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Investigations into the role of the metabotropic glutamate receptor, mGluR5, 

in incentive learning and some behavioural and neurobiological effects of 

cocaine 

 

The metabotropic glutamate receptor, mGluR5, is densely expressed in brain 

regions involved in incentive learning processes. There is considerable evidence to 

suggest that following exposure to addictive drugs such as cocaine, adaptations in 

these brain areas may underlie the development and maintenance of behavioural 

responses related to addictive processes. The present thesis examines the role of 

mGluR5 in both incentive learning processes and some behavioural and 

neurobiological effects of cocaine. 

 

First, using a novel mutant mouse line in which mGluR5 is selectively knocked 

down in cells that express dopamine D1 receptors (D1R), I argue that this mGluR5 

population is critically important for specific incentive learning processes. By 

blocking mGluR5 in wild-type mice with a selective antagonist, I then propose 

mGluR5 as necessary for the acquisition, but not the expression of an incentive 

association. Next, I present data showing that mGluR5 on dopaminoceptive 

neurons are not necessary for the „conditioned rewarding‟ properties of cocaine, 

measured in the conditioned place preference model, but do contribute to the 

psychomotor activating effects of cocaine. Finally, I present an 

immunohistochemistry study that examines cocaine-induced activation of the 

extracellular-signal related kinase (ERK) pathway. In the mGluR5 knock-down 

mice, activation of the ERK pathway in the striatum is disrupted following an acute 

injection of cocaine. Given the importance of the ERK pathway in establishing and 

maintaining long term memories, I propose that disruption of this pathway could 

contribute, in part, to some findings reported in the present thesis. 

 

Taken together, this thesis will argue that signalling through mGluR5 on D1R 

expressing neurons is important for the formation of incentive associations, and 

may contribute to neural adaptations necessary for the development and 

maintenance of behavioural responses related to addictive processes.  
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1 
 

1 General introduction 

 

1.1 Overview 

 

Emotions are fundamental to a normal sense of well-being and can provide 

motivation for many tasks encountered in daily life. Associative learning processes 

represent a major component of emotion and motivation. In Pavlovian incentive 

learning, a neutral environmental stimulus that is predictive of reward (e.g. food, 

water or sex) can be attributed with motivational value enabling the stimulus itself 

to become attractive and wanted, reinforce new learning and/or energise goal-

directed action. While such learning has clear adaptive value, addictive drugs are 

proposed to interact and subvert the neural components of Pavlovian incentive 

learning. In this way, environmental stimuli that are predictive of drug experience 

may exert powerful control over behaviour and contribute to cardinal features of 

drug addiction, including relapse after an extended period of abstinence. A major 

goal of behavioural neuroscience is to uncover the neural mechanisms of reward 

processing and thereby provide new insight into the basis of clinical disorders like 

addiction. It is within this broad framework that the following thesis will investigate 

the role of the metabotropic glutamate receptor, mGluR5, in Pavlovian incentive 

learning and some behavioural and neurobiological effects of one addictive drug, 

cocaine. 
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1.2 Reward 

 

Obtaining and experiencing desirable objects like food, water or even the latest 

iPhone can be accompanied by complex emotional feelings such as pleasure or 

relief. Emotions experienced during rewarding events can provide motivation for 

many tasks encountered in daily life, but dysregulation of emotional and reward 

processing is a major feature in many affective disorders including depression, 

schizophrenia and addiction. A major focus of behavioural neuroscience research 

has been to explore the neural mechanisms of reward, not least with the hope of 

finding new therapeutic targets for affective disorders. However, to be successful in 

this goal, it is first necessary to consider what reward is. 

 

Reward is a difficult concept because it is used to refer to a wide-range of 

constructs including „reinforcement‟, „subjective states‟ and „incentive‟. Reward 

differs from reinforcement in a number of ways (reviewed in White, 1989). For 

example, the classical definition of a „reinforcer‟ as an event that increases the 

probability of the response that precedes it, makes no mention of subjective states 

(Robbins and Everitt, 1996). Indeed, reward can extend beyond solely the need for 

explicit subjective states experienced during the pursuit of the desired object and 

the final interaction with it (Robbins and Everitt, 1996; Dickinson and Balleine, 

2002; Berridge and Robinson, 2003; Schultz, 2006; Stephens et al., 2010). For 

example, as a consequence of Pavlovian incentive learning, initially neutral 

environmental stimuli that predict a desired goal can themselves become 

motivationally important (Berridge and Robinson, 1998). Thus, reward is not a 

unitary process, but can involve distinct emotional, incentive motivational and 

learning components. All of these components may be acting in concert to 

determine behaviour in the face of a rewarding event or a stimulus that has been 

associated with reward. Thus, for behavioural neuroscientists to fully appreciate 

the role of any neural mechanism in reward requires that reward is teased apart 

into its distinct components (Cardinal et al., 2002a; Berridge and Robinson, 2003; 

Yin et al., 2008). 
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A model advanced by Robinson and Berridge (Berridge and Robinson, 1998; see 

also Berridge and Kringelbach, 2008) provides a useful framework in which the 

components of reward can be deconstructed. These components consist of 1) 

Liking: defined as the affective component or hedonic impact of a reward (e.g. 

food), which includes core „liking‟ reactions, that can be unconsciously perceived, 

and explicit conscious experiences of pleasure. 2) Wanting: defined as motivation 

for reward, which includes incentive processes, that are not necessarily conscious, 

and conscious desires for incentives or cognitive goals and 3) Learning: which 

describes the ability to form associations, representations and make predictions 

about future rewards based on previous experiences, which involves explicit and 

cognitive predictions and implicit knowledge, as well as associative conditioning, 

such as Pavlovian and instrumental associations (Berridge and Kringelbach, 2008).  

 

Some experiments reported in this thesis will explore processes that fall within (and 

between) the incentive „wanting‟ and instrumental and Pavlovian associative 

„learning‟ domains as delineated by Berridge. For this reason, the following 

sections will review some basic concepts in instrumental and Pavlovian learning 

and some theories of motivation that are pertinent to this thesis. Aversive 

associative learning processes will not be formally considered here, although their 

role in regulating appetitive motivational processes is acknowledged (see 

Dickinson and Balleine, 2002 for further discussion). 

 

1.2.1 Instrumental learning 

An animal can come to influence its environment by learning that a response (R) it 

makes can produce an outcome (O) that is advantageous to its survival and should 

be repeated (positive reinforcement), and that, oppositely, some responses 

produce outcomes which are deleterious to survival and should be avoided 

(negative reinforcement and punishment) (reviewed in Bouton, 2007). The 

performance of reward-related actions are thought to reflect two distinct learning 

processes, one controlling the acquisition of goal-directed (R-O) actions and the 
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other the acquisition of S-R habits (Fig 1.1a; Adams and Dickinson, 1981; 

Dickinson et al., 1983; Dickinson and Balleine, 1994; Dickinson et al., 1995). Goal-

directed learning necessitates the acquisition of a response representation and a 

representation of the outcome produced by that action (Dickinson and Balleine, 

1994). Thus, an action is considered goal-directed when the initiation of the action 

is made with knowledge of the causal relationship between the action and its 

consequence (i.e. the contingency) and the current value of the outcome 

(Dickinson and Balleine, 1994). In habit learning, instrumental responses (R) are 

associated with stimuli (S) present during training and the reinforcer primarily 

serves to strengthen these S-R associations. The reinforcers do not themselves 

become encoded as a goal (Everitt and Robbins, 2006). Typically, as actions 

become well learned, they may become automatic behavioural responses triggered 

by the presentation of a stimulus (i.e. S-R habit), without any explicit relation to the 

outcome (Dickinson, 1985; Logan, 1998). It is sufficient for experiments reported 

later in this thesis to note that goal-directed and habitual actions can be 

distinguished by their relative sensitivity to devaluation of the outcome and to 

degradation of the action-outcome contingency (Balleine and O'Doherty, 2010). 
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Figure 1.1 Components of associative learning (a) Instrumental (1) and Pavlovian 

(2) conditioning and some interactions (3-5) are illustrated. CS, conditioned 

stimulus; US/O, unconditioned stimulus (Pavlovian conditioning) or outcome 

(instrumental conditioning); R, instrumental response; 3, Responses can be directly 

reinforced by a CS (conditioned reinforcement); 4, A CS can trigger an 

instrumental response (S-R habit); 5, A CS can motivate ongoing goal-directed 

actions (Pavlovian-instrumental transfer) (adapted from Bouton, 2007) (b) In 

stimulus substitution theory, a CS comes to elicit a reflex response which is 

identical to the unconditioned response generated to the US (e.g. salivation in 

response to food). (c) In stimulus-stimulus theory, a CS first generates a neural 

representation of the US, which determines the conditioned response that arises. 

(d) Multiple associations can form between the CS and features of the US, which 

determine how the CS can influence behaviour (redrawn from Delamater and 

Oakeshott, 2007).  
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1.2.2 Pavlovian learning 

When presented with an outcome, termed the unconditioned stimulus (US), an 

animal may exhibit responses that allow for an appropriate reaction to that 

outcome. The animal may also experience behavioural or physiological changes as 

a result of exposure to the outcome (the unconditioned response; UR). If a neutral 

stimulus is associated with the US, this stimulus may take on the properties of a 

„conditioned stimulus‟ (CS), which can subsequently evoke a conditioned response 

(CR) that resembles the UR, even when presented in the absence of the US. The 

formation of CS-US associations is central to Pavlovian conditioning (Fig. 1.1a) 

and the ability of a CS to elicit a CR is considered critical for behavioural 

adaptation to environmental events (Pavlov, 1927; Mackintosh, 1994). 

 

In the century that has followed Pavlov‟s seminal work on classical conditioning 

(Pavlov, 1927), many have questioned what is learned during the Pavlovian 

conditioning procedure, how such information is stored and represented in the 

brain and how Pavlovian associations interact with actions (e.g. Rozeboom, 1958; 

Rescorla, 1988; Cardinal et al., 2002a). Pavlov himself argued that a conditioned 

reflex would develop due to an acquired association between a representation of 

the CS and one of the US (Pavlov, 1927). However, this „stimulus-substitution‟ view 

(Fig. 1.1b) could not readily explain how CSs were observed to modulate 

behaviours in more complex ways (e.g. transfer effects observed by Estes, 1948), 

and made no reference to motivational components of associative learning. It was 

not until Konorski (1967) and other contemporary learning theorists that followed 

(e.g. Wagner and Brandon, 1989; Holland, 1990; Dickinson and Balleine, 1994; 

Berridge and Robinson, 1998; Delamater and Oakeshott, 2007), that Pavlovian 

conditioning was recognised as having the potential to allow for multiple 

independent associations to form between the representation of the CS and 

features of the US (i.e. stimulus-stimulus associations; Fig. 1.1c-d). 
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1.2.3 The ‘Konorskian’ model 

According to Konorski (1967), Pavlovian conditioning could be considered in two 

forms: preparatory and consummatory conditioning (reviewed in Dickinson and 

Balleine, 2002). Preparatory conditioning describes the acquisition of responses 

that are characteristic of the motivational class to which the US belongs, as 

determined by its autonomic (e.g. heart rate) and/or behavioural actions (e.g. 

approach and withdrawal). Consummatory conditioning refers to the acquisition of 

an association between the CS representation and a representation of the US that 

encodes its specific sensory-perceptual properties (e.g. salivation in response to a 

food US). By forming these distinct CS-US representations, a CS could elicit 

different CRs that, in part, also depended upon the nature of the CS itself 

(Konorski, 1967). 

 

How then does motivation feature in Pavlovian learning as described by Konorski? 

Konorski (1967) proposed that preparatory and consummatory CRs result from 

CSs activating a common motivational system by direct (preparatory CS  

motivational system) and indirect (consummatory CS  US representation  

motivational system) pathways. Critically, feedback excitation from the motivational 

system to the US representation was proposed to give rise to a Pavlovian „desire‟ 

(a term used by Dickinson and Balleine, 2002; but perhaps analogous to incentive 

„wanting‟ as defined by Berridge, 1996) that motivates behaviour. In an extension 

to the Konorski model, Dickinson and Dearing (1979) suggested that primary 

motivational states could gate the capacity of an excited US representation to 

activate the common appetitive motivational system. In this way, motivational state 

could influence motivational feedback onto the US representation and, in turn, the 

motivational impact of the CS (reviewed in Dickinson and Balleine, 2002). In 

summary, this the so-called „Konorskian‟ model (Fig. 1.2a) and a later version 

presented by Balleine (2005; Fig. 1.2b), proposed that both US-specific 

consummatory and general motivational preparatory associations can influence 

appetitive activation, which subsequently motivates goal-directed (instrumental) 

actions, but in distinct ways; either by generation of arousal or affect. As will be 
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evidenced later in this introduction, these preparatory and consummatory 

processes map well onto parallel learning processes that occur within, and 

probably between, sub-compartments of brain regions such as the amygdala 

(Balleine and Killcross, 2006) and ventral striatum (Shiflett and Balleine, 2010). 
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Panel B not shown due to copyright restrictions 

For panel, see Balleine, 2005, Fig. 3. 

Figure 1.2 A „Konorskian‟ model of appetitive motivational influences in Pavlovian 

learning (a) Preparatory CSs directly activate an appetitive motivational system 

and give rise to general motivational CRs. This pathway also allows for preparatory 

CSs to excite performance of consummatory CRs. Consummatory CSs first 

activate a representation of the US, which can acquire further „Pavlovian desire‟ by 

reciprocal connections with the appetitive system. However, this pathway is gated 

(blue box) by primary motivational state (e.g. hunger or thirst) (adapted from 

Konorski, 1967; Dickinson and Balleine, 2002). (b) (for panel,). A later model 

described by Balleine clearly incorporates the principles of the Konorskian model, 

with specific sensory associations (Se; i.e. consummatory) giving rise to affect, 

while general motivation associations (M; i.e. preparatory) giving rise to arousal, 

which can both influence goal-directed (instrumental) actions. Affect and arousal 

both activate a distributed appetitive (Ap) system and can be dissociated between 

different brain regions   
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1.2.4 The ‘Incentive Salience’ model 

Incentive motivation concepts that were first developed around the 1970s and 

1980s, most notably by Bolles (1972), Bindra (1974) and Toates (1986), closely 

followed principles of Pavlovian learning and provided an alternative account for 

how Pavlovian CSs could themselves serve as incentives to motivate behaviour 

(reviewed in Berridge, 2004). Bolles (1972) proposed that individuals were 

motivated by incentive expectancies, which he termed S-S* associations. In 

Pavlovian parlance, Bolles meant that the US (the S*) carried motivational value 

before learning had occurred, while the would-be CS (the S) did not. Thus, learning 

was required upon experience of S* to enable the acquisition of a predictive 

expectancy by the S. Bindra (1974) subsequently added to the expectancy account 

of Bolles that, as a consequence of classical conditioning, the CS could elicit the 

same incentive motivational state that had been generated by the reward itself 

(Bindra, 1974). Thus, the CS could be „liked‟ and „wanted‟, even when the US was 

not present, because it carried hedonic and affective qualities of the US. Finally, 

Toates (1986) proposed that primary drive states could also influence behaviour by 

enhancing the hedonic impact and incentive value of both the reward and the 

reward associated CS. For example, under conditions of thirst, the hedonic impact 

and incentive value of both a CS paired with water and of water itself would be 

enhanced. 

 

In the Bolles-Bindra-Toates accounts of incentive motivation, conditioned 

incentives had value because they were both „liked‟ (i.e. they produced pleasure) 

and „wanted‟ (i.e. they had incentive value) as a consequence of Pavlovian 

learning (reviewed in Berridge, 2004). Robinson and Berridge (1993; 1998), in their 

incentive salience model, further advanced incentive motivation theory to propose 

that „liking‟ and „wanting‟ processes are, in fact, neurobiologically separate and 

experimentally dissociable. Thus, it is the attribution of incentive salience „wanting‟ 

to a neutral perceptual or representational event (e.g. a cue) that determines the 

value of the incentive, controls instrumental behaviour directed toward obtaining it 

and enables neural representations of CSs to become highly salient, attractive and 
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desired (Berridge, 1996; Berridge and Robinson, 1998; Robinson and Berridge, 

2001). 

 

1.2.5 Summary 

I have introduced the idea that Pavlovian learning is not a unitary process but can 

result in multiple independent associations between internal representations of the 

CS and features of the US. The content of what is learned and even the nature of 

the reward-paired environmental stimulus can determine how the CS subsequently 

influences behaviour, which can occur in many ways beyond generating simple 

reflexive responses as was first envisioned by Pavlov (1927). Two prominent 

theories of motivation in appetitive Pavlovian conditioning have also been 

introduced. In the „Konorskian‟ model, CSs activate a general appetitive system 

that motivates goal-directed (instrumental) actions (Dickinson and Balleine, 2002). 

In this model, and subsequent extensions of it (see also Dickinson and Balleine, 

1994; Cardinal et al., 2002a; Balleine, 2005; Everitt and Robbins, 2005; Yin et al., 

2008) the strength of implicit stimulus-stimulus associations are emphasised and 

so too are effects of the S-R habits. In the incentive salience model of incentive 

motivation, CSs acquire incentive motivational value and emphasis is placed on 

the idea that CSs are „wanted‟ in their own right, and that incentive salience 

„wanting‟ can be dissociated from hedonic „liking‟ aspects of reward (Berridge and 

Robinson, 1998). From this point onward, I will use the phrase „Pavlovian incentive 

learning‟ in referring to learning that enables environmental stimuli associated with 

reward experience to influence behaviours. What is particularly interesting is that 

both theoretical standpoints reviewed here have made use of similar behavioural 

paradigms to assess Pavlovian incentive learning; which are sign-tracking (or 

approach towards the Pavlovian CS), conditioned reinforcement (CRf; response-

contingent CS presentations) and Pavlovian-instrumental transfer (PIT; response-

independent presentations of CSs). These three tests and some parameters that 

influence performance in them will be introduced in the following sections. 
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1.3 Behavioural models of Pavlovian incentive learning 

 

1.3.1 Sign-tracking  

When a localisable stimulus that is predictive of reward is presented, animals may 

come to approach and interact with it. I will use the term sign-tracking (Hearst and 

Jenkins, 1974) when referencing this phenomenon, while recognising that it has 

also been termed autoshaping (Brown and Jenkins, 1968), signal-centred 

behaviour (Jenkins et al., 1978) and conditioned (or Pavlovian) approach and 

contact behaviour (Peterson et al., 1972).  

 

Sign-tracking was first reported by Brown and Jenkins (1968), who noted that a 

hungry pigeon would peck at a light that was predictive of food delivery, even 

though pecks never affected grain delivery. Notably, pecking of the stimulus 

persisted even if this resulted in the omission of food delivery (Williams and 

Williams, 1969), indicating that sign-tracking is most likely driven by Pavlovian 

learning, rather than implicit instrumental associations that could form as a result of 

the co-occurrence of reward delivery with CS directed responding. Sign-tracking 

has been observed in mice (Mead and Stephens, 2003b), rats (Peterson et al., 

1972), monkeys (Sidman and Fletcher, 1968) and humans (Wilcove and Miller, 

1974). 

 

A number of factors influence the sign-tracking CR. The topography of the 

response (e.g. peck, sniff or lick) typically resembles that of the UR directed at the 

US indicating that sign-tracking is partly a reward-specific mechanism. For 

example, pigeons would make brief and forceful pecks at a stimulus predictive of 

food, but make relatively weak pecks accompanied by occasional licking or 

swallowing at a stimulus predictive of water (Wolin, 1968; Jenkins and Moore, 

1973). Where the US was intravenously delivered cocaine, rats approached and 

investigated the lever CS, but rarely contacted it, perhaps because no actions were 

required to consume the drug US (Uslaner et al., 2006). Similarly, the occurrence 

of sign-tracking responses may depend upon the nature of the CS (e.g. visual or 
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auditory) and whether the CS is a natural releaser for appetitive behaviour systems 

in that species (Cleland and Davey, 1983). In rats, manual or oral manipulability 

may be a property of appetitive CSs that is important for maintaining sign-tracking 

responses (Holland, 1980; Cleland and Davey, 1983) and successful studies in 

rats have used localizable stimuli including retractable or illuminated leavers (Stiers 

and Silberberg, 1974; Boakes, 1977), static stimulus lamps (Holland, 1980) and 

even restrained conspecifics (Timberlake and Grant, 1975). More recently, 

approach and contact responses have been recorded in rats using computer 

graphic CSs presented on touch-screen panels (Bussey et al., 1994). Taking 

advantage of the natural tendency for mice to explore with nose-pokes, sign-

tracking has been recorded in mice by placing a discrete visual CS within a hole 

and measuring nose-pokes into the CS-containing hole (Mead and Stephens, 

2003b). 

 

1.3.2 Conditioned reinforcement 

In addition to eliciting approach responses, the attribution of incentive salience to 

appetitive Pavlovian CSs allows them to act as a goal for instrumental behaviour 

(Mackintosh, 1974; Robbins, 1978). Conditioned reinforcers can influence 

behaviour in a number of powerful ways, such as maintaining actions over delays 

between delivery of the primary reinforcer, as modelled by second-order schedules 

of reinforcement (e.g. Kelleher, 1966; Mead and Stephens, 2003b; Wilson and 

Bowman, 2004), and supporting the acquisition of a novel instrumental action 

(Mackintosh, 1974). 

 

Experiments reported in Chapter 3 and chapter 4 of this thesis will focus on the 

acquisition of a novel instrumental response with CRf (Mackintosh, 1974). 

Extensive reviews on second-order schedules of reinforcement can be sought 

elsewhere (Everitt and Robbins, 2000; Schindler et al., 2002; Di Ciano and Everitt, 

2005). The acquisition of a novel instrumental response with the CRf method is 

particularly advantageous as the reinforcing properties of the CS can be examined 

in isolation from any prior association between the operant response and a primary 
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reinforcer (Di Ciano and Everitt, 2004a). In this procedure, an animal is first trained 

a Pavlovian (CS-US) association, in which a neutral stimulus (e.g. a light or sound) 

is paired with the delivery of a reinforcer (e.g. liquid or solid food). Following 

Pavlovian conditioning, a test of CRf is undertaken in which two novel levers are 

inserted into the conditioning chamber. Responses on one lever result in 

presentation of the previously food-paired stimulus (CS+), while responding on an 

alternate (control) lever is without consequence. The number of responses elicited 

on the CS+ lever, in comparison to the control lever, provides a measure of the 

acquired reinforcing quality of the CS+. While most commonly used with rats (e.g. 

Robbins, 1978), the acquisition of a novel instrumental response with CRf 

procedure has successfully been adopted for use in mice (Mead and Stephens, 

2003b; O'Connor et al., 2010). 

 

1.3.3 Pavlovian-instrumental transfer 

A third feature of appetitive Pavlovian CSs is that they can enhance goal-directed 

instrumental behaviour, termed Pavlovian-instrumental transfer (Estes, 1948; 

Lovibond, 1983), which may be considered ethologically as an example of a 

foraging behaviour (Galarce et al., 2007), and which others have referred to as 

conditioned motivation (Milton et al., 2008a) or cue-triggered wanting (Wyvell and 

Berridge, 2001). Although originally developed in rats, the PIT procedure has been 

adopted for use in mice (Mead and Stephens, 2003b; Yin et al., 2006a; Crombag 

et al., 2008a; O'Connor et al., 2010), monkeys (Henton and Brady, 1970) and 

humans (Hogarth et al., 2007; Talmi et al., 2008). In assessing this phenomenon, 

animals are first trained a Pavlovian association between presentation of a CS and 

the delivery of a primary reward (e.g., sucrose). Next, animals are trained to 

respond on a lever for the same primary reward experienced during conditioning, 

but in the absence of the CS. Finally, a test is undertaken in which the ability of the 

CS to enhance lever pressing in extinction is assessed. By performing the test 

under extinction conditions, neither primary nor secondary reinforcement occur, 

therefore enabling purely the response activating properties of CSs to be examined 

(Wyvell and Berridge, 2001). 
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In the experimental preparation described above, the training of a single CS-US 

(e.g. light  food) and R-O (e.g. left lever  food) association likely promotes a 

more general form of learning such that the CS exerts a more general 

enhancement of instrumental performance (termed general PIT). However, 

Pavlovian CSs can also exert a selective influence on instrumental performance 

(termed outcome-specific or selective PIT; Kruse et al., 1983). In the selective PIT 

procedure, an animal is first trained two separate CS-US associations (e.g. tone  

food pellet, light  sucrose liquid). For the instrumental training component, 

animals acquire a different operant response for each of the outcomes earned 

during the Pavlovian conditioning phase (e.g. left lever  food pellet, right lever  

sucrose). The effects of CS presentations on lever responding are then examined 

under extinction conditions. In selective PIT, the CS is observed to selectively 

enhance performance of the instrumental response associated with the same 

outcome. While most studies have examined either general or selective PIT within 

different experimental preparations (see Holmes et al., 2010 for an extensive 

review), Corbit and Balleine (2005) have described an elegant procedure in which 

general and outcome selective forms of PIT can be dissociated in the same 

experiment. 

 

The study of general or specific PIT necessitates that the animal first learns a 

Pavlovian CS-US association, but there exist a number of crucial differences in 

conditioning procedures used for PIT than those for Pavlovian approach and CRf. 

First, a long-duration CS (e.g. 2 min) is typically used for PIT, in contrast to a 

relatively short-duration CS (e.g. 10 sec) used in the study of Pavlovian approach 

and CRf. The duration of the CS can influence the temporal dynamics of the PIT 

effect (Holland and Gallagher, 2003) and more robust PIT is observed when using 

a longer-duration CS (Crombag et al., 2008a). It is proposed that longer-duration 

CSs are more likely to establish preparatory or drive conditioned responses, which 

can exert modulatory influence over behaviours. In contrast, short-duration CSs 

are more likely to establish specific consummatory conditioned responses 
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(Konorski, 1967; Wagner and Brandon, 1989; Holland and Gallagher, 2003). 

Second, in conditioning for PIT, reinforcer deliveries are made on a semi-random 

basis during CS presentations. This is important, since CSs not only encode 

sensory or motivational representations of the US, but can also signal its temporal 

occurrence (Delamater and Oakeshott, 2007). The semi-random US presentation 

ensures that any influence of Pavlovian appetitive CRs on instrumental responding 

are not limited to discrete portions of the CS interval (Holland and Gallagher, 2003; 

Holland, 2004). Finally, animals are typically provided with relatively fewer 

presentations of the unpaired CS in the conditioning sessions for PIT. In effect, the 

unpaired CS serves as a neutral CS, rather than an explicitly non-reinforced CS. 

The purpose of this conditioning parameter is to limit the contribution of 

experience-dependent suppression of responding in the transfer test that may 

occur when using a stimulus that has been extensively non-reinforced (Holland, 

2004). A truly novel stimulus is not used as a control stimulus, as this may result in 

unconditioned suppression of responding during the transfer test (Rescorla, 1967; 

Holland, 2004). 

 

The instrumental training parameters are another important factor in the PIT effect. 

A variable interval (VI) or random ratio (RR) schedule is commonly used in PIT 

training. Extensive training under such schedules encourages instrumental 

responding that is supported by stimulus-response (S-R) rather than response-

outcome (R-O) representations (Dickinson and Nicholas, 1983a, b; Dickinson et 

al., 1983; Dickinson et al., 1995). Thus, in general PIT, where transfer is most 

dependent upon the general motivational influence of the Pavlovian CS, the 

influence of the CS over instrumental responding is considered greatest when 

responding is least sustained by specific R-O representations (Holland, 2004). 

 

1.3.4 Summary 

Pavlovian incentive learning and some tests that can be used to explore the 

incentive motivational properties of CSs have been introduced from a theoretical 

and operational perspective. Understanding of the neural components of reward 
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processing has advanced significantly over the last twenty years, propelled by a 

greater understanding of neuroanatomy and by application of techniques that can 

be used to isolate discrete brain regions (e.g. lesioning), brain circuits (e.g. 

disconnection procedures) and neurotransmitters and receptors within those 

regions (e.g. behavioural pharmacology and genetics). The following sections will 

review studies that have investigated the neural components of the aforementioned 

behavioural models of Pavlovian incentive learning. In addition, studies that have 

examined the neural components of the acquisition and performance of an 

appetitive instrumental response will be reviewed, given the important role of 

instrumental processes in both CRf and, in particular, PIT. For each behavioural 

model, consideration will be given to what these studies tell us about the role of 

certain brain components in reward processing.  
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1.4 Neural components of reward 

 

1.4.1 Sign-tracking 

A series of lesioning experiments have identified interactions between the nucleus 

accumbens (NAcc) and its limbic cortical afferents in the acquisition of a sign-

tracking CR. Thus, sign-tracking is disrupted by selective excitotoxic lesions of the 

anterior cingulate cortex (ACC) (Bussey et al., 1997b), orbitofrontal cortex (OFC) 

(Chudasama and Robbins, 2003), NAcc core (Parkinson et al., 1999; Parkinson et 

al., 2000b; Cardinal et al., 2002b) and pre- but not post-training lesions of the 

central nucleus of the amygdala (CeN) (Parkinson et al., 2000a; Cardinal et al., 

2002b). A necessary role for ACCNAcc core projections in sign-tracking has 

been confirmed using a double disconnection procedure, involving a unilateral 

lesion of the NAcc core and a contralateral unilateral lesion of the ACC (Parkinson 

et al., 2000b). In addition, lesions of the subthalamic nucleus (STN), both prior to or 

following training, facilitate sign-tracking, possibly by increasing incentive salience 

attribution to the CS and/or US (Uslaner et al., 2008). In contrast, sign-tracking was 

unaffected by lesions of the posterior cingulate cortex, prelimbic cortex (PLC) and 

infralimbic cortex (ILC) (Bussey et al., 1997b; Chudasama and Robbins, 2003), 

NAc shell (Parkinson et al., 2000a; Parkinson et al., 2000b), basolateral amygdala 

(BLA) and dorsal or ventral subiculum (Parkinson et al., 2000a). 

 

Both dopamine and glutamate transmission are important for the acquisition and 

performance of sign-tracking responses. In the NAcc, dopamine depletions (Dalley 

et al., 2002; Parkinson et al., 2002) or antagonism of dopamine receptors (Di Ciano 

et al., 2001) impaired the acquisition and performance of sign-tracking. Using fast-

scan cycling voltammetry, dopamine signalling in the NAcc core has been 

confirmed as an integral part of CS-US incentive learning necessary for the 

development of a sign-tracking response (Flagel et al., 2010). With respect to 

glutamate, infusion of an AMPA/KA receptor antagonist into the NAcc core 

impaired the expression, but not the acquisition, of sign-tracking (Di Ciano et al., 

2001). In contrast, an NMDA receptor antagonist infused into the NAcc core 
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impaired the acquisition, but not the expression, of sign-tracking (Di Ciano et al., 

2001). Notably, the particular pattern of disruption following AMPA/KA receptor 

antagonism (that is, increased approaches to the CS-) was also observed following 

ACC lesions (Bussey et al., 1997a) but not NAcc lesions, where disrupted 

Pavlovian approach arose from a reduction in responding to the CS+ (Parkinson et 

al., 1999). ACC-dependent processes may therefore interact with the NAcc in 

controlling the performance of sign-tracking responses through AMPA/KA receptor 

dependent signalling mechanisms (Di Ciano et al., 2001). Consistent with a 

necessary role of AMPA receptors in the performance of sign-tracking, mice 

lacking the GluR1 (gria1 knock-outs), and GluR2 subunit (gria2 knock-out) showed 

reduced sign-tracking responses (Mead and Stephens, 2003b, a). Finally, early 

post-training intra-NAcc infusions of a dopamine D1 receptor (D1R) and NMDA 

receptor antagonist impaired sign-tracking, while similar infusions of a dopamine 

D2 (D2R) receptor antagonist were without effect (Dalley et al., 2005). 

 

So what do these lesioning, pharmacology and genetic studies tell us about the 

role of specific neural components in sign-tracking? The ACC plays a critical role in 

the formation of stimulus-reward associations, but perhaps not approach itself 

(Bussey et al., 1997a; Cardinal et al., 2002b), and provides a major source of 

projections to both the NAcc core and the CeN (Groenewegen et al., 1987; 

Groenewegen et al., 1999). The ACCNAcc core pathway is proposed to 

subserve associative learning processes (whether attentional, impulsive or 

memory-based) and provide direction to the behavioural response, in terms of 

helping the organism to discriminate between relevant and irrelevant cues (Bussey 

et al., 1997a; Bussey et al., 1997b; Everitt et al., 1999; Parkinson et al., 2000b; Di 

Ciano et al., 2001). The ACCCeN projection may allow for cortical control over 

autonomic, endocrine and behavioural reflexive components of emotional 

responses through projections from the CeN to the hypothalamus and brainstem 

(Swanson and Petrovich, 1998).  
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The CeN also receives information about appetitive stimuli from other inputs 

(including the BLA and thalamus) and projects to dopaminergic neurons of the VTA 

and STN (Fudge and Haber, 2000) and basal forebrain cholinergic neurons of the 

isodendritic core (Robledo et al., 1996; Han et al., 1997; Everitt et al., 1999). Thus, 

while there are no direct connections between the CeN and NAcc core, 

dopaminergic signalling in the CeN can markedly affect extracellular dopamine in 

the NAcc (Louilot et al., 1985; Simon et al., 1988). According to Everitt and 

colleagues, through these cholinergic and dopaminergic connections, the CeN may 

1) influence attentional processing necessary for the learning about CS-US 

associations, 2) provide information about appetitive stimuli to the NAcc that 

promotes behavioural activation and 3) supervise the strengthening of associations 

between environmental stimuli, encoded by cortical limbic glutamatergic inputs, 

and motivational process in the NAcc core (Everitt and Robbins, 1992; Everitt et 

al., 1999; Everitt et al., 2001; Cardinal et al., 2002b). A fourth possibility from an 

incentive salience perspective (Berridge and Robinson, 1998), and perhaps 

analogous to the second point above, would propose that the ability of the CeN to 

influence dopamine signalling in the NAcc core may contribute directly to incentive 

salience attribution. 

 

Glutamatergic and dopaminergic signalling are clearly critical within the cortical 

limbic striatal circuitry that converges on the NAcc core (Di Ciano et al., 2001; 

Flagel et al., 2010). Dopamine is proposed to play a major role in the attribution of 

incentive value to the reward paired CS (Yin et al., 2008; Flagel et al., 2010), 

distinct from its proposed role in reward prediction (Schultz et al., 1997). Both NAcc 

dopamine D1R and NMDA receptors appear necessary for the early consolidation 

of appetitive learning (Dalley et al., 2005), consistent with a role of these receptors 

in LTP and other forms of synaptic plasticity hypothesized to underlie associative 

learning (Pennartz et al., 1993; Kombian and Malenka, 1994; Kelley et al., 2003; 

Kelley, 2004). In contrast, AMPA receptors may be crucial for the performance of 

the sign-tracking CR, consistent with their role in the maintaining synaptic strength 

at excitatory synapses (Malenka, 2003; Kessels and Malinow, 2009). 
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1.4.2 Conditioned reinforcement 

In comparison to the neural circuitry mediating Pavlovian approach, lesion studies 

have identified a distinct (but convergent) neural circuitry mediating control over the 

acquisition of a new instrumental response by conditioned reinforcers. Thus, the 

OFC (Pears et al., 2003), BLA (Cador et al., 1989; Burns et al., 1993; Whitelaw et 

al., 1996; but see Alderson et al., 2000), ventral subiculum (Burns et al., 1993), 

STN (Baunez et al., 2002) and pedunculopontine nucleus (Inglis et al., 2000) 

contribute to CRf. In contrast, lesions of the ACC (Everitt et al., 2001), PLC (Burns 

et al., 1993) and medial PFC (Pears et al., 2003) and CeN (Robledo et al., 1996) 

are without effect. Notably, responding for CRf can be powerfully amplified by 

psychomotor stimulants (Robbins, 1978; Robbins et al., 1983; Taylor and Robbins, 

1984). This phenomenon critically depends upon dopamine (Taylor and Robbins, 

1986; Wolterink et al., 1993), glutamate (Burns et al., 1994) and possibly 

GABAergic transmission (Dixon et al., 2010) in the NAcc, and integrity of the 

ventral subiculum (Burns et al., 1993), NAcc shell (Parkinson et al., 1999) and CeN 

(Robledo et al., 1996). Lesions of the NAcc core, while not affecting the acquisition 

of CRf, result in a loss of selectivity over stimulant-induced potentiation of CRf 

(Parkinson et al., 1999). 

 

A role for dopamine and glutamate in the acquisition and performance of 

responding for CRf has been further explored with pharmacological and genetic 

approaches. Dopamine and glutamate signalling within the amygdala appears 

important for both the acquisition and performance of CRf (Hitchcott et al., 1997; 

Hitchcott and Phillips, 1997, 1998; Phillips et al., 2010). Prior to the CRf test, intra-

BLA, but not CeN, infusions of a D3R antagonist 7-OH-DPAT disrupted the 

acquisition of a new response with CRf (Hitchcott and Phillips, 1998). Pre-test, 

intra-BLA infusion of an AMPA antagonist CNQX reduced responding for a drug 

associated CRf, but also increased responding on the control CS reinforced lever 

(Hitchcott and Phillips, 1997). In the amygdala, NMDA receptors may play a critical 

role in memory reconsolidation that leads to responding for CRf (Milton et al., 
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2008b). In the ventral-subiculum, infusions of an AMPA/KA receptor antagonist 

CNQX selectively reduced responding for drug associated CRf (Hitchcott and 

Phillips, 1997). In the NAcc core, but not shell, responding reinforced by a cocaine-

paired CS was dependent upon AMPA/KA receptors (Di Ciano and Everitt, 2001). 

In contrast, blockade of NMDA receptors in either the NAcc core or shell were 

without effect (Di Ciano and Everitt, 2001). Confirming a role for AMPA receptors, 

CRf was impaired in GluR1 knock-out mice (Mead and Stephens, 2003b) but not in 

GluR2 knock-out mice (Mead and Stephens, 2003a). Moreover, point mutation of 

the GluR1-ser831 phosphorylation site in mice resulted in impaired responding for 

CRf, while mutation of the GluR1-ser845 phosphorylation site was without effect 

(Crombag et al., 2008c). 

 

Clearly then, the BLA, OFC and NAcc core are important for CRf, but what are the 

roles of these structures and signalling that occurs between them? First, dopamine 

transmission serves as a “gain amplification” signal, influencing the impact of the 

CS, but does not mediate responding for CRf per se (reviewed in Everitt et al., 

2001). This latter role is likely provided by cortical limbic glutamatergic inputs 

carrying information about conditioned reinforcers and converging onto the ventral 

striatum, which provides the “limbic-motor interface” (Mogenson et al., 1980). In 

this respect, the BLA appears to play a major role. The BLA projects to the OFC, 

NAcc core and NAcc shell (Wright et al., 1996) and is considered to form a fronto-

temporal system underlying more complex goal-directed behaviour (Everitt and 

Robbins, 1992; Schoenbaum et al., 1998; Everitt et al., 1999). Thus, the BLA is not 

necessary for Pavlovian conditioning per se, but may provide an affective 

representation of environmental stimuli to support more complex forms of goal-

directed behaviour (including CRf; Cador et al., 1989; Burns et al., 1993; Whitelaw 

et al., 1996; Setlow et al., 2002), but not the simple elicitation of a stimulus CR 

(Parkinson et al., 2000a). The ventral subiculum, with an ability to influence 

dopamine transmission in the NAcc (Brudzynski and Gibson, 1997; Floresco et al., 

1998), may provide a contextual background necessary for the potentiation of CRf 

(Everitt et al., 2001). Finally, a functional dissociation within the ventral striatum is 
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apparent, with the NAcc shell being involved in “vigour” of CRf, while “choice” or 

“direction” of the response involves the convergence of cortical limbic inputs at the 

NAcc core (Parkinson et al., 1999). 

 

1.4.3 Pavlovian-instrumental transfer 

The neural substrates mediating general PIT overlap with those described for 

Pavlovian approach. Thus, general PIT is disrupted by lesions of the CeN, but not 

the BLA (Hall et al., 2001; Holland and Gallagher, 2003) and lesions of the NAcc 

core, but not the NAcc shell (Hall et al., 2001) also disrupt general forms of PIT. 

Contrary to Pavlovian approach, there is no effect of ACC lesions on general PIT 

(Cardinal et al., 2003). A recent electrophysiology study suggests subsets of 

neurons in the PLC and OFC are involved in the integration of Pavlovian and 

instrumental information, which is fundamental to the general PIT effect 

(Homayoun and Moghaddam, 2009). 

 

The circuitry recruited for outcome specific PIT can be dissociated from that of 

general PIT. Thus, lesions of the BLA (Blundell et al., 2001; Corbit and Balleine, 

2005), but not the CeN (Holland and Gallagher, 2003; Corbit and Balleine, 2005), 

lesions of the NAcc shell, but not the core (Corbit et al., 2001) and post-training 

lesions of the OFC (Ostlund and Balleine, 2007), but not the PLC (Corbit and 

Balleine, 2003) disrupt specific PIT. Within the dorsal striatum, the dorsolateral 

striatum (DLS) appears vital for a CS to excite instrumental responding, while the 

dorsomedial striatum (DMS) is involved in the integration of CS-US associations 

with specific R-O associations to produce selective responding (Corbit and Janak, 

2007; but see Pielock et al., 2011). Using a double disconnection procedure, BLA-

NAc shell disconnection impairs the ability of outcome-specific CSs to bias 

instrumental actions during PIT, whereas BLA-NAcc core disconnection is without 

effect on selective PIT (Shiflett and Balleine, 2010). 

 

Like Pavlovian approach and CRf, a clear contribution of dopamine transmission 

for PIT has been recognised. Systemic administration of the dopamine antagonists 
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pimozide or cis-fluphenthixol were found to disrupt general PIT (Dickinson et al., 

2000). These findings may be attributable to blunted mesolimbic dopamine 

transmission, since PIT is also disrupted by antagonism of dopamine D1R and 

D2R in the NAcc core and shell (Lex and Hauber, 2008) and inactivation of the 

VTA (Murschall and Hauber, 2006; Corbit et al., 2007). Similar to the potentiation 

of CRf by psychomotor stimulants, intra-NAcc shell infusions of d-amphetamine 

potentiate general PIT (Wyvell and Berridge, 2000, 2001). The facilitation of PIT 

also occurs following intra-NAcc shell microinjections of corticotrophin releasing 

factor (Pecina et al., 2006). Selective PIT was intact in mice with knock-down of the 

dopamine transporter (Yin et al., 2006a), suggesting selective transfer may be 

independent of tonic dopamine levels (Yin et al., 2006a) and/or dopamine may be 

restricted to general excitatory effects of Pavlovian cues, with more specific 

motivational effects provided by other signals (Corbit and Balleine, 2005; El-

Amamy and Holland, 2007). 

 

Although glutamate transmission is likely involved in PIT, given the cortical limbic 

striatal circuitry recruited for PIT, there is some conflicting evidence on the 

particular molecular components involved. Systemic blockade of AMPA/KA and 

NMDA receptors were without effect on general PIT (Murschall and Hauber, 2005), 

while blockade of mGluR5 reduced general PIT (George et al., 2009). However, 

general PIT was impaired in GluR2 knock-out mice (Mead and Stephens, 2003a), 

but not GluR1 knock-out mice (Mead and Stephens, 2003b). Mutation of both 

GluR1-ser845 and GluR1-ser831 phosphorylation sites in mice resulted in a 

disruption of general PIT, but mutation of either site alone was without effect 

(Crombag et al., 2008b).  General PIT was intact in mice lacking NARP (Johnson 

et al., 2007b), a secreted neuronal product that clusters AMPA receptors and 

regulates excitatory synaptogenesis (O'Brien et al., 1999). In a test of selective 

PIT, CS enhanced responding was impaired in GluR1 knock-out mice (Johnson et 

al., 2007a). 
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Collectively, studies on the neural components of PIT indicate that general and 

selective forms recruit different neural circuits that ultimately enhance activity in the 

NAcc core and shell, respectively. Moreover, these studies support a necessary 

role of the BLA in providing more outcome-specific CS-US representations, while 

the CeN provides more general motivational control over goal-directed behaviour 

(Corbit and Balleine, 2005). The CeN may well influence general PIT through its 

ability to influence mesoaccumbens dopamine signalling, as discussed previously. 

The role of the OFC in PIT is consistent with the proposed role of this structure in 

using the acquired S-O associations to guide appropriate goal-directed behaviour 

(Pickens et al., 2005; Ostlund and Balleine, 2007; Schoenbaum et al., 2009). 

 

1.4.4 Instrumental learning 

The neural substrates mediating the acquisition and transition between goal-

directed and habitual responding have been discussed elsewhere (Belin et al., 

2009; Balleine and O'Doherty, 2010). Notably, the acquisition, but not the 

expression of goal-directed behaviour requires the prelimbic PFC (Corbit and 

Balleine, 2003; Killcross and Coutureau, 2003; Ostlund and Balleine, 2005) while 

the DMS (a striatal target of the prelimbic PFC) contributes to both the learning and 

expression of goal-directed behaviour (Yin et al., 2005). In contrast, the DLS 

appears critically important for the transition to habit based responding (Yin et al., 

2004, 2006b). 

 

There is ample evidence to implicate dopamine and glutamate signalling within the 

cortical limbic striatal circuitry the acquisition and/or performance of a simple (R-O) 

appetitive instrumental response. Instrumental learning is disrupted by D1R 

antagonism in the NAcc core (Hernandez et al., 2005), the BLA and CeN 

(Andrzejewski et al., 2005) and the ventral, but not dorsal subiculum (Andrzejewski 

et al., 2006). With regard to glutamate, instrumental learning is disrupted by pre-

trial antagonism of NMDA receptors in the mPFC (Baldwin et al., 2000), BLA and 

CeN (Andrzejewski et al., 2004; McKee et al., 2010), posterior lateral striatum 

(Andrzejewski et al., 2004) and the medial striatum (McKee et al., 2010). In 
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contrast, NMDA antagonism in the OFC (McKee et al., 2010), dorsal or ventral 

subiculum (Baldwin et al., 2000) and the anterior dorsal striatum (Andrzejewski et 

al., 2004) were without effect on the acquisition of an instrumental response. Co-

infusion of a D1R and NMDA antagonist in the NAcc core strongly impaired the 

acquisition of instrumental responding, but were without effect when infused 

separately, highlighting the importance of dopamine-glutamate interactions in the 

learning of an instrumental response (Smith-Roe and Kelley, 2000). The 

contribution of NMDA and D1R receptors in the NAcc core to the acquisition, but 

not the performance of an instrumental response has been confirmed (Kelley et al., 

1997; Baldwin et al., 2000; Hernandez et al., 2005). Finally, post-training 

interference with protein synthesis in the NAcc core impairs the acquisition of an 

instrumental response, further implicating synaptic alterations within this region as 

important for the consolidation of instrumental memories (Baldwin et al., 2002; 

Hernandez et al., 2002). 

 

1.4.5 Summary 

I have presented a review of studies that have investigated neural components of 

sign-tracking, CRf and PIT and of appetitive instrumental responding. The neural 

substrates underlying each behavioural model of Pavlovian incentive learning are 

distinct, but also show some commonality (Table. 1.1). Taken together, the studies 

reviewed in this section point to a critical importance for Pavlovian incentive 

learning of dopamine signalling in the striatum converging with excitatory 

glutamatergic inputs arising from limbic cortical regions such as the amygdala, 

prefrontal cortex and hippocampus (Fig. 1.3). Within each of these major nodes are 

further subdivisions (e.g. the BLA and CeN of the amygdala and the NAcc shell 

and core of the ventral striatum) that play functionally distinct roles in reward 

processing (Fig. 1.3). Lesions of specific subdivisions within these nodes can leave 

the function of other subdivisions intact, indicating that many neural components of 

reward processing learning convey parallel and independent information. This 

general theme is in accordance with neuroanatomical and theoretical models that 

support the existence of parallel and interactive neural networks in reward 
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processing (Haber et al., 2000; Cardinal et al., 2002a; Haber, 2003; Balleine and 

Killcross, 2006; DeLong and Wichmann, 2007; Belin et al., 2009; Kringelbach and 

Berridge, 2009; Balleine and O'Doherty, 2010). The striatum, broadly divisible into 

ventral and dorsal parts, is clearly an important interface between Pavlovian and 

instrumental processes. Is it now useful to introduce some details on the micro-

circuitry of the ventral striatum, to further appreciate its role as the „limbic-motor 

interface‟ (Mogenson et al., 1980).  



28 
 

 
 
Behaviour 

Ventral 
Striatum 

Amygdal
a 

Subiculu
m Cortex Other 

C
o
re

 

S
h

e
ll 

B
L

A
 

C
e
N

 

D
o
rs

a
l 

V
e

n
tr

a
l 

P
L

C
 

A
C

C
 

O
F

C
 

IL
C

 

S
T

N
 

V
T

A
 

Sign-
tracking 

   Pre         

CRf F F  F  F       

General PIT             

Specific PIT             

 

Table 1.1 A summary of some brain regions involved in Pavlovian incentive 

learning processes. Lesion studies have identified an overlapping neural circuitry 

involved in different tests of Pavlovian incentive learning. Note that the picture 

presented here is rather simplified, since pharmacology manipulations of 

dopaminergic and glutamatergic signalling in each region are not incorporated. 

Green boxes, lesions disrupt behaviour; Grey, lesions are without effect; Pre, pre-

training, but not post-training, lesions disrupt behaviour; F, Area necessary for 

psychostimulant facilitation of CRf. For complete details and references, see text.  
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Figure 1.3 Neural circuitry of Pavlovian incentive learning. Glutamatergic (red) 

projections from the amygdala, hippocampus and prefrontal cortex arrive onto the 

striatum and are integrated with dopamine signals (blue) from the ventral midbrain. 

Reciprocal dopamine - GABA (black) connections between the midbrain and 

striatum result in a series of spiralling loops that allows more ventral parts of the 

striatum to influence more dorsal regions (DMS and DLS). The roles of each region 

in Pavlovian incentive learning can be briefly ascribed as follows: Hippocampus, 

contextual information; BLA, sensory specific information (producing affect); CeN, 

general motivation (producing arousal); VTA, incentive salience attribution and/or 

reward-prediction error learning; Prefrontal cortex, executive control and 

contingency / outcome representation; Dorsal striatum, control of instrumental 

actions; be they goal directed (DMS) or habit based (DLS); NAcc shell, 

consummatory CRs / hedonic URs; NAcc core, preparatory CRs / sign-tracking. 

Outputs of the striatum are illustrated in more detail in Figure 1.4 (adapted from; 

Everitt and Robbins, 2005; Yin et al., 2008).  
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1.5 The ventral striatum 

 

The striatum can be broadly divided into ventral and dorsal parts (reviewed in 

Meredith et al., 2008; Humphries and Prescott, 2010; Sesack and Grace, 2010), 

although other reviewers have suggested that divisions of the striatum are best 

considered across a ventromedial to dorsolateral gradient (Voorn et al., 2004). The 

dorsal regions of the striatum (i.e. DMS and DLS) receive information from motor 

and somatosensory cortical inputs and have clear importance for controlling goal-

directed and habit-based instrumental actions (Balleine, 2005; Faure et al., 2005; 

Yin et al., 2006b; Yin et al., 2008; Balleine and O'Doherty, 2010). Here I will focus 

on the ventral part (i.e. the accumbens), which can be further divided into the NAcc 

shell and NAcc core regions (Zaborszky et al., 1985; Meredith et al., 1992; Brog et 

al., 1993; Sesack and Grace, 2010) and which serves as a „hub‟ of the limbic 

network, playing a central role in Pavlovian incentive learning processes. 

 

1.5.1 Afferents 

The ventral striatum receives most of its excitatory glutamatergic input from 

allocortical regions including the hippocampus and amygdala and neocortical areas 

including the prefrontal cortex (Heimer et al., 1991; Heimer and Van Hoesen, 2006; 

Meredith et al., 2008). Dopamine input to the ventral striatum comes from the VTA 

and the SN (Beckstead et al., 1979; Brog et al., 1993). There are few strong 

inhibitory afferents to the NAcc, although there is evidence for reciprocal GABA 

projections from the VP, other parts of the basal forebrain and the VTA (reviewed 

in Sesack and Grace, 2010). The NAcc shell also receives a projection from 

hypocretin neurons in the lateral hypothalamus (Peyron et al., 1998), which may 

have inhibitory actions on NAcc neurons (Martin et al., 2002). Serotonin and non-

serotonin afferents from the dorsal raphe nucleus, and small norepinephrine 

projections from the locus coeruleus (LC) and the nucleus of the solitary tract, also 

input to the NAcc, the latter mainly to the NAcc shell (reviewed in Sesack and 

Grace, 2010). 
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Both glutamatergic and dopaminergic inputs appear differentially distributed 

between the NAcc core and shell compartments. For example, the ventral 

subiculum of the hippocampus projects primarily to the NAcc shell, while the more 

dorsal parts of the subiculum innervate the core (Meredith et al., 2008). Similarly, 

inputs from the amygdala strongly innervate the NAcc shell, but innervate only 

small compartments (the patches or striosomes) of the core (Ragsdale and 

Graybiel, 1988; Wright et al., 1996). Glutamatergic projections to the shell from the 

cortical regions arise from infralimbic, central and lateral orbital cortices, while 

projection to the NAcc core arise from more dorsal regions of the prefrontal cortex, 

such as the ventral and dorsal prelimbic and anterior cingulate cortices (reviewed 

in Yin et al., 2008). With respect to dopamine, the medial shell receives the most 

dense dopaminergic innervation (Voorn et al., 1986), with inputs to the NAcc shell 

arising almost exclusively from the VTA (Brog et al., 1993). In contrast, the NAcc 

core receives dopaminergic projections from both the VTA and SN (Brog et al., 

1993). More specifically, dopamine neurons from the SNc project to „patch‟ 

compartments in the ventral striatum (Gerfen et al., 1987), while dopaminergic 

neurons from the VTA terminate ventromedially in the NAcc shell and in medial 

parts of the core (Brog et al., 1993). How these different glutamatergic and 

dopaminergic inputs are fully integrated throughout the ventral and dorsal striatum 

is still under investigation, but the possibility exists that inputs from different regions 

can synapse onto the same principal neurons of the striatum, as has been 

demonstrated for inputs from the ventral subiculum and BLA and inputs from the 

PFC and BLA (French and Totterdell, 2002, 2003). Such connectivity may be 

critical for allowing hippocampal and BLA afferents to gate prefrontal influences on 

accumbens neurons (O'Donnell and Grace, 1995; O'Donnell et al., 1999; Grace, 

2000) 

 

1.5.2 Efferents 

The major projections of the ventral striatum are GABAergic and connect with the 

VP, SN, VTA, hypothalamus and brainstem (reviewed in Sesack and Grace, 2010). 

The NAcc core projects mainly to the dorsolateral portion of the VP, the 
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entopenduncular nucleus and the SNr (Sesack and Grace, 2010). The NAcc shell 

innervates regions including the ventromedial part of the VP, SNc and VTA. 

Inhibitory projections from the NAcc shell to the VTA influence DA cells that, in 

turn, project to the NAc core, which give rise to a medial to lateral series of 

„spiralling‟ projections which allow ventral regions of the striatum to influence 

transmission in more dorsal, motor-related, striatal regions (Heimer et al., 1991; 

Haber et al., 2000; Haber, 2003; Ikemoto, 2007). 

 

1.5.3 Medium spiny neurons 

The principle neurons in the striatum were first described as medium in size and 

densely spiny (Ramón y Cajal, 1911). Medium spiny neurons (MSNs) use GABA 

as their primary neurotransmitter, express neuropeptides, and comprise 90-95% of 

the total neuronal population of the striatum (Kita and Kitai, 1988; Meredith et al., 

2008). However, MSNs are far from homogenous in morphology, the organisation 

of their inputs, the peptides and receptors they express and regions that they 

project to (Gerfen et al., 1990; Meredith et al., 2008; Bertran-Gonzalez et al., 

2011). Morphologically, the cell bodies of MSNs are smaller in the ventral striatum 

than in the dorsal striatum, but the spine densities are similar (Meredith et al., 

1992). However, in the medial shell, MSNs are smaller still and have fewer 

dendritic arbors and spines compared to MSNs in other striatal regions. Thus, it is 

estimated that MSNs in the medial shell have 80% less surface for synaptic contact 

than MSNs in the dorsal striatum (Meredith et al., 1992). With regard to 

organisation of inputs, MSNs receive glutamate input at synapses on the “head” of 

the spine (Kemp and Powell, 1971), while dopamine terminals generally contact 

with the “neck” of the spine (Bolam, 1984; Freund et al., 1984). This so-called „triad 

of elements„ is believed to enable dopamine signals to influence the efficacy of the 

glutamatergic signal (reviewed in Dani and Zhou, 2004). But, in the NAcc core, 

only about half of dopaminergic inputs contact with spine necks and in the medial 

shell, approximately one third of dopaminergic terminals make contact with spines 

(Zahm, 1992). In more medial and caudal regions of the ventral striatum, more 

dopaminergic contacts are found on dendrites of MSNs (Zahm, 1992). 
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1.5.4 Direct and indirect pathways 

What receptors and peptides do MSNs express and where do they project to? 

These topics have been a matter of some debate and there may be ventral / dorsal 

striatal divisions that are not yet fully understood (for review see Voorn et al., 2004; 

Sesack and Grace, 2010; Bertran-Gonzalez et al., 2011). Current evidence 

suggests that MSNs can be segregated into approximately equal numbers based 

on the target of their main axon (Beckstead and Cruz, 1986). MSNs that form the 

„direct‟ striatonigral pathway project mainly to the SNr and express the D1R as well 

as the neuropeptides dynorphin and substance P (Hong et al., 1977; Mroz et al., 

1977). MSNs that form the „indirect‟ striatopallidal pathway connect to the SNr 

through successive synaptic relays in the VP and STN, and express primarily 

D2Rs and enkephalin (Finley et al., 1981; Gerfen and Young, 1988; Gerfen et al., 

1990). Uncertainty remains as to the identity and strength of connections on 

postsynaptic neurons to which MSNs project, but techniques such as optogenetics 

are beginning to prove useful in this area of research (e.g. Chuhma et al., 2011). 

 

Finally, it is important to recognize that MSNs make contact not only with neurons 

outside of the striatum but also within it (Chang and Kitai, 1986; Chuhma et al., 

2011). There exist MSN–MSN connections, which may allow for lateral inhibition 

within the NAcc, of which unidirectional (D1R-D1R or D2R-D2R) collaterals are 

most common and D2RD1R collaterals are more abundant than D1RD2R 

(Taverna et al., 2005; Taverna et al., 2008). MSNs may also connect with striatal 

inter-neurons, which together comprise < 5% of all striatal neurons, that include 

cholinergic tonically active neurons (TANs), fast-spiking interneurons (FSIs) and 

low-threshold spiking GABAergic inter-neurons (Kawaguchi et al., 1995). 

 

1.5.5 Summary 

Some of the connective intricacies of the striatum have been highlighted. The key 

points from this section are that, first, the striatum receives extensive dopaminergic 

inputs from the ventral midbrain and glutamatergic inputs from cortical and limbic 
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regions (Fig. 1.3). Second, how these inputs are integrated is not completely 

understood, but dopaminergic synapses are often well placed at the neck of spines 

on MSNs to modulate information encoded by glutamatergic inputs connecting at 

the spine head. Third, MSN projections from the striatum are broadly divisible into 

the direct pathways which connect with the ventral midbrain and express 

predominantly dopamine D1Rs and indirect pathways, which first connect with the 

ventral pallidum and express predominantly dopamine D2Rs (Fig. 1.4). Fourth, a 

series of ascending spiral loops between the striatum and midbrain allow the 

ventral striatum to influence activity in more dorsal striatal regions (Fig. 1.3). 

Finally, local connections amongst MSNs and striatal inter-neurons are likely 

critical for regulating overall striatal activity. 

 

A challenge remains to understand how various components of the striatum 

interact at a network level in Pavlovian incentive learning processes (discussed 

further in Berridge, 2004; Voorn et al., 2004; Goto and Grace, 2008; Yin et al., 

2008; Belin et al., 2009). The ventral striatum can be considered as a „hub‟ for 

associative Pavlovian learning, while the dorsal striatum is a „hub‟ for integrating 

sensorimotor actions. That neurons from the VTA and SNc project differently 

between ventral and dorsal parts of the striatum has led some to propose that the 

mesoaccumbens pathway may have a role more restricted in acquiring the value of 

stimuli during Pavlovian learning, while the nigrostriatal pathway may be more 

critical for learning the value of actions (Yin et al., 2008). However, it is important to 

remember that both striatal regions likely operate in parallel in „real world‟ 

situations in which actions may lead to the presentation of conditioned incentives 

and where conditioned incentives may be encountered that, in turn, promote 

actions. Serial, dopamine-dependent connectivity linking the ventral striatum to 

more dorsal regions is proposed to offer a neural substrate for how incentive 

motivation can link to cognitive processes, with glutamate afferents onto the ventral 

striatum acting to push control in this circuitry toward more dorsal sites (Belin et al., 

2009). 
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The neural circuitry of Pavlovian incentive learning is clearly important for adaptive 

behaviours, but its role in clinical disorders, and in particular drug addiction, is 

increasingly appreciated. In the next section, I will introduce some of the work 

which supports a role of Pavlovian incentive learning and its neural components in 

addiction-related behaviours.  
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Figure not shown due to copyright restrictions 

For figure, see Seack and Grace, 2010, Fig. 2. 

 

Figure 1.4 Outputs of the ventral striatum. Hypothetical direct and indirect output 

pathways whereby the NAcc core and shell may disinhibit or inhibit, respectively, 

adaptive motor pathways. Note that in this figure exist direct projections (i.e. D1R 

expressing) to the ventral mid brain, and indirect projections (i.e. D2R expressing) 

to the midbrain via the pallidum and subthalamic nucleus. Only major projections 

are shown. Red indicates inhibitory structures and pathways, whereas green 

indicates excitatory connections. BF Hypoth: basal forebrain and hypothalamus, 

MD Thal: mediodorsal thalamic nucleus, NAc: nucleus accumbens, PFC: prefrontal 

cortex, SNr: substantia nigra zona reticulata, STN: subthalamic nucleus, VP dl/vm: 

ventral pallidum, dorsolateral/ventromedial, VTA: ventral tegmental area (Sesack 

and Grace, 2010)  
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1.6 Drug addiction and Pavlovian incentive learning 

 

“A number of detoxified cocaine users in our clinic population report experiencing 

intense arousal and cocaine craving when they encounter „reminders‟ of their 

previous cocaine use: the sight of cocaine-using friends or locations, the use of 

alcohol, the sight of white bread, crumbs on the carpet, even the sight of talcum 

powder while changing a child‟s diaper... In our view, these cocaine „reminders‟ are 

essentially classically conditioned stimuli which have acquired their „reminder 

power‟ through repeated pairings with cocaine‟s pharmacologic effects over the 

natural course of a patient‟s drug use.” (taken from Childress et al., 1988) 

 

Drug addiction is defined as a chronic relapsing disorder characterised by loss of 

control over drug intake and compulsive drug taking despite adverse 

consequences (Everitt and Robbins, 2005; Koob and Le Moal, 2006). A cardinal 

feature of drug addiction is the high likelihood of relapse, even after long periods of 

abstinence from drug taking (DeJong, 1994). Early views of drug addiction 

emphasised motivation to take drugs because of their initial hedonic effects and to 

continue take drugs to avoid negative effects associated with drug withdrawal 

(Koob and Le Moal, 1997; Koob and Le Moal, 2006). However, as exemplified in 

the clinical observations above made by Childress and colleagues (1988) of 

detoxified drug users who were probably no longer experiencing withdrawal, a role 

for drug-associated cues is now appreciated in both the maintenance of drug 

seeking and taking and in precipitating relapse (Stewart et al., 1984; Robinson and 

Berridge, 1993; Everitt et al., 2001; Hyman and Malenka, 2001). 

 

Addictive drugs, such as cocaine, and drug-paired CSs closely interact with and 

can persistently alter the neural systems involved in Pavlovian incentive learning 

(reviewed in Berke and Hyman, 2000; Hyman and Malenka, 2001; Kelley, 2004; 

Hyman et al., 2006; Kauer and Malenka, 2007; Belin et al., 2009). For example, 

cocaine-associated stimuli have been found to activate dorsolateral striatum and 

limbic cortical areas in humans (Childress et al., 1999; Garavan et al., 2000; 
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Volkow et al., 2006) and non-contingent presentations of drug CSs are able to 

increase dopamine release in the NAcc core, but not the shell of rats (Ito et al., 

2000). Moreover, repeated d-amphetamine exposure can facilitate appetitive 

Pavlovian learning (Harmer and Phillips, 1998, 1999) and, within the striatum, 

exposure to addictive drugs can dramatically alter dopamine and glutamate 

signalling (Di Chiara and Imperato, 1988; White et al., 1995; White and Kalivas, 

1998; Wolf, 1998; Ungless et al., 2001; Kalivas, 2004; Wolf and Ferrario, 2010), 

can cause persistent alterations in neuronal morphology (Robinson and Kolb, 

2004; Crombag et al., 2005) and alter how information is processed and how 

actions are controlled at a network level (Schoenbaum and Setlow, 2005; 

Takahashi et al., 2007; Belin and Everitt, 2008). As a result of these (and many 

more) neurobiological changes caused by drug experience, drug-associated cues 

are proposed to become particularly effective in triggering drug-taking habits 

(Everitt and Robbins, 2005; Belin et al., 2009), or may become pathologically 

„wanted‟ due to a sensitisation of incentive salience attribution (Robinson and 

Berridge, 1993). 

