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Abstract
Run 2 of the Large Hadron Collider at CERN provided proton–proton collisions at a
centre-of-mass energy of 13 TeV from 2015 to 2018. The ATLAS experiment is one of
the experiments recording proton–proton collisions at the Large Hadron Collider,
having recorded 139.0 fb−1of data in Run 2. Analysis of this dataset has provided an
unprecedented arena to undertake precision measurements of the top quark, the
heaviest fundamental particle discovered to date. Indeed, the Large Hadron Collider is
sometimes called a “top quark factory". The interaction between top quarks and /
bosons provides a precise probe of the electroweak force, by studying the associated
production of a / with a top-antitop quark pair (CC̄/) at the LHC.
This thesis focuses on the 2-Lepton-Opposite-Sign channel of the CC̄/ process, which
is being analysed for the first time with the full Run 2 dataset. By studying the
2-Lepton-Opposite-Sign channel, it is possible to reconstruct properties of the / boson
directly, due to sensitive lepton identification and kinematic measurement by the
ATLAS detector. Therefore, this channel provides efficient / boson reconstruction in
studying the CC̄/ process. Multivariate analyses have been developed for this thesis to
select CC̄/ 2-Lepton-Opposite-Sign events within Run 2 LHC data. The multivariate
analyses included variables regarding leptons, jets and missing transverse momentum
in the final state. / bosons were reconstructed in selected CC̄/ 2-Lepton-Opposite-Sign
events, providing additional variables for multivariate analyses. Including the
2-Lepton-Opposite-Sign channel in the overall cross-section measurement of the CC̄/
process provided a more sensitive cross-section measurement using the full Run 2
ATLAS dataset, due to the extra statistics compared to the 3-Lepton and 4-Lepton
channels alone.
In addition to the multivariate analyses developed for the ATLAS measurement of the
CC̄/ process, similar multivariate analyses were developed using ATLAS Open Data;
proton–proton collision data collected by ATLAS, processed and made available to the
public. The purpose of developing multivariate analyses with ATLAS Open Data was
to create, test and demonstrate educational uses of particle-physics data. Experimental
and simulated data for the CC̄/ process, the code to perform multivariate analyses,
various educational resources and extensive documentation are now publicly available
for students around the world to analyse and learn for themselves.
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the ATLAS detector. A mini-T-rex is shown for scale. ATLAS is the same length
as three school buses (46 m) and the same height as five giraffes (25 m). Figure
adapted from Ref. [78]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3.2 A cross-sectional diagram of the ATLAS detector, with the Cartesian coordinate
system used by ATLAS superimposed. Figure adapted from Ref. [79]. . . . . . 47

3.4.1 A cross-sectional diagram of the innermost part of the ATLAS detector, the inner
detector. All sub-parts are shown and labelled in different colours, including the
Insertable B-layer (IBL), Pixels, Semiconductor Tracker (SCT) and Transition
Radiation Tracker (TRT), from inside to out. Figure taken from Ref. [80]. . . . . 49

3.5.1 A cross-sectional diagram of the ATLAS calorimeter. Sub-parts are shown and
labelled in different colours. The Tile calorimeter surrounds the Liquid Argon
(LAr) calorimeter. Figure taken from Ref. [85]. . . . . . . . . . . . . . . . . . . 51

3.5.2 A longitudinal diagram of the Electromagnetic (EM) Liquid Argon (LAr) calori-
meter. Cell size is labelled. Figure taken from Ref. [76]. . . . . . . . . . . . . . 52

3.6.1 Schematic diagram of the ATLAS Muon Spectrometer (MS). Different sub-parts of
the MS are labelled, as well as the toroid magnets. Figure taken from Ref. [76]. . 53

3.8.1 Flowchart for the ATLAS trigger system. Event rate is shown decreasing along the
left and data rate decreasing along the right. Figure taken from Ref. [89]. . . . . 54

4.1.1 Graphs of Parton Distribution Function (PDF). Figure from Ref. [11]. G rep-
resents the fraction of the proton momentum that a particular proton constituent
carries [105]. The H-axis represents the relative probability of having a particular
proton constituent with that fraction of proton momentum. . . . . . . . . . . . . 57

4.1.2 (a) Feynman diagram for the most common LO CC̄/ production mechanism. (b)
Feynman diagram for the most common LO CC̄/ production mechanism, with the
emission of a real gluon from the initial state, making it an NLO process. (c)
Feynman diagram for the most common LO CC̄/ production mechanism, with the
emission and absorption of a virtual gluon in the final state, making it an NLO
process. Diagrams produced using Ref. [68]. . . . . . . . . . . . . . . . . . . . 57

4.1.3 A pictorial diagram of the process of colour confinement leading to hadronisation
into jets. Time flows forward down the diagram. Figure from Ref. [108]. . . . . . 58

4.1.4 Diagram of the hadronisation process occurring in particle physics processes.
The important steps regarding hadronisation are the ones from parton shower
evolution [110], through nonperturbative gluon splitting [111] to cluster→ hadrons.
Hadronisation means that any quarks produced in particle physics collisions are
observed in ATLAS as jets of hadrons, to be briefly discussed in Section 4.3.2.
This figure is taken from Ref. [109]. . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3.1 Diagram showing all the parameters associated with a particle track in the ATLAS
detector. The tangential momentum to the particle track is the momentum vector p.
Transverse momentum, pZ , is the component of the total momentum in the G − H
plane. q is the azimuthal angle of the track from the G-axis. \ is the polar angle of
the track from the I-axis. 4G , 4H and 4I are the unit vectors in the G, H, I directions.
I0 is the I-distance of closest approach of the track to the interaction point. 30 is
the distance of closest approach of the track to the I-axis. Figure from Ref. [126]. 60
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4.3.2 Cut-away view of how different particles interact with and are seen in the ATLAS
detector. Electrons (Section 4.3.1) leave a curved track through all layers of the inner
detector (Pixel, SCT, Transition Radiation Tracker) and deposit their energy in a
shower inside the Electromagnetic Calorimeter (Section 3.5. Muons (Section 4.3.3)
leave a curved track throughout all layers of the detector (Tracking, Electromagnetic
Calorimeter, Hadronic Calorimeter, Muon Spectrometer). Hadrons such as protons
and neutrons are observed as jets (Section 4.3.2) by showers inside the Hadronic
Calorimeter. Neutrinos leave no trace in any part of the detector, but their presence
is inferred as Missing Transverse Momentum (MET) (Section 4.3.4). Figure taken
from Ref. [127]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3.3 Graph of electron identification efficiency in data (data efficiency) on the H-axis
as a function of transverse energy (�) ) on the G-axis. The lower plot is a ratio of
data to simulation (Data/MC). The different markers and colours indicate different
requirements on the likelihood of being an electron. Tight electrons in the black
triangles place the most stringent requirements on electron reconstruction. Medium
electrons in the red squares place looser requirements on electron reconstruction.
Loose electrons in the blue circles place requirements on electron reconstruction
that are looser again. This graph uses data from 2015-2017, corresponding to an
integrated luminosity of 81 fb−1at a centre-of-mass energy of 13 TeV. Figure taken
from Ref. [128]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3.4 Jets used in this thesis are clustered together from hadrons using the anti-:C
algorithm. High ?) jets that are used in this thesis are represented by coloured
circles with high bars. Ref. [132] describes the algorithm in detail. Figure taken
from Ref. [132]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3.5 A Jet Vertex Tagger (JVT) is used to suppress the effect of low-?) jets that are not
part of the hard interactions that produce the processes of interest for this thesis.
This graph shows how JVT score differs for Hard Scatter (HS) and pile-up (PU)
jets. HS jets tend to give a high JVT score and PU jets tend to give a high JVT
score. This graph uses simulated Pythia 8 [116] jets clustered with the anti-:C
algorithm [132]. Ref. [140] describes JES in detail. Figure taken from Ref. [140]. 65

4.3.6 Pictorial diagram of how b-jets are distinguished from light jets. b-jets are of
particular importance to this thesis, since top quarks almost always decay to
b-quarks. Figure from Ref. [141]. . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3.7 Muon identification efficiency as a function of transverse momentum. Figure taken
from Ref. [35]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.1.1 Example diagrams for the (left) 4ℓ channel and (right) 3ℓ channel of the CC̄/ process. 73
5.1.2 Example diagrams for the (left) 2ℓOS (with / → ℓℓ) channel and (right) 2ℓOS

(with / → 9 9 or / → aa) channel of the CC̄/ process. . . . . . . . . . . . . . . . 73
5.1.3 Example diagrams for the (left) 1ℓ channel and (right) 0ℓ channel of the CC̄/ process. 74
5.1.4 Pie chart showing the branching fractions of CC̄/ decay. This thesis focuses on the

2ℓOS channel, since it provides a compromise between high branching fraction and
simplicity in reconstructing the / boson. Figure produced in Python [70]. . . . . 75

5.2.1 Feynman diagrams for the signal and main backgrounds of the CC̄/ 2ℓOS channel.
(a) CC̄/ 2ℓOS decay, which is the signal process for this thesis. (b) CC̄. (c) /+jets.
Diagrams produced using Ref. [68]. . . . . . . . . . . . . . . . . . . . . . . . . 76

5.2.2 Feynman diagrams depicting the CC̄ decay within CC̄/ that leads to the three separate
regions used in this thesis. The / boson within CC̄/ decays dileptonically in each
case, therefore is not shown. The production of 2 b-jets along with 4 other jets
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5.3.1 Display of event 1248839771 in run 331710 recorded by ATLAS in ?? collisions
with LHC stable beams at a centre-of-mass energy of 13 TeV on August 3rd, 2017.
The topology of this candidate corresponds to CC̄/ production in the 2ℓOS channel. 80

5.3.2 Display of event 2361796077 in run 350751 recorded by ATLAS in ?? collisions
with LHC stable beams at a centre-of-mass energy of 13 TeV on May 20th, 2018.
The topology of this candidate corresponds to CC̄/ production in the 3ℓ channel. . 82

5.3.3 Display of event 2075539836 in run 364214 recorded by ATLAS in ?? collisions
with LHC stable beams at a centre-of-mass energy of 13 TeV on October 23rd,
2018. The topology of this candidate corresponds to CC̄/ production in the 4ℓ channel. 84
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that are more background-like. Some of the leaf nodes will be rich in signal and
others rich in background. Figure taken from Ref. [176]. . . . . . . . . . . . . . 86
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(BDT), namely a Gradient BDT. Each Decision Tree can come to a slightly different
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one output. Figure from Ref. [178]. . . . . . . . . . . . . . . . . . . . . . . . . 88

5.4.4 Diagram of a multiclass deep neural network. This is similar to the deep neural
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5.5.1 Δ' separation between the leptons in the regions of the dilepton OSSF channel in
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Data versus MC comparison (left column) and the separation before applying the
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5.6.1 Weight given by the multi-hypothesis reconstruction of 1 hadronic top, in the
2ℓ-Z-2b6j region of the dilepton OSSF channel. Data versus MC comparison (top
left). Separation for each individual sample (top right). Superimposed test and
train variables for signal and background for 1st k-fold (middle left). Superimposed
test and train variables for signal and background for 2nd k-fold (middle right).
Summary of separation for each individual sample (bottom left). . . . . . . . . . 96

5.6.2 Weight given by the multi-hypothesis reconstruction of 2 hadronic tops, in the
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6.1.1 BDT discriminants used for the 2ℓ-Z-2b6j signal region of the dilepton OSSF
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6.1.3 BDT discriminants used for the three signal regions of the dilepton OSSF channel.
Data vs. MC (left column) and separation of CC̄/ 2ℓOS signal and total background
distributions (right column) in the regions of the dilepton OSSF channel. (Top
row) 2ℓ-Z-1b6j. (Middle row) 2ℓ-Z-2b5j. (Bottom row) 2ℓ-Z-2b6j. No cut on
MVA technique output is required in separation plots, to show real separation power
before cutting on the MVA output. The error bars include statistical and systematic
uncertainties. When using a single BDT per 2ℓOS region. . . . . . . . . . . . . 108

6.2.1 “Importance" of the variables used for binary DNN training. Variables with greatest
values on the G-axis (e.g. >10−2) are most “important". (Top row) 2ℓ-Z-1b6j.
(Middle row) 2ℓ-Z-2b5j. (Bottom row) 2ℓ-Z-2b6j. . . . . . . . . . . . . . . . . 111

6.2.2 A visualisation of a binary Deep Neural Network used in this thesis. This network
is for the 2ℓ-Z-2b6j region with 17 inputs. . . . . . . . . . . . . . . . . . . . . . 112

6.2.3 Binary DNN ROC curves for the three signal regions of the dilepton OSSF channel
overlapping test and training samples. 1st k-fold in the left column, 2 k-fold in the
right column. From top to bottom 2ℓ-Z-1b6j, 2ℓ-Z-2b5j and 2ℓ-Z-2b6j regions. . 113

6.2.4 DNN discriminants used for the three signal regions of the dilepton OSSF channel,
using a single binary DNN per 2ℓOS region. Data vs. MC (left column) and
separation of CC̄/ 2ℓOS signal and total background distributions (right column),
in the regions of the dilepton OSSF channel. No cut on MVA technique output is
required in separation plots, to show real separation power before cutting on the
MVA output. The error bars are statistical. (Top row) 2ℓ-Z-1b6j. (Middle row)
2ℓ-Z-2b5j. (Bottom row) 2ℓ-Z-2b6j. . . . . . . . . . . . . . . . . . . . . . . . . 114

6.2.5 (Left column) Signal over background that would be achieved by selecting events
above the x-axis DNN output value. (Right column) Signal over

√
background that

would be achieved by selecting events above the x-axis DNN output value. (Top
row) 2ℓ-Z-1b6j. (Middle row) 2ℓ-Z-2b5j. (Bottom row) 2ℓ-Z-2b6j. All when using
a single binary DNN per 2ℓOS region. . . . . . . . . . . . . . . . . . . . . . . 115

6.3.1 ROC curve for the 3 regions of the dilepton OSSF channel, when using an initial
multiclass DNN per 2ℓOS region. (Top row) is for 2ℓ-Z-1b6j. (Middle row) is for
2ℓ-Z-2b5j. (Bottom row) is for 2ℓ-Z-2b6j. . . . . . . . . . . . . . . . . . . . . 118

6.3.2 Separation of DNN output distributions the classifier output being optimised for,
and all other processes, in the 2ℓ-Z-1b6j region of the dilepton OSSF channel, when
using an initial multiclass DNN per 2ℓOS region. No cut on MVA technique output
is required in separation plots, to show real separation power before cutting on the
MVA output. (Top row) is for the CC̄ classifier output. (Middle row) is for the CC̄/
classifier output 1. (Bottom row) is for the /+jets classifier output. . . . . . . . 120

6.3.3 Separation of DNN output distributions the classifier output being optimised for,
and all other processes, in the 2ℓ-Z-2b5j region of the dilepton OSSF channel, when
using an initial multiclass DNN per 2ℓOS region. No cut on MVA technique output
is required in separation plots, to show real separation power before cutting on the
MVA output. (Top row) is for the CC̄ classifier output. (Middle row) is for the CC̄/
classifier output 1. (Bottom row) is for the /+jets classifier output. . . . . . . . 121

6.3.4 Separation of DNN output distributions the classifier output being optimised for,
and all other processes, in the 2ℓ-Z-2b6j region of the dilepton OSSF channel, when
using an initial multiclass DNN per 2ℓOS region. No cut on MVA technique output
is required in separation plots, to show real separation power before cutting on the
MVA output. (Top row) is for the CC̄ classifier output. (Middle row) is for the CC̄/
classifier output 1. (Bottom row) is for the /+jets classifier output. . . . . . . . 122

6.4.1 Loss curves for DNN training, using the multiclass DNNs with new variables. 1st
k-fold in the left column, 2nd k-fold in the right column. 2ℓ-Z-2b6j. . . . . . . . 125



22
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7.3.1 Separation between signal and background and signal-to-background ratio obtained
by selecting above a particular value of the x-variable in question. Taking (a) NJets
as an example, the starting x-value is 5. Taking the ratio of number of signal events
with at least 5 jets, to the number of background events with at least 5 jets gives
the S/B value at NJets=5 on the signal:background ratio plot (about 3.5% ). Now
imagine selecting only events with at least 7 jets. Taking the ratio of those events
passing that selection gives the S/B value at NJets=7 on the signal:background ratio
plot (about 6% ). That is how the signal:background ratio plots are constructed. . 158

7.3.2 Separation between signal and background and signal-to-background ratio obtained
by selecting above a particular value of ‘ML_output’. The starting x-value is about
0.05. Taking the ratio of number of signal events with ML_output > 0.05, to
the number of background events with ML_output > 0.05 gives the S/B value at
ML_output = 0.05 on the signal:background ratio plot (about 2% ). Now imagine
selecting only events with ML_output > 0.6. Taking the ratio of those events passing
that selection gives the S/B value at ML_output=0.6 on the signal:background ratio
plot (about 8% ). That is how the signal:background ratio plots are constructed. . 159

7.3.3 BDT output distributions in the signal region 2ℓ-Z-2b6j (here called 6j2b) using (a)
ATLAS Open Data, (b) Ref. [36]. Considering the differences in the amount of data
and the fact that not every detail from an ATLAS paper can be followed, the Open
Data can reproduce this ATLAS result well. The ‘Other’ background contains SM
processes with small cross sections producing two opposite-sign prompt leptons.
The shaded band represents the total uncertainty. The last bin of each distribution
contains the overflow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

7.3.4 BDToutput distributions in the CC̄ control region of 2ℓ-Z-2b6j (here called 6j2b) using
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of data and the fact that not every detail from an ATLAS paper can be followed,
the Open Data can reproduce this ATLAS result well. The ‘Other’ background
contains SM processes with small cross sections producing two opposite-sign
prompt leptons, including the CC̄/ process, whose contribution is negligible. The
shaded band represents the total uncertainty. The last bin of each distribution
contains the overflow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161



24

7.3.5 The definitions and ranking of input variables for the BDT in the CC̄/ 2ℓOS analysis.
(a) ATLAS Open Data, (b) Ref. [36]. Some similarities can be seen between (a)
and (b), for example “Number of jet pairs with mass within a window of 30 GeV
around 85 GeV" ranking rather highly for both. Differences between (a) and (b) can
also be seen, for example “Scalar sum of ?) divided by the sum of energy of all
jets" ranking highly for (b) but not so highly for (a). Jets and leptons are ordered in
descending order of ?) . Only the first eight jets are considered when calculating
the input variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
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1 Introduction

The party’s just getting started. This is where the fun starts.

Kobe Bryant [1]

In particle physics, a theory called the “Standard Model (SM) of particle physics" attempts to
describe all observed phenomena at the scale of subatomic particles [2–5]. The SM has been
successful in describing all phenomena observed by the Large Hadron Collider (LHC) [6] and
previous collider experiments [7, 8].

The top quark (C) [9, 10], along with its antiparticle the antitop quark (C̄), are the heaviest known
particles in the SM [11]. The production of top-quark pairs (CC̄) has been measured with a great
level of precision [12]. Properties of the top quark have been explored by the LHC in great detail,
owing to the large centre-of-mass energy and luminosity at the LHC. One such property is the top
quark’s weak neutral-current couplings [13], the top quark’s interaction with the / boson [14, 15],
a carrier of the weak force. The / boson is the third heaviest particle in the SM [11], therefore
the interaction between a top quark and / boson is the third highest-scale direct interaction, and
therefore it is of interest to probe.

The production of top-quark pairs (CC̄) in association with / bosons is a rare process in the SM [16].
The coupling to the / boson is not yet well constrained and its value can vary significantly in many
models including physics Beyond the Standard Model (BSM) [17–22].

The CC̄/ process is furthermore an irreducible background to several searches for BSM phenomena,
such as supersymmetric models [23–25] or searches for vector-like quarks and four-top produc-
tion [26–28]. The Compact Muon Solenoid (CMS) collaboration has carried out similar searches
for such phenomena [29, 30]. Measurements of important SM processes are also affected by CC̄/
background. Examples include CC̄ production in association with a Higgs boson [31, 32] or single
top-quark production in association with a / boson [33]. Precise measurements of the CC̄/ process
are thus of particular interest.
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This thesis focuses on the 2ℓOS channel of the CC̄/ process where the / decays into 2 opposite-sign
(OS) leptons (electrons [34] or muons [35]). This channel was studied because the / boson can be
reconstructed directly from the 2 leptons, without any ambiguity over which leptons are from the /
decay.

An ATLAS measurement of the CC̄/ 2ℓOS channel at a centre-of-mass energy of 13 TeV was
conducted with the proton–proton collision data collected during the years 2015 and 2016,
corresponding the an integrated luminosity of 36.1 fb−1 [36]. In Ref. [37], the ATLAS Collaboration
provided the first measurements of the CC̄/ differential cross section using the full dataset from
Run 2 of the LHC, corresponding to an integrated luminosity of 139 fb−1.

This thesis presents an extended and refined measurement of the CC̄/ 2ℓOS channel using the full
set of data collected by the ATLAS experiment during Run 2 of the LHC.

The thesis is structured as follows:

• Chapter 2 briefly introduces the theoretical background for this thesis;

• Chapter 3 summarises the different parts of the ATLAS detector used in this analysis;

• Chapter 4 describes the data and physics objects used;

• Chapter 5 introduces the strategy for the CC̄/ 2ℓOS analysis of this thesis;

• Chapter 6 contains the results of the signal regions;

• Chapter 7 discusses the education work that forms part of this thesis;

• A conclusion of the analysis is drawn in Chapter 8.

The author’s specific contributions were:

• creating event displays for the CC̄/ process;

• validating input datasets over a range of variables in terms of distributions, shapes, and data
vs. MC agreement;

• verifying signal vs. background separation provided by a range of variables;

• setting up, training, and evaluating various MVA models for classification of the CC̄/ 2ℓOS
process;

• comparing the performance of the various MVA models;

• creating a data pipeline to go from data used for physics analysis to simplified data formats
for Open Data;

• creating the datasets used as input for Open Data analyses;

• writing example physics analyses for use with Open Data;

• writing corresponding documentation for datasets and example analyses;

• testing datasets and example analyses for Open Data.



2 The Standard Model, the most precise theory
in science

Snow White never could read particle physics for very long.

Anon [38]

This chapter briefly introduces the Standard Model (SM) of particle physics. The first part discusses
the various particles and forces of the SM. The second part introduces Quantum Field Theory (QFT),
the theory underpinning the SM. The third part focuses on the production and decay mechanisms of
the top quark and / boson.

2.1 The Standard Model primer

The SM formulated in the 1960s and 1970s represents humanity’s best understanding of nature at
scales smaller than atoms [2–4, 39–42]. Figure 2.1.1 shows the particle content of the SM. There
are two fundamental classes of particles, defined by a property called spin, with fermions having a
spin of 1/2 and bosons having a full integer spin. Fundamental fermions include quarks [43] and
leptons [3], whilst fundamental bosons can be vector-type (spin 1) or scalar-type (spin 0). In the SM
the fundamental particles interact via 3 fundamental forces: the strong force, electromagnetic force
and weak force. These fundamental forces are carried by gauge bosons, (Table 2.1.1), which is how
fermions interact. The coupling constants in Table 2.1.1 are terms that appear in the equations for
the respective forces, to quantify the relative strength of different interactions. Since strengths are
quantified in relative terms, they have no units. Gravity is not included in the SM.

29



30

Standard Model of Elementary Particles
three generations of matter

(fermions)

I II III

interactions / force carriers
(bosons)

mass

charge

spin

Q
U

A
R

K
S

u
≃2.2 MeV/c²

⅔

½

up

d
≃4.7 MeV/c²

−⅓

½

down

c
≃1.28 GeV/c²

⅔

½

charm

s
≃96 MeV/c²

−⅓

½

strange

t
≃173.1 GeV/c²

⅔

½

top

b
≃4.18 GeV/c²

−⅓

½

bottom

L
E

P
T

O
N

S

e
≃0.511 MeV/c²

−1

½

electron

νe
<1.0 eV/c²

0

½

electron
neutrino

μ
≃105.66 MeV/c²

−1

½

muon

νμ
<0.17 MeV/c²

0

½

muon
neutrino

τ
≃1.7768 GeV/c²

−1

½

tau

ντ
<18.2 MeV/c²

0

½

tau
neutrino G

A
U

G
E

 B
O

S
O

N
S

V
E

C
T

O
R

 B
O

S
O

N
S

g
0

0

1

gluon

γ
0

0

1

photon

Z
≃91.19 GeV/c²

0

1

Z boson

W
≃80.39 GeV/c²

±1

1

W boson

S
C

A
L

A
R

 B
O

S
O

N
S

H
≃124.97 GeV/c²

0

0

higgs

Figure 2.1.1: The particles of the SM. The three generations of matter (fermions) are shown in the left
columns, 1, 2 and 3. In the right columns are the force carriers (bosons). In purple are the quarks. In green
the leptons. In red are the gauge (vector) bosons. In yellow the only scalar boson of the SM. The mass,
charge, symbol and name of each particle are shown in each box. Faint outlines around the symbols show
which matter particles interact with which gauge bosons. Figure from Ref. [44].

Force Carrier Coupling
constant

Strength

Strong gluon UB ∼ 1 [45]

Electromagnetic photon U�" 1/137 [46]

Weak ,± and / U, 1/10000 [47]

Table 2.1.1: The known force carrier bosons. The forces are listed in decreasing order of strength of their
coupling constants. The electromagnetic force is 137 times weaker than the strong force. The weak force is
10000 times weaker than the strong force.

Matter generations

Fundamental particles of matter are duplicated into three generations, the only difference between
the fundamental properties of the three generations of matter is their masses. Matter particles of
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generations 2 and 3 are unstable and tend to decay to lighter particles, to reach lower energy states.
Up quarks, down quarks and electrons (Section 4.3.1) of generation 1 are abundant in atoms that
make up all objects around us. Up quarks, charm quarks, and top quarks are grouped into “up-type
quarks". Down quarks, strange quarks, and bottom quarks are grouped into “down-type quarks".
Electrons, muons, and taus are grouped into “charged leptons".

