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Abstract

In this thesis, we explore two distinct but closely linked avenues within the study of geometric

PDEs. The first of these looks at the eigenfunctions of the Laplacian operator on rank one

symmetric spaces. These eigenfunctions bridge the gap between classical and modern analysis.

This is because these eigenfunctions are orthogonal polynomials (in particular the Jacobi

polynomial, P
(α,β)
n (x), and the Gegenbauer polynomial, C

(λ)
n (x).

Making use of the Faa di Bruno formula, we find differential identities involving these special

functions and their matrix counterparts. We also find differential identities for the Hermite

polynomial, Hn(x). This includes the proof of the spectral identity:

d2m

dx2m
H2n(f(x))|x=0 =

m∑
j=1

j∑
q=1

C(j,m, q)
(−1)λ−j

2λ
2λPλλ

q, (0.0.1)

where λ is an eigenvalue of the Ornstein-Uhlenbeck operator.

The orthogonal polynomials also have representations using a hypergeometric series. From this,

we produce Maclaurin expansions for composite hypergeometric series, and also identities using

the differential operator:

Lp =
∑

PN (d/dθ) = p0 + p1d/dθ + ...+ pNd
N/dθN .

We then proceed to look at gradient estimates for geometric PDEs on Riemannian manifolds.

These estimates were first introduced by Li and Yau [76, 130, 131], who looked at estimates for

harmonic functions and the heat equation. Since these first estimates were established, similar

results have also been proven for non-linear PDEs. Of particular interest is the case where one

is working on a smooth metric measure space (Mn, g, e−fdν) with a diffusion operator ∆f =

∆− ⟨∇f,∇⟩.

Within this thesis, we choose to look at the parabolic equation:

(
∆f − ∂t

)
u(x, t) +A(x, t)u(x, t) log u(x, t) +B(x, t)u(x, t)p = 0
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and its elliptic equivalent. We produce Li-Yau and Souplet-Zhang estimates, as well as Li-Yau

estimates for the elliptic equation. As a fundamental part of the process of finding a gradient

estimate, a cutoff function is used. This allows the use of the maximum principle, which lies at

the heart of the proofs.

With these gradient estimates, we produce further results such as Liouville-type theorems,

Harnack inequalities, and analysis with ancient solutions. These give further information about

the PDE under consideration, and conditions under which certain solutions are obtained.

Finally, we find estimates under a time-evolving metric g(t) for different geometric flows:

∂

∂t
gij(x, t) = 2hij(x, t),

where h is a time dependent symmetric (0, 2) tensor. The flow above is a general flow, but we look

at the specific cases when this is either Ricci, Yamabe, or Perelman-Ricci flow.
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Chapter 1

Introduction and preliminaries

In this study, we access a range of modern topics within differential geometry, partial differential

equations, and classical special functions. The basis of our research is the study of geometric PDEs

on Riemannian manifolds.

Our research takes two clear directions within this area. First, we work largely in the field

of analysis, using combinatorial elements for special functions which arise from the eigenvalues of

the Laplacian on rank one symmetric spaces. Symmetric spaces are Riemannian manifolds whose

groups of symmetry contain an inverse symmetry for each point. We go into more detail on these

in chapters 2 and 3. If we turn our attention to rank one spaces, we see that these are closely

linked to the classical special functions such as the Jacobi and Gegenbauer polynomials (orthogonal

polynomials); they are eigenfunctions of the Laplacian on these spaces. Importantly, they bridge

the gap between these two areas of research, linking the classical with the modern. The spaces in

question also have forms built from Lie groups, which in itself has a wealth of literature due to its

importance within mathematics.

The second direction this thesis takes is to look at gradient estimates for elliptic and parabolic

PDEs on smooth metric measure spaces, also known as weighted Riemannian manifolds. These

were introduced by Li and Yau in the 1970s and provide extensive information about a given PDE

in the absence of an explicit solution. This allows one to carry out useful analysis of the PDEs,

even those with complicated non-linearities. Liouville-style theorems are easily calculated once an

estimate is found. In addition to these, one can also rapidly establish Harnack inequalities. What

often makes these PDEs interesting is their link to pre-existing problems or objects, such as the

Yamabe problem or the logarithmic Sobolev inequality. Further to this, we see that much of the

literature takes these estimates more generally by looking at PDEs involving a symmetric diffusion

operator (or Witten-Laplacian)
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∆fu = ∆u− ⟨∇u,∇f⟩.

We take a deeper look at a variety of these estimates in Chapters 4 and 5, before continuing

to use them to gain additional information about PDEs in Chapter 7. Within our research, we

consider a particular PDE in its elliptic and parabolic form with both a logarithmic and power non-

linearity. Here we produce multiple estimates of different varieties and the subsequent analysis of

these thereafter producing the Liouville style theorems and Harnack inequalities mentioned above.

When looking at parabolic PDEs, we also delve into analysis involving ancient solutions. These

are solutions that are valid for all negative time.

In Chapter 6, we also look at estimates that involve a time-evolving metric. This is an extremely

new area of research within gradient estimates, and it takes its roots from the study of Ricci flow

introduced by Hamilton. Ricci flow was also a fundamental component in Perelman’s proof of the

Poincare Conjecture.

1.1 Preliminaries on Riemannian geometry

In this chapter we give a basic account of the tools and results needed from Riemannian geometry.

For a more thorough coverage the reader can consult [19, 20, 74].

Let (Mn, g) be a Riemannian manifold of dimension n ≥ 2 and metric g. If {xi} is a positively

oriented local coordinate system then the volume form is

dvg =
√
|g|dx1 ∧ ... ∧ dxn (1.1.1)

where |g| denotes the determinant of the metric tensor g. Let expx0
denote the exponential map

and {Xi} be the standard Euclidean coordinates on the tangent bundle. Then we define the

geodesic coordinates on Mn as

xi = Xi ◦ exp−1
x0

:Mn\cut(x0) → R. (1.1.2)

In particular for geodesic coordinates it is easily seen that

gij(x0) = δij (1.1.3)

and

∂

∂xi
gjk(x0) = 0. (1.1.4)

Let X(Mn) be the space of smooth vector fields on Mn. We denote by ∇ the Levi-Civita

8



connection on X(Mn) which can be described in terms of the Christoffel symbols Γk
ij as

∇ ∂

∂xi

∂

∂xj
= Γk

ij

∂

∂xk
, (1.1.5)

where

Γk
ij =

1

2
gkl
( ∂

∂xi
gjl +

∂

∂xj
gil −

∂

∂xl
gij

)
. (1.1.6)

(Here gkl is the inverse of the metric gkl.)

The Riemann curvature tensor is defined as

R(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z (1.1.7)

where ∇ is the Levi-Civita connection, X,Y, Z ∈ X(Mn), and [X,Y ] is the Lie bracket of vector

fields X and Y . The Riemann curvature tensor can also be written in local coordinates as

Rl
ijk

∂

∂xl
= R

( ∂

∂xi
,
∂

∂xj

) ∂

∂xk
(1.1.8)

or more explicitly by using the Christoffel symbols as

Rl
ijk =

∂

∂xi
Γl
jk − ∂

∂xj
Γl
ik + Γp

jkΓ
l
ip − Γp

ikΓ
l
jp. (1.1.9)

The Riemann curvature tensor is a difficult object to handle, so one often finds it much easier

to deal with its trace, the Ricci curvature tensor. This is a (0, 2) tensor determined by the metric

and, roughly, relates the metric tensor locally to that of Euclidean space. For X, Y , Z defined

above

Ric(Y,Z) = tr(X → R(X,Y )Z). (1.1.10)

If {ei}ni=1 is an orthonormal frame, such that g(ei, ej) = δij then

Ric(Y, Z) =

n∑
i=1

⟨R(ei, Y )Z), ei⟩ (1.1.11)

or

Rjk =

n∑
i=1

Ri
ijk. (1.1.12)

As we are working on Riemannian manifolds, the Laplace-Beltrami operator is defined as

∆u =∇ · ∇u =
1√
|g|

∂

∂xj

(
gjk
√
|g| ∂u
∂xk

)
=gjk

∂2u

∂xj∂xk
− gjkΓl

jk

∂u

∂xl
(1.1.13)

where |g| is the determinant of g. Equation (1.1.13) is important when we discuss the time-evolving

metrics as hidden inside the Laplace-Beltrami operator is the metric.
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Let u ∈ C∞(Mn) such that u : Mn → R then the Bochner-Weitzenbock formula (sometimes

refered to as just the Bochner formula) states:

1

2
∆(|∇u|2) = |∇2u|2 + ⟨∇∆u,∇u⟩+Ric(∇u,∇u). (1.1.14)

1.2 Evolution of various quantities under geometric flow

Various elements of the Riemannian manifold can evolve under an evolving metric.

Definition 1.2.1. Let g(t) be a smooth family of Riemmanian metrics on Mn where t ∈ (0, T ),

T ∈ R+. If

∂

∂t
gij(x, t) = 2hij(x, t), (1.2.1)

where h is a time dependent symmetric (0, 2) tensor then we say that gij(x, t) is a solution to the

generalised geometric flow.

Alternatively if we have the inverse to the metric we can find an expression for the time

derivative.

Lemma 1.2.1. Let g−1 be the metric inverse. Then

∂

∂t
gij = −2gikgjlhkl. (1.2.2)

With this, we can find the variation of the Christoffel symbols.

Lemma 1.2.2. Let g(t) be a smooth family of metrics that solve (1.2.1). Then

∂

∂t
Γk
ij = gkl(∇ihjl +∇jhil −∇lhij). (1.2.3)

Proof. By using the standard formula for the Christoffel symbols

Γk
ij =

1

2
gkl
( ∂

∂xi
gjl +

∂

∂xj
gil −

∂

∂xl
gij

)
.

Then

∂

∂t
Γk
ij =

1

2

∂

∂t
gkl
( ∂

∂xi
gjl +

∂

∂xj
gil −

∂

∂xl
gij

)
+

1

2
gkl
( ∂

∂xi

∂

∂t
gjl +

∂

∂xj

∂

∂t
gil −

∂

∂xl

∂

∂t
gij

)
At an arbitrary point z ∈MN , Γk

ij(z) = 0. This gives ∂
∂xa

gbc(z) = 0. Then using (1.2.1) completes

the proof.

Remark 1.2.1. Christoffel symbols are awkward to calculate. However, if our Riemannian

manifold is a symmetric space, all the points look the same. This means that we can calculate the

tensor anywhere. A choice of the origin gives the easiest way to calculate.
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The scalar curvature S, the Riemann curvature tensor Rl
ijk, and the volume elements all evolve

in a similar way.

Lemma 1.2.3. Let g(t) be a smooth family of metrics that solve (1.2.1). Then

∂

∂t
S = −∆H +∇p∇qhpq − ⟨h,Ric⟩ (1.2.4)

where H = (Trgh) = gpqhpq.

Lemma 1.2.4. Let g(t) be a smooth family of metrics that solve (1.2.1). Then

∂

∂t
Rl

ijk = glp

[
∇i

(
∇jhkp +∇khjp −∇phjk

)
−∇j

(
∇ihkp +∇khip −∇phik

)]
. (1.2.5)

The volume element dµ evolves in the following way:

Lemma 1.2.5. Let g(t) be a smooth family of metrics that solve (1.2.1). Then

∂

∂t
dµ = Hdµ. (1.2.6)

In Riemannian manifolds, the inner product is defined as |·| :Mn → R, where |X| =
√
g(X,X).

Using this, one can compute the time derivative of the inner product.

Lemma 1.2.6. Let g(t) be a smooth family of metrics that solve (1.2.1), then

∂

∂t
|∇u|2 = −2h⟨∇u,∇u⟩+ 2⟨∇u,∇ut⟩. (1.2.7)

Proof. By straightforward computations:

∂

∂t
|∇u|2 =

∂

∂t

(
gij

∂u

∂xi

∂u

∂xj

)
=− 2hij

∂

∂xi
u
∂

∂xj
u+ gij

∂

∂xi

∂

∂t
u
∂

∂xj
u+ gij

∂

∂xi
u
∂

∂xj

∂

∂t
u

=− 2hij(∇u,∇u) + 2⟨∇u,∇ut⟩,

where we have used that the metric tensor is symmetric in the last step.

Progressing from this, we can find an expression for the time derivative of the Laplace-Beltrami

operator on a Riemannian manifold.

Lemma 1.2.7. Let g(t) be a smooth family of metrics that solve (1.2.1), then

∂

∂t
∆u = ∆ut − 2⟨∇ · h− 1

2
∇(Trg h),∇u⟩ − 2⟨h,∇2u⟩. (1.2.8)
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Proof.

∂

∂t
∆u =

∂

∂t

[
gij
( ∂2u

∂xi∂xj
− Γk

ij

∂u

∂xk

)]
=∆ut − 2⟨h,∇2u⟩ − gij

( ∂
∂t

Γk
ij

) ∂u
∂xk

=∆ut − 2⟨h,∇2u⟩ − gijgkl(∇ihjl +∇jhil −∇lhij)∇ku

=∆ut − 2⟨h,∇2u⟩ − 2gkl(gij∇ihjl −
1

2
∇l(Trg h))∇ku

=∆ut − 2⟨h,∇2u⟩ − 2⟨∇ · h− 1

2
∇l(Trg h),∇u⟩.

More reading on this and other related material can be found in [35, 36].

1.3 Space forms and comparison theorems on Riemannian

geometry

The distance sphere S(x0, r) is defined as

S(x0, r) = {x ∈Mn : d(x, x0) = r} (1.3.1)

where d(x, x0) is the distance function.

The second fundamental form h, which roughly measures how non-parallel the normal is, is

defined as

hij = −Γn
ij =

1

2

∂

∂r
gij , (1.3.2)

where ∂
∂r is the unit normal to S(x0, r) and gin = gjn = 0. The Ricatti equation can be produce

from h by:

∂

∂r
hij = −Rnijn + hikg

klhlj . (1.3.3)

The mean curvature H, which is the trace of the second fundamental form of S(x0, r), is defined

as

H = −gijΓn
ij . (1.3.4)

It can be seen from the evolution of mean curvature for a hypersurface flow ∂x
∂r = Bν that

∂

∂r
H = ∆B −Ric(ν, ν)B −B|h|2. (1.3.5)

12



The specific case when B = 1 yields

∂

∂r
H = −Ric

( ∂
∂r
,
∂

∂r

)
− |h|2 (1.3.6)

which can be derived from (1.3.3) as ∂
∂rH = gij

(
∂
∂rhij

)
−
(

∂
∂rgij

)
hij and ∂

∂rgij = 2hij .

Take a function ϕ and define the metric as

g = dr2 + ϕ(r)2gSn−1 . (1.3.7)

This is called a rotationally symmetric metric and the sectional curvatures are

KR =− ϕ′′

ϕ
, (1.3.8)

KS =
1− (ϕ′)2

ϕ2
. (1.3.9)

Here, KR is the sectional curvature containing the radial vector and KS is the sectional curvature

perpendicular to the radial vector. This also gives the Ricci tensor as

Ric = −(n− 1)
ϕ′′

ϕ
+
[
(n− 2)(1− (ϕ′)2)− ϕ′′ϕ

]
. (1.3.10)

Space forms are complete Riemannian manifolds with constant sectional curvature. Most

notable examples are the unit n-sphere (Sn), Euclidean n-space (Rn), and hyperbolic space (Hn).

These have constant sectional curvature K = 1, K = 0, and K = −1 respectively.

The Killing-Hopf theorem states that if U is a universal cover for a Riemannian manifold

(Mn, g) and the sectional curvature K is constant, then U is isometric to the n-sphere if K = 1,

Euclidean n-space if K = 0, and hyperbolic space if K = −1. See [59, 70] for original documents.

Now let (Mn
K , gK) be a space form with sectional curvature K. The metric is defined as

gK = dr2 + sK(r)2gSn−1 (1.3.11)

where

sK =



1√
K

sin
√
Kr if K > 0,

r if K = 0,

1√
|K|

sinh
√

|K|r if K < 0.

(1.3.12)

If K ≤ 0, then gK is defined over Rn, and if K > 0 then gK defined on B(0, π√
K
) extends to Sn by

taking a 1-point compactification.

The mean curvature H of S(x0, r) is

H = (n− 1)
ϕ′

ϕ
. (1.3.13)

If we have that the sectional curvature K is constant, then HK(r), the mean curvature of SK(x0, r),

13



is

HK(r) =


(n− 1)

√
K cot(

√
Kr) if K > 0

(n−1)
r if K = 0√
|K| coth(

√
|K|r) if K < 0.

(1.3.14)

Lemma 1.3.1. Let (Mn, g) be a Riemannian manifold with lower bounded Ricci tensor Ric ≥

(n− 1)K for K ≥ 0. Then for points where r is smooth, the mean curvature of the distance sphere

S(x0, r) satisfies

H(r, θ) ≤ HK(r). (1.3.15)

This leads us onto the Laplacian comparison theorem. If

|∇r(x)|2 = 1 (1.3.16)

then r(x) = d(x, x0) is the generalised distance function such that r :Mn → [0,∞).

The Laplacian comparison theorem, sometimes referred to as the mean curvature comparison

theorem, compares the Laplacian of the distance function on a Riemannian manifold with the

Laplacian of the distance function with constant curvature K. For K being positive, negative, or

zero it states bounds.

Theorem 1.3.1 (Laplacian comparison theorem). Let (Mn, g) be a complete Riemannian manifold

whose Ricci curvature is bounded from below Ric ≥ (n− 1)K for K ∈ R and x0 ∈ Mn. Then for

any x ∈Mn \ (Cut locus of x) and r as described above

∆r ≤


(n− 1)

√
K cot(

√
Kr) if K > 0

(n−1)
r if K = 0√
|K| coth(

√
|K|r) if K < 0.

(1.3.17)

Another comparison theorem of note is the Bishop volume comparison theorem, sometimes

called the Bishop–Gromov inequality. This describes the relationship between the volume of the

ball of a given radius on a Riemannian manifold and the volume of a geodesic ball.

Theorem 1.3.2 (Bishop volume comparison theorem). Let (Mn, g) be a complete Riemannian

manifold with lower bounded Ricci curvature tensor Ric ≥ (n−1)K for K ≥ 0. Then for x0 ∈Mn

and R > 0

V ol(B(x0, R))

V (K,R)
(1.3.18)
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is non-increasing in R. Hence, as R goes to 0,

V ol(B(x0, R)) ≤ V (K,R). (1.3.19)

V (K,R) is the volume of the geodesic balls of radius R in the space form of Mn
K . This Mn

K is a

simply connected space of constant sectional curvature K. See [103, 119, 120] for more information

about comparison theorems.

1.4 Geometry on Smooth metric measure spaces

A complete smooth metric measure space, also known as a weighted Riemannian manifold, is a

triple (Mn, g, e−fdν). Here (Mn, g) is a complete n-dimensional Riemannian manifold, f is a

smooth real valued function on Mn, and dµ = e−fdν is a weighted measure on Mn conformal to

the Riemann volume measure, see [88]. This occurs when a collapsed measured Gromov-Hausdorff

limit is taken on (1.4.2). Let (Mn × FP , gϵ) be a manifold with the metric

gϵ = gM + (ϵe−f )2gF . (1.4.1)

Then for a normalised measure ˜dνϵ:

(Mn × FP , gϵ, ˜dνϵ)
ϵ → 0−−−→ (Mn, g, e−PfdνM ). (1.4.2)

This causes the Ricci tensor to be warped into the m-Bakry-Emery Ricci tensor.

The m-Bakry-Emery Ricci tensor is a natural extension of the Ricci tensor. It was initially

studied by Bakry and Emery in [16, 17], see also [77, 98, 119]. We define this as

Ricmf = Ric+∇2f − df ⊗ df

m− n
(1.4.3)

for 0 ≤ n ≤ m < ∞, where Ric is the Ricci tensor of the manifold Mn and ∇2f is the Hessian

operator acting on f . If m = n, then f must be constant. When m = ∞, the ∞-Bakry-Emery

operator is obtained:

Ricf = Ric+∇2f. (1.4.4)

If f is a constant function then Ricf becomes the standard Ricci tensor. For m1,m2 < ∞, such

that m1 ≤ m2, Ric
m1

f ≤ Ricm2

f .

The Bakry-Emery Ricci tensor shares many properties with the standard Ricci tensor, but also

holds great importance in the study of Ricci solitons.

The Riemannian manifold can also be equipped with a variation of the Laplace-Beltrami

operator called the Witten-Laplacian, which arises as a natural extension and is a symmetric
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diffusion operator, ∆f = ∆− ⟨∇,∇f⟩. For any u, v ∈ C∞
0 (Mn), the integration by parts formula

holds

ˆ
Mn

⟨∇u,∇v⟩dµ = −
ˆ
Mn

u∆fvdµ = −
ˆ
Mn

v∆fudµ (1.4.5)

so the Witten-Laplacian is the infinitesimal generator of the Dirichlet form

ξ(u, v) =

ˆ
Mn

⟨∇u,∇v⟩dµ. (1.4.6)

For more information of the above see [134].

The Bochner formula can be extended for use with the diffusion operator ∆fu. When m = ∞

we get

1

2
∆f (|∇u|2) = |∇2u|2 + ⟨∇∆fu,∇u⟩+Ricf (∇u,∇u) for m = ∞ (1.4.7)

Proposition 1.4.1. Let (Mn, g) be a complete Riemannian manifold. Also let u ∈ C∞(Mn) be a

smooth function such that u :Mn → R. Then

1

2
∆f (|∇u|2) ≥

(∆fu)
2

m
+ ⟨∇∆fu,∇u⟩+Ricmf (∇u,∇u) for m <∞ (1.4.8)

Proof. First we calculate

∆f |∇u|2 =∆|∇u|2 − ⟨∇f,∇|∇u|2⟩

=∆|∇u|2 − 2⟨∇f,∆u⟩

=∆|∇u|2 − 2Hess(u)(∇u,∇f)

and

⟨∇u,∇(∆fu)⟩ =⟨∇u,∇(∆u− ⟨∇u,∇f⟩)⟩

=⟨u,∇(∆u)⟩ − ⟨∇u, ⟨∆u,∇f⟩⟩ − ⟨∇u, ⟨∇u,∆f⟩⟩

=⟨u,∇(∆u)⟩ −Hess(u)(∇u,∇f)−Hess(f)(∇u,∇u).

Then these combine with (1.4.3) to give

1

2
∆f |∇u|2 = |∇2u|2 + ⟨∇u,∇(∆fu)⟩+Ricmf (∇u,∇u) + |⟨∇u,∇f⟩|2

m− n
.

Looking at the |∇2u|2 we see

|∇2u|2 + |⟨∇u,∇f⟩|2

m− n
≥ (∆u)2

n
+

|⟨∇u,∇f⟩|2

m− n

≥ (∆fu)
2

m
.

Substitution of this gives the desired result.
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Both the Laplacian comparison and volume comparison theorems have versions for smooth

metric measure spaces. These can be seen in [119, 120] but we adopt the notation taken in

[125, 126]. Firstly, we state the following for Ricf :

Theorem 1.4.1 (Laplacian comparison theorem on smooth metric measure space). Let

(Mn, g, e−fdν) be a complete smooth metric measure space with lower bound Ricci estimate

Ricf ≥ −(n− 1)K for K ≥ 0. Let x1 ∈ B(x0, 2R). Then if r(x1, x0) ≥ 1

∆fr(x1) ≤ µ+ (n− 1)(2R− 1)K (1.4.9)

where µ := maxx|d(x,x0)=1 ∆fr(x).

Similarly, for Ricmf we have the following:

Theorem 1.4.2 (Generalised Laplacian comparison theorem on smooth metric measure space).

Let (Mn, g, e−fdν) be a complete smooth metric measure space with lower bound Ricci estimate

Ricmf ≥ −(m− 1)K. Let x1 ∈ B(x0, 2R). Then if r(x1, x0) ≥ 1

∆fr(x1) ≤ (m+ n− 1)
√
K coth(

√
KR). (1.4.10)

Theorem 1.4.3 (Bishop volume comparison theorem on smooth metric measure space). Let

(Mn, g, e−fdν) be a complete smooth metric measure space with Ricf ≥ (n − 1)K. Fix a point

x0 ∈Mn. Then

1. If ∂rf ≥ −a along all minimal geodesic segments from x0 then for π
2

√
K ≥ R ≥ r > 0, K > 0

V olf (B(x0, R))

V olf (B(x0, r))
≤ eaR

V olnK(R)

V olnK(r)
(1.4.11)

2. If |f(x)| ≤ b then for π
4

√
K ≥ R ≥ r > 0, K > 0

V olf (B(x0, R))

V olf (B(x0, r))
≤
V oln+4b

K (R)

V oln+4b
K (r)

(1.4.12)

where V olnK(r) is the volume of the radius r−ball in the model space.

See [119, 120] for more information.

1.5 Some explicit examples of geometric flows on

Riemannian manifolds

Ricci flow, first introduced by Hamilton [55], is the relation between the time derivative of the

metric and the Ricci curvature tensor, and is a method of evolving the metric.

17



Definition 1.5.1. Let g(t) be a smooth family of Riemannian metrics on Mn where t ∈ (0, T ),

T ∈ R+. If

∂

∂t
g(t) = −2Ric (1.5.1)

then we say that gij(x, t) is a solution to the Ricci flow.

If we normalise this then

∂

∂t
g(t) = −2Ric+

2
´
MN Sdµ

n
´
MN dµ

g(t) (1.5.2)

where S refers to the scalar curvature. Hamilton introduced this as an effort to find a proof for

the geometrisation conjecture. However, it was the work of Perelman [90, 91, 92] that laid out the

proof, finally confirmed by Kleiner and Lott in [71]. Perelman later built upon his own work to

solve the Poincare conjecture.

If we look at the Ricci flow equation (1.1.10) in local coordinates and recall the Laplacian in

these coordinates, where the metric is

ds2 = gijdx
idxj , (1.5.3)

it also follows that

∆gij = −2Ric. (1.5.4)

From this, it is not hard to see the relationship with the heat equation and similarities therein.

Lemma 1.5.1. Let g(t) be a smooth family of metrics that solve (1.5.1), then

gij
( ∂
∂t

Γk
ij

)
= 0. (1.5.5)

Proof. Through basic calculations

gij
( ∂
∂t

Γk
ij

)
= −gkl(2gij∇iRicjl −∇lS) (1.5.6)

where S is the scalar curvature. Due to the contracted second Bianchi identity this is identically

zero.

Remark 1.5.1. A similar statement can be made for Perelman-Ricci flow. We show this later.

Lemma 1.5.2. Let g(t) be a smooth family of metrics that solve (1.5.1), then

∂

∂t
∆u = ∆ut + 2⟨Ric,∇2u⟩. (1.5.7)

Lemma 1.5.3. Let (Mn, g) be an n-dimensional Riemannian manifold. If Ric is positive definite
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then the identity map

id : (Mn, g) → (Mn,±Ric) (1.5.8)

is a harmonic map.

If we have a complete Riemannian manifold, such that

Ric = λg − 1

2
LV g, (1.5.9)

where V is a smooth vector field, Lv is the Lie derivative, and λ is some constant, then we can

say that the metric g is a Ricci soliton. If f is a real valued function and V = |∇f | then (1.5.9)

becomes

Ric+∇2f = Ricf = λg, (1.5.10)

and it is called a gradient Ricci soliton. Gradient solitons are important in the study of singularities

for Ricci flow. See [56].

DeTurk formulated his own flow to construct a short-time solution g̃(t) of the Ricci flow equation

with initial condition g̃(0) = g0. Here, the flow is defined as

∂

∂t
gij = −2Ricij +∇iWj +∇jWi (1.5.11)

where W (t) is DeTurks vector field:

Wj = gjkg
pq
(
Γk
pq − Γ̃k

pq

)
, (1.5.12)

Γ is the Levi-Civita connection and Γ̃ is the fixed background connection. Then by letting ϕ :

Mn →Mn such that

∂

∂t
ϕ(x0) = −W (ϕ(x0), t), (1.5.13)

ϕ0 = idM
n

(1.5.14)

for x0 ∈ Mn, and setting the metric of the pullback function ϕ, g̃ = ϕ∗g(t) it can be shown that

this is also a solution to the Ricci flow equation. For more background information and detail see

[24, 36, 115].

Let g0 be a conformal class of metrics on Mn, n ≥ 3. Then for g ∈ g0 the total scalar curvature

is given by

S = V −n−2
n

ˆ
Mn

Sdµ (1.5.15)
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for

V =

ˆ
Mn

dµ, (1.5.16)

and S the scalar curvature. Then by finding the gradient of S the following equation is formed:

∂g

∂t
=
n− 2

2n
V −1(s− S)g (1.5.17)

where s is the average scalar curvature. By this we mean that

s =

´
Mn Sdvol´
Mn dvol

. (1.5.18)

Using this it then brings us to Yamabe flow.

Definition 1.5.2. Let g(t) be a smooth family of Riemannian metrics on Mn where t ∈ (0, T ),

T ∈ R+. If

∂

∂t
g = −Sg. (1.5.19)

then we say that g(t) is a solution to the Yamabe flow.

The normalised version of this, which relates closely to (1.5.17), is

∂g

∂t
= (s− S)g (1.5.20)

Yamabe flow importantly conserves conformal structure. Let

g = u
4

n−2 g0 (1.5.21)

and take a positive function u > 0 on Mn. Then the relationship between the scalar curvature on

g and g0 is given by the following:

Sg = −u
n+2
n−2

(4(n− 1)

n− 2
∆g0u− Sg0u

)
(1.5.22)

which can be used to find

∂

∂t
u

n+2
n−2 =

n+ 2

4

(4(n− 1)

n− 2)
∆g0u− Sg0u+ sgu

n+2
n−2

)
. (1.5.23)

Similarly if we let g = eugSn , then

∂

∂t
u = (n− 1)e−u

(
∆u+

n− 2

4
|∇u|2 − n

)
(1.5.24)

which is similar to the heat equation. See [23, 37, 81, 132] for more information.

The variational formulas for Yamabe flow are as follows:
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Lemma 1.5.4. Let g(t) be a smooth family of metrics that solve (1.5.19), then

∂

∂t
|∇u|2 =S|∇u|2 + 2⟨∇ut,∇u⟩. (1.5.25)

Lemma 1.5.5. Let g(t) be a smooth family of metrics that solve (1.5.19), then

∂

∂t
∆u =− n− 2

2
⟨∇u,∇S⟩+ S∆u+∆ut. (1.5.26)

See [133] for more detail.

Alternatively, if we are working on a smooth metric measure space (Mn, g(t), f(t)), then (K,m)

Perelman-Ricci flow is defined as:

1

2

∂g

∂t
+Ricmf (g) = −Kg, (1.5.27)

∂f

∂t
− 1

2
Tr

(
∂g

∂t

)
= 0 (1.5.28)

where Tr is the trace, K and m are fixed constants for m ≥ N . The specific case

1

2

∂g

∂t
+Ricmf (g) ≥ −Kg, (1.5.29)

∂f

∂t
− 1

2
Tr

(
∂g

∂t

)
= 0 (1.5.30)

is called super Perelman-Ricci flow. We discuss this more later.

1.6 The heat kernel on Riemannian manifolds and

symmetric spaces

The heat kernel is a fundamental solution to the heat equation. In Euclidean space the heat kernel

takes the form

H(x, y, t) = (4πt)−
m
2 e−

(r(x,y))2

4t (1.6.1)

where r(x, y) is the distance function. If we are looking at the heat equation on manifolds, then

we note that since all Riemanian manifolds are locally Euclidean, we can use (1.6.1) as an

approximation. We can state the following proposition for a Riemannian manifold with unstated

boundary assumptions:

Proposition 1.6.1. Let (Mn, g) be a complete Riemannian manifold without boundary. Then

∀x ∈Mn, the heat kernel is approximated by

H(x, y, t) ∼ (4πt)−
m
2 e−

(r(x,y))2

4t (1.6.2)

as t→ 0 and r(x, y) → 0.
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Theorem 1.6.1. Let (Mn, g) be a complete, non-compact Riemannian manifold. Then there exists

a positive symmetric heat kernel such that

f(x, t) =

ˆ
Mn

H(x, y, t)f0(y)dy (1.6.3)

for f0 ∈ L2(Mn), solves the heat equation on Mn × (0,∞).

Instead, if we have that H(x, y, t) is the minimal symmetric heat kernel then Li and Yau showed

an upper bound for H(t, x, y) on the ball and on (Mn, g) for positive time.

Remark 1.6.1. A heat kernel H(x, y, t) on M × M × (0,∞) is referred to as minimal if the

following applies. Let H(x, y, t) be another heat kernel on M ×M × (0,∞). Then

H(x, y, t) ≤ H(x, y, t), (1.6.4)

for all x, y ∈M and t ∈ (0,∞).

Theorem 1.6.2. Let (Mn, g) be a complete Riemannian manifold with Ric ≥ (−n−1)K, K ∈ R,

and H(x, y, t) be the minimal symmetric heat kernel on M ×M × (0,∞). Let H(x, y, t) solve

(
∆y −

∂

∂t

)
H(x, y, t) = 0 (1.6.5)

and

lim
t→0

H(x, y, t) = δx(y). (1.6.6)

Then for any x0 ∈Mn, R, ϵ > 0, t ≤ R2

4 , and x, y ∈ B(x0, R) the following inequality holds

H(x, y, t) ≤ CV
− 1

2
x (

√
t)e−µ1(M)t × V

− 1
2

y (
√
t)e−

r2

4(1+2ϵ)t
+C

√
(R−2+K)t (1.6.7)

where µ1(M) is the first Dirichlet eigenvalue on M and Vx(y) = V ol(B(x, y)).

