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Abstract

Unlike conventional cars, connected and autonomous vehicles (CAVs) can cross intersec-

tions in a lane-free order. Lane-free crossing allows CAVs to make use of all segments of

roads and intersections which is hypothesised to improve energy consumption and traffic

throughput. However, controlling CAVs to pass through intersections in a lane-free order

is a challenging minimum-time optimal control problem (OCP) with non-differentiable

collision avoidance constraints and is difficult to be formulated and solved. This thesis

addresses this challenge by proposing: i) a control strategy that incorporates differen-

tiable collision avoidance constraints to cross CAVs through lane-free intersections; ii) a

framework to evaluate the capacity of intersections when CAVs are crossing in a lane-free

order.

The proposed control strategy is formulated as a multi-objective OCP that minimises

a combination of the crossing time and the energy consumption of CAVs due to their

accelerations. The non-differentiable constraints that avoid collisions of vehicles with each

other and with road boundaries are smoothed by applying the dual problem theory. It

is shown that the solution of the formulated OCP when the crossing time is the only

objective provides a lower bound of the crossing time of a junction which is exception-

ally close to the theoretical limit. The calculated lower bound is a feasible benchmark

to evaluate the performance of other intersection crossing algorithms. Considering the

energy consumption as well, the results show that the proposed lane-free strategy reduces

the crossing time of vehicles by an average of 40% as compared to the state-of-the-art

reservation-based method, whilst consuming the same amount of energy. Furthermore, it

is shown that crossing time through a lane-free intersection is fixed to a constant value

regardless of the number of the crossing CAVs.

This work also proposes a novel framework including a measure and an algorithm to

quantify the capacity of the lane-free intersections. The available measures to assess ca-

pacity of the conventional intersections are not applicable to the lane-free ones because the

conventional roads restrain vehicles to travel within lanes. The results of this thesis show

that a lane-free crossing of CAVs increases the capacity of intersections by, respectively,

127% and 36% as compared to the signalised crossing by human-drivers and by CAVs. A

sensitivity analysis indicates that, in contrast to the signalised intersections, the capacity

of the lane-free ones is improved by an increase in the initial speed and the maximum

permissible speed and acceleration of the vehicles.
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Chapter 1

Introduction

Connected and Autonomous Vehicles (CAVs), unlike conventional cars, are not restricted

to drive within lanes and can travel in a lane-free order. Such lane-free movement allows

CAVs to utilise the whole area of intersections which can be beneficial in terms of reducing

the energy consumption and the travelling time and improving the traffic capacity of

intersections. This thesis attempts at answering the following two research questions:

1) does lane-free crossing of CAVs through intersections reduce energy consumption and

crossing time?; 2) does lane-free crossing of CAVs improve the capacity of intersections?

This chapter provides the aims, objectives and contributions followed by the structure of

the thesis.

1.1 Aims and Objectives

The aims of the research are to address the above-mentioned questions by:

• Design a control strategy for lane-free crossing of CAVs through intersections.

• Design a framework to measure the capacity of intersections when CAVs are crossing

in a lane-free order.

The key objectives of this study are as follows:

• To formulate the lane-free crossing problem of CAVs through intersections as a

minimum-time optimal control problem (OCP) with crossing time and the energy

consumption as control objectives.

• To evaluate the minimum crossing time of CAVs through intersections in a lane-free

order as compared to the state-of-the-art intersection crossing algorithms.
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• To develop a measure to quantify the capacity of lane-free intersections.

• To quantify the capacity improvement of intersections by the lane-free crossing as

compared to the current signalised crossing of HVs and CAVs.

1.2 Research Contributions

This study archives the following novel contributions:

• Formulation of the lane-free crossing of CAVs through intersections as a minimum-

time OCP (published in [7, 8]);

• Smoothing of the constraints that avoid collisions of CAVs with each other and

with road boundaries using the dual problem theory of convex optimisation. The

original non-differentiable constraints are also relaxed with sufficient conditions to

make them computationally inexpensive; (published in [7, 8]);

• Minimisation of the crossing time of multiple CAVs passing through intersections

in a lane-free order. It is shown that the minimum crossing time calculated by the

proposed algorithm is very close to its theoretical limit. The calculated optimal

crossing time for a junction is shown to be fixed to a constant value regardless of

the number of CAVs until reaching the maximum temporal-spatial capacity of the

intersection (published in [7, 8]);

• Analysis and comparison of crossing time, energy consumption (due to acceleration)

and passenger comfort of the proposed lane-free control strategy against the state-

of-the-art reservation-based and lane-free methods. It is shown that the proposed

lane-free strategy significantly improves the crossing time and passenger comfort

while consuming the same amount of energy as the benchmark methods (published

in [8]).

• A novel framework to quantify the capacity of lane-free intersections. The framework

consists of a novel measure of capacity along with an algorithm to calculate this

measure (published in [9]).

• Assessment of the efficacy of lane-free crossing to the capacity of intersections and

compare the resulting traffic throughput as compared to the one by the signalised

crossing of human-driven vehicles (HVs) and CAVs (published in [9]).
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• A sensitivity analysis of the capacity and crossing time of the lane-free intersections

with respect to the maximum permissible speed, maximum permissible accelera-

tion/deceleration, initial speed and the number of the crossing vehicles (published

in [9]).

1.3 Structure of the Thesis

The remainder of the thesis is structured as follows:

Chapter 2 provides a detailed background including literature review for the topic of

this thesis. It starts by explaining different levels of automation and the technologies

involved in CAVs followed by a discussion of path planning algorithms. In particular, it

reviews the path planning algorithms for intersections including the corresponding chal-

lenges. Moreover, an example layout of a lane-free intersection is provided with a detailed

explanation. The chapter lastly discusses the concept of optimisation of non-convex prob-

lems and explains the numerical methods for solving OCPs.

In chapter 3, the shape of vehicles and road boundaries are initially modelled and then

the OCP of CAVs crossing intersections in a lane-free order is formulated. This chapter

also compares the effectiveness of the proposed lane-free control strategy against a state-

of-the-art reservation-based method and another lane-free method in terms of crossing

time, energy consumption and passenger consumption.

Chapter 4 presents the framework including a measure and an algorithm that eval-

uates the capacity of lane-free intersections. The capacity of a lane-free intersection is

provided and compared against the indicative Highway Capacity Manual (HCM) capacity

of signalised intersections. The chapter also includes a sensitivity analysis of crossing time

and capacity of lane-free intersections.

Chapter 5 provides a summery and draws the conclusion of this thesis followed by the

direction of future works.
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Chapter 2

Background

This chapter is dedicated to discuss the related background to the topic of this thesis. It

begins with explaining how CAVs potentially improve the current transportation system

and then presents a discussion on the design of CAVs including the hardware and software

components, as well as the vehicle dynamics within the scope of this study. After reviewing

several path planning techniques for CAVs, the problem of CAVs crossing intersections

is introduced. In this regards, the-state-of-the-art algorithms and their corresponding

methods for evaluating traffic capacity of intersections are reviewed. This chapter also de-

scribes the studied lane-free intersections with a graphical representation. As the lane-free

crossing of CAVs through intersections is a non-convex minimum-time OCP, a detailed

description of OCP and MPC is provided, followed by a discussion of optimisation prob-

lems. Finally, the chapter reviews the methods of solving OCPs and explains in detail the

chosen solvers in this study.

2.1 Connected and Autonomous Vehicles

CAVs have become the recent hot topic for the researchers due to their abilities which

is shown to be significantly effective in reducing energy consumption and travelling time

while providing safety and comfort [10,11]. These smart vehicles are able to communicate

with each other and with infrastructure through Vehicle-to-Vehicle (V2V) and Vehicle-to-

Infrastructure (V2I) platforms and nullify wrong habits of human drivers -such as aggres-

sive acceleration, riding the clutch, late braking and plenty of others- that improve fuel

consumption and enhance the safety of the passengers [12,13].

Moreover, CAVs can improve the current transportation system in terms of reducing

traffic congestion. The traffic congestion of USA urban roads in 2014 forced people to
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spend extra 6.9 billion hours driving on the road and buy 3.1 billion gallons of fuel which

resulted in an approximate cost of 160 billion USD [14]. In addition, with the current

rate of increase in the population of cities, the demand for vehicles is significantly es-

calating while the capacity of roads is not changing which results in overloaded roads.

CAVs can keep a shorter safety distance from each other than conventional human-driven

vehicles (HVs) to resolve such issues with the current transportation system. Besides,

CAVs can improve safely aspects of passengers and environmental features. The National

Transportation Statistics of USA [15] states that vehicles in fifty states of America as well

as Columbia caused 35,000 deaths and 2.2 million nonfatal harm, and nearly 1.7 billion

metric tons of emission in form of CO2 was freed to the environment in 2012. CAVs

are autonomous vehicles that require less response time than HVs which can significantly

enhance the economical and health issues raised above. However, in order to benefit the

most from all these improvements it is important to analyse different levels of automated

driving.

Figure 2.1 shows different levels of automated driving defined by the society of auto-

motive engineers (SAE) [3]. Level 0 indicates that there is no automation system and it

is related to the conventional vehicles where the human-driver performs all the tasks of

driving. At level 1 of automation, vehicles are equipped with cruise control or even adap-

tive cruise control that allows vehicles to follow a preceding vehicle with a specified speed.
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Figure 2.1: Different levels of automated driving defined by SAE [3].
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Level 2 involves partial automation and allows vehicles to drive automatically under cer-

tain conditions, for instance vehicles can change lane to overtake in highways. However,

the driver’s presence is required at all times. Similarly, level 3 requires the presence of

the driver although it is more advanced than level 2 in terms of making decisions using

the vehicle’s sensors (e.g., LiDAR). Level 4 and 5 bring about the automated vehicles

where self-driving becomes possible. However, in level 4 when the condition of the road

is difficult for driving, for example, there is visibility issues, the presence of the driver is

needed [3].

The hardware components and the software algorithms of a CAV which are considered

in this study are illustrated in Fig. 2.2. Fig. 2.2 shows that the information of surrounding

environment of a CAV is perceived by the on-board sensors such as cameras, Lidars and

radars as well as through V2V and V2I platforms. These information are fused within

the perception block to create a map of surrounding and to localise the vehicle in the

generated map [16]. The obtained vehicle pose and the map of the environment are then

transmitted to other members of the traffic and to the path planning block, within the

CAV. The path planning block which is the focus of this study generates a collision-free

trajectory by calculating the optimal control actions with respect to vehicle dynamics and

safety constraints. The calculated control actions are based on achieving some criteria

that helps to minimise the energy consumption and travelling time. Finally, the control

actions are realised by the vehicle’s actuators.

V2V & V2I 

communication

CAV sensors Perception

Path planning
Environment

Localisation

Trajectory 

generation

Actuators

CAV hardware CAV software

Focus of this study

Mapping
Vehicle pose & map 

of the environment

Control actions

Collision

avoidance

Data

Data

Figure 2.2: The software algorithms and hardware components of a CAV in this study.
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2.1.1 Vehicle dynamics and modelling

A high-fidelity model of the vehicle dynamics and kinematics is a crucial requirement for

analysing the behaviour and development of the model-based controllers of CAVs. Various

vehicle models are employed for the planning task based on the trade-off between the model

complexity and prediction accuracy. Several studies [17–19] modelled the behaviour of

vehicles using second order dynamics and assumed the vehicle as a point-mass. This type

of vehicle modelling does not consider the lateral behaviour of vehicles and hence the

steering angle is not considered and the only control input is acceleration/deceleration.

Other studies [20–23] employed a more sophisticated model of a vehicle, namely bicycle

model, which also takes into account the lateral behaviour of vehicles. The bicycle model

lumps the two front wheels and the two rear wheels in to a single wheel each to simplify the

four wheel car into a two wheel bicycle. This study also represents the lateral behaviour

of CAVs with the bicycle model [24]. The bicycle model of each CAVi, i ∈ {1..Nv} where

Nv is the number of vehicles, consists of two degrees of freedom (DoF) which are sideslip

angle βi and yaw rate ri, as in Fig. 2.3. The model also includes an additional DoF for

the longitudinal velocity Vi. The equations of these DoFs along with other three to model

the ground-fixed location, construct a set of differential equations to represent CAVi as

follows:

 !
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Figure 2.3: The bicycle model of CAVi, i.e, i ∈ {1..Nv} .
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d

dt



ri

βi

Vi

xi

yi

θi


(t) =



Ñr
Iz ·Vi(t)

· ri(t) +
Nβ

Iz
· βi(t)

( Ỹr
m·Vi(t)2

− 1) · ri(t) +
Yβ

m·Vi(t)
· βi(t)

0

Vi(t) · cosθi(t)

Vi(t) · sinθi(t)

ri(t)


+



0 Nδ
Iz

0 Yδ
m·Vi(t)

1 0

0 0

0 0

0 0



ai
δi

 (t), t ∈ [t0, tf ]. (2.1)

where [ri, βi, Vi, xi, yi, θi]
T and [ai, δi]

T are, respectively, the system states and control

inputs of CAVi. zi = [xi, yi, θi]
T refers to the pose of CAVi in non-inertial reference

system. ai(t) and δi(t) are, respectively, the acceleration (m/s2) and steering angle (rad)

of the vehicle. The constants m and Iz denote mass (kg) and moment of inertia (kg.m2)

of the vehicle. t0 and tf represent the starting and final time (s) that a CAV is under

control. In (2.1), it is assumed that the value of sideslip angle βi is much less than one

radian. The vehicle parameters Ñr, Nβ, Nδ, Ỹr, Yβ and Yδ are calculated as follows [24]:

Ñr = l2f · CF + l2r · CR, (2.2a)

Nβ = lf · CF − lr · CR, (2.2b)

Nδ = −lf · CF , (2.2c)

Ỹr = lf · CF − lr · CR, (2.2d)

Yβ = CF + CR, (2.2e)

Yδ = −CF . (2.2f)

where CF and CR are, respectively, the cornering stiffness of the front and rear tyres.

lf and lr are distance of the front and rear axis from center of gravity of the vehicle. The

vehicle parameters Ñr and Ỹr are in terms of the longitudinal velocity Vi which is omitted
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from (2.2a) and (2.2d) and it is directly imposed in (2.3).

To ensure CAVs drive within their dynamic limitations, the following constraints are

enforced for each CAVi:

V ≤ Vi(t) ≤ V̄ , (2.3a)

a ≤|ai(t)| ≤ ā, (2.3b)

δ ≤|δi(t)| ≤ δ̄, (2.3c)

r ≤|ri(t)| ≤ r̄, (2.3d)

β ≤|βi(t)| ≤ β̄. (2.3e)

where . and . are, respectively, the upper and lower boundaries.

2.2 Path Planning Techniques for CAVs

Path planning is one of the fundamental functions of CAVs and there has been enormous

research undertaken on this area [25–29]. Path planning is defined as moving a vehicle from

a given point to a destination while avoiding obstacles and considering minimal energy

consumption and travelling time as well as passenger comfort. Although path planning of

CAVs for intersections is more challenging than areas such as highways, the technique of

planning can be similar. This section reviews various techniques used in this area for both

CAVs and robots. A summary of the path planning techniques is shown in Table 2.1.

2.2.1 Graph search based planners

Graph search methods are used for path planning due to their ability of guaranteeing

optimality and simplicity of implementation. In this regard, Dijkstra’s algorithm is a

popular graph search method for finding the shortest path between any two nodes within

a graph and is applied for path planning of CAVs in several studies [30,31]. However, this

algorithm performs a blind search which means every node is searched equally resulting

in waste of time to search several unwanted nodes, particularly when the area of search

is considerably large. A* algorithm which is an extended version of Dijkstra’s algorithm

improves the search computational time by augmenting the cost function with a heuristic

function. This heuristic cost function of the A* algorithm helps to search towards the

direction of the goal and avoids searching the unwanted nodes. A* algorithm is frequently

used for path planning in its original version [32, 33] and in its improved versions namely
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dynamic A* [34], Theta* [35] and hybrid A* [36]. State lattice is also a graph search

method that uses a discrete representation of the area to generate a gird [37]. The grid

is then searched based on the local feasible actions of a vehicle to find the path. State

lattice is a good planning algorithm in terms of handing several dimensions, however, the

generated paths using this technique are shown to have discontinuity in curvatures and

hence vehicles cannot perform evasive maneuvers [27–29]. Overall, graph search based

methods can obtain optimal path, however, they require high resolution of the map and

can be time consuming where the search area is large [38].

2.2.2 Optimisation based planners

Optimisation-based methods become popular to plan vehicles’ path due to the recent

developments in fast solvers of large optimisation problems, such as NPSOL [39] and

IPOPT [40]. The main goal here is to formulate the planning as an optimisation problem

and particularly as an OCP (see (2.4)) consisting of a desired objective function and the

required constraints, which is solved using the available fast solvers [25,26]. Prior research

presented path planning problem of CAVs as an OCP with various objectives.

The studies in [25,41] set the objective function of the OCP to minimise a combination

of the acceleration, its derivative and the error between the current speed and the speed

limit. A similar OCP formulation is presented in [42] where the objective function is set

to minimise the travelling time and the motion sickness of CAVs. Although these studies

generated a path and achieved their objectives, solving their OCPs can be challenging,

particularly when the problem involves multiple CAVs.