Neutrinos (Section 4.3.4) are needed to complete generation 1 along with up quarks, down quarks
and electrons. Neutrinos are not seen in the objects around us, but are involved in interactions
of the weak force, such as beta decay. Neutrinos come in three types; electron neutrino, muon
neutrino, and tau neutrino, corresponding to the three types of charged leptons. Matter particles
of generations 2 and 3 are only abundant in high energy processes, such as at the LHC, at the
beginning of the universe, and in high-energy collisions in the Earth’s atmosphere.

Summary of particles

The up-type quarks (u, c, t) carry an electric charge of +2/34, whilst the down-type quarks (d, s,
b) carry charge -1/34. Charged leptons (4, `, g) carry a charge of -14. Each charged lepton has a
corresponding neutrino (a4, a`, ag). All fundamental fermions have a corresponding anti-particle,
with an anti-particle’s charge obtained by multiplying the corresponding particle’s charge by -1. A
plot of the masses of fundamental particles is shown in Figure 2.1.2. The four heaviest particles in
the SM are the top quark, Higgs boson, / boson and,± respectively [11].
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Figure 2.1.2: Masses of the particles of the SM. The three generations of matter (fermions) are shown in the
left columns, first, second and third. In the right column are the force carriers (bosons). In red are the quarks
with charge +2/3e. In blue the quarks with charge -1/3e. In green the charged leptons. In grey the neutral
leptons. The gauge bosons for the weak nuclear force are in orange. Other bosons are in individual colours.
Figure from Ref. [48].

Hadrons

Quarks bind together to form hadrons, an example of which is the proton. Hadrons can be classified
as baryons containing three quarks (e.g. proton) or mesons containing one quark and one antiquark
(e.g. pion). These combinations of three quarks, or one quark and one antiquark, ensure that
hadrons have a total colour charge of zero.

2.2 Quantum Field Theory

The SM is underpinned by rigorous mathematics and theory, in the form of a Quantum Field Theory
(QFT) [49]. All fundamental particles exist in the form of quantum fields. Three QFTs are of
particular importance to this thesis: Quantum Electrodynamics, electroweak theory and Quantum
Chromodynamics.
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2.2.1 Quantum Electrodynamics (QED)

Quantum Electrodynamics (QED) is the QFT describing the Electromagnetic (EM) force [50]. It
formulates the interaction of the photon as the carrier of the EM force. If a particle has an electric
charge it can interact via the EM force through the photon. This means that QED describes the
EM interaction of charged leptons and quarks, via the exchange of photons. When two charged
particles interact via the EM they exchange virtual photons, from particle 1 to particle 2 or vice
versa. Neutrinos do not interact via the EM force as their electric charge is zero.

2.2.2 Electroweak theory

At the energies of the LHC, the EM force unites with the weak force to become one “electroweak
force" via the Glashow-Weinberg-Salam theory. The QFT groups relevant to Electroweak theory are
(* (2)! and * (1). . (* (2)! is for weak isospin and* (1). is for hypercharge. The ( in (* (2)!
stands for special, the* for unitary [51]. (2) means that the matrices of the (* (2)! group are 2×2.
! indicates interaction with left-handed particles. (1) means that the matrices of the* (1). group
are 1×2 column matrices.

(* (2) matrices are of the form(
U −V̄
V Ū

)
,

where U and V are complex numbers satisfying the condition |U |2 + |V |2 = 1 [52]. The bar over U
and V denotes a complex conjugate.

Electroweak interactions are gauge-invariant under (* (2)! → * (1). gauge transformations [53–
55]. Following the same principle of unifying the weak force and EM force into the electroweak
force at energies accessible by the LHC, Grand Unified Theories attempt to unify the electroweak
force and strong force at higher energies [56].

Particles of the SM are left-handed whereas anti-particles of the SM are right-handed. It is these
particles that interact with the electroweak force. Handedness appears in the SM Lagrangian [49]
as terms that contain the (* (2)! symmetry of the weak force. Yukawa coupling is an interaction
between particles according to the Yukawa potential

+ (A) ∝ −1
A
4−A ` (2.2.1)

,

where A is the distance between the two particles and ` is the mass of the particle mediating the
interaction. Yukawa couplings appear in the SM Lagrangian as mass terms. Yukawa couplings are
discussed later in the context of the top quark in Section 2.3.2.

2.2.3 Quantum Chromodynamics (QCD)

Quantum Chromodynamics (QCD) is the QFT describing the strong force [57], the strongest of all
known fundamental forces, being 137 times stronger than the next strongest force, the EM force [46].
QCD interactions are mediated through 8 gluons, the force carriers of the strong force. The strong
interactions are mediated by the gluons described by the (* (3)� group as QCD. The ( in (* (3)�
stands for special, the* for unitary [51]. (3) means that the matrices of the (* (3)� group are 3×3.
� indicates interaction with colour charge. In analogy to electric charge being the charge of the EM
force, colour charge is the charge of the strong force. There are three colour charges in nature; red,
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green, and blue (as well as anti-red, anti-green, and anti-blue for anticolour in antiparticles). If a
particle has a colour charge it can interact via the strong force through gluons. The (* (3)� group
has 8 generators for the 8 gluons. Quarks are the only fermion to have colour charge and experience
the strong force. The properties of QCD mean that the strong force gets stronger at smaller scales,
meaning shorter distance, a term called asymptotic freedom [58]. As the only fundamental fermions
that experience the strong force, this increase leads to the fact that isolated quarks hadronise into jets
in ATLAS, as briefly discussed in Section 4.3.2 (with the exception of the top quark, as discussed in
Section 2.3). The fact that quarks cannot exist in isolation is termed colour confinement [59].

The structure of the proton

Protons are composite objects that comprise of three valence quarks (uud) held together by gluons.
The valence quarks need to have colour adding up to being colourless (e.g. red, green, and blue).
Due to the nature of QCD, protons also contain a sea of quark-antiquark pairs. Sea quark-antiquark
pairs are always red+anti-red, green+anti-green, or blue+anti-blue. Together, valance quarks,
sea quarks, and gluons are called “partons". A pictorial representation of a proton is shown in
Figure 2.2.1.

Figure 2.2.1: An artist’s impression of a proton. The three “valence quarks" are the largest spheres. The
other spheres are “sea quarks". Gluons are represented by yellow springs. Figure from Ref. [60].

CKMmatrix

The Cabibbo–Kobayashi–Maskawa (CKM) matrix quantifies the strength of the weak-interaction
coupling between different quarks. A high value in the CKM matrix means that the pair of quarks
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are likely to be seen together in weak interactions. The CKM matrix is shown in Table 2.2.1. The
fact that pairs of quarks that are in different generations can couple together via the weak interaction
is called “mixing". Like QCD discussed in 2.2.3, the weak interaction field theory formulation is
also with (* (3) groups. Having three dimensions to the matrices of the weak interaction is what
allows mixing between the different generations of quarks, through a mixing phase X. Mixing would
not be possible in an (* (2) group structure with two generations.

|+D3 | = 0.97370 ± 0.00014 |+DB | = 0.2245 ± 0.0008 |+D1 | = 0.00382 ± 0.00024
|+23 | = 0.221 ± 0.004 |+2B | = 0.987 ± 0.011 |+21 | = 0.0410 ± 0.0014
|+C3 | = 0.0080 ± 0.0003 |+CB | = 0.0388 ± 0.0011 |+C1 | = 1.013 ± 0.030

Table 2.2.1: Cabibbo–Kobayashi–Maskawa (CKM) matrix as given by the best experimental measurements
of weak interactions [11]. The fact that |+C1 | is close to 1 means that the top quark decays almost 100% of the
time to a bottom quark (along with a,-boson).

Renormalisation and factorisation scales

Renormalisation scale is introduced to QFT to account for the involvement of high-momentum
virtual particles in interactions [61], e.g. high-momentum virtual photons in QED. Factorisation
scale is introduced to QFT to account for the possibility of a massless particle radiating another
massless particle [62], e.g. a gluon radiating another gluon in QCD. Uncertainties on these scales
give rise to systematic uncertainties based on theory. Renormalisation and factorisation scales are
discussed later in the context of systematics for the main analysis of this thesis in Section 6.5.

2.3 The top quark

The top quark remains one of the most interesting fundamental particles to study at particle colliders,
as is discussed during this section. It has been of interest since before its discovery and remains of
interest today due to its unique properties.

2.3.1 Historical background

The top quark was predicted by Kobayashi and Maskawa in 1973 as a result of their work on kaon
decays [63]. To explain Charge-Parity (CP) violation observed in kaon decays, a third generation
of fermions was required. Up until then, only two generations had been found. Therefore a third
generation containing an up-type quark of electric charge +2/3e and a down-type quark of electric
charge of -1/3e was predicted. This third generation up-type quark is now known as the top
quark, and this third generation down-type quark is now known as the bottom quark. After much
experimental work, the top quark was discovered by the CDF [9] and DØ [10] Collaborations in
1995. It is in generation III of the matter fermions, together with the bottom quark.

2.3.2 Unique properties of the top quark

Some unique properties of the top quark are:

• it is the heaviest known particle in the SM, with mass <C = 172.76 ± 0.30 GeV [11];



36

• the large width to its mass peak, Γ = 1.42+0.19
−0.15 GeV [11], which is inversely proportional to

lifetime;

• its short lifetime, g = (3.29+0.90
−0.63) × 10−25 s [11]. This is shorter than the timescale of

hadronisation [64] (≈10−24 s [65]), and therefore when produced it decays almost 100% of
the time into a,-boson and 1-quark (2.2.3), giving one a unique opportunity to study the
bare quark directly;

• its large Yukawa coupling to the Higgs boson, _C = 1.16+0.24
−0.35 [11]. The fact that the top-Higgs

Yukawa coupling is predicted to be close to 1 (as discussed in Ref. [66]), leads to the high
mass of the top quark. Experimentally, _C is found to be in agreement with 1. The proximity
of the top-Higgs Yukawa coupling to 1 could be a coincidence, but it could also hint at some
new physics Beyond the Standard Model. Since the top quark is the heaviest fundamental
particle, its interaction with the Higgs boson is strongest amongst the fundamental particles,
providing a promising avenue to measure the Higgs Yukawa coupling to fermions.

These unique properties of lifetime, decay and Yukawa coupling make the top quark an important
field of study within LHC physics.

Production and decay

The main production of top quarks at the LHC is via the production of a top-antitop pair, with a
measured cross-section of 830 ± 0.4 ± 36 ± 14 pb at

√
B = 13 TeV [12]1. Cross-section quantifies

how likely a process is to occur, a higher cross-section means higher probability of occurrence.
The main production Feynman diagrams for the production of a top-antitop pair are shown in
Figure 2.3.1. Gluon–gluon fusion (a) is the most common production mechanism at the LHC at
90%.

Figure 2.3.1: Feynman diagrams depicting the most common top-antiop pair production mechanisms. (a) is
gluon-gluon fusion. (b) is gluon-gluon splitting. (c) is quark-antiquark annihilation.

The CKMmatrix of Table 2.2.1 indicates that top quarks decay almost 100% of the time to,-bosons
and bottom quarks. This most common of top-quark decays is shown in Figure 2.3.2.

1 A “barn" (b) is 10−28 m2 and a “pico" (p) is a 10−15 multiplier, therefore pb is 10−43 m2
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Figure 2.3.2: Feynman diagram depicting the most common top-quark decay to a 1-quark and,-boson.

2.4 The ` boson

The / boson is a force carrier of the weak force. A neutral gauge boson was predicted by theories
unifying the weak and electromagnetic forces into a single electroweak force [2–4], adding to the
charged gauge bosons (,±) that had already been discovered. The / boson was observed for the
first time by the UA1 [14] and UA2 [15] Collaborations in 1983.

2.4.1 Unique properties of the ` boson

Some unique properties of the / boson are:

• it is the third heaviest particle of the SM, with mass </ = 91.1876 ± 0.0021 GeV [11];

• the large width to its mass peak, Γ = 2.4952 ± 0.0023 GeV [11];

• its short lifetime, g ≈ 3 × 10−25 s [11], similar to the top quark;

2.5 t t̄` production

The associated production of a top quark, antitop quark and / boson is one of the highest energy
processes possible to probe at the LHC [67], occurring at energies ' 450 GeV. Production
mechanisms of the CC̄/ process need to be measured to verify their agreement with SM predictions
and determine properties of the CC̄/ process. I will now introduce the production mechanisms of the
CC̄/ process.
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2.5.1 t t̄` production Feynman diagrams

Leading Order (LO) Feynman diagrams for the production of CC̄/ are shown in Figure 2.5.1. They
can be divided into diagrams in which the / boson is produced via initial-state-radiation (ISR)
or via final-state-radiation (FSR). One LO diagram exists for ISR and three for FSR. The FSR
diagrams can be further divided into one quark-antiquark initiated process and two gluon-gluon
initiated processes. The FSR process in which two gluons fuse into one gluon is the most common
CC̄/ production mechanism (Figure 2.5.1 a), followed by the FSR process in which the two gluons
split into CC̄ pairs (Figure 2.5.1 b), followed by the FSR quark process (Figure 2.5.1 c), followed by
the ISR quark process (Figure 2.5.1 d). The quark-antiquark processes are less common than the
gluon-gluon processes because the antiquark is a sea quark within the proton. A discussion of why
the presence of a sea quark makes a process less common will be given in Section 4.1.1.
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Figure 2.5.1: Feynman diagrams for the leading-order production mechanisms of the CC̄/ process. The
different colours are simply to help distinguish between different particles.
(a) The FSR gluon-gluon-fusion process is the most common CC̄/ production mechanism.
(b) The FSR gluon-gluon-splitting process is the second most common CC̄/ production mechanism.
(c) The FSR quark-antiquark process is the third most common CC̄/ production mechanism.
(d) The ISR quark-antiquark process is the fourth most common CC̄/ production mechanism.
Diagrams produced using Ref. [68].

2.5.2 Production rates

Since CC̄/ production is similar to CC̄ production, it is useful to quantify the relative production rate
of CC̄ through gluon processes and through quark processes. No experimental measurements have
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distinguished between production measurements of CC̄/ , therefore numbers for CC̄ are given as an
indication. However, since CC̄/ is essentially a CC̄ process with the extra radiation of a / boson,
the fraction of gluon processes vs. quark processes for CC̄/ are similar to the fraction for CC̄. At a
centre-of-mass energy of 13 TeV at the LHC, the production of top-antitop quark pairs (CC̄) occurs
∼90% of the time through gluon processes and ∼10% through quark processes. Measurements of
the CC̄/ process in this thesis do not distinguish between production mechanisms.

At a centre-of-mass energy of 13 TeV, the production cross-section of CC̄/ is predicted to be [16]

fC C̄/ = 0.863+0.07
−0.09 (scale) ± 0.03 (PDF + US) pb.

The scales that form part of this uncertainty were introduced in Section 2.2.3, US in Section 2.1,
and pb in Section 2.3.2. PDFs will be introduced in Section 4.1.1. This cross-section is ≈3 orders
of magnitude below the production cross-section for CC̄ (Section 2.3.2).

2.6 Top quark decay

The probability of transition from a top quark to a bottom quark with the emission of a, boson is
given by the CKM matrix as 99.8% [11]. Following this, the, boson decays either hadronically
(, → @@̄′) or leptonically (, → ℓaℓ). In hadronic decays, @ and @̄′ could be any of the flavours
D, 3, 2, B, 1, as long as their charges add up to the same charge as the, boson. The prime superscript
in @̄′ indicates that the antiquark is of different flavour to to the quark @. Hadronic , decays
occur (67.41 ± 0.27)% of the time [11]and leptonic decays, ℓ = 4, `, g, occurs (32.72 ± 0.30)% of
the time [11]. For a top-antitop pair production, the final CC̄ state depends predominantly on the
decays of the two, bosons. This thesis focuses on the all-hadronic CC̄ decay, C → 1,+ → 1@@̄′

and C̄ → 1̄,− → 1̄@@̄′. This can be shortened to CC̄ → 1,+1̄,− → 1@@̄′1̄@@̄′ and finally to
CC̄ → 1@@̄′1̄@@̄′. All-hadronic is also known as “alljets". This is chosen as it is the most common
CC̄ decay, with a probability of (45.44 ± 0.26)%. Top quark decay branching fractions (related to
probabilities) are shown in Figure 2.6.1.
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Figure 2.6.1: Pie chart showing the branching fractions of CC̄ decay. Branching fractions are related to relative
probabilities. This thesis focuses on the “all-hadronic" channel where both, bosons decay hadronically, as
it provides the most statistics. Figure from Ref. [69].

2.7 ` boson decay

/ bosons decay (69.91 ± 0.06)% of the time to @@̄′, (3.363 ± 0.004)% of the time to 4+4− and (3.363
± 0.007)% of the time to `+`− [11]. Though / → 4+4− and / → `+`− are not the most probable
/ boson decays, they are focused on in this thesis because they provide the cleanest signature in the
ATLAS detector since electrons and muons can be reconstructed directly, as briefly discussed in
Section 4.3.1 and Section 4.3.3. / boson decay branching fractions are shown in Figure 2.7.1.
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10%

Figure 2.7.1: Pie chart showing the branching fractions of / boson decay. Branching fractions are related to
relative probabilities. This thesis focuses on the 44 and `` channels, since these provide the best avenues for
/ boson reconstruction. Figure produced in Python [70].





3 CERN, the LHC, and ATLAS

The clever people at CERN are smashing particles together in the hope that Doctor
Who will turn up and tell them to stop.

Ben Aaronovitch [71]

The LHC at CERN is currently the highest energy particle accelerator in the world. During the data
taking run of this thesis, it operated at a world-record centre-of-mass energy of 13 TeV. This chapter
introduces the background information about CERN, the LHC, and A Toroidal LHC ApparatuS
(ATLAS) that is needed for the remainder of the thesis. This chapter introduces the following
concepts:

1. CERN and the LHC;

2. the physics programme and detector requirements for ATLAS;

3. how the LHC and ATLAS work together;

4. ATLAS’s Inner Detector;

5. ATLAS’s Calorimeters;

6. ATLAS’s Muon Spectrometer;

7. ATLAS’s magnet system;

8. ATLAS’s trigger system;

9. tracks in ATLAS.
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3.1 CERN and the LHC

CERN is a particle physics laboratory located around the French-Swiss border near Geneva. The
main CERN site is in Meyrin, Switzerland. The laboratory contains many experiments and an
accelerator complex. The whole complex of particle accelerators is shown in Figure 3.1.1. The
steps in the journey of a proton before colliding within ATLAS are:

1. extraction from a hydrogen gas bottle

2. kick-start by a LINAC to 50 MeV [72];

3. acceleration by the BOOSTER to 2 GeV [73];

4. acceleration by the PS to 26 GeV [74];

5. acceleration by the SPS to 450 GeV [75];

6. acceleration by the LHC to 6.5 TeV [6];

7. collisions with other protons within ATLAS at 13 TeV [76].

Figure 3.1.1: Schematic diagram of the CERN accelerator complex, with all steps in the protons’ acceleration
chain labelled. A proton’s journey from start to finish will be LINAC→ BOOSTER→ PS→ SPS→ LHC
→ ATLAS. Figure is taken from Ref. [77].

The Large Hadron Collider (LHC) started collecting data at a centre-of-mass energy of 7 TeV
in 2010, continuing at 7 TeV into 2011. In 2012, the centre-of-mass energy increased to 8 TeV.
2010-2012 constituted “Run 1" of the LHC. After “Long Shutdown 1" for maintenance and upgrades,
“Run 2" of the LHC started at 13 TeV in 2015 and continued to 2018. This thesis used data collected
during all of Run 2.

“Integrated luminosity", !8=C is a measure of how much data have been collected during particle
physics collisions, defined by

!8=C =

∫
1
f

3#

3C
3C, (3.1.1)
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where f is the total cross-section and 3# is the number of events detected over a certain time (3C).
Therefore, the total cross-section defines luminosity. Run 2 produced 139.0 fb−1of ATLAS data
that are ready for physics analysis. The evolution of the integrated luminosity collected by ATLAS
over Run 2 is shown in Figure 3.1.2. Data that can be used for physics analyses such as the CC̄/
2ℓOS analysis for this thesis are described as “Good for Physics".
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Figure 3.1.2: Cumulative integrated luminosity over time during Run 2 of the LHC. The legend label of
interest for this thesis is Good for Physics.

3.2 Physics programme and detector requirements for ATLAS

The physics programme for the ATLAS detector includes:

• measurements of processes involving the top quark;

• measurements of processes involving the Higgs boson;

• measurements of heavy-ion collisions;

• measurements of processes involving B-mesons;

• measurements of other SM processes;

• supersymmetry searches;

• di-Higgs and other diboson searches;

• searches for other exotic processes.
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This broad programme necessitates a “General-Purpose Detector". This means the capability to
precisely measure the energies and momenta of electrons, positrons, photons, hadrons (jets), and
muons. The capability to measure Missing Transverse Momentum is also needed, to infer the
presence of particles that pass through ATLAS undetected. These requirements and the parts of the
ATLAS detector that achieve these requirements are discussed throughout the rest of this Chapter.

3.3 From the LHC to ATLAS

Once protons have been accelerated by the LHC up to 6.5 TeV, they collide together in the centre of
the ATLAS detector, which is shown in Figure 3.3.1. The ATLAS detector is built like a cylindrical
onion with many layers, in the sense that each sub-part envelopes the sub-part within it, down to the
collision point.

Figure 3.3.1: A cross-sectional diagram of the ATLAS detector. Labelled are all sub-parts to the ATLAS
detector. A mini-T-rex is shown for scale. ATLAS is the same length as three school buses (46 m) and the
same height as five giraffes (25 m). Figure adapted from Ref. [78].

A specific right-handed Cartesian coordinate system is used by the ATLAS detector, as shown in
Figure 3.3.2. The positive G-axis points towards the centre of the LHC. The positive H-axis points
upwards. The positive I-axis points along the counter-clockwise LHC beam direction. q is the
azimuthal angle in the GH plane, starting from 0 at the G-axis and increasing in value towards the
positive H-axis. \ is the polar angle in the GI plane, starting from 0 at the I-axis and increasing in
value towards the positive G-axis.
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Figure 3.3.2: A cross-sectional diagram of the ATLAS detector, with the Cartesian coordinate system used
by ATLAS superimposed. Figure adapted from Ref. [79].

Pseudorapidity, [ is defined by

[ = − ln[tan
\

2
] . (3.3.1)

Another useful quantity to define is the angular separation between two particles, Δ', given by

Δ' =

√
(Δ[)2 + (Δq)2. (3.3.2)

A is the radial distance from the collision point,

A =

√
G2 + H2 + I2. (3.3.3)

The Aq resolutions and [ coverage of the detector sub-systems to be discussed during this Chapter
are summarised in Table 3.3.1. The sensitive coverage of many sub-systems goes up to an [ of 2.5,
because this is where the ID ends.
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Sub-system Aq resolution
(`m)

sensitive [
coverage up to

IBL 10 2.5

Pixels 10 2.5

SCT 17 2.5

TRT 130 2.0

ECAL 300-400 2.5 (excluding
1.37 - 1.52)

MS 80 2.7

Table 3.3.1: Aq resolution and [ coverage of different ATLAS detector sub-systems. Sub-systems are written
by increasing distance from the proton–proton collision point.

3.4 The Inner Detector

Starting from the part of the detector nearest to where collisions take place, we have the Inner
Detector (ID), shown in Figure 3.4.1, taken from Ref. [80]. From inside to out, the sub-parts to the
inner detector are the Insertable B-layer (IBL), Pixels, Semiconductor Tracker (SCT) and Transition
Radiation Tracker (TRT). The physics objects measured by the ID are tracks, to be discussed in
Section 4.3.
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Figure 3.4.1: A cross-sectional diagram of the innermost part of the ATLAS detector, the inner detector.
All sub-parts are shown and labelled in different colours, including the Insertable B-layer (IBL), Pixels,
Semiconductor Tracker (SCT) and Transition Radiation Tracker (TRT), from inside to out. Figure taken from
Ref. [80].

3.4.1 Insertable B-layer (IBL)

The Insertable B-layer (IBL) is the innermost layer of the ID, up to a radius of 33.25 mm from the
collision point. It was inserted into the ATLAS detector as a new component in between Run 1 and
Run 2 of data taking. It helps with the identification of secondary vertices associated with 1-jets
(Section 4.3.2), hence its name. Being the detector layer closest to the collision point, the IBL is
most susceptible to radiation damage. The IBL works by measuring ionisation energy deposited by
charged particles passing through it. Further details on the IBL can be found in the ATLAS paper
discussing the production of the IBL [81].

3.4.2 Pixels

The Pixels of the ID are made of three separate layers. The B-layer (innermost) reaches a radius of
50.5 mm from the collision point. Next, Layer 1 reaches a radius of 88.5 mm from the collision
point. Last, Layer 2 reaches 122.5 mm from the collision point. Like the IBL, the “B" in the naming
of the B-layer of the Pixels also refers to its role in identifying 1-jets. Like the IBL, the Pixels work
by measuring ionisation energy deposited by charged particles passing through. Further details on
the Pixels of the ID can be found in the Pixels Technical Design Report [82].
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3.4.3 Semiconductor Tracker (SCT)

The Semiconductor Tracker (SCT) relies on semiconductor technology to track particles through
the ID. The SCT consists of four layers, reaching 299 mm, 371 mm, 443 mm and 514 mm from the
collision point, respectively. Like the IBL and Pixels, the SCT relies on the silicon semiconductor
technology of measuring ionisation energy deposits of charged particles. Further details on the
SCT can be found in the ATLAS paper discussing the performance of the SCT in Run 1 of the
LHC [83].