Corollary 1.6.1. Let (Mn, g), H(x, y, t), and Ric be defined as above. Then for x, y ∈ M and

t ∈ (0,∞), the following inequality holds

H(x, y, t) ≤ CV
− 1

2
x (

√
t)e−µ1(M)t × V

− 1
2

x (
√
t)e−

r2

4(1+2ϵ)t
+C

√
Kt. (1.6.8)

Behaviour for the heat kernel as t → ∞ will differ according to whether our Riemannian

manifold is a compact or complete and non-compact. If we have a compact Riemannian manifold

with unspecified boundary and we let t→ ∞ the heat kernels for Dirichlet and Neumann boundary

conditions, it can be expressed using the first eigenfunction and eigenvalue:

H(x, y, t) ∼ e−λ1ϕ1(x)ϕ1(y). (1.6.9)

If, however, the Riemannian manifold is complete and non-compact, then we observe the following:
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Theorem 1.6.3. Let (Mn, g) be an n-dimensional Riemannian manifold with non-negative Ricci

curvature. Let C > 0 be a constant such that

lim inf
s→∞

Vx0(s)

sn
= C (1.6.10)

for some point x0 ∈Mn. Then

lim
t→∞

Vx0
(
√
t)H(x, y, t) = n−1A(4π)−

n
2 (1.6.11)

where A is the area of the (n− 1)-dimensional unit sphere.

See [50, 75] for more information.
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Chapter 2

Special functions in the theory of

symmetric spaces

Symmetric spaces are a special type of Riemannian manifolds whose groups of symmetries contain

an inverse symmetry for each point. The study of these is still quite young in the mathematical

world as its origins date back to Cartan and Weyl in the 1930s, [27, 121], with further study coming

from Gel’fand and Chandra. For greater detail and work therein see [49, 58].

The rank of a Riemannian symmetric space refers to the rank of M , the maximal dimension of

a flat, totally geodesic submanifold of M . In this context, a Riemannian manifold is said to be flat

if its curvature tensor vanishes identically. If the rank is 1, then these turn out to be geodesics.

A Gel’fand pair (G,K), consists of a group G and a subgroup K. The specific case when G

is a Lie group and K a compact subgroup is of particular note. Further, when X = G/K is a

symmetric space, we have that G is a semi-simple Lie group and a member of the Harish-Chandra

class for which it is a reductive Lie group and K is the maximal compact subgroup. For a compact

symmetric space where G a real simple Lie group, Cartan showed that there are seven varieties.

G K Rank
SO(p+ q) SO(p)× SO(q) min(p, q)
SO(2n) U(n) [n/2]
Sp(n) U(n) n
Sp(p+ q) Sp(p)× Sp(q) min(p, q)
SU(n) SO(n) n− 1
SU(2n) Sp(n) n− 1
SU(p+ q) S(U(p)×U(q)) min(p, q)

Table 2.1: The rank of Gel’fand pairs for certain choices of G and K.

In table 2.1, SO(n), Sp(n), and SU(n) are the special orthogonal group, symplectic group,

and special unity group respectively. Of particular note is that these groups are Lie groups. Lie
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groups have a rich body of research for them as they play an important role in both geometry and

physics. For more information on Lie groups, see [15, 44, 48, 54, 104].

2.1 Non-compact rank one symmetric spaces

The table above consists only of compact symmetric spaces; however, these spaces can either be

compact or non-compact. For non-compact rank one symmetric spaces, we have some important

examples: the real hyperbolic space Hn
R, the complex hyperbolic space Hn

C, the quaternionic

hyperbolic space Hn
Q, and the Cayley hyperbolic plane Hn

Ca. It can be seen that

Hn
R =SO(n, 1)/SO(n), (2.1.1)

Hn
C =SU(n, 1)/U(n), (2.1.2)

Hn
Q =Sp(n, 1)/(Sp(n)× Sp(1)), (2.1.3)

H2
Ca =F∗

4/Spin(9) (2.1.4)

where F∗
4 is a compact form of an exceptional Lie group and Spin is the spin group.

These groups all have Beltrami-Klein models which project their spaces onto the unit disk.

The real hyperbolic space SO(n, 1)/SO(n)

The real hyperbolic space SO(n, 1)/SO(n), where n ∈ N \ {1}, can be shown to be isometric to

the space Hn
R. To produce a Beltrami-Klein model for this space, we start by taking the open ball

Bn
R = {x ∈ Rn : |x| < 1} with Riemannian structure

ds2 =
|dx|2

1− |x|2
+

⟨x, dx⟩2R
(1− |x|2)2

. (2.1.5)

This then corresponds to

gij =
δi,j

1− |x|2
+

xixj
(1− |x|2)2

. (2.1.6)

By calculations we can show that

Rijkl = −(gikgjl − gjkgil) (2.1.7)

which shows that Bn
R with the corresponding metric has constant sectional curvature of −1. As

stated above, this space is isometric to Hn
R.

Proposition 2.1.1. The Riemannian measure on Hn
R is

dµ =
dx

(1− |x|2)n+1
2

. (2.1.8)
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The complex hyperbolic space SU(n, 1)/U(n)

Like for the real hyperbolic space, the complex hyperbolic space has a similar isometry;

holomorphically isometric to the space Hn
C. This is seen when the maximal sectional curvature is

equal to 1.

Let Bn
C = {z ∈ Cn : |z| < 1} be the open unit ball with standard complex structure z =

(z1, ..., zn) ∈ Bn
C . The metric for this is

ds2 = 2

n∑
i,j=1

gij(z)dzidzj (2.1.9)

with metric tensor

gij(z) =
∂2

∂zi∂zj

(
1

2
log

1

(1− |z|2)

)
. (2.1.10)

With this we can find the Riemannian curvature tensor:

Rijkl = 2(gijgkl + gilgkj), (2.1.11)

which gives that Bn
C with the corresponding metric is a space of constant holomorphic sectional

curvature equal to −4. This space we define as Hn
C.

Proposition 2.1.2. The Riemannian measure on Hn
C is

dµ =
dmn(z)

(1− |z|2)n+1
(2.1.12)

where dmn(z) is the Lebesgue measure on Cn.

The quaternionic hyperbolic space Sp(n, 1)/(Sp(n)× Sp(1))

Similarly to what we have seen above, the quaternionic hyperbolic space of maximal sectional

curvature equal to −1 is isometric to Hn
Q.

Let Bn
Q = {q ∈ Qn : |q| < 1}, for q = (q1, ..., qn) ∈ Bn

Q. Then because of the relation

q ↔ z = (z1, ..., z2n) (2.1.13)

where

qi = zi + zn+ii2 (2.1.14)

for 1 ≤ i ≤ n, we see that Bn
Q = z ∈ C2n : |z| < 1. i is a basis for Q such that

i0 = 1, i1 = (iC1 , 0),

i2 = (0, 1), i3 = i1i2.
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Proposition 2.1.3. The Riemannian measure on Hn
Q is

dµ =
dm2n(z)

(1− |z|2)2n+2
. (2.1.15)

The Cayley hyperbolic plane F∗
4/Spin(9)

Despite the Cayley numbers not being associative, the Cayley hyperbolic plane with maximal

sectional curvature equal to −1 is an isometry of H2
Ca.

Let x = (x1, ..., x16), y = (y1, ..., y16) ∈ R16. Also let

ΦCa(a, b) = 2

8∑
k=1

pk(x)pk(y) + p9(x)p9(y) + p10(x)p10(y) (2.1.16)

for pi(x) as defined in [116]. Then for i, j ∈ (1, .., 16)

aij = δi,j(1− |x|2)2 + 1

2

∂2

∂yi∂yj
ΦCa(x, y) (2.1.17)

and

gij =
aij

(1− |x|2)2
. (2.1.18)

It can then be shown that ||gij ||16i,j=1 causes a Riemannian structure on the open ball, which is

denoted Hn
Ca.

Proposition 2.1.4. The Riemannian measure on Hn
Ca is

dµ =
dx

(1− |x|2)12
. (2.1.19)

For further information of these spaces and for proofs of the propositions see [116].

2.2 Compact rank one symmetric spaces

Our main focus will be on the eigenfunctions of the Laplacian on compact rank one symmetric

spaces. The choice of rank one symmetric spaces in particular is due to the fact that the

eigenfunctions of the Laplacian on these spaces are the special functions (Jacobi and Gegenbauer

polynomials). From these we can find valuable formulas.

There are also some quite notable examples of these spaces such as the sphere (Sn), the real

and complex projective spaces (Pn+1(R),Pn+1(C)), the quaternionic projective space (Pn+1(H)),

and the Caley projective space (P2(Cay)). These are also notable for their links to Lie groups

mentioned above; the sphere, real projective space, complex projective space, and quaternionic
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projective space are represented respectively by

Sn =SO(n+ 1)/SO(n), (2.2.1)

Pn+1(R) =SO(n+ 1)/O(n), (2.2.2)

Pn+1(C) =SU(n+ 1)/S(U(n)×U(1)), (2.2.3)

Pn+1(H) =Sp(n+ 1)/(Sp(n)× Sp(1)). (2.2.4)

In addition to these spaces having equivalent forms using Lie groups, there are also links to

special functions - in particular, the orthogonal polynomials. We can see this through the involutive

automorphism of compact Lie algebras.

The sphere Sn

Let

ds2 = dx21 + ...+ dx2n+1 (2.2.5)

be the standard Riemannian metric on Sn. In spherical coordinates

ds2 = dθ2n + sin2 θndθ
2
n−1 + ...+ sin2 θn... sin

2 θ2dθ
2
1. (2.2.6)

The Riemannian measure on Sn is defined by

dµ = sinn−1 θn sin
n−2 θn−1... sin θ2dθ1...dθn. (2.2.7)

Instead, we can create a similar structure based off the Euclidean space. We denote Rn = Rn∪{∞}.

Now let F1 = Rn and F2 = Rn \ {0}. Now introduce the bijective mapping

ϕk : Fk → Rn (2.2.8)

for k = 1, 2 with

ϕ1(p) = p, (2.2.9)

ϕ2(p) =


p

|p|2 , p ∈ Rn \ {0}

0, p = ∞.

(2.2.10)

It can be shown that the atlas (Fk, ϕk), for k = 1, 2, is a real analytic structure on Rn. Next, if we

let

gij =
4δi,j

(1 + |x|2)2
(2.2.11)
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for x ∈ Rn, i, j ∈ (1, ..., n), then

dµ =
2ndx

(1 + |x|2)n
(2.2.12)

for x ∈ Rn. It then can be shown that

Rijkl = gikgjl − gjkgil. (2.2.13)

Thus, the following can be stated:

Proposition 2.2.1. The space SO(n + 1)/SO(n) of constant sectional curvature equal to 1 is

isometric to the sphere Sn with the standard Riemannian metric on Sn or to Rn with metric

(2.2.11).

The real projective space SO(n+ 1)/O(n)

We start by forming the projective space. Take the equivalence relation

x ∼ λx (2.2.14)

for λ ∈ R \ {0} on Rn+1 \ {0}. We define the set of all equivalence classes to be the real projective

space of dimension n+ 1, Pn+1(R). It is also useful to note that for x ∈ Rn+1, there exists λ such

that λx has a norm equal to 1.

It can be shown that this can be turned into a real analytic manifold. Let f = λx where

(f0, ..., fn) = f ∈ Rn+1 \ {0}. Next, we define, similar to that in the sphere section,

Fk = {[f ] ∈ Pn+1(R) : fk ̸= 0} (2.2.15)

for k = {0, ..., n}. This is a cover for Pn+1(R) =
⋃n

k=0 Fk. Also let

ϕk : Fk → Rn (2.2.16)

be a bijective mapping. It can then be shown that (Fk, ϕk) form an atlas, meaning that Pn+1(R)

is a real analytic structure. We can then put a Riemannian structure onto Pn+1(R). Let

gij =
δi,j

(1 + |x|2)
− xixj

(1 + |x|2)2
(2.2.17)

for x ∈ Rn, i, j ∈ {1, ..., n}, and let the metric be defined as

gkij(p) = gij(ϕk(p)) (2.2.18)

for p ∈ Fk, k = {0, ..., n}. The measure on this is

dµ =
dx

(1 + |x|2)n+1
2

(2.2.19)
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for x ∈ Rn.

By calculating the Riemann curvature tensor

Rijkl = gikgjl − gjkgil (2.2.20)

it is seen that the sectional curvature is equal to 1. We also have that

Pn+1(R) = Rn ∪Pn(R). (2.2.21)

Proposition 2.2.2. The real projective space SO(n + 1)/O(n) of constant sectional curvature

equal to 1 is isometric to Pn+1(R) with metric (2.2.18).

The complex projective space SU(n+ 1)/S(U(n)×U(1))

The complex projective space is very similar in its makeup to its real counterpart. Working on

Cn+1\{0}, we take the equivalence relation (2.2.14) for λ ∈ C\{0}. The set of all these equivalence

relations is Pn+1(C).

Pn+1(C) can now be made into a complex analytic manifold. Let (f0, ..., fn) ∈ Cn+1 and define

Fk as above on Pn+1(C). Also let

ϕk : Fk → Cn (2.2.22)

be a bijective mapping. Using this we see that (Fk, ϕk) form an atlas, and therefore applying that,

it is seen that Pn+1(C) is a complex analytic manifold. A Hermitian metric can be applied to this

giving

gij = hij(z)/2 (2.2.23)

where

hij(z) =
δi,j

(1 + |z|2)
− zizj

(1 + |z|2)2
(2.2.24)

for z ∈ Cn. The Riemannian measure on F0 is given by

dµ =
dmn

(z)

(1 + |z|2)n+1
. (2.2.25)

The Riemann curvature tensor is given by

Rijkl = −2(gijgkl + gilgkj) (2.2.26)

which means that Pn+1(C) with Hermitian metric has constant holomorphic sectional curvature
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equal to 4. We also have that

Pn+1(C) = Cn ∪Pn(C). (2.2.27)

Proposition 2.2.3. The complex projective space SU(n+1)/S(U(n)×U(1)) with minimal section

curvature equal to 1 is holomorphically isometric to the space Pn+1(C) with Hermitian metric.

The quaternionic projective space Sp(n+ 1)/(Sp(n)× Sp(1))

Working on Hn+1 \ {0} with (2.1.13), we have the (2n + 2)-tuples of f = (f0, ..., f2n+1) which

give rise to the class [f ] = [(f0, ..., f2n+1)]. The set of all these classes is denoted Pn+1(H). In

particular, two of these (2n + 2)-tuples f and f only belong to the same class if and only if for

(λ, ψ) ∈ C2 \ {0}

λfk − ψfn+1+k = fk, (2.2.28)

λfn+1+k + ψfk = fn+1+k (2.2.29)

for k = {0, ..., n}.

Again, we can create a real analytic structure. Let

Fk = {[f ] : |fk|2 + |fn+1+k|2 ̸= 0} (2.2.30)

for k above, and let

ϕk : Fk → C2n (2.2.31)

be a bijective mapping. Then we can say that (Fk, ϕk) form an atlas so Pn+1(H) is a real analytic

structure.

Let

hi+a,j+b(z) =
θa,b(z)

(1 + |z|2)2
(2.2.32)

where

θ0,0(z) = (1 + |z|2)δi,j − zizj − zn+izn+j ,

θ0,n(z) = zn+izj − zizn+j ,

θn.0(z) = zizn+j − zn+izj ,

θn,n(z) = (1 + |z|2)δi,j − zizj − zn+izn+j .

Now we define the metric

gki,j(p) = hi,j(ϕ(p)) (2.2.33)
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for p ∈ Fk, i, j ∈ {1, .., 2n}. The measure on Pn+1(H) with metric (2.2.33) is

dµ =
dm2n(z)

(1 + |z|2)2n+2
. (2.2.34)

Proposition 2.2.4. The quaternionic projective space Sp(n+ 1)/(Sp(n)× Sp(1)) with minimal

sectional curvature equal to 1 is isometric to Pn+1(H) with metric (2.2.33).

For more detail and examples not linked to the spaces mentioned above, see [58, 116].

2.3 Orthogonal polynomials as eigenfunctions of the

Laplacian on compact rank one symmetric spaces

The importance of compact rank one symmetric spaces is that the eigenfunctions of the Laplacian

on these spaces are orthogonal polynomials. This creates a powerful link between classical and

contemporary mathematics.

Let ∆ be the Laplacian on a Riemannian manifold. Then there exists an orthonormal basis ϕi

which also solves the eigenvalue problem

∆ϕi = λiϕi, (2.3.1)

where λi are the eigenvalues. Further to this, we define the heat semi-group

U(t) = e−t∆ (2.3.2)

for t > 0. This produces a heat kernel that is symmetric and smooth. We can express this by the

spectral sum

H(t, x, y) =

∞∑
i=0

e−λitϕi(x)ϕi(y) (2.3.3)

for positive time, where x, y ∈ Mn. We note that 2.3.3 is explicitly for compact spaces, as for

non-compact spaces there can be an uncountable number of eigenvalues.

Specifically for rank one symmetric spaces, the heat kernel is defined as

H(t, θ) =

∞∑
i=0

Mn
i

V ol
Φi(θ)e

−λn
i t (2.3.4)

where λni are distinct eigenvalues of ∆, Mn
i is the multiplicity of the eigenvalue λni on Mn, V ol is

the volume of Mn, Φi is the spherical function on Mn associated with the eigenvalues, and θ is

the geodesic between two points x, y ∈Mn.

The spherical functions mentioned above are in fact the special functions (orthogonal

polynomials); the Jacobi polynomial (and by extension the Gegenbauer polynomial as this is a

special case of the Jacobi polynomial). With certain choices of t, the differential equations of the
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same name also appear. We go into more detail about these polynomials later in chapter 2. Also,

see [13] for more detail of the above discussion on rank one symmetric spaces of this kind.

For the specific choices of rank one symmetric spaces, we listed out their distinct eigenvalues

λni , multiplicity Mn
i , and volume V ol below:

Mn λni Mn
i V ol

Sn i(i+ n+ 1) (2i+ n− 1) (i+n−2)!
i!(n−1)!

2π
n+1
2

Γ(n+1
2 )

Pn(R) 2i(2i+ n+ 1) (4i+ n− 1) (2i+n−2)!
(2i)!(n−1)!

π
n+1
2

Γ(n+1
2 )

Pn(C) i(i+ n) (2i+n)
n

[
Γ(i+n)
Γ(n)i!

]2
4nπn

n!

Pn(H) i(i+ 2n+ 1) (2i+2n+1)(i+2n)
2n(2n+1)(i+1)

[
Γ(i+2n)
Γ(2n)i!

]2
(4π)2n

Γ(2n+1)

Table 2.2: Table of λni , M
n
i , and V ol for different choices of rank one symmetric spaces.

Example 2.3.1. Let Mn = Sn be the n-dimensional sphere. For the sphere the heat kernel 2.3.4

has distinct eigenvalues λni , multiplicity Mn
i , volume V ol as defined in table 2.2. The spherical

function associated with this is the Gegenbauer polynomial C
(X)
i . For this specific case we see that

the polynomial in question has X = n−1
2 . These polynomials are eigenfunctions of the Laplacian

on the sphere solving ∆Φi = i(i+ n+ 1)Φi. Exactly

Φi(θ) =
C

n−1
2

i (cos θ)

C
n−1
2

i (1)
(2.3.5)

where

Φi(0) = 1, C
n−1
2

i (1) =
Γ(i+ n− 1)

Γ(n− 1)i!
. (2.3.6)

Example 2.3.2. Let Mn = Pn(R) be the n-dimensional real projective space. As seen above, the

Lie group representation of this space is nearly the same as that for the sphere with its components

being that of the orthogonal group. Due to this, the eigenvalues, multiplicity, and volume for

the heat kernel are very closely related too; see table 2.2. Here the special function is also the

Gegenbauer polynomial.

Example 2.3.3. Let Mn = Pn(C) be the n-dimensional complex projective space. It has distinct

eigenvalues λni , multiplicity Mn
i , and volume V ol as defined in table 2.2. The special functions

here take on the more general Jacobi polynomial. These take the form

Φi(θ) =
P

(α,β)
i (cos θ)

P
(α,β)
i (1)

(2.3.7)
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with α = n− 1 and β = 0. Also

Φi(0) = 1, Pα,β
i (1) =

Γ(α+ i+ 1)

Γ(α+ 1)i!
. (2.3.8)

Example 2.3.4. Let Mn = Pn(H) be the n-dimensional quaternionic projective space. For this

we have λni , M
n
i , V ol as depicted in table 2.2. Like with the complex projective space, the special

functions are the Jacobi polynomials. This time α = 2n − 1 and β = 1. Φi(θ) is the same and

P
(α,β)
i (1) = Γ(2n+i)

Γ(2n)i! .

Authors such as Awonusika, Day, and Taheri have used this as a starting block for their

calculations of differential spectral identities, which can be seen in [11, 12, 21, 40, 39]. Some of

these use the incredibly useful Faa di Bruno formula, which finds the nth derivative of a

composite function. As part of these calculations the Bell polynomials appear.

2.4 The Faa di Bruno formula and explicit formulas for Bell

polynomials

Within our studies, we will find Maclaurin expansions, as well as differential spectral identities on

the symmetric spaces mentioned above. For this, we use the Faa di Bruno formula. This formula

finds the nth derivative of a composite function, f(g(x)). It is an alternative formula to the Leibniz

formula and approaches it from a combinatorial prospective.

Proposition 2.4.1. Let f and g be n times differentiable functions. Then

dn

dxn
f(g(x)) =

∑ n!

k1!...kn!
f (k)(g(x))

(
g′(x)

1!

)k1

...

(
g(n)(x)

n!

)kn

(2.4.1)

where k = k1 + ...+ kn and the sum is over all partitions of n such that

k1 + 2k2 + ...+ nkn = n. (2.4.2)

Here f (k)(g(x)) is the kth derivative of f(x) at g(x). Alternatively, there is an equivalent

formula using Bell polynomials.

Proposition 2.4.2. Let f and g be n times differentiable functions. Then

dn

dxn
f(g(x)) =

n∑
k=1

f (k)(g(x))Bn,k(g
′(x), g′′(x), ...g(n−k+1)(x)). (2.4.3)

Here, Bn,k is the Bell polynomial. These are defined in (2.4.14) and (2.4.15). For more details
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and the original theory of the Faa di Bruno formula, see [46, 47].

As we can see from (2.4.3), Bell polynomials appear as a combinatorial element within the Faa

di Bruno formula. This is due to their appearance in the study of set partitions; because of this,

they have strong links with such objects as Bell and Stirling numbers.

The number of ways to partition a set of n elements into non-empty subsets is called a Bell

number and denoted B(n) or Bn. Let B0 = 1. Then

Bn+1 =

n∑
i=0

Bi

(
n

i

)
. (2.4.4)

The rising and falling factorials are polynomials defined for a product. The falling factorials

⟨α⟩n are defined as

⟨α⟩n =α(α− 1)...(α− n+ 1)

=
n−1∏
k=0

(α− k). (2.4.5)

for n > 1, with ⟨x⟩0 = 1.

The rising factorials, also called Pochhammer symbols, are defined as

(x)n =x(x+ 1)...(x+ n− 1) (2.4.6)

=

n−1∏
k=0

(x− k). (2.4.7)

for n > 1, with (x)0 = 1. For further reading see [128].

Two key functions in the study of combinatorics and Bell numbers are the Stirling numbers of

the first and second kind, see [38]. Stirling numbers of the first kind, s(n, k), count permutations

according to their number of cycles (where fixed points count as length one) multiplied by (−1)n−k.

These s(n, k) are more precisely called the signed Stirling numbers of the first kind, and are defined

by the coefficients of the falling factorials, so by the generating function

⟨x⟩n =

n∑
k=0

s(n, k)xk. (2.4.8)

Alternatively,

c(n, k) = (−1)n−ks(n, k) (2.4.9)

are the signless Stirling numbers of the first kind. Stirling numbers of the second kind are defined

as the number of ways to partition a set of n elements into k number of non-empty subsets. They
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are denoted by S(n, k). Stirling numbers of the second kind have a straightforward formula

S(n, k) =
1

k!

k∑
i=0

(−1)i
(
k

i

)
(k − i)n. (2.4.10)

This formula is easily calculated when knowing n and k. The generating function is defined as

eu(e
t−1) = 1 +

∑
1≤k≤n

S(n, k)
tn

n!
uk. (2.4.11)

The link between Bell numbers and Stirling numbers of the second kind is

Bn =

n∑
k=0

S(n, k). (2.4.12)

In addition to this, Guo and Qi in [53] found an alternative formula for the Bell numbers using

both the Stirling numbers of the second kind and the hypergeometric series:

Bn =
1

e

n∑
k=1

(−1)n−kk!1F1(k + 1; 2; 1)S(n, k). (2.4.13)

We define the hypergeometric series in (2.5.5).

Bell polynomials appear in the study of combinatorics, and are used in the search for set

partitions. A partial Bell polynomial (also called an incomplete Bell polynomial)

Bn,k(x1, x2, ..xn−k+1), shows us the way a set of n elements is split into k blocks. These appear

in the Faa di Bruno formula and will be pivotal in calculations throughout this thesis. From this

point on we will refer to these as just Bell polynomials.

Comtet [38], see also [9, 32], showed that Bell polynomials are a triangular array of polynomials

given by

ϕ(t, u) =e

(
u
∑

m≥1 xm
tm

m!

)
(2.4.14)

=
∑

n,k≥0

Bn,k
tn

n!
uk

=1 +
∑
n≥1

tn

n!

[ ∑
1≤k≤n

ukBn,k(x1, x2...xn−k+1)
]

or

∞∑
n=k

Bn,k(x1, x2, ..., xn−k+1)
tn

n!
=

1

k!

( ∞∑
m=1

xm
tm

m!

)k
. (2.4.15)

Comtet also proved in the same book that (2.4.15) could be written in what has become the more

traditional definition:
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Proposition 2.4.3. The incomplete Bell polynomial also has the form

Bn,k(x1, x2...xn−k+1) =
∑ n!

j1!j2!...jn−k+1!

(
x1
1!

)j1(
x2
2!

)j2

...

(
xn−k+1

(n− k + 1)!

)jn−k+1

(2.4.16)

where the summation is taken over all sequences j1, j2, ...jn−k+1 of non-negative integers such that

these two conditions are satisfied:

1. j1 + j2 + ...+ jn−k+1 = k

2. j1 + 2j2 + ...+ (n− k + 1)jn−k+1 = n.

Proof. Taking (2.4.14) and using the series expansion of ex we get

ϕ(t, u) =
∑
k≥0

uk

k!

(∑
m≥1

xm
tm

m!

)k

.

Next, we note that

( ∑
1≤i≤m

xi

)n

=(x1 + x2 + ..+ xm)n

=
∑

a1+a2+...=n

(a1, a2, ...am)xa1
1 x

a2
2 ...x

am
m

where a1 + a2 + ...am = n and

(a1, a2, ...am) =
(a1 + a2 + ...am)!

a1!a2!...am!

=
n!

a1!a2!...am!

Combining the information above we get

ϕ(t, u) =
∑
k≥0

uk

k!

∑
a1+a2+...=k

k!

a1!a2!...am!

(x1t
1!

)a1
(x2t2

2!

)a2

...
(xmtm

m!

)am

=
∑

a1+a2+...=k

ua1+a2+...amta1+2a2+...mam

a1!a2!...am!

(x1
1!

)a1
(x2
2!

)a2

...
(xm
m!

)m1

.

We see that n!/(1!)a1(2!)a2 ... is the number of division into a1 1-parts, a2 2-parts and so on giving
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n = a1 + 2a2 + ...mam. Therefore

ϕ(t, u) =
∑

a1+a2+...=k

uktn

a1!a2!...am!

(x1
1!

)a1
(x2
2!

)a2

...
(xm
m!

)m1

=
∑

a1+a2+...=k

uktn

n!

n!

a1!a2!...am!

(x1
1!

)a1
(x2
2!

)a2

...
(xm
m!

)m1

which then implies the equality required.

The complete Bell polynomial Bn(x1, ..., xn) is the sum of the partial Bell polynomials over

1 ≤ k ≤ n:

Bn(x1, ..., xn) =

n∑
k=1

Bn,k(x1, ..., xn−k+1). (2.4.17)

The Stirling numbers of the first and second kind are closely linked to Bell numbers which, in turn,

means they are related to the Bell polynomials as seen in [8]. For Stirling numbers of the second

kind, there exists the relationship between them and Bell polynomials:

Proposition 2.4.4. Let Bn,k(x1, ...xm) be a Bell polynomial and S(n, k) stand for the Stirling

numbers of the second kind. Then

Bn,k(1, ....1) = S(n, k). (2.4.18)

Proof. Take (2.4.14) and let xi = 1. Then

ϕ(t, u) = e

(
u
∑

m≥1
tm

m!

)
.

The summation above is the series expansion of et without the first term (which is 1). Thus

ϕ(t, u) =eu(e
t−1)

=1 +
∑
n≥1

tn

n!

[ ∑
1≤k≤n

ukBn,k(1, ...1)
]
.

We note that (2.4.11), giving the desired equality.

If we instead have c(n, k), the Stirling numbers of the first kind (signless) have their own

relationship with Bell polynomials.
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Proposition 2.4.5. Let Bn,k(x1, ...xm) be a Bell polynomial and c(n, k) stand for the Stirling

numbers of the first kind (signless). Then

Bn,k(0!, 1!, 2!, ...(n− k)!) = c(n, k).

Proof. Again we start with (2.4.14) and substitute our values for xi. This time xm = (m− 1)!.

ϕ(t, u) =e

(
u
∑

n≥1(m−1)! t
m

m!

)
=e

(
u
∑

n≥1
tm

m

)

The summation is the series expansion of − log(1− t).

ϕ(t, u) =e−u log(1−t)

=elog(1−t)−u

= (1− t)−u

This is, however, not what we want, as by the definition of the Stirling numbers of the first kind

we have (1+ t)u. We take the definition for the Stirling numbers and manipulate it: letting q = −t

and p = −u, we get

(1 + q)p =1 +
∑

1≤k≤n

s(n, k)
(−t)n

n!
(−u)k

=1 +
∑

1≤k≤n

s(n, k)(−1)n+k t
n

n!
uk

=1 +
∑

1≤k≤n

c(n, k)
tn

n!
uk

where we have used the fact that for signed Stirling numbers (−1)n+k = (−1)n−k. This gives the

desired result.

Comtet also provided us with multiple useful properties of Bell polynomials which will be in

vital future calculations, see [32],

Bn,k(abx1, a
2bx2, a

3bx3, ...) = anbkBn,k(x1, x2, x3, ...). (2.4.19)

The power of (2.4.19) is particularly evident when looking for explicit formulas for the nth derivative

of functions like f(ex) and f(ln(1 + x)). Using the Faa di Bruno formula, we need to find an

expression for the Bell polynomials involving ex and ln(1 + x). These are closely linked to the

Stirling numbers of the first and second kind.
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Proposition 2.4.6. Let g(x) = e±x. Then

Bn,k(g
′(x), g′′(x), ..., gn−k+1(x)) = (±1)ne±kxS(n, k) (2.4.20)

Proof. Using (2.4.19) and Proposition (2.4.4) we observe

Bn,k(g
′(x), g′′(x), ..., gn−k+1(x)) =Bn,k((±1)e±x, (±1)2e±x, ..., (±1)n−k+1e±x)

=(±1)ne±kxBn,k(1, 1, ...)

=(±1)ne±kxS(n, k).

Similarly, we have a relationship for the logarithmic function.

Proposition 2.4.7. Let g(x) = ln(1 + x). Then

Bn,k(g
′(x), g′′(x), ..., gn−k+1(x)) =

c(n, k)

(1 + x)n
(2.4.21)

Proof. Using (2.4.19) and Proposition 2.4.5 we observe

Bn,k(g
′(x), g′′(x), ..., gn−k+1(x)) =Bn,k

(
1

1 + x
,− 1

(1 + x)2
, ...,

(−1)n−k(n− k)!

(1 + x)n−k+1

)

=
(−1)n−k

(1 + x)n
Bn,k(0!, 1!, ...)

=
(−1)n−kc(n, k)

(1 + x)n
.

Qi has done extensive work on Bell polynomials and the explicit formula for different sequences

of xm. For Bell polynomials, where xm originate from the sine and cosine functions, we can use

Qi’s work [78, 93, 94].

Proposition 2.4.8. Let xn =
(
cosx,− sinx,− cosx, sinx, ...,− cos

[
x+ (n− k)π2

])
. Then

Bn,k(xn) =
(−1)k sink x

k!

k∑
l=0

(
k

l

)
1

(2 sinx)l

×
l∑

q=0

(−1)q
(
l

q

)
(2q − l)n cos

(
(2q − l)x+

(n− l)π

2

)
. (2.4.22)
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Proposition 2.4.9. Let xn =
(
− sinx,− cosx, sinx, cosx, ...,− sin

[
x+ (n− k)π2

])
. Then

Bn,k(xn) =
(−1)k cosk x

k!

k∑
l=0

(−1)l

(2 cosx)l

(
k

l

) l∑
q=0

(
l

q

)
(2q − l)n

× cos
(
(2q − l)x+

nπ

2

)
. (2.4.23)

A useful result of Propositions 2.4.8 and 2.4.9 is when we let x = 0. This will be of particular

use when finding Maclaurin expansions. In chapter 4 we do this for composite hypergeometric

series.

Corollary 2.4.1. Let xn = (1, 0,−1, 0, ... sin((n− k + 1)π/2)). Then

bnk [sinx] =Bn,k(xn) =
(−1)k

k!2k
cos

(
(n− k)π

2

) k∑
q=0

(−1)q
(
k

q

)
(2q − k)n. (2.4.24)

Corollary 2.4.2. Let xn = (0,−1, 0, 1, ... cos(n− k + 1)π/2). Then

bnk [cosx] =Bn,k(xn) =
(−1)k

k!
cos
(nπ

2

) k∑
l=0

(−1)l

2l

(
k

l

) l∑
q=0

(
l

q

)
(2q − l)n. (2.4.25)

We have used the notation bnk (xn) = Bn,k(xn)|x=0.

Another formula of interest is the Bell polynomial for g(x) = xα. A formula for this was given

by Qi in [78, 95]. We start by noting that

Bn,k((x
α)′, (xα)′′, .., (xα)(n−k+1)) = xkα−nBn,k(⟨α⟩1, ⟨α⟩2, ...) (2.4.26)

where ⟨α⟩n are the falling factorials.