An OCP must be solved over an infinite horizon to generate an open-loop control

strategies. However, solving such an infinite horizon OCP can be computationally expen-

sive if not impossible. Model Predictive Controllers (MPCs), on the other hand, approx-

imates the solution of an OCP over a finite horizon in a receding horizon fashion which

can reduce the computational time [23, 43]. In addition, MPC can take into account the

uncertainties of the dynamic environment as it periodically receives a feedback from the

surrounding [44]. P. Falcone et.al [43] presented a simple hierarchical framework based on

MPC for path planning and path tracking of CAVs. This work proposes one MPC for the

high level controller to plan the vehicle’s path based on a simplified point-mass vehicle

model, and another MPC in the low level controller to track the generated path based on

the bicycle model. The high level controller generates a path for the vehicles to reach the

destination as fast as possible and the low level controller tracks the generated path based
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on active front steering. A similar work is presented in [45] where an MPC strategy is

designed as a low level control which considers the coupled lateral and longitudinal forces

of tyres.

Furthermore, the authors in [39, 46, 47] presented an MPC-based algorithm that em-

ploys a curvilinear coordinate system for tracking the roads. The curvilinear coordinate

system tracks the centreline of the roads using the curvature as a function of the length

of road’s centreline [42]. The aim of the controller in the mentioned studies [39, 46, 47]

is to generate the required control inputs to drive the vehicle in the centre of the road

while minimising the energy consumption and subject to the vehicle dynamics. The paths

obtained in these reports only consider the obstacle avoidance of static objects and ignore

moving obstacles. The obstacle avoidance of dynamic objects such as cars is the major

difficulty of path planning for CAVs.

2.2.3 Artificial potential field-based planners

Artificial potential field is also employed for path planning of CAVs due to its simplicity.

This technique generates a collision-free path by considering the obstacles as the source

of repelling forces and the target as the source of attractive force. The studies carried

out in [22, 48] designed a path planning algorithm based on artificial potential field and

MPC. These studies set the cost function of the MPC as potential functions of the road

and obstacles. The controller inherits from the simplicity of potential field method and

incorporates the vehicular and environmental dynamics within the MPC formulation.

Huang et al. proposed a similar work in [47] where a hierarchical algorithm for path

planning is designed for vehicles’ motion on highways. In the high-level controller, a

resistance network is utilised to plan a lane change or a lane keeping behaviour. As the low-

level controller, two MPC controllers are proposed for the lateral and longitudinal motions

of the vehicle. Finally, as the longitudinal and lateral planning is performed separately a

super twisting sliding mode control is employed to check the dynamic-feasibility and to

track the generated path.

The major limitation of the studies in [22, 47, 48] is that their proposed algorithms

are only tested for a maximum of fives vehicles. Moreover, the performance of algorithms

in [22, 47] are only evaluated for highways which has less number of conflicts than urban

roads and intersections.
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2.2.4 Reinforcement learning based planners

Reinforcement Learning (RL) is also applied for path planning of CAVs. The goal of

RL is to learn a policy through experience that maximises the total cumulative reward.

In this regard, there exists two types of techniques that implement RL. The model-based

technique learns the policy using a model of the system where as the model-free technique

learns the policy without a model of the system. Both techniques are implemented using

two types of algorithms called policy-based and value-based algorithms. The policy-based

algorithms directly learn a policy that gain maximum future reward while value-based

algorithms estimate the policy by estimating the associated value function.

The authors in [49] developed a value-based RL algorithm for the path planning of

CAVs at signalised intersections. The proposed controller considers a positive or a negative

reward value for different behaviours of the CAV. For example, a reward of 1 is considered

to increases the speed for a faster travel and a reward of -1 is considered for when the

time gap between two CAVs is less than 0.8 s to avoid collisions. A comparison of the

proposed algorithm against HVs crossing the same signalised intersection shows that their

algorithm drives the CAVs through the intersection with a faster average speed. Another

value-based RL algorithm is developed in [50] with a focus on decentralised path planning

of robots in a known environment. The controller of each robot optimises a value function

which includes a reward term to keep a safe distance from other robots as well as to reach

to the goal faster. It is shown that the proposed decentralised algorithm can achieve a

collision-free path for up to 8 robots in real-time.

One of the major challenges of path planning using RL is learning within the shortest

time which is a matter of how exploration of uncharted territory and exploitation of current

knowledge are balanced [51]. In this light, there exists several algorithms that can keep

a balance between such exploration and exploitation and help to avoid getting stuck in

local optimum solutions [52]. Epsilon-greedy is among those algorithms that can keep a

balance by choosing a probability of ϵ ∈ [0, 1] to explore or exploit more often [53].

2.3 Crossing of CAVs through Intersections

Intersections are one of the major area of collisions due to the high number of conflicts be-

tween vehicles travelling to different directions. In United States 2010, 47% of all accidents

occurred at intersections and 28% of them lead to fatal injuries [15]. CAVs along with the

technologies involved can provide improvements to these figures. Furthermore, CAVs can
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Table 2.1: Summary of the path planning techniques for CAVs.

Technique group Algorithm Algorithm description
Implemen-
ted in

Graph search
based planners

Dijkstra’s algorithm
Searching from a specified source to
all possible goals

[30,31]

A* algorithm family
Heuristic search from a specified source
to a directed-goal

[32–36]

State lattice
Decomposition of the environment in
a local variable grid

[37]

Optimisation based
planners

OCP
Solving an objective function along with
constraints for the whole prediction horizon

[25,25,26,41]

MPC Solving an OCP in a receding horizon fashion
[23,43–45]
[20,39,46,47,54]

Artificial potential
field planners

Potential functions
An artificial force is calculated based on
the repelling force of obstacles and attractive
force of the target

[22,47,48]

Reinforcement learning
based planners

Learning mechanism
A policy function generates actions
based on the feedback from the environment

[49,50,55]

share with each other their location, speed and arriving time to the intersection which help

them to cease the stop-and-go behaviour of current vehicles passing through intersections.

This results in achieving better fuel consumption, emission and traffic throughput [56].

However, the collaboration between CAVs to optimally pass through intersections and the

resulting improvement in traffic capacity are not fully understood yet, and this section

provides a review of the state-of-the-art achievements in these areas.

2.3.1 Challenges

CAVs will be able to execute more complex manoeuvres than human drivers to cross

intersections in a faster and safer manner with less energy consumption and higher traffic

throughput [56]. However, these potential improvements require addressing three main

challenges: collision avoidance, finding the minimum-time optimal solution instead of only

checking the feasibility, and real-time implementation. Table 2.2 provides a summary of

the challenges and the corresponding techniques.

Previous studies proposed three approaches to ensure collision avoidance among CAVs:

i) Reserving the whole intersection for one of the CAVs at a time; The authors in [57]

formulated the intersection crossing problem of CAVs as an OCP with collision avoidance

constraints that enforce CAVs to reserve the whole intersection for a period of time. The

proposed OCP jointly improves energy consumption and passenger comfort. A similar

work is presented by Tallapragada et al. in [17], where CAVs are split into clusters

and each cluster reserves the whole area of the intersection for some time. The authors

in [58, 59] introduced a scheduling method where CAVs are placed into a virtual lane
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based on their distance to the centre of the intersection and their risk of collision. Then,

crossing time of the intersection is scheduled between the CAVs in the virtual lane. The

study in [60] designs a similar intersection-reservation based crossing algorithm for CAVs

and quantifies the energy consumption improvement of their algorithm as compared to

HVs crossing the same intersection. It is shown that the proposed algorithm reduces the

mean fuel consumption of every vehicle by 13.29–73.11% as compared to HVs crossing the

intersection [60].

ii) Reserving a finite number of specific points (called conflict points) instead of the

whole of the intersection; Mirheli et al. [61, 62] designed 16 conflict points for a four-leg

intersection. Each leg of the intersection includes exclusively left turn and straight lanes.

The proposed algorithm enforces CAVs to reserve the approaching conflict point(s) prior to

their arrival. A more recent study of the conflict-point-reservation technique is presented

in [63] where CAVs are capable of performing turning maneuvers. This study divides

the intersection crossing problem of CAVs into two parts of firstly finding the passing

sequence including the arriving time of CAVs to the intersection and then calculating the

required control inputs to satisfy the obtained arriving time and passing sequence. The

later problem is formulated as an OCP to minimise the energy consumption of CAVs and

the former is also formulated and an optimisation problem which is solved using different

search algorithms to compare their performance. It is shown that the best performance

in terms of fuel consumption and travelling time is achieved when the passing sequence of

CAVs is solved using the Monte Carlo Tree Search [63].

Another conflict point reservation approach is presented in [64] which allows flexible

lane direction (e.g., incoming vehicles can travel to any outgoing lanes). In this work, a

formation reconfiguration method is utilised to control longitudinal and lateral position of

vehicles while avoiding collisions by reserving the conflict points. It is shown that crossing

intersections with flexible lane direction technique outperforms signalised intersections

and unsignalised intersections with fixed lane direction in terms of traffic throughput. A

similar work is provided in [65] that designs an intersection crossing algorithm with a focus

on erasing lane changes. This work also avoids collisions by reserving the conflict points

through solving an optimisation problem that yields the optimal collision-free arriving

times to the conflict points.

iii) Utilising freely the whole space of intersections, a.k.a. lane-free crossing; Generally

speaking, reservation-based collision avoidance approaches require CAVs following prede-

fined paths that do not allow the vehicles to fully exploit the intersection area. Therefore,
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reservation-based collision avoidance approaches are not efficient in terms of reducing trav-

elling time and energy consumption. Prior studies developed lane-free intersection crossing

algorithms based on OCP in [2, 66]. To avoid collisions, the Euclidean distance between

any pair of CAVs are constrained to be greater than a safe margin. This formulation of

the collision avoidance constraints is non-convex and non-differentiable [67], and hence

any optimisation problem including them are difficult to solve. Li et al. in [66] divided

the non-convex problem of intersection crossing into two stages to make it tractable. At

stage one, CAVs inform the central controller with their intention and then make a stan-

dard formation which is computed online. At stage two, the controller searches an offline

constructed lookup table for the intended crossing scenario and finds the control inputs of

each CAV. The authors suggested to solve offline an individual optimal control problem

for any possible crossing scenario to construct the lookup table of the control commands.

However, the resulting offline problems are still non-convex and solving them for all pos-

sible scenarios of 24 CAVs take around 358 years [66]. Alternatively, Li et al. in [2] fixed

the crossing time to a constant value and converted the minimum-time optimal control

problem to a feasibility problem that is solved online.

As the second challenge, the above-mentioned algorithms that only find a feasible

(collision-free) solution to the problem of the intersection crossing do not fully exploit the

CAVs’ advantages to minimise the crossing time. In other words, minimising the crossing

time is not part of their objectives. The studies carried out in [17] and [2] focus on the

passenger comfort and address this challenge by minimising fluctuations of the vehicles’

acceleration. Other researchers in [68–71] optimised the motion of CAVs to move on the

predefined paths, reserving conflict points, with as close speed as possible to the limit of the

intersection rather than directly finding the minimum-time paths. However, in complex

scenarios, these paths need to be obtained as the solution of a minimum-time OCP instead

of heuristically. The authors in [66] formulate the intersection crossing problem of CAVs

as a minimum-time OCP to minimise the crossing time without any restrictions on the

crossing paths (except the road boundaries). However, their algorithm is non-differentiable

and difficult solve.

Finally, it is always challenging to implement optimal control strategies in real-time.

CAVs are intelligent agents communicating to each other and to the infrastructure to share

information for collaborating and achieving global objectives. The optimal strategies for

crossing intersections, therefore, must operate on a network of cars (i.e., networked con-

troller), which are seeking their own conflicting objectives (like minimising their individual
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crossing times). A centralised topology with a fully available information of all the CAVs

or different decentralised topologies, where the CAVs are fully or partially connected,

can be used to calculate the optimal crossing strategy of all the CAVs. The centralised

controllers receive information of all vehicles, compute trajectories, and send back the

calculated trajectory of each individual CAV. There is no path planning at the CAV level

and vehicles only follow the provided trajectories. Li et al. [2, 66] proposed a centralised,

but computationally expensive, optimal controller for multiple CAVs crossing a lane-free

intersection. The centralised algorithms in [69,70] split the problem into two stages, find-

ing the crossing order and calculating the control inputs to follow the attained crossing

orders, to make it computationally tractable, however, at the cost of obtaining sub-optimal

solutions.

In the decentralised strategies, on the other hand, each CAV computes its own tra-

jectory that also approximates a solution to achieve a level a global objective. Although

decentralised algorithms find sub-optimal solutions, it is shown to be less computationally

expensive as compared to the centralised counterparts [18,72].

The authors in [18, 72] formulated a decentralised OCP controller for CAVs crossing

intersections where each CAV has access to the shared information of all the others.

However, CAVs which are crossing an intersection cannot be practically fully connected

to each other at all the times. This means that at any instance of time, each CAV

only communicates with a subset of the others, i.e. partially connected. Bian et al. [73]

proposed a framework where the CAVs travelling on the same lane can communicate to

each other, while they estimate the states of the other not-connected vehicles. Reference

[59] proposes a partially connected distributed algorithm based on the concept of virtual

platooning. CAVs, first, form a virtual platoon and then optimise their arriving time

to the intersection to avoid collision. This is a decentralised reservation-based algorithm

that allows only one CAV at a time to be within the intersection. Generally speaking,

unlike the centralised controllers which are capable of finding the global optimum solution,

decentralised controllers can only find sub-optimal strategies [74].
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Table 2.2: Summary of the challenges of intersection crossing and the corresponding tech-
niques.

Challenge Techniques to address Implemented in

Reservation of the whole Intersec-

tion
[17,57–60,75]

Collision avoidance Reservation of conflict points [1, 61,62]

Lane-free [2, 66]

Minimisation of fluctuation of the

vehicles’ acceleration
[2, 17]

Finding the minimum-time optimal

solution instead of only checking

the feasibility

Minimisation of deviation from the

speed limit
[68–71]

Minimisation of the crossing time [66]

Centralised strategies with fully-

observable data
[2, 66,69,70]

Real-time implementation
Decentralised strategies with fully

connected CAVs
[18,72]

Decentralised strategies with par-

tially connected CAVs
[59,73]

2.3.2 Traffic capacity of intersections

Capacity analysis of intersections is essential for traffic management and for the planning

of transport systems. For instance, such analysis for signalised intersections can help traf-

fic engineers to identify the required green time for each phase of a traffic light to achieve

a better traffic throughput. Moreover, capacity analysis of intersections when CAVs are

crossing can help to compare various intersection crossing algorithms and recognise the

algorithm that achieves the highest traffic throughput. However, the capacity measure-

ment of intersections is different depending on whether CAVs or HVs passing through.

CAVs can communicate with each other and with the infrastructure [76], resulting in less

response and reaction time than HVs [77]. In addition, CAVs’ collaboration make them

able to keep a much shorter headway hd (i.e., the time difference between the front of

the lead vehicle passing a point and the front of the following vehicle passing the same

point as in Fig. 2.4) from a preceding vehicle. There are extensive prior works to char-



18

Headway (s)

Following vehicle Leading vehicle
Specified point

Figure 2.4: A graphical representation of headway.

acterise the capacity of intersections for HVs (e.g. [78–80]), however, such analysis is still

an open research topic for CAVs. The remaining of this section explains the measures of

intersection capacity firstly for HVs and then for CAVs.

Capacity of intersections with HVs

The measures of capacity for HVs crossing both signalised and unsignalised (two-way

stop-controlled (TWSC) and all-way stop-controlled (AWSC)) intersections are extensively

discussed in Highway Capacity Manual [78]. The manual introduces a measure to quantify

the capacity of the unsignalised TWSC and AWSC intersections based on, respectively, gap

acceptance and queuing theories. According to the gap acceptance theory, the capacity of

TWSC intersections are modelled based on the distribution of major stream gaps, driver’s

response time in choosing those gaps and follow-up time [81]. Two important parameters

namely critical gap time tc (s) and follow-up time tf (s) need to be defined which are both

obtained through traffic data in real world scenarios. The critical gap time is defined as

the minimum time that a vehicle travelling in a minor-street can accept to fill a gap in

the major-street, and the follow-up time is described as the time between the departure

of one vehicle from a minor-street and the next vehicle from the same minor street. The

potential capacity of unsignalised TWSC intersections which is the potential capacity of

minor movement x is defined in [78] as follows:

Cp,x = Vc,x
e−Vc,xtc,x/3600

1− e−Vc,xtf,x/3600
(2.4)

where Cp,x is the potential capacity of minor movement x (veh/h) and Vc,x is the flow rate

for movement x (veh/h).

Furthermore, the capacity of unsignalised AWSC intersections is modelled based on

the queuing theory by calculating the headway hf of HVs for each lane [78]. The headway

of HVs is calculated in an iterative approach due to the interdependence of the traffic flow
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on all approaches of the intersection (a detailed procedure of calculating the capacity of

AWSC intersections is provided in Chapter 4.1). Meanwhile, it is recommended in [78]

to calculate the capacity of signalised intersections as the saturation flow rate times the

green time ratio. The saturation flow rate is defined as the maximum number of vehicles,

queued in an approach, that can pass through the intersection in an hour (equivalently

3600
hf

) [78]. The green time ratio is the effective time of a traffic light’s green phase as

compared to the whole cycle length.

All of the above-mentioned measures assume that saturated headway (e.g, the constant

headway achieved once a stable moving queue is established) of HVs in the queue of lanes

is around 1.9 s which is obtained through traffic data in the USA and it is referred to

indicative HCM headway in this study. This assumption makes these measures inappro-

priate for CAVs crossing intersections where the headway of CAVs is much smaller and

almost the same for all the vehicles in the queue. In fact, the headway of CAVs depends

on the controller design of the CAVs. Previous studies employed a wide range of headway

values for CAVs. For instance the authors in [82,83], designed their CAV controllers based

on a fixed headway of 0.9 s. Other studies [84–86] employed a stochastic headway with a

value from 0.5 s up to 2 s based on four modes namely aggressive, neutral, conservative,

and safe. Therefore, it can be observed that capacity measurement of intersections when

CAVs passing through them can be different for each controller design and the chosen

headway value.