3.4.4 Transition Radiation Tracker (TRT)

Differently to the silicon detectors closer to the beam, the Transition Radiation Tracker (TRT)
is made of straw drift tubes, with a cathode wire in the centre of each. Drift tubes also rely on
ionisation. This technology does not provide resolution as high as silicon. To compensate for
this, 73 layers of drift tubes are layered on top of each other to provide almost continuous tracking
of charged particles through the ID. Almost continuous tracking means that curvature and thus
momentum can be measured. The TRT extends from 554 mm to 1082 mm in radius from the
collision point. The measurement of transition radiation within the drift tubes helps distinguish
between electrons and charged hadrons (mainly pions). Further details on the TRT can be found in
the ATLAS paper discussing the performance of the TRT in Run 1 of the LHC [84].

3.5 The Calorimeters

Moving outwards from the inner detector, the next part of the ATLAS detector is the calorimeter. A
cross-sectional diagram of the ATLAS calorimeter is shown in Figure 3.5.1, taken from Ref. [85].
The calorimeter includes the Liquid Argon (LAr) and Tile components. Different parts of the
calorimeter are used for absorbing the energy deposited by electromagnetically and hadronically
decay particles. Energy deposited by electromagnetically decaying particles in the electromagnetic
calorimeter can be associated to photons or electrons (and positrons). Only electrons (and positrons)
are used in this thesis, to be discussed further in Section 4.3.1. Energy deposited by hadronically
decaying particles in the hadronic calorimeter can be associated to jets, to be discussed further in
Section 4.3.2. Electromagnetic showers triggered by electrons and positrons are usually contained
with the LAr calorimeter, as all their energy is absorbed within it. Further details on the LAr
calorimeter can be found in the LAr calorimeter Technical Design Report [86]. Hadronic showers in
the form of jets reach further than the Liquid Argon (LAr) calorimeter into the outer Tile calorimeter,
where their energy is then fully absorbed. Further details on the Tile calorimeter can be found in
the Tile calorimeter Technical Design Report [87]. Both the EM and hadronic calorimeters are
sampling calorimeters composed of alternating layers of absorbing material and active material.
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Figure 3.5.1: A cross-sectional diagram of the ATLAS calorimeter. Sub-parts are shown and labelled in
different colours. The Tile calorimeter surrounds the Liquid Argon (LAr) calorimeter. Figure taken from
Ref. [85].

Having shown a cross-sectional diagram of the ATLAS calorimeter in Figure 3.5.1, a longitudinal
diagram of the same section of the ATLAS detector is shown in Figure 3.5.2. Figure 3.5.2 shows
the accordion-like structure of an individual module of the Electromagnetic (EM) Liquid Argon
(LAr) calorimeter.
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Figure 3.5.2: A longitudinal diagram of the Electromagnetic (EM) Liquid Argon (LAr) calorimeter. Cell size
is labelled. Figure taken from Ref. [76].

3.6 The Muon Spectrometer

On the outer part of ATLAS outside of the calorimeters is the Muon Spectrometer (MS), shown in
Figure 3.6.1. The role of the muon spectrometer is to measure the energies and momenta of muons,
to be discussed further in Section 4.3.3. The toroid magnets, shown in orange in Figure 3.6.1, curve
the trajectories of muons through ATLAS. It is by measuring the curvature of muons through the
MS that the momenta of muons can be calculated. Further details on the MS can be found in the
MS Technical Design Report [88]. All other SM particles should be stopped before the MS, other
than neutrinos. Neutrinos pass through the MS, and their existence is inferred by the presence of
MET, to be discussed further in Section 4.3.4.
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Figure 3.6.1: Schematic diagram of the ATLAS Muon Spectrometer (MS). Different sub-parts of the MS are
labelled, as well as the toroid magnets. Figure taken from Ref. [76].

3.7 Magnet System

The ID is surrounded by a superconducting solenoid magnet, engulfing the sub-detector in a
magnetic field of strength 2 T in the positive I-direction. The transverse-plane curvature of
charged-particle tracks caused by the magnetic force of the solenoid is used to measure charged
particle momentum.

Since the solenoid magnet only curves charged-particle tracks in the transverse plane, toroid
magnets curve charged-particle tracks in the I-direction. Six toroid magnets are placed outside
of the calorimeters for this purpose. The I-direction curvature helps with the measurement of
I-momentum. The toroid magnets are labelled in orange in Figure 3.6.1.

3.8 The Trigger

Key to all of the ATLAS detector is the trigger system. The purpose of the trigger system is to reduce
the event rate and data rate from the huge influx initially produced by collisions, to manageable
rates that can be further processed for analysis. This decrease in event and data rates is shown in
Figure 3.8.1.

Custom hardware (called the “Level 1 Trigger" or “L1 Trigger") reduces the event rate from
40 MHz to 100 kHz in less than 2.5 `s. This reduction in event rate reduces the data rate from
1.6 MB/25 ns. Custom software (called the “High-Level Trigger" or “HLT") further reduces the
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event rate from 100 kHz to 1 kHz and data rate from approximately 160 GB/s to approximately
1.6 GB/s in approximately 250 ms.

Figure 3.8.1: Flowchart for the ATLAS trigger system. Event rate is shown decreasing along the left and data
rate decreasing along the right. Figure taken from Ref. [89].



4 Data and physics objects

The electron: may it never be of any use to anybody!

J.J. Thomson [90]

In order to study the CC̄/ process, proton–proton collision events must be simulated in order to
compare measurement with theory. Information from the detector or the event simulation are then
used to reconstruct physics objects such as electrons, jets, and muons in order to perform analysis
on them. Finally, the Open Data from Run 2 that was processed and released to the public will be
described in Section 4.4.

4.1 Event simulation

To measure the CC̄/ process, it is important to simulate signal and background processes, because
analysis sensitivity is optimised using simulated samples. Additionally, in the context of Machine
Learning [91], simulated samples permit supervised learning [92], since the simulated samples
are known to be from signal or from background. This allows the Multi-Variate Analysis (MVA)
algorithm to learn on simulated data then to be applied to measured experimental data without
known labels because our simulations should be representative of nature. This section describes
briefly the simulated samples used by the analysis. They contain the relevant object information
and are produced for signal and all relevant background samples.

4.1.1 General points on simulating particle physics processes

The different parts of simulating particle physics processes are described in great detail in Refs. [11,
93–96]. Further references explain the sub-processes [97–102].
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Hard-scatter

In cases of interest to this thesis, partons [97] from the incoming protons collide to give a “hard-
scatter interaction" [98] that may lead to CC̄/ production. A hard-scatter interaction is when the
outgoing particles are different to the incoming partons. Since we are colliding protons, QCD
interactions will be abundant. The properties of QCD mean that quarks are observed in ATLAS as
jets in our final states, to be briefly discussed in Section 4.3.2.

A Leading Order (LO) process is one in which the hard-scatter produces particles that are different
to the incoming partons. A NLO process is a LO process with the emission of an additional boson.
A NNLO process is a NLO process with the emission of an additional boson.

PDFs

Parton distribution functions (PDF) play an important role in simulating particle physics pro-
cesses [103]. PDFs quantify the relative probability that a particular proton constituent is involved
in an interaction, according to the fraction of proton momentum that constituent carries. The
PDF for a widely used generator that is used in many samples of this analysis (the NNPDF3.0
next-to-next-to-leading order (NNLO) generator [104]) is shown in Figure 4.1.1. G represents the
fraction of the proton momentum that a particular proton constituent carries [105]. The H-axis
represents the relative probability of having a particular proton constituent with that fraction of
proton momentum. The v subscript in DE and 3E represents valence quark. Quarks without
subscripts are sea quarks. The gluon line is reduced by an order of magnitude to a similar level to
the quark lines. As a result of the dominance of the strong force (Section 2.1), the gluon PDF is
high for a range of G values. This leads to the fact that gluon-gluon production of CC̄/ is the most
common production mechanism.
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Figure 4.1.1: Graphs of Parton Distribution Function (PDF). Figure from Ref. [11]. G represents the fraction
of the proton momentum that a particular proton constituent carries [105]. The H-axis represents the relative
probability of having a particular proton constituent with that fraction of proton momentum.

Initial-state radiation and Final-state radiation

Not only is it vital that simulations of particle physics processes are able to simulate the Leading
Order (LO) Feynman diagrams, but also that they take into account real and virtual emissions of
gluons [106] (next-to-leading order (NLO)). Figure 4.1.2 shows the Feynman diagram for the most
common CC̄/ production mechanism at the LHC, along with Feynman diagrams for the first real
emission and virtual correction to this LO process.
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Figure 4.1.2:
(a) Feynman diagram for the most common LO CC̄/ production mechanism.
(b) Feynman diagram for the most common LO CC̄/ production mechanism, with the emission of a real gluon
from the initial state, making it an NLO process.
(c) Feynman diagram for the most common LO CC̄/ production mechanism, with the emission and absorption
of a virtual gluon in the final state, making it an NLO process.
Diagrams produced using Ref. [68].



58

Hadronisation

QCD interactions are so strong at small distances between quarks that the process of hadronisa-
tion [107] occurs and quarks are observed in ATLAS as jets, to be briefly discussed in Section 4.3.2.
Hadronisation is the process by which individual quarks and gluons (which cannot be observed
directly) are dressed with other quarks and gluons. This dressing occurs because quark-antiquark
pairs are produced during hadronisation from gluons. Only collections of quarks and gluons
(called hadrons) can be observed directly. The formation process of colour confinement leading to
hadronisation into jets is shown in Figure 4.1.3.

Figure 4.1.3: A pictorial diagram of the process of colour confinement leading to hadronisation into jets.
Time flows forward down the diagram. Figure from Ref. [108].

Hadronisation is an important part of particle physics simulations. A diagram depicting the steps
involved in simulating hadronisation is shown in Figure 4.1.4. This figure is taken from Ref. [109].
Further references are provided within the caption for Figure 4.1.4 to explain the sub-processes
within it. As part of hadronisation occurs a process called “parton shower evolution". In this
process, quarks emit gluons as they travel and gluons split into quark-antiquark pairs, with gluon
emission then splitting repeating in a shower-like process. NLO and NNLO processes from the
hard scatter (Section ??) can also produce extra quarks and gluons. Therefore, it is necessary to
avoid double counting quarks/gluons from the hard-scatter and quarks/gluons from parton shower
evolution. Within the simulation of parton shower evolution there are matching procedures to
avoid double counting of quarks and gluons between a) higher-order radiation from the hard-scatter
(Section ??) itself, and b) parton shower evolution. Hadronisation was also briefly introduced in
Section 2.3.2.
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Figure 4.1.4: Diagram of the hadronisation process occurring in particle physics processes. The important
steps regarding hadronisation are the ones from parton shower evolution [110], through nonperturbative
gluon splitting [111] to cluster→ hadrons. Hadronisation means that any quarks produced in particle physics
collisions are observed in ATLAS as jets of hadrons, to be briefly discussed in Section 4.3.2. This figure is
taken from Ref. [109].

4.1.2 Simulating signal and background processes

After introducing some general aspects of event simulation, it is necessary to state some specifics
about the MC samples used for this thesis.

Simulating the nominal signal process

The production of CC̄ℓ+ℓ− is modelled using MadGraph5_aMC@NLO 2.8.1 [112] with the
NNPDF3.0NLO [113] PDF set. Top quarks are decayed using MadSpin [114, 115]. Events are
interfaced with Pythia 8.210 [116] for hadronisation, using the A14 set of parameters [117] and
the NNPDF2.3LO [113] PDF set. The decays of bottom and charm hadrons are simulated using
EvtGen 1.2.0 [118].

Cross sections are reported in Ref. [119]. The CC̄/ cross section is supplemented with a correction
from Ref. [120].

Quantifying uncertainties

To evaluate theoretical uncertainties of the signal prediction, alternative CC̄/ MC samples are
considered. An alternative CC̄/ sample is generated with the same MadGraph5_aMC@NLO
version as the nominal sample, but interfaced to Herwig 7 [121, 122] instead of Pythia 8 [116], to
quantify an uncertainty associated with parton showering. Furthermore, additional samples with the
same settings as the nominal CC̄/ sample, but with an up and down variation of the Var3c parameter
(which is part of the A14 [117]), are used to evaluate uncertainties associated to initial-state-radiation
(ISR), following a similar approach to Ref. [120].
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Simulating background processes

The MC generators used for the main backgrounds to the CC̄/ 2ℓOS process are Powheg-Box
[2] [123] for CC̄ and Sherpa [2.2.1] [124] for /+jets.

4.2 Object reconstruction

This section presents the definitions of the physics objects used in the analysis, namely electrons,
muons, jets and missing transverse momentum. Each of these objects leave a specific signature
in the ATLAS. These signatures are used to identify individual objects. Taus are not considered
in this thesis because the efficiency is low compared to electrons/muons and the events are not as
“clean". The presence of neutrinos can be inferred through missing transverse momentum.

4.3 Tracks

Lepton and jet trajectories through the ATLAS detector are measured by the tracks they leave.
Figure 4.3.1 shows the individual parameters that form the measurement of a track. Tracks are
measured in the ID, which was briefly introduced in Section 3.4. Whilst travelling through the ID,
charged particles leave hits in different layers of the ID. Tracking algorithms with efficiency ≈94%
are used to reconstruct tracks from hits, i.e. tracks are reconstructed from the pattern of hits in the
ID [125]. This efficiency is for the phase space ?T > 0.5 GeV and |[ | < 2.5.

Figure 4.3.1: Diagram showing all the parameters associated with a particle track in the ATLAS detector.
The tangential momentum to the particle track is the momentum vector p. Transverse momentum, pZ , is the
component of the total momentum in the G − H plane. q is the azimuthal angle of the track from the G-axis. \
is the polar angle of the track from the I-axis. 4G , 4H and 4I are the unit vectors in the G, H, I directions. I0 is
the I-distance of closest approach of the track to the interaction point. 30 is the distance of closest approach
of the track to the I-axis. Figure from Ref. [126].

By measuring the resultant collection of charge on silicon sensors, a position coordinate or space
point is made. As a charged particle travels through the many silicon sensors, these space points
can be used to reconstruct the track. Different types of particle leave different types of track in the
ATLAS detector. Electrons (and positrons) leave a track in the ID and shower in the EM Calorimeter.
Muons (and anti-muons) leave a track in ID and MS. Photons leave no track in the ID but shower in
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the EM Calorimeter. Charged hadrons leave tracks in the ID and shower in the Hadronic Calorimeter.
Neutral hadrons leave no track in the ID but shower in the Hadronic Calorimeter. Neutrinos leave
no track in any part of the ATLAS Detector. The different tracks are shown in Figure 4.3.2.

Figure 4.3.2: Cut-away view of how different particles interact with and are seen in the ATLAS detector.
Electrons (Section 4.3.1) leave a curved track through all layers of the inner detector (Pixel, SCT, Transition
Radiation Tracker) and deposit their energy in a shower inside the Electromagnetic Calorimeter (Section 3.5.
Muons (Section 4.3.3) leave a curved track throughout all layers of the detector (Tracking, Electromagnetic
Calorimeter, Hadronic Calorimeter, Muon Spectrometer). Hadrons such as protons and neutrons are observed
as jets (Section 4.3.2) by showers inside the Hadronic Calorimeter. Neutrinos leave no trace in any part of
the detector, but their presence is inferred as Missing Transverse Momentum (MET) (Section 4.3.4). Figure
taken from Ref. [127].

4.3.1 Electrons

Electrons (and their antimatter equivalent positrons) are important to this thesis because one of the
two /-boson decay modes that constitutes the CC̄/ 2ℓOS process is / → 4+4−.

Requirements

Electrons are identified in ATLAS by the presence of a track in the ID (Section 3.4 and energy
deposit in the EM Calorimter (Section 3.5). The requirements for selecting electrons used in this
thesis are summarised in Table 4.3.1. Likelihood-based electron identification (ID) [128, 129] is
used, as it provides better background rejection compared to cut-based electron identification. The
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variables used in the Multi-Variate Analysis (MVA) of likelihood-based ID methods are low-level
detector information like e.g.:

1. the presence or otherwise of a secondary track close to the electron candidate;

2. the ratio �) /?) ;

3. calorimeter quantities.

Multiple Working Point (WP) (VeryLooseLH, LooseLH, MediumLH and TightLH) are supported
for electrons [130]. The “tighter" the WP an electron passes, the more efficiently the electron has
been reconstructed. TightLH electrons are used in this thesis. Furthermore, a requirement on
electron isolation, corresponding to the PLVLoose isolation WP [34] is applied. Isolated electrons
are desirable for this thesis because electrons coming from secondary processes other than the decay
of a /-boson are likely to be non-isolated. Electrons in the LAr crack-region (1.37 < |[ | < 1.52)
are rejected to reduce the contribution from fake or non-prompt electrons. This region in [ marks
the transition between different sub-systems of the ATLAS detector, and therefore the resolution is
lower in this region. Table 3.3.1 of Section 3.3 shows the [ coverage of different sub-systems of the
ATLAS detector.

Requirements on the transverse (30) and longitudinal (I0) Impact Parameter (IP) are applied to
reduce contribution from charge-misidentified electrons, fake leptons, non-prompt leptons and
pile-up [131]. The associated scale factors (SFs) for electron reconstruction, identification, and
isolation are applied in MC, to correct for the efficiency differences between data and simulation if
applying these requirements [128].

Type of requirement Requirement

Acceptance ?T > 7 GeV

|[ | < 2.47

except 1.37 < |[ | < 1.52

Impact parameter |30/f(30) | < 5.0

|I0 · sin(\) | < 0.5 mm

Quality TightLH

Isolation PLVLoose

Table 4.3.1: Summary of the electron object definitions.

Efficiency

An electron is identified in ATLAS with >60% efficiency in the phase space �) > 5 GeV and
|[ | <2.5 In addition, efficiency changes according to electron energy. Figure 4.3.3 shows how
electron identification depends on electron transverse energy. Efficiency is lowest for Tight
electrons, since the requirements to be accepted as a Tight electron are most stringent.
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Figure 4.3.3: Graph of electron identification efficiency in data (data efficiency) on the H-axis as a function of
transverse energy (�) ) on the G-axis. The lower plot is a ratio of data to simulation (Data/MC). The different
markers and colours indicate different requirements on the likelihood of being an electron. Tight electrons
in the black triangles place the most stringent requirements on electron reconstruction. Medium electrons in
the red squares place looser requirements on electron reconstruction. Loose electrons in the blue circles
place requirements on electron reconstruction that are looser again. This graph uses data from 2015-2017,
corresponding to an integrated luminosity of 81 fb−1at a centre-of-mass energy of 13 TeV. Figure taken from
Ref. [128].

4.3.2 Jets

As introduced in Section 4.1.1, quarks and gluons are observed in ATLAS as jets. Jets are important
to this thesis because the CC̄ decay being measured in the CC̄/ 2ℓOS process is CC̄ → jets.

Requirements

ATLAS identifies jets by the presence of energy deposits in the Hadronic Calorimeter, which
was briefly introduced in Section 3.5. The jet selection is summarised in Table 4.3.2. Jets are
reconstructed using the anti-:C jet algorithm [132] as implemented in the FastJet package [133]
with topological clusters [134] as input. A pictorial representation of jets clustered with the anti-:C
jet algorithm is shown in Figure 4.3.4. Jets are calibrated with the EMPFlow (Electro-Magnetic
Particle Flow) [135] scheme applying the jet area pile-up corrections [136]. A cluster of radius
0.4 is used for jets in this thesis, where radius Δ' =

√
ΔH2 + Δq2. JVT is described in a further

paragraph. Jets are described in detail in Refs. [137, 138].
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Type of requirement Requirement

Collection AntiKt4EMPFlow

Acceptance ?T > 25 GeV

|[ | < 2.5

Jet Vertex Tagger reject jets with ?T < 120 GeV

and |[ | < 2.5

and JVT < 0.59

Table 4.3.2: Summary of the jet selection criteria.

Figure 4.3.4: Jets used in this thesis are clustered together from hadrons using the anti-:C algorithm. High
?) jets that are used in this thesis are represented by coloured circles with high bars. Ref. [132] describes the
algorithm in detail. Figure taken from Ref. [132].

Jets are kept only if they have ?T > 25 GeV and are inside a pseudorapidity ([) range of |[ | < 2.5.
The ATLAS detector has slightly different responses to jets of different energy and at different
pseudo-rapidity ([) within the detector. In a similar way to the identification efficiency of muons
and electrons varying with energy or momentum, the uncertainty on the measurement of jet energy
varies with jet transverse momentum. Ref. [139] describes Jet Energy Scale (JES) in detail. Jet
energy measurements not only depend on jet transverse momentum, but also jet pseudorapidity.
Jet Energy Resolution (JER) drops rather rapidly at |[ | > 2.5 for reconstructed jets of high energy,
which is part of the reason for using jets with |[ | < 2.5 in this thesis. Ref. [139] describes JER in
detail.

The JetVertexTagger (JVT) [140] is employed in order to mitigate pile-up effects, and specifically
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reject any jets with ?T < 120 GeV, |[ | < 2.5 and for which JVT < 0.59. Pile-up jets are jets
coming from interactions other than the specific parton–parton collision that has resulted in the
process of interest, such as CC̄/ . Figure 4.3.5 shows how selecting high JVT scores removes a large
fraction of pile-up jets. Selecting JVT > 0.59 would remove most pile-up jets, but also some Hard
Scatter (HS) jets that are of interest. This is why jets with ?T > 120 GeVand |[ | < 2.5 are kept no
matter their JVT. Jets with ?T > 120 GeVand |[ | < 2.5 are likely to be of interest and are unlikely
to arise from pile-up. 120 GeV is chosen as a threshold as any jets with ?T > are likely to originate
from high-energy processes, of which CC̄/ is an example.
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Figure 4.3.5: A Jet Vertex Tagger (JVT) is used to suppress the effect of low-?) jets that are not part of the
hard interactions that produce the processes of interest for this thesis. This graph shows how JVT score differs
for Hard Scatter (HS) and pile-up (PU) jets. HS jets tend to give a high JVT score and PU jets tend to give a
high JVT score. This graph uses simulated Pythia 8 [116] jets clustered with the anti-:C algorithm [132].
Ref. [140] describes JES in detail. Figure taken from Ref. [140].

b-jets

The most important jets for this thesis are 1-jets, because a top quark decays 99.8% of the time to a
, boson and a 1-quark [11] (See Chapter 2). Figure 4.3.6 shows a pictorial diagram of how 1-jets
are distinguished from other jets. A b-hadron tends to travel a few cm from the primary vertex to
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a secondary vertex before decaying. This means there tends a 30 impact parameter (distance of
closest approach) of a few cm between the secondary and primary vertices. This in contrast to light
jets that do not have a secondary vertex.

Figure 4.3.6: Pictorial diagram of how b-jets are distinguished from light jets. b-jets are of particular
importance to this thesis, since top quarks almost always decay to b-quarks. Figure from Ref. [141].

b-tagging algorithms

To distinguish 1-jets from other jets and implement the idea of Figure 4.3.6 algorithmically,
1-tagging algorithms need to be used. In this thesis, a specific algorithm from the DL1 family is
used, called DL1r. DL1r is a high level MVA tagger which uses lower level information and MVA
techniques as inputs. Ref. [142] describes DL1 in detail. 1-tagging algorithms such as DL1r define
several Working Points (WPs), according to 1-jet reconstruction quality. Which WP is passed can
be used to define a variable Pseudo Continuous B-Tagging (PCBT), that can eventually be used as
input for analysis.

1-tagging algorithms are not perfect in identifying b-jets. Even with the 1-tagging algorithms that
reject most light and 2 jets, corrections are needed to fully compare 1-jets in data and MC. Such
corrections are applied to MC in the form of SFs. Scale factors are applied to simulation, so that
data and simulation agree.

4.3.3 Muons

Muons (and their antimatter equivalent anti-muons) are important to this thesis because one of the
two /-boson decay modes that constitutes the CC̄/ 2ℓOS process is / → `+`−.
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Requirements

Muons are identified using both the ID (Section 3.4) and MS (Section 3.6), to associate tracks
between both detector elements. Muon selection criteria for this thesis are summarised in Table 4.3.3.
ATLAS supports the following working points for muon identification: Loose, Medium, Tight,
HighPt and LowPt [35]. Muons in this thesis have to pass Tight quality requirements and have
?T > 7 GeV, as well as |[ | < 2.5.

As it is the case for electrons, requirements on transverse (30) and longitudinal (I0) IP are applied
to reduce contribution from fake leptons, non-prompt leptons and pile-up [35]. Muons selected for
this thesis need to pass the PLVLoose isolation WP [143]. The associated SFs for identification and
isolation are applied as multiplicative factors to the MC event weight, to correct for the efficiency
differences between data and Monte Carlo [35].

Type of requirement Requirement

Acceptance ?T > 7 GeV

|[ | < 2.5

Impact parameter |30/f(30) | < 3.0

|I0 · sin(\) | < 0.5 mm

Quality Tight

Isolation PLVLoose

Table 4.3.3: Summary of the muon object definitions.

Efficiency

Muons are identified in ATLAS with ≈ 99% efficiency in the phase space ?T > 5 GeV and |[ | <2.5
In the same way as electrons, muon identification efficiency changes according to muon energy.
Figure 4.3.7 shows how muon identification depends on muon transverse momentum. Figure 4.3.7
is a graph of muon identification efficiency in data and MC on the H-axis as a function of transverse
momentum (?) ) on the G-axis. The lower plot is a ratio of data to simulation (Data/MC). Areas
where Data/MC is different to 1 are corrected for using scale factors. Open markers indicate MC and
closed markers indicate Data. The different colours indicate different methods of measuring muon
identification efficiency. This graph measures Medium muons using data from 2015, corresponding
to an integrated luminosity of 3.2 fb−1at a centre-of-mass energy of 13 TeV. Figure 4.3.7 is for
Medium muons, but the same principle of varying efficiency applies to Tight muons.
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Figure 4.3.7: Muon identification efficiency as a function of transverse momentum. Figure taken from
Ref. [35].