Proposition 2.4.10. Let xm = (xα)(m). Then

Bn,k((x
α)′, (xα)′′, .., (xα)(n−k+1)) = xkα−n (−1)k

k!

k∑
l=0

(−1)l
(
k

l

)
⟨αl⟩n. (2.4.27)

When calculating bnk (x
α) = Bn,k(x

α)|x=0, we only get a value for the Bell polynomial when

n = αk. Hence, we come to the following Corollary.

Corollary 2.4.3. Let xm = (xα)(m). Then

bnk (x
α)|x=0 =


(−1)k

k!

∑k
l=0(−1)l

(
k
l

)
⟨αl⟩n, n = αk

0, n ̸= αk.

(2.4.28)
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2.5 Hypergeometric series and their matrix forms

The Gauss hypergeometric function (often just shortened to hypergeometric function) 2F1(a, b; c; z)

is a series function defined on the unit disk. It is classed as a special function and we later see that

it has links to the other special functions, namely the orthogonal polynomials, mentioned above.

If |z| < 1 and a, b, c ∈ C with c not a non-positive integer then the hypergeometric function is

defined as

2F1(a, b; c; z) =

∞∑
k=0

(a)k(b)k
(c)k

zk

k!
, (2.5.1)

where (a)n are the rising factorials.

The hypergeometric function is also a solution to the differential equation

z(1− z)w′′(z) + [c− (a+ b+ 1)z]w′(z)− abw(z) = 0. (2.5.2)

This equation, which is named after Euler, has three regular singular points at 0, 1,∞. Using

the Frobenius Method with w(z) =
∑∞

n=0 σnz
n, we can determine that the following relationship

stands:

σn+1 =
(n+ a)(n+ b)

(n+ 1)(n+ c)
σn. (2.5.3)

With this, (2.5.1) falls out immediately. The hypergeometric function also has a useful recursive

formula:

dn

dzn
2F1(a, b; c; z) =

(a)n(b)n
(c)n

2F1(a+ n, b+ n; c+ n; z). (2.5.4)

The generalised hypergeometric series, of which the Gauss hypergeometric function is a special

case (when p = 2 and q = 1), is defined for a = (a1, . . . , ap) and b = (b1, . . . , bq) as

pFq(a;b; z) =

∞∑
k=0

(a1)k...(ap)k
(b1)k...(bq)k

zk

k!
. (2.5.5)

In relation to convergence, it is seen that

• if p < q + 1, then the series converges for z finite,

• if p = q + 1, then the series converges for |z| < 1 and diverges for |z| > 1,

• if p > q + 1, then the series diverges except for when z = 0,
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• if p = q + 1 and

Re
(∑

bi −
∑

aj

)
> 0, (2.5.6)

then the series converges for z = 1.

Also, if any ai is non-positive then the series converges to a polynomial. If any bj is non-positive

then the series is undefined except for when −bj < ai. For more information about the

hypergeometric series, and in particular convergence, see [73, 128].

Jodar and Cortes discuss the hypergeometric matrix function for p = 2 and q = 1 in [68]. This

takes a similar form to 2.5.1:

2F1(A,B;C; z) =

∞∑
k=0

(A)k(B)k(C)
−1
k

zk

k!
(2.5.7)

for A,B,C ∈ Cr×r such that C + nI is invertible for integers n > 0. They also showed that the

series converges.

The Pochhammer symbols for matrix inputs take the form

(P )n = P (P + I)...(P + (n− 1)I) (2.5.8)

for integers n > 0 and (P )0 = I.

Proposition 2.5.1. Let A,B,C ∈ Cr×r be positive stable matrices such that

β(C) > α(A) + α(B) (2.5.9)

where

α(X) = max{Re(z) : z ∈ σ(X)}

β(X) = min{Re(z) : z ∈ σ(X)}.

Then (2.5.7) is convergent for |z| < 1 and absolutely convergent for |z| = 1.

A, B, and C are defined as being positive square matrices in Proposition 2.5.1. A square matrix

is a positive stable matrix if every eigenvalue has positive real part. Here, σ(A) for A ∈ Cn×n (the

spectrum) denotes the set of all eigenvalues of A.

Proposition 2.5.2. Let C ∈ Cr×r be such that C + nI is invertible for integer n ≥ 0 and
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CB = BC. Then F (A,B;C; z) is a solution to

z(1− z)W ′′ − zAW ′ +W ′(C − z(B + I))−AWB = O. (2.5.10)

on 0 ≤ |z| < 1 with 2F1(A,B;C; 0) = I.

Remark 2.5.1. Please note that within the paper by Jodar and Cortes [68], there is a typo in the

introduction when stating (2.5.10) with the derivative on the W ′(C−z(B+I)) not present. Within

the proof this error does not appear.

This can be extended to the hypergeometric series for A = (A1, . . . , Ap) and B = (B1, . . . , Bq):

pFq(A;B; z) =

∞∑
n=0

p∏
i=0

(Ai)n

q∏
j=0

[(Bj)n]
−1 z

n

n!
. (2.5.11)

The convergence of this series is closely connected to the scalar case. In [106] convergence was

shown; this is also discussed in [1]:

• if p ≤ q, then the series converges for z finite,

• if p = q + 1, then the series converges for |z| < 1 and diverges for |z| > 1,

• if p > q + 1, then the series diverges except for when z = 0,

• if p = q + 1, and if

∑
α(Ai) >

∑
β(Bj) (2.5.12)

then the series is absolutely convergent for |z| = 1.

We next use a matrix argumentX in place of the complex argument z and look into the resulting

hypergeometric series. This appears frequently within the literature on statistical distributions of

random matrices. These matrix arguments take the form of symmetric matrices parameterised

over a single parameter α > 0:

pF
α
q (a;b;X) =

∞∑
k=0

∑
k

(a1)
α
k ...(ap)

α
k

(b1)αk ...(bq)
α
k

Zα
k (X). (2.5.13)

The second summation is over the set partitions k of k, the parameters ai, bj are complex numbers,

Zα
k (X) is the normalised Jack function, and (ai)

α
k is the generalised Pochhammer function

(ai)
(α)
k =

m∏
ϵ=1

kϵ∏
η=1

(
ai −

ϵ− 1

α
+ η − 1

)
. (2.5.14)
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See [45] for more information on the generalised Pochhammer function. The Jack function is a

family of orthogonal polynomials, where

J
(α)
k (x1) = xk(1 + α)...(1 + (k− 1)α) (2.5.15)

and

J
(α)
k (x1, ..., xm) =

∑
µ

J
(α)
k (x1, ..., xm−1)x

|k/µ|
m βkµ (2.5.16)

where βkµ is a function depending on the partitions of µ, skew partitions k/µ, and the Young

diagrams.

The function Zα
k (X) is the normalised Jack function, which is related to the Jack function by

Z
(α)
k (X) =

α|k|(|k|)!
jk

J
(α)
k (X) (2.5.17)

where

jk =
∏

(i,j)∈k

(k′ − i+ α(ki − j + 1))(k′j − i+ 1 + α(ki − j)). (2.5.18)

Here, the product (i, j) ∈ k refers to the boxes of the Young diagram of the partition k, k′ being

the conjugate partition to k.

The series converges for all X if p ≤ q, and for ||X|| < 1 if p = q + 1. Here we have ||X||

denoting the maximum of the absolute values of the eigenvalues of X. When m = 1 and α = 2

this reduces to the hypergeometric series.

The value α changes depending on the area of study. For example, in the theory of real random

matrices, α = 2. In some literature, β is also used instead of α. More information on this version

of the hypergeometric function can be found in [51, 52, 87].

In the following sections, we make use of the Gamma function. For positive integers, the

Gamma function is a factorial function Γ(n) = (n− 1)!, but for complex entries the function can

be written as an integral:

Γ(n) =

ˆ ∞

0

tn−1e−t dt, Re(n) > 0. (2.5.19)

Jodar and Cortes defined the Gamma function for matrix inputs in [67]. Let P ∈ Cr×r such that
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Re(z) > 0 for all z ∈ σ(P ). Then

Γ(P ) =

ˆ ∞

0

tP−Ie−t dt, tP−I = exp((P − I) ln(t)). (2.5.20)

The Beta function is a symmetric function, closely linked with the Gamma function. For complex

scalar functions x, y ∈ C, whose real part is positive, we define B(x, y) via the following integral:

B(x, y) =

ˆ 1

0

tx−1(1− t)y−1dt, (2.5.21)

for x, y ∈ C such that Re(x), Re(y) > 0. The Beta function and the Gamma function are connected

by the following formula:

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
. (2.5.22)

In [69], it is shown how one can extend the Beta function to accept matrix inputs. Let A,B ∈

Cr×r such that Re(z) > 0 and Re(w) > 0 for all z ∈ σ(A) and w ∈ σ(B). Then

B(A,B) =

ˆ 1

0

tA−I(1− t)B−I dt. (2.5.23)

We can relate the matrix versions of the Beta and Gamma functions by

B(P,Q) = Γ(P )Γ(Q)Γ−1(P +Q). (2.5.24)

Jodar and Cortes also give the following relationship, linking the Pochhammer function and the

Gamma function for matrix inputs:

P (P + I)...(P + (n− 1)I)Γ−1(P + nI) = Γ−1(P ). (2.5.25)

Provided that P + nI is invertible, the above can also be written as

P (P + I)...(P + (n− 1)I) = Γ(P + nI)Γ−1(P ). (2.5.26)

2.6 Orthogonal polynomials and their matrix forms

The study of orthogonal polynomials dates back to the work of the Russian mathematician

Pafnuty Chebyshev. Further study continued throughout the 19th century by other noteworthy

mathematicians of the time: Gauss, Jacobi, Hermite, and Markov, amongst others.
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Orthogonal polynomials, p(x), are a class of polynomials over a scalar range which obey an

orthogonal relationship with a given weight. These follow the relationship:

ˆ b

a

w(x)pm(x)pn(x)dx = δm,nCn. (2.6.1)

Here the weight function w(x), the range [a, b], and the constant Cn correspond to a given

polynomial. Further reading on these can be found in [45, 109] but we do explain further in the

following sections. We are primarily interested in the Jacobi, Gegenbauer, and Hermite

polynomials. The integral interval, weight function and constant for (2.6.1) are listed in the table

below.

Polynomial p(x) Interval w(x) Cn

Gegenbauer [−1, 1] (1− x2)λ−
1
2

{
21−2λπΓ(n+2λ)
n!(n+λ)(Γ(λ))2 for λ ̸= 0
2π
n2 for λ = 0

Hermite (−∞,∞) e−x2 √
π2nn!

Jacobi (−1, 1) (1− x)α(1 + x)β X

Table 2.3: Table of interval, weight, and Cn for orthogonal polynomial.

Here X is:

X =
2α+β+1

2n+ α+ β + 1

Γ(n+ α+ 1)Γ(n+ β + 1)

n!Γ(n+ α+ β + 1)
.

In particular, the Jacobi and Gegenbauer polynomials (where the Gegenbauer is a special case of

the Jacobi for α = β = λ− 1
2 ) are eigenfunctions of the Laplacian on rank one symmetric spaces.

With certain choices of the variable t, differential equations of the same name appear for which

the solutions have representations using the hypergeometric function.

The Jacobi polynomial

The Jacobi polynomial was first introduced by Carl Gustav Jacob Jacobi and occurs within the

study of rotational groups. Rotational groups consist of orthogonal matrices with determinant 1.
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For n, α, β we define the Jacobi polynomial in the following ways:

P (α,β)
n (x) =

(−1)n

(2nn!)
(1− x)−α(1 + x)−β dn

dxn

[
(1− x)α+n(1 + x)β+n

]
=

Γ(α+ n+ 1)

n! Γ(α+ β + n+ 1)

n∑
m=0

(
n

m

)
Γ(α+ β + n+m+ 1)

Γ(α+m+ 1)

(
x− 1

2

)m

=
(α+ 1)n

n!
2F1

(
−n, 1 + α+ β + n;α+ 1; 1

2 (1− x)
)
. (2.6.2)

Moreover these polynomials appear as the eigenfunctions of the Laplacian on the rank one

symmetric spaces. Specifically this is the case for the complex, quaternionic, and Cayley projective

spaces when α = N − 1 and β = 0, α = 2N − 1 and β = 1, and α = 7 and β = 3 respectively.

Further to this the Jacobi differential equation

(1− x2)y′′(x) + [β − α− (α+ β + 2)x]y′(x) + n(n+ α+ β + 1)y(x) = 0 (2.6.3)

is obtained when t = cos θ in the eigenvalue equation for the complex projective space. This has

the solution

y(x) = C12F1(−n,n+ 1 + α+ β; 1 + α;
1

2
(x− 1))

+ C22
α(x− 1)−α

2F1(−n− α, n+ 1 + β; 1− α;
1

2
(1− x)), (2.6.4)

for constants C1 and C2.

The formula and relationships above are for scalar inputs α, β, and variable x. Jodar et al.

[43] took these definitions and found the relationships for matrices A and B.

Proposition 2.6.1. Let A and B be matrices in Cr×r satisfying Re(x) > −1, ∀x ∈ σ(A), and

Re(x) > −1, ∀x ∈ σ(B). For any natural number n ≥ 0, the nth Jacobi matrix polynomial PA,B
n (x)

is defined by

PA,B
n (x) =

n∑
k=0

(
n

k

)
(−1)n+k

2kn!
Γ(A+B + (n+ k + 1)I)

· Γ−1(A+B + (n+ 1)I)Γ(B + (n+ 1)I)Γ−1(B + (k + 1)I)(1 + x)k

=
(−1)n

n!
F
(
A+B + (n+ 1)I,−nI;B + I;

1 + x

2

)
· Γ−1(B + I)Γ(B + (n+ 1)I)

=
1

n!
F
(
A+B + (n+ 1)I,−nI;B + I;

1− x

2

)
· Γ−1(A+ I)Γ(A+ (n+ 1)I). (2.6.5)
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Then PA,B
n (x) satisfies the differential equation

(1− x2)Y ′′(x) + 2Y ′(x)B − (A+B+x(A+B + 2I))Y ′(x)

+ n(A+B + (n+ 1)I)Y (x) = 0 (2.6.6)

for −1 < x < 1.

Jodar and Defez also presented the Rodrigues’ formula for matrices A and B.

Proposition 2.6.2. Let A and B be matrices in Cr×r satisfying Re(x) > −1 ∀x ∈ σ(A) and

Re(x) > −1 ∀x ∈ σ(B). Then for n ∈ Z0+ the Jacobi matrix polynomials are defined as

PA,B
n (x) =

(−1)n

2nn!
(1− x)−A(1 + x)−B dn

dxn

[
(1− x)A+nI(1 + x)B+nI

]
. (2.6.7)

Before we can prove this outright we need first a lemma.

Lemma 2.6.1. Let C,D ∈ Cr×r, with D positively stable, BC = CB, and

C −D + kI and C + kI (2.6.8)

are invertible for all non-negative integers k. Then for |t| < 1

2F1(−nI,D;C; t) = (1− t)n2F1

(
− nI,C −D;C;

−t
1− t

)
. (2.6.9)

Proof of this lemma can be found in [42]. Now we finish off the proof of Proposition 2.6.1 which

was first stated in [43].

Proof of Proposition 2.6.2. By using Proposition 2.6.1 and Lemma 2.6.1

P (A,B)
n (x) =

(−1)n

n!
F
(
A+B + (n+ 1)I,−nI;B + I;

1 + x

2

)
× Γ−1(B + I)Γ(B + (n+ 1)I)

=
(−1)n

2nn!
(1− x)n2F1

(
− nI,−(A+ nI);B + I;

x+ 1

x− 1

)
× Γ−1(B + I)Γ(B + (n+ 1)I)

=
(−1)n

2nn!
(1− x)n

n∑
k=0

1

k!
(−n)k(−(A+ nI))k((B + I)k)

−1
(x+ 1

x− 1

)k
× (B + I)n

=
(−1)n

2nn!

n∑
k=0

(
n

k

)
(−(A+ nI))k((B + I)k)

−1(1 + x)k(1− x)n−k(B + I)n

where (−n)k only takes non-zero values for k ≤ n. We also note that

(−(A+ nI))k = (−1)k(A+ nI)k.
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Then we have

dk

dxk
(1− x)(A+nI) = (−1)k(A+ nI)k(1− x)A(1− x)n−k

and

dn−k

dxn−k
(1 + x)(B+nI) = ((B + I)k)

−1(B + I)n(1 + x)B(1 + x)k.

Using these we can rewrite the Jacobi matrix as

P (A,B)
n (x) =

(−1)n

2nn!
(1− x)−A(1 + x)−B

n∑
k=0

(
n

k

)
dk

dxk
(1− x)(A+nI)

× dn−k

dxn−k
(1 + x)(B+nI)

which by definition is the same as that of Proposition 2.6.1.

The definitions of the Jacobi polynomials above were then extended to the multivariate case

by Taşdelen, Çekim, and Aktaş [114].

The scalar recurrence relation for the derivatives of the Jacobi polynomial is known to be given

by

dk

dxk
P (α,β)
n (x) =

Γ(α+ β + n+ 1 + k)

2kΓ(α+ β + n+ 1)
P

(α+k,β+k)
n−k (x). (2.6.10)

Çekim, Altin, and Aktaş also found a recurrence relation for the derivatives of the matrix

polynomial in [29]:

dk

dxk
PA,B
n (x) =

((n+ 1)I +A+B)k
2k

PA+kI,B+kI
n−k (x). (2.6.11)

Jodar and Defez also show that the matrix Jacobi polynomial is an orthogonal polynomial. For

this they set the matrix weight function to be W (x) = (1− x)A(1 + x)B and

Cn =
2A+B+I

n!
Γ(A+B + (2n+ 1))Γ−1(A+B + (n+ 1)I),

× Γ(B + (n+ 1)I)Γ(A+ (n+ 1)I)Γ−1(A+B + (2n+ 2)I). (2.6.12)

To prove this they make use of Lemma 2.6.2.

Lemma 2.6.2. Let A and B be defined as above with AB = BA. Let Q(x) be an arbitary matrix

polynomial. Then

lim
x→1−

(1− x2)(1− x)A(1 + x2)BQ(x) =0 (2.6.13)

lim
x→−1+

(1− x2)(1− x)A(1 + x2)BQ(x) =0. (2.6.14)
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The Gegenbauer polynomial

The Gegenbauer polynomial is a specific case of the Jacobi polynomial when α = β = λ − 1
2 .

Under a normalisation condition, these are equivalent to Ultraspherical polynomials. For n, λ the

Gegenbauer polynomials are defined as

C(λ)
n (x) =

(2λ)n

(λ+ 1
2 )n

P (λ−1/2,λ−1/2)
n (x)

=
(−1)n

2nn!

Γ(λ+ 1
2 )Γ(n+ 2λ)

Γ(2λ)Γ(λ+ n+ 1
2 )

(1− x2)−λ+1/2 d
n

dxn

[
(1− x2)n+λ−1/2

]
=
(2λ)n
n!

2F1

(
−n, 2λ+ n;λ+

1

2
;
1− x

2

)

=

⌊n/2⌋∑
k=0

(−1)k
Γ(n− k + λ)

Γ(λ)k!(n− 2k)!
(2x)n−2k. (2.6.15)

The differential recurrence relation for the Gegenbauer is defined by

d

dx
Cλ

n(x) = 2λCλ+1
n−1(x), (2.6.16)

which can be extended to

dm

dxm
Cλ

n(x) = 2m(λ)mC
λ+m
n−m(x). (2.6.17)

For more information on scalar Gegenbauer polynomials, see [8].

From the works [41, 102], we can find formulas similar to those in 2.6.15 but for matrix inputs.

These hold a close resemblance to the scalar cases. For any complex matrix D, the Gegenbauer

matrix polynomial is defined as

CD
n (x) =

n/2∑
k=0

(−1)k(D)n−k

k!(n− 2k)!
(2x)n−2k

=
(2D)n
n!

F
(
− nI, 2D + nI;A+

1

2
I;

1− x2

2

)
= (−1)n

(2D)n
n!

F
(
− nI, 2D + nI;A+

1

2
I;

1 + x2

2

)
. (2.6.18)

The matrix case has an equivalent differential recurrence relation similar to that of (2.6.16) and

(2.6.17):

d

dx
CD

n (x) = 2DCD+I
n−1 (x) (2.6.19)

and for 0 ≤ r ≤ n

dr

dxr
CD

n (x) = 2r(D)rC
D+rI
n−r (x). (2.6.20)

The Rodrigues’ formula for the matrix Gegenbauer polynomial is seen in [41].

Proposition 2.6.3. Let D ∈ Cr×r such that k ∈ σ(D) for every integer k ≥ −1 and Re(z) < −1
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∀z ∈ σ(D), then

CD
n (x) = K−1

n (1− x2)
D
2 +1 d

n

dxn

[
(1− x2)−

D
2 +(n−1)I

]
, (2.6.21)

for n ∈ Z0+ and k0 = I or for n ≥ 1

Kn =
(−1)nn!23(n−1)

√
π

2−D((2n− 3)I −D)((2n− 1)I −D)Sn (2.6.22)

and

Sn = Γ2
(
− D

2
+nI

)
Γ−1(−D + nI)

(
− I +D

2

)
n

× [(−D − I)n]
−1Γ−1

(
− D

2

)
Γ
(
− I +D

2

)
. (2.6.23)

Above we have used

Γ2(x) = Γ(x)× Γ(x).

The scalar case saw that the matrix Gegenbauer polynomial is a special case to the Jacobi

polynomial. Defez showed that this is also the case for the matrix inputs. This happens when

A = B = −D
2 − I.

P
−D

2 −I,−D
2 −I

n (x) =
(−1)n

2nn!
KnC

D
n (x) (2.6.24)

The Hermite polynomial

The Hermite polynomial is a solution to the Hermite differential equation. The Hermite differential

equation is obtained using the Ornstein-Uhlenbeck operator:

y′′(x)− 2xy′(x) + 2λy(x) = 0. (2.6.25)

The solution is obtained using a series method and

y = a01F1

(
− 1

4
λ;

1

2
;x2
)
+ a2Hλ

2
(x) (2.6.26)

for

an+2 =
2n− λ

(n+ 2)(n+ 1)
an. (2.6.27)
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See [10, 18, 72] for further detail. The Hermite polynomial Hn(x) is expressed using the following

way

Hn(x) =(−1)nex
2
( d
dx

)n
e−x2

=


n!

n
2∑

l=0

(−1)
n
2−l

(2l)!
(
n
2 − l

)
!
(2x)2l for even n,

n!

n−1
2∑

l=0

(−1)
n−1
2 −l

(2l + 1)!
(
n−1
2 − l

)
!
(2x)2l+1 for odd n.

(2.6.28)

We can also define the Hermite polynomial for odd and even terms separately by using the

confluent hypergeometric function [26]:

H2n(x) =(−1)n
(2n)!

n!
1F1

(
− n;

1

2
;x2
)
, (2.6.29)

H2n+1(x) =(−1)n
(2n+ 1)!

n!
2x1F1

(
− n;

3

2
;x2
)
. (2.6.30)

The recurrence for the derivative of the Hermite polynomial H ′
n(x) = 2nHn−1(x) can be

extended to

dm

dxm
Hn(x) =

2mn!

(n−m)!
Hn−m(x). (2.6.31)

Once again Jodar et al. extended the Hermite polynomial to cases involving matrices. These

are second order and have a second dependency on a matrix A, see [66, 69]. Here they define the

Hermite matrix polynomial of the second kind with dependencies on a variable x and matrix A.

Proposition 2.6.4. Let A ∈ Cr×r with Re(x) > −1 ∀z ∈ σ(A) and x ∈ C. For any natural

number n ≥ 0, the nth second order Hermite polynomial Hn(x,A) is defined by

Hn(x,A) =

n/2∑
k=0

(−1)kn!(x
√
2A)n−2k

k!(n− 2k)!

=ex
2A/2(−1)n(A/2)−n/2

[ dn
dxn

e−x2A/2
]
. (2.6.32)

Then Hn(x,A) is a solution to the differential equation

Y ′′(x)− xAY ′(x) + nAY (x) = 0. (2.6.33)

It is important to note that we have used the definition of the square root of a matrix 2A as
√
2A = exp( 12 log(2A)). This follows from the definition given in [100]. This formula has a similar

form to 2.6.25.

The Hermite matrix polynomial is an orthogonal matrix polynomial only when we let the

matrix dependency A be Hermitian. This happens with the weight function W (x) = e−
Ax2

2 with

Cn = 2nn!(2πA−1)
1
2 .

As with the scalar case, there exists a recurrence relation for the derivatives of the Hermite
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Matrix polynomial shown in Metwally et al. work [83]:

d

dx
Hn(x,A) = n

√
2AHn−1(x,A). (2.6.34)

2.7 Formulas for orthogonal polynomials and their matrix

forms using Bell polynomials

In this section we shall look at two different methods to calculate an explicit formula for the

orthogonal polynomials; Gegenbauer, Legendre, and Hermite polynomials. Both methods use the

Faa di Bruno formula to find these formula.

Qi and Guo in unpublished work, ’Some properties of the Hermite polynomials and their squares

and generating functions’, use the Faa di Bruno formula with the generating function of the Hermite

polynomial to obtain a formula. In their method the important analytical step is the same as Qi

used in finding the Bell polynomial for the sine and cosine functions mentioned above.

Our aim for this section is to find new formula using Qi’s and Guo’s work for the Gegenbauer

and Legendre polynomials. We also introduce of our method which uses the Faa di Bruno formula

on the Rodrigues’ formula. We finish off this section by producing formula of this type for the

matrix polynomials for the Hermite and Gegenbauer polynomial.

Before stating any theorems, we state the following by Qi and Zheng [96];

Bn,k(x, 1, 0, ...) =


(2n− 1)!! for k = n

2

an+1,2k−n

(2k−1)!! x
2k−n for n ≥ k > 1

2

[
n− 1−(−1)n

n

]
0 otherwise

(2.7.1)

for

a2k−1,0 =[(2k − 3)!!]2

a2k,1 =[(2k − 1)!!]2

ak+1,k =(2k − 1)!!

an,k =
(n+ k − 2)!!(n− 1)!

2n−k−2k!
. (2.7.2)

This is a fairly unfriendly looking formula which was later refined by Qi and Guo in [94];

Bn,k(x, 1, 0, ...) =
(n− k)!

2n−k

(
n

k

)(
k

n− k

)
x2k−n. (2.7.3)

First we find the alternative formulas using the Rodrigues’ formulas.
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Proposition 2.7.1. Let n ∈ N and λ ∈ R then the Gegenbauer polynomial can be defined as

C(λ)
n (x) = An

n∑
k=0

(n+ λ− 1
2 )!(−2)k

(n+ λ− 1
2 − k)!

(1− x2)n−k (n− k)!

2n−k

(
n

k

)(
k

n− k

)
x2k−n (2.7.4)

where

An =
(−1)n

2nn!

Γ(λ+ 1
2 )Γ(n+ 2λ)

Γ(2λ)Γ(λ+ n+ 1
2 )

(2.7.5)

Proof. Taking the Rodrigues’ formula we note an nth derivative. Focusing on this, we can use the

Faa di Bruno formula:

dn

dxn
(1− x2)α =

n∑
k=0

α!

(α− k)!
(1− x2)α−kBn,k(−2x,−2, 0, ...)

=

n∑
k=0

α!

(α− k)!
(1− x2)α−k(−2)kBn,k(x, 1, 0, ...).

We combine this with α = n + λ − 1
2 and (2.7.3). Then by substituting back into the Rodrigues’

formula gives the desired result.

The Gegenbauer polynomial is a specific case of the Jacobi polynomial when α = β = λ − 1
2 .

Another polynomial of interest is the Legendre polynomial. This polynomial is also a specific

case of the Jacobi polynomial for α and β equal to zero. The Legendre polynomials also have a

Rodrigues’ formula (2.7.6), and we can produce a new formula for these in the way we have done

for the Gegenbauer above.

Pn(x) =
(−1)n

2nn!

dn

dxn
(1− x2)n. (2.7.6)

Proposition 2.7.2. Let n ∈ N. Then the Legendre polynomial can be defined as

Pn(x) =

n∑
k=0

(−1)n(−2)k

2n(n− k)!
(1− x2)n−k (n− k)!

2n−k

(
n

k

)(
k

n− k

)
x2k−n. (2.7.7)

The proof is near identical to the Gegenbauer case so is omitted from the text.

Proposition 2.7.3. Let n ∈ N. Then the Hermite polynomial can be defined as

Hn(x) =

n∑
k=0

(−1)n+k(2)k
(n− k)!

2n−k

(
n

k

)(
k

n− k

)
x2k−n. (2.7.8)
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Proof. Taking the Rodrigues’ formula for the Hermite polynomial we observe an nth derivative.

Hn(x) =(−1)nex
2
( d
dx

)n
e−x2

=(−1)nex
2

n∑
k=0

e−x2

Bn,k(−2x,−2, 0, ...)

=(−1)nex
2

n∑
k=0

e−x2

(−2)kBn,k(x, 1, 0, ...)

=

n∑
k=0

(−1)n+k(2)kBn,k(x, 1, 0, ...)

Using formula (2.7.3) gives the desired result.

Now we move on to the method used by Qi and Guo. This takes the generating function and

finds the mth derivative with respect to t. Then by sending t → 0 we can rearrange to find a

formula for the desired polynomial.

Proposition 2.7.4. Let n ∈ N and λ ∈ R. Then the Gegenbauer polynomial can be defined as

C(λ)
n (x) =

n∑
k=0

(−1)k(k + λ)!

k!λ!

(n− k)!

2n−k

(
n

k

)(
k

n− k

)
x2k−n. (2.7.9)

Proof. We start by taking the nth derivative of the generating function using the Faa di Bruno

formula

∞∑
n=0

dm

dtm
C(λ)

n (x)tn =
dm

dtm
(1− 2xt+ t2)−λ

∞∑
n=0

C(λ)
n (x)

n!

(n−m)!
tn−m =

m∑
k=0

Bm,k(−2x+ 2t, 2, 0, ...)(1− 2xt+ t2)−λ−k

× (−1)k(k + λ)!

λ!
.

Sending t → 0 we note that the only non-zero value on the left hand side is when n = m. Thus,

with the assistance of (2.4.19) we can state that

n!C(λ)
n (x) =

n∑
k=0

2jBn,k(−x, 1, 0, ...0)
(−1)k(k + λ)!

λ!
.

Using (2.7.3) gives the desired result.

Proposition 2.7.5. Let n ∈ N. Then the Legendre polynomial can be defined as

Pn(x) =

n+1∑
k=0

(−1)k
(
1
2

)
k
2k

n!

(n− k)!

2n−k

(
n

k

)(
k

n− k

)
x2k−n. (2.7.10)

Proof. Again we take the mth derivative of the generating function with respect to t but to make

the calculations easier we note that by first taking the integral, this produces a function that can

56



adopt the method of using the Faa di Bruno formula.

x− t

(1− 2xt+ t2)3/2
=
d

dt

ˆ
x− t

(1− 2xt+ t2)
3
2

dt

=
d

dt

1

(1− 2xt+ t2)
1
2

Then

dm

dtm

∞∑
n=1

nPn(x)t
n−1 =

dm+1

dtm+1

1

(1− 2xt+ t2)
1
2

∞∑
n=1

n!

(n−m)!
Pn(x)t

n−m−1 =

m+1∑
k=0

(−1)k
(
1
2

)
k

(1− 2xt+ t2)
1
2+k

Bm+1,k(−2x+ 2t, 2, 0, ...).

Sending t → 0 it follows by the same logic as above that the only value other than zero is when

m = n. So

n!Pn(x) =

n+1∑
k=0

(−1)k
(1
2

)
k
2kBn+1,k(−x, 1, 0, ...).

Using (2.7.3) and gives the desired result.

The above method unfortunately doesn’t work for the Jacobi polynomial due to it taking the

form of f(x)g(x) instead of f(g(x)). What we can do however is use the higher derivatives Leibniz

rule. For a set of functions fi(x) for 1 ≤ i ≤ k, the nth derivative product of fi(x) is defined as

( k∏
i=1

fi(x)
)(n)

=
∑

j1+j2+...+jk=n

(
n

j1, j2, ..., jk

) k∏
i=1

f
(n)
i (x) (2.7.11)

where (
n

j1, j2, ..., jk

)
=

n!

j1!j2!...jk!
. (2.7.12)

In our case with the Jacobi polynomial, k = 2. Specifically for this, we have

dn

dxn
f(x)g(x) =

n∑
k=0

(
n

k

)
f (n−k)(x)g(k)(x). (2.7.13)

Proposition 2.7.6. Let n ∈ N and α, β ∈ R. Then the Jacobi polynomial can be defined as

P (α,β)
n (x) =

n∑
k=0

(
n

k

)
(−1)2n−k

(2nn!)

(α+ n)!

(n− k − 1)!
(1− x)k

(β + n)!

(k − 1)!
(1 + x)n−k. (2.7.14)

Proof. We start by looking at the derivatives:

dn

dxn

[
(1− x)α+n(1 + x)β+n)

]
=

n∑
k=0

(
n

k

)[ dn−k

dxn−k
(1− x)α+n

][ dk
dxk

(1 + x)β+n
]

=

n∑
k=0

(
n

k

)[
(−1)n−k (α+ n)!

(n− k − 1)!
(1− x)α+k

][ (β + n)!

(k − 1)!
(1 + x)β+n−k

]
.
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Placing this into the Rodrigues’ formula we see that

P (α,β)
n (x) =

(−1)n

(2nn!)
(1− x)−α(1 + x)−β dn

dxn

[
(1− x)α+n(1 + x)β+n

]
=
(−1)n

(2nn!)
(1− x)−α(1 + x)−β

n∑
k=0

(
n

k

)[
(−1)n−k (α+ n)!

(n− k − 1)!
(1− x)α+k

]
×
[ (β + n)!

(k − 1)!
(1 + x)β+n−k

]
=

n∑
k=0

(
n

k

)
(−1)2n−k

(2nn!)

(α+ n)!

(n− k − 1)!
(1− x)k

(β + n)!

(k − 1)!
(1 + x)n−k.