Capacity of intersections with CAVs

Whilst human reaction is the dominant factor to measure capacity of intersections with

HVs, reaction time is not a dominant factor of the capacity of intersections when CAVs

cross in a lane-free order. This is because of significantly shorter reaction time of CAVs

as compared to HVs. In addition, CAVs’ collaboration make them able to keep a shorter

safety distance from each other than HVs. Therefore, the previous measures of intersection

capacity for HVs are not applicable for CAVs.

To evaluate capacity of the intersections with CAVs, the authors in [77,87,88] employed

the same measure that is defined in HCM [78] for the unsignalised intersections, though

with a new headway definition for CAVs. In [87], intersections are assumed as service

providers and CAVs’ headway is redefined as service time (i.e., crossing time) which is

derived by applying queuing theory. The service time is based on the safety time gap of

CAVs approaching the intersection from the non-conflicting and the conflicting streams.
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Figure 2.5: The measures for capacity evaluation of intersections (grey boxes) with both
the human-driven vehicles (HVs) and connected and autonomous vehicles (CAVs).

The capacity of the intersection is then modelled as a function of the service time (i.e.,

3600
E(S) where E(S) is the service time in terms of the safety gaps) [87].

A similar work is proposed in [77] that employs the M/G/1 queue model to drive an

equation for the capacity of the intersections. This model assumes that the intersection

capacity is equivalent to the service rate of vehicles. The intersection capacity equation is

then derived in terms of the probability of vehicles arriving from conflicting stream and

non-conflicting stream with different service rate for each stream. Finally, the authors

in [88] reformulated the capacity measure of the unsignalised TWSC intersections to use

the critical gap and follow-up time of CAVs instead of the ones of HVs. The measures

provided by these researchers are effective to evaluate capacity of the intersections when

CAVs drive through a restricted set of lanes, however, are not applicable to the lane-free

intersections. This is majorly because headway and service time are both defined for when

vehicles drive within lanes, however, in a lane-free traffic flow vehicles do not have such a

restriction. Hence, there is a need for a measure to quantify the capacity for the lane-free

crossing of CAVs through intersections.

Fig. 2.5 summarises different measures that are proposed by prior works to calculate

the capacity of intersections for both HVs and CAVs.

2.3.3 Lane-free crossing of CAVs through intersections

Fig. 2.6 illustrates an example layout of a lane-free and signal-free intersection. The

figure includes three CAVs which are moving from their initial points, depicted with the

most solid colour, towards their intended destinations which are with the most transpar-

ent colour. The intersection comprises of four approaches, each of them has a separate

incoming and outgoing lane. In a lane-free intersection, vehicles can freely change their
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Figure 2.6: Layout of the studied lane-free and signal-free intersection which also shows
the sufficient conditions for obstacle avoidance. Further details are presented in section 3

lanes in favour of faster crossing through the intersection. For instance, Fig. 2.6 shows

the red CAV overtakes the black CAV by using the opposite lane.

In this study, the intersection does not have traffic lights because the CAVs can directly

communicate their states and intentions. There is a coordinator that receives all the

information from the CAVs when they arrive to the control zone and centrally control

them to efficiently and safely cross the intersection. The control zone is defined based

on the communication range of the coordinator, that is assumed 50 m. The coordinator

then counts the number of vehicles entering the zone and when the number of vehicles

reaches its practical limit or one of the vehicles reaches the beginning of the intersection,

the coordinator calculates a safe trajectory for all the vehicles within its range. There is

no human-driven vehicle or pedestrian. To compare the results with the ones of the prior

research, this paper assumes that CAVs drive within the lanes before and after the control

zone, which is shown to have no effects on the provided results (the results depend on the

longest path of travelling CAVs). The authors in [89,90], on the other hand, suggest that

CAVs will drive in a seamlessly lane-free order within and outside intersections. In other

words, there will not be a separate controller for different sections of roads and CAVs

continuously collaborate to reach their final destinations without collision.

As explained in Sections 3.2 and 3.3, the expression −b⊤
i λij − b⊤

j λji ≥ ddmin in Fig.
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2.6 is the dual representation of the distance between a pair of CAVs, and sij is the

separating hyperplane placed between them. The parameters bi and bj are related to the

size of CAVi and CAVj respectively and λij , λji and sij are dual variables. Similarly,

−b⊤
i λir − b⊤

r λri ≥ drmin is the dual representation of distance between the red CAV and

a road boundary and sir is the separating hyperplane between them. br is related to the

size of the road boundary and λir, λri and sir are the dual variables. For further details,

the reader is referred to Sections 3.2 and 3.3.

2.4 Optimal Control Problem (OCP)

As previously mentioned in Sections 2.2.2 and 2.3.1, OCPs are frequently used to formulate

and solve the path planning of CAVs as well as the lane-free crossing of CAVs through

intersections. OCPs take into account the dynamic of a system in finding the optimal

control law u∗ that minimises a cost function, subject to other equality and inequality

constraints. A general form of a continuous-time infinite horizon OCP with a cost junction

of J subject to system dynamics f is presented in (2.5) [4].

u∗(.) = arg min
u(.)∈U∞

J∞(x, u; t) :=

∞∫
t

L(x(t), u(t))dt

subject to:

ẋ = f(x(t), u(t)),

h(x(t), u(t)) ≤ 0,

g(x(∞)) = 0,

x(t0) = x0,

x(t) ∈ X,u(t) ∈ U ,

∀t ∈ [t, t+∞].

(2.5a)

(2.5b)

(2.5c)

(2.5d)

(2.5e)

(2.5f)

where (2.5c) represents the inequality constraints of the control inputs u and the states x

and (2.5f) presents the corresponding boxing constraints. The initial and final values of

the states are specified in, respectively, (2.5e) and (2.5d) as boundary constraints. The

cost function J includes a Lagrange term L that penalises the distance between the current

and the reference trajectory for the whole period of prediction. To solve the OCP given

in (2.5), different solution methods are explained in Section 2.6.

It is worth noting that OCPs are a class of dynamic optimisation problems because
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they have ordinary or partial differential equations (PDE) as constraints, making them

different from static optimisation problems. Such dynamic constraints require solving the

OCP for the infinite horizon (instead of a single sampling point) because any action at a

sampling point will affect the whole future [91].

2.4.1 Model predictive control (MPC)

The major bottleneck of formulating path planning problems of CAVs as OCPs is that

it must be then solved over the infinite horizon. It means that at any time t, the whole

optimal trajectory from the t until the terminal time t + ∞ must be calculated. How-

ever, solving such an infinite horizon OCP, particularly with a large number of states, is

computationally expensive if not impossible (except for special cases). MPC, on the other

hands, solves the OCP in (2.5) over a finite horizon in a receding horizon fashion which

can reduce the computational time [4]. Solving the OCP in such receding horizon fashion

results in taking into account the disturbances as well as the mismatch behaviour of the

model and real plant. MPC is a closed-loop controller that receives feedback from the

plant after applying any control signal and updates the current states of the system before

resolving OCP for the next receded horizon. This helps MPC to compensate the errors

due to limiting the horizon. A general form of the OCP which is solved within the MPC

framework is provided in (2.6) which is the discritised verison of (2.5) over a finite horizon

Np.

u∗(.) = arg min
u(.)∈UNp

JNp(x, u;n) :=

n+Np−1∑
k=n

L(x(k), u(k)) +M(x(n+Np)),

subject to:

ẋ = f(x(k), u(k)),

h(x(k), u(k)) ≤ 0,

g(x(n+N)) = 0,

x(n) = x0,

k ∈ [n, n+Np − 1],

x(k) ∈ X,u(k) ∈ U.

(2.6a)

(2.6b)

(2.6c)

(2.6d)

(2.6e)

(2.6f)

(2.6g)

The objective function (2.6a) includes a stage cost as the Lagrange term L(.) and a Mayer

term M(.). While the Largragne term is for the measurement of the running costs of
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the states and the control inputs during the prediction horizon, the Mayer term penalises

any deviations of the states at the end of prediction horizon from their desired final

values. Although it is shown that the existence of the Mayer term in the objective function

can be effective for the stability and convergence of the system, it is not a necessary

condition. There exists new techniques that can improve the stability of MPCs without

adding terminal constraints (e.g., see [5, 92]).

Dynamic 

optimiser

Objective function 

+

Constraints

Plant 

model

MPC 

controller
u

Plant
y

State 

estimator

̂x

(a)

(b)

Figure 2.7: Overview of (a) block diagram and (b) functionality of MPC (courtesy of [4]).

Figure 2.7 (a) shows a general block diagram of how MPC controls a plant. From figure

2.7 (a), it can be observed that an MPC controller consists of an objective function as well

as constraints, a dynamic optimiser and a plant model. The MPC controller calculates

the optimal control inputs u∗(.) and sends them to the plant model. The current state

values of the system are then either measured or estimated by a state estimator block to

provide a feedback to the MPC controller as initial values.

Figure 2.7 (b) illustrates the functionality of an MPC controller. It can be seen that an

optimal control input u∗(.) is calculated for any sampling instant k for a finite prediction

horizon T = Np×h where h is the sampling length. The optimal control input is calculated
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by minimising the cost function of the controller which can be related to the required time

for the states to reach the defined set points or the maximum level of overshoots. A

feedback which is the current measurement of the system is used as the initial states to

construct an OCP. The OCP is then solved and the first sequence of p, the calculated

control input, is applied to the plant. The controller then updates the states using the

new measurements at (k + p)h and shifts the prediction horizon and control prediction

forward to find the new optimal control inputs [4]. A summary of the operation of MPC

controllers is as follows:

1. Solving an open-loop finite horizon OCP to obtain optimal control sequence u∗(.).

2. Applying the first control input to the plant and measuring or estimating the output.

3. Using the output as a feedback to initialise and resolve the OCP while shifting the

horizon one step forward.

It is worthy to note that solving the general form MPC in (2.6) for multi-agent systems

such as path planning of multiple CAVs in a centralised frame can still be impractical.

This is majorly because solving the MPC in a centralised framework assumes that all

the information of the systems/CAVs (e.g., position, speed, ect.) are available, however,

this is not the case in reality. As an example, CAVs approaching an intersection from

different directions are not able to share information at all times due to the limitation

of the communication range of each CAV. Moreover, controlling CAVs in a centralised

frame can involve issues related to safety such that failure of the centralised system results

in failure of all CAVs. CAVs are intelligent agents that can directly communicate with

other members of the traffic without the need of a centralized controller. In this light, a

distributed control strategy is desirable where each CAV finds its own control inputs by

collaborating with others.

2.5 Optimisation Problems

The goal of an optimisation problem is to find the best solution out of all the feasible

solutions which are defined by a set of equality and inequality constraints. A general form

of an optimisation problem is as follows:
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minimise f(x)

subject to:

hi(x) ≤ 0, i = 1, ...,m,

gj(x) = 0, j = 1, ..., p.

(2.7)

where the domain D =
(
∩m
i=1domhi

)
∩
(
∩p
j=1domgi

)
is nonempty and the optimal value

of (2.7) is d∗ (e.g., d∗ = inf{f(x) | ∀x; hi(x) ≤ 0, i = 1, ...,m, gj(x) = 0, j = 1, ..., p}).

The optimisation problem (2.7) is solved for x that minimises the objective function f(x)

and meets gj(x) = 0, j = 1, ..., p and hi(x) ≤ 0, i = 1, ...,m.

Before solving any optimisation problem it is important to check if it is convex. Solv-

ing non-convex problems is in general harder than convex problems due to the existence

of several local minimums and saddle points. On the other hands, when solving a con-

vex problem, the existence of a global optimal solution is always guaranteed [93]. This

difference between a convex and non-convex function is depicted in Fig. 2.8.

X

Y

X

Y

Local minimum

Global minimum

Global minimum

Convex Non-convex

Figure 2.8: An example of a convex and non-convex functions.

In a formal way, a function f where f : I → R and I is a nonempty interval of R is

said to be convex if the following condition holds [94]:

f(αx+ (1− α)x′) ≤ αf(x) + (1− α)f(x′) ∀x, x′ ∈ I, α ∈ [0, 1] (2.8)

Geometrically, if a line connecting any two points of function f does not lie below its

graph. This geometrical property of a convex function which also describes equation (2.8)

is shown in Fig. 2.9.
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Figure 2.9: The fundamental property of a convex function.

To discuss convexity in optimisation problems consider the general optimisation prob-

lem given in (2.7). In order for problem (2.7) to be convex the following requirements

must be satisfied [95]:

• the objective function f(x) must be convex.

• the inequality constraints hi(x) ≤ 0, i = 1, ...,m must be convex.

• the equality constraints gj(x) = 0, j = 1, ..., p must be affine, e.g. gj(x) = aTj x−bj .

Any optimisation problem that does not follow the above-mentioned conditions (e.g.,

has a non-convex cost function or a non-convex constraint) is considered as a non-convex

problem and solving it can be computationally expensive.

2.5.1 Dual problem theory

As the optimisation problem (2.7), considered as primal, is a minimisation problem, its

dual is a maximisation problem and the solution to the dual problem is a lower boundary

on the optimal value of the primal problem [95]. In general, the solution of the primal

and dual problems are not equal and the different between their solutions is known as

the duality gap. However, if some constraint qualifications such as Slater’s condition is

satisfied, the duality gap is zero and the solution of both problems becomes equal [95].

Slater in [96] states that if the primal problem is convex and there exists a strictly feasible

solution x̂ to the primal problem, strong duality holds and the solution of both problems

becomes equal.

To derive the dual problem of the primal problem (2.7) the Lagrangian function is

employed and as a result the dual problem is also referred to as Lagrangian dual problem.
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The Lagrangian function of the primal problem (2.7) is shown in (2.9) which considers the

objective function with weighted sum of the constraint functions [95]:

L (x, λ, υ) = f(x) +

m∑
i=1

λihi(x) +

p∑
j=1

υjgj(x). (2.9)

where λi and υj are called the Lagrange multiplier or dual variables associated with

the ith inequality and jth equality constraints respectively.

The dual function G : Rm × Rp → R where λ ∈ Rm, υ ∈ Rp is then formulated to

have minimum value of Lagrangian over x as follows:

G(λ, υ) = inf
x∈D

L (x, λ, υ) = inf
x∈D

(
f(x) +

m∑
i=1

λihi(x) +

p∑
j=1

υjgj(x)

)
. (2.10)

The dual function (2.10) leads to the following optimisation problem which seeks for

the pair (λ, υ) while λ ≥ 0:

maximise G(λ, υ)

subject to: λ ≥ 0.

(2.11)

As previously mentioned, the dual problem (2.11) yields a lower bound on the optimal

value of the primal problem (2.7) (e.g., G(λ, υ) ≤ d∗). However, if Slater’s condition is

satisfied, the solution of both problems are equal G(λ∗, υ∗) = d∗. Moreover, the dual

problem (2.11) is a convex optimisation problem because the objective function which is

to be maximised is concave and the constraint is convex. This is true regardless of whether

the primal problem is convex or non-convex [95].

2.5.2 Differentiable functions

Differentiable functions enable the use of fast gradient-based solvers for calculating the

optimal solutions of complex optimisation problems. A function is said to be differentiable

if there exists a derivative for each point in its domain [97]. Function f : U → R is

differentiable at point a ∈ U with f ′(a) if:

f ′(a) = lim
h→0

f(a+ h)− f(a)

h
(2.12)

A differentiable function is also continuous but the converse does not hold. This is

simply because for a differentiable function the derivative should exist at all points in

its domain. Therefore, the only way for the derivative to exist is that the function also
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exists which indicates continuity. The absolute function f(x) = |x| as an example is a

continuous function at all points in its domain but not a differentiable one at x = 0.

Generally speaking, differentiable functions do not contain angle, break or cusp.

A multivariable function f : Rp → Rq is said to be differentiable at a point a if there

exists a linear map J : Rp → Rq such that:

lim
h→0

||f(a+ h)− f(a)− J(h)||q
||h||q

= 0. (2.13)

If function f is differentiable at point a, the linear map J is defined by the Jacobian

matrix which includes all the partial derivatives.

2.6 Numerical Methods for Solving OCPs

Solving OCPs can be challenging due to several reasons including large dimension, as

well as non-linearity, non-convexity and non-differentiability of the problem. Although

convex optimisation problems with linear constraints can be solved efficiently using the

state-of-the-art algorithms, optimisation problems that include nonlinear constraints are

computationally expensive [95].

Previous researchers proposed three approaches to solve OCPs of the form (2.5) [98,

99]: i) dynamic programming which is based on the Bellman’s principle of optimality;

ii) indirect methods that are based on Pontryagin’s minimum principle; and iii) direct

methods that convert OCPs into NLPs and attempt at solving the NLPs using an NLP

solver.

2.6.1 Dynamic programming (DP)

Dynamic programming (DP) finds the solution of an OCP by breaking it down into sub-

problems. The sub-problems are then solved and their solutions are combined to obtain

an overall solution. Such breakdown of the problem into sub-problems is performed based

on the Bellman’s principle of optimality. This principle states an optimal policy has

the property that regardless of the first state and first sample of control sequence, the

remaining control sequence construct an optimal control policy with regard to the state

resulting from the first control sequence [100].