4.3.4 Missing Transverse Momentum

The total transverse momentum before a proton–proton collision in ATLAS is zero. Conservation
of momentum can be applied in the transverse plane to conclude that the total transverse momentum
after a collision is also zero. By measuring the transverse momentum of all detectable physics
objects and tracks not associated with physics objects, the negative vector sum of the measured
transverse momentum is calculated. When “Missing Transverse Momentum" (MET) is greater
than approximately 30 GeV, it may indicate that a particle has passed through ATLAS undetected.
The undetected particles relevant to this thesis are neutrinos. 30 GeV is chosen as a threshold
because mis-measurements of the transverse energies of visible particles can lead to smaller values
of MET.

4.4 Open Data

Open Data are a commitment by the LHC experiments to share their data with the public, but we
go beyond this by supplying tools and examples for the public (mainly students) to use. Like all
four large LHC experiments [144–146], the ATLAS experiment provides Open Data [147–151],
allowing students to access real proton-proton collision data collected by ATLAS, along with tools,
software and documentation all accessible on the ATLAS Open Data website [152] and CERN Open
Data Portal [153]. These data can then be used for teaching, training and outreach [154] outside
the ATLAS Collaboration around the world [155–162]. The intended target audience is primarily
university students, and a number of universities have now incorporated lab courses into their
degree programs based on the Open Data. Students can then analyse various processes [163–169],
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including CC̄/ . Chapter 7 presents various analyses of the CC̄/ 2ℓOS process, and compares them
with analyses using full ATLAS data.

10 fb−1of measured data were produced with the variables of Table 4.4.1. Further descriptions of
the variables can be found in Ref. [170].

Prefix Variables

runNumber, eventNumber, channelNumber, mcWeight, XSection, SumWeights

scaleFactor PILEUP, ELE, MUON, PHOTON, TAU, BTAG, LepTRIGGER, PhotonTRIGGER,
TauTRIGGER, DiTauTRIGGER

lep n, truthMatched, trigMatched, pt, eta, phi, E, z0, charge, type, isTightID, ptcone30,
etcone20, trackd0pvunbiased, tracksigd0pvunbiased, pt_syst

met et, phi, et_syst

jet n, pt, eta, phi, E, jvt, trueflav, truthMatched, MV2c10, pt_syst

photon n, truthMatched, trigMatched, pt, eta, phi, E, isTightID, ptcone30, etcone20, convType,
pt_syst

largeRjet n, pt, eta, phi, E, m, truthMatched, D2, tau32, pt_syst

tau n, pt, eta, phi, E, charge, isTightID, truthMatched, trigMatched, nTracks, BDTid, pt_syst

ditau m

Table 4.4.1: Information content of the 13 TeV ATLAS Open Data. Variable names are prefixed with the left
column, e.g. lep_pt





5 t t̄` analysis strategy

Measurement is like laundry. It piles up the longer you wait to do it.

Amber Naslund [171]

This chapter introduces the motivation and strategy for the main analysis carried out for this thesis:
a machine-learning classification of the CC̄/ 2ℓOS process. This analysis used the full Run 2 data of
the LHC from 2015-2018, at a centre of mass energy of 13 TeV and an integrated luminosity of
139.0 fb−1. The first analysis of the CC̄/ process in the 3ℓ and 4ℓ channels with full Run 2 data was
published in EPJC [37]. This analysis including the 2ℓOS channel will be published after this thesis.
In brief, the analysis strategy is to use MVA to classify CC̄/ 2ℓOS signal from background processes,
contributing to a CC̄/ cross-section measurement. Multiple MVA are tested and compared for best
performance in classifying between CC̄/ 2ℓOS signal and background processes.

In this chapter, Section 5.1 introduces the motivation to study the CC̄/ 2ℓOS process. After defining
specific signal regions in the CC̄/ 2ℓOS channel (Section 5.2), event visualisations for various CC̄/
channels are shown in Section 5.3. ML concepts are then used in these defined 2ℓOS signal regions
(Section 5.4). Using the signal regions, validation plots for the input variables used in the initial
MVAs need to be made (Section 5.5). Some new MVA input variables used for this thesis also
needed to be validated (Section 5.6).

The author’s specific contribution to this chapter was to:

• create event displays for the CC̄/ process, in the 2ℓOS, 3ℓ, and 4ℓ channels;

• validate input datasets over a range of variables in terms of distributions, shapes, and data
versus MC agreement. This validation was done for approximately 50 variables, some used
in MVAs and some not;

• verify signal versus background separation provided by a range of variables. The same ≈50
variables were checked for separation power.

71
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5.1 Motivation

Reasons for which the CC̄/ 2ℓOS process are of interest are introduced in this section. To do this,
different possible CC̄/ decays are discussed.

Motivation to study the t t̄` 2ℓOS channel

The CC̄/ process is of interest to study because it is one of the highest energy processes possible
to probe at the LHC. Together, the masses of the top quark, antitop quark and / boson amount to
approximately 440 GeV. The combination of the large branching ratio (≈46%) of a CC̄ all-hadronic
decay and the clean reconstruction of / → 4+4− or / → `+`− makes the CC̄/ 2-Lepton-
Opposite-Sign (2ℓOS) channel attractive to study. CC̄/ decay branching fractions are shown in
Figure 5.1.4. When CC̄/ is produced, CC̄/ → 1@@̄′1̄@@̄′ℓ+ℓ− (ℓ = 4, `), occurs (3.05 ± 0.01)% of
the time. This 3.05% is different to the 2ℓOS / → ℓℓ percentage shown in Figure 5.1.4 because
CC̄/ → 1@@̄′1̄@@̄′ℓ+ℓ− (ℓ = 4, `) does not include taus. In addition, the 2ℓOS is of particular interest
because it allows simpler reconstruction of the / boson, due to the dileptons arising from the /
boson decay being of opposite-sign (OS). By combining the 2ℓOS channel with other CC̄/ decay
channels, a combined measurement of the CC̄/ production cross section can be performed.

Origin of different t t̄` decay channels

This thesis focuses on the 2ℓOS channel with / → ℓ+ℓ−, since it provides both a high branching
fraction for CC̄ decay and simplicity in reconstructing the / boson. Table 5.1.1 shows how different
CC̄/ decay channels are obtained from CC̄ decay branching fractions and / boson decay branching
fractions. Figures 5.1.1-5.1.3 show examples of diagrams for the different channels. There are two
possible combinations of CC̄ decay and / boson decay that lead to the 2ℓOS channel. “all-hadronic
+ neutrinos" in Table 5.1.1 indicates that the “allj-hadronic" (“alljets") fraction and “neutrinos"
fractions from Figure 2.7.1 for / branching ratios are added together, whereas “lepton+jets" in
Table 5.1.1 indicates the “lepton+jets" fraction from Figure 2.6.1 for CC̄ branching ratios. All
calculations in this pie chart involving “leptons" include g.
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Figure 5.1.1: Example diagrams for the (left) 4ℓ channel and (right) 3ℓ channel of the CC̄/ process.

Figure 5.1.2: Example diagrams for the (left) 2ℓOS (with / → ℓℓ) channel and (right) 2ℓOS (with / → 9 9

or / → aa) channel of the CC̄/ process.
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Figure 5.1.3: Example diagrams for the (left) 1ℓ channel and (right) 0ℓ channel of the CC̄/ process.

CC̄/ channel CC̄ fraction / boson fraction branching ratio (%)

4ℓ dileptons dileptons 0.9

3ℓ lepton+jets dileptons 4.5

2ℓOS all-hadronic dileptons 4.6

2ℓOS dileptons all-hadronic +
neutrinos

8.1

1ℓ lepton+jets all-hadronic +
neutrinos

40.5

0ℓ all-hadronic all-hadronic +
neutrinos

41.4

Table 5.1.1: Table showing how different CC̄/ decay channels are obtained from CC̄ decay branching fractions
and / boson decay branching fractions.
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Figure 5.1.4: Pie chart showing the branching fractions of CC̄/ decay. This thesis focuses on the 2ℓOS channel,
since it provides a compromise between high branching fraction and simplicity in reconstructing the / boson.
Figure produced in Python [70].

5.2 Signal regions

It is necessary to define specific regions with different selection criteria, to be able to optimise the
MVAs in each region. Combining the separately optimised regions can lead to a better overall
signal versus background separation. Separation is defined as the sum

1
2

#18=B∑
==1

(B8 − 18)2
B8 + 18

, (5.2.1)

where B8 is the number of signal events in bin 8, 18 is the number of background events in bin 8, and
the sum is performed over all bins, #18=B. Separation is zero for identical signal and background
distributions, and one for signal and background distributions without any overlap.

Signal region definition is done by imposing some initial selections common to each region, then
specific selections for each region. These selections are presented later in Section 5.2.3.

5.2.1 Initial dilepton selections

The analysis in the dilepton signal region (2ℓOS) aims to select events where the top-quark pair
decays hadronically (jets only) and the / decays dileptonically into two charged leptons via
/ → 4+4−, `+`−. Events featuring hadronically decaying tau leptons that originate directly from
either the / (via / → g+g−) or the, bosons from the CC̄ system (via, → gag) are removed and
are not considered.
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In addition to the preselection criteria of Section 4, a summary of the definitions of the dilepton
signal regions is provided in Table 5.2.2. The minimum requirement on the transverse momentum
for the leading and subleading lepton, in the dilepton signal regions is 30 and 15 GeV, respectively.
Since a dileptonic decay of the / boson is being searched for, an opposite-sign-same-flavour (OSSF)
lepton pair is required. An invariant mass within ±10 GeV of the </ value as quoted in the PDG
(91.12 GeV) [11] is required for this OSSF lepton pair. The sum of the two lepton charges has to be
0. Additional requirements are imposed on the total number of reconstructed jets and 1-tagged
jets in the event. All selected jets are required to satisfy ?T > 25 GeV, as specified in the object
definitions.

5.2.2 Backgrounds

The two main backgrounds to the CC̄/ 2ℓOS process are CC̄ and /+jets. The CC̄ background originates
from CC̄ di-leptonic decay, with the radiation of two extra gluons, as shown in Figure 5.2.1(b). The /
+jets background originates from / boson di-leptonic decay, with the radiation of three extra gluons,
one of which decays to 11̄, as shown in Figure 5.2.1(c). The inclusive cross-section for CC̄ production
at 13 TeV was measured by ATLAS in the dilepton channel to be 826.4 ± 3.6 (stat) ± 11.5 (syst)
± 15.7 (lumi) ± 1.9 (beam) pb [172]. The / → 4+4− + ≥ 5 jets cross-section was measured by
ATLAS at 13 TeV to be 0.357 ± 0.013 (stat) ± 0.069 (syst) ± 0.009 (lumi) pb [173]. The / → `+`−

+ ≥ 5 jets cross-section was measured by ATLAS at 13 TeV to be 0.354 ± 0.012 (stat) ± 0.068 (syst)
± 0.009 (lumi) pb [173]. These cross-sections are at least an order of magnitude greater than the
cross-section for CC̄/ 2ℓOS, which is about 0.04 pb. Table 5.2.1 compares the cross-sections for CC̄/
2ℓOS and its two main backgrounds. As well as diagrams for the two main backgrounds, a diagram
for the CC̄/ 2ℓOS signal is shown in Figure 5.2.1. The selection requirements imposed to reduce
background while keeping signal are introduced later in Section 5.2.3.
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Figure 5.2.1: Feynman diagrams for the signal and main backgrounds of the CC̄/ 2ℓOS channel. (a) CC̄/ 2ℓOS
decay, which is the signal process for this thesis. (b) CC̄. (c) /+jets. Diagrams produced using Ref. [68].
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Process Cross-section (pb)

CC̄/ 2ℓOS ≈0.04
CC̄ dileptonic 826.4 ± 3.6 (stat) ± 11.5 (syst) ± 15.7 (lumi) ± 1.9 (beam) [172]

/ → 4+4− + ≥ 5 jets 0.357 ± 0.013 (stat) ± 0.069 (syst) ± 0.009 (lumi) [173]

/ → `+`− + ≥ 5 jets 0.354 ± 0.012 (stat) ± 0.068 (syst) ± 0.009 (lumi) [173]

Table 5.2.1: The main signal and background processes involved in the CC̄/ 2ℓOS analysis, along with their
cross-sections.

5.2.3 Definition of dilepton signal regions

A combination of three different signal regions are used and will be referred to as 2ℓ-/-116 9 ,
2ℓ-/-215 9 and 2ℓ-/-216 9 . Diagrams showing the CC̄ decay within CC̄/ that leads to these regions
are shown in Figure 5.2.2. The production of 2 b-jets along with 4 other jets (2b6j) corresponds to
nominal all-hadronic CC̄ decay. 2ℓ-Z-2b5j can occur when a single jet goes out of acceptance in the
ATLAS detector. 2ℓ-Z-1b6j can occur when a b-jet is not identified.

Figure 5.2.2: Feynman diagrams depicting the CC̄ decay within CC̄/ that leads to the three separate regions
used in this thesis. The / boson within CC̄/ decays dileptonically in each case, therefore is not shown. The
production of 2 b-jets along with 4 other jets (2b6j) corresponds to nominal all-hadronic CC̄ decay. 2ℓ-Z-2b5j
can occur when a single jet goes out of acceptance in the ATLAS detector. 2ℓ-Z-1b6j can occur when a b-jet
is not identified.

There is a mix of /+b and /+c events in the 2ℓ-Z-1b6j region (as opposed to the 2ℓ-Z-2b5j and
2ℓ-Z-2b6j containing mostly /+b) because one 2-jet from /+c can fake a 1-jet. There is little CC̄
background in the 2ℓ-Z-1b6j region (compared to 2ℓ-Z-2b5j and 2ℓ-Z-2b6j) because CC̄ hadronic
decays are very likely be identified with 2 1-jets, as introduced in Section 2.2.3. Validation plots
showing the distribution of several variables in the dilepton regions can be found in Section 5.5.
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Variable 2ℓ-/-116 9 2ℓ-/-215 9 2ℓ-/-216 9

#ℓ (ℓ = 4, `) = 2

1 OSSF lepton pair with |</
ℓℓ
− </ | < 10 GeV

?T (ℓ1) > 30 GeV

?T (ℓ2) > 15 GeV

#jets(?T > 25GeV) ≥ 6 = 5 ≥ 6

#1−jets@77% = 1 ≥ 2 ≥ 2

Table 5.2.2: The definitions of the dilepton signal regions. A combination of the regions 2ℓ-/-116 9 ,
2ℓ-/-215 9 and 2ℓ-/-216 9 is used.

5.3 Visualisation of t t̄`

Event displays are useful tools to help one visualise final state topology and with the debugging
of reconstruction and simulation software and physics analysis. For the CC̄/ analysis in particular,
event displays can be used to showcase suitable CC̄/ candidates, and show the difference between
channels. Though this thesis focuses on the CC̄/ 2ℓOS channel, event displays were also produced
for the CC̄/ 3ℓ and 4ℓ channels. The 3ℓ and 4ℓ event displays were published as part of the first
analysis of the CC̄/ 3ℓ and 4ℓ channels with full Run 2 data [37]. The 2ℓOS event display is not yet
published, because the 2ℓOS is not yet published. Event displays were all produced by the author
of this thesis, with the ATLAS Virtual Point 1 software [174]. Through event displays, different
physics objects can be seen to leave different signatures in the ATLAS detector.

2ℓOS event display

The selection requirements imposed to find a suitable 2ℓOS CC̄/ candidate event to display are
shown in Table 5.3.1, along with the reasoning behind each selection requirement. These selections
were imposed on events present in the final 2ℓ-/-216 9 signal region, as described in Section 5.2.3.
These are more stringent requirements, to select specific candidates suitable for visualisation.
Electron, jet and muon reconstruction are briefly introduced in Section 4.3.1, Section 4.3.2 and
Section 4.3.3, respectively. DL1r and 1-tagging algorithms more generally are briefly introduced in
Section 4.3.2.
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Selection requirement Reasoning

#` == 2 Muon reconstruction is cleaner than electrons

Muons are opposite flavour with
|</
ℓℓ
− </ | < 10 GeV

Muons should come from a / boson

?T (ℓ1) > 30 GeV Minimum lepton ?T requirements

?T (ℓ2) > 15 GeV Minimum lepton ?T requirements

#1−jets@77% DL1r == 2 A 1-jet from the decay of each top quark

#jets(?T > 25GeV) == 6 Two 1-jets + four jets from two hadronic top
decays

runNumber ≥ 315197 data17 or data18

Table 5.3.1: Selection requirements imposed to find a suitable 2ℓOS CC̄/ candidate event to display, along
with the reasoning behind each selection requirement.

Since 2017 and 2018 data were being analysed for the first time in the CC̄/ 2ℓOS channel, it was
desirable for the event displays to be from a 2017 or 2018 data run. After applying the selections in
Table 5.3.1, the event with the highest MVA output score is shown in Figure 5.3.1. The reconstructed
muons (Section 4.3.3) represented by the red lines have a transverse momentum around 290 and
90 GeV through the detector, with a dimuon mass of 87.8 GeV. The yellow bars indicate energy
deposits in the calorimeter (Section 3.5). From these deposits six jets (Section 4.3.2) are identified
and represented by cones. The blue jets, with transverse momentum around 250 and 155 GeV,
are identified as having originated from 1-quarks (Section 4.3.2). The yellow jets, with transverse
momenta around 190, 80, 60 and 60 GeV respectively are not identified as having originated from
1-quarks. The missing transverse momentum (Section 4.3.4) represented by the dotted white line
has a magnitude around 80 GeV. The MVA used in described in detail throughout Chapter 6. This
event display is to be published in an upcoming ATLAS paper on the CC̄/ process.
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Figure 5.3.1: Display of event 1248839771 in run 331710 recorded by ATLAS in ?? collisions with LHC
stable beams at a centre-of-mass energy of 13 TeV on August 3rd, 2017. The topology of this candidate
corresponds to CC̄/ production in the 2ℓOS channel.

3ℓ event display

The selection requirements imposed to find a suitable 3ℓ CC̄/ candidate event to display are shown
in Table 5.3.2, along with the reasoning behind each selection requirement. Electron, jet and muon
reconstruction are briefly introduced in Section 4.3.1, Section 4.3.2 and Section 4.3.3, respectively.
MV2c10 and 1-tagging algorithms more generally are briefly introduced in Section 4.3.2.
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Selection requirement Reasoning

#4 < 3 Only one possible lepton combination can
reconstruct a / boson

#` < 3 Only one possible lepton combination can
reconstruct a / boson

#` == 2 Muon reconstruction is cleaner than electrons

#4 == 1 Muon reconstruction is cleaner than electrons

1 OSSF lepton pair with |</
ℓℓ
− </ | < 10 GeV Muons should come from a / boson

?T (ℓ1) > 27 GeV Minimum lepton ?T requirements

?T (ℓ2) > 20 GeV Minimum lepton ?T requirements

?T (ℓ3) > 20 GeV Minimum lepton ?T requirements

#1−jets@70% MV2c10 == 2 A 1-jet from the decay of each top quark

#jets(?T > 25GeV) == 4 Two 1-jets + two jets from a hadronic top decay

runNumber ≥ 315197 data17 or data18

Table 5.3.2: Selection requirements imposed to find a suitable 3ℓ CC̄/ candidate event to display, along with
the reasoning behind each selection requirement.

The 70% b-tagging working point with the MV2c10 algorithm was used for the 3ℓ event display
(as opposed to the 77% working point with DL1r for 2ℓOS) to reflect the different working points
and algorithms in the different channels. Since 2017 and 2018 data were being used for the
first time in a CC̄/ analysis, it was be desirable for the event displays to be from a 2017 or 2018
data run. 2017 data contained 11 events passing these selection requirements, whilst 2018 data
contained 12. From these 23 events, the event with the highest leptonic top reconstruction weight
(pseudo_top_mblv) was chosen, and the event display is shown in Figure 5.3.2. The reconstructed
muons (Section 4.3.3) represented by the red lines have a transverse momentum around 250
and 65 GeV through the detector, with a dimuon mass of 90.6 GeV. The yellow bars indicate
energy deposits in the calorimeter (Section 3.5). From these deposits four jets (Section 4.3.2) are
identified and represented by cones. The blue jets, with transverse momentum around 250 and
60 GeV, are identified as having originated from 1-quarks (Section 4.3.2). The yellow jets, with
transverse momenta around 65 and 55 GeV are not identified as having originated from 1-quarks.
A reconstructed electron (Section 4.3.1) is represented by the green track and energy deposit. The
missing transverse momentum (Section 4.3.4) represented by the dotted white line has a magnitude
around 30 GeV. The difference in azimuthal angle, q, between the / boson and the lepton from the
leptonic top decay, Δq(/, Clep), in units of rad/c is 0.813533. This event display was published in
the 2020 ATLAS paper on the CC̄/ process [37].
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Figure 5.3.2: Display of event 2361796077 in run 350751 recorded by ATLAS in ?? collisions with LHC
stable beams at a centre-of-mass energy of 13 TeV on May 20th, 2018. The topology of this candidate
corresponds to CC̄/ production in the 3ℓ channel.

4ℓ event display

The selection requirements imposed to find a suitable 4ℓ CC̄/ candidate event to display are shown
in Table 5.3.3, along with the reasoning behind each selection requirement. Electron, jet and muon
reconstruction are briefly introduced in Section 4.3.1, Section 4.3.2 and Section 4.3.3, respectively.
MV2c10 and 1-tagging algorithms more generally are briefly introduced in Section 4.3.2.
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Selection requirement Reasoning

#` == 3 Muon reconstruction is cleaner than electrons

#4 == 1 Muon reconstruction is cleaner than electrons

≥1 OSSF lepton pair with |</
ℓℓ
− </ | < 10 GeV A pair of opposite-sign muons should come from

a / boson

for all OSSF combinations: <OSSF > 10 GeV Remove low-mass resonances and photon
conversions

?T (ℓ1) > 27 GeV Minimum lepton ?T requirements

?T (ℓ2) > 20 GeV Minimum lepton ?T requirements

?T (ℓ3) > 10 GeV Minimum lepton ?T requirements

?T (ℓ4) > 7 GeV Minimum lepton ?T requirements

ℓℓ non−/ is 4± `∓ Only one final state opposite-sign-same-flavour
lepton pair

#1−jets@85% MV2c10 == 2 A 1-jet from the decay of each top quark

#jets(?T > 25GeV) == 2 No extra jets

runNumber ≥ 315197 data17 or data18

Table 5.3.3: Selection requirements imposed to find a suitable 4ℓ CC̄/ candidate event to display, along with
the reasoning behind each selection requirement.

The 85% b-tagging working point with the MV2c10 algorithm was used for the 4ℓ event display (as
opposed to the 77% working point with DL1r for 2ℓOS) to reflect the different working points and
algorithms in the different channels. Since 2017 and 2018 data were being used for the first time in a
CC̄/ analysis, it was be desirable for the event displays to be from a 2017 or 2018 data run. 2017 and
2018 data each contained one event passing these selection requirements from the final 4ℓ-DF-21
signal region. From these two events, the event with the highest sum of jet MV2c10 score was chosen,
and the event display is shown in Figure 5.3.3. The reconstructed muons (Section 4.3.3) represented
by the red lines have a transverse momentum around 140, 50 and 15 GeV through the detector, with
the pair identified as having originated from a / boson having a dimuon mass of 89.0 GeV. The
yellow bars indicate energy deposits in the calorimeter (Section 3.5). From these deposits two jets
(Section 4.3.2) are identified and represented by cones. The blue jets, with transverse momentum
around 120 and 80 GeV, are identified as having originated from 1-quarks (Section 4.3.2). A
reconstructed electron (Section 4.3.1) with transverse momentum around 80 GeV is represented by
the green track and energy deposit. The missing transverse momentum (Section 4.3.4) represented
by the dotted white line has a magnitude around 35 GeV. The difference in azimuthal angle, q,
between the / boson and CC̄ system, Δq(/, CC̄), in units of rad/c is 0.595878. This event display
was published in the 2020 ATLAS paper on the CC̄/ process [37].



84

Figure 5.3.3: Display of event 2075539836 in run 364214 recorded by ATLAS in ?? collisions with LHC
stable beams at a centre-of-mass energy of 13 TeV on October 23rd, 2018. The topology of this candidate
corresponds to CC̄/ production in the 4ℓ channel.

5.4 Machine Learning

Machine Learning (ML) is a key part of the CC̄/ 2ℓOS analysis strategy due to the fact that background
processes have higher cross-sections than the signal process, therefore it is difficult to isolate signal
from background. For example, as shown in Table 5.2.1 the cross-section for CC̄/ is ≈3 orders of
magnitude lower than CC̄ (one of the main backgrounds in the CC̄/ 2ℓOS channel).

5.4.1 Introduction to Machine Learning

An analysis in the CC̄/ 2ℓOS region presents two main characteristics:

• the cross-sections for background processes can be ≈3 orders of magnitude higher than that
of the signal;

• no single variable provides high enough signal versus background separation (to be shown in
Section 5.5).

High signal versus background separation is needed to be able to distinguish signal from background
distributions. Separation quantifies the difference in height between signal and background
distributions in each bin of a histogram. The analysis therefore uses a Multi-Variate Analysis (MVA)
in the 2ℓOS channel to obtain a variable with larger separation between signal and background than
an individual variable could achieve.
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An MVA technique is an algorithm that takes a set of the input variables and builds an output value,
called MVA output. The output has higher separation power than any input variable alone.

Training and testing

Two phases are needed when using an MVA technique: the training phase and the testing phase.
Monte Carlo samples for background and signal need to be divided into two parts, usually with
the same number of events. One of the sets of samples is used during the training phase and the
other during the testing phase. During the training phase, input variables for signal and background
events are provided to the MVA and the internal weights of the MVA are optimised to provide the
best signal versus background separation.

Overtraining

After the training phase, an overtraining check is needed to verify the MVA technique’s ability
to identify the signal in a statistically independent sample. If the statistics in the training sample
are low, the MVA technique can train on the non-physical statistical fluctuations of the training
sample, which is called overtraining. In this case, the separation power on the training sample is
unrealistically higher than in the testing sample. If the MVA technique is correctly trained, the
separation power for the testing sample is the same as for the training sample.

Events used for MVA training can not be used in the analysis to estimate the MVA response, due to
possible bias caused by overtraining. Dropping half the statistics used for MVA training would lead
to increasing Monte Carlo statistical uncertainties in the analysis. To avoid this, cross training can
be used.

Cross training

In cross training, the same MVA technique is used twice where the roles of the different events are
switched. The first half of MC events are used to train the first MVA and test the second one, and
vice versa. In the testing phase, the event is categorised by the MVA not used for training. If cross
training is used, the whole MC sample can be used in the analysis. This technique is used in the
results of Chapter 6.

Choosing input variables

Choosing input variables for the MVA is a balance between keeping the MVA robust against
overtraining and obtaining the best separation power of the MVA output. Increasing the number of
input variables leads to higher separation, but the MVA is more likely to be overtrained.

Performance metric

The dependence of rejected background events fraction on the fraction of accepted signal is
quantified in a receiver operation characteristic (ROC) curve. “rejected background" is also called
“true negatives" and “accepted signal" is also called “true positives". A curve further towards the
top right indicates better performance. This is equivalent to a higher area under curve (AUC). It is
also useful to plot the ROC curves for training and testing data sets separately, to perform another
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check for overtraining. If the testing line largely overlaps with the training line there is no noticeable
overtraining.

The ratio of signal to background (S/B) that can be achieved using MVA output is another useful
performance metric. The number of signal events divided by the square root of the number of
background events is defined as statistical significance, and is another useful performance metric
for MVAs. S/

√
( + � is another possible metric, but does not tend to be used in cases where the

background is dominant, which is the case in the CC̄/ 2ℓOS channel.

5.4.2 Boosted Decision Trees

Boosted Decision Trees are used as the baseline MVA algorithm for this thesis, and they were used
in the previous ATLAS CC̄/ 2ℓOS measurement [36].

Decision Trees

Decision trees are a type of learning algorithm with a tree-like structure. A succession of questions
are asked to split the input data into purer samples of separated signal and background. Each
question uses a single discriminating variable to decide if an event is signal-like or background-like.
In the end, an upside-down-tree like structure is formed with leaf nodes classified as signal or
background. Training a Decision Tree is a process to define the cut criteria for each node. It is a
binary process, starting with a cut on a variable that gives the best separation and then repeating the
process for each subsample creating two new nodes at each step. The division is stopped once a
certain node has reached a minimum number of events or maximum signal purity. Decision trees
are amongst the most popular MVA techniques [175]. A pictorial representation of a decision tree
is given in Figure 5.4.1.

Figure 5.4.1: Diagram of a Decision Tree using three variables (G1, G2, G3). These variables are compared to
six numbers (C;1, C;2, C;3, C;4, C;6, C;7) whilst making decisions. Each decision aims to divide the dataset into
parts that are more signal-like and others that are more background-like. Some of the leaf nodes will be rich
in signal and others rich in background. Figure taken from Ref. [176].

Boosting

More information can be obtained by combing multiple decision trees, by the process of boosting,
which consists of giving events in the incorrect leaf node a larger weight than events in the correct
leaf node. Boosting is applied a number of times and each time a new tree is built. Using many
decision trees together in the training phase is called an “ensemble" or “forest". A “likelihood”
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estimator is constructed from all the trees in the forest for the event being signal or background
based on how often it is classified as signal. A picture of a Boosted Decision Tree (BDT) is shown
in Figure 5.4.2.

Figure 5.4.2: An ensemble of Decision Trees added together gives a Boosted Decision Tree (BDT), namely a
Gradient BDT. Each Decision Tree can come to a slightly different conclusion about the leaf nodes that are
rich in signal. Their results are added together to give a better total result. Figure taken from Ref. [177].

5.4.3 Neural Networks

A Neural Network (NN) is another type of MVA technique, typically providing more freedom than
BDTs in terms of tuneability. Neural Network (NN)s are MVAs based on the idea of neurons in the
human brain. A NN is called a Deep Neural Network (DNN) if it has more than one hidden layer of
neurons, to be explained in this section. The use of Deep Neural Networks or more complex NNs is
becoming more commonplace in particle physics, therefore it is crucial to test their performance for
the analysis of this thesis.

Binary deep neural networks

Figure 5.4.3 shows a simple binary DNN architecture, which consists of an input layer, hidden
layers and an output layer. The number of nodes in the input layer corresponds to the number of
input variables or input features. Typically, the number of nodes in a hidden layer is greater than
the number of nodes in the input layer. A NN can learn more information by adding more hidden
layers, thus becoming a DNN. The more hidden layers, the “deeper" the network. A binary DNN
contains a single node in the output layer. The number given by the single node of the output layer
can be thought of as the probability that a particular event passed through the network is signal.
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Figure 5.4.3: Diagram of a deep neural network. In this case, three input variables are used and one output.
Figure from Ref. [178].

Multiclassification

The schematic diagrams of the MVA techniques shown so far have been to classify between an
individual signal and the total background. If there are a number of main backgrounds that are
sufficiently different from each other, it may be beneficial to classify between signal, background
1 and background 2 (or however many different backgrounds there are). This approach is called
multiclassification. A multiclass NN is shown in Figure 5.4.4. Multiclass BDTs also exist.
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Figure 5.4.4: Diagram of a multiclass deep neural network. This is similar to the deep neural network of
Figure 5.4.3, but with extra nodes in the output layer. The number from each node in the output layer can be
thought as different probabilities, e.g. (1) probability of being signal, (2) probability of being CC̄ background,
(3) probability of being /+jets background, (4) probability of being other background. Multiple nodes in
the output layer makes a network “multiclass". More output layer nodes can be added to make the network
classify into more classes. In this case, five input variables are used. There are two hidden layers in this
network.

Loss function

NNs learn by minimising a “loss function". An epoch is a step the NN takes in the process of
trying to minimise the loss function. The learning process is shown by “loss curves". If the “Train"
loss curve is significantly below or significantly divergent from the “Test" loss curve, that is a sign
of overtraining, i.e. the network performs much better on the training data set than the testing
data set. A widely used loss function in particle physics is crossentropy. Different loss functions
are used for binary classification and multiclassification, e.g. binary crossentropy and categorical
crossentropy.

NN settings

Possible settings for NNs trained using tensorflow [179] through keras [180] are described in
Table 5.4.1.
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Option Values Description

InputScaling minmax inputs are scaled into a range between 0 and 1

Folds 2 how many folds (k-folding) should be performed
during training

Nodes 50,50,50,50 Comma-separated list of neurons for each layer

Loss categorical
crossentropy

Loss function which is used in the training of a
model

Epochs 100 Number of training epochs

LearningRate 0.001 Initial learning rate for the training of a model

BatchSize 32 Batch size used in training of a model

ValidationSize 0.2 Relative size of the validation set used during
training of a model

Patience 30 Number of epochs with no improvement after
which training will be stopped

MinDelta 0.001 Minimum change in the monitored quantity to
qualify as an improvement

DropoutIndice 1,3 Layer indeces at which Dropout layers are added

DropoutProb 0.1 Probability of dropout

OutputSize 3 Number of neurons in the output layer

OutputActivation softmax Activation function in the output layer of a model

Metrics Accuracy Comma-separated list of metrics to be evaluated
during training

ModelBinning 20,0,1 Custom binning using a fixed bin width in the
format nbins,x_low,x_high

SmoothingAlpha 0.1 to be applied to smooth labels according using
Y=Y(1-alpha)+alpha/K

Table 5.4.1: Possible settings used in DNN training using tensorflow [179] through keras [180].



91

5.4.4 MVA strategy

The strategy for the analysis in the CC̄/ 2ℓOS channel is as follows:

1. design and test BDTs for binary classification of the CC̄/ 2ℓOS signal against all backgrounds;

2. design and test DNNs for binary classification of the CC̄/ 2ℓOS signal against all backgrounds;

3. design and test DNNs for multiclassification of the CC̄/ 2ℓOS signal, CC̄ background and /
boson background;

4. design and test the inclusion of new variables to use in DNNs for multiclassification of the
CC̄/ 2ℓOS signal, CC̄ background and / boson background;

5. compare the performance of these different MVAs.

With the outputs of these MVAs a profile-likelihood fit to extract the CC̄/ 2ℓOS cross-section can be
made (Section 5.7.2).

5.5 Initial MVA input variables

In the analysis, a set of 19 input variables has been considered for use in the initial MVAs. Their
definitions can be found in Table 5.5.1.
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Variable Definition

Δ'll ΔR between the two leptons

?;;
)

?) of the lepton pair

[ℓℓ [ of dilepton system

?
4 94C
)

?) of the fourth jet

?
5 94C
)

?) of the fourth jet

?
6 94C
)

?) of the sixth jet

?11
)

?) of the first 1-jet. Jets are ordered according to ?)
�

6 94CB
)

sum of jet ?) , up to 6 jets

#+<0BB
94C ?08AB

number of jet pairs with mass within a window of 30 GeV around 85 GeV

#
top−mass
bjj number of 3 jets combinations (with exactly 1 b-tag jet) close to the top-quark

mass (|"1 9 9 − "C>? | < 15 GeV) and (|" 9 9 − ", | < 15 GeV)

Δ'
jj
ave average ΔR for all jet pairs

Δ'11 cone between two jets with the highest b-tagging weight in the event

"MindR
jj mass of the combination between any two jets with the smallest Δ'

"bb mass of the two jets with the highest 1-tag weight

"Ptord
uu mass of the two untagged jets with the highest ?)

"
0E6

,
sum of the two closest 2 jet invariant masses from from jjj1 and jjj2 divided by

2. Not used for 2ℓ-Z-2b5j events

Centjet scalar sum of pT divided by sum of � for all jets

�1 First Fox-Wolfram moment, given by Equation 5.5.1 [181]

max"MindR
lepb maximum mass between a lepton and the tagged jet with the smallest ΔR

Table 5.5.1: The definitions of all variables considered in the 2ℓOS channel. Jets and leptons are ordered by
their ?) from the highest one. To suppress the effect of mismodelling in events with high jet multiplicity,
only the first 8 jets ordered by ?) are considered when calculating these variables.
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The first Fox-Wolfram momentum is defined by:

�1 =
∑
8, 9

®?8 · ®? 9
�2
E8B

, (5.5.1)

where ®?8 and ®? 9 are 3-momenta of i-th and j-th object (jet or lepton) and �E8B is all visible energy
in the event. Visible energy includes all jets and leptons (even bad jets/leptons), but not �<8BB

)
.

Autocorrelations i=j are included. Correlations are only included once, i.e. the correlation between
object 0 and 1 is only considered once, not 0,1 and 1,0.

Pre-fit distributions and separation of CC̄/ 2ℓOS signal and total background distributions for all
BDT input variables were produced by the author. No cut on MVA technique output is required
in separation plots, to show real separation power before cutting on the MVA output. The error
bars include statistical and systematic uncertainties. As an example, the input variable with highest
separation is shown in Figure 5.5.1, which is Δ';;. In all 3 signal regions, there is agreement
between data and MC within uncertainties.
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Figure 5.5.1: Δ' separation between the leptons in the regions of the dilepton OSSF channel in the regions
2ℓ-Z-2b6j (top row), 2ℓ-Z-2b5j (middle row), 2ℓ-Z-1b6j, showing the Data versus MC comparison (left
column) and the separation before applying the MVA (right column).
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The separations achieved by the input variables are summarised in Table 5.5.2. Table 5.5.2 orders the
variables by separation in the 2ℓ-Z-2b6j region, since this is the most sensitive to CC̄/ 2ℓOS signal.
In the input variables, no signal versus background separation >11% is shown, motivating that an
MVA output variable that can provide higher signal versus background separation is desirable.

Rank Variable 2ℓ-Z-2b6j (%) 2ℓ-Z-2b5j (%) 2ℓ-Z-1b6j (%)

1 Δ';; 8.1 10.9 5.6

2 ?;;
)

7.8 10.8 5.3

3 #+<0BB
9 9

5.7 2.2 4.8

4 Δ'0E4
9 9

5.5 8.0 4.4

5 ?
4 94C
)

4.0 6.1 4.6

6 [;; 3.4 2.3 6.8

7 �4=CA 94C 2.8 3.4 2.1

8 "<8=3'
9 9

2.4 5.7 2.2

9 �
6 94CB
)

2.4 5.4 3.0

Table 5.5.2: Signal versus background separations achieved by different variables used in the initial MVAs.

5.6 New MVA input variables

In addition to the 19 MVA input variables from Table 5.5.1 that were used in the previous CC̄/ 2ℓOS
analysis from Ref. [36], 16 new variables are chosen and added for this thesis. Most of the new
variables are related to object reconstruction, allowing for better reconstruction of the CC̄/ 2ℓOS
decay. The definitions of these new variables, along with the previous variables that are still used,
can be found in Table 5.6.1.
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Variable Definition

?
1 94C
)

?) of the first jet

?
3 94C
)

?) of the third jet

?
4 94C
)

?) of the fourth jet

?
6 94C
)

?) of the sixth jet

�
6 94CB
)

sum of jet ?) , up to 6 jets

#+<0BB
94C ?08AB

number of jet pairs with mass within a window of 30 GeV around 85 GeV

Δ'11 cone between two jets with the highest b-tagging weight in the event

Centjet scalar sum of pT divided by sum of � for all jets

�1 First Fox-Wolfram moment, given by Equation 5.5.1

�<8BB
)

Missing transverse momentum

Δ'll ΔR between the two leptons

Hℓℓ rapidity of dilepton system

2aSM weight weight given by the 2-neutrino-scanning-method CC̄ reconstruction technique

1t weight weight for reconstructing 1 hadronic top

1t1W weight weight for reconstructing 1 hadronic top and 1 other hadronic W

2t weight weight for reconstructing 2 hadronic tops

PCBT bin 1j pseudo-continuous-b-tagging bin for 1st jet

PCBT bin 2j pseudo-continuous-b-tagging bin for 2nd jet

PCBT bin 3j pseudo-continuous-b-tagging bin for 3rd jet

PCBT bin 4j pseudo-continuous-b-tagging bin for 4th jet

PCBT bin 5j pseudo-continuous-b-tagging bin for 5th jet

PCBT bin 6j pseudo-continuous-b-tagging bin for 6th jet

#
;4?
C>? number of leptonic top candidates

Average Min(" 9 9) average minimum mass of jet pair per event

Table 5.6.1: The definitions of all variables considered for use in the MVA techniques. Jets and leptons are
ordered by their ?) from the highest one. To suppress the effect of mis-modelling in events with high jet
multiplicity, only the first 8 jets ordered by ?) are considered when calculating these variables.
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The 2-neutrino-scanning-method is a reconstruction technique for dileptonic CC̄ decay, therefore
CC̄ dileptonic decays are assigned high 2aSM weight and other processes are assigned low 2aSM
weight. Separately, hadronic CC̄ reconstruction is used, and quantified in the variables 1t weight,
1t1W weight, and 2t weight. Since the CC̄ system in CC̄/ 2ℓOS signal decays hadronically, CC̄/
2ℓOS signal is assigned high weight and background processes low weight. Distributions for these
hadronic top reconstruction variables in the 2ℓ-Z-2b6j region are shown in Figures 5.6.1-5.6.2.
They show some separation between signal and background, and are thus useful input variables for
MVAs. In addition, superimposed test and train variables for signal and background are shown in
Figures 5.6.1-5.6.2. No cut on MVA technique output is required in separation plots, to show real
separation power before cutting on the MVA output. The error bars are statistical.
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Figure 5.6.1: Weight given by the multi-hypothesis reconstruction of 1 hadronic top, in the 2ℓ-Z-2b6j region
of the dilepton OSSF channel. Data versus MC comparison (top left). Separation for each individual sample
(top right). Superimposed test and train variables for signal and background for 1st k-fold (middle left).
Superimposed test and train variables for signal and background for 2nd k-fold (middle right). Summary of
separation for each individual sample (bottom left).
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Figure 5.6.2: Weight given by the multi-hypothesis reconstruction of 2 hadronic tops, in the 2ℓ-Z-2b6j region
of the dilepton OSSF channel. Data versus MC comparison (top left). Separation for each individual sample
(top right). Superimposed test and train variables for signal and background for 1st k-fold (middle left).
Superimposed test and train variables for signal and background for 2nd k-fold (middle right). Summary of
separation for each individual sample (bottom left).
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5.7 Fitting

The distributions of the MVA output from the three signal regions (2ℓ-Z-1b6j, 2ℓ-Z-2b5j, 2ℓ-Z-2b6j)
are fit simultaneously together to extract a value and corresponding uncertainty for the expected CC̄/
“signal strength", `. Signal strength is the ratio of measured cross-section to predicted cross-section.
To avoid bias, this fit is performed with pseudo-data such that `=1. The aim of a fit is to get
uncertainties on `=1 as low as possible. Lower errors indicate an MVA approach that better
discriminates between CC̄/ 2ℓOS signal and background. Results of fits with different MVAs will be
presented in Section 6.5.

5.7.1 Fit systematics

Included in the fit are various systematic variations to quantify systematic uncertainties on the fitted
` value. Systematic variations on the signal and background samples are included in the fit to be
described in Section 5.7.2 as “nuisance parameter (NP)s". Dominant systematics are summarised
in Table 5.7.1, then described throughout this subsection.

Systematic Summary Ref

Luminosity Uncertainty on the luminosity estimate of
139 fb−1(Section 3.1)

[182]

Pile-up reweighting Uncertainty on the SF for PU (Section 4.3.2) [183]

JES Derived from test beams, LHC collision data, and
simulation (Section 4.3.2)

[139]

JER Comparison with expected fractional ?T
resolution (Section 4.3.2)

[139]

Lepton efficiency Associated with lepton efficiency SFs
(Figure 4.3.3 & 4.3.7)

[128, 184]

CC̄/ showering Alternative sample for showering (Section 4.1.2) [121, 122]

CC̄/ Var3c Variations associated to ISR (Section 4.1.2) [120]

`'`� Renormalisation and factorisation scales varied
up and down by 2

[185]

PDF Evaluated according to PDF4LHC prescription
(Section 4.1.1)

[186]

/+jets CKKW Uncertainty associated with matching scale [187]

/+jets QSF Uncertainty associated with resummation scale [188]

Table 5.7.1: Dominant systematic uncertainties in the fit for CC̄/ signal strength.

Luminosity

The quoted integrated luminosity for the full Run 2 dataset of 139.0 fb−1introduced in Section 3.1
has a relative uncertainty of 1.7% [182], following the latest recommendation of the ATLAS
Luminosity Working Group. This uncertainty is applied to all samples that are derived from MC.
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Pile-up reweighting

As introduced in Section 4.3.2, a Scale Factor (SF) is applied to MC to account for the difference in
pile-up distributions between MC and measured data.

Jet Energy Scale

Jet Energy Scale (JES) (Section 4.3.2) and its corresponding uncertainty have been derived by
combining information from test beams, measured LHC collisions, and simulation [139]. In this
analysis the recommendation by the ATLAS JetEtMiss Working Group for Run 2 is used.

Jet Energy Resolution

Jet Energy Resolution (JER) (Section 4.3.2) is measured separately for MC and data, using two
in-situ techniques described in Ref. [139]. The quadratic difference between JER for MC and data
is defined as the JER systematic uncertainty.

Lepton efficiency

Systematic uncertainties for lepton efficiency are associated with SFs defined by the respective
ATLAS Working Groups [128, 184]. These SFs account for differences between MC and data in
the distributions of lepton identification, isolation and trigger efficiency (Figure 4.3.3 & 4.3.7).

t t̄` showering

As introduced in Section 4.1.2, a systematic uncertainty for CC̄/ showering is obtained by comparing
the nominal sample (MadGraph5_aMC@NLO +Pythia 8 [116]) to an alternative sample,
MadGraph5_aMC@NLO +Herwig 7 [121, 122]. This changes the parton-shower algorithm for
all jets in the CC̄/ decay.

ttZ Var3c

As introduced in Section 4.1.2, a systematic uncertainty quantifying different possibilities for
initial-state-radiation (ISR) in the signal sample is obtained by varying the Var3c parameter in
the Pythia 8 A14 tune [120]. This varies the value of UB and therefore quantifies the effect of
uncertainty on the strength of the strong nuclear force.

-X-L

To obtain a systematic uncertainty for renormalisation and factorisation scales, the scale parameters
`' and `� are varied up and down by a factor of 2, and compared to the nominal prediction [185].
The variation of each scale by a factor of 2 in each direction (up and down) means there are a total
of 4 systematic variations to consider:

• 0.5×`=><8=0;
'

with 2×`=><8=0;
�

;

• 0.5×`=><8=0;
'

with 0.5×`=><8=0;
�

;
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• 2×`=><8=0;
'

with 2×`=><8=0;
�

;

• 2×`=><8=0;
'

with 0.5×`=><8=0;
�

.

Parton Distribution Function

Systematic uncertainties on the Parton Distribution Function (PDF) (Section 4.1.1) are evaluated
according to the recommended PDF4LHC procedure [186]. This procedure includes varying the UB
parameter, as well as the choice of PDF.

`+jets CKKW

The CKKW matching scale is part of the parton shower description in multĳet events in Sherpa. A
systematic uncertainty on the /+jets CKKW matching scale is obtained by comparing the nominal
scale of 20 GeV to alternative scales of 15 GeV and 30 GeV [187].

`+jets QSF

QSF resummation scale is a cutoff point for the emission of soft gluons in simulations. A systematic
uncertainty on the /+jets QSF resummation scale is obtained by varying the QSF parameter up and
down by a factor of 2, and comparing to the nominal [188].

5.7.2 Profile likelihood

Background processes are accounted for in this analysis by measuring the normalisation of some of
the main SM backgrounds to the CC̄/ 2ℓOS process. The main backgrounds whose normalisations
are measured are / + 1 jets and / + 2 jets processes. These background normalisations are measured
by using parts of the output MVA distributions that are enriched in these backgrounds, whilst
having low CC̄/ 2ℓOS signal contamination. A background-enriched region could be a region of
an MVA distribution where background events tend to be observed, at the opposite end of the
MVA distribution the where CC̄/ 2ℓOS signal events tend to be observed, e.g. the low MVA output
score of a binary classifier distinguishing between CC̄/ 2ℓOS signal and all other processes. A
background-enriched region could also be a region with additional selection requirements imposed
over the initial regions (2ℓ-Z-1b6j, 2ℓ-Z-2b5j, 2ℓ-Z-2b6j), to remove as much CC̄/ 2ℓOS signal as
possible, whilst keeping as much as possible of the background of interest.

The MVA distributions in the three signal regions (2ℓ-Z-1b6j, 2ℓ-Z-2b5j, 2ℓ-Z-2b6j), along with
their systematic uncertainty variations, are used in a profile-likelihood fit to extract the CC̄/ signal
strength by comparing measured and predicted cross-sections. A likelihood is maximised in order
to find the best-fit parameters using the equation:

!

(
®=|`, ®\, ®:

)
=

∏
A ∈regions

∏
8∈bins

Pois
(
=8,A |`(8,A ( ®\) + �8,A ( ®\, ®:)

)
×

∏
9∈#%

Gaus
(
\ 9

)
, (5.7.1)

where ®= represents the measured data vector, with =8,A representing measured data yields in bin 8
and region A . ®\ denotes the NPs that affect the number of signal events (8,A as well as the number of
background events �8,A in bin 8 and region A. ®: represents free-floating normalisation parameters
that also affect the number of background events. Finally, ` is the signal strength, which is the
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parameter of interest in the likelihood: the ratio of the measured over predicted signal cross section.
The terms Pois and Gaus represent Poisson and Gaussian distributions, respectively. The full form
of the likelihood can be found in Ref. [189]. In practice, the negative logarithm of the likelihood is
minimised. The likelihood takes as input:

• data yields in each bin of each region;

• NPs that affect the number of signal events for each bin in each region;

• NPs that affect the number of background events for each bin in each region;

• free-floating normalisation parameters that affect the number of background events;

• the signal strength, `.

Using multiple bins in a distribution (as is done by using the bins of an MVA distribution) provides
additional information to separate signal from background, compared to using a single bin (which
would be the number of events). The systematic uncertainties summarised in Table 5.7.1 are
evaluated independently in each region, therefore their relative effect is different in each region.





6 t t̄` Analysis results

Wisdom comes from experience. Experience is often a result of lack of wisdom.

Terry Pratchett [190]

This chapter presents results and discussion of the various MVAs that were tested for classification
of the CC̄/ 2ℓOS process. Each MVA is shown and discussed in separate sections, increasing in
complexity as the sections progress. They are compared at the end of each section. Results will
also be compared to Ref. [36], the previous ATLAS published result in the CC̄/ 2ℓOS channel, using
36 fb−1of Run 2 data. The MVAs discussed in this chapter are:

1. binary BDTs (Section 6.1);

2. binary DNNs (Section 6.2);

3. multiclass DNNs (Section 6.3);

4. multiclass DNNs with new variables (Section 6.4).

Using the final MVAs, MVA distributions are then fitted to extract the CC̄/ 2ℓOS signal strength.
Finally, results from the 2ℓOS channel are combined with the 3ℓ and 4ℓ channels to obtain
the combined CC̄/ signal strength. The specific contribution of the author covered throughout
Section 6.1-Section 6.4 includes:

• setting up, training, and evaluating various MVA models for classification of the CC̄/ 2ℓOS
process;

• comparing the performance of the various MVA models.

103
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6.1 Single BDT

The first step to studying the 2ℓOS channel for this analysis was to use a single MVA per analysis
region, 2ℓ-Z-1b6j, 2ℓ-Z-2b5j, 2ℓ-Z-2b6j. Each MVA would attempt to classify between CC̄/ 2ℓOS
signal and total background.

A gradient Boosted Decision Tree (BDT) has been investigated as a multivariate technique for
signal vs. background discrimination. Since a BDT was used in the previous CC̄/ analysis in the
literature [36], a BDT was chosen as a benchmark for this analysis.

6.1.1 BDT options

Settings options of the Boosted Decision Tree can be found in Table 6.1.1. Further explanation of
settings can be found in the scikit-learn [191] documentation for GradientBoostingClassifier [192].
The learning rate used here is on the same order of magnitude as the learning rate order of magnitude
shown to be optimal with ATLAS Open Data.

Option Values Description

n_estimators 500 Number of boosting stages

max_depth 3 Maximum depth of the individual regression
estimators

min_samples_leaf 0.05#CA08= minimum number of samples required to be at a
leaf node, where #CA08= is the number of events

in the training sample

boost Gradient boosting type for the trees in forest

learning_rate 0.3 shrinks the contribution of each tree by
‘learning_rate‘

criterion friedman_mse function to measure the quality of a split

min_impurity_decrease 0.5 A node will be split if this split induces a decrease
of the impurity greater than or equal to this value

SigToBkgFraction 1 Sig to Bkg ratio used in Training

Table 6.1.1: Settings used in BDT training when using single BDT per 2ℓOS region.

6.1.2 Variables used for BDT

The variables chosen for training the BDT are given in Table 6.1.2, along with the ranking of
the variables used. Separate training was done for the three regions: 2ℓ-Z-1b6j, 2ℓ-Z-2b5j and
2ℓ-Z-2b6j. The number of variables used for each 2ℓOS region varied: 17 for 2ℓ-Z-2b6j, 15 for
2ℓ-Z-1b6j and 14 for 2ℓ-Z-2b5j.
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rank 1b6j 2b5j 2b6j

1 H6jets
T H6jets

T H6jets
T

2 [;; Δ'0E4
9 9

Δ';;

3 #+<0BB
9 9

#+<0BB
9 9

[;;

4 pb1
T MpTord

bb #+<0BB
9 9

5 MaxMmindR
lepb MmindR

jj Δ'
jj
ave

6 MmindR
jj Δ';; Δ'11

7 p4jet
T Δ'11 p6jet

T

8 Δ';; p4jet
T MaxMmindR

lepb

9 p6jet
T [;; Mavg

W

10 Mavg
W p5jet

T MmindR
jj

11 �4=CA 94C MpTord
uu p4jet

T

12 H1 H1 MpTord
bb

13 MpTord
uu pll

T �4=CA 94C

14 Δ'0E4
9 9

�4=CA 94C H1

15 pll
T pb1

T

16 #
C>?−<0BB
1 9 9

17 pll
T

Table 6.1.2: Ranking of the variables used for BDT training, when using a single BDT per 2ℓOS region.

6.1.3 BDT overtraining test

To ensure that the BDT is properly trained and its results do not depend on the event statistics, an
overtraining test needs to be performed. The BDT discriminants (training and test samples) used
for the 2ℓ-Z-2b6j region of the dilepton OSSF channel is shown in Figure 6.1.1, as an example.
Figure 6.1.1 and other overtraining tests for the BDTs show no obvious overtraining, by the fact that
the training and test samples overlap within error bars. The ROC curve for the BDT is shown in
Figure 6.1.2. The fact that the red testing line largely overlaps with the blue training line means
there is no noticeable overtraining.

6.1.4 BDT output distribution

Figure 6.1.3 shows the BDT output distribution in MC and data. Within uncertainties, data and MC
agree, and there is >25% separation between signal and background, which is already good but can
be improved upon.

6.1.5 Summary of BDT results

Table 6.1.3 summarises the main numerical metrics of this subsection using a single BDT per 2ℓOS
region. Information on the number of variables is shown in Section 6.1.2. The training and test data
set ROC AUCs are shown in Section 6.1.3. Separation distributions are shown in Section 6.1.4.
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Figure 6.1.1: BDT discriminants used for the 2ℓ-Z-2b6j signal region of the dilepton OSSF channel
overlapping test and training samples. Background in the left column, signal in the right column. The
uncertainties are MC statistics. These plots use a single BDT per 2ℓOS region.

Metric 2ℓ-/-116 9 2ℓ-/-215 9 2ℓ-/-216 9

number of variables 15 14 17

training set ROC AUC 0.7873 0.7937 0.7973

test set ROC AUC 0.7876 0.7914 0.7955

separation (%) 25.497 30.705 30.309

Table 6.1.3: Metrics that summarise the results of using a single BDT per 2ℓOS region, as described
throughout this subsection. The separation is measured between the CC̄/ 2ℓOS signal and total background.
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Figure 6.1.2: BDT ROC curves for the three signal regions of the dilepton OSSF channel. From top to
bottom 2ℓ-Z-1b6j, 2ℓ-Z-2b5j and 2ℓ-Z-2b6j regions. The errors are MC statistics. When using a single BDT
per 2ℓOS region.
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Figure 6.1.3: BDT discriminants used for the three signal regions of the dilepton OSSF channel. Data vs.
MC (left column) and separation of CC̄/ 2ℓOS signal and total background distributions (right column) in
the regions of the dilepton OSSF channel. (Top row) 2ℓ-Z-1b6j. (Middle row) 2ℓ-Z-2b5j. (Bottom row)
2ℓ-Z-2b6j. No cut on MVA technique output is required in separation plots, to show real separation power
before cutting on the MVA output. The error bars include statistical and systematic uncertainties. When
using a single BDT per 2ℓOS region.
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6.1.6 Comparison with previous results

A comparison between the BDTs from the previous ATLAS publication on CC̄/ [36] and the BDTs
developed for this thesis is shown in Table 6.1.4. All metrics other than 2ℓ-Z-1b6j Separation
% improve in going from the BDTs of Ref. [36] to the BDTs developed for this thesis, which
validated the MVA setup developed for this thesis. Even the 2ℓ-Z-1b6j Separation % only decreases
slightly.

MVA 1b6j
AUC

2b5j
AUC

2b6j
AUC

1b6j
Separation

%

2b5j
Separation

%

2b6j
Separation

%

BDT from [36] 0.618 0.585 0.615 25.6 27.6 28.6

BDT 0.788 0.791 0.796 25.5 30.7 30.3

Table 6.1.4: Comparison of metrics that summarise the results of 1) the BDTs from Ref. [36], 2) the BDTs
developed for this thesis. Separation is measured between CC̄/ 2ℓOS signal and all backgrounds. All metrics
other than 2ℓ-Z-1b6j Separation % improve in going from the BDTs of Ref. [36] to the BDTs developed for
this thesis. Even the 2ℓ-Z-1b6j Separation % only decreases slightly.The AUCs quoted here are the “test set
ROC AUC" values from Table 6.1.3.

Though a >16% improvement in ROC AUC is achieved compared to the BDTs from Ref. [36], a
greater improvement should be possible. It is then necessary to design and test DNNs, as they could
provide more flexibility in classifying the CC̄/ 2ℓOS process.

6.2 2ℓOS single DNN

Multiple multivariate techniques have been tested. After re-implementing the MVA strategy from
Ref. [36] with BDTs as a benchmark, the next step in using the 2ℓOS channel with full run 2 data was
to use a Deep Neural Network (DNN), since they offer more flexibility than BDTs. More flexibility
offers the potential for better discrimination power between CC̄/ 2ℓOS signal and background. The
single BDT implementation for this analysis can be found in Section 6.1.

6.2.1 DNN options

Settings options of the DNN can be found in Table 6.2.1. These DNNs are trained using
tensorflow [179] through keras [180].
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Option Values Description

InputScaling minmax inputs are scaled into a range between 0 and 1

Folds 2 how many folds (k-folding) should be performed
during training

Nodes 50,50,50,50 Comma-separated list of neurons for each layer

Loss binary
crossentropy

Loss function which is used in the training of a
model

Epochs 100 Number of training epochs

LearningRate 0.001 Initial learning rate for the training of a model

BatchSize 32 Batch size used in training of a model

ValidationSize 0.2 Relative size of the validation set used during
training of a model

Patience 30 Number of epochs with no improvement after
which training will be stopped

MinDelta 0.0001 Minimum change in the monitored quantity to
qualify as an improvement

DropoutIndice 1,3 Layer indeces at which Dropout layers are added

DropoutProb 0.1 Probability of dropout

OutputSize 1 Number of neurons in the output layer

OutputActivation sigmoid Activation function in the output layer of a model

Metrics Accuracy Comma-separated list of metrics to be evaluated
during training

ModelBinning 20,0,1 Custom binning using a fixed bin width in the
format nbins,x_low,x_high

Table 6.2.1: Settings used in DNN training, when using a single binary DNN per 2ℓOS region.

6.2.2 Variables used for DNN

The variables chosen for training the DNN are given in Figure 6.2.1, along with the ranking
of the variables used. The x-axis quantifies how much the area under curve (AUC) decreases
(AUC=>< - AUC) when a particular variable is removed from training, compared to the AUC with
all variables (AUC=><). This quantity (AUC=>< - AUC)/AUC=>< is called “importance". A large
AUC decrease (large horizontal bar) means the variable is important for the DNN. Figure 6.2.1
shows that �6 94CB

)
is the most important variable in all three regions 2ℓ-Z-1b6j, 2ℓ-Z-2b5j and

2ℓ-Z-2b6j. Separate training was done for the three regions: 2ℓ-Z-1b6j, 2ℓ-Z-2b5j and 2ℓ-Z-2b6j.
The number of variables used for each 2ℓOS region varied: 15 for 2ℓ-Z-1b6j, 14 for 2ℓ-Z-2b5j and
17 for 2ℓ-Z-2b6j.
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Figure 6.2.1: “Importance" of the variables used for binary DNN training. Variables with greatest values on
the G-axis (e.g. >10−2) are most “important". (Top row) 2ℓ-Z-1b6j. (Middle row) 2ℓ-Z-2b5j. (Bottom row)
2ℓ-Z-2b6j.
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6.2.3 DNN visualisation

A visualisation of the DNN used in this section is shown in Figure 6.2.2 for illustration. The first
layer on the left, shown as white circles, shows how many input variables are used in the DNN (17
in this example). Moving towards the right, four hidden layers of 50 neurons each are shown. The
rightmost layer shows one neuron for the single output of a binary DNN.

Figure 6.2.2: A visualisation of a binary Deep Neural Network used in this thesis. This network is for the
2ℓ-Z-2b6j region with 17 inputs.

6.2.4 DNN performance

The ROC curve is shown in Figure 6.2.3. The fact that the red testing line largely overlaps with the
blue training line means there is no noticeable overtraining.
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Figure 6.2.3: Binary DNN ROC curves for the three signal regions of the dilepton OSSF channel overlapping
test and training samples. 1st k-fold in the left column, 2 k-fold in the right column. From top to bottom
2ℓ-Z-1b6j, 2ℓ-Z-2b5j and 2ℓ-Z-2b6j regions.
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6.2.5 DNN output distribution

Figure 6.2.4 shows the DNN output distribution in MC and data, and the separation between CC̄/
2ℓOS signal and total background for the DNN output. Data and MC mostly agree, and there is
>27% separation between signal and background.
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Figure 6.2.4: DNN discriminants used for the three signal regions of the dilepton OSSF channel, using a
single binary DNN per 2ℓOS region. Data vs. MC (left column) and separation of CC̄/ 2ℓOS signal and
total background distributions (right column), in the regions of the dilepton OSSF channel. No cut on MVA
technique output is required in separation plots, to show real separation power before cutting on the MVA
output. The error bars are statistical. (Top row) 2ℓ-Z-1b6j. (Middle row) 2ℓ-Z-2b5j. (Bottom row) 2ℓ-Z-2b6j.

6.2.6 DNN significance measures

Signal over background ((/�) and statistical significance ((/
√
�) distributions are shown in

Figure 6.2.5. (/� is also called purity. Figure 6.2.5 shows that statistical significances >3
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(“evidence") can be achieved in the 2ℓ-Z-1b6j and 2ℓ-Z-2b5j regions alone, while statistical
significance >5 (“observation") can be achieved in the 2ℓ-Z-2b6j region alone.
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Figure 6.2.5: (Left column) Signal over background that would be achieved by selecting events above the
x-axis DNN output value. (Right column) Signal over

√
background that would be achieved by selecting

events above the x-axis DNN output value. (Top row) 2ℓ-Z-1b6j. (Middle row) 2ℓ-Z-2b5j. (Bottom row)
2ℓ-Z-2b6j. All when using a single binary DNN per 2ℓOS region.

6.2.7 Summary of DNN results

Table 6.2.2 summarises the main numerical metrics of this subsection using a single DNN per
2ℓOS region. ROC AUCs >0.8, separations >27% and statistical significances >4 were achieved in
all three signal regions. Information on the number of variables is shown in Section 6.2.2. The
training and test data set ROC AUCs are shown in Section 6.2.4. Separation distributions are shown
in Section 6.2.5.
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Metric 2ℓ-/-116 9 2ℓ-/-215 9 2ℓ-/-216 9

number of variables 15 14 17

training set ROC AUC (fold 1) 0.811 0.825 0.826

test set ROC AUC (fold 1) 0.810 0.824 0.825

training set ROC AUC (fold 2) 0.812 0.828 0.831

test set ROC AUC (fold 2) 0.805 0.822 0.819

training set ROC AUC (average) 0.8115 0.8265 0.8285

test set ROC AUC (average) 0.8075 0.823 0.822

separation (%) 27.38 31.09 31.62

S/
√
� 4.5 4.9 10.8

Table 6.2.2: Metrics that summarise the results of using a single binary DNN per 2ℓOS region, as described
throughout this subsection. Separation is measured between the CC̄/ 2ℓOS signal and total background.
“training set ROC AUC (average)" is the average of “training set ROC AUC (fold 1)" and “training set ROC
AUC (fold 2)". “test set ROC AUC (average)" is the average of “test set ROC AUC (fold 1)" and “test set
ROC AUC (fold 2)".

6.2.8 Comparison with previous results

We now compare the DNNs to the BDT from Ref. [36], as well as the previous results for BDTs.
All metrics show small improvement by ≥0.385% in going from a BDT to a DNN, which is why
DNNs were used going forward.

MVA 1b6j
AUC

2b5j
AUC

2b6j
AUC

1b6j
Separation

%

2b5j
Separation

%

2b6j
Separation

%

BDT from [36] 0.618 0.585 0.615 25.6 27.6 28.6

BDT 0.788 0.791 0.796 25.5 30.7 30.3

DNN 0.808 0.823 0.822 27.4 31.1 31.6

Table 6.2.3: Comparison of metrics that summarise the results of 1) the BDTs from Ref. [36], 2) the BDTs
developed for this thesis, 3) the binary DNN approach developed for this thesis. Separation is measured
between CC̄/ 2ℓOS signal and all backgrounds. All metrics improve in going from a BDT to a DNN. The
AUCs quoted here are the “test set ROC AUC (average)" values from Table 6.2.2. This Table builds on
Table 6.1.4 by adding the row for DNN.

Having only slightly improved upon the initial BDTs with DNNs by ≥2% in ROC AUC, it is then
necessary to test whether a multiclass approach can yield a greater improvement and thus lead to a
more accurate classification of the CC̄/ 2ℓOS process.

6.3 2ℓOS multiclass DNN with same variables as single BDT

Section 6.2 shows results having trained DNNs with the same variables as the 36 fb−1ATLAS CC̄/
paper [36], with a single output (binary classifier). This section uses the same input variables but
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with 3 outputs (multi-classification). The 3 outputs were 1) CC̄ background, 2) CC̄/ 2ℓOS signal, 3)
/+jets background. Multi-classification allows the DNN to separately learn the characteristics of
each process. In contrast, a binary classifier does not distinguish between backgrounds that are
themselves physically different processes.

6.3.1 DNN options

These DNNs are trained using tensorflow [179] through keras [180]. The only differences compared
to Table 6.2.1 of Section 6.2 is the use of categorical crossentropy rather than binary crossentropy
as the loss function, and an output size of 3 rather than 1, to have an output for each of 1) CC̄/ 2ℓOS
signal, 2) CC̄ background, 3) /+jets background.

6.3.2 DNN performance

The ROC curve is shown in Figure 6.3.1. The fact that the training and test curves closely overlap
means there is no noticeable overtraining.
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Figure 6.3.1: ROC curve for the 3 regions of the dilepton OSSF channel, when using an initial multiclass
DNN per 2ℓOS region. (Top row) is for 2ℓ-Z-1b6j. (Middle row) is for 2ℓ-Z-2b5j. (Bottom row) is for
2ℓ-Z-2b6j.
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6.3.3 DNN output distribution

Figures 6.3.2-6.3.4 show the separation between the classifier output being optimised in that
multiclassification output node, and all other processes. e.g. separation between CC̄ background
and all other processes (including CC̄/ 2ℓOS signal). The fact that the separation in the bottom
rows of Figures 6.3.2-6.3.4 is always <6% shows that it is difficult to separate /+jets from other
processes.

6.3.4 Summary of initial multiclass DNN results

Table 6.3.1 summarises the main numerical metrics of this subsection using a single DNN per 2ℓOS
region. Information on the number of variables is shown in Section 6.2.2. The training and test data
set ROC AUCs are shown in Section 6.2.4. Separation distributions are shown in Section 6.2.5.
These results show that multiclass DNNs can achieve good performance (ROC AUC >0.8) and CC̄/
separation (>26%).

Metric 2ℓ-/-116 9 2ℓ-/-215 9 2ℓ-/-216 9

number of variables 15 14 17

training set ROC AUC (fold 1) 0.800 0.838 0.823

test set ROC AUC (fold 1) 0.800 0.835 0.827

training set ROC AUC (fold 2) 0.805 0.838 0.831

test set ROC AUC (fold 2) 0.802 0.831 0.823

training set ROC AUC (average) 0.803 0.838 0.827

test set ROC AUC (average) 0.801 0.833 0.825

CC̄ separation (%) 16.5 11.5 14.2

CC̄/ separation (%) 26.3 32.1 30.2

/+jets separation (%) 1.38 3.98 5.30

Table 6.3.1: Metrics that summarise the results of using a single multiclass DNN per 2ℓOS region, as
described throughout this subsection. CC̄/ separation is measured between the CC̄/ 2ℓOS signal and total
background. CC̄ separation is measured between the CC̄ background and all other samples (including CC̄/ 2ℓOS
signal). /+jets separation is measured between /+jets background and all other samples (including CC̄/
2ℓOS signal). “training set ROC AUC (average)" is the average of “training set ROC AUC (fold 1)" and
“training set ROC AUC (fold 2)". “test set ROC AUC (average)" is the average of “test set ROC AUC (fold
1)" and “test set ROC AUC (fold 2)".
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Figure 6.3.2: Separation of DNN output distributions the classifier output being optimised for, and all other
processes, in the 2ℓ-Z-1b6j region of the dilepton OSSF channel, when using an initial multiclass DNN
per 2ℓOS region. No cut on MVA technique output is required in separation plots, to show real separation
power before cutting on the MVA output. (Top row) is for the CC̄ classifier output. (Middle row) is for the CC̄/
classifier output 1. (Bottom row) is for the /+jets classifier output.
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Figure 6.3.3: Separation of DNN output distributions the classifier output being optimised for, and all other
processes, in the 2ℓ-Z-2b5j region of the dilepton OSSF channel, when using an initial multiclass DNN
per 2ℓOS region. No cut on MVA technique output is required in separation plots, to show real separation
power before cutting on the MVA output. (Top row) is for the CC̄ classifier output. (Middle row) is for the CC̄/
classifier output 1. (Bottom row) is for the /+jets classifier output.
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Figure 6.3.4: Separation of DNN output distributions the classifier output being optimised for, and all other
processes, in the 2ℓ-Z-2b6j region of the dilepton OSSF channel, when using an initial multiclass DNN
per 2ℓOS region. No cut on MVA technique output is required in separation plots, to show real separation
power before cutting on the MVA output. (Top row) is for the CC̄ classifier output. (Middle row) is for the CC̄/
classifier output 1. (Bottom row) is for the /+jets classifier output.
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6.3.5 Comparison with previous results

We now compare the initial multiclass DNNs to the BDTs from Ref. [36], as well as the previous
results for BDTs and DNNs. Some metrics (2b5j AUC, 2b5j AUC, 2b5j separation) improve slightly
(≥0.3%) in going from a binary DNN to a multiclass DNN whilst others slightly decrease. Even
though only some metrics improve, the power of the multiclass approach arises is due to the extra
information it gives about different background processes. Even so, all metrics for the multiclass
DNN improve by a small value of ≥0.71% compared to the BDT approach from Ref. [36].

MVA 1b6j
AUC

2b5j
AUC

2b6j
AUC

1b6j
Separation

%

2b5j
Separation

%

2b6j
Separation

%

BDT from [36] 0.618 0.585 0.615 25.6 27.6 28.6

BDT 0.788 0.791 0.796 25.5 30.7 30.3

DNN 0.808 0.823 0.822 27.4 31.1 31.6

multiclass DNN 0.801 0.833 0.825 26.3 32.1 30.2

Table 6.3.2: Comparison of metrics that summarise the results of 1) the BDTs from Ref. [36], 2) the BDTs
developed for this thesis, 3) the binary DNN approach developed for this thesis, 4) the initial multiclass DNN
approach developed for this thesis. Separation is measured between CC̄/ 2ℓOS signal and all backgrounds.
All metrics improve in going from a BDT to a DNN.

Having only improved upon the initial BDTs with mutliclass DNNs by ≥1.3%, it is then necessary
to test whether new variables can contribute to the optimisation of multiclass DNNs, for even more
accurate classification of the CC̄/ 2ℓOS process.

6.4 2ℓOS multiclass DNN with new variables

Section 6.3 shows results having trained multiclass DNNs using the same variables as the single
BDTs of Section 6.1. This section introduces some new variables and alters specific DNN settings.
The aim of introducing new variables is to provide extra separation power between CC̄/ 2ℓOS and
background.

6.4.1 Differences compared to initial multiclass DNN

Compared to the initial multiclass DNN of Section 6.3, MinDelta is increased from 0.0001 to 0.001.
MinDelta is the minimum change in the monitored quantity to qualify as an improvement (accuracy
in the case of this measurement). Several values of MinDelta were tested. A MinDelta of 0.0001
as in the initial multiclass DNN showed slight signs of overtraining. A MinDelta of 0.01 stopped
training after around 40 epochs. To continue training past this minimum number of epochs up to
the 100 epochs that is set as the maximum, a MinDelta of 0.001 was found to be a suitable balance
between training for a sufficient number of epochs, whilst avoiding overtraining, after trying a few
different values.
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6.4.2 DNN options

Settings options of the DNN can be found in Table 6.4.1. This section changes the OutputActivation
from sigmoid to softmax and introduces a SmoothingAlpha of 0.1, explained in Table 6.4.1. Softmax
is used to achieve a diagonal response. The response matrices for this section can be seen later in
Figure 6.4.13. SmoothingAlpha is used to try reduce overtraining. The overtraining check for this
section can be seen later in Figure 6.4.5.

Option Values Description

InputScaling minmax inputs are scaled into a range between 0 and 1

Folds 2 how many folds (k-folding) should be performed
during training

Nodes 50,50,50,50 Comma-separated list of neurons for each layer

Loss categorical
crossentropy

Loss function which is used in the training of a
model

Epochs 100 Number of training epochs

LearningRate 0.001 Initial learning rate for the training of a model

BatchSize 32 Batch size used in training of a model

ValidationSize 0.2 Relative size of the validation set used during
training of a model

Patience 30 Number of epochs with no improvement after
which training will be stopped

MinDelta 0.001 Minimum change in the monitored quantity to
qualify as an improvement

DropoutIndice 1,3 Layer indeces at which Dropout layers are added

DropoutProb 0.1 Probability of dropout

OutputSize 3 Number of neurons in the output layer

OutputActivation softmax Activation function in the output layer of a model

Metrics Accuracy Comma-separated list of metrics to be evaluated
during training

ModelBinning 20,0,1 Custom binning using a fixed bin width in the
format nbins,x_low,x_high

SmoothingAlpha 0.1 to be applied to smooth labels according using
Y=Y(1-alpha)+alpha/K

Table 6.4.1: Settings used in DNN training, when using the multiclass DNNs with new variables.

6.4.3 DNN visualisation

The visualisations of the DNNs in this section look similar to the visualisations of the binary DNNs
in Section 6.2, with the main difference being the number of nodes in the output layer. There are
now 3 output nodes for multiclassification, as opposed to 1 for binary classification. The number of
input nodes could also be different compared to the binary DNNs, because different numbers of
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input variables are optimal. The visualisations for 2ℓ-Z-2b6j, 2ℓ-Z-1b6j and 2ℓ-Z-2b5j are similar,
apart from the number of nodes in the input layer.

6.4.4 Loss curves for DNN training

Loss curves visualise how neural networks evolve over the number of epochs learned for. During
the learning process, the loss should decrease as the minimum of the loss function is approached.
Loss curves of the DNN training for each 2ℓOS region were produced to check for overtraining. In
them, the fact that the Train line does not finish at a “Loss" value significantly below the Validation
line indicates that no significant overtraining is present. As an example, the loss curves for the
2ℓ-Z-2b6j region are shown in Figure 6.4.1.
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Figure 6.4.1: Loss curves for DNN training, using the multiclass DNNs with new variables. 1st k-fold in the
left column, 2nd k-fold in the right column. 2ℓ-Z-2b6j.

6.4.5 Variables importance for DNN

The variables chosen for training the DNN are given in Figure 6.4.2-6.4.4, along with the ranking of
the variables used. These ranking plots emphasise the importance of variables related to jet ?T, such
as “Jet ?) ,1" and “�6 94CB

)
". Separate training was done for the three regions: 2ℓ-Z-1b6j, 2ℓ-Z-2b5j

and 2ℓ-Z-2b6j. The number of variables used for each 2ℓOS region varied: 16 for 2ℓ-Z-1b6j, 15 for
2ℓ-Z-2b5j and 13 for 2ℓ-Z-2b6j.
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Figure 6.4.2: “Importance" of the variables used for 2ℓ-Z-1b6j DNN training, using the multiclass DNNs
with new variables. Variables with greatest values on the G-axis are most “important". (Top row) is for the
classifier output for CC̄. (Middle row) is for the classifier output for CC̄/ . (Bottom row) is for the classifier
output for /+jets.
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Figure 6.4.3: “Importance" of the variables used for 2ℓ-Z-2b5j DNN training, using the multiclass DNNs
with new variables. Variables with greatest values on the G-axis are most “important". (Top row) is for the
classifier output for CC̄. (Middle row) is for the classifier output for CC̄/ . (Bottom row) is for the classifier
output for /+jets.
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Figure 6.4.4: “Importance" of the variables used for 2ℓ-Z-2b6j DNN training, using the multiclass DNNs
with new variables. Variables with greatest values on the G-axis are most “important". (Top row) is for the
classifier output for CC̄. (Middle row) is for the classifier output for CC̄/ . (Bottom row) is for the classifier
output for /+jets.
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6.4.6 DNN overtraining test

To fully ensure that the DNN is properly trained and its results do not depend on the event statistics,
another overtraining test should to be performed. In this overtraining test, the DNN discriminants
(training and test samples) used for the regions of the dilepton OSSF channel are compared. An
example for the 2ℓ-Z-2b6j region is shown in Figure 6.4.5. Error bars have been added to the
overtraining checks. The fact that Train dots agree with Test bars within uncertainties indicates that
no overtraining is present.
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Figure 6.4.5: DNN discriminants used for the 2ℓ-Z-2b6j signal region of the dilepton OSSF channel
overlapping test and training samples, using the multiclass DNNs with new variables. The errors are MC
statistics.

The ROC curves for the mutliclass DNNs with new variables are shown in Figures 6.4.6-6.4.8. Note
that there is no noticeable overtraining. Figures 6.4.6-6.4.8 also summarise the performance for
each background. This shows how different each background is from the CC̄/ 2ℓOS signal. The
background process most similar to CC̄/ 2ℓOS signal will be hardest to distinguish from CC̄/ 2ℓOS
signal, and thus the AUC score will be lowest. The background process least similar to CC̄/ 2ℓOS
signal will be easiest to distinguish from CC̄/ 2ℓOS signal, and thus the AUC score will be highest.
Which process is most or least similar to CC̄/ 2ℓOS signal might be different for each CC̄/ 2ℓOS
region. “Other" contains some processes with rather similar signatures to CC̄/ 2ℓOS signal, such as
C,/ , though there are not many events that pass the CC̄/ 2ℓOS selection requirements of Table 5.2.2.
For the other multiclass outputs (CC̄ & /+jets), Figures 6.4.6-6.4.8 also shows how similar other
processes are to the process that the classifier output is optimising for.
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Figure 6.4.6: ROC curves and AUC summaries for the 2ℓ-Z-1b6j signal region of the dilepton OSSF channel,
using the multiclass DNNs with new variables. (Top row) is for the classifier output for CC̄. (Middle row) is
for the classifier output for CC̄/ . (Bottom row) is for the classifier output for /+jets.
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Figure 6.4.7: ROC curves and AUC summaries for the 2ℓ-Z-2b5j signal region of the dilepton OSSF channel,
using the multiclass DNNs with new variables. (Top row) is for the classifier output for CC̄. (Middle row) is
for the classifier output for CC̄/ . (Bottom row) is for the classifier output for /+jets.
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Figure 6.4.8: ROC curves and AUC summaries for the 2ℓ-Z-2b6j signal region of the dilepton OSSF channel,
using the multiclass DNNs with new variables. (Top row) is for the classifier output for CC̄. (Middle row) is
for the classifier output for CC̄/ . (Bottom row) is for the classifier output for /+jets.
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6.4.7 DNN output distribution

Figures 6.4.9-6.4.11 show the DNN output distribution in MC and data. Figures 6.4.9-6.4.11 also
show the separation between CC̄/ 2ℓOS signal and total background for the DNN output. For all 3
classifier outputs, data and MC mostly agree, and there is >29.5% separation between signal and
background. Such separation allows for better significance measures, as shown in Section 6.4.8.
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(Left column) Data vs. MC
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Figure 6.4.9: DNN discriminants and separation for the 2ℓ-Z-1b6j signal region of the dilepton OSSF
channel, using the multiclass DNNs with new variables. (Top row) is for the classifier output for CC̄. (Middle
row) is for the classifier output for CC̄/ . (Bottom row) is for the classifier output for /+jets. The errors are
MC statistics.
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(Left column) Data vs. MC
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Figure 6.4.10: DNN discriminants and separation for the 2ℓ-Z-2b5j signal region of the dilepton OSSF
channel, using the multiclass DNNs with new variables. (Top row) is for the classifier output for CC̄. (Middle
row) is for the classifier output for CC̄/ . (Bottom row) is for the classifier output for /+jets. The errors are
MC statistics.
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(Left column) Data vs. MC
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Figure 6.4.11: DNN discriminants and separation for the 2ℓ-Z-2b6j signal region of the dilepton OSSF
channel, using the multiclass DNNs with new variables. (Top row) is for the classifier output for CC̄. (Middle
row) is for the classifier output for CC̄/ . (Bottom row) is for the classifier output for /+jets. The errors are
MC statistics.
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6.4.8 DNN significance measures

(/� and statistical significance distributions are shown in Figure 6.4.12. They show that an (/� of
'0.5 and statistical significance >3.3 are achievable in all 3 regions, with a statistical significance
>3 being called “evidence".
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Figure 6.4.12: Signal over background and statistical significance that would be achieved by selecting events
above the x-axis DNN output value, using the multiclass DNNs with new variables. (Top row) 2ℓ-Z-1b6j.
(Middle row) 2ℓ-Z-2b5j. (Bottom row) 2ℓ-Z-2b6j.

6.4.9 DNN response

2D responses of different samples to the “ttbar Classifier" and “Z Classifier" were produced for
all three signal regions. As an example, the responses for the 2ℓ-Z-2b6j region are shown in
Figure 6.4.13. They show how:
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• CC̄/ is concentrated towards low values of “ttbar Score" and low values of “Z Score", as shown
in the top-left sub-figures of Figure 6.4.13;

• CC̄ is concentrated towards high values of “ttbar Score" and low values of “Z Score", as shown
in the top-right sub-figures of Figure 6.4.13;

• / + 1 is concentrated towards low values of “ttbar Score" and high values of “Z Score", as
shown in the middle-left sub-figures of Figure 6.4.13;

• / + 2 is concentrated towards low values of “ttbar Score" and high values of “Z Score", as
shown in the middle-right sub-figures of Figure 6.4.13;
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Figure 6.4.13: 2D response of different samples to the “CC̄ Classifier" and “/ Classifier", using the multiclass
DNNs with new variables in the 2ℓ-Z-2b6j region.

6.4.10 Summary of optimised multiclass DNN results

Table 6.4.2 summarises the main numerical metrics of this subsection using an optimised single
DNN per 2ℓOS region. Information on the number of variables is shown in Section 5.6. The
training and test data set ROC AUCs are shown in Section 6.4.6. Separation distributions are shown
in Section 6.4.7.
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Metric 2ℓ-/-116 9 2ℓ-/-215 9 2ℓ-/-216 9

number of variables 16 15 13

training ROC AUC (fold 1) CC̄ 0.778 0.836 0.835

test ROC AUC (fold 1) CC̄ 0.765 0.830 0.828

training ROC AUC (fold 2) CC̄ 0.772 0.834 0.832

test ROC AUC (fold 2) CC̄ 0.764 0.830 0.832

training ROC AUC (average) CC̄ 0.775 0.835 0.8335

test ROC AUC (average) CC̄ 0.7645 0.830 0.830

ROC AUC (average) CC̄ 0.76975 0.8325 0.83175

training ROC AUC (fold 1) CC̄/ 0.815 0.832 0.831

test ROC AUC (fold 1) CC̄/ 0.814 0.837 0.836

training ROC AUC (fold 2) CC̄/ 0.821 0.839 0.837

test ROC AUC (fold 2) CC̄/ 0.817 0.829 0.828

training ROC AUC (average) CC̄/ 0.818 0.8355 0.834

test ROC AUC (average) CC̄/ 0.8155 0.833 0.832

ROC AUC (average) CC̄/ 0.81675 0.83425 0.833

training ROC AUC (fold 1) / 0.575 0.732 0.730

test ROC AUC (fold 1) / 0.579 0.713 0.713

training ROC AUC (fold 2) / 0.583 0.711 0.715

test ROC AUC (fold 2) / 0.575 0.723 0.725

training ROC AUC (average) / 0.579 0.7215 0.7225

test ROC AUC (average) / 0.578 0.718 0.719

ROC AUC (average) / 0.5785 0.71975 0.72075

CC̄/ AUC in CC̄ Classifier 0.8267 0.9209 0.9239

/ + ; AUC in CC̄ Classifier 0.8843 0.9407 0.9482

/ + 2 AUC in CC̄ Classifier 0.8329 0.9218 0.9232

/ + 1 AUC in CC̄ Classifier 0.7172 0.9092 0.9082

Other AUC in CC̄ Classifier 0.8002 0.8524 0.8540

CC̄ AUC in CC̄/ Classifier 0.8378 0.9059 0.9105

/ + ; AUC in CC̄/ Classifier 0.8823 0.8377 0.8279

/ + 2 AUC in CC̄/ Classifier 0.8458 0.8195 0.8153

/ + 1 AUC in CC̄/ Classifier 0.7960 0.8244 0.8200

Other AUC in CC̄/ Classifier 0.7967 0.7692 0.7619

CC̄/ AUC in / Classifier 0.8067 0.8147 0.8121

CC̄ AUC in / Classifier 0.7645 0.8836 0.8857

Other AUC in / Classifier 0.5394 0.6286 0.6316

CC̄ separation (%) 21.15 34.16 34.05

CC̄/ separation (%) 29.62 33.23 33.04

/+jets separation (%) 1.96 16.62 16.90

CC̄/ S/
√
� 3.3 7.0 7.0

Table 6.4.2: Metrics that summarise the results of using a single multiclass DNN per 2ℓOS region, as
described throughout this subsection. CC̄/ separation is measured between the CC̄/ 2ℓOS signal and total
background. CC̄ separation is measured between the CC̄ background and all other samples (including CC̄/ 2ℓOS
signal). /+jets separation is measured between /+jets background and all other samples (including CC̄/
2ℓOS signal). “training set ROC AUC (average)" is the average of “training set ROC AUC (fold 1)" and
“training set ROC AUC (fold 2)". “test set ROC AUC (average)" is the average of “test set ROC AUC (fold
1)" and “test set ROC AUC (fold 2)".
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6.4.11 Comparison with previous results

We now compare the multiclass DNNs with new variables to the BDTs from Ref. [36], as well as
the previous results for BDTs and DNNs. The optimised multiclass DNN approach provides the
highest performance of all the algorithms tested, with an improvement of >4% in all metrics.

MVA 1b6j
AUC

2b5j
AUC

2b6j
AUC

1b6j
Separation

%

2b5j
Separation

%

2b6j
Separation

%

BDT from [36] 0.618 0.585 0.615 25.6 27.6 28.6

BDT 0.788 0.791 0.796 25.5 30.7 30.3

DNN 0.808 0.823 0.822 27.4 31.1 31.6

multiclass DNN 0.801 0.833 0.825 26.3 32.1 30.2

optimised multiclass DNN 0.817 0.834 0.833 29.6 33.2 33.0

Table 6.4.3: Comparison of metrics that summarise the results of 1) the BDTs from Ref. [36], 2) the BDTs
developed for this thesis, 3) the binary DNN approach developed for this thesis, 4) the initial multiclass
DNN approach developed for this thesis, 5) the optimised multiclass DNN approach developed for this thesis.
Separation is measured between CC̄/ 2ℓOS signal and all backgrounds. The optimised multiclass DNN
approach (5) provides the best performance in all metrics.

6.5 Fitting results

The effect of different systematic uncertainties on the final result of the expected CC̄/ signal strength
can be quantified in a so called “ranking plot". The ranking plot shows the 20 NPs (Section 5.7.1)
that affect the fitted signal strength, `, the most. The upper G-axis of a ranking plot quantifies
how much a particular NP affects the fitted signal strength, shown as Δ`. The ranking plot for the
combination of multiclass DNNs with new variables in the 3 signal regions 2ℓ-Z-2b6j, 2ℓ-Z-1b6j,
and 2ℓ-Z-2b5j is shown in Figure 7.3.5.
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Figure 6.5.1: Ranking plot for the combination of multiclass DNNs with new variables in the 3 signal regions
2ℓ-Z-2b6j, 2ℓ-Z-1b6j, 2ℓ-Z-2b5j.

The 3 systematic uncertainties with greatest effect on the final result of the expected CC̄/ signal
strength are:

1. combination of renormalisation and factorisation scale choice (`'`� );

2. CC̄/ signal A14 variation, to quantify ISR uncertainty;

3. light-tag Eigenvariation 0, related to 1-tagging.

These systematic uncertainties were introduced in Section 5.7.1. The fact that the top 3 uncertainties
in the ranking plot are systematic means that the CC̄/ 2ℓOS inclusive cross-section measurement is
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systematics limited.

Final values for the uncertainty on the expected CC̄/ signal strength, ` (which was introduced in
Section 5.7), are presented in Table 6.5.1. A comparison with the previously published CC̄/ 2ℓOS
paper (Ref. [36]) is also included. An uncertainty on ` of e.g. +0.13 means the up uncertainty
on the CC̄/ 2ℓOS cross-section will have a relative uncertainty of 13%. A relative uncertainty
of 13% is the most precise measurement of the CC̄/ 2ℓOS process performed by ATLAS to date.
The improvement in uncertainty on ` appears greater than the improvement in ROC AUCs and
separation between improvements in ROC AUC and separation can plateau, whilst still leading to
large improvements in uncertainty on `. The final result for CC̄/ cross-section will have a lower
uncertainty still, because the 2ℓOS channel will be combined with the 3ℓ and 4ℓ channels.

MVA `=1

BDT from [36] +0.31
−0.29

BDT +0.17
−0.17

multiclass DNN with new variables +0.13
−0.12

Table 6.5.1: Comparison of metrics that summarise the results of 1) the BDTs from Ref. [36], 2) the BDTs
developed for this thesis, 3) the multiclass DNN approach with new variables developed for this thesis. The
multiclass DNN approach (3) provides the lowest uncertainties, and thus best results.

6.6 Combination results and summary

Fitted results with a precision of ` = 1+0.13
−0.12 from the 2ℓOS channel can then be combined with

the 3ℓ and 4ℓ channels to obtain a more precise value of ` = 1+0.065
−0.063 [193], the most precise

CC̄/ inclusive cross-section measurement performed by ATLAS. ` = 1+0.080
−0.080 is obtained in the 3ℓ

channel and ` = 1+0.13
−0.12 is obtained in the 4ℓ channel. Therefore, the 2ℓOS channel is now as precise

as the 4ℓ channel. This combined result of ` = 1+0.065
−0.063 [193] is nearly twice more precise than

the previous ATLAS public result on the CC̄/ inclusive cross-section, ` = 1+0.115
−0.109 [37]. In other

words, the 2ℓOS measurement alone is now almost as precise as the previous 3ℓ+4ℓ measurement.
This combined result of ` = 1+0.065

−0.063 [193] will be published in an upcoming ATLAS paper. The
development of precise MVA techniques in the 2ℓOS channel contributed to this measurement.
Having measured the CC̄/ 2ℓOS inclusive cross-section precisely, a follow-up paper will be able
to measure the differential cross-section of the CC̄/ 2ℓOS process. The exact variables are as yet
unknown, but could include for example the transverse momentum of the / boson and the transverse
momentum of the CC̄ system.





7 Preparing ATLAS data for education
worldwide

Respect your parents. They passed school without Google.

Anon [194]

This chapter discusses the education work that forms part of this thesis - ATLAS Open Data. The
ATLAS Open Data project provides open-source access to measured data, simulation, resources,
and documentation for the purpose of education. ATLAS was the first LHC experiment to release
real 13 TeV collision data [170, 195]. The development and testing of specific resources related to
the CC̄/ 2ℓOS process are discussed in this chapter. It is important to point out however, that many
other resources unrelated to the CC̄/ 2ℓOS process were also developed. All data and resources can
be accessed from the ATLAS Open Data website [152]. This chapter is structured as follows:

1. discussion of the Histogram Analyser;

2. discussion of ATLAS Open Data Jupyter notebooks.

The author’s specific contribution was to:

• create a data pipeline to go from 13 TeV data used for physics analysis to simplified data
formats, which then allowed the creation of datasets that could be used for the CC̄/ 2ℓOS
Histogram Analyser and Jupyter notebooks;

• create the 13 TeV datasets used as input for Open Data analyses, including those used in the
CC̄/ 2ℓOS Histogram Analyser and Jupyter notebooks;

• write example physics analyses for use with 13 TeV ATLAS Open Data, for example the CC̄/
2ℓOS Histogram Analyser and Jupyter notebooks;
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• write corresponding documentation for 13 TeV datasets and example analyses, similar to the
accompanying explanations given throughout this chapter;

• test 13 TeV datasets and example analyses, for example through the CC̄/ 2ℓOS Histogram
Analyser and Jupyter notebooks.

7.1 The data

The 13 TeV ATLAS Open Data release constitutes 10 fb−1of experimental data, which is approx-
imately 1/14th of the data collected by ATLAS in Run 2. 10 fb−1correspond to approximately
1000 trillion proton-proton collisions.The whole release is in .root file format, along with csv file
formats for some specific processes. The variables present in the datasets were summarised in
Table 4.4.1, and further information can be found in Ref. [170]. The data can be accessed through
the ATLAS Open Data portal [152] or CERN Open Data portal [153]. Analysis of these data is
possible through a number of tools, including the Histogram Analyser (Section 7.2) and Jupyter
notebooks (Section 7.3)

7.2 Histogram Analyser

The Histogram Analyser is one of the main web-based resources that was developed for using
ATLAS data for education. It allows students to apply selection requirements to histograms without
the need to use computer code. It is possible to apply selection requirements on eight different
variables, all of which are presented as individual histograms. This section introduces and covers
the CC̄/ Histogram Analyser, the individual histograms that form it, and conclusions that can be
drawn from three different signal regions. The CC̄/ Histogram Analyser is focused on because the
author of this thesis was the main developer.

7.2.1 Introduction

The ATLAS Open Data Histogram Analyser [196, 197] is a web-based tool for fast, cut-based
analysis of data, allowing to visualise data using online histograms with only a computer mouse.
This tool shows how to differentiate between physics processes. By applying cuts to data, specific
physics processes (signal) can be isolated from the background. The webpage [197] displays nine
histograms of variables which can be used to isolate signal events. One can use their cursor to apply
selections to a particular variable. Cutting on one histogram cuts the whole datasets, therefore
changing the distributions of all 9 histograms - the effect on the other variables will be shown
immediately. The Histogram Analyser helps in understanding the data and the relationship between
the signal and background processes. It can simplify and speed-up the selection of cuts, before
coding an analysis. The Histogram Analyser is used for an initial look at the CC̄/ 2ℓOS process.

7.2.2 The t t̄` Histogram Analyser

The CC̄/ Histogram Analyser is used to help visualise rare top-quark measured data and simulations.
This Histogram Analyser searches for rare top-quark processes. Data are shown by the black dots,
with error bars. The error bars are statistical. The three main processes are CC̄/ signal, CC̄ background
and / background. This Histogram Analyser also includes minor backgrounds, labelled as ‘Other’
in red. Minor backgrounds are required for data to match the total simulation. ‘Other’ includes
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single top production,,/ and // diboson production and CC̄, . Each process is represented by a
different colour in the Histogram Analyser.

The Histogram Analyser displays nine histograms, shown in Figure 7.2.1 and described in the
following.

Figure 7.2.1: CC̄/ Histogram Analyser before any selections are applied. The 9 histograms are (top left)
Channel, (top middle) Reconstructed Dilepton Mass, (top right) Number of Jets, (centre left) Number
of b-tagged Jets, (centre middle) Total Lepton Transverse Momentum, (centre right) Missing Transverse
Momentum, (bottom left) Separation Between Leptons, (bottom middle) Opening Angle Between Leptons,
(bottom right) Expected Number of Events.

7.2.3 Expected Number of Events for 10 fb−1

This histogram shows the number of events expected to be detected, reconstructed and recorded by
ATLAS for 10 inverse femtobarn (10 fb−1) of data, before any additional selections are made on the
Histogram Analyser.
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The expected number of real data events reconstructed and recorded by ATLAS is different to the
number of events produced by real collisions. Some events will not be reconstructed due to the way
the detector is constructed, the resolution of the sub-detectors, reconstruction efficiency and other
inefficiencies.

Table 7.2.1 shows the cross-sections used by ATLAS Open Data [198], along with the expected
number of events before applying additional cuts with the Histogram Analyser. With no cuts, we
have 75 CC̄/ events, with many more background events. The majority of the background at this
point is / boson production, which can change depending on the cuts applied.

Process Cross-section (pb) Expected # of events

CC̄/ 0.08258096 75

CC̄ 452.693559 23474

/ 3901.1616 120040

Table 7.2.1: Cross-sections used for the different processes of the CC̄/ Histogram Analyser [198], along with
the expected number of events before any additional cuts are applied in the Histogram Analyser.

The significance of CC̄/ quantifies how "significant" the CC̄/ simulation sample is with respect to
the background. It is calculated by the simplified equation:

Number of CC̄/ events√
Number of background events

. (7.2.1)

A larger significance value indicates better extraction of the t t̄` signal amongst the back-
grounds.

7.2.4 Preselections

Some pre-selections were applied to reduce the size of the datasets used as inputs to the CC̄/
Histogram Analyser so that the website can run quicker. These pre-selections include:

• exactly 2 leptons are required;

• decays to taus or hadrons are removed;

• events with <3 jets are removed;

7.2.5 The Histograms

Channel

The leptonic decay channels are shown in this first histogram in the top left: dielectron 44, dimuon
`` and electron-muon 4`.
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Reconstructed Dilepton Mass, M(ll)

The “Reconstructed Dilepton Mass" histogram displays the mass reconstructed from the two leptons
in the final state. For CC̄/ 2ℓOS signal and / background, these would originate from a / boson.
With no cuts, this peaks at 90 GeV, due to the huge / boson contribution.

Number of Jets, NJets

The “Number of Jets" histogram displays the number of jets found in the event.

Number of b-tagged Jets, N(BJets)

Jets originating from 1-quarks are identified and labelled, or tagged, using so-called b-tagging
algorithms. 1-tagged jets are expected in top quark decays, but not in leptonic , or / boson
decays.

Total Lepton Transverse Momentum, PT(l,l)

Total Lepton Transverse Momentum is the vectorial sum of the transverse momenta of the observed
charged leptons.

For / boson events, total lepton transverse momentum peaks at low values since the transverse
momenta of both leptons mostly cancel each other. For the other processes this cancellation is not as
pronounced, their distributions peak at between 60 and 90 GeV. This is illustrated in Figure 7.2.2.

(a) CC̄/ (b) CC̄ (c) /

Figure 7.2.2: Total Lepton Transverse Momentum (PT(ll) [GeV]) distributions for (a) CC̄/ , (b) CC̄, (c) / .

Missing Transverse Momentum, MET

In the LHC, the initial energy of the colliding partons (quarks or gluons) along the beam axis is not
known. This is due to the energy of each proton being shared and constantly exchanged between its
constituents.

However, the initial momentum of particles travelling transverse to the beam axis is zero. Therefore,
any net momentum in the transverse direction indicates missing transverse momentum.
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Missing transverse momentum is used to infer the presence of non-detectable particles such as the
neutrino. It is also expected to be a signature of many predicted physics events beyond the Standard
Model, for example the lightest supersymmetric particle.

The standard abbreviation for missing transverse momentum is MET, for historical reasons.

CC̄ decays to two leptons have two neutrinos in the final state while / boson decays to charged
leptons do not. This is illustrated in Figure 7.2.3 by the fact that the CC̄ MET distribution peaks at
higher values than the MET distributions of CC̄/ and / .

(a) CC̄/ (b) CC̄ (c) /

Figure 7.2.3: Missing Transverse Momentum (MET [GeV]) distributions for (a) CC̄/ , (b) CC̄, (c) / .

Opening Angle Between Leptons, DeltaPhi(l,l)

This is the opening angle, measured in phi q, between the two leptons. The azimuthal angle q is
measured from the G-axis, around the beam.

If the leptons are emitted back-to-back, this is displayed on the histogram as 180◦. / events show a
peak at high values in contrast to all other processes, as shown in Figure 7.2.4. The reason / events
peak at higher values than other processes is because the leptons from the / decay are emitted close
to back-to-back.

(a) CC̄/ (b) CC̄ (c) /

Figure 7.2.4: DeltaPhi(l,l) distributions for (a) CC̄/ , (b) CC̄, (c) / .
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Separation Between Leptons, DeltaR(l,l)

Separation, (Δ'), is calculated using the following equation:

(Δ')2 = (Δq)2 + (Δ[)2, (7.2.2)

where q is the azimuthal angle between leptons and [ is the pseudorapidity.

Figure 7.2.5 shows that CC̄/ events show a peak between 1.0 and 1.5, which is lower values than
other processes, with CC̄ peaking between 1.5 and 2.0, and / peaking between 2.5 and 3.0.

(a) CC̄/ (b) CC̄ (c) /

Figure 7.2.5: DeltaR(l,l) distributions for (a) CC̄/ , (b) CC̄, (c) / .

7.2.6 Selections for 2ℓ-Z-2b6j

Some of the variables presented in the histograms of the CC̄/ Histogram Analyser are shown
pictorially in Figure 7.2.6.
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Figure 7.2.6: Schematic diagram of a CC̄/ decay, with some of the variables presented in the histograms of the
CC̄/ Histogram Analyser labelled. Antiparticles are not labelled because the / boson could be radiated from
either the top or antitop.

The selections needed to define the 2ℓ-Z-2b6j region in the CC̄/ Histogram Analyser are:

• only the 44 and `` Channels;

• Reconstructed Dilepton Mass between 80 and 100 GeV;

• Number of Jets at least 6;

• Number of b-tagged Jets at least 2.