Since there exists the Rodrigues’ formulas for the matrix orthogonal polynomials for Gegenbauer

and Hermite polynomials, thanks to the works of Jodar, Defez, and Company, we can use the ideas

used for the scalar case to develop the same formulas. We note that even though the Faa di Bruno

formula is for scalar x, this does not affect our use of it since we are taking the derivative to the

variable x and the matrix arguments are constant. We do need to note two extra properties. The

first is for use with the Gegenbauer matrix polynomial:

dk

dtk
t(A+mI) = (A+ I)m

[
(A+ I)m−k

]−1

tA+(m−k)I . (2.7.15)

For the Hermite polynomial we use the properties of the matrix exponential

d

dt
etX = XetX = etXX, (2.7.16)

for a scalar variable t and a square matrix X.

If f(x) and g(x) are holomorphic functions on an open set Ω on the complex plane, A,B ∈ Cr×r

where σ(A), σ(B) ∈ Ω, and AB = BA then

f(A)g(B) = g(B)f(A). (2.7.17)

Proposition 2.7.7. Let D ∈ Cr×r such that θ ∈ σ(D) for every integer θ ≥ −1 and Re(z) < −1

∀z ∈ σ(D). Then

CD
n (x) =K−1

n (1− x2)
D
2 +I

m∑
k=0

(
− D

2
+ I
)
n−1

[(
− D

2
+ I
)
n−1−k

]−1

× (1− x2)−
D
2 +(n−1−k)I(−2)k

(n− k)!

2n−k

(
n

k

)(
k

n− k

)
x2k−n. (2.7.18)

If
(

D
2 + I

)
and

(
− D

2 + (n− 1− k)I
)
commute, then using (2.7.17) the following holds:

CD
n (x) =K−1

n

m∑
k=0

(1− x2)(n−k)I
(
− D

2
+ I
)
n−1

[(
− D

2
+ I
)
n−1−k

]−1

× (−2)k
(n− k)!

2n−k

(
n

k

)(
k

n− k

)
x2k−n. (2.7.19)
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Proof. We start by focusing on the differential part of Rodrigues’ formula for the matrix

Gegenbauer. Using the Faa di Bruno formula with (2.7.15) we observe

dn

dxn
(1− x2)−

D
2 +(n−1)I =

n∑
k=0

(
− D

2
+ I
)
n−1

[(
− D

2
+ I
)
n−1−k

]−1

× (1− x2)−
D
2 +(n−1−k)IBn,k(−2x,−2, 0, ...).

By rearranging, this gives (2.7.18). Now if −D
2 +I and −D

2 +(n−1−k)I commute we can simplify

the bracketed x terms to give (2.7.19)

Proposition 2.7.8. Let A ∈ Cr×r with Re(x) > −1 ∀z ∈ σ(A) and x ∈ C. Also let σ(A) ⊂ C.

Then for any natural number n ≥ 0, the nth second order Hermite polynomial Hn(x,A) is defined

by

Hn(x,A) =

n∑
k=0

(−1)n+k2k
(A
2

)k−n
2 (n− k)!

2n−k

(
n

k

)(
k

n− k

)
x2k−n. (2.7.20)

Proof. Taking the matrix Rodrigues’ formula we observe

Hn(x,A) =e
x2 A

2 (−1)n
(A
2

)−n
2
[ dn
dxn

e−x2 A
2

]
=ex

2 A
2 (−1)n

(A
2

)−n
2

n∑
k=0

dk

dzk
ez

A
2 |z=−x2Bn,k(−2x,−2, 0, ...)

=ex
2 A

2 (−1)n
(A
2

)−n
2

n∑
k=0

e−x2 A
2

(A
2

)k
(−2)kBn,k(x, 1, 0, ...).

We next note that both cXn and eX
2

are holomorphic functions and assuming that σ(A) ⊂ C we

can use (2.7.3) and can rearrange the above to get the desired result.
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Chapter 3

Differential spectral identities for

orthogonal polynomials and

hypergeometric functions

As we have seen already, the Jacobi polynomial (and by extension the Gegenbauer polynomial)

are closely linked to rank one symmetric spaces due to themselves being the eigenfunctions of the

Laplacian on these spaces. Awonusika and Taheri in [11, 12] showed differential spectral identities

for the Jacobi and Gegenbauer polynomials. These look at even derivatives of the polynomials and

find sums of integar powers of the eigenvalues of the respective operators. These identities were

then computed using the Faa di Bruno formula with Bell polynomials in the end product by Day

and Taheri [40]. Day and Taheri then introduced the differential operator

Lp =
∑

PN (d/dθ) = p0 + p1d/dθ + ...+ pNd
N/dθN (3.0.1)

where

PN (X) = p0 + p1X+ ...+ pNXN (3.0.2)

for (N ≥ 2). With this they found an identity for the Gegenbauer polynomial [39]. Bond and

Taheri then formulated a similar identity for the hypergeometric function [21].

In this chapter we follow the work of Taheri et al.. Our work consists of specialising their work

for the Hermite polynomial, in particular, formulating a differential spectral identity for the even

Hermite polynomial seen in Proposition 3.2.2. This is an important discussion as the Hermite

function is an eigenfunction of the Fourier transform. Our next goal is to look at spectral identities

for the hypergeometric form of the Hermite polynomial. This is achieved in Theorems 3.3.1 and
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3.3.2.

The final part of this chapter is concerned with continuing the work of Taheri et al. and

extending it to find a identity for the differential operator Lp on the matrix hypergeometric

function. This is achieved in Theorem 3.3.3.

To start this section we look at Maclaurin expansions of composite hypergeometric series. This

produces useful results linked to the ones mentioned already. We find Maclaurin expansions for

the composite hypergeometric series in Proposition 3.1.1 before looking at the case when we have

A1, ..Ap and B1, ..., Bq, seen in Proposition 3.1.2. We also find a formula for the hypergeometric

function for matrix input. We do this in Proposition 3.1.3.

3.1 Maclaurin expansion of composite hypergeometric

series

As seen in (2.6.2), (2.6.15), (2.6.29), (2.6.30), the orthogonal polynomials (Jacobi, Gegenbauer,

and Hermite) have hypergeometric series representations. Specifically, the Jacobi and

Gegenbauer polynomials are hypergeometric functions, and the Hermite polynomial is a confluent

hypergeometric function.

The hypergeometric series pFq(a1, ..., ap; b1, ..., bq;x) has the Maclaurin expansion (2.5.5). This

is for a single variable x. Our aim in this section is to develop this into the more interesting case

where in place of the single variable we have a function f(x). Motivation for this comes from the

hypergeometric series representation of the orthogonal polynomial.

Proposition 3.1.1. Let f(x) ∈ C∞(R) such that f(x) is finite and f(0) = 0. Also let p < q + 1.

Then

pFq(a1, ..., ap; b1, ..., bq; f(x)) = 1 +

∞∑
n=1

n∑
k=1

∏p
i=1(ai)k∏q
j=1(bj)k

xn

n!
bnk (X), (3.1.1)

where X = (f ′(x), ...f (n−k+1)(x)) and bnk (X) = Bn,k(X)x=0.

Proof. Using the Faa di Bruno formula and the series expansion of the hypergeometric series:

dn

dxn
pFq(a1, ..., ap; b1, ..., bq; f(x)) =

n∑
k=1

pF
(k)
q (a1, ..., ap; b1, ..., bq; f(x))Bn,k(X)

=

n∑
k=1

∞∑
i=0

(a1)i, ..., (ap)i
(b1)i, ..., (bq)i

(f(x))i−k

(i− k)!
Bn,k(X),

where X = (f ′(x), ...f (n−k+1)(x)). When we let x = 0 the summation only takes a value when
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i = k. So we observe

dn

dxn
pFq(a1, ..., ap; b1, ..., bq; f(0)) =

n∑
k=1

(a1)k, ..., (ap)k
(b1)k, ..., (bq)k

bnk (X).

Then the Maclaurin series expansion is written as

pFq(a1, ..., ap; b1, ..., bq; f(x)) = 1 +

∞∑
n=1

n∑
k=1

(a1)k, ..., (ap)k
(b1)k, ..., (bq)k

bnk (X)
xn

n!

Explicit examples and special cases

Providing we know the Bell polynomial for f(x) when x = 0, we can find the series expansion

for the hypergeometric series of a given function. The chosen functions have the added property

that f(0) = 0. With Qi et al.’s and Comtet’s work and Proposition 3.1.1, we can formulate the

Maclaurin expansion for the hypergeometric series.

• (ex − 1)

pFq(a;b; e
x − 1) =1 +

∞∑
n=1

n∑
k=1

∏p
i=1(ai)k∏q
j=1(bj)k

S(n, k)
xn

n!
(3.1.2)

where S(n, k) are the Stirling numbers of the second kind seen in (2.4.10).

• (ln(1 + x))

pFq(a;b; ln(1 + x)) =1 +

∞∑
n=1

n∑
k=1

∏p
i=1(ai)k∏q
j=1(bj)k

(−1)n+kc(n, k)
xn

n!
(3.1.3)

where c(n, k) are the signless Stirling numbers of the first kind seen in (2.4.9).

• (cosx− 1)

pFq(a;b; cosx− 1) =1 +

∞∑
n=1

n∑
k=1

∏p
i=1(ai)k∏q
j=1(bj)k

(−1)k

k!
cos
(nπ

2

) k∑
l=0

(−1)l

2l

(
k

l

)

×
l∑

q=0

(
l

q

)
(2q − l)n

xn

n!
(3.1.4)

• (sinx)

pFq(a;b; sinx) =1 +

∞∑
n=1

n∑
k=1

∏p
i=1(ai)k∏q
j=1(bj)k

(−1)k

k!2k
cos

(
(n− k)π

2

)
k∑

q=0

(−1)q
(
k

q

)
(2q − k)n

xn

n!

(3.1.5)

• (coshx− 1)

pFq(a;b; coshx− 1) =1 +

∞∑
n=1

n∑
k=1

∏p
i=1(ai)k∏q
j=1(bj)k

1

k!2k

2k∑
l=0

(−1)l
(
2k

l

)
(k − l)n

xn

n!
(3.1.6)
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• (sinhx)

pFq(a;b; sinhx) =1 +

∞∑
n=1

n∑
k=1

∏p
i=1(ai)k∏q
j=1(bj)k

1

k!2k

k∑
l=0

(−1)l
(
k

l

)
(k − 2l)n

xn

n!
(3.1.7)

• (xα)

pFq(a;b;x
α) =1 +

∞∑
n=1

∏p
i=1(ai) n

2=α∏q
j=1(bj)n

α

(−1)
n
α

(nα )!

n
α∑

l=0

(−1)l
(n

α

l

)
⟨αl⟩n

xn

n!
(3.1.8)

Remark 3.1.1. (3.1.8) is calculated over one less summation. This is due to that there is the

additional requirement that k = n
α .

The Taylor expansion for the matrix hypergeometric function with scalar f(x) similar to that

of 2.5.7 and 2.5.11 will be procured in a very similar way. As the choice of Aj and Bj are fixed

so the derivatives only sit on the function f(x). This means we can use the Faa di Bruno formula

the same way as in (3.1.1).

Proposition 3.1.2. Let f(x) ∈ C∞(R) such that f(x) is finite and f(0) = 0. Also let Ai, Bj ∈

Cr×r and q ≥ p. Then

pFq(A1, ..., Ap;B1, ..., Bq; f(x)) = 1 +

∞∑
n=1

n∑
k=1

p∏
i=0

(Ai)n

q∏
j=0

[(Bj)n]
−1x

n

n!
bnk (X), (3.1.9)

where X = (f ′(x), ...f (n−k+1)(x)) and bnk (X) = Bn,k(X)x=0.

Remark 3.1.2. Like with the case for scalar ai, bj the matrix case for Ai, Bj has expression for

f(x) being the functions seen in (3.1.2)-(3.1.8).

Our final aim is to tackle the problem of a hypergeometric function for a matrix input f(X),

where X is a square matrix. Here ai, bj are scalars. Equation (2.5.13) will be used along with the

fact that for matrix inputs as described above, the Jack function holds the following property

J
(α)
k (X) = J

(α)
k (x1, ..., xm), (3.1.10)

where x1, ..., xm are the eigenvalues of X.

Proposition 3.1.3. Let X be an n× n complex matrix function such that f(X(x)) ∈ C∞(Cn×n).

Also let X only have y eigenvalues g1(x), ...gy(x) which are dependent on x. Then, for a =

(a1, . . . , ap) and b = (b1, . . . , bq):

pF
α
q (a;b; f(X)) =1 +

∞∑
n=1

C′
∑
µθ

∑
v1+...+vy=n

(
n

v1, ..., vy

) y∏
w=1

n∑
k=1

k∑
q=1

| µ1

µw+1
|!(

| µ1

µw+1
| − q − 1

)
!

× f(gw(0))
| µ1
µw+1

|−q
bnk (gw(x))b

k
q (f(t))|t=gw(0)βµ1µw (3.1.11)
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for

C′ =
(a1)

α
µ1
...(ap)

α
µ1

(b1)αµ1
...(bq)αµ1

(α|µ1|(|µ1|)!
vµ1

)[
(1 + α)...(1 + (µ1 − 1)α)

]
. (3.1.12)

Also

βµ1µw
=

∏
(i,j)∈µ1

Bµ1
µ1µw

(i, j)∏
(i,j)∈µw

Bµi
µ1µw(i, j)

(3.1.13)

for

Bθ
µ1µw

(i, j) =


µ1(j)

′ − i+ α(µ1(i)− j + 1), if µ1(j)
′ = µw(j)

′

µ1(j)
′ − i+ 1 + α(µ1(i)− j), otherwise.

(3.1.14)

The product over (i, j) ∈ µ1 means it is taken over all coordinates (i, j) of boxes in the Young

diagram of the partition of µ1.

Remark 3.1.3. We use the notation of µ′
w as the conjugate partition of µw and µw(j) being the

jth element of the partition µi.

Remark 3.1.4. The second summation is actually a collection of summations over the set µw

such that µ1

µw
is a horizontal strip. The third summation extends over all m-tuples (v1, ..., vy) of

non-negative integers with
∑y

i=1 vw = n

Proof. We immediately rewrite hypergeometric the matrix series for f(X) using the standard Jack

function

pF
α
q (a;b; f(X)) =

∞∑
k=0

∑
µ1

(a1)
α
µ1
...(ap)

α
µ1

(b1)αµ1
...(bq)αµ1

(α|µ1|(|µ1|)!
jµ1

)
Jα
µ1
(f(X))

=

∞∑
k=0

∑
µ1

CJα
µ1
(f(X))

=

∞∑
k=0

∑
µ1

CJα
µ1
(f(g1(x)), ..., f(gy(x)))

=
∞∑
k=0

∑
µ1

C
∑
µθ

y∏
w=1

f(gw(x))
| µ1
µw+1 |βµ1µw

where C′ = C
[
(1 + α)...(1 + (µy − 1)α)

]
. We have also used (3.1.10) between the second and third

line. We also set µ1

µy+1
= 1. The third summation on the last line is taken over µθ = µ2, ..., µy.

Next we focus on the derivatives of the product. For this we again use the general Leibniz rule
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and combine this with the Faa di Bruno formula twice.

dn

dxn

y∏
w=1

f(gw(x))
| µ1
µw+1 | =

∑
v1+...+vy=n

(
n

v1, ..., vy

) y∏
w=1

dn

dxn
f(gw(x))

| µ1
µw+1

|

=
∑

v1+...+vy=n

(
n

v1, ..., vy

) y∏
w=1

n∑
k=1

dk

dtk
f(t)

| µ1
µw+1

||Bn,k(gw(x))

=
∑

v1+...+vy=n

(
n

v1, ..., vy

) y∏
w=1

n∑
k=1

k∑
q=1

dq

dzq
z
| µ1
µw+1

||Bn,k(gw(x))Bk,p(f(t))t=gw(x)

=
∑

v1+...+vy=n

(
n

v1, ..., vy

) y∏
w=1

n∑
k=1

k∑
q=1

| µ1

µw+1
|!

(| µ1

µw+1
| − q − 1)!

f(gw(x))
| µ1
µw+1

|−q

×Bn,k(gw(x))Bk,q(f(t))t=gw(x)

where t = gw(x) and z = f(t). By letting x = 0 the proof’s completion follows the normal path.

Remark 3.1.5. Similar expansions for selected f(x) can be found provided the eigenvalues g1(x)

are known and that the respective Bell polynomials for both f(x) and gi(x) are known.

3.2 Differential and spectral identities for the orthogonal

polynomials as eigenfunctions of given spaces

It is known that the Maclaurin expansion of the heat kernel is given by

K(t, θ) =

∞∑
l=0

θ2l

(2l)!

∂2l

∂θ2l
K(t, 0). (3.2.1)

The partial differential sits only on the spherical function in (3.2.1). Focusing on this, provided

you know the spherical function, you can calculate it explicitly. Awonusika and Taheri in [12, 13]

as well as Day and Taheri in [39] did just this when Φn(θ) = P
(α,β)
n (cosx), where P

(α,β)
n (x) is the

Jacobi polynomial.

Proposition 3.2.1. Let P
(α,β)
n (x) be the Jacobi polynomial for α, β > −1 and k ≥ 0. Then

d2l

dθ2l
P (α,β)
n (cos θ)|θ=0 =

l∑
j=1

clj(α, β)[λ
(α,β)
n ]j (3.2.2)

where clj(α, β) is a constant dependent on α and β and λ
(α,β)
n are the eigenvalues of the Jacobi

operator.

With this it was computed that

K(t, θ) =

∞∑
l=0

Tn
2l

θ2l

(2l)!
(3.2.3)
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for

Tn
2l =

∞∑
k=0

MN
n

V ol
e−tλ

l∑
j=1

clj [λk]
j

=
1

V ol
tr{Rl(−∆)etλ}

where

Rl(X) =

l∑
j=1

cljX
j . (3.2.4)

A similar method was used to find the spectral identity for the Gegenbauer polynomials in [11].

This coincides with the n−sphere.

As we have mentioned already, the Jacobi polynomial (and by extension the Gegenbauer

polynomial) are eigenfunctions of the sphere, real projective space, complex projective space, and

the quaternionic projective space. We have discussed both these polynomials in some detail

alongside the Hermite polynomial. The Hermite polynomial is not an eigenfunction of a rank one

symmetric space but in fact is an eigenfunction of the Fourier transform. More precisely the

Hermite function (also known as Hermite-Gaussian function) are the eigenfunctions.

For x ∈ R and n ∈ N, the Hermite function is defined as

ψn(x) =
1(

2nn!
√
π
) 1

2

e−
x2

2 Hn(x). (3.2.5)

Orthogonality is seen in the usual way

ˆ ∞

−∞
ψn(x)ϕm(x)dx = δn,m. (3.2.6)

Remark 3.2.1. The weight function w(x) and constant Cn for the orthogonality for the Hermite

function are the same as the Hermite polynomial as it is a scaling.

The Hermite function is an eigenfunction of the Fourier transform in the following way:

F [ψn](x) =
1√
2π

ˆ ∞

−∞
eitxψn(t)dt

=inψn(x). (3.2.7)

For further discussion about the Hermite function as eigenfunction of the Fourier transform see

[30, 31, 101].

To produce a spectral identity similar to that of Taheri et al. for the Hermite function we

need to know the eigenvalues for the equivalent operator. For the Hermite polynomial this is the

Ornstein-Uhlenbeck operator,

Duf(x) = ∆f(x)− ⟨x,∇f(x)⟩. (3.2.8)
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The eigenvalues for this operator acting on the Hermite polynomial are very simple, in fact for the

n-dimensional case:

DuHn1,...,nm
(x1, ..., xm) = (n1 + ...+ nm)Hn1,...,nm

(x1, ..., xm) (3.2.9)

for x ∈ Rn. This gives the eigenvalues λ = (n1 + ...+ nm).

Lemma 3.2.1. Let n, p, j ∈ N. Then

j−1∏
p=0

(n− p) =

j∑
q=1

C(j, q)nq, (3.2.10)

where

C(j, j) = 1 (3.2.11)

C(j, 1) = −qC(j − 1, 1) (3.2.12)

C(j, q) = C(j − 1, q − 1)− jC(j − 1, q) (3.2.13)

for j ≥ 1 and 2 ≤ q ≤ j.

Proof. (3.2.11) and (3.2.12) are elementary. (3.2.13) follows from taking your result for a given

j − u and multiplying it by (n− j + u− 1). Equating coefficients gives the desired result.

Proposition 3.2.2. Let f(x) be a function such that f(0) = 0 and n ∈ N. Then the following

differential identity holds

d2m

dx2m
H2n(f(x))|x=0 =

m∑
j=1

j∑
q=1

C(j,m, q)
(−1)n−j

2n
2nPnn

q (3.2.14)

where C(j,m, q) is defined as

C(j,m, q) =
23jb2m2j (f(x))

√
π

C(j, q) (3.2.15)

and C(j, q) is defined as in Lemma 3.2.1.

2kPk in the above proposition refers to the k-permutation (also called partial-permutation) of

2k. This is a permutation without repetition.

Corollary 3.2.1. Let f(x) be a function such that f(0) = 0 and n ∈ N. Then the following

differential identity holds

d2m

dx2m
H2n(f(x))|x=0 =

m∑
j=1

j∑
q=1

C(j,m, q)
(−1)λ−j

2λ
2λPλλ

q (3.2.16)

where λ is the eigenvalue for the Ornstein-Uhlenbeck operator and C(j,m, q) as defined above.
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Proof of Proposition 3.2.2. Through elementary calculations:

d2m

dx2m
H2n(f(x))|x=0 =

dp

dxp
Hq(f(x))|x=0 =

p∑
j=0

dj

dtj

(
Hq(t)

)
|t=0b

p
j (f(x))

=

p∑
j=0

2jq!

(q− j)!
Hq−j(0)b

p
j (f(x))

=

2m∑
j=0

2j(2n)!

(2n− j)!
H2n−j(0)b

2m
j (f(x)).

The Hermite polynomial has a known value at 0 but is defined separately for odd and even

dimensions of n:

Hn(0) =


0 for n odd

(−2)
n
2 (n− 1)!! for n even.

(3.2.17)

Using this the odd terms vanish and thus we are left with just the even values. Thus

d2m

dx2m
H2n(f(x))|x=0 =

m∑
j=1

[
22j(2n)!

(2n− 2j)!
H2n−2j(0)b

2m
2j (f(x))

+
22j−1(2n)!

(2n− (2j − 1))!
H2n−(2j−1)(0)b

2m
2j−1(f(x))

]

=

m∑
j=1

22j(2n)!

(2n− 2j)!
(−2)n−j(2n− 2j − 1)!!b2m2j (f(x))

=

m∑
j=1

24j−2n(2n)!

(n− j)!
(−2)n−jb2m2j (f(x))

=

m∑
j=1

(2n)!

(n− j)!

23j(−1)n−j

2n
b2m2j (f(x))

where we have used that for an odd double factorial

(2T − 1)!! =
(2T )!

2TT !
. (3.2.18)

Looking at factorials using Legendre’s duplication formula and Lemma 3.2.1:

(2n)!

(n− j)!
=
(2n)!

n!

n!

(n− j)!

=2nPn

j−1∏
p=0

(n− p)

=2nPn

j∑
q=1

C(j, q)nq.

Combining the above and simplifying gives the desired result.
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3.3 Spectral identities for hypergeometric series

Taheri et al. continued their work into spectral identities by defining the differential operator Lp,

which extends the identities on the Gegenbauer and Jacobi polynomials to the hypergeometric

series. This operator is defined in [39], also in [21];

Lp = PN (d/dθ) (3.3.1)

where

PN (X) = p0 + p1X+ ...+ pNXN (3.3.2)

for (N ≥ 2). Taheri et al. represent the result with Hm which is an explicit form of Rm found in

the Gegenbauer and Jacobi identities. More precisely

Lp[2F1(a, b, ; c; f(x))]
∣∣∣
x=0

=

N∑
m=0

pmHm(−ab), (3.3.3)

for

Hm(X) =

m∑
l=1

(−1)l
m∑
j=l

bmj [f]sjl
(c)j

X l. (3.3.4)

With choices of f(x) = 1−cos x
2 then Taheri and Bond showed a very similar identity to (3.2.1) is

obtained:

Lp

[
2F1

(
a, b, ; c;

1− cosx

2

)]
=p0 +

d
2∑

m=1

p2m

m∑
j=1

cmj [−ab]j

=p0 +

d
2∑

m=1

p2mRm(−ab), (3.3.5)

where Rm is defined as in (3.2.4).

Remark 3.3.1. The choice of f(x) here links the hypergeometric function to the Jacobi polynomial

and the eigenfunctions of the compact rank one symmetric spaces listed above.

Above, sjl is a function dependent on the elementary symmetric polynomial. We will give a

brief description of these here, however for more detail see [82].

The elementary symmetric polynomials Sk(X1, ...Xj) with j variables and k = 0, 1, ...j are

defined by

Sk(x1, ...xj) =
∑

j1<j2<...<jk

xj1xj2 ...xjk , (3.3.6)

where S0 = 1.

Now we will introduce the notation sjl = Sj−l(Y0, ...Yj−1) where Yk = k(z + k), with 0 ≤ k ≤

j − 1, specifically, Y0 = 0, Y1 = (z + 1), ..., Yj−1 = (j − 1)2 + z(j − 1).
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The hypergeometric function can be used to express the Jacobi and Gegenbauer polynomials.

The Hermite polynomial is expressed using the confluent hypergeometric function. We shall now

create a similar proposition to Taheri et al. for the confluent hypergeometric function before looking

at the specific cases when f(x) is a power function, similar to that found in the representation of

the Hermite polynomial.

First we state an important lemma.

Lemma 3.3.1. Let (a)j =
∏j−1

k=0(k + a) such that a is a scalar, then

(a)j =

j∑
l=1

sjl (0, 1, 2, ...., j − 1)al, (3.3.7)

where sjl (X) = Sj−l(X) is the elementary symmetric polynomial.

Proof. Using

Yk = p(k)−X =

p∑
l=1

Sp−l(a1, ...ap)k
l (3.3.8)

with p = 1 we observe

Yk = p(k)−X =

1∑
l=1

S1−l(a)k
1 = k.

We note that X = Sp(a) = a for the case where p = 1. Thus

(a)j =

j−1∏
k=0

(k + a) =

j−1∏
k=0

(Yk +X)

=

j∑
l=0

Sj−l(Y0, Y1, ...Yj−1)X
l

=

j∑
l=1

Sj−l(Y0, Y1, ...Yj−1)X
l

=

j∑
k=0

Sj−l(0, 1, 2, ...j − 1)al.

Proposition 3.3.1. Let LP be as defined above. Let f(x) be a smooth function with f(0) = 0. Also

let a, b ∈ C such that b ̸∈ {0,−1,−2,−3, ...}. Then

LP[1F1(a; b; f(x))]|x=0 =

N∑
m=0

pmGm(−a), (3.3.9)

with

Gm(X) =

m∑
l=0

(−1)l
m∑
j=l

sjl b
m
j (f(x))

(b)j
Xl (3.3.10)

where sjl = Sj−l(0, 1, 2, ..., j − 1) is the elementary symmetric polynomial and
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bmj (f(x)) = Bm,j(f
′(x), f′′(x), ...fm−j+1(x))|x=0.

Proof. We start by looking at the mth derivative of the confluent hypergeometric function of the

first kind and invoking the Faa di Bruno formula:

dm

dxm
1F1(a; b; f(x))|x=0 =

m∑
j=1

dj

dxj
1F1(a; b; z)|z=0Bm,j(f

′, f′′, ...)|x=0.

Above we have used Bm,j(f
′, f′′, ...)|x=0 = bmj (f(x)). The jth derivative of the confluent

hypergeometric function of the first kind is defined as
(a)j
(b)j 1F1(a + j; b + j; z). However, we know

that 1F1(a+ j; b+ j; 0) = 1. Thus we observe

dm

dxm
1F1(a; b; f(x))|x=0 =

m∑
j=1

(a)j
(b)j

bmj (f(x)).

Using Lemma 3.3.1 on (a)j gives

dm

dxm
1F1(a; b; f(x))|x=0 =

m∑
j=1

j∑
l=0

Sj−l(0, 1, 2, ..., j − 1)al

(b)j
bmj (f(x)).

Changing the limits of summation

dm

dxm
1F1(a; b; f(x))|x=0 =

m∑
l=0

m∑
j=l

Sj−l(0, 1, 2, ..., j − 1)al

(b)j
bmj (f(x))

=

m∑
l=0

(−1)l
m∑
j=l

Sj−l(0, 1, 2, ..., j − 1)(−a)l

(b)j
bmj (f(x))

=Gm(−a)

Motivated by the confluent hypergeometric function formula for the Hermite polynomial seen

in (2.6.29) and (2.6.30), we choose f(x) = xα in Proposition 3.3.1.

Corollary 3.3.1. Let LP be as defined above. Also let a, b ∈ C such that b ̸∈ {0,−1,−2,−3, ...}

and α ̸= 0, then

LP[1F1(a; b;x
α)]|x=0 =

N∑
m=0

pm

m∑
l=0

X, (3.3.11)

with

X =


∑j

k=0(−1)l+j+k
(
j
k

) ⟨αk⟩m
j!

sjl
(b)j

(−a)l, for m = αj

0, otherwise

(3.3.12)

where sjl = Sj−l(0, 1, 2, ..., j − 1) is the elementary symmetric polynomial.

Here we have used (2.4.28) to define the Bell polynomial bmj (f(x)) in Proposition 3.3.1. Next

we state a corollary for the specific case when α = 2. This will use (2.7.3) for defining bmj (f(x)).
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Corollary 3.3.2. Let LP be as defined above. Also let a, b ∈ C such that b ̸∈ {0,−1,−2,−3, ...},

then

LP[1F1(a; b;x
2)]|x=0 =

N∑
m=0

pm

m∑
l=0

(−1)lX, (3.3.13)

with

X =


sjl
(b)j

(−a)lΓ
(
j + 1

2

)
22j√
π
, for m = 2j

0, otherwise

(3.3.14)

where sjl = Sj−l(0, 1, 2, ..., j − 1) is the elementary symmetric polynomial.

The Hermite polynomial has two forms using the hypergeometric series, (2.6.29) and (2.6.30),

one each for n odd and even. This leads to two important spectral differential theorems.

Theorem 3.3.1. Let LP be as defined above. Also let λ be the eigenvalues for the Ornstein-

Uhlenbeck operator. Then

LP

[
1F1

(
− n;

1

2
;x2

)]∣∣∣∣∣
x=0

=

N∑
m=0

pm

m∑
l=0

(−1)lX, (3.3.15)

with

X =


sjl (λ)

l22j+1, for m = 2j

0, otherwise

(3.3.16)

where sjl = Sj−l(0, 1, 2, ..., j − 1) is the elementary symmetric polynomial.

Theorem 3.3.2. Let LP be as defined above. Also let λ be the eigenvalues for the Ornstein-

Uhlenbeck operator. Then

LP

[
2x1F1

(
− n;

3

2
;x2

)]∣∣∣∣∣
x=0

=

N∑
m=0

pm

m−1∑
l=0

(−1)lX, (3.3.17)

with

X =


2m
(
2j + 1

)−1

sjl (λ)
l22j+1, for m− 1 = 2j

0, otherwise

(3.3.18)

where sjl = Sj−l(0, 1, 2, ..., j − 1) is the elementary symmetric polynomial.

Above we have looked at the case for the hypergeometric function and the confluent

hypergeometric function. In unpublished work [22], Bond and Taheri discuss Hm(X) when we

have vectors a,b with p elements. To return to the scalar case from the vector result set

a = (a, b) and b = c.

To be able to calculate Hm(X) for the vector case of p elements we need to compute sjl . Above
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we have used sjl = Sj−l(Y0, ...Yj−1) with Yk = k(k + a + b), but this is specific to the case where

p ̸= 2.

We define sj1 to be the coefficients of the factor X = Πp
i=1ai

(a1)j(a2)j ...(ap)j =

j∑
l=1

sjl (a)

[
p∏

i=1

ai

]l
. (3.3.19)

We see that

Yk =

p∑
l=1

zlk
l (3.3.20)

where zl = Sj−l(a1, ...ap). Like above S0(X) = 1 for any set X. From this we can obtain values

for sjl provided we know what p is. By putting p = 2 we obtain Yk = k(z1 + z2 + k).

A powerful ability of the hypergeometric function for parameters a and b which are vectors is

that we can cancel out terms of the vectors a and b. Thus, if we let p < u, q < v,

pFq(a1, ...ap; b1, ...bq; z) and uFv(a1, ...au; b1, ...bv; z) with p− q = u− v then

pFq(a1, ...ap; b1, ...bq; z) = uFv(a1, ...au; b1, ...bv; z), (3.3.21)

so long as a1, ...ap, ...au and b1, ...bq, ...bv are chosen such that the additional terms of

uFv(a1, ...au; b1, ...bv; z) cancel.

This property also is valid for the Hm(X) polynomials as they are just the mth derivatives of

hypergoemetric functions. So, for vectors of more elements we can reclaim the Hm(X) polynomial

for 2F1(a, b; c; z) so long as the above restriction is applied.

The next step to look at is when we have matrix inputs Ai, Bj . Also in [22], Bond and Taheri

looked at the hypergeometric matrix function 2F1(A,B;C; z). Here A,B,C are square matrices.

For matrices A,B,C it is seen that sjl = Sj−l(Y0, Y1, . . . , Yj−1) for Yk = k(A+B + kI).

Building on this we will look at a vector of matrices A and B, which are vectors of p and q

n×n matrices. We let (Bi + jI) be invertible for every j ≥ 0 where I is the n×n identity matrix.

Therefore, with the complex variable z, we have the infinite series for the hypergeometric function

as

pFq(A;B; z) =

∞∑
k=0

(A1)k(A2)k...(Ap)k(B1)
−1
k (B2)

−1
k ...(Bq)

−1
k

zk

k!
. (3.3.22)

We note that the matrix extension for the rising factorial is defined by (F )0 = I and for k ≥ 1,

(X)k = X(X+I)...(X+(k−1)I). This means we can take derivatives for the matrix hypergeometric

series in the usual way and the function that the Bell polynomial is taken of is still a scalar function

so no additional analysis needs to be done there. It is useful to note that when taking the derivative

of the hypergeometric series for matrix A,B then (X)j+k = (X)m(X+mI)j .