DP utilises the value function of OCPs to iteratively solve them. A value function

yields the value of an objective function at a solution. The optimal value function of the

infinite-horizon OCP in (2.5) with an initial state x(t) = x0 is as follows:
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V∞(t, x0) = J∞(x∗(.), u∗(.); t, x0) := minimise
u(.)∈U

J∞(x, u; t, x0) (2.14)

DP employs Bellman’s equation, given in (2.15), to iteratively calculate an optimal

value function of an OCP with the finite horizon N (i.e., OCPN ) from an initial value V0

and with respect to the system dynamics x(k + 1) = f(x, u; k) and the Lagrange term

L(x, u; k) [101].

VK+1(x; k) = minimize
u(.)∈U

{VK(f(x, u; k)) + L(x, u; k)} (2.15)

where K ∈ [1, Np], k ∈ [0, Np − 1] and V0 = 0.

Solving an OCPNp given as in (2.5) with DP leads to Np−1 overlapping sub-problems.

These sub-problems can be formulated using (2.15) which is based on the value of the

current problem and the remaining sub-problems. Moreover, such formulation and solving

the sub-problems can be preformed with two techniques called memoization or tabulation.

The memoization technique solves the sub-problems from top to bottom. The solution

of sub-problems are saved in a lookup table and are used to obtain an overall solution

recursively. On the other hand, the tabulation technique solves the sub-problems from

bottom to top and the overall solution is built up using previously calculated solutions,

hence no recursion.

The Bellman’s equation in (2.15) is in discrete-time form and the corresponding continuous-

time is Hamilton-Jacobi-Bellman (HJB) equation. HJB converts the OCP into a set of

Partial Differential Equations (PDEs) with boundary conditions (e.g., initial and final

states) and solves this problem instead. The solution of the new problem is the opti-

mal value function of the original optimisation problem which is then used to obtain the

associated control signals. For further details on HJB the reader is refereed to [91].

Although DP approach finds the global optimal solution of an OCP by providing a

sufficient and necessary condition of optimality, yet it suffers from curse of dimensionality

which reduces its performance and limits its applications [101]. In other words, because of

the fact that the required computing effort to solve an OCP using DP grows exponentially

with the number of the system states, DP is often used to solve minor problems or for

offline calculation of the benchmark optimal solutions [98].
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2.6.2 Indirect method

Indirect method employs Pontryagin’s minimum principle (PMP) to convert an OCP to

a boundary value ordinary differential problem, and provides the necessary conditions of

optimality. PMP claims that if there exists an optimal solution to an OCP, it must also

minimise a Hamiltonian function H. For example, the Hamiltonian function of the OCP

(2.5) ignoring the inequality constraints h(x, u; t) ≤ 0 is formulated as follows [91]:

H(xk, uk, λk+1; k) := L(xk, uk; k) + λT
k+1f(xk, uk; k). (2.16)

where k ∈ [0, Np − 1], and λ is the vector of Lagrange multiplier whose elements are the

costates of the system and indicate the marginal relaxation in the constraints.

PMP introduces necessary conditions for the control sequence u∗(.) to be optimal

which are based on Euler-Lagrange equation. These necessary conditions for an OCP are

presented as follows [91]:

H(x∗k, u
∗
k, λ

∗
k+1; k) ≤ H(x∗k, uk, λ

∗
k+1; k) (2.17a)

x∗k+1 =
∂H

∂λk+1
(x∗k, u

∗
k, λ

∗
k+1; k) (2.17b)

λ∗
k =

∂H
∂x

(x∗k, u
∗
k, λ

∗
k+1; k) (2.17c)

λ∗
N =

∂M
∂xN

(x∗N ;N) (2.17d)

xk(0) = x0 (2.17e)

∀u(k) ∈ U , k ∈ [0, N − 1]. (2.17f)

where (2.17d) and (2.17e) are the boundary conditions. The necessary condition in (2.17a)

indicates that an optimal control u∗(.) must minimise the Hamiltonian. Also, to minimise

the Hamiltonian the following necessary condition must be satisfied:

∂H
∂u

(x∗k, u
∗
k, λ

∗
k+1; k) = 0. (2.18)

Equation (2.18) is a first order necessary condition for optimality and its solution

u∗(k) = π(x∗, λ∗
k+1; k) (where π is a control policy function) is a local optimum in terms

of x∗ and λ∗ for the original OCP. Substituting this solution to the rest of conditions

results in a boundary value problem which can then be solved using a gradient-based or

shooting approach. It is worth noting that, the calculated optimal control input u∗(.) is
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guaranteed to be a local optimum solution of PMP and hence the OCP if the following

second order sufficient condition is satisfied:

∂2H
∂u2

(x∗k, u
∗
k, λ

∗
k+1; k) > 0. (2.19)

In contrast to DP method, indirect method is less computationally demanding [102].

PMP converts an OCP into boundary value problems with ordinary differential equations

(ODEs) whereas DP involves solving PDEs which are more computationally expensive.

Moreover, the computational burden of solving OCPs using DP increases exponentially

with respect to the dimension of states while it is linear for PMP. Although PMP is in

general a faster technique than DP, it comes at a cost of not guaranteeing the global

optimality of the solution. In other words, the solution calculated by the PMP method is

not necessarily a global optimum solution and can be a local one [102].

2.6.3 Direct methods

Solving large-scale OCPs with several equality and inequality constraints based on the

necessary and sufficient conditions of optimality of DP or PMP is not always practical.

DP suffers from curse of dimensionality when the problem involves many states and PMP

does not guarantee the optimality of the solution and has difficulties for solving singular

control problems [5]. These limitations of the previous approaches promoted the direct

methods to become a more popular approach for solving OCPs.

The direct methods are a class of techniques for solving OCPs which employ the

discretise then optimise (D-O) strategy. In contrast to the indirect method, this approach

benefits from a systematic handling of the inequality constraints which makes it applicable

to a wide range of problems [103].

Direct methods are divided into two groups based on their structure: sequential and

simultaneous strategies. In the sequential strategy, there is an inner solver that deals with

integration of differential algebraic equations (DAEs) which define the constraints, and an

optimiser that use the results of the integration to modify the discretised control signals.

Thus the integration and optimisation are performed sequentially and one after the other.

Therefore, in this strategy, the only degree of freedom for the NPL solver is the control

signals [103] which are discretised as piecewise polynomial, and hence the optimisation is

carried out with respect to the polynomial coefficients [104].

A summary of numerical methods for solving OCPs is provided in Fig 2.10.
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Figure 2.10: An overview of numerical methods for solving optimal control problems.

Direct sequential methods

Fig. 2.11 shows an outline of a sequential strategy called direct single shooting. From Fig.

2.11, it can be seen that the DAE constraints are realised by an inner level DAE solver

which integrates the differential equations with respect to the control inputs. The DAE

solver, solves an initial value problem and outputs state trajectories. The resulting state

trajectories are employed to obtain the gradient of the constraints ▽uh(0) and cost function

▽uJ(0), both with respect to the control inputs. Using these information, the NLP solver

updates the control signals and applies them to the DAE solver to iteratively converge to

optimal solution. The implementation of direct single shooting method is relatively simple

due to the availability of effective NLP and DAE solvers. However, this method is not

advised to be used for unstable systems [5, 103]. Moreover, sequential methods require

repeated integration of DAEs which can be time consuming for large-scale problems.

Multiple shooting method is developed to improve the performance of single shooting

in terms of applicability to unstable systems [105, 106]. The multiple shooting method,

as compared to the single shooting, divides the time domain of the system into smaller

segments and in each segment the DAE model of the system is integrated separately. To

ensure that the solution function is a single continuous function, equality constraints in

the form of initial values of states for each time point are added to the NLP [107]. Such

equality constraints improve convergence to an optimal solution for unstable systems.
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Figure 2.11: Architecture of sequential optimisation method [Courtesy of [5]].

Direct simultaneous (collocation) method

The direct simultaneous optimisation strategy discretises both the control inputs and the

states of the system by collocation on finite elements. The discretisation removes the

differential equations of the OCP and converts the problem into a large-scale nonlinear

programming problem with a set of algebraic equations which can then be solved using an

NLP solver. This direct collocation strategy is fully simultaneous, it means that there is

no sensitivity calculator or inner DAE solver as opposed to the shooting strategies [108],

and in fact the DAE constraints are solved at the optimal solution.

The major aspect of direct simultaneous method is that any NLP solver employed, can

benefit from the sparsity structure of the resulting Karush-Kuhn-Tucker (KKT) conditions.

This is also the major reason that direct collocation method is employed in this thesis to

solve the OCP of CAVs crossing intersection. This technique fully discretises the OCP,

leading to a spares NLP which can be exploited by an interior-point method as the NLP

solver [109]. Moreover, as compared to sequential methods direct simultaneous method

does not require repeated numerical integration of the DAE model which is time consuming

particularly for large-scale problems [104, 110]. Moreover, the speed of calculating the

gradients and Hessians plays a crucial role in the performance of simultaneous method

which are effectively improved using advanced techniques like Automatic Differentiation

(AD). Further details on NLP and AD can be found in respectively, Sections 2.6.4 and

2.6.6.

Consider the following ordinary differential equation as the plant dynamics:

ẋ(t) = f(x, u; t). (2.20)

Using the collocation method, the ODE presented in (2.20) is solved at selected points

in time. The state variable x(t) is approximated by Lagrange interpolation polynomial of
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degree K. The Lagrange interpolation polynomials is the preferred representation among

the several others because the polynomial coefficients have the same variable bounds as

the profiles themselves [5]. A Lagrange polynomial of degree K is generated by K + 1

interpolation points within each time step i, that construct the following time grid:

t = ti−1 + hiτ, t ∈ [ti−1, ti], τ ∈ [0, 1]. (2.21)

where hi is the sampling time at i and τ represents the interpolation points.
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Figure 2.12: Polynomial approximation of the states over a finite element (courtesy of [4]).

Fig. 2.12 shows the Lagrange interpolation with collocation point degree K = 3 for

the state trajectory of the ODE given by (2.20). The state trajectory in Figure 2.12 at

time step i can be approximated with the following Lagrange polynomial xK(τ) of degree

K [5]:

xK(τ) =

K∑
j=0

Lj(τ)xij . (2.22)

Lj(τ) =
K∏

k=0,̸=j

τ − τk
τj − τk

. (2.23)

where τj , j = 0..K − 1 monotonically ascends with time, and τ0 = 0.

The approximated trajectory (2.22) is substituted into the original ODE (2.20) which

after discretisation results in the following collocation equation for each time element i [5]:
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ẋK(τk) =
d

dt

K∑
j=0

Lj(τk)xij , (2.24)

=
1

hi

K∑
j=0

dLj

dτ
(τk)xij ,

≈ f(xik, uik),

∴
K∑
j=0

L̇j(τk)xij ≈ hif(xik, uik), k = 0, ..,K − 1.

where hi is the sampling time at i, and uik is the discretised control signal using the same

concept:

u(τ) =

K∑
j=1

L̃j(τ)uij .

where

L̃j(τ) =
K∏

k=1,̸=j

τ − τk
τj − τj

. (2.25)

It is worth nothing that in order to transform an OCP into an NLP, the interpolation

points τk must be carefully chosen to obtain the best approximation of state variables x.

In this regard, it is shown that the best interpolation points τk are the roots of a system of

orthogonal polynomials PK(τ) (K is the maximum degree of the system) [5], that means:

∫ 1

0
Pk(τ)Pk′(τ) dτ = 0, ∀k ̸= k′, k = 0, ..,K − 1, k′ = 1, ..K. (2.26)

The Gauss–Legendre and Radau polynomials are amongst the candidate that have

orthogonality property and can be used for finding the collocation points τk. Table 2.3

shows the roots of Gauss–Legendre and Radau system of polynomials as collocation points

for different values of K.
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Table 2.3: Shifted Gauss–Legendre and Radau roots as collocation points.

Degree K Legendre Roots Radau Roots

1 0.500000 1.000000

2 0.211325 0.333333

0.788675 1.000000

3 0.112702 0.155051

0.500000 0.644949

0.887298 1.000000

4 0.069432 0.088588

0.330009 0.409467

0.669991 0.787659

0.930568 1.000000

5 0.046910 0.057104

0.230765 0.276843

0.500000 0.583590

0.769235 0.860240

0.953090 1.000000

Now that both the states and control signals are fully discretised, it is important to

make sure the states are continuous across time elements and collocation points. The

following equations enforce continuity of states for Np time elements:

xi+1,0 =

K∑
j=0

Lj(1)xij , i = 1, .., Np − 1

x(tf ) =
K∑
j=0

Lj(1)xNj , x1,0 = x(t0).

(2.27a)

(2.27b)

where x(t0) and x(tf ) are given initial and final boundaries.

Using the collocation and continuity equations, the original OCPNp (2.5) is discretised

and transformed into an NLP which can then be solved using NLP solvers. The resulting

NLP formulation is given as follows [4]:
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u∗ = arg minimise
u∈UNp+K

JNp(x, u;n) :=

n+Np−1∑
i=n

K∑
j=0

L(xij , uij)

subject to:

K∑
j=0

L̇j(τk)xij − hif(xik, uik) = 0,

h(xij , uij) ≤ 0,

xi+1,0 =
K∑
j=0

Lj(1)xij ,

x(tf ) =

K∑
j=0

Lj(1)x(n+Np)j , xn,0 = x(t0),

g(x(n+Np)) = 0,

i ∈ {n+ 1, .., n+Np − 1}, k ∈ {1, .., Np ×K},

xij ∈ X,uij ∈ U.

(2.28a)

(2.28b)

(2.28c)

(2.28d)

(2.28e)

(2.28f)

(2.28g)

(2.28h)

2.6.4 Non-linear programming (NLP)

OCPs are converted into NLPs by employing a direct method such as the simultaneous

collocation strategy. The resulting large-scale NLP with both the equality and inequality

constraints is as follows [111]:

minimise
x∈Rn

f(x)

subject to:

h(x) ≤ 0,

g(x) = 0.

(2.29a)

(2.29b)

(2.29c)

where (2.29b) and (2.29c) represent, respectively, the vector of inequality and equality

constraints of the NLP formulation.

In order to solve the NLP proposed in (2.29) there exists at least three methods that

can handle both the equality and inequality constraints [5]: interior-point methods (IPMs),

sequential quadratic programming (SQP) methods and nested projection methods. There

is an extensive comparison between the NLP solvers and the reader is referred to [112].

The interior-point method is selected as the NLP solver in this study and an overview of

this technique is presented in the next section.
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2.6.5 Interior-point method (IPM)

The interior-point method solves NLPs, given as in (2.29), by initially relaxing the problem

then employing fast iterative solvers to solve the relaxed version. IPOPT as an open-source

implementation of IPM solves large-scale NLPs efficiently. This study employs IPOPT as

the NLP solver, majorly because the sparse NLPs generated from fully discretised OCPs,

when solved by IPOPT lead to a sparse banded KKT matrix. The KKT matrix is a

large system of multi-variable algebraic equations which can be solved fast using lower-

upper factorisation based linear solvers such as MA57 [113] or MUMPS [114]. A detailed

explanation of structure exploitation in an interior-method for fully discretised OCPs can

be found in [109].

The main strategy of IPM is to convert the inequality constraints of the original prob-

lem into relaxed equality constraints using either of the barrier or homotopy approaches.

The homotopy approach converts the inequality constraints of the NLP (2.29) into

equality constraints using a vector of slack variables s as follows:

minimise
x∈Rn,s∈Rns

f(x)

subject to:

h(x)− S = 0,

g(x) = 0.

(2.30a)

(2.30b)

(2.30c)

where the number of equality constraints is denoted as ns and S = diag(s).

The corresponding Lagrangian function is defined as:

L (x, λ, µ) = f(x)− g(x)Tλ− (h(x)− S)Tµ (2.31)

Base on the Lagrangian function, the KKT theorem is employed to construct necessary

conditions of optimality as the following set of algebraic equations:

▽xL (x∗, λ∗, µ∗) = 0,

S∗µ∗ − υe = 0,

g(x∗) = 0,

h(x∗)− S∗ = 0,

S∗ ⪰ 0.

(2.32a)

(2.32b)

(2.32c)

(2.32d)

(2.32e)

where e = [1, 1, .., 1]T and υ is a perturbation parameter that vanishes iteratively and
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enforces the solution to keep distance from boundaries, i.e., limi→∞ υi = 0.

Fast iterative approaches such as trust-region [115] or linesearch [40] methods can be

employed to efficiently solve problem (2.32) to obtain the solution (x∗, λ∗, µ∗, S∗) itera-

tively for a vanishing value of υ.

The other interior-point based approach is called barrier method that adds a log-

barrier term to the cost function to construct a relaxed version of the original NLP (2.30)

as follows:

minimise
x∈Rn,υl∈Rn

f(x)− υl

nh∑
i=1

ln(−si)

subject to:

hi(x)− si = 0,∀i = 1..nh

g(x) = 0.

(2.33a)

(2.33b)

(2.33c)

where nh represents the number of inequality constraints, υl denotes the barrier parameter

and l is an integer presenting the sequence counter such that liml→∞ υl = 0. It should be

noted that the log-barrier function is unbounded at h(x) = 0 and therefore, the inequality

constraint h(x) is strictly positive. A local solution of the original NLP is obtained by

iteratively solving the relaxed problem (2.33) so that the barrier parameter {υl} converges

zero. Hence, the barrier method solves NLPs by constructing a barrier problem such as

the one in (2.33) and as the value of the barrier parameter υl decreases the solution of

(2.33) converges to a solution of the original NLP. To solve the barrier problem, a similar

iterative solver as the homotopy approach, such as a Newton based method is employed to

iteratively calculate the formulated KKT conditions which leads to the following sparse

linear problem at each iteration i that finds the system variables (xi+1 = xi +△x, λi+1 =

λi +△λ, υi+1 = υi +△υ):


Qi Ai −I

AT
i 0 0

Xi 0 Xi



△x

△λ

△υ

 = −


▽f(xi) +Aiλi − υi

g(xi)

XiDie− µle

 (2.34)

where e = [1, 1, .., 1]T , the diagonal elements are as Xi = diag(xi) and Di = diag(υi), the

Hessian is denoted by Qi = ▽xxL (xi, λi, υi) and Ai = ▽g(xi).
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2.6.6 Automatic differentiation (AD)

The performance of algorithms for solving NLPs, and hence OCPs significantly depends

on the precision and speed of the method employed to calculate Jacobian and Hessian

matrices. Therefore, differentiation is a fundamental property of NLP solvers and is one

of the major barriers to the accuracy and performance of NLPs.

AD is a simple but extremely useful technique for fast and accurate calculation of

derivative of any degrees. AD as compared to symbolic differentiation does not lead to

inadequate codes for complex equations where high degree of derivative degree is required

and as compared to numerical differentiation, it does not arise rounding errors. Lastly, AD

resolves the issue of both of these classical approaches in terms of speed of differentiating

partial derivatives of a function with respect to many inputs, as it is required for the

gradient-based optimisation algorithms.

The fundamental idea of AD is that every computer program (function), no matter

how complicated, performs a set of elementary arithmetic operations. AD evaluates the

derivative of such a function defined by a computer program, by decomposing the elemen-

tary operations and developing the derivative of each operation. The overall derivative

of the function is then calculated by another computer program that uses the chain rule

and intermediate variables to each elementary operation. There exist two distinct modes

of AD namely, forward mode and reverse mode. In the forward mode AD, decomposition

is performed from the inner operations to the outer ones whereas this is the other way

around for the reverse mode AD.

Table 2.4 shows the steps of forward mode AD for a sample function y = (x + x3)3.

The numerical values of the derivatives and values of intermediate variables for the sample

function are determined by seeding the variable x as 4 and its derivative as 2.

On the other hand, Table 2.5 shows the operation of AD in the reverse mode for the

same sample function. In the reverse mode, ω denotes the derivative of output y with

respect to ω hence y = 2. Similar to the previous mode, the numerical values of the

derivatives and intermediate values are determined by seeding the variable x as 4.

It is shown that AD saves considerable amount of computational time for calculating

Hessian and Jacobians as compared to numerical and symbolic methods [116]. The reader

is referred to [117,118] for more information about AD.
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Table 2.4: Automatic differentiation in the forward mode for a sample of function y =
f(x) = (x+ x3)3.

Elementary operations Forward derivatives Intermediate values Derivatives values

ω0 = x = 4 ω̇0 = ẋ = 2 4 2

ω1 = x3 = ω3
0 ω̇1 = 3ω0ω̇0 64 24

ω2 = x+ x3 = ω0 + ω1 ω̇2 = ω̇0 + ω̇1 68 26

ω3 = (x+ x3)3 = ω3
2 ω̇3 = 3ω2ω̇2 314432 5304

Table 2.5: Automatic differentiation in the reverse mode for a sample of function y =
f(x) = (x+ x3)3.

Elementary operations reverse derivatives Intermediate values Derivatives values

ω3 = (x+ x3)3 = ω3
2 ω3 314432 2

ω2 = x+ x3 = ω0 + ω1 ω2 = 3ω2ω3 68 408

ω1 = x3 = ω3
0 ω1 = ω2 64 408

ω0 = x = 4 ω0 = (1 + 3ω0)ω2 4 5304

2.6.7 Toolkits

To effortlessly formulate and solve OCPs, there exists a number of toolkits that are im-

plemented in MATLAB, C++/C and FORTRAN. This study employs computer algebra

system with automatic differentiation implementation (CasADi). CasADi is an open-

source framework that allows to flexibly formulate and solve OCPs and MPCs. This

toolkit includes interfaces for solving NLPs and DAE as well as the implementation of

forward and inverse AD [119]. In addition, CasADi is a computer algebra system (CAS)

and allows users to choose different direct methods such as multiple and single shooting

methods or collocation method to solve the OCPs. The implementation of each one of

these direct methods can be designed by the user to be the most suitable for the problem.

As compared to other toolkits such as ACADO [120], FORCESPRO [121] and MUSCOD-

II [106] that only allow the implementation of single and multiple shooting methods for

discretisation of differential equations, CasADi allows the implementation of the colloca-

tion method. The single and multiple shooting methods are based the Euler method while

the collocation method is based on Lagrange polynomial approximation. The key differ-

ence between the two discretisation methods is that collocation method uses a polynomial

of higher degree to approximate the solution, while the Euler method uses a linear approx-

imation. As a result, the collocation method is generally more accurate than the Euler

method for the same number of function evaluations, but it is also more computationally

expensive. Moreover, unlike the mentioned toolkits that only provide the user with a black

box OCP solver, CasADi is a flexible tool that supports low-level implementation which
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is useful for formulating any desired OCP. For additional information on CasADi and its

applications, the reader is referred to [117–119].
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Chapter 3

Optimal Lane-Free Crossing of

CAVs through Intersections

This chapter shows the formulation and solution of lane-free crossing of CAVs through

intersections as a minimum-time optimal control problem that minimises the crossing time

as well as the energy consumption due to acceleration of all CAVs. Initially, the shape of

vehicles and road boundaries are modelled in a way that lane-free movement is be enabled.

Thereafter, a smoothing technique based on dual problem theory of convex optimisation

is employed to smoothen the constraints of CAVs avoiding collision with each other and

with road boundaries. A smooth minimum-time OCP is then formulated to achieve the

shortest crossing time while minimising the energy consumption of all vehicles passing

through an intersection in a lane-free order. Finally, the performance of the proposed

lane-free algorithm in terms of crossing time, energy consumption and passenger comfort

is compared against two state-of-the-art algorithms where one is based on a similar concept

of lane-free crossing and the other is a reservation-based method.

3.1 Modelling the Shape of Vehicles and Road Boundaries

This study represents each CAVi, when i ∈ {1..Nv} and Nv is the total number of CAVs,

as a rectangular polytope P̃i (i.e., a convex set) that is the intersection area of half-space

linear inequalities Ãix ≤ b̃i at the origin, where x ∈ R2 is a Cartesian point. In this

paper, all CAVs have the same size which are defined with:

Ãi =
[
1 −1 0 0
0 0 −1 1

]⊤
, b̃ = [l/2, l/2, d/2, d/2]⊤. (3.1)

where l and d denote, respectively, the wheelbase and track of CAVs.
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Figure 3.1: Transformation of each CAVi from P̃i to Pi(zi; t) where zi(t) =
[xi(t), yi(t), θi(t)]

T .

As CAVi moves to a new pose zi(t) = [xi(t), yi(t), θi(t)]
T , the original polytope P̃i of

the CAV is transformed to Pi as follows:

P̃i 7→ Pi(zi; t) : Ai(zi; t)x(t) ≤ bi(zi; t). (3.2)

where:

Ai(zi; t) = Ãi

[
cosθi(t) sinθi(t)
−sinθi(t) cosθi(t)

]
, (3.3a)

bi(zi; t) = b̃+ Ãi

[
cosθi(t) sinθi(t)
−sinθi(t) cosθi(t)

]
[xi(t), yi(t)]

⊤. (3.3b)

Fig. 3.1 provides a graphical representation of (3.2). It is worth noting that the robot

pose in (3.3b) (e.g., xi(t), yi(t) and θi(t)) do not cause non-convexity as the solver treats

them as variables and substitutes values there.

Road boundaries are also modelled as convex polytopic sets Or, when r ∈ {1..Nr} and

Nr is the total number of road boundaries which is 4 for four-legged intersections.

Based on these representations, there is no collision between CAVi and CAVj if and

only if Pi(zi; t) ∩ Pj(zj ; t) = ∅,∀t ∈ [t0, tf ]. Similarly, CAVs do not collide with road

boundaries when the intersection of their sets is always empty, i.e. Pi(zi; t)∩Or = ∅, ∀t ∈

[t0, tf ].

3.2 Smoothing of Constraints to Avoid Collisions Between

CAVs

To avoid collisions between any CAVi and CAVj ∀i ̸= j ∈ {1..Nv}, their polytopic sets

should not intersect, i.e. Pi ∩ Pj = ∅ where Pi = {x ∈ R2|Aix ≤ bi} and Pj = {y ∈
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R2|Ajy ≤ bj}. However, these are non-differentiable conditions and enforcing them as

constraints in an OCP will make the problem difficult to be solved by the state-of-the-art

gradient-based algorithms. To preserve differentiability and continuity, Pi ∩ Pj = ∅ is

replaced by the following sufficient condition which has negligible effect on the optimality

of the solution for small values of dmin [122]:

dist(Pi,Pj) = min
x,y

{∥x− y∥2 | Aix ≤ bi, Ajy ≤ bj} ≥ dmin;

∀i ̸= j ∈ {1..N}. (3.4)

where dmin is the minimum safe distance between CAVs.

Problem (3.4) is still non-convex and non-differentiable [122] and the remaining of this

subsection is dedicated to reformulate (3.4) with a smooth sufficient condition.

It is known that the problem of finding the minimum distance between two polytopes

Pi and Pj (the left hand-side of (3.4)) is convex [95]. Also, since Pj is not an empty set,

the strong duality holds [122]. This means that the solution of the primal problem of

finding dist(Pi,Pj) is the same as the one of its dual problem which is as follows:

dist(Pi,Pj) := max
λij ,λji,sij

− b⊤
i λij − b⊤

j λji (3.5)

s.t. A⊤
i λij + sij = 0,A⊤

j λji − sij = 0,

∥sij∥2 ≤ 1,−λij ≤ 0,−λji ≤ 0;

∀i ̸= j ∈ {1..N}.

where λij , λji ∈ R4, and sij ∈ R2 are the dual variables and Ai and bi are as in (3.3) (the

deviation of dual problem (3.5) from primal problem (3.4) is shown in [123]).

Combining (3.5) with (3.4), the objective function of (3.5) subject to its constraints

must be greater than or equal to dmin in order to avoid collisions. However, (3.5) can be

substituted by {∃λij ≥ 0,λji ≥ 0, sij : −b⊤
i λij−b⊤

j λji ≥ dcmin,A
⊤
i λij+sij = 0,A⊤

j λji−

sij = 0, ∥sij∥2 ≤ 1} because the existence of a feasible solution λij,feas, λji,feas, and sij,feas

where −b⊤
i λij,feas − b⊤

j λji,feas ≥ dmin is a sufficient condition to ensure dist(Pi,Pj) ≥

dmin, i.e. to avoid collisions [123]. Also, It is shown in [122] that these sufficient conditions

are smooth since the norm operator in ∥sij∥2 ≤ 1 is an Euclidean distance as sji ∈ R2

and the resulting feasible values of sij make a quadratic cone. Moreover, the proposed

sufficient conditions replace the nested optimisation problem with feasibility inequality
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constraints.

3.3 Smoothing of Constraints to Avoid Collisions with Road

Boundaries

Each CAVi must also avoid all the road boundaries, i.e. Pi ∩ Or = ∅ where Pi = {x ∈

R2|Aix ≤ bi} and Or = {y ∈ R2|Ary ≤ br}. Similar to section 3.2 collision avoidance

between CAVs, Pi ∩ Or = ∅ is replaced by the following sufficient condition:

dist(Pi,Or) = min
x,y

{∥x− y∥2 |Aix ≤bi,Ary ≤ br} ≥ drmin;

∀r ∈ {1..Nr}. (3.6)

where drmin is the minimum safety distance between CAVs and road boundaries.

The dual problem of (3.6) is then substituted with the sufficient condition {∃λir ≥

0,λri ≥ 0, sir : −b⊤
i λir − b⊤

r λri ≥ drmin,A
⊤
i λir + sir = 0,A⊤

r λri − sir = 0, ∥sir∥2 ≤ 1}

where λir,λri, and sir are the dual variables. sir is the separating hyperplane between

CAVs and road boundaries (see Fig. 2.6).

3.4 Formulation of the Problem as an OCP

Lane-free crossing of multiple CAVs through a signal-free intersection is formulated as the

following optimal control problem:

{ai(.), δi(.)}∗ = (3.7a)

arg min
tf ,ai(.),δi(.)

J(z1(.), .., zNp(.)) (3.7b)

s.t. (2.1), (2.3), (3.7c)

Pi(t) ∩ Pj(t) = ∅; ∀i ̸= j ∈ {1..Nv}, (3.7d)

Pi(t) ∩ Or(t) = ∅; ∀i ∈ {1..Nv},

∀r ∈ {1..Nr}, (3.7e)

zi(t0) = zi,0,

zi(tf ) = zi,Np ,

∀i ∈ {1..Nv}, t ∈ [t0, tf ].
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where J(z1(.), .., zNp(.)) is the objective function of the OCP and is defined in the next sec-

tion 3.5, (3.7c) refers to the vehicle kinematics and (3.7d) and (3.7e) denote, respectively,

collision avoidance constraints of each CAV with others and with road boundaries.

As discussed in sections 3.2 and 3.3, the non-differentiable and non-convex collision

avoidance constraints (3.7d) and (3.7e) are substituted by the dual problem of their suffi-

cient conditions (3.4) and (3.6), and then (3.7) is reformulated as the following smooth and

continuous problem, which is solvable by the state-of-the-art gradient-based algorithms:

{ai(.), δi(.)}∗ = (3.8a)

arg min
tf ,ai(.),δi(.)
λij ,λji,sij ,
λri,λir,sir

J(z1(.), .., zNp(.))

s.t. (2.1), (2.3), (3.8b)

− bi(zi(t))
⊤λij(t)− bj(zj(t))

⊤λji(t) ≥ dmin, (3.8c)

Ai(zi(t))
⊤λij(t) + sij(t) = 0, (3.8d)

Aj(zj(t))
⊤λji(t)− sij(t) = 0, (3.8e)

− bi(zi(t))
⊤λir(t)− b⊤

r λri(t) ≥ drmin, (3.8f)

Ai(zi(t))
⊤λir(t) + sir(t) = 0, (3.8g)

A⊤
r λri(t)− sir(t) = 0, (3.8h)

λij(t), λji(t), λir(t), λri(t) ≥ 0, (3.8i)

∥sij(t)∥2 ≤ 1, ∥sir(t)∥2 ≤ 1, (3.8j)

zi(t0) = zi,0, (3.8k)

zi(tf ) = zi,Np , (3.8l)

∀i ̸= j ∈ {1..Nv}, ∀r ∈ {1..Nr}.

where Ai and bi are functions of each CAV’s pose zi(t), and present CAVi polytope at

each time step t. Problem (3.8) is solved at time t0 for Np CAVs until the terminal time

tf . The solution to this problem is optimal trajectories of the control signals ai(.)
∗ and

δi(.)
∗ of each CAVi for each t ∈ [t0, tf ], as well as a terminal time tf . CAVs follow their

calculated trajectories to arrive their final destinations at the terminal time tf .

The initial pose zi(t0), i.e. initial position, heading angle and initial speed of all

CAVi ∀i ∈ {1..Nv} within the control zone are known. The remaining of the states and

the initial inputs to the CAVs are also assumed as zero. These initial conditions at t = t0
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are feasible solutions of the OCP.

3.5 The Objective Function of the OCP

CAVs are expected to reach their terminal pose as fast as possible while consume energy

(due to acceleration) as little as possible. Therefore, this study proposes the objective

function (3.9) that minimises the overall crossing time of all CAVs and the error between

the current and final pose, as well as the energy consumption due to acceleration of each

vehicle:

J(z1(.), .., zNp(.)) = α(tf − t0)
2 + zi,Np (3.9)∫ tf

t0

Np−1∑
i=1

[(zi(t)− zi(tf ))
⊤Q(zi(t)− zi(tf )) + γai(t)

2] dt .

where α, Q and γ are the gain factors related to the crossing time, CAVs’ pose and energy

consumption (due to acceleration) respectively. The gains are selected based on trial and

error to best normalise the cost function. The expression (tf − t0)
2 minimises the crossing

time of all CAVs. The Lagrange term penalises the error between the current pose zi(t)

and the final pose zi(tf ) as well as the acceleration ai(t)
2 of vehicles. The final pose

of CAVs zi(tf ) is directly imposed in the objective function and indicates the intended

destination of each CAVi.

3.6 Solving the Proposed Lane-Free Algorithm

To solve the proposed OCP(3.8) ACADO toolkit [120] was initially used with the multiple

shooting approach for discretising the dynamics. However, the ACADO toolkit was unable

to solve the problem due to potential reasons including non-convexity of the problem and

non-linearity of the dynamics, as well as the minimum-time aspect of the OCP. Minimum-

time OCP problems struggle with more complexity as the final time of the process is also

a decision variable which is multiplied to other variables.

To solve the minimum-time OCP (3.8), this study developed a solver in CasADi [124].

As compared to ACADO which receives the problem formulation and handles the rest,

CasADi is a flexible low-level toolkit to develop proprietary solvers for OCPs by providing

tool set to discretise system dynamics with collocation method and the automatic differ-



50

entiation techniques to efficiently calculate Jacobian and Hessian matrices. This flexibility

helps to develop proprietary solvers for complex nonlinear problems. Main parts of the

developed solver are explained in Appendix A. More details on the CasADi toolkit is

provided in Sections 2.6.7 and 2.6.6.