All requirements imposed so far are requirements for the 2ℓ-Z-2b6j signal region (see Table 5.2.2).
The remaining variables are not used in the definitions of the final signal regions of the main
analysis for this thesis (Section 6), but are used in the Multi-Variate Analysis (MVA) to described in
Section 6. Therefore, exploring these variables in the Histogram Analyser can give some intuition
as to what the MVA is doing to form signal-rich regions - a key learning objective of the Histogram
Analyser.

These further selections are found to be optimal for increasing significance in the CC̄/ Histogram
Analyser 2ℓ-Z-2b6j region:

• PT(ll) > 30 GeV;

• MET < 80 GeV;

• DeltaPhi(l,l) < 1400;

• Separation < 3.
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The selections for the CC̄/ 2ℓOS channel 2ℓ-Z-2b6j region are shown in Table 7.2.2, along with the
background they most help reduce. Significance achieved after making each selection sequentially
is also shown in Table 7.2.2.

Variable Selection To reduce Significance
afterwards

Channel 4+4− or `+`− CC̄ 0.197

M(ll) 80 < M(ll) < 100 GeV CC̄ 0.179

N(Jets) ≥6 / 0.522

N(BJets) ≥2 / 0.885

PT(ll) >30 GeV / 0.896

MET <80 GeV CC̄ 0.944

DeltaPhi(l,l) <1400 / 0.968

DeltaR(l,l) <3 / 0.971

Table 7.2.2: Selections for the CC̄/ 2ℓOS Histogram Analyser 2ℓ-Z-2b6j region, along with the background
process that each selection most helps reduce, and the significance achieved after making each selection.
Significance quoted is by applying these selections in order.

After each selection, both the data points and the simulated Monte Carlo distributions change. The
data and simulated Monte Carlo are not exactly the same, but the general agreement is very good.
This shows that these processes are well understood and well modelled.

These selections are shown in Figure 7.2.7, increasing significance to 0.971.



152

Figure 7.2.7: CC̄/ Histogram Analyser after applying selections for the CC̄/ 2ℓOS 2ℓ-Z-2b6j region. A
significance of 0.971 is achieved.

No further changes in selection for any histogram increases the significance over 0.971. This
indicates that the selections on Channel, M(ll), N(Jets) and N(BJets) are optimal in terms of signal
region definition for 2ℓ-Z-2b6j, as is the case for CC̄/ 2ℓOS papers published by ATLAS [36]. The
fact that the maximum significance achievable from defining a looser signal region of N(Jets)≥5
and N(BJets)≥1 indicates that the approach of defining separate signal regions can achieve higher
significance than a looser signal region, e.g. with at least 5 jets rather than at least 6 jets. The
significances of the separate signal regions can then be combined together to achieve a greater
significance for CC̄/ 2ℓOS.

7.2.7 Selections for 2ℓ-Z-2b5j

To achieve a greater significance for CC̄/ 2ℓOS by combining signal regions, the same process can
be applied to the 2ℓ-Z-2b5j signal region of Table 5.2.2 to find a significance of 0.380, shown in
Figure 7.2.8. The selections for the CC̄/ 2ℓOS channel 2ℓ-Z-2b5j region are shown in Table 7.2.3,
along with the background they most help reduce. Significance achieved after making each selection
sequentially is also shown in Table 7.2.3.
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Variable Selection To reduce Significance
afterwards

Channel 4+4− or `+`− CC̄ 0.197

M(ll) 80 < M(ll) < 100 GeV CC̄ 0.179

N(Jets) ==5 / 0.212

N(BJets) ≥2 / 0.329

PT(ll) >100 GeV / 0.350

MET <130 GeV CC̄ 0.360

DeltaPhi(l,l) <900 / 0.380

Table 7.2.3: Selections for the CC̄/ 2ℓOS Histogram Analyser 2ℓ-Z-2b5j region, along with the background
process that each selection most helps reduce, and the significance achieved after making each selection.
Significance quoted is by applying these selections in order.

7.2.8 Selections for 2ℓ-Z-1b6j

The same process can be applied to the 2ℓ-Z-1b6j signal region of Table 5.2.2 to find a maximum
significance of 0.488, shown in Figure 7.2.9. The selections for the CC̄/ 2ℓOS channel 2ℓ-Z-1b6j
region are shown in Table 7.2.4, along with the background they most help reduce. Significance
achieved after making each selection sequentially is also shown in Table 7.2.4.

Variable Selection To reduce Significance
afterwards

Channel 4+4− or `+`− CC̄ 0.197

M(ll) 80 < M(ll) < 100 GeV CC̄ 0.179

N(Jets) ≥6 / 0.522

N(BJets) ==1 / 0.472

PT(ll) >20 GeV / 0.483

DeltaR(l,l) <3 / 0.488

Table 7.2.4: Selections for the CC̄/ 2ℓOS Histogram Analyser 2ℓ-Z-1b6j region, along with the background
process that each selection most helps reduce, and the significance achieved after making each selection.
Significance quoted is by applying these selections in order.
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Figure 7.2.8: CC̄/ Histogram Analyser after applying selections for the 2ℓ-Z-2b5j signal region and optimising
each variable. A significance of 0.380 is achieved.
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Figure 7.2.9: CC̄/ Histogram Analyser after applying selections for the 2ℓ-Z-1b6j signal region and optimising
each variable. A significance of 0.488 is achieved.
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7.2.9 Conclusion

This study indicates that an MVA will likely select:

• high PT(ll);

• low MET;

• low DeltaPhi(l,l);

• low DeltaR(l,l).

when building a signal-enriched region. No precise values can be given here because an MVA
will optimise differently to the by-hand optimisation done in the Histogram Analyser. The fact
that optimum selections for PT(ll), MET, DeltaR(l,l) and DeltaPhi(l,l) are different in the 3 regions
illustrates why MVA training is conducted separately in different regions - because different regions
will yield different optimum selections.

7.3 Jupyter notebooks

Jupyter notebooks [199] are a key online resource to introduce programming and coding, providing
a very suitable arena for using ATLAS data for education. Several notebooks based on the CC̄/ 2ℓOS
process were developed, as discussed during this section. They are presented here in sequential
order of increasing difficulty.

7.3.1 Introduction

The release of the 13 TeV ATLAS Open Data was accompanied by a set of Jupyter notebooks that
allow data analysis to be performed directly in a web browser [196, 200, 201]. Several notebooks
with analysis examples are available, including analyses of CC̄/ . The aim of many of these notebooks
is to recreate published ATLAS results.

7.3.2 Analysis from csv

csv files are commonplace in data science outside of particle physics, therefore an analysis from csv
files using ATLAS data is an opportunity to teach the transferrable skill of analysing csv files. As
such, an example analysis starting from csv files and reproducing aspects of an ATLAS published
result [36] is presented here.

Introduction

The csv analysis notebook [202] uses ATLAS Open Data to show the steps to implement Machine
Learning in the CC̄/ 2ℓOS analysis, using the same input csv file as was used for the Histogram
Analyser of Section 7.2. The steps taken throughout the notebook to recreate aspects of the ATLAS
published result are:

1. tabulating the input data;

2. checking signal and background distributions for the variables present in the dataset;

3. checking separation between signal and background for the variables present in the dataset;
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4. checking correlations between the variables present in the dataset;

5. training a MVA;

6. checking for overtraining of the MVA;

7. evaluating the performance of the MVA.

Selections

The fact that no CC̄/ 2ℓOS signal is visible immediately means that some selections have to be made.
These selections are given in Table 7.3.1.

Reason Code

4+4− or `+`− Channel!=2

Number of jets NJets ≥ 5

Number of b-jets N(BJets) ≥ 1

Close to / mass |Mll - 91.12| < 10 GeV

Table 7.3.1: Initial selections applied to the input data in the Jupyter notebook introducing ML using CC̄/
2ℓOS csv data.

After the selections of Table 7.3.1, a useful next step is to see how well signal and background
are separated for each variable, and how high a signal-to-background ratio this can achieve. Such
graphs are shown in Figure 7.3.1. Only 2 from 7 of the input variables are shown, for brevity.
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(a) Number of jets (b) Number of b-jets

Figure 7.3.1: Separation between signal and background and signal-to-background ratio obtained by selecting
above a particular value of the x-variable in question. Taking (a) NJets as an example, the starting x-value is
5. Taking the ratio of number of signal events with at least 5 jets, to the number of background events with at
least 5 jets gives the S/B value at NJets=5 on the signal:background ratio plot (about 3.5%). Now imagine
selecting only events with at least 7 jets. Taking the ratio of those events passing that selection gives the S/B
value at NJets=7 on the signal:background ratio plot (about 6%). That is how the signal:background ratio
plots are constructed.

Introducing Machine Learning

ML is introduced as a way to construct a variable that can achieve higher separation between signal
and background and signal-to-background ratios. To achieve highest separation, ideally all variables
would be used in the ML technique. However, for example, ";; cannot be used since values around
the Z mass were selected, therefore using this sculpted distribution would lead to overtraining. To
be sure all the other variables can be used, the correlations between them need to be checked. If a
pair of variables is fully correlated (=1.0), using both would not add any new info. Having said this,
some correlation is crucial, because this is what the ML technique exploits. No variable pair is
correlated > 0.75 (absolute value), therefore each variable can be used. With a correlation check
complete, the separation and signal-to-background ratio achievable using the ‘ML_output’ variable
can be seen in Figure 7.3.2.
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Figure 7.3.2: Separation between signal and background and signal-to-background ratio obtained by selecting
above a particular value of ‘ML_output’. The starting x-value is about 0.05. Taking the ratio of number of
signal events with ML_output > 0.05, to the number of background events with ML_output > 0.05 gives the
S/B value at ML_output = 0.05 on the signal:background ratio plot (about 2%). Now imagine selecting only
events with ML_output > 0.6. Taking the ratio of those events passing that selection gives the S/B value at
ML_output=0.6 on the signal:background ratio plot (about 8%). That is how the signal:background ratio
plots are constructed.

ML_output compared to individual variables

The separation and S/B shown in Figure 7.3.2 is better than any of the individual variables of
Figure 7.3.1 could ever have achieved. Recalling that CC̄/ 2ℓOS signal nominally produces at least 6
jets, including at least 2 b-jets, allows a further selection to be made, in an attempt to uncover some
significant CC̄/ 2ℓOS signal.

Conclusion to the csv exploration notebook

After applying further selections, a significant amount of CC̄/ 2ℓOS signal can be seen above 0.8 in
the ML_output distribution . Selecting ML_output > 0.8 would mostly eliminate background and
achieve S/B 15%, as can be seen from Figure 7.3.2.
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This technique of isolating signal at high ML_output allows to make precise measurements of the
CC̄/ 2ℓOS signal process. In summary, this notebook introducing ML using CC̄/ shows that:

• putting data into an ML technique means only one variable has to be optimised;

• signal and background distributions are separated more when looking at ML output;

• ML achieves higher S/B than individual variables, because it finds multi-dimension correla-
tions that give better S/B classification.

7.3.3 Full analysis

Having shown a simplified CC̄/ 2ℓOS analysis from csv files, similar principles can be extended to
an analysis that fully reproduces a published ATLAS result [36]. The added complexity compared
to the notebook of Section 7.3.2 includes:

• separating the analysis into 3 different signal regions;

• defining control regions;

• creating data-driven background estimates;

• ranking MVA input variables.

Introduction

The notebook presenting a full CC̄/ 2ℓOS analysis [203] uses ATLAS Open Data to show the steps
to implement Machine Learning in the CC̄/ 2ℓOS analysis, following the ATLAS published paper
“Measurement of the CC̄/ and CC̄, cross sections in proton-proton collisions at

√
B = 13 TeV with the

ATLAS detector" [36]. In particular, this notebook aims to recreate plots from Ref. [36] using a
simplified ML workflow. The first plot that can be recreated is shown in Figure 7.3.3. Similar plots
to Figure 7.3.3 are recreated for the 2ℓ-Z-2b5j and 2ℓ-Z-1b6j regions.

(a) Open Data
(b) Ref. [36]

Figure 7.3.3: BDT output distributions in the signal region 2ℓ-Z-2b6j (here called 6j2b) using (a) ATLAS
Open Data, (b) Ref. [36]. Considering the differences in the amount of data and the fact that not every detail
from an ATLAS paper can be followed, the Open Data can reproduce this ATLAS result well. The ‘Other’
background contains SM processes with small cross sections producing two opposite-sign prompt leptons.
The shaded band represents the total uncertainty. The last bin of each distribution contains the overflow.



161

Control regions

Plots in control regions can also be recreated, shown in Figure 7.3.4 for 2ℓ-Z-2b6j as an ex-
ample.Equivalent plots for the 2ℓ-Z-2b5j and 2ℓ-Z-1b6j are also recreated.

(a) Open Data
(b) Ref. [36]

Figure 7.3.4: BDT output distributions in the CC̄ control region of 2ℓ-Z-2b6j (here called 6j2b) using (a)
ATLAS Open Data, (b) Ref. [36]. Considering the differences in the amount of data and the fact that not every
detail from an ATLAS paper can be followed, the Open Data can reproduce this ATLAS result well. The
‘Other’ background contains SM processes with small cross sections producing two opposite-sign prompt
leptons, including the CC̄/ process, whose contribution is negligible. The shaded band represents the total
uncertainty. The last bin of each distribution contains the overflow.

Data-driven t t̄ estimates

The CC̄ control regions exampled in Figure 7.3.4 can then be used to build data-driven estimates of
the CC̄ contribution, rather than using the MC estimates in subfigure (a) of Figure 7.3.3.

Ranking input variables

Another result from Ref. [36] that can be recreated is Table 11, showing the definitions and ranking
of input variables for the BDT. This comparison is shown in Figure 7.3.5.
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(a) Open Data (b) Ref. [36]

Figure 7.3.5: The definitions and ranking of input variables for the BDT in the CC̄/ 2ℓOS analysis. (a) ATLAS
Open Data, (b) Ref. [36]. Some similarities can be seen between (a) and (b), for example “Number of jet
pairs with mass within a window of 30 GeV around 85 GeV" ranking rather highly for both. Differences
between (a) and (b) can also be seen, for example “Scalar sum of ?) divided by the sum of energy of all jets"
ranking highly for (b) but not so highly for (a). Jets and leptons are ordered in descending order of ?) . Only
the first eight jets are considered when calculating the input variables.

Conclusion to the full analysis notebook

Using ATLAS Open Data, a full analysis of the CC̄/ process can be undertaken, reproducing
simplified versions of the results from an ATLAS published paper [36]. Signal and control region
plots can be reproduced in the same format as the ATLAS published paper [36]. The method of
obtaining data-driven CC̄ estimates used in the ATLAS published paper [36] can also be reproduced
using ATLAS Open Data. The ranking of most important variables in the MVA with ATLAS Open
Data in the CC̄/ 2ℓOS channel show similarities to the ranking of the most important variables in the
MVA from the ATLAS published paper [36].

7.4 Comparisons with full ATLAS data

This section compares results from Section 7.2 and Section 7.3.3 using 10 fb−1of ATLAS Open
Data in simplified analyses to Section 6 using 139.0 fb−1of full Run 2 ATLAS data in a full analysis.
Results will be compared in terms of:

• ranking of variables by the MVAs;

• statistical significance achievable.

7.4.1 Comparison of variable ranking between Open Data and binary BDTs

Table 6.1.2 ranking input variables using BDTs with Full Run 2 data can be compared side-by-side
with the information from Figure 7.3.5 ranking input variables using BDTs with ATLAS Open Data.
This comparison is shown in Table 7.4.1. A number of similarities can be seen, e.g. #+<0BB

9 9
is

ranked within the top 4 in each of the six BDTs, or that pll
T is ranked within the bottom 3 in each of

the six BDTs. However, differences can be seen also, perhaps the most stark being that # C>?−<0BB
1 9 9
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is ranked 1st in the 2b6j Open Data BDT yet 16th in the 2b6j Full Run 2 BDT. This suggests that
some variables are important over a range of amount of data available, whereas other variables only
become more important when more data are available.

1b6j 2b5j 2b6j
rank Open Data Full Run 2 Open Data Full Run 2 Open Data Full Run 2
1 #+<0BB

9 9
H6jets

T p4jet
T H6jets

T #
C>?−<0BB
1 9 9

H6jets
T

2 p6jet
T [;; #+<0BB

9 9
Δ'0E4

9 9
p6jet

T Δ';;

3 [;; #+<0BB
9 9

Δ'0E4
9 9

#+<0BB
9 9

#+<0BB
9 9

[;;

4 H6jets
T pb1

T Δ';; MpTord
bb MpTord

bb #+<0BB
9 9

5 p4jet
T MaxMmindR

lepb MpTord
bb MmindR

jj H6jets
T Δ'

jj
ave

6 Δ';; MmindR
jj H6jets

T Δ';; Δ'11 Δ'11

7 Mavg
W p4jet

T Δ'11 Δ'11 Δ';; p6jet
T

8 pb1
T Δ';; p5jet

T p4jet
T p4jet

T MaxMmindR
lepb

9 MpTord
uu p6jet

T [;; [;; [;; Mavg
W

10 MaxMmindR
lepb Mavg

W MmindR
jj p5jet

T Δ'0E4
9 9

MmindR
jj

11 Δ'0E4
9 9

�4=CA 94C MpTord
uu MpTord

uu Mavg
W p4jet

T
12 H1 H1 H1 H1 pb1

T MpTord
bb

13 MmindR
jj MpTord

uu �4=CA 94C pll
T MaxMmindR

lepb �4=CA 94C

14 �4=CA 94C Δ'0E4
9 9

pll
T �4=CA 94C H1 H1

15 pll
T pll

T pll
T pb1

T
16 �4=CA 94C #

C>?−<0BB
1 9 9

17 MmindR
jj pll

T

Table 7.4.1: Comparison of ranking of the variables used for BDT training, when using a single BDT per
2ℓOS region. The comparison is performed between the BDTs using ATLAS Open Data and the BDTs using
Full Run 2 data.

7.4.2 Comparison of variable ranking between Open Data and binary DNNs

Figure 6.2.1 ranking variables using DNNs with Full Run 2 data can be compared side-by-side with
the information from Figure 7.3.5 ranking variables using BDTs with ATLAS Open Data. This
comparison is shown in Table 7.4.2. A number of similarities can be seen, e.g. #+<0BB

9 9
is ranked

within the top 3 in each of the six MVAs, or that pll
T is ranked within the bottom 3 in each of the

six MVAs. However, differences can be seen also, perhaps the most stark being that p6jet
T and p5jet

T
are ranked much higher in the Open Data BDTs than they are in the Full Run 2 DNNs. This again
suggests that some variables are important over a range of amount of data available, whereas other
variables only become more important when more data are available.
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1b6j 2b5j 2b6j
rank Open Data Full Run 2 Open Data Full Run 2 Open Data Full Run 2
1 #+<0BB

9 9
H6jets

T p4jet
T H6jets

T #
C>?−<0BB
1 9 9

H6jets
T

2 p6jet
T [;; #+<0BB

9 9
Δ';; p6jet

T #+<0BB
9 9

3 [;; #+<0BB
9 9

Δ'0E4
9 9

�4=CA 94C #+<0BB
9 9

Δ';;

4 H6jets
T H1 Δ';; #+<0BB

9 9
MpTord

bb #
C>?−<0BB
1 9 9

5 p4jet
T Δ';; MpTord

bb MpTord
bb H6jets

T �4=CA 94C

6 Δ';; p4jet
T H6jets

T H1 Δ'11 Δ'11

7 Mavg
W �4=CA 94C Δ'11 Δ'0E4

9 9
Δ';; p4jet

T
8 pb1

T pb1
T p5jet

T p4jet
T p4jet

T H1
9 MpTord

uu p6jet
T [;; MmindR

jj [;; p6jet
T

10 MaxMmindR
lepb Δ'0E4

9 9
MmindR

jj Δ'11 Δ'0E4
9 9

[;;

11 Δ'0E4
9 9

Mavg
W MpTord

uu p5jet
T Mavg

W pb1
T

12 H1 MaxMmindR
lepb H1 [;; pb1

T MpTord
bb

13 MmindR
jj MmindR

jj �4=CA 94C pll
T MaxMmindR

lepb Mavg
W

14 �4=CA 94C pll
T pll

T MpTord
uu H1 Δ'0E4

9 9

15 pll
T MpTord

uu pll
T pll

T
16 �4=CA 94C MmindR

jj
17 MmindR

jj MaxMmindR
lepb

Table 7.4.2: Comparison of ranking of the variables used for MVA training. The comparison is performed
between the BDTs using ATLAS Open Data and the initial DNNs using Full Run 2 data.

7.4.3 Statistical significance comparison between Histogram Analyser and initial
multiclass DNN

The statistical significance from Figure 6.2.5 can be compared to the significance achievable from
the Histogram Analyser discussed in Section 7.2, whose final significances are shown in Figure 7.2.7,
Figure 7.2.8 and Figure 7.2.9 for the 2ℓ-Z-2b6j, 2ℓ-Z-2b5j and 2ℓ-Z-1b6j channels respectively.
This comparison is shown in Table 7.4.3. The Histogram Analyser only uses about 1/14th of the data
used for the DNNs of Section 6.3 as this is all of the 13 TeV data currently made open by ATLAS.
A more direct comparison can be made by scaling the Histogram Analyser significances by the
square root of the ratio between the full Run 2 luminosity and the luminosity used in ATLAS Open
Data,

√
139.0/10, because statistical significance scales with the square root of number of events.

Even the scaled statistical significances achievable by the Histogram Analyser are about 2.5 times
less than the statistical significances achievable by the DNNs. This hints at the power of DNNs
in optimising for statistical significance in the CC̄/ 2ℓOS analysis, compared to a cut-and-count
analysis.
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Channel Histogram Analyser
significance

Histogram Analyser
significance (scaled)

DNN
significance

2b6j 0.971 (Figure 7.2.7) 3.620 10.8

2b5j 0.380 (Figure 7.2.8) 1.417 4.9

1b6j 0.488 (Figure 7.2.9) 1.819 4.5

Table 7.4.3: A comparison of the statistical significance that can be achieved using the DNNs of Section 6.3,
with the Histogram Analyser of Section 7.2. It is important to remember that the Histogram Analyser uses
about 1/14th of the data used for the DNNs of Section 6.3.





8 Conclusion

A conclusion is the place where you got tired of thinking.

Anon [204]

Run 2 of the Large Hadron Collider provided the highest centre-of-mass-energy collisions ever
achieved in a particle physics experiment; a centre-of-mass-energy of 13 TeV. The dataset provided
the largest amount of data collected by a particle physics experiment, totalling 139 fb−1at 13 TeV in
Run 2. Such a large dataset allowed unprecedented studies of the top quark, such as the simultaneous
production of a top quark, antitop quark and /-boson (CC̄/).

This thesis focuses on the first use of the 2ℓOS channel with full Run 2 data. The two main
backgrounds in the 2ℓOS channel (CC̄ and /+jets) are much larger than the signal, and thus this
channel is difficult to study.

By performing Multi-Variate Analysis in the 2ℓOS channel of the CC̄/ process, a new methodology
was developed with multiclass DNNs to give 13% sensitivity in the CC̄/ 2ℓOS cross-section
measurement. Numerous Multi-Variate Analysis techniques were tested and compared. Boosted
Decision Trees were first tested to build on the previous ATLAS results using 36 fb−1of Run 2
data [36]. Using the same variables as the initial Boosted Decision Trees, Deep Neural Networks
were then built to provide more flexibility in the learning process. The Boosted Decision Trees and
Deep Neural Networks built up until that point were binary classifiers. Since there are two main
distinct backgrounds in the CC̄/ 2ℓOS channel, a multiclass approach can provide benefits over a
binary approach. Having started with multiclass DNNs using the same variables as the initial BDTs,
additional discriminating variables were then added. Parameters of the DNN were optimised for
learning, whilst avoiding overtraining. Using the final multiclass DNNs, ROC AUCs of 0.817, 0.834
and 0.833 were found for the 2ℓ-Z-1b6j, 2ℓ-Z-2b5j and 2ℓ-Z-2b6j regions respectively. Compared
to the published ATLAS result in Ref. [36], this constitutes an improvement of 19.9%, 24.9% and
21.8% for the 2ℓ-Z-1b6j, 2ℓ-Z-2b5j and 2ℓ-Z-2b6j regions respectively.
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With these multiclass DNNs, a precise measurement of the inclusive cross-section of the 2ℓOS
channel in the CC̄/ process could be made, with relative uncertainties of +0.13

−0.12. This is more than
twice the precision of the previously published CC̄/ 2ℓOS measurement, where the uncertainties on
the 2ℓOS channel were +0.31

−0.29. In combination with the 3-lepton and 4-lepton channels, the most
precise measurement of the CC̄/ process carried out to date could be made. The 2ℓOS inclusive
cross-section measurement is systematics limited, and in particular will benefit from improvements
in the MCmodelling of the CC̄/ process and / + 1 process. With improvements in theory systematics
like these, the next step would be to train new MVAs, potentially with new techniques.

Using ATLAS Open Data, several educational example analyses of CC̄/ 2ℓOS process have been
presented. These analyses demonstrate 1) cut-and-count capabilities in a CC̄/ 2ℓOS analysis, 2)
variation of learning rate, 3) an introduction to machine learning, 4) reproducing an ATLAS paper
with Open Data. These analyses produce results similar to those of the main CC̄/ 2ℓOS analysis of
this thesis (Section 6). However, the limitations of these simplified analyses also demonstrate the
power of the MVAs developed for the main analysis of this thesis.

After the successful completion of Run 2 of the LHC and the associated data analysis, CERN’s
accelerator chain and experiments underwent major maintenance and upgrade, including ATLAS.
These upgrades were in preparation for Run 3 of the LHC, in which the ATLAS experiment will be
able to make even more precise measurements of rare processes such as CC̄/ thanks to increased
statistics and improvements in detector performance. A Run 3 measurement of the CC̄/ process will
likely include differential cross-section measurements in the 2ℓOS channel, to add to the existing
differential cross-section measurements in the 3ℓ and 4ℓ channels. This will provide even deeper
insights into the fundamental particles of the universe and the interactions between them.
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