category. Participants were informed that occlusion probabilities were location

specific and constant across categories and trials. If the participant fixated on a location

with an omitted feature during that trial, they were presented with a black box.

Task

The task was to categorize the presented stimulus correctly on each trial. At the start of

the experiment, participants were unaware of which feature-location pairs were associated

with which categories. They were required to learn this association from feedback at

the end of each trial. At the start of a trial, a category was chosen randomly and used

to generate a corresponding stimulus. Participants were first required to fixate on a

centered cross (within 1.5 degrees for 500 ms). The generated image was then displayed

but initially obscured by a blurred masked. This mask resembled the generated image’s

uninformative background but lacked informative features. Participants were then allowed

to scan the image freely, and wherever they were fixated, the underlying image was revealed

by unmasking a small aperture at the fixation location. In order to provide a more

naturalistic viewing experience, these apertures were blended linearly into the blurred

background.

Small fixation crosses were used to indicate the locations of the obscured features. This

encouraged participants to fixate on a series of feature-bearing locations instead of random

locations on the uninformative background. This methodological aspect was included as

the computational models we used only consider the order in which locations are fixated

instead, not the precise location of each fixation.

If participants fixated within 2.0 degrees of a feature location, the corresponding fea-

ture at that location was revealed, or alternatively, a black square was revealed if the

feature was occluded for that trial. The scanning period ended after three locations had

been revealed, or after three seconds had elapsed from the end of the initial central fixation

period. Limiting the number of revealing locations prompted participants to gather infor-

mation efficiently, as no single feature-location pair provided enough information to disam-

biguate between categories completely. Moreover, limiting the time available for scanning

promoted inter-saccadic intervals consistent with intervals typical of natural viewing be-

haviour. At the end of the scanning period, the stimulus was removed from the screen

entirely, and the participant was asked to specify the category label. Participants then

provided a confidence rating between one and five, specifying the subjective confidence in
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their response. Both responses were provided via keyboard.

After the responses were provided, feedback was given specifying whether their re-

sponse was correct, and the participants were informed of the actual category label. Par-

ticipants were then allowed to re-scan the stimulus to learn about the mapping between

categories and feature-location pairs. Crucially, only the features that had been revealed

during that trial were unmasked in the re-scanning period. Moreover, if a feature was

occluded during the scanning period, it remained occluded during the re-scan period.

Finally, participants were allowed up to 60s to re-scan the stimulus to promote learning.

Bayesian Ideal Learner

The only consistent and optimal way for modeling and reasoning about uncertainty is pro-

vided by the Bayesian theory of probability [Savage, 1961]. To quantify participant’s un-

derstanding of category structure, we estimate a generative model p(c,D, θ) based on their

observations (feature-location pairs), where c ∈ {A,B,C,D} is a categorical variable de-

noting the category, and the dataD = {f , l} is a set of T features, f = {f1, f2, ..., fT }, where

T is the current number of fixations, and their corresponding locations l = {l1, l2, ..., lT }.

The generative model is defined as:

p(c,D, θ) = p(D|c, θ)p(c)p(θ)

p(θ) = Dir(λ)

p(D|c, θ) = Cat(θ)

p(c) = Cat(·)

(5.1)

This distribution is formed of a 24 x 4 matrix (24 as there are 6 locations and four

features), where each column i specifies p(D|c = i, θ), parameterized as a vector with

each entry representing the probability of a feature-location pair. p(c) is the prior over

categories, a uniform categorical distribution (denoted Cat(·)) which is not learned during

the experiment (the actual probability of each category is also uniform). p(D|c, θ) is

the likelihood distribution, which describes the probability of data given a category, and

which has parameters θ which are themselves random variables, described by a Dirichlet

distribution Dir(λ). The parameters λ of this distribution are learned throughout the

experiment. A sample θ is formed of a 24 x 4 matrix (24 as there are 6 locations and four

features), where each column i species p(D|c = i, θ), parameterized as a vector with each

entry representing the probability of a feature-location pair.

The updates for λi (one of the 24 Dirichlet parameters) at time t are given as:
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λti = λt−1
i + [{fi, li} = i] · λtiλt−1

i (5.2)

where [{fi, li} = i] returns 1 if true and 0 otherwise.

Bayesian Ideal Observer

The Bayesian ideal observer maintains and continually updates a (posterior) distribution

over categories c.

p(c|D) =
p(D|c, θ)p(c)

p(D)
(5.3)

After each new observation, D is updated with the feature f and its location l. Calcu-

lating this distribution can be done straightforwardly as all distributions are categorical

and there are a low number of variables.

Sampling Strategies

In order to assess which of the three previously described (normative) information sam-

pling strategies best explained participants’ eye movements, we constructed algorithms to

implement each strategy: predictive sampling, uncertainty sampling, and expected infor-

mation sampling. These algorithms allocate scores (henceforth denoted V) to each possible

fixation location. These scores are based on the current posterior beliefs (as estimated by

the Bayesian ideal observer model) and the participant’s current understanding of the cat-

egories defining features (as determined by the Bayesian ideal learner model). (Note that

we only consider eye movement scores at one time step in the future. Future work could

investigate the applicability of these strategies when eye movements are planned multiple

steps in advance.)

Predictive Sampling Predictive sampling favors locations expected to provide rela-

tively specific outcomes. This strategy scores each possible fixation location l∗ according

to:

Vli = 1−EP (c|D)

[
H
[
fi|li, c,D

]]
(5.4)

where Vli is the score for location li, fi is the expected feature at this location, and H

is the Shannon entropy, a standard measure of uncertainty. Potential fixation targets are

evaluated in a manner that is proportional to how certain the distribution over expected
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features is. EP (c|D) implies that the entropy is averaged over all potential categories and

weighted by the posterior probabilities.

Uncertainty Sampling Uncertainty sampling favors locations that are expected to

provide novel information. Therefore, this strategy scores each potential fixation location

according to:

Vli = H
[
fi|li, D

]
(5.5)

Potential fixation targets are evaluated based on the uncertainty of the distribution

over expected features.

Information Sampling Information sampling provides a principled way of combining

the previous two strategies:

Vli = H
[
fi|li, D

]︸ ︷︷ ︸
Uncertainty

−EP (c|D)

[
H
[
fi|li, c,D

]]︸ ︷︷ ︸
Predictive

(5.6)

This strategy scores each potential fixation location based on two terms. The first term

selects locations where the model has the most uncertainty about the expected feature.

In contrast, the second term selects locations for which the expected feature, given beliefs

about categories, is most certain.

5.3 Results

Participants performed a perceptual categorization task, in which each trial involved cate-

gorizing images of fictitious micro-organisms into one of four categories [McColeman et al.,

2014]. Each category was defined by a unique combination of features at six spatially sepa-

rated locations. At the start of each trial, all features were masked, and participants could

reveal the features in a gaze-contingent manner. Using a gaze-contingent display allowed

us to accurately quantify the participant’s feature information from each fixation without

being concerned about information that may otherwise have been obtained through pe-

ripheral vision. Furthermore, it allowed us to ignore stimulus-dependent influences and

instead focus on the task-related factors influencing eye movements. Crucially, partici-

pants could only perform a limited number of fixations during each trial within a limited

span. Therefore, to be successful at the task, participants were required to gather and

integrate information efficiently.
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The task structure meant that participants faced multiple sources of uncertainty, each

of which could be manipulated independently. Objective uncertainty was introduced by

occluding the features at specific locations probabilistically. Each location had a constant

probability of being occluded (either 20%, 50%, or 80%), which was constant across all cat-

egories (though it varied across participants). Subjective belief uncertainty was introduced

by ensuring that no single feature would provide enough information to disambiguate be-

tween the categories. Therefore, participants were required to integrate information over

several fixations. Finally, subjective model uncertainty was introduced by ensuring that

participants were initially unaware of how categories related to features and locations.

Instead, participants were required to learn this relationship from feedback at the end of

each trial.
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Figure 5.2: Figure 1A) Experimental design. Participants begin the trial by fixating on

a central cross. At the start of the trial, all features were occluded with blurred masks,

though their (six) locations were indicated with small crosses. Participants were then

free to scan the image. The corresponding feature was revealed at each fixation at a

feature location (or a black square if the location was occluded). The trial continued until

three locations had been fixated (or three seconds had passed). Participants then gave

a category response and a confidence score. Finally, feedback was provided specifying

the correct category. Participants were free to re-scan the locations they had fixated

during that trial for up to five seconds, with all non-occluded features now visible. B)

The categories used in the experiment. Each column represents a location, and each row

represents a category. C) Left) Percentage of correct trials and the average confidence

scores as a function of block. Middle) The average number of fixations to locations with

different occlusion probabilities. The percentages denote the probability that the location

would be occluded on that trial. For all graphs, averages are over all participants, and

shaded areas are +-SEM. Right) Average inter-fixation interval (sec) as a function of block.

D) An example stimulus.

5.3.1 Behavioural results

We first characterized the participants’ behavioral profiles throughout the experiment.

Then, to assess whether our paradigm produced behavior consistent with previous results

from perceptual categorization and learning tasks, we compared our results to a meta-
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analysis of eye movements during category learning [McColeman et al., 2014]. This study

identified three consistent trends that applied to the current experimental paradigm. These

were an increase in categorization accuracy, a decrease in the time interval between fixa-

tions, and a decrease in the probability of fixating locations irrelevant for categorization.

In line with these trends, we found that categorization accuracy increased consistently

throughout the experiment and was strongly correlated with the participant’s subjective

confidence reports, suggesting that participants could accurately assess the certainty of

their beliefs (Figure 1C). At the end of the experiment, the average categorization per-

formance was approximately 80%, suggesting that the task was achievable yet difficult

enough to promote efficient information gathering. We also found that the average time

between fixations decreased consistently throughout the experiment (Figure 1C). Finally,

although our stimuli contained no irrelevant features, each location had a specific proba-

bility of occluding. We found that participants learned to avoid the locations that were

less likely to provide information relevant for categorization (Figure 1C).

5.3.2 Observer results

In order to assess which sampling strategies best described participants’ behavior, we

first modeled the participant’s subjective beliefs at each point during a trial (e.g., which

category am I viewing?). To do this, we constructed a Bayesian ideal observer, a theoret-

ical device that optimally performs inference. Specifically, the ideal observer computes a

posterior distribution P (c|D) over the stimulus categories c, given the current history of

observations D. Here, observations are formed of the location l, and the feature is revealed

at that location f . The ideal observer updates the posterior distribution over categories

after each fixation, providing an estimate of the participant’s current beliefs at each point

during a given trial. Note that we are not explicitly interested in how participants form

beliefs in the current context. Instead, the ideal observer provides a valuable tool for

estimating a participant’s subjective beliefs about category identity and is sufficient for

evaluating the information-gathering strategies.

We also estimated the participant’s subjective beliefs about how categories relate to

observations, i.e., their model. We constructed a Bayesian ideal learner, which calculated

the generative model P (c,D), which specifies the probability of a category and observa-

tion co-occurring. As all categories were equally likely, the generative model could be

approximated by the likelihood distribution P (D|c) (as the prior P (c) is uniform). This

distribution specifies which observations are expected given some category. As partici-
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pants initially did not know how categories related to observations, this distribution was

initialized uniformly at the start of the experiment. At the end of each trial, participants

were provided feedback about the correct category, and the Bayesian ideal learner algo-

rithm updated an estimate of the participant’s likelihood distribution. Constructing a

Bayesian ideal learner was necessary for two reasons. First, it allowed the Bayesian ideal

observer to operate based on the participant’s incomplete knowledge of category features.

Second, it allowed the estimation of which observations a participant expected to receive

from conducting a particular eye movement. As the following section will discuss, this

is required to evaluate which information-gathering strategies best-described participant

behavior.

In order to assess whether the Bayesian ideal observer and learner approximated par-

ticipants’ subjective beliefs, we compared each category response to the posterior distri-

bution estimated by the Bayesian ideal observer. If participants were updating beliefs

approximately optimally, we expect their response to match the ideal observer’s predic-

tion. Therefore, we measured the number of trials in which a participant’s response was

congruent with the most probable category from the estimated posterior distribution.

These results are shown in figure 2a. The model accurately predicts participants’ category

responses over 90% of the time after the fifth block and reaches almost 100% by the end

of the experiment. These results suggest that the Bayesian ideal observer and learner

sufficiently approximate participants’ beliefs.
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Figure 5.3: Example trial. The agent maintains beliefs over each category. Each possible

location is evaluated according to the agent’s information strategy. The agent selects

an eye movement based on this strategy and samples information from this position.

Beliefs are then updated, and the cycle begins again. Figure 3B) Left) Average predictive

accuracy of the Bayesian ideal observer model. The shaded line represents +- SEM.

Correct predictions are calculated based on whether a participant’s response was congruent

with the most probable category from the posterior. Middle) The total number of trials

where the Bayesian ideal observer model incorrectly predicted participants’ responses as

a function of participants’ confidence rating. Right) Mean posterior entropy across all

participants as a function of participants’ confidence responses. Posterior entropy was

calculated from the distribution inferred by the Bayesian ideal observer at the end of each

trial.

The lower predictive accuracy during the first five blocks may have been because

participants were uncertain about the category identity and could respond randomly. To

test this, we plotted the number of trials for which the Bayesian ideal observer model made

incorrect predictions against binned confidence levels (1=low, 5=high). Indeed, incorrect

predictions were more frequently associated with lower confidence ratings (Figure 3bii).

In order to obtain a better understanding of how well the posterior estimates were

tracking participants’ beliefs, we compared the Shannon entropy (a measure of uncertainty)

of the estimated posterior to the participant’s subjective confidence ratings. As Figure

3biii shows, posterior entropy closely tracked participants’ subjective confidence. These
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results indicate that the Bayesian ideal observer model accurately tracked participants’

subjective beliefs.

5.3.3 Predicting individual eye movements

We first asked how well each sampling strategy performed on the task. This served to

establish whether the different strategies made different predictions concerning the se-

quences of fixations and determine how efficiently each strategy gathered information. To

do this, we quantified the amount of information - in the information-theoretic sense -

each strategy gained, on average, during each trial. Note that the amount of information

gained is distinct from expected information gained - the former assesses how much infor-

mation one expects to gain. In contrast, the latter quantifies how much information was

actually gained. For each new fixation location lt and the revealed feature ft, objective

information gain is given by:

H
[
c|D
]
−H

[
c|ft, lt, D

]
(5.7)

Information gain measures the reduction in perceptual uncertainty afforded by fixating

on some location. It is an inherently subjective measure based on the degree to which

beliefs are updated in light of new data. Each strategy selected a series of fixations se-

quentially for each trial, and the Bayesian ideal observer updated the posterior after each

fixation. Figure 4a shows the average information gain for each trial (as well as for hu-

man data and a random control) across blocks. Notably, the strategies differed in their

information-gathering efficiency - allowing comparison with human data. The uncertainty

sampling strategy performs worse than random for the first half of the experiment, imply-

ing that there are more efficient methods for gathering task-relevant information. While

the expected information gain strategy is the most efficient out of the three strategies

(averaging 1.24 bits of information per trial after block 2), the performance of the predic-

tive strategy is also highly efficient (averaging 1.1 bits of information per trial after block

2). Therefore, while expected information gain is optimal, predictive sampling provides

comparable performance.
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Figure 5.4: The amount of average information gained for each trial, averaged over each

block, for each strategy. The solid purple line represents the amount of information gained

by human participants; blue line represents a random control. 4B) Percent of participant

eye movements correctly predicted by each strategy as a function of block. Shaded areas

+-SEM. Figure 4C) From left to right. The average percent of participant eye movements

predicted by each strategy for the first five blocks. The average percent of participant

eye movements predicted by each strategy for blocks five to ten. The average percent of

participant eye movements predicted by each strategy for the last five blocks.