As explained in Section 2.6.5, IPOPT is chosen since it can effectively solve the re-

sulting sparse and banded KKT equations generated from discretising OCPs. To improve

the computation time, this study linked IPOPT to Intel® oneAPI Math Kernel Library

(oneMKL, https://software.intel.com), which includes high-performance implementation

of the MA27 linear solver. The choice of linear solver is crucial for solving NLPs which

are translated to a large linear system of equations using KKT criteria. This study shows

that solving the OCP (3.8) with MUMPS as a common linear solver, is twice more com-

putationally expensive than MA27. For more explanation on the choice of linear solver

MA27 the reader is referred to Section 2.6.5.

All the provided results in this study have been generated by MATLAB R2020 running

on a Linux Ubuntu 20.04.0 LTS server with a 3.7 GHz Intel® Core i7 and 32 GB of

memory. CasADi was being used through its MATLAB interface.

3.7 Effectiveness of the Proposed Lane-Free Algorithm

In this section, performance of the proposed algorithm is compared against two state-of-

the-art benchmarks in terms of crossing time, energy consumption due to acceleration and

passenger comfort. For doing this, this study employs the intersection scenario proposed

in [1], which is named test scenario one hereafter. The first benchmark is a conflict-point-

reservation approach presented in [1], where each CAV calculates its own trajectory by

jointly minimising the travelling time and energy consumption (due to acceleration). The

calculated reservation times for each conflict point are then shared with other vehicles

through a centralised coordinator. Vehicles entering the intersection later read these re-

served times and treat them as additional collision avoidance constraints when they plan

their own trajectory. The second benchmark is a lane-free method proposed in [2] where

CAVs can freely use all the space of the junction, as long as there is no collision. The

proposed algorithm in [2] calculates the control inputs for a relatively large given value of

crossing time.
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Table 3.1: Main parameters of the model

Parameter(s) Description Value(s)

m (kg) mass of each CAV 1204

dmin (m) minimum distance between CAVs 0.1

drmin(m)
minimum distance between CAVs and road

boundaries
0.1

d (-) number of collocation points 5

Np (-) number of control intervals 30

V̄ (m/s) upper bound on Vi 25

V (m/s) lower bound on Vi 0

δ̄ = -δ (rad) bounds on |δi| 0.67

ā = −a (m/s2) bounds on |ai| 3

r̄ = -r (rad/s) bounds on |ri| 0.7

β̄ = -β (rad) bounds on |βi| 0.5

Vi(t0) ∀i ∈

{1..Nv} (m/s)
initial speed of CAVs 10

The algorithms are compared within test scenario one in terms of crossing time, average

and standard deviation of speed and energy consumption (due to acceleration) for different

number of CAVs between 2 to 12. The initial and terminal pose of CAVs are chosen

randomly and there exists at least one CAV performing a left-turn manoeuvre in each

test. Table 3.1 summarises values of the parameters used in the proposed and benchmark

algorithms. The vehicle parameters and boundaries are typical values for a passenger car.

It is assumed that the vehicles only move forward. The number of control intervals Np and

number of collocation points d are tuned to get the best performance with the minimum

computational time.

Furthermore, the performance of the proposed algorithm is analysed for two more

complex scenarios, which are named test scenario two and test scenario three hereafter.

These two scenarios involve up to 21 CAVs, and allow any travelling direction by CAVs

(e.g., right, straight and left). The proposed algorithm is also tested for 30 random

scenarios for different numbers of CAVs to ensure the statistical significance of the results.



52

3.7.1 Effectiveness in terms of Crossing Time

This section compares the minimum crossing time of CAVs that can be achieved by the

developed and benchmark algorithms. The acceleration gain γ in (3.9) is set to zero to

calculate the minimum-time travelling trajectories of CAVs. In other words, the energy

consumption due to acceleration is not considered and CAVs only try to reach destinations

as fast as possible, which makes the problem single objective.

Table 3.2 compares crossing time of CAVs when they are controlled by the developed

and benchmark algorithms during test scenario one. The table also summarises energy

consumption due to acceleration, the travelled distance and average and standard deviation

of speed of CAVs. It is worth noting that the crossing time is defined as the time required

for all the under-control CAVs to cross the intersection and arrive to their destinations.

Also, the travelled distance and energy consumption are calculated for all the crossing

CAVs.

As seen in Table 3.2, crossing time of CAVs when they are controlled by the proposed

algorithm is, respectively, up to 65% (for 12 CAVs and in average 52% for all number of

crossing CAVs), and 54% less than the case where CAVs are controlled by the reservation-

based approach in [1] and the lane-free method in [2]. This is, of course, in cost of

higher energy consumption (due to acceleration), as the objective function of the proposed

algorithm only considers minimisation of travelling time. The next subsection provides

a detail analysis on energy consumption due to acceleration of different approaches, and

shows that the proposed algorithm can still achieve significant improvement in crossing

time while consuming the same amount of energy (due to acceleration) as the reservation-

based method in [1].
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Table 3.2: Performance of the proposed lane-free method for test scenario one as compared
to the reservation-based method in [1] and the lane-free method in [2].

Number of CAVs → 2 4 6 8 10 12

The proposed algorithm

Crossing time (s) 4.56 4.57 4.57 4.57 4.57 4.57

Average speed (m/s) 15.2 15.8 15.6 15.1 15.4 15.5

Standard deviation of speed 3.46 3.77 3.66 3.43 3.58 3.66

Energy consumption (kWh) 0.1 0.23 0.33 0.39 0.52 0.65

Travelled distance (m) 130 270 400 518 658 799

Reservation-based [1]

Crossing time (s) 6.29 6.29 12.50 12.93 12.92 12.92

Average speed (m/s) 12.7 13.5 11.3 9.9 10.6 11.1

Standard deviation of speed 2.32 2.50 4.44 4.44 4.56 4.56

Energy consumption (kWh) 0.03 0.07 0.05 0.04 0.06 0.07

Travelled distance (m) 134 265 406 507 630 750

Lane-free [2]

Crossing time (s) 10 10 10 10 10 10

Average speed (m/s) 10.1 10.0 10.0 10.0 10.1 10.0

Standard deviation of speed 0.14 0.12 0.14 0.17 0.23 0.21

Energy consumption (kWh) 0.001 0.001 0.001 0.003 0.006 0.006

Travelled distance (m) 195 387 577 773 973 1160

It is also shown in Table 3.2 that, unlike the reservation-based strategy, the resulting

crossing time of the proposed algorithm does not change regardless of number of crossing

CAVs. There is a similar trend for the average and standard deviation of speed of CAVs

when they are controlled by the developed strategy. Also, it is evident from Table 3.2

that the standard deviation of the speed of crossing CAVs when they are controlled by

the proposed algorithm is mostly less than the case when they are controlled by the

reservation based strategy in [1]. Apparently, the smaller value of standard deviation of

speed indicates a less diverge set of speeds (i.e., smoother travel) for the crossing CAVs.
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Table 3.3: Simulation results of the proposed algorithm in test scenario two, three and
average of 30 scenarios for different number of CAVs.

Number of CAVs → 3 6 9 12 15 18 21

Test scenario two

Crossing time (s) 4.57 4.57 4.57 4.56 4.57 4.58 4.57

Average speed (m/s) 13.2 14.5 14.5 14.2 14.1 13.8 13.6

Standard deviation of speed 3.9 4.0 3.8 3.9 4.1 4.2 4.1

Energy consumption due to

acceleration (kWh)
0.11 0.27 0.4 0.5 0.64 0.7 0.8

Travelled distance (m) 170 373 561 730 910 1067 1224

Test scenario three

Crossing time (s) 4.44 4.55 4.55 4.57 4.55 4.55 4.57

Average speed (m/s) 13.1 13.4 13.4 13.0 13.6 13.0 13.0

Standard deviation of speed 2.4 2.9 2.3 2.8 3.1 3.3 3.4

Energy consumption due to

acceleration (kWh)
0.08 0.18 0.26 0.34 0.50 0.55 0.65

Travelled distance (m) 165 344 516 675 874 1002 1171

Average of 30 scenarios

Crossing time (s) 4.51 4.56 4.54 4.56 4.57 4.58 4.58

Standard deviation of crossing

time
0.06 0.02 0.09 0.06 0.08 0.10 0.10

Average speed (m/s) 13.8 13.8 13.7 13.6 13.6 13.6 13.3

Standard deviation of speed 3.3 3.6 3.2 3.5 3.6 3.6 3.5

Energy consumption due to

acceleration (kWh)
0.11 0.23 0.34 0.43 0.59 0.62 0.72

Travelled distance (m) 175 361 542 701 895 1046 1206
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Table 3.3 shows crossing time, average and standard deviation of speed and travelled

distance for different number of CAVs when they are controlled by the proposed strategy

in test scenario two, three and average of 30 scenarios. As shown in Table 3.3, crossing

time of CAVs in all scenarios is the same as the one in test scenario one, and again does

not change regardless of the number of CAVs. This determines that the crossing time of

lane-free intersections is not sensitive to the type of scenario and number of CAVs. This

is an interesting outcome that shows in lane-free intersections, the crossing time of CAVs

is limited by the layout of the junction rather than by the number of passing CAVs, as in

traditional signalised intersections.

In fact, crossing time of CAVs cannot be theoretically smaller than the travelling time

of the CAV that drives the longest distance with its maximum permissible acceleration.

In other words, the minimum crossing time is dominated by the CAV that is furthest from

the intersection and those closer CAVs to the junction do not change the crossing time. In

all three scenarios, the initial speed of CAVs V (t0) is 10 (m/s), the maximum travelling

distance (e.g, the travelling distance of the CAV that is furthest away from the intersection)

△x is 70 (m) and the maximum acceleration ā is 3 (m/s2), and hence the theoretical lower

bound of crossing time is 4.27 (s) calculated by the Newton’s law △x = 1
2 ā×t2+V (t0)×t.

The results in Table 3.2 and 3.3 show that the proposed algorithm finds a very close value

to this theoretical boundary regardless of type of scenario and number of crossing CAVs.

In fact, the resulting crossing time can be as close as desired to the theoretical bound in

cost of deviation of final point from the desired destination point.

Fig. 3.2 shows the calculated optimal vehicles’ motion and speed trajectory for the

proposed algorithm in all three test scenarios with the maximum number of CAVs (i.e.,

12 for test scenario one and 21 for the test scenario two and three). As shown in Fig.s

3.2a, 3.2d and 3.2f the proposed strategy increases and decreases the speed of CAVs

linearly to avoid collisions. The slope of variation (i.e., acceleration and deceleration)

is 3 (m/s2) indicating that it is a bang-bang strategy. Moreover, the motion trajectory

Fig.s 3.2b, 3.2c and 3.2e illustrate that CAVs move and use opposite lanes freely while

avoiding road boundaries. The results are also visualised by a provided video on https:

//www.youtube.com/watch?v=S2GiGPQAfow .

https://www.youtube.com/watch?v=S2GiGPQAfow
https://www.youtube.com/watch?v=S2GiGPQAfow
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Figure 3.2: The calculated optimal trajectories of speed using the proposed algorithm in
test scenario one, two and three for 12, 21 and 21 CAVs respectively. (a) Test scenario
one’s motion trajectory. (b) Test scenario one’s speed trajectory. (c) Test scenario two’s
motion trajectory. (d) Test scenario two’s speed trajectory. (e) Test scenario three’s
motion trajectory. (f) Test scenario three’s speed trajectory.
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Fig. 3.2 shows the calculated optimal vehicle motion and speed trajectory for the

proposed algorithm in all three test scenarios with the maximum number of CAVs (i.e., 12

for test scenario one and 21 for the test scenario two and three). As shown in Fig.s 3.2a,

3.2d and 3.2f the proposed strategy increases and decreases the speed of CAVs linearly

to avoid collisions. The slope of variation (i.e., acceleration and deceleration) is 3 (m/s2)

indicating that it is a bang-bang strategy. Moreover, the motion trajectory Fig.s 3.2b,

3.2c and 3.2e illustrate that CAVs move and use opposite lanes freely while avoiding road

boundaries.

It must be noted that the possibility of collision between two consecutive control inter-

vals is zero because the chosen sampling time is 0.152 (s) which is less than the threshold.

The threshold value is calculated based on the minimum sampling time required for a

CAV to travel a distance of one length (2.6 m) + one width (1.56 m) of a vehicle with its

maximum permissible speed 2.6+1.56
25 = 0.166 (s). In other words, for the obtained mini-

mum crossing time of 4.57 s, mid-point collisions are infeasible for any number of control

intervals Np greater than or equal to 4.57
0.166 ≈ 28. This paper chooses a value of 30 for the

number of control intervals which exceeds the threshold with a low computational time.

3.7.2 Effectiveness in terms of Energy Consumption

Fig 3.3a illustrates the total energy consumption due to acceleration of CAVs when the

vehicles are controlled by the proposed and benchmark strategies in test scenario one. The

figure also shows the total energy consumption of CAVs being controlled by the proposed

strategy in test scenario two and three. The depicted graphs only consider the energy

consumption due to acceleration which is calculated as follows:

Ei = m

∫ tf

t0

ai(t)vi(t)dt

where Ei is the energy consumed by each CAVi.

As seen in Fig. 3.3a, the lane-free method proposed in [2] consumes the least energy,

in cost of fixing the crossing time to an unnecessarily large value (i.e., 10 s). The proposed

algorithm in this paper, in contrast, consumes more energy than both the benchmark

strategies because it is optimised for minimisation of crossing time, as explained in section

3.7.1.

Moreover, the resulting energy consumption (due to acceleration) of the proposed

strategy linearly increases with respect to the number of crossing CAVs in all the three

test scenarios. It can also be observed that CAVs consume more energy in test scenario one
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Figure 3.3: Comparison of a) total energy consumption due to acceleration b) energy due
to acceleration consumed per vehicle per kilometer for different number of vehicles.
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than in test scenario two and three because of a longer travelling distance due to diversity

of destination of CAVs. The travelled distance values of test scenario one is provided in

Table 3.2 and for test scenario two and three in Table 3.3.

Fig. 3.3b, on the other hand, compares the algorithms in terms of the energy con-

sumption by each vehicle when travels one kilometer. As seen, all the strategies tend to

consume less energy per vehicle per kilometer with an increase in the number of CAVs.

This is due to the fact that the number of obstacles drops by reducing the number of

crossing CAVs, and hence vehicles can accelerate and pass through faster in test scenario

one.

Table 3.4: Performance of the proposed lane-free method in test scenario one when the
energy consumption is the same as the reservation-based strategy in [1].

Number of CAVs → 2 4 6 8 10 12

Crossing time (s) 5.23 5.30 5.97 6.18 6.24 6.27

Average speed (m/s) 13.25 13.58 11.95 11.26 11.34 11.39

Standard deviation of speeds 1.74 1.74 1.14 1.00 0.99 0.97

Energy consumption (kWh) 0.03 0.07 0.05 0.04 0.06 0.07

Travelled distance (m) 131 270 401 521 661 801

To nullify energy consumption as one of the objectives, and only compare the crossing

time of CAVs when they are controlled by the proposed strategy and the reservation-

based one in [1], the acceleration gain γ in (3.9) is tuned such that energy consumption

due to acceleration of CAVs in both cases becomes the same. Table 3.4 shows the resulting

performance of the proposed algorithm. As compared to the results of the reservation-

based method in Table 3.2, the proposed algorithm reduces the crossing time up to 52%

(average of 40%) when consumes the same amount of energy. Moreover, whilst the average

speed of CAVs is almost similar for both the strategies, the standard deviation of speed

of CAVs controlled by the proposed algorithm is much lower. This indicates that CAVs

controlled by the proposed algorithm travel with similar speed, whilst some of the CAVs

being controlled by the reservation-based method travel with a much higher or lower speed

than the others.

Fig. 3.4 depicts that the proposed algorithm finds the Pareto front of all the crossing

solutions of 12 CAVs for different values of acceleration gain γ. As seen, the proposed

strategy can achieve shorter crossing time than both the reservation-based method [1] and
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lane-free method [2] while consuming the same amount of energy.
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Figure 3.4: Energy vs crossing time (Pareto front) of 12 CAVs controlled by the proposed
strategy as compared to the results by the reservation method in [1] and the lane-free
method in [2].

Furthermore, Fig. 3.4 shows that the minimum crossing time of the proposed strategy

in all three scenarios is 4.57 s. This indicates that the minimum crossing time of the

proposed algorithm is independent of the type of scenario and confirms the data provided

in Tables 3.2 and 3.3. However, it can be seen from Fig. 3.4 that the crossing time is

slightly dependent to the type of scenario when CAVs consume minimal energy. This

can be due to CAVs finding trajectories that tend to be energy efficient but are longer to

travel.

It is worth noting that the minimum crossing time of CAVs can be as close as possible

to its theoretical lower bound however at the cost of deviation from the final point.

3.7.3 Effectiveness in terms of Passenger Comfort

Fig. 3.5 compares the calculated optimal vehicle speed, longitudinal and lateral accel-

eration (or deceleration) trajectories by the proposed algorithm with the results of the

reservation-based method in [1] for 12 CAVs in test scenario one, when the energy con-

sumption due to acceleration is the same (β << 1).

Fig. 3.5a as compared to Fig. 3.5b shows that the vehicles travel within a much narrower

range of speed and hence the passengers experience similar feeling of speed when CAVs are

controlled by the proposed algorithm as opposed to the reservation-based method in [1].

Moreover, as shown in Fig. 3.5c, the maximum deceleration of CAVs when they are
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controlled by the proposed strategy is 1.4 (m/s2) which is much less than the maximum

permissible value of 3 (m/s2). The acceleration of all CAVs also converges to zero at their

destinations. Fig. 3.5d, on the other hand, shows that some of the CAVs controlled by the

reservation-based algorithm in [1] decelerate with the maximum permissible value, which

is not converged to zero.