Theorem 3.3.3. Let A = (A1, A2, ...Ap) and B = (B1, B2, ...Bq), where Ai, Bi ∈ Cn×n and
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(Bi + jI) invertible. Then

Lp[pFq(A;B; f)]
∣∣∣
x=0

=

N∑
m=0

pm

m∑
j=1

bmj (f)

p∏
s=0

(As)j

[
q∏

t=0

(Bt)j

]−1

. (3.3.23)

If A1 to Ap commute and if B1 to Bq commute then

Lp[pFq(A;B; f)]
∣∣∣
x=0

=

N∑
m=0

pm

m∑
l=1

m∑
j=l

(−1)lbmj (f)sjl

[
−

p∏
i=1

Ai

]l[ q∏
t=0

(Bt)j

]−1

. (3.3.24)

Proof. Using the differential operator defined above and the hypergeometric function for the vectors

A = (A1, A2, ...Ap) and B = (B1, B2, ...Bq) where Ai and Bi are matrices we see that

Lp[pFq(A;B; f)]
∣∣∣
x=0

=

N∑
m=0

pm
dm

dxm
pFq(A;B; f)

∣∣∣
x=0

.

Focusing on the derivative we make use of the Faa di Bruno formula. As mentioned above, we

note that the Faa di Bruno formula is for scalar functions, thus here we take the hypergeometric

function component wise:

dm

dxm
pFq(A;B; f)

∣∣∣
x=0

=

m∑
j=1

dj

dzj
pFq(A;B; z)

∣∣∣
z=0

Bm,j(f
′, f′′...)

∣∣∣
x=0

=

m∑
j=1

bmj (f)
dj

dzj
pFq(A;B; z)

∣∣∣
z=0

.

Looking at the derivative of the hypergeometric function of f:

dj

dzj
pFq(A;B; z) =

∞∑
k=j

(A1)k...(Ap)k(B1)
−1
k ...(Bq)

−1
k k(k − 1)...(k − j + 1)

zk−j

k!

=

∞∑
k=0

(A1)j+k...(Ap)j+k(B1)
−1
j+k...(Bq)

−1
j+k

zk

k!

=

∞∑
k=j

(A1)j(A1 + jI)k...(Ap)j(Ap + jI)k(B1 + jI)−1
k ×

(B1)
−1
j ...(Bq + jI)−1

k (Bq)
−1
j

zk−j

k!
,

and looking at when z = 0

dj

dzj
pFq(A;B; z)|z=0 = (A1)j ...(Ap)j(B1)

−1
j ...(Bq)

−1
j .

Thus by substitution of this gives the first part of the proposition. Next, if A1 to Ap commute and

if B1 to Bq commute then

(A1)j(A2)j ...(Ap)j =

p∏
j=1

j−1∏
k=0

(k +Aj)

=

j−1∏
k=0

[X+ Yk]
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where Yk =
∑p

l=1 zlk
l for zl = Sj−1(A1, ...Ap). Also,

(A1)j(A2)j ...(Ap)j =

j∑
l=0

Sj−1(Y0, ...Yj−1)X
l

=

j∑
l=1

sjlX
l =

j∑
l=1

sjl

[
p∏

l=1

Ai

]l
.

Placing this into 3.3.23, we obtain

Lp[pFq(A;B; f)]
∣∣∣
x=0

=

N∑
m=0

pm

m∑
j=1

bmj (f)

j∑
l=1

sjl

[
p∏

l=1

Ai

]l[ q∏
t=0

(Bt)j

]−1

=

N∑
m=0

pm

m∑
j=1

j∑
l=1

(−1)lbmj (f)sjl

[
−

p∏
l=1

Ai

]l[ q∏
t=0

(Bt)j

]−1

=

N∑
m=0

pm

m∑
l=1

m∑
j=l

(−1)lbmj (f)sjl

[
−

p∏
l=1

Ai

]l[ q∏
t=0

(Bt)j

]−1

which is the desired result.

We can now use this as we did above in the previous sections to compute the polynomial Hm(X)

for f equalling (1− cosx)/2, sinx, and xd.

Proposition 3.3.2. Let A = (A1, A2, ...Ap) and B = (B1, B2, ...Bq), where Ai, Bi ∈ Cn×n and

(Bi + jI) invertible. Let f = (1 − cosx)/2. If A1 to Ap commute and if B1 to Bq commute then

the Hm(X) polynomial is defined as

Hm(X) =

m∑
l=1

m∑
j=l

cos

(
mπ

2

) j∑
h=0

(−1)l+h

2j+hj!

(
j

h

) h∑
q=0

(
h

q

)
(2q − l)msjl

[
q∏

t=0

(Bt)j

]−1

Xl (3.3.25)

where X is a matrix of same dimensions as Ai, Bi.

Proposition 3.3.3. Let A = (A1, A2, ...Ap) and B = (B1, B2, ...Bq) where Ai, Bi ∈ Cn×n and

(Bi+ jI) invertible. Let f = sinx. If A1 to Ap commute and if B1 to Bq commute then the Hm(X)

polynomial is defined as

Hm(X) =

m∑
l=1

m∑
j=l

cos

(
(m− j)π

2

)
j∑

q=0

(−1)j+l+q

j!2j

(
j

q

)
(2q − j)msjl

[
q∏

t=0

(Bt)j

]−1

Xl

where X is a matrix of same dimensions as Ai, Bi.

Proposition 3.3.4. Let A = (A1, A2, ...Ap) and B = (B1, B2, ...Bq) where Ai, Bi ∈ Cn×n and

(Bi + jI) invertible. Let f = xα. If A1 to Ap commute and if B1 to Bq commute then the Hm(X)

polynomial is defined as

Hm(X) =


∑m

l=1

∑j
k=0

(−1)j+k

j!

(
j
k

)
⟨αk⟩msjl

[∏q
t=0(Bt)j

]−1

Xl, for m = αj

0, otherwise
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where X is a matrix of same dimensions as Ai, Bi.
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Chapter 4

Li-Yau estimates for elliptic PDEs

Gradient estimates play an important role in understanding the behaviour of geometrical PDEs.

Additionally, these gradient estimates can have useful bi-products that give further information

under different conditions. This additional information can include, but is not limited to, analysis

using ancient solutions, Liouville-type theorems, and Harnack inequalities. These bi-products are

often fairly straightforward to calculate once an estimate is found, but give useful information and

much greater detail about the systems they are in.

The gradient estimates that we see in the current literature are a fairly new area of study

originating largely from Yau [131], which uses the maximum principle to find estimates for a

harmonic function, see also [34, 130].

Specifically, Yau showed that if (Mn, g) is a Riemannian manifold with Ricci curvature

satisfying Ric ≥ −(n− 1)K for some constant K ≥ 0, then if u is a positive harmonic function on

Mn, the following inequality holds on a ball of radius R/2 in Mn:

|∇u|
u

≤ Cn

(
1 +R

√
K

R

)
, (4.0.1)

where Cn is a constant dependent on the dimension n.

Remark 4.0.1. A corollary to this is that if we have non-negative Ricci curvature, Ric ≥ 0, then

every positive harmonic function on Mn is a constant function. These are known as Liouville-type

theorems and will be discussed later.

Li and Yau in [76] extended these ideas to find a gradient estimate for parabolic PDEs. Their

method has since been used to find estimates for both elliptic and parabolic linear and non-linear

PDEs.
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4.1 Cutoff functions and the maximum principle associated

with Li-Yau gradient estimates

One of the fundamental steps in finding gradient estimates is the use of a cutoff function, which

allows the maximum principle to be applied. For this, we choose a cutoff function that only takes

non-zero values inside a ball of radius 2R. The choice of cutoff function determines whether an

estimate is considered to be a Li-Yau or Souplet-Zhang estimate. The difference between these

two types of estimates is whether or not the cutoff function has a dependency on t.

Lemma 4.1.1. Let ϕ̃ : R+ → R, ϕ̃ ∈ C2(R+) such that ϕ̃(s) = 1 for s ∈ [0, R], ϕ̃(s) = 0 for

s ∈ [2R,∞), and ϕ̃(s) ∈ [0, 1]. Then

0 ≥ ϕ̃′(s)√
ϕ̃(s)

≥ −C
R

and

|ϕ̃′′(s)| ≤ C

R2

for some positive constant C.

Now let r(x) = d(x, x0), where d(x, x0) is the distance function between x and x0. We then

define ϕ = ϕ̃(r(x)). Directly from [120] and using ∞-Bakry-Emery Ricci tensor, we observe that

∆fr = µ+ (n− 1)K(2R− 1) (4.1.1)

where µ := maxx|d(x,x0)=1 ∆fr(x) and a constant K ≥ 0. This therefore gives

∆fϕ =
ϕ′∆fr

R
+
ϕ′′|∇r|2

R2

≥ − C

R2
− C[µ+ (n− 1)K(2R− 1)]

R
(4.1.2)

We are also able to calculate ∆fϕ in a similar way as above for the more general m-Bakry-Emery

Ricci tensor, again using [120];

∆fr ≤ (m+ n− 1)
√
K coth(

√
Kr) (4.1.3)

which gives

∆fϕ =
ϕ′∆fr

R
+
ϕ′′|∇r|2

R2

≥ −C(m+ n− 1)
√
K coth(

√
Kr)

R
− C

R2

≥ −C(m− 1)(1 +R
√
K)

R2
. (4.1.4)

With the help of this cutoff function the maximum principle is used. In this setting, the
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maximum principle takes the following form: if u :Mn → R is maximised at p, then

∇u(p) = 0 (4.1.5)

∆u(p) ≤ 0. (4.1.6)

Further discussion on cutoff functions and PDEs can be found in [110, 111].

4.2 Current literature and direction of research

Although the study of elliptic gradient estimates is a new and exciting area of mathematics, a rich

body of literature is fast being developed.

Brighton, [25], took the ideas of Yau’s work and applied them to the elliptic heat equation.

Instead of using h = log u as a transformation (the transformation being a vital step in producing

an inequality where the maximum principle is used), he opted for h = uϵ for ϵ ∈ (0, 1). This

has now become the standard for estimates of elliptic equations. Here, Brighton finds both an

estimate, and the subsequent Liouville-type theorem, for a positive weighted harmonic function.

A similar estimate is found in [28].

Since the release of [25], the direction the research has taken is to find gradient estimates for

elliptic equations with different non-linearities. Huang and Li in [62] found a gradient estimate

for the elliptic heat equation with logarithmic non-linearity. This uses the Witten-Laplacian and

Bakry-Emery Ricci tensor (see chapter 1 for more information). Other gradient estimates for this

non-linearity are seen in [127], and [64, 97] for when f is a constant.

From these we see two distinct directions. The first is by Abolarinwa in [6] where he takes the

non-linearity in [62] and raises the logarithmic term to the power of α ∈ R. Depending on the

polarity of α, it produces two different estimates. The other direction was seen by Ma and Dong

in [80], which adds an additional bu(x) term for b ∈ R.

4.3 Li-Yau gradient estimate for a varying coefficient elliptic

PDE

The current literature and interest of research for elliptic estimates is built upon the work of

Brighton, [25]. This found estimates and the resulting Liouville-type theorems for the elliptic heat

equation. Since then, the study into estimates has looked at increasingly difficult non-linearities

and further analysis on these results. We build on this work, mainly investigating logarithmic non-

linearities such as [62, 80, 127]. However, we also move into a different direction by making our

coefficient dependent on x. This is a very common occurrence for gradient estimates of parabolic
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PDEs, but for elliptic PDEs the current literature is lacking. We will introduce two new methods

to find estimates for this style of PDE.

Our research will focus on equations of the form:

∆fu(x) +A(x)u(x) log u(x) +B(x)u(x)p = 0 (4.3.1)

for functions A(x), B(x), and constant p ∈ R, where u is a positive solution to (4.3.1). Equation

(4.3.1) exists on the smooth metric measure space (Mn, g, e−fdν), as described in more detail in

chapter 1. When A ≡ B ≡ 0, we obtain the case studied by Brighton in [25], when B ≡ 0 and

A is a constant we obtain the case in Huang and Ma [64], and when p ≡ 1 for A,B constants we

obtain the case studied by Ma and Dong in [80].

As said above, in our study for gradient estimates for an equation of this kind, we introduce

two methods which branch off from the work of Brighton. The first uses a maximal function whose

outcome has a value greater than zero. This has the drawback of making Liouville-type theorems

impossible to calculate. The other method we use employs the fact that |∇h| ≤ 1 + |∇h|2. Unlike

the first method, this allows us to find Liouville-type theorems easily.

Theorem 4.3.1. Let (Mn, g, e−fdν) be an n-dimensional complete smooth metric measure space

with Ricf ≥ −(n− 1)K for a constant K ≥ 0 and R > 1. Suppose u is a positive smooth solution

to (4.3.1) in B(x0, 2R), and that x0 ∈ Mn is fixed. Then for any x ∈ B(x0, R), the following

inequality holds:

|∇u|2

u2
≤max

(
1

ϵ2u2ϵ
,
C7

R2
+ C8

(
(n− 1)K + sup

B(x0,2R)

[(A(ϵ log u+ 1))+]

+ [(p− 1 + ϵ)B]+ sup
B(x0,2R)

up−1
)
+ C9

(
|∇A| sup

B(x0,2R)

(uϵ|ϵ log u|)

+ |∇B| sup
B(x0,2R)

up−1+ϵ
)
+ C10

(µ+ (n− 1)K(2R− 1)

R

))
(4.3.2)

where Cn = Cn(ϵ, µ, n) are constants such that µ := maxx|d(x,x0)=1 ∆fr(x) (r(x) is the distance

between x and x0 on Mn), and ϵ ∈ (0, 1) is such that

1

n
+

4(ϵ− 1)

ϵn2
≥ 0. (4.3.3)

Here we use the notation for the max function as A+ = max(A, 0).

Theorem 4.3.1 is defined over the closed ball with radius 2R. This can be extended to find the

global estimate by sending R→ ∞:

Corollary 4.3.1. Let (Mn, g, e−fdν) be a complete non-compact metric space with Ricf ≥ −(n−

1)K for a constant K ≥ 1, ϵ ∈ (0, 1), and (4.3.3) still apply. If u is a bounded solution to (4.3.1),
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the global estimate

|∇u|2

u2
≤max

(
1

ϵ2u2ϵ
, C8

(
(N − 1)K + sup

Mn

[(A(ϵ log u+ 1))+] + [(p− 1 + ϵ)B]+ sup
Mn

up−1
)

+ C9

(
|∇A| sup

Mn

(uϵ|ϵ log u|) + |∇B| sup
Mn

up−1+ϵ
))

(4.3.4)

exists for constants Cn and ϵ ∈ (0, 1).

Additionally, we can formulate the following corollaries for when A,B are constants.

Corollary 4.3.2. Take the same assumptions as in Theorem 4.3.1 and (4.3.3). Let A,B be

constant functions. Then for any x ∈ B(x0, R) the following inequality holds

|∇u|2

u2
≤C7

R2
+ C8

(
(n− 1)K + sup

B(x0,2R)

[(A(ϵ log u+ 1))+] + [(p− 1 + ϵ)B]+ sup
B(x0,2R)

up−1
)

+ C10

(µ+ (n− 1)K(2R− 1)

R

)
(4.3.5)

for constants Cn and ϵ ∈ (0, 1).

Corollary 4.3.3. Let (Mn, g, e−fdν) be a complete non-compact metric space with Ricf ≥ −(n−

1)K, and u be a positive bounded solution to (4.3.1) for A,B constant where (4.3.3) still applies.

Then the following global estimate holds

|∇u|2

u2
≤ C8

(
(n− 1)K+sup

Mn

[(A(ϵ log u+ 1))+] + [(p− 1 + ϵ)B]+ sup
Mn

up−1
)

(4.3.6)

for constants Cn and ϵ ∈ (0, 1).

Remark 4.3.1. The proof of Corollaries (4.3.4), (4.3.2), and (4.3.3) is omitted as they are trivial.

Remark 4.3.2. The estimates (4.4.19), (4.3.4), (4.3.2), and (4.3.3) hold for the more general

m-Bakry-Emery Ricci tensor, where the −(n−1)K is replaced with −(m−1)K and ∆fϕ as defined

in (4.1.4).

In Theorem 4.3.1, we dealt with the issue caused by the gradient terms of the varying constants

A(x), B(x) by using a max function. This, however, comes with its own issues, principally that

our inequality will now always have the right hand side greater than or equal to 1/(ϵ2u2ϵ). We aim

for a sharper result.

If, instead of using max functions, we use that |∇h| ≤ 1 + |∇h|2, we produce a new estimate.

This allows us to deal with the inequality like a quadratic in G = ϕ|∇h|2. This can then be solved

straightforwardly.

Theorem 4.3.2. Let (Mn, g, e−fdν) be an n-dimensional complete smooth metric measure space

with Ricf ≥ −(n − 1)K for a constant K ≥ 0, ϵ ∈ (0, 1), and R > 1. Suppose u is a positive
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smooth solution to (4.3.1) in B(x0, 2R) and that x0 ∈ Mn is fixed such that (4.3.3) hold. Then

for any x ∈ B(x0, R) the following inequality holds:

|∇u|2

u2
≤1

ϵ

(
n

2C2
1 − γnC2

)
Ω+

2

ϵ

(
n

2C2
1 − nC2

) 1
2

Θ
1
2 (4.3.7)

for

Ω =
(
(n− 1)K + sup

B(x0,2R)

([A(ϵ−1 log u+ 1)]+) + [(p− 1 + ϵ)B]+ sup
B(x0,2R)

up−1
)

+
(
|∇A| sup

B(x0,2R)

(uϵ|ϵ log u|) + ϵ|∇B| sup
B(x0,2R)

up−1+ϵ
)
+
C4

R2

+
C5[µ+ (n− 1)K(2R− 1)]

R
,

and

Θ =
(
|∇A| sup

B(x0,2R)

(uϵ|ϵ log u|) + ϵ|∇B| sup
B(x0,2R)

up−1+ϵ
)
.

Corollary 4.3.4. Let (Mn, g, e−fdν) be an n-dimensional complete non-compact smooth metric

measure space with Ricf ≥ −(n− 1)K for a constant K ≥ 0 and ϵ ∈ (0, 1). Suppose u is a positive

smooth solution to (4.3.1) on Mn, x0 ∈ Mn such that (4.3.3) hold. Then the following global

estimate holds

|∇u|2

u2
≤

(
n

2C2
1 − γnC2

)
Ω

ϵ
+

1

ϵ

(
4

(
n

2C2
1 − γnC2

)
Θ

) 1
2

(4.3.8)

for

Ω =
(
(n− 1)K + sup

Mn

([A(ϵ−1 log u+ 1)]+) + [(p− 1 + ϵ)B]+ sup
Mn

up−1
)

+
(
|∇A| sup

Mn

(uϵ|ϵ log u|) + ϵ|∇B| sup
Mn

up−1+ϵ
)

and

Θ =
(
|∇A| sup

Mn

(uϵ|ϵ log u|) + ϵ|∇B| sup
Mn

up−1+ϵ
)
.

Next, we produce an estimate similar to that of Yau [130], where the transformation is h = log u.

However, as mentioned in Brighton [25], with this choice a gap appears between the two cases on

the closed ball; consequently, an extra set of parameters must be enforced in the proposition.

Proposition 4.3.1. Let (Mn, g, e−fdν) be an n-dimensional complete smooth metric measure

space with Ricf ≥ −(n − 1)K for K ≥ 0 and R > 1. Suppose u is a positive smooth solution to

(4.3.1) such that

∇f∇ log u−A log u−Bup−1 ≤ δ|∇ log u|2 for δ ∈
(
0,

1

2

)
(4.3.9)
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and

∇f∇ log u−A log u−Bup−1 ≥ 2|∇ log u|2. (4.3.10)

Then the following holds on B(x0, 2R):

|∇ log u|2 ≤max

(
1, C1

(
|∇A| sup

B(x0,2R)

(| log u|) + |∇B| sup
B(x0,2R)

up−1+ϵ
)
− C2

(
(n− 1)K

+A+ +
[
(p− 1)B]+ sup

B(x0,2R)

up−1
)
+
C3

R

)
(4.3.11)

for a constant Cn = Cn(µ, n, δ,D) and µ := maxx|d(x,x0)=1 ∆fr(x).

4.4 Proof of results for elliptic PDEs

We now prove the propositions in section (4.3). As we defined our solution u to be a positive

solution to 4.3.1, which means that u : Mn → R+, we can use the Bochner formula. As in

Brighton [25], we use the transformation h = uϵ. Using this transform, equation (4.3.1) becomes

∆fh+A(x)h log h+ ϵBhϵ
−1(p−1)+1 − (ϵ− 1)

ϵ

|∇h|2

h
= 0. (4.4.1)

Lemma 4.4.1. Let (Mn, g, e−fdν) be an n-dimensional complete smooth metric measure space

with Ricf ≥ −(n− 1)K for a constant K ≥ 0 and R > 1. Suppose u is a positive smooth solution

to (4.3.1) in B(x0, 2R), x0 ∈M is fixed. Then there exists δ such that

1

n
+

2(ϵ− 1)

δϵn
≥ 0 (4.4.2)

and

(ϵ− 1)2

ϵ2n
− (ϵ− 1)

ϵ
+

2δ(ϵ− 1)

ϵn
> 0 (4.4.3)

so that the following inequality holds:

1

2
∆f (|∇h|2) ≥

C2
1

n

|∇h|4

h2
− C1

|∇h|
h

∇(|∇h|2)−

(
(n− 1)K +A(log h+ 1)

+ (p− 1 + ϵ)Bhϵ
−1(p−1)

)
|∇h|2 −

(
∇Ah log h+ ϵ∇Bhϵ

−1(p−1)+1
)
∇h. (4.4.4)

Proof of Lemma 4.4.1. Let uϵ = h, for ϵ ∈ (0, 1). We use the Bochner formula and |∇2h| ≥
1
n (∆h)

2, which will give us an inequality that enables us to find a bound for the gradient.

1

2
∆f (|∇h|2) = |∇2h|+ ⟨∇∆fh,∇h⟩+Ricf (∇h,∇h)

≥ 1

n
(∆h)2 + ⟨∇∆fh,∇h⟩+Ricf (∇h,∇h)
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Taking each of the terms of the inequality above and rearranging, we get

∆fh = ∆h− ⟨∇f,∇h⟩

= ϵ(uϵ−1)∆fu+ ϵ(ϵ− 1)
|∇u|2

u2
uϵ

=
(ϵ− 1)

ϵ

|∇h|2

h
−Ah log h− ϵBhϵ

−1(p−1)+1.

We have used (4.3.1) in the final step. Using the above:

⟨∇h,∇(∆fh⟩ =
〈
∇h,∇

(
(ϵ− 1)

ϵ

|∇h|2

h
−Ah log h− ϵBhϵ

−1(p−1)+1

)〉
=
(ϵ− 1)

ϵ

∇h
h

∇(|∇h|2)− (ϵ− 1)

ϵ

|∇h|4

h2
−∇A∇hh log h−A|∇h|2 log h−A|∇h|2

− ϵ∇B∇hhϵ
−1(p−1)+1 − (p− 1 + ϵ)Bhϵ

−1(p−1)|∇h|2

and

1

n
(∆h)2 =

1

n
(∆fh+ ⟨∇f,∇h⟩)2

=
1

n

(
(ϵ− 1)2

ϵ2
|∇h|4

h2
− 2(ϵ− 1)

ϵ

|∇h|2

h
(⟨∇f,∇h⟩ −Ah log h−

ϵBhϵ
−1(p−1)+1) +

(
⟨∇f,∇h⟩ −Ah log h− ϵBhϵ

−1(p−1)+1
)2)

.

Using the equalities above and the lower bound Ricci estimate Ricf ≥ −(n− 1)K, K ≥ 0, we can

change the Bochner inequality into

1

2
∆f (|∇h|2) ≥

(
(ϵ− 1)2

ϵ2n
− (ϵ− 1)

ϵ

)
|∇h|4

h2
+

2(ϵ− 1)

ϵn

|∇h|2

h

(
⟨∇f,∇h⟩

−Ah log h− ϵBhϵ
−1(p−1)+1

)
+

(ϵ− 1)

ϵ

∇h
h

∇(|∇h|2)

+
1

n

(
⟨∇f,∇h⟩ −Ah log h− ϵBhϵ

−1(p−1)+1

)2

+(
− (n− 1)K −A(log h+ 1)− (p− 1 + ϵ)B(x)hϵ

−1(p−1)

)
|∇h|2

−
(
∇Ah log h+ ϵ∇Bhϵ

−1(p−1)+1
)
∇h.

Focusing on the second term of the inequality above, we will look at two cases on the closed

ball y ∈ B(x0, 2R). First, consider choosing y such that

δ
|∇h|2

h
≥

(
⟨∇f,∇h⟩ −Ah log h− ϵBhϵ

−1(p−1)+1

)
. (4.4.5)
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Noting that (ϵ− 1) < 0, we can use this delta inequality to achieve

1

2
∆f (|∇h|2) ≥

(
(ϵ− 1)2

e2n
− (ϵ− 1)

ϵ
+

2δ(ϵ− 1)

ϵn

)
|∇h|4

h2
+

(ϵ− 1)

ϵ

|∇h|
h

∇(|∇h|2)

+
1

n

(
⟨∇f,∇h⟩ −Ah log h− ϵBhϵ

−1(p−1)+1

)2

+(
− (n− 1)K −A(log h+ 1)− (p− 1 + ϵ)Bhϵ

−1(p−1)

)
|∇h|2

−
(
∇Ah log h+ ϵ∇Bhϵ

−1(p−1)+1
)
∇h. (4.4.6)

The third term is always positive so we can remove this and still satisfy the inequality. Likewise,

if we choose y such that

δ
|∇h|2

h
≤
(
⟨∇f,∇h⟩ −Ah log h− ϵBhϵ

−1(p−1)+1
)
, (4.4.7)

then

1

2
∆f (|∇h|2) ≥

(
(ϵ− 1)2

e2n
− (ϵ− 1)

ϵ

)
|∇h|4

h2
+

2(ϵ− 1)

δϵn

(
⟨∇f,∇h⟩ −Ah log h− ϵBhϵ

−1(p−1)+1

)2

+
(ϵ− 1)

ϵ

|∇h|
h

∇(|∇h|2) + 1

n

(
⟨∇f,∇h⟩ −Ah log h− ϵBhϵ

−1(p−1)+1

)2

+

(
− (n− 1)K −A(log h+ 1)− (p− 1 + ϵ)B(hϵ

−1(p−1)

)
|∇h|2

−
(
∇Ah log h+ ϵ∇Bhϵ

−1(p−1)+1
)
∇h.

We are going to make the further restriction to keep the inner product term positive. For this we

have

1

n
+

2(ϵ− 1)

δϵn
≥ 0. (4.4.8)

Using this and δ |∇h|2
h ≥ 0 gives

1

2
∆f (|∇h|2) ≥

(
(ϵ− 1)2

ϵ2n
− (ϵ− 1)

ϵ

)
|∇h|4

h2
+

2(ϵ− 1)

δϵn

(
δ
|∇h|2

h

)2

+
(ϵ− 1)

ϵ

|∇h|
h

∇(|∇h|2)

+

(
− (n− 1)K −A(log h+ 1)− (p− 1 + ϵ)Bhϵ

−1(p−1)

)
|∇h|2

−
(
∇Ah log h+ ϵ∇Bhϵ

−1(p−1)+1
)
∇h. (4.4.9)

We also want the coefficient of |∇h|4
h2 to be positive. This gives

(ϵ− 1)2

ϵ2n
− (ϵ− 1)

ϵ
+

2δ(ϵ− 1)

ϵn
> 0. (4.4.10)

Next, we introduce a cutoff function introduced in Lemma 4.1.1. This means it takes a positive

value when inside the ball centre x0, radius 2R, but equivalently 0 outside of this. We also introduce
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a function G which obtains its maximum within this ball of centre x0 and radius 2R. This allows

us to use the maximum principle on (4.4.9) for |∇h|. For convenience, we make the coefficient of

|∇h|4
h2 positive. The choice of ϵ must obey (4.4.8) and (4.4.10). Specifically, we choose δ = n

2 as

this means that the last two terms of (4.4.10) cancel. We set C1 = (1−ϵ)
ϵ > 0 for conciseness. Thus

we have:

1

2
∆f (|∇h|2) ≥

C2
1

n

|∇h|4

h2
− C1

|∇h|
h

∇(|∇h|2)−

(
(n− 1)K +A(log h+ 1)

+ (p− 1 + ϵ)Bhϵ
−1(p−1)

)
|∇h|2 −

(
∇Ah log h+ ϵ∇Bhϵ

−1(p−1)+1
)
∇h. (4.4.11)

Proof of Theorem 4.3.1. Now we will use a cutoff function ϕ(s) to allow us to use the maximum

principle on equation (4.4.4).

Let ϕ = ϕ(s) be as defined above in Lemma 4.1.1, and let G = ϕ|∇h|2. Due to the cutoff

function, G(x1) achieves its maximum somewhere in the open ball B(x0, 2R) by the properties of

ϕ. Taking x1 ∈ B(x0, 2R). Let G(x1) > 0, then

∇G = ϕ∇(|∇h|2) +∇ϕ|∇h|2 (4.4.12)

and ∆fG ≤ 0. We then get

0 ≥ϕ∆f (|∇h|2) + |∇h|2∆fϕ+ 2∇ϕ∇(|∇h|2)

≥2ϕ

[
C2

1

n

|∇h|4

h2
− C1

|∇h|
h

∇(|∇h|2)−

(
(n− 1)K +A(log h+ 1) + (p− 1 + ϵ)Bhϵ

−1(p−1)

)
|∇h|2

−
(
∇Ah log h+ ϵ∇Bhϵ

−1(p−1)+1
)
∇h

]
+

∆fϕ

ϕ
G− 2

|∇ϕ|2

ϕ2
G

≥2C2
1

n
ϕ
|∇h|4

h2
− 2C1ϕ

|∇h|
h

∇(|∇h|2)− 2

(
(n− 1)K +A(log h+ 1)

+ (p− 1 + ϵ)Bhϵ
−1(p−1)

)
|∇h|2ϕ− 2

(
∇Ah log h+ ϵ∇Bhϵ

−1(p−1)+1
)
∇hϕ+

∆fϕ

ϕ
G− 2

|∇ϕ|2

ϕ2
G

≥2C2
1

n

G2

ϕh2
+ 2C1

|∇h|
h

∇ϕG
ϕ

− 2

(
(n− 1)K +A(log h+ 1) + (p− 1 + ϵ)Bhϵ

−1(p−1)

)
G

− 2
(
∇Ah log h+ ϵ∇Bhϵ

−1(p−1)+1
)
∇hϕ+

∆fϕ

ϕ
G− 2

|∇ϕ|2

ϕ2
G. (4.4.13)

Multiplying both sides by ϕ
G yields

0 ≥2C2
1

n

G

h2
+ 2C1

|∇h|
h

∇ϕ− 2

(
(n− 1)K +A(log h+ 1) + (p− 1 + ϵ)Bhϵ

−1(p−1)

)
ϕ

− 2
(
∇Ah log h+ ϵ∇Bhϵ

−1(p−1)+1
)
∇h ϕ

G
+∆fϕ− 2

|∇ϕ|2

ϕ
. (4.4.14)

We need to control the second, third, and fourth terms in the previous inequality. For the second
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term, we will impose Young’s inequality:

−∇h
h

∇ϕ ≤ |∇h|
h

|∇ϕ| ≤ γ

2

G

h2
+

1

2γ

|∇ϕ|2

ϕ
. (4.4.15)

For the third term, we will use a max function to eliminate the case in which that term is less

than 0. We use the notation f(x)+ = max(f(x), 0):

(n− 1)K +A(log h+ 1) + (p− 1 + ϵ)Bhϵ
−1(p−1)

≤ (n− 1)K + sup
B(x0,2R)

[(A(log h+ 1))+] + [(p− 1 + ϵ)B]+ sup
B(x0,2R)

hϵ
−1(p−1).

We will deal with the fourth term later in the proof. Now rearranging (4.4.13) and substituting

these in, we obtain

(2C2
1 − γnC1)

2n

G

h2
≤2
(
(n− 1)K + sup

B(x0,2R)

[(A(log h+ 1))+] + [(p− 1 + ϵ)B]+ sup
B(x0,2R)

hϵ
−1(p−1)

)
ϕ

+ 2
(
∇Ah log h+ ϵ∇Bhϵ

−1(p−1)+1
)
∇h ϕ

G
−∆fϕ+

(
4γ + C1

2γ

)
|∇ϕ|2

ϕ
.

We select γ = ϵC1

n . Then

C2
G

h2
≤(n+ 2)

|∇ϕ|2

ϕ
+ 2

(
(n− 1)K + sup

B(x0,2R)

[(A(log h+ 1))+]

+ [(p− 1 + ϵ)B]+ sup
B(x0,2R)

hϵ
−1(p−1)

)
ϕ+ 2

(
∇Ah log h+ ϵ∇Bhϵ

−1(p−1)+1
)
∇h ϕ

G

−∆fϕ. (4.4.16)

We now need to eliminate the derivative terms of ϕ. This is achieved by using the work of [120]

mentioned above; in particular, equations (4.1.1) and (4.1.2). Solving for G, (4.4.16) becomes

G ≤h2
[
C3

R2
+ C4

(
(n− 1)K + sup

B(x0,2R)

[(A(log h+ 1))+] + [(p− 1 + ϵ)B]+ sup
B(x0,2R)

hϵ
−1(p−1)

)
ϕ

+
C5[µ+ (n− 1)K(2R− 1)]

R

)]
+ C6h

2
(
∇Ah log h+ ϵ∇Bhϵ

−1(p−1)+1
)
∇h ϕ

G
. (4.4.17)

Now we deal with the fourth term. We aim to manipulate this term into one where it always

positive but also to deal with the G and |∇h|. We have two cases to look at: the first is when

|∇h| ≥ 1; if this holds, then we can multiply the fourth term by |∇h| and then cancel out the G.