In order to assess how efficient humans were in their information-gathering, we quanti-

fied the average amount of information participants gained on each trial. Figure 4a shows

that participants gradually increase the amount of information they gain across the exper-

iment. While participants were less efficient than the expected information gain approach,

they performed comparably to the predictive sampling approach.

We next asked which strategies could account for human eye movements on a fixation-

by-fixation basis. Specifically, we quantified the extent to which each of the three sampling

strategies predicted participants’ fixations. Next, we calculated a score for each potential

fixation location based on the respective strategies value function V. Finally, we measured

whether the location with the highest score matched the participant’s selected fixation

location. As the experiment progressed, the scores were computed for an individual’s

estimated posterior and generative model.

Figure 4b) shows the predictive accuracy of each strategy as a function of block. Base-
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line predictive accuracy, as determined by a strategy that randomly assigned scores, was

approximately 20%. The uncertainty strategy predicts participants’ eye movements con-

sistently worse than random, indicating that participants were not following this strategy.

Predictive sampling predicts participants’ eye movements above random (an average of

39%). The strategy with the highest predictive accuracy is expected information gain,

which predicts 71% of participants’ eye movements by the end of the experiment (with

predictive accuracy increasing over blocks, see below). These results suggest that partic-

ipant behavior is best described by a sampling strategy based on expected information

gain. Crucially, the performance results (regarding absolute information gain - Figure 4a)

demonstrate that predictive sampling can provide a near-optimal efficiency in this task.

However, this strategy could provide a better overall description of participants’ actual

eye movement sequences.

It is worth noting that in the first three blocks, expected information gain and pre-

dictive sampling have very similar predictive accuracy. This result may be due to the

high levels of model uncertainty towards the start of the experiment, making it difficult

to disambiguate between these strategies. Alternatively, this result suggests that human

eye movements follow a strategy of predictive sampling when participants are uncertain

about category identities.

5.4 Discussion

In an active perceptual categorization task, we compared a range of normative infor-

mation sampling strategies - embodied in simulated agents (ideal Bayesian observers) -

with human visual search behavior. Our task required participants to sample information

while faced with multiple forms of uncertainty, both subjective (model and belief uncer-

tainty) and objective. To compare human and simulated agent behavior, we constructed

a Bayesian ideal observer and Bayesian ideal learner to quantify participants’ subjective

beliefs throughout the experiment, both on an inter-trial and intra-trial 8(i.e., fixation by

fixation) basis. Using these estimated beliefs, we compared three strategies for information

sampling - predictive sampling, uncertainty sampling, and expected information sampling

- both in terms of their overall information-gathering efficiency and match to human be-

havior. Results demonstrated that a strategy of representative information sampling best

predicted individual eye movements. This was the case even though the predictive and

expected information sampling strategies were closely matched in efficiency. E.g., both

were near-optimal strategies for gathering information in this particular task.
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Related work

Several studies have emphasized connections among information, uncertainty, and eye

movements [Gottlieb et al., 2013]. The human oculomotor system is sensitive to uncer-

tainty [van Lieshout et al., 2018], as evidenced by oculomotor parameters such as pupil size

[Colizoli et al., 2018] and saccadic speed [Vossel et al., 2014, 2006, Bray and Carpenter,

2015]. Results such as these suggest that the oculomotor system is adaptively tuned to

respond to environmental information sources. However, eye movements are determined

not only by properties of the environment but also by internal factors such as (possibly im-

plicit) goals and beliefs. The concept of ‘active sensing emphasizes the interplay between

internal and external factors in determining visual foraging.’

The idea that the visual system actively seeks out potentially informative observations

can help explain a range of results, such as the tendency for participants to fixate regions of

high local contrast [Raj et al., 2005] and the inhibition of return [Belopolsky and Theeuwes,

2009]. Furthermore, when identifying faces or making lightness judgments, humans orient

their gaze to the most informative parts of visual space [Or et al., 2015, Toscani et al.,

2013]. Similarly, in visual search and object categorization tasks, human eye movements

are well predicted by an ideal observer that tries to maximize information [Najemnik and

Geisler, 2005, Renninger et al., 2005]. Neurophysiological studies provide further support

for the view that eye movements actively seek out information. For instance, parietal

neurons seem to encode the amount of information expected from some eye movement

[Foley et al., 2017].

These results have led researchers to propose several information-theoretic models of

eye movements [Borji and Itti, 2013]. When dealing with uncertainty, a natural frame-

work is provided by Bayesian inference, which prescribes a principled method for updating

beliefs in the face of new evidence. From a Bayesian perspective, actions are maximally

informative when they reduce beliefs’ uncertainty (i.e., entropy). The notion that actions

(such as eye movements) are selected to reduce the entropy of beliefs has been discussed

under several different guises, including expected information gain, Bayesian surprise,

Bayesian active sensing (BAS), Bayesian active learning by disagreement (BALD), infor-

mation maximization (InfoMax), optimal experimental design and probability gain. Cog-

nitive science has proposed this objective to provide a general principle that underwrites

information acquisition and more general choice and decision-making behavior. Moreover,

it has played a prominent role in reinforcement learning, often utilized as a method for di-

rected exploration. In the context of vision, modeling studies have shown that a Bayesian
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objective accurately describes eye movements when participants are watching videos of

natural scenes [Itti and Baldi, 2005], performing perceptual categorization tasks [Yang

et al., 2016a,b], and during concept formation [Nelson and Cottrell, 2007].

Theoretically, a Bayesian approach to eye movements offers several appealing proper-

ties. First, it offers a solution to the ”TV static” problem, which describes the paradox

that a television displaying random static carries the highest amount of Shannon informa-

tion (i.e., the entropy of television static is higher than that of natural videos). Intuitively,

random noise conveys little information for a human observer and will fail to retain their

attention. Mathematically this occurs because the marginal entropy term in the definition

of information gain is significant and equal to the posterior entropy for a purely random

noise stimulus. From a Bayesian perspective, this paradox is resolved by noting that in-

formation is inherently tied to an observer’s beliefs rather than simply the information

conveyed in the image’s content. In other words, watching static on television will change

an observer’s beliefs about the environment less than watching a news channel, and in

this respect, the static contains less information. Several empirical studies have shown

that human attention is directed toward locations that maximally change beliefs. For

instance, attention is preferentially directed toward objects with a low probability of ap-

pearing in some location (e.g., an octopus on a farm). Moreover, the way people forage

for information is contextualized by the perceived value of information, again suggesting

that subjective beliefs form the basis for gathering information.

Viewing eye movements as actions that reduce the uncertainty of beliefs may also help

explain the tendency for people to fixate on an object’s distinguishing features [Baruch

et al., 2018]. Intuitively, such features will disclose the most information for disambiguat-

ing beliefs and forming accurate percepts. Formally, expected information gain is highest

when competing hypotheses (e.g., beliefs) disagree about what data to expect at some

location (hence why this approach is sometimes called Bayesian active learning by dis-

agreement, see Figure 1). A Bayesian perspective can also help reconcile the seemingly

paradoxical observation that eye movements are sometimes directed to predictable data

and sometimes too unpredictable. This paper has described how expected information

gain can be decomposed into two terms, one favoring uncertain data and the other favor-

ing predictable data. Therefore, a Bayesian approach suggests that eye movements should

be directed to maximally predictable (averaged over beliefs) and maximally unpredictable

parts of the visual scene. Indeed, empirical evidence suggests that humans allocate their

attention to visual sequences that are neither simple nor too complex.



96

Finally, a Bayesian approach can help explain why eye movements exhibit curiosity,

i.e., they can gather novel information about the environment. In Bayesian inference, it

is common to maintain beliefs about the world (e.g., what am I looking at?) and (beliefs

about) model parameters (e.g., what do butterflies look like?). Therefore, performing eye

movements to reduce uncertainty will entail gathering information that reduces model un-

certainty and finesses an internal world model. Furthermore, when learning new concepts,

humans forage for information in a way that approximates Bayesian learning, suggesting

a common principle underlying both active sensing and active learning.

Several theoretical frameworks have suggested a Bayesian treatment of eye movements.

Generally, these frameworks consider the information-oriented nature of vision to be a

contingent fact motivated by empirical evidence and evolutionary history. However, in

recent years, the active inference framework has described a Bayesian approach to action

that arises from a more fundamental imperative toward maintaining self-organization.

In brief, active inference suggests that living systems maintain an (implicit or explicit)

model of their preferred environment and change to maximize this model’s evidence. This

process is achieved by optimizing a bound on model evidence, known as (variational) free

energy. By optimizing this bound, living systems engage in an (approximate) Bayesian

inference known as variational Bayes. Active inference suggests that all system states

conform to these dynamics, offering a unified perception, action, and learning perspective.

As active inference prescribes, acting to minimize (expected) free energy involves selecting

actions that maximize expected information gain [Friston et al., 2015a]. Therefore, active

inference can provide a principled framework for a Bayesian approach to active vision,

which can unify several disparate perspectives [Parr and Friston, 2019, 2017, 2018c, Mirza

et al., 2018a, 2016, 2019, Heins et al., 2020].

Besides providing a general framework for understanding information sampling strate-

gies, can active inference help explain other aspects of eye movements? Several lines of

evidence suggest that eye movements are selected based on reward and uncertainty reduc-

tion. Neuroimaging studies have revealed that these factors are integrated into a common

currency that drives sensory sampling. As stated above, active inference suggests that ac-

tions are performed to minimize (expected) free energy. This quantity can be decomposed

into two terms: expected information gain and another term closely related to reward. In

this view, maximizing information gain and reward are components of a more fundamental

drive to minimize expected free energy. As such, active inference may help explain the

common currency in the brain, which drives the selection of eye movements. Previous
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studies have integrated a reward component into the task structure and found evidence

that the trade-off between uncertainty reduction and reward maximization follows the

predictions of active inference [Mirza et al., 2018b].

Benefits and future work

In everyday life, humans deal with a multitude of uncertainties, including model uncer-

tainty (i.e., how the world works), subjective uncertainty (i.e., what is currently the case?),

and objective uncertainty (i.e., the uncertainty that is ”in the world”). The brain must

consider these uncertainties when selecting actions [Kobayashi and Hsu, 2017]. While

previous studies have looked at how eye movements operate when confronted by one or

two types of uncertainty, the current study is, to our knowledge, the first to explore eye

movements when participants are faced with all three types of uncertainty. As such, the

results provide new insights into human visual search in epistemically realistic scenarios.

Moreover, our study utilized a task that ensured no single location would disambiguate all

four categories, thus requiring a series of saccades. This contrasts with studies examining

strategies based on a single fixation or aggregate viewing behavior and is thus more in line

with naturalistic behaviors.

It is well established that eye movements are directed towards predictable and unpre-

dictable stimuli. As demonstrated, these seemingly paradoxical results can be reconciled

under a Bayesian framework. In similar work, Yang et al. [2016c] compared an expected

information gain strategy to an uncertainty reduction sampling and found that the ex-

pected information strategy better predicted eye movements. However, the authors did

not compare their results with a predictive sampling strategy, which may have provided

a better explanation for their results. Therefore, our results deliver more robust support

for an expected information strategy better accounting for empirical visual search data

than uncertainty and a predictive strategy. Similar to Yang et al. [2016c], Mirza et al.

[2018b] also found evidence that expected information gain drives eye movements in a

categorization task similar to the current study, where a sequence of saccades is required

in order to disambiguate the identity of an abstract category, or ‘scene.’ The authors used

an active inference model to explain human behavior, and Bayesian model comparison

between models that included and did not include expected information gain showed that

eye movements are better explained by expected information gain than by pure reward

maximization, consistent with our results as well as those of Yang et al. [2016c].

There are several ways in which our results could be extended. First, the information
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sampling strategy predicts that the amount of uncertainty (regarding subjective beliefs

or beliefs about model parameters) should correlate with the degree of information seek-

ing. Indeed, this pattern of results has been observed in several domains [Walker et al.,

2017, Gold and Shadlen, 2007, Knox et al., 2011, Speekenbrink and Konstantinidis, 2015b].

Second, our model suggests that humans fixate on areas that balance predictability and

unpredictability. Future work could manipulate the predictability of different parts of the

visual scene in a controlled manner. This controlled predictability could be implemented

using a task structure like that introduced in the model of Heins et al. [2020], where ‘ob-

jective uncertainty’ is represented using belief uncertainty within a nested (hierarchical)

model. In this model, the agent/participant has to forage for information at two distinct

levels: one at the level of identifying the content of a currently-fixated location (which

feature am I looking at?), and one at the level of identifying categories, given a sequence

of inferred features. Because features themselves are contaminated with noise (aleatoric

uncertainty), feature uncertainty will ‘leak’ into category uncertainty, since multiple fea-

tures need to be fixated, before the category identity can be inferred unambiguously. This

construction allows one to simultaneously vary objective and belief uncertainty (where

objective uncertainty is cast as belief uncertainty at the lower level of feature inference)

by appealing to distinct levels of an inference hierarchy. This model could be extended

within the current task structure, where the mapping between features and categories is

unknown and has to be learned, incorporating the final form of uncertainty: model un-

certainty. This setup would further explore whether human scan paths conform to the

predictions of different sampling strategies. Future work could algorithmically optimize

stimuli to help disambiguate different eye movement strategies. [Nelson et al., 2010].

Finally, it is important to explore the biological plausibility of each sampling strategy

[Lee and Stella, 1999], using neural modeling, perhaps in combination with model-based

neuroimaging. Importantly, we do not expect additional difficulty when computing it in

neural systems because expected information gain is simply the summation of predictive

and uncertainty-based strategies.

5.4.1 Conclusion

It has been suggested that expected information gain plays a fundamental role in the

information-gathering capabilities of humans at multiple levels of behavior. More gener-

ally, it has been used to describe info-taxis in bacteria [Calhoun et al., 2014] and moths

[Vergassola et al., 2007, Moraud and Martinez, 2010], suggesting that it has played a
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role throughout phylogenetic history. Furthermore, the strategy is increasingly recog-

nized as valuable for developing intelligent learning machines. In the context of human

visual search, expected information gain has helped describe both saliency-based and

belief-driven sampling, suggesting a potential unification of ”bottom-up” and ”top-down”

accounts of eye movements. In the current work, we have further elucidated its role by

showing that human eye movements are best described by an expected information gain

strategy when participants face a full range of natural uncertainties.
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Chapter 6

A framework for generating novel

process theories

The free energy principle (FEP) describes a particular class of systems with measurable

properties that persist over time but are not necessarily at equilibrium with their envi-

ronment (e.g., humans). Specifically, it looks to characterize their dynamics as a process

of Bayesian inference, such that the system can be construed as actively modeling its

external environment. As discussed in the previous chapter, the FEP is fundamentally

a principle, much like Hamilton’s principle of least action. Therefore, there is a definite

sense in which it is true by construction, but only for systems that meet the (arguably

stringent) conditions laid out by the principle. The validity of the FEP per se thus boils

down to whether the systems we are interested in (e.g., living systems) conform to these

conditions.

Irrespective of its epistemic status, the FEP provides a guiding principle for generat-

ing process theories. These are implementations of the principle which, unlike the FEP

itself, provide measurable predictions which can be falsified. Crucially, the validity of

these process theories is separate from the validity of the FEP in the realm of physics,

meaning that one can subscribe to the claim that some process theory accurately describes

a system without accepting the complete set of claims by the FEP. As we have argued in

the previous chapters, the primary strength of the FEP and its corollary, active inference,

is in providing a coherent framework for generating process theories that either describe

systems of interest or provide effective methods for implementing artificial agents. In the

current chapter, we present a novel process theory that describes perception and action

in terms of approaches to minimizing variational free energy - amortized and iterative

inference, respectively. We first present a simple extension to predictive coding. Predic-
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tive coding is an influential model of cortical neural activity. It proposes that perceptual

beliefs are furnished by sequentially minimizing ”prediction errors” - the differences be-

tween predicted and observed data. Implicit in this proposal is the idea that successful

perception requires multiple cycles of neural activity. This is at odds with evidence that

several aspects of visual perception - including complex object recognition - arise from an

initial” feedforward sweep” that occurs on fast timescales, precluding substantial recurrent

activity. Here, we propose that the feedforward sweep can perform amortized inference

(applying a learned function that maps directly from data to beliefs), and recurrent pro-

cessing can be understood as performing iterative inference (sequentially updating neural

activity to improve the accuracy of beliefs). Next, we propose a hybrid predictive cod-

ing network that combines both iterative and amortized inference in a principled manner

by describing both in terms of a dual optimization of a single objective function. We

show that the resulting scheme can be implemented in a biologically plausible neural

architecture that approximates Bayesian inference utilizing local Hebbian update rules.

We demonstrate that our hybrid predictive coding model combines the benefits of both

amortized and iterative inference – obtaining rapid and computationally cheap perceptual

inference for familiar data while maintaining the context-sensitivity, precision, and sample

efficiency of iterative inference schemes. Moreover, we show how our model is inherently

sensitive to its uncertainty and adaptively balances iterative and amortized inference to

obtain accurate beliefs using minimum computational expense. Hybrid predictive cod-

ing offers a new perspective on the functional relevance of the feedforward and recurrent

activity observed during visual perception and offers novel insights into distinct aspects

of visual phenomenology. We then move on to consider action. The field of reinforce-

ment learning can be split into model-based and model-free methods. We unify these

approaches by casting model-free policy optimization as amortized variational inference

and model-based planning as iterative variational inference within a ‘control as hybrid

inference’ (CHI) framework. We present an implementation of CHI which naturally medi-

ates the balance between iterative and amortized inference. Using a didactic experiment,

we demonstrate that the proposed algorithm operates model-based at the onset of learning

before converging to a model-free algorithm once sufficient data have been collected. We

verify the scalability of our algorithm on a continuous control benchmark, demonstrating

that it outperforms strong model-free and model-based baselines. CHI thus provides a

principled framework for harnessing the sample efficiency of model-based planning while

retaining the asymptotic performance of model-free policy optimization.
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6.1 Hybrid Predictive Coding: Inferring, fast and slow

6.1.1 Introduction

A classical view of perception is as a primarily bottom-up pipeline, whereby signals are

processed in a feed-forward manner from low-level sensory inputs to high-level conceptual

representations [Van Essen and Maunsell, 1983, DiCarlo et al., 2012, Marr, 1982]. In

apparent contrast with this classical bottom-up view, a family of influential theories -

originating with von Helmholtz in the 19th Century - have cast perception as a process of

(approximate) Bayesian inference, in which prior expectations are combined with incoming

sensory data to form perceptual representations [Dayan et al., 1995, Lee and Mumford,

2003, Rao and Ballard, 1999a, Knill and Pouget, 2004a, Friston, 2005]. Under this Bayesian

perspective, the loci of perceptual content reside predominantly in top-down predictions

rather than in the sequential refinement of bottom-up sensory data.

In visual perception, top-down signalling has long been recognised as playing several

important functional roles – for instance, in attentional modulation [Theeuwes, 2010], in

the goal-directed shaping of stimulus selection [Weidner et al., 2009, Melloni et al., 2012],

and in establishing recurrent loops that have been associated with conscious experience

[Lamme, 2010]. At the same time, bottom-up signalling has been convincingly linked

to rapid perceptual phenomena such as gist perception and context-independent object

recognition [Thorpe et al., 1996, Delorme et al., 2004, Kreiman and Serre, 2020, Kveraga

et al., 2007, Ahissar and Hochstein, 2004]. These and other disparate findings have fu-

eled a long-standing debate over the respective contributions of bottom-up and top-down

signals to visual perceptual content [Lamme and Roelfsema, 2000, Kveraga et al., 2007,

VanRullen, 2007, Roland, 2010, Rauss and Pourtois, 2013]. Although classical bottom-up

perspectives are often contrasted with Bayesian top-down theories in this debate, more

nuanced pictures have also been proposed in which bottom-up and top-down signals both

contribute to perceptual content, but in distinct ways [Awh et al., 2012, Rauss and Pour-

tois, 2013, Teufel and Fletcher, 2020]. Such proposals, however, have largely remained

conceptual. Here, we develop, and illustrate with simulations, a novel computational ar-

chitecture in which top-down and bottom-up signalling is adaptively combined to bring

about perceptual representations within an extended predictive coding paradigm. We call

this architecture hybrid predictive coding (HPC). We show that while both bottom-up and

top-down signals convey predictions about perceptual beliefs, they implement different ap-

proaches to inference (amortized and iterative inference, respectively). Our model retains

the benefits of both approaches to inference in a principled manner, and helps explain
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several empirical observations that have, until now, evaded a parsimonious explanation in

terms of Bayesian inference.

Predictive coding is a highly influential framework in theoretical neuroscience which

originated in signal processing theory and proposes that top-down signals in perceptual

hierarchies convey predictions about the causes of sensory data [Rao and Ballard, 1999a,

Friston, 2005, Den Ouden et al., 2012, Alink et al., 2010, Gordon et al., 2017, Murray et al.,

2002, Summerfield and De Lange, 2014, Bogacz, 2017, Buckley et al., 2017b, Millidge et al.,

2021a, 2022]. Predictive coding is usually considered in systems with multiple hierarchical

layers [Friston and Kiebel, 2009b, Buckley et al., 2017b, Clark, 2015c, Millidge, 2019b],

where each layer learns to predict (or generate) the activity of the layer below it (with the

lowest layer predicting sensory data). In this setting, bottom-up signals convey prediction

errors - the difference between predictions and data - whereas top-down signals convey

the predictions. By minimising prediction errors, a system can both learn a generative

model of its sensory data and infer the most likely causes of that data in a hierarchical

fashion [Friston, 2008]. The resulting scheme can be interpreted as performing variational

inference [Bogacz, 2017], an optimisation procedure that approximates Bayesian inference

[Fox and Roberts, 2012, Beal, 2003, Hinton and van Camp, 1993].

Predictive coding can account for a wide range of neurophysiological evidence and

provides a compelling account of top-down signals in visual perception [Walsh et al., 2020].

However, to extract meaningful representations from sensory data, predictive coding must

iteratively minimise prediction errors over multiple sequential steps [Bastos et al., 2012,

Millidge et al., 2021b]. We refer to such procedures as iterative inference, as they require

multiple iterations to furnish perceptual beliefs [Millidge et al., 2020a, Tschantz et al.,

2020b, Marino et al., 2018a]. In neural terms, this would imply that multiple cycles

of recurrent activity are required to perceive a stimulus [Ahissar and Hochstein, 2004,

Friston and Kiebel, 2009b, van Bergen and Kriegeskorte, 2020]. However, empirical studies

have consistently demonstrated that many aspects of human visual perception can occur

remarkably rapidly, often within 150ms of stimulus onset [Thorpe et al., 1996, Keysers

et al., 2001, Carlson et al., 2013, Thunell and Thorpe, 2019]. Evidence of rapid perception

- such as in gist perception or context-free object recognition - is difficult to reconcile

with a computational process that requires several sequential steps to arrive at perceptual

representations.

In machine learning, amortised inference provides an elegant alternative to iterative

inference [Kingma and Welling, 2013a, Doersch, 2016] which is well suited to rapid pro-
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cessing. Rather than iteratively updating beliefs for each stimulus, amortised inference

learns a parameterised function (e.g. a neural network) that maps directly from the data

to (the parameters of) beliefs. The parameters of this function are optimised across the

available dataset, and once learned, inference proceeds by applying the learned function to

new data. Thus, amortised inference provides a plausible mechanism for extracting prob-

abilistic beliefs efficiently and rapidly via feed-forward, bottom-up processing [Gershman

and Goodman, 2014, van Bergen and Kriegeskorte, 2020].

Our novel neural architecture - hybrid predictive coding - combines iterative (standard)

predictive coding with amortised inference, so that both bottom-up and top-down signals

convey probabilistic predictions (and where prediction errors also flow in both directions).

The architecture comprises several hierarchical layers, with top-down signals predicting

the activity of the subordinate layer and bottom-up signals predicting the superordinate

layer’s activity. As with predictive coding, top-down predictions learn to generate the

data hierarchically, implementing a ‘generative model’ of the data. The model augments

standard predictive coding by also implementing bottom-up predictions which learn to

generate (the parameters of) beliefs at higher layers. Crucially, these bottom-up predic-

tions learn to generate beliefs that have been optimised by iterative inference, i.e. they

learn to generate approximately posterior beliefs. In this way, our model casts bottom-up

processing as amortised inference and top-down processing as iterative inference. At stim-

ulus onset, bottom-up predictions rapidly provide an initial “best guess” at perceptual

beliefs, which are then refined by minimising prediction errors iteratively in a top-down

fashion. Both the bottom-up and top-down processes operate using the same set of bio-

logically plausible Hebbian learning rules, and all layers of the network operate in unison

to infer a single set of consistent beliefs. Altogether, the model offers a unified inference

algorithm that inherits the rapid processing of amortised inference while maintaining the

flexibility, robustness, and context sensitivity of iterative inference [Marino et al., 2018a,

Friston, 2005, Kingma and Welling, 2013a, Cremer et al., 2018].

The remainder of the paper is structured as follows. Section 2 provides an overview

of iterative and amortised inference and describes the hybrid predictive coding (HPC)

architecture. In Section 3, we present results from a series of experiments that explore

several aspects of our model. Specifically, we demonstrate a) that HPC performs super-

vised and unsupervised learning simultaneously, b) that bottom-up, amortised predictions

reduce the number of iterations required to achieve accurate perceptual beliefs, and that

the trade-off between amortised and iterative inference is adaptively modulated by un-
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Figure 6.1: Bottom-up and top-down perception: One classical view of perception

is as a primarily bottom-up process, where sensory data x is transformed into percep-

tual representations z through a cascade of feedforward feature detectors. In contrast,

predictive coding suggests that the brain solves perception by modelling how perceptual

representations z generate sensory data x, which is a fundamentally top-down process. In

HPC, sensory data x predicts perceptual representations at fast, amortized time scales,

and perceptual representations z predict sensory data x at slow, iterative time scales.

Our “fast and slow” model casts this integration of bottom-up and top-down signals in a

probabilistic framework, allowing derivation of a testable process theory.

certainty, and c) that the generative component of the model enables learning with a

limited amount of data. Together, these results show the benefits of inferential process

theories that incorporate bottom-up predictions which convey perceptual content rather

than just errors. Conversely, they demonstrate that bottom-up approaches to perception

should benefit from incorporating top-down generative feedback. Finally, we argue that

our model provides a powerful computational framework for interpreting the contributions

of bottom-up and top-down signalling in terms of different aspects of visual perception.

6.1.2 Related work

Many works in machine learning have considered the notion of iterative and amortized

(variational) inference [Ghahramani and Beal, 2001, Hinton and van Camp, 1993, Kingma

and Welling, 2013a], with recent work combining iterative and amortized inference in the

context of perception [Marino et al., 2018a] and control [Marino et al., 2021, Tschantz
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et al., 2020b, Millidge et al., 2020a,b]. This idea of combining model-free and model-based

planning methods (interpreted as iterative and amortized inference) in reinforcement learn-

ing also has a long history [Sutton, 1991, Schmidhuber, 1990b]. Moreover, in perception,

Bengio et al. [2016] also consider a feedforward amortized sweep to initialize an iterative

inference algorithm in the context of contrastive Hebbian learning algorithms which are

another proposed family of biologically-plausible learning algorithms which could poten-

tially be implemented in neural circuitry [Xie and Seung, 2003, Scellier and Bengio, 2017].

Contrastive Hebbian methods differ from predictive coding in that they require both a

‘free phase’ where the network output is unclamped and a ‘fixed phase’ where the network

output is clamped and then the weight update is proportional to the difference between

the two phases. In a similar approach to ours, Bengio et al. [2016] show that the fixed

and free phase equilibria can be amortized and predicted in a feedforward pass and that

this reduces the number of inference iterations required. However, to our knowledge, our

approach is the first to combine of iterative and amortized inference within a predictive

coding architecture, and the resulting network has many favourable theoretical properties

such as requiring only local Hebbian updates and that all dynamics and weight changes

can be derived from a joint optimization on a unified energy function. In addition, given

that predictive coding has been proposed as biological process theory of perception [Rao

and Ballard, 1999b, Friston, 2005, Bastos et al., 2012, Walsh et al., 2020], and as a way

to explain the phenomenology of perceptual experience in terms of neural mechanisms

[Hohwy and Seth, 2020, Seth and Hohwy, 2021], our novel architecture also offers insights

into why gist perception and focal perception have the characteristic phenomenological

properties that they do.

6.1.3 Methods

Approximate Bayesian inference

Bayesian Inference To support adaptive behaviour, the brain must overcome the am-

biguous relationship between sensory data and their underlying (hidden) causes in the

world. For example, suppose an object reflects some pattern of light onto the retina,

the brain must recover this object’s identity, despite the fact that the sensory data is

inherently noisy, and that multiple objects could have caused the same pattern of retinal

stimulation. Such considerations have motivated the popular view that the brain uses a

version of Bayesian inference [Knill and Pouget, 2004a, Friston, 2012], which describes the

process of forming probabilistic beliefs about the causes of data, to accomplish perception.
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Formally, we can denote sensory data (e.g., the pattern of retinal stimulation) as x

and the hidden cause of this data (e.g., the object causing the retinal stimulation) as

z. Rather than directly calculating the most likely hidden cause, a Bayesian perspective

would propose that the brain infers a conditional distribution over possible causes p(z|x),

referred to as the posterior distribution. Bayesian inference then prescribes a method for

updating the posterior distribution in light of new sensory data:

p(z|x) =
p(x|z)p(z)

p(x)
(6.1)

where p(x|z) is referred to as the likelihood distribution, describing the probabilistic

relationship between hidden causes and sensory data, p(z) is the prior distribution, de-

scribing the prior probability of hidden causes, and p(x) =
∫
p(x|z)p(z)dz is the evidence,

describing the probability of some sensory data averaged over all possible hidden causes.

Bayesian inference prescribes a normative and mathematically optimal method for updat-

ing beliefs when faced with uncertainty and provides a principled approach for integrating

prior knowledge and data into inferences about the world [Knill and Richards, 1996, Cox,

1946, Jaynes, 2003].