The maximum jerk of both algorithms is around 0.6 m/s3, however, whilst jerks of

CAVs controlled by the proposed strategy converge to zero, the passengers feel an un-

comfortably constant jerk during the crossing time when CAVs are controlled by the

reservation-based method in [1].

In contrast, Fig. 3.5e and 3.5f illustrate that passengers of the cornering vehicles,

i.e., CAVi i ∈ {1, 6, 7, 8}, experience sharper variation of lateral acceleration when the

vehicles are controlled by the proposed algorithm than the algorithm in [1], even though

the maximum values are almost similar. This is due to the fact that the proposed algorithm

generates higher lateral acceleration to achieve shorter travelling time.
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Figure 3.5: The calculated optimal trajectories of speed and acceleration using the pro-
posed algorithm and reservation-based method [1] in test scenario one for 12 CAVs, when
energy consumption is the same. (a)The proposed algorithm’s speed trajectory. (b)The
reservation-based method [1] speed trajectory. (c)The proposed algorithm’s longitudinal
acceleration trajectory. (d)The reservation-based method [1] longitudinal acceleration tra-
jectory. (e)The proposed algorithm’s lateral acceleration trajectory. (f)The reservation-
based method [1] lateral acceleration trajectory.

3.7.4 Computational Time and Implementation Considerations

Fig. 3.6 depicts computational time of the proposed algorithm for different number of

CAVs in test scenario two. The computation time of each number of CAV is the average

of 10 times of running the scenario. The standard deviations of all the tests are less
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Figure 3.6: The average computational time of 10 runs of the proposed strategy for dif-
ferent number of CAVs with test scenario two. The standard deviation of the 10 runs for
each number of CAVs is less than 0.5%.

than 0.5% which is negligible and are not shown. Fig. 3.6 shows that the computational

complexity of the proposed algorithm is of the order of O(e0.13N ) in terms of number of

CAVs N .

The real-time implementation of the proposed strategy will be in an MPC framework.

MPC can solve the proposed OCP with a shorter sampling time and compensate the

resulting errors by employing an additional feedback mechanism over a receding horizon.

The results of the study shows the sampling time as 4.57
30 = 0.152 s. However, in order

to cover all the dynamics of the vehicle, three times shorter than the current sampling

time is required which will increase the computational time significantly. The raised issue

in the computational time can be addressed by solving the OCP in a receding horizon

fashion (MPC). MPC can take also into account the uncertainties of the environment by

employing the feedback mechanism that constantly adjusts the control inputs based on the

current state and any environmental disturbances. In addition, the available techniques

for real-time implementation of MPC, including explicit MPC makes MPC a potential

solution for real-time implementation. For more information on the formulation of MPC

the reader is referred to Section 2.4.1.

Moreover, the proposed strategy will be implemented in a decentralised frame. As

explained in Section 2.4.1, solving the resulting MPC framework of OCP (3.8) within a

centralised framework presents challenges due to communication uncertainties that arise

from the fact that CAVs may not always be connected. Therefore, the MPC can be
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Figure 3.7: The proposed algorithm calculates trajectories for the CAVs when a)the num-
ber of vehicles reaches the practical limit; b)a vehicle reaches the beginning of the inter-
section.

implemented in a decentralised framework where each CAV computes its own trajectory by

only communicating to CAVs in its communication range. Such a decentralised framework

also may potentially improve the computation time.

The real-time implementation of the proposed algorithm will be solved for a group of

vehicles within a specified control zone. The control zone in this study is defined based

on the communication range of the coordinator. As an example of a real-time scenario,

the number of vehicles entering the zone will be counted and when either this number

reaches its practical limit (depicted in Fig. 3.7a) or one of the vehicles becomes close to

the intersection (depicted in Fig. 3.7b), the OCP is solved for the vehicles within the

control zone.

To enable the proposed algorithm in the real world, three types of hardware are re-

quired, with the first being an X-by-wire system for CAVs. This electronic system controls

the vehicle’s functions, including steering, acceleration, and braking, and is integrated with

sensors and software that enable autonomous operation. Typically, the X-by-wire system

in a CAV is equipped with sensors that collect data about the vehicle’s surroundings and

internal state, such as speed, position, and orientation. This data is then used by the vehi-

cle’s software to determine the appropriate actions, such as adjusting steering or braking

to avoid obstacles or maintain a safe distance from other vehicles.

Secondly, CAVs require devices such as Global Positioning System (GPS) to accurately

find their positions on the Earth’s surface. Unlike GPS that provides a position with

an accuracy of around 5-10 meters, Differential Global Positioning System (DGPS) can
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improve the accuracy to within a few centimeters. DGPS achieves this improved accuracy

by comparing GPS signals received by a reference station with those received by a moving

receiver on the CAV, and applying a differential correction.

Lastly, a coordinator device is required to be placed at intersections to receive the

information of CAVs such as position, speed and destinations. This device communicates

with the CAVs within its range and calculates a collision-free trajectory for all the sur-

rounding CAVs and send the obtained trajectory to each one of them. Then each CAV

calculates its own required control inputs based on the received trajectory. The controls

include the steering angle and acceleration/deceleration which are sent to the vehicles

actuators to follow the received trajectory and pass through the intersection.
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3.8 Summary

This chapter formulated and solved the lane-free crossing of CAVs through intersections

as an optimal control problem that minimises the overall crossing time and energy con-

sumption due to acceleration of CAVs while avoiding obstacles. The proposed formulation

employs dual problem theory to substitute the non-differentiable constraints of collision

avoidance with the dual problem of a corresponding sufficient condition.

The resulting smoothed OCP is then solved by CasADi to generate a trajectory for

safely cross of multiple CAVs through a junction within the minimum time. It is shown

that the lane-free crossing is capable of significantly reducing the crossing time as compared

to the state-of-the-art reservation-based strategy, whilst consuming similar energy.

The presented results show that the proposed strategy finds the minimum crossing

time of CAVs which is very close to its theoretical limit. Also, it shows that the calculated

time only relies on the layout of intersection and is independent of the number of crossing

CAVs or their manoeuvres. This makes the results of the proposed algorithm a suitable

benchmark to evaluate the performance of other control strategies of the CAVs crossing

intersections.
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Chapter 4

Capacity Analysis of Lane-Free

Intersections

Lane-free crossing of CAVs through intersections allows them to utilise the most of spatial-

temporal area of intersection which increases the capacity of junctions. This chapter

provides a framework that evaluates the capacity of intersections when CAVs are crossing

in a lane-free order. The framework involves a measure and an algorithm to calculate the

capacity of lane-free intersections. The capacity of a lane-free intersection is compared

against the capacity of the intersection when signalised and calculated based on highway

capacity manual. In addition, two adaptive traffic controllers namely max-pressure and

Webster are developed to measure the maximum throughput of a signalised intersection

for the same scenario as the lane-free intersection. The chapter also includes a sensitivity

analysis of crossing time and capacity for lane-free intersections with respect to variation

in initial speed, maximum permissible speed and acceleration.

4.1 The Framework to Quantify Capacity of the Lane-Free

Intersections

Conventionally, capacity of intersections (both the signalised and unsignalised) are mea-

sured using a set of collected data from either real-time observation of vehicles [78] or run-

ning a micro-simulation [125, 126]. For example, capacity of each lane of an unsignalised

all-way stop-controlled (AWSC) intersection is measured by gradually increasing the flow

rate of the lane in the simulator until the degree of utilisation (DoU) of the lane reaches

one, which happens when throughput of the lane is equal to its capacity.

DoU represents the fraction of capacity being used by vehicles and is defined as follows
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[78]:

x =
vhd(x)

3600
(4.1)

where x denotes the degree of utilisation, v refers to flow rate (throughput) (veh/h) of

the lane and hd is the departure headway (s) that is a function of x and is calculated as a

stochastically weighted average of the saturation headway of all combinations of possible

degrees of conflict and number of crossing vehicles. The highway capacity manual [78]

proposes an iterative algorithm to calculate the value of x and hd for any given v based

on the identified values from the available large set of real data.

However, such real-time data are not available for lane-free crossing of CAVs because

of the lack of real infrastructure or realistic simulators that consider the collaborative be-

haviour of enough number of heterogeneous CAVs crossing an intersection. The remaining

of this section introduces a new measure and a calculating algorithm of the capacity of

lane-free intersections.

4.1.1 The proposed measure of the capacity

Intersections can host limited number of vehicles at the same time and if the intersection

capacity exceeds the waiting time of crossing vehicles will significantly increase. Therefore,

to evaluate the capacity of intersections a suitable measure must consider the maximum

number of vehicles and the time that it takes for those vehicles to pass through the

intersection. In effect, the following measure is proposed to calculate the capacity of the

lane-free intersections:

C = max
{3600×Nv

T

}
(4.2)

where C is the capacity (veh/h) of the intersection, Nv denotes the number of crossing

CAVs (veh) and T represents the time (s) that takes for those vehicles to fully cross the

intersection.

Equation (4.2) requires a simulator to gradually increase the number of vehicles N and

measuring their minimum crossing time Tmin to calculate the throughput 3600×Nv/Tmin

until the throughput starts dropping. The last value of the throughput just before dropping

is the capacity of the intersection.

The next sections present methods to find Nv and T for the lane-free and signalised

intersections.
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Table 4.1: Main parameters of the proposed algorithms and their values

Parameter(s) Unit Value(s)

Maximum speed (m/s) 25
Maximum acceleration (m/s2) 3
Initial speed (m/s) 10
Prediction horizon (× sampling times) 15
Safe margin between CAVs (m) 0.1
Vehicle length (m) 4.5
Vehicle width (m) 1.8

4.1.2 The proposed algorithm to calculate the capacity

The central theme of the proposed algorithm to solve (4.2) is to use the minimum-time

crossing method developed in Chapter 3 to calculate the minimum crossing time Tmin of

the lane-free intersections for a given number Nv of CAVs. To calculate the minimum time

Tmin, the OCP in (3.8) is solved as a single objective problem where the acceleration’s

gain in the objective function (3.9) is set to zero.

It is already shown in Section 3.7 that, unlike the signalised intersections, the crossing

time of CAVs in a lane-free order is independent of the scenario (i.e., the initial positions

and destinations of vehicles). Thus, (4.2) is solved for a sample scenario with a low number

of crossing CAVs (e.g., three) and then new CAVs are gradually added to the scenario

until the throughput reaches the capacity as explained above. This method can also be

applied to calculate the maximum throughput of the signalised intersections for a given

scenario.

4.2 Capacity analysis of the Lane-Free Intersections

The capacity of the lane-free intersection in Fig. 2.6 is calculated in this section based on

the measure (4.2) and using the introduced algorithm in Chapter (3) that computes the

minimum crossing time of CAVs for a given number of vehicles. Table 4.1 summarises the

critical parameters that are used throughout the calculations.

Fig. 4.1a shows the calculated minimum crossing times which are fairly constant

for a wide range of the number of crossing CAVs. However, there is a sharp increase

after exceeding the threshold of 15 crossing CAVs showing that the capacity is reached.

Equation (4.2) is used to measure throughput of the intersection based on the calculated

minimum crossing times and the peak of the calculated throughput is the capacity of the

intersection. Fig. 4.1b illustrates that the capacity of the studied lane-free intersection is

10,800 CAV s/h where the throughput starts dropping.
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Figure 4.1: (a) The calculated crossing times by the lane-free algorithm and signalised max-
pressure and Webster controllers for different number of vehicles; (b) The corresponding
throughput obtained by the proposed measure as well as HCM indicative capacity of
signalised intersections for both HVs and CAVs. The headway of CAVs is assumed as 1.13
s which is an average of the provided stochastic values in [6].

To compare the capacity of the lane-free intersection against signalised intersections,

this study employs the HCM [78] capacity calculations for the signalised intersection with

HVs. HCM defines the capacity of signalised intersections based on the saturation flow

rate of each lane multiply by a green ratio f accounting for lost times due to changing

phases. Considering a cycle length of 120 s and a lost time of 5 s, the green ratio is
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f = 120−4∗5
120 = 0.83̄. Thus, a recommended saturation flow rate of 1900 HV s/h/ln gives

the capacity of the three-lane intersection in Fig. 2.6 as 1900 × 3 × 0.83̄ = 4750 HV s/h,

which is called hereby as the HCM indicative capacity of the signalised intersection with

HVs. Fig. 4.1b displays the calculated value of this indicative capacity as a horizontal

line. It is worth noting that the HCM indicative capacity is independent of the number of

crossing vehicles and is overlapped just for comparison. Fig. 4.1b shows that the capacity

of the studied intersection when CAVs crossing in a lane-free order is 127% higher than

the capacity of the same intersection when signalised and with HVs. This massive jump

in capacity is due to the facts that CAVs have shorter headway, do not stop by traffic

lights and, most importantly, collaborate to utilise the maximum spatial-temporal area of

the intersection to minimise the crossing time.

In case of only CAVs crossing the signalised intersection, the capacity increases due to a

shorter headway of CAVs than HVs. However, there is not an exact value for the headway

of CAVs because this value significantly depends on the controller behaviour and hence

path planning algorithms of CAVs. In this light, there is wide range of headway values

provided in the literature [6,127,128]. The present work considers a headway of 1.13 s for

CAVs which is an average of the provided stochastic values in [6]. Thus, the saturation

flow rate of each lane is increased to 3,186 CAV s/h and the capacity of the same signalised

intersection for CAVs is calculated as 7,964 CAV s/h. This indicative HCM capacity of

signalised intersections with CAVs is shown in Fig. 4.1b to compare with the lane-free

intersection. As it can be seen, the strategy of lane-free crossing improves the capacity of

the intersection by 36% as compared to signalised crossing with CAVs.

However, using the concept of the saturated flow rate to calculate the capacity of a

signalised intersections with crossing CAVs seems not to be accurate because: i) there

is a large discrepancy in the reported values of the CAVs’ headway, ii) the previously

reported headway of CAVs did not consider the collaborative and heterogeneous nature of

the algorithms of CAVs, and iii) lateral dynamics of the vehicles on the truing lanes are not

considered for the calculation of saturation flow rate. In fact, the provided results in this

paper for the capacity of the lane-free intersection suggest that an indicative value for the

CAVs’ headway Th,CAV s can not be smaller than 0.83 s (Th,CAV s ≥ 3×3600×0.83
10800 ≥ 0.83).

As previously mentioned, unlike the capacity of lane-free intersections, the capacity

of signalised ones depends on the crossing scenario. To show this, two adaptive traffic

controllers, max-pressure [129] and Webster [130] are applied to the same intersection

for the same scenario as the lane-free intersection. Both the max-pressure and Webster
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algorithms are simulated in SUMO with the help of TraCI for gradually increasing number

of HVs based on the works in [131]. Webster in [130] derived a formulation that calculates

the cycle length of traffic lights. The derived cycle length is used to find the green time of

each phase to allow vehicles to cross the intersection. Similarly, the max-pressure algorithm

computes the signal timings, however, the green time of each phase is calculated based

on the number of vehicles in the incoming and outgoing lanes [129]. Whilst Webster is a

well-known algorithm for timing control of traffic lights, it is already shown that the max-

pressure algorithm yields the lowest travelling time, queues length and crossing delays

among all the state-of-the-art controllers [131], including the algorithms based on the self

organising [132, 133], deep Q-network [134], deep deterministic policy gradient [135] and

Webster methods.

Fig. 4.1a shows the SUMO simulated crossing times of different number of HVs through

a signalised version of the intersection in Fig. 2.6 when the traffic lights are controlled by

the max-pressure and Webster algorithms. As observed, the crossing time of max-pressure

and Webster controllers increases significantly after the number of crossing vehicles ex-

ceeds the thresholds of, respectively, 21 and 18 vehicles. To calculate the corresponding

maximum throughput for these adaptive controllers the measure (4.2) is employed and

the results are shown in Fig. 4.1b as compared to the lane-free intersection for the same

crossing scenario. From Fig. 4.1b, it can be seen that the maximum throughput of the

scenario using two state-of-the-art traffic controllers are, respectively, 2, 726 (veh/h) and

2, 227 (veh/h). Hence, the capacity of the lane-free intersection is, respectively, 296%

and 385% larger than the maximum throughput of max-pressure and Webster for that

particular scenario. It is clear that the calculated maximum throughput values are not

the same as HCM capacity of signalised intersections with HVs and this indicates that the

capacity of signalised intersections is dependent to the type of scenario. This difference is

due to HCM capacity calculations assuming that unlimited number of vehicles are queued

in lanes, however, this might not be true in real world. Therefore, the proposed measure

(4.2) and the SUMO simulator of max-pressure and Webster controllers can be employed

to calculate the maximum throughput of signalised intersections for any desired scenario.
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(a)

(b)

Figure 4.2: Sensitivity of the (a) crossing time and (b) capacity of the lane-free intersection
in terms of the maximum speed and acceleration of CAVs. Initial speed of the vehicles is
10 (m/s)

4.3 Sensitivity Analysis of the Capacity and Crossing Time

of the Lane-Free Intersections

Fig. 4.2a and Fig. 4.2b, respectively, show the variation of the crossing time and the

normalised capacity of the studied lane-free intersection due to changes in the maximum
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speed and acceleration of CAVs. As seen, the larger the maximum permissible speed

and acceleration of the vehicles are, the shorter crossing time and equivalently the larger

capacity are achieved. The capacity of the intersection reaches to its top value when the

maximum allowed speed and acceleration are, respectively, 30 (m/s) and 4 (m/s2). The

initial speed of vehicles is 10 (m/s). Apparently and as shown in Fig. 4.2, relaxing the

range of acceleration without expanding the range of speed has a very limited effects on

the capacity.