C6

(
∇Ah log h+ ϵ∇Bhϵ

−1(p−1)+1
)
∇h ϕ

G
≤ C6

(
|∇A|h log h+ ϵ|∇B|hϵ

−1(p−1)+1
)
|∇h|2 ϕ

G

≤ C6

(
|∇A| sup

B(x0,2R)

(h| log h|) + ϵ|∇B| sup
B(x0,2R)

hϵ
−1(p−1)+1

)
ϕ. (4.4.18)

When 0 ≤ |∇h| < 1, this approach fails. However, we know that |∇h| is bounded by 1. Using a

max function combines these two scenarios into a single estimate.

Substituting back that h = uϵ, u ≤ supu, G = ϕϵ2h2 |∇u|2
u2 , and looking at each part of the
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max function individually, we find an estimate for u. Finally, we restrict x ∈ B(x0, R), since

G(x) ≤ G(x1). This results in ϕ = 1 and gives our estimate as

|∇u|2

u2
≤max

(
1

ϵ2u2ϵ
,
C7

R2
+ C8

(
(n− 1)K + sup

B(x0,2R)

[(A(ϵ log u+ 1))+]

+ [(p− 1 + ϵ)B]+ sup
B(x0,2R)

up−1
)
+ C9

(
|∇A| sup

B(x0,2R)

(uϵ|ϵ log u|)

+ |∇B| sup
B(x0,2R)

up−1+ϵ
)
+ C10

(µ+ (n− 1)K(2R− 1)

R

))
. (4.4.19)

Next we prove Theorem 4.3.2. This follows a very similar path as Theorem 4.3.1 but varies

when dealing with the |∇h| term towards the end of the proof.

Proof of Theorem 4.3.2. The proof begins identically to that of Theorem 4.3.1 up to (4.4.13). Here,

instead of multiplying by ϕ
G , we multiply by ϕ. We also use that |∇h| ≤ 1 + |∇h|2.

0 ≥2C2
1

n

G2

h2
+ 2C1

|∇h|
h

∇ϕG− 2

(
(n− 1)K +A(log h+ 1) + (p− 1 + ϵ)Bhϵ

−1(p−1)

)
ϕG

− 2
(
∇Ah log h+ ϵ∇Bhϵ

−1(p−1)+1
)
(1 + |∇h|2)ϕ2 +∆fϕG− 2

|∇ϕ|2

ϕ
G.

Then by a similar process to (4.4.15),

∇h
h

∇ϕ ≥ −|∇h|
h

|∇ϕ| ≥ − γG

2h2
− 1

2γ

|∇ϕ|2

ϕ

which gives

0 ≥G2
(2C2

1

nh2
− C2

h2

)
+ C3G

((
(n− 1)K +A(log h+ 1) + (p− 1 + ϵ)Bhϵ

−1(p−1)
)
ϕ

− 1

γ

|∇ϕ|2

ϕ
−
(
∇Ah log h+ ϵ∇Bhϵ

−1(p−1)+1
)
ϕ+∆fϕ− 2

|∇ϕ|2

ϕ

)

−
(
∇Ah log h+ ϵ∇Bhϵ

−1(p−1)+1
)
ϕ.

Now we control the second and third terms:

A(log h+ 1) + (p− 1 + ϵ)Bhϵ
−1(p−1)

≤ sup
B(x0,2R)

([A(log h+ 1)]+) + [(p− 1 + ϵ)]+ sup
B(x0,2R)

Bhϵ
−1(p−1)

and

∇Ah log h+ ϵ∇Bhϵ
−1(p−1) ≤ |∇A| sup

B(x0,2R)

(h| log h|) + ϵ|∇B| sup
B(x0,2R)

hϵ
−1(p−1)+1.
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Our inequality now becomes

0 ≥G2
(2C2

1

nh2
− C2

h2

)
− C3G

((
(n− 1)K + sup

B(x0,2R)

([A(log h+ 1)]+)

+ [(p− 1 + ϵ)]+ sup
B(x0,2R)

Bhϵ
−1(p−1)

)
ϕ+

(
|∇A| sup

B(x0,2R)

(h| log h|)

+ ϵ|∇B| sup
B(x0,2R)

hϵ
−1(p−1)+1

)
ϕ+

C4

R2
+
C5[µ+ (n− 1)K(2R− 1)]

R

)

−
(
|∇A| sup

B(x0,2R)

(h| log h|) + ϵ|∇B| sup
B(x0,2R)

hϵ
−1(p−1)+1

)
ϕ.

This is a quadratic in G which can be solved straightforwardly. Setting

Ψ =
2C2

1

nh2
− C2

h2
,

Ω̃ =
(
(n− 1)K + sup

B(x0,2R)

([A(log h+ 1)]+) + [(p− 1 + ϵ)]+ sup
B(x0,2R)

Bhϵ
−1(p−1)

)
ϕ

+
(
|∇A| sup

B(x0,2R)

(h| log h|) + ϵ|∇B| sup
B(x0,2R)

hϵ
−1(p−1)+1

)
ϕ+

C4

R2

+
C5[µ+ (n− 1)K(2R− 1)]

R
,

and

Θ̃ =
(
|∇A| sup

B(x0,2R)

(h| log h|) + ϵ|∇B| sup
B(x0,2R)

hϵ
−1(p−1)+1

)
ϕ.

Solving this gives

G ≤ 1

2Ψ

(
Ω̃ +

(
Ω̃2 + 4ΨΘ̃

) 1
2
)

≤ Ω̃

Ψ
+

1

2Ψ

(
4ΨΘ̃

) 1
2

(4.4.20)

Transforming back, simplifying, and restricting our radius as before, we observe the desired result.

Remark 4.4.1. It is easy to produce similar corollaries to Theorem 4.3.1 here. For A,B constant,

this method is unnecessary: the gradient terms do not appear, so we do not need to produce a

quadratic in G. This means that for the case when A,B constant, it will give the same result as

that of Theorem 4.3.1.

Next we prove the Yau style estimate.
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Proof of Proposition 4.3.1. Let h = log u. Then

∆fh = ∆(log u)− ⟨∇f,∇(log u)⟩

=
∆fu

u
− |∇u|2

u2

= −(Ah+Beh(p−1))− |∇h|2

and

(∆h)2 =(∆fh+ ⟨∇f,∇h⟩)2

=|∇h|4 − 2|∇h|2(Ah+Beh(p−1) + ⟨∇f,∇h⟩) + (Ah+Beh(p−1)

+ ⟨∇f,∇h⟩)2.

If (4.3.9) then

(∆h)2 ≥|∇h|4 − 2δ|∇h|4 + (Ah+Beh(p−1) + ⟨∇f,∇h⟩)2

≥(1− 2δ)|∇h|4.

If (4.3.10) then

(∆h)2 ≥|∇h|4 − (Ah+Beh(p−1) + ⟨∇f,∇h⟩)2 + (Ah+Beh(p−1)

+ ⟨∇f,∇h⟩)2

≥|∇h|4

≥(1− 2δ)|∇h|4

Then by use of the Bochner formula and following the proof of Theorem 4.3.1 we obtain the desired

result.
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Chapter 5

Li-Yau and Souplet-Zhang

gradient estimates for parabolic

PDEs

In chapter 4 we focused on Li-Yau estimates for elliptic PDEs. A different type of estimate was

introduced by Souplet and Zhang in [107]. These estimates are known as Souplet-Zhang estimates,

and are very similar to Li-Yau estimate; the difference is that they use cutoff functions that have

a dependency on time t. This means that they are specifically used for parabolic estimates.

Lemma 5.0.1. Fix t0 ∈ R and T > 0. We choose τ ∈ (t0−T, t0]. Let ϕ̄ : [0,∞)× [t0−T, t0] → R

such that

0 ≤ ϕ̄(r, t) ≤ 1 (5.0.1)

in [0, R] × [t0 − T, t0] with support, ϕ̄(r, t) = 1 in [0, R/2] × [τ, t0], and ∂rϕ̄(r, t) = 0 in [0, R/2] ×

[t0 − T, t0]. Then

|∂tϕ̄(r, t)| ≤
Cϕ̄

1
2

τ − (t0 − T )
(5.0.2)

in [0,∞)× [t0 − T, t0] for C > 0 and ϕ̄(r, t0 − T ) = 0 for all r ∈ [0,∞). Finally

−Cϵ

R
≤ ∂rϕ̄

ϕ̄ϵ
≤ 0 and

|∂2r ϕ̄|
ϕ̄ϵ

≤ Cϵ

R2
(5.0.3)

in [0,∞)× [t0 − T, t0], Cϵ > 0, and ϵ ∈ (0, 1).

As with our elliptic estimates, we define the specific case ϕ :Mn × [t0 − T, t0] → R such that

ϕ(r, t) = ϕ̄(d(x, x0), t) (5.0.4)
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where d(x, y) is the distance function.

Remark 5.0.1. The Li-Yau estimate for an elliptic PDE and the Souplet-Zhang estimate for a

parabolic PDE find an estimate for the gradient term only. However, if we find a Li-Yau estimate

for a parabolic PDE, this estimate includes a time derivative. Examples of this can be seen in

[3, 108]. We later produce one of these estimates.

5.1 Souplet-Zhang estimate for parabolic PDE

Current research has taken the Souplet-Zhang estimate for the heat equation and, as with elliptic

PDEs, found estimates for non-linear parabolic PDEs. Wu has produced several estimates for

non-linear PDEs as well as different analytical procedures from the subsequent results. [124] looks

at the parabolic heat equation, an extension of [107]. Wu also found estimates for non-linearities

of the Yamabe type problem [126], similar to work by Abolarinwa [5]. See also [65] for a similar

estimate for constant f .

Another non-linearity of interest is that of the logarithmic term, which had been looked at by

a variety of authors [7, 33, 84, 125]. Wang and Zheng in [117] didn’t specify their non-linearity

and found estimates for this general parabolic equation.

Our interest is in finding estimates for

(
∆f − ∂t

)
u(x, t) +A(x, t)u(x, t) log u(x, t) +B(x, t)u(x, t)p = 0 (5.1.1)

which is the corresponding parabolic equation for (4.3.1). This is an extension to the nonlinearities

mentioned above. For B(x, t) ≡ 0 and A constant, we obtain the equation studied in [125].

Our first objective is to find a Souplet-Zhang estimate for (5.1.1). Recall that for a parabolic

PDE, the Souplet-Zhang estimate is a spatial-only estimate, focusing only on the gradient term

for u.

Souplet-Zhang estimates are useful tools because they allow further analysis using ancient

solutions. These are solutions taken over all negative time without singularities. We look at these

further in chapter 7.

Theorem 5.1.1. Let (Mn, g, e−fdν) be an n-dimensional complete smooth metric measure space

with Ricf ≥ −(n−1)K for K ≥ 0 and R > 1 in B(x0, R). Suppose u is a bounded positive smooth

solution to (5.1.1) such that 0 < u ≤ D in Q2R,T = B(x0, 2R) × [t0 − T, t0) ⊂ Mn × (−∞,∞),

where x0 ∈Mn is fixed. Then there exist constants Cn such that the following inequality holds on
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QR,T :

|∇u|2

u2
≤
(
1− log

u

D

)2[
C1 sup

Q2R,T

| log u| 23 sup
Q2R,T

|∇A| 23 + C2 sup
Q2R,T

|up−1| 23 sup
Q2R,T

|∇B| 23 + C3(A+)

+ C4

(
[(p− 1)B]+ +B+

)
sup

Q2R,T

(up−1) +
C5

R2
+ C6(n− 1)K +

C7 sup log(
u
D )4

R4

+
C8

(t− t0 + T )
+
C9

R4
+
C10(µ+)

R
+ (n− 1)

1
2K

]
(5.1.2)

for t ̸= t0 − T .

We follow a similar path laid out in the work by Wu, who used Einstein notation for

directional derivatives: specifically, an orthonormal frame with e1, ..., en at x ∈ Mn with the

covariant differentiations represented by the subscripts 1 ≤ i, j, k ≤ n in ei, ej , ek. Note that

∇ih = hi, ∆h = hii, ∇k∇j∇ih = hijk.

We use the transform h = log u
D , where the constant D is such that 0 < u(x, t) ≤ D and 1 ≤ D.

Then

∆fu =Deh∆h+Deh|∇h|2 −Deh⟨∇f,∇u⟩

=Deh∆fh+D|∇h|2eh

which gives

∆fh− ht +A(x, t)(logD + h) +B(x, t)(Deh)p−1 + |∇h|2 = 0. (5.1.3)

Lemma 5.1.1. Let (Mn, g, e−fdν) be an n-dimensional complete smooth metric measure space

with Ricf ≥ −(n − 1)K for a constant K ≥ 0 and R > 1 in B(x0, R). Suppose u is a bounded

positive smooth solution to (5.1.1) such that 0 < u ≤ D in Q2R,T = B(x0, 2R) × [t0 − T, t0) ⊂

Mn × (−∞,∞), where x0 ∈Mn is fixed. Let h(x, t) be a non-positive function in Q2R,T satisfying

(5.1.3). Then

w = |∇ log(1− h)|2 =
|∇h|2

(1− h)2
(5.1.4)

satisfies

(
∆f − ∂t

)
w ≥− 2∇w∇h+

2∇w∇h
(1− h)

+ 2(1− h)w2 − 2∇h(X)

(1− h)2

− 2|∇h|2((logD + h)A+B(Deh)p−1)

(1− h)3
+

2Ricf (∇h,∇h)
(1− h)2

(5.1.5)

for X = (logD + h)∇A+A∇h+ (Deh)p−1∇B + (p− 1)B(Deh)p−1∇h.

Proof. Let

w = |∇ log(1− h)|2 =
|∇h|2

(1− h)2
. (5.1.6)
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We now calculate

wj =
2hihij
(1− h)2

+
2h2ihj

(1− h)3
(5.1.7)

and

∆w =
2|hij |2

(1− h)2
+

2hihijj
(1− h)2

+
8hihjhij
(1− h)3

+
2h2ihjj
(1− h)3

+
6h2ih

2
j

(1− h)4
.

Using the Ricci identity hijj = hjji +Rijhj we first note that

hjji − fjhij =(hjj − fjhj)i − fijhi

=(∆fh)i − fijhi (5.1.8)

from which it follows that

∆fw =∆w − ⟨∇f,∇w⟩

=
2|hij |2

(1− h)2
+

2hi(∆fh)i
(1− h)2

+
2(Rij + fij)hihj

(1− h)2
+

8hihjhij
(1− h)3

+
2h2i∆fh

(1− h)3
+

6h4i
(1− h)4

. (5.1.9)

Also,

wt =
2hi(ht)i
(1− h)2

+
2h2iht

(1− h)3

=
2∇h(∇∆fh+X)

(1− h)2
+

4hihjhij
(1− h)2

+
2|∇h|4 + 2|∇h|2(∆fh+Ah+Beh(p−1))

(1− h)3
(5.1.10)

for X = (logD+ h)∇A+A∇h+ (Deh)p−1∇B + (p− 1)B(Deh)p−1∇h. Using (5.1.9) and (5.1.10)

(
∆f − ∂t

)
w =

2|hij |2

(1− h)2
+

8hihjhij
(1− h)3

− 4hihjhij
(1− h)2

− 2∇h(X)

(1− h)2
− 2h4i

(1− h)3

− 2h2i (A(logD + h) +B(Deh)(p−1))

(1− h)3
+

6h4i
(1− h)4

+
2(Rij + fij)hihj

(1− h)2
. (5.1.11)

With (5.1.7) we have

0 =− 2wjhj +
4hihjhij
(1− h)2

+
4h2i

(1− h)3
(5.1.12)

and

0 =
2wjhj
(1− h)

− 4hihjhij
(1− h)3

− 4h2i
(1− h)4

. (5.1.13)

Adding (5.1.12) and (5.1.13) to (5.1.11), we obtain

(
∆f − ∂t

)
w =

2|hij |2

(1− h)2
+

4hihjhij
(1− h)3

− 2wjhj +
2wjhj
(1− h)

− 2∇h(X)

(1− h)2
+

2h4i
(1− h)3

− 2h2i ((logD + h)A+ (Deh)(p−1))

(1− h)3
+

2h4i
(1− h)4

+
2(Rij + fij)hihj

(1− h)2
. (5.1.14)
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Next, we use that

2|hij |2

(1− h)2
+

4hihjhij
(1− h)3

+
2h4i

(1− h)4
= 2

(
hij

(1− h)
+

h2i
(1− h)2

)2

≥ 0. (5.1.15)

Combining the above, we have

(
∆f − ∂t

)
w ≥− 2wjhj +

2wjhj
(1− h)

+ 2(1− h)w2 − 2X∇h
(1− h)2

− 2h2i ((logD + h)A+B(Deh)p−1)

(1− h)3

+
2(Rij + fij)hihj

(1− h)2
. (5.1.16)

Proof of Theorem 5.1.1. We now introduce a cutoff function ϕ by using Lemma 5.0.1.

Let t ∈ [t0 − T, t0], and let ϕ(r, t) be the cutoff function defined above. Specifically, let (x1, t1)

be the maximum space-time point of ϕw. Then

∆f (ϕw) ≤ 0, ∇(ϕw) = 0, (ϕw)t ≥ 0. (5.1.17)

Basic calculations give

(
∆f − ∂t

)
(ϕw) = ϕ

(
∆f − ∂t

)
w + 2∇ϕ∇w + w

(
∆f − ∂t

)
ϕ. (5.1.18)

Combining this with (5.1.17) and using ∇ϕ∇w = ∇ϕ
ϕ ∇(ϕw)− |∇ϕ|2

ϕ w, we find that

(
∆f − ∂t

)
(ϕw) ≥ϕ

[
2(1− h)w2 +

2(Rij + fij)hihj
(1− h)2

− 2X∇h
(1− h)2

−
2h2i
(
(logD + h)A+B(Deh)p−1

)
(1− h)3

]
+ 2∇(ϕw)∇h h

1− h

− 2∇ϕ∇hw h

1− h
+ 2

∇ϕ
ϕ

∇(ϕw)− 2
|∇ϕ|2

ϕ
w + w

(
∆f − ∂t

)
ϕ. (5.1.19)

Then, applying the Ricci identity (Rij + fij) ≥ −(n− 1)K,

2ϕ(1− h)w2 ≤2∇ϕ∇hw h

1− h
+

2ϕX∇h
(1− h)2

+
2ϕw

(
(logD + h)A+B(Deh)p−1

)
(1− h)

+ 2ϕ(n− 1)Kw + 2
|∇ϕ|2

ϕ
w − w

(
∆f − ∂t

)
ϕ. (5.1.20)

We now need to control the terms on the right hand side. For the first term, we observe that

2∇h∇ϕw h

1− h
=2h∇ϕw 3

2

≤2|h||∇ϕ|w 3
2

≤2(ϕw2)
3
4
|h||∇ϕ|
ϕ

3
4

≤1

9
ϕw2 +

Ch4

R4
. (5.1.21)
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Note that by the definition of X, it consists of A and B terms, and also contains the gradient

terms of both of these functions. First, we look at the non-gradient terms and also include the

third term in (5.1.20). We also note that 1− h ≥ 1. For the A terms, we have

2ϕw(logD + h)A

1− h
+

2ϕ|∇h|2A
(1− h)2

≤2ϕwA(logD + 1)

(1− h)

≤2ϕwA(logD + 1)

≤1

9
ϕw2 + Cϕ(A+)

2. (5.1.22)

For the B terms, we split the working into two. Firstly, we see that

(
(p− 1) +

1

1− h

)
B ≤ (p− 1)B +

B+

1− h

≤ [(p− 1)B]+ +B+. (5.1.23)

With this, we then get

2ϕwB(Deh)p−1

1− h
+

2ϕ|∇h|2B(p− 1)(Deh)p−1

(1− h)2
≤ 2ϕwB(Deh)p−1

1− h
+ 2ϕwB(p− 1)(Deh)p−1

≤2ϕw
(
[(p− 1)B]+ +B+

)
(Deh)p−1

≤1

9
ϕw2 + Cϕ

(
[(p− 1)B]+ +B+

)2
sup

Q2R,T

((Deh)2(p−1)).

(5.1.24)

Now we examine the gradient terms for A and B which are within X. We start with the ∇A terms:

2ϕ(logD + h)∇h∇A
(1− h)2

≤2ϕ| logD + h||∇A||∇h|
(1− h)2

≤2ϕ| logD + h||∇A|w 1
2

≤2ϕ
1
4w

1
2 (ϕ

3
4 | logD + h||∇A|)

≤1

9
ϕw2 + Cϕ sup

Q2R,T

| logD + h| 43 sup
Q2R,T

|∇A| 43 (5.1.25)

Next, the ∇B terms:

2ϕ∇h∇B(Deh)(p−1)

(1− h)2
≤ 1

10
ϕw2 + Cϕ sup

Q2R,T

|∇B| 43 sup
Q2R,T

|(Deh)(p−1)| 43 . (5.1.26)

For the fourth term, we have

2ϕ(N − 1)Kw ≤2(n− 1)Kϕ
1
2ϕ

1
2w

≤1

9
ϕw2 + C(n− 1)2ϕK2. (5.1.27)
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For the fifth term, we have

2
|∇ϕ|2

ϕ
w ≤2ϕ

1
2w

|∇ϕ|2

ϕ
3
2

≤1

9
ϕw2 + C

( |∇ϕ|2
ϕ

3
2

)2
≤1

9
ϕw2 +

C

R4
. (5.1.28)

Using that

∆fϕ =∆ϕ− ⟨∇f,∇ϕ⟩

=ϕr∆r + |∇r|2ϕrr − ϕr⟨∇f,∇r⟩

=ϕr∆fr + |∇r|2ϕrr (5.1.29)

we can formulate

−w∆fϕ ≤− [ϕr∆fr + ϕrr|∇r|2]w

≤[|ϕrr + (µ+ + (n− 1)K(R− 1)|ϕr|]w

≤ϕ 1
2w

|ϕrr|
ϕ

1
2

+ ϕ
1
2w[µ+ + (n− 1)K(R− 1)]

|ϕr|
ϕ

1
2

≤1

6
ϕw2 +

C

R4
+
C(µ+)

2

R2
+ (n− 1)K2. (5.1.30)

Lastly,

w∂t(ϕ) =ϕ
1
2w

ϕt

ϕ
1
2

≤ 1

18
ϕw2 + C

( ϕt
ϕ

1
2

)2
≤ 1

18
ϕw2 +

C

(τ − t0 + T )2
. (5.1.31)

Combining the previous terms and using that 1− h ≥ 1,

ϕw2 ≤C1ϕ sup
Q2R,T

| logD + h| 43 sup
Q2R,T

|∇A| 43 + C2ϕ sup
Q2R,T

|(Deh)p−1| 43 sup
Q2R,T

|∇B| 43 + C3ϕ(A+)
2

+ C4ϕ
(
[(p− 1)B]+ +B+

)2
sup

Q2R,T

((Deh)2(p−1)) +
C5

R4
+ C6(n− 1)2ϕK2 +

C7 suph
4

R4

+
C8

(τ − t0 + T )2
+
C9

R4
+
C10(µ+)

2

R2
+ (n− 1)K2. (5.1.32)
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The inequality above holds at (x1, t1). Thus

ϕ2w2(x, t) ≤ϕ2w2(x1, t1) ≤ ϕw2(x1, t1)

≤C1ϕ sup
Q2R,T

| logD + h| 43 sup
Q2R,T

|∇A| 43 + C2ϕ sup
Q2R,T

|(Deh)p−1| 43 sup
Q2R,T

|∇B| 43

+ C3ϕ(A+)
2 + C4ϕ

(
[(p− 1)B]+ +B+

)2
sup

Q2R,T

((Deh)2(p−1)) +
C5ϕ

R4

+ C6ϕ(n− 1)2K2 +
C7ϕ suph

4

R4
+

C8ϕ

(τ − t0 + T )2
+
C9ϕ

R4
+
C10ϕ(µ+)

2

R2
+ (n− 1)K2.

(5.1.33)

With ϕ(x, τ) = 1 when d(x, x0) < R and h4

(1−h)4 ≤ 1, it follows that

w(x, τ) ≤ϕw(x, τ) ≤ w(x1, t1)

≤C1 sup
Q2R,T

| logD + h| 23 sup
Q2R,T

|∇A| 23 + C2 sup
Q2R,T

|(Deh)p−1| 23 sup
Q2R,T

|∇B| 23 + C3(A+)

+ C4

(
[(p− 1)B]+ +B+

)
sup

Q2R,T

((Deh)p−1) +
C5

R2
+ C6(n− 1)K +

C7 suph
4

R4

+
C8

(τ − t0 + T )
+
C9ϕ

R4
+
C10(µ+)

R
+ (n− 1)

1
2K. (5.1.34)

Transforming back and noting that our choice of τ was arbitrary,

|∇u|2

u2
≤
(
1− log

u

D

)2[
C1 sup

Q2R,T

| log u| 23 sup
Q2R,T

|∇A| 23 + C2 sup
Q2R,T

|up−1| 23 sup
Q2R,T

|∇B| 23 + C3(A+)

+ C4

(
[(p− 1)B]+ +B+

)
sup

Q2R,T

(up−1) +
C5

R2
+ C6(n− 1)K +

C7 sup log(
u
D )4

R4

+
C8

(t− t0 + T )
+
C9

R4
+
C10(µ+)

R
+ (n− 1)

1
2K
]
. (5.1.35)

5.2 Li-Yau gradient estimates for parabolic PDE

Our estimates so far have been space only gradient estimates; it is possible, though, to also establish

space-time estimates. These estimates are actually Li-Yau estimates [76]. Recent examples can

be found in [118, 129] for the standard Laplace-Beltrami and in [63, 123, 126] for the Witten-

Laplacian. To achieve these estimates, a slightly different transform is used. As before, h = log u
D

is the first transform; however, for the second we use F = t[|∇h|2 − λ(ht − X)], where X is the

non-linearity. Since the transform contains the time derivative of u, that element will also appear

in our final estimate.

For our Li-Yau estimate, we will use the same scaling and bound as we did in Theorem (5.1.1).

One thing also to note is that we are restricted to only using the more general m-Bakry-Emery

tensor, as there are obstacles in the way of using the ∞-Bakry-Emery tensor - see [88] (also
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commented upon in [124, 126]).

Another thing to note is that unlike the Souplet-Zhang estimate for the parabolic equation, the

Li-Yau estimate is only defined over positive time. This means unlike the Souplet-Zhang estimate,

we will not be able to work with ancient solutions.

Theorem 5.2.1. Let (Mn, g, e−fdν) be an n-dimensional complete smooth metric measure space

with Ricmf ≥ −(m − 1)K for a constant K ≥ 0, m < ∞ in B(x0, 2R) for R > 0 and x0 ∈ Mn.

Suppose that u is a bounded positive smooth solution to (5.1.1) in H2R,T = B(x0, 2R)× [0, T ] such

that 0 < u ≤ D for D ≥ 1 with λp > 1 and ϵ ∈ (0, 1). Also let

|∇A| ≤ a1, |∇B| ≤ b1,

∆fA ≥ a2, ∆fB ≥ b2

for positive constants a1, a2, b1, b2. Then the following gradient estimate holds on HR,T :

|∇u|2

u2
− λ

(ut
u

−A log u−Bu(p−1)
)
≤ mλ2

2
Ω +

(
mλ2

2
Θ

) 1
2

(5.2.1)

for

Ω =
C2 + C(m− 1)(1 +R

√
K)

R2
+

1

t
+

tCλ2

(λ− 1)R2
+ (λA)+ + (λ(p− 1)B)+ sup

H2R,T

up−1, (5.2.2)

Θ =C
(
m8ϵ−1λ2(λ− 1)2ϑ4

) 1
3

+
m2

2
(1− ϵ)−1λ2(λ− 1)2K̃2

− a2

(
logD + sup

H2R,T

log
u

D

)
−
− b2

(
inf

H2R,T

up−1
)
−, (5.2.3)

K̃ = (m− 1)K − 1

2
[(λ− 1)(2A− 1)]− − 1

2
[(p− 1)(λp− 1)B]− sup

H2R,T

up−1, (5.2.4)

and

ϑ = a1( sup
H2R,T

log u(λ− 1) + λ)+ + |λp− 1|tb1 sup
H2R,T

up−1. (5.2.5)

As before, we can find a global estimate from the proposition above.

Corollary 5.2.1. Let (Mn, g, e−fdν) be an n-dimensional complete non-compact smooth metric

measure space with Ricmf ≥ −(m − 1)K for K ≥ 0, m < ∞ in Mn and x0 ∈ Mn. Suppose that

u is a bounded positive smooth solution to (5.1.1) in HMn,T ′ = Mn × [0, T ′] for T ′ ∈ R+ \ ∞.

Also let a1, a2, b1, b2, D, K̃, γ, Θ, λ, p, ϵ be as defined above. Then the following global gradient

estimate holds:
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|∇u|2

u2
− λ

(ut
u

−A log u−Bup−1
)
≤mλ

2

2

(
1

t
+ (λA)+ + (λ(p− 1)B)+ sup

HMn,T ′

up−1

)
+

(
mλ2

2
Θ

) 1
2

.

(5.2.6)

We can also use Theorem (5.2.1) to form an estimate for the case where A and B are constants:

Corollary 5.2.2. Let (Mn, g, e−fdν) be an n-dimensional complete smooth metric measure space

with Ricmf ≥ −(m − 1)K for a constant K ≥ 0, m < ∞ in B(x0, 2R) for R > 0 and x0 ∈ Mn.

Suppose that u is a bounded positive smooth solution to (5.1.1) in H2R,T = B(x0, 2R) × [0, T ],

where A and B are non-negative constants, 0 < u ≤ D for D ≥ 1, λ, p > 1, and ϵ ∈ (0, 1). Then

the following gradient estimate holds on B(x0, R)× (0, T ]:

|∇u|2

u2
− λ

(ut
u

−A log u−Bup−1
)
≤ mλ

2
Ω̂ +

(
m2λ2

2
(1− ϵ)−1(λ− 1)2K̂2

) 1
2

(5.2.7)

for

Ω̂ =
[C2 + C(m− 1)(1 +R

√
K)

R2
+

1

t
+

Cλ2

(λ− 1)R2
+ (λA)+ + (λ(p− 1)B)+ sup

H2R,T

up−1
]
,

and

K̂ = (m− 1)K − 1

2
[(λ− 1)(2A− 1)]−.

Lemma 5.2.1. Let (Mn, g, e−fdν) be an n-dimensional complete smooth metric measure space

with Ricmf ≥ −(m−1)K for K ≥ 0, m <∞ in B(x0, 2R) for R > 0 and x0 ∈Mn. Suppose that u

is a bounded positive smooth solution to (5.1.1) in H2R,T = B(x0, 2R)× [0, T ] such that 0 < u ≤ D

for D ≥ 1 with λp > 1 and ϵ ∈ (0, 1). Let h = log u
D be a non-positive solution to (5.1.3) and

F = t
[
|∇h|2 − λ(ht −A(logD + h)−B(Deh)p−1)

]
. Then the following inequality holds:

(∆f − ∂t)F ≥2t

m

(
|∇h|2 +Ah+Beh(p−1) − ht

)2
− F

t
− 2⟨∇h,∇F ⟩ − 2tRicmf ⟨∇h,∇h⟩

+ 2t[h(λ− 1) + logD(λ− 1) + λ]∇A∇h+ λt(logD + h)(∆fA)

+ (λ− 1)(2A− 1)t|∇h|2 − λAF + 2(λp− 1)t∇B∇h(Deh)p−1

+ (p− 1)(λp− 1)tB|∇h|2(Deh)p−1 + λt(∆fB)(Deh)p−1

− λ(p− 1)BF (Deh)p−1. (5.2.8)

Proof. Let h = log u
D for D ≥ 1 such that 0 < u ≤ D, and let F satisfy the Li-Yau transformation

F = t
[
|∇h|2 − λ(ht −A(logD + h)−B(Deh)p−1)

]
, (5.2.9)

where A = A(x, t) and B = B(x, t) are functions of both time and space. By direct computations,
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we have that

∆fF = t
[
∆f (|∇h|2)− λ∆f (ht) + λ∆fX

]
(5.2.10)

where X = Ah+Beh(p−1). Also,

Ft =|∇h|2 − λ
(
ht −A(logD + h)− (Deh)p−1

)
+ t
[
|∇h|2t − λ

(
htt −At(logD + h)−Aht

−Bt(De
h)p−1 −B(p− 1)ht(De

h)p−1
)]
, (5.2.11)

and

∆fht = htt − (|∇h|2)t −At(logD + h)−Aht −Bt(De
h)p−1 −B(p− 1)ht(De

h)p−1, (5.2.12)

and finally,

∆fh =− |∇h|2 + ht +X

=− F

λt
−
(
1− 1

λ

)
|∇h|2. (5.2.13)

Thus by (6.3.5), (5.2.11), (5.2.12), (5.2.13), and (5.1.3)

−λ∆fht + 2⟨∇h,∇∆fh⟩ =
Ft

t
− F

t2
+ 2(λ− 1)∇h∇ht + 2⟨∇h,∇∆fh⟩

=
Ft

t
− F

t2
− 2

t
⟨∇h,∇F ⟩+ 2(λ− 1)⟨∇h,∇X⟩. (5.2.14)

Substituting these into (5.2.10) and using the Bochner formula (see (1.4.8)),

(∆f − ∂t)F ≥t
[2(∆fh)

2

m
+ 2⟨∇h,∇∆fh⟩+ 2Ricmf (∇h,∇h)− λ∆fht + λ∆fX

]
≥− F

t
+

2t

m
(|∇h|2 +X− ht)

2 + 2tRicmf (∇h,∇h)− 2⟨∇h,∇F ⟩

+ 2(λ− 1)t⟨∇h,∇X⟩+ λt∆fX. (5.2.15)

To find an expanded expression usable for the last two terms of (5.2.15) we first compute the

gradient and Laplacian terms for the terms within X:

∇(A(logD + h)) =∇A(logD + h) +A∇h

∆(A(logD + h)) =∆A(logD + h) + 2∇A∇h+A∆h

∆f (A(logD + h)) =(∆fA)(logD + h) + (∆fh)A+ 2∇A∇h (5.2.16)
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and

∇(B(Deh)p−1) =∇B(Deh)p−1 +B(p− 1)∇h(Deh)p−1

∆(B(Deh)p−1) =∆B(Deh)p−1 + 2(p− 1)∇B∇h(Deh)p−1 +B(p− 1)∆h(Deh)p−1

+B(p− 1)2|∇h|2(Deh)p−1

∆f (B(Deh)p−1) =(∆fB)(Deh)p−1 + (∆fh)B(p− 1)(Deh)p−1

+ 2(p− 1)∇B∇h(Deh)p−1 +B(p− 1)2|∇h|2(Deh)p−1. (5.2.17)

Using these we compute an exact form for the last two terms:

2(λ− 1)t⟨∇h,∇(A(logD + h))⟩+ λt∆f (A(logD + h))

=2t[h(λ− 1) + logD(λ− 1) + λ]∇A∇h+ λt(logD + h)(∆fA)− λAF

+ t(λ− 1)(2A− 1)|∇h|2 (5.2.18)

and

2(λ− 1)t⟨∇h,∇(B(Deh)p−1)⟩+ λt∆f (B(Deh)p−1)

=2(λp− 1)t∇B∇h(Deh)p−1 + (p− 1)(λp− 1)tB|∇h|2(Deh)p−1

+ λt(∆fB)(Deh)p−1 − λ(p− 1)BF (Deh)p−1. (5.2.19)

Thus we can rewrite (5.2.15) as

(∆f − ∂t)F ≥2t

m

(
|∇h|2 +X− ht

)2 − F

t
− 2⟨∇h,∇F ⟩ − 2tRicmf ⟨∇h,∇h⟩

+ 2t[h(λ− 1) + logD(λ− 1) + λ]∇A∇h+ λt(logD + h)(∆fA)

+ (λ− 1)(2A− 1)t|∇h|2 − λAF + 2(λp− 1)t∇B∇h(Deh)p−1

+ (p− 1)(λp− 1)tB|∇h|2(Deh)p−1 + λt(∆fB)(Deh)p−1

− λ(p− 1)BF (Deh)p−1. (5.2.20)

Proof of Theorem 5.2.1. We now introduce a cutoff function. This will be as defined as in the

elliptical case; that is, we let ϕ̃(s) ∈ C2(R+) be such that ϕ̃(s) = 1 for s ∈ [0, R] and ˜ϕ(s) = 0 for

s ∈ [2R,∞). The function’s output is limited between ˜ϕ(s) ∈ [0, 1]. From [25] we also know that

the function ϕ̃(s) obeys the following useful inequalities:

0 ≥ |∇ϕ̃(s)|
ϕ̃

1
2 (s)

≥ −C
R

(5.2.21)
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and

ϕ̃′′(s) ≤ C

R2

for some positive constant C. We also let r(x) = d(x, x0), where d(x, x0) is the distance function.