Variational Inference While Bayesian inference provides an elegant framework for de-

scribing perception, the computations it entails are generally mathematically intractable

[Fox and Roberts, 2012]. Therefore, it has been suggested that the brain may implement

approximations to Bayesian inference. In particular, it has been suggested that the brain

utilises variational inference [Ghahramani and Beal, 2001, Beal, 2003, Fox and Roberts,

2012, Hinton and van Camp, 1993, Wainwright et al., 2008, Friston et al., 2006, Friston

and Stephan, 2007b], which converts the intractable inference problem into a tractable

optimisation problem. Variational inference posits the existence of an approximate pos-

terior qλ(z) with parameters λ, which serves as an approximation to the true posterior

distribution p(z|x). The goal of variational inference is then to minimise the difference

between the true and approximate posteriors, with the difference being quantified in terms

of the KL-divergence DKL
1:

DKL

[
qλ(z)‖p(z|x)

]
= Eqλ(z)

[
ln qλ(z)− ln p(z|x)

]
(6.2)

However, to minimise Eq. 6.2, it is still necessary to evaluate the true posterior distri-

bution p(z|x). Variational inference circumvents this issue by instead minimising an upper

1The KL-divergence is an asymmetric measure of dissimilarity between two probability distributions.
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bound on Eq. 6.2, i.e. a quantity which is always greater than or equal to the quantity of

interest. In particular, it minimises the variational free energy F :

F(z,x) = Eqλ(z)

[
ln qλ(z)− ln p(z|x)

]
− ln p(x)

≥ DKL

[
qλ(z)‖p(z|x)

] (6.3)

Minimising variational free energy F will ensure that the qλ(z) tends towards an ap-

proximation of the true posterior (see the final line of Equation 6.3), thus implementing

an approximate form of Bayesian inference. This minimisation takes place with respect

to the parameters of the approximate posterior λ, and can be achieved through methods

such as gradient descent.

Learning Equation 6.3 introduces an additional joint distribution over hidden causes

and sensory data p(z,x), which is referred to as the generative model and is expressed

in terms of a likelihood and a prior p(z,x) = p(x|z)p(z) . It is common to parameterise

the generative model with a set of parameters θ, e.g pθ(z,x). These parameters can then

be optimised (over a slower timescale) with respect to variational free energy, thereby

providing a tractable method for learning [Beal, 2003, Neal and Hinton, 1998, Friston

et al., 2016c]. Intuitively, this is because the variational free energy provides a bound

on the marginal-likelihood of observations pθ(x) 2, such that minimising free energy with

respect to θ will maximise pθ(x) (see the second line of Equation 6.3) [Odaibo, 2019].

Minimising F with respect to θ will thus cause the generative model to distill statistical

contingencies from the data, and by doing so, encode information about the environment.

In summary, variational inference provides a method for implementing both inference and

learning using a single objective - the minimisation of variational free energy.

Iterative Inference Variational inference provides a general scheme for approximating

Bayesian inference. In practice, it is necessary to specify the approximate posterior and

generative model, as well as the optimisation scheme for minimising variational free energy.

A standard method is to optimise the parameters of the variational distribution λ for each

data point. Given some data point x, we look to solve the following optimisation procedure:

λ∗ = arg min
λ

Eqλ(z)

[
ln qλ(z)− ln pθ(z,x)

]
(6.4)

Generally, this is achieved using iterative procedures such as gradient descent. There-

fore, we refer to this mode of optimisation as iterative inference [Millidge et al., 2020a,

2The subscript θ highlights that the marginal likelihood is evaluated under the generative model.
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Marino et al., 2018a], as it requires multiple iterations to converge, and the optimisation

is performed for each data point individually. Heuristically, for each new data point x,

iterative inference randomly initialises λ, and then uses standard optimization algorithms

such as gradient descent to iteratively minimise Equation 6.4. This method underwrites

a number of popular inference methods, such as stochastic variational inference [Hoffman

et al., 2013] and black box variational inference [Ranganath et al., 2014], and can be con-

sidered to be the ‘classical’ approach to variational inference. In what follows, we specify

how predictive coding can be considered as a form of iterative inference.

Predictive coding

The predictive coding algorithm [Rao and Ballard, 1999a, Friston, 2005] operates on a

hierarchy of layers, where each layer tries to predict the activity of the layer below it (with

the lowest layer predicting the sensory data). These predictions are iteratively refined by

minimising the prediction errors, (i.e. the difference between predictions and the actual

activity) of each layer. In predictive coding, the approximate posterior is defined to be a

Gaussian distribution:

qλ(z) = N (z;µ, σ2) (6.5)

where λ = {µ, σ2}. In a similar fashion, we assume the factors of the generative model

pθ(z,x) = p(x|z)p(z) to also be Gaussian:

p(z) = N (z; µ̄, σ2
p)

p(x|z) = N (x; fθ(z), σ2
l )

(6.6)

where fθ(·) is some non-linear function with parameters θ, and µ̄ is the mean of the prior

distribution p(z)3. Given these assumptions, we can rewrite variational free energy F as

(Buckley et al. [2017b]):

F(µ,x) =
1

2σl
ε2
l +

1

2σp
ε2
p +

1

2
ln (σlσp)

εl = x− fθ(µ)

εp = µ− µ̄

(6.7)

where εl and εp are the prediction errors. The term fθ(µ) can be construed as a

prediction about the sensory data x, such that εl quantifies the disagreement between this

prediction and the data4. Crucially, variational free energy is now written in terms of

3In hierarchical models, µ̄ would not be fixed but would instead act as an empirical prior.
4The same logic applies for εp, which will be discussed further in the context of hierarchical models
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the sufficient statistics of qλ(z), i.e. the objective is now F(µ,x) rather than F(z,x) (see

Buckley et al. [2017b] for a full explanation).

The goal is now to find the value of µ which minimises F(µ,x). This can be achieved

through gradient descent (with some step size κ)

µ̇ = −κ ∂F
∂µ

= −κ
(
εp −

∂fθ(µ)>

∂µ
εl

)
(6.8)

While these updates may look complicated, they can be straightforwardly implemented

in biologically plausible networks composed of prediction units and error units ( see Bogacz

[2017]). The same scheme can be applied to learning the parameters of the generative

model θ, where the goal is now to find the value of θ which minimises F(µ,x):

θ̇ = −α ∂F
∂θ

= −κ
(
εlfθ(µ)>

)
(6.9)

where α is the learning rate. For each data point, µ is iteratively updated using Equation

6.8 until convergence, and then Equation 6.9 is updated based on the converged value of

µ, here denoted µ∗. Crucially, Equation 6.9 can be implemented using simple Hebbian

plasticity [Bogacz, 2017, Bastos et al., 2012]. Predictive coding is usually implemented in

networks with L hierarchical layers, where each layer tries to predict the activity of the

layer below it (besides the lowest layer, which predicts the data):

p(z,x) = p(x|z1)p(z1|z2)...p(zL−1|zL) (6.10)

When considered as a neural process theory, predictive coding posits the existence of

two neuronal populations: prediction units (which compute predictions) and prediction

error units (which compute the difference between a predictions and the actual input)

[Clark, 2013b, Hohwy, 2013]. To make predictions match input data, the dynamics de-

scribed by Equation 6.8 and Equation 6.9 prescribe that prediction errors are minimised

over time. This ensures that contextual information from superordinate layers are inte-

grated into inference, thereby helping to disambiguate ambiguous stimuli [Kveraga et al.,

2007, Weilnhammer et al., 2017, Den Ouden et al., 2012]. As variational free energy is

equal to the sum of (precision-weighted) prediction errors (Equation 6.7), minimising pre-

diction errors is equivalent to minimising variational free energy, and thus equivalent to

performing variational inference.

Predictive coding models the world in a top-down manner - e.g. it learns to predict

features from objects, rather than predicting objects from features. It is this aspect which

makes predictive coding generative5 - as it is able to generate data without any external

5While predictive coding is usually considered to be unsupervised algorithm, it is straightforward to
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input [Friston and Kiebel, 2009b]. Inference is achieved by ‘inverting’ this model, i.e. going

from data to hidden states [Hohwy, 2013]. This inversion process is achieved by iteratively

applying Equation 6.8 for a given number of steps. The generative nature of predictive

coding means that it is able to take context into account during inference, and it can

work with relatively small amounts of data. On the other hand, its inherently iterative

nature is computationally costly and temporally slow, and - in addition - in standard

implementations predictive coding is also memoryless [Gershman and Goodman, 2014],

meaning that inference is repeated afresh for each stimulus, even if that stimulus has been

encountered previously6.

Amortised Inference Amortised inference provides an alternative approach to per-

forming variational inference which has recently gained prominence in machine learning

[Kingma and Welling, 2013a]. Rather than optimising the variational parameters λ di-

rectly, amortised inference learns a function fφ(x) which maps from the data to the vari-

ational parameters. The parameters φ of this function are then optimised over the whole

dataset, rather than on a per-example basis. Once this function has been learned, in-

ference is achieved via a single forward pass through fφ(x), making amortised inference

extremely efficient once learned. Amortised inference also retains some notion of memory

[Doersch, 2016], as the amortised parameters φ are shared across the available dataset.

However, amortised inference cannot take contextual information into account, and suffers

from the amortisation gap [Cremer et al., 2018], which describes the difference incurred

from sharing parameters across the dataset rather than optimizing them individually for

each data point.

Formally, amortised inference looks to solve the following optimisation problem:

φ∗ = arg min
φ

Ep(D)

[
Eqλ(z)

[
ln qλ(z)− ln pθ(z,x)

]]
where λ = fφ(x)

(6.11)

where D is the available dataset, and fφ(x) is the amortised function which maps from

the data x to the variational parameters λ. The goal is then to optimise the parameters

of this amortised function φ to minimize the variational free energy on average over the

entire dataset.

extend the scheme into a supervised setting [Millidge et al., 2020c, Bogacz, 2017, Whittington and Bogacz,

2017, Sun and Orchard, 2020, Millidge et al., 2020d]. This can be achieved by turning the predictive coding

network on its head, so that the model tries to generate hidden states (e.g. labels) from data.
6Note that memoryless inference can be useful, in so far as it ignores any biases which may have been

introduced by previous data points.
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In contrast with predictive coding, amortised inference is fundamentally a bottom-

up process: it predicts objects from features. In the current context, fφ(x) acts as a

discriminative model which learns the conditional distribution p(z|x). Moreover, during

inference, the amortised parameters are fixed. Several methods have been proposed for

implementing amortised inference [Zhang et al., 2018], and these usually rely on some form

of backpropagation or stochastic sampling to compute or approximate average gradients

of the amortisation function with respect to the free energy. In the following section, we

present a simple extension of predictive coding which incorporates amortised inference in

a biologically plausible manner.

Hybrid predictive coding

Our novel hybrid predictive coding (HPC) model combines both amortised and iterative

inference into a single biologically plausible network architecture. We consider a model

composed of L hierarchical layers, where each layer i is composed of a variable unit µi and

an error unit εi. In the same manner as predictive coding, each layer tries to predict the

activity of the layer below it: µi−1 = fθ(µi), besides the lowest layer, which tries to predict

the data x directly. The error units measure the disagreement between these predictions

and the actual input εi = µi−1 − fθi(µi).

In contrast with predictive coding, we assume an additional set of amortised parameters

φ, which correspond to bottom-up connections. The amortised parameters define non-

linear functions which map activity at one layer to activity at the layer above, thereby

implementing a bottom-up prediction: µi = fφi(µi−1). Here, the lowest layer operates

directly on sensory data: µ0 = fφ0(x). We refer to these bottom-up functions fφ(·) as

being amortised as directly they map from data x to the parameters of a distribution µ.

Crucially, both the top-down fθ(·) and bottom-up fφ(·) functions try to predict the same

set of variables {µ}.

Inference proceeds in two stages. The first ‘amortised phase’ takes the current sensory

data x and propagates it up the hierarchy in a feedforward manner, utilising the amortised

functions fφ(·). This produces a set of initial ‘guesses’ for each µ in the hierarchy and

is analogous to the feedforward sweep observed in neuroscience [VanRullen, 2007] and in

neural network architectures. The second ‘iterative’ phase refines each µ by generating

top-down predictions and iteratively applying Equation 6.8.

In order to learn the generative parameters θ, Equation 6.9 is applied to the converged

values of µ∗. In order to implement learning for the amortised parameters φ, we introduce
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Figure 6.2: Hybrid predictive coding combines two phases of inference as follows.

(A) At stimulus onset, data x is propagated up the hierarchy in a feedforward manner,

utilising the amortised functions fφ(·). These predictions set the initial conditions for µ,

which parameterise posterior beliefs about the sensory data. (B) The initial values for µ

are then used to predict the activity at the layer below, transformed by the generative

functions fθ(·). These predictions incur prediction errors ε, which are then used to update

beliefs µ. This process is repeated N times, after which perceptual inference is complete.

an additional set of error units εφi which quantify the difference between the amortised

predictions and the values of µ at convergence in the iterative phase, which we call µ∗.

These amortised prediction errors are defined as εφi = µ∗i − fφ(µi−1). Given these errors,

we can update the values for φ using Equation 6.9, where fθ(µ) is now replaced by fφ(µ).

By constructing the model in this way, the process of amortised inference retains symmetry

with the original predictive coding model, adding the feature that predictions now also

flow in the opposite (bottom-up) direction.

A key aspect of the model is that the amortised predictions learn to predict beliefs

at higher layers, after the beliefs have been optimised by iterative inference. In effect, the

amortised predictions learn to ‘shortcut’ the costly process of iterative inference, allowing

for fast and efficient mapping from data to beliefs. Figure 6.2 provides a schematic of the

model, and Algorithm 2 presents the details of the inference and learning procedure.
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Algorithm 2 Hybrid predictive coding

Input: Generative parameters θ — Amortised parameters φ — Data x — Step size κ —

Learning rate α

Amortised Inference:

µ0 = fφ0(x)

for i = 1...L− 1 do

µi+1 = fφi(µi)

end

Iterative Inference:

for optimisation iteration j = 1...N do

εl = x− fθ0(µ0)

εp = µ0 − fθ1(µ1)

µ̇0 = −κ
(
εp − ∂fθ(µ0)>

∂µ0
εl

)

for i = 1...L do

εl = µi−1 − fθi(µi)

εp = µi − fθi+1
(µi+1)

µ̇i = −κ
(
εp − ∂fθ(µi)

>

∂µi
εl

)
end

end

Learning:

for i = 0...L do

εφl = µ∗i+1 − fφi(µi)

θ̇i = −α
(
εlfθi(µi)

>
)

φ̇i = −α
(
εφl fφi(µi)

>
)

end
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6.1.4 Results

To illustrate the performance of HPC, we present a series of simulations on the MNIST

dataset, which consists of images of handwritten digits (from 0-9) and their correspond-

ing labels. We first establish that HPC can simultaneously perform classification and

generation tasks on the MNIST dataset. We then show that the model enables fast in-

ference, in that the number of iterations required to achieve perceptual certainty reduces

over repeated inference cycles. Moreover, we show that the novelty of the data adaptively

modulates the number of iterations enabling more rapid adaptation to nonstationary envi-

ronments and distribution shift. We then demonstrate the practical benefit of fast inference

by plotting the accuracy of hybrid and standard predictive coding against the number of

iterations, which demonstrates that our model can retain high performance with minimal

iterations relative to standard predictive coding. To demonstrate the benefits of the top-

down, generative component of our model, we compare the accuracy of HPC inference as a

function of the dataset size and show that it can learn with substantially fewer data items

than a purely amortized scheme. Finally, we investigate additional beneficial properties

of our model. We show that the iterative inference phase can be accurately described

as refining beliefs since it decreases the entropy of the initial amortized prediction. We

show that our network can adaptively reduce computation time for well-learned stimuli

but increase it again for novel data, as well as that combining the iterative and amortized

components substantially reduces the number of inference iterations required throughout

training.

Simulation details

The MNIST database consists of 60,000 training examples and 10,000 test examples. Each

example is composed of an image and a corresponding label between 0 and 9, where each

image is black and white and of size 28 x 28 pixels, which is fed into the predictive

coding network via an input layer consisting of 784 nodes. In the context of both hybrid

and standard predictive coding, labels are encoded as priors at the highest level of the

hierarchy L. Specifically, the model’s highest layer is composed of 10 nodes (one for each

label). During training, these nodes are fixed to the corresponding label: the node which

corresponds to the label is fixed at one, while the remaining nodes are set to zero. The

bottom (sensory) layer is fixed to the current image during training. During testing, while

the bottom layer remains fixed to the image, the highest layer is left unconstrained. To

obtain a classification during testing, we return the label which corresponds to the top-
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layer node with the largest activity at the end of inference. For generation, we fix the top

layer of the network to a desired label and leave the input nodes unconstrained. We then

perform inference throughout the network until convergence and read out the inferred

image at the bottom layer.

Both the hybrid and standard predictive coding models are composed of 4 layers of

nodes (L = 4). The lowest layer, which is fixed during training and testing, comprises 784

nodes and corresponds to the current image. The next two layers are composed of 500

nodes each, and the highest layer is formed of 10 nodes, which correspond to the current

label and are constrained during training. For both the hybrid and standard predictive

coding models, the generative, top-down functions fθ(·) use tanh activation functions for

all layer besides the lowest, which do not use an activation function. Weight normalisation

is used for the generative parameters θ, which we found crucial for maintaining classifica-

tion accuracy in the standard predictive coding network. For the amortised, bottom-up

functions fφ(·) (only used in the hybrid model), a tanh activation is used for all layers

besides the highest, which does not use an activation function. All weights are updated

using the ADAM optimiser [Kingma and Ba, 2014] with a learning rate of α = 0.01, and

κ = 0.01 is used for iterative inference. Unless specified otherwise, we use N = 100 iter-

ations during iterative inference. To demonstrate the adaptive computation properties of

HPC we also use an adaptive threshold which cuts off inference if the average sum (across

layers) of mean squared prediction errors is less than 0.005.

In contrast with standard presentations of MNIST results, we do not measure accuracy

over entire epochs (e.g. the test set accuracy after the model has been trained on all 60,000

examples in a batched fashion) but instead measure accuracy as a function of batches.

Specifically, we train and test accuracy after every 100 batches, where the batch size is set

to 64 for all experiments. This strategy was chosen due to the speed at which our models

converge (often within 600 batches, or approximately 38,000 examples), thereby allowing

us to visualise convergence in a more fine-grained manner.

Unsupervised and supervised learning within a single algorithm

The first set of simulations illustrate that the model can perform both classification and

generation simultaneously, meaning that it can naturally utilise both supervised and unsu-

pervised learning signals. This property is desirable for a perceptual inference algorithm,

since in many situations, training labels may only be available occasionally. The unsuper-

vised capabilities of HPC derive from learning the top-down generative parameters θ. In
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the absence of labels (or priors in the current framework), these parameters distil statis-

tical regularities in the data, forming a generative model which can be used for various

downstream tasks. The supervised learning capabilities derive from both the Bayesian

model ‘inversion’ provided by iterative inference, and the bottom-up initialisation pro-

vided by amortised inference. Our model captures the relationship between data and

labels in a probabilistic manner by constraining the highest layer’s nodes to the relevant

labels during training. It is important to note that the ability to utilise both supervised

and unsupervised signals is not unique to hybrid predictive coding - standard predictive

coding can also learn from both supervised and unsupervised signals. However, as we

will show in the following experiments, our hybrid architecture affords several additional

benefits which are not provided by standard predictive coding.

We first demonstrate the classification accuracy and generative capabilities of HPC.

We compare the results of hybrid and standard predictive coding on the MNIST dataset,

and additionally, compare these results to the accuracy of the amortised component alone.

Recall that the amortised accuracy corresponds to the initial ‘best guess‘ provided by the

amortised forward sweep, which is then refined by iterative inference to give the final

accuracy of hybrid predictive coding. The present analysis therefore allow us to determine

the influence that iterative inference has on the hybrid predictive coding model.

Results are shown in Figure 6.3. There is no significant difference between the clas-

sification accuracy of the hybrid and standard predictive coding (Figure 6.3A). This is

to be expected, as the iterative inference procedure (shared by both hybrid and stan-

dard predictive coding) ‘trains’ the amortised component (as the amortized connections

learn to minimize the prediction error between their own predicted beliefs and the beliefs

eventually converged to in the process of iterative inference), meaning that the amortised

component’s accuracy cannot be higher than that provided by iterative inference alone.

This ‘training’ can be seen in Figure 6.3A, where the amortised accuracy converges to

the hybrid model’s accuracy over time. The accuracy of amortised inference increases at

a slower rate, consistent with the intuition that learning discriminative models requires

more data relative to generative models. Similarly, Figure 6.3B shows that the hybrid

and standard predictive coding models are equivalent in terms of their ability to generate

data, and Figure 6.3C & 6.3D show that samples generated from each of these models

are qualitatively similar. Again, these results are expected, as the process of amortised

inference should have little influence on the learning of the generative parameters. It is

worth noting that the asymptotic performance is somewhat lower than usually reported
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on the MNIST dataset. This discrepancy is explained by the fact that we are using models

that are fundamentally generative, i.e. their objective is to generate the data, not perform

classification.

Fast inference

In the previous section, we demonstrated that hybrid predictive coding retains standard

predictive coding’s classification accuracy and generative capabilities. We next show that

the inclusion of a bottom-up, amortised component facilitates fast inference, by which we

mean the ability to reach some level of perceptual certainty in a reduced number of iter-

ations. To operationalise perceptual certainty, we introduce an arbitrary threshold (here

0.005) and stop iterative inference once the sum of average squared prediction errors (i.e.

the free energy) has fallen below this threshold. The averaged prediction error can be

thought of as a proxy for perceptual certainty because it is equivalent to variational free

energy in the current context, thereby providing a principled measure of model fit since,

after the minimization of the variational free energy is complete, it will come to approxi-

mate the log model evidence for a particular setting of the generative model parameters.

Continuing with the same experimental setup, Figure 6.4B shows that the number of it-

erations required to reach perceptual certainty decreases over batches. Once converged,

asymptotic accuracy is achieved without requiring any iterations at all, meaning that ac-

curate perceptual beliefs are furnished through a single amortised forward sweep without

the need for any expensive iterative inference steps, thus furnishing rapid and computa-

tionally cheap perception for commonly encountered data. Figure 6.4A demonstrates that

this reduction in iterations has no detrimental effect on the accuracy of hybrid predictive

coding.

To demonstrate the practical benefit of fast inference, we compare the accuracy of

hybrid and standard predictive coding when using a fixed number of iterations (i.e. no

‘perceptual certainty’ threshold). Specifically, we compare classification accuracies when

using 10, 25, 50 and 100 iterations for iterative inference. Results are shown in Figure

6.5, using the same simulation setup as in previous experiments, apart from the number

of iterations. Hybrid predictive coding can obtain equivalent performance with a little as

10 variational iterations (Figure 6.5A), whereas standard predictive coding fails to learn

at all under these conditions. At 25 iterations (Figure 6.5B), we see that the performance

of standard predictive coding slowly decreases over batches. Notably, we observed no such

general performance decrease for hybrid predictive coding suggesting that the amortized
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Figure 6.3: Simultaneous classification and generation. (A) Classification accu-

racy on the MNIST dataset for hybrid predictive coding, standard predictive coding and

amortised inference. Each line is the average classification accuracy across three seeds;

the shaded area corresponds to the standard deviation. The x-axis denotes the number of

batches. (B) Generative loss. The panel shows the averaged mean-squared error between

the lowest level of the hierarchy (which is fixed to the sensory data during testing) and the

top-down predictions from the superordinate layer, plotted against batches, for HPC and

standard PC. This metric provides a measure of how well each model is able to generate

data. The seeds used are the same as those used in panel (A) (i.e. the data is from

the same run). (C) Illustrative samples taken from HPC at the end of learning. These

images are generated by activating a single nodes in the highest layer (corresponding to

a single digit), and performing top-down predictions in a layer-wise fashion. The images

correspond to the predicted nodes at the lowest layer. (D) As in (C) but for standard

predictive coding.
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Figure 6.4: Fast inference (A) Classification accuracy of the hybrid predictive coding

model and the bottom-up, amortised predictions as a function of number of batches.

The asymptotic convergence demonstrates that placing an uncertainty-aware threshold on

the number of iterations has no influence on (asymptotic) model performance. Plotted

are average accuracies over 5 seeds and shaded regions are the standard deviation. (B)

Average number of iterations (for iterative inference) as a function of test batch. Amortised

predictions provide increasingly accurate estimates of model variables, reducing the need

for costly iterative inference.
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bottom up connection help to ‘stabilize’ learning in the hybrid network. Together, these

results further illustrate that hybrid predictive coding facilitates fast inference by bypassing

the need for costly iterative inference when amortized inferences are sufficiently accurate.

Another interesting phenomenon is the relative difference in accuracy between the full

hybrid model and its amortised component as a function of variational iterations. When

the number of variational iterations is lower (e.g. Figure 6.5A), the relative difference

between these accuracies is far less pronounced since the accuracy of the pure iterative

inference predictive coding network is unstable and decreases over time when there are

an insufficient number of inference iterations. The amortized feedforward pass in the

hybrid model, by providing an approximately ‘correct’ initialization, enables the network

to furnish accurate beliefs within many fewer inference steps. These results suggest that,

when the number of iterations is limited, amortised learning progresses at a faster rate

and, in the limit, can enable progress even in situations where purely iterative learning

fails.

Learning with limited data

Having illustrated the benefits of incorporating a bottom, amortised component into pre-

dictive coding, we next consider the benefits of the top-down, iterative component of the

model. With slight modifications [Millidge et al., 2020d], the amortised predictions of

our model can approximate the backpropagation algorithm, meaning that the bottom-up

connectivity implements something akin to a multi-layer perceptron. This might lead to

the worry that the top-down component of hybrid predictive coding is superfluous, and

a purely bottom-up scheme would suffice. There are several reasons why this is not the

case. First, the top-down, generative component provides the training data from which

the amortised component learns. Second, learning a generative model is generally more

data-efficient compared to learning discriminative models. Here, we demonstrate this data-

efficiency by plotting accuracy as a function of dataset size. Specifically, we compare the

accuracy of hybrid predictive coding compared to the amortised predictions using datasets

with 100, 500, 1000 and 5000 examples (recall that the full dataset contains 60,000 exam-

ples). Note we still use the complete test set of 10,000 images for testing. As Figure 6.6

shows, hybrid predictive coding retains good performance with as few as 100 training ex-

amples. By contrast, the speed at which the amortised predictions converge is significantly

affected by the dataset size, such that the amortised predictions give poor accuracy in low

data regimes. These results show that incorporating a top-down, generative component
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Figure 6.5: Classification accuracy under fixed iterations. (A) 10 iterations. The

accuracy of HPC and the amortised predictions is mostly unaffected by the reduced number

of iterations, whereas standard predictive coding fails to classify at all. (B) 25 iterations.

The classification accuracy of standard predictive coding slowly decreases over batches, il-

lustrating a common pathology observed in these simulations. (C) 50 iterations. Standard

predictive coding approximately matches the performance of hybrid predictive coding, but

begins to decline later in training. (D) 100 iterations. There are no significant differences

between the accuracies of hybrid and standard predictive coding. Together, these results

demonstrate that hybrid predictive coding enables effective inference and maintains higher

performance with a substantially fewer amount of inference iterations required than stan-

dard predictive coding. Plotted are mean accuracies over 5 random network initializations.

Shaded areas are the standard deviation.
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substantially increases data efficiency. It is also notable that performance of HPC is not

negatively affected by the poor accuracy of the amortised predictions, again demonstrating

an adaptive trade-off between amortised and iterative inference which allows for the iter-

ative inference procedure to overcome a poor initialization by the amortized predictions.

Additional Properties of HPC

To gain intuition further intuition for the functioning of the HPC model, we investigate

several other properties of the model. Firstly, we investigate the degree to which the

model’s own uncertainty evolves during the inference process. We quantify the model’s

uncertainty as to the correct label by the entropy of its distribution over the predicted

labels 0 − 9. In Figure 6.7A, we show that this entropy begins high and monotonically

decreases through an inference iteration, thus suggesting that in general the iterative infer-

ence process serves to sharpen and clarify beliefs. Secondly, we investigated in more detail

the computational savings the hybrid model achieves through its accurate initialization of

the iterative inference via the amortized model. In Figure 6.7B, we plotted the number of

inference iterations utilized for each batch during learning for the hybrid and the standard

predictive coding model. We see that for HPC the number of iterations required rapidly

drops off during learning, due to the successful bootstrapping of the amortized model

while for standard predictive coding the number of inference iterations only start declin-

ing towards the end of training when the network weights have adapted to become good

at explaining the data. Since the iterative inference steps are the main computational cost

of the model (the weight updates cost at most the same as a single inference iteration)

HPC achieves a substantial computational saving over standard predictive coding while

also obtaining equal or higher performance, as shown in previous figures.

Finally, the ability for amortised inference to ‘shortcut’ iterative inference is facilitated

by the stationary data distribution used so far. Therefore, we investigated whether changes

in the data distribution modulate the number of iterations to reach perceptual certainty.

To do this, we split the dataset into two halves - one composed of labels 0 through 5, and

the other composed of labels 5 through 9. Initially, we train and test using only the first of

the two datasets. As shown in Figure 6.7C, the number of iterations (for iterative inference)

decreases towards zero during this period. To enact a change in data distribution for the

second half of training and testing, we utilise only the second half of the dataset. As 6.7C

shows, this dramatically increases the number of iterations required to reach perceptual

certainty. This is because the bottom-up, amortised predictions have not learned the
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Figure 6.6: Accuracy as a function of dataset size. (A) 100 examples. The accuracy

of hybrid predictive coding is lower than with the full dataset, but still high given the

minimal amount of data (0.17 percent). The accuracy of the amortised predictions is

significantly worse (B) 500 examples (C) 1000 examples. (D) 5000 examples. Together,

these results demonstrate that bottom-up, amortised inference is far more sensitive to a

lack of data, compared to the full hybrid architecture. Importantly, the poor performance

of amortised inference in the low data regimes does not affect the data efficient learning of

iterative inference. Plotted are the mean accuracies over 5 seeds. Shaded areas represent

the standard deviation.
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Figure 6.7: Additional Properties of the HPC model. (A) Example evolution of

the label entropy over the course of an inference phase. The initial amortized guess

has relatively high entropy (uncertainty over labels) which progressively reduces during

iterative inference. This is consistent with the viewpoint that the iterative inference phase

refines the initial amortized guesses. (B) The number of inference steps required over

an example training run. Due to the superior initialization provided by the amortized

connections, far fewer iterative inference steps are required. (C) Adaptive computation

time based on task difficulty. On a well learned task, the number of inference iterations

required decays towards 0. However, when there is a change in data distribution, additional

iterative inference iterations are adaptively utilized to classify the new, more challenging,

stimuli.
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predict the relevant model variables, leading to a poor initialisation and an increase in

prediction error. Crucially, this increase in iterations is automatically modulated by the

data’s novelty (or formally, the log-likelihood of the data under the generative model),

highlighting that HPC provides a principled mechanism for trading off speed and accuracy

during perceptual processing.

6.1.5 Discussion

The notion that the brain performs or approximates Bayesian inference has gained sig-

nificant traction in recent years [Doya et al., 2007, Knill and Richards, 1996, Knill and

Pouget, 2004a, Friston, 2012, 2005, Seth, 2014, Wolpert and Ghahramani, 2005]. At the

same time, the predictive coding architecture has gained prominence as a process theory

which could provide a neurobiological implementation of approximate Bayesian inference

[Friston, 2005, 2008, Bastos et al., 2012, Whittington and Bogacz, 2017, Millidge et al.,

2021a]. However, there are many ways in which Bayesian inference and learning can be im-

plemented or approximated by neurobiologically plausible process theories. In this paper,

we have described a novel architecture - hybrid predictive coding (HPC) - which combines

amortised and iterative inference in a principled manner to achieve perceptual inference.

In this biologically plausible architecture, predictions (and prediction errors) flow in both

top-down and bottom-up directions. The top-down generative aspect of the model allows

effective inference in low data regimes through relatively slow, iterative, procedures. The

bottom-up amortised (discriminative) aspect allows fast inference in stable data regimes.

Hybrid predictive coding inherently balances the contributions of these two components

in a data-driven ’uncertainty aware’ fashion, so that the model inherits the benefits of

both. As well as offering a novel machine learning architecture, hybrid predictive coding

provides a powerful computational lens through which to understand different forms of

visual perception - in particular, differences between fast context-free perception, such as

gist perception, and slow, context-sensitive perception, such as detailed object recognition.

To illustrate HPC, we presented a number of simulations demonstrating that incor-

porating bottom-up, amortised predictions into a combined HPC architecture retains the

benefits afforded by standard predictive coding (Figure 6.3), such as the ability to learn in

both a supervised and unsupervised manner and work efficiently in low data regimes (Fig-

ure 6.6), while additionally enabling fast inference, a method for shortcutting the costly

and time-consuming process of iteratively minimising prediction errors (Figure 6.4). Cru-

cially, we have shown that the trade-off between fast, bottom-up, amortised inference and
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slow, top-down iterative inference is automatically modulated based on the model’s un-

certainty about the data, enabling the model to utilise the benefits of both in an adaptive

manner.

The feedforward sweep and beyond

In visual neuroscience, object recognition is often separated into two distinct phases

[Lamme and Roelfsema, 2000, Grootswagers et al., 2019]: an initial ‘feedforward‘ sweep

(lasting around 150ms) [Thorpe et al., 1996, VanRullen, 2007, Grootswagers et al., 2019], in

which sensory data is rapidly propagated up the visual hierarchy in a feedforward manner,

and a subsequent stage of recurrent processing which persists over longer periods [Kreiman

and Serre, 2020]. It has been argued that feedforward processing provides coarse-grained

representations sufficient for core object recognition and so-called ’gist’ perception, while

recurrent processing finesses these representations by integrating contextual information

[Yoo et al., 2019, Mohsenzadeh et al., 2018, Ahissar and Hochstein, 2004, Kreiman and

Serre, 2020, Kveraga et al., 2007] and allowing for the resolution of initial ambiguity or

uncertainty.

This account of perception is remarkably consistent with our proposed model. In this

context, the feedforward sweep corresponds to the amortised ‘best guess’ at perceptual

beliefs, which is implemented by feedforward connectivity in our model. Crucially, these

amortised predictions are insensitive to current context, as they map directly from data to

beliefs. Moreover, amortised predictions suffer from the amortisation gap [Cremer et al.,

2018], which arises when parameters are shared across the whole dataset rather than op-

timized individually for each data point. Taken together, these considerations suggest

that the beliefs furnished by amortised inference could lack the ability to successfully un-

derlie perception within challenging (e.g., weak sensory signals), ambiguous, or otherwise

unusual situations, consistent with empirical evidence about the role of feedforward pro-

cessing in perception [Lamme and Roelfsema, 2000, VanRullen, 2007, Furtak et al., 2021].

In line with this view, in our model we see a slower increase in accuracy for amortised

inference, compared to the full hybrid predictive coding architecture, for small datasets.

The implication here is that these small datasets cannot be modelled well with purely

amortized inference, but can be modelled well by the combination of both iterative and

amortized inference components. In addition, our model casts the recurrent processing

in the visual system as a process of iterative inference, where beliefs are iteratively re-

fined based on top-down predictions interacting with bottom-up beliefs and with sensory
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input. This iterative refinement integrates contextual information across multiple layers

and slowly reduces the ambiguity in perceptual beliefs as the inference process converges

to the best explanation. Again, this perspective is in accordance with neurobiologically-

informed views suggesting that recurrent processing refines the representations generated

during the feedforward sweep [van Bergen and Kriegeskorte, 2020].

Our model makes several predictions which have been corroborated by empirical evi-

dence. For instance, our model predicts that the amount of recurrent processing will cor-

relate with the difficulty of perceptual processing tasks. In line with this, [Mohsenzadeh

et al., 2018] reported human neuroimaging data suggesting increased recurrent processing

for more challenging perceptual tasks. In addition, our model predicts that perceptual

difficulty should modulate the relative influence of bottom-up and top-down processing,

as has been observed in experimental data [Karimi-Rouzbahani et al., 2020].

While there have been several proposals for how feedforward and recurrent activity

may be integrated in the brain, our model is the first to combine these into a common

and biologically plausible probabilistic predictive-coding architecture. Doing so provides a

principled arbitration between speed and accuracy in perceptual processing [Spoerer et al.,

2020]. In our model, recurrent dynamics are driven by prediction errors. When prediction

errors are minimised (i.e. predictions are accurate), recurrent activity is suppressed. This

means that when amortised predictions generates accurate beliefs, there will be no predic-

tion errors and no recurrent activity. Alternatively, when amortised predictions generate

inaccurate beliefs, prediction errors will be large and iterations of recurrent activity are

engaged to finesse beliefs. Crucially, this arbitration arises naturally from the probabilistic

representations within the model. In summary, our model provides a plausible account

for both feedforward and recurrent activity in the brain, which can be related to distinct

forms of visual perception.

Predictive coding

Predictive coding has been shown to explain a diverse range of perceptual phenomena,

such as end stopping [Rao and Ballard, 1999a], bistable perception [Hohwy et al., 2008,

Weilnhammer et al., 2017], repetition suppression [Auksztulewicz and Friston, 2016] and

illusory motion [Lotter et al., 2016] (see [Walsh et al., 2020] for more). Moreover, recent

work has demonstrated that predictive coding provides a local approximation to back-

propagation; the algorithm underwriting many of the recent successes in machine learning

[Millidge et al., 2020d, Whittington and Bogacz, 2017, Song et al., 2020]. As such, it
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presents one of the leading theories for perception and learning in the brain [Whittington

and Bogacz, 2019] and by building on the predictive coding framework, our model inherits

the wealth of empirical evidence that has been gathered in its favour.

While predictive coding has emerged as a promising candidate for understanding cor-

tical function, its iterative nature fits poorly with some established facts about visual

perception. Prominent among these is that the visual system can reliably extract a range

of features within 150ms of stimulus onset [Thorpe et al., 1996, Keysers et al., 2001, Carl-

son et al., 2013, Thunell and Thorpe, 2019], a timescale which would seem to preclude the

presence of multiple iterations of recurrent dynamics, and in turn, the use of iterative in-

ference. In short, predictive coding struggles to account for rapid “gist” perception [Oliva,

2005, Oliva and Torralba, 2006], an essential component of visual perception. To overcome

this shortcoming, our model augments predictive coding with additional bottom-up con-

nectivity, which provides amortised estimates of perceptual beliefs using a single forward

pass. The feedforward nature of the amortised connections means that representations can

be extracted rapidly without relying on recurrent activity [Serre et al., 2007]. Although

predictions are generally associated with top-down recurrent processing, this bottom-up

forward pass can also be interpreted as its own kind of prediction [Teufel and Fletcher,

2020] – predicting beliefs directly from data – with its own set of prediction errors that are

minimized during learning. This perspective lets us see our model as simply performing

bidirectional prediction and prediction error minimization on a unified objective. It is

intriguing to consider, from the perspective of ”computational phenomenology”, whether

the distinct phenomenological character of gist perception (in which an overall context

is experienced), compared to detailed focal perception (in which fine details of, for ex-

ample, visual objects) can be understood in terms of these differing forms of perceptual

prediction.

Generative and discriminative models

In machine learning, a common distinction is made between generative and discriminative

methods [Bishop, 2006]. Generative methods learn a joint distribution over sensory data

and hidden causes, whereas discriminative methods learn a conditional mapping from data

to hidden causes. It is well established that generative methods are more efficient in low

data regimes [Chua et al., 2018b], can be used for a wider range of downstream tasks

[Kingma et al., 2014], and enable better generalisation [Rezende et al., 2014]. On the

other hand, discriminative methods are more efficient when the goal is to predict hidden



130

states, and generally reach higher asymptotic performance [LeCun et al., 2015]. This

is because discriminative methods only learn about features relevant for discrimination,

whereas generative methods learn about the data distribution itself. In general, generative

methods enable unsupervised learning, where hidden states are not known in advance,

whereas discriminative methods utilize supervised learning with a known set of ultimate

hidden states – the labels.

Our model combines generative and discriminative components within a single architec-

ture. The top-down connectivity implements a generative model, whereas the bottom-up

connectivity implements a discriminative classifier (where the labels are now the hidden

states of the generative model). The model thus retains the benefits of generative ap-

proaches, while also incorporating the benefits of discriminative learning. In contrast

to previous proposals which combine generative and discriminative learning Huang et al.

[2020], Gordon and Hernández-Lobato [2020], Kuleshov and Ermon [2017], Liu and Abbeel

[2020], Garcia Satorras et al. [2019], our model operates within the biologically plausible

scheme of predictive coding and automatically arbitrates the relative influence based on

the uncertainty of bottom-up and top-down predictions.

An additional benefit of combining generative and discriminative methods is that it

enables generative replay [Shin et al., 2017, Van de Ven and Tolias, 2018, van de Ven et al.,

2020]. This describes the process of generating fake data (using some generative model)

which is then used for downstream tasks. For instance, the generated data can be used to

overcome ‘catastrophic forgetting’ [Kirkpatrick et al., 2017] and enable continual learning

[van de Ven et al., 2020]. In the context of our work, the generative model can be used

to produce data from which the amortised component can learn. This has the benefit of

reducing the amount of real-world data required for accurate inference. Another exciting

possibility, arising directly from the HPC architecture, is using the discriminative model

to generate hidden states which can then be used to train the generative model. These

opportunities are afforded by the bi-directional modelling at the heart of our architecture

and have been explored extensively in the reinforcement learning literature where the idea

of using a learnt model to train an amortized policy or vice versa is common [Tschantz

et al., 2020b, Sutton, 1991, Schmidhuber, 1990a]. Finally, the fact that the generative

and discriminative connections are implemented in a layer-wise fashion means that replay

can operate on a layer-by-layer basis. In brief, the generative model can help train the

discriminative model which can help train the generative model 7.

7One hypothesis is that this process happens during sleep, when the brain is detached from veridical

data [Friston et al., 2017b]
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6.2 Control as hybrid inference

6.2.1 Introduction

Reinforcement learning (RL) algorithms can generally be divided into model-based and

model-free approaches. Model-based algorithms learn a model of the environment’s dy-

namics and use this model to facilitate action selection. In principle, such algorithms

can generalize existing knowledge to new tasks and environments and, in practice, can

be learned from a relatively small number of trials [Deisenroth et al., 2013a,b, Atkeson

and Santamaria, 1997b, Ha and Schmidhuber, 2018c, Hafner et al., 2018b, Schrittwieser

et al., 2019b, Hafner et al., 2019]. In contrast, model-free algorithms do not explicitly

model the environment’s dynamics but instead learn a policy directly from experience.

Such algorithms have proven effective at learning complex policies given arbitrary dynam-

ics, resulting in better asymptotic performance relative to their model-based counterparts

[Mnih et al., 2015, Schulman et al., 2015, Lillicrap et al., 2015, Schulman et al., 2017a].

However, by learning solely from the reward signal, model-free algorithms tend to be sub-

stantially less sample efficient Kober et al. [2013], Chua et al. [2018b]. A promising avenue

of research is thus identifying principled methods for combining these approaches, thereby

harnessing the sample efficiency of model-based RL and the asymptotic performance of

model-free RL.

This work explores whether the control as inference framework [Dayan and Hinton,

1997, Rawlik et al., 2010, 2013, Toussaint and Storkey, 2006, Toussaint, 2009, Ziebart,

2010, Ziebart et al., 2013, Levine and Koltun, 2013, Levine, 2018, Friston et al., 2017b,

Kappen et al., 2012, Fellows et al., 2019] provides a principled methodology for combining

model-based and model-free RL. This framework casts decision-making as a probabilistic

inference problem, enabling researchers to derive principled (Bayesian) objectives and

draw upon various approximate inference techniques. While the methods used within

this framework differ, they all share the common goal of inferring a posterior distribution

over actions, given a probabilistic model conditioned on observing ‘optimal’ states or

trajectories [Levine, 2018].

Computing the posterior distribution over actions is generally intractable. This diffi-

culty is often solved using techniques from variational inference [Jordan et al., 1999], which

convert intractable inference problems into tractable optimization problems. In this work,

we highlight a distinction between amortized and iterative approach to variational infer-

ence [Kim et al., 2018b, Marino et al., 2018a]. In the context of control as inference, we

show that amortized inference naturally corresponds to model-free policy optimization,
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whereas iterative inference naturally corresponds to model-based planning.

In amortized variational inference, the goal is to learn a parameterized function that

maps directly from data to the parameters of an (approximate) posterior [Mnih and

Gregor, 2014, Kingma and Welling, 2013a]. In the context of control as inference, the

parameterized function corresponds to a policy, and the approximate posterior is over

actions. This approach underwrites the field of maximum-entropy RL [Eysenbach and

Levine, 2019], which has inspired several influential model-free algorithms [Levine, 2018,

Haarnoja et al., 2018, Abdolmaleki et al., 2018]. In contrast, iterative approaches to

variational inference update the parameters of the approximate posterior directly [Hoff-

man et al., 2013, Ghahramani and Beal, 2001], a process which is performed iteratively

with each new observation. When considering an approximate posterior over sequences

of actions, several model-based planning algorithms can be cast as a process of iterative

inference [Okada and Taniguchi, 2019b, Piché et al., 2018, Toussaint and Storkey, 2006,

Attias, 2003, Friston et al., 2015b, Tschantz et al., 2020a, 2019b].

Leveraging these insights, we propose control as hybrid inference (CHI), a framework

for combining amortized and iterative inference in the context of control. This framework

proposes two processes of inference – one amortized and one iterative – which work in col-

laboration to recover an (approximate) posterior over actions. The amortized and iterative

algorithms share the same generative model and optimize the same variational objective

to ensure consistency amongst the processes. To combine these processes, we propose an

algorithm in which amortized inference sets the initial conditions for the subsequent phase

of iterative inference. This leads to a natural interplay between the two systems based on

the uncertainty of the amortized predictions. Specifically, when amortized predictions are

uncertain, such as at the start of learning, beliefs about action are primarily determined

by iterative inference. Conversely, when amortized predictions are relatively confident, it-

erative inference has less of an influence on beliefs. In the case of deterministic dynamics,

the algorithm can converge to a fully amortized (i.e., model-free) algorithm.

Utilizing a suite of challenging continuous control tasks, we demonstrate that CHI re-

tains the sample efficiency of state-of-the-art model-based planning algorithms while ob-

taining the asymptotic performance of model-free algorithms. Moreover, we demonstrate

that the trade-off between amortized and iterative inference adapts to changing environ-

mental contingencies. These results suggest that CHI may provide a principled framework

for combing model-based planning and model-free policy optimization. Moreover, the

framework provides a formal model of the hypothesis that model-free and model-based
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mechanisms coexist and compete in the brain according to their relative uncertainty [Niv

et al., 2006, Daw et al., 2005, Balleine and Dickinson, 1998, Pezzulo et al., 2013], as well

as habitization, or the gradual transition from goal-directed to habitual mechanisms after

sufficient learning [Balleine and Dickinson, 1998, Gläscher et al., 2010].

6.2.2 Background

We consider a discrete-time finite-horizon Markov decision process (MDP) defined by a

tuple {S,A, penv, r}, where S is the state space, A is the action space, penv(st+1|st,at) is

the environment’s dynamics and r(st,at) is the reward function. We use s to denote states

and a to denote actions.

Traditionally, RL problems look to identify the policy pφ(at|st) which maximizes the

expected sum of reward Epφ(τ)

[∑T
t=1 r(st,at)

]
, where φ are the policies parameters, τ

denotes a trajectory τ = {(st,at)}Tt=1, and pφ(τ) denotes the probability of a trajectory τ

under the policy pφ(at|st), pφ(τ) = p(s1)
∏T
t=1 pφ(at|st)penv(st+1|st,at).

Control as Inference

Figure 6.8: Graphical model for control as inference.

To reformulate the problem of RL in the language of probability theory, we wish to con-

struct a generative model where the posterior distribution over actions pφ(at|st) recovers

the optimal policy. This requires the model to incorporate some notion of reward or cost,

which can be incorporated through an auxillary ‘optimality’ variable O ∈ {0, 1}, where

Ot = 1 denotes that time step t was optimal, and Ot = 0 denotes that time step t was not

optimal. The dependencies between states, actions and optimality variables are shown in

Fig. 6.8.

Control as inference assumes that agents maintain, and potentially learn, a generative

model, which is here defined as a joint distribution over trajectories of states s1:T , actions
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a1:T and optimality variables O1:T :

p(s1:T ,a1:T ,O1:T ) = p(s1)

T∏
t=1

p(Ot|st,at)pλ(st+1|st,at)p(at) (6.12)

where λ are parameters of the dynamics model, which may be learned in a model-based

context. In subsequent sections, we consider the case where λ are themselves random

variables, allowing for the quantification of epistemic uncertainty [Chua et al., 2018b, De-

peweg et al., 2017c]. Following previous treatments of control as inference [Levine, 2018,

Piché et al., 2018], we assume an uninformative action prior p(at) = 1
|A| . The optimal-

ity likelihood p(Ot|st,at) describes the probability that some state-action pair (st,at) is

optimal, and to retain consistency with traditional RL objectives, is usually specified as

p(Ot = 1|st,at) = exp
(
r(st,at)

)
[Levine, 2018].

Given the generative model defined in Eq. 6.12, the goal of control as inference is

to infer the posterior probability of actions, conditioned on the belief that the agent will

observe optimal trajectories, p(a1:T |s1:T ,O1:T = 1). Intuitively, this means that agents

begin with the belief that they will observe optimal trajectories, and use inference to

recover the actions which render this belief most plausible. An equivalent formulation of

this objective is in terms of maximising the marginal-likelihood of optimality p(O1:T = 1).

Often, the posterior over actions and the marginal-likelihood of optimality cannot be

evaluated and optimised directly. However, it is possible to construct a variational lower

bound on the log marginal-likelihood of optimality which can be evaluated and optimised,

a technique known as variational inference [Jordan et al., 1999].

To construct a variational lower bound on log p(O1:T = 1), we introduce an arbitrary

distribution over trajectories of states and actions, q(s1:T ,a1:T ), which we refer to as an

approximate posterior :

q(s1:T ,a1:T ) = q(s1)
T∏
t=1

q(st+1|st,at)qφ(at|st) (6.13)

where qφ(at|st) is the approximate posterior over actions. The variational lower bound

L(φ) is then given by:

L(φ) = Eq(s1:T ,a1:T )

[
log p(s1:T ,a1:T |O1:T = 1)− log q(s1:T ,a1:T )

]
≤ log p(O1:T = 1)

(6.14)

Maximising Eq. 6.14 with respect to the parameters of the approximate posterior provides

a tractable method for maximising the (log) marginal-likelihood of optimality. Equa-

tion 6.14 is also equivalent to the negative Kullback–Leibler (KL) divergence between
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q(s1:T ,a1:T ) and p(s1:T ,a1:T |O1:T = 1):

L(φ) = −DKL

(
q(s1:T ,a1:T ) ‖ p(s1:T ,a1:T |O1:T = 1)

)
(6.15)

This implies that as L(φ) is maximised, the KL-divergence in Eq. 6.15 will be minimised,

such that the the approximate posterior will tend towards an approximation of the true

posterior, q(s1:T ,a1:T ) ≈ p(s1:T ,a1:T |O1:T = 1). We can further simplify Eq. 6.14 by fixing

q(s1) = p(s1) and q(st+1|st,at) = pλ(st+1|st,at), giving:8

L(φ) = Eq(s1:T ,a1:T )

[
log p(O = 1|s1:T ,a1:T )

]
+ H

[
qφ(a1:T |s1:T )

]
(6.16)

where H[·] is the Shannon entropy. Therefore, maximising the (log) marginal-likelihood of

optimality is equivalent to maximising both the expected likelihood of optimality and the

entropy of the approximate posterior over actions. When p(Ot = 1|st,at) = exp
(
r(st,at)

)
,

Eq. 6.16 can be written in an intuitive manner:

L(φ) = Eq(s1:T ,a1:T )

[ T∑
t=1

r(st,at)
]

+ H
[
qφ(a1:T |s1:T )

]
(6.17)

Here, maximising the (log) marginal-likelihood of optimality is equivalent to maximising

both the expected sum of reward and the entropy of the approximate posterior over actions.

Planning as Iterative Inference

In the following sections, we consider two distinct approaches to solving the variational

optimisation problem posed by Eq. 6.16. We first consider iterative inference, where the

parameters of the approximate action posterior are initialized for each data point and then

iteratively updated to maximise L(φ), via, e.g, gradient descent. More concretely, we can

optimise L(φ) w.r.t φ by iteratively applying the update rule: φ(i+1) ← φ(i) +∇φ(i)L(φ(i)),

where i denotes the current iteration. Iterative approach to variational inference tend to

be computationally expensive and often slow to converge, but are generally efficient in

low-data regimes [Satorras et al., 2019].

A number of complementary approaches exist for reformulating planning in terms of

probabilistic inference [Piché et al., 2018, Friston et al., 2017b, Okada and Taniguchi,

2019b, Botvinick and Toussaint, 2012]. Here, we focus our attention on the recent frame-

work of variational-inference for model predictive control (VI-MPC) [Okada and Taniguchi,

2019b], which provides a Bayesian adaptation of various stochastic optimisation methods,

many of which used extensively in model-based planning algorithms.

8These assumptions additionally help overcome the ‘optimism bias’ problem in control as inference

[Levine, 2018, Piché et al., 2018].
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The key insight from the VI-MPC framework is that we can derive tractable updates

for the parameters of approximate action posterior by applying mirror descent [Bubeck,

2014, Okada and Taniguchi, 2018] to the objective in Eq. 6.16. In what follows, we simplify

notation by denoting the expected likelihood of optimality as E
[
p(O = 1|s1:T ,a1:T )

]
:=

Es1:T∼pλ(s2:T |s1:T ,a1:T )p(s1)

[
p(O = 1|s1:T ,a1:T )

]
. Moreover, following standard notation for

iterative inference, and to help delineate distributions optimised via iterative inference

from distributions optimised via amortised inference, we denote the approximate action

posterior qφ(a1:T ). This gives the following generalised update equation (see Appendix

C.2 of [Okada and Taniguchi, 2019b] for a full derivation):

q
(i+1)
φ (a1:T )←

q
(i)
φ (a1:T ) · E

[
p(O1:T = 1|s1:T ,a1:T )

] 1
β · q(i)

φ (a1:T )−κ

E
q
(i)
φ (a1:T )

[
E
[
p(Ot = 1|s1:T ,a1:T )

] 1
β · q(i)

φ (a1:T )−κ
] (6.18)

where κ is the hyperparameter describing weight of the entropy regularization term, and

β is the (inverted) step size. Equation 6.18 can then be viewed as a weighed average

where the probability of actions is weighted by the likelihood of optimality E
[
p(O1:T =

1|s1:T ,a1:T )
]
.

Equation 6.18 optimises a distribution over a sequence of actions, naturally lending

itself to planning problems. In [Okada and Taniguchi, 2019b], the authors demonstrate

that several algorithms for model predictive control (MPC) [Camacho and Alba, 2013] – a

popular method for planning – can be regarded as moment-matching of the posterior over

action sequences [Okada and Taniguchi, 2019b]. Such methods include the cross-entropy

method (CEM) [Botev et al., 2013] and model predictive path integral control (MPPI)

[Williams et al., 2016, 2017]. VI-MPC goes on to provide a Bayesian generalization of these

methods, which in practice amounts to an additional entropy term over actions which is

to be maximised, mirroring the variational objective in Eq. 6.16. This generalization

allows us to cast several popular model-based planning algorithms in terms of iterative

variational inference.

Policy Optimisation as Amortised Inference

Amortised approaches to variational inference [Kingma and Welling, 2013a] learn a pa-

rameterised function f which maps directly from observations to the parameters of an

approximate posterior. Amortised inference does not, therefore, optimise the parameters

of the approximate posterior directly, but instead optimises some global parameters θ

that belong to the function f . In this context, the update rule for the posterior param-

eters is simply given by φ ← fθ(st). The general form for updating θ can be given as
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θ(i+1) ← θ(i) +∇θL(θ), where this optimisation is generally performed over the available

dataset in a batched fashion.

An amortised approach to control as inference must therefore (i) learn a parameterised

function fθ(·) that maps from states st to the parameters of a distribution over actions

qφ(at|st) and (ii) update θ in order to maximise Eq. 6.16. Fortunately, a wide array of

algorithms meet this requirement. Of particular interest are algorithms that derive from

the maximum-entropy RL framework [Ziebart, 2010, Eysenbach and Levine, 2019], which

modifies the RL objective to incorporate an additional entropy term over actions. This

modified objective can be written as [Levine, 2018]:

L(θ) = Eq(s1:T ,a1:T )

[ T∑
t=1

r(st,at)− log qφ(at|st)
]

(6.19)

Under the assumption that p(Ot = 1|st,at) = exp
(
r(st,at)

)
, Eq. 6.19 can be rewritten as:

L(θ) = Eq(s1:T ,a1:T )

[
log p(O = 1|s1:T ,a1:T )

]
+ H

[
qφ(a1:T |s1:T )

]
(6.20)

which is equivalent to the variational objective presented in Eq. 6.16, but with the

optimisation being with respect to θ rather than φ. Note that, in the context of maximum-

entropy RL, qφ(at|st) corresponds to a policy and is usually denoted πθ(at|st). In the cur-

rent context, this policy corresponds to the parameterised function fθ(st), which specifies

the parameters φ of the approximate action posterior qφ(at|st).

An amortised approach to the maximum-entropy RL objective is utilised by several

popular model-free algorithms, including the Soft Actor-Critic (SAC) [Haarnoja et al.,

2018] and Entropy Regularized Policy Gradient (ERPG) [Schulman et al., 2017b]. More-

over, when the prior over actions p(a1:T ) is learned (rather than uniform), an amortised

approach to control as inference underwrites algorithms such as Maximum a Posteriori Pol-

icy Optimization (MPO) [Abdolmaleki et al., 2018], the Information Asymmetry Default

Policy (IADP) [Galashov et al., 2019] and the Hierarchical Default Policy (HDP) [Tiru-

mala et al., 2019]. Note we have only considered maximum-entropy approaches which

consider parametrized distributions over actions, as these methods are directly amenable

to amortisation. Moreover, while we have only considered algorithms explicitly formu-

lated within the control as inference framework, several popular model-free RL algorithms

– such as DDPG [Lillicrap et al., 2015], A3C [Mnih et al., 2016] and PPO [Schulman et al.,

2017a] – can be interpreted as amortised inference under assumptions about the form of

the posterior over actions.
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6.2.3 Control as Hybrid Inference

In this section, we introduce the control as hybrid inference (CHI) framework. Like the

control as inference framework, CHI suggests that agents infer a posterior distribution

over actions, given a generative model that is conditioned on ‘optimality’. However, CHI

additionally proposes that inference is achieved via two processes – an amortised process

which maps from states to the parameters of the approximate posterior, and an iterative

process which updates the parameters of the approximate posterior iteratively at each time

step. We demonstrate that this perspective allows us to combine model-based planning

and model-free policy optimisation in a principled manner.

We first describe implementations of the amortised and iterative algorithms in Sec.

6.2.3, before moving on to propose a novel algorithm for combing the algorithms in Sec.

6.2.3. We describe further modifications to the generative model in Sec. 6.2.3.

Amortised & Iterative Algorithms

Iterative Inference Iterative inference considers an approximate posterior over action

sequences. Specifically, it considers sequences of actions over a fixed horizon H extending

from the current time step t, qφ(at:T ), where we have used T = t+H to simplify notation.

In what follows, we consider this distribution to be a time-dependent diagonal Gaussian,

qφ(at:T ) = N (at:T ;µt:T , diag σ2
t:T ), where φ = {µt:T , σ2

t:T }.

At each time step t, agent’s observe the state of the environment st. Iterative inference

proceeds by iteratively updating the parameters of qφ(at:T ) in order to maximise the

variational objective defined in Eq. 6.16. As described in Sec. 6.2.2, this can be achieved

by utilising mirror descent (see Eq. 6.18). In practice, we use a trajectory sampling

approach is used to implement the iterative updates [Okada and Taniguchi, 2019b]. At

each iteration i, we draw K samples from q
(i)
φ (at:T ), where each sample is denoted (at:T )k.

This allows us to approximate the distribution as a set of weighted particles:

q
(i)
φ (at:T ) ' q(at:T ; W(i)) :=

K∑
k=1

w
(i)
k δ
(
at:T − (at:T )k

)
(6.21)

where W(i) := {w(i)
k }

K
k=1 are the particle weights. By substituting this approximate dis-

tribution into Eq. 6.18, we derive the following update law for the particle weights [Okada

and Taniguchi, 2019b]:

w
(i+1)
k ←

W
(
(at:T )k

) 1
β · q(i)

φ

(
(at:T )k

)−κ∑K
j=1

[
W
(
(at:T )j

) 1
β · q(i)

φ

(
(at:T )j

)−κ] (6.22)
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where

W
(
(at:T )k

)
= Est:T∼pλ(st+1:T |st:T ,(at:T )k)p(st)

[ T∑
t′=t

r
(
st′ , (at′)k

)]
(6.23)

and p(st) = δ(st), where st is known. In practice, the expectation operator E[·] in Eq.

6.23 is implemented using Monte Carlo integration with P trajectory samples, a process

we describe in Sec. 6.2.3. After I iterations, the mean of the approximate posterior over

action µt:T is returned and the first action µt from this sequence is executed.

Amortised Inference In contrast, amortised inference infers an approximate posterior

over the current action qφ(at|st), such that qφ(at|st) = N (at;µt, diag σ2
t ), and φ = {µt, σ2

t }.

Rather than optimising φ directly, amortised inference employs a parameterised function

fθ(st) which maps from st to φ. The parameters of this function θ are then updated in

order to maximise the variational bound L(θ) (Eq. 6.16). This optimisation takes place

in a batched fashion over the available dataset D = {(st,at, r(st,at), st+1)}Bt=1, where B

is the size of the dataset, such that the optimisation problem argmaxθL(θ) is augmented

to argmaxθED
[
L(θ)

]
.

In the current work, we utilise the Soft Actor-Critic (SAC) algorithm [Haarnoja et al.,

2018] to optimise θ. Rather than directly differentiating the variational lower bound (Eq.

6.16), SAC employs a message passing approach to maximising the variational bound. We

refer readers to [Haarnoja et al., 2018] for a description of the SAC algorithm, and [Levine,

2018] for a description of its relationship to variational inference.

Combining the Amortised & Iterative Inference

We now move on to consider how the amortised and iterative processes could be combined

into a single inference algorithm. Here, we describe an algorithm in which amortised

inference provides an ‘initial guess’ at qφ(st:T |at:T ), which is then refined by iterative

inference. Formally, at each time step t, the parameters of qφ(st:T |at:T ) are initialised by

the amortised mapping φ = fθ(st), and then iteratively updated according to Eq. 6.22.

This approach poses an issue, as amortised inference considers an approximate pos-

terior over a single action qφ(at|st), whereas iterative inference considers an approximate

posterior over a sequence of actions qφ(at:T ). To alleviate this inconsistency, we adapt the

amortised algorithm to predict a sequence of actions qφ(at:T |st:T ). To do this, we factorise
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qφ(at:T |st:T ) as:9

qφ(at:T |st:T ) =

T∏
t′=t

qφ(at′ |st′) (6.24)

Thus, fθ(·) predicts the parameters of a distribution over current actions φ = {µt, σ2
t }.

However, the factorisation in Eq. 6.24 poses an additional issue, in that it requires knowl-

edge of st:T , which are future states and thus unknown to the agent. To overcome this

issue, we utilise the learned transition model pλ(st+1|st,at) (described in the subsequent

section) to predict the trajectory of future states st:T . Let pamort(st:T ,at:T ) denote the

probability of trajectories under the amortised policy. Note that this is not equivalent to

q(st:T ,at:T ), which defines the probability of trajectories under the CHI algorithm. This

distribution is defined as:

pamort(st:T ,at:T ) = p(st)

T∏
t′=t

pλ(st′+1|st′ ,at′)qφ(at′ |st′) (6.25)

where we have assumed p(st) = δ(st). The amortised algorithm thus evaluates pamort(st:T ,at:T )

at each time step. We can then recover the desired distribution over actions qφ(at:T |st:T ),

which has parameters φ = {(µt′ , σ2
t′)}Tt′=t. These parameters can then be used to specify

the parameters of a time-dependent diagonal Gaussian φ = {µt:T , σ2
t:T }, which is used as

the initial distribution for the iterative phase of inference. This proposed CHI algorithm

is described in Algorithm 6.2.3.

Learning the Generative Model

The algorithm described in the previous sections requires a model of the transition dy-

namics pλ(st+1|st,at). This model appears in the iterative inference algorithm (Eq. 6.23),

where it is used to evaluate the expected trajectory of states st:T , given some sampled

action sequence (at:T )k. The model also appears in the amortised inference algorithm

(Eq. 6.25), where it is again used to calculate the expected trajectory of states under an

amortised policy qφ(a1:T |st:T ).

Here, we utilise an ensemble approach to approximating p(λ|D) [Chua et al., 2018b,

Kurutach et al., 2018]. This approach approximates p(λ|D) as a set of particles p(λ|D) '
1
E

∑K
i δ(λ − λi), where E is the number of networks in the ensemble and δ is the Dirac

delta function. Each particle λi is optimised to maximise log p(λi|D) ∝ log p(D|λi)p(λi),

and where a uniform prior over λi is assumed.

9An alternative approach would be to amortise the action sequence directly, such that fθ(·) predicts

the parameters over a sequence of actions φ = {µt:T , σ2
t:T }.
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Algorithm 3 Inferring qφ(at:T |st:T ) via CHI

Input: Planning horizon H — Optimisation iterations I — Number of samples K —

Current state st — Transition distribution pλ(st+1|st,at) — Amortisation function fθ(·)

Amortised Inference:

Evaluate pamort(st:T ,at:T ) = δ(st)
∏T
t′=t pλ(st′+1|st′ ,at′)qφ(at′ |st′), using φt = fθ(st)

Extract φ(1) = {µt:T , σ2
t:T } from pamort(st:T ,at:T )

Initialise qφ(at:T ) with parameters φ(1)

Iterative Inference:

for optimisation iteration i = 1...I do

Sample K action sequences {(at:T )k ∼ qφ(at:T )}Kk=1

Initialise particle weights W(i) := {w(i)
k }

K
k=1

for action sequence k = 1...K do

w
(i+1)
k ← W

(
(at:T )k

) 1
β · q(i)

φ

(
(at:T )k

)−κ/∑K
j=1

[
W
(
(at:T )j

) 1
β · q(i)

φ

(
(at:T )j

)−κ]
φ(i+1) ← refit

(
W(i+1

)
end

end

Extract µt:T from qφ(at:T )

return µt

6.2.4 Related work

Combining model-based and model-free RL A number of methodologies exist for

combining model-free and model-based RL. Previous work has considered using a learned

model to generate additional data for training a model-free policy [Gu et al., 2016, Sutton,

1990, 1991]. In [Chebotar et al., 2017], the authors consider linear-Gaussian controllers as

policies and derive both model-based and model-free updates. In [Farshidian et al., 2014],

the authors consider a similair initalisation approach to our own, but use a model-based

algorithm to initialize a model-free algorithm. This is in contrast to our approach, where

the model-free policy initializes the model-based planning algorithm. The initalization

method used in the current paper mirrors the use of policy networks to generate proposals

for the Monte-Carlo tree search in AlphaGo [Silver et al., 2016, 2017]. Several papers

look to use the learned model to initialize a model-free policy [Nagabandi et al., 2018].

Combine model-free and model-based [Li, 2020, Che et al., 2018].
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Combining Amortised & Iterative Inference The idea of combing amortised and

iterative inference has been explored previously the context of unsupervised learning. Such

approaches look to retain the computational efficiency of amortised inference models while

incorporating the more powerful capabilities of iterative inference. The semi-amortised

variational autoencoder was introduced in [Kim et al., 2018b], which also employs amor-

tised inference to initialize a set of variational parameters, which are then refined using

iterative inference. The authors demonstrate that this approach helps overcome the ‘pos-

terior collapse’ phenomenon, which describes when the latent code of the auto-encoder is

ignored and presents a common issue when training variational autoencoders. An itera-

tive amortised inference algorithm was proposed by [Marino et al., 2018a], where posterior

estimates provided by amortised inference are iteratively refined by repeatedly encoding

gradients. It was demonstrated that this approach helps overcome the amortisation gap

[Krishnan et al., 2017, Cremer et al., 2018], which describes the tendency for amortised in-

ference models to not reach fully optimised posterior estimates, likely due to the significant

restriction of optimising a direct (and generally feed-forward) mapping from data to poste-

rior parameters. This iterative amortised inference model was later applied to variational

filtering [Marino et al., 2018b]. In [Satorras et al., 2019], the authors propose a hybrid

inference scheme for combing generative and discriminative models, which is applied to a

Kalman Filter, demonstrating an improved accuracy relative to the constituent inference

systems. The biological plausibility of hybrid inference schemes has been explored in the

context of perception [Marino, 2019], utilising the predictive coding framework from cog-

nitive neuroscience [Rao and Ballard, 1999a, Friston, 2005, Walsh et al., 2020]. A hybrid

inference approach which iteratively refines amortised predictions has also been explored

in [Hjelm et al., 2016, Krishnan et al., 2017, Shu et al., 2019].
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6.2.5 Experiments

Figure 6.9: (A) The onset of learning: Amortised predictions of qφ(at:T |st:T ) are shown

in red, where dots show µt:T and shaded areas show σ2
t:T , and the distribution retrieved

by iterative inference is shown in blue. Here, we see that the amortised predictions are

highly uncertain at the onset of learning, and thus have little influence on the final ap-

proximate posterior. (B) At convergence: As the amortised network fθ(·) learns, the

uncertainty of its predictions decrease. Here, we plot the amortised predictions after 500

episodes. The fact that the amortised predictions are highly certain means that the sub-

sequent phase of iterative inference has little effect on inference. (C) Adaptation to

variable contingencies: We plot the average standard deviation σ2
t:T predicted by the

amortised network as learning progresses, as well the average KL-divergence between the

distributions predicted buy the amortised network and the final distribution recovered by

iterative inference. As σ2
t:T decreases, the KL-divergence between initial and final beliefs

decreases, suggesting a gradual transition from iterative to amortised inference. After 250

episodes, we change the reward structure of the environment. It can be seen that the

uncertainty of the amortised predictions increases, leading to an increased KL-divergence

between initial and final beliefs. Our model adaptively modulates amortised & iterative

inference based on the uncertainty about environmental contingencies.

Didatic experiment To demonstrate the characteristic dynamics of our algorithm, we

utilise a simple 2D point mass environment in which an agent must navigate to a goal (top

right-hand corner), with the additional complexity of traversing through a small hole in a

wall. We compare the amortised predictions of q(at:T |st:T ) to the final posterior recovered

by iterative inference over the course of learning. These results demonstrate that when the

amortised predictions are uncertain, such as at the start of learning, the posterior inferred

by iterative inference is relatively unaffected by the amortised predictions, suggesting the

model acts in a primarily model-based manner. Once sufficient data has been collected

and the amortised predictions are precise, the iterative phase of inference has a negligible
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effect on the final distribution, suggesting a gradual convergence from a model-based to a

model-free algorithm.

Continious control As a proof of principle, we demonstrate our algorithm can scale

to complex tasks by evaluating performance on the challenging Half-Cheetah task. We

compare the CHI algorithm to the model-free SAC and a model-based planning algorithm

which utilises the cross-entropy method for trajectory optimisation. These results demon-

strate that CHI outperforms both baselines in terms of sample efficiency and asymptotic

performance. Note that the performance of MPC is lower than what has been reported

in previous literature. We believe this is due to the fact that we utilised fewer parameters

relative to prior work. These results suggest that a hybrid approach can help stabilize plan-

ning algorithms, enabling comparable performance with reduced computational overhead.

Indeed, there is no difference between the MPC algorithm and the iterative component of

the CHI algorithm, thus establishing the benefit of a hybrid approach.

6.2.6 Conclusion

In this work, we have introduced control as hybrid inference (CHI), a framework for com-

bining model-free policy optimisation and model-based planning in a probabilistic setting,

and provided proof-of-principle demonstrations that CHI retains the sample efficiency of

model-based RL and the asymptotic performance of model-free RL. We finish by high-

lighting several additional benefits afforded by the CHI framework. First, initialising a

model-based planning algorithm with an ‘initial guess’ significantly reduces the search

space. Moreover, by employing amortised inference schemes that utilise a value function,

it should be possible to estimate the value of actions beyond the planning horizon. Fur-

thermore, the fact that the certainty of amortised predictions increases over the course of

learning suggests the possibility of terminating iterative inference once a suitable threshold

(in terms of the standard deviation) has been reached, which would decrease the compu-

tational cost of model-based planning. We also expect that the relative influence of the

two algorithms will be adaptively modulated in the face of changing environmental contin-

gencies, as confirmed in preliminary experiments. Finally, the CHI framework provides a

formal model of the hypothesis that model-free and model-based mechanisms coexist and

compete in the brain according to their relative uncertainty Niv et al. [2006], Daw et al.

[2005], as well as explaining habitization, or the gradual transition from goal-directed to

habitual action after sufficient experience. Gläscher et al. [2010].

While we have proposed one implementation of CHI based on initialisation, several
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alternatives exist. For instance, the amortised component could be incorporated as an

action prior in the graphical model. Moreover, while we have implemented CHI using

particular algorithms, these could be replaced by a wide range of state-of-the-art RL

algorithms. This is possible due to the observation that, under a control as inference per-

spective, model-based planning and model-free policy optimisation generally correspond

to iterative and amortised inference, respectively (Millidge et al., in press).
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Chapter 7

Conclusion

In conclusion, this thesis has explored the free energy principle (FEP) and its corollary,

active inference, as a unified explanatory framework that can provide a Bayesian interpre-

tation of self-organizing systems. In addition, this thesis investigated how the FEP can

be applied in falsifiable scientific pursuits.

First, we demonstrated that the FEP could provide a novel and principled frame-

work for designing intelligent agents that can respect the inherent uncertainty in environ-

ments. Then, this thesis went on to demonstrate equivalences between active inference

and reinforcement learning, the results of which can aid in building efficient and practical

frameworks and methods for designing intelligent agents. Finally, we presented a novel

implementation of active inference that utilized expressive function approximation en-

abled by amortized inference. We demonstrated that it could enable efficient exploration

while offering improved sample efficiency compared to modern reinforcement learning al-

gorithms. This has implications for developing better models for artificial intelligence,

which can learn and adapt to changing environments with greater efficiency and efficacy.

Second, we demonstrated that the normative aspects of the FEP can lead systems to

learn representations of the world which are oriented towards action rather than veridical

reconstructions of the environment. This insight has the potential to help better under-

stand the nature of representation in living systems. Accordingly, the results can help

researchers understand how living systems represent and process information, which can

have implications for developing better models for artificial intelligence that can adapt

and learn like living systems.

Third, this thesis has explored how the FEP can provide a framework for modeling

perception, action, and learning in systems that can be empirically measured. Using a

series of empirical experiments and computational modeling, we have demonstrated how
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an active inference model best explains human information-seeking in an eye-tracking

study. This study helps highlight the potential for active inference to act as a model of

human cognition and processing.

Finally, the thesis has explored whether the FEP can help inform the development of

novel process theories in computational neuroscience. We proposed a biologically-plausible

learning algorithm and verified its effectiveness on a suite of computer vision and rein-

forcement learning tasks. We proposed a novel predictive coding architecture - hybrid

predictive coding - which combines iterative and amortized inference techniques to jointly

optimize a shared energy function using only local Hebbian updates. We demonstrated

that this architecture enables rapid and computationally cheap inference when the task is

well learned while also providing flexible, context-sensitive, and more accurate inference

on challenging or ambiguous stimuli. Our hybrid model also can learn rapidly from a small

amount of data and is inherently able to detect its uncertainty and adaptively respond to

changing environments. Hybrid predictive coding offers a new perspective on the biolog-

ical relevance of the feedforward sweeps and iterative recurrent activity observed in the

visual cortex during perceptual tasks, explaining many experimental effects in this area

and potentially even accounting for distinct aspects of visual phenomenology.

Overall, this thesis affirms the role of the FEP and active inference as a suitable

framework for developing testable scientific theories.
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