Fig. 4.3 provides more detail on the results of Fig. 4.2. Samples of the results in

Fig. 4.2 for two different values of the maximum permissible accelerations and speeds are

illustrated separately in Fig. 4.3. As seen, the best crossing time of CAVs and equivalently

the maximum capacity of the lane-free intersection improves by 28% due to an increase of

the maximum acceleration from 2 (m/s2) to 4 (m/s2) and when CAVs enter the control

area of the intersection with the initial speed of 5 (m/s). Fig. 4.3 also shows that

doubling the initial speed from 5 (m/s) to 10 (m/s), the best crossing time and hence the

maximum capacity increases by, respectively, 28% and 19% for the maximum accelerations

of 2 (m/s2) and 4 (m/s2).

Furthermore, Fig. 4.3 shows that the maximum permissible speed also affects the

minimum crossing time of CAVs and hence the capacity of the lane-free intersections to

a certain limit. As shown, the capacity of the studied lane-free intersection increases

logarithmically with a factor of 44% by rising the limit of the maximum permissible speed

of CAVs up to around 18 (m/s) when the maximum allowable accelerations is 2 (m/s2)

(and 54% when it is 25 (m/s) at the maximum allowable acceleration fo 4 (m/s2)). The

capacity stays steady after these limits.

Fig. 4.4, on the other hand, provides a similar analysis of the minimum crossing time

and equivalently maximum throughput of the intersection in Fig. 2.6 when there is a traffic

light that controls the flow of intersection with the max-pressure and Webster state-of-

the-art algorithms. Unlike the results in Fig. 4.3, Fig. 4.4 shows that the maximum

throughput of the same intersection but when it is signalised is only slightly sensitive

to the maximum permissible acceleration and does not vary by increasing the maximum

allowable or initial speeds of the crossing vehicles. This is because of the fact that traffic

lights oblige HVs to stop before the signalised intersections no matter what the vehicles’

speed are, whilst CAVs can cross the lane-free intersections at all directions continuously

and with no interrupts. The crossing time T of these stopped vehicles is dominated by the

human reaction time with a mean fixed to a constant value. Hence, referring to Equation
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(4.2), maximum throughput of the signalised intersections is insensitive to the parameters

and is dominant by the human factors.
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Figure 4.3: Variations of the crossing time when (a) Max. permissible acceleration is 2
m/s2 and (b) Max. permissible acceleration is 4 m/s2 and variations of capacity when
(c) Max. permissible acceleration is 2 m/s2 and (d) Max. permissible acceleration is 4
m/s2 of the studied lane-free intersection over different values of the initial speed and
the maximum permissible speed of CAVs. The solid lines are the corresponding fitted
polynomials of order four, which show the variation trends.
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Figure 4.4: Variations of the crossing time when (a) Max. permissible acceleration is
2 m/s2 and (b) Max. permissible acceleration is 4 m/s2 and variations of maximum
throughput when (c) Max. permissible acceleration is 2 m/s2 and (d) Max. permissible
acceleration is 4 m/s2 of the signalised intersection for different values of the initial speed
and the maximum permissible speed of the crossing HVs. The solid lines show trends of
the variation as polynomials of order four.
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4.4 Summary

This chapter introduced a measure to represent the capacity of a given intersection when

CAVs are crossing in a lane-free order, along with an algorithm to calculate the mea-

sure. The measure gradually calculates the capacity using the developed minimum-time

lane-free crossing algorithm in Chapter 3. The presented results show that the lane-free

crossing of CAVs improves capacity of an intersection by, respectively, 127% and 36%

as compared to capacity of the signalised crossing of human drivers and CAVs through

the same intersection which are calculated using highway capacity manual. In addition,

the results of this work also provides a benchmark to evaluate the performance of the

algorithms to collaboratively cross CAVs through intersections. A sensitivity analysis is

also presented showing that in contrast to the maximum throughput of signalised intersec-

tions the capacity of lane-free intersections varies with changes in maximum permissible

acceleration and speed and the initial speed of CAVs.
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Chapter 5

Summary, Conclusions and Future

Work

This chapter presents a detailed summary of the work in this thesis followed by the con-

clusions and direction for future works.

5.1 Summary

The work in this thesis is a research on design and simulation of connected and autonomous

vehicles when passing through intersections in a lane-free order. Lane-free crossing takes

the advantage of CAVs’ collaboration to make use of all segments of roads and intersections

which has shown in this study that it reduces energy consumption and increases traffic

throughput. The research has successfully achieved all of its objectives in chapter 1.

The majority of previous studies employed a reservation-based strategy to control

CAVs crossing intersections which restrain the motion of CAVs from leaving the lanes.

Chapter 3 of this thesis, on the other hands, formulates and solves the lane-free crossing

problem of CAVs through intersections as a minimum-time OCP since the final time is

an unknown variable that needs to be minimised along with energy consumption while

avoiding collisions. However, lane-free crossing problem is challenging as it involves non-

differentiable collision avoidance constraints.

The non-differentiable constraints of CAVs avoiding collision with each other and with

road boundaries are smoothened by applying dual problem theory of convex optimisation.

The developed smooth OCP is then solved using CasADi and IPOPT and was tested

within three different test scenarios.

Performance of the proposed algorithm is compared against that of the state-of-the-
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art reservation-based and lane-free methods. Ignoring the energy consumption, the results

show that the crossing time of CAVs controlled by the proposed strategy is respectively,

up to 65% and 54% less than the crossing time of CAVs controlled by the reservation-

based and lane-free benchmark methods. However, such improvement was achieved at the

cost of consuming more fuel. A similar comparison indicates that the proposed lane-free

strategy reduces crossing time by up to 52% as compare to the reservation-based strategy

while consuming the same amount of energy. Moreover, the results show that passengers

are more comfortable with the lane-free crossing because of an acceleration profile which

is far less than the maximum permissible value, and converges to zero at the destination.

Performance of the proposed lane-free algorithm is also evaluated for more complex

scenarios with more number of CAVs. It is shown that crossing time of CAVs through an

intersection is almost fixed to constant value regardless of the number of crossing CAVs.

Chapter 4 measures capacity improvements of intersections by the lane-free crossing of

CAVs as compared to the signalised crossing. To the best knowledge of the author, there

is no previous analysis that objectively quantifies such improvement. It is worth noting

that: i) the conventional capacity measures are not applicable to the lane-free crossing;

and ii) the crossing performance of CAVs depends on the collaborative behaviour of the

vehicles and not the performance of either the traffic light controller (as in conventional

intersections) or individual vehicle (as in autonomous vehicles without such collaborative

behaviour). Chapter 4 presents a novel framework to evaluate capacity of intersections

when CAVs are crossing in a lane-free order. The framework includes a measure and

the minimum-time optimal lane-free algorithm developed in Chapter 3 to calculate the

measure. It is shown that the capacity of a lane-free intersection with CAVs is, respectively,

127% and 36% higher than the capacity of a signalised intersection with CAVs and HVs.

This massive improvement is because of shorter safety distance of CAVs and their ability

to travel in a lane-free and signal-free order. Chapter 4 also presents a sensitivity analysis

of capacity and crossing time of lane-free intersections with respect to the maximum

permissible acceleration and speed, and the initial speed of CAVs.

5.2 Conclusions

The overall conclusions considering the objectives of the thesis are:

• The proposed lane-free crossing is a promising method for CAVs to cross intersec-

tions. This method improves the crossing time of a junction by an average of 40%
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as compared to the state-of-the-art reservation-based method, whilst consuming the

same amount of energy.

• The minimum crossing time of CAVs through intersections in a lane-free order is fixed

to a constant value regardless of the number of CAVs up to reaching the capacity

of the junction. In fact the crossing time of lane-free intersections is dependent to

the layout of the junction and the CAV that is travelling the longest distance rather

than the number of crossing vehicles as in signalised intersections.

• The proposed lane-free algorithm finds the minimum crossing time of CAVs which is

very close to its theoretical limit. This makes the results of the proposed algorithm

a suitable benchmark to evaluate the performance of other strategies that control

CAVs to cross intersections.

• Lane-free crossing of CAVs improves capacity of an intersection by, respectively,

127% and 36% as compared to a signalised crossing of CAVs and HVs.

• A sensitivity analysis indicates that, unlike the signalised intersections, the maximum

throughput of the lane-free crossing of CAVs is improved by increasing the initial

speed, and maximum permissible speed and acceleration of the vehicles.

5.3 Future work

The following research directions are considered as future works:

• The computational complexity of solving the proposed OCP is of the order of

O(e0.13N ), where N is the number of CAVs passing through the intersection. It

is interesting to realise the proposed strategy as a decentralised algorithm over a

receding horizon that can be applied to the real-time applications. In addition, such

approach can take into account the uncertainties of measurements and models.

• Although the vehicle model employed for the OCP formulation is sufficient for lane-

free movement, this model is yet non-linear. Future work will investigate vehicle

models that take into account the lateral behaviour of CAVs for lane-free movement

while , at least locally, not involve non-linearity.

• The gain parameters of the objective function of the OCP (e.g., crossing time α,

acceleration γ and Lagrange term Q) can be systematically tuned to improve the

convergence and accuracy of the solution. Moreover, the gain of Lagrange term Q,
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needs to be designed carefully as it is different for the elements (e.g., x(t), y(t) and

θ(t)) at each sampling time.

• The provided analysis of a single lane-free intersection can be extended to the case

with multiple intersections and consider more factors such as passenger comfort into

the measurement of capacity.
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Appendix A

Main parts of the developed solver

The model parameters given in Table 3.1 are needed to initialise the states and control

variables of the system. The following for loops create equations to initialise all the states

and control signals of Nv vehicle:

% Declare model states and controls

for i = 1:N_v*noOfStates

eval(sprintf(’x%d = %s%s%s’, i, ’SX.sym(’’’, sprintf(’x%d’, i), ’’’);’));

end

for i = 1:N_v*noOfControls

eval(sprintf(’u%d = %s%s%s’, i, ’SX.sym(’’’, sprintf(’u%d’, i), ’’’);’));

end

for i = 1:N_v*noOfStates

var = sprintf(’x%d’, i);

x = [x; eval(var)];

end

for i = 1:N_v*noOfControls

var = sprintf(’u%d’, i);

u = [u; eval(var)];

end

To facilitate a user-friendly formulation of the problem the Opti [124] module of

CasADi is employed:

opti = Opti (); %initialise Opti

Opti is designed to simplify the process of formulating optimization problems by pro-

viding a high-level functions such as variable(), subject to() and minimise() for defining,
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respectively, variables, constraints and the objective.

T is the final time and is defined as a solo variable which is later is minimised:

T = opti.variable (); %setting final time as a variable

h = T/N_p; %sampling time

where h is the resulting sampling time.

To discretise the dynamics of the system, the collocation method explained in Section

2.6.3 is implemented. As discussed in Section 2.6.3, the collocation method uses the roots

of a polynomial with orthogonality property in which Legendre polynomial of degree d is

used here as follows:

tau = collocation_points(d, ’legendre ’);% Get collocation points

Using the roots, the coefficient of collocation equations denoted as C, coefficient of conti-

nuity equations represented as D and coefficient of the quadrature function presented by

B, which are used later for discretisation, are obtained as follows:

[C,D,B] = collocation_coeff(tau);% Collocation linear maps

To discretise the dynamics and develop the resulting NLP, the following for loop is

coded:

for k = 1:N_p -1

Uk = opti.variable(N_v*noOfControls ); %Control variables

for i=1:N_v %boundary conditions for the control inputs

opti.subject_to (...);

end

Xc = opti.variable(N_v*noOfStates , d); %state variables at collocations points

for i=1: N_v %boundary conditions for states at collocation points

opti.subject_to (...);

end

Xk = opti.variable(N_v*noOfStates ); %state variables at end of interval

for i=1: N_v %boundary conditions for states variables

opti.subject_to (...);

end

lambda = opti.variable(N_v*length(b),N_v); %dual variable

s = opti.variable(N_v*(N_v -1)/2 ,2); %dual variable

for i=1: N_v %collision avoidance constrains of vehicles

opti.subject_to (...);

end
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lambda_rd = opti.variable ((N_v+4)*4 ,N_v +4); %dual variable for roads

s_rd = opti.variable(N_v*size(A,2) ,4); %dual variable for roads

for i=1: N_v %collision avoidance constrains of vehicles and road boundaries

opti.subject_to (...);

end

[ode , quad] = f(Xc , Uk); %evaluate ODE right -hand -side at collocations

J = J + quad*B*h; %add contribution to quadrature function

Z = [Xk Xc]; %get interpolating points of collocation polynomial

Pidot = Z*C;%get slope of interpolating polynomial (normalized)

opti.subject_to(Pidot == h*ode); %match with ODE right -hand -side

Xk_end = Z*D; %state at end of collocation interval

opti.subject_to(Xk_end ==Xk) %continuity constraints

end

In the above codes, the boundary conditions of control inputs and state variables

are initially defined and stored in the Opti object. It must be noted that the boundary

conditions are enforced for both the collocation points Xc and for the state intervals Xk.

The collision avoidance constrains, on the other hand, are only enforced for the state

variables Xk and not for the collocation point variables Xc. This is because enforcing the

collision avoidance constrains for both Xk and Xc significantly increases the computational

time while enforcing them just for the state variables Xk is sufficient to obtain collision-free

trajectories.

The stage cost of (3.9) and the dynamics given in (2.1) are symbolically formulated as

respectively L and xdot using the aforementioned defined states and control variables. L

and xdot are both set as the outputs of CasADi defined function as follows:

for i = 1:N_v

xdot = [xdot; eval(sprintf(’x%d*cos(x%d)’, i*noOfStates -(noOfStates -4),

i*noOfStates -(noOfStates -3))); eval(sprintf(’x%d*sin(x%d)’,

i*noOfStates -(noOfStates -4), i*noOfStates -( noOfStates -3)));

eval(sprintf(’x%d’, i*noOfStates -(noOfStates -5)));

eval(sprintf(’u%d’, i*noOfControls -( noOfControls -1)));

eval(sprintf (’(%f/(%f*x%d))*x%d+(%f/%f)*x%d+(%f/%f)*u%d’,Nr,Iz,

i*noOfStates -(noOfStates -4),i*noOfStates -( noOfStates -5),Nb ,Iz ,

i*noOfStates ,Nphi ,Iz ,i*noOfControls ));

eval(sprintf (’(%f/(%f*x%d*x%d)-%f)*x%d+%f/(%f*x%d)*

x%d+%f/(%f*x%d)*u%d’,Yr ,m,i*noOfStates -( noOfStates -4),

i*noOfStates -(noOfStates -4),1,i*noOfStates -( noOfStates -5),Yb ,m,
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i*noOfStates -(noOfStates -4),i*noOfStates ,Yphi ,m,

i*noOfStates -(noOfStates -4),i*noOfControls ))];

end

for i = 1:N_v

L = sprintf(’%s + %f*(x%d-%f)^2+%f*(x%d-%f)^2+%f*(x%d-%f)^2+0*(u%d)^2’,

p,G(1),i*noOfStates -(noOfStates -1), Xk_dest(i*noOfStates -(noOfStates -1)),

G(2), i*noOfStates -( noOfStates -2), Xk_dest(i*noOfStates -( noOfStates -2)),

G(3), i*noOfStates -( noOfStates -3), Xk_dest(i*noOfStates -( noOfStates -3)),

i*noOfControls -( noOfControls -1));

end

where G represent the gain matrix and L and xdot are combined within a symbolic function

f as follows:

f = Function(’f’, {x, u}, {xdot , L});

The calculated stage cost L is summed up to construct the overall cost J which is later

minimised.

Using the codes above, the OCP (3.8) is converted to a large-scale NLP which is then

solve by the IPOPT [111] as the state-of-the-art NLP solver:

s_opts = struct (" linear_solver",’ma27 ’);

opti.solver(’ipopt ’,s_opts );
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List of publications

1- Amouzadi, M., Orisatoki, M. O., Dizqah, A. M. (2022) ‘Optimal Lane-Free Cross-

ing of CAVs through Intersections’. IEEE Transactions on Vehicular Technology. doi:

10.1109/TVT.2022.3207054.

2- Amouzadi, M., Orisatoki, M. O., Dizqah, A. M. (2022) ‘Capacity Analysis of Intersec-

tions When CAVs Are Crossing in a Collaborative and Lane-Free Order’, Future Trans-

portation, 2(3), 698–710. doi: 10.3390/futuretransp2030039.

3- Amouzadi, M., Orisatoki, M. O., Dizqah, A. M. (2022) ‘Lane-Free Crossing of CAVs
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[40] A. Wächter and L. T. Biegler, “On the implementation of an interior-point fil-

ter line-search algorithm for large-scale nonlinear programming,” Mathematical pro-

gramming, vol. 106, no. 1, pp. 25–57, 2006.

[41] S. J. Anderson, S. C. Peters, T. E. Pilutti, and K. Iagnemma, “An optimal-control-

based framework for trajectory planning, threat assessment, and semi-autonomous

control of passenger vehicles in hazard avoidance scenarios,” International Journal

of Vehicle Autonomous Systems, vol. 8, no. 2-4, pp. 190–216, 2010.

[42] Z. Htike, G. Papaioannou, E. Siampis, E. Velenis, and S. Longo, “Minimisation of

motion sickness in autonomous vehicles,” in 2020 IEEE Intelligent Vehicles Sympo-

sium (IV), pp. 1135–1140, IEEE, 2020.

[43] P. Falcone, F. Borrelli, H. E. Tseng, J. Asgari, and D. Hrovat, “A hierarchical model

predictive control framework for autonomous ground vehicles,” in 2008 American

Control Conference, pp. 3719–3724, IEEE, 2008.
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