 

In the following sections I will introduce the incentive-sensitisation model (Robinson 

and Berridge, 1993), given the experiments on behavioural sensitisation reported 

later in this thesis (Chapter 5). It is also valuable to introduce some ideas on how 

such CSs may operate in controlling addiction-related behaviours. 

 

1.6.1 Incentive-sensitisation 

Incentive motivation theory (see section 1.2.4) proposes that environmental stimuli 

associated with rewards can acquire incentive salience as a consequence of 

classical conditioning processes. Within the context of drug addiction, incentive-

sensitisation theory provides an account of how addictive drugs, through their 

ability to activate and cause persistent neural adaptations in „reward-related‟ brain 

areas, result in drugs and associated stimuli exerting increasingly powerful control 

over drug seeking and taking behaviour in some individuals (Robinson and 

Berridge, 1993, 2000, 2001, 2003, 2008). The four major points of the incentive 
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sensitisation, outlined by Robinson and Berridge (2001) are that 1) potentially 

addictive drugs cause long-lasting alterations in the brain 2) brain systems altered 

include those normally involved in incentive motivation and reward 3) these neural 

adaptations result in reward systems being sensitised to drug effects and drug 

associated stimuli and 4) these systems do not mediate pleasure or euphoric drug 

effects, but do mediate the incentive salience „wanting‟ component of reward. 

Importantly, the incentive-sensitisation model proposes that drugs and drug 

associated stimuli may be wanted more and more even if the affective/hedonic 

qualities of drugs are experienced less and less. Thus, „liking‟ components of 

reward, from the incentive-sensitisation perspective, are neither necessary nor 

sufficient for drug addiction to develop (Robinson and Berridge, 2001). 

 

Measuring the psychomotor activating effects of addictive drugs has been a 

primary method of assessing sensitisation, based on the assumption that neural 

components underlying behavioural sensitisation overlap with those involved in 

reward processing (Robinson and Becker, 1986; Wise and Bozarth, 1987; 

Robinson and Berridge, 1993, 2000). It is worthwhile pointing out some parameters 

of behavioural sensitisation and consider what some of these may tell us about 

how this phenomenon reflects addiction-related processes (reviewed in Robinson 

and Berridge, 2001). Behavioural sensitisation is dose-dependent (Kalivas et al., 

1988), typically requires repeated, intermittent drug experience (Robinson and 

Becker, 1986) but can also follow repeated exposure to food (Le Merrer and 

Stephens, 2006). Sensitisation in remarkably persistent (Robinson and Becker, 

1986), can occur with drug self-administration (Phillips and Di Ciano, 1996) and 

shows individual differences in susceptibility (Robinson and Berridge, 2001; Flagel 

et al., 2008). Individual variation seen in the development of sensitisation have 

been found to correlate with individual variation seen in incentive salience 

attribution and is proposed to reflect differences in vulnerability or resistance to 

drug addiction and other compulsive behavioural disorders (Flagel et al., 2008; 

Flagel et al., 2009; Robinson and Flagel, 2009). Sensitisation is also strongly 

influenced by associative learning that involves circumstances surrounding drug 
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experience (Robinson et al., 1998). Thus, while sensitisation of neural systems can 

occur non-associatively, the expression of behavioural psychomotor sensitisation 

critically depends upon stimuli (such as the context) associated with drug 

experience (Pert et al., 1990; Anagnostaras and Robinson, 1996). This feature 

may reflect the role of drug-associated contexts in precipitating relapse (Robinson 

and Berridge, 2001). In addition, whether the environment is novel or familiar (i.e. a 

home environment) can also influence the development of sensitisation (Badiani et 

al., 1995; Crombag et al., 1996; Browman et al., 1998b, a; Crombag et al., 1999). 

 

1.6.2 Sign-tracking 

How might conditioned incentives influence addiction-related behaviour? Drug-

paired CSs can elicit approach toward them (Uslaner et al., 2006) and, in real-

world situations, individuals may be brought into close proximity with sources 

where drugs can be found, which may in turn influence the propensity to relapse 

(Stewart et al., 1984; Tiffany, 1990; Robinson and Berridge, 1993; Tomie, 1996; Di 

Chiara, 1998; Everitt and Robbins, 2005). Although sign-tracking effects have long 

been thought important for addiction-related behaviours, it has only been with 

recent methodological developments that sign-tracking toward drug-paired CSs 

has been demonstrated in animals (Krank, 2003; Kearns and Weiss, 2004; Uslaner 

et al., 2006; Cunningham and Patel, 2007). 

 

1.6.3 Conditioned reinforcement 

In many aspects of addiction-related behaviours, conditioned reinforcers may play 

a critical role. First, conditioned reinforcers may maintain drug-seeking between 

periods when drugs are not available, as modelled using the second-order 

schedule of reinforcement (Kelleher, 1966; Arroyo et al., 1998; Schindler et al., 

2002; Mead and Stephens, 2003b; Wilson and Bowman, 2004; Di Ciano and 

Everitt, 2005). Indeed, drug-seeking for psychostimulants is particularly sensitive to 

omission of conditioned reinforcement during second-order schedules (Goldberg et 

al., 1981). Second, following extinction of an instrumental drug-seeking response, 

conditioned reinforcers are observed to reinstate instrumental responding on the 
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previously drug-paired lever (de Wit and Stewart, 1981; Kruzich et al., 2001; 

Highfield et al., 2002; Shalev et al., 2002; Shaham et al., 2003). This „extinction-

reinstatement model of drug seeking‟ may reflect the observation that humans 

frequently relapse after prolonged abstinence from drug taking. Third, conditioned 

reinforcers are able to support the acquisition of a new instrumental response (Di 

Ciano and Everitt, 2004a), which may model the learning of new behavioural 

strategies for obtaining drugs by drug addicted individuals (Everitt and Robbins, 

2005). Whether these three differing operational roles of conditioned reinforcers 

are also neurobiologically separable remains to be determined (Stephens et al., 

2010). Finally, as has been discussed previously, psychostimulants can markedly 

enhance responding for CRf maintained by CSs associated with natural rewards 

(see section 1.4.2). Everitt and Robbins (2005) propose that this feature of 

psychostimulants may be a critical component that contributes to their reinforcing 

effects; by analogy, this could be one reason why certain drugs are repeatedly 

taken for their ability to enhance enjoyment of music and other social experiences. 

 

1.6.4 Pavlovian-instrumental transfer 

PIT like processes may be considered as important in invigorating efforts to seek 

out, to consume or to „want‟ drugs (Berridge and Robinson, 2003; Everitt and 

Robbins, 2005) and it is noteworthy that PIT effects have been shown for smokers 

working to gain cigarettes and money (Hogarth et al., 2007). To date, PIT like 

processes have not been observed with drug-associated CSs in animals. In fact, 

unexpected drug-CS presentations are found to suppress rather than enhance 

drug-seeking (Di Ciano and Everitt, 2003), which may be due to distracting effects 

of the highly salient „wanted‟ cues (Robinson and Berridge, 1993; Belin and Everitt, 

2008). 

 

1.6.5 Summary 

The present section has introduced the idea that environmental cues associated 

with addictive drugs, through associative learning processes, are proposed to 

subsequently influence drug taking, seeking and relapse in ways that reflect normal 
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Pavlovian incentive learning processes (i.e. sign-tracking, CRf and PIT). There has 

been some debate as to whether the effects of drug-associated cues arise 

because of „aberrant learning‟ (Tiffany, 1990; Berke and Hyman, 2000; Everitt et 

al., 2001); in terms of strengthened stimulus-stimulus associations or dominant 

effects of S-R habits (discussed in Robinson and Berridge, 2003). Everitt and 

Robbins (2005) propose that habit does not refer to a procedural skill, but rather a 

persistent and repetitive initiation of an activity (e.g. drug-seeking). The incentive-

sensitisation model argues that S-S associations are not pathologically strong, that 

learning itself is normal and learning alone cannot generate compulsive behaviour 

(Robinson and Berridge, 2001, 2003). Rather, Robinson and Berridge (1993, 2000, 

2001, 2003, 2008) assert that the motivational impact of drug-associated CSs 

themselves are elevated due to sensitisation of systems (particularly mesolimbic 

and mesocorticolimbic dopamine systems) that control incentive salience „wanting‟ 

attribution. However, food can also support behavioural sensitisation that shows 

many commonalities with drug sensitisation (Le Merrer and Stephens, 2006), 

suggesting that behavioural sensitisation alone cannot account for a dominance of 

drug-seeking behaviour supported by drug associated cues (Stephens, 2006). 

Nevertheless, the role of drug associated CSs and Pavlovian learning processes 

are likely of critical importance for many features of addiction, including the 

maintenance of drug-seeking and taking and of relapse after periods of abstinence. 

 

I have now discussed at length Pavlovian incentive learning, its neural components 

and its relevance to drug addiction. Throughout this introduction an important and 

often necessary role of dopamine and glutamate signalling has been identified. In 

the final part of this introduction, the importance of glutamate signalling and the 

metabotropic glutamate receptor, mGluR5, will be further considered. 
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1.7 A focus on glutamate 

 

Mesolimbic and mesostriatal dopamine has gained prominence as the 

neurotransmitter of reward-related learning (Schultz, 1997; Schultz et al., 1997; 

Berridge and Robinson, 1998; Wise, 2004; Flagel et al., 2010). However, as has 

been highlighted throughout this introduction, glutamatergic afferents to the 

striatum and glutamate signalling within this and other reward-related structures, 

including the amygdala, are clearly important for Pavlovian incentive processes 

(e.g. Hitchcott and Phillips, 1997; Baldwin et al., 2000; Di Ciano et al., 2001; Di 

Ciano and Everitt, 2001; Mead and Stephens, 2003b, a; Andrzejewski et al., 2004; 

Dalley et al., 2005; Crombag et al., 2008b; Crombag et al., 2008c; Milton et al., 

2008b; McKee et al., 2010). In addition, dopamine outflow from the ventral 

midbrain is heavily influenced by glutamatergic inputs from the prefrontal cortex, 

ventral hippocampus and amygdala (reviewed in Sesack and Grace, 2010).  

 

Many of the studies reviewed thus far point to dissociable roles of specific 

glutamate receptors in the ventral striatum, with NMDA receptors generally seen as 

necessary for the acquisition of learning (e.g. Kelley et al., 1997; Dalley et al., 

2005), and AMPA receptors playing a more prominent role in the performance of 

acquired associations (e.g. Di Ciano et al., 2001). This theme has led a number of 

reviewers to propose that sculpting of synapses on striatal MSNs during reward-

related learning may be critical for determining how these neurons subsequently 

respond to salient events (e.g. reward-associated CSs) and that glutamatergic 

mechanisms, acting in partnership with dopamine, may be critical for instigating 

and maintaining these experience-dependent neuroplastic changes (Kelley et al., 

2003; Svenningsson et al., 2004; Dalley et al., 2005; Valjent et al., 2005; Meredith 

et al., 2008; Wolf and Ferrario, 2010). Moreover, glutamatergic signalling, and 

alterations of it following exposure to addictive drugs, may be a key component 

underlying much addiction-related behaviour (Kalivas and Duffy, 1998; Kalivas, 

2000; Vanderschuren and Kalivas, 2000; Kalivas, 2004; Wolf et al., 2004; Conrad 
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et al., 2008; Engblom et al., 2008; Kalivas and O'Brien, 2008; Kalivas, 2009; 

Mameli et al., 2009). 

 

In the following sections, I will briefly introduce some receptors of the glutamatergic 

neurotransmitter system and consider some features that underwrite their central 

role in synaptic plasticity, considered as the cellular correlate of learning and 

memory (Bliss and Lomo, 1973; Morris et al., 1986). Finally, I will introduce 

metabotropic glutamate receptors with a focus on group I mGluRs. Some 

electrophysiology and behavioural evidence will be reviewed that points to this 

receptor family as playing a central role in striatal synaptic plasticity and which 

indicates that mGluR5, in particular, could play an important role in Pavlovian 

incentive learning processes and the behavioural effects of addictive drugs, 

including cocaine. 

 

1.7.1 Ionotropic NMDA and AMPA receptors 

NMDA receptors, named after the selective agonist N-methyl-D-aspartate, are 

multimeric complexes formed of subunits belonging to three related families (NR1-

3), with NR1 and NR2 required for subunit function (reviewed in Monaghan et al., 

2005). An important feature of NMDA receptors is that they are both ligand gated 

and voltage gated, with voltage dependency due to blockade of NMDA receptor 

channels by Mg2+ ions at negative membrane potentials (Mayer et al., 1984; 

Nowak et al., 1984). NMDA receptors are highly permeable to Ca2+, Na+ and K+ 

ions. Calcium permeability through NMDA receptors allows for the activation of 

intracellular signalling cascades; a feature that advocates NMDA receptors as 

critical for triggering experience-dependent plasticity (Monaghan et al., 2005). 

Indeed, NMDA receptor activation is critical for many forms of LTP (a long lasting 

enhancement of the synaptic response following high frequency stimulation of an 

afferent input) that have been observed in brain tissue (Collingridge and Bliss, 

1995; Nicoll and Malenka, 1999), and also for the opposing phenomenon of LTD (a 

long lasting reduction in synaptic strength following low-frequency stimulation of an 
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afferent). Whether NMDA activation results in LTP or LTD may also depend, in 

part, upon the NMDA receptor subunit composition (Hrabetova et al., 2000). 

 

AMPA receptors, named after the selective agonist α–amino-3-hydroxy-5-

methylisoxazole-4-propionate, consist of four subunits (GluR1-4) and the 

composition of these subunits can dramatically alter the pharmacological and 

functional properties of the receptor. Notably, while agonist binding reveals a pore 

in AMPA receptors that can flux NA+ ions and allow for depolarisation of the cell, 

GluR2 lacking AMPA receptors can also flux Ca2+, which leads to more robust 

changes in cellular activation (reviewed in Monaghan et al., 2005; Derkach et al., 

2007; Shepherd and Huganir, 2007). AMPA receptors can also be phosphorylated 

at multiple sites on the intracellular C-terminal domain of their subunits, which 

allows for rapid and dynamic changes in the electrophysiological, morphological 

(e.g. trafficking and clustering) and biochemical (e.g. synthesis and subunit 

composition) properties of these receptors (reviewed in Wang et al., 2005; Santos 

et al., 2009). The correct trafficking of AMPA receptors is critical for the expression 

and maintenance of synaptic plasticity, with LTP generally requiring incorporation 

of new AMPA receptors at synapses, and LTD requiring removal of synaptic AMPA 

receptors (the mechanisms underlying AMPA trafficking have been extensively 

reviewed elsewhere; Song and Huganir, 2002; Bredt and Nicoll, 2003; Collingridge 

et al., 2004). 

 

1.7.2 Metabotropic glutamate receptors 

Metabotropic glutamate receptors (mGluR) are categorised into three groups, 

based on similarities in agonist pharmacology, primary sequence and associated 

G-protein effector coupling; Group I (mGluR1 and mGluR5), Group II (mGluR2 and 

mGluR3) and Group III (mGluR4, mGluR6, mGluR7 and mGluR8) (Alexander et 

al., 2008). The mGluRs share a common structure of a large bi-lobed extracellular 

N-terminal domain, seven putative trans-membrane spanning domains separated 

by short intra- and extracellular loops, and a variable length cytoplasmic carboxyl-

terminal domain (Fig. 1.5; Abe et al., 1992; Conn and Pin, 1997; Cartmell and 
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Schoepp, 2000; Kew and Kemp, 2005). Activation of mGluRs can trigger a 

cascade of intracellular events that indirectly alter neuronal excitability and can 

also produce relatively slow and delayed synaptic currents (reviewed in Ossowska, 

2005). 
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Figure not shown due to copyright restrictions 

For figure, see Conn and Pin, 1997, Fig. 4. 

 

Figure 1.5 Schematic representation of an mGluR. The mGluRs share a common 

structure of a large bi-lobed extracellular N-terminal domain that contains the 

glutamate (Glu) biding site, seven putative trans-membrane spanning domains 

separated by short intra- and extracellular loops that together mediate G protein 

activation, and a variable length cytoplasmic carboxyl-terminal domain which 

regulates receptor activity and targeting by interactions with proteins including 

calmodulin, Homer and PICK1. Positive and negative allosteric modulators bind to 

the heptahelical transmembrane domain (adapted from Conn and Pin, 1997).  
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1.7.3 Group I mGluRs 

1.7.3.1 Function 

Group I mGluRs positively couple via pertussis toxin-insensitive G protein (Gq/11) to 

phospholipase Cβ (PLCβ), modulating cellular activity through secondary 

messenger cascades associated with increased phosphoinositide hydrolysis and 

calcium mobilization (Abe et al., 1992; Conn and Pin, 1997; Kew and Kemp, 2005). 

Activation of mGluR5a induces oscillations of intracellular calcium (Nash et al., 

2001), whereas mGluR1a activation produces a single peak of intracellular calcium 

followed by a plateau (reviewed in Ossowska, 2005). Calcium mobilisation 

following group I mGluR activation can occur in a number of ways, including 1) 

production of ionositol 1,4,5-trisphosphate (IP3) due to PLCβ activation, with 

resultant release of Ca2+ from internal stores via IP3 receptors located on the 

endoplasmic reticulum (Fagni et al., 2000), 2) release of Ca2+ from internal stores 

via ryanodine-sensitive receptors (Fagni et al., 2000) and 3) Ca2+ influx through 

voltage dependent L-type calcium channels in the plasma membrane (Fagni et al., 

2000; Ossowska, 2005). Calcium signalling by group I mGluRs is likely to involve 

Homer proteins, which can physically bridge these receptors to internal calcium 

stores (Tu et al., 1998). In a partly calcium independent manner, Group I mGluRs 

can positively link to the extracellular signal-regulated kinase (ERK) cascade 

(Peavy and Conn, 1998; Thandi et al., 2002), which has numerous functions in  

experience-dependent plasticity, for example, by regulating gene expression, cell 

proliferation and AMPA receptor trafficking (Adams and Sweatt, 2002; Boudreau et 

al., 2007; Patterson et al., 2010). 

 

1.7.3.2 Localisation 

In the CNS, distribution of group I mGluRs is widespread. Regarding mGluR5 (Fig. 

1.6), Immunohistochemistry of mGluR5 protein and in situ hybridization of mGluR5 

mRNA has identified intense expression predominantly in the telencephalic 

regions; including the cerebral cortex, hippocampus, subiculum, the olfactory bulb, 

dorsal and ventral striatum and the lateral septal nucleus (Abe et al., 1992; 

Shigemoto et al., 1993; Testa et al., 1994; Romano et al., 1995). Electron 
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microscopic immunocytochemistry has indicated that mGluR5 is primarily localised 

postsynaptically in the striatum (Shigemoto et al., 1993) and on post-synaptic 

dendritic spines and shafts in the cortex and hippocampus (Romano et al., 1995; 

Shigemoto et al., 1997). Typically, group I mGluRs are found in a perisynaptic zone 

that surrounds the ionotropic receptors (Luján et al., 1996). To a lesser extent, 

Group I mGluRs may be found pre-synaptically on glutamatergic (Herrero et al., 

1992; Thomas et al., 2000), cholinergic (Marti et al., 2001; Feligioni et al., 2003) 

and noradrenergic (Parodi et al., 2006) nerve endings (but see Cartmell and 

Schoepp, 2000 for review). 

 

The distribution of mGluR1 and mGluR5 largely overlap, although the relative 

expression of either receptor varies markedly amongst brain regions. Thus, the 

density of mGluR5 is considerably higher than mGluR1 in the basal ganglia and 

the CA1, CA3 and dentate gyrus of the hippocampus (Spooren et al., 2001). 

Expression of mGluR1 in the Purkinje cell layer of the cerebellum is high, but this 

area is almost devoid of mGluR5 (reviewed in Ossowska, 2005).  
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Figure not shown due to copyright restrictions 

For figure see Shigemoto et al 1993, Fig 2 

 

Figure 1.6 Localisation of mGluR5 receptors in the adult rat brain. (a) Negative 

image of a parasagittal section showing mGluR5 immunoreactivity. Abbreviations: 

Sp, Spinal trigeminal nucleus; Cb, Cerebellum; IC, Inferior colliculus; Hi, 

Hippocampus; Th, thalamus; St, Striatum; Cx, Cerebral cortex; Ac, accumbens 

nucleus; AO, Anterior olfactory nucleus; AOB, Accessory olfactory bulb, MOB: 

main olfactory bulb. Bar = 4 mm (taken from Shigemoto et al., 1993)  
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1.7.3.3 Pharmacology 

Synthetic ligands for the mGluRs can be divided into competitive ligands which 

interact with the bi-lobed orthosteric agonist binding site and a relatively newer 

class of non-competitive ligands that interact with the transmembrane heptahelical 

domain, and which function as positive and negative allosteric modulators 

(reviewed in Kew and Kemp, 2005). Regarding competitive ligands, the most 

potent group I mGluR agonist, that displays reasonable selectivity over AMPA 

receptors and group II and III mGluRs, is (S)-3,5-dihydroxyphenylglycine [(S)-

DHPG] (Schoepp et al., 1999), which exhibits low micromolar potency at mGluR1 

and 5 (Kew and Kemp, 2005). The compound (R,S)-2-chloro-5-

hydroxyphenylglycine (CHPG) is also a low-potency agonist at rat recombinant 

mGluR5 and is selective over mGluR1 (Doherty et al., 1997). Selective mGluR1 

competitive antagonists have also been developed, which include (R,S)-1-

aminoindan-1-5-dicarboxylic acid (AIDA) (Pellicciari et al., 1995). 

 

Non-competitive mGluR5 antagonists have proven particularly valuable in 

understanding the physiological role of these receptors thanks to their useful in 

vivo pharmacokinetic profiles. Notably, 2-methyl-6-(phenylethynyl)-pyridine (MPEP) 

is a potent ligand of mGluR5 (IC50 = 37nM at human mGluR5a) and exhibits 

inverse agonism (Gasparini et al., 1999), while 3-[2-methyl-1,3-thiazol-4-

yl)ethynyl]pyridine (MTEP) exhibits improved selectively and CNS bioavailability 

over MPEP (Cosford et al., 2003). It is worthwhile noting that a number of positive 

allosteric modulators of group I mGluRs have also been identified, which may be 

particularly useful in reducing the potential for receptor desensitisation and 

tolerance effects associated with other ligands (reviewed in Kew and Kemp, 2005). 

 

1.7.3.4 Role in plasticity 

Group I mGluRs are well positioned at post-synaptic excitatory synapses to 

regulate neuronal excitability (reviewed in Ossowska, 2005) and to facilitate or 

induce both LTP and LTD of synaptic strength, although the cellular mechanisms 

through which these effects are achieved may vary amongst brain regions 
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(reviewed in Anwyl, 1999; Bellone et al., 2008; Anwyl, 2009; Luscher and Huber, 

2010). Commonly, activation of group I mGluRs is associated with a persistent 

weakening of glutamatergic synapses (i.e. mGluR-LTD), which typically involves a 

pre-synaptic expression mechanism mediated by retrograde endocannabinoid 

signalling (Gerdeman and Lovinger, 2001; Sung et al., 2001; Robbe et al., 2002). 

However, mGluR-LTD can also occur independently of endocannabinoid signalling 

(Rouach and Nicoll, 2003) and can be expressed post-synaptically (Huber et al., 

2000; Snyder et al., 2001; Nosyreva and Huber, 2005). 

 

In the dorsal and ventral striatum, group I mGluRs are densely expressed on both 

D1- and D2-MSNs (Tallaksen-Greene et al., 1998) and can influence synaptic 

plasticity in both striatal regions and on both MSN populations (Surmeier et al., 

2009; Luscher and Huber, 2010). In the dorsal striatum, mGluR-LTD is prevented 

on D1-MSNs of the direct pathway in the presence of dopamine, while mGluR-LTD 

on D2-MSNs of the indirect pathway is promoted (Kreitzer and Malenka, 2007; 

Shen et al., 2008). Both LTD mechanisms involve post-synaptic mGluRs, involve 

endocannabinoid signalling and are expressed pre-synaptically (reviewed in 

Luscher and Huber, 2010). 

 

Within the ventral striatum, CB1 receptors are also present on glutamatergic 

corticostriatal afferents and activation of post-synaptic mGluR5 is both necessary 

and sufficient to produce retrograde endocannabinoid signalling, resulting in LTD 

through stimulation of these pre-synaptic CB1 receptors (termed 'eCB-LTD'; Robbe 

et al., 2002; Uchigashima et al., 2007). Notably, eCB-LTD in the NAcc is abolished 

following a single administration of cocaine (Fourgeaud et al., 2004). It is not 

known how dopamine regulates mGluR-dependent eCB-LTD in the ventral striatum 

and the relative contributions of mGluR1 and mGluR5 to mGluR-LTD in the ventral 

and dorsal striatum are not fully understood. Some evidence suggests that 

mGluR1 is the primary receptor mediating mGluR-LTD in the striatum (Gubellini et 

al., 2001), while both mGluR5 and mGluR1 may be necessary for corticostriatal 

LTP (Gubellini et al., 2003). In either case, mGluR-LTD would seem necessary to 
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balance activity between the direct and indirect pathways, which is normally 

dominated by an inhibition (i.e. LTD) of the indirect pathway (Surmeier et al., 

2007). It is also noteworthy that mGluR5 participates in retrograde cannabinoid 

signalling in the BLA (Zhu and Lovinger, 2005) and, at excitatory synapses in the 

mouse prefrontal cortex, retrograde endocannabinoid signalling plays an important 

role in mediating LTD, with some evidence pointing to involvement of mGluR5 

(Lafourcade et al., 2007). 

 

In addition to altering pre-synaptic glutamate release through endocannabinoid 

signalling, post-synaptic group I mGluRs can closely interact with other post-

synaptic receptors to influence neuronal plasticity. For example, both mGluR5 and 

dopamine D1Rs, but not D2Rs, may be involved in LTP that occurs in the NAcc 

core following high-frequency stimulation of glutamatergic inputs (Schotanus and 

Chergui, 2008), while mGluR5 is found to potentiate NMDA responses in striatal 

MSNs following stimulation of corticostriatal afferents (Pisani et al., 2001). In some 

brain regions (such as the hippocampus and VTA), mGluR-LTD can arise through 

alterations in post-synaptic AMPA receptor trafficking (Huber et al., 2000; Mameli 

et al., 2007; Luscher and Huber, 2010), which involves rapid local synthesis of 

proteins that include activity-regulated cytoskeletal associated protein (Arc; Park et 

al., 2008), microtubule associated protein 1b (MAP1b; Davidkova and Carroll, 

2007) and striatal enriched tyrosine phosphatase (STEP; Moult et al., 2006; Zhang 

et al., 2008). At least in the VTA, mGluR-LTD requires the rapid synthesis of 

GluR2, which forms GluR2-containing AMPA receptors that are built within minutes 

and replace synaptic GluR2-lacking (calcium permeable) AMPA receptors (Mameli 

et al., 2007). Notably, mGluR-LTD is only observed in the VTA after synapses have 

been potentiated by cocaine exposure, suggesting that group I mGluRs may play a 

protective role by „depotentiating‟ synapses (Bellone and Luscher, 2005, 2006; 

Mameli et al., 2007). Finally, interactions with the ERK-MAPK and PI3K-mTOR 

intracellular signalling pathways provide a mechanism through which group I 

mGluRs can alter translational regulation and induce plasticity (reviewed in 

Luscher and Huber, 2010). 
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1.7.3.5 Role in behaviour 

Much of what is known about the role of group I mGluRs in behaviour has come 

from studies using the selective mGluR5 antagonists MPEP and MTEP. Both 

compounds have been shown to display anxiolytic and antidepressant activity 

(Ballard et al., 2005; Li et al., 2006; Belozertseva et al., 2007; Stachowicz et al., 

2007; George et al., 2009), to reverse L-dopa induced dyskinesia in rodent models 

of Parkinson‟s disease (Dekundy et al., 2006; Levandis et al., 2008), to modulate 

nociceptive transmission (Neugebauer, 2002; Zhu et al., 2005; Osikowicz et al., 

2008) and to modulate the reinforcing effects of drugs of abuse (Table 1.2), as 

discussed further below (and reviewed elsewhere; Carroll, 2008; Markou, 2009; 

Olive, 2009). Recent evidence also suggests that positive allosteric modulators of 

mGluR5 may provide a novel approach for the development of antipsychotic and 

precognitive agents (Liu et al., 2008). Thus, it appears that mGluR5 contributes to 

a variety of behavioural and emotional processing functions, which is in 

accordance with the predominant expression of mGluR5 within the limbic system. 

 

In a now seminal study, mGluR5 knock-out mice were found not to self-administer 

cocaine and were insensitive to cocaine‟s locomotor stimulating effects 

(Chiamulera et al., 2001). Following this report, numerous studies have used 

mGluR5 antagonists to further understand the role of this receptor in animal 

models of addiction-related behaviours and behavioural effects of addictive drugs. 

Thus, by example of cocaine, mGluR5 antagonism has been shown to disrupt the 

acute psychomotor activating effects of cocaine (McGeehan et al., 2004), to block 

the acquisition and/or expression of cocaine sensitisation (Dravolina et al., 2006; 

Veeneman et al., 2010), to disrupt the acquisition of cocaine CPP (McGeehan and 

Olive, 2003) (but see Herzig and Schmidt, 2004), and to attenuate reinstatement of 

drug seeking by cocaine-associated cues and by a cocaine prime (Backstrom and 

Hyytia, 2006; Kumaresan et al., 2009). Indeed, mGluR5 antagonists have been 

shown to disrupt the reinforcing effects of addictive substances from a variety of 

pharmacological classes, as assessed using the drug self-administration paradigm 
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(Table 1.2). Interestingly, mGluR5 antagonism had no effect on the reinstatement 

of food seeking by a food-paired cue (Bespalov et al., 2005; Gass et al., 2008; 

Kumaresan et al., 2009), although reinstatement of seeking induced by a 

discriminative cue paired with sweetened, condensed milk was attenuated by 

MTEP (Martin-Fardon et al., 2009). 

 

Taken together, these studies suggest that mGluR5 may be intimately involved in 

appetitive learning processes for both „natural‟ and/or „drug‟ rewards. However, it 

remains uncertain as to whether mGluR5 plays an exclusive role in primary and/or 

secondary reinforcement and, in fact, little work has been done to tease apart the 

role of mGluR5 in specific Pavlovian incentive learning processes (although see 

George et al., 2009). Furthermore, attempts to clarify the exact contribution and 

neuroanatomical location of mGluR5 in regulating responses to addictive drugs or 

reward-paired CSs have been complicated by the fact that pharmacological tools, 

such as MPEP, may induce anhedonia following intracerebral administration 

(Backstrom and Hyytia, 2007), or may possess intrinsic reinforcing properties (van 

der Kam et al., 2009b) and also because of the widespread expression of mGluR5 

in the brain (Shigemoto et al., 1993). 
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Table 1.2 Review of mGluR5 antagonist effects on drug self-administration. Abbreviations: NHP, Non-human primate; M, male; F, female; 

FR, fixed-ratio; PR, progressive ratio; i.m. intra muscular; i.v. intra venous; i.p. intra peritoneal; MED: minimum effective dose; ↓ indicates 

decrease in self-administration  

Drug Reference Species

Sub species / 

Strain Sex Schedule

mGluR5 

antagonist

Doses 

(mg/kg)

Admi

n 

Route

Pre-

dose 

time 

(min)

Outcome 

(MED; 

mg/kg)

Cocaine (Platt et al., 2008) NHP Squirrel Monkey M FR10 MPEP 0.1-1.8 i.m. ↓ (0.3)

(Lee et al., 2005) NHP Squirrel Monkey M/F FI(FR) MPEP 0.1-1.0 i.m. 5 ↓ (0.3)

(Tessari et al., 2004) Rat Wistar M FR2 MPEP 1.0-10 i.v. 30 ↓ (10)

(Paterson et al., 2005) Rat Wistar M PR MPEP 1.0-9.0 i.p. 30 ↓ (9)

(Kenny et al., 2005) Rat Wistar M FR1 MPEP 1.0-9.0 i.p. 30 ↓ (3)

(Osborne et al., 2008) Rat SD M FR1 MTEP 0-3 i.p. 30 ↓ SA (1)

(Gass et al., 2008) Rat SD M FR1/PR MTEP 0-3 ↓

Ethanol (Cowen et al., 2005) Rat Fawn Hooded M FR3 MTEP 2 i.p. 20 ↓ (2)

(Cowen et al., 2005) Rat Alc Prefering (iP) M FR3 MTEP 0.5-2 i.p. 20 ↓ (1)

(Besheer et al., 2008) Rat Alc Prefering (P) M PR MPEP 1.0-10 i.p. ↓ (3)

(Schroeder et al., 2005) Rat Alc Preferring (P) M MPEP 1.0-10 ↓ (3)

(Cowen et al., 2007) Mouse C57BL/6 M FR1 MTEP 5-40 i.p. 20 ↓ (20)

(Lominac et al., 2006) Mouse C57BL/6J M FR4 MPEP 1.0-30 i.p. 30 ↓ (10)

(Hodge et al., 2006) Mouse C57BL/6J M FR1 MPEP 1.0-10 i.p. 0 ↓ (3)

Heroin (van der Kam et al., 2007) Rat Long Evans FR10 MPEP 1.25-20 i.p. 30 ↓ (20)

Ketamine (van der Kam et al., 2007) Rat Long Evans FR3 MPEP 1.25-20 i.p. 30 ↓ (5)

Nicotine (Tessari et al., 2004) Rat Wistar M FR2 MPEP 1.0-10 i.v. 30 ↓ (10)

(Palmatier et al., 2008) Rat Sprague Dawley M FR1(VS/lever) MPEP/MTEP 0-12/0-4 i.p. ↓ (6 & 2)

(Liechti et al., 2007) Rat Wistar M FR5 MPEP 1.0-9.0 i.p. 30 ↓ (6)

(Paterson et al., 2005) Rat Wistar M PR MPEP 1.0-9.0 i.p. 30 ↓ (9)

(Paterson, et al., 2003) 

(Markou, et al., 2004) Rat Wistar M FR5 MPEP 1.0-9.0 i.p. 30 ↓ (3)

Methamph

etamine
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1.7.4 Summary 

Reward processing is multifaceted, but associative learning represents one major 

component that allows an organism to recognise and appropriately respond to 

environmental stimuli that are predictive of reward experience. Reward-associated 

stimuli can influence behaviour in many ways that are considered to reflect the 

formation of distinct CS-US associations. Investigations into the neural substrates 

of Pavlovian incentive learning have identified a forebrain circuitry involving cortical 

limbic and striatal regions, with glutamatergic and dopaminergic signalling 

recognised as important in both the formation of distinct reward-related memories 

and in determining responding to reward-associated stimuli. The striatum, with its 

ventral and dorsal parts, is a key integration point for dopaminergic signalling 

arising from the ventral midbrain with glutamatergic inputs from cortical and limbic 

regions. Outputs from the striatum to motivational and motor systems can be 

broadly distinguished into two neuronal populations that form the direct striatonigral 

(D1-MSNs) and indirect striatopallidal (D2-MSNs) pathways. A challenge remains 

to understand how reward experience might sculpt activity in these functionally 

distinct pathways, which could determine how these pathways, and presumably the 

organism in turn, respond to reward-associated stimuli. Moreover, understanding 

how addictive drugs interact with the neural mechanisms of Pavlovian incentive 

learning may provide insight to how drug associated stimuli come to influence 

drug-seeking, taking and relapse in addiction. 

 

Within this context, mGluR5 is particularly interesting. From histology and 

electrophysiology studies, group I mGluRs appear ideally positioned to contribute 

to experience-dependent neuroplastic changes in reward-related brain areas, 

either through modulation of pre-synaptic neurotransmitter release, post-synaptic 

intracellular signalling cascades and/or post-synaptic activity of D1Rs, NMDA and 

AMPA receptors. With the advent of useful in vivo tools, behavioural studies have 

identified mGluR5 as important for appetitive learning for „natural‟ and/or „drug‟ 

rewards. However a number of interesting questions remain unanswered. First, it is 

not clear which component(s) of reward processing mGluR5 is involved in, such as 
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liking and/or incentive salience attribution or Pavlovian and/or instrumental 

learning. Second, with regard to Pavlovian incentive learning, it is not clear whether 

mGluR5 contributes to general motivational and/or outcome specific learning and 

whether mGluR5 could be involved in learning necessary to support sign-tracking, 

CRf and/or PIT. Third, it is not clear whether mGluR5 could play a role in the 

acquisition of reward-related associations and/or the expression of control over 

behaviour by reward-associated stimuli. Fourth, it is not clear where in the brain 

mGluR5 might contribute to reward processing, although the striatum would seem 

like one obvious candidate given the particularly high expression of mGluR5 in this 

region. Fifth, if striatal mGluR5 contributes to reward-related learning, it would be of 

interest to understand the relative contributions of mGluR5 located on MSNs of the 

D1R direct striatonigral pathway or the D2R indirect striatopallidal pathway. Finally, 

it would be of further value to understand the effect of addictive drugs on signalling 

mediated by mGluR5 which, combined with a better understanding of the role of 

mGluR5 in reward processing, may provide some insight to how drug-associated 

stimuli come to influence addiction-related behaviours. 

 

As outlined in the following sections, experiments reported in this thesis will aim to 

address some of these issues using behavioural pharmacology techniques 

combined with immunohistochemistry and immunoblotting in novel mouse line in 

which mGluR5 has been selectively knocked-down on cells that express dopamine 

D1Rs (termed mGluR5KD-D1 mice; Novak et al. 2010).  
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1.8 Aims and structure of this thesis 

 

1.8.1 Chapter 2 

Chapter 2 investigates the basic phenotype of mGluR5KD-D1 mice. Particular 

attention is paid to taste, vision and auditory function and motor activity. Intact 

function of these sensory and motor systems will be required to undertake more 

complex behavioural tasks in mGluR5KD-D1 mice. In addition, there is much 

evidence to support a role of mGluR5 in anxiety-related behaviours (e.g. Spooren 

et al., 2000b), thus potential alterations in anxiety-related behaviours in mGluR5KD-

D1 mice will be assessed using three tests of unconditioned anxiety; open-field, 

light-dark box and elevated plus-maze. The experiments reported in this chapter 

therefore aim to discover any basic deficits in mGluR5KD-D1 mice that should be 

considered when undertaking and interpreting data from other experiments 

reported in this thesis. 

 

1.8.2 Chapter 3 

Chapter 3 explores Pavlovian incentive learning in mGluR5KD-D1 mice. Given the 

dense expression of mGluR5 in „reward-related‟ brain areas (Shigemoto et al., 

1993; Sesack and Grace, 2010) and its established role in synaptic plasticity 

(Bellone et al., 2008), considered as the cellular correlate of learning and memory 

(Kelley, 2004), it is reasonable to propose that mGluR5 may have a critical role in 

appetitive Pavlovian learning. To investigate this possibility, cohorts of mGluR5KD-

D1 mice will be trained a Pavlovian association between a food reward and a simple 

stimulus (such as a tone or light). The ability of mGluR5KD-D1 mice to learn about 

the predictive properties of the food-paired CS will be assessed in tests of 

discriminated approach. The ability of the CS to acquire incentive motivational 

value, such that it can reinforce, attract and motivate behaviour will be assessed in 

tests of CRf, sign-tracking (Pavlovian approach) and PIT, respectively. To further 

probe neural function in mGluR5KD-D1 mice, the ability of cocaine to facilitate CRf 

will be examined. 
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1.8.3 Chapter 4 

The aim of Chapter 4 is to investigate whether the CRf deficit in mGluR5KD-D1 mice 

reported in Chapter 3 reflected a failure of these mice to learn an incentive 

association between an environmental stimulus and a food reward (i.e. an 

acquisition deficit) and/or a failure of the conditioned incentive to subsequently 

exert control over behaviour (i.e. an expression deficit). Since mGluR5 is 

constitutively knocked-down in mGluR5KD-D1 mice, the experiments in Chapter 4 

will take a pharmacology approach to investigate this question. Thus, wild-type 

mice will be injected with the mGluR5 antagonist, MTEP, to block mGluR5 function 

during the learning of a Pavlovian association and/or a test of CRf. In this way, the 

role of mGluR5 in the acquisition and/or expression of predictive and incentive 

properties of a reward-paired CS will be assessed. 

 

1.8.4 Chapter 5 

Findings from chapter 3 and 4 both implicate mGluR5 in the acquisition of incentive 

associations that subsequently enable a CS paired with a “natural” reward (food) to 

control behaviour. Environmental stimuli associated with addictive drugs, such as 

cocaine, are proposed to exert powerful control over behaviours because of the 

effects of such drugs on the neural circuitry that mediates incentive learning and 

memory processes (Robinson and Berridge, 1993; Nestler, 2001; Kelley, 2004; 

Hyman et al., 2006). If incentive Pavlovian learning is disrupted in mGluR5KD-D1 

mice, it is reasonable to propose that some behavioural effects of cocaine, which 

reflect cocaine-induced neuronal adaptations within reward-related brain areas, 

may also be disrupted in mGluR5KD-D1mice. Thus, Chapter 5 will use mGluR5KD-D1 

mice to explore the contribution of mGluR5 on dopaminoceptive neurons to 

cocaine conditioned reward, measured with the CPP task, and to behavioural 

sensitisation. 

 

1.8.5 Chapter 6 

Experiments in Chapter 5 reveal that the acute psychomotor activating effects of 

cocaine are significantly attenuated in mGluR5KD-D1 mice when compared to their 
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wild-type counterparts. If some acute behavioural effects of cocaine, which involve 

glutamate and dopamine signalling in the striatum, are diminished, it may be 

expected that some neurobiological effects of cocaine are also disrupted in the 

striatum of mGluR5KD-D1 mice. The experiments of Chapter 6 explore this possibility 

using immunohistochemistry and immunoblotting techniques to measure cocaine-

induced activation of the ERK1/2 pathway in the striatum of mGluR5KD-D1 mice. 

This pathway appears critical for influencing transcriptional regulation proposed to 

underlie the long term effects of addictive drugs (Girault et al., 2007). In addition, 

both cocaine and group I mGluRs are well known to regulate trafficking of AMPA 

receptors, a feature also considered important for neuroplastic changes underlying 

addiction-related behaviours (Snyder et al., 2001; Bellone and Luscher, 2005; 

Zhang et al., 2008; Wolf and Ferrario, 2010). The second series of experiments 

reported in Chapter 6 aim to explore, with immunoblotting, the extent to which loss 

of mGluR5 on dopaminoceptive neurons disrupts rapid changes in AMPA receptor 

trafficking and function in the striatum that occur following acute cocaine exposure. 

Finally, it must be remembered that while the experiments of this chapter tell us 

something about the role of mGluR5 on dopaminoceptive neurons in neuroplastic 

changes that may contribute to behavioural effects of cocaine, they may also serve 

to highlight deficits in neuroplasticity following loss of mGluR5 on these neurons 

that could contribute to incentive learning deficits in mGluR5KD-D1 mice reported in 

Chapter 3 of this thesis. 
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2 Basic phenotyping of mGluR5KD-D1 mice 

 

2.1 Introduction 

 

Advances in molecular genetics have led to a revolution in our ability to explore the 

function of individual genes in physiology and behaviour. From the introduction of 

the inbred mouse stain in the 1900s to the development of transgenic (Jaenisch, 

1976) and genetically mutated mice (Thomas and Capecchi, 1987), powerful tools 

now exist to examine genetic components of more complex behavioural traits that 

characterise many human disorders. The mapping of animal genomes (Lander et 

al., 2001; Waterston et al., 2002) has facilitated the ability to insert or remove 

genes or modify their expression levels in a cell-type and time-point specific 

manner. However, with these advancements comes an important caveat. Genes 

do not work in isolation and mutation of a single gene or transgene insertion can 

have many effects beyond those anticipated by the investigator. The observable 

characteristics (that is, the phenotype) of a novel mouse line must therefore be well 

understood before more advanced behavioural analyses are undertaken. 

 

The aim of this chapter will be to characterise the basic phenotype of a novel 

mouse line in which mGluR5 has been selectively knocked-down on cells that 

express dopamine D1 receptors by use of RNA interference technology. Before 

introducing these experiments in further detail (section 2.1.3 of this chapter), it is 

first necessary to appreciate some general concepts in generating transgenic mice 

and the use and limitations of RNA interference technology, which is a relatively 

recent addition to the neuroscientist toolbox. In addition, the mGluR5KD-D1 mouse 

and its biological characterisation (as reported in Novak et al., 2010) will be 

introduced. 

 

2.1.1 Transgenic mice in behavioural neuroscience 

Tremendous progression within molecular biology, genetics and behavioural 

neuroscience has uncovered great complexity in the genetic control of human 
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behaviour. One gene can influence multiple phenotypic traits (termed, pleiotropy; 

Hodgkin, 1998), indicating that genes and their associated proteins do not work in 

isolation but are part of a complex network of interactions. For example, 

transcriptional silencing of the FMR1 gene, arising from an unstable trinucleotide 

(CGG) repeat expansion mutation (Verkerk et al., 1991), can result in physical 

perturbations, attentional deficits, stereotypic movement, anxiety, autism, 

susceptibility to epilepsy and language and learning impairments that characterise 

Fragile X syndrome (Bagni and Greenough, 2005; Mercaldo et al., 2009). 

Meanwhile, psychiatric disorders such as drug addiction, depression or 

schizophrenia can reflect the interaction of multiple genes and signals that control 

their expression (termed, epigenetics; Nestler, 2000; Tsankova et al., 2007). Gene-

behaviour and gene-gene interactions are also influenced by environmental 

factors, which add another layer of complexity in determining behavioural output 

under normal and aberrant states (Feder et al., 2009; Bale et al., 2010). If we are 

to successfully parse the genetic components of human behaviours, a model 

organism is required in which individual genes can be readily manipulated, 

environment factors carefully controlled and individual behaviours that contribute to 

complex behavioural traits examined. 

 

A variety of experimental species have been adopted by behavioural geneticists. 

Genomic alterations of species traditionally used to examine developmental 

processes, including the nematode Caenorhabditis elegans, fruit fly Drosophila 

melanogaster, and zebrafish Danio rerio have recently been used to study the 

genetic basis of associative learning processes (Glanzman, 2005; Ardiel and 

Rankin, 2010; Sison and Gerlai, 2010) and of more complex behavioural disorders 

such as Parkinson‟s disease (Schmidt et al., 2007; Flinn et al., 2008; Botella et al., 

2009). While these species are cost effective and their genes can be rapidly 

manipulated, the translation of findings to mammalian systems can prove difficult 

(Yin et al., 2007). In contrast, rodents share ~99% of their genes with humans 

(Waterston et al., 2002) and the rat is perhaps one of the best characterized 

laboratory species with regard to its physiology, neurobiology, pharmacological 
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responses and behavioural repertoire. Until recently, the development of 

genetically modified rats was precluded by the failure to generate germline 

competent rat embryonic stem (ES) cells (Buehr et al., 2008; Li et al., 2008; Voigt 

and Serikawa, 2009). In contrast, mouse pluripotent ES cells were successfully 

isolated in 1981 (Evans and Kaufman, 1981), which allowed for modifications of 

the mouse genome to be transmitted through the mouse germline (Capecchi, 

1989). Around the same time, the first transgenic mouse was generated by the 

stable integration of foreign DNA into the genome using pronuclear microinjection 

(Brinster et al., 1981; Gordon and Ruddle, 1981; Wagner et al., 1981). When 

combined with behavioural tasks, many of which were initially developed for use 

with rats, the genetically modified mouse offers a powerful model system for 

understanding the genetic components of complex behavioural traits. 

 

2.1.1.1 Generation of transgenic mice and some limitations 

The application of mutant mice for the exploration of gene function is dependent, in 

part, upon methodologies available to manipulate the genome (Branda and 

Dymecki, 2004). The techniques used to generate mutant mice have become 

increasingly sophisticated since their original description in the early 1980s and 

today, literally thousands of modified strains are available to the researcher 

(Yoshiki et al., 2009; Ringwald and Eppig, 2010). It is beyond the scope of this 

thesis to address the many molecular techniques that enable generation of mice 

with deletions, insertions, inversions or exchanges of chromosomal DNA with high 

fidelity and regional and temporal specificity of expression. Indeed, a number of 

reviews thoroughly discuss generation of mice by homologous recombination of ES 

cells, including site-specific recombination (for example, Cre/loxP and Flp-FRT), 

knock-out, knock-in and conditional gene inactivation techniques (Picciotto and 

Wickman, 1998; Brusa, 1999; Misra and Duncan, 2002; Branda and Dymecki, 

2004; Castrop, 2010). In addition to these „designer‟ mutant technologies, the 

contribution of phenotype-driven strategies in mice for identifying the genetic basis 

of behavioural traits, such as mapping of spontaneous or induced single gene 

mutations in inbred strains and QTL analysis, also deserves mention (reviewed in 
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Lander and Botstein, 1989; Paigen, 2003b, a; Peters et al., 2007). A more detailed 

consideration of the features and potential limitations of transgenic mice generated 

by pronuclear microinjection using RNA interference (RNAi) is warranted however, 

as this approach was used to generate the mGluR5KD-D1 strain (Novak et al., 2010). 

 

The generation of transgenic mice by pronuclear microinjection first requires the 

design of a transgene expression cassette, which is then cloned into a vector, 

purified, microinjected into the pronuclei of fertilized eggs and reimplanted into the 

oviducts of a pseudo-pregnant foster mother. Newborn mice that carry the 

transgene are referred to as founders of the transgenic line and, all being well, the 

transgene is passed onto progeny in Mendelian fashion (Brusa, 1999; Auerbach, 

2004). Clearly, the entire process is not quite as straightforward as the two 

sentence description just provided. Many factors contribute to the success of 

generating the novel transgenic mouse line, which include the design of the 

transgene cassette and the genetic material that is incorporated into the genome. 

 

The transgene expression cassette typically contains two major components; the 

transcription unit of a gene of interest and regulatory elements that control its 

expression, which are cloned into a vector such as a bacterial or yeast artificial 

chromosome (BAC or YAC) (Auerbach, 2004). A reporter gene can also be 

incorporated into the cassette, allowing for expression of the transgene to be 

readily identified. Reporter gene examples include lacZ, which is detected by 

assaying for β-galactosidase, and Green Fluorescent Protein (GFP; or its 

enhanced version, EGFP), which can be visualized without need for a substrate 

(Chalfie et al., 1994).  

 

The regulatory elements (promoter/enhancer) of the transgene cassette can 

provide regional specificity of transgene expression. For example, use of a small 

fragment of the gene promoter for tyrosine hydroxylase confers selectivity of 

transgene expression to dopaminergic neurons (Liu et al., 1997), while larger 

promoter fragments can drive gene expression in all catecholaminergic cells (Min 
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et al., 1994). Careful selection of neural-specific promoters can therefore offer 

greater precision for investigating the function of a specific gene and an associated 

protein within a brain region that cannot be so easily isolated with lesioning 

approaches or in which pharmacology is neither available or regionally or cell-type 

selective. Promoters can also confer temporal specificity of transgene expression. 

For example, a transgene with a promoter of the NR2B subunit would be 

expressed in neurons of the forebrain and cerebellar granule cells from embryonal 

to early stages of postnatal development, but would then be selectively repressed 

in the cerebellum after the second week (Monyer et al., 1994). Further control over 

transgene expression is afforded by inducible promoters, such as tetracycline-

responsive promoters (Gossen and Bujard, 1992; Mayford et al., 1996), which 

enable the switching on and/or off of a promoter with an external stimulus. Tissue 

specific transgene removal and activation can also be achieved using the Cre 

recombinase system (Schwenk et al., 1995; Auerbach, 2004). 

 

There are some important limitations associated with the use of pronuclear 

microinjection for generation of transgenic mice. A significant issue is that the 

efficiency of production of founder mice that appropriately express the transgene is 

low. First, microinjection can result in genetic mosaicism if the transgene is 

integrated during or after a round of replication in the fertilized egg (Palmiter et al., 

1984). Second, random insertion of the transgene into the genome may result in 

transgene expression being influenced not only by the number of transgene 

copies, but also by genomic sequences that flank the integration site(s) (termed, 

positional effects; Palmiter et al., 1982; Overbeek et al., 1986). For example, 

transgene expression may be dramatically reduced or abolished if the transgene is 

inserted into a transcriptionally inactive region of the genome. Alternatively, 

flanking sequences may contain regulatory elements of neighboring genes that act 

on the transgene promoter as an enhancer, resulting in ectopic expression 

(Auerbach, 2004). Moreover, if a transgene is inserted into a transcriptionally active 

region, it may interrupt the normal expression of an endogenous gene and produce 

effects on phenotype ranging from inconsequential to lethal but, most importantly, 
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which are independent of the particular function of the transgene. Third, as with all 

approaches that seek to modify the mouse genome, compensation effects from 

other genes can result in rescued function of the mutated gene and may mask any 

phenotypic deficit due to a mutation. Finally, irrespective of any positional or 

compensation effects, the mutant mice phenotype will always be a result of the 

mutated gene and interactions with background genes. Since behavioural traits 

vary amongst mouse strains, the genetic background of the strain used to 

construct the modified mouse must always be considered when assessing 

behavioural traits (Gerlai, 1996; Crawley et al., 1997; Crawley, 2007). 

 

2.1.1.2 RNA interference technology and some limitations 

The inclusion of a gene of interest in the transgene cassette has traditionally 

restricted the pronuclear microinjection approach to „gain of function‟ studies (with 

respect to time, place and/or level of gene expression). For example, in middle to 

advanced stages of Alzheimer‟s disease, galanin fibers and terminals are found to 

hyper-innervate cholinergic neurons of the nucleus basalis of Meynert (Chan-

Palay, 1988). The potential consequences of galanin hyper-function for learning 

and memory processes have been explored, in part, by the use of transgenic mice 

that over-express galanin throughout the CNS using a platelet-derived growth 

factor promoter (Diez et al., 2000; Kuteeva et al., 2005), or where galanin over-

expression is confined to adrenergic neurons by use of a dopamine β-hydroxylase 

promoter (Steiner et al., 2001). In many scenarios, however, a more revealing 

experiment is provided by the „loss of function‟ study, which has traditionally been 

achieved by genetic disruption using ES cell technology. The identification of RNAi 

and the ability to deliver RNAi technology into mammalian cells using a transgene 

cassette has changed this situation and provided a new way to study gene function 

in transgenic mice (Hannon, 2002; Bartel, 2004; Prawitt et al., 2004; Gao and 

Zhang, 2007; Kunath, 2008). 

 

The first demonstration of RNAi came from studies in C. elegans where introducing 

double-stranded RNA (dsRNA) homologous to a specific gene resulted in the post-
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translational silencing of that gene (Fraser et al., 2000). The cellular mechanism 

through which silencing is achieved is particularly interesting. Initially, the dsRNA is 

recognized by a nuclease enzyme, named Dicer, and processed into small double-

stranded molecules, termed small interfering RNA (siRNA). Next, siRNA is 

unwound by an RNA-induced silencing complex (RISC), which then finds 

homologous target mRNAs complementary to the siRNA sequence and cleaves 

these mRNAs (Martinez et al., 2002; Tijsterman and Plasterk, 2004). This 

response to dsRNA is considered a likely self-defense mechanism against viral 

invasion (Gao and Zhang, 2007). In mammalian cells, a similar response to dsRNA 

is observed, except that the end result is silencing of all protein encoding RNAs 

and, eventually, cell death via apoptosis (Meurs et al., 1990). However, it was later 

discovered that short (21 nt) RNA duplexes could induce RNAi in cultured 

mammalian cells without eliciting global gene silencing (Elbashir et al., 2001). 

Another major breakthrough for RNAi was the discovery that animal cells naturally 

express short (~22 nt) RNAs, termed micro-RNA (miRNA; Lagos-Quintana et al., 

2001; Lee and Ambros, 2001), that arise from the processing of long primary 

miRNA precursors (pri-miRNA) (Bartel, 2004). These micro-RNAs play an 

important role in regulating gene expression through blocking translation, or 

inducing degradation of target mRNA (Bartel, 2004). Exploitation of these collective 

findings allowed molecular biologists to stably induce RNAi in mammalian cells, 

first using expression vectors that expressed the RNA duplex as small hairpin RNA 

(shRNA), which is likely processed to siRNA within the cell (Brummelkamp et al., 

2002), followed by the use of artificial miRNA-expressing vectors (Silva et al., 

2005). The stable expression of RNAi in transgenic mice (Peng et al., 2006) is now 

becoming more commonplace, providing an alternate approach to targeted gene 

disruption in delineating gene function. Moreover, in comparison to conditional 

gene deletion, RNAi can be used with only one mouse line, and offers the potential 

to be used, in modified forms, in other organisms where targeted mutagenesis is 

not feasible. 
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There are, of course, some important limitations of the RNAi technology for 

generation of transgenic mice. First, knock-down of expression is never complete 

and residual expression of an RNAi-targeted gene is expected (Gao and Zhang, 

2007). However, this limitation may be seen as advantageous where null mutations 

are associated with lethality. Second, RNAi is useful for modulating the level of 

gene expression, but cannot be used for other genetic manipulations (e.g. point 

mutations). Third, not all cell types can perform RNAi, and the efficiency of cells 

that can varies widely amongst cell types (Peng et al., 2006). Fourth, the genetic 

material used to produce RNAi may have off-target effects, such as degradation of 

non-target mRNA (Castrop, 2010). Finally, whether a transgenic RNAi effect is 

permanent remains to be determined, since it is possible that an shRNA transgene 

could be shut down during development or turned off through epigenetic 

modifications (Gao and Zhang, 2007). 

 

2.1.1.3 Characterising a new transgenic mouse 

Because of the potential complications that may arise in the generation of 

transgenic mice and use of RNAi, phenotyping screens provide an important and 

necessary step in understand traits related to transgene function or unexpected 

abnormalities (Crawley, 2007). Phenotyping screens also complement the rigorous 

assessment by molecular biologists of transgene expression and the potential for 

compensatory or off-target effects in founder lines. Findings of gross phenotypic 

differences between genotypes can be used to optimise animal husbandry and/or 

the design of subsequent behavioural tests. Indeed, only when the basic 

phenotype has been characterised can conclusions from advanced behavioural 

tests be made with assurance that an exciting finding is not simply due to 

interference from unexpected behavioural traits. 

 

The majority of phenotyping screens have adapted protocols from those originally 

described by Irwin (1968), which incorporated some 50 categories of observations. 

More recently, the SHIRPA consortium described an observation battery for mutant 

mice that consists of three levels of testing, starting with preliminary observations 
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(for example, muscle function) and progressing to more detailed assessments of 

behaviour and physiology (for example, feeding, anxiety, histology and magnetic 

resonance imaging) (Rogers et al., 1997). Whatever combination of assessments 

are chosen, the first point of phenotyping is to ensure that the mutant line is 

generally healthy, since ill mice will likely behave aberrantly in the simplest 

behavioural test. This initial inspection often includes assessments of sensory 

capabilities and basic neurological reflexes, such as the righting reflex. Any gross 

physical deficits will similarly impair performance in many behavioural tests. Once 

these compulsory observations have been completed, subsequent tests can be 

selected to determine adequate function for performance in specific behavioural 

tasks or to test specific hypotheses regarding gene function (Crawley, 2007). For 

example, undertaking the Morris water-maze task would require that mice could 

adequately swim and observations of motor activity would be necessary. Similarly, 

phenotyping screens for strains with mutations known to affect neuronal excitability 

might focus on observations of convulsions, locomotor activity and handling 

reactivity. Any deficits found within a particular domain can then be investigated 

further. 

 

2.1.2 Introducing the mGluR5KD-D1 mouse 

To explore the role of mGluR5 in mediating appetitive behaviours and 

neurobiological responses to cocaine, we use a novel mouse line in which mGluR5 

has been selectively knocked-down in cells that express the dopamine D1R. The 

generation and characterization of these mGluR5KD-D1 mice has recently been 

described (Novak et al., 2010). Cell-type specific knock-down of mGluR5 is 

achieved using a BAC-based construct in which a conventional RNA-polymerase II 

promoter (the D1R-promoter) drives the expression of artificial miRNAs that target 

mGluR5 RNA. The coding sequence for green fluorescent protein (GFP) is 

introduced in tandem with the miRNAs, enabling expression of the construct to be 

easily tracked (Fig. 2.1a-b). 
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Extensive characterization of these mice has confirmed the selectivity of transgene 

expression to cells that express the dopamine D1R (Novak et al., 2010). Thus, 

immunostaining of GFP in brains from mGluR5KD-D1 mice identified an expression 

pattern that fits with that described for D1Rs, including strong expression in the 

dorsal striatum and nucleus accumbens (Fig. 2.1c) (Novak et al., 2010). A more 

detailed examination of the striatum confirmed that the transgene (GFP) was 

expressed in ~53% of the striatal neurons (NeuN; Fig. 2.1d). Furthermore, 

expression of the transgene was confined to MSNs (identified by immunostaining 

against DARPP-32) (Fig. 2.1e) but the transgene was not expressed in D2-MSNs 

(identified by immunostaining against preproenkephalin; ppEnk) (Fig. 2.1e), 

showing that expression is restricted to D1-MSNs. Confirmation that transgene 

expression reduced the abundance of mGluR5 transcript was provided by in situ 

hybridization. In the striatum, mGluR5-positive cells were reduced, while the 

staining-intensity of cells still expressing mGluR5 was not reduced (Fig. 2.1f), 

indicating strong mGluR5 knock-down selectively in the targeted cells. The 

abundance of mGluR5 transcript was reduced to ~40% in the homogenised 

striatum (Fig. 2.1g) with the corresponding protein reduced to ~50% compared to 

levels in wild-type mice (Fig. 2.1h). Since the expression of the construct is 

restricted to D1-MSNs (Fig. 2.1e), knock-down efficiency was estimated to be 

~90% in the targeted cells. There was no significant reduction of mGluR5 mRNA in 

the cerebral cortex or in the hippocampus of mGluR5KD-D1 mice, which may 

suggest that the D1R-promotor is less strong in these regions or that D1 and 

mGluR5 are not expressed in the same neuronal populations (Novak et al., 2010). 

 

In addition to enabling selective knock-down of mGluR5 in cells that express 

dopamine receptors, the RNAi approach used for generation of mGluR5KD-D1 mice 

is particularly impressive. First, previous use of RNAi have identified that high 

levels of short RNAs may result in perturbed cellular homeostasis due to over-

saturating exportin 5 and thus blocking the processing of endogenous short RNAs 

(Grimm et al., 2006). This is not the case for the mGluR5KD-D1 mice, where 

maturation of short RNAs is normal (Novak et al., 2010). Most likely, previously 
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reported problems were caused by the use of tools resulting in very high levels of 

short RNAs, such as strong RNA polymerase III promoters or the use of shRNAs 

instead of artificial miRNAs (Boudreau et al., 2009). Second, while use of miRNAs 

may knock-down mRNAs other than mGluR5, this does not appear problematic in 

mGluR5KD-D1 mice where abundance of mRNAs with partial complementarity to the 

miRNAs was not affected (Novak et al., 2010). Third, no evidence has been found 

for a reduction in the knock-down efficiency of the mutation across generations (up 

to 12 generations over 3 years of breeding; personal communication with Dr. J. 

Rodriguez). Finally, the successful use of artificial miRNAs driven by cell-type 

specific promoters had previously only been reported for interference with other 

genes in nurse cells (Rao et al., 2006). Together with a very recent report (Garbett 

et al., 2010), the mGluR5KD-D1 line shows this approach can also be used 

successfully in the brain. 
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Figure not shown due to copyright restrictions 

For figure, see Novak et al., 2010, Fig. 1. 

 

Figure 2.1 Neurobiological characterisation of mGluR5KD-D1 mice. (a) Design of the 

transgene expressing GFP as a marker and two interfering RNAs (iRNAs). This 

construct was inserted after the translational start of the gene encoding the 

dopamine D1 receptor in a bacterial artificial chromosome. (b) Sequences of 

iRNAs. Interfering sequence is depicted in bold. Red arrows indicate targeted 

regions of mGluR5 mRNA. (c) Expression of the transgene in mGluR5KD-D1 mice 

(KD) as detected by immunohistochemistry for GFP in a sagittal brain section. 

Higher magnification showing difference between staining of cell bodies in the 

caudate putamen (CPu) and its projections to ventral midbrain nuclei (VMN). (d) 

The transgene (GFP; green) is expressed in ~53% of the striatal neurons (NeuN; 

red;  indicates examples of GFP-positive neurons and ► indicates examples of 

GFP-negative neurons). (e) The expression of the construct is selective for D1-

MSNs. Thus, expression is limited to MSNs (DARPP-32; blue) and absent from 

D2-MSNs (labeled by red immunofluorescent labelling of pre-pro enkephalin; 

ppEnk). Examples of GFP-expressing () and non-GFP-expressing (►) MSNs. (f) 

Expression of mGluR5 in the striatum as shown with in situ hybridization. (g), 

Knock-down assessment by quantitative PCR (n = 5-8, p = 0.0027) and (h), 

western-blotting with representative blot example shown (n = 4, p = 0.0112). Data 

is presented as mean + S.E.M., p-value of t-test (*p < 0.05, **p < 0.01). Scale bars 

20 μm. Cx, cortex; CPu, caudate putamen (dorsal striatum); VMN, ventral midbrain 

nuclei; Acb, nucleus accumbens (taken from Novak et al., 2010). 
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2.1.3 Phenotyping of mGluR5KD-D1 mice 

In regard to the initial phenotyping of mGluR5KD-D1 mice that will be undertaken in 

the present chapter, a conventional screening approach as discussed above will be 

adopted. Initial observations will examine basic health and neurological reflexes to 

ensure no gross abnormalities that would otherwise preclude undertaking of more 

advanced behavioural tests. Body weights of adult mice will be also assessed, 

which provides a reliable indicator of factors affecting growth (Crawley, 2007). 