We then define ϕ = ϕ̃(r(x)). We then also get

∆fr ≤ (m+ n− 1)
√
K coth(

√
KR) (5.2.22)

which gives

∆fϕ =
ϕ′∆fr

R
+
ϕ′′|∇r|2

R2

≥ −C(m+ n− 1)
√
K coth(

√
KR)

R
− C

R2

≥ −C(m− 1)(1 +R
√
K)

R2
. (5.2.23)

Let τ ∈ (0, T ]. If ϕF ≤ 0, then the proof is trivial, so we assume that maxϕF ≥ 0 for (x, t) ∈ H2R,T .

Now let (x1, t1) for x1 ∈ B(x0, 2R) and 0 ≤ t1 ≤ τ be the maximum point of ϕF . We then get

∇(ϕF ) = ϕ∇F +∇ϕF = 0, Ft ≥ 0, ∆f (ϕF ) ≤ 0.

Then

(
∆− ∂t

)
(ϕF ) = ϕ

(
∆− ∂t

)
F + 2∇ϕ∇F + F

(
∆− ∂t

)
ϕ. (5.2.24)

As we are looking at a Li-Yau estimate, we have ϕt = 0. Therefore, using the above, we obtain

0 ≥F∆fϕ+ 2⟨∇ϕ,∇F ⟩+ ϕ
(
∆f − ∂t

)
F

≥F∆fϕ− 2F
|∇ϕ|2

ϕ2
+ ϕ

[2t
m

(
|∇h|2 +X− ht

)2 − F

t
− 2⟨∇h,∇F ⟩

− 2t(m− 1)K|∇h|2 + 2t[h(λ− 1) + logD(λ− 1) + λ]∇A∇h− λAF

+ λt(logD + h)(∆fA) + (λ− 1)(2A− 1)t|∇h|2 + 2(λp− 1)t∇B∇h(Deh)p−1

+ (p− 1)(λp− 1)tB|∇h|2(Deh)p−1 + λt(∆fB)(Deh)p−1

− λ(p− 1)BF (Deh)p−1
]
. (5.2.25)

As ∆fϕ was stated previously for the m-Bakry-Emery tensor, we can say:

0 ≥F

[
−C(m− 1)(1 +R

√
K)

R2

]
− 2F

C2

R2
+ ϕ

[2t
m

(
|∇h|2 +X− ht

)2 − F

t
− 2⟨∇h,∇F ⟩

− 2t(m− 1)K|∇h|2 + 2t[h(λ− 1) + logD(λ− 1) + λ]∇A∇h+ λt(logD + h)(∆fA)

− λAF + (λ− 1)(2A− 1)t|∇h|2 + 2(λp− 1)t∇B∇h(Deh)p−1

+ (p− 1)(λp− 1)tB|∇h|2(Deh)p−1 + λt(∆fB)(Deh)p−1 − λ(p− 1)BF (Deh)p−1
]
. (5.2.26)
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Multiplying by t1ϕ and rearranging:

0 ≥− t1ϕF

[
C2 + C(m− 1)(1 +R

√
K)

R2
+

1

t1

]
− Ct1R

−1F |∇h|ϕ 3
2

− ϕt1F
[
λA+ λ(p− 1)B(Deh)p−1

]
+

2t21ϕ
2

m

[ (
|∇h|2 +X− ht

)2
+
m

2

(
(λ− 1)(2A− 1)t+ (p− 1)(λp− 1)tB(Deh)p−1 − 2(m− 1)K

)
|∇h|2

]
− 2t21ϕ

[
[h(λ− 1) + logD(λ− 1) + λ]∇A+ (λp− 1)t1∇B(Deh)p−1

]
|∇h|

+ ϕ2λt21

[
(logD + h)(∆fA) + (∆fB)(Deh)p−1

]
. (5.2.27)

Using the assumptions

|∇A| ≤ a1, |∇B| ≤ b1,

∆fA ≥ a2, ∆fB ≥ b2

for constants a1, a2, b1, and b2, we can write

0 ≥− t1ϕF

[
C2 + C(m− 1)(1 +R

√
K)

R2
+

1

t1

]
− Ct1R

−1F |∇h|ϕ 3
2

− t1ϕF
[
(λA)+ + (λ(p− 1)B)+ sup

H2R,T

up−1
]
+

2t21ϕ
2

m

[ (
|∇h|2 +X− ht

)2
+
m

2

(
t[(λ− 1)(2A− 1)]− + t[(p− 1)(λp− 1)B]− sup

H2R,T

up−1 − 2(m− 1)K
)
|∇h|2

]
− 2t21ϕ

[
a1( sup

H2R,T

log u(λ− 1) + λ)+ + |λp− 1|t1b1 sup
H2R,T

up−1
]
|∇h|

+ ϕ2λt21

[
a2(logD + sup

H2R,T

log
u

D
)− + b2

(
inf

H2R,T

up−1
)
−

]
. (5.2.28)

Using the work of Yau, we will now transform the second and third terms in the above inequality

and make use of the calculations on page 161 and 162 of [76]. This allows us to form and solve a

quadratic in (ϕF ). See also [126]. First, we let

y = ϕ|∇h|2, z = ϕ
(
ht −A log u−Bup−1

)
(5.2.29)

to give the third and fourth terms as

(|∇h|2 +X− ht)
2 − Ct1mR

−1F |∇h|ϕ 3
2 − ϕmK̃|∇h|2 − ϕ

1
2m|∇h|ϑ

= (y − z)2 − Cm

R
y

1
2 (y − λz)− (m)K̃y − (m)ϑy

1
2 (5.2.30)
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for K̃ and ϑ as defined above. Next, we use Li and Yau’s calculations:

V =(y − z)2 − Cm

R
y

1
2 (y − λz)−mK̃y −mϑy

1
2

=(1− ϵ− δ)y2 − (2− ϵλ)yz + z2 +

(
ϵy − Cm

R
y

1
2

)
(y − λz) + δy2 −mK̃y

−mϑy
1
2

=
(
λ− ϵ

2

)
(y − λz)2 +

(
1− ϵ− δ − λ−1 +

ϵ

2

)
y2 +

(
1− λ+

ϵ

2
λ2
)
z2 +

(
ϵy − λ

C

R
y

1
2

)
(y − λz)

+ δy2 −mK̃y −mϑy
1
2 . (5.2.31)

By a choice of δ = (λ−1 − 1)2 and ϵ = 2− 2λ−1 − 2(λ−1 − 1)2 we can state that

V ≥ λ−2(y − λz)2 − C

R2
λ2(λ− 1)−1(y − λz) + λ−2(λ− 1)2y2 −mK̃y −m(λ− 1)ϑy

1
2 , (5.2.32)

where we have used

2λ−2(λ− 1)y − Cm

R
y

1
2 ≥ − C

R2
λ2(λ− 1)−1

for a different constant C.

Focusing on the last three terms:

λ−2(λ− 1)2y2 −mK̃y −m(λ− 1)ϑy
1
2

≥λ−2(λ− 1)2y2 − (1− ϵ)λ−2(λ− 1)2y2 − m2

2
(1− ϵ)−1λ2(λ− 1)−2K̃2

−m(λ− 1)ϑy
1
2

≥ϵλ−2(λ− 1)2y2 − 1

4

(
ϵ

1
4λ−

1
2 (λ− 1)6

1

2
y

1
2

)4
− 3

4

(
ϵ−

1
4m2λ

1
2 (λ− 1)

1
2ϑ
) 4

3

− m2

2
(1− ϵ)−1λ2(λ− 1)2K̃2

≥− m2

2
(1− ϵ)−1λ2(λ− 1)2K̃2 − C

(
m8ϵ−1λ2(λ− 1)2ϑ4

) 1
3

(5.2.33)

for any ϵ ∈ (0, 1).

So we rewrite V as

V ≥λ−2(ϕF )2 − C

R2
λ2(λ− 1)−1(ϕF )− m2

2
(1− ϵ)−1λ2(λ− 1)2K̃2

− C
(
m8ϵ−1λ2(λ− 1)2ϑ4

) 1
3

. (5.2.34)

Hence, we now have a quadratic in ϕF that we can easily solve:

0 ≥Ψ(ϕF )2 − t1Ω(ϕF )− t21Θ (5.2.35)
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for

Ψ =
2

mλ2
, (5.2.36)

Ω =
C2 + C(m− 1)(1 +R

√
K)

R2
+

1

t1
+

t1Cλ
2

(λ− 1)R2
+ (λA)+ + (λ(p− 1)B)+ sup

H2R,T

up−1, (5.2.37)

and

Θ =C
(
m8ϵ−1λ2(λ− 1)2ϑ4

) 1
3

+
m2

2
(1− ϵ)−1λ2(λ− 1)2K̃2

− a2

(
logD + sup

H2R,T

log
u

D

)
−
− b2

(
inf

H2R,T

up−1
)
−. (5.2.38)

Solving this gives the inequality

ϕF ≤ t

2Ψ

(
Ω+

(
Ω2 + 4ΨΘ

) 1
2
)

≤ t

Ψ
Ω+

t

2Ψ

(
4ΨΘ

) 1
2

. (5.2.39)

Now we restrict our estimate onto B(x0, R)× [0, τ ]. This means our cutoff function ϕ ≡ 1. Since

we chose t ∈ [0, τ ] then

sup
B(x0,R)

ϕF (x, τ) ≤ ϕF (x1, t1). (5.2.40)

As our choice of τ was arbitrary, we transform back, and this completes the proof.
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Chapter 6

Gradient estimates involving

time-evolving metric

In the previous estimates, the metric is stationary, and so has no dependency on time. However,

we can produce estimates for a time-evolving metric g(t).

In chapter 1, we discussed two of these metrics: Ricci flow and Yamabe flow. These flows can

be present on Riemannian manifolds. Another flow, which was briefly mentioned but not explored,

is Perelman-Ricci flow. This is a flow specific to a smooth metric measure space and is analogous

to Ricci flow.

Gradient estimates under time-evolving metrics are a new area of research. Most of the

current focus has been on Li-Yau estimates under either Ricci or generalised geometric flow. In

[7], Abolarinwa and Taheri studied the Souplet-Zhang estimates for a parabolic equation with a

powered logarithmic non-linearity on manifolds with time-evolving metric. Here, they specifically

looked at (K,m) Perelman-Ricci flow of the form

1

2

∂g

∂t
+Ricmf (g) = −Kg, (6.0.1)

∂f

∂t
− 1

2
Tr

(
∂g

∂t

)
= 0, (6.0.2)

where Tr is the trace and K and m are fixed constants for m ≥ N . For (0,m) super Perelman-Ricci

flow satisfies

1

2

∂g

∂t
+Ricmf (g) ≥ 0. (6.0.3)

The key step that changes between finding Souplet-Zhang gradient estimates for stationary and
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time-evolving metrics is in the calculation of the time derivative of |∇h|2:

∂

∂t
|∇h|2 =− ∂g

∂t
∇h∇h+ 2∇h∇ht

≤2Ricmf (∇h,∇h) + 2∇h∇ht + 2K|∇h|2 (6.0.4)

As well as [7], Taheri has also produced more results for a general non-linearity F (u) under

Perelman-Ricci flow: see [112, 113].

In this chapter, we find a Souplet-Zhang estimate under Perelman-Ricci flow, before moving on

to finding Li-Yau estimates under generalised geometric flow. We then look at the specific cases

for Ricci, Yamabe, and Perelman-Ricci flow.

6.1 Souplet-Zhang gradient estimate for a time-evolving

metric under Perelman-Ricci flow

Now we will produce a Li-Yau style estimate for (5.1.1) under Perelman-Ricci flow. This will be

for a bounded solution u ≤ D. It is preferable not to have this restriction, so we produce a global

estimate afterward, similar to that found in [7].

Theorem 6.1.1. Let (Mn, g(t), f(t))t∈[0,T ] be a complete solution to (K,m) Perelman-Ricci flow,

(6.0.1). Let u be a bounded solution in H2R,T = B(x0, R)× [0, T ]. Assuming the other conditions

as Theorem 5.1.1 then the following estimate holds on HR,T :

|∇u|2

u2
≤
(
1− log

u

D

)2[
C1 sup

H2R,T

| log u| 23 sup
H2R,T

|∇A| 23 + C2 sup
H2R,T

|up−1| 23 sup
H2R,T

|∇B| 23 + C3(A+)

+ C4

(
[(p− 1)B]+ +B+

)
sup

H2R,T

(up−1) +
C5

R2
+

C6

(t− t0 + T )
+
C7(µ+)

R

+ (n− 1)
1
2K + C9K

]
(6.1.1)

for t ̸= t0 − T

Proof. We follow a similar proof as (5.1.1). We calculate as above:

∆fw =
2|hij |2

(1− h)2
+

2hi(∆fh)i
(1− h)2

+
2(Rij + fij)hihj

(1− h)2
+

8hihjhij
(1− h)3

+
2h2i∆fh

(1− h)3
+

6h4i
(1− h)4

(6.1.2)
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and

wt =− ∂tghihj
(1− h)2

+
2hi(ht)i
(1− h)2

+
2h2iht

(1− h)3

=
2(Rij + fij)

(1− h)2
+

2kh2i
(1− h)2

+
2hi(ht)i
(1− h)2

+
2h2iht

(1− h)3

=
2(Rij + fij)

(1− h)2
+

2kh2i
(1− h)2

+
2∇h(∇∆fh+X)

(1− h)2
+

4hihjhij
(1− h)2

+
2|∇h|4 + 2|∇h|2(∆fh+Ah+Beh(p−1))

(1− h)3
. (6.1.3)

Hence we can write the parabolic equation

(
∆f − ∂t

)
w ≥− 2wjhj +

2wjhj
(1− h)

+ 2(1− h)w2 − 2X∇h
(1− h)2

− 2h2i ((logD + h)A+B(Deh)p−1)

(1− h)3
− 2kh2i

(1− h)2
(6.1.4)

where we have used (5.1.12), (5.1.13), and (5.1.15) from above.

The rest of the proof follows as with a stationary metric, with the addition of the following

inequality during the control stage of the proof:

ϕKw ≤ϕ 1
2Kϕ

1
2w

≤ 1

20
ϕw2 + CϕK2.

In our previous estimates, we have bounded u ≤ D, so we are always able to expand our

local estimate to a global one by sending R → ∞. Abolarinwa and Taheri showed in [7] that we

can compute a global estimate for the (0,m) super Perelman-Ricci flow without the need for this

bounding. This is done by creating an equation in Ψ = t|∇u|2 + νu2 upon which we apply the

maximum principle.

Proposition 6.1.1. Let (Mn, g(t), f(t))t∈[0,T ] be a complete compact solution to (0,m) super

Perelman-Ricci flow, (6.0.3). Let u be a positive solution to (5.1.1) where A and B are non-

positive constants and p ≥ 0. Then if u ≥ 1,

|u(x, t)|2 + 2t|∇u(x, t)|2 ≤ sup
Mn

|u(x, 0)|2. (6.1.5)

Proof. Through basic calculations,

(|∇u|2)t ≤2Ricf (∇u,∇u)2k|∇u|2 + 2∇u∇(∆fu+Au log u+Bup)

≤2Ricf (∇u,∇u)2k|∇u|2 + 2∇u∇∆fu+ 2∇u∇(Au log u+Bup)

≤2|∇u|2 + 2∇u∇(Au log u+Bup) + ∆f (|∇u|2)− 2|∇2u|2. (6.1.6)
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Above, we have used the Bochner formula to produce the third line. Using ∆f (u
2) = 2|∇u|2 +

2u∆fu:

(u2)t =2uut

=2u(∆fu+ (Au log u+Bup))

=2u(Au log u+Bup) + ∆f (u
2)− 2|∇u|2. (6.1.7)

Let Ψ = t|∇u|2 + ηu2. Then we can compute:

Ψt ≤t(2|∇u|2 + 2∇u∇(Au log u+Bup) + ∆f (|∇u|2)− 2|∇2u|2)|∇u|2

+ η(2u(A log u+ bup) + ∆f (u
2)− 2|∇u|2)

≤∆fΨ+ (1 + 2kt− 2η)|∇u|2 + 2t∇u∇(Au log u+Bup)

+ 2ηu(Au log u+Bup). (6.1.8)

Choosing η = 1
2 and k = 0,

Ψt ≤∆fΨ+ 2t∇u∇(Au log u+Bup) + u(Au log u+Bup)

≤∆fΨ+ 2t(A|∇u|2 log u+A|∇u|2 +Bp|∇u|2up−1) + u(Au log u+Bup). (6.1.9)

If u ≥ 1, then the logarithmic terms are positive. Hence with p ≥ 0 and A,B ≤ 0,

Ψt ≤ ∆fΨ (6.1.10)

and we apply the maximum principle for Ψ.

6.2 Li-Yau gradient estimate for geometric flow on a

Riemannian manifold

Li-Yau estimates for time-evolving metrics for parabolic PDEs are also obtainable. Sun found

an estimate for the heat equation in [108], and, later, Abolarinwa found an estimate for the heat

equation with non-linearity of a function of time and space [3]. These estimates require that the

flow is bounded. For this we set

Ric ≥ −C1g, (6.2.1)

−C2g ≤ R ≤ C3g, (6.2.2)

|∇R| ≤ C4, (6.2.3)
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for constants Cn, where R is a (0, 2) tensor produced by the generalised geometric flow

∂

∂t
gij(x, t) = 2Rij(x, t).

Even as the metric evolves, these bounds are preserved.

Remark 6.2.1. The estimates where we have generalised geometric flow as well as Ricci and

Yamabe flow are all done on a manifold opposed to a smooth metric measure space.

Theorem 6.2.1. Let (Mn, g(t))t∈[0,T ] be a complete solution to the generalised geometric flow

with Ric ≥ −C1g for C1 ≥ 0, −C2g ≤ R ≤ C3g and |∇R| ≤ C4 for C1, C2, C3, C4 ≥ 0, m < ∞

in B(x0, 2R) for R > 0 and x0 ∈ Mn. Suppose that u is a bounded positive smooth solution to

(5.1.1) in H2R,T = B(x0, 2R)× [0, T ] such that 0 < u ≤ D for D ≥ 1. Also let

|∇A| ≥ a1, |∇B| ≥ b1,

∆A ≤ a2, ∆B ≤ b2

for positive constants a1, a2, b1, b2. Then the following gradient estimate holds on B(x0, R)×(0, T ]

with λ, p > 1 and ϵ ∈ (0, 1):

|∇u|2

u2
− λ

(ut
u

−A log u−Bup−1
)
≤ nλ2

2
Ω̃ +

(
nλ2

2
Θ̃

) 1
2

(6.2.4)

for

Ω̃ =
C2 + Cn(1 +R

√
K)

R2
+

1

t
+A+ + [B(p− 1)]+ sup

H2R,T

up−1 +
tCλ2

(λ− 1)R2
, (6.2.5)

Θ̃ =C
(
n8ϵ−1λ2(λ− 1)2ϑ̃4

) 1
3

+
n2

2
(1− ϵ)−1λ2(λ− 1)2S2 + λ2n(C2 + C3)

2

+ λta2 sup
H2R,T

(log u)+ + λtb2 sup
H2R,T

up−1, (6.2.6)

S =2n
(
(λ− 1)C3 + C1n

)
+ nλ

(
1 +

1

λ

)
+ nλ

(
1 +

1

λ

)
[B(p− 1)]+ sup

H2R,T

u(p−1)

+ nλtB+(p− 1)2 sup
H2R,T

up−1, (6.2.7)

and

ϑ̃ = 3
√
nC4 + 2λta1 + λtb1(p− 1) sup

H2R,T

up−1.

As generalised geometric flow is a general flow, Theorem 6.2.1 will later be used for specific

choices of flow, including Ricci and Yamabe flow. Additionally, for a smooth metric measure space

with f(t) which is constant in x, this estimate can also be used for Perelman-Ricci flow.

Lemma 6.2.1. Let (Mn, g(t))t∈[0,T ] be a complete solution to the generalised geometric flow with
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Ric ≥ −nC1g for C1 ≥ 0, −C2g ≤ R ≤ C3g and |∇R| ≤ C4 for C1, C2, C3, C4 ≥ 0, m < ∞ in

B(x0, 2R) for R > 0 and x0 ∈Mn. Suppose that u is a bounded positive smooth solution to (5.1.1)

in H2R,T = B(x0, 2R) × [0, T ] such that 0 < u ≤ D for D ≥ 1. Let h = log u
D be a non-positive

solution to (5.1.3) and F = t
[
|∇h|2 − λ(ht −A(logD + h)−B(Deh)p−1)

]
. Then the following

inequality holds:

(
∆− ∂

∂t

)
F ≥− 2⟨∇h,∇F ⟩+ t

n
(|∇h|2 − ht +X)2 − 2((λ− 1)C3 + C1n)t|∇h|2

− 3
√
ntC4|∇h|+ λt

((
1 +

1

λ

)
A|∇h|2 − F

λt
A+

(
1 +

1

λ

)
B(p− 1)|∇h|2(Deh)p−1

− F

λt
B(p− 1)(Deh)p−1 +∆A(logD + h) + 2∇A∇h+∆B(Deh)p−1

+B(p− 1)2|∇h|2(Deh)p−1 +∇B(p− 1)|∇h|(Deh)p−1

)

− (|∇h|2 − λ(ht −X))− λ2n(C2 + C3)
2.

Proof. Let h = log u
D for D ≥ 1 such that 0 < u ≤ D, and let F satisfy the Li-Yau transformation

F = t
[
|∇h|2 − λ(ht −A(logD + h)−B(Deh)p−1)

]
, (6.2.8)

where A = A(x, t) and B = B(x, t) are functions of both time and space. By direct computations,

2t⟨∇∆h,∇h⟩ =2t⟨∇(ht)−∇(|∇h|2)−∇X,∇h⟩

=− 2⟨∇F,∇h⟩+ 2t
[
⟨∇(ht),∇h⟩ − ⟨∇X,∇h⟩+ λ⟨∇X,∇h⟩ − λ⟨∇(ht),∇h⟩

]
=− 2⟨∇F,∇h⟩+ t

[
(1− λ)(|∇h|2)t + (1− λ)R(∇h,∇h)

]
.

Using this we calculate

∆F =t
[
∆(|∇h|2)− λ(∆(ht)−∆X)

]
=t
[
2⟨∇∆h,∇h⟩+ 2|∇2h|2 + 2Ric(∇h,∇h)− λ(∆(ht)−∆X)

]
=t
[
2⟨∇(ht − |∇h|2 −X),∇h⟩+ 2|∇2h|2 + 2Ric(∇h,∇h) + λ

(
(|∇h|2)t − htt +Xt

)
− 2λ⟨R,∇2h⟩ − 2λ⟨∇ · R − 1

2
(Trg R),∇h⟩+ λ∆X

]
=− 2⟨∇h,∇F ⟩+ 2t

[
|∇2h|2 +Ric(∇h,∇h) + (1− λ)R(∇h,∇h)− λ⟨R,∇2h⟩

− λ⟨∇ · R − 1

2
(Trg R),∇h⟩

]
+ λt∆X+ t(|∇h|2)t − λthtt + λtXt,

and

Ft = |∇h|2 − λ[ht −X] + t
[
(|∇h|2)t − λhtt + λXt

]
,
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where we have set X = A(logD + h) +B(Deh)p−1 for convenience. Next we calculate:

(
∆− ∂

∂t

)
F =− 2⟨∇h,∇F ⟩+ 2t

[
|∇2h|2 +Ric(∇h,∇h) + (1− λ)R(∇h,∇h)− λ⟨R,∇2h⟩

− λ⟨∇ · R − 1

2
(Trg R),∇h⟩

]
+ λt∆X− (|∇h|2 − λ(ht −X)).

From our assumptions

|R|2 ≤|g|2(C2 + C3)
2

≤n(C2 + C3)
2.

Also, by an application of Young’s inequality

|λ⟨R, |∇2h|⟩| ≤1

2
|∇2h|2 + 1

2
λ2|R|2

≤1

2
|∇2h|2 + 1

2
λ2n(C2 + C3)

2,

and

|∇ · R − 1

2
∇(Trg R)| ≤|gij(∇iRjl −

1

2
∇lRij)|

≤3

2
|g||∇R|

≤3

2

√
nC4.

Finally

|∇2h|2 ≥ 1

n
(∆h)2

≥ 1

n
(|∇h|2 − ht +X)2.

Hence we can write:

(
∆− ∂

∂t

)
F ≥− 2⟨∇h,∇F ⟩+ t

n
(|∇h|2 − ht +X)2 − 2((λ− 1)C3 + C1n)t|∇h|2

− 3
√
ntC4|∇h|+ λt∆X− (|∇h|2 − λ(ht −X))− λ2n(C2 + C3)

2.

Before being able to use the cutoff function, we need to first access the ∆X term, as this has the

slightly obscured problem of containing ∆h terms:

∆X =∆A(logD + h) + 2∇A∇h+A∆h+∆B(Deh)p−1 +B(p− 1)∆h(Deh)p−1

+B(p− 1)2|∇h|2(Deh)p−1 +∇B(p− 1)|∇h|(Deh)p−1.
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Focusing first on the A∆h term:

A∆h =A[|∇h|2 − ht +A(logD + h) +B(Deh)p−1]

=A|∇h|2 +A2(logD + h) +AB(Deh)p−1 −A

(
1

λ

(F
t
− |∇h|2

)
+X

)

=
(
1 +

1

λ

)
A|∇h|2 − F

λt
A.

Similarly for the B∆h term:

B(p− 1)∆h(Deh)p−1 =B(p− 1)[|∇h|2 − ht +A(logD + h) + (Deh)p−1](Deh)p−1

=B(p− 1)|∇h|2(Deh)p−1 +AB(p− 1)(logD + h)(Deh)p−1

+B2(p− 1)2(Deh)2(p−1) −B(p− 1)(Deh)p−1

(
1

λ

(F
t
− |∇h|2

)
+X

)

=
(
1 +

1

λ

)
B(p− 1)|∇h|2(Deh)p−1 − F

λt
B(p− 1)(Deh)(p−1).

So we get

(
∆− ∂

∂t

)
F ≥− 2⟨∇h,∇F ⟩+ t

n
(|∇h|2 − ht +X)2 − 2((λ− 1)C3 + C1n)t|∇h|2

− 3
√
ntC4|∇h|+ λt

((
1 +

1

λ

)
A|∇h|2 − F

λt
A+

(
1 +

1

λ

)
B(p− 1)|∇h|2(Deh)p−1

− F

λt
B(p− 1)(Deh)p−1 +∆A(logD + h) + 2∇A∇h+∆B(Deh)p−1

+B(p− 1)2|∇h|2(Deh)p−1 +∇B(p− 1)|∇h|(Deh)p−1

)
− (|∇h|2 − λ(ht −X))

− λ2n(C2 + C3)
2.

Now we can finish the proof of Theorem 6.2.1.

Proof of Theorem 6.2.1. Now we can introduce the cutoff function. Fix T > 0 and choose τ ∈

(0, T ]. Let ϕ̄ : [0,∞)× [0, T ] → R be such that

0 ≤ ϕ̄(r, t) ≤ 1 (6.2.9)

in [0, R] × [0, T ] with support, ϕ̄(r, t) = 1 in [0, R/2] × [τ, T ] and ∂rϕ̄(r, t) = 0 in [0, R/2] × [0, T ],

and ϕ̄(r, 0) = 0 for all r ∈ [0,∞). Then

−Cϵ

R
≤ ∂rϕ̄

ϕ̄ϵ
≤ 0 and

|∂2r ϕ̄|
ϕ̄ϵ

≤ Cϵ

R2
(6.2.10)

in [0,∞)× [0, T ], Cϵ > 0, and ϵ ∈ (0, 1). Let ϕ :Mn × [0, T ] → R be

ϕ(r, t) = ϕ̄
(d(x, x0, t)

R

)
, (6.2.11)
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where d(x, y, t) is the distance function. As d(x, x0, t) is Lipschitz continuous, we have |∇d| = 1.

Also

∂

∂t
d(x, x0, t) =

ˆ
γ

Rij(S, S)ds (6.2.12)

so

∂

∂t
ϕ =

ϕ̄′

R

∂

∂t
d(x, x0, t)

=
ϕ̄′

R

ˆ
γ

Rij(S, S)ds

≤
√
CC3, (6.2.13)

where γ is the geodesic connecting x and x0 under the metric at time t1, S is the unit tangent

vector to γ, and s is the arc length. See [56] section 12 for more detail. Then, by straightforward

inequalities, we have

−ϕtF ≥ −
√
CC3F. (6.2.14)

Further details can be found in [36].

As previously,

∆ϕ =
ϕ′∆r

R
+
ϕ′′|∇r|2

R2

≥ −Cn
√
K coth(

√
Kr)

R
− C

R2

≥ −Cn(1 +R
√
K)

R2
. (6.2.15)

Let t ∈ (0, T ] and let ϕ(r, t) be the cutoff function defined above. Specifically, let (x1, t1) be the

maximum space-time point of ϕF . Then

∆(ϕF ) ≤ 0, ∇(ϕF ) = 0, (ϕF )t ≥ 0. (6.2.16)

Basic calculations give

(
∆− ∂t

)
(ϕF ) = ϕ

(
∆− ∂t

)
F + 2∇ϕ∇F + F

(
∆− ∂t

)
ϕ. (6.2.17)

When F (x1, t1) ≤ 0, the proof is trivial, so we consider the case when F (x1, t1) > 0 for t1 > 0. In
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this case, we have

0 ≥ϕ

[
− 2⟨∇h,∇F ⟩+ t1

n
(|∇h|2 − ht +X)2 − 2((λ− 1)C3 + C1n)t1|∇h|2

− 3
√
nt1C4|∇h|+ λt1

((
1 +

1

λ

)
A|∇h|2 − F

λt1
A+

(
1 +

1

λ

)
B(p− 1)|∇h|2(Deh)p−1

− F

λt1
B(p− 1)(Deh)p−1 + |∆A|(logD + h) + 2|∇A||∇h|+ |∆B|(Deh)p−1

+B(p− 1)2|∇h|2(Deh)p−1 + |∇B|(p− 1)|∇h|(Deh)p−1

)

− (|∇h|2 − λ(ht −X))− λ2n(C2 + C3)
2

]
− 2F

|∇ϕ|
ϕ

−
√
CC3F + F∆ϕ.

Multiplying both sides by (ϕt1) and rearranging:

0 ≥− ϕt1

(
C2 + Cn(1 +R

√
K)

R2
+
ϕ

t1
+A+B(p− 1)(Deh)p−1

)
F − 2Ct1

R
F |∇h|ϕ 3

2

+
ϕ2t21
n

(
(|∇h|2 − ht +X)2 +

[
− 2n((λ− 1)C3 + C1n) + nλ

(
1 +

1

λ

)
A

+ nλ
(
1 +

1

λ

)
B(p− 1)(Deh)p−1 + nλt1B(p− 1)2(Deh)p−1

]
|∇h|2

)

− ϕ2t21

(
3
√
nC4 − 2λ|∇A| − λ|∇B|(p− 1)(Deh)p−1

)
|∇h|

− ϕ2t1

(
ϕλ2n(C2 + C3)

2 + λt1|∆A|(logD + h) + λt1|∆B|(Deh)p−1
)
.

As with the non-evolving metric, we will let y = ϕ|∇h|2 and z = ϕ
(
ht − A log u − Bu(p−1)

)
. By

basic inequalities,

−2n((λ− 1)C3 + C1n) + nλ
(
1 +

1

λ

)
+ nλ

(
1 +

1

λ

)
B(p− 1)(Deh)p−1 + nλt1B(p− 1)2(Deh)p−1

≥− 2n((λ− 1)C3 + C1)− nλ
(
1 +

1

λ

)
− nλ

(
1 +

1

λ

)
[B(p− 1)]+ sup

H2R,T

up−1

− nλt1B+(p− 1)2 sup
H2R,T

up−1

=−S

and

−3
√
nC4 + 2λt1|∇A|+ λt1|∇B|(p− 1)(Deh)p−1 ≥− 3

√
nC4 − 2λt1a1 − λt1b1(p− 1) sup

H2R,T

up−1

=− ϑ.

Following along the same lines as the proof for the time-independent metric, we conclude the proof.
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6.3 Li-Yau gradient estimate for specific flows

Theorem 6.2.1 focuses on equation (5.1.1) on generalised geometric flow. There a limited amount

of research on the area for Li-Yau gradient estimates on this flow for parabolic PDEs, see [3, 108].

Now we are going consider what happens when the flow in question is either Ricci flow or Yamabe

flow. Estimates of this type can be seen in [2, 14, 79] and [133] respectively.

We start this section by looking at the gradient estimate for (5.1.1) under Ricci flow.

Theorem 6.3.1. Let (Mn, g(t))t∈[0,T ] be a complete solution to the Ricci flow equation with Ric ≥

−C1g for C1 ≥ 0 and −C2g ≤ Ric ≤ C3g for C1, C2, C3 ≥ 0, m < ∞ in B(x0, 2R) for R > 0

and x0 ∈ Mn. Suppose that u is a bounded positive smooth solution to (5.1.1) in H2R,T =

B(x0, 2R)× [0, T ] such that 0 < u ≤ D for some D ≥ 1. Also let

|∇A| ≥ a1, |∇B| ≥ b1,

∆A ≤ a2, ∆B ≤ b2

for positive constants a1, a2, b1, b2. Then the estimate (6.3.1) holds on B(x0, R) × (0, T ] with

C4 ≡ 0.

Remark 6.3.1. The lack of requirement for C4 is due to Lemma 1.5.1, in particular the effect of

the contracted second Bianchi identity.

Next, we look at an estimate for Yamabe flow. Zhang in [133] produced a workable approach,

but we instead alter the method for the generalised geometric flow for the specific case of Yamabe

flow.

Theorem 6.3.2. Let (Mn, g(t))t∈[0,T ] be a complete solution to Yamabe flow with Ric ≥ −C1g,

−C2g ≤ S ≤ C3g and |∇S| ≤ C4 for C1, C2, C3, C4 ≥ 0, m <∞ in B(x0, 2R) for R > 0 and x0 ∈

Mn. Suppose that u is a bounded positive smooth solution to (5.1.1) in H2R,T = B(x0, 2R)× [0, T ]

such that 0 < u ≤ D for D ≥ 1. Also let

|∇A| ≥ a1, |∇B| ≥ b1,

∆A ≤ a2, ∆B ≤ b2

for positive constants a1, a2, b1, b2. Then the following gradient estimate holds on B(x0, R)×(0, T ]

with λ, p > 1 and ϵ ∈ (0, 1):

|∇u|2

u2
− λ

(ut
u

−A log u−Bup−1
)
≤ nλ2

2
Ω̃ +

(
nλ2

2
Θ̃

) 1
2

(6.3.1)
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for

Ω̃ =
C2 + Cn(1 +R

√
K)

R2
+

(1 + C2)

t
+A+ + [B(p− 1)]+ sup

H2R,T

up−1 +
tCλ2

(λ− 1)R2
, (6.3.2)

Θ̃ =C
(
n8ϵ−1λ2(λ− 1)2ϑ̃4

) 1
3

+
n2

2
(1− ϵ)−1λ2(λ− 1)2S2 + λ2n(C2 + C3)

2 +
λ2(n− 2)2

2
C2

4

+ λta2 sup
H2R,T

(log u)+ + λtb2 sup
H2R,T

up−1, (6.3.3)

S =2n
(
(λ− 1)C3 + C1n+

1

2

)
+ nλ

(
1 +

1

λ

)
+ nλ

(
1 +

1

λ

)
[B(p− 1)]+ sup

H2R,T

u(p−1)

+ nλtB+(p− 1)2 sup
H2R,T

up−1, (6.3.4)

and

ϑ̃ = 2λta1 + λtb1(p− 1) sup
H2R,T

up−1.

Proof. Let h = log u
D for D ≥ 1 such that 0 < u ≤ D. Let F satisfy the Li-Yau transformation

F = t
[
|∇h|2 − λ(ht −A(logD + h)−B(Deh)p−1)

]
(6.3.5)

where A = A(x, t) and B = B(x, t) are functions of both time and space. By direct computations,

2t⟨∇∆h,∇h⟩ =2t⟨∇(ht)−∇(|∇h|2)−∇X,∇h⟩

=− 2⟨∇F,∇h⟩+ 2t
[
⟨∇(ht),∇h⟩ − ⟨∇X,∇h⟩+ λ⟨∇X,∇h⟩ − λ⟨∇(ht),∇h⟩

]
=− 2⟨∇F,∇h⟩+ t

[
(1− λ)(|∇h|2)t + (1− λ)S|∇h|2

]
.

Using this, we can calculate

∆F =t
[
∆(|∇h|2)− λ(∆(ht)−∆X)

]
=t
[
2⟨∇∆h,∇h⟩+ 2|∇2h|2 + 2Ric(∇h,∇h)− λ(∆(ht)−∆X)

]
=t
[
2⟨∇(ht − |∇h|2 −X),∇h⟩+ 2|∇2h|2 + 2Ric(∇h,∇h) + λ

(
(|∇h|2)t − htt +Xt

)
− n− 2

2
⟨∇h,∇S⟩+ S∆h+ λ∆X

]
=− 2⟨∇h,∇F ⟩+ 2t

[
|∇2h|2 +Ric(∇h,∇h) + (1− λ)S|∇h|2 − λ(n− 2)

2
⟨∇h,∇S⟩

+ λS∆h
]
+ λt∆X+ t(|∇h|2)t − λthtt + λtXt

and Ft as before. Next, we calculate

(
∆− ∂

∂t

)
F =− 2⟨∇h,∇F ⟩+ 2t

[
|∇2h|2 +Ric(∇h,∇h) + (1− λ)S|∇h|2

− λ(n− 2)

2
⟨∇h,∇S⟩+ λS∆h

]
+ λt∆X− (|∇h|2 − λ(ht −X)).
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Also, we can calculate that

|λ(n− 2)⟨∇h,∇S⟩ ≤1

2
|∇h|2 + λ2(n− 2)2

2
|∇S|2

≤1

2
|∇h|2 + λ2(n− 2)2

2
C2

4 .

Hence we can write

(
∆− ∂

∂t

)
F ≥− 2⟨∇h,∇F ⟩+ t

n
(|∇h|2 − ht +X)2 − 2((λ− 1)C3 + C1n− 1

2
)t|∇h|2 + λt∆X

− (1 + C2)(|∇h|2 − λ(ht −X))− λ2n(C2 + C3)
2 − λ2(n− 2)2

2
C2

4 .

The rest of the proof follows similarly to the proof of Theorem 6.2.1.

Finally, we state an estimate for Perelman-Ricci flow. For this flow, we need to be working on

a smooth metric measure space. As yet, there are no pre-existing estimates for a parabolic PDE

under Perelman-Ricci flow. For our estimates, we have chosen f(t) in our measure to be a function

of t alone, with no dependency on x.

Remark 6.3.2. Theorems 6.3.1 and 6.3.2 are also valid on a smooth metric measure space when

f(t) is a function of time alone.

Lemma 6.3.1. Let g(t) be a smooth family of metrics that solve (6.0.1). Then

gij
∂

∂t
Γk
ij = 0. (6.3.6)

Proof. As with the generalised geometric flow,

∂

∂t
Γk
ij =

1

2

∂

∂t
gkl
( ∂

∂xi
gjl +

∂

∂xj
gil −

∂

∂xl
gij

)
+

1

2
gkl
( ∂

∂xi

∂

∂t
gjl +

∂

∂xj

∂

∂t
gil −

∂

∂xl

∂

∂t
gij

)
.

Then at an arbitrary point z ∈MN , Γk
ij(z) = 0. This gives ∂

∂xa
gbc(z) = 0 and then

gij
∂

∂t
Γk
ij =

1

2
gijgkl

( ∂

∂xi

∂

∂t
gjl +

∂

∂xj

∂

∂t
gil −

∂

∂xl

∂

∂t
gij

)
.

Using (6.0.1)

gij
∂

∂t
Γk
ij =− 1

2
gijgkl

( ∂

∂xi
(Ricjl +Kgjl) +

∂

∂xj
(Ricil +Kgil)−

∂

∂xl
(Ricij +Kgij)

)
=− 1

2
gijgkl

(
∇iRicjl +∇jRicil −∇lRicij

)
− 1

2
Kgijgkl(∇igjl +∇jgil −∇lgij

)
=− 1

2
gklgij

(
2∇iRicjl −∇lS

)
− 1

2
KgijΓk

ij .

Since z was arbitrary, we have Γk
ij(z) = 0, and, by the contracted second Bianchi identity, the first

term is also zero.
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Lemma 6.3.2. Let g(t) be a smooth family of metrics that solve (6.0.1). Then

∂

∂t
∆u = ∆ut + 2⟨Ric+K,∇2u⟩. (6.3.7)

Theorem 6.3.3. Let (Mn, g(t), e−f(t)dν)t∈[0,T ] be a complete solution to the Perelman-Ricci flow

with Ricmf ≥ −(m − 1)C1g and −C2g ≤ Ricmf ≤ C3g for C1, C2, C3 ≥ 0, m < ∞ in B(x0, 2R)

for R > 0 and x0 ∈ Mn. Suppose that u is a bounded positive smooth solution to (5.1.1) in

H2R,T = B(x0, 2R) × [0, T ] such that 0 < u ≤ D for D ≥ 1. Also suppose that f(t) is a function

of time alone. Now let

|∇A| ≥ a1, |∇B| ≥ b1,

∆A ≤ a2, ∆B ≤ b2

for positive constants a1, a2, b1, b2. Then the following gradient estimate holds on B(x0, R)×(0, T ]

with λ, p > 1 and ϵ ∈ (0, 1):

|∇u|2

u2
− λ

(ut
u

−A log u−Bu(p−1)
)
≤ mλ2

2
Ω̃ +

(
mλ2

2
Θ̃

) 1
2

(6.3.8)

for

Ω̃ =
C2 + C(m− 1)(1 +R

√
K)

R2
+

1

t
+A+ + [B(p− 1)]+ sup

H2R,T

up−1 +
tCλ2

(λ− 1)R2
, (6.3.9)

Θ̃ =C
(
m8ϵ−1λ2(λ− 1)2ϑ̃4

) 1
3

+
m2

2
(1− ϵ)−1λ2(λ− 1)2S2

+ λ2(n(C2 + C3)
2 +K2) + λta2 sup

H2R,T

(log u)+ + λtb2 sup
H2R,T

up−1 (6.3.10)

S =2m((λ− 1)C3 + C1(m− 1) +K) +mλ
(
1 +

1

λ

)
+mλ

(
1 +

1

λ

)
[B(p− 1)]+ sup

H2R,T

up−1 + λtB+(p− 1)2 sup
H2R,T

up−1, (6.3.11)

and

ϑ̃ = 2λta1 + λtb1(p− 1) sup
H2R,T

up−1.
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Chapter 7

Applications of gradient estimates

including Liouville type theorems,

Harnack inequalities, and ancient

solutions

Once a gradient estimate is formed, further analysis can give rise to plenty of additional information:

this can be obtained through Liouville-type theorems, Harnack inequalities, and analysis using

ancient solutions. These theorems and inequalities use the gradient estimates to look at conditions

under which limits and solutions are found.

7.1 Liouville-type theorems for elliptic PDEs

Liouville-type theorems find the conditions under which the solutions to the PDEs are constant

functions. Specifically for our analysis, Liouville-type theorems are looking for values of A and B

which cause our gradient estimate to equal zero, meaning u is a constant function.

Yau in [130] showed that any positive or bounded harmonic function with a non-negative Ricci

curvature must be a constant function. Together with the following corollary stated in Brighton’s

work [25], we are able to produce a Liouville-type theorem after obtaining the gradient estimate.

Corollary 7.1.1. Let (Mn, g, e−fdν) be a complete smooth metric measure space with Ricf ≥ 0.

If u is a bounded f-harmonic function defined on Mn, then u is constant.

Further reading on Liouville theorems can be found in [77, 122]. For the finite dimensional case,
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see [60, 61, 99]

Proposition 7.1.1. Let (Mn, g, e−fdν) be a complete non-compact metric space with non-negative

Bakry-Emery curvature. Let A ≤ 0 and B ≤ 0, where A,B are constants. Also let p > 1. If u is

a positive solution to (4.3.1) such that u ≥ exp(−1/ϵ), then u is a constant function. Moreover,

u =
p−1

√√√√AW
(

B(p−1)
A

)
B(p− 1)

, (7.1.1)

where W (x) is the Lambert W function.

Proof. Taking the global estimate of Corollary 4.3.2, we note that when substituting u ≥ e−
1
ϵ

and using A,B ≤ 0, the max term gives zero. Combining this with non-negative Bakry-Emery

curvature, we see that u is a constant function. Thus

Au log u+Bup = 0.

Collecting the u terms onto the left hand side gives

u1−p log u1−p =
B(p− 1)

A

and manipulating the left hand side

elog u1−p

log u1−p =
B(p− 1)

A
.

Now we make use of the Lambert W function for real values:

log u1−p =W

(
B(p− 1)

A

)
.

Note that if YeY = X, then Y = W (X) where W (X) is the Lambert W function of X. It is also

known that expW (x) = x
W (x) . Then solving for u gives:

u = 1−p

√√√√ B(p− 1)

AW
(

B(p−1)
A

)

=
p−1

√√√√AW
(

B(p−1)
A

)
B(p− 1)

.

From Proposition (7.1.1), if we take u ≥ e−
1
ϵ , then the value of A must be negative for our

Liouville theorems. However, by choosing u = exp(−ϵ−1), the lower bound of u from Proposition

7.1.1, then we can be more specific with our choices of A, B, and p.
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Proposition 7.1.2. If u = exp(−ϵ−1), then for it to be a solution to (4.3.1)

A = ϵBeϵ
−1(1−p) (7.1.2)

where B ≤ 0 and p > 1.

Proof. Using Proposition (7.1.1), we see that when we impose the restriction within that

proposition and taking u as its lower bound, u is constant. Now we can solve (4.3.1):

Ae−ϵ−1
(
− 1

ϵ

)
+B(e−pϵ−1

) = 0.

Solving for A gives

A = ϵBeϵ
−1(1−p),

which is the desired result.

Proposition 7.1.1 is for constant A and B, which means that we can use Corollary 4.3.2. If

instead we desire to find Liouville-type theorems for varying coefficients, then we require the use

of Theorem 4.3.2.

Proposition 7.1.3. Let u be a positive solution to

∆fu(x) +B(x)u(x)p = 0 (7.1.3)

with non-negative Bakry-Ricci curvature as defined above. Also, let p > 1 and

B+|B(x0,R) = o(R−γ(p−1)), sup
B(x0,R)

|∇B| = o(R−γ(p−1+ϵ)) (7.1.4)

as R→ ∞, where γ > 0 and γ ∈ (0, γ). If u(x) = o[r(x)γ ], then u is a constant function.

Proof. Fix a point x0 and apply Theorem 4.3.2 in B(x0, R). With this, we observe

|∇u(x0)|2

u(x0)2
≤1

ϵ

(
n

2C2
1 − γnC2

)
(o(R(γ−γ)(p−1))− o(R(γ−γ)(p−1+ϵ)))

+
1

ϵ

(
4

(
n

2C2
1 − γnC2

)
o(R(γ−γ)(p−1+ϵ))

) 1
2

. (7.1.5)

Then letting R → ∞, we immediately observe that |∇u(x0, t0)| = 0, so, since x0 was chosen

arbitrarily, u(x, t) must be a constant function in x .
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7.2 Harnack inequalities and Harnack-type inequalities for

elliptic and parabolic PDEs gradient estimates

Along with Liouville theorems, Harnack inequalities are obtainable from gradient estimates. These

were first introduced by Harnack in [57] and give an upper bound for the supremum of a solution

to a elliptic or parabolic PDE.

Proposition 7.2.1 (Classical Harnack inequality). Let (Mn, g) be a closed connected manifold.

Let u be a solution to

∂tu = ∆u (7.2.1)

for u ∈Mn × [0, T ]. Then

sup
Mn

u(·, t1) ≤ C inf
Mn

u(·, t2), (7.2.2)

where C is a constant depending only on t1 and t2.

Further reading can be found in [85, 86, 89, 105]. For the unweighted Laplacian, examples

of this can be seen in [4, 129]. We, however, look at the Harnack inequality for (4.3.1) with the

Witten-Laplacian.

Proposition 7.2.2. Let u be a bounded positive solution to (4.3.1) such that u ≤ D and |A| ≤ a1,

|∇A| ≤ a2, |B| ≤ b1, and |∇B| ≤ b2 be constants. Then

|∇u|2

u2
≤ f(X), (7.2.3)

for a constant function f(X) = f(ϵ,N, a1, a2, b1, b2, D).

Proof. The proof follows from the use of Theorem 4.3.1 with the restrictions above.

Proposition 7.2.3. Let the assumptions of Proposition 7.2.2 hold. Then for solutions u(x) on

B(x0, R), the following Harnack inequality holds:

sup
B(x0,R)

u ≤ e2R
√

f(X) inf
B(x0,R)

u. (7.2.4)

Proof. Let γ be the geodesic connecting x1 and x2. This, being the curve of shortest distance, is

at most 2R. Then

log u(x1)− log u(x2) ≤
ˆ
γ

|∇u|
u

≤
ˆ
γ

√
f(X)

≤ 2R
√
f(X).
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Choosing u(x1) = supB(x0,R) u and u(x2) = infB(x0,R) u, taking the exponential, and rearranging

yields the desired result.

Remark 7.2.1. When looking for a global estimate, Proposition 7.2.3 is not particularly useful

due to the fact that when R→ ∞, the right hand side of the inequality also becomes unbounded.

Proposition 7.2.4. Let the assumptions of Proposition 7.2.2 hold. Then for solutions u on

B(x0, R), the following Harnack inequality holds:

sup
B(x0,R)

u ≤ ed
√

f(X) inf
B(x0,R)

u (7.2.5)

where d is the distance between any two points.

Similarly to the above, we can compute a Harnack-type inequality for the parabolic equation

under a time-evolving metric. Examples of these can be found in [2, 3, 14, 108]. A similar

argument to above is followed, and we again split our working into multiple propositions. First, we

re-represent the findings in theorem 6.2.1 for a global estimate and upper bounds for the constants

and functions. After this, we follow a classical method of integrating along a geodesic path on

the complete manifold Mn. Before we start, we also define the following: given x1, x2 ∈ Mn and

t1, t2 ∈ (0, T ) such that t1 < t2, we write

Γ(x1, x2, t1, t2) =

ˆ t2

t1

∣∣∣ d
dt
γ(t)

∣∣∣2dt. (7.2.6)

Proposition 7.2.5. Let (Mn, g(t))t∈[0,T ] be a complete solution to generalised geometric flow with

Ricmf ≥ −C1g, −C2g ≤ R ≤ C3g, and |∇R| ≤ C4 for C1, C2, C3, C4 ≥ 0 in Mn. Suppose that u is

a bounded positive smooth solution to (5.1.1) in Mn × [0, T ] such that 0 < u ≤ D for some D ≥ 1

with λ, p > 1. Also let

|∇A| ≥ a1, |∇B| ≥ b1,

∆A ≤ a2, ∆B ≤ b2,

A ≤ a3, B ≤ b3

for constants a1, a2, a3, b1, b2, b3. Then the following gradient estimate holds:

|∇u|2

u2
− λ

ut
u

≤ z1(X) + tz2(X) +
1

t
z3(X) + t

j
6 zi(X), (7.2.7)

for zη(X) = zη(a1, a2, a3, b1, b2, b3, D,C, λ, ϵ).

Proposition 7.2.6. Let (Mn, g(t))t∈[0,T ] be a complete solution to generalised geometric flow with

Ricmf ≥ −C1g and −C2g ≤ R ≤ C3g, and |∇R| ≤ C4 for C1, C2, C3, C4 ≥ 0 in Mn. Suppose that
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u is a bounded positive smooth solution to (5.1.1) in Mn × (0, T ]. Let h = log u and

∂h

∂t
≥ 1

α1

(
|∇h|2 − α2 − α3t−

α4

t
− αj+1t

j
6

)
(7.2.8)

for αη > 0. Then

u(x2, t2)

u(x1, t1)
≥
( t2
t1

)−α4
α1

exp
(
Γ(x1, x2, t1, t2)−

α2

α1
(t2 − t1)−

α3

2α1
(t22 − t21)−

αj+1j

6α1
(t

j
6−1
2 − t

j
6−1
1 )

)
,

(7.2.9)

for 0 < t1 < t2 < T .

Proof. Let γ(t) be the path for t ∈ [t1, t2], and h = log u. Then the time derivative is

d

dt
h(γ(t), t) =∇h(γ(t), t) d

dt
γ(t) +

∂

∂s
h(γ(t), s)|s=t

≥− |∇h(γ(t), t)|
∣∣∣ d
dt
γ(t)

∣∣∣+ 1

α1

(
|∇h(γ(t), t)|2 − α2 − tα3 −

α4

t
− αj+1t

j
6

)
≥− α1

4

∣∣∣ d
dt
γ(t)

∣∣∣2 − 1

α1

(
α2 + tα3 +

α4

t
− αj+1t

j
6

)
,

where in the last line we use that for ax2 − bx ≥ b2

4a , a, b > 0. Next, we integrate over the path

from t1 to t2:

h(x2, t2)− h(x1, t1) ≥ −α1

4

ˆ t2

t1

∣∣∣ d
dt
γ(t)

∣∣∣2dt− ˆ t2

t1

1

α1

(
α2 + tα3 +

α4

t
− αj+1t

j
6

)
dt

≥− α1

4

ˆ t2

t1

∣∣∣ d
dt
γ(t)

∣∣∣2dt− 1

α1

(
α2(t2 − t1)−

α3

2
(t22 − t21)− α4 log

( t2
t1

)
− αj+1j

6α1

(
t
j
6−1
2 − t

j
6−1
1

))
.

By exponentiation, this gives the desired result.

Proposition 7.2.7. Let (Mn, g(t))t∈[0,T ] be a complete solution to generalised geometric flow with

Ricmf ≥ −C1g and −C2g ≤ R ≤ C3g, and |∇R| ≤ C4 for C1, C2, C3, C4 ≥ 0 in Mn for R > 0 and

x0 ∈Mn. Suppose that u is a bounded positive smooth solution to (5.1.1) in Mn × [0, T ] such that

0 < u ≤ D for some D ≥ 1. Also let

|∇A| ≥ a1, |∇B| ≥ b1,

∆A ≤ a2, ∆B ≤ b2

for constants a1, a2, b1, b2. Then the following estimate holds:

u(x2, t2)

u(x1, t1)
≥
( t2
t1

)− z3
λ

exp

(
Γ(x1, x2, t1, t2)−

z1
λ
(t2 − t1)−

z2
2λ

(t22 − t21)−
zj+1j

6λ

(
t
j
6−1
2 − t

j
6−1
1

))
,

(7.2.10)

for 0 < t1 < t2 < T .
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Proof. With the use of Proposition (7.2.5) then (7.2.6) the desired result is achieved.

Using this, we can find Harnack inequalities for specific geometric flows.

Corollary 7.2.1. Let (Mn, g(t))t∈[0,T ] be a complete solution to Ricci flow with Ricmf ≥ −C1g

and −C2g ≤ Ricmf ≤ C3g for C1, C2, C3 ≥ 0 in Mn for R > 0 and x0 ∈ Mn. Suppose that u is a

bounded positive smooth solution to (5.1.1) in Mn × [0, T ] such that 0 < u ≤ D for some D ≥ 1.

Also let

|∇A| ≥ a1, |∇B| ≥ b1,

∆A ≤ a2, ∆B ≤ b2

for constants a1, a2, b1, b2. Then (7.2.10) holds for 0 < t1 < t2 < T .

Corollary 7.2.2. Let (Mn, g(t))t∈[0,T ] be a complete solution to Yamabe flow with Ricmf ≥ −C1

and −C2 ≤ S ≤ C3, and |∇S| ≤ C4 for C1, C2, C3, C4 ≥ 0 in Mn for R > 0 and x0 ∈ Mn.

Suppose that u is a bounded positive smooth solution to (5.1.1) in Mn× [0, T ] such that 0 < u ≤ D

for some D ≥ 1. Also let

|∇A| ≥ a1, |∇B| ≥ b1,

∆A ≤ a2, ∆B ≤ b2

for constants a1, a2, b1, b2. Then (7.2.10) holds for 0 < t1 < t2 < T .

Propositions (7.2.5) and (7.2.6) are defined on Riemannian manifolds, but similar results can

easily be established on smooth metric measure spaces.

Corollary 7.2.3. Let (Mn, g(t), e−f(t)dν)t∈[0,T ] be a complete solution to Perelman-Ricci flow

with Ricmf ≥ −(m − 1)C1g and −C2g ≤ Ricmf ≤ C3g for C1, C2, C3 ≥ 0, and m < ∞ in Mn for

R > 0 and x0 ∈Mn. Suppose that u is a bounded positive smooth solution to (5.1.1) in Mn× [0, T ]

such that 0 < u ≤ D for some D ≥ 1. Also let

|∇A| ≥ a1, |∇B| ≥ b1,

∆A ≤ a2, ∆B ≤ b2

for constants a1, a2, b1, b2. Then (7.2.10) holds for 0 < t1 < t2 < T .

Remark 7.2.2. Here f(t) is taken as a function of time alone, allowing the use of Theorem 6.3.3.
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7.3 Analysis using ancient solutions of parabolic PDEs with

gradient estimates

As with the elliptic gradient estimates, we can find Liouville-type theorems; however, these are

linked to ancient solutions. The term ancient solution was coined by Hamilton in [56] in his study

of Ricci flow. These are solutions that can be taken backwards in time without singularities,

t ∈ (−∞, T ), T ∈ R.

Within our study of gradient estimates, we use ancient solutions by letting T = R and then

taking R→ ∞. However, when doing this, we need to carefully analyse what happens as t→ −∞

to make sure that these are acceptable solutions. We also make use of Landau symbols, which take

care of the non-linearities. Further reading on this can be found in [124, 125, 126].

Proposition 7.3.1. Let u be a positive ancient solution to

(
∆f − ∂t

)
u(x, t) +B(x)u(x, t)p = 0 (7.3.1)

with non-negative Bakry-Ricci curvature. Also, let p > 1 and

B+|B(x0,R) = o(R−γ(p−1)), sup
B(x0,R)

|∇B| = o(R−γ(p−1)) (7.3.2)

as R→ ∞ where γ > 0, and γ ∈ (0, γ). If u(x, t) = o[(r(x) + |t|)γ ], then u does not exist.

A proof for this is seen in [126] for a similar equation but we repeat it here for clarity.

Proof. As described in the above, u is a positive ancient solution. Fix a point (x0, t0) and apply

Theorem 5.1.1 for R = T in B(x0, R) × (t0 − R, t0]. With A(x) ≡ 0, B(x) ̸≡ 0, we observe

u(x, t) = o[(r(x) + |t|)γ ], and we get

|∇u(x0, t0)|2

u(x0, t0)2
≤C(1 + logD − log u(x0, t0))

2

[
o(R

2
3 (γ−γ)(p−1)) +

1 + µ+

R
+

1

R2

]
.

We selected R > 2 such that R ≥ t0. Since u(x, t) = o[(r(x) + |t|)γ ], we have D = o(Rγ) for D in

QR,R. Then, letting R→ ∞, we immediately observe that |∇u(x0, t0)| = 0, so u(x, t) is a constant

function in x. Since (x0, t0) was arbitrary, we therefore have that u(x, t) = u(t), a function of t

only. This then gives us a renewed equation:

u′(t) = B(x)u(t)p.

As the left hand side is independent of x, B(x) = B. Also, as p > 1 and (Bp)+ = o(R−γ(p−1)), we

get that B < 0. Solving this gives

u(t)1−p = B(1− p)t+ u(0)1−p. (7.3.3)
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Since u is a positive ancient solution we should be able to send t → −∞ but then (7.3.3) gives

u < 0, which is a contradiction.

Proposition 7.3.2. Let (Mn, g, e−fdν) be an n-dimensional complete smooth metric measure

space with non-negative Bakry-Ricci curvature. Let u be an ancient solution to

(
∆f − ∂

∂t

)
u(x, t) +Au(x, t) log u(x, t) +Bu(x, t) = 0. (7.3.4)

If A < 0, B < 0 are negative constants and u(x, t) = eo((r(x)+|t|)
1
2 ), then u(x, t) = u(t) is constant

in x, has a solution

u(t) = eA
−1(eA(t+c)−B), (7.3.5)

and is bounded u ≤ 1.

Proof. Fix a point (x0, t0) and apply Theorem 5.1.1 for A < 0, B < 0 negative constants and p = 1

for R = T in B(x0, R)× (t0 −R, t0]. As u(x, t) = eo((r(x)+|t|)
1
2 ), D = eo(R

1
2 ). This gives

|∇u(x0, t0)|2

u(x0, t0)2
≤C(1 + o(R

1
2 )− log u(x0, t0))

2

[
1 + µ+

R
+

1

R2

]

for large R > 2 depending on t0 such that R ≥ |t0|. Now, letting R → ∞, we see that |∇u|2 = 0,

so u(x, t) = u(t) is constant in x. Using (7.3.4), we write the equation as a function of t alone:

u′(t) = Au(t) log u(t) +Bu(t).

Solving this gives

u(t) = eA
−1(eA(c+t)−B).

As above, A < 0 and B < 0, so u(t) ≤ e0 = 1.

7.4 Further analysis of solutions to PDEs using bounds

In this section we look at two final propositions using the gradient estimates obtained earlier. These

do not fall under the umbrella of any of the previous Liouville-type theorems, Harnack inequalities,

or ancient solutions. These two propositions use the estimates with bounds on the various elements

that make up the PDEs to give bounds on solutions.

Proposition 7.4.1. Let (Mn, g, e−fdν) be an n-dimensional complete smooth metric measure

space with Ricmf ≥ −(m− 1)K for K ≥ 0, m <∞ in B(x0, 2R) for R > 0 and x0 ∈Mn. Suppose

that u is a positive bounded solution to (5.1.1) in H2R,T ′ = B(x0, 2R)× (0, T ], where A and B are
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positive constants, such that 1 ≤ u ≤ D with λp > 1 and ϵ ∈ (0, 1). Also let ut ≤ U and A ≤ a,

B ≤ b. Then the following gradient estimate holds on HR,T :

u ≤ CUe
A−1(z1+

z2
t ) (7.4.1)

for zη(X) = zη(a, b,D,U , C, λ, ϵ) and n = 1, 2. CU > 1 is a constant dependent on the values of

D,U , A.

Proof. Using additional limits with Theorem (5.2.1) we can write the estimate as

|∇u|2

u2
− λ

U
D

+A log u ≤ z1(X) +
1

t
z2(X).

Then we can say

A log u ≤ λ
U
D

+ z1(X) +
1

t
z2(X).

We can then divide through by A, take the exponential, and rearrange to obtain the desired

result.

Remark 7.4.1. We take A,B to be non-negative constants in order to ensure that when the

rearrangements in the proof are carried out, we can be sure that z1, z2 are both positive. This

makes sure that U > 0, so that with u ≥ 1 inequality (7.4.1) stays valid.

Finally we present a bound for the solution u of the elliptical PDE using the Li-Yau gradient

estimate. Estimates like this can be seen in [123, 129].

Proposition 7.4.2. Let (Mn, g, e−fdν) be an n-dimensional complete non-compact smooth metric

measure space with Ricmf ≥ −(m− 1)K for K ≥ 0, m <∞ in Mn and x0 ∈Mn. Suppose that u

is a bounded positive smooth solution to

∆fu(x) +Au(x) log u(x) +Bu(x)p = 0 (7.4.2)

in Mn for A,B constants such that B ≥ 0 and A ̸= 0. Also let a1, a2, b1, b2, D, K̃, γ, Θ, λ, p, ϵ

be as defined above. Then the following global gradient estimate holds:

u ≤ exp

[
1

λA

[
mλ2

2

(
(λA)+ + (λ(p− 1)B)+D

p−1
)

+
m

3
2λ2

2(1− ϵ)−
1
2

(λ− 1)
[
(m− 1)K − 1

2
(λ− 1)(2A− 1)−

]]]
, (7.4.3)

for A > 0 and

u ≥ exp

[
1

λA

[
mλ2

2

(
(λ(p− 1)B)+D

p−1
)

+
m

3
2λ2

2(1− ϵ)−
1
2

(λ− 1)
[
(m− 1)K − 1

2
(λ− 1)(2A− 1)−

]]]
, (7.4.4)
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for A < 0.

Proof. With a combination of Corollary 5.2.1 and 5.2.2

|∇u|2

u2
+ λ(A log u+Bup−1) ≤ mλ2

2

(
(λA)+ + (λ(p− 1)B)+ sup

Mn

up−1
)

+
m

3
2λ2

2(1− ϵ)−
1
2

(λ− 1)
[
(m− 1)K − 1

2
(λ− 1)(2A− 1)−

]
.

As the first and last term on the left hand side are strictly positive, we can remove them:

λA log u ≤mλ
2

2

(
(λA)+ + (λ(p− 1)B)+ sup

Mn

up−1
)

+
m

3
2λ2

2(1− ϵ)−
1
2

(λ− 1)
[
(m− 1)K − 1

2
(λ− 1)(2A− 1)−

]
.

Then by rearranging and exponentiating, and taking note of the sign of A, we achieve the desired

results.
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L’hypercontractivité et son utilisation en théorie des semigroupes, pp. 1-114, 1994.
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