Tests of sensory function will assess visual and auditory function, since 

conditioning studies necessitate that mice can adequately see and hear the 

conditioned stimuli. Similarly, mutant mice must be able to detect a palatable food, 

since the majority of tests described in this thesis will use food-based 

reinforcement paradigms. The sucrose two-bottle choice paradigm will be used 

primarily to assess taste perception. 

 

Following these initial assessments, close attention will be paid to motor activity. In 

addition to providing information regarding physiological function, a change in 

locomotor activity could also result from general ill health in mutant mice. 

Assessment of motor function is also necessary to permit the use of many 

behavioural tasks reported in this thesis. For example, if motor function is impaired, 

a mouse may be unable to coordinate actions necessary to explore an operant 

chamber, to lever press or to collect a small food pellet from a receptacle. Efforts to 

evaluate the psychomotor stimulating effects of cocaine or performance in a 

conditioned-place preference chamber (see Chapter 5) may also be confounded by 

any genotype differences in baseline locomotor activity. Locomotor assessments 

are particularly important with respect to mGluR5KD-D1 mice, given the widespread 

expression of mGluR5 within the basal ganglia motor circuitry, including the STN 

(Awad et al., 2000) and SNr (Hubert et al., 2001; Smith et al., 2001), and the 

potential for co-expression of the D1R in these nuclei (Smith and Villalba, 2008). 

 

The final series of tests will look at anxiety-related behaviours. Soon after one of 

the first non-competitive mGluR5 antagonists (MPEP) was developed, a role for 
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mGluR5 in anxiety-related behaviours was established in rodents (Gasparini et al., 

1999; Spooren et al., 2000b). The anxiolytic effects of MPEP have been 

demonstrated using several unconditioned (for example, social interaction, stress-

induced hyperthermia, elevated plus-maze and marble burying) and conditioned 

tests (for example, Geller-Seifter, Vogel conflict and fear potentiated startle) 

(Spooren et al., 2000b; Tatarczynska et al., 2001; Brodkin et al., 2002b; Brodkin et 

al., 2002a; Pietraszek et al., 2005; Paterson et al., 2010). Critically, anxiolytic 

effects of MPEP occurred at doses that did not alter locomotor activity 

(Tatarczynska et al., 2001), did not show psychotomimentic effects (Spooren et al., 

2000b) and did not impair working memory or spatial learning (Ballard et al., 2005). 

Similarly, the more potent mGluR5 antagonist, MTEP also demonstrated efficacy in 

several anxiety-related models in rodents (Cosford et al., 2003; Klodzinska et al., 

2004; Pietraszek et al., 2005; Varty et al., 2005), and lacked side effects seen with 

benzodiazepines, such as sedation or ethanol interactions (Busse et al., 2004). 

Surprisingly few studies have examined the anxiety phenotype of mice in which 

mGluR5 has been genetically modified, and those few reports offer conflicting 

findings. In mGluR5 knockout mice, attenuated anxiety-related behaviours have 

been reported using stress-induced hyperthermia (Brodkin et al., 2002b) and open-

field tests (Olsen et al., 2010), but not in the elevated plus-maze or a light-dark box  

(Olsen et al., 2010). Thus, it is of value to examine anxiety-related behaviours in 

mGluR5KD-D1 mice not only to add to our knowledge of the role of mGluR5 in 

anxiety per se, but also given the potential symmetry between anxiety phenotypes 

and performance in appetitive learning and memory tasks that are reported in 

subsequent chapters of this thesis (Pecina et al., 2006; George et al., 2009). 
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2.2 Materials and methods 

 

2.2.1 Animals 

mGluR5KD-D1 mice were generated as previously described (Novak et al., 2010). In 

brief, shRNAs were designed and first tested in cell culture for knock-down 

efficiency of mGluR5 mRNA. Synthetic oligos were inserted into an artificial micro-

RNA context and the construct recombined into a bacterial artificial chromosome 

(BAC) that harbored the mouse D1R gene (as described in Parkitna et al., 2009). 

Following purification of the BAC and removal of vector sequences, the transgene 

was injected into the pronuclei of fertilized oocytes from C57BL/6n mice. 

Experimental animals were generated by backcrossing of mGluR5KD-D1 transgenic 

mice to a C57BL/6n line (Novak et al., 2010). mGluR5KD-D1 and wild-type littermate 

mice used in the present experiments were gifted from Dr. J. Rodriguez Parkitna 

(DKFZ, Heidelberg, Germany) or obtained from a breeding colony subsequently 

established at the University of Sussex. 

 

Mice (n = 85/89, WT/KD; at least 8 weeks old prior to experiment start) were 

maintained on a 12:12 h light-dark cycle (lights on at 07:00 h) under controlled 

temperature (21 ± 2 °C) and humidity conditions (50 ± 5%). Animals were housed 

in groups of two or three in polycarbonate cages, except for the sucrose 

consumption experiment where mice were singly housed. Water was available ad 

libitum in the holding room. Unless otherwise stated, mice were placed onto a 

restricted feeding regime designed to maintain body weights at ~85% of free-

feeding weight at least 7 days prior to the experiment start. In this way, any 

phenotypic differences between genotypes could be used more readily to 

understand any differences in performance during subsequent behavioural tests 

where food restriction was employed. Experiments took place during the light-

phase. All procedures were performed in accordance with the United Kingdom 

1986 Animals (Scientific Procedures) Act, following institutional ethical review. 
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It is worthwhile to note here that wild-type littermates provide the most appropriate 

control for a mutant phenotype, since phenotype is influenced by many intrauterine 

and postnatal environmental factors such as parental care, temperature, noise, 

lighting, humidity, circadian cycle, cage cleaning, cage type, colony size and age at 

weaning (Crawley, 2007). Because the RNAi mutation exerts a dominant effect 

(Castrop, 2010), heterozygous mGluR5KD-D1 mice were used in all experiments 

such that disruption of any gene function as a result of random transgene insertion 

could potentially be compensated by the presence of an intact gene copy on the 

other allele. Heterozygous mice and wild-type littermate controls were obtained 

from the breeding of heterozygous and wild-type parents. 

 

2.2.2 Genotyping 

2.2.2.1 DNA extraction 

Ear punches were taken and incubated for 2 hours at 55oC followed by 15 min at 

95oC in 20 μl of a 1 mg/mL proteinase K solution (Roche Diagnostics, Burgess Hill, 

West Sussex, UK) in a 20 mM Tris-HCl (Sigma-Aldrich, Dorset, UK) and 10 mM 

EDTA (Sigma-Aldrich) buffer. The digested sample was then diluted with 80 μl of 

purified water. 

 

2.2.2.2 PCR 

mGluR5KD-D1 mice were identified using primers (ACGTAAACGGCCACAAGTTC, 

AAGTCGTGCTGCTTCATGTG) that amplified a 180bp sequence of the GFP-

encoding region of the inserted transgene. Control primers 

(CCATTTGCTGGAGTGACTCTG, TAAATCTGGCAAGCGAGACG), derived from 

the Dicer gene, amplified a 370bp sequence and were included to confirm 

efficiency of the PCR reaction (Fig. 2.2). Each PCR reaction contained 0.5 μl of 

sample DNA, 0.5 μl of each primer and 22.5 μl of a PCR mix containing Taq 

polymerase, dNTPs and an agarose loading dye (Mega Mix-Blue; Microzone Ltd., 

Haywards Heath, West Sussex, UK). Using a thermal cycling PCR machine (G-

Storm; GRI Ltd., UK), the PCR sample was incubated at 95oC for 5 min, followed 
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by 35 cycles of: 95oC for 30 sec, 60oC for 1 min and 72oC for 1 min. Samples were 

then held at 72oC for 10 min. 

 

 

 

 

 

 

 

 

 

 

 

 

2.2.2.3 DNA Detection 

DNA gel electrophoresis was performed using a gel made from 2% agarose (High 

Res standard agarose; AGTC Bioproducts Ltd., Hessle, UK) in 1x TAE buffer (242 

g/L Tris-base; 57.1 mL/L acetic acid; 500 mL/L of 50 M EDTA; all Sigma-Aldrich; in 

dH2O) supplemented with 0.004% ethidium bromide (50 mg/mL stock; Sigma-

Aldrich). Gels were loaded with ~12 μl of each post-PCR sample and run in 1x TAE 

buffer for 30 min at 140 volts prior to imaging under UV light. 

 

2.2.3 Gross appearance, auditory and visual function and neurological 

reflexes 

Procedure: Mice (n = 12/12, WT/KD; fed ad libitum) were first exposed to a battery 

of assessments (adapted from Crawley, 2007) designed to assess gross 

appearance, simple sensory responses (auditory and visual) and neurological 

reflexes. Assessments were made in a quiet and low lit room designated for 

behavioural studies. The test order of mice (wild-type or knock-down) was 

randomised and the experimenter was unaware of the mouse genotype. Gross 

appearance was first assessed by observation of mice within their home cages and 

 

Figure 2.2 Example western blot for genotyping of mice. 

KD mice were identified by a band (180 bp) confirming 

presence of the transgene that results in mGluR5 knock-

down selectively in dopamine D1R-expressing cells. The 

presence of a control band (370 bp) confirmed the 

efficiency of the PCR reaction. 
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included the following; 1) Whiskers present: presence of whiskers, 2) Bald patches: 

missing fur, 3) Exopthalmia: bulging of eyes, and 4) Piloerection: erection of fur. A 

basic assessment of auditory function was then provided by making a loud 

clapping noise within close proximity to the mouse. Auditory function was 

confirmed by a Preyer startle reflex (movement of the body or ear twitch response). 

Assessment of visual function was provided by the visual placing test (Heyser, 

2003). The mouse was held by its tail ~15 cm from a table surface and lowered 

toward the surface. Visual function was confirmed if the mouse extended its 

forepaws to make contact with the approaching surface. 

 

After assessments of gross appearance, auditory and visual function, the following 

reflexive assessments were undertaken in the same mice; 1) Air puff: a puff of air 

was directed toward the back of the mouse using an empty spray bottle. A 

response was recorded as normal if mice turned in reaction to the air puff, 2) 

Touch escape: the experimenter attempted to pick up the mouse. A normal 

response was observed if the mouse made attempts to escape, 3) Eye blink: the 

corner of the eye was touched with a clean cotton swab. A normal response was 

defined as an eye blink in response to the cotton swab, 4) Ear twitch: the ear was 

touched with a clean cotton swab. A normal response was defined as an ear twitch 

in response to the cotton swab, 5) Whisker touch: whiskers were touched with a 

cotton swab. A normal response was defined as a brief cessation of whisker 

movement in response to the cotton swab, 6) Wire suspension test: Mice were 

placed on a wire-grid, which was then inverted for 60 seconds. A normal response 

was recorded if mice remained attached to the wire-grid for the duration of the test, 

7) Righting reflex: mice were placed onto their back. A normal response was 

recorded if mice resumed a righting posture unaided, and finally 8) Splay reflex: 

mice were placed into an empty polycarbonate cage which was then moved from 

side to side and up and down. A normal response was recorded if mice elicited a 

postural reflex to maintain an upright, balanced position. 
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2.2.4 Body weight 

Procedure: Mice (n = 12/12, WT/KD; as used in assessments above) were placed 

onto a restricted feeding regime designed to maintain body weights at 

approximately 85% of free-feeding weight. This was achieved by the provision of 

~2 standard lab chow pellets (B&K Feeds, Hull, UK) per mouse per day. To 

determine whether weights differed between genotypes under basal or restricted 

feeding conditions, mouse body weight (g) was recorded every 48 hours for 6 days 

prior to and 6 days following the start of food restriction. Additional recordings were 

made at 32-36 days after the start of food restriction. Under restricted feeding 

conditions, body weights were recorded immediately prior to daily feeding. 

 

2.2.5 Sucrose consumption 

Apparatus: A two-bottle choice paradigm was used to assess sucrose 

consumption. The experiment was conducted in the home-cage using two bottles 

inserted into the front of the cage. Chow, which was normally placed into a recess 

at the front of the cage, was instead placed on the floor of the cage. 

 

Procedure: Mice (n = 12/12, WT/KD) were individually housed to enable accurate 

recordings of consumption to be obtained from each mouse. To habituate mice to 

the drinking bottles, both bottles were filled with water for the first three days. For 

the choice phase of the experiment, one bottle was filled with water and the second 

with varying concentrations of sucrose (1%, 3%, 10% or 20% w/v; Tate & Lyle, 

Nottingham, UK). Presentation order of sucrose may be important for determining 

consumption in some strains but not in the majority of others (Lewis et al., 2005). 

Here, sucrose concentrations were presented in increasing order so that 

preference for a higher concentration of sucrose did not develop before being 

presented with a lower sucrose concentration. When comparing preference 

amongst different solutions (for example, sucrose, saccharin and water), testing for 

at least 4 days at each concentration of solution has been considered most 

sensitive for detecting any differences between strains (Tordoff and Bachmanov, 

2002). However, shorter durations of exposure are considered sufficient for 
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detecting strain differences in intake when using multiple concentrations of the 

same solution (Glendinning et al., 2002; Lewis et al., 2005). In the present test, 

consumption of sucrose and water was measured every 24 hours over 3 days at 

each concentration. Chow was placed on the floor of the cage at the same time 

when bottles were weighed and/ or replenished. Although chow intake was not 

recorded in the current study, it is recognised that chow intake during the test can 

vary as a function of sucrose concentration in an effort to maintain caloric 

homeostasis in some strains, but not others (Lewis et al., 2005). The left and right 

positions of the bottles were reversed daily to control for any side preference. In 

addition to measuring daily sucrose and water intake (mL/Kg), a sucrose 

preference score was calculated by dividing sucrose intake by total fluid intake (i.e. 

sucrose plus water intake). 

 

2.2.6 Activity in a novel environment 

2.2.6.1 Locomotor activity 

Apparatus: Locomotor activity was first assessed using nine circular runways. 

Each runway was constructed from a black open-ended plastic tube (24.5 cm dia. x 

25.5 cm), inside which was fixed a similar smaller tube (10.5 cm dia. x 25.5 cm) 

thereby creating a 6.5 cm wide circular runway (Fig. 2.3a). Runways were set on a 

translucent Perspex platform (122 x 89 x 1 cm) mounted 127 cm above the floor. 

Illumination of runways was achieved by 4 fluorescent tubes (T4, 30 watt) 

positioned behind a second Perspex sheet suspended 17 cm above the runways. 

A camera (Fire-i; UniBrain, San Ramon, California, USA), which interfaced with a 

PC, was situated on the floor beneath the runways and captured the location of 

mice (Fig. 2.3b). Images were recorded and the distance travelled (m) by mice 

calculated using a PC running MATLAB (version R2007a; MathWorks, Cambridge, 

UK).  
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Figure 2.3 Apparatus used for behavioural phenotyping of mice. (a) Schematic of a 

circular runway used for locomotor assessment. (b) Video tracking of mice in 

circular runways. (c) Open-field arena used for the assessment of spontaneous 

activity in a novel environment. (d-f) For assessing anxiety-related behaviours: (d) 

Open-field arena indicating the outer (O), middle (M) and inner (I) areas. (e) Light-

dark box indicating the light area illuminated by an overhead lamp and the dark 

area accessed by an opening in the dividing partition. (f) Elevated plus-maze 

indicating a closed and open arm and the middle area. A camera (not shown) was 

positioned to record mouse activity in each apparatus. Panel a provided by Simon 

Nilsson  
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Procedure: Mice (n = 28/31, WT/KD) were habituated to the circular runways 

across five once-daily 1 hour sessions. In this way, activity in a novel environment 

(session 1) and habituation between daily sessions (sessions 1-5) could be 

compared between genotypes. Multiple groups of mice were run each day, 

although each group contained mice from both genotypes. The runways and 

Perspex platform were cleaned between each group. Mice were assigned to the 

same runway for all sessions. Note that mice reported in this experiment were 

subsequently used for cocaine locomotor studies (reported in Chapters 5 and 6). 

 

2.2.6.2 Spontaneous nose-poking 

Apparatus: Exploratory behaviour in a novel environment, indexed by nose-

poking, was assessed using eight standard mouse conditioning chambers (15.9 x 

14 x 12.7 cm; Med Associates, Vermont, USA; see section 3.2.3 for further 

description). Each chamber was fitted with a recessed food magazine (ENV-303M, 

Med Associates) situated at the centre of one side wall. Two nose-poke ports 

(ENV-313M, Med Associates) were inserted into the wall opposite to the magazine. 

Infra-red beams detected head entries into each of the three apertures. The 

recording of beam breaks and their time of occurrence was performed using Med-

PC IV (Med Associates). 

 

Procedure: Mice (n = 24/24, WT/KD) were placed into the conditioning chambers 

and nose-poking activity recorded during a single 30 minute session. Multiple 

groups of mice were run each day, although each group contained mice from both 

genotypes. 

 

2.2.6.3 Spontaneous activity in an open-field 

Apparatus: A more detailed analysis of spontaneous activity was undertaken in a 

novel open-field arena (39 x 39 x 42 cm), constructed from white acrylic and 

layered with sawdust (Fig. 2.4c). A video camera (Sony B&B CCD-HAD), 

connected to a videocassette recorder (Sony SLV-SE70), was mounted directly 

above the arena. 
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Procedure: Mice (n = 12/12, WT/KD; used also for the nose-poking assessment) 

were allowed to explore the area for 30 minutes. The test order of mice (wild-type 

or knock-down) was alternated, the arena cleaned and the sawdust replaced 

between each recording session. Video recordings were subsequently scored by 

an observer unaware of the mouse genotype. Specifically, locomotor activity was 

assessed by measuring the duration of the following activity levels: 1) Static: No 

ambulatory movement and no exploratory movement (e.g. sleeping), 2) 

Static/Exploratory: No ambulatory movement but exploratory movement (e.g. static 

and sniffing or rearing), 3) Forward movement: ambulatory movement around the 

arena, and 4) Excited movement: rapid movement, such as wild circular running or 

jumping. The duration of more specific exploratory behaviours was also measured: 

1) Wall rearing: rearing (both forelimbs removed from the floor and extension of the 

body) with support from the wall, 2) Centre rearing: rearing without support from 

the wall, 3) Grooming: body care movements using mouth or paws, and 4) Digging: 

excavation of the sawdust with paws or head. 

 

2.2.7 Anxiety-related behaviours 

2.2.7.1 Open-field arena 

Apparatus: The open-field arena (50 x 50 x 25.5 cm; Fig 2.3d) was constructed 

from grey Perspex. The arena floor was marked into 10 x 10 cm squares that 

defined the „outer‟ (16 squares), „middle‟ (8 squares) and „inner‟ (1 square) areas. 

A video camera (Sony B&W CCD-HAD), connected to a videocassette recorder 

(Sony SLV-SE70), was mounted directly above the arena. The surface of the 

apparatus was under an illumination of 115–157 lx, provided by a 40W bulb 

located 80cm above the apparatus. 

 

Procedure: Mice (n = 12/12, WT/KD; those used for assessment of gross 

appearance, auditory and visual function and neurological reflexes) were placed 

into the inner area of the open-field at the start of the test session, and allowed to 

freely explore the arena for 5 minutes. The test order of mice (wild-type or knock-
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down) was alternated and the arena cleaned between each test. Video recordings 

were subsequently scored for the amount of time mice spent in each area. A 

measure of gross locomotor activity was provided by counting crosses over lines 

that marked each 10 x 10 cm square. 

 

2.2.7.2 Light-dark box 

Apparatus: The light-dark box (Fig. 2.3e) consisted of two partitioned areas. The 

„light‟ area (27 x 27 x 30 cm) had an open top and was painted white. A lamp (60 

watt) positioned 30 cm above the light area provided illumination in the range of 

380-470 lx at the floor of the light area. The „dark‟ area was smaller in size (27 x 18 

x 30 cm), painted black and was fully enclosed. Mice could move between areas 

through an opening (7.5 x 7.5 cm) in the partitioning wall. Access to the opening 

was controlled by a removable panel. A video camera (Sony B&W CCD-HAD), 

connected to a videocassette recorder (Sony SLV-SE70), was mounted directly 

above the light-dark box. 

 

Procedure: Mice (n = 9/10, WT/KD; fed ad libitum) were placed into the light area 

at the start of the test session. The panel was then removed, allowing mice free 

access between the light and dark areas. Mice were allowed to explore the light-

dark box for 5 minutes. The test order of mice (wild-type or knock-down) was 

alternated and the apparatus cleaned between each test. Video recordings were 

subsequently scored for the amount of time mice spent in each area. The latency 

to the first escape from the light area and the latency to re-enter the light area were 

also measured. A measure of gross locomotor activity was provided by counting 

transitions between the light and dark areas. 

 

2.2.7.3 Elevated Plus-Maze 

Apparatus: The elevated plus-maze (raised 45 cm above the floor; Fig. 2.3f) was 

constructed form black acrylic and consisted of four arms (30 x 5 cm) connecting at 

right angles to a middle platform (5 x 5 cm). Two opposing arms were enclosed by 

a 15 cm high wall (the „closed‟ arms), while the other arms were not enclosed (the 
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„open‟ arms). The open arms of the maze were under illumination of 40-48 lx. A 

video camera (Sony B&W CCD-HAD), connected to a videocassette recorder 

(Sony SLV-SE70), was mounted directly above the plus-maze. 

 

Procedure: Mice (n=8/10, WT/KD; also used in the light-dark box experiment) 

were placed into the middle area of the maze at the start of the test session and 

allowed to explore the plus-maze for 5 minutes. The test order of mice (wild-type or 

knock-down) was alternated and the plus-maze cleaned between each test. Video 

recordings were subsequently scored for the amount of time mice spent in each 

area. A measure of gross locomotor activity was provided by counting transitions 

between each area of the plus-maze. 

 

2.2.8 Statistical Analysis 

Assessments of gross appearance, auditory and visual function and neurological 

reflexes were qualitative and not subject to formal statistical analysis. All other data 

were initially assessed for normality (Shapiro-Wilk test; assumption violated when p 

≤ 0.05) and homogeneity of variance (Levene‟s test, assumption violated when p ≤ 

0.05), to permit use of parametric tests. For most tests, data were first analysed by 

mixed-factor analysis of variance (ANOVA), with genotype (WT, KD) as a between-

subjects factor. Details of the within-subjects factors used for the analysis of data 

by ANOVA are provided in the results section. Where significant (p ≤ 0.05) main 

effects or interaction terms were found, further analysis was performed using 

ANOVA. Individual between genotypes comparisons were performed using an 

independent samples two-tailed t-test. Findings were considered indicative of a 

trend where p ≤ 0.1. For within-subjects ANOVA, the Greenhouse-Geisser 

correction was used where the assumption of sphericity was violated (Mauchly‟s 

test, p ≤ 0.05). Statistical analysis was performed with SPSS Statistics v.17 (IBM, 

Somers, New York, USA). All figures show group mean (± SEM).  
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2.3 Results 

 

2.3.1 Gross appearance, auditory and visual function and neurological 

reflexes 

Mutant mice were indistinguishable from their wild-type counterparts when gross 

appearance, auditory and visual function and neurological reflexes were assessed. 

Specifically, all mice assessed had whiskers present and did not present with bald 

patches, expothalmia or piloerection. All mice responded to a loud noise (e.g. 

jumped or twitched) and directed forelimbs in anticipation of an approaching 

surface, suggesting intact auditory and visual function, respectively. A variety of 

other neurological assessments failed to find any difference in responses between 

WT and KD mice (see Table 2.1 for summary). 

 

2.3.2 Body weight 

Body weights in adult mice (Fig. 2.4) did not differ between genotypes measured 

prior to the implementation of a restricted feeding regime (from days -6 to -2 prior 

to food restriction; main effect of Genotype, not significant (NS); Genotype x Day 

interaction, NS). After the restricted feeding regime had commenced, body weights 

declined at a similar rate in both genotypes (days 2 to 6 from restriction start; main 

effect of Genotype, NS; Day, F(2,44) = 38.637, p < 0.001; Genotype x Day 

interaction, NS). Weights did not differ between genotypes after an extended 

period of food restriction (days 32-36 from restriction start; main effect of 

Genotype, NS; Genotype x Day interaction, NS).  
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Table 2.1 Basic assessments of gross appearance, sensory responses and 

neurological reflexes. KD mice were indistinguishable from WT mice in their 

general appearance, responses to auditory and visual stimuli and neurological 

reflexes assessed using a variety of simple tests. The procedure for each test and 

normal responses are defined in the methodology (n = 12/12, WT/KD).  

Genotype WT KD 

Gross Appearance 

Whiskers present (%) 

Bald Patches (%) 

Exophthalmia (%) 

Piloerection (%) 

 

100 

0 

0 

0 

 

100 

0 

0 

0 

Sensory Responses 

Auditory reflex (%) 

Visual response (%) 

 

100 

100 

 

100 

100 

Reflexive Responses 

Air puff (%) 

Touch escape (%) 

Eye blink (%) 

Ear twitch (%) 

Whisker touch (%) 

Wire suspension (%) 

Righting reflex (%) 

Splay Reflex (%) 

 

100 

100 

100 

100 

100 

100 

100 

100 

 

100 

100 

100 

100 

100 

100 

100 

100 
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Figure 2.4 Body weights measured prior to and during food restriction. Body 

weights did not differ between adult WT and KD mice either prior to (days -6 to -2) 

or following (days 2-6 and 32-26) the implementation of a restricted feeding regime 

(n = 12/12, WT/KD).  
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2.3.3 Sucrose consumption 

Prior to the two-bottle sucrose choice test, baseline water intake (ml/kg/24 h; 

averaged from intake recorded over the final two days of habituation to the water 

bottles) was lower in KD mice, although this effect did not reach significance (t = 

1.723, df = 22, p = 0.099; Fig. 2.5a).  

 

During the two-bottle choice phase of the experiment, both genotypes drank more 

from the bottle containing sucrose than the water bottle at all sucrose 

concentrations. In both genotypes, sucrose intake (ml/kg/24 h; averaged from the 

final two days of testing at each sucrose concentration) described an „inverted-u‟ 

profile with consumption progressively increasing from 1-10 % sucrose and 

decreasing at 20% sucrose (Fig. 2.5a). These observations were confirmed by an 

initial analysis of intake across all sucrose concentrations (1-20%) using a mixed-

factor ANOVA, with Bottle (sucrose, water) as a within-subjects factor. Intake 

differed according to the bottle type (main effect of Bottle, F(1,22) = 81.97, p < 

0.001), but not between genotypes (main effect of Genotype, NS; Genotype x 

Bottle interaction, NS). A subsequent analysis of sucrose intake alone by mixed-

factor ANOVA, with Concentration (1-20%) as a within-subjects factor, confirmed 

that sucrose intake varied with sucrose concentration (main effect of 

Concentration, F(3,66) = 23.67, p < 0.001), although this intake profile did not differ 

between genotypes (main effect of Genotype, NS; Concentration x Genotype 

interaction, NS). 

 

A plot of absolute sucrose consumption (i.e., g/Kg/24 h; Fig. 2.5b) revealed that the 

amount of sucrose consumed increased between 1-10% sucrose and approached 

a plateau between 10-20% sucrose (main effect of Concentration, F(3,66) = 93.64, 

p < 0.001), likely reflecting satiety. This consumption profile did not differ between 

genotypes (main effect of Genotype, NS; Concentration x Genotype interaction, 

NS). 
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Finally, calculation of sucrose preference (that is, sucrose intake divided by total 

fluid intake) revealed that preference increased in line with the sucrose 

concentration in both genotypes, although overall sucrose preference was lower in 

mutant mice (Fig. 2.5c). These observations were confirmed by analysis of 

preference scores by mixed-factor ANOVA (main effect of Concentration, F(3,66) = 

9.04, p = 0.001; Genotype, F(1,22) = 5.17, p < 0.05; and Concentration x Genotype 

interaction, NS). 
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Figure 2.5 Measures of sucrose and water intake during a two-bottle choice 

paradigm. (a) Mice from both genotypes drank more from the sucrose bottle than 

the water bottle at all sucrose concentrations. Baseline intake of water from prior to 

sucrose testing is shown (BL). Each point represents the group mean intake of 

sucrose or water, averaged from measurements taken over two consecutive days. 

(b) The quantity of sucrose consumed is shown (c) Preference for sucrose 

(sucrose intake / total fluid intake) at each concentration is shown. Sucrose intake 

and consumption did not differ between genotypes, although the overall sucrose 

preference score was lower in mutant mice (n = 12/12, WT/KD).  
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2.3.4 Activity in a novel environment 

2.3.4.1 Locomotor activity 

In both genotypes upon exposure to the novel circular runway environment, activity 

(indexed by the distance travelled; m) was greatest during the first 10 minute 

period of the 1 hour session and declined over each subsequent 10 minute period 

(Fig. 2.6a; main effect of Period, F(5,285) = 69.79, p < 0.001; Period x Genotype 

interaction, NS). Notably, activity in KD mice during this first session was 

significantly reduced in comparison to their wild-type counterparts (main effect of 

Genotype, F(1,57) = 6.75, p < 0.05). Both genotypes habituated to the apparatus 

with repeated exposure to the runway over five once-daily 1 hour sessions (Fig. 

2.6b). Habituation was confirmed by a significant reduction in activity over the five 

sessions in each genotype (WT: main effect of Session, F(4,108) = 8.36, p < 0.001; 

KD: main effect of Session, F(4,120) = 3.54, p < 0.01). During the fifth session (Fig. 

2.6c), activity declined across each 10 minute period of the session in both 

genotypes (main effect of Period, F(5,285) = 19.37, p < 0.001; Period x Genotype 

interaction, NS), but there was no difference in overall activity between genotypes 

(main effect of Genotype, NS).  
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Figure 2.6 Locomotor activity in a circular runway. Mice were exposed to the 

locomotor apparatus over five once-daily 1 hour sessions. (a) During the first 

session (i.e. when presented as a novel environment), locomotor activity in both 

genotypes was greatest at the start of the 1 hour session, but declined over each 

subsequent 10 minute period. Activity in KD mice was significantly reduced in 

comparison to WT mice. (b) Mean total activity from each daily 1 hour session is 

shown. Both genotypes habituated to the circular runway, although activity in KD 

mice was reduced during the first session. ANOVA findings reflected this 

observation (main effect of Session, F(4,228) = 12.19, p < 0.001; Genotype, 

F(1,57) = 4.99, p < 0.05; Session x Genotype interaction, F(4,228) = 2.35, p = 

0.08) (c) In the fifth locomotor session, activity did not differ between genotypes 

during any of the 10 minute periods (n = 28/31, WT/KD). 
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2.3.4.2 Spontaneous nose-poking 

In the spontaneous nose-poking test, no difference was found between genotypes 

in the total number of nose-pokes made during the 30 minute session (Fig. 2.7a; t 

= 0.92, df = 46, p > 0.05). A plot of the time-course of nose-poke responses across 

each 10 minute period of the session (Fig. 2.7b) did not reveal any difference 

between genotypes in the response profile (Period x Genotype interaction, NS; 

main effect of Genotype, NS). There was no difference between genotypes in the 

latency to the first nose-poke response (t = -0.31, df = 46, p > 0.05; Fig. 2.7c).  
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Figure 2.7 Spontaneous nose-poking in a novel environment. (a) There was no 

difference between genotypes in the mean total number of nose-pokes made 

during the 30 minute session. (b) Nose-poke activity remained stable over each 10 

minute period of the session (main effect of Period, NS) and this response profile 

did not differ between genotypes. (c) The mean latency to the first nose-poke of 

the session did not differ between genotypes (n = 24/24, WT/KD).  
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2.3.4.3 Spontaneous activity in an open-field 

The final assessment of activity was provided by recording behaviours of mice 

during a single 30 minute session in a novel open-field environment. The mean 

total duration of four levels of activity (static, static/exploratory, forward movement, 

excitatory movement) were first compared between genotypes (Fig. 2.8a). In both 

genotypes, the majority of session time was occupied by static/exploratory 

movement, followed by forward movement. Consistent with findings from the 

circular runway experiment, forward movement duration was significantly reduced 

in KD mice in comparison to WT mice (t = 2.08, df = 22, p < 0.05). Conversely, 

static/exploratory duration was increased in KD mice, although a between 

genotype comparison did not reach statistical significance (t = -1.78, df = 22, p = 

0.089). 

 

Time course plots of each activity level (Fig. 2.8c) were also consistent with 

findings from the circular runways. In both genotypes, forward movement duration 

decreased across each 10 minute period of the session (Fig. 2.8c, panel iii) while 

static/exploratory duration increased (Fig. 2.8c, panel ii). Static and excitatory 

movement duration did not differ over the course of the session, nor between 

genotypes (Fig. 2.8c, panels i and iv, respectively). These observations were 

confirmed by mixed-factor ANOVA, with each 10 minute bin represented as the 

within-subjects factor of Period (see Table 2.2 for ANOVA results). 

 

From video recordings of the same 30 minute session, an analysis of more specific 

activities (wall rearing, centre rearing, grooming and digging) was also undertaken. 

In both genotypes, centre rearing occupied most session time, followed by wall 

rearing and digging (Fig. 2.8b). Between genotype comparisons of total activity 

duration identified a significant increase in centre rearing duration in KD mice (t = -

2.14, df = 22, p < 0.05). Time-course plots of these more specific activities 

indicated that, in both genotypes, centre rearing duration increased while digging 

duration decreased over each 10 minute period of the session (Fig. 2.8d). Wall 

rearing and grooming duration not differ over the course of the session, nor 
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between genotypes. These findings were confirmed by mixed-factor ANOVA, 

which also identified a significant overall increase in centre rearing duration in KD 

mice (see Table 2.2 for ANOVA results). 

 

  

Spontaneous 
Activity 

Period 
F(2,44) 

Period x 
Genotype F(2,44) 

Genotype 
F(1,22) 

Static/No 
Movement 

7.24 2.86§ 1.73 

Static/Exploratory 44.20*** 0.64 3.16§ 

Forward Movement 57.83*** 0.44 4.34* 

Excitatory 
Movement 

3.32* 0.009 1.39 

    

Wall Rearing 0.39 0.15 1.78 

Center Rearing 9.75*** 0.20 4.57* 

Grooming 0.80 0.27 1.08 

Digging 9.13*** 0.19 1.39 

 

Table 2.2 ANOVAs for time-course profiles of spontaneous activity in an 

open-field. Factors: Period (3 x 10 minute Bin of the 30 minute session); 

Genotype (WT, KD). ***p < 0.001, *p < 0.05, §p < 0.1 
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Figure 2.8 Spontaneous activity in an open-field. (a) The mean total duration of 

four levels of activity classified as static (S), static/exploratory (S/E), forward 

movement (FM) and excited movement (EM) are shown. In comparison to WT 

mice, forward movement duration was significantly reduced in KD mice, while 

static/exploratory movement tended to be increased. (b) Figure shows the mean 

total duration of four specific activities classified as rearing at the wall (W-Rear), 

rearing away from the wall (C-Rear), grooming (Groom) or digging (Dig). Rearing 

away from the wall duration was significantly increased in KD mice. (c) The time 

0

5

10

15

20

25

S S/E FM EM

WT

KD
p<0.1

*

Activity

D
u

ra
ti

o
n

 (
m

in
)

0

2

4

6

8
WT

KD
*

W-Rear C-Rear Groom Dig

Activity

D
u

ra
ti

o
n

 (
m

in
)

0

2

4

6

8

10

1 2 3

i.S

KD

WT

10 min Bin

D
u

ra
ti

o
n

 (
m

in
)

0

2

4

6

8

10

1 2 3

iii.FM

10 min Bin

0.0

0.5

1.0

1.5

2.0

2.5

1 2 3

KD

WT

i.W-Rear

10 min Bin

D
u

ra
ti

o
n

 (
m

in
)

0.0

0.5

1.0

1.5

2.0

2.5

1 2 3

iii.Groom

10 min Bin

0

2

4

6

8

10

1 2 3

ii.S/E

10 min Bin

0

2

4

6

8

10

1 2 3

iv.EM

10 min Bin

0.0

0.5

1.0

1.5

2.0

2.5

1 2 3

ii.C-Rear

10 min Bin

0.0

0.5

1.0

1.5

2.0

2.5

1 2 3

iv.Dig

10 min Bin

a b

c

d



100 
 

course for each level of activity is shown. (d) The time course for each specific 

activity is shown. *p < 0.05, t-test comparison between genotypes (n = 12/12, 

WT/KD).  
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2.3.5 Anxiety-related behaviours 

2.3.5.1 Open-field arena 

During the 5 minute assessment of anxiety-related behaviours in an open-field 

arena, both genotypes spent more time in the outer area than the middle or inner 

areas of the arena (Fig. 2.9a). These findings were confirmed by mixed-factor 

ANOVA, with Area (outer, middle, inner) included as a within-subjects factor (main 

effect of Area, F(2,44) = 2386.22, p < 0.001; Genotype, NS). However, mutant 

mice spent a greater amount of time in the middle area than their wild-type 

littermates (Genotype x Area interaction, F(2,44) = 4.17, p < 0.05; between 

genotype comparison of time in middle area, t = -2.16, df = 22, p < 0.05). Although 

KD mice also spent less time in the outer area than WT mice, this comparison was 

not quite statistically significant (t = 2.03, df = 22, p = 0.055). Locomotor activity in 

the test session, assessed by crosses over lines that identified areas of the open-

field, did not differ between genotypes (t = 0.79, df = 22, p > 0.05; Fig. 2.9b). 

 

2.3.5.2 Light-dark box 

During the 5 minute test in the light-dark box, both genotypes spent more time in 

the dark area than the light area. The time in each area did not differ between 

genotypes (Fig. 2.10a). These findings were confirmed by mixed-factor ANOVA, 

with Area (light, dark) included as a within-subjects factor (main effect of Area, 

F(1,17) = 34.27, p < 0.001; Genotype, NS; Genotype x Area interaction, NS). In 

both genotypes, the latency to the first escape from the light area was shorter than 

the latency to the first re-entry into the light area (Fig. 2.10b; main effect of 

Latency, F(1,17) = 18.82, p < 0.001). Latency events did not differ between 

genotypes (main effect of Genotype, NS; Latency x Genotype interaction, NS). 

Locomotor activity in the test, assessed by the total number of transitions between 

light and dark areas, tended to be reduced in KD mice, although this effect did not 

reach statistical significance (t = 1.94, df = 17, p = 0.07; Fig. 2.10c). 
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Figure 2.9 Anxiety-related behaviours in an open-field arena. (a) In the 5 minute 

session, both genotypes spent most time in the outer area of the open-field than 

the middle or inner areas. Mutant animals spent significantly more time in the 

middle area of the open field than WT littermate controls (b) Locomotor activity, 

assessed by crosses over lines that identified the areas of the open field, did not 

significantly differ between genotypes. *p < 0.05, t-test comparison between 

genotypes (n = 12/12, WT/KD).  

0

100

200

300

400

KD
WT

Outer Middle Inner

*

p<0.1

Area

T
im

e
 i
n

 a
re

a
 (

s
e
c
)

0

50

100

150

KD

Genotype

WT

A
c
ti

v
it

y
 (

lin
e
 c

ro
s
s
e
s
)

a b



103 
 

 

Figure 2.10 Anxiety-related behaviours in a light-dark box. (a) During the 5 minute 

test, both genotypes spent more time in the dark area than the light area. This 

effect did not reliably differ between genotypes. (b) There was no difference 

between genotypes in the latency to the first transition from the light area to the 

dark area (Escape), or in the latency to the first return to the light area from the 

dark area (Re-Entry). (c) Locomotor activity, indexed by the total number of 

transitions between the light and dark areas, tended to be reduced in KD mice. §p < 

0.1 between-genotype t-test comparison (n = 9/10, WT/KD). 
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2.3.5.3 Elevated plus-maze 

During the 5 minute test, mice from both genotypes spent most time in the closed 

arms of the elevated plus-maze than the open arms or the adjoining middle area. 

The time in each area did not differ between genotypes (Fig 2.11a). These findings 

were confirmed by mixed-factor ANOVA, with Area (open, closed, middle) included 

as a within-subjects factor (main effect of Area, F(2,32) = 122.95, p < 0.001; 

Genotype, NS; Genotype x Area interaction, NS). Locomotor activity in the 5 

minute test, assessed by transitions between each of the three areas, did not differ 

between genotypes (t = 0.660, df = 16, p > 0.05; Fig. 2.11b). So called ethological 

„risk assessment behaviours‟, such as stretch-attend postures and head-dips over 

the edges of the open sides were recorded, but the occurrence of these behaviours 

were insufficient to permit meaningful analysis. 
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Figure 2.11 Anxiety-related behaviours in an elevated plus-maze. (a) During the 5 

minute test, mice from both genotypes spent more time in the closed arms of the 

plus-maze than in the open arms or middle area that connected the arms. This 

activity profile did not differ between genotypes. (b) Locomotor activity, assessed 

by the total number of transitions between each of the three areas, did not differ 

between genotypes (n = 8/10, WT/KD).  
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2.4 Discussion 

 

The present experiments examined the phenotypic traits of a novel mouse line in 

which cell-type specific RNA interference was used to selectively knock-down 

mGluR5 in cells that express the dopamine D1R. These mGluR5KD-D1 mice were 

indistinguishable from their wild-type littermates in gross appearance, simple tests 

of auditory and visual function and a variety of assessments of reflexive responses. 

Body weights in adult mice did not differ between genotypes under ad libitum or 

restricted feeding conditions. Mutant animals showed a preference for sucrose and 

were able to adjust their intake according to the sucrose concentration. However, 

locomotor activity experiments revealed that activity in a novel environment was 

reduced in mutant mice. Tests of anxiety-related behaviours suggested that mutant 

mice may have a reduced anxiety phenotype, but this effect was not reliably 

observed among the different tests employed. 

 

The first series of assessments included an evaluation of general health and 

neurological reflexes. While these tests may appear crude, they can provide 

valuable information regarding gene function or unexpected effects that could 

severely constrain the interpretation of findings from more complex behavioural 

experiments. Poor body condition could indicate illness, inadequate diet, premature 

weaning, aberrant grooming or fighting amongst littermates. Impaired neurological 

reflex responses could have pointed to serious motor dysfunction including motor 

neuron degeneration. For example, the hanging wire test reflects motor strength 

and can be used to detect neuromuscular abnormalities, since balance and grip 

strength is required for the mouse to remain suspended from the inverted wire 

cage (Crawley, 2007). These tests were particularly relevant for mGluR5KD-D1 mice 

because mGluR5 is widely expressed in at many levels of the and peripheral 

neural circuitry involved in motor control central (Tallaksen-Greene et al., 1998; 

Alvarez et al., 2000; Awad et al., 2000; Hubert et al., 2001). The possibility for co-

expression of the D1R in these areas could have resulted in disruption of motor 

control due to corresponding knock-down of mGluR5. For example, mGluR5 is 
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expressed within the ventral horn of the spinal cord, albeit at lower levels than the 

dorsal horn (Alvarez et al., 2000; Tomiyama et al., 2001; Ma et al., 2006). There is 

also some evidence for D1R-like expression in the ventral horn (Dubois et al., 

1986; Zhu et al., 2007) and behavioural data pointing to a role of spinal D1R in the 

control over rhythmic movement generation (Lapointe et al., 2009). That we found 

no difference between mGluR5KD-D1 and control mice in these basic assessments 

of health and neurological reflexes provides the first indication that loss of mGluR5 

in mutant mice does not result in gross abnormalities that could restrict the use of 

these mice in more complex behavioural paradigms. 

 

The use of visual and auditory stimuli for conditioning experiments reported in 

subsequent chapters of this thesis would necessitate that mGluR5KD-D1 mice could 

adequately see and hear. Vision was assessed using the visual placing test 

(Heyser, 2003). While blind mice perform poorly in this test (Pinto and Enroth-

Cugell, 2000), normal performance recorded in mGluR5KD-D1 mice does not 

necessarily infer normal visual function. It is possible that performance in this task 

could be maintained despite some degree of impaired vision. However, it is also 

worth noting that mGluR5KD-D1 mice typically moved directly from the light area to 

the dark area in the light-dark box test, indicating sufficient vision to identify the 

escape route from the light area. Published electrophysiology data, considered to 

provide the most sensitive and accurate measure of visual activity (Pinto and 

Enroth-Cugell, 2000), also fails to support a major role of mGluR5 in visual function 

(Cirone et al., 2002). Meanwhile, auditory function was provided by assessing the 

Preyer startle reflex. Akin to the visual placing test, a normal Preyer reflex cannot 

be taken as indicative of entirely normal auditory function (Astbury and Read, 

1982; Horner and Barkway, 1986). However, there is a paucity of literature 

examining the role of mGluR5 in auditory function and expression of mGluR5 

protein is low in the dorsal cochlear nucleus (Petralia et al., 1996), a major brain 

centre for the integration of auditory information. Collectively, the lack of evidence 

for impaired visual or auditory function in mGluR5KD-D1 mice provides support for 

the use of visual and auditory stimuli for conditioning experiments. 



108 
 

 

The sucrose two-bottle choice test was used to primarily as an index of taste 

perception. However, sucrose consumption is a complex behaviour influenced by 

separate and dissociable orosensory and post-ingestive mechanisms (Sclafani, 

1995) and can also reflect hedonic states (Papp et al., 1991; Stephens et al., 

2010). With the experimental design used here, it is not possible to identify which 

factor was primarily responsible for driving sucrose consumption in mutant and 

control mice. However, the use of food restriction in the present test likely results in 

sucrose consumption being largely driven by the requirement for energy 

homeostasis (Hayward et al., 2002). Notably, sucrose consumption did not differ 

between genotypes and was high in both WT (4.8-28.6 mL @ 10% sucrose) and 

KD (3.9-25.5 mL @ 10% sucrose) mice, consistent with what has previously been 

reported in other C57BL/6 strains  (Lewis et al., 2005). Although we were unable to 

determine a minimum threshold for detection of sucrose (subsequent studies would 

ideally test lower concentrations of sucrose), mGluR5KD-D1 mice displayed a clear 

preference for sucrose at all concentrations tested. Thus, despite the complex 

nature of the task, the study at least demonstrates that taste functions such as 

simple detection and discrimination are not impaired in mutant mice under 

conditions of restricted feeding that would be used throughout behavioural tests in 

subsequent chapters of this thesis. 

 

Other studies of sucrose consumption have reported that mice initially consume 

little sucrose upon first exposure, but gradually develop a sucrose preference over 

subsequent days (Amico et al., 2005). This neophobic response can be a useful 

indicator of memory and taste perception, since it reflects the ability to store 

representations of an experienced taste so that it can be retrieved on subsequent 

encounters and infers the ability to identify and respond differently to novel versus 

familiar tastes (Vogt and Rudy, 1984). The present study found no evidence for 

neophobia in either wild-type or mutant mice, as sucrose consumption in both 

genotypes did not significantly increase across the days of exposure to each 

sucrose concentration (data not shown). Absence of a neophobic response in the 
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present study may reflect rapid acclimatisation to sucrose due to the relatively low 

sucrose concentration first experienced (approximately 10 fold lower than typically 

used to examine neophobia) and/or heightened motivation due to food restriction 

overriding a neophobic response. Alternatively, the interval between 

measurements of sucrose intake (once every 24 hours) may have lacked 

sensitivity for detecting a neophobic response that may have occurred during initial 

exposure to the sucrose bottle. Indeed, 24 hour measurements take no account of 

meal size, rate of consumption, meal frequency or circadian rhythms. 

 

An important finding in the two-bottle test was that sucrose preference was 

reduced in mGluR5KD-D1 mice, which was a function of increased water intake at 

the 10% sucrose concentration. The reason for altered intake of water is not 

entirely clear, but could reflect altered metabolic function in mutant mice. 

Metabotropic glutamate receptors are involved in hormone secretion in the 

endocrine pancreas (Brice et al., 2002). Indeed, mGluR5 is expressed at the cell 

surface of clonal beta-cells and in purified insulin-containing granules and is 

required for an optimal insulin response to glucose (Storto et al., 2006). Given that 

pancreatic cells also possess characteristics of dopamine producing cells (Mezey 

et al., 1996) and dopamine-D1 receptors may be expressed by beta-cells (Rubi et 

al., 2005), it is plausible that mGluR5 is knocked-down in these cells, resulting in 

disrupted pancreatic signalling. Decreased intake of sucrose and increased water 

intake by animals with experimentally induced diabetes in a two-bottle choice test 

has been reported previously (Maller and Hamilton, 1968; Hiji, 1969). This pattern 

of intake is considered a strategy by which diabetic animals dilute the osmotic load 

of concentrated sugar solutions (Tepper and Friedman, 1991). Although we have 

not examined pancreatic expression of mGluR5 or assessed pancreatic function 

directly in mGluR5KD-D1 mice, a „diabetic mouse‟ hypothesis seems unlikely. First, 

water intake measured during the habituation phase of the two-bottle choice 

experiment tended to be lower in mutant mice, which is inconsistent with a 

polydipsia phenotype typically observed in diabetic animals (Tepper and Friedman, 

1991). Second, mutant mice attained free-feeding body weights comparable to 
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their wild-type littermates and were able to tolerate a restricted feeding regime, 

which is also inconsistent with diabetic phenotypes of hyperphagia and weight loss 

(Tepper and Friedman, 1991). 

 

Three tests were used specifically to examine locomotor behaviour in mutant mice. 

In a circular runway, a clear reduction in activity was found in mutant mice during 

the first test session (that is, when the test environment was novel). A more 

detailed assessment of activity in a novel open-field arena indicated this genotype 

difference likely arose from a reduction in ambulatory movement and, conversely, a 

tendency for an increase in the duration of static/exploratory behaviour in KD mice. 

One possibility is that decreased ambulatory movement in mutant mice was due to 

competing aberrant behaviours, such as stereotypy (that is, repetitive, invariant, 

and perseverative motor patterns that do not appear directed toward a purposeful 

action). Although stereotypy was not formally assessed in the current studies, 

mutant mice did not show elevated levels of grooming or digging. Similarly, 

static/exploratory or excitatory movement duration, which would have captured 

stereotyped movements (for example, wild-running, circling, excessive grooming, 

stereotyped sniffing, head bobbing), did not significantly differ between genotypes. 

After a period of habituation, baseline activity in the circular runways did not differ 

between genotypes, consistent with findings of no genotype difference in activity 

when monitored in the home-cage (personal communication with Dr. B. Halbout). 

Taken together, these data suggest that the locomotor responsiveness to novelty is 

attenuated in mutant mice, rather than general locomotor activity per se. 

 

The spontaneous nose-poking task was also used as a measure of exploratory 

behaviour in a novel environment, taking inspiration from hole-board exploration 

paradigms that exploit of the tendency of mice to poke their noses into holes in a 

wall or floor (Boissier et al., 1964). In contrast to findings from the circular runway 

and the open-field, no difference was found between genotypes in exploratory 

behaviour that was indexed by nose-poking. This lack of difference may indicate 

that the behavioural measure (nose-poking) was not sufficiently sensitive to detect 
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locomotor differences between genotypes. Alternatively, the nose-poke response 

may have been simply unaffected in mutant mice, while motor behaviours reduced 

in the circular runway and open-field (for example, ambulatory activity) were more 

heavily influenced by mGluR5 loss on D1 expressing cells. Finally, if differences in 

motor activity between genotypes were correlated to the anxiogenic potential of the 

test environment, this would be consistent with a lack of difference between 

genotypes in the nose-poking test, which was conducted in the relatively small, 

dark and enclosed space of the conditioning chamber. 

 

Locomotor activity in a novel environment, although commonly associated with 

dopaminergic signalling, requires the function of many central and peripheral 

systems (Picciotto and Wickman, 1998). It is well beyond the scope of this thesis to 

determine precisely where disruption has occurred in this particular network in 

mGluR5KD-D1 mice, although this point will be given further consideration in the 

discussion in Chapter 5 and also the General Discussion of this thesis. For now, it 

is sufficient to recognise that this particular phenotypic trait must be considered 

when discussing data generated from subsequent behavioural tests, given the 

potential for non-specific effects associated with reduced locomotor activity under 

certain conditions. 

 

Three tests were used to examine anxiety-related behaviours in mutant mice. The 

first test used one of the oldest and simplest (at least in design) measures of 

rodent emotional behaviour, the open-field (Hall, 1934, 1936). A number of 

behaviours recorded in a novel and inescapable open-field are proposed as indices 

of heightened emotionality and/or anxiety, including decreased ambulation, 

increased defecation, thigmotaxis (the proportion of time spent close to the wall) 

and decreased rearing (Archer, 1973; Walsh and Cummins, 1976; Crawley et al., 

1997). In the present test, mutant mice spent significantly more time in the middle 

part of the arena than wild-type mice. Although rearing was not assessed in this 

open-field test, increased rearing was observed in mutant mice in the smaller 

open-field arena used to assess spontaneous activity. Together, these data 
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support a reduced anxiety-like phenotype in mGluR5KD-D1 mice. However, this 

conclusion was not robustly supported when anxiety-related behaviours were 

examined in two other tests of unconditioned behaviour, namely the light-dark box 

(Crawley and Goodwin, 1980; Crawley et al., 1981; Bourin and Hascoet, 2003) and 

the elevated plus-maze (Pellow et al., 1985; Pellow and File, 1986; Stephens et al., 

1986; Lister, 1987). Both tests similarly exploit the naturalistic conflict between the 

tendency of mice to explore a novel environment and the aversive properties of an 

open space (Crawley, 1985; Belzung and Griebel, 2001). In the light-dark box, 

mutant mice did spend more time in the (anxiogenic) light area than wild-type 

controls, but this effect did not reach significance. In the elevated plus-maze, no 

difference in exploratory behaviour was observed between genotypes. The 

contrasting findings amongst the three tests are not easily reconciled, but could 

reflect different genetic components underlying performance in each of the 

paradigms (Crawley and Goodwin, 1980; Crawley et al., 1981; Mathis et al., 1994; 

Dawson and Tricklebank, 1995; Mathis et al., 1995). 

 

An important consideration for interpreting findings from the tests of anxiety-related 

behaviours is that all are heavily dependent upon locomotor activity. In the light-

dark box, there was a tendency in mutant mice for a reduction in the number of 

transitions between areas (a measure considered by some to be a more sensitive 

measure of anxiety-related behaviour than time in each area (Crawley, 1985)), 

although no genotype difference in activity was detected in the open-field or the 

elevated plus-maze. The failure to find a significant difference in activity in these 

tests could have been due to the sensitivity of the measures used and/or the 

relatively short duration of the tests. For example, the number of area transitions in 

the elevated plus-maze is reported to be a relatively insensitive measure of drug-

induced changes in locomotor activity (Dawson et al., 1995). Since mice 

experienced all tests under novel environment conditions, the potential for 

differences in locomotor activity between genotypes contributing to an apparent 

reduced anxiety phenotype cannot be completely discounted. 
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If mGluR5 on D1R expressing cells contributes to anxiety related behaviours, it is 

likely that the overall contribution is small. Reports on the role of mGluR5 in anxiety 

propose multiple brain areas that may be involved in the anxiolytic-like effects of 

mGluR5 antagonists. First, the anxiolytic-like effects of mGluR5 antagonists may 

reflect their ability to reduce extracellular noradrenaline in the frontal cortex, as the 

noradrenergic locus coeruleus is an important mediator of stress responses and 

may contribute to affective disorders (Page et al., 2005). Second, the mGluR5 

antagonist MTEP is reported to produce a dose-dependent increase in serotonin in 

the frontal cortex, and the anxiolytic-like effects of MTEP may necessitate 

activation of the serotonin system (Stachowicz et al., 2007). Third, MTEP reduced 

anxiety-related measures in the elevated plus-maze when injected directly into the 

lateral-septal nucleus (Molina-Hernandez et al., 2006), an area that likely regulates 

mood and motivation through connections with the mesocorticolimbic dopamine 

system (Sheehan et al., 2004). Finally, the anxiolytic effects of MPEP in non-

conditioned tests of anxiety may by mediated by block of mGluR5 in the BLA 

and/or CeN, resulting in reduced glutamate transmission within the BLA and 

reduced glutamate output from the CeN (Perez de la Mora et al., 2006). Clearly, to 

determine whether function in any or all of these neural systems are impaired in 

mGluR5KD-D1 mice would require many years of investigation. For now, it is 

sufficient that the potential for a reduced anxiety-phenotype in mutant mice will be 

considered alongside any other findings reported in this thesis. 

 

Finally, it must be acknowledged that all of the assessments reported here were 

undertaken in adult male mice during the light phase and phenotype/genotype 

interactions may have also arisen as a function of age, gender or time of day. For 

example, Huntington‟s disease transgenic mice show reduced impaired motor 

activity that progressively worsens with age (Mangiarini et al., 1996). Just one 

example of gender differences is provided by the observation that female mice of 

some strains typically consume greater volumes of sweet solutions than male mice 

(Stockton and Whitney, 1974; Ramirez and Fuller, 1976). Although all of these 

factors would be of interest to explore in mGluR5KD-D1 mice, it must also be noted 
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that subsequent experiments of this thesis would be conducted during the light-

phase in adult male mice. Thus, the experimental parameters employed in the 

current chapter allowed for basic phenotype differences to be used more readily in 

understanding any further genotype differences that could emerge from 

experiments reported in the following chapters of this thesis. 
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3 Appetitive learning in mGluR5KD-D1 mice 

 

3.1 Introduction 

 

As a consequence of associative learning, an environmental stimulus paired with 

reward experience (a conditioned stimulus; CS) can not only acquire predictive 

properties that serve to signal the availability and/or location of the reward 

(discriminated approach or goal-tracking; Boakes, 1977), but may also acquire 

incentive properties that enable CSs to attract (auto-shaping or sign-tracking; 

Brown and Jenkins, 1968), directly reinforce (conditioned reinforcement; 

Mackintosh, 1974) or energise (Pavlovian-instrumental transfer; Estes, 1948) 

appetitive behaviours (see also Flagel et al., 2009; Robinson and Flagel, 2009). 

While the predictive and incentive functions of CSs have clear adaptive value, the 

neural systems that mediate the learning of incentive properties (the acquisition) 

and the CSs‟ subsequent effects on behaviour (the expression) are proposed to be 

subverted by drugs of abuse (Everitt et al., 2001; Kelley, 2004; Hyman et al., 

2006). Thus, contemporary theories of drug addiction ascribe particular importance 

to the role of drug-paired CSs in maintaining drug taking and triggering relapse 

(Stewart et al., 1984; Robinson and Berridge, 1993; Everitt et al., 2001). The 

powerful influence of CSs over the consumption of natural rewards (e.g. cue-

potentiated feeding; Zambie, 1973; Weingarten, 1983) has similarly led to the 

proposition that food-paired CSs may contribute to the development and 

maintenance of certain eating disorders and obesity (Holland and Petrovich, 2005; 

Le Merrer and Stephens, 2006; Volkow et al., 2008). 

 

The neural circuitry underlying incentive learning and control over appetitive 

behaviours by CSs involves, in part, convergence within the striatum of 

dopaminergic projections from the ventral tegmental area (VTA) and substantia 

nigra (SN), with glutamatergic inputs originating in the prefrontal cortex (PFC), 

hippocampus and amygdala (Schultz et al., 1997; Robbins and Everitt, 2002; 

Cardinal and Everitt, 2004; Goto and Grace, 2008). Glutamate signalling through 



116 
 

ionotropic AMPA and NMDA receptors in the ventral striatum appear particularly 

important for mediating the control over certain appetitive behaviours by CSs (for 

example, sign-tracking responses; Di Ciano et al., 2001). However, much less is 

known about the role of metabotropic glutamate receptors in these incentive 

learning processes. 

 

The group I metabotropic glutamate receptor, mGluR5, is found throughout the 

CNS, but is most densely expressed in the striatum, cortex and hippocampus 

(Romano et al., 1995). Typically located postsynaptically on dendritic spines and 

concentrated at perisynaptic sites (Shigemoto et al., 1993; Luján et al., 1996), 

mGluR5 plays a central role in different forms of synaptic plasticity, including long 

term potentiation (LTP; see Anwyl, 2009 for review) and long term depression 

(LTD; see Bellone et al., 2008 for review), that are thought to be involved in a 

variety of learning and memory processes (Kelley, 2004; Malenka and Bear, 2004; 

Hyman et al., 2006). Mechanisms by which group I mGluRs influence synaptic 

plasticity include control over presynaptic transmitter release via retrograde 

endocannabinoid signalling (Robbe et al., 2002) and changes in postsynaptic 

sensitivity to excitatory input through alterations in AMPA receptor expression 

(Snyder et al., 2001; Bellone and Luscher, 2005; Mameli et al., 2007; Jo et al., 

2008; Zhang et al., 2008; Kelly et al., 2009). Thus, mGluR5 appears ideally 

positioned to mediate incentive learning processes necessary for the acquisition of 

predictive and/or incentive properties by reward-paired CSs which enable them to 

influence appetitive behaviours. 

 

In the striatum, mGluR5 is expressed on both striatonigral and striatopallidal 

projecting MSNs (Tallaksen-Greene et al., 1998) that are characterised, in part, by 

predominant expression of dopamine D1R or D2R receptors, respectively (Gerfen 

et al., 1990; Bertran-Gonzalez et al., 2011). MSNs provide the sole striatal output 

to motivational and motor systems (Goto and Grace, 2008), but the role of mGluR5 

on these functionally distinct neurons for incentive learning processes is not clear. 

Although systemic administration of an mGluR5 antagonist can disrupt behaviours 
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maintained by a reward-paired CS (e.g. Backstrom et al., 2004), pharmacological 

approaches inevitably lack the selectivity required for understanding the 

contribution of mGluR5 on distinct neuronal populations within the same brain 

locus, such as D1- and D2-MSNs within the striatum. In addition, the only 

published report to examine the role of striatal mGluR5 in behaviours maintained 

by a drug-paired CS was unsuccessful (Backstrom and Hyytia, 2007). In this study, 

the mGluR5 antagonist MPEP was reported to decrease cocaine seeking relative 

to baseline, but only because similar effects were seen following vehicle injections 

in the same within-subjects design. The authors suggested this may reflect 

conditioned anhedonic effects associated with MPEP (Backstrom and Hyytia, 

2007). The mGluR5KD-D1 mouse model therefore offers a valuable tool to examine 

the contribution of mGluR5 on cells that express the dopamine D1R (including 

striatal D1-MSNs) to incentive learning processes. 

 

In this regard, the following experiments will see mGluR5KD-D1 and wild-type mice 

exposed to tests that aim to examine the role of mGluR5 on D1R expressing 

neurons in predictive and incentive elements of appetitive learning. Mice will first 

be trained a purely Pavlovian association between the presentation of a discrete 

stimulus (e.g. a light) and the delivery of a food pellet. Learning about the 

predictive properties of the food-paired CS will be indexed by discriminated 

approach responses during training and, more formally, by tests of discriminated 

approach conducted in the absence of food delivery (i.e. extinction conditions). To 

assess incentive learning in mGluR5KD-D1 and wild-type mice, three fundamental 

(but neurobiologically distinct; Cardinal et al., 2002a) properties of an incentive CS 

will be examined; the ability of a CS to 1) elicit approach toward it (sign-tracking), 

2) reinforce the learning of a new response (CRf) and 3) energize ongoing 

instrumental actions (PIT). Two pharmacology tests will be used to further probe 

the role of mGluR5 in incentive learning. First, mGluR5KD-D1 and wild-type mice will 

receive injections of cocaine prior to CRf tests. This experiment will inform about 

the contribution of mGluR5 on D1R expressing cells to the neural circuitry 

underlying psychostimulant potentiation of CRf. Second, wild-type mice will receive 
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injections of an mGluR5 antagonist, MTEP, prior to tests of CRf. In this experiment, 

the role of mGluR5 in the expression of control over behaviour by a conditioned 

incentive can be examined. Finally, two satiety-induced devaluation tests will be 

reported. The first devaluation test will assess whether mice can update the value 

of the CS elicited representation of the US. The second test will assess whether 

instrumental responding, after the PIT test, is goal-directed or habit based.  
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3.2 Materials and Methods 

 

3.2.1 Animals 

Mice (n = 40/45, WT/KD; male and at least 8 weeks old prior to experiment start) 

were maintained on a 12:12 h light-dark cycle (lights on at 0700 hours) under 

controlled temperature (21 ± 2 °C) and humidity conditions (50 ± 5%). Animals 

were housed in groups of two or three per cage. Water was available ad libitum in 

the holding room. At least 7 days prior to the experiment start, mice were placed 

onto a restricted feeding regime designed to maintain body weights at ~85% of 

free-feeding weight. Experiments took place during the light-phase. All procedures 

were performed in accordance with the United Kingdom 1986 Animals (Scientific 

Procedures) Act, following institutional ethical review. 

 

3.2.2 Drugs 

Cocaine hydrochloride (Macfarlan Smith, Edinburgh, Scotland, UK) was dissolved 

in 0.9% saline. The non-competitive mGluR5 antagonist, 3-((2-methyl-1,3-thiazol-4-

yl)ethynyl)pyridine (MTEP; Sequoia Research Products, Pangbourne, UK), was 

dissolved in 10% v/v Tween 80 : 90% water. Injections were administered at a 

volume of 10 ml/kg i.p. 

 

3.2.3 Apparatus 

Behavioural training and testing were performed in eight standard mouse 

conditioning chambers (15.9 x 14 x 12.7 cm; Med Associates, Vermont, USA). 

Each chamber was housed within a sound attenuating and light-resistant cubicle, 

fitted with an exhaust fan that served both to ventilate the unit and mask any 

external noise. The front access panel, ceiling and rear wall of the conditioning 

chambers were constructed from clear Plexiglas and the side walls consisted of 

removable aluminium panels. Each chamber was fitted with a pellet dispenser 

system that delivered 20 mg food pellets (5TUL, Cat no. 1811142; Test Diets, 

Indiana, USA) into a recessed food magazine situated at the centre of one side 

wall (Fig. 3.1a). A retractable response lever was located on either side of the food 
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magazine and an LED stimulus light was positioned approximately 8 cm above 

each lever (Fig. 3.1a-b). A tone generator (2.9 KHz, 5 dB above background) was 

situated between the stimulus lights (Fig. 3.1a). On the wall opposite to the food 

magazine was located the house light and, for the Pavlovian approach tests, two 

nose-poke holes that each contained an LED stimulus light (Fig. 3.1c) Infra-red 

beams detected head entries into the food magazine and the nose-poke holes. 

Conditioning chambers were controlled and responses recorded using Med-PC IV 

(Med Associates). 
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Figure 3.1 Apparatus for conditioning studies (a) The front wall of the conditioning 

chamber is shown, with the Plexiglas door that provides access to the chamber 

open. A waste tray filled with sawdust is located below the grid floor. (b) The two 

levers are extended into the chamber. (c) The rear wall of the conditioning 

chamber is shown. For the Pavlovian approach test, two nose-pokes are inserted 

into the chamber. In one nose-poke a stimulus light is presented (CS+ nose-poke), 

while no stimulus is presented in the control (Ctrl) nose-poke. 
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3.2.4 Procedural note 

Four different groups of mice were used for the following experiments. An outline of 

the experiments conducted within each group (1-4) is provided (Fig. 3.2). Where 

multiple tests were conducted in the same group, Pavlovian reconditioning 

sessions were provided between tests to maintain baseline conditioning 

performance. 

 

3.2.5 Magazine training 

To familiarize all mice with the food used for conditioning studies, a small amount 

of the food was given to mice in their home cage. Mice also received a single, 30 

min, magazine training session in which food pellets were delivered once every 60 

 

Figure 3.2 Experimental outline for conditioning studies. Four groups of WT 

and KD mice were used for the present experiments. All groups first 
received a magazine training session followed by Pavlovian conditioning. 
Further reconditioning sessions, represented by the block arrows, were 
provided between tests. Group 1 was used to examine sign-tracking (ST), 

conditioned reinforcement (CRf) and cocaine facilitation of CRf (Coc+CRf). 
Group 2 was used to examine CRf. Wild-type mice (open arrows) from this 

group were then used to examine the effect of MTEP on CRf (MTEP+CRf). 
WT and KD (black arrows) mice were then both assessed for discriminated 
approach (DA). Group 3 was used for conditioned reinforcement (CRf) and 
devaluation of DA (Dev+DA). Group 4 was used to examine Pavlovian-

instrumental transfer (PIT) and devaluation of instrumental responding under 
extinction (Dev+Ext). 
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sec, on average (range of 25 to 95 sec; M = 60 sec). No levers, nose-pokes or 

stimuli (e.g. tone or cue lights) were present during the magazine training session. 

 

3.2.6 Group 1 

Procedure overview: Mice (n = 12/12, WT/KD) were first trained a Pavlovian 

association between a discrete visual stimulus and the delivery of a food pellet. 

Following Pavlovian conditioning sessions, the ability of the food-paired stimulus to 

elicit approach toward it (sign-tracking) and to reinforce a novel instrumental 

response (CRf) was examined. Finally, I examined whether cocaine would facilitate 

responding for CRf in wild-type and mutant mice. 

 

3.2.6.1 Pavlovian conditioning 

Mice received eleven, once-daily, 30 min Pavlovian conditioning sessions in which 

16 presentations of a 10 sec stimulus paired with food delivery (CS+; cue lights 

flashing at 1 Hz) occurred. A single food pellet was delivered 5 sec after CS+ 

onset. Each CS+ presentation was separated by a variable, no-stimulus, inter-trial 

interval (ITI; range of 80 to 120 sec; M = 100 sec). A number of measures were 

used to inform about learning in Pavlovian conditioning sessions, 1) Magazine 

entries / min: the rate of magazine entries during CS+ presentations and the ITI, 2) 

% Magazine entries: the distribution of magazine entries between stimulus and ITI 

periods, calculated as ((#CS+ entries / CS+ time) / ((#CS+ entries / CS+ time) + 

(#ITI entries / ITI time))) x 100), 3) Discriminated approach responses: the number 

of magazine entries made during the first 5 sec interval that occurred after CS+ 

onset but before food delivery, and 4) Retrieval latency: the mean latency to enter 

the food magazine after CS+ onset. Note that when a mouse did not enter the 

magazine during a CS+ trial, a time of 10 sec was designated as the retrieval 

latency for that trial. 

 

3.2.6.2 Sign-tracking 

For the 45 min sign-tracking test, conducted 24 h after the final conditioning 

session, two nose-poke holes were inserted into the conditioning chamber (Fig. 
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3.1c). Access to the food magazine was blocked in order to minimize the potential 

for competition between discriminated approach and sign-tracking responses. In 

one nose-poke hole, 15 x 1 min presentations of a flashing cue light (that is, the 

CS+) occurred. Each CS+ presentation was separated by a 2 min, no-stimulus, ITI. 

No stimulus presentations occurred in the second (control) nose-poke hole and no 

food was delivered during the test. The assignment of nose-poke holes (left or 

right) as CS+ and control was counterbalanced within each genotype. Entries into 

each nose-poke were recorded during CS+ presentations, thus providing a 

measure of Pavlovian approach responses toward the CS+. Entries into the nose-

poke ports during the ITI were recorded to provide an indication of overall activity 

during the test. 

 

3.2.6.3 Conditioned reinforcement 

The 45 min CRf test commenced with insertion of both response levers into the 

operant chamber. A single response on one lever (termed, the CS+ lever) resulted 

in a 1.5 sec presentation of the flashing cue lights (that is, the CS+), whereas a 

single response on the alternate lever (the control lever) had no scheduled 

consequence. For half of the animals, the left lever was assigned as the CS+ lever 

and the right lever was the control lever. The remaining animals received the 

reverse lever-outcome pairings. The number and time of occurrence of responses 

on both levers were recorded. No food was delivered during the test. 

 

3.2.6.4 The effect of cocaine on responding for conditioned reinforcement 

Mice were injected with cocaine (0, 3, 10 or 20 mg/kg i.p.) immediately prior to CRf 

tests (undertaken as described 3.2.6.3.). Each mouse received all doses of 

cocaine and vehicle in a Latin-square design. One or two reconditioning sessions 

(as described 3.2.6.1) were provided between each CRf test. 

 

3.2.7 Group 2 

Procedure overview: Since findings from the CRf test in group 1 could have been 

influenced by experience of the sign-tracking test first, a second group of mice (n = 
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12/12, WT/KD) underwent identical Pavlovian training that was immediately 

followed by a CRf test. Next, the role of mGluR5 in mediating responding for CRf 

was further explored by injecting WT mice from this group with the mGluR5 

antagonist, MTEP, prior to additional CRf tests. Finally, the ability of the food-

paired stimulus to serve as a predictor of food delivery (discriminated approach) 

was examined in both WT and KD mice. A number of discriminated approach tests 

were performed to understand whether mice were using the stimulus light or 

perhaps another cue (such as the sound of the food pellet delivery) as a signal of 

oncoming food delivery. 

 

3.2.7.1 Pavlovian conditioning 

Pavlovian conditioning was undertaken as described (3.2.6.1) 

 

3.2.7.2 Conditioned reinforcement 

Conditioned reinforcement was undertaken as described (3.2.6.3) 

 

3.2.7.3 The effect of MTEP on responding for conditioned reinforcement 

Wild-type mice were injected with MTEP (0, 3, 10 or 20 mg/kg i.p.) 15 minutes prior 

to CRf tests (undertaken as described 3.2.6.3). Each mouse received all doses of 

MTEP in a Latin-square design. One or two reconditioning sessions (as described 

3.2.6.1) were provided between each CRf test. Mutant mice did not undergo this 

experiment, since they did not demonstrate any CRf in the first test. One WT 

mouse that failed to elicit any responses during the first CRf test was excluded 

from this test, leaving a group size of n = 11. 

 

3.2.7.4 Discriminated approach 

Mice (n = 12/12, WT/KD) were given five discriminated approach tests, each of 

which was 15 minutes in duration. Each test contained 8 x 10 sec trials, with each 

trial separated by a fixed 100 sec ITI. The type of trial in each test was either 1) 

CS+, US: 10 sec presentation of the CS+, with delivery of a single food pellet 5 sec 

after CS+ onset (i.e. normal Pavlovian conditioning parameters), 2) CS+, Noise: 10 
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sec presentation of the CS+, with the sound of the food pellet delivery 5 sec after 

CS+ onset. The sound of the food pellet delivery was recreated by activating the 

food magazine and allowing the food pellet to fall into a metal receptacle located 

outside of the conditioning chamber. 3) CS+: 10 sec presentation of the CS+ only, 

4) Noise: the sound of the food pellet delivery occurring 5 sec after the end of each 

100 sec ITI, or 5) No: no stimuli were presented during the 10 sec trial period. Note 

that only one type of trial was present in a test. The order of the five discriminated 

approach tests was presented in a Latin-square design. One or two reconditioning 

sessions (as described in 3.2.6.1) were provided between each test. Magazine 

entry rates were recorded during each 10 second trial and the intervening ITIs. 

 

3.2.8 Group 3 

Procedure overview: Because recent evidence suggested that responding for 

sensory reinforcement may contribute significantly to responding for CRf where 

only one conditioned stimulus is used (Winterbauer and Balleine, 2007), a third 

group of mice (n = 9/12, WT/KD) was trained a Pavlovian association with one 

stimulus paired with food delivery and a second stimulus unpaired with food. A test 

of CRf followed in which responding on one lever led to presentation of the food 

paired stimulus and responding on a second lever resulted in presentation of the 

unpaired stimulus. A test of discriminated approach was also undertaken in these 

mice. However, this test contained a devaluation component that would inform 

about ability of the mice to use the CS for gaining access to an internal 

representation of the associated outcome (Holland, 2004). 

 

3.2.8.1 Pavlovian conditioning 

Mice received eleven, once-daily, Pavlovian conditioning sessions in which 16 

presentations of a stimulus paired with food delivery (CS+) and 16 presentations of 

a stimulus paired with no outcome (CS-) occurred. The order of stimulus 

presentations was entirely random and each stimulus was separated by a variable 

no-stimulus ITI (range of 80-120 sec; M = 100 sec). For half of the mice, a constant 

tone (80 dB, 2,900 Hz; 10 sec) served as the CS+ and flashing cue lights (1 Hz; 10 
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sec) served as the CS-. The remaining animals received the reverse pairings. A 

single food pellet was delivered 5 sec after CS+ onset. The measures used to 

inform about learning in Pavlovian conditioning sessions were as described 

(3.2.6.1), with the modification that magazine entries / min and the % Magazine 

entries calculation now took into account magazine entries during both CS+ and 

CS- periods. 

 

3.2.8.2 Conditioned reinforcement 

The 45 min test commenced with insertion of both response levers into the operant 

chamber. A single response on one lever resulted in a 1.5 sec presentation of the 

CS+, whereas a single response on the alternate lever resulted in a 1.5 sec 

presentation of the CS-. For half of the mice, the left lever was designated the CS+ 

lever and the right lever the CS- lever. This contingency was reversed for 

remaining mice. No food was delivered during the test. The number of lever 

responses and their time of occurrence was recorded. 

 

3.2.8.3 The effect of satiety on discriminated approach responses 

The discriminated approach test contained 8 presentations of the 10 sec CS+ and 

8 presentations of the 10 sec CS-. The order of stimulus presentations was entirely 

random and each stimulus was separated by a fixed 100 sec ITI. No food was 

delivered during the test. Magazine entry rates were recorded during each CS+ 

and CS- trial. All mice were exposed to two discriminated approach tests, with two 

reconditioning sessions (as described in 3.2.8.1) provided between each test. For 1 

hour prior to the first test, half of the mice within each genotype received ad libitum 

access to standard lab chow in their home cage (termed, the „valued‟ conditioned), 

while the other half received ad libitum access to the food pellets used for 

conditioning studies (termed, the „devalued‟ condition), also within their home 

cages. For the second discriminated approach test, mice were exposed to the 

opposite feeding condition. To confirm whether food consumption had occurred, 

body weights of mice were recorded before and after the 1 hour feeding period. 
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3.2.9 Group 4 

Procedure overview: Mice (n = 7/9, WT/KD) were first trained a Pavlovian 

association between a stimulus paired with food delivery and a second stimulus 

unpaired with food. Following lever training for food reinforcement, the ability of the 

food-paired stimulus to motivate on-going instrumental responding was examined 

in the Pavlovian-instrumental transfer test. Lever responding under extinction was 

then examined in these mice, which included a devaluation component to inform 

whether instrumental responses were goal-directed or habit based.  

 

3.2.9.1 Pavlovian conditioning 

Mice received twelve, once-daily, 30 min Pavlovian conditioning sessions in which 

four presentations of a 2 min stimulus paired with food delivery (CS+; an 

intermittent tone or flashing house light) occurred. Each stimulus event was 

separated by a variable, no-stimulus, ITI (range of 225 to 375 sec; M = 300 sec). 

Mice then received a further six 45 min conditioning sessions, in which two 

presentations of a 2 min stimulus paired with no outcome (CS-; the alternative 

stimulus) occurred, along with four reinforced presentations of the CS+. The order 

of stimulus presentations was randomly determined and each stimulus was 

separated by a variable, no-stimulus, ITI (range of 205 to 395 sec; M = 300 sec). 

Four food pellets were delivered during each CS+ presentation. Pellet delivery was 

equally likely to occur in each 10 sec time bin throughout the CS+, although a 

minimum time of 10 sec separated each pellet delivery. Magazine entry rates 

(magazine entries / min) were recorded and the distribution of magazine entries (% 

magazine entries) calculated for the two stimulus periods (CS+, CS-). 

 

3.2.9.2 Instrumental training 

Following Pavlovian conditioning sessions, mice were trained to lever press for 

food during once-daily sessions. Each food self-administration session 

commenced with the insertion of two levers. Responses on one lever (the active 

lever) resulted in food pellet delivery, while responses on the alternative lever (the 

inactive lever) had no scheduled consequence. Instrumental training sessions 
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terminated after 30 food pellets had been obtained, or 30 min had elapsed. Initially, 

mice were trained to respond under a fixed-ratio 1 (FR1) schedule of reinforcement 

followed by progressively leaner variable-interval (VI) schedules, until responding 

in both genotypes was stable (that is, less than 20% variation in active lever 

response rates between training sessions) under a VI60 sec schedule of 

reinforcement. 

 

3.2.9.3 Pavlovian-instrumental transfer 

The PIT test commenced with the insertion of both levers and for the first 5 min, no 

stimuli were presented. This period was followed by 4 presentations of the 2 min 

CS+ and 4 presentations of the 2 min CS-, occurring in an alternating order. 

Whether the CS+ or CS- occurred first was randomly determined. Each stimulus 

presentation was preceded by a 2 min, no stimulus ITI. No food was delivered 

during the test. An elevation score was calculated to assess changes in active 

lever response rate during CS+ and CS- presentations (elevation score = lever 

responses during CS+ or CS- presentations minus lever responses during the no-

stimulus ITI period prior to CS+ or CS- presentations, respectively). 

 

3.2.9.4 The effect of satiety on extinction responding 

The 10 min extinction test commenced with insertion of both levers into the 

chamber. Responses on levers were recorded but were without consequence. All 

mice were exposed to two tests, with one instrumental training session (as 

described 3.2.9.2) provided between tests. For 1 hour prior to the first test, half of 

the mice within each genotype received ad libitum access to the food pellets used 

for conditioning studies in their home cage (termed, the „devalued‟ condition), while 

the other half received no food (termed, the „valued‟ conditioned). For the second 

extinction test, mice were exposed to the opposite condition. 

 

3.2.10 Statistical analysis 

All test data were initially assessed for normality (Shapiro-Wilk test; assumption 

violated when p ≤ 0.05) and homogeneity of variance (Levene‟s test, assumption 
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violated when p ≤ 0.05). To permit analysis by parametric tests, appropriate 

transformations were undertaken to transform skewed distributions closer to a 

normal distribution and to reduce heterogeneity of variance (Cardinal and Aitken, 

2006). Specifically, for lever responding during CRf tests (groups 1 and 2), 

magazine entries during the discriminated approach test (group 3) and lever 

responding during the devaluation test (group 4), data were square root 

transformed (Y‟=√Y). Most data (see exceptions below) were first analysed by 

mixed-factor analysis of variance (ANOVA), with genotype (WT, KD) as a between-

subjects factor. Details of the within-subjects factors used each ANOVA are 

provided in the results section. Where significant (p ≤ 0.05) main effects or 

interaction terms were found, further analysis was performed using ANOVA and 

post-hoc comparisons by t-test. Findings were considered indicative of a trend 

where p ≤ 0.1 and Bonferroni corrections were applied for multiple comparisons. 

For within-subjects ANOVA, the Greenhouse-Geisser correction was used where 

the assumption of sphericity was violated (Mauchly‟s test, p ≤ 0.05). 

 

For nose-pokes during the sign-tracking test (group 1) and magazine entries during 

the MTEP on CRf test (group 2), data were not amenable to transformation and 

were analysed by non-parametric tests. Specifically, the comparison of CS+ and 

control nose-pokes within each genotype was made by Wilcoxon Signed-Rank 

test, while comparisons of nose-pokes between genotypes was made by Mann-

Whitney U test. The time course of magazine entries during the MTEP on CRf test 

were analysed by Friedman test. All figures show group mean (± SEM).  
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3.3 Results 

 

3.3.1 Group 1 

3.3.1.1 Pavlovian conditioning 

Both wild-type and mutant mice acquired Pavlovian conditioning; that is, they came 

to enter the food magazine during presentation of the stimulus paired with food 

delivery (the CS+), but largely ignored the food magazine during the no-stimulus 

(ITI) period when food delivery never occurred. Four measures of magazine activity 

were used to compare the acquisition of Pavlovian conditioning between 

genotypes (Fig. 3.3a-d). Analyses of these data was undertaken by mixed-factor 

ANOVA that included Session (1-11) and Period (CS+, ITI) as within-subjects 

factors. 

 

Magazine entries / min: In both genotypes, the absolute rate of magazine entries 

across conditioning sessions increased during CS+ presentations, but decreased 

during the ITI period (Fig. 3.3a). An initial analysis of entries in both periods 

confirmed that magazine entry rates over the conditioning sessions significantly 

differed depending upon the Period identity (main effect of Period, F(1,22) = 70.05, 

p < 0.001; Period x Session interaction, F(10,220) = 37.34, p < 0.001), but not 

between genotypes (Period x Session x Genotype interaction, not significant (NS)). 

A subsequent analysis of magazine entries in both genotypes, first for the CS+ 

period only, confirmed that entry rates in the CS+ period increased over 

conditioning sessions (main effect of Session, F(10,220) = 26.42, p < 0.001), but 

this effect did not differ between genotypes (Session x Genotype interaction, NS). 

Overall CS+ magazine entry rates tended to be lower in mutant mice, but this effect 

did not reach significance (main effect of Genotype, F(1,22) = 3.51, p = 0.074). 

Magazine entry rates during the ITI period decreased over conditioning sessions 

(main effect of Session, F(10,220) = 8.94, p < 0.001) in both genotypes (Session x 

Genotype interaction, NS). Overall magazine entry rates during the ITI were 

reduced in mutant mice (main effect of Genotype, F(1,22) = 5.532, p < 0.05). 
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% Magazine entries: The proportion of total entries made into the food magazine 

during CS+ presentations significantly increased over conditioning sessions (main 

effect of Session, F(10,220) = 34.55, p < 0.001) in both genotypes (Session x 

Genotype interaction, NS), such that magazine entries occurred almost exclusively 

during the CS+ period (Fig. 3.3b). There was no overall difference in % magazine 

entries between genotypes (main effect of Genotype, NS). 

 

Discriminated approach responses: By recording magazine entries in the 5 sec 

interval following CS+ onset but prior to food delivery, it was possible to determine 

whether mice were learning to use the CS+ as a predictor of food delivery. In both 

genotypes, the number of entries into the magazine during this 5 sec interval 

significantly increased over conditioning sessions (main effect of Session, 

F(10,220) = 9.14, p < 0.001), in both genotypes (Session x Genotype interaction, 

NS). This overall response profile did not differ between genotypes (main effect of 

Genotype, NS; Fig. 3.3c). 

 

Retrieval latency: The average time at which mice from both genotypes first 

entered the food magazine following onset of the CS+ decreased across 

conditioning sessions (main effect of Session, F(10,220) = 37.51, p < 0.001; 

Session x Genotype interaction, NS) and approached the time of food delivery (that 

is, 5 sec after CS+ onset; Fig. 3.3d). Although overall retrieval latencies tended to 

be reduced in mutant mice, in comparison to wild-types, this effect did not reach 

statistical significance (main effect of Genotype, F(1,22) = 3.97, p = 0.059).  
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Figure 3.3 Group 1: Pavlovian conditioning (a) In both genotypes, the number of 

entries into the food magazine increased across conditioning sessions during 

presentation of a stimulus paired with food (CS+), while entries during the no-

stimulus period (ITI) decreased. (b) The number of magazine entries made during 

presentation of the CS+, relative to the total number of magazine entries in the 

session (% Magazine entries), increased over conditioning sessions in both 

genotypes. (c) The number of magazine entries made during the first five seconds 

of CS+ onset (i.e. before food delivery), increased over conditioning sessions in 

both genotypes. (d) The average time of the first entry into the food magazine 

following CS+ onset (retrieval latency) decreased over conditioning sessions and 

approached the time of food (US) delivery (n = 12/12, WT/KD)  
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3.3.1.2 Sign-tracking 

When the CS+ was presented in a nose-poke (the CS+ nose-poke), both 

genotypes in group 1 preferentially approached the location of the CS+ in 

comparison to a second (control) nose-poke in which no stimulus was presented 

(Fig. 3.4a; comparison of CS+ and control nose-pokes within each genotype; WT, 

Z = -2.67, p < 0.01; KD, Z = -2.21, p < 0.05). However, mutant mice made 

significantly fewer CS+ approaches than wild-type mice (U = 37, Z= -2.06, p = 

0.045). Mutant mice tended to make fewer approaches into the control nose poke 

than wild-type mice, although this effect did not reach statistical significance (U = 

40, Z = -2.131, p = 0.068). 

 

During the period between CS+ presentations (ITI), nose-poking rates in the CS+ 

and control holes did not differ within each genotype (Fig. 3.4b; WT, Z = -0.46, p = 

0.65; KD, Z = -0.21, p = 0.83), although overall rates of nose-poking were reduced 

in mutant mice (comparison between genotypes for the CS+ nose-poke, U = 43.5, 

Z = -1.68, p = 0.1; control nose-poke, U = 34, Z = -2.22, p < 0.05).  
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Figure 3.4 Group 1: Sign-tracking test (a) When the CS+ was presented in a nose-

poke hole, both genotypes preferentially approached the CS+ nose-poke (CS+) 

than an alternate (control; Ctrl) nose-poke in which no stimulus presentations 

occurred. However, KD mice made significantly fewer CS+ nose-pokes than WT 

mice. Nose-pokes in the Ctrl hole tended to be reduced in mutant mice. (b) During 

the period between stimulus presentations (ITI), nose poking rates in the CS+ and 

Ctrl holes did not differ in either genotype, although overall rates over nose-poking 

tended to be reduced in mutant mice in comparison to wild-types. **p < 0.01, *p < 

0.05, within-genotype comparison of CS+ and Ctrl nose-poke responses. #p < 0.05, 

§p < 0.1, between-genotype comparison of CS+ or Ctrl nose-poke responses (n = 

12/12, WT/KD) 
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3.3.1.3 Conditioned reinforcement 

Mice from both genotypes in group 1 demonstrated CRf; that is, responding was 

preferential for a CS+ reinforced lever over an alternate control lever on which 

responses were met with no consequence (Fig. 3.5a). Analysis of lever responding 

by mixed-factor ANOVA, with Lever (CS+, Control) as a within-subjects factor, 

confirmed that responding varied depending on the lever identity (main effect of 

Lever, F(1,22)= 5.27, p < 0.05) in both genotypes (Genotype x Lever interaction, 

NS). This analysis also indicated no overall difference in lever responding between 

genotypes (main effect of Genotype, NS). Although both genotypes responded 

more on the CS+ paired lever than the control lever, post-hoc comparisons of CS+ 

and control lever responding indicated that this conditioned reinforcement effect 

was not particularly robust in either genotype (WT, t = 1.82, df = 11, p = 0.095; KD, 

t = 1.465 , df = 11 , p = 0.171). 

 

3.3.1.4 The effect of cocaine on responding for conditioned reinforcement 

Data from one mutant mouse were excluded from analysis (CS+ lever responses 

following 10 mg/kg cocaine exceeded the group mean responses + 2.5 x S.D.), 

leaving group sizes of n = 12/11 for WT/KD mice, respectively. Cocaine, at a dose 

of 10 mg/kg, potentiated responding for CRf in wild-type mice, but not in mutant 

mice (Fig. 3.5b). An initial analysis of lever responding in both genotypes by mixed-

factor ANOVA, with Lever (CS+, Control) and Dose (0-20 mg/kg) included as 

within-subjects factors, confirmed that lever responding varied according to the 

lever identity (main effect of Lever, F(1,21) = 17.18, p < 0.001). This analysis also 

identified that lever responding varied amongst cocaine doses and between 

genotypes (main effect of Dose; F(3,63) = 5.91, p < 0.01; Lever x Genotype 

interaction, F(1,21) = 3.46, p = 0.077; Lever x Dose x Genotype interaction, F(3,63) 

= 6.34, p < 0.01). Further analyses were undertaken to explore these effects. 

 

The next analyses examined lever responding in each genotype separately, across 

all cocaine doses. Wild-type mice showed an overall preference for the CS+ lever 

(main effect of Lever, F(1,11) = 11.72 , p < 0.01), and lever responding varied with 
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cocaine dose (Lever x Dose interaction, F(3,33) = 6.95, p < 0.05). Mutant mice also 

showed an overall preference for the CS+ lever (main effect of Lever, F(1,10) = 

7.58, p < 0.05), but lever responding did not vary with dose (Lever x Dose 

interaction, NS). 

 

The third level of analyses examined CS+ and control lever responding separately 

in each genotype across all cocaine doses. In wild-type mice, responding varied 

with cocaine dose for the CS+ lever (main effect of Dose, F(3,33) = 7.05, p = 0.01) 

and the control lever (main effect of Dose, F(3,33) = 8.89, p < 0.01). In mutant 

mice, responding varied with cocaine dose for both the CS+ lever (main effect of 

Dose, F(3,30) = 3.68, p < 0.05) and the control lever (main effect of Dose, F(3,30) 

= 5.35, p < 0.05). Subsequent comparisons confirmed that 10 mg/kg cocaine 

facilitated CS+ lever responding in wild-type mice (10 mg/kg vs. vehicle, t = -2.70, 

df = 11, p = 0.021). Moreover, the effect of cocaine in wild-type mice was specific 

to the CS+ lever, since control lever responding was significantly decreased 

following 10 mg/kg cocaine (10 mg/kg vs. vehicle, t = 2.77, df = 11, p = 0.020). The 

facilitation effect did not occur at a higher cocaine dose. In fact, CS+ lever 

responding was significantly decreased in wild-type mice at 20 mg/kg cocaine (20 

mg/kg vs. vehicle, t = 2.54, df = 11, p < 0.028). In mutant mice, CS+ lever 

responding tended to be decreased following 10 mg/kg cocaine (10 mg/kg vs. 

vehicle, t = 2.17, df = 10, p = 0.056), while CS+ lever responding was significantly 

decreased following 20 mg/kg cocaine (t = 2.88, df = 10, p = 0.016). 
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Figure 3.5 Group 1: Conditioned reinforcement and cocaine potentiation (a) Both 

genotypes preferentially responded on a novel lever that led to presentation of the 

food-paired stimulus (CS+) than an alternate control lever on which responding 

had no consequence (Ctrl). This effect was more robust in WT than KD mice. §p < 

0.1, within-genotype comparison of CS+ and Ctrl lever responding (n=12/12, 

WT/KD) (b) Cocaine (10 mg/kg i.p.) facilitated responding for CRf in WT mice, but 

not KD mice. *p < 0.05, within-genotype comparison of CS+ lever responding 

following 10 mg/kg cocaine and vehicle (n = 12/11, WT/KD)  
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3.3.2 Group 2 

3.3.2.1 Pavlovian conditioning 

Group 2 received identical Pavlovian conditioning to Group 1 and, in agreement, 

wild-type and mutant mice from this group also acquired Pavlovian conditioning 

(Fig 3.6a-d). For the sake of brevity, analyses of Pavlovian conditioning data are 

summarized in table (Table 3.1). Across conditioning sessions, findings for each of 

the four measures of Pavlovian conditioning were near identical to that observed in 

Group 1. The only notable differences were that, in Group 2, overall rates of 

magazine entries (magazine entries / min) during the CS+ and ITI periods and 

overall retrieval latencies were not significantly reduced in mutant mice, in 

comparison to wild-types. However, the overall proportion of magazine entries 

made during CS+ presentations (% Magazine entries) was lower in mutant mice, in 

comparison to wild-types (Table 3.1). 

 

 Session 

F(10,220) 

Session x Genotype 

F(10,220) 

Genotype 

F(1,22) 

Magazine entries/ min    

CS+ period 10.79*** 0.28 0.32 

ITI period 30.23*** 1.65 1.24 

% Magazine entries 73.97*** 0.68 8.75** 

Discriminated 

approach 

3.33* 1.51 0.70 

Retrieval latency 31.06*** 0.92 0.17 

 

Table 3.1 Group 2: ANOVAs for Pavlovian conditioning. Factors: Session 

(1-11); Genotype (WT, KD). ***p < 0.001, **p < 0.01, *p < 0.05 
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Figure 3.6 Group 2: Pavlovian conditioning. Figures show (a) magazine entry 

rates, across conditioning sessions, during presentation of the stimulus paired with 

food (CS+) and the no-stimulus period (ITI), (b) The proportion of total magazine 

entries made during CS+ presentations, (c) The number of magazine entries made 

in the 5 sec interval following CS+ onset but before food delivery, (d) The average 

time of the first entry into the food magazine following CS+ onset (retrieval latency) 

(n = 12/12, WT/KD)  
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3.3.2.2 Conditioned reinforcement 

In group 2, responding for CRf was observed in wild-type mice, but not mutant 

mice (Fig. 3.7a). Analysis of lever responding in both genotypes identified that 

responding varied depending on the lever identity (main effect of Lever, F(1,22)= 

10.33, p < 0.01). However, lever responding also varied between genotypes (Lever 

x Genotype interaction, F(1,22) = 4.61, p < 0.05) and overall responding was 

reduced in mutant mice (main effect of Genotype, F(1,22) = 12.51, p < 0.01). Post-

hoc comparisons of CS+ and control lever responding confirmed robust CRf in 

wild-type mice (t = 3.38, df = 11, p < 0.01), but not mutant mice (t = 0.873, t = 11, p 

= 0.40). In comparison to WT mice, post-hoc comparisons confirmed that CS+ 

lever and control lever responding was significantly reduced in mutant mice (CS+ 

lever, t = 3.11, df = 22, p < 0.01; Control lever, t = 3.28, df = 22, p < 0.01). 

 

A time-course plot of lever responding and magazine entries during the 45 minute 

CRf test (Fig. 3.7b-c) revealed that CS+ lever responding was steady across the 

duration of the test in both genotypes (main effect of Period, NS; Period x 

Genotype interaction, NS). CS+ lever responding was reduced in mutant mice over 

the duration of the session (main effect of Genotype, F(1,22) = 7.26, p < 0.05). 

Similarly, control lever responding (Fig. 3.7c) was steady in both genotypes (main 

effect of Period, NS; Period x Genotype interaction, NS) and was reduced overall 

in mutant mice (main effect of Genotype, F(1,22) = 10.085, p < 0.01). In contrast, 

entries into the food magazine (Fig. 3.7d) declined in both genotypes over the test 

(main effect of Period, F(2,44) = 18.19, p < 0.001; Period x Genotype interaction, 

NS) and did not differ overall between genotypes (main effect of Genotype, NS).  
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Figure 3.7 Group 2: Conditioned reinforcement. (a) Responding for CRf was 

present in wild-type, but not mutant mice. **p < 0.01, within-genotype comparison 

of CS+ and Ctrl lever responding. ##p < 0.01, between-genotype comparison of 

CS+ or Ctrl lever responding. (b) A time-course plot shows that CS+ paired lever 

responding was reduced in mutant mice over the duration of the 45 minute test. (c) 

Responding on the control (Ctrl) lever was also reduced in mutant mice over the 

test duration (d) Entries into the food magazine decreased over the course of the 

session, but did not differ between genotypes (n = 12/12, WT/KD).  
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3.3.2.3 The effect of MTEP on conditioned reinforcement 

In wild-type mice, CRf was present over repeated tests that were preceded by 

injections of 0-20 mg/kg MTEP (main effect of Lever, F(1,10) = 104.24, p < 0.001). 

However, MTEP did not affect overall lever responding (main effect of Dose, NS; 

Dose x Lever interaction, NS). Analysis of responding on each lever separately 

across all MTEP doses confirmed that MTEP did not affect responding on the CS+ 

lever (main effect of Dose, NS), nor reliably on the inactive lever (main effect of 

Dose, F(3,30) = 2.76, p = 0.11). Magazine entries were unaffected by MTEP 

treatment (Friedman test, df = 3, p = 0.60). 
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Figure 3.8 Group 2: MTEP on conditioned reinforcement in wild-type mice. (a) 

Injections of MTEP (1-20 mg/kg i.p.) 20 minutes prior to the CRf test did not disrupt 

responding for CRf in WT mice. (b) Magazine entries during the CRf test were 

similarly unaffected following injections of MTEP (n = 11). 
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3.3.2.4 Discriminated approach 

Multiple tests of discriminated approach were undertaken in group 2 to determine 

whether mice were using the light stimulus and/or perhaps another cue (such as 

the noise of food pellet delivery) to guide magazine entries. Analyses of these data 

were undertaken for each genotype separately due to different training and test 

histories. Discriminated approach during a particular trial type (e.g. „CS/US‟ or 

„noise‟ test) was identified by comparing magazine entry rates during trials to entry 

rates in the interval between trials (ITI). 

 

In wild-type mice (Fig. 3.9a), magazine entry rates during the two periods (trial, ITI) 

varied among the five different test conditions (main effect of Period, F(1,11) = 

39.52, p < 0.001; Test,  F(4,44) = 15.76, p < 0.001; Test x Period interaction, 

F(4,44) = 15.19, p < 0.001). Post hoc comparisons of magazine entry rates 

between trial and ITI periods, in each test, identified that rates were significantly 

increased (that is, discriminated approach was present) during trial periods for the 

CS+, US test (t = 10.93, df = 11, p < 0.001), the CS+, noise test (t = 4.28, df = 11, 

p = 0.001) and the CS+ test (t = 3.17, df = 11, p < 0.01). 

 

In mutant mice, findings from the discriminated approach tests were near identical 

to those of wild-type controls. Magazine entry rates (Fig. 3.9b) during the trial 

period or the no-stimulus period between trials (ITI) also varied among the five test 

conditions (main effect of Period, F(1,11) = 54.31, p < 0.001; Test,  F(4,44) = 

13.63, p < 0.001; Test x Period interaction, F(4,44) = 18.23, p < 0.001). Post-hoc 

comparisons of magazine rates between trial and ITI periods, in each test, 

identified that rates were significantly increased during the trial period for the CS+, 

US test (t = 7.80, df = 11, p < 0.001), CS+, noise test (t = 5.72, df = 11, p = 0.001), 

the CS+ test (t = 4.44, df = 11, p = 0.001) and the noise test (t = 3.77, df = 11, p < 

0.01). 
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Figure 3.9 Group 2: Discriminated approach (a) WT and (b) KD mice received 5 

different tests of discriminated approach.  Each test consisted of 8 x 10 sec trials, 

each separated by a 100 sec ITI. The type of trial in each test was either 1) CS+, 

US: CS+ presentation and food delivery, 2) CS+, Noise: CS+ presentation and 

noise of food delivery only, 3) CS+: CS+ presentation only, 4) Noise: noise of food 

delivery only 5) No: no stimuli were presented in each 10 sec trial period. Due to 

the different training and test histories, data from WT and KD mice are presented 

on two different panels. Discriminated approach in each test was identified by a 

significant difference in magazine entry rates between trial periods and the ITI. ***p 

< 0.001, **p < 0.01, within-genotype comparison of trial and ITI magazine entry 

rates in each test (n = 12/12, WT/KD).  
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3.3.3 Group 3 

3.3.3.1 Pavlovian conditioning 

When mice were trained a Pavlovian association between a stimulus paired with 

food (CS+) and a second stimulus unpaired with food (CS-), mice from both 

genotypes came to enter the food magazine almost exclusively during presentation 

of the CS+ and largely ignored the magazine when the CS- was presented. As for 

Group 1 and 2, four different measures of conditioning performance are reported 

(Fig. 3.10a-d). Again, for brevity, analyses of these measures are summarised in 

table format (Table 3.2). Notably, in both genotypes, magazine entry rates 

increased during presentation of the CS+, and decreased during CS- presentations 

(Fig. 3.10a). Overall rates of responding were reduced during CS- presentations in 

mutant mice (Fig. 3.10a). The proportion of total magazine entries made during 

CS+ presentations increased across sessions in both genotypes, although % CS+ 

magazine activity tended to be reduced overall in wild-type mice (Fig. 3.10b). 

Discriminated approach responses increased over conditioning sessions in both 

genotypes, and to a similar extent (Fig. 3.10c). In both genotypes, the mean 

retrieval latency decreased over conditioning sessions, approaching the time of 

food delivery (Fig. 3.10d). The decrease in retrieval latency over conditioning 

sessions was less pronounced in wild-type mice than mutants, although this effect 

did not reach statistical significance (Table 3.2).  
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Figure 3.10 Group 3: Pavlovian conditioning. Figures show (a) magazine entry 

rates, across conditioning sessions, during presentation of the stimulus paired with 

food (CS+) and stimulus unpaired with food (CS-), (b) the proportion of total 

magazine entries made during CS+ and CS- presentations, (c) the number of 

magazine entries made in the 5 sec interval following CS+ onset but before food 

delivery and (d) the average time of the first entry into the food magazine following 

CS+ onset (retrieval latency) (n = 9/12, WT/KD).  
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Session 

F(10,190) 

Session x Genotype 

F(10,190) 

Genotype 

F(1,19) 

Magazine entries / min    

CS+ period 8.74** 0.72 0.14 

CS- period 3.12* 0.76 5.18* 

% Magazine entries 

CS+ 

CS- 

 

29.66*** 

5.57*** 

 

0.93 

0.58 

 

3.51§ 

1.43 

Discriminated approach 7.57** 0.17 0.004 

Retrieval latency 19.26*** 2.10§ 0.06 

 

Table 3.2 Group 3: ANOVAs for Pavlovian conditioning, Group 3. Factors: Session 

(1-11); Genotype (WT, KD). ***p < 0.001, **p < 0.01, *p < 0.05, §p < 0.10 
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3.3.3.2 Conditioned reinforcement 

In group 3, the CRf test was conducted such that responses on one lever were 

reinforced by the CS+ and responses on the alternate lever led to CS- 

presentations. Responding for CRf was observed in both genotypes, but was 

reduced in mutant mice (Fig. 3.11a). Analysis of lever responding in both 

genotypes identified that responding varied depending on the lever identity (main 

effect of Lever, F(1,19) = 24.38, p < 0.001). However, lever responding also varied 

between genotypes (Lever x Genotype interaction, F(1,19) = 5.57, p < 0.05) and 

overall responding was reduced in mutant mice (main effect of Genotype, F(1,19) = 

7.23, p < 0.05). Post hoc analyses showed that more responses were made on the 

CS+ lever than the CS- lever in both wild-type (t= 3.52, df = 8, p < 0.01) and 

mutant (t = 3.285, df = 11, p < 0.01) mice. However, mutant mice made 

significantly fewer CS+ lever responses than KD mice (t= 2.36, df = 19, p < 0.05), 

while responding on the CS- lever did not differ between genotypes (t = 1.47, df = 

19, p = 0.158). 

 

A time-course plot of lever responding during the 45 minute CRf test revealed that 

CS+ lever responding (Fig. 3.11b) tended to increase over the duration of the test 

(main effect of Period, F(2,38) = 2.96, p = 0.083 ), in both genotypes (Period, x 

Genotype interaction, NS). CS+ lever responding was reduced in mutant mice over 

the duration of the session (main effect of Genotype, F(1,19) = 6.92, p < 0.05). CS- 

lever responding (Fig. 3.11c) was steady in both genotypes over the test duration 

(main effect of Period, NS; Period x Genotype interaction, NS) and did not differ 

overall between genotypes (main effect of Genotype, NS). An analysis of a time-

course plot of food magazine entries (Fig. 3.11d) indicated that the profile of 

magazine entries over the session varied between genotypes (Period x Genotype 

interaction, F(2,38) = 3.31, p < 0.05), Post hoc comparisons indicated that mutant 

mice tended to make fewer head entry responses in the final 15 minute period of 

the session than WT controls, although this effect did not reach statistical 

significance (t = 1.73, df = 19, p = 0.10).  
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Figure 3.11 Group 3: Conditioned reinforcement (a) Both genotypes responding 

for CRf, however CS+ reinforced lever responding was significantly reduced in KD 

mice in comparison to WT mice. There was no between-genotype difference in 

lever responding reinforced by the stimulus unpaired with food (CS-). **p < 0.01, 

within-genotype comparison of CS+ and Ctrl lever responding. #p < 0.05, between-

genotype comparison of CS+ lever responding. (b) A time-course analysis shows 

that CS+ paired lever responding was reduced in mutant mice over the duration of 

the 45 minute test. (c) CS- paired lever responding did not differ between 

genotypes over the test duration (d) Magazine entries tended to be reduced in 

mutant mice in the final 15 minute period of the test (n = 9/12, WT/KD).  
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3.3.3.3 The effect of satiety on discriminated approach responses 

In both genotypes from group 3, mice in the „devalued‟ condition made fewer 

magazine entries during presentation of the CS+ in a test of discriminated 

approach than mice in the „valued‟ condition (Fig 3.12). Analysis of these data was 

first performed by mixed-factor ANOVA with Stimulus (CS+, CS-) and Test 

(Valued, Devalued) as within-subjects factors. Discriminated approach was 

confirmed by higher rates of magazine entries during the CS+ than the CS- across 

all conditions (main effect of Stimulus, F(1,19) = 35.52, p < 0.001) in both 

genotypes (Stimulus x Genotype interaction, NS). Magazine entries varied with the 

test identity (main effect of Test, F(1,19) = 23.34, p < 0.001). An analysis of CS+ 

magazine entries only, in both genotypes across the two tests, confirmed that 

entries were decreased in the devalued condition (main effect of Test, F(1,19) = 

32.59, p < 0.001), but this effect did not differ between genotypes (main effect of 

Genotype, NS ; Genotype x Test interaction, NS). Post hoc comparisons confirmed 

that CS+ magazine entries were significantly reduced in the devalued condition in 

both WT (t = 3.68, df = 8, p < 0.01) and KD mice (t = 4.40, df = 11, p = 0.001), in 

comparison to the valued condition. In contrast, CS- magazine entries were 

unaffected by the test condition (main effect of Test, NS), and did not differ 

between genotypes (main effect of Genotype, NS; Genotype x Test interaction, 

NS). 
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Figure 3.12 Group 3: Devaluation of discriminated approach. In both genotypes, 

magazine entries during presentation of the food-paired stimulus (CS+) were 

significantly reduced when mice were allowed ad libitum access to the food used 

for conditioning (Devalued), in comparison to mice given ad libitum access to a 

different food (Valued). Magazine entries during presentation of the unpaired 

stimulus (CS-) were unaffected by the test condition. ***p < 0.001, **p < 0.01, 

within-genotype comparison of CS+ magazine entries between the two feeding 

conditions (n = 9/12, WT/KD) 
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3.3.4 Group 4 

3.3.4.1 Pavlovian conditioning 

In preparation for the PIT test, when mice were trained a Pavlovian association 

between a stimulus paired with food delivery (CS+) and a second stimulus 

unpaired with food (CS-), both genotypes entered the food magazine during CS+ 

presentations and largely avoided the magazine during CS- presentations (Fig. 

3.13a). In the first portion of conditioning, when only the CS+ was presented, 

magazine entries increased over the twelve conditioning sessions (main effect of 

Session, F(11,154) = 4.0, p < 0.01), in both genotypes (Session x Genotype 

interaction, NS; main effect of Genotype, NS). When the CS- was introduced, 

magazine entry rates were higher during the CS+ period over the six conditioning 

sessions (main effect of Stimulus, F(1,14) = 113.15, p < 0.001), in both genotypes 

(Session x Genotype interaction, NS, Stimulus x Session x Genotype interaction, 

NS). An analysis of CS+ magazine entries over these six conditioning sessions 

indicated that entry rates did not significantly vary over the sessions (main effect of 

Session, NS), and did not differ between genotypes (Genotype x Session 

interaction, NS; main effect of genotype, NS). Magazine entry rates during the CS- 

period neither varied across the six conditioning sessions (main effect of Session, 

NS), nor between genotypes (Genotype x Session interaction, NS; main effect of 

Genotype, NS). 

 

The proportion of total magazine entries made during CS+ presentations increased 

over the first twelve conditioning sessions (main effect of Session, F(11,154) = 

9.16, p < 0.001) in both genotypes (Session x Genotype interaction, NS; main 

effect of Genotype, NS; Fig. 3.13b). When the CS- was introduced for a further six 

conditioning sessions, a greater proportion of magazine entries occurred during 

CS+ presentations than CS- presentations (main effect of Stimulus, F(1,14) = 

192.73, p < 0.001), in both genotypes (Stimulus x Genotype interaction, NS; main 

effect of genotype, NS). An analysis of magazine entry distribution during each 

stimulus period, separated, for both genotypes confirmed that the distribution of 

entries did not significantly differ between genotypes during the CS+ period 
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(Stimulus x Genotype interaction, NS; main effect of Genotype, NS), or the CS- 

period (Stimulus x Genotype interaction, NS; main effect of Genotype, NS). 

 

3.3.4.2 Instrumental training 

Both genotypes acquired instrumental responding reinforced by food delivery (Fig. 

3.13c). Analysis of lever responding was performed by mixed-factor ANOVA, with 

Lever (active, inactive) and Session (1-4) included as within-subjects factors. 

Analysis was restricted to the first four and last four sessions of instrumental 

responding to compare the initial acquisition of instrumental responding and 

performance of the well learned instrumental response between-genotypes, 

respectively. Over the first four sessions of responding, under an FR1 schedule, 

responding was preferential for the lever that resulted in food delivery (active lever) 

over the alternate lever on which responding had no consequence (inactive lever; 

main effect of Lever, F(1,14) = 54.84, p < 0.001). This response profile did not 

differ between genotypes (Lever x Genotype interaction, NS; main effect of 

Genotype, NS). Similarly, over the final four instrumental training sessions, under a 

VI60s schedule, responding was preferential for the active lever (main effect of 

Lever; F(1,14) = 40.35, p < 0.001), and lever response rates did not differ between 

genotypes (Lever x Genotype interaction, NS; main effect of Genotype, NS). 
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Figure 3.13 Group 4: Pavlovian conditioning and instrumental training. (a) Mice 

from both genotypes made more magazine entries during the presentation of a 2 

min stimulus paired with food (CS+), than during presentations of a 2 min stimulus 

unpaired with food (CS-). (b) In both genotypes, the majority of magazine entries 

occurred when the CS+ presented, while only a small proportion of entries 

occurred during CS- presentations. (c) Responses on a lever that resulted in food 

delivery (the active lever) increased over training, initially under a fixed-ratio 1 

(FR1) schedule then under variable interval (VI) schedules of reinforcement. A 

second lever was present during instrumental training on which responding had no 

consequence (the inactive lever). Inactive lever response rates are not presented 

as these were low (< 2 responses/ min) in both genotypes over the duration of 

training (n = 7/9, WT/KD).  
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3.3.4.3 Pavlovian-instrumental transfer 

Responses on a lever that previously led to the delivery of food significantly 

increased during presentations of the previously food-paired stimulus (CS+), in 

comparison to a decrease in responding during CS- presentations (Fig. 3.14a; 

main effect of Stimulus, F(1,14) = 20.93, p < 0.001). There was no difference in PIT 

between genotypes (Stimulus x Genotype, NS; main effect of Genotype, NS). Post-

hoc comparisons of CS+ and CS- elevation scores confirmed that lever responding 

was significantly increased during CS+ presentations, in comparison to responding 

during CS- presentations, in both WT (t = 3.18, df = 6, p = 0.019) and KD mice (t= 

3.46, df = 8, p = 0.009). 

 

A plot of elevation scores over the four trials in WT mice (Fig. 3.14b, panel i) 

revealed that lever responding was increased during CS+ presentations, in 

comparison to responding during CS- presentations (main effect of Stimulus, F(1,6) 

= 10.015, p < 0.05) over all trials (main effect of Trial, NS; Stimulus x Trial 

interaction, NS). An identical profile of elevation scores over trials was observed for 

mutant mice (Fig. 3.14b, panel ii; main effect of Stimulus, F(1,8) = 9.05, p < 0.05; 

main effect of Trial, NS; Stimulus x Trial interaction, NS). 
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Figure 3.14 Group 4: Pavlovian-instrumental transfer test (a) In both genotypes, 

presentation of the previously food-paired stimulus (CS+) elevated responding on 

the lever previously associated with food, in comparison to a decrease in 

responding observed during presentations of the stimulus unpaired with food (CS-). 

The elevation score is calculated as responses during CS minus responses pre 

CS. (b) The elevation scores for each stimulus presentation trial in the PIT tests for 

WT (panel i) and KD (panel ii) mice are shown. **p < 0.01, *p < 0.05, within-

genotype comparison of CS+ and CS- elevation scores (n = 7/9, WT/KD). 
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3.3.4.4 The effect of satiety on extinction responding 

In both genotypes from group 4, mice in the devalued condition made fewer 

responses of the active lever in a test of extinction than mice in the valued 

condition (Fig. 3.15a). Analysis of these data was first performed by mixed-factor 

ANOVA with Lever (active, inactive) and Test (valued, devalued) as within-subjects 

factors. Preferential active lever responding across all tests was confirmed (main 

effect of Lever, F(1,14) = 106.51, p < 0.001), in both genotypes (Lever x Genotype 

interaction, NS). Lever responding varied with the test condition (Lever x Test 

interaction, F(1,14) = 38.36, p < 0.001), so further analyses were performed, first 

for active lever responding in both genotypes and tests. This analysis confirmed 

that active lever responding was significantly reduced in the devalued condition 

(main effect of Test, F(1,14) = 46.67, p < 0.001), but this effect did not differ 

between genotypes (main effect of Genotype, NS; Genotype x Test interaction, 

NS). Post hoc comparisons confirmed that active lever responding was reduced in 

the devalued condition, in comparison to the valued condition, in both WT (t = 3.12, 

df = 6, p < 0.01) and KD mice (t = 6.014, df = 8, p < 0.001). In contrast, inactive 

lever responses were unaffected by the test condition (main effect of Test, NS) and 

did not reliably differ between genotypes (main effect of Genotype, NS; Genotype x 

Test interaction, F(1,14) = 3.19, p = 0.10). 

 

Finally, an analysis of magazine entry rates during these extinction tests (Fig 

3.15b), indicated the entry rates were also reduced under the devalued test 

condition (main effect of Test, F(1,14)=31.46, p < 0.001), in both genotypes (main 

effect of Genotype, NS; Genotype x Lever interaction, NS). Post-hoc comparison of 

magazine entry rates between tests in confirmed that entry rates were significantly 

reduced in KD mice (t = 10.97, df = 8, p < 0.001) and tended to be reduced in WT 

mice (t = 2.07, df = 6, p = 0.084).  
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Figure 3.15 Group 4: Devaluation on instrumental responding. (a) In both 

genotypes, responses on the active lever were significantly reduced when mice 

were allowed ad libitum access to the food used for instrumental conditioning prior 

to test of extinction responding (Devalued), in comparison to mice that were not 

given access to food prior to the test (Valued). (b) In both genotypes, magazine 

entries were reduced in the devalued test condition. ***p < 0.001, **p < 0.01, §p < 

0.1, within-genotype comparison of active lever responding, or magazine entries, 

between test conditions (n = 7/9, WT/KD).  
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3.4 Discussion 

 

The present chapter examined distinct features of appetitive learning in mGluR5KD-

D1 and wild-type mice. Both genotypes readily learned about the predictive 

properties of the food-paired CS. Thus, presentation of the CS elicited entries into 

the food hopper, even when food was not delivered (discriminated approach). Both 

genotypes were also able to adjust responding to the CS, based on the current 

value of the CS triggered US representation (devaluation on discriminated 

approach). However, assessments of incentive learning revealed specific deficits in 

mGluR5KD-D1 mice. First, the ability of the CS to serve as a „motivational magnet‟ 

(Berridge and Robinson, 2003) and elicit approach toward it (sign-tracking) was 

impaired. Second, the acquisition of a novel response reinforced by the reward-

paired CS (CRf) was also impaired in mGluR5KD-D1 mice. Further tests of CRf 

revealed that cocaine potentiated CRf responding in wild-type, but not mGluR5KD-D1 

mice. In addition, blockade of mGluR5 in wild-type mice with a selective antagonist 

(MTEP) failed to disrupt responding for CRf. In contrast to deficits in sign-tracking 

and CRf, incentive learning necessary for a reward-paired CS to motivate ongoing 

goal-directed actions (generalised PIT) was intact in mutant mice. Finally, although 

this thesis primarily concerns Pavlovian appetitive learning, it is worthwhile to note 

that mGluR5KD-D1 mice readily acquired an instrumental response reinforced by a 

food reward and instrumental responding remained sensitive to variation in the 

outcome value in both genotypes (devaluation on instrumental responding). Taken 

together, these data indicate mGluR5 on D1R expressing cells as necessary for 

specific Pavlovian incentive learning processes. 

 

Different conditioning procedures were used in the present report, including the 

pairing of a short duration (10 sec) stimulus with the delivery of a single food pellet 

(Groups 1, 2 and 3; CRf experiments), and the pairing of a longer duration (2 min) 

stimulus with the delivery of multiple food reinforcers (Group 4; PIT experiment). 

Since PIT was normal in mGluR5KD-D1 mice, but CRf was disrupted, could it be that 

mGluR5KD-D1 mice simply failed to acquire any CS-US association (incentive or 
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predictive) because a short duration CS was used, or that a longer duration CS 

was more permissive for incentive learning in mGluR5KD-D1 mice? To address this 

question empirically would require that both genotypes were tested for CRf and PIT 

after receiving conditioning with the longer duration and short duration CS, 

respectively. Although this experiment would be interesting, this overall proposal 

seems unsatisfactory. First, mGluR5KD-D1 mice readily acquired a predictive CS-US 

association under both conditioning parameters, as indexed by the different 

measures of discriminated approach recorded during conditioning. Discriminated 

approach performance in mGluR5KD-D1 mice typically approached or reached 

asymptotic levels at the end of conditioning and was largely indistinguishable from 

wild-type mice. In some groups, overall rates of magazine entries were lower in 

mGluR5KD-D1 mice (for example, Group 1, magazine entries/min and %magazine 

entries; Fig. 3.3a-b). However, a subsequent between-genotype comparison of the 

slopes of these measures, which perhaps provides a better measure of the rate of 

learning, indicated no difference in the rate of change of each measure across 

conditioning sessions (data not shown). Second, the use of different Pavlovian 

conditioning procedures for CRf and PIT studies was in recognition of data 

indicating that these procedures were most suitable for supporting subsequent CRf 

or PIT behaviour in mice (Crombag et al., 2008a). Longer-duration CSs are more 

likely to establish „drive‟ conditioned responses that exert more modulatory 

influence over behaviours (this effect being fundamental to PIT) (Konorski, 1967; 

Wagner and Brandon, 1989; Holland and Gallagher, 2003). In contrast, short-

duration CSs are more likely to establish specific „consummatory‟ conditioned 

responses (Konorski, 1967; Wagner and Brandon, 1989; Holland and Gallagher, 

2003). Thus, the conditioning parameters used in the present report should have 

been optimal for promoting learning necessary for supporting CRf and sign-

tracking in mGluR5KD-D1 mice. 

 

In the sign-tracking test, mGluR5KD-D1 mice made fewer approaches toward the 

food-paired CS than wild-type mice, but overall rates of nose-poking in the period 

between CS presentation trails (the ITI) were also reduced in mGluR5KD-D1 mice. A 
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finding of impaired sign-tracking in mGluR5KD-D1 mice may have simply been an 

artefact of reduced exploratory activity. Arguing against this possibility is that the 

latency to the first nose-poke response did not differ between genotypes (data not 

shown) and, in a separate test of spontaneous activity (Chapter 2, section 2.2.6.2), 

no difference in spontaneous nose-poking was found between genotypes. One 

possibility is that presentation of the CS+ may have been more effective in 

stimulating conditioned activity (or general behavioural activation) in wild-type 

mice, leading to an increase in overall rates of nose-poking. The presentation of 

food-paired CSs can trigger a variety of conditioned responses (Holland, 1977) but, 

in the current preparation, we were unable to record activity levels (beyond nose-

poking) in the operant chamber during Pavlovian conditioning and the test. 

 

It must also be considered whether impaired responding for CRf in mGluR5KD-D1 

mice was due to a general reduction in activity and/or impairment in ability to 

acquire a lever response. These possibilities can be ruled out on a number of 

accounts. First, magazine entries elicited during the CRf tests did not reliably differ 

between genotypes, providing some evidence that overall activity levels in the CRf 

tests were comparable between mGluR5KD-D1 and wild-type mice. Second, there 

was no difference between genotypes in the latency to the first lever press (data 

not shown), providing evidence that mGluR5KD-D1 mice did explore the response 

levers. Third, mGluR5KD-D1 mice readily acquired an instrumental response that 

was reinforced by food and could respond at high rates, indistinguishable from their 

wild-type counterparts. Similarly, mGluR5KD-D1 mice also learned to lever press for 

cocaine in identical fashion to wild-type mice (Novak et al., 2010). Taken together, 

these data support a dissociable role for mGluR5 on D1R expressing cells in the 

primary versus secondary (that is, conditioned) reinforcing effects of both natural 

and drug reinforcers. 

 

Although CS reinforced responding in mGluR5KD-D1 was generally reduced in 

comparison to wild-type mice in both the sign-tracking and CRf tests, mGluR5KD-D1 

mice could nevertheless discriminate between CS+ and control nose-pokes (sign-



164 
 

tracking test) or CS+ and CS- paired levers (CRf test). This profile of responding 

mirrors that reported in an autoshaping procedure following lesions of the NAcc 

core or its dopamine depletion, which are characterized by decreased approach 

toward the CS+ (Parkinson et al., 1999) and/or a more global reduction in 

approach responses (Parkinson et al., 2002). In contrast, lesions of the anterior 

cingulate cortex resulted in a general disruption of autoshaping by increasing 

approaches made toward the CS- (Bussey et al., 1997a; but see; Cardinal et al., 

2002b). The findings reported here suggest that mGluR5 on D1R expressing 

neurons may be particularly important for determining the „vigour‟ of the CS 

controlled response output, while having less influence over the „direction‟ of the 

behavioural response and without disrupting „drive‟ conditioned responses that are 

fundamental to PIT. 

 

In the first two tests of CRf (Group 1 and 2), mice were presented with one lever 

reinforced by the food-paired CS (a light) and a second lever on which responses 

had no consequence. Under these conditions, mGluR5KD-D1 mice did not 

demonstrate reliable CRf (Group 1 and 2) or responding for CRf was reduced in 

comparison to wild-type mice (Group 2). Criticism of this test design has been 

raised, suggesting that responding for „sensory reinforcement‟  (that is, responding 

for stimuli without acquired reinforcing properties) may underlie a large component 

of CS reinforced responding (Winterbauer and Balleine, 2007). This issue is 

particularly pertinent for the current thesis, given a recent report indicating that the 

acquisition of an instrumental response reinforced solely by a novel visual stimulus 

is impaired in mGluR5 knock-out mice (termed, operant sensation seeking; Olsen 

et al., 2010). While a „sensory reinforcement‟ or „operant sensation seeking‟ 

account cannot be ruled out with regards to findings from the first two CRf tests, 

responding for CRf was also impaired in mutant mice in the third CRf test that 

employed proper control procedures (Rescorla, 1967). Thus, where responses on 

one lever were reinforced by a food-paired stimulus (CS+) and responses on the 

second lever by a stimulus unpaired with food (CS-), mutant mice demonstrated 
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reduced responding for CRf in comparison to wild-types, supporting our initial 

assertion of a specific incentive learning deficit in mGluR5KD-D1 mice. 

 

When cocaine was injected prior to tests of CRf, responding for CRf was 

potentiated in wild-type mice. In contrast, cocaine did not facilitate CS+ reinforced 

responding in mutant mice. One possible account for the absence of cocaine 

facilitation of CRf in mutant mice is that preference for the CS+ reinforced lever 

was simply reduced in mGluR5KD-D1 mice during this test. Thus, perhaps there was 

no real CRf response to facilitate in these mice. However, psychostimulants can 

markedly potentiate the incentive effects of a reward-paired CS, even when the 

baseline effects of the CS alone are small (e.g. amphetamine on PIT; Wyvell and 

Berridge, 2001) or have been reduced due to lesioning (e.g. BLA lesions on CRf; 

Burns et al., 1993). The present data suggest that loss of mGluR5 on D1 

expressing neurons may play a critical role in the „gain-amplification‟ process that 

depends heavily upon dopamine and glutamate innervation in the ventral striatum 

(Taylor and Robbins, 1986; Wolterink et al., 1993; Burns et al., 1994), and integrity 

of the ventral subiculum (Burns et al., 1993), NAcc shell (Parkinson et al., 1999) 

and CeN (Robledo et al., 1996). 

 

If mGluR5 on D1R expressing cells are necessary for CRf, one might have 

expected blockade with a selective mGluR5 antagonist (MTEP) in wild-type mice to 

similarly impair CS reinforced responding. This was not the case, as MTEP failed 

to significantly alter responding for CRf in wild-type mice. One possibility is that the 

doses of MTEP used were too low to cause a sufficient block of mGluR5. However, 

3 mg/kg i.p. MTEP was reported to achieve >75% receptor occupancy for at least 

15 min post-dosing in mice (Anderson et al., 2003) and doses of 30 mg/kg i.p. 

MTEP or higher reduced locomotor activity in mice (Cowen et al., 2007). In the 

current chapter, MTEP was injected prior to the test, thereby examining the role of 

mGluR5 in the expression of control over responding by the CS. Alternatively, 

mGluR5 may be critically involved in the acquisition of incentive value by a CS. 

Some support for this proposal is provided from studies of conditioned fear. Thus, 



166 
 

MTEP impaired the acquisition (and the expression) of hippocampus-dependent 

contextual fear conditioning, but impaired the expression (but not the acquisition) of 

hippocampus-independent auditory fear conditioning (Gravius et al., 2006). 

 

Not all appetitive behaviours were impaired in mGluR5KD-D1 mice. Mice were able to 

use the CS as a predictive signal of food delivery, as indicated by the discriminated 

approach tests. A satiety-induced devaluation test indicated that mGluR5KD-D1 mice 

were able to adjust responding to the CS, based on the current value of the CS 

triggered US representation. In the „devalued‟ condition, mice were given access to 

the same food used for conditioning (sucrose pellets), while in the „valued‟ 

condition, mice were given access to a different food (chow). At first sight, the 

reduction in discriminated approach responses in the devalued vs. the valued 

condition might suggest that the CS triggered a specific representation of the 

outcome (i.e. sucrose pellets). However, mice from both genotypes ate significantly 

more sucrose pellets than chow in the 1 hour period before the devaluation test 

(data not shown). Thus, the data from the current experimental preparation can be 

used only to support a notion that mice had encoded a CS representation of the 

US, but not the nature (general or specific) of that representation. 

 

The finding that a reward-paired CS was able to motivate ongoing goal-directed 

actions in mGluR5KD-D1 mice highlights an important dissociation in the role of 

mGluR5 on D1R expressing neurons for incentive learning processes. Since the 

underlying neural circuitry of the behavioural models used is relatively well 

characterised (see General Introduction for review), this dissociation can be used 

to propose neural „node(s)‟ in which mGluR5 loss on D1R expressing neurons 

could contribute to the present findings. For now, I wish to speculate about the role 

of mGluR5 on D1R expressing neurons (i.e. D1-MSNs) within the ventral striatum, 

given the contribution of this structure to responding for CRf (Parkinson et al., 

1999; Ito et al., 2004), the development of sign-tracking responses (Parkinson et 

al., 2000b; Di Ciano et al., 2001) and PIT (Hall et al., 2001). Notably, the NAcc is 

not required for CRf per se but can influence the vigour (NAcc shell) and direction 
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(NAcc core) of CS-reinforced behaviour (Cardinal et al., 2002a). In addition, lesions 

of the NAcc core, but not the shell abolish PIT (Hall et al., 2001). The mGluR5KD-D1 

mouse would therefore appear similar to NAcc shell lesioned animals, and one 

might speculate that glutamatergic signalling from cortical limbic inputs onto D1-

MSNs in the NAcc shell may be disrupted in mGluR5KD-D1 mice. However, lesions 

of the NAcc core, but not the NAcc shell abolish autoshaping in rats (Parkinson et 

al., 2000b). Thus, if mGluR5KD-D1 mice were completely analogous to NAcc shell 

lesioned animals (and moreover NAcc shell lesioned rats) we ought to have seen 

normal sign-tracking in mutant mice, which was not the case. The effects of 

lesioning will be far more disruptive for node function than a cell-type specific 

manipulation and the findings reported with mGluR5KD-D1 mice may underline 

further functional dissociations within the ventral striatum, not only between the 

core and shell regions, but also within the distinct MSN populations in each region. 

Finally, it is worthwhile noting that post-training intra-NAcc infusions of an NMDA 

and D1R antagonist, but not a D2R antagonist, impaired the consolidation of 

appetitive Pavlovian learning necessary for supporting autoshaping (Dalley et al., 

2005). While infusions in this study were primarily targeted at the NAcc core 

region, a small number of injector tips were located in the ventrolateral shell region 

(Dalley et al., 2005), suggesting that dopamine and glutamate signalling in this 

region may contribute, in part, to incentive learning necessary for sign-tracking. 

Whether in the NAcc core or shell, the findings reported here with mGluR5KD-D1 

mice suggest that glutamate and dopamine signalling in the ventral striatum, 

particularly though cells that express the dopamine D1R, are necessary for specific 

incentive learning processes. 

 

In summary, the experiments reported here identify a necessary role of mGluR5 on 

D1R expressing neurons for incentive learning processes that endow a reward-

paired CS with the ability to both reinforce and attract motivated behaviours. A 

critical question outstanding from the current chapter is whether mGluR5 in 

necessary for the acquisition of conditioned incentive value by reward-paired CSs 
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or the expression of control over responding by a conditioned incentive. This issue 

will be addressed in the next chapter.  
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4 The role of mGluR5 in the acquisition and 

expression of incentive learning 

 

4.1 Introduction 

 

In the previous chapter, mGluR5 on D1R expressing neurons was revealed as 

necessary for incentive learning that enables a reward-paired CS to both attract 

and directly reinforce behaviour. In contrast, mGluR5 on D1R expressing neurons 

was not necessary for learning about the predictive properties of the reward-paired 

CS. These experiments employed a mutant mouse line in which mGluR5 was 

constitutively knocked-down on D1R expressing cells. As such, it was not possible 

to determine whether mGluR5 was necessary for the acquisition of the incentive 

association, or for the expression of control over behaviour by the reward-paired 

CS. Using the selective mGluR5 antagonist MTEP, in wild-type mice, the following 

experiments will explore the role of mGluR5 in the acquisition and/or expression of 

predictive (discriminated approach or goal-tracking; Boakes, 1977) and incentive 

(conditioned reinforcement; Mackintosh, 1994) properties of a reward-paired CS. 

 

There are numerous examples where neural nodes or molecular substrates play 

dissociable roles in the acquisition and expression of an appetitive Pavlovian 

association. For example, the BLA is required for the attribution of cues with 

incentive properties of outcomes, but may not (under some conditions) be required 

for maintaining these CS-US representations in memory or updating them with new 

information (Setlow et al., 2002; Blundell et al., 2003; Pickens et al., 2003; Johnson 

et al., 2009). With respect to the sign-tracking CR, lesion studies have indicated 

that the CeN plays a specific role in the acquisition of this CR, but not in the 

performance of it (Parkinson et al., 2000a; Cardinal et al., 2002b). Lesion studies 

have also indicated that some neural nodes are involved in both the acquisition 

and performance of a CR, but pharmacological approaches can reveal further 

acquisition/expression dissociations within these nodes. For example, the NAcc 
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core and its dopaminergic innervation contribute both to the acquisition and 

performance of a sign-tracking CR (Parkinson et al., 2000a; Cardinal et al., 2002b; 

Parkinson et al., 2002). However, dopamine and NMDA receptors within the NAcc 

core contribute selectively to the acquisition (but not the expression) of a sign-

tracking CR, while AMPA/KA receptors in the NAcc core are necessary for the 

expression (but not the acquisition) of this response (Di Ciano et al., 2001). The 

role of NAcc core dopamine (presumably acting at D1Rs rather than D2Rs; Dalley 

et al., 2005) and NMDA receptors in the consolidation of appetitive learning is in 

agreement with the role of these receptors in LTP and other forms of synaptic 

plasticity hypothesised to underlie associative learning (Pennartz et al., 1993; 

Kombian and Malenka, 1994; Kelley et al., 2003; Kelley, 2004). In contrast, AMPA 

receptors are particularly important for maintaining synaptic strength at excitatory 

synapses (Malenka, 2003; Kessels and Malinow, 2009), which is in broad 

agreement with their role in the performance of CS controlled appetitive 

behaviours. 

 

With regards to mGluR5, there is much evidence to suggest that it contributes to 

the expression of control over behaviours by reward paired-CSs. For example, 

cue-induced reinstatement of cocaine seeking, which is largely analogous to 

responding for CRf, is significantly attenuated by the mGluR5 antagonist, MPEP 

(Backstrom and Hyytia, 2006). In the Pavlovian-instrumental transfer procedure, 

MPEP attenuates the ability of a food-paired CS to motivate ongoing instrumental 

responding (George et al., 2009). In the conditioned place preference model, 

mGluR5 antagonism blocks the expression of place preference established with 

drugs, including morphine (Herzig and Schmidt, 2004) and amphetamine (Herzig et 

al., 2005). Few studies have directly examined the possibility that mGluR5 may be 

involved in the acquisition of an incentive CS-US association. There is some 

evidence that mGluR5 could play a role here, since MPEP given during 

conditioning with cocaine or morphine, attenuated the subsequent establishment of 

place preference (Popik and Wrobel, 2002; McGeehan and Olive, 2003). However, 
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whether the expression of CPP requires incentive learning processes is 

questionable (Stephens et al., 2010). 

 

More robust support for a role of mGluR5 in the acquisition of conditioned 

associations can be found in studies of conditioned fear. Using the fear potentiated 

startle paradigm in rats, MPEP dose dependently blocked the acquisition of fear 

and, at a higher dose, also blocked the expression of fear (Schulz et al., 2001). 

When infused into the lateral-amygdala (LA), MPEP blocked the acquisition, but 

not the expression, of auditory and contextual fear conditioning in rats (Rodrigues 

et al., 2002). The role of mGluR5 in conditioned fear appeared restricted to the 

acquisition phase, since post-training intra-LA infusions had no effect on the 

consolidation of fear conditioning (Rodrigues et al., 2002). Moreover, bath 

application of MPEP disrupted LTP at thalamic input synapses to the LA, indicating 

that mGluR5 has a central role in establishing plasticity in the amygdala that may 

be necessary for aspects of emotional learning (Fendt and Schmid, 2002; 

Rodrigues et al., 2002). 

  

As previously discussed (see section 1.4), incentive learning involves a fairly well 

circumscribed forebrain circuitry involving cortical limbic and striatal regions (Everitt 

et al., 1999). Within many components of this circuitry, mGluR5 is implicated in the 

associative strengthening of neural connections during learning (reviewed in 

Bellone et al., 2008; Anwyl, 2009). For instance, blockade of mGluR5 disrupts 

hippocampal LTP (Bashir et al., 1993), and mice lacking mGluR5 show a reduction 

in LTP in NMDA-receptor dependent pathways, including the CA1 region and 

dentate gyrus of the hippocampus (Lu et al., 1997). In dopaminergic cells of the 

VTA, the AMPA/NMDA EPSC ratio is reduced in mice lacking mGluR5 (Bird et al., 

2010). In the striatum, mGluR5 regulates excitability of MSNs (D'Ascenzo et al., 

2009), and is necessary for the induction of synaptic plasticity in the NAcc core that 

occurs following stimulation of glutamatergic cortical inputs (Schotanus and 

Chergui, 2008), but may not be so critical for the maintenance of corticostriatal 

plasticity following its induction (Sung et al., 2001; Gubellini et al., 2003). Taken 
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together, there is ample evidence to suggest that mGluR5 could contribute to the 

formation of appetitive CS-US associations. 

 

In this chapter, the role of mGluR5 in the acquisition and/or expression of 

Pavlovian incentive learning is explored in mice using the mGluR5 antagonist, 

MTEP. By administering MTEP to mice during the learning of this stimulus-reward 

association (Pavlovian conditioning), we were able to examine the contribution of 

mGluR5 to the acquisition of predictive properties by the food-paired CS that serve 

to signal the availability of reward at its location (goal-tracking test), and incentive 

properties necessary to reinforce an entirely novel instrumental response (CRf 

test). To determine whether mGluR5 was necessary for the expression of control 

over behaviours by the CS, we administered MTEP during the tests of goal-

tracking and CRf to mice that had received vehicle during Pavlovian conditioning 

sessions. Critically, tests of goal-tracking and CRf were performed under extinction 

conditions, therefore allowing the predictive and incentive motivational features of 

the CS to be examined without interference from presentation of the primary 

reward.   
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4.2 Materials and methods 

 

4.2.1 Animals 

Mice (n = 62; male C57BL6 x Sv129; derived in house; minimum 8 weeks old) 

were housed in groups of two or three and allowed to habituate to the holding room 

for one week prior to beginning the experiment. Animals were maintained on a 

12:12 h light-dark cycle (lights on at 0700 hours) under controlled temperature (21 

± 2 °C) and humidity conditions (50 ± 5%). Body weights were maintained at 

approximately 85% of free-feeding weight by the provision of a limited amount of 

standard lab chow (B&K Feeds, Hull, UK) approximately 2 hours after daily 

experiment completion. Experiments took place during the light-phase between 

0900 and 1500 hours. All procedures were performed in accordance with the 

United Kingdom 1986 Animals (Scientific Procedures) Act, following institutional 

ethical review. 

 

4.2.2 Drugs 

All injections were administered at a volume of 10 ml/kg i.p. The non-competitive 

mGluR5 antagonist, 3-((2-methyl-1,3-thiazol-4-yl)ethynyl)pyridine (MTEP; Sequoia 

Research Products, Pangbourne, UK), was dissolved in 10% v/v Tween 80 : 90% 

water. 

 

4.2.3 Apparatus 

Behavioural training and testing were performed in eight standard mouse operant 

chambers (as described in section 3.2.3) 

 

4.2.4 Procedure 

A summary of the experimental design is shown in Figure 4.1. Mice were allocated 

to one of three Pavlovian conditioning (PC) treatment groups that received 

injections of either vehicle (PC: Veh group; n = 22), 3 mg/kg (PC: 3; n = 19) or 10 

mg/kg (PC: 10; n = 21) i.p. MTEP prior to each Pavlovian conditioning session 

(Phase 1). Following conditioning, each conditioning treatment group (PC: Veh, 3 
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and 10) was exposed to two tests of CRf (CRf; Phase 2). Mice from each 

conditioning treatment group were injected with vehicle during one CRf test and 

MTEP during the other CRf test, the order of CRf test treatment (i.e. Veh or MTEP) 

being counterbalanced. Specifically, group PC: Veh received 10 mg/kg MTEP 

during one CRf test, while groups PC: 3 and PC: 10 received 3 and 10 mg/kg 

MTEP during one CRf test, respectively. Each conditioning treatment group was 

then exposed to two tests of goal-tracking (GT; Phase 3). As described for the CRf 

tests, each conditioning treatment group was injected with MTEP during one of the 

GT tests and vehicle during the other test; the order of GT test treatments being 

counterbalanced. Two further Pavlovian conditioning sessions were conducted 

between each CRf test and each GT test. Mice received injections of vehicle (PC: 

Veh group) or 3 or 10 mg/kg MTEP (PC: 3 and 10 groups, respectively) prior to 

each reconditioning session to ensure that learning conditions were identical to 

those experienced during the initial conditioning phase. All drug injections were 

made 20 min prior to the start of the experimental sessions. The doses of MTEP 

used have previously been shown to not affect locomotor activity in mice (Cowen 

et al., 2007), and 3 mg/kg i.p. MTEP was reported to achieve >75% receptor 

occupancy for at least 15 min post-dosing in mice (Anderson et al., 2003). 
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Figure 4.1 Experimental design summary. Mice were allocated to one of three 

groups that received injections of vehicle (PC: Veh), 3 mg/kg (PC: 3) or 10 mg/kg 

(PC: 10) MTEP prior to eleven, once daily, Pavlovian conditioning sessions (Phase 

1). Two tests of conditioned reinforcement (CRf; Phase 2) and goal-tracking (GT; 

Phase 3) were subsequently undertaken in each group. Injections of vehicle or 

MTEP were given before each test, the order of treatments being counterbalanced. 

Two Pavlovian conditioning sessions were conducted between each test (block 

arrows). See methods section for further details.  



176 
 

4.2.4.1 Magazine training 

To familiarize mice with the food reinforcer used in Pavlovian conditioning 

sessions, a small amount of the food was provided to mice in their home cage. The 

following day, mice received a single 30 min magazine training session in which 

food pellets were delivered once every 60 sec, on average (range of 25-95 sec). 

No drug injections were made prior to the magazine training session and no stimuli 

or response levers were presented. 

 

4.2.4.2 Phase 1: Pavlovian conditioning 

Commencing 24 h after the magazine training session, mice received eleven, once 

daily, Pavlovian conditioning sessions. Each 60 min session consisted of 16 trials 

in which presentation of a stimulus was paired with food delivery (CS+) and 16 

trials in which presentation of an alternative stimulus was not paired with food (CS-

). The order of stimulus presentations was randomly determined and each stimulus 

trial was separated by a variable, no-stimulus, inter-trial interval (ITI; range of 80-

120 sec; M = 100 sec). For half of the mice a constant 10 sec tone served as the 

CS+ and the 10 sec flashing (1 Hz) of both cue lights served as the CS-. This 

contingency was reversed for the remaining mice. A single food pellet was 

delivered 5 sec after CS+ onset. The total number of entries made into the food 

magazine during each stimulus trial (CS+ or CS-) was recorded and expressed as 

a percentage of total magazine entries made during the session (% magazine 

entries). Food magazine entries that occurred in the first five seconds following 

CS+ onset (i.e. prior to food delivery) were recorded to provide a preliminary 

assessment of the acquisition of goal-tracking responses. The latency to enter the 

food magazine following onset of the CS+ (retrieval latency) was also measured. 

 

4.2.4.3 Phase 2: Conditioned reinforcement 

The 60 min CRf test commenced with insertion of both response levers into the 

operant chamber. A single response on one lever resulted in a 1.5 sec 

presentation of the CS+, whereas a single response on the alternate lever resulted 

in a 1.5 sec presentation of the CS-. For half of the mice, the left lever was 
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designated the CS+ lever and the right lever the CS- lever. This contingency was 

reversed for remaining mice. No food was delivered during the test. The ability of 

the CS+ to serve as a conditioned reinforcer is demonstrated by a greater number 

of responses on the CS+ lever than on the CS- lever. 

 

4.2.4.4 Phase 3: Goal-tracking 

The GT test was 30 min in duration and consisted of 8 trials of the CS+, and 8 trials 

of the CS-. The order of stimulus presentations was randomly determined and 

each stimulus trial was separated by a 100 sec fixed, ITI, during which no stimuli 

were presented. No food was delivered during the test. The total number of entries 

made into the food magazine during each stimulus trial was recorded. Four mice 

died before completion of the GT tests, reducing the size of groups PC: 3 and PC: 

10 to n = 17 and n = 19, respectively. 

 

4.2.5 Statistical analysis 

Data were initially analysed by mixed-factor analysis of variance (ANOVA), where 

the three conditioning treatment groups (PC: Veh, 3 or 10) were represented by the 

between-subjects factor of PC treatment. The drug treatment (Veh or MTEP) 

administered to each of the three conditioning treatment groups during subsequent 

CRf and GT test sessions was included in analyses as a within-subjects factor of 

CRf treatment or GT treatment, respectively. Where a significant (p ≤ 0.05) main 

effect or interaction term was found, further analysis was performed using ANOVA 

and post-hoc comparisons by two-tailed t-tests. To permit analysis by parametric 

tests, appropriate transformations were undertaken to transform skewed 

distributions closer to a normal distribution and to reduce heterogeneity of variance 

(Cardinal and Aitken, 2006). Specifically, for analysis of % magazine entries 

(Phase 1), data were arcsine transformed (Y‟ = arcsin√(Y)). For analysis of 

magazine entries made during the first five seconds of CS+ presentations in 

conditioning sessions (Phase 1), lever responses and magazine entries in the test 

of CRf (Phase 2) and magazine entries in the test of goal-tracking (Phase 3), data 

were square root transformed (Y‟ = √Y). For within-subjects ANOVA, the 
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Greenhouse-Geisser correction was used where the assumption of sphericity was 

violated. All figures show group mean (± SEM). 
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4.3 Results 

 

4.3.1 Phase 1: Pavlovian conditioning 

Pavlovian conditioning performance did not differ among groups of mice that 

received vehicle (PC: Veh group), 3 mg/kg (PC: 3) or 10mg/kg (PC: 10) MTEP 

prior to each conditioning session. Across conditioning sessions, mice from all 

three conditioning treatment groups (PC: Veh, 3 or 10) directed a greater 

proportion of total session entries into the food magazine (% magazine entries; Fig. 

4.2a) during presentations of the food-paired stimulus (CS+) than during 

presentations of the unpaired stimulus (CS-). This finding was confirmed by a 

mixed-factor ANOVA, which included Stimulus (CS+ or CS-) and Session (1-11) as 

within-subjects factors. A significant difference in responding to the two stimuli 

across conditioning sessions was identified (main effect of Stimulus, F(1,59) = 

1432.62, p < 0.001; Stimulus x Session interaction, F(10,590) = 83.26, p < 0.001). 

However, there was no difference between the three conditioning treatment groups 

in % magazine entries directed toward the stimuli (Stimulus x Session x 

Conditioning treatment interaction, not significant (NS)). 

 

The number of magazine entries made during the first five seconds of CS+ 

presentations (i.e. before delivery of the food reward; Fig. 4.2b) increased across 

conditioning sessions (main effect of Session, F(10,590) = 22.01, p < 0.001), but 

did not differ among the conditioning treatment groups (Session x Conditioning 

treatment interaction, NS). In contrast, the total number of magazine entries made 

during CS- presentations decreased across conditioning sessions (main effect of 

Session, F(10,590) = 43.91, p < 0.001), but also did not differ among the 

conditioning treatment groups (Session x Conditioning treatment interaction, N.S; 

data not shown). 

 

Mice came to enter the food magazine at 4-5 sec after CS+ onset (retrieval latency; 

Fig.4.2c), corresponding with the time of food delivery. The mean retrieval latency 

to enter the food magazine following activation of the CS+ significantly decreased 
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across conditioning sessions (main effect of Session, F(10,590) = 43.23, p < 

0.001), and there was no difference in retrieval latencies among the three 

conditioning treatment groups (Conditioning treatment x Session interaction, NS). 

 

Stability of conditioning performance (indicated by asymptotic responding) prior to 

the first test of CRf was observed from the eighth conditioning session. % 

magazine entries (Fig. 4.2a) did not differ across sessions 8-11 (main effect of 

Session, NS), and there was no difference between conditioning treatment groups 

(Stimulus x Session x Conditioning treatment interaction, NS). Similarly, magazine 

entries made in first five seconds of CS+ presentations (Fig. 4.2b) and mean 

retrieval latencies (Fig. 4.2c) did not differ across sessions 8-11 (main effect of 

Session, NS), nor between conditioning treatment groups (Session x Conditioning 

treatment interaction, NS). No further change in conditioning performance was 

observed during any of the subsequent Pavlovian reconditioning sessions that 

occurred between the CRf and GT tests. 
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Figure 4.2 Measures of food magazine entry activity during eleven Pavlovian 

conditioning sessions (Phase 1) in which mice received presentations of a stimulus 

paired with food delivery (CS+) and a second, unpaired stimulus (CS-). Mice were 

injected with either vehicle or 3 or 10 mg/kg i.p. MTEP (PC: Veh, 3, or 10) 20 min 

prior to each conditioning session. (a) Magazine entries during presentation of the 

CS+ and CS-, expressed as a percentage of total session entries (% magazine 

entries), did not differ between conditioning treatment groups and stabilized from 

session 8 onward. (b) Magazine entries made during the first five seconds of the 

CS+ presentation (i.e. prior to food delivery) increased across conditioning 

sessions and were unaffected by treatment with MTEP. (c) The mean retrieval 

latency to enter the food magazine following CS+ activation stabilized at 4-5 sec, 

which corresponded with the time of food (US) delivery. Retrieval latencies did not 

differ among the three groups.  
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4.3.2 Phase 2: Conditioned reinforcement 

Conditioned reinforcement was influenced by the MTEP treatment given prior to 

Pavlovian conditioning sessions, but not by the MTEP treatment given during the 

CRf tests (Fig. 4.3a). An initial mixed-factor ANOVA, which included Lever (CS+ or 

CS- paired) as a within-subjects factor, confirmed that lever responding 

significantly differed as a result of the treatment received during conditioning 

sessions (Lever x Conditioning treatment interaction, F(2,59) = 3.80, p < 0.05). 

However, lever responding did not reliably differ as a result of the MTEP treatment 

received during the CRf test (Lever x CRf treatment interaction, NS). 

 

Within-subjects ANOVA comparisons of CS+ and CS- lever responding, which 

included both CRf treatment conditions (Veh or MTEP), were undertaken to 

determine whether each conditioning treatment group demonstrated CRf (i.e. more 

responding on the CS+ lever than the CS- lever). Conditioned reinforcement was 

demonstrated in the PC: Veh group (main effect of Lever, F(1,21) = 26.53, p < 

0.001) and in the PC: 3 group (main effect of Lever, F(1,18) = 8.55, p < 0.01). 

However, the PC: 10 group failed to show any difference in CS+ and CS- lever 

responding (main effect of Lever, NS). 

 

The impairment in responding for CRf in the PC: 10 group was due to a specific 

reduction in responding for the food-paired stimulus (CS+), rather than a general 

reduction in the ability of these mice to perform an instrumental response. A mixed-

factor ANOVA, performed for each stimulus-paired lever, demonstrated that CS+ 

lever responding was significantly influenced by the treatment received during 

conditioning (main effect of Conditioning treatment, F(2,59) = 3.59, p < 0.05). By 

contrast, CS- lever responding was unaffected by the treatment received during 

conditioning (main effect of Conditioning treatment, NS). Post-hoc comparisons 

indicated that CS+ lever responding was significantly reduced in the PC: 10 group, 

in comparison to the PC: Veh group during CRf tests that were preceded by 

injection of vehicle (t = 2.68, df = 41, p < 0.05) and by 10 mg/kg MTEP (t = 2.70, df 

= 41, p < 0.05). Consistent with a dose-related effect of MTEP, there were no 
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differences in CS+ lever responding between the PC: Veh and PC: 3 groups or the 

PC: 3 and PC: 10 groups in either the CRf test (t-test comparisons, NS). 

 

Although CRf was not impaired by pre-test administration of 10 mg/kg MTEP in the 

PC: Veh group, a possibility existed that the temporal profile of lever responding 

may have been altered by acute 10 mg/kg MTEP treatment. Further analysis was 

therefore performed to determine whether administration of 10 mg/kg MTEP in the 

test of CRf had any effect on the temporal profile of lever responding (Fig. 4.3b). 

Conditioned reinforcement (i.e. greater responding on the CS+ lever) was evident 

in each 15 min time period of the 60 min CRf test in the PC: Veh group (main effect 

of Lever, F(1,21) = 25.81, p < 0.001), but not in the PC: 10 group (main effect of 

Lever, NS). In the PC: Veh group, 10 mg/kg MTEP during the test of CRf did not 

alter the temporal profile of either CS+ lever responding (Period x CRf treatment 

interaction, NS), or CS- lever responding (Period x CRf treatment interaction, NS). 
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Figure 4.3 Lever responding in tests of conditioned reinforcement (a) Responding 

for CRf was observed in mice that received vehicle or 3 mg/kg MTEP during 

Pavlovian conditioning (PC: Veh and 3, respectively). CRf was significantly 

impaired in mice that received 10 mg/kg MTEP during conditioning (PC: 10). In 

contrast, 10 mg/kg MTEP during the CRf test did not impair CRf in mice that 

received vehicle during conditioning (PC-CRf: Veh-10). *p < 0.05 Post-hoc, t-test 

comparison between Veh-Veh and 10-Veh CS+ lever responses; #p < 0.05 Post-

hoc, t-test comparison between Veh-10 and 10-10 CS+ lever responses. (b) 10 

mg/kg MTEP did not alter the temporal profile of lever responding in mice that 

received vehicle during conditioning (PC: Veh). Mice that received 10 mg/kg MTEP 

during conditioning (PC: 10) failed to show any significant difference in CS+ and 

CS- lever responding in any 15 min period of each CRf test.  
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Magazine entry activity during CRf tests was also examined (Table 4.1), as this 

could provide further indication of whether MTEP administration had any gross 

effects on activity. A mixed-factor ANOVA of mean total magazine entries, 

indicated that entries were significantly increased during CRf tests in which MTEP 

was administered (main effect of CRf Treatment, F(1,59) = 11.19, p < 0.01), but 

that the effect of MTEP on magazine entries did not differ among conditioning 

treatment groups (CRf treatment x Conditioning treatment interaction, NS). 

Analysis of the time course of magazine entries during the CRf tests indicated that 

entries decreased over the course of the test session (main effect of Period, 

F(3,177) = 7.0, p < 0.01), but the effects of MTEP given during the CRf test did not 

reach statistical significance (CRf treatment x Period interaction, NS). 
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Group Magazine 
Entries 

15 min Period 

(PC-CRf) Total 1 2 3 4 

Veh-Veh 
Veh-10 

 
3-Veh 

3-3 
 

10-Veh 
10-10 

62.5 (8.5) 
77.7 (11.0) 

 
61.5 (13.4) 
71.8 (13.6) 

 
51.8 (7.7) 

81.5 (13.1) 

23.0  (3.4) 
23.0  (3.8) 

 
13.3 (2.6) 
16.9 (2.6) 

 
17.2 (3.4) 
28.7 (3.5) 

11.9 (2.2) 
16.9 (3.3) 

 
14.7 (3.0) 
17.3 (4.5) 

 
14.5 (3.0) 
19.0 (3.9) 

12.5 (3.5) 
18.5 (3.7) 

 
13.6 (4.0) 
20.2 (4.5) 

 
9.5 (2.0) 

19.8 (3.6) 

15.2 (3.2) 
19.2 (3.0) 

 
19.9 (7.4) 
17.4 (4.3) 

 
10.6 (2.9) 
14.0 (4.0) 

 
Table 4.1 Head entries into the food magazine during tests of Conditioned 

Reinforcement (CRf). Total magazine entries were significantly increased when 

MTEP was administered during the CRf test; however this effect did not differ 

between Pavlovian conditioning (PC) treatment groups. Magazine head entries 

decreased across each of the 15 min periods (1-4) of the 60 minute CRf test. Table 

shows group mean (±SEM). 
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4.3.3 Phase 3: Goal-tracking 

Presentation of the food-paired stimulus (CS+), in the absence of food delivery, 

elicited approach responses into the food magazine (i.e. towards the goal). Mice 

made fewer head entry responses into the magazine during presentation of the 

unpaired stimulus (CS-), indicating that the CS+ was able to serve as a predictor of 

food availability (Fig. 4.4a). There was no effect of MTEP given during the 

Pavlovian conditioning phase, or MTEP given during the GT test, on goal-tracking 

responses. These findings were confirmed by a mixed-factor ANOVA, which 

included Stimulus (CS+, CS-) as a within-subjects factor. Mean total magazine 

entry responses significantly differed depending on the identity of the stimulus 

(main effect of Stimulus, F(1,55) = 200.51, p < 0.001), but there was no effect of 

either the treatment received during conditioning (Stimulus x Conditioning 

treatment interaction, NS) or during the GT test (Stimulus x GT treatment 

interaction, NS) on goal-tracking responses. 

 

Analysis of magazine entries made during each stimulus trial was performed to 

determine whether acute 10mg/kg MTEP treatment altered the profile of goal-

tracking responses in the PC: Veh group and whether response profiles differed 

between the PC: Veh and PC: 10 groups (Fig. 4.4b). For both PC: Veh and PC: 10 

groups, the number of magazine entries made during each CS+ trial decreased 

across the course of the GT test and few responses were made across all CS- 

trials. Analysis of magazine entries during CS+ trials was performed using a mixed-

factor ANOVA, which included Trial (1-8) as a within-subjects factor. This analysis 

confirmed that magazine entries made during each CS+ trial significantly 

decreased with successive trials (main effect of Trial, F(7,273) = 17.215, p < 0.001 

), but that this profile of responding was unaffected by the treatment received 

during conditioning (Trial x Conditioning treatment interaction, NS), or the 

treatment received during the GT test (Trial x GT treatment interaction, NS). 
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Figure 4.4 Food Magazine entries in tests of goal tracking (GT), which examines 

the ability of a CS to elicit approach responses to the place of food delivery. No 

food was delivered during each GT test. (a) Mice that received vehicle, 3 or 10 

mg/kg i.p. MTEP during conditioning sessions (PC: Veh, 3 and 10, respectively) 

made more entries into the food magazine during presentation of the food-paired 

stimulus (CS+) than during presentation of the unpaired stimulus (CS-). There was 

no difference in magazine activity between the conditioning treatment groups, and 

magazine activity was not altered by the MTEP treatment received during the GT 

test. (b) Magazine entries made in each CS+ stimulus trial decreased across 

successive trials. The number of magazine entries made during each CS+ stimulus 

trial was unaffected by the treatment (vehicle or 10 mg/kg MTEP) received during 

the GT test in PC: Veh and PC: 10 groups.  
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4.4 Discussion 

 

The present study explored the effects of the selective mGluR5 antagonist, MTEP, 

on the acquisition of a Pavlovian association that enables a food-paired stimulus to 

acquire predictive properties that signal reward availability (goal-tracking) and 

incentive properties necessary to reinforce a novel instrumental response 

(conditioned-reinforcement). We report that MTEP did not affect performance 

during Pavlovian conditioning sessions, indicating that the overall motivation to 

obtain food and the ability of mice to discriminate between the food-paired stimulus 

and the stimulus not paired with food was unaffected by blockade of mGluR5. In 

addition, mGluR5 function was not required for the acquisition of predictive 

properties necessary for the control over goal-tracking responses by the food-

paired stimulus. However, mGluR5 function was critical for the associative learning 

processes necessary for the acquisition of properties by the CS that allow the CS 

to serve as a conditioned reinforcer, i.e. providing the CS with incentive value. 

Once incentive learning had taken place, mGluR5 function was not required for the 

expression of this CS-reinforced behaviour, which has been proposed to depend 

upon CS elicited representations of general affect (Parkinson et al., 2005; Burke et 

al., 2007). These findings add important new information regarding the function of 

mGluR5 in the control over appetitive behaviours by reward-paired stimuli. 

 

A potential explanation for the findings reported here is that impaired CRf in mice 

that had received MTEP during conditioning sessions (PC: 10 group) was due to a 

state-dependent learning process (Stephens et al., 2000). That is, MTEP may have 

induced an interoceptive state during conditioning sessions and the subsequent 

retrieval of the CS memory during the CRf test may have been disrupted due to the 

presence of a different interoceptive state, namely the absence of MTEP. However, 

this account is unlikely since CRf responding was also impaired in the PC: 10 

group when 10 mg/kg MTEP was given during the CRf test to induce the same 

state that existed during conditioning sessions. 
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That we found contrasting effects of MTEP on responding for CRf and goal-

tracking responses may have been due to mice having experienced relatively more 

stimulus-food (CS-US) pairings prior to the GT tests than the CRf tests. Thus, goal-

tracking responses may have been less susceptible to the effects of MTEP due to 

strengthened CS-US associations. At variance with this possibility is the 

observation that mice came to use the CS+ as a predictor of food delivery even 

during Pavlovian conditioning sessions that preceded the first CRf test (Fig. 4.2b-

c). Critically, the acquisition of these goal-tracking responses were unaffected by 

administration of MTEP, thereby supporting our proposition that mGluR5 plays a 

dissociable role in the acquisition of predictive and incentive motivational properties 

by CSs. 

 

Our findings that CRf was not impaired by administration of 10 mg/kg MTEP, 

during the test only, in mice that had received vehicle prior to conditioning sessions 

(PC: Veh group) is in apparent contrast to behavioural studies of cue-induced 

reinstatement that have reported a role of mGluR5 in the expression of control over 

responding maintained by both natural- and drug-paired CSs (Tessari et al., 2004; 

Bespalov et al., 2005; Backstrom and Hyytia, 2006; Schroeder et al., 2008; Gass et 

al., 2009; Kumaresan et al., 2009; Martin-Fardon et al., 2009). Since it is possible 

that higher doses of MTEP would have reduced the expression of CRf in our study, 

our findings do not exclude a role of mGluR5 in the control over appetitive 

behaviours by reward-paired stimuli. Alternatively, subtle methodological 

differences may have contributed to this apparent contrast in findings. Firstly, in our 

study, the CS reinforced an instrumental response that had not previously been 

associated with primary reinforcement. Secondly, mice were trained a purely 

Pavlovian (stimulus-outcome) association, while an instrumental (response-

outcome) component is embedded in the acquisition of associations between 

environmental stimuli and reward in studies of self-administration and cue-induced 

reinstatement. Finally, we examined instrumental responding supported by a CS 

immediately following the conditioning phase, while extinction learning or periods of 

withdrawal are commonly employed in studies of cue-induced reinstatement and 
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which may contribute to neural changes mediating the subsequent expression of 

control over appetitive behaviours by CSs (Grimm et al., 2003; Lu et al., 2005; 

Conrad et al., 2008; Ghasemzadeh et al., 2009b). 

 

Our finding that mGluR5 antagonism was effective in reducing a CS-reinforced 

behaviour when administered during the acquisition of a Pavlovian association 

shares some similarity with studies examining the role of mGluR5 in conditioned 

place preference (CPP) learning. Administration of the mGluR5 antagonist 6-

methyl-2-(phenylethynyl)pyridine (MPEP), during conditioning (i.e. the acquisition 

phase), reduced the development of cocaine CPP in mice while having no effect on 

the development of amphetamine, ethanol, morphine or nicotine CPP (McGeehan 

and Olive, 2003). Another study reported that higher doses of MPEP attenuated 

both the acquisition and expression of morphine CPP in mice (Popik and Wrobel, 

2002). In rats, the expression of cocaine CPP was unaffected by a dose of MPEP 

that reduced the expression of morphine CPP (Herzig and Schmidt, 2004). Thus, 

mGluR5 can contribute to the acquisition of associations that enable reward-

paired, contextual stimuli to mediate CPP and can also influence the expression of 

CPP, a finding that may depend on the extent of mGluR5 blockade and/or the 

primary reward experienced during conditioning. However, the expression of CPP 

may be due to either predictive or incentive motivational associations formed 

between the contextual cues and the paired outcome (Stephens et al., 2010). 

While acknowledging that substantial differences exist between contextual vs. 

discrete cue conditioning, our findings may provide further insight into the 

psychological mechanisms underlying these earlier CPP reports by identifying a 

specific role of mGluR5 in the acquisition of incentive associations between an 

environmental stimulus and reward, while the ability of a reward-paired stimulus to 

acquire predictive properties is unaffected by mGluR5 antagonism. 

 

What is surprising about the present findings is the degree of overlap between the 

response profile of mGluR5KD-D1 mice in the CRf test, and that seen in wild-type 

mice that had received 10 mg/kg MTEP injections prior to conditioning sessions. In 
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both cases, a reduction in CS+ reinforced responding was observed, however 

discrimination between the CS+ and CS- lever was maintained. Thus, mGluR5 

seems to have a particular contribution to the vigour of the response that is under 

the control of the reward-paired CS, rather than the direction of the behavioural 

output. The similarity of these results is also particularly surprising since MTEP 

was administered systemically in the present study, and therefore lacks any cell-

type selectivity afforded by the mGluR5KD-D1 mouse model. These findings suggest 

at least two possibilities. First, that knock-down of mGluR5 is not actually cell-type 

specific in the mutant mouse model or, second, that only mGluR5 located on D1R 

expressing cells contribute to the acquisition of incentive learning necessary for 

CRf. 

 

The first suggestion mentioned above seems unlikely, given the extensive 

characterisation of the mGluR5KD-D1 model (Novak et al., 2010). The second 

possibility would be remarkable, but not entirely inconceivable when considering 

some other reports that have explored the neural mechanisms of appetitive 

Pavlovian learning. For example, systemic administration of an NMDA antagonist 

in mice blocked the acquisition and expression of nicotine (Papp et al., 2002) and 

cocaine CPP (Maldonado et al., 2007). Similarly, mice with inactivation of NMDA 

receptors specifically in dopamine neurons (NR1-KO) or mutation of NMDA 

receptors specifically on dopamine D1R expressing neurons (DR1-NR1m) also 

show impaired nicotine (Wang et al., 2010) and cocaine CPP (Heusner and 

Palmiter, 2005), respectively. These reports confirm that systemic drug treatments 

can produce the same behavioural phenotype as cell-type specific mutations, but 

whether these manipulations are working through the same processes (e.g. 

incentive or predictive learning or something entirely different) to disrupt CPP is not 

clear. Indeed, there is a dearth of literature that allows for comparison of systemic 

drug treatments and cell-type specific mutations in more rigorously defined 

appetitive learning preparations such as CRf, sign-tracking and PIT. This likely 

reflects the compromising side-effect profiles and/or receptor subtype selectivity of 

many drugs that target receptors implicated in incentive learning processes (e.g. 
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NMDA, AMPA, and dopamine D1Rs), rather than a scarcity of the genetic mouse 

models. 

 

Until an inducible cell-type specific knock-out model is generated that allows for 

temporal control of mGluR5 expression on dopamine-D1R neurons, it will be 

impossible to formally determine the contribution of mGluR5 on D1R expressing 

neurons for the acquisition and/or expression of specific incentive learning 

processes. However, the findings reported in this chapter, together with a failure of 

20 mg/kg i.p. MTEP to disrupt the expression of responding for CRf in wild-type 

mice (reported in Chapter 3, section 3.3.2.3), strongly favours a role of mGluR5 on 

D1R expressing neurons in neural adaptations that are necessary for the 

acquisition, rather than the expression, of an incentive CS-US association. A 

pertinent question that arises from the studies reported thus far is, what role might 

mGluR5 on D1R expressing neurons play in behavioural effects of addictive drugs, 

such as cocaine, which are thought to reflect the ability of such drugs to engage 

with the neural systems that mediate the learning of incentive associations 

(Stewart et al., 1984; Robinson and Berridge, 1993; Everitt et al., 2001). This issue 

will be addressed in the next chapter 
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5 Some behavioural effects of cocaine in 

mGluR5KD-D1 mice 

 

5.1 Introduction 

 

The previous chapters have established that glutamate signalling through mGluR5, 

on cells that also receive dopaminergic input, is necessary for the formation of 

incentive associations between environmental stimuli and natural rewards. In the 

striatum, the interaction of glutamate and dopamine is critical for long-term 

plasticity underlying a variety of adaptive learning and memory processes, but 

which may also subserve the behavioural effects of addictive drugs (Nestler, 2001; 

Kelley, 2004; Malenka and Bear, 2004; Hyman et al., 2006). The following 

experiments will explore the contribution of mGluR5 on dopaminoceptive neurons 

to cocaine conditioned reward and behavioural sensitisation; two behavioural 

effects of cocaine that reflect drug induced neuronal adaptations within cortical 

limbic striatal networks (Wolf, 1998; Vanderschuren and Kalivas, 2000; Girault et 

al., 2007). 

 

Acute exposure to psychostimulants, such as cocaine, can increase extracellular 

dopamine and glutamate in defined brain regions, such as the ventral striatum 

(Reith et al., 1986; Di Chiara and Imperato, 1988; Reid et al., 1997), resulting in 

augmented locomotor activity (Kelly et al., 1975; Clarke et al., 1988; Delfs et al., 

1990) and the induction of intracellular signalling cascades (Graybiel et al., 1990; 

Valjent et al., 2005). With repeated intermittent psychostimulant exposure, long 

lasting neuronal adaptations can occur, including changes in synaptic strength 

(Thomas et al., 2001b; Borgland et al., 2004) and dendritic morphology (Robinson 

and Kolb, 2004). Such neuronal changes are mirrored by a persistent, sensitised 

locomotor response to cocaine in animals (Segal et al., 1980; Robinson and 

Becker, 1986) and are proposed to contribute to behavioural changes underpinning 
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addiction in humans (Robinson and Berridge, 1993; Nestler, 2001; Kauer and 

Malenka, 2007; Thomas et al., 2008). 

 

There is ample evidence that glutamatergic signalling, particularly at ionotropic 

NMDA and AMPA receptors, is involved in the acute psychomotor activating 

effects of psychostimulants (Witkin, 1993) and induction and expression of 

neuroplastic changes that follow repeated intermittent psychostimulant exposure 

(Wolf, 1998; Vanderschuren and Kalivas, 2000; Kalivas, 2009; Schmidt and Pierce, 

2010). For example, glutamatergic signalling at NMDA is necessary for the 

induction of cocaine sensitisation (Karler et al., 1989; Kalivas and Alesdatter, 1993; 

Stewart and Druhan, 1993; Wolf and Jeziorski, 1993; Haracz et al., 1995; Khan 

and Shoaib, 1996), while AMPA receptors contribute to both the induction and 

expression of sensitisation (Karler et al., 1990; Karler et al., 1991). Repeated 

cocaine exposure also leads to changes in the expression of these ionotropic 

glutamate receptors in both the VTA (Fitzgerald et al., 1996) and ventral striatum 

(Boudreau and Wolf, 2005). In addition, after repeated cocaine exposure, basal 

extracellular glutamate is depressed in the NAcc (Baker et al., 2003) and VTA 

(Kozell and Meshul, 2003), but the amount of glutamate released in the NAcc is 

significantly increased following an injection of cocaine (Pierce et al., 1996; 

McFarland et al., 2003). With respect to the metabotropic receptor, mGluR5, both 

its mRNA and protein are augmented in the NAcc of cocaine-sensitised animals 

(Ghasemzadeh et al., 1999; Ghasemzadeh et al., 2009a) and mGluR5 appears 

necessary for the expression of behavioural sensitisation to morphine (Kotlinska 

and Bochenski, 2007), cocaine (Kotlinska and Bochenski, 2009) (but see, 

Dravolina et al., 2006) and nicotine (Tessari et al., 2004). Only recently has a 

necessary role for mGluR5 in the induction of behavioural sensitisation to cocaine 

(but not morphine) been reported using the mGluR5 antagonist, MTEP, in rats 

(Veeneman et al., 2010). In consideration of these pharmacology studies, the 

mGluR5KD-D1 mouse provides an ideal tool to further probe the contribution and 

neuroanatomical location of mGluR5 in cocaine sensitisation. 
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In addition to behavioural sensitisation, animals can learn to associate the effects 

of cocaine with the environment in which cocaine was administered and will 

demonstrate preference for that place (Spyraki et al., 1982b). Conditioned place 

preference (CPP) relies on the formation of a Pavlovian association between a 

biologically relevant stimulus with neutral contextual cues and has been 

established with a variety of “natural” reinforcers, including food (Spyraki et al., 

1982a) and conspecifics interaction (Calcagnetti and Schechter, 1992), but also 

many addictive drugs (Tzschentke, 2007). Although the precise psychological 

basis of CPP has not yet been established (Stephens et al., 2010), its 

neurobiological substrates clearly overlap with those required for other appetitive 

Pavlovian conditioning tasks. Thus, the BLA and NAcc core and their serial 

connectivity are necessary for discrete-cue based CPP (Everitt et al., 1991; Fuchs 

et al., 2002; Ito et al., 2006), while the HPC and NAcc shell and serial connectivity 

between these two structures are necessary for idiothetic spatial-cue based CPP 

(Ito et al., 2008). The acquisition of CPP has also been shown to involve the 

ventral pallidum and medial dorsal thalamus (McAlonan et al., 1993) and 

specifically the dorsal, but not ventral, hippocampus (Meyers et al., 2003). 

 

There is also ample evidence pointing to glutamate transmission at the ionotropic 

NMDA and AMPA receptors as important for the acquisition and expression of 

cocaine-CPP (Cervo and Samanin, 1995; Kaddis et al., 1995; Kim et al., 1996; 

Mead and Stephens, 1999; Harris and Aston-Jones, 2003; Dong et al., 2004; 

Maldonado et al., 2007). However, the role of mGluR5 in CPP supported by natural 

or drug reinforcers is not at all clear. Using mGluR5 knock-out mice, mGluR5 has 

been proposed as necessary for cocaine reinforcement in one study (Chiamulera 

et al., 2001), but not required for cocaine reward in another (Olsen et al., 2010). 

Using the mGluR5 antagonist, MPEP, both a “necessary role” and “no role” of 

mGluR5 have been proposed for CPP established with morphine (Popik and 

Wrobel, 2002; McGeehan and Olive, 2003), ethanol (McGeehan and Olive, 2003; 

Lominac et al., 2006), nicotine (McGeehan and Olive, 2003; Yararbas et al., 2010), 

amphetamine (McGeehan and Olive, 2003; Herzig et al., 2005) and cocaine 
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(McGeehan and Olive, 2003; Herzig and Schmidt, 2004). These conflicting findings 

could be due to any number of procedural differences but, where MPEP has been 

effective in drug-CPP, it is not known whether the effects of MPEP on drug-CPP 

are due to disruption of drug reinforcement (Paterson et al., 2003; Kenny et al., 

2005), discriminative drug effects (Lee et al., 2005; Zakharova et al., 2005; 

Besheer et al., 2006) or more general spatial learning impairments (Balschun and 

Wetzel, 2002; Naie and Manahan-Vaughan, 2004). In addition, there is now 

substantial evidence that MPEP is itself reinforcing (van der Kam et al., 2009b, a; 

Rutten et al., 2010) and the effects, or lack thereof, of MPEP on drug-CPP could 

be due to a potentiation, rather than an attenuation, of any rewarding drug effects 

(Rutten et al., 2010). Given this confound, the examination of food- and cocaine-

CPP in mGluR5KD-D1 may provide some additional clarity on the role of mGluR5 in 

conditioned reward. Moreover, mGluR5KD-D1 mice may provide valuable insight to 

the psychological basis of CPP. Incentive learning necessary for CRf is clearly 

impaired in these mice, but CRf has been suggested as one mechanism whereby 

contextual stimuli may support instrumental locomotor responses necessary for 

approaching and contacting the paired compartment during the test of place 

preference (Everitt et al., 1991). If CRf was necessary for CPP, one could predict 

that CPP would be impaired in mGluR5KD-D1 mice. 

 

The following experiments will first examine the effects of acute and repeated 

intermittent cocaine exposure on locomotor activity in mGluR5KD-D1 mice. The 

development of behavioural sensitisation may result from an additive effect of 

unconditioned locomotor activity to the drug and conditioned locomotor activity 

induced by the formation of Pavlovian associations to the drug-paired context 

(Stewart, 1983; Pert et al., 1990; Crombag et al., 1996; Le Merrer and Stephens, 

2006). Thus, a test will be undertaken to explore the ability of the environment in 

which cocaine is experienced to augment activity in the absence of cocaine 

(termed, conditioned activity; Stewart, 1983). The second series of experiments 

reported in this chapter will see mGluR5KD-D1 mice exposed to tests of food- and 
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cocaine-CPP to examine the contribution of mGluR5 on dopaminoceptive neurons 

to learning about conditioned food- and drug-reward, respectively.  
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5.2 Materials and methods 

 

5.2.1 Animals 

Mice (n = 27/28, WT/KD; male and at least 8 weeks old prior to experiment start) 

were maintained on a 12:12 h light-dark cycle (lights on at 0700 hours) under 

controlled temperature (21 ± 2 °C) and humidity conditions (50 ± 5%). Animals 

were housed in groups of two or three in polycarbonate cages. Water was 

available ad libitum in the holding room. At least 7 days prior to the experiment 

start, mice were placed onto a restricted feeding regime designed to maintain body 

weights at ~85% of free-feeding weight. Experiments took place during the light-

phase. All procedures were performed in accordance with the United Kingdom 

1986 Animals (Scientific Procedures) Act, following institutional ethical review. 

 

5.2.2 Drugs 

Cocaine hydrochloride (Macfarlan Smith, Edinburgh, Scotland, UK) was dissolved 

in 0.9% saline. Injections were administered at a volume of 10 ml/kg i.p. 

 

5.2.3 Apparatus 

Conditioned place preference: Behavioural training and testing were performed in 

eight identical, three-compartment conditioned place preference chambers (Fig. 

5.1a). Each chamber consisted of two „outer‟ compartments (ea. 20 x 20 x 20 cm), 

adjoined by a smaller „middle‟ compartment (20 x 5 x 20 cm). Access amongst the 

three compartments was controlled by a removable panel (5 x 20 cm) in the 

partitioning walls of the outer compartments and middle compartment. Each outer 

compartment was differentiated by tactile and visual cues. One outer compartment 

(context A) consisted of black and white walls (each wall split along the diagonal 

with the top half white and the bottom half black) and a smooth Perspex floor. The 

second compartment (context B) consisted of white walls and a perforated steel 

floor. The activity and location of mice was recorded using five infra-red beams 

distributed amongst the three compartments (Fig. 5.1b), which interfaced with a PC 

running data collection and analysis software (written by A.N. Mead). 
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Figure 5.1 Conditioned place preference apparatus. (a) Two CPP chambers are 

shown. Each apparatus consists of two outer compartments (context A and B) 

differentiated by tactile (floor material) and visual (wall pattern) cues. Access 

between the outer compartments is made through a smaller middle compartment. 

(b) Overview of one CPP chamber. The red dots indicate the position of infra-red 

beams used to detect the location of mice and which also provide a measure of 

activity.  

a b

Context A

Middle

Context B

IR Detector
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Locomotor activity: Locomotor activity experiments were performed using nine 

circular runways, as described previously (see Chapter 2, section 2.2.6.1). 

 

5.2.4 Experiment 1: Locomotor activity 

Procedural note: Initially, 9 mice per genotype were assigned to this study. One 

wild-type mouse showed high levels of activity during the sham injection test (> 2 x 

S.D. from group mean). This mouse was excluded from testing, reducing group 

sizes to n = 8 and n = 9 for knock-down and wild-type mice, respectively. The 

remaining mice were used for all the following locomotor activity experiments 

reported here. Mice were assigned to the same circular runway for all sessions. 

Multiple groups of mice were run in the locomotor apparatus each day, although 

each group contained mice from both genotypes. The circular runways and 

Perspex platform were cleaned between each group. 

 

5.2.4.1 Habituation to a novel environment and sham injection 

Mice were habituated to the circular runways across five, once-daily, 1 h sessions. 

On the sixth day, following 30 min of activity recording, mice were removed from 

the circular runways and were injected with vehicle (10 ml/kg saline i.p.), in order to 

acclimatize them to the injection procedure. Activity was recorded for a further 60 

min post-vehicle injection. 

 

5.2.4.2 Cocaine-locomotor dose-response (pre-sensitisation) 

Mice were habituated to the circular runways for 30 min, removed and then 

injected with cocaine (1, 3 or 10 mg/kg i.p.) or vehicle. Activity was recorded for a 

further 60 min post-injection. Each mouse received each dose, separated by 48 h 

intervals, in a Latin-square design. 

 

Because activity was not markedly increased by 10 mg/kg cocaine in mutant mice, 

a second cocaine-locomotor test was performed using a higher cocaine dose. As 

before, mice were habituated to the circular runways for 30 min, removed and then 

injected with cocaine (20 mg/kg i.p.) or vehicle. Activity was recorded for a further 
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60 min post-injection. These two additional tests were separated by 48 h and the 

order of injections (cocaine or vehicle) was counterbalanced. 

 

5.2.4.3 Cocaine-locomotor sensitisation 

Mice received repeated, intermittent injections of 10 mg/kg cocaine at 3-4 day 

intervals over 12 sessions. During each session, mice were habituated to the 

circular runways for 30 min, removed and then injected with cocaine. Activity was 

recorded for a further 60 min post-cocaine injection. 

 

5.2.4.4 Conditioned activity 

Three days after the final sensitisation session, mice were habituated to the 

circular runways for 30 min, removed and then injected with vehicle. Activity was 

recorded for a further 60 min post-vehicle injection. A comparison of activity 

following the post-sensitisation vehicle injection was made with activity following 

the pre-sensitisation (sham) vehicle injection (5.2.4.1). 

 

5.2.4.5 Cocaine-locomotor dose-response (post-sensitisation) 

Mice were habituated to the circular runways for 30 min, removed and then 

injected with cocaine (3, 10 or 20 mg/kg i.p.) or vehicle. Activity was recorded for a 

further 60 min post-injection. Each mouse received each dose, separated by 48 h 

intervals, in a Latin-square design. 

 

5.2.4.6 Cocaine-locomotor dose-response (2 months post-sensitisation) 

Commencing two months after the final post-sensitisation dose-response test, a 

second test was performed (as described 5.2.4.5.) to examine the persistence of 

cocaine-locomotor sensitisation. 

 

5.2.4.7 Statistical Analysis 

All locomotor activity data were first analysed by mixed-factor analysis of variance 

(ANOVA), with genotype (WT, KD) as a between-subjects factor. Details of the 

within-subjects factors used for each ANOVA are provided in the results section. 
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Where significant (p ≤ 0.05) main effects or interaction terms were found, further 

analysis was performed using ANOVA and individual between- or within-genotype 

comparisons by t-test. Findings were considered indicative of a trend where p ≤ 0.1 

and Bonferroni corrections were applied for multiple comparisons. For within-

subjects ANOVA, the Greenhouse-Geisser correction was used where the 

assumption of sphericity was violated (Mauchly‟s test, p ≤ 0.05). 

 

5.2.5 Experiment 2: Conditioned place preference (CPP) 

Procedural note: An equipment malfunction meant that the location of two mutant 

mice from the food CPP study and one wild-type mouse from the cocaine CPP 

study were not recorded during the pre-conditioning session. These mice were 

excluded from further testing, leaving group sizes of n = 10 and n = 9 for WT and 

KD mice, respectively in the food CPP study, and n = 7 and n = 8 for WT and KD 

mice, respectively in the cocaine CPP study. 

 

5.2.5.1 Food CPP 

On day 1 (pre-conditioning), mice were placed into the apparatus and allowed to 

explore all three compartments for 20 min. Mice were then assigned one outer 

compartment (A or B) as food-paired and the other compartment as food-unpaired. 

The assignment of compartments as food-paired or food-unpaired was 

counterbalanced. For the next 8 days (conditioning), mice received access to 20 

mg food pellets (5TUL, Cat no. 1811142; Test Diets, Indiana, USA) presented in a 

small dish in the food-paired compartment, or access to an empty dish in the 

unpaired compartment. Each 30 min, once-daily, conditioning session was 

alternated between food-paired and food-unpaired compartments, but the order of 

exposure to each compartment was counterbalanced. Mice were confined to the 

outer compartment during each conditioning session. On day 10 (post-

conditioning), mice were placed into the apparatus and allowed to explore all three 

compartments for 20 min to determine post-conditioning preference. No food was 

presented during the post-conditioning test. 

 



204 
 

5.2.5.2 Cocaine CPP 

Because data from the food CPP study suggested that baseline compartment 

preference tended to differ between the genotypes, mice for the cocaine CPP 

study were first allowed to explore the entire the apparatus during two, once-daily, 

20 min sessions in an effort to reduce any baseline compartment preference. The 

following day, a 20 min pre-conditioning test of preference was conducted (as 

described above). Mice were then assigned one outer compartment (A or B) as 

cocaine-paired and the other compartment as the vehicle-paired. The assignment 

of compartments as cocaine-paired or vehicle-paired was counterbalanced. For the 

next 8 days (conditioning), mice were injected with 10 mg/kg cocaine or vehicle (10 

ml/kg saline) immediately prior to placement in one compartment (cocaine- or 

vehicle-paired, respectively). Each 30 min, once-daily, conditioning session was 

alternated between cocaine-paired and vehicle-paired compartments, but the order 

of exposure to each compartment was counterbalanced. During each conditioning 

session, mice were confined to the outer compartment. Twenty four hours after the 

final conditioning session, mice were placed into the apparatus and allowed to 

explore all three compartments for 20 min to determine post-conditioning 

preference. No injections were given on the post-conditioning test. 

 

5.2.5.3 Statistical Analysis 

Comparison of pre-conditioning or post-conditioning preference between 

genotypes (that is, time spent in each outer compartment) was performed by 

mixed-factor ANOVA, with genotype (WT, KD) as a between-subjects factor and 

compartment (two levels: A, B or food-paired, food-unpaired or cocaine-paired, 

vehicle-paired) as a within-subjects factor. Compartment preference was also 

indexed by a preference score calculation (post-conditioning time minus pre-

conditioning time) to inform about the change in place preference following 

conditioning. Preference scores were also compared between genotypes by 

mixed-factor ANOVA, with compartment (two levels: food-paired, food-unpaired or 

cocaine-paired, vehicle-paired) as a within-subjects factor. Where significant (p ≤ 

0.05) main effects or interaction terms were found, comparisons of the time spent 



205 
 

in either compartment were made by t-test to determine any place preference in 

each genotype. 

 

In both the food- and cocaine-CPP studies, a between-genotype comparison of 

activity in the two outer chambers during pre- and post-conditioning preference 

tests (indexed by beam breaks in the compartments) was performed by mixed-

factor ANOVA, including conditioning (Pre, Post) and compartment (food-paired, 

unpaired or cocaine-paired, vehicle-paired) as a within-subjects factor. For the 

cocaine CPP study, a comparison of activity between genotypes during 

conditioning sessions, following injections of cocaine or vehicle, was performed by 

mixed-factor ANOVA, including conditioning session (1-4) and compartment 

(cocaine-paired, vehicle-paired) as within-subjects factors. Where significant (p ≤ 

0.05) main effects or interaction terms were found, further analysis was performed 

by ANOVA. All figures show mean ± SEM. 
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5.3 Results 

 

5.3.1 Experiment 1: Locomotor activity 

5.3.1.1 Habituation to a novel environment 

The findings for habituation in mGluR5KD-D1 and wild-type mice have been reported 

previously (see Chapter 2, section 2.3.4.1). For the cohort of mice used in the 

present studies, upon exposure to the novel circular runway environment, activity 

(indexed by the distance travelled; m) was greatest during the first 10 min period of 

the 1 h session and declined over each subsequent 10 min period (Fig. 5.2a; main 

effect of Period, F(5,75) = 7.66, p = 0.001; Period x Genotype interaction, NS). 

Notably, activity in KD mice during this first session tended to be reduced in 

comparison to their wild-type counterparts (main effect of Genotype, F(1,15) = 

3.04, p = 0.10). Both genotypes habituated to the apparatus with repeated 

exposure to the runway over five, once-daily, 1 h sessions (Fig. 5.2b). Habituation 

was confirmed by a significant reduction in mean total activity over the five 

sessions (main effect of Session, F(4,60) = 8.57, p < 0.01), in both genotypes 

(main effect of Genotype, NS; Genotype x Session interaction, NS). During the fifth 

session (Fig. 5.2c), activity declined across each 10 min period of the session in 

both genotypes (main effect of Period, F(5,75) = 5.03, p < 0.01; Period x Genotype 

interaction, NS), but there was no overall difference in activity between genotypes 

(main effect of Genotype, NS). 

 

On the sixth day, when mice were given a sham-vehicle injection (Fig. 5.2d), 

activity did not differ between genotypes over the 30 min habituation period (main 

effect of Genotype, NS; Genotype x Period interaction, NS) or the 60 min post-

injection period (main effect of Genotype, NS; Genotype x Period interaction, NS).  
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Figure 5.2 Cocaine-locomotor studies: Habituation and sham-vehicle injection. (a) 

Locomotor activity was reduced in KD mice during the first session. (b) Both 

genotypes habituated to the circular runways over five, once-daily, 1 h sessions. 

(c) Activity did not differ between genotypes over each 10 min period of the fifth 

session. (d) Mice were given a sham-injection (10 ml/kg saline; ▲) after a period of 

30 min in the locomotor apparatus and activity recorded for 1 h post sham-

injection. Activity did not differ between genotypes either pre- or post-sham 

injection. (n = 8/9, WT/KD; except for the 30 min habituation period in the sham 

dose test, where a data collection error resulted in group sizes of n = 6 and n = 7 

for wild-type and mutant mice, respectively).  
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5.3.1.2 Cocaine-locomotor dose-response (pre-sensitisation) 

In the first test, the effect of 0-10 mg/kg cocaine on locomotor activity was 

examined (Fig. 5.3a). Overall activity varied with cocaine dose (main effect of 

Dose, F(3,45) = 2.46, p < 0.05), but the effect of cocaine on activity also varied 

between genotypes (Dose x Genotype interaction, F(3,45) = 3.90, p < 0.05; main 

effect of Genotype, NS). Analysis of activity, for each genotype separately, 

indicated that cocaine increased activity in wild-type mice (main effect of Dose, 

F(3,21) = 10.24, p < 0.001), but not mutant mice (main effect of Dose, NS). Post-

hoc comparisons of activity between each cocaine dose and vehicle confirmed that 

10 mg/kg cocaine significantly increased mean total activity in wild-type mice (t = 

8.46, df = 7, p < 0.017). 

 

In the second test, the effect of 0-20 mg/kg cocaine on locomotor activity was 

examined (Fig. 5.3b). Overall activity varied with dose (main effect of Dose, F(1,15) 

= 51.67, p < 0.001) but the effect of cocaine on activity also tended to vary 

between genotypes (Dose x Genotype interaction, F(1,15) = 4.51, p = 0.051; main 

effect of Genotype, F(1,15) = 3.015, p = 0.10). Individual comparisons of activity 

between cocaine and vehicle confirmed that 20 mg/kg cocaine increased activity in 

wild-type mice (t = -5.47, df = 7, p < 0.01) and mutant mice (t = -4.48, df = 8, p < 

0.01). Post hoc between-genotype comparisons of activity at each dose confirmed 

that the psychomotor activating effects of 20 mg/kg cocaine tended to be 

attenuated in mutant mice (t = 1.96, df = 15, p = 0.069), but activity did not differ 

between genotypes following vehicle (t = 0.102, df = 15, p = 0.92). 

 

The effects of cocaine on locomotor activity were most pronounced immediately 

following injection, as revealed by activity time-course plots (Fig. 5.3d). For brevity, 

analyses of activity time-course data from both dose-response tests are 

summarised in table format (Table 5.1). Notably, the activity profile differed 

between genotypes following 20 mg/kg cocaine (Table 5.1: Test 2 and Fig. 5.3d). 

Subsequent analysis confirmed that activity varied over the post-injection period 
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following 20 mg/kg cocaine in wild-type mice (main effect of Period, F(5,35) = 

15.58, p < 0.001) but not in mutant mice (main effect of Period, NS).  
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Figure 5.3 Cocaine-locomotor dose-response test (pre-sensitisation). (a) 10 mg/kg 

cocaine increased mean total locomotor activity during a 1 h session in wild-type 

mice, but not mutant mice. *p < 0.017, Bonferroni t-test comparison, between 

vehicle and 10 mg/kg cocaine (WT mice only) (b) 20 mg/kg cocaine increased 

mean total activity in both genotypes. The psychomotor stimulating effects of 20 

mg/kg cocaine were attenuated in KD mice. **p < 0.01, Individual t-test 

comparisons between vehicle and 20 mg/kg cocaine. (c-d) Activity time-course 

plots from the second dose-response test. Note the distinct activity profiles 

between mutant and wild-type mice, following 20 mg/kg cocaine (n = 8/9, WT/KD).  

0

50

100

150

200

0 20

WT

KD

**

**

Cocaine (mg/kg)

D
is

ta
n

c
e
 t

ra
v
e
lle

d
 (

m
)

0

20

40

60

80

1 2 3 4 5 6

0 mg/kg

KD

WT

10 min Bin

D
is

ta
n

c
e
 t

ra
v
e
lle

d
 (

m
)

0

20

40

60

80

1 2 3 4 5 6

20 mg/kg

WT

KD

10 min Bin

D
is

ta
n

c
e
 t

ra
v
e
lle

d
 (

m
)

0

50

100

150

200

1 3 100

WT

KD

*

Cocaine (mg/kg)

D
is

ta
n

c
e
 t

ra
v
e
lle

d
 (

m
)

a b

c d



211 
 

Time course 

analysis 

Period 

F(5,75) 

Period x Genotype 

F(5,75) 

Genotype 

F(1,15) 

Test 1    

Vehicle 2.19 0.82 4.09§ 

1 mg/kg cocaine 

3 mg/kg cocaine 

1.74 

2.64* 

0.45 

1.75 

0.22 

2.18 

10 mg/kg cocaine 0.91 0.68 2.21 

Test 2    

Vehicle 7.00*** 1.12 0.01 

20 mg/kg cocaine 14.17*** 7.82*** 3.83§ 

 

Table 5.1 ANOVAs for cocaine-locomotor dose-response time-course profiles (pre-

sensitisation). Factors: Period (1-6); Genotype (WT, KD). ***p < 0.001, *p < 0.05, 

§p < 0.10  
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5.3.1.3 Cocaine-locomotor sensitisation 

In both genotypes, mean total activity increased by a similar extent over 12 

sessions of repeated, intermittent cocaine (Fig 5.4a; main effect of Session, 

F(11,165) = 6.12, p < 0.001; Genotype, NS; Session x Genotype interaction, NS). 

Restricting the analysis to the first 10 min period post-cocaine injection (i.e. where 

the locomotor activating effects of cocaine were greatest) also confirmed that 

activity increased in both genotypes to a similar extent over the 12 sessions (Fig. 

5.4b; main effect of Session, F(11,165) = 10.31, p < 0.001; Genotype, NS; Session 

x Genotype interaction, NS). 

 

In order to compare the rate of sensitisation between the two genotypes, linear 

regression analysis was performed for mean total activity data and slope 

coefficients compared between genotypes by t-test. Sensitisation is indicated by a 

positive slope (slope coefficient > 0), and the greater the slope co-efficient, the 

greater the rate of sensitisation (Crombag et al., 1999; Mead et al., 2004). 

Sensitisation was present in wild-type mice (mean slope co-efficient = 7.40 ± 2.38) 

and mutant mice (mean slope co-efficient = 3.30 ± 1.45) and the slope co-efficients 

did not significantly differ between genotypes (t = 1.51, df = 15, p = 0.15).  
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Figure 5.4 Cocaine locomotor sensitisation (a) Repeated, intermittent 10 mg/kg 

cocaine augmented mean total locomotor activity, during 60 min sessions, in both 

WT and KD mice. (b) Activity during the first 10 min period following repeated, 

intermittent 10 mg/kg cocaine is shown. The acute locomotor response to 10 mg/kg 

cocaine, obtained during the dose-response test, is shown in both figures (DR) (n = 

8/9, WT/KD).  
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5.3.1.4 Conditioned activity 

The comparison of activity following the post-sensitisation vehicle injection with 

activity following the pre-sensitisation vehicle injection was restricted to the first 30 

min post-injection because of unstable activity in the pre-sensitisation test at 30-60 

min post-injection (Fig. 5.5a). Mean total activity in this period (Fig. 5.5b) was 

significantly increased following sensitisation (main effect of Sensitisation, F(1,15) 

= 9.64, p < 0.01), and did not differ between genotypes (main effect of Genotype, 

NS; Genotype x Session interaction, NS).  
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Figure 5.5 Conditioned activity in the runways in which cocaine was experienced. 

(a) The complete activity time-course is shown for a session before any cocaine 

was experienced (Pre) and during a session after cocaine sensitisation (post). In 

both sessions, mice were injected with saline (▲) after a 30 min habituation period 

and activity recorded for a further 60 min post-injection. The comparison of activity 

pre- and post-sensitisation was restricted to mean total activity from the first 30 min 

post-injection period (shaded area). (b) In both genotypes, mean total activity 

during the first 30 min period following a post-sensitisation saline injection (Post) 

was increased in comparison to activity during the same period following a pre-

sensitisation saline injection (Pre) (n = 8/9, WT/KD).  
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5.3.1.5 Cocaine-locomotor dose-response (post-sensitisation) 

Mean total locomotor activity was increased by cocaine (Fig. 5.6a; main effect of 

Dose, F(3,45) = 107.25, p < 0.001) and by a similar extent in both genotypes (main 

effect of Genotype, NS; Genotype x Dose interaction, NS). Post-hoc comparisons 

of activity between each cocaine dose with vehicle confirmed that cocaine 

significantly increased activity at the 10 mg/kg (WT, t = -5.81, df = 7, p < 0.017; KD, 

t = -6.46, df = 8, p < 0.017) and 20 mg/kg (WT, t = -8.68, df = 8, p < 0.017; KD: t = -

8.23, df = 8, p < 0.017) doses. Activity time-course profiles following cocaine and 

vehicle injections were plotted (Fig 5.6b) and, for brevity, analyses of these data 

are summarised in table format (Table 5.2: Time-course analysis). Most notably, 

the effect of acute 20 mg/kg cocaine on locomotor activation was attenuated in 

mutant mice, in comparison to wild-types. 

 

The effect of sensitisation on the acute locomotor response to cocaine was 

examined by comparing activity following post-sensitisation cocaine injections, with 

activity following pre-sensitisation cocaine injections (Fig. 5.6c). This comparison 

was restricted to the activity from the first 10 min post-injection period (i.e. where 

the locomotor stimulating effects of cocaine were greatest) and also included post-

vehicle injection activity, to provide an additional measure of conditioned activity. 

Analyses of these data are summarised in table format (Table 5.2: Pre vs. Post 

analysis). Notably, following sensitisation, activity was significantly increased in 

both genotypes by all cocaine doses (including vehicle). However, at 20 mg/kg 

cocaine, the locomotor stimulating effect of cocaine was attenuated in mutant mice, 

relative to their wild-type counterparts. Subsequent between-genotype 

comparisons confirmed that psychomotor activation following 20mg/kg cocaine 

was attenuated in mutant mice pre-sensitisation (t = 3.93, df = 15, p < 0.01) and 

tended to be attenuated post-sensitisation (t = 1.88, df = 15, p = 0.08). 

  



217 
 

 

 

Figure 5.6 Cocaine-locomotor dose-response tests (post-sensitisation). (a) In both 

genotypes, cocaine significantly increased mean total activity at the 10 and 20 

mg/kg doses. *p < 0.017, within-genotype, Bonferroni t-test comparison between 

each cocaine dose and vehicle (b) Time-course plots of activity at each dose. 

There was a trend for an overall reduction in activity in mutant mice at the 20 

mg/kg cocaine dose. (c) In the first 10 min period post-injection, activity was 

significantly increased in both genotypes at all doses after cocaine sensitisation 

(Post), in comparison to the same period before sensitisation (Pre). At the 20 

mg/kg cocaine dose, activity was reduced in mutant mice both pre- and post-

sensitisation. **p < 0.01, §p < 0.10, between-genotype t-test comparisons of activity 

pre- or post- sensitisation.  

0

100

200

300

400

3 10 200

WT

KD

*

*

*

*

Cocaine (mg/kg)

D
is

ta
n

c
e
 t

ra
v
e
lle

d
 (

m
)

0

20

40

60

80

WT

KD

0

20

40

60

80

1 2 3 4 5 6 1 2 3 4 5 6

 0 mg/kg 3 mg/kg

10 mg/kg 20 mg/kg

10 min Bin

D
is

ta
n

c
e
 t

ra
v
e
ll
e
d

 (
m

)

a b

0

20

40

60

80

WT KD

Pre

Post

WT KDWT KD WT KD

**

§

D
is

ta
n

c
e

 t
ra

v
e

ll
e

d
 (

m
)

Genotype

0 mg/kg 3 mg/kg 10 mg/kg 20 mg/kgc



218 
 

Time-course 

analysis 

Period 

F(5,75) 

Period x Genotype 

F(5,75) 

Genotype 

F(1,15) 

Vehicle 9.69*** 0.73 0.02 

3 mg/kg cocaine 

10 mg/kg cocaine 

39.71*** 

116.91*** 

1.35 

0.99 

0.15 

1.55 

20 mg/kg cocaine 53.65*** 0.94 3.08§ 

Pre vs. Post 

analysis 

Sensitisation 

F(1,15) 

Sensitisation x 

Genotype F(1,15) 

Genotype 

F(1,15) 

Vehicle 16.98*** 0.26 0.87 

3 mg/kg cocaine 45.43*** 0.008 0.66 

10 mg/kg cocaine 216.82*** 1.98 2.72 

20 mg/kg cocaine 43.76*** 0.72 11.1** 

 

Table 5.2 ANOVAs for cocaine-locomotor dose-response tests (post-sensitisation). 

Factors: Period (1-6); Sensitisation (Pre, Post); Genotype (WT, KD). ***p < 0.001, 

**p < 0.01, §p < 0.10  
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5.3.1.6 Cocaine-locomotor dose-response (2 months post-sensitisation) 

Mean total locomotor activity was increased by cocaine (Fig. 5.7a; main effect of 

Dose, F(3,45) = 73.77, p < 0.001), although the effect of cocaine on activity tended 

to vary between genotypes (Dose x Genotype interaction, F(3,45) = 3.17, p = 

0.077). In addition, overall activity was significantly lower in mutant mice than wild-

types (main effect of Genotype, F(1,15) = 5.97, p < 0.05). In both genotypes, post-

hoc comparisons of activity between each cocaine dose with vehicle confirmed that 

cocaine significantly increased activity at the 10 mg/kg (WT, t = -8.22, df = 7, p < 

0.017; KD, t = -6.30, df = 8, p < 0.017) and 20 mg/kg (WT, t = -7.44, df = 8, p < 

0.017; KD: t = -6.22, df = 8, p < 0.017) doses. Individual between-genotype 

comparisons at each dose confirmed that, in comparison to wild-type mice, 

psychomotor activation was significantly attenuated in mutant mice following 

vehicle (t = 2.93, df = 15, p < 0.05) and 20 mg/kg cocaine (t = 2.25, df = 15, p < 

0.05), and tended to be attenuated following 10 mg/kg cocaine (t = 1.97, df = 15, p 

= 0.067). Activity time-course profiles following cocaine and vehicle injections were 

plotted (Fig 5.7b) and, for brevity, analyses of these data are summarised in table 

format (Table 5.3: Time-course analysis). Most notably, the locomotor activating 

effects of 20 mg/kg cocaine were significantly attenuated in mutant mice and 

tended to be attenuated at the 10 mg/kg cocaine dose (Table 5.3: Time-course 

analysis and Fig 5.7b) in comparison to wild-type mice. 

 

The persistence of sensitisation was examined by comparing activity following 2 

month post-sensitisation cocaine injections, with activity following pre-sensitisation 

cocaine injections (Fig 5.7c). This comparison was restricted to the activity from the 

first 10 min post-injection period and also included post-vehicle injection activity, to 

provide an additional measure of conditioned activity. Analyses of these data are 

summarised in table format (Table 5.3: Pre vs. 2 months Post analysis). Notably, 2 

months following repeated cocaine, activity was significantly increased in both 

genotypes at all doses, although this effect was not quite significant in the vehicle 

condition. In comparison to wild-type mice, the locomotor activating effects of 

cocaine were significantly attenuated in mutant mice at the 10mg/kg and 20 mg/kg 
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cocaine doses. Following 10 mg/kg cocaine (Fig. 5.7c) activity in mutant mice was 

attenuated, in comparison to wild-type mice, at 2 months post-sensitisation (t = 

2.21, df = 15, p < 0.05). Following 20 mg/kg cocaine (Fig. 5.7c), activity in mutant 

mice was attenuated, in comparison to wild-type mice, both pre-sensitisation (t = 

3.93, df = 15, p < 0.01) and 2 months post-sensitisation (t = 2.83, df = 15, p < 

0.05).  
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Figure 5.7 Cocaine-locomotor dose-response tests (2 months post-sensitisation). (a) 

Cocaine increased mean total activity in both genotypes, although overall activity was 

reduced in mutant mice. *p < 0.017, within-genotype, Bonferroni t-test comparison 

between each cocaine dose and vehicle (b) Time-course plots of activity at each dose. 

Overall activity was reduced in mutant mice at the vehicle, 10 and 20 mg/kg cocaine 

doses. (c) In the first 10 min period post-injection, activity was increased at all doses after 

cocaine sensitisation (Post), in comparison to the same period before sensitisation (Pre). 

At the 10 and 20 mg/kg cocaine doses, activity was reduced pre and/or 2 months post-

sensitisation in mutant mice, in comparison to wild-types. **p < 0.1, *p < 0.05, between-

genotype t-test comparisons of activity pre- or 2 months post-sensitisation   
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Time-course 

analysis 

Period 

F(5,75) 

Period x 

Genotype F(5,75) 

Genotype 

F(1,15) 

Vehicle 6.55*** 0.26 8.59** 

3 mg/kg cocaine 

10 mg/kg cocaine 

23.38*** 

48.56*** 

0.92 

1.91 

0.42 

3.90§ 

20 mg/kg cocaine 37.43*** 0.59 5.04* 

Pre vs. 2 months 

Post analysis 

Sensitisation 

F(1,15) 

Sensitisation x 

Genotype F(1,15) 

Genotype 

F(1,15) 

Vehicle 3.38§ 1.87 0.39 

3 mg/kg cocaine 31.17*** 0.20 1.15 

10 mg/kg cocaine 91.48*** 3.70§ 5.77* 

20 mg/kg cocaine 40.97*** 0.00 18.19*** 

 

Table 5.3 ANOVAs for cocaine-locomotor dose-response tests (2 months post-

sensitisation). Factors: Period (1-6); Sensitisation (Pre, Post); Genotype (WT, KD). 

***p < 0.001, **p < 0.01, *p < 0.05, §p < 0.10.  
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5.3.2 Experiment 2: Conditioned place preference 

5.3.2.1 Food CPP 

In the 20 min pre-conditioning session, base-line preference for the outer 

compartments (A and B) differed between the two genotypes (Fig. 5.8a; 

Compartment x Genotype interaction; F(1,17) = 5.66, p < 0.05). Mutant mice spent 

significantly more time in compartment A than wild-type mice (t = -2.59, df = 17, p < 

0.05) and, conversely, tended to spend less time in compartment B than their wild-

type counterparts (t = 1.81, df = 17, p = 0.088). However, once these 

compartments had been assigned as food-paired or food-unpaired, there was no 

overall difference in pre-conditioning preference between genotypes (Fig. 5.8b; 

main effect of Compartment, NS; Genotype, NS; Genotype x Compartment 

interaction, NS). 

 

In the 20 min post-conditioning session, mice from both genotypes spent more time 

in the food-paired than the food-unpaired compartment (Fig. 5.8c; main effect of 

Compartment, F(1,17) = 8.13, p < 0.05; Genotype, NS; Genotype x Compartment 

interaction, NS). Subsequent within-genotype comparisons confirmed preference 

for the food-paired compartment, although the effect did not reach statistical 

significance in wild-type (t = 2.15, df = 9, p = 0.06) or mutant (t = 1.89, df = 8, p = 

0.095) mice. Calculating a preference score indicated that, following conditioning, 

the amount of time spent in the food-paired compartment increased while the 

amount of time spent in the food-unpaired compartment decreased in both 

genotypes (Fig. 5.8d; main effect of Compartment; F(1,17) = 15.25, p < 0.01; 

Genotype, NS; Genotype x Compartment interaction, NS). Subsequent within-

genotype comparisons confirmed that, following conditioning, preference for the 

food-paired compartment increased relative to a decrease in preference for the 

food-unpaired compartment, in both wild-type (t = 3.10, df = 9, p < 0.05) and 

mutant (t = 2.45, df = 8, p < 0.05) mice.  
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Figure 5.8 Conditioned place preference for food. (a) During a 20 min test of 

baseline preference (BL), both genotypes spent most time in the outer 

compartments (A and B) than the adjoining middle compartment (Mid). *p < 0.05, 

§p < 0.1, between-genotype t-test comparison of time spent in compartment A or B 

(b) Prior to conditioning (Pre), there was no between genotype difference in the 

time spent in each compartment assigned as food-paired (Food) or food-unpaired 

(Non) (c) Post-conditioning (Post), both genotypes spent more time in the food-

paired compartment, than the food-unpaired. §p < 0.10, within-genotype t-test 

comparisons of time spent in the food-paired and unpaired compartments. (d) The 

preference score (post-conditioning time minus pre-conditioning time) shows that 

time in the food-paired compartment increased, while time in the food-unpaired 

context decreased, following conditioning. *p < 0.05, within-genotype t-test 

comparisons of food-paired and unpaired preference scores (n = 10/9, WT/KD).  
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In both genotypes, post-conditioning activity in the food-paired compartment was 

increased in comparison to post-conditioning activity in the food-unpaired 

compartment (Fig. 5.10a). An initial analysis of activity during pre- and post-

conditioning preference tests, in both genotypes, revealed only that activity in the 

compartments varied with conditioning (Conditioning x Compartment interaction, 

F(1,17) = 18.29, p = 0.001), and further ANOVAs were performed to explore this 

effect. First, analysis of pre-conditioning activity in the two compartments in both 

genotypes confirmed that activity in the compartments did not differ depending 

upon the compartment identity (main effect of Compartment, NS), nor between 

genotypes (main effect of Genotype, NS; Genotype x Compartment interaction, 

NS). A similar analysis of post-conditioning activity confirmed that activity was 

greater in the food-paired compartment (main effect of Compartment, F(1,17) = 

6.93), p < 0.05) and to a similar extent in both genotypes (main effect of Genotype, 

NS; Genotype x Compartment interaction, NS). 

 

5.3.2.2  Cocaine CPP 

In the 20 min pre-conditioning session, there was no overall base-line preference 

for the two outer compartments (A and B) in either genotype (Fig. 5.9a; main effect 

of Compartment, NS; Genotype, NS; Genotype x Compartment interaction, NS). 

Once the outer compartments had been assigned as cocaine- or vehicle-paired, 

there was a tendency for an overall pre-conditioning preference for the cocaine-

paired compartment (Fig. 5.9b; main effect of Compartment, F(1,13) = 3.85, p = 

0.072; Genotype, NS; Genotype x Compartment interaction, NS). However, 

subsequent within-genotype comparisons did not identify a significant pre-

conditioning preference for the cocaine-paired compartment in either wild-type (t = 

1.81, df = 6, p = 0.12) or mutant (t = 0.71, df = 7, p = 0.50) mice. 

 

In the 20 min post-conditioning session, mice from both genotypes spent more time 

in the cocaine-paired compartment than the vehicle-paired compartment (Fig. 5.9c; 

main effect of Compartment, F(1,13) = 21.60, p < 0.001; Genotype, NS; Genotype 

x Compartment interaction, NS). Subsequent within-genotype comparisons 
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confirmed significant preference for the cocaine-paired compartment in both wild-

type (t = 3.20, df = 6, p < 0.05) and mutant (t = 3.37, df = 7, p < 0.05) mice. 

Calculating a preference score indicated that, following conditioning, the amount of 

time spent in the cocaine-paired compartment increased while the amount of time 

spent in the vehicle-paired compartment decreased in both genotypes (Fig. 5.9d; 

main effect of Compartment; F(1,13) = 10.71, p < 0.01; Genotype, NS; Genotype x 

Compartment interaction, NS). Subsequent within-genotype comparisons 

confirmed that, following conditioning, preference for the cocaine-paired 

compartment increased relative to a decrease in preference for the vehicle-paired 

compartment, in mutant mice (t = 3.26, df = 7, p < 0.05) but not wild-type mice (t = 

1.51, df = 6, p = 0.18). 

 

In both genotypes, post-conditioning activity in the cocaine-paired compartment 

was increased in comparison to post-conditioning activity in the vehicle-paired 

compartment (Fig. 5.10b). An initial analysis of activity during pre- and post-

conditioning preference tests, in both genotypes, revealed that activity in the 

compartments varied with conditioning (Conditioning x Compartment interaction, 

F(1,13) = 10.75, p < 0.01), and further ANOVA were performed to explore this 

effect. First, analysis of pre-conditioning activity in the two outer compartments in 

both genotypes confirmed that activity in the compartments did not differ 

depending upon the compartment identity (main effect of Compartment, NS), nor 

between genotypes (main effect of Genotype, NS; Genotype x Compartment 

interaction, NS). A similar analysis of post-conditioning activity confirmed that 

activity was greater in the cocaine-paired compartment (main effect of 

Compartment, F(1,13) = 14.57, p < 0.01) and to a similar extent in both genotypes 

(main effect of Genotype, NS; Genotype x Compartment interaction, NS).  
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Figure 5.9 Conditioned place preference for cocaine. (a) During a 20 min test of 

baseline (BL) preference, both genotypes spent most time in the outer 

compartments (A and B) than the adjoining middle compartment (Mid) (b) Prior to 

conditioning (Pre), there was no significant genotype difference in the time spent in 

compartments assigned as cocaine-paired (Coc) or vehicle-paired (Veh) (c) Post-

conditioning (Post), both genotypes spent more time in the cocaine-paired than the 

vehicle-paired compartment. *p < 0.05, within-genotype t-test comparisons of time 

spent in the cocaine-paired and vehicle-paired compartments (d) The preference 

score (post-conditioning time minus pre-conditioning time) shows that time in the 

cocaine-paired compartment increased, while time in the vehicle-paired 

compartment decreased, following conditioning. *p < 0.05, within-genotype t-test 

comparison of cocaine-paired and vehicle-paired preference scores (n = 7/8, 

WT/KD).  
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Figure 5.10 Activity during pre- and post-preference tests for the food and cocaine 

CPP studies. (a) For food CPP, in the post-conditioning test of preference (Post), 

activity in both genotypes was greater in the food-paired compartment (Food) than 

the food-unpaired compartment (Non), in both genotypes. Activity in the pre-

conditioning test of preference (Pre) did not significantly differ between genotypes 

or compartments (n=10/9, WT/KD). (b) For cocaine-CPP, activity in the post-

conditioning test of preference (Post) was greater in the cocaine-paired 

compartment (Coc) than the vehicle-paired compartment (Veh), in both genotypes. 

Activity in the pre-conditioning test of preference (Pre) did not significantly differ 

between genotypes or compartments (n = 7/8, WT/KD).  
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Activity in the cocaine and vehicle-paired compartments was also recorded over 

the eight 30 min conditioning sessions (Fig. 5.11). Overall activity was higher in the 

cocaine-paired compartment in both wild-type mice (main effect of Compartment, 

F(1,6) = 13.19, p < 0.05) and mutant mice (main effect of Compartment, F(1,7) = 

69.23, p < 0.001). In addition, the profile of activity in the two outer compartments 

differed over conditioning sessions in mutant mice (Compartment x Session 

interaction, F(3,21) = 7.12, p < 0.05), but not wild-type mice (Compartment x 

Session interaction, NS). In mutant mice, activity in the cocaine-paired 

compartment increased over conditioning sessions (main effect of Session, F(3,21) 

= 6.83, p < 0.05), while activity in the vehicle-paired compartment did not change 

(main effect of Session, NS).  
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Figure 5.11 Activity during conditioning sessions in the cocaine CPP study. In both 

genotypes, overall activity (indexed by interruptions of two infra-red beams located 

in each compartment) was higher in the cocaine-paired (Coc) than the vehicle-

paired compartment (Veh). In mutant mice, activity in the cocaine-paired 

compartment increased over conditioning sessions while activity in the vehicle-

paired compartment did not change. In wild-type mice, activity in both 

compartments did not significantly change over the course of conditioning (n = 7/8, 

WT/KD)  
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5.4 Discussion 

 

The present data indicate that knock-down of mGluR5, on cells that receive 

dopaminergic input via D1Rs, results in a marked attenuation of the acute 

psychomotor activating effects of cocaine. However, repeated intermittent cocaine 

does induce behavioural sensitisation in mGluR5KD-D1 mice that persists for at least 

two months after the final cocaine injection. In the CPP studies, mGluR5KD-D1 mice 

showed preference for an environment paired with food availability and non-

contingent cocaine, indicating that mGluR5 on dopaminoceptive neurons are not 

required for learning about natural or drug rewards that supports place preference. 

 

As reported previously (Chapter 2), mGluR5KD-D1 mice showed reduced activity in a 

novel environment, relative to wild-type mice, which is in agreement with studies 

showing that the mGluR5 antagonist MPEP reduces spontaneous locomotor 

activity in rats (Spooren et al., 2000a; Herzig and Schmidt, 2004), but does 

contrast with spontaneous hyperlocomotion reported in mGluR5 knock-out mice 

(Bird et al., 2010; Olsen et al., 2010). Notably, the group I mGluR agonist (S)-

DHPG elevated motor activity after micro-injection into either the VTA or NAcc 

(Swanson and Kalivas, 2000) and, in the NAcc, the group I mGluR antagonist S-4-

CPG prevented increases in locomotor activity produced by the D1-like receptor 

agonist SKF 38393, while having no effect when injected alone (David and Abraini, 

2001). In contrast, S-4-CPG had no effect on locomotor responses produced by 

the selective D2-like receptor agonist LY17155 (David and Abraini, 2001). Taken 

together, our data with mGluR5KD-D1 mice provides further evidence that 

spontaneous activity in a novel environment may require the integrity of dopamine 

and glutamate signalling on neurons that project monosynaptically to the 

substantia nigra pars reticulata (SNr) and which constitute the „direct‟ striatonigral 

pathway (Alexander and Crutcher, 1990). 

 

A critical finding in the present series of experiments was that the acute locomotor 

activating effects of cocaine were attenuated in mGluR5KD-D1 mice, both before and 
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following the induction of sensitisation. The psychomotor effects of stimulants are 

often strongly dependent on the novelty of the environment in which the stimulant 

drug was administered (Badiani et al., 1995), and perhaps the decreased 

locomotor response of mGluR5KD-D1 mice to acute cocaine was due, in part, to the 

reduced response to the novelty of the test environment. Although mutant mice 

were thoroughly habituated to the apparatus before the cocaine-locomotor dose-

response test was conducted, differences in baseline locomotor activity were still 

occasionally apparent between mGluR5KD-D1 and wild-type mice (for example, Fig 

5.7a, but see Fig. 5.3b & 5.6a), suggesting that an interaction between the drug 

and environment could contributing to differences in the locomotor activating 

effects of cocaine between genotypes. It would certainly be of interest to examine 

the effect of cocaine in mGluR5KD-D1 mice while situated in their home cages. 

Against this general idea is the finding that mGluR5 knockout mice are hyper-

responsive in a novel environment, yet show a blunted locomotor response to 

acute cocaine (Chiamulera et al., 2001; Olsen et al., 2010), indicating that mGluR5 

may be integral for the acute psychomotor activating effects of cocaine. 

 

The locomotor activating effects of psychostimulants, such as cocaine, are typically 

attributed to their enhancement of dopamine neurotransmission in mesolimbic 

brain regions (Swerdlow et al., 1986; Delfs et al., 1990; Neisewander et al., 1995; 

Giros et al., 1996). There is much evidence to suggest that striatal mGluRs, 

including mGluR5, interact with dopamine to regulate the locomotor response to 

stimulant drugs (Meeker et al., 1998; Verma and Moghaddam, 1998). For example, 

although systemic MPEP is without effect on basal extracellular striatal dopamine 

(Golembiowska et al., 2003; Tronci and Balfour, 2011), it can block increases in 

extracellular striatal dopamine produced by nicotine (Tronci and Balfour, 2011). It is 

also noteworthy that extracellular striatal dopamine is increased by intra-striatal 

infusions of MPEP (Golembiowska et al., 2003), but not by a group I mGluR 

agonist (Hu et al., 1999; although see Canales et al., 2003). Taken together, these 

data might suggest that loss of mGluR5 on striatal D1-MSNs may result in altered 

dopaminergic transmission in response to psychostimulants which, in turn, results 
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in a reduction of locomotor activity. Although glutamate spillover from corticostriatal 

synapses can depress DA transmission, this effect is most likely attributable to pre-

synaptic group I mGluR receptors (Zhang and Sulzer, 2003). How loss of (post-

synaptic) mGluR5 on D1R expressing neurons may translate to disrupted 

dopaminergic signalling in response to psychostimulants at a synaptic level is not 

clear but, at a network level, could involve altered input of GABAergic MSNs onto 

the ventral midbrain. 

 

In addition to elevating extracellular striatal dopamine, cocaine also results in 

elevated glutamate in the ventral striatum (Smith et al., 1995; Reid and Berger, 

1996; Reid et al., 1997; Zhang et al., 2001) and block of glutamate receptors in the 

NAcc disrupts the acute locomotor activating effects of psychostimulants (Pulvirenti 

et al., 1989, 1991). Although mGluR5 is typically located post-synaptically on 

MSNs in the striatum (Tallaksen-Greene et al., 1998), it can influence pre-synaptic 

glutamate release (Thomas et al., 2001a) through retrograde endocannabinoid 

signalling (Robbe et al., 2001). Thus, in addition to the potential for disrupted 

dopaminergic transmission in mGluR5KD-D1 mice, loss of mGluR5 in MSNs may 

have also translated to disrupted glutamatergic transmission in response to 

cocaine. Further studies (for example, microdialysis or voltammetry) are required to 

directly test whether the (pre-synaptic) dopaminergic and/or glutamatergic 

response to cocaine is attenuated in mGluR5KD-D1 mice, but it is interesting to note 

that mGluR5 knockout mice show elevations in cocaine induced extracellular 

striatal dopamine that are comparable to wild-type mice (Chiamulera et al., 2001), 

which perhaps favours a glutamatergic dysregulation account. 

 

Finally, a third, but not entirely incongruent hypothesis that could explain the 

attenuated psychomotor response to cocaine in mGluR5KD-D1 mice comes from 

recognising that the locomotor activating effects of psychostimulants typically 

require a substantial D1-like receptor, but not D2-like receptor component 

(Moratalla et al., 1996a; Fritts et al., 1997; Badiani et al., 1999; O'Neill and Shaw, 

1999; Kim et al., 2001). As mentioned above, intra-NAcc antagonism of group I 



234 
 

mGluRs alters motor responses arising from stimulation of NAcc D1-like receptors, 

but not D2-like receptors (David and Abraini, 2001), but also suppresses the acute 

locomotor activating effects of intra-NAcc amphetamine (David and Abraini, 2003). 

When our present data with mGluR5KD-D1 mice are placed in the context of these 

reports, there is compelling evidence to propose that the acute locomotor activating 

effects of cocaine are critically dependent upon the (post-synaptic) interaction of 

mGluR5 with D1-like, but not D2-like receptors on striatonigral MSNs. 

 

With repeated intermittent cocaine infusions the locomotor response (measured by 

distance travelled) to cocaine was augmented in both genotypes. Thus, mGluR5KD-

D1 mice did show behavioural sensitisation to cocaine. This finding is surprising on 

a number of accounts. First, a role of mGluR5 in the induction and expression of 

cocaine sensitisation has been demonstrated using an mGluR5 antagonist 

(Kotlinska and Bochenski, 2009; Veeneman et al., 2010) (but see, Dravolina et al., 

2006). Second, the role of glutamate transmission through ionotropic NMDA and 

AMPA receptors in the induction and expression of psychostimulant sensitisation is 

well established (e.g. Karler et al., 1989; Karler et al., 1990; Karler et al., 1991; 

Kalivas and Alesdatter, 1993; Stewart and Druhan, 1993) and mutation of NMDA 

on D1R expressing neurons (i.e. non-dopaminergic neurons) prevents the 

induction of cocaine sensitisation (Heusner and Palmiter, 2005), while knock-out of 

NMDA on dopaminergic neurons is without effect (Engblom et al., 2008). Because 

mGluR5 can powerfully modulate NMDA-mediated responses (Pisani et al., 2001) 

and can also influence AMPA receptor expression (Zhang et al., 2008), these 

reports would predict that mGluR5, particularly on D1R expressing neurons, should 

play a role in behavioural sensitisation. Finally, the propensity to to attribute 

incentive salience to environmental stimuli associated with reward experience has 

been associated with susceptibility to behavioural sensitisation (Flagel et al., 2008). 

Thus, given clear incentive learning deficits in mGluR5KD-D1 mice (Chapter 3), 

impaired behavioural sensitisation might have been expected. 
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Could it be that the experimental design in the present study was not sufficient for 

detecting differences in sensitisation between genotypes? Locomotor activity is 

often considered as a relatively insensitive indicator of behavioural sensitisation 

(Ferrario et al., 2005; Flagel and Robinson, 2007; Flagel et al., 2008) and it would 

be valuable to examine more detailed motor behaviours in mice during the 

induction of sensitisation, such as stereotypy, rearing or head bobbing (Tolliver and 

Carney, 1994). In addition, it has been proposed that the relative degree of 

sensitisation (that is, the change in activity over sessions) may be a critical 

measure of neurobehavioural plasticity, rather than whether or not a drug produces 

sensitisation per se (Ferrario et al., 2005; Flagel and Robinson, 2007; Flagel et al., 

2008). The degree of sensitisation was lower in mGluR5KD-D1 mice (see 

comparison of slopes over sessions 1-11), but did not significantly differ from wild-

type mice. However, it was clear that a robust sensitised response was seen in 

both genotypes following the first 10mg/kg cocaine injection of the sensitisation 

test, indicating that exposure to the cocaine-locomotor dose-response test had 

produced some neural adaptations necessary for supporting sensitisation. Thus, 

the comparison of slopes in the present study was unable to take into account the 

initial induction period of sensitisation. Thus, while the present data suggest no 

differences in behavioural sensitisation between genotypes, additional studies are 

warranted to assure this finding. 

 

Sensitisation involves both unconditioned drug effects on motor activity and 

conditioned responses to the context in which the animals receive the drug (Pert et 

al., 1990; Crombag et al., 1996; Stephens, 2006). Thus, the environment in which 

the drug was experienced can act as a CS, causing behavioural activation even in 

the absence of the drug (Stewart, 1983). In the present report, conditioned activity 

was observed in both genotypes, and to a similar extent, when mice were injected 

with saline and placed into the runway in which cocaine had previously been 

experienced. A potential confound of the conditioned activity test is that 

conditioned activity was determined by comparing activity in the chambers after 

cocaine had been experienced with activity in the same animals, but before 
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cocaine was first experienced (i.e. activity in the sham vehicle injection session). It 

could be conditioned activity was simply a reflection of a sensitised stress 

response as a result of repeated injections in the runway, rather than due to 

acquired associations between the runway and the effects of cocaine. Although 

this possibility cannot be ruled out, it seems unlikely given that repeated injections 

failed to give rise to hyperlocomotion during the four saline conditioning trials in the 

CPP test. 

 

The second series of experiments examined food- and cocaine-CPP. In both CPP 

tests, mutant mice displayed preference for the environment previously associated 

with the reward. Thus, mGluR5 on D1R expressing neurons is not necessary for 

learning that supports performance in the place preference test. But, what learning 

is required to support place preference? The ability of the paired context to 

generate approach behaviour in a CPP test of preference could reflect any number 

of distinct psychological processes (Robbins and Everitt, 2002). Contextual stimuli 

may acquire the ability to elicit simple Pavlovian approach (i.e. sign-tracking) 

responses (Tomie, 1996; Krank, 2003; Mead et al., 2005; Cunningham and Patel, 

2007), or may act as conditioned reinforcers that strengthen the instrumental 

locomotor response of approaching and contacting the paired compartment during 

the CPP choice test (Everitt et al., 1991). Alternatively, the reward associated 

stimuli may acquire incentive motivational properties that energize the sign-tracking 

response or the instrumentally reinforced approach response. Indeed, despite CPP 

being described as a measure of conditioned reward, it is plausible that incentive 

learning is not required for CPP and the reward-paired compartment simply acts as 

a predictor of reward availability. Any or all of these processes may be contributing 

to the development and expression of place preference, and deficits in any one 

learning strategy may be compensated for by another. Nevertheless, that food- and 

cocaine-CPP are normal in mGluR5KD-D1 mice suggests that incentive learning 

necessary for CRf and sign-tracking is not necessary for performance in the CPP 

choice test. This proposal garners some support from studies identifying distinct 
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neuronal nodes involved in the reconsolidation of CPP and CRf related memories 

(Theberge et al., 2010). 

 

A potential concern over the CPP paradigm is that, since animals typically prefer a 

novel context over a familiar one (Hughes, 1968), place preference may be 

influenced by novelty exploration during the choice test. This may occur in one of 

two ways. First, in the three-compartment CPP procedure used in the present 

report, the middle choice compartment remains relatively novel as animals are only 

exposed to this compartment during tests of preference. Exploration of the central 

compartment during a test of preference may further enhance food- or drug-CPP, 

by reducing time spent in the relatively less novel unpaired compartment, whilst 

having less of an effect on time spent in the reward-paired compartment (Bardo et 

al., 1995). In the current CPP studies, preference was determined by comparing 

time spent in the two outer compartments, and it is plausible that exploration of the 

central compartment differentially contributed to place preference seen in both 

genotypes. However, in both CPP tests, a comparison of time spent in the middle 

compartment before and after conditioning failed to find any significant difference 

between genotypes (data not shown), indicating that enhanced exploration of the 

middle compartment did not contribute to CPP in the present studies. Second, an 

argument based on state-dependency, would propose that the drug-paired 

compartment is more novel on the test day because the compartment is 

experienced in a drug-free state. Although this account cannot be ruled out in the 

present study, since we did not look at preference when animals were in a drugged 

state, other studies have shown that animals prefer the drug-paired compartment 

regardless of whether they are tested with or without drug (Mucha and Iversen, 

1984), which provides some evidence to discount this novelty effect. 

 

In the cocaine CPP study, preference for the cocaine-paired compartment was not 

particularly robust in wild-type mice when assessed using a preference score (that 

is, post- minus pre- conditioning preference). This study used a non-biased CPP 

design, in which no preference for either outer compartment existed prior to, or 
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following the assignment of compartments as cocaine-paired or vehicle-paired. 

However, a small (albeit non-significant) bias for the cocaine-paired compartment 

was present in wild-type mice during the pre-conditioning test. A pre-conditioning 

bias may influence the development of CPP in two ways. First, a “motivational 

interaction hypothesis” would suggest that a drug interacts with some 

unconditioned motivational state reflected in the initial compartment bias 

(Cunningham et al., 2003). Thus, a drug might support CPP by reducing „fear‟ 

associated with a non-preferred environment or, conversely, potentiate the 

motivational value of a preferred environment (Schenk et al., 1985; Cunningham et 

al., 2003). Second, pairing a drug with an initially non-preferred compartment may 

simply provide a greater window to measure CPP and, conversely, pairing the drug 

with an initially preferred compartment may obscure any conditioning properties of 

the drug due to a ceiling effect (Cunningham et al., 2003). This second idea seems 

more probable in explaining the weak cocaine CPP in wild-type mice, when 

assessed by calculation of a preference score, since CPP was clearly robust when 

comparing only post-conditioning preference between the vehicle- and cocaine-

paired compartments.  

 

One advantage of the CPP apparatus used here is that locomotor activity during 

preference tests and conditioning trials can be measured. Confirming findings from 

the cocaine behavioural sensitisation study, mutant mice displayed a sensitised 

locomotor response to cocaine over conditioning trials. Cocaine did augment 

locomotor activity in wild-type mice, but did not produce locomotor sensitisation 

over conditioning trials. It is unlikely that the lack of robust sensitisation in wild-type 

mice explains the weak cocaine-CPP in these animals, since locomotor 

sensitisation and CPP can be considered as dissociable phenomena (Shimosato 

and Ohkuma, 2000). During the food-CPP study, activity tended to be reduced in 

the food-paired compartment relative to the food-unpaired compartment during 

conditioning trials in both genotypes (data not shown), which probably reflects the 

occurrence of food consumption competing with exploratory behaviour during 

these conditioning trials. It is also important to note that, in both genotypes, post-
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conditioning activity in the cocaine-paired and food-paired compartments was 

increased in comparison to the non-reward-paired compartments. These data 

confirm and extend the findings of the cocaine conditioned activity study above by 

demonstrating that both a food and cocaine-paired environment can stimulate 

conditioned activity in mGluR5KD-D1 mice in a manner indistinguishable from wild-

type mice. 

 

Although a role for glutamate signalling through ionotropic NMDA and AMPA 

receptors in the acquisition and/or expression of cocaine-CPP has been 

established (e.g. Cervo and Samanin, 1995), previous studies exploring the role of 

mGluR5 in conditioned drug reward using MPEP have produced conflicting results. 

Thus MPEP has been found to reduce the acquisition of cocaine CPP in rats in one 

study (McGeehan and Olive, 2003), but not in another (Herzig and Schmidt, 2004). 

These findings may be explained, in part, by the intrinsic reinforcing properties of 

MPEP producing drug-substitution like effects (van der Kam et al., 2009b, a; 

Rutten et al., 2010). Our data with mGluR5KD-D1 mice indicate that mGluR5 on D1R 

expressing neurons are not necessary for learning that supports cocaine-CPP and 

this result is in agreement with a recent study using mGluR5 KO mice in which 

cocaine CPP was normal (Olsen et al., 2010). It has been proposed that loss of 

mGluR5 may potentiate the rewarding properties of (Rutten et al., 2010) or 

increase behavioural sensitivity to (Bird et al., 2008) some addictive drugs. Our 

cocaine-CPP study does not exclude the possibility that cocaine reward is 

potentiated in mGluR5KD-D1 mice (i.e. a leftward-shift of the minimal effective dose 

required to induce CPP). However, it is worthwhile noting that in a self-

administration preparation the fixed-ratio cocaine dose-response profile in 

mGluR5KD-D1 mice is indistinguishable from wild-type mice (Novak et al., 2010), 

suggesting that mGluR5KD-D1 mice do not show enhanced sensitivity to the primary 

reinforcing effects of cocaine. 

 

Finally, our findings do not exclude the possibility that mGluR5 on D1R expressing 

neurons may be involved in other behavioural effects of cocaine. For example, this 
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population of mGluR5 could contribute to extinction learning in the CPP paradigm 

(but not extinction of instrumental responding; Novak et al., 2010), or the 

reinstatement of CPP. Some evidence for this first hypothesis comes from 

appreciating the importance of glutamate in extinction learning. Thus, 

enhancement of glutamate transmission with an NMDA partial agonist (D-

cycloserine) can facilitate the extinction of conditioned fear and drug-associated 

memories (Botreau et al., 2006; Davis et al., 2006). In mice lacking GluR1 or NR1 

selectively in dopamine neurons, both cocaine CPP and sensitisation was normal, 

but extinction of cocaine CPP and reinstatement of CPP by cocaine were 

abolished in GluR1DATCre and NR1DATCre mice, respectively (Engblom et al., 2008). 

Similarly, GluR1 knock-out mice show extinction deficits, despite normal cocaine 

self-administration (Mead and Stephens, 2003b) and viral over-expression of 

GluR1 and GluR2 in the NAcc facilitates extinction learning (Sutton et al., 2003). 

Because mGluR5 is closely linked to NMDA and AMPA (see discussion above), it 

would seem plausible that activation of mGluR5 could facilitate the extinction of 

cocaine-CPP memories. In addition, knock-out of neuronal activity regulated 

pentraxin (NARP), a neuronal IEG that encodes a secreted protein which may 

influence AMPA trafficking or clustering (O'Brien et al., 1999), also interferes with 

inhibitory learning necessary for extinction, but does not disrupt the initial 

acquisition of a conditioned association (Crombag et al., 2009). This observation is 

interesting with respect to this thesis, since neuronal pentraxins play a necessary 

role in LTD induced by group I mGluR stimulation (Cho et al., 2008). More direct 

evidence for a role of mGluR5 in extinction learning comes from a recent study by 

Gass and Olive (2009), who demonstrated that a positive allosteric modulator of 

mGluR5, CDPPB, facilitated extinction of cocaine-CPP. This effect was reversed 

by MTEP and MK801, suggesting a contribution of both mGluR5 and NMDA 

receptors. The authors noted that the neuroanatomical regions that mediate these 

effects are not clear, but likely include the infra-limbic prefrontal cortex (Zavala et 

al., 2003; Hsu and Packard, 2008), BLA (Fuchs et al., 2002) or hippocampus 

(Meyers et al., 2003), given the role of these structures in extinction learning, 

stimulus-reward learning and drug-context associations in CPP, respectively. It 
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would be of great interest to examine extinction learning in mGluR5KD-D1 mice to 

further probe the potential neuroanatomical location of mGluR5 involved in this 

effect. 

 

In summary, the present study identifies an important role of mGluR5 on neurons 

that receive dopamine input in the acute psychomotor activating effects of cocaine. 

In contrast, this population of mGluR5 is not required for neuroplastic changes that 

support learning about cocaine conditioned reward, measured by CPP, and are not 

necessary for cocaine sensitisation. However, this latter finding should be 

interpreted with caution given the potential for differences in the degree of 

sensitisation to be revealed using more sensitive measures of motor activity. 

Whether the reduced locomotor effects of cocaine can be ascribed to altered pre-

synaptic glutamate and/or dopamine transmission in the striatum and/or disrupted 

output of neurons that constitute the direct nigrostriatal pathway remains to be 

determined. However, psychostimulants, such as cocaine are known to produce 

robust neurochemical changes in the striatum (Reith et al., 1986; Di Chiara and 

Imperato, 1988; Reid et al., 1997), which in turn lead to the induction of post-

synaptic signalling cascades (Graybiel et al., 1990; Young et al., 1991; Valjent et 

al., 2005). If mGluR5KD-D1 mice have impaired regulation of pre- or post-synaptic 

signalling in the striatum, then this may be revealed by examining activation of 

intra-cellular signalling cascades in this brain region in response to acute cocaine 

challenge. This possibility will be explored in the next and final experimental 

chapter. 
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6 Some neurobiological effects of cocaine in 

mGluR5KD-D1 mice 

 

6.1 Introduction 

 

The most notable finding of the previous chapter was that the acute psychomotor 

activating effects of cocaine were significantly attenuated in mice lacking mGluR5 

on cells that receive dopamine input via D1Rs. If some behavioural effects of 

cocaine, which involve glutamate and dopamine signalling in the striatum, are 

diminished, it may be expected that some neurobiological effects of cocaine in the 

striatum are also disrupted in mutant mice. The following experiments will explore 

the ability of acute cocaine to produce rapid changes in synaptic function in the 

striatum and to activate an intracellular signalling cascade in striatal MSNs, which 

may be required for cocaine to produce long lasting changes in synaptic structure 

and function.  

 

As stated in the preceding chapter, cocaine, like many addictive drugs, can 

increase levels of extracellular dopamine and glutamate in the accumbens (Di 

Chiara and Imperato, 1988; Reid et al., 1997; McKee and Meshul, 2005). Elevated 

dopamine and glutamate can augment locomotor activity (Kelly et al., 1975; Clarke 

et al., 1988; Delfs et al., 1990) and trigger intracellular signalling cascades in MSNs 

and alter the expression of immediate early genes (IEGs) (Young et al., 1991; 

Hope et al., 1992; Moratalla et al., 1993; Berke et al., 1998; Valjent et al., 2000). 

Some of these IEGs encode transcription factors (for example, c-fos, JunB, zif268) 

that may be associated with long lasting changes in synaptic structure and function 

(Bai and Kusiak, 1997; Thomas et al., 2003; Kim et al., 2009; Ren et al., 2010). 

Since MSNs provide the sole striatal output to motivational and motor systems 

(Goto and Grace, 2008), cocaine-induced adaptations in these neurons are likely 

to be of considerable importance for the development and maintenance of 

behavioural responses related to addictive processes (Berke and Hyman, 2000). 
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The mitogen-activated protein kinase/extracellular signal-regulated kinase 

(MAPK/ERK) pathway is a major effector of signal transduction from the neuronal 

cell surface to the nucleus (Grewal et al., 1999; Valjent et al., 2001; Adams and 

Sweatt, 2002) and may be a critical component enabling drug-induced adaptations 

in striatal MSNs (Girault et al., 2007). Inactive ERK1 (44KDa) and ERK2 (42KDa) 

are found mainly in somatic and dendritic compartments of neurons (Ortiz et al., 

1995). Activated ERKs can phosphorylate a wide range of substrates within the 

cytoplasm, including membrane associated proteins such as EGF receptors, 

phospholipase A2 and cytoskeletal proteins, including microtubule associated 

proteins and neurofilaments (Grewal et al., 1999). In this way, ERKs can contribute 

to rapid changes in synaptic efficacy that underlie the induction of plasticity and 

short term memory formation. Activated ERKs can also translocate to the nucleus 

(Chen et al., 1992) and phosphorylate major transcriptional regulators, including 

ELK-1 and CREB (cyclic AMP response element binding protein), which bind to 

promoters SRE (serum response elements) and/or CRE (cAMP-response 

elements) of IEGs (Sgambato et al., 1998; Vanhoutte et al., 1999; Davis et al., 

2000; Choe and McGinty, 2001; Valjent et al., 2001; Choe et al., 2002; Mattson et 

al., 2005; Radwanska et al., 2005; Valjent et al., 2005). This ERK1/2-mediated 

burst of gene transcription likely drives long term changes in synaptic function 

necessary for establishing and maintaining long term memories (Adams and 

Sweatt, 2002; Mazzucchelli et al., 2002; Selcher et al., 2002; Sweatt, 2004). 

 

In striatal MSNs, one well characterised mechanism of ERK1/2 control involves 

convergent dopamine and glutamate signalling at D1Rs and NMDARs, 

respectively, and co-operative intracellular signalling pathways (Valjent et al., 2000; 

Valjent et al., 2005; Pascoli et al., 2011). One pathway involves a D1R-PKA 

mediated inhibition of PP-1, requiring phosphorylation of DARPP-32 at Thr-34 and 

resulting in de-phosphorylation of STEP46, thus preventing de-phosphorylation of 

ERKs (Valjent et al., 2005). This first pathway likely potentiates activity in a second 

pathway of ERK1/2 control that requires NMDAR-Ca2+-Ras mediated activation of 
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MEK, resulting in activation of ERKs by phosphorylation at Thr202 and Tyr204 

residues (Valjent et al., 2005; Pascoli et al., 2011). The requirement for both 

dopamine and glutamate signalling for ERK1/2 activation points to this pathway as 

a key element in plasticity of striatal neurons triggered by activity of glutamatergic 

neurons encoding behavioural choice and stimulus properties (Kalivas and Volkow, 

2005) together with dopaminergic signals providing reward error prediction signals 

(Schultz et al., 1997) and/or influencing attention (Mackintosh, 1975; Roesch et al., 

2010). Given that psychostimulants strongly activate ERK1/2 the striatum (Choe et 

al., 2002; Rajadhyaksha et al., 2004; Valjent et al., 2004; Zhang et al., 2004) with 

resultant induction of IEGs (Valjent et al., 2000; Choe et al., 2002; Salzmann et al., 

2003; Zhang et al., 2004; Brami-Cherrier et al., 2005), the ERK1/2 pathway would 

also appear critical for influencing transcriptional regulation proposed to underlie 

the long term effects of addictive drugs (Hope et al., 1994; Moratalla et al., 1996b; 

Nestler, 2001; Zhang et al., 2004; Lu et al., 2006). 

 

More recently, evidence has been provided for a role of mGluR5 in activating 

ERK1/2. Thus, in addition to glutamate signalling through ionotropic NMDARs and 

AMPARs activating ERKs (Sgambato et al., 1998; Mao et al., 2004), stimulation of 

group I mGluRs leads to ERK1/2 activation in the spinal cord (Karim et al., 2001), 

glial cell cultures (Peavy and Conn, 1998), cultured striatal neurons (Voulalas et 

al., 2005) and the striatum (Choe and Wang, 2001). Moreover, stimulation of 

mGluR5 appears sufficient for ERK1/2 activation in cultured striatal neurons with 

resultant phosphorylation of Elk-1, CREB and IEG expression (Mao et al., 2005). In 

this system, activation of at least two distinct intracellular signalling pathways is 

required. The first pathway involves Ca2+-dependent kinase activation of ERK1/2, 

triggered by the „conventional‟ mGluR5 derived PLCβ1/IP3/ Ca2+ cascade (Mao et 

al., 2005). A second dominant pathway involves the Homer family of scaffold 

proteins, homer1b/c, which directly couple with mGluR5 to enable ERK1/2 

activation through a currently undefined mechanism (Mao et al., 2005). Other 

studies provide evidence for mGluR5-dependent ERK activation in mediating 

responses to addictive drugs. Thus, antagonism of mGluR5 in vivo blocks 
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amphetamine-induced ERK1/2 activation and IEG (P-CREB, P-ELK-1 and Fos) 

induction in the dorsal striatum (Choe et al., 2002) and mGluR5 antagonism blocks 

cue-induced reinstatement of alcohol seeking and associated ERK1/2 activation in 

the NAcc shell and BLA (Schroeder et al., 2008). 

 

In summary, ERKs likely play an important role in both short and long term 

changes in drug-induced synaptic plasticity. Striatal ERK1/2 activation requires 

glutamate and dopamine signalling through NMDA and D1Rs, respectively, but 

mGluR5 stimulation may also be sufficient. Since psychostimulants are known to 

trigger ERK1/2 activation almost exclusively in those MSNs that express 

predominantly D1Rs (that is, MSNs of the direct pathway) (Bertran-Gonzalez et al., 

2008), the mGluR5KD-D1 model provides an excellent tool to assess the contribution 

of mGluR5 on this population of MSNs to cocaine-induced striatal ERK activation. 

The following experiments will use immunohistochemistry and immunoblotting to 

examine activation of ERK1/2 in areas of the dorsal and ventral striatum following a 

single injection of cocaine in wild-type and mGluR5KD-D1 mice. 

 

In addition to ERK1/2 activation, drug-induced alterations of AMPA receptors at 

glutamatergic corticostriatal synapses are considered important for neuroplastic 

changes underlying addiction-related behaviours, including control over drug-

seeking by drug-associated stimuli (Di Ciano and Everitt, 2001; Shepherd and 

Huganir, 2007; Conrad et al., 2008; Wolf and Ferrario, 2010). Stimulation of group I 

mGluRs, including mGluR5, can produce changes in synaptic plasticity through 

trafficking of AMPA receptors (Snyder et al., 2001; Bellone and Luscher, 2005; 

Mameli et al., 2007; Jo et al., 2008; Waung et al., 2008; Zhang et al., 2008; Kelly et 

al., 2009) and recent evidence suggests that, at least in the hippocampus, 

stimulation of group 1 mGluRs can drive internalisation of AMPA receptors, in part, 

requiring activation of ERK1/2 and the subsequent rapid translation of STEP61 

(Zhang et al., 2008). Phosphorylation of AMPA receptors, which can result to 

altered receptor conductance, subunit composition and/or trafficking (Wang et al., 

2005), provides an additional mechanism through which addictive drugs, such as 



246 
 

cocaine, can influence neuronal plasticity and addiction-related behaviours (Snyder 

et al., 2000; Famous et al., 2008). In the striatum, activation of mGluR5 appears 

necessary for phosphorylation of GluR1-Ser845 (Ahn and Choe, 2009), a PKA and 

cGMP-dependent protein kinase II phosphorylation site (Roche et al., 1996; Serulle 

et al., 2007), GluR1-Ser831 (Ahn and Choe, 2009), a PKC and CAMKII 

phosphorylation site (Roche et al., 1996; Mammen et al., 1997) and GluR2-Ser880 

(Ahn and Choe, 2010), also a PKC site (Chung et al., 2000). Taken together, these 

studies suggest that glutamate signalling through striatal mGluR5 may play an 

important role in cocaine-induced alterations of AMPA receptor-mediated neuronal 

plasticity by influencing AMPA receptor trafficking and/or phosphorylation state. To 

examine this possibility, the following immunoblotting experiments will also 

examine STEP protein expression and alterations in AMPA receptor 

phosphorylation state in areas of the dorsal and ventral striatum following acute 

cocaine challenge in mGluR5KD-D1 and wild-type mice.  
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6.2 Materials and methods 

 

6.2.1 Animals 

Mice (n = 20/21, WT/KD; male and at least 8 weeks old prior to experiment start) 

were bred in house and housed in groups of two or three. Animals were maintained 

on a 12:12 h light-dark cycle (lights on at 0700 hours) under controlled temperature 

(21 ± 2°C) and humidity (50 ± 5%) conditions. Body weights were maintained at 

approximately 85% of free-feeding weight by the provision of a limited amount of 

standard lab chow (B&K Feeds, Hull, UK) approximately 2 h after daily experiment 

completion. Food restriction was used in these animals to match the conditions of 

other studies reported in this thesis, such that effects of cocaine could be 

paralleled between studies without confounds arising from the use of different 

feeding conditions (Deroche et al., 1993). Experiments took place during the light-

phase between 1200 and 1900 hours. All procedures were performed in 

accordance with the United Kingdom 1986 Animals (Scientific Procedures) Act, 

following institutional ethical review. 

 

6.2.2 Drugs 

Cocaine hydrochloride (C17H21NO4·HCl; MacFarlan Smith, Edinburgh, UK) was 

dissolved in 0.9% saline. All injections were administered at a volume of 10 ml/kg 

i.p.  

 

6.2.3 Locomotor apparatus and behavioural procedure 

Locomotor activity was recorded using nine circular runways, as previously 

described (see Chapter 2, section 2.2.6.1). Mice were first habituated to the 

locomotor apparatus during five, once-daily, 1 h sessions. On the sixth day, 

following 30 min of activity recording, mice received a vehicle sham injection (10 

ml/kg saline i.p.) designed to acclimatize them to the injection procedure. Activity 

was monitored for 10 min post-sham injection. On the seventh day, locomotor 

activity was again recorded for 30 min. Mice were then injected with either cocaine 

(20 mg/kg i.p.) or vehicle and activity recorded for a further 10 min post-injection. 
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Mice were then immediately removed from the locomotor apparatus and used for 

either immunohistochemistry or immunoblotting, as described below. Five blocks of 

locomotor sessions were run each day, with each block containing mice from both 

genotypes. The assignment of treatment condition (cocaine or saline) and study 

destination (immunohistochemistry or immunoblotting) was counterbalanced within 

each genotype and each block. 

 

6.2.4 Immunohistochemistry  

6.2.4.1 Tissue preparation 

Saline (n = 5/6, WT/KD) and cocaine (n = 5/6, WT/KD) treated mice were injected 

with pentobarbital (0.2 ml of 200 mg/ml stock; Euthatal; Merial Animal Health, 

Harlow, Essex) and perfused transcardially with 4% (w/v) paraformaldehyde (PFA) 

in 0.1 M sodium phosphate buffer (Na2HPO4/NaH2PO4, pH 7.5). PFA was delivered 

rapidly (20 ml/min) with a peristaltic pump for 5 min (as reported in Bertran-

Gonzalez et al., 2008). Brains were post-fixed overnight in the same solution at 4ºC 

and then blocked, sectioned and placed in cassettes (Tissue-Tek Uni-Cassettes; 

Sakura, Torrance, California, USA) to process for paraffin fixation (Tissue-Tek VIP 

5; Sakura). In brief, brain sections were dehydrated in increasing concentrations of 

ethanol (70% for 1 h, 80% for 1 h and 5 x 100% each for 1 h), cleaned in xylene (2 

x 1 h and 1 x 2 h) and incubated in molten paraffin (4 x 1 h; Richard-Allan Scientific 

Histoplast IM; Thermo Scientific, Waltham, Massachusetts, USA), before being 

embedded in paraffin blocks (Tissue-Tek TEC 5; Sakura). From these blocks, 4 µm 

sections of medial striatum (corresponding to 1.18 mm from bregma; Franklin and 

Paxinos, 2008) were cut with a microtome (RM2255; Leica, Milton Keynes, Bucks, 

UK), placed on charged slides (SuperFrost Plus; Menzel-Gläser, Brunswick, 

Germany), air-dried overnight at 37°C and stored at room temperature prior to 

staining. 

 

6.2.4.2 Staining 

Immunohistochemistry was performed using a Discovery XT Autostainer (Ventana 

Medical Systems, Tucson, Arizona, USA). Sections underwent de-paraffinization, 
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heat-induced epitope retrieval (CC1 solution, mild protocol; Ventana Medical 

Systems) and staining using a heat protocol. Sections were incubated for 1 h with 

primary antibodies raised against DARPP-32 (1:100, mouse monoclonal, 611520, 

lot 58902; BD Biosciences, Franklin Lakes, New Jersey, USA) and phospho-

Thr202-Tyr204-ERK1/2 (P-ERK1/2; 1:200, 9101, lot 26; Cell Signaling Technology, 

Danvers, Massachusetts, USA). For detection of P-ERK1/2 and DARPP-32, slides 

were incubated for 30 min with goat anti-rabbit Cy3-conjugated (1:200, A10520; lot 

771575, Invitrogen) and goat anti-mouse Cy5-conjuated (1:200, A10524, Lot 

731500; Invitrogen) secondary antibodies, respectively. All antibodies were diluted 

in a Tris-based diluent (PSS diluent, 760-212, Ventana Medical Systems). On 

completion of staining, slides were removed from the Autostainer, washed in warm 

soapy water and cover slipped using ProLong® Gold anti-fade reagent (P36930; 

Invitrogen). Sections for P-ERK1/2 detection were cover slipped using the same 

reagent supplemented with 4‟,6-diamidino-2-phenylindole (DAPI; P36931; 

Invitrogen), a DNA intercalating fluorescent molecule. 

 

6.2.4.3 Controls 

As a negative control, the same immunohistochemical protocol was performed 

except that primary antibodies were omitted and replaced by fractions of rabbit IgG 

(for P-ERK1/2; V0415; Vector laboratories, Burlingame, California, USA) or mouse 

IgG2a (for DARPP-32; X0943; Dako, Ely, Cambridgeshire, UK), used at identical 

concentrations to the respective primary antibodies. In addition, primary antibodies 

were preadsorbed for at least 1 h with varying dilutions of the control peptide for 

DARPP-32 (1081, lot 1; Cell Signaling Technology) or P-ERK1/2 (1150, lot 4; Cell 

Signaling Technology). 

 

6.2.4.4 Imaging and analysis of fluorescence 

Images (375 x 375 µm; see panel b in Figs. 6.3-6.6 for illustration of sample area)  

from the dorsomedial (DM) and ventrolateral (VL) striatum, NAcc core and NAcc 

shell of the medial striatum were obtained bilaterally using sequential laser 

scanning confocal microscopy (SP5; Leica; using 40x dry objective, APO, 0.85 
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N.A.). For quantification of P-ERK1/2 +ve neurons, the Cy3 immunofluorescent 

nuclei were counted bilaterally from two sections from each mouse. Cell counts 

were performed by an observer unaware of the treatment condition (cocaine or 

saline) or the genotype (WT or KD) of mice. 

 

6.2.5 Immunoblotting 

6.2.5.1 Sample preparation 

Saline (n = 5/5, WT/KD) and cocaine (n = 5/5, WT/KD) treated mice were 

decapitated and their brains rapidly (30-60 sec) extracted and snap-frozen in 

chilled isopentane (-50ºC). Using a cryostat (CM3050S; Leica) frozen brains were 

cut in the coronal plane until the rostral striatum was exposed (Fig. 6.1b; equivalent 

to 1.54 mm from bregma; Franklin and Paxinos, 2008). A ~1 mm section that 

encompassed rostral, medial and caudal parts of the striatum was manually cut 

(Fig. 6.1a), from which bilateral punches (1.5 mm dia. dermal biopsy punch; Kai 

Medical, Honolulu, Hawaii) of the dorsal and ventral striatum were taken (for 

example see Fig. 6.1c) and stored at -80ºC. 

 

Frozen samples were briefly sonicated in ~100 µl of ice cold RIPA lysis buffer (1x 

of 10x stock: 0.5 M Tris-HCl, pH 7.4, 1.5 M NaCl, 2.5% deoxycholic acid, 10% NP-

40, 10 mM EDTA: 20-188; Millipore, Temecula, California, USA) supplemented 

with phosphatase inhibitors (1x phosSTOP; Roche Diagnostics, Burgess Hill, West 

Sussex, UK) and protease inhibitors (1x cOmplete mini, EDTA free; Roche 

Diagnostics). Lysate protein concentrations were determined by Bradford assay. 

Specifically, 5 µl of each sample was added to 250 µl of Bradford Reagent (B6916; 

Sigma, Saint Louis, Missouri, USA) and incubated at room temperature for a 

minimum of 5 min. Each lysate was assayed in duplicate. Protein concentrations 

were determined by comparing mean assay absorbance values measured at 590 

nm (PowerWave HT Microplate Spectrophotometer; Biotek, Winooski, Vermont, 

USA) against a standard curve generated using known concentrations of Bovine 

Serum Albumin (BSA, A/1278/46; Fisher Scientific, Loughborough, Leicestershire, 

UK) dissolved in the same lysis buffer. 
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Equal amounts of lysates were prepared for gel electrophoresis by the addition of 

protein loading buffer (1x of 4x stock: 125 mM Tris-HCl, pH 6.8, 50% glycerol, 4% 

SDS, 0.2% (w/v) Orange G: 928-40004; Li-Cor Biosciences, Lincon, Nebraska, 

USA) and reducing agent (1x of 10x stock: 500 mM dithiothreitol: NP0004; 

Invitrogen, Paisley, UK), made to volume (15 µl per well) with deionized water 

(Milli-Q, Millipore). Loading samples were heated at 70ºC for 10 min prior to 

charging gels.  
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Figure 6.1 Punches for immunoblotting. Frozen brains were cut until the rostral 

striatum was visualised (panel b; corresponding to 1.54 mm from Bregma; Franklin 

and Paxinos, 2008). A 1 mm slice was then manually cut that encompassed 

rostral, medial and caudal striatum (shaded area of panel a). From this slice, 1.5 

mm dia. bilateral punches of dorsal and ventral striatum were taken for 

immunoblotting. (c) Brain section (15 µm thick, equivalent to 1.10 mm from 

Bregma), stained with haematoxylin and eosin, illustrating dorsal and ventral 

punches taken from a single hemisphere. CPu: Caudate Putamen, C: NAcc core, 

S: NAcc shell, VP: Ventral Pallidum. Scale bar, 500 µm 
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6.2.5.2 Electrophoresis 

Protein gel electrophoresis was undertaken with the NuPage® pre-cast gel system 

(all reagents and equipment from Invitrogen unless otherwise stated) using Novex 

4-12% Bis-Tris gels (NP0322) and MOPS SDS running buffer (1x of 20x stock, 

NP0001-02) with added Antioxidant (NP0005). Molecular weight markers (Two-

Color Protein Molecular Weight Marker, 928-40001; Li-Cor Biosciences; or 

SeeBlue Plus2 Pre-stained Standard, LC5925) were run alongside samples to 

confirm antibody specificity. Gels were run for 50 min at 200 v (PowerEase500) 

and proteins transferred to a 0.2 μm nitrocellulose membrane (IB3010-01) using 

iBlot (IB1001UK). 

 

6.2.5.3 Western blotting 

Blots were blocked in Li-Cor blocking buffer (927-40000; Li-Cor Biosciences) for 1 

h at room temperature and incubated overnight at 4°C with primary antibodies 

raised against STEP (1:500, mouse monoclonal, 4396, lot 1; Cell Signaling 

Technology), ERK1/2 (1:1000, rabbit polyclonal, 9102, lot 20; Cell Signaling 

Technology), phospho-Thr202-Tyr204-ERK1/2 (P-ERK1/2; 1:500, rabbit polyclonal, 

9101, lot 26; Cell Signaling Technology), GluR1 (1:500, rabbit monoclonal 

recombinant, 05-855R, lot NG1683901; Millipore), phospo-Ser831-GluR1 (P-

GluR1-s831; 1:200, rabbit polyclonal, ab5847, lots NG1731388, JC1676088; 

Millipore), phospho-Ser845-GluR1 (P-GluR1-s845; 1:200, rabbit monoclonal, 2491-

1, lots YH011804C, YF052719C; Epitomics, Burlingame, California, USA), GluR2 

(1:500, goat polyclonal, N-19, sc-7661, lot B1908; Santa Cruz Biotechnology, 

Santa Cruz, California, USA) and phospho-Ser880-GluR2 (P-GluR2-s880; 1:200, 

rabbit polyclonal, 07-294; Millipore). All antibodies were diluted in fresh Li-Cor 

blocking buffer supplemented with 0.1% Tween 20. 

 

After four 5 min washes in DPBS/0.1 % Tween 20, blots were incubated for 1 h at 

room temperature with appropriate donkey anti-mouse (680, 926-32222, lot 

B81023-03; 800, 926-32212, lot B70820-02), anti-rabbit (680, 926-32223, lot 

C00118-0; 800, 926-32212, lot B90713-02) and/or anti-goat (680, 926-32224, lot 
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C00426-06) secondary antibodies labelled with IRDyes 680 or 800 (Li-Cor 

Biosciences). Blots were washed and then imaged with an Odyssey infrared 

fluorescence scanner (Li-Cor Biosciences). 

 

To control for sample loading variation, membranes were stripped (10 min 

incubation with 1x of a 5x NewBlot Nitro stripping buffer stock; 928-40030; Li-Cor 

Biosciences) and incubated for 1 h at room temperature with an antibody raised 

against β-actin (1:5000, mouse monoclonal, clone AC-15, A1978, lot 056K4796; 

Sigma; or 1:1000, rabbit monoclonal, clone 13e5, 4970, lot 3; Cell Signaling 

Technology). After washing, blots were incubated for 1 h at room temperature with 

donkey anti-mouse or anti-rabbit secondary antibodies labeled with IRDye 800 (Li-

Cor Biosciences). Following a final wash step, blots were again imaged for 

fluorescence detection. 

 

Band intensity was determined using Odyssey v2.1 software. Quantification was 

performed by subtracting background readings from the relative intensity of each 

sample band and normalizing band intensity with that of actin. The band intensity 

for each sample in a gel was divided by the mean band intensity for the control 

sample condition in the same gel (i.e. WT mice treated with saline) to provide a „% 

of Control‟ value (100% of Control value would indicate no change in band intensity 

between the treatment group and the control condition). 

 

6.2.6 Statistical Analysis 

All test data were initially assessed for normality (Shapiro-Wilk test; assumption 

violated when p ≤ 0.05) and homogeneity of variance (Levene‟s test, assumption 

violated when p ≤ 0.05). To permit analysis by parametric tests, appropriate 

transformations were undertaken to transform skewed distributions closer to a 

normal distribution and to reduce heterogeneity of variance (Cardinal and Aitken, 

2006). Specifically, for P-ERK1/2 +ve cell counts in the immunohistochemistry 

study, all data were square root transformed (Y‟ = √Y). 
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For the locomotor habituation phase and sham-injection day, data were analysed 

by mixed-factor analysis of variance (ANOVA), with genotype (WT, KD) as a 

between-subjects factor and session (1-5) as a within-subjects factor. Where 

significant (p ≤ 0.05) main effects or interaction terms were found, further analysis 

was performed using ANOVA and post-hoc comparisons by t-test, with Bonferroni 

corrections applied for multiple comparisons. For within-subjects ANOVA, the 

Greenhouse-Geisser correction was used where the assumption of sphericity was 

violated (Mauchly‟s test, p ≤ 0.05). 

 

For the cocaine/vehicle injection day, immunohistochemistry and immunoblotting 

studies, the effect of treatment (cocaine or vehicle) and genotype (WT or KD) on 

the respective dependent variables (distance travelled, P-ERK1/2 +ve cell counts 

or % of control) was analysed by univariate ANOVA. Where a significant (p ≤ 0.05) 

main effect or interaction term was found, between-group comparisons were 

performed by independent samples t-test. Findings were considered indicative of a 

trend where p ≤ 0.1 and all figures show group means (± SEM). Statistical analysis 

was performed with SPSS Statistics v.17 (IBM, Somers, New York, USA).  
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6.3 Results 

 

6.3.1 Locomotor activity 

As has been reported previously (Chapter 2, section 2.3.4.1), activity of KD mice 

was reduced in a novel environment (Fig. 6.2a, session 1, post-hoc Bonferroni t = 

2.76, df = 40, p < 0.01). Following a period of habituation there was no difference in 

locomotor activity between WT and KD mice (Fig. 6.2a, session 5, post-hoc 

Bonferroni t-test comparison, NS). Locomotor activity in the first 10 min period 

following the vehicle sham-injection (Fig. 6.2b) did not differ between genotypes (t-

test comparison, NS). When injected with cocaine, locomotor activity significantly 

increased in both WT and KD mice (Fig. 6.2c; main effect of Treatment, F(1,37) = 

35.56, p < 0.001). However, the locomotor response to cocaine was significantly 

attenuated in KD mice (Treatment x Genotype interaction; F(1,37) = 11.79, p = 

0.001; t-test comparison of WT cocaine vs. KD cocaine, t = 3.70, df = 19, p < 0.01). 

Locomotor activity following injection with vehicle did not differ between genotypes 

(t-test comparison, NS). The locomotor response to either treatment did not differ 

depending on the fate of mice (immunoblotting or immunohistochemistry; data not 

shown).  
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Figure 6.2 Locomotor activity (a) Activity was reduced in mutant mice when 

exposed to the novel locomotor apparatus (session 1), but activity did not differ 

between genotypes following a period of habituation (session 5). Each data point 

represents mean total activity (distance travelled) from once-daily 1 h sessions. *p 

< 0.01, between-genotype Bonferroni t-test comparison (b) During the sixth 

session, a vehicle sham injection (▲) was given after a 30 min habituation period. 

Locomotor activity did not differ between genotypes either prior to or following the 

injection. (c) Activity significantly increased in both genotypes during the 10 min 

period following 20 mg/kg cocaine (Coc), but was attenuated in KD mice. Activity 

following a vehicle injection (Veh) did not differ between genotypes. ***p < 0.001, 

within-genotype t-test comparison of vehicle and cocaine activity, ##p < 0.01, 

between-genotype t-test comparison of cocaine activity (n = 20/22, WT/KD; except 

for 30 min habituation period before the sham injection where n = 17/21 due to 

data recording error).  
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6.3.2 Immunohistochemistry 

6.3.2.1 P-ERK1/2 

Striatal ERK1/2 activation following cocaine and saline injections in wild-type and 

mutant mice was assessed by counting P-ERK1/2 +ve cells in the dorsal and 

ventral compartments of the medial striatum (a summary of the analyses is 

provided in Table 6.1). In the dorsomedial part of the striatum (Fig. 6.3a-c), cocaine 

did not increase P-ERK1/2 +ve cell counts (main effect of Treatment, NS), but 

overall P-ERK1/2 +ve cell counts were reduced in mutant mice (main effect of 

Genotype: F(1,18) = 5.59, p < 0.05). In the ventrolateral part of the medial striatum 

(Fig. 6.4a-c), cocaine did not reliably increase P-ERK1/2 immunoreactivity (main 

effect of Treatment, NS) and there was no overall difference between genotypes in 

P-ERK1/2 +ve cell counts (main effect of Genotype, NS). In the NAcc core (Fig. 

6.5a-c), cocaine did increase P-ERK1/2 +ve cell counts, although this effect was 

not quite significant (main effect of treatment: F(1,18) = 3.50, p = 0.078). The effect 

of cocaine on P-ERK1/2 immunoreactivity in the NAcc core did not differ between 

genotypes (main effect of Genotype, NS; Genotype x Treatment interaction, NS). 

In the NAcc shell (Fig. 6.6.a-c), cocaine produced a robust increase in P-ERK1/2 

immunoreactivity (main effect of Treatment, F(1,18) = 11.01, p < 0.01) and overall 

P-ERK1/2 immunoreactivity tended to be reduced in mutant mice (main effect of 

Genotype, F(1,18) = 3.85, p = 0.065). However, the effect of cocaine on P-ERK1/2 

+ve cell counts did not reliably differ between genotypes (Treatment x Genotype 

interaction, NS). Subsequent within-genotype comparisons indicated that cocaine 

significantly increased P-ERK1/2 +ve cell counts in WT mice (t = -2.48, df = 8, p < 

0.05), although this effect was not so robust in mutant mice (t = -2.11, df = 10, p = 

0.061). 
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Figure 6.3 Immunohistochemistry of P-ERK1/2 in the dorsomedial striatum. (a) P-

ERK1/2 immunoreactivity (red) was detected together with DAPI (white; a marker 

of DNA) and DARPP-32 (blue; a marker of MSNs) in the dorsomedial part of the 

striatum (red dot in panel b; equivalent to 1.18 mm from Bregma; Franklin and 

Paxinos, 2008) of wild-type and mGluR5KD-D1 (KD) mice in a triple-fluorescence 

analysis. Arrows indicate the position of P-ERK1/2 +ve neurons. Merged images 

show that P-ERK1/2 +ve neurons are also MSNs. Scale bars, 50 μm. (c) Cocaine 

did not increase P-ERK1/2 immunoreactivity in either genotype, although P-ERK 

immunoreactivity was reduced overall in mutant mice in this striatal region.  
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Figure 6.4 Immunohistochemistry of P-ERK1/2 in the ventrolateral striatum. (a) P-

ERK1/2 immunoreactivity (red) was detected together with DAPI (white) and 

DARPP-32 (blue) in the ventrolateral part of the striatum (red dot in panel b; 

equivalent to 1.18 mm from Bregma; Franklin and Paxinos, 2008) of wild-type and 

mGluR5KD-D1 (KD) mice. Arrows indicate the position of P-ERK1/2 +ve neurons. 

Scale bars, 50 μm. (c) Cocaine did not reliably increase P-ERK1/2 +ve cell counts 

in either genotype in this striatal region.  
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Figure 6.5 Immunohistochemistry of P-ERK1/2 in the NAcc core. (a) P-ERK1/2 

immunoreactivity (red) was detected together with DAPI (white) and DARPP-32 

(blue) in the NAcc core of the medial striatum (red dot in panel b; equivalent to 

1.18 mm from Bregma). Arrows indicate the position of P-ERK1/2 +ve neurons. 

Scale bars, 50 μm. (c) Cocaine increased P-ERK1/2 immunoreactivity in the NAcc 

core, although this effect was not quite statistically significant (main effect of 

Treatment, p = 0.065).  
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Figure 6.6 Immunohistochemistry of P-ERK1/2 in the NAcc shell. (a) P-ERK1/2 

immunoreactivity (red) was detected together with DAPI (white) and DARPP-32 

(blue) in the NAcc shell of the medial striatum (red dot in panel b; equivalent to 

1.18 mm from Bregma). Arrows indicate the position of P-ERK1/2 +ve neurons. 

Scale bars, 50 μm. (c) Cocaine increased P-ERK1/2 immunoreactivity in both 

genotypes, although this effect was not so robust in mutant mice *p < 0.05, §p < 0.1 

within-genotype t-test comparison between vehicle and cocaine.  
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6.3.2.2 Controls 

No cell-type specific fluorescent signal was detected when IgG fractions were 

replaced for respective primary antibodies (images not shown). In the 

preadsorption assays, the control peptide for DARPP-32 blocked DARPP-32 

immunoreactivity in a concentration dependent manner (Fig. 6.7). Although the 

control peptide for P-ERK1/2 blocked P-ERK1/2 immunoreactivity, no 

concentration dependent block of P-ERK1/2 was demonstrated (i.e. the peptide 

was still effective at the lowest dilution tested; 0.3 μg of peptide per 1 μg of P-

ERK1/2 antibody; images not shown). 

  

 

 

F-IHC: P-ERK1/2 

Treatment 

F(1,18) 

Genotype 

F(1,18) 

Treatment x 

Genotype 

F(1,18) 

Dorsomedial 

striatum 

0.180 5.59* 0.036 

Ventrolateral 

striatum 

2.48 2.33 0.20 

NAcc core 3.50§ 1.58 0.50 

NAcc shell 11.01** 3.85§ 0.58 

 

Table 6.1 ANOVAs for fluorescence immunohistochemistry (F-IHC) of P-

ERK1/2 cell counts. Factors: Treatment, (Cocaine, vehicle); Genotype (WT, 

KD), **p < 0.01, *p < 0.05, §p < 0.1 
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Figure 6.7 DARPP-32 preadsorption control. DARPP-32 immunoreactivity was 

blocked by its control peptide in a concentration dependent manner. Each 375 x 

375 µm panel indicates the ratio of control peptide preadsorbed to DARPP-32 

primary antibody. Note that all images are of the same brain region in the same 

wild-type mouse. Images were captured with identical confocal settings and 

brightness adjusted for display purpose to the exact same extent.  

3:1 1:1 0.3:1 0.01:1

Control peptide : DARPP-32 primary Ab
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6.3.3 Immunoblotting 

Tissue from one animal was lost during punch collection, reducing group sizes to n 

= 5/5 (WT/KD) for the saline injected animals and n = 4/5 (WT/KD) for the cocaine 

treated mice. In addition, two samples intended for detection of total ERK1/2 in the 

dorsal striatum did not run correctly in the gel, reducing the group sizes for this 

particular condition to n = 5/4 (WT/KD) for the saline condition and n = 4/4 (WT/KD) 

for the cocaine condition. 

 

Bands for GluR2, GluR1, P-GluR1-s845 and P-GluR1-s831 were observed at ~100 

KDa (Fig. 6.8). The antibody used for detection of P-GluR2-s880 was not of 

sufficient quality to permit reliable identification of the target phosphorylated protein 

(not shown), and thus no data for GluR2 or P-GluR2-s880 will be reported in this 

thesis. Consistent with reported identification of STEP isoforms (Lombroso et al., 

1993; Sharma et al., 1995), two major bands at 61 and 46 KDa were observed for 

STEP, with additional minor bands at 37, 33, and 20 KDa (Fig. 6.8). For total 

ERK1/2 and P-ERK1/2, two bands were observed at 44 and 42 KDa corresponding 

with ERK1 and ERK2, respectively (Fig. 6.8). Both actin antibodies detected a 

single band, observed at 42 KDa (A1978; Sigma shown in Fig. 6.8). It is worthwhile 

to note that, under the same immunoblotting conditions described above, little 

success was had with other antibodies raised against GluR1 (sc-13152, lot H1109; 

Santa Cruz), phospho-Ser845-GluR1 (AB5849, lot JC1650292; Millipore), phospo-

Ser831-GluR1 (04-823, lot DAM1557561; Millipore), and GluR3 (mab5416, lot 

JC1629918; Millipore). In addition, antibodies for ERK1/2 (06-182, lot 

DAM1644549; Millipore) and phospho-Tyr204-ERK1/2 (sc-7383, Lot H0409; Santa 

Cruz) did produce bands at the predicted size, but were not used in the present 

report. 

  



266 
 

 

Figure 6.8 Example western blots. Full blots are shown for antibodies raised 

against GluR1, P-GluR1-s845 (P-s845), P-GluR1-s831 (P-s831), GluR2, ERK1/2 

(ERK), P-ERK1/2 (P-ERK), STEP and β-Actin. Arrow heads indicate bands 

selected for analysis, based on predicted protein weight. 
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6.3.3.1 Total ERK1/2 and P-ERK1/2 

No differences in either total ERK1/2 or P-ERK1/2 were found in the dorsal 

striatum of WT and KD mice treated with cocaine or vehicle (Fig. 6.9a-b, DStr; for 

each ERK and P-ERK isoform: main effect of Genotype, NS; Treatment, NS; 

Genotype x Treatment interaction, NS). Similarly, in the ventral striatum, total 

ERK1/2 levels did not differ between genotypes or as a function of treatment (Fig 

6.9a-b, VStr; for each ERK: main effect of Genotype, NS; Treatment, NS; 

Genotype x Treatment interaction, NS). Although P-ERK1/2 levels in the ventral 

striatum were elevated overall in KD mice (P-ERK1: main effect of Genotype, 

F(1,15) = 4.93, p < 0.05; P-ERK2: main effect of Genotype, F(1,15) = 5.16, p < 

0.05), P-ERK1/2 levels were unaffected by cocaine (for each P-ERK isofrom: main 

effect of Treatment, NS; Genotype x Treatment interaction, NS). A summary of the 

analyses is provided in Table 6.2. 
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Figure 6.9 Immunoblotting of total ERK1/2 and P-ERK1/2 (a) 20 mg/kg cocaine did 

not alter total ERK1/2 protein or its active form P-ERK1/2 in either the dorsal (DStr) 

or ventral (VStr) striatum of wild-type or mGluR5KD-D1 mice. Overall levels of P-

ERK1 and P-ERK2 showed a small but significant increase in mGluR5KD-D1 mice in 

comparison to wild-types (n = 4-5 per group). (b) Example blots are shown from 

wild-type or mGluR5KD-D1 (bold line) mice injected with vehicle (V) or 20 mg/kg 

cocaine (C).  
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6.3.3.2 STEP 

Total STEP46 protein did not differ in mice given cocaine or saline, in either the 

dorsal or ventral striatum (Fig. 6.10a-b; in each area: main effect of Genotype, NS; 

Treatment, NS; Genotype x Treatment interaction, NS). Although STEP61 protein 

was not altered in the ventral striatum of mice in either treatment condition (Fig. 

6.10a-b; main effect of Genotype, NS; Treatment, NS; Genotype x Treatment 

interaction, NS), expression of this isoform in the dorsal striatum showed a small 

but significant variation depending on the genotype and treatment condition 

(Treatment x Genotype interaction, F(1,15) = 6.81, p < 0.05; main effect of 

Genotype, F(1,15) = 3.11, p = 0.098). Subsequent comparisons revealed a trend 

for increased STEP61 expression in WT mice given cocaine, in comparison to WT 

mice injected with saline (t = -1.92, df = 8, p = 0.09). In contrast, STEP61 

expression was significantly reduced in KD mice given cocaine, in comparison to 

WT mice injected with cocaine (t = -3.38, df = 8, p = 0.01). A summary of the 

analyses is provided in Table 6.2. 
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Figure 6.10 Immunoblotting of STEP. (a) Following 20 mg/kg cocaine, STEP61 

expression tended to increase in the dorsal striatum (DStr) of WT mice, while 

STEP61 expression was significantly decreased in KD mice injected with cocaine 

compared to WT mice. There were no between group differences in expression of 

either STEP isoform in the ventral striatum (VStr). §p < 0.1 within-genotype t-test 

comparison of cocaine and vehicle, ##p < 0.01 between-genotype t-test comparison 

of cocaine (n = 4-5 per group) (b) Example blots are shown from wild-type or 

mutant (bold line) mice injected with vehicle (V) or 20 mg/kg cocaine (C).  
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6.3.3.3 P-GluR1-s845 and P-GluR1-s831 

In the dorsal striatum, P-GluR1-s845 levels were significantly increased following 

20 mg/kg cocaine (Fig. 6.11a-b, DStr; main effect of Treatment, F(1,15) = 13.19, p 

< 0.01) but this effect differed between genotypes (Treatment x Genotype 

interaction, F(1,15) = 7.77, p < 0.05). Subsequent comparisons revealed that 

cocaine significantly increased P-GluR1-s845 levels in WT mice in comparison to 

WT mice injected with vehicle (t = -4.2, df = 8, p < 0.01), but no similar change was 

found in KD mice (t-test comparison, NS). Moreover, P-GluR1-s845 levels 

significantly differed between WT and KD mice injected with cocaine (t = 2.83, df = 

8, p < 0.05). In the ventral striatum, cocaine again increased P-GluR1-s845 levels 

(Fig. 6.11a-b, VStr; main effect of Treatment, F(1,15) = 5.39, p < 0.05), although 

this effect did not differ between genotypes (Treatment x Genotype interaction, 

NS). In marked contrast, P-GluR1-s831 levels did not vary in either the ventral or 

dorsal striatum region as a function of drug treatment, nor between genotypes (in 

both regions: main effect of Treatment, Genotype and Treatment x Genotype 

interaction, NS). A summary of the analyses is provided in Table 6.2. 
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Figure 6.11 Immunoblotting of P-GluR1-s845 and P-GluR1-s831 (a) 20 mg/kg 

cocaine significantly increased levels of P-GluR1-s845 in the dorsal striatum (DStr) 

in wild-type mice, but not mutant mice. In the ventral striatum (VStr), P-GluR1-s845 

was increased by cocaine, but this effect did not differ between genotypes. Levels 

of P-GluR1-s831 did not differ following cocaine in either brain region. **p < 0.01 

within-genotype t-test comparison of vehicle and cocaine, #p < 0.05 between-

genotype t-test comparison of cocaine (n = 4-5 per group). (b) Example blots are 

shown from wild-type or mutant (bold line) mice injected with vehicle (V) or 20 

mg/kg cocaine (C).  
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Immunoblotting 

Treatment 

F(1,15) 

Genotype 

F(1,15) 

Treatment x 

Genotype 

F(1,15) 

Dorsal Striatum    

P-ERK1 2.32 0.96 0.00 

P-ERK2 0.037 0.028 0.51 

Total ERK1# 0.003 1.92 0.58 

Total ERK2# 

STEP61 

STEP46 

P-GluR1-s845 

P-GluR1-s831 

0.001 

0.142 

1.72 

13.19** 

0.43 

0.40 

3.11§ 

0.12 

5.04* 

1.31 

0.68 

6.81* 

1.79 

7.77* 

0.20 

Ventral Striatum    

P-ERK1 

P-ERK2  

Total ERK1 

Total ERK2 

STEP61 

STEP46 

P-GluR1-s845 

P-GluR1-s831 

0.004 

0.13 

0.47 

0.92 

0.046 

0.035 

5.39* 

0.36 

4.93* 

5.16* 

0.026 

0.003 

0.63 

0.12 

1.88 

0.063 

0.43 

0.13 

0.57 

0.58 

0.005 

0.079 

0.56 

0.81 

 

Table 6.2 ANOVAs for immunoblotting studies. Factors: Treatment (Cocaine, 

vehicle); Genotype (WT, KD), **p < 0.01, *p < 0.05. #For total ERK1/2 in the dorsal 

striatum, F(1,14).  
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6.4 Discussion 

 

In the present chapter, immunohistochemistry and immunoblotting techniques were 

used to explore some neurobiological effects of acute non-contingent cocaine in 

wild-type and mGluR5KD-D1 mice. The immunohistochemistry study revealed that a 

single cocaine injection was sufficient to produce a robust activation of ERK1/2 in 

the NAcc shell, with some activation also seen in the NAcc core. Moreover, at least 

in the NAcc shell, the effect of cocaine on ERK1/2 activation tended to be 

attenuated in mGluR5KD-D1 mice. In the dorsal striatum, cocaine did not reliably 

increase ERK1/2 activation in either the dorsomedial or ventrolateral regions; 

although overall levels of ERK1/2 activation in the dorsal striatum were reduced in 

mGluR5KD-D1 mice when compared to their wild-type counterparts. In contrast to 

the immunohistochemistry study, immunoblotting did not identify increased ERK1/2 

activation in either the dorsal or ventral striatum in response to a cocaine injection. 

However, immunoblotting did reveal that translation of STEP61 and levels of P-

GluR1-s845 were increased following a cocaine injection in the dorsal striatum of 

wild-type mice, but not mutant mice. In the ventral striatum, cocaine increased 

levels of P-GluR1-s845 in both genotypes to a similar extent. By contrast, cocaine 

had no effect on levels of P-GluR1-s831 in the ventral or dorsal striatum of either 

genotype. Taken together, these data suggest that regulation of basal levels of 

ERK1/2 activation in the dorsal striatum and activity of this pathway in response to 

acute cocaine challenge in the ventral striatum may involve glutamate signalling 

through mGluR5 located on D1-MSNs. In addition, mGluR5 on D1-MSNs may play 

an important role in regulating AMPA receptor trafficking and/or phosphorylation 

state of AMPA receptors in the striatum following acute cocaine experience. 

 

A general limitation of the immunohistochemistry approach is that only cells which 

show robust activation of ERK1/2 are counted and it is not possible to distinguish 

between the degree of ERK1/2 activation amongst neurons. It is possible that less 

robust ERK1/2 activation occurred in other neurons of wild-type and mGluR5KD-D1 

mice, which may still have important physiological consequences (Valjent et al., 
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2004). Oppositely, it is not known whether ERK1/2 activation observed in either 

genotype in the present study was sufficient to activate associated transcriptional 

regulators, such as ELK-1 and CREB (Konradi et al., 1994; Yang et al., 2004). In 

future studies, examining the induction of such regulators and associated 

immediate early genes (for example, c-fos) would be highly valuable to further 

understand the role of mGluR5 on D1-MSNs in gating neuronal adaptations that 

occur following exposure to psychostimulants. 

 

In the immunohistochemistry study, cocaine had no significant effect on ERK1/2 

activation in the dorsal striatum, which contrasts with other reports (most notably 

those of Valjent and colleagues; Valjent et al., 2005; Bertran-Gonzalez et al., 

2008). The lack of more robust and widespread ERK1/2 activation could reflect a 

number of factors. First, it may be that the time of sampling after the cocaine 

injection in the present study (mice were perfused immediately after the 10 min 

locomotor session) was not optimal. The time course of striatal ERK1/2 activation 

in response to cocaine has been characterised and varies between the dorsal and 

ventral striatum (Bertran-Gonzalez et al., 2008). Thus, activation of ERK1/2 was 

greatest in all striatal regions measured (dorsal striatum, NAcc core and shell) 2 

min after cocaine injection, declined rapidly from 15 min post-cocaine, but was 

prolonged in the dorsal striatum compared to the ventral striatum (Bertran-

Gonzalez et al., 2008). Although we did observe robust ERK1/2 activation in the 

ventral striatum, but not the dorsal striatum, it would still be valuable to examine 

additional time points post-cocaine injection in future studies. Second, ERK1/2 

activation was assessed only in the medial part of the striatum and it is possible 

that more robust effects of cocaine would have been recorded in more rostral 

striatal regions, since, at least in the ventral striatum, a rostro-caudal gradient for 

cocaine induced ERK1/2 activation has been described (Bertran-Gonzalez et al., 

2008). Third, mice experienced only one vehicle sham-injection prior to the test day 

and it may be that stress arising from the injection procedure contributed to 

ERK1/2 activation, which masked the effects of cocaine (particularly in the dorsal 

striatum where basal levels of ERK1/2 activation were greater than that seen in the 
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ventral striatum). Stress has been noted to activate ERK1/2 in many brain regions, 

including the striatum (Shen et al., 2004) and it is notable that in a study of Bertran-

Gonzalez and colleagues (2008), mice received vehicle injections in each of the 

three, 2 hour, once-daily habituation sessions that occurred before the actual 

experiment in which the effect of cocaine on striatal P-ERK1/2 was assessed. 

 

A final procedural difference that may contribute to the differences in ERK1/2 

activation observed in our current report with those reported by Valjent and 

colleagues was the use of food restriction in our current protocol, while mice in 

studies reported by Valjent and colleagues were provided with ad libitum access to 

food (Valjent et al., 2005; Bertran-Gonzalez et al., 2008). Numerous studies have 

identified wide ranging influences of food restriction on behavioural responses to 

cocaine and other addictive substances. For example, in rats, food restriction 

increased sensitivity to the locomotor-stimulating effects of cocaine (Cabeza de 

Vaca and Carr, 1998; Stamp et al., 2008), amphetamine (Campbell and Fibiger, 

1971; Deroche et al., 1993; Stuber et al., 2002) and morphine (Deroche et al., 

1993) and increased the expression of CPP mediated by cocaine (Bell et al., 1997) 

and amphetamine (Stuber et al., 2002). At the neurobiological level, food restriction 

in drug naïve rats produced a small but significant enhancement of expression of 

35-37 KDa isoforms of Delta-FosB in the NAcc, but not the CPu (Stamp et al., 

2008). However, dopamine release in the NAcc following a single amphetamine 

injection was comparable between ad libitum fed and food deprived rats (Stuber et 

al., 2002), suggesting that alterations in behavioural responses to 

psychostimulants mediated by food deprivation are unlikely to be determined by 

the level of extracellular dopamine in the striatum. More convincingly, a clear role 

for endogenous corticosterone secretion in modulating responses to addictive 

drugs by food restriction has been demonstrated (Deroche et al., 1993; Stamp et 

al., 2008). Thus, one possibility is that hyper secretion of corticosterone as a result 

of food restriction in the present studies may have masked some of the effects of 

cocaine on ERK1/2 activation. This idea would require further study, but evidence 

for a role of corticosterone in regulating ERK1/2 activation in limbic regions and the 
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dorsal striatum has been provided (Gourley et al., 2008) and food restriction results 

in enhanced sensitivity to ERK1/2 activation under basal conditions in rats (Pan et 

al., 2006). 

 

There is much evidence that activation of ERK1/2 in response to psychostimulants 

occurs almost exclusively in MSNs of the direct striatonigral pathway although, 

under certain behavioural (e.g. home vs. novel environment) or genetic (e.g. ERK1 

knock-out mice) manipulations, some activation of ERK1/2 in response to 

psychostimulants in the indirect striatopallidal pathway has been observed (Valjent 

et al., 2000; Mazzucchelli et al., 2002; Ferguson and Robinson, 2004; Valjent et al., 

2005; Ferguson et al., 2006; Bertran-Gonzalez et al., 2008). In the present study, 

ERK1/2 activation did occur almost exclusively in MSNs (identified with DARPP-

32), and it would have been valuable to formally distinguish between ERK1/2 

activation in MSNs of the striatonigral or striatopallidal pathway. Striatonigral 

neurons are typically characterised by enriched expression of substance P and 

dynorphin, while striatopallidal neurons contain enkephalin (Chesselet and 

Graybiel, 1983; Beckstead and Kersey, 1985). In pilot studies (not reported here), 

antibodies raised against prepro-dynorphin (guinea pig polyclonal, GP10110; 

Neuromics Inc, Minneapolis, Minnesota, USA) and substance-P (guinea pig 

polyclonal, ab10353, lot 866742; Abcam) showed little cell-type specificity, despite 

some reports to the contrary (Martella et al., 2009). To date, it would appear that 

the most reliable segregator of MSNs by immunohistochemistry is provided by 

antibodies raised against enkephalin (e.g. Novak et al., 2010). Unfortunately, anti-

enkephalin antibodies (produced in rabbit) were not compatible with the 

combination of antibodies used in the present report to identify P-ERK1/2 

(produced in rabbit) and DARPP-32 (produced in mouse). Although it is tempting to 

propose that loss of mGluR5 on D1-MSNs was concomitant with an attenuation of 

ERK1/2 activation specifically in D1-MSNs in response to cocaine, it will be of 

critical importance for any future studies to determine whether cocaine induced 

ERK1/2 activation in wild-type and mGluR5KD-D1 mice occurred in the same 

population of MSNs. 
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While the immunohistochemistry study identified increased ERK1/2 activation in 

the ventral striatum following cocaine, this finding was not replicated in the 

immunoblotting studies. These findings are perhaps disconcerting, but not entirely 

unexpected; others have reported increased ERK1/2 activation in the ventral 

striatum following cocaine when measured with immunohistochemistry but not 

immunoblotting (Marin et al., 2009). The total number of P-ERK1/2 +ve cells in the 

immunohistochemistry study only ever represented a small minority of total cells in 

each region of interest. In the immunoblotting experiments, homogenate samples 

incorporated rostral, medial and caudal striatum and could not distinguish between 

sub-regions in the ventral (that is, NAcc core and shell) or dorsal striatum (e.g. 

dorsomedial and ventrolateral striatum). Moreover, punches of the ventral striatum 

likely incorporated dorsal parts of the striatum and some part of the ventral 

pallidum. Thus, it is likely that small changes in ERK1/2 activation were obscured 

in the immunoblotting studies by unaltered or even decreased ERK1/2 

phosphorylation levels in the majority of neurons within the homogenate sample. 

Even so, most reports do identify robust increases in P-ERK1/2 with 

immunoblotting following cocaine, suggesting that there is some room for 

optimising the experimental protocol used in the present report with respect to the 

time of sampling, habituation procedures and the use of food restriction (as 

discussed above). 

 

If future studies confirm disrupted ERK1/2 signalling in the striatum of mGluR5KD-D1 

mice, then what might be the implications for neuronal function and behavioural 

responses to cocaine? First, ERK1/2 is closely involved in synaptic plasticity 

(reviewed in Thomas and Huganir, 2004; Thomas et al., 2008). For example, in 

mice lacking the ERK1 isoform, striatal LTP induced by cortical stimulation is 

dramatically enhanced (Mazzucchelli et al., 2002). The ERK1/2 pathway has also 

been directed linked to alterations in AMPA receptor surface expression (Boudreau 

et al., 2007; Zhang et al., 2008) and regulation of AMPA by ERK1/2 may be critical 

for the induction of LTP at excitatory synapses (Patterson et al., 2010). Thus, it 
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seems reasonable to propose that plasticity at excitatory corticostriatal synapses 

may be disrupted in mGluR5KD-D1 mice, in part, because of impaired activation of 

ERK1/2. Second, given the proposed role of corticostriatal plasticity in certain 

addiction-related behaviours, including drug seeking under the control of drug-

associated cues (Kalivas, 2009; Wolf and Ferrario, 2010), it would also be 

reasonable to propose that such behaviours could also be impaired in mGluR5KD-D1 

mice. Indeed, recent data has provided direct support for this proposal, since 

mGluR5KD-D1 mice show deficits in cue-induced reinstatement of cocaine seeking 

(Novak et al., 2010). Whether corticostriatal plasticity is impaired in mGluR5KD-D1 

and whether this is linked to disruption in ERK1/2 signalling requires further 

empirical study, but there is considerable evidence to implicate ERK1/2 as a 

central signalling pathway involved in the learning and expression of control over 

behaviours by environmental stimuli associated with drug reinforcement (Lu et al., 

2005; Valjent et al., 2006). 

 

The immunoblotting studies reported here also examined the role of mGluR5 on 

D1R expressing neurons in regulating STEP, a family of proteins expressed in 

dopaminoceptive neurons of the CNS and enriched in the basal ganglia and 

related structures (Lombroso et al., 1991; Lombroso et al., 1993). STEP family 

members are produced by alternative splicing with variants including STEP61, a 

membrane associated protein, and STEP46, a cytosolic protein (Sharma et al., 

1995; Bult et al., 1996; Bult et al., 1997). The role of STEP proteins in synaptic 

plasticity has been reviewed by others (Braithwaite et al., 2006a), but notably, at 

least in the hippocampus, stimulation of group I mGluRs causes rapid translation of 

STEP61 protein, which is necessary for the endocytosis of AMPA receptors (Zhang 

et al., 2008). Moreover, data would suggest that STEP61 translation in the 

hippocampus requires mGluR5-, not mGluR1-, mediated ERK1/2 activation (Zhang 

et al., 2008). This report is particularly interesting with respect to findings of the 

current chapter, because an increase in total STEP61 protein was found in the 

dorsal striatum of wild-type mice injected with cocaine, but not mGluR5KD-D1 mice. 

If STEP61 translation promotes AMPAR receptor internalisation in the striatum, as 
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has been reported in the hippocampus (Zhang et al., 2008), it would be exciting to 

propose that AMPA receptor trafficking in MSNs in response to acute cocaine 

challenge necessitates translation of STEP61 following stimulation of mGluR5 on 

D1-MSNs. However, the increase in STEP61 protein levels following cocaine in 

wild-type mice was small and further studies would be required to explore whether 

AMPA receptor trafficking was disrupted in mGluR5KD-D1 mice because of 

alterations in STEP translation. 

 

At least two further functions of STEP in regulating neuronal activity warrant further 

investigation in mGluR5KD-D1 mice. First, STEP associates with the NMDA complex 

in postsynaptic terminals, constitutively inhibits NMDA channel function (Oyama et 

al., 1995; Pelkey et al., 2002) and can regulate LTP, in part, through modulation of 

NMDA trafficking (Snyder et al., 2005; Braithwaite et al., 2006b). Thus, it would be 

of interest to explore the extent to which NMDA channel function is altered, if at all, 

in mGluR5KD-D1 mice. Second, through direct protein-protein interactions, active 

(dephosphorylated) STEP can inhibit the duration of ERK1/2 activation by 

dephosphorylating the tyrosine residues in the ERK1/2 activation loop (Pulido et 

al., 1998; Paul et al., 2000; Paul et al., 2003). STEP activation is under the 

opposing control from dopamine and glutamate signalling in the striatum. Thus, in 

MSNs, dopamine signalling through D1 receptors and activation of cAMP-

dependent PKA inactivates STEP by phosphorylation and thus prevents STEP 

from dephosphorylating ERK (Pulido et al., 1998; Paul et al., 2000). The 

maintenance of inactive (phosphorylated) STEP by dopamine likely involves a PKA 

mediated phosphorylation of DARPP-32 at Thr34 and subsequent inhibition of PP-

1, which would normally serve to activate STEP (Svenningsson et al., 2004; Valjent 

et al., 2005). Oppositely, glutamate mediated activation of NMDA receptors leads 

to activation of STEP, by dephosphorylation, which in turn limits the duration of 

ERK1/2 activation (Paul et al., 2003). Since the present immunohistochemistry 

studies suggest that activation of ERK1/2 in response to cocaine is attenuated in 

mutant mice, it would be of interest to further explore the contribution of STEP to 

this finding; the hypothesis being that reduced ERK1/2 activation could be due to 
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increased levels of active (dephosphorylated) STEP in mGluR5KD-D1 mice, possibly 

arising from loss of PKA-mediated inactivation of STEP. On measuring the 

phosphorylation state of STEP, it is noteworthy that others have reported STEP 

phosphorylation to be observed by an increase in the apparent molecular weight of 

the 46KDa STEP isoform (Valjent et al., 2005; Sun et al., 2007). No such shift in 

STEP46 was found in the present immunoblotting studies, suggesting that 

optimisation of the immunoblotting protocol (with respect to the primary antibody, 

gel concentration and electrophoresis conditions) will be required to fully 

understand any changes in STEP activity in the striatum of mGluR5KD-D1 mice. 

 

Phosphorylation of the GluR1 subunit of AMPA at Ser845 was increased in the 

dorsal striatum of wild-type mice following cocaine but, remarkably, no such 

change was found in mGluR5KD-D1 mice. Phosphorylation of GluR1-s845 by 

cocaine necessitates activation of dopamine D1R/cAMP-dependent PKA (Snyder 

et al., 2000; Valjent et al., 2005) and GluR1-s845 phosphorylation is often used as 

a surrogate measure for PKA activity. That levels of P-GluR1-s845 were not 

increased by cocaine in mGluR5KD-D1 mice, at least in the dorsal striatum, provides 

critical support for the proposal that ERK1/2 signalling, and indeed regulation of 

DARPP-32 and STEP activity, could well be disrupted in mGluR5KD-D1 mice due to 

loss of PKA activity. The GluR1-Ser845 site is also functionally important, since its 

phosphorylation results in enhanced current of GluR1 containing AMPA receptors 

and thus promotes increased neuronal activity (Banke et al., 2000). In the 

hippocampus, phosphorylation of GluR1-s845 is modulated during LTP and LTD 

and may affect membrane insertion of GluR1-containing AMPA receptors (Lissin et 

al., 1999; Lee et al., 2003). Moreover, mice with point-mutations of GluR1-s845 

show impaired memory deficits in spatial learning tasks (Lee et al., 2003). By 

analogy, it is tempting to propose that impaired corticostriatal plasticity and 

associated learning impairments in mGluR5KD-D1 may be due, in part, to disrupted 

PKA activation and regulation of GluR1-s845 phosphorylation. 
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An important limitation of the immunoblotting studies is that levels of 

phosphorylated protein (e.g. P-GluR1-s845) were not corrected for levels of total 

protein (i.e. total GluR1). It is therefore possible that changes in P-GluR1-s845 

simply reflected a change in total GluR1 protein. Arguing against this possibility is 

that P-GluR1-s831 levels did not change following cocaine, which would have been 

expected had total GluR1 protein been altered. It is noteworthy that others have 

also reported no change in P-GluR1-s831 protein, which necessitates activation of 

PKC and CAMKII, in the striatum of cocaine treated animals (Roche et al., 1996; 

Mammen et al., 1997; Snyder et al., 2000). Nevertheless, cocaine is well known to 

modulate cell surface expression of AMPA receptor subunits in many brain regions 

(reviewed in Wolf and Ferrario, 2010)  (but see Lu et al., 2002) and it would be 

imperative that any future studies applied this control measure. However, even if 

phosphorylated proteins had been corrected against total protein, it must be 

recognized that AMPA receptor subunits can rapidly cycle between intracellular 

pools and the cell surface (Shepherd and Huganir, 2007) and even total protein 

levels may provide a poor control measure. Thus, under ideal conditions, 

phosphorylated and total protein levels in these distinct cellular compartments 

would be analysed separately by the use of cross-linking (e.g. Boudreau and Wolf, 

2005) or subcellular fractionation (e.g. Ghasemzadeh et al., 2009a) techniques. 

 

In summary, the present data suggest that neuroplastic changes triggered by acute 

non-contingent cocaine experience, including ERK activation and AMPA receptor 

trafficking and phosphorylation state, may be disrupted in mice lacking mGluR5 on 

D1-MSNs. Whether disruption of these neuroplastic events reflects the necessity 

for glutamate signalling through mGluR5 on D1-MSNs per se, interactions between 

mGluR5 and NMDARs or D1Rs, or generally disrupted dopaminergic signalling in 

mGluR5KD-D1 mice remains to be determined. This question will be touched upon 

again in the general discussion, but it is interesting to note that mGluR5 KO mice 

show a normal increase in extracellular dopamine in the accumbens following 

acute cocaine challenge (Chiamulera et al., 2001). Many further studies are 

required to formally confirm or disprove the present findings and suggestions for 
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how to optimise such studies have been provided. The early neurobiological effects 

of cocaine assessed in the present chapter can have important long term 

consequences for neuronal function, including altered strength of corticostriatal 

synapses (Thomas et al., 2001b; Borgland et al., 2004) and changes in dendritic 

morphology (Robinson and Kolb, 2004; Crombag et al., 2005; Ren et al., 2010). 

Thus, given the present findings, it will also be valuable to assess 

electrophysiological and morphological characteristics of striatal MSNs in 

mGluR5KD-D1 mice both following acute and repeated cocaine exposure and 

following a period of cocaine withdrawal, ideally from response-contingent (i.e. self-

administration) cocaine experience.  
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7 General discussion 

 

7.1 Review of general aims 

 

The ability to learn about and subsequently use environmental stimuli associated 

with reward experience to guide our behaviour has clear adaptive value. Addictive 

drugs are proposed to closely interact with neural mechanisms of learning and 

memory, enabling environmental stimuli associated with drug experience to 

promote drug-seeking, drug-taking and to trigger relapse (Stewart et al., 1984; 

Robinson and Berridge, 1993; Everitt et al., 2001; Kelley, 2004; Hyman et al., 

2006). Uncovering the neural mechanisms of reward-related learning may 

therefore provide valuable insight into the basis of clinical disorders like drug 

addiction. The group I metabotropic glutamate receptor, mGluR5, is particularly 

interesting in this respect. It is densely located within brain regions that contribute 

to reward-related learning (Shigemoto et al., 1993; Romano et al., 1995; Tallaksen-

Greene et al., 1998) and electrophysiology and biochemistry studies point to 

mGluR5 as a key regulator of synaptic plasticity (e.g. Mao et al., 2005; Bellone et 

al., 2008; Anwyl, 2009), considered as the cellular correlate of learning and 

memory. Using a novel mouse line in which mGluR5 is selectively knocked-down 

on cells that express the dopamine D1R (Novak et al., 2010), the present thesis 

aimed to further understand the role of mGluR5 located on dopaminoceptive 

neurons in Pavlovian incentive learning processes for a natural reward and in 

some behavioural and neurobiological effects of one addictive drug, cocaine. 
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7.2 Summary of key findings 

 

A summary of the key findings of this thesis is provided in Table 7.1. Before 

undertaking more complex behavioural assessments, it first was necessary to 

understand the basic phenotype of mGluR5KD-D1 mice (Chapter 2). On casual 

observation, mGluR5KD-D1 mice were indistinguishable from their wild-type 

counterparts, but the experiments of Chapter 2 identified two interesting traits in 

this novel mouse line. First, mGluR5KD-D1 mice displayed a reduced anxiety-like 

phenotype in tests of unconditioned anxiety-related behaviours, although this effect 

was not particularly robust across the three different tests employed. Second, in 

comparison to their wild-type counterparts, mutant mice showed a clear reduction 

in exploratory locomotor activity when placed into a novel inescapable 

environment. However, after a period of habituation, basal locomotor activity did 

not differ between genotypes. 

 

Studies on Pavlovian incentive learning in mGluR5KD-D1 mice (Chapter 3) identified 

mGluR5 on dopaminoceptive neurons as critically important for incentive learning 

that enables an environmental stimulus associated with reward to became 

attractive and elicit approach toward it (sign-tracking) and to support the learning of 

a new instrumental response (CRf). It is also noteworthy that a psychostimulant 

failed to facilitate responding for CRf in mGluR5KD-D1 mice; a phenomenon that is 

critically dependent upon dopamine and glutamate signalling within the ventral 

striatum (Taylor and Robbins, 1986; Wolterink et al., 1993; Burns et al., 1994; 

Parkinson et al., 1999). In contrast to these select deficits in Pavlovian incentive 

learning processes, mGluR5 on dopaminoceptive neurons appeared to play no role 

in learning about the predictive relationship between the reward-paired stimulus 

and the reward itself (discriminated approach), the acquisition of a simple food-

reinforced instrumental response, or incentive learning that allows the food-paired 

CS to motivate ongoing, goal-directed actions (PIT). Studies using wild-type mice 

injected with the selective mGluR5 antagonist, MTEP, (Chapter 4) indicated that 

mGluR5 was particularly important for the acquisition of an incentive Pavlovian 
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association necessary to support CRf, rather than the expression of the acquired 

incentive association. 

 

In Chapter 5, I examined the possibility that some behavioural effects of cocaine, 

which involve neural components implicated in Pavlovian incentive learning 

processes, might also be disrupted in mGluR5KD-D1 mice. Mutant mice 

demonstrated normal performance in a test of learning about cocaine and food 

conditioned reward (i.e. CPP). The psychological processes involved in CPP are 

not fully understood (see discussion of Chapter 5), but data from this Chapter 

suggested that learning and/or performance in this task does not require Pavlovian 

incentive learning processes that are necessary for sign-tracking and conditioned-

reinforcement responses. In a series of locomotor studies reported in Chapter 5, 

the acute psychomotor activating effects of cocaine were found to be attenuated in 

mGluR5KD-D1 mice, in comparison to wild-type animals. Notably, mGluR5KD-D1 mice 

did develop a sensitised locomotor response to cocaine, which persisted for at 

least 2 months after its induction. However, it is important to note that the rate of 

sensitisation was slightly reduced in mutant mice (although not significant) and the 

possibility remains that more robust differences in sensitisation between genotypes 

may have been uncovered had sensitisation been performed in animals without 

prior cocaine experience and/or by the inclusion of other measures of activity, 

including the development of stereotypies. 

 

Finally, in Chapter 6, a series of experiments were undertaken to explore some 

neurobiological effects of acute cocaine exposure in mGluR5KD-D1 mice. The 

purpose of these experiments was twofold. First, to understand the role of mGluR5 

on dopaminoceptive neurons in neuroplastic changes that may contribute to long 

term behavioural effects of cocaine and second, to highlight any deficits in 

neuroplasticity that could have contributed to incentive learning deficits observed in 

mGluR5KD-D1 mice. Notwithstanding the technical limitations raised in the 

discussion of Chapter 6, it appeared that activation of the ERK1/2 intracellular 

signalling cascade was disrupted in the ventral striatum of mGluR5KD-D1 mice 
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following cocaine (immunohistochemistry studies), and some evidence pointed to 

disruption of AMPA receptor trafficking and/or regulation of its phosphorylation by 

PKA at the GluR1-s845 site, at least in the dorsal striatum (immunoblotting 

studies).  
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Test KD WT 

Chapter 2   

Basic observations (body weight, reflexive 
responses) 

  

Sucrose consumption   

Locomotor activity in a novel environment   

Time in middle zone of open-field   

Chapter 3   

Discriminated approach   

Sign-tracking   

Conditioned reinforcement    

Cocaine facilitation of CRf   

Instrumental responding for food   

Pavlovian instrumental-transfer   

Chapter 4   

MTEP on the acquisition of incentive learning   

MTEP on the expression of incentive learning   

Chapter 5   

Acute cocaine locomotor response   

Cocaine sensitisation   / ?  

Conditioned activity   

Is cocaine sensitisation persistent?   

Food CPP   

Cocaine CPP   

Chapter 6 (In response to acute cocaine...)   

ERK1/2 activation in the ventral striatum   

STEP61 translation in the dorsal striatum   

P-GluR1-s845 in the dorsal striatum   

 

Table 7.1 Summary of key findings from each chapter. Normal performance () 

and altered performance () in mGluR5KD-D1 mice (KD) relative to wild-type (WT) 

littermates is indicated. Studies in Chapter 4 were conducted only in wild-type 

mice, and comparisons here are made with wild-type mice treated with vehicle. For 

the cocaine sensitisation study, a question mark is given; see comment in main 

text above. 
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7.3 Is mGluR5 on D1R expressing neurons involved in specific sensory or 

general preparatory conditioning processes?  

 

In the introduction of this thesis I introduced two accounts of motivation; a 

„Konorskian‟ model (Konorski, 1967; Dickinson and Balleine, 2002; Balleine, 2005) 

and an „incentive salience‟ model (Robinson and Berridge, 1993; Berridge, 1996; 

Berridge and Robinson, 1998; Berridge, 2004), both of which described how 

environmental stimuli associated with reward experience could come to influence 

behaviours through Pavlovian learning processes. According to the incentive 

salience model, mGluR5KD-D1 mice show impaired incentive salience attribution 

necessary for the acquisition of sign-tracking and CRf CRs, but a valuable question 

to consider is whether impaired learning in mGluR5KD-D1 mice relates more to 

specific consummatory or general motivational conditioning processes, as 

described in the Konorskian model. 

 

In answering this question, it is first necessary to consider whether the three tests 

of Pavlovian incentive learning represent specific consummatory or general 

motivational conditioning processes. Conditioned reinforcement may be mediated 

by activation of both general motivational or specific outcome representations, 

which are proposed to operate in concert under normal conditions (Burke et al., 

2007, 2008). Sign-tracking responses often acquire a topography that resembles 

that of the UR directed at the US (Wolin, 1968; Jenkins and Moore, 1973), 

indicating that sign-tracking is partly a reward-specific mechanism. The 

conditioning parameters used for PIT in the present thesis likely favoured the 

formation of a more general motivational CS-US association due, in part, to the 

longer duration CS (Konorski, 1967; Dickinson and Balleine, 1994; Holland and 

Gallagher, 2003; Crombag et al., 2008a), but also because only one CS-US 

outcome was trained. Taken together, it would appear that mGluR5KD-D1 mice fail to 

acquire more specific consummatory associations (Fig. 7.1). As such, it may be 

predicted that other Pavlovian learning processes that involve sensory specific 
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learning, such as outcome-selective PIT, would also be disrupted in mGluR5KD-D1 

mice. 
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Figure 7.1. mGluR5KD-D1 mice show impaired specific consummatory conditioning. 

Both sign-tracking and CRf processes employ a short duration CS (10 sec CS) and 

may require the formation of specific consummatory associations to activate the 

appetitive system (Ap) through increased affect (red arrows indicate impairment in 

mGluR5KD-D1). In contrast, Pavlovian-instrumental transfer was normal in 

mGluR5KD-D1 mice, which employs a long duration CS (2 min CS) and depends 

upon the formation of more general preparatory CS-US associations that give rise 

to arousal. A connection between sensory specific (Se) and motivational (M) 

features is thought not functional for the role of reward-related cues on activating 

instrumental performance (adapted from Balleine, 2005).  
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7.4 Does Pavlovian incentive learning involve mGluR5-mediated regulation of 

plasticity in D1-MNSs? 

 

Deficits in the acquisition of sign-tracking and CRf in mGluR5KD-D1 mice and a 

failure of cocaine to facilitate CRf in mutant animals closely echo results from 

studies in rats that received selective excitotoxic lesions of the ventral striatum, or 

in which glutamatergic signalling in this region was blocked (Burns et al., 1994; 

Parkinson et al., 1999; Parkinson et al., 2000b; Di Ciano et al., 2001; Di Ciano and 

Everitt, 2001; Cardinal et al., 2002b; Ito et al., 2004; Dalley et al., 2005; Backstrom 

and Hyytia, 2007). Such studies (reviewed more extensively in the general 

introduction), have led a number of reviewers to propose that neuroplastic changes 

on MSNs in the ventral striatum during reward-related learning may be key for 

determining how these neurons subsequently respond to salient events (e.g. 

reward-associated CSs), and that glutamatergic mechanisms, acting in partnership 

with dopamine, may be critical for initiating and maintaining these neuroplastic 

changes (Kelley et al., 2003; Svenningsson et al., 2004; Dalley et al., 2005; Valjent 

et al., 2005; Meredith et al., 2008; Wolf and Ferrario, 2010). Findings in the present 

thesis suggest that mGluR5 on D1-MSNs in the ventral striatum may play a critical 

role in controlling neuroplastic changes that are necessary for supporting the 

acquisition of specific Pavlovian incentive learning processes. A key question is 

through which cellular mechanisms does mGluR5 exert such control? 

 

In the general introduction (Chapter 1), studies were highlighted that identified an 

important role of group I mGluRs in mediating LTD at excitatory synapses in the 

dorsal and ventral striatum, which likely involves a retrograde-endocannabinoid 

signalling mechanism (Robbe et al., 2002; Kreitzer and Malenka, 2007; 

Uchigashima et al., 2007; Shen et al., 2008). It is possible that this „post-synaptic 

induction/pre-synaptic expression‟ mechanism of mGluR-LTD could be disrupted in 

mGluR5KD-D1 mice and could account for observed incentive learning deficits. 

There is also evidence that mGluR5 can contribute to corticostriatal LTP (Gubellini 

et al., 2003; Schotanus and Chergui, 2008) and „post-synaptic induction/post-
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synaptic expression‟ mechanisms of neuroplasticity could also account for 

incentive learning deficits in mGluR5KD-D1 mice. Two such mechanisms, although 

not mutually exclusive, can be proposed; one involving mGluR5-mediated 

regulation of AMPA receptor activity and a second involving regulation of the 

ERK1/2 signalling cascade. These intracellular interactions are illustrated in Figure 

7.2. 

 

Stimulation of group I mGluRs, including mGluR5, can produce changes in the 

post-synaptic expression of AMPA receptors (Snyder et al., 2001; Bellone and 

Luscher, 2005; Mameli et al., 2007; Jo et al., 2008; Waung et al., 2008; Zhang et 

al., 2008; Kelly et al., 2009) and, in the striatum, activation of mGluR5 is required 

for phosphorylation of striatal GluR1-Ser831 and -Ser845 (Ahn and Choe, 2009), 

and GluR2-Ser880 residues (Ahn and Choe, 2010). Such changes in AMPA 

receptor trafficking and/or activity may be critical for experience-dependent 

alterations in synaptic plasticity and which subsequently determine the sensitivity to 

control over appetitive behaviours by reward-paired CSs (Di Ciano et al., 2001; 

Mead and Stephens, 2003b, a; Conrad et al., 2008; Crombag et al., 2008b; 

Crombag et al., 2008c). Whether mGluR5 is important for regulating trafficking 

and/or phosphorylation of AMPA receptors during Pavlovian incentive learning 

processes requires further empirical study, but some support for the proposal that 

this processes is disrupted in mGluR5KD-D1 mice is offered by the immunoblotting 

experiments reported in Chapter 6 (see Table 7.1 for summary). 

 

Group I mGluRs can positively link to the extracellular signal-regulated kinase 

(ERK) cascade (Peavy and Conn, 1998; Thandi et al., 2002), which has numerous 

functions in experience-dependent plasticity (Adams and Sweatt, 2002; Boudreau 

et al., 2007; Patterson et al., 2010; Shiflett and Balleine, 2011). Activation of 

ERK1/2 in the striatum requires co-stimulation of D1R and NMDARs (Valjent et al., 

2005) and it is noteworthy that both D1R and NMDA receptors in the accumbens 

were identified as critical for the early consolidation of appetitive Pavlovian 

memories (Dalley et al., 2005). These reports are particularly relevant in the 
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context of this thesis, given the close interactions between striatal mGluR5 and 

D1Rs (involving an enhanced cAMP response; Paolillo et al., 1998; Voulalas et al., 

2005; Schotanus and Chergui, 2008), and striatal mGluR5 and NMDA receptors 

(Pisani et al., 2001; Mao and Wang, 2002; Yang et al., 2004; Choe et al., 2006). 

Regarding the mGluR5-NMDA interaction, it is likely that this involves a PKC 

dependent mechanism (Kelso et al., 1992; Fitzjohn et al., 1996; Doherty et al., 

1997; Pisani et al., 1997; Awad et al., 2000; Skeberdis et al., 2001) in which PKC 

phosphorylates the ion channel associated with NMDA receptors that increases 

NMDA sensitivity and activity leading to enhanced Ca2+ influx  (Chen and Huang, 

1992; Lan et al., 2001; Skeberdis et al., 2001). Some reports have also proposed 

that stimulation of mGluR5 alone is sufficient for ERK1/2 activation in striatal 

neurons (Choe et al., 2002; Mao et al., 2005). Thus, whether through co-operative 

interactions between mGluR5 and D1Rs and/or NMDARs, or as a direct 

consequence of mGuR5 stimulation, activation of ERK1/2 involving mGluR5 on 

D1-MSNs in the ventral striatum may be a key component necessary for the 

formation of Pavlovian incentive associations. Some support for the proposal that 

activation of ERK1/2 is disrupted in mGluR5KD-D1 mice is offered from 

immunohistochemistry studies of Chapter 6 (see Table 7.1 for summary).  
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Figure 7.2 Post-synaptic induction/post-synaptic expression mechanisms of mGluR5 

signalling in striatal neurons. In a simplified and largely hypothetical post-synaptic D1-MSN 

synapse, stimulation of perisynaptic mGluR5 may result in activation of PKC and PKA, the 

latter involving endogenous release of calcium. Activity of a number of substrates is 

dependent upon phosphorylation regulated by PKA (red dots; note STEP46 and ERK are 

not direct substrates of PKA, but lie downstream of PKA phosphorylation of DARPP-32 at 

Thr34) and PKC (green dots). Phosphorylation of AMPA receptor subunits can lead to 

alterations in activity and/or trafficking. Activation of ERK by phosphorylation may result in 

the rapid synthesis of STEP61 protein, at least in the hippocampus, which promotes 

internalisation of AMPA receptors. Coupling between mGluR5 and the ERK cascade is 

also achieved by the scaffolding protein Homer1b/c. (image based on findings reported by; 

Snyder et al., 2001; Mao et al., 2005; Ossowska, 2005; Valjent et al., 2005; Zhang et al., 

2008; Ahn and Choe, 2009, 2010). 
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7.5 Does Pavlovian incentive learning require a balance of output between 

direct and indirect pathways? 

 

In the classical model of basal ganglia function, the D1R-expressing „direct‟ 

pathway and D2R-expressing „indirect‟ pathway act in opposition to balance 

behavioural output (Albin et al., 1989; Gerfen, 1992). Thus, activation of the direct 

pathway increases locomotor activity and activation of the indirect pathway exerts 

a tonic inhibitory tone. A disruption in the balance of activity in these two pathways 

is a central feature of motor disturbances in Parkinson‟s disease and in 

Parkinsonian models, an absence of mGluR-LTD on the D2R indirect pathway has 

been reported, which appears to shift the balance of plasticity in this pathway 

toward LTP (Kreitzer and Malenka, 2007; Shen et al., 2008). The resulting 

enhancement of activity of the indirect pathway is proposed to give rise to 

excessive inhibition of movement (Kreitzer and Malenka, 2007; Shen et al., 2008; 

Luscher and Huber, 2010). Dysregulation in the balance of activity between D1- 

and D2-MSNs has also been proposed to contribute to maladaptive learning 

processes in addictions (Shen et al., 2008). Thus, one account to explain findings 

in the present thesis is that loss of mGluR5 on D1R-expressing neurons of the 

direct pathway results in a dysregulation in the balance of output from the striatum, 

which clearly would stem from a failure to appropriately integrate dopamine and 

glutamate signalling as discussed in section 7.4. 

 

Some recent evidence provides support for this proposal. Bateup and colleagues 

(2010) generated mice in which DARPP-32, a central signalling protein, was 

selectively knocked out in D1R or D2R expressing neurons. In mice lacking 

DARPP-32 in D1R striatonigral neurons, spontaneous locomotor activity was 

reduced in comparison to controls and so too were the acute psychomotor 

activating effects of cocaine (Bateup et al., 2010). In mice lacking DARPP-32 in 

D2R striatopallidal neurons, spontaneous locomotor activity and the psychomotor 

activating effects of cocaine were both increased (Bateup et al., 2010). Durieux 

and colleagues (2009) reported that selective ablation of D2R MSNs in the entire 
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striatum resulted in hyperlocomotion, while ablation of D2R MSNs solely in the 

ventral striatum increased amphetamine CPP. Similarly, Lobo and colleagues 

(Lobo et al., 2010) reported that optogenetic stimulation of D1+ve neurons in the 

ventral striatum enhanced cocaine CPP, while stimulation of D2+ve neurons 

inhibited this measure of cocaine conditioned reward. Taken together, it seems 

plausible that disrupted activity in neurons of the D1R direct pathway of mGluR5KD-

D1 mice could account for a reduction in both spontaneous locomotor activity and 

the psychomotor activating effects of cocaine. Moreover, it is tempting to propose 

that the appropriate integration of dopaminergic and glutamatergic signals in the 

direct pathway, involving mGluR5, and the resultant balance of activity between 

direct and indirect MSNs, may be a critical for appropriately responding to reward-

associated CSs (Fig. 7.2). Notably, this model would predict a reduction of activity 

in the D1R direct pathway of mGluR5KD-D1 mice (either dominant LTD and/or a loss 

of LTP), but further studies would clearly be required to explore this hypothesis. 
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Figure 7.3 Disruption of output from the basal ganglia accounts for features of 

mGluR5KD-D1 mice. (a) When the function of GABAergic D1-MSNs (green) of the 

direct striatonigral pathway is disrupted (dotted line), spontaneous motor output 

diminishes and so too do the effects of cocaine on locomotor activity (Bateup et al., 

2010). Such behaviours are also found in mGluR5KD-D1 mice, and thus loss of 

mGluR5 on D1-MSNs may well result in a disruption of D1-MSN function. Further, 

loss of mGluR5 from D1-MSNs in the ventral striatum may account for deficits 

observed in specific Pavlovian incentive learning processes. (b) When function of 

D2-MSNs (red) of the indirect striatopallidal pathway is disrupted, spontaneous 

motor output increases, and so too do the psychomotor activating effects of 

cocaine (Durieux et al., 2009; Bateup et al., 2010).  
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7.6 Implications for drug addiction 

 

Early neuroplastic changes in response to addictive drugs, while in no way 

constituting the complete picture of addiction, may represent critical first steps in 

the remodelling of reward-related brain areas that underlie the development of 

more persistent addiction-related behaviours (Nestler, 2001; Valjent et al., 2001; 

Hyman et al., 2006; Kauer and Malenka, 2007). In this regard, mGluR5 on D1-

MSNs may play a role, since activation of ERK1/2 and activity and/or trafficking of 

AMPA receptors appeared disrupted in striatal regions of mGluR5KD-D1 mice 

following a single cocaine challenge (Chapter 6). It is beyond the scope of this 

thesis to cover the literature on the role of ERK1/2 signalling and AMPA receptor 

function in addiction-related behaviours but, needless to say, both components are 

thought to play central roles in enabling environmental stimuli associated with drug 

experience to exert influence over addiction-related behaviours (Wolf, 1998; 

Thomas and Huganir, 2004; Wolf et al., 2004; Lu et al., 2006; Wolf and Ferrario, 

2010). 

 

Behavioural sensitisation is often used as a surrogate measure of the ability of 

repeated cocaine experience to produce long-lasting changes in brain systems that 

mediate incentive salience attribution (Robinson and Berridge, 1993, 2000, 2001). 

Since incentive salience attribution was disrupted in mGluR5KD-D1 mice, it was 

predicted that behavioural sensitisation would also have been disrupted in mutant 

animals, in accordance with similar correlations reported elsewhere (Flagel et al., 

2008). However, this was not the case; mutant mice developed a persistent, 

sensitised cocaine-locomotor response (Chapter 5). It must be stressed that more 

sensitive measures of behavioural activity may have revealed differences in the 

rate of sensitisation between wild-type and mGluR5KD-D1 mice, which may be a 

critical component of neurobehavioural plasticity (Flagel and Robinson, 2007; 

Flagel et al., 2008). Thus, based on the present data, we cannot entirely exclude 

the possibility that mGluR5 on D1R expressing neurons play an important role in 
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drug-induced neuroplastic changes that are proposed to result in a sensitisation of 

incentive salience attribution. 

 

That mGluR5KD-D1 mice were impaired in sign-tracking and CRf, suggests that such 

incentive learning processes may also be disrupted in mGluR5KD-D1 mice during 

learning about drug-associated CSs. Cocaine self-administration studies in 

mGluR5KD-D1 mice provide direct confirmation of this proposal (Novak et al., 2010). 

Mutant mice were observed to self-administer cocaine under a fixed-ratio schedule 

of reinforcement, but cue-induced reinstatement of drug-seeking, considered as an 

animal model of relapse vulnerability (Shaham et al., 2003; Sanchis-Segura and 

Spanagel, 2006; Stephens et al., 2010), was attenuated in mutant mice (Novak et 

al., 2010). This finding mirrors the failure of mGluR5KD-D1 mice to respond for CRf 

(Chapter 3) and supports a common notion that the cue-induced reinstatement 

model is heavily influenced by CRf related learning processes. A valuable series of 

future experiments would be to test mGluR5KD-D1 mice in second-order schedules 

of reinforcement and also in approach toward a drug-paired CS (e.g. Uslaner et al., 

2006). These models are thought to reflect aspects of drug-seeking and taking and 

the ability of drug-CSs to attract drug addicts toward places where drugs can be 

found (reviewed in the General Introduction, section 1.6). Here, the expectation 

would be that responding under second-order schedules and approach toward a 

drug-paired CS would be disrupted in mGluR5KD-D1 mice. 

 

In summary, our present findings, together with self-administration studies in 

mGluR5KD-D1 mice (Novak et al., 2010), suggest that mGluR5-mediated 

neuroplastic events on D1-MSNs are crucial for the formation of psychologically 

distinct associations between environmental stimuli and rewards that endow 

reward-paired stimuli with the subsequent ability to both reinforce and attract 

motivated behaviours. Furthermore, recent reports have revealed that mGluR5-

mediated striatal plasticity is involved in, or affected by, cocaine experience 

(Fourgeaud et al., 2004; Moussawi et al., 2009; Hao et al., 2010). Data from 

mGluR5KD-D1 mice provide a psychobiological context for these findings by pointing 
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to glutamate signalling at mGluR5 on striatal D1-MSNs as a key mediator through 

which repeated cocaine experience (and presumably exposure to other drugs of 

abuse) produces a persistent increase in the susceptibility to relapse triggered by 

environmental stimuli associated with drug use.  
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7.7 Limitations 

 

In generating mGluR5KD-D1 mice, cell-type specific knock-down of mGluR5 was 

achieved by driving the expression of artificial micro-RNAs that targeted mGluR5 

mRNA with a D1R promoter (Novak et al., 2010). Thus, mGluR5 knock-down was 

restricted to cells that express the D1R. The percentage of striatal MSNs that 

exclusively express D1Rs or D2Rs or express both D1Rs and D2Rs has been the 

focus of much debate (for review see Bertran-Gonzalez et al., 2011), with some 

reports indicating little overlap (Gerfen et al., 1990), and others suggesting many if 

not all MSNs contain both D1Rs and D2Rs (Surmeier et al., 1992; Aizman et al., 

2000). Key arguments of this thesis rest on the position that there is some degree 

of segregation, which is supported by the characterisation of mGluR5KD-D1 mice in 

which mGluR5 transcript and protein levels are reduced to ~40 and ~50%, 

respectively, of wild-type levels (Novak et al., 2010). However, if there is a high 

degree of overlap it cannot be concluded that some MSN populations are more 

important than others for Pavlovian incentive learning. Nevertheless, our data do 

highlight the importance of glutamate signalling through mGluR5, on cells that also 

receive dopamine input, for Pavlovian incentive learning processes and some 

behavioural and neurobiological effects of cocaine. 

 

Much of this thesis has focused on the role of mGluR5 in the ventral striatum, in 

part because of the large volume of corroborating literature that identifies this 

region as important for Pavlovian incentive learning processes, but also because 

little characterisation has yet been performed to understand the extent of mGluR5 

loss within other brain regions in mGluR5KD-D1 mice. The possibility remains that 

mGluR5 loss outside the ventral and dorsal striatum could have contributed to 

findings reported in this thesis. For example, group I mGluRs function at multiple 

levels within the subcortical nuclei that constitute the basal ganglia to regulate 

locomotor activity (DeLong and Wichmann, 2007). In the STN, activation of 

mGluR5 on postsynaptic neurons results in a switch from a characteristic single-

spike firing mode to a burst-firing mode (Awad et al., 2000); a firing state commonly 
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observed in Parkinsonian rats and non-human primates (Hollerman and Grace, 

1992; Bergman et al., 1994). Similarly, mGluR5 is distributed throughout the SNr 

(Hubert et al., 2001) and activation of mGluR5 mediates depolarization of these 

neurons, albeit only under conditions of dopamine blockade (Marino et al., 2002). 

In the mGluR5KD-D1 mouse model, whether mGluR5 is knocked-down in these 

regions will depend upon whether D1R receptors are expressed in the same 

neuronal populations, and further characterisation is warranted. For example, while 

there is some evidence to suggest that the D1R promoter may be active in the 

STN, its pre- or post-synaptic location is debated (Fremeau et al., 1991; Mansour 

et al., 1992; Smith and Kieval, 2000; Smith and Villalba, 2008). 

 

Another structure that should not be overlooked within the context of this thesis is 

the amygdala, which provides a key link between brain regions processing sensory 

information and those involved in more fundamental motivational aspects of 

reward-processing. In particular, the BLA and its interactions with the NAcc appear 

critical for turning associative information into goal-directed actions (Cador et al., 

1989; e.g. Burns et al., 1993; Di Ciano and Everitt, 2004b), while the CeN may 

influence the impact of the motivational value of a CS via its connections with the 

ventral midbrain (Robledo et al., 1996). Could mGluR5 loss from D1R expressing 

neurons in the amygdala account for findings reported in this thesis? In the 

amygdala, mGluR5 has been found on dendritic shafts and spines in the lateral 

nucleus, post-synaptic to auditory thalamic inputs, and contributes to plasticity in 

this thalamo-amygdala pathway (Fendt and Schmid, 2002; Lee et al., 2002; 

Rodrigues et al., 2002). A retrograde endocannabinoid mechanism involving 

mGluR5 has been identified in isolated BLA neurons with GABAergic input neurons 

attached (Zhu and Lovinger, 2005) and mGluR5 also contributes to plasticity at 

BLACeN synapses (Neugebauer et al., 2003; Kolber et al., 2010). Further work 

is required to understand the extent of mGluR5 and D1R co-localisation in 

amygdala neurons and the studies mentioned here have only considered the role 

of mGluR5-mediated plasticity in the amygdala with respect to anxiety- (e.g. 

Rodrigues et al., 2002) and pain- (Kolber et al., 2010) related behaviours. Few 
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studies have explored the role of mGluR5 in the amygdala in appetitive learning 

tasks. One notable exception is from Schroeder and colleagues (2008), who 

reported that cue-induced reinstatement of alcohol seeking behaviour was 

associated with a robust increased in P-ERK1/2 in the BLA and NAcc shell, and 

both reinstatement and ERK1/2 activation was blocked by systemic MPEP 

administration. Thus, there is some evidence that mGluR5 in the amygdala may be 

play an important role in responding to reward-paired CSs, but further 

investigations are clearly required. 

 

Only one mutant mouse line was used for experiments on the present thesis, and 

we cannot exclude the possibility that behavioural effects in mGluR5KD-D1 mice 

were due to compensatory effects and/or interactions between the genetic 

manipulation and the background strain used (Crawley et al., 1997). Indeed, this 

idea also extends to pharmacology studies (Chapter 4) where the effect of mGluR5 

antagonism may vary amongst strains and between species. For example, 

published reports reveal little consistency in the role of mGluR5 in locomotor 

activity in a novel environment. Antagonism of mGluR5, which can be considered 

analogous to an mGluR5 knock-out model, reduces locomotor activity in rats 

(Spooren et al., 2000a; Varty et al., 2005) and C57BL/6J mice (Cowen et al., 

2007), but can also result in hyperactivity in DBA/2J (McGeehan et al., 2004) and 

C57BL/6J mice (Halberstadt et al., 2010). In genetic models, complete knock-out of 

mGluR5 in mice results in hyperactivity in a novel environment (Gray et al., 2009; 

Bird et al., 2010; Halberstadt et al., 2010; Olsen et al., 2010). Thus, it would be 

highly valuable to examine the effect of mGluR5 knock-down on D1R expressing 

cells in different strains. 

 

Phenotyping tests (Chapter 2) were selected to determine whether deficits existed 

in mutant mice that could affect performance during subsequent behavioural 

experiments. A number of parameters were not measured in mGluR5KD-D1 mice 

which could have contributed to deficits in learning reported here. For example, we 

did not assess parental behaviours, nor did we examine feeding in terms of meal 
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size, rate of consumption, meal frequency, nutrient preference, taste aversion, 

circadian rhythms and orofacial motor components of ingestion; considered to 

reflect hedonic aspects of reward experience (Berridge, 1996; Berridge and 

Kringelbach, 2008). Social behaviours, including exploratory social interactions, 

aggressive behaviours and juvenile play were not formally assessed. Emotional 

responses including conditioned fear, depression- and schizophrenia-related 

behaviours were also not assessed. Thus, while no overt differences were reported 

in mGluR5KD-D1 and wild-type mice, a host of subtle factors remain unexplored that 

may reveal important functional roles for mGluR5 on D1R-expressing neurons. 

 

In experiments that assessed Pavlovian incentive learning (Chapter 3-4), the main 

measures of activity were lever pressing and nose-poking into the food magazine 

or into nose-poke holes. How animals respond to cue activation can result in 

important differences in conditioning and the conditioned response that develops 

(e.g. Holland, 1980) and simple frequency measures are not sensitive to 

differences in the topography of the response and only account for behaviour in a 

tiny proportion of the entire session. It would be highly valuable to closely monitor 

behaviour of mGluR5KD-D1 mice, with video capturing, to see whether further 

behavioural differences could be identified that could account for impaired learning 

in these animals. Similarly, in locomotor studies (Chapter 5-6), the main measure 

of activity was distance travelled, which fails to capture the variety of spontaneous 

behaviours that may be emitted during the course of these sessions (as assessed 

in Chapter 2). Again, video monitoring of locomotor activity would be valuable to 

more closely examine how activity, particularly in response to cocaine, differs 

between mGluR5KD-D1 mice and wild-type mice.  



306 
 

7.8 Future research 

 

To test the idea that mGluR5 on D1R expressing neurons are involved in more 

sensory specific consummatory conditioning, further tests could be undertaken in 

mGluR5KD-D1 mice that more closely examine and compare sensory specific 

learning with more general forms of conditioning. Notably, Corbit and Balleine 

(2005) have developed a PIT procedure in which both the general motivational and 

the specific sensory effects of Pavlovian CSs can be examined in the same rat. 

The testing of selective PIT would be valuable in mGluR5KD-D1 mice and some 

studies indicate that testing of outcome-selective PIT is possible in mice, although 

the effect sizes tend to be rather small (Yin et al., 2006a; Johnson et al., 2007a). 

Burke and colleagues (2007, 2008) have used reinforcer devaluation and 

transreinforcer blocking procedures to generate CSs that are considered to evoke 

representations of general affect (that are devaluation-insensitive) or outcome-

specific representations (that are devaluation-sensitive), and both CS forms 

support CRf. To further explore whether Pavlovian learning in mGluR5KD-D1 mice 

can support the formation of outcome-specific associations, it would be valuable to 

attempt such procedures in mGluR5KD-D1 mice. 

 

One of the main proposals of this thesis is that incentive learning deficits arose due 

to loss of mGluR5 on D1R expressing neurons, resulting in disrupted plasticity in 

D1-MSNS in the ventral striatum. A number of options exist to further investigate 

this possibility, beyond the obvious need for extensive electrophysiological 

characterisation of mutant mice. First, targeted disruption of mGluR5 solely in the 

ventral striatum during the learning and/or performance of the CRf task would be 

valuable to confirm that mGluR5 in this brain region was primarily responsible for 

deficits in the acquisition of incentive learning following systemic MTEP treatment 

(Chapter 4). The need for repeated intracerebral administration of MTEP during 

conditioning sessions would undoubtedly cause confounding damage to the 

infused brain region and thus an alternate approach could be to use virally 

mediated knock-down of mGluR5. Alternatively, displacement of mGluR5 from 
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Homer scaffolding proteins regions using a TAT decoy peptide may offer a viable 

alternate approach to disrupt mGluR5 mediated signalling in specific brain regions 

(e.g. Tronson et al., 2010). Second, if loss of a post-synaptic LTP-like expression 

mechanism in the ventral striatum, involving a reduction in activity of AMPA 

receptors, was responsible for impaired incentive learning in mGluR5KD-D1 mice, 

one prediction might be that administration of a positive allosteric modulator of 

AMPA receptors (i.e. an ampakine) into the accumbens could restore performance 

deficits in CRf and/or sign-tracking in mGluR5KD-D1 mice. In this respect, it is 

interesting that the ampakine CX546 was found to restore prepulse inhibition and 

latent inhibition deficits in mGluR5 knock-out mice (Lipina et al., 2007). Third, if 

mGluR5-mediated ERK1/2 signalling in D1-MSNs is particularly important for the 

formation of Pavlovian incentive associations, then manipulations that disrupt 

ERK1/2 signalling in the ventral striatum of wild-type mice during conditioning trials 

would be expected to mimic the phenotype of mGluR5KD-D1 mice. Support for this 

proposal can be taken from a study of Dalley and colleagues (2005), in which post-

training infusions of a D1R and NMDA antagonist into the accumbens (i.e. blocking 

receptors that are critical for ERK1/2 activation) disrupted the formation of 

Pavlovian incentive memories. Fourth, if STEP protein is critically involved in 

mGluR5-mediated neuroplastic changes, then disruption of STEP signalling in the 

ventral striatum during conditioning may also give similar rise to deficits reported in 

mGluR5KD-D1 mice. It is noteworthy that Tashev (2009) and colleagues reported 

that a substrate trapping form of STEP (TAT-STEP) blocked the induction of LTP 

and potentiated LTD in acute striatal slices. Finally, if co-operative signalling 

between mGluR5 and D1Rs and/or NMDARs are important for determining 

appropriate cellular responses in the ventral striatum, then determining a 

locomotor-dose effect profile in mGluR5KD-D1 mice following intra-accumbens 

infusions of a D1R agonist (e.g. SKF 38393) or NMDA antagonist (e.g. PCP) may 

provide a useful starting point to understand whether the function of these 

receptors is disrupted following mGluR5 loss. 
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To test the proposal that a dysregulation in the balance of D1R direct and D2R 

indirect striatal output pathways may be important for incentive learning processes, 

optogenetic tools may prove useful (e.g. Lobo et al., 2010) where pharmacology 

experiments may be precluded by damage associated with repeated intracerebral 

infusions and further limited by a lack of regional and/or cell-type specificity. In this 

scenario, optogenetic stimulation of D1-MSNs during Pavlovian conditioning would 

be predicted to result in enhanced performance during a subsequent test of CRf 

and/or sign-tracking. Oppositely, selective stimulation of D2-MSNs during 

conditioning would be predicted to result in impaired performance during a 

subsequent test of the incentive motivational value of a reward paired CS. A critical 

question remains as to how such manipulations of striatal outputs (and indeed 

impairments in striatal signalling proposed in mGluR5KD-D1 mice) may influence 

output from the ventral midbrain that may, in turn, be a central feature in the 

attribution of incentive value to reward-associated CSs (Flagel et al., 2010). In this 

respect, microdialysis studies following acute cocaine challenge and/or fast-scan 

cyclic voltammetry during conditioning sessions would be valuable to understand 

whether dopamine signalling is disrupted in mGluR5KD-D1 mice.  
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7.9 Conclusion 

 

The acquisition of incentive associations is necessary for many aspects of adaptive 

behaviours, but conditioned incentives are also proposed to contribute to 

compulsive drug seeking and relapse observed in drug addiction (Stewart et al., 

1984; Robinson and Berridge, 2000; Everitt et al., 2001). The findings of the 

present thesis identify glutamate signalling through mGluR5, on cells that also 

receive dopamine input, as critical for the attribution of incentive motivational value 

to environmental stimuli associated with reward experience. Together with cocaine 

self-administration studies conducted in mGluR5KD-D1 mice (Novak et al., 2010), 

our data suggest that mGluR5-mediated plasticity on D1-MSNs in the ventral 

striatum may be critical in the attribution of incentive value to drug-paired cues that 

enable them to support drug seeking and trigger relapse.  



310 
 

8 References 

 

Abe T, Sugihara H, Nawa H, Shigemoto R, Mizuno N, Nakanishi S (1992) 
Molecular characterization of a novel metabotropic glutamate receptor 
mGluR5 coupled to inositol phosphate/Ca2+ signal transduction. J Biol 
Chem 267:13361-13368. 

Adams CD, Dickinson A (1981) Instrumental responding following reinforcer 
devaluation. Q J Exp Psychol B 33:109-121. 

Adams JP, Sweatt JD (2002) Molecular psychology: roles for the ERK MAP kinase 
cascade in memory. Annu Rev Pharmacol Toxicol 42:135-163. 

Ahn SM, Choe ES (2009) Activation of group I metabotropic glutamate receptors 
increases serine phosphorylation of GluR1 alpha-amino-3-hydroxy-5-
methylisoxazole-4-propionic acid receptors in the rat dorsal striatum. J 
Pharmacol Exp Ther 329:1117-1126. 

Ahn SM, Choe ES (2010) Alterations in GluR2 AMPA receptor phosphorylation at 
serine 880 following group I metabotropic glutamate receptor stimulation in 
the rat dorsal striatum. J Neurosci Res 88:992-999. 

Aizman O, Brismar H, Uhlen P, Zettergren E, Levey AI, Forssberg H, Greengard P, 
Aperia A (2000) Anatomical and physiological evidence for D1 and D2 
dopamine receptor colocalization in neostriatal neurons. Nat Neurosci 
3:226-230. 

Albin RL, Young AB, Penney JB (1989) The functional anatomy of basal ganglia 
disorders. Trends Neurosci 12:366-375. 

Alderson HL, Robbins TW, Everitt BJ (2000) The effects of excitotoxic lesions of 
the basolateral amygdala on the acquisition of heroin-seeking behaviour in 
rats. Psychopharmacology (Berl) 153:111-119. 

Alexander GE, Crutcher MD (1990) Functional architecture of basal ganglia 
circuits: neural substrates of parallel processing. Trends Neurosci 13:266-
271. 

Alexander SP, Mathie A, Peters JA (2008) Guide to Receptors and Channels 
(GRAC), 3rd edition. Br J Pharmacol 153 Suppl 2:S1-209. 

Alvarez FJ, Villalba RM, Carr PA, Grandes P, Somohano PM (2000) Differential 
distribution of metabotropic glutamate receptors 1a, 1b, and 5 in the rat 
spinal cord. J Comp Neurol 422:464-487. 

Amico JA, Vollmer RR, Cai HM, Miedlar JA, Rinaman L (2005) Enhanced initial 
and sustained intake of sucrose solution in mice with an oxytocin gene 
deletion. Am J Physiol Regul Integr Comp Physiol 289:R1798-1806. 

Anagnostaras SG, Robinson TE (1996) Sensitization to the psychomotor stimulant 
effects of amphetamine: modulation by associative learning. Behav 
Neurosci 110:1397-1414. 

Anderson JJ, Bradbury MJ, Giracello DR, Chapman DF, Holtz G, Roppe J, King C, 
Cosford ND, Varney MA (2003) In vivo receptor occupancy of mGlu5 
receptor antagonists using the novel radioligand [3H]3-methoxy-5-(pyridin-2-
ylethynyl)pyridine). Eur J Pharmacol 473:35-40. 



311 
 

Andrzejewski ME, Sadeghian K, Kelley AE (2004) Central amygdalar and dorsal 
striatal NMDA receptor involvement in instrumental learning and 
spontaneous behavior. Behav Neurosci 118:715-729. 

Andrzejewski ME, Spencer RC, Kelley AE (2005) Instrumental learning, but not 
performance, requires dopamine D1-receptor activation in the amygdala. 
Neuroscience 135:335-345. 

Andrzejewski ME, Spencer RC, Kelley AE (2006) Dissociating ventral and dorsal 
subicular dopamine D1 receptor involvement in instrumental learning, 
spontaneous motor behavior, and motivation. Behav Neurosci 120:542-553. 

Anwyl R (1999) Metabotropic glutamate receptors: electrophysiological properties 
and role in plasticity. Brain Res Brain Res Rev 29:83-120. 

Anwyl R (2009) Metabotropic glutamate receptor-dependent long-term potentiation. 
Neuropharmacology 56:735-740. 

Archer J (1973) Tests for emotionality in rats and mice: a review. Anim Behav 
21:205-235. 

Ardiel EL, Rankin CH (2010) An elegant mind: learning and memory in 
Caenorhabditis elegans. Learn Mem 17:191-201. 

Arroyo M, Markou A, Robbins TW, Everitt BJ (1998) Acquisition, maintenance and 
reinstatement of intravenous cocaine self-administration under a second-
order schedule of reinforcement in rats: effects of conditioned cues and 
continuous access to cocaine. Psychopharmacology (Berl) 140:331-344. 

Astbury PJ, Read NG (1982) Kanamycin induced ototoxicity in the laboratory rat. A 
comparative morphological and audiometric study. Arch Toxicol 50:267-278. 

Auerbach AB (2004) Production of functional transgenic mice by DNA pronuclear 
microinjection. Acta Biochim Pol 51:9-31. 

Awad H, Hubert GW, Smith Y, Levey AI, Conn PJ (2000) Activation of 
metabotropic glutamate receptor 5 has direct excitatory effects and 
potentiates NMDA receptor currents in neurons of the subthalamic nucleus. 
J Neurosci 20:7871-7879. 

Backstrom P, Hyytia P (2006) Ionotropic and metabotropic glutamate receptor 
antagonism attenuates cue-induced cocaine seeking. 
Neuropsychopharmacology 31:778-786. 

Backstrom P, Hyytia P (2007) Involvement of AMPA/kainate, NMDA, and mGlu5 
receptors in the nucleus accumbens core in cue-induced reinstatement of 
cocaine seeking in rats. Psychopharmacology (Berl) 192:571-580. 

Backstrom P, Bachteler D, Koch S, Hyytia P, Spanagel R (2004) mGluR5 
antagonist MPEP reduces ethanol-seeking and relapse behavior. 
Neuropsychopharmacology 29:921-928. 

Badiani A, Browman KE, Robinson TE (1995) Influence of novel versus home 
environments on sensitization to the psychomotor stimulant effects of 
cocaine and amphetamine. Brain Res 674:291-298. 

Badiani A, Oates MM, Day HE, Watson SJ, Akil H, Robinson TE (1999) 
Environmental modulation of amphetamine-induced c-fos expression in D1 
versus D2 striatal neurons. Behav Brain Res 103:203-209. 

Bagni C, Greenough WT (2005) From mRNP trafficking to spine 
dysmorphogenesis: the roots of fragile X syndrome. Nat Rev Neurosci 
6:376-387. 



312 
 

Bai G, Kusiak JW (1997) Nerve growth factor up-regulates the N-methyl-D-
aspartate receptor subunit 1 promoter in PC12 cells. J Biol Chem 272:5936-
5942. 

Baker DA, McFarland K, Lake RW, Shen H, Tang XC, Toda S, Kalivas PW (2003) 
Neuroadaptations in cystine-glutamate exchange underlie cocaine relapse. 
Nat Neurosci 6:743-749. 

Baldwin AE, Holahan MR, Sadeghian K, Kelley AE (2000) N-methyl-D-aspartate 
receptor-dependent plasticity within a distributed corticostriatal network 
mediates appetitive instrumental learning. Behav Neurosci 114:84-98. 

Baldwin AE, Sadeghian K, Holahan MR, Kelley AE (2002) Appetitive instrumental 
learning is impaired by inhibition of cAMP-dependent protein kinase within 
the nucleus accumbens. Neurobiol Learn Mem 77:44-62. 

Bale TL, Baram TZ, Brown AS, Goldstein JM, Insel TR, McCarthy MM, Nemeroff 
CB, Reyes TM, Simerly RB, Susser ES, Nestler EJ (2010) Early life 
programming and neurodevelopmental disorders. Biol Psychiatry 68:314-
319. 

Ballard TM, Woolley ML, Prinssen E, Huwyler J, Porter R, Spooren W (2005) The 
effect of the mGlu5 receptor antagonist MPEP in rodent tests of anxiety and 
cognition: a comparison. Psychopharmacology (Berl) 179:218-229. 

Balleine BW (2005) Neural bases of food-seeking: affect, arousal and reward in 
corticostriatolimbic circuits. Physiol Behav 86:717-730. 

Balleine BW, Killcross S (2006) Parallel incentive processing: an integrated view of 
amygdala function. Trends Neurosci 29:272-279. 

Balleine BW, O'Doherty JP (2010) Human and rodent homologies in action control: 
corticostriatal determinants of goal-directed and habitual action. 
Neuropsychopharmacology 35:48-69. 

Balschun D, Wetzel W (2002) Inhibition of mGluR5 blocks hippocampal LTP in vivo 
and spatial learning in rats. Pharmacol Biochem Behav 73:375-380. 

Banke TG, Bowie D, Lee H, Huganir RL, Schousboe A, Traynelis SF (2000) 
Control of GluR1 AMPA receptor function by cAMP-dependent protein 
kinase. J Neurosci 20:89-102. 

Bardo MT, Rowlett JK, Harris MJ (1995) Conditioned place preference using opiate 
and stimulant drugs: a meta-analysis. Neurosci Biobehav Rev 19:39-51. 

Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. 
Cell 116:281-297. 

Bashir ZI, Bortolotto ZA, Davies CH, Berretta N, Irving AJ, Seal AJ, Henley JM, 
Jane DE, Watkins JC, Collingridge GL (1993) Induction of LTP in the 
hippocampus needs synaptic activation of glutamate metabotropic 
receptors. Nature 363:347-350. 

Bateup HS, Santini E, Shen W, Birnbaum S, Valjent E, Surmeier DJ, Fisone G, 
Nestler EJ, Greengard P (2010) Distinct subclasses of medium spiny 
neurons differentially regulate striatal motor behaviors. Proc Natl Acad Sci U 
S A 107:14845-14850. 

Baunez C, Amalric M, Robbins TW (2002) Enhanced food-related motivation after 
bilateral lesions of the subthalamic nucleus. J Neurosci 22:562-568. 

Beckstead RM, Kersey KS (1985) Immunohistochemical demonstration of 
differential substance P-, met-enkephalin-, and glutamic-acid-



313 
 

decarboxylase-containing cell body and axon distributions in the corpus 
striatum of the cat. J Comp Neurol 232:481-498. 

Beckstead RM, Cruz CJ (1986) Striatal axons to the globus pallidus, 
entopeduncular nucleus and substantia nigra come mainly from separate 
cell populations in cat. Neuroscience 19:147-158. 

Beckstead RM, Domesick VB, Nauta WJ (1979) Efferent connections of the 
substantia nigra and ventral tegmental area in the rat. Brain Res 175:191-
217. 

Belin D, Everitt BJ (2008) Cocaine seeking habits depend upon dopamine-
dependent serial connectivity linking the ventral with the dorsal striatum. 
Neuron 57:432-441. 

Belin D, Jonkman S, Dickinson A, Robbins TW, Everitt BJ (2009) Parallel and 
interactive learning processes within the basal ganglia: relevance for the 
understanding of addiction. Behav Brain Res 199:89-102. 

Bell SM, Stewart RB, Thompson SC, Meisch RA (1997) Food-deprivation 
increases cocaine-induced conditioned place preference and locomotor 
activity in rats. Psychopharmacology (Berl) 131:1-8. 

Bellone C, Luscher C (2005) mGluRs induce a long-term depression in the ventral 
tegmental area that involves a switch of the subunit composition of AMPA 
receptors. Eur J Neurosci 21:1280-1288. 

Bellone C, Luscher C (2006) Cocaine triggered AMPA receptor redistribution is 
reversed in vivo by mGluR-dependent long-term depression. Nat Neurosci 
9:636-641. 

Bellone C, Luscher C, Mameli M (2008) Mechanisms of synaptic depression 
triggered by metabotropic glutamate receptors. Cell Mol Life Sci 65:2913-
2923. 

Belozertseva IV, Kos T, Popik P, Danysz W, Bespalov AY (2007) Antidepressant-
like effects of mGluR1 and mGluR5 antagonists in the rat forced swim and 
the mouse tail suspension tests. Eur Neuropsychopharmacol 17:172-179. 

Belzung C, Griebel G (2001) Measuring normal and pathological anxiety-like 
behaviour in mice: a review. Behav Brain Res 125:141-149. 

Bergman H, Wichmann T, Karmon B, DeLong MR (1994) The primate subthalamic 
nucleus. II. Neuronal activity in the MPTP model of parkinsonism. J 
Neurophysiol 72:507-520. 

Berke JD, Hyman SE (2000) Addiction, dopamine, and the molecular mechanisms 
of memory. Neuron 25:515-532. 

Berke JD, Paletzki RF, Aronson GJ, Hyman SE, Gerfen CR (1998) A complex 
program of striatal gene expression induced by dopaminergic stimulation. J 
Neurosci 18:5301-5310. 

Berridge KC (1996) Food reward: brain substrates of wanting and liking. Neurosci 
Biobehav Rev 20:1-25. 

Berridge KC (2004) Motivation concepts in behavioral neuroscience. Physiol Behav 
81:179-209. 

Berridge KC, Robinson TE (1998) What is the role of dopamine in reward: hedonic 
impact, reward learning, or incentive salience? Brain Res Brain Res Rev 
28:309-369. 

Berridge KC, Robinson TE (2003) Parsing reward. Trends Neurosci 26:507-513. 



314 
 

Berridge KC, Kringelbach ML (2008) Affective neuroscience of pleasure: reward in 
humans and animals. Psychopharmacology (Berl) 199:457-480. 

Bertran-Gonzalez J, Herve D, Girault JA, Valjent E (2011) What is the Degree of 
Segregation between Striatonigral and Striatopallidal Projections? Front 
Neuroanat 4. 

Bertran-Gonzalez J, Bosch C, Maroteaux M, Matamales M, Herve D, Valjent E, 
Girault JA (2008) Opposing patterns of signaling activation in dopamine D1 
and D2 receptor-expressing striatal neurons in response to cocaine and 
haloperidol. J Neurosci 28:5671-5685. 

Besheer J, Stevenson RA, Hodge CW (2006) mGlu5 receptors are involved in the 
discriminative stimulus effects of self-administered ethanol in rats. Eur J 
Pharmacol 551:71-75. 

Bespalov AY, Dravolina OA, Sukhanov I, Zakharova E, Blokhina E, Zvartau E, 
Danysz W, van Heeke G, Markou A (2005) Metabotropic glutamate receptor 
(mGluR5) antagonist MPEP attenuated cue- and schedule-induced 
reinstatement of nicotine self-administration behavior in rats. 
Neuropharmacology 49 Suppl 1:167-178. 

Bindra D (1974) A motivational view of learning, performance, and behavior 
modification. Psychol Rev 81:199-213. 

Bird MK, Kirchhoff J, Djouma E, Lawrence AJ (2008) Metabotropic glutamate 5 
receptors regulate sensitivity to ethanol in mice. Int J 
Neuropsychopharmacol 11:765-774. 

Bird MK, Reid CA, Chen F, Tan HO, Petrou S, Lawrence AJ (2010) Cocaine-
mediated synaptic potentiation is absent in VTA neurons from mGlu5-
deficient mice. Int J Neuropsychopharmacol 13:133-141. 

Bliss TV, Lomo T (1973) Long-lasting potentiation of synaptic transmission in the 
dentate area of the anaesthetized rabbit following stimulation of the 
perforant path. J Physiol 232:331-356. 

Blundell P, Hall G, Killcross S (2001) Lesions of the basolateral amygdala disrupt 
selective aspects of reinforcer representation in rats. J Neurosci 21:9018-
9026. 

Blundell P, Hall G, Killcross S (2003) Preserved sensitivity to outcome value after 
lesions of the basolateral amygdala. J Neurosci 23:7702-7709. 

Boakes R (1977) Performance on learning to associate a stimulus with positive 
reinforcement. In: Operant-pavlovian interactions. (Davis H, Hurwitz HMB, 
eds). Hillsdale. 

Boissier JR, Simon P, Lwoff JM (1964) [Use of a Particular Mouse Reaction (Hole 
Board Method) for the Study of Psychotropic Drugs]. Therapie 19:571-583. 

Bolam JP (1984) Synapses of identified neurons in the neostriatum. Ciba Found 
Symp 107:30-47. 

Bolles RC (1972) Reinforcement, expectancy, and learning. Psychol Rev 79:394-
409. 

Borgland SL, Malenka RC, Bonci A (2004) Acute and chronic cocaine-induced 
potentiation of synaptic strength in the ventral tegmental area: 
electrophysiological and behavioral correlates in individual rats. J Neurosci 
24:7482-7490. 



315 
 

Botella JA, Bayersdorfer F, Gmeiner F, Schneuwly S (2009) Modelling Parkinson's 
disease in Drosophila. Neuromolecular Med 11:268-280. 

Botreau F, Paolone G, Stewart J (2006) d-Cycloserine facilitates extinction of a 
cocaine-induced conditioned place preference. Behav Brain Res 172:173-
178. 

Boudreau AC, Wolf ME (2005) Behavioral sensitization to cocaine is associated 
with increased AMPA receptor surface expression in the nucleus 
accumbens. J Neurosci 25:9144-9151. 

Boudreau AC, Reimers JM, Milovanovic M, Wolf ME (2007) Cell surface AMPA 
receptors in the rat nucleus accumbens increase during cocaine withdrawal 
but internalize after cocaine challenge in association with altered activation 
of mitogen-activated protein kinases. J Neurosci 27:10621-10635. 

Boudreau RL, Martins I, Davidson BL (2009) Artificial microRNAs as siRNA 
shuttles: improved safety as compared to shRNAs in vitro and in vivo. Mol 
Ther 17:169-175. 

Bourin M, Hascoet M (2003) The mouse light/dark box test. Eur J Pharmacol 
463:55-65. 

Bouton ME (2007) Learning and behavior : a contemporary synthesis. Sunderland, 
Mass.: Sinauer Associates. 

Braithwaite SP, Paul S, Nairn AC, Lombroso PJ (2006a) Synaptic plasticity: one 
STEP at a time. Trends Neurosci 29:452-458. 

Braithwaite SP, Adkisson M, Leung J, Nava A, Masterson B, Urfer R, Oksenberg 
D, Nikolich K (2006b) Regulation of NMDA receptor trafficking and function 
by striatal-enriched tyrosine phosphatase (STEP). Eur J Neurosci 23:2847-
2856. 

Brami-Cherrier K, Valjent E, Herve D, Darragh J, Corvol JC, Pages C, Arthur SJ, 
Girault JA, Caboche J (2005) Parsing molecular and behavioral effects of 
cocaine in mitogen- and stress-activated protein kinase-1-deficient mice. J 
Neurosci 25:11444-11454. 

Branda CS, Dymecki SM (2004) Talking about a revolution: The impact of site-
specific recombinases on genetic analyses in mice. Dev Cell 6:7-28. 

Bredt DS, Nicoll RA (2003) AMPA receptor trafficking at excitatory synapses. 
Neuron 40:361-379. 

Brice NL, Varadi A, Ashcroft SJ, Molnar E (2002) Metabotropic glutamate and 
GABA(B) receptors contribute to the modulation of glucose-stimulated 
insulin secretion in pancreatic beta cells. Diabetologia 45:242-252. 

Brinster RL, Chen HY, Trumbauer M, Senear AW, Warren R, Palmiter RD (1981) 
Somatic expression of herpes thymidine kinase in mice following injection of 
a fusion gene into eggs. Cell 27:223-231. 

Brodkin J, Busse C, Sukoff SJ, Varney MA (2002a) Anxiolytic-like activity of the 
mGluR5 antagonist MPEP: a comparison with diazepam and buspirone. 
Pharmacol Biochem Behav 73:359-366. 

Brodkin J, Bradbury M, Busse C, Warren N, Bristow LJ, Varney MA (2002b) 
Reduced stress-induced hyperthermia in mGluR5 knockout mice. Eur J 
Neurosci 16:2241-2244. 

Brog JS, Salyapongse A, Deutch AY, Zahm DS (1993) The patterns of afferent 
innervation of the core and shell in the "accumbens" part of the rat ventral 



316 
 

striatum: immunohistochemical detection of retrogradely transported fluoro-
gold. J Comp Neurol 338:255-278. 

Browman KE, Badiani A, Robinson TE (1998a) The influence of environment on 
the induction of sensitization to the psychomotor activating effects of 
intravenous cocaine in rats is dose-dependent. Psychopharmacology (Berl) 
137:90-98. 

Browman KE, Badiani A, Robinson TE (1998b) Modulatory effect of environmental 
stimuli on the susceptibility to amphetamine sensitization: a dose-effect 
study in rats. J Pharmacol Exp Ther 287:1007-1014. 

Brown PL, Jenkins HM (1968) Auto-shaping of the pigeon's key-peck. J Exp Anal 
Behav 11:1-8. 

Brudzynski SM, Gibson CJ (1997) Release of dopamine in the nucleus accumbens 
caused by stimulation of the subiculum in freely moving rats. Brain Res Bull 
42:303-308. 

Brummelkamp TR, Bernards R, Agami R (2002) A system for stable expression of 
short interfering RNAs in mammalian cells. Science 296:550-553. 

Brusa R (1999) Genetically modified mice in neuropharmacology. Pharmacol Res 
39:405-419. 

Buehr M, Meek S, Blair K, Yang J, Ure J, Silva J, McLay R, Hall J, Ying QL, Smith 
A (2008) Capture of authentic embryonic stem cells from rat blastocysts. 
Cell 135:1287-1298. 

Bult A, Zhao F, Dirkx R, Jr., Raghunathan A, Solimena M, Lombroso PJ (1997) 
STEP: a family of brain-enriched PTPs. Alternative splicing produces 
transmembrane, cytosolic and truncated isoforms. Eur J Cell Biol 72:337-
344. 

Bult A, Zhao F, Dirkx R, Jr., Sharma E, Lukacsi E, Solimena M, Naegele JR, 
Lombroso PJ (1996) STEP61: a member of a family of brain-enriched PTPs 
is localized to the endoplasmic reticulum. J Neurosci 16:7821-7831. 

Burke KA, Franz TM, Miller DN, Schoenbaum G (2007) Conditioned reinforcement 
can be mediated by either outcome-specific or general affective 
representations. Front Integr Neurosci 1:2. 

Burke KA, Franz TM, Miller DN, Schoenbaum G (2008) The role of the orbitofrontal 
cortex in the pursuit of happiness and more specific rewards. Nature 
454:340-344. 

Burns LH, Robbins TW, Everitt BJ (1993) Differential effects of excitotoxic lesions 
of the basolateral amygdala, ventral subiculum and medial prefrontal cortex 
on responding with conditioned reinforcement and locomotor activity 
potentiated by intra-accumbens infusions of D-amphetamine. Behav Brain 
Res 55:167-183. 

Burns LH, Everitt BJ, Kelley AE, Robbins TW (1994) Glutamate-dopamine 
interactions in the ventral striatum: role in locomotor activity and responding 
with conditioned reinforcement. Psychopharmacology (Berl) 115:516-528. 

Busse CS, Brodkin J, Tattersall D, Anderson JJ, Warren N, Tehrani L, Bristow LJ, 
Varney MA, Cosford ND (2004) The behavioral profile of the potent and 
selective mGlu5 receptor antagonist 3-[(2-methyl-1,3-thiazol-4-
yl)ethynyl]pyridine (MTEP) in rodent models of anxiety. 
Neuropsychopharmacology 29:1971-1979. 



317 
 

Bussey TJ, Muir JL, Robbins TW (1994) A novel automated touchscreen 
procedure for assessing learning in the rat using computer graphic stimuli. 
Neuroscience Research Communications 15:103-110. 

Bussey TJ, Everitt BJ, Robbins TW (1997a) Dissociable effects of cingulate and 
medial frontal cortex lesions on stimulus-reward learning using a novel 
Pavlovian autoshaping procedure for the rat: implications for the 
neurobiology of emotion. Behav Neurosci 111:908-919. 

Bussey TJ, Muir JL, Everitt BJ, Robbins TW (1997b) Triple dissociation of anterior 
cingulate, posterior cingulate, and medial frontal cortices on visual 
discrimination tasks using a touchscreen testing procedure for the rat. 
Behav Neurosci 111:920-936. 

Cabeza de Vaca S, Carr KD (1998) Food restriction enhances the central 
rewarding effect of abused drugs. J Neurosci 18:7502-7510. 

Cador M, Robbins TW, Everitt BJ (1989) Involvement of the amygdala in stimulus-
reward associations: interaction with the ventral striatum. Neuroscience 
30:77-86. 

Calcagnetti DJ, Schechter MD (1992) Place conditioning reveals the rewarding 
aspect of social interaction in juvenile rats. Physiol Behav 51:667-672. 

Campbell BA, Fibiger HC (1971) Potentiation of amphetamine-induced arousal by 
starvation. Nature 233:424-425. 

Canales JJ, Elayadi A, Errami M, Llansola M, Cauli O, Felipo V (2003) Chronic 
hyperammonemia alters motor and neurochemical responses to activation 
of group I metabotropic glutamate receptors in the nucleus accumbens in 
rats in vivo. Neurobiol Dis 14:380-390. 

Capecchi MR (1989) Altering the genome by homologous recombination. Science 
244:1288-1292. 

Cardinal RN, Everitt BJ (2004) Neural and psychological mechanisms underlying 
appetitive learning: links to drug addiction. Curr Opin Neurobiol 14:156-162. 

Cardinal RN, Aitken MRF (2006) ANOVA for the behavioural sciences researcher. 
Mahwah, N.J.: Lawrence Erlbaum. 

Cardinal RN, Parkinson JA, Hall J, Everitt BJ (2002a) Emotion and motivation: the 
role of the amygdala, ventral striatum, and prefrontal cortex. Neurosci 
Biobehav Rev 26:321-352. 

Cardinal RN, Parkinson JA, Marbini HD, Toner AJ, Bussey TJ, Robbins TW, Everitt 
BJ (2003) Role of the anterior cingulate cortex in the control over behavior 
by Pavlovian conditioned stimuli in rats. Behav Neurosci 117:566-587. 

Cardinal RN, Parkinson JA, Lachenal G, Halkerston KM, Rudarakanchana N, Hall 
J, Morrison CH, Howes SR, Robbins TW, Everitt BJ (2002b) Effects of 
selective excitotoxic lesions of the nucleus accumbens core, anterior 
cingulate cortex, and central nucleus of the amygdala on autoshaping 
performance in rats. Behav Neurosci 116:553-567. 

Carroll FI (2008) Antagonists at metabotropic glutamate receptor subtype 5: 
structure activity relationships and therapeutic potential for addiction. Ann N 
Y Acad Sci 1141:221-232. 

Cartmell J, Schoepp DD (2000) Regulation of neurotransmitter release by 
metabotropic glutamate receptors. J Neurochem 75:889-907. 



318 
 

Castrop H (2010) Genetically modified mice-successes and failures of a widely 
used technology. Pflugers Arch 459:557-567. 

Cervo L, Samanin R (1995) Effects of dopaminergic and glutamatergic receptor 
antagonists on the acquisition and expression of cocaine conditioning place 
preference. Brain Res 673:242-250. 

Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC (1994) Green fluorescent 
protein as a marker for gene expression. Science 263:802-805. 

Chan-Palay V (1988) Galanin hyperinnervates surviving neurons of the human 
basal nucleus of Meynert in dementias of Alzheimer's and Parkinson's 
disease: a hypothesis for the role of galanin in accentuating cholinergic 
dysfunction in dementia. J Comp Neurol 273:543-557. 

Chang HT, Kitai ST (1986) Intracellular recordings from rat nucleus accumbens 
neurons in vitro. Brain Res 366:392-396. 

Chen L, Huang LY (1992) Protein kinase C reduces Mg2+ block of NMDA-receptor 
channels as a mechanism of modulation. Nature 356:521-523. 

Chen RH, Sarnecki C, Blenis J (1992) Nuclear localization and regulation of erk- 
and rsk-encoded protein kinases. Mol Cell Biol 12:915-927. 

Chesselet MF, Graybiel AM (1983) Met-enkephalin-like and dynorphin-like 
immunoreactivities of the basal ganglia of the cat. Life Sci 33 Suppl 1:37-40. 

Chiamulera C, Epping-Jordan MP, Zocchi A, Marcon C, Cottiny C, Tacconi S, 
Corsi M, Orzi F, Conquet F (2001) Reinforcing and locomotor stimulant 
effects of cocaine are absent in mGluR5 null mutant mice. Nat Neurosci 
4:873-874. 

Childress AR, Ehrman R, McLellan AT, O'Brien CP (1988) Conditioned craving and 
arousal in cocaine addiction: a preliminary report. NIDA Res Monogr 81:74-
80. 

Childress AR, Mozley PD, McElgin W, Fitzgerald J, Reivich M, O'Brien CP (1999) 
Limbic activation during cue-induced cocaine craving. Am J Psychiatry 
156:11-18. 

Cho RW, Park JM, Wolff SB, Xu D, Hopf C, Kim JA, Reddy RC, Petralia RS, Perin 
MS, Linden DJ, Worley PF (2008) mGluR1/5-dependent long-term 
depression requires the regulated ectodomain cleavage of neuronal 
pentraxin NPR by TACE. Neuron 57:858-871. 

Choe ES, Wang JQ (2001) Group I metabotropic glutamate receptor activation 
increases phosphorylation of cAMP response element-binding protein, Elk-
1, and extracellular signal-regulated kinases in rat dorsal striatum. Brain Res 
Mol Brain Res 94:75-84. 

Choe ES, McGinty JF (2001) Cyclic AMP and mitogen-activated protein kinases 
are required for glutamate-dependent cyclic AMP response element binding 
protein and Elk-1 phosphorylation in the dorsal striatum in vivo. J 
Neurochem 76:401-412. 

Choe ES, Shin EH, Wang JQ (2006) Regulation of phosphorylation of NMDA 
receptor NR1 subunits in the rat neostriatum by group I metabotropic 
glutamate receptors in vivo. Neurosci Lett 394:246-251. 

Choe ES, Chung KT, Mao L, Wang JQ (2002) Amphetamine increases 
phosphorylation of extracellular signal-regulated kinase and transcription 



319 
 

factors in the rat striatum via group I metabotropic glutamate receptors. 
Neuropsychopharmacology 27:565-575. 

Chudasama Y, Robbins TW (2003) Dissociable contributions of the orbitofrontal 
and infralimbic cortex to pavlovian autoshaping and discrimination reversal 
learning: further evidence for the functional heterogeneity of the rodent 
frontal cortex. J Neurosci 23:8771-8780. 

Chuhma N, Tanaka KF, Hen R, Rayport S (2011) Functional connectome of the 
striatal medium spiny neuron. J Neurosci 31:1183-1192. 

Chung HJ, Xia J, Scannevin RH, Zhang X, Huganir RL (2000) Phosphorylation of 
the AMPA receptor subunit GluR2 differentially regulates its interaction with 
PDZ domain-containing proteins. J Neurosci 20:7258-7267. 

Cirone J, Pothecary CA, Turner JP, Salt TE (2002) Group I metabotropic glutamate 
receptors (mGluRs) modulate visual responses in the superficial superior 
colliculus of the rat. J Physiol 541:895-903. 

Clarke PB, Jakubovic A, Fibiger HC (1988) Anatomical analysis of the involvement 
of mesolimbocortical dopamine in the locomotor stimulant actions of d-
amphetamine and apomorphine. Psychopharmacology (Berl) 96:511-520. 

Cleland GG, Davey GC (1983) Autoshaping in the rat: The effects of localizable 
visual and auditory signals for food. J Exp Anal Behav 40:47-56. 

Collingridge GL, Bliss TV (1995) Memories of NMDA receptors and LTP. Trends 
Neurosci 18:54-56. 

Collingridge GL, Isaac JT, Wang YT (2004) Receptor trafficking and synaptic 
plasticity. Nat Rev Neurosci 5:952-962. 

Conn PJ, Pin JP (1997) Pharmacology and functions of metabotropic glutamate 
receptors. Annu Rev Pharmacol Toxicol 37:205-237. 

Conrad KL, Tseng KY, Uejima JL, Reimers JM, Heng LJ, Shaham Y, Marinelli M, 
Wolf ME (2008) Formation of accumbens GluR2-lacking AMPA receptors 
mediates incubation of cocaine craving. Nature 454:118-121. 

Corbit LH, Balleine BW (2003) The role of prelimbic cortex in instrumental 
conditioning. Behav Brain Res 146:145-157. 

Corbit LH, Balleine BW (2005) Double dissociation of basolateral and central 
amygdala lesions on the general and outcome-specific forms of pavlovian-
instrumental transfer. J Neurosci 25:962-970. 

Corbit LH, Janak PH (2007) Inactivation of the lateral but not medial dorsal striatum 
eliminates the excitatory impact of Pavlovian stimuli on instrumental 
responding. J Neurosci 27:13977-13981. 

Corbit LH, Muir JL, Balleine BW (2001) The role of the nucleus accumbens in 
instrumental conditioning: Evidence of a functional dissociation between 
accumbens core and shell. J Neurosci 21:3251-3260. 

Corbit LH, Janak PH, Balleine BW (2007) General and outcome-specific forms of 
Pavlovian-instrumental transfer: the effect of shifts in motivational state and 
inactivation of the ventral tegmental area. Eur J Neurosci 26:3141-3149. 

Cosford ND, Roppe J, Tehrani L, Schweiger EJ, Seiders TJ, Chaudary A, Rao S, 
Varney MA (2003) [3H]-methoxymethyl-MTEP and [3H]-methoxy-PEPy: 
potent and selective radioligands for the metabotropic glutamate subtype 5 
(mGlu5) receptor. Bioorg Med Chem Lett 13:351-354. 



320 
 

Cowen MS, Djouma E, Lawrence AJ (2005) The metabotropic glutamate 5 
receptor antagonist 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]-pyridine reduces 
ethanol self-administration in multiple strains of alcohol-preferring rats and 
regulates olfactory glutamatergic systems. J Pharmacol Exp Ther 315:590-
600. 

Cowen MS, Krstew E, Lawrence AJ (2007) Assessing appetitive and 
consummatory phases of ethanol self-administration in C57BL/6J mice 
under operant conditions: regulation by mGlu5 receptor antagonism. 
Psychopharmacology (Berl) 190:21-29. 

Crawley J, Goodwin FK (1980) Preliminary report of a simple animal behavior 
model for the anxiolytic effects of benzodiazepines. Pharmacol Biochem 
Behav 13:167-170. 

Crawley JN (1985) Exploratory behavior models of anxiety in mice. Neurosci 
Biobehav Rev 9:37-44. 

Crawley JN (2007) What's wrong with my mouse? : behavioral phenotyping of 
transgenic and knockout mice, 2nd ed. Edition. Hoboken, N.J.: Wiley ; 
Chichester : John Wiley [distributor]. 

Crawley JN, Marangos PJ, Paul SM, Skolnick P, Goodwin FK (1981) Interaction 
between purine and benzodiazepine: Inosine reverses diazepam-induced 
stimulation of mouse exploratory behavior. Science 211:725-727. 

Crawley JN, Belknap JK, Collins A, Crabbe JC, Frankel W, Henderson N, 
Hitzemann RJ, Maxson SC, Miner LL, Silva AJ, Wehner JM, Wynshaw-Boris 
A, Paylor R (1997) Behavioral phenotypes of inbred mouse strains: 
implications and recommendations for molecular studies. 
Psychopharmacology (Berl) 132:107-124. 

Crombag HS, Badiani A, Robinson TE (1996) Signalled versus unsignalled 
intravenous amphetamine: large differences in the acute psychomotor 
response and sensitization. Brain Res 722:227-231. 

Crombag HS, Galarce EM, Holland PC (2008a) Pavlovian influences on goal-
directed behavior in mice: the role of cue-reinforcer relations. Learn Mem 
15:299-303. 

Crombag HS, Mueller H, Browman KE, Badiani A, Robinson TE (1999) A 
comparison of two behavioral measures of psychomotor activation following 
intravenous amphetamine or cocaine: dose- and sensitization-dependent 
changes. Behav Pharmacol 10:205-213. 

Crombag HS, Gorny G, Li Y, Kolb B, Robinson TE (2005) Opposite effects of 
amphetamine self-administration experience on dendritic spines in the 
medial and orbital prefrontal cortex. Cereb Cortex 15:341-348. 

Crombag HS, Sutton JM, Takamiya K, Holland PC, Gallagher M, Huganir RL 
(2008b) A role for alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic 
acid GluR1 phosphorylation in the modulatory effects of appetitive reward 
cues on goal-directed behavior. Eur J Neurosci 27:3284-3291. 

Crombag HS, Sutton JM, Takamiya K, Lee HK, Holland PC, Gallagher M, Huganir 
RL (2008c) A necessary role for GluR1 serine 831 phosphorylation in 
appetitive incentive learning. Behav Brain Res 191:178-183. 



321 
 

Crombag HS, Dickson M, Dinenna M, Johnson AW, Perin MS, Holland PC, 
Baraban JM, Reti IM (2009) Narp deletion blocks extinction of morphine 
place preference conditioning. Neuropsychopharmacology 34:857-866. 

Cunningham CL, Patel P (2007) Rapid induction of Pavlovian approach to an 
ethanol-paired visual cue in mice. Psychopharmacology (Berl) 192:231-241. 

Cunningham CL, Ferree NK, Howard MA (2003) Apparatus bias and place 
conditioning with ethanol in mice. Psychopharmacology (Berl) 170:409-422. 

D'Ascenzo M, Podda MV, Fellin T, Azzena GB, Haydon P, Grassi C (2009) 
Activation of mGluR5 induces spike afterdepolarization and enhanced 
excitability in medium spiny neurons of the nucleus accumbens by 
modulating persistent Na+ currents. J Physiol 587:3233-3250. 

Dalley JW, Chudasama Y, Theobald DE, Pettifer CL, Fletcher CM, Robbins TW 
(2002) Nucleus accumbens dopamine and discriminated approach learning: 
interactive effects of 6-hydroxydopamine lesions and systemic apomorphine 
administration. Psychopharmacology (Berl) 161:425-433. 

Dalley JW, Laane K, Theobald DE, Armstrong HC, Corlett PR, Chudasama Y, 
Robbins TW (2005) Time-limited modulation of appetitive Pavlovian memory 
by D1 and NMDA receptors in the nucleus accumbens. Proc Natl Acad Sci 
U S A 102:6189-6194. 

Dani JA, Zhou FM (2004) Selective dopamine filter of glutamate striatal afferents. 
Neuron 42:522-524. 

David HN, Abraini JH (2001) The group I metabotropic glutamate receptor 
antagonist S-4-CPG modulates the locomotor response produced by the 
activation of D1-like, but not D2-like, dopamine receptors in the rat nucleus 
accumbens. Eur J Neurosci 13:2157-2164. 

David HN, Abraini JH (2003) Blockade of the locomotor stimulant effects of 
amphetamine by group I, group II, and group III metabotropic glutamate 
receptor ligands in the rat nucleus accumbens: possible interactions with 
dopamine receptors. Neuropharmacology 44:717-727. 

Davidkova G, Carroll RC (2007) Characterization of the role of microtubule-
associated protein 1B in metabotropic glutamate receptor-mediated 
endocytosis of AMPA receptors in hippocampus. J Neurosci 27:13273-
13278. 

Davis M, Ressler K, Rothbaum BO, Richardson R (2006) Effects of D-cycloserine 
on extinction: translation from preclinical to clinical work. Biol Psychiatry 
60:369-375. 

Davis S, Vanhoutte P, Pages C, Caboche J, Laroche S (2000) The MAPK/ERK 
cascade targets both Elk-1 and cAMP response element-binding protein to 
control long-term potentiation-dependent gene expression in the dentate 
gyrus in vivo. J Neurosci 20:4563-4572. 

Dawson GR, Tricklebank MD (1995) Use of the elevated plus maze in the search 
for novel anxiolytic agents. Trends Pharmacol Sci 16:33-36. 

Dawson GR, Crawford SP, Collinson N, Iversen SD, Tricklebank MD (1995) 
Evidence that the anxiolytic-like effects of chlordiazepoxide on the elevated 
plus maze are confounded by increases in locomotor activity. 
Psychopharmacology (Berl) 118:316-323. 



322 
 

de Wit H, Stewart J (1981) Reinstatement of cocaine-reinforced responding in the 
rat. Psychopharmacology (Berl) 75:134-143. 

DeJong W (1994) Relapse prevention: an emerging technology for promoting long-
term drug abstinence. Int J Addict 29:681-705. 

Dekundy A, Pietraszek M, Schaefer D, Cenci MA, Danysz W (2006) Effects of 
group I metabotropic glutamate receptors blockade in experimental models 
of Parkinson's disease. Brain Res Bull 69:318-326. 

Delamater AR, Oakeshott S (2007) Learning about multiple attributes of reward in 
Pavlovian conditioning. Ann N Y Acad Sci 1104:1-20. 

Delfs JM, Schreiber L, Kelley AE (1990) Microinjection of cocaine into the nucleus 
accumbens elicits locomotor activation in the rat. J Neurosci 10:303-310. 

DeLong MR, Wichmann T (2007) Circuits and circuit disorders of the basal ganglia. 
Arch Neurol 64:20-24. 

Derkach VA, Oh MC, Guire ES, Soderling TR (2007) Regulatory mechanisms of 
AMPA receptors in synaptic plasticity. Nat Rev Neurosci 8:101-113. 

Deroche V, Piazza PV, Casolini P, Le Moal M, Simon H (1993) Sensitization to the 
psychomotor effects of amphetamine and morphine induced by food 
restriction depends on corticosterone secretion. Brain Res 611:352-356. 

Di Chiara G (1998) A motivational learning hypothesis of the role of mesolimbic 
dopamine in compulsive drug use. J Psychopharmacol 12:54-67. 

Di Chiara G, Imperato A (1988) Drugs abused by humans preferentially increase 
synaptic dopamine concentrations in the mesolimbic system of freely 
moving rats. Proc Natl Acad Sci U S A 85:5274-5278. 

Di Ciano P, Everitt BJ (2001) Dissociable effects of antagonism of NMDA and 
AMPA/KA receptors in the nucleus accumbens core and shell on cocaine-
seeking behavior. Neuropsychopharmacology 25:341-360. 

Di Ciano P, Everitt BJ (2003) Differential control over drug-seeking behavior by 
drug-associated conditioned reinforcers and discriminative stimuli predictive 
of drug availability. Behav Neurosci 117:952-960. 

Di Ciano P, Everitt BJ (2004a) Conditioned reinforcing properties of stimuli paired 
with self-administered cocaine, heroin or sucrose: implications for the 
persistence of addictive behaviour. Neuropharmacology 47 Suppl 1:202-
213. 

Di Ciano P, Everitt BJ (2004b) Direct interactions between the basolateral 
amygdala and nucleus accumbens core underlie cocaine-seeking behavior 
by rats. J Neurosci 24:7167-7173. 

Di Ciano P, Everitt BJ (2005) Neuropsychopharmacology of drug seeking: Insights 
from studies with second-order schedules of drug reinforcement. Eur J 
Pharmacol 526:186-198. 

Di Ciano P, Cardinal RN, Cowell RA, Little SJ, Everitt BJ (2001) Differential 
involvement of NMDA, AMPA/kainate, and dopamine receptors in the 
nucleus accumbens core in the acquisition and performance of pavlovian 
approach behavior. J Neurosci 21:9471-9477. 

Dickinson A (1985) Actions and habits: the development of behavioural autonomy. 
Philos Trans R Soc Lond B Biol Sci 308:67-78. 

Dickinson A, Dearing MF (1979) Appetitive-aversive interactions and inhibitory 
processes. In: Mechanisms of learning and motivation : a memorial volume 



323 
 

to Jerzy Konorski (Dickinson A, Boakes R, eds), pp 203-231. Hillsdale, N.J.: 
Erlbaum ; New York ; London : Distributed by Wiley. 

Dickinson A, Nicholas DJ (1983a) Irrelevant incentive learning during training on 
ratio and interval schedules. The Quarterly Journal of Experimental 
Psychology Section B: Comparative and Physiological Psychology 35:235 - 
247. 

Dickinson A, Nicholas DJ (1983b) Irrelevant incentive learning during instrumental 
conditioning: The role of the drive-reinforcer and response-reinforcer 
relationships. The Quarterly Journal of Experimental Psychology Section B: 
Comparative and Physiological Psychology 35:249 - 263. 

Dickinson A, Balleine B (1994) Motivational Control of Goal-Directed Action. 
Animal Learning & Behavior 22:1-18. 

Dickinson A, Balleine B (2002) The role of learning in the operation of motivational 
systems. In: Stephens' handbook of experimental psychology: learning, 
motivation and emotion (Gallistel CR, ed), pp 497-534. New York ; 
[Chichester]: Wiley. 

Dickinson A, Nicholas DJ, Adams CD (1983) The effect of the instrumental training 
contingency on susceptibility to reinforcer devaluation. The Quarterly 
Journal of Experimental Psychology Section B: Comparative and 
Physiological Psychology 35:35 - 51. 

Dickinson A, Smith J, Mirenowicz J (2000) Dissociation of Pavlovian and 
instrumental incentive learning under dopamine antagonists. Behav 
Neurosci 114:468-483. 

Dickinson A, Balleine B, Watt A, Gonzalez F, Boakes RA (1995) Motivational 
control after extended instrumental training. Animal Learning & Behavior 
23:197-206. 

Diez M, Koistinaho J, Kahn K, Games D, Hokfelt T (2000) Neuropeptides in 
hippocampus and cortex in transgenic mice overexpressing V717F beta-
amyloid precursor protein--initial observations. Neuroscience 100:259-286. 

Dixon CI, Morris HV, Breen G, Desrivieres S, Jugurnauth S, Steiner RC, Vallada H, 
Guindalini C, Laranjeira R, Messas G, Rosahl TW, Atack JR, Peden DR, 
Belelli D, Lambert JJ, King SL, Schumann G, Stephens DN (2010) Cocaine 
effects on mouse incentive-learning and human addiction are linked to 
alpha2 subunit-containing GABAA receptors. Proc Natl Acad Sci U S A 
107:2289-2294. 

Doherty AJ, Palmer MJ, Henley JM, Collingridge GL, Jane DE (1997) (RS)-2-
chloro-5-hydroxyphenylglycine (CHPG) activates mGlu5, but no mGlu1, 
receptors expressed in CHO cells and potentiates NMDA responses in the 
hippocampus. Neuropharmacology 36:265-267. 

Dong Y, Saal D, Thomas M, Faust R, Bonci A, Robinson T, Malenka RC (2004) 
Cocaine-induced potentiation of synaptic strength in dopamine neurons: 
behavioral correlates in GluRA(-/-) mice. Proc Natl Acad Sci U S A 
101:14282-14287. 

Dravolina OA, Danysz W, Bespalov AY (2006) Effects of group I metabotropic 
glutamate receptor antagonists on the behavioral sensitization to motor 
effects of cocaine in rats. Psychopharmacology (Berl) 187:397-404. 



324 
 

Dubois A, Savasta M, Curet O, Scatton B (1986) Autoradiographic distribution of 
the D1 agonist [3H]SKF 38393, in the rat brain and spinal cord. Comparison 
with the distribution of D2 dopamine receptors. Neuroscience 19:125-137. 

Durieux PF, Bearzatto B, Guiducci S, Buch T, Waisman A, Zoli M, Schiffmann SN, 
de Kerchove d'Exaerde A (2009) D2R striatopallidal neurons inhibit both 
locomotor and drug reward processes. Nat Neurosci 12:393-395. 

El-Amamy H, Holland PC (2007) Dissociable effects of disconnecting amygdala 
central nucleus from the ventral tegmental area or substantia nigra on 
learned orienting and incentive motivation. Eur J Neurosci 25:1557-1567. 

Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001) 
Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured 
mammalian cells. Nature 411:494-498. 

Engblom D, Bilbao A, Sanchis-Segura C, Dahan L, Perreau-Lenz S, Balland B, 
Parkitna JR, Lujan R, Halbout B, Mameli M, Parlato R, Sprengel R, Luscher 
C, Schutz G, Spanagel R (2008) Glutamate receptors on dopamine neurons 
control the persistence of cocaine seeking. Neuron 59:497-508. 

Estes WK (1948) Discriminative conditioning; effects of a Pavlovian conditioned 
stimulus upon a subsequently established operant response. J Exp Psychol 
38:173-177. 

Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from 
mouse embryos. Nature 292:154-156. 

Everitt BJ, Robbins TW (1992) Amygdala-ventral striatal interactions and reward-
related processes. In: The amygdala, 2nd ed. Edition (Aggleton JP, ed), pp 
401-430. New York: John Wiley & Sons Inc. 

Everitt BJ, Robbins TW (2000) Second-order schedules of drug reinforcement in 
rats and monkeys: measurement of reinforcing efficacy and drug-seeking 
behaviour. Psychopharmacology (Berl) 153:17-30. 

Everitt BJ, Robbins TW (2005) Neural systems of reinforcement for drug addiction: 
from actions to habits to compulsion. Nat Neurosci 8:1481-1489. 

Everitt BJ, Dickinson A, Robbins TW (2001) The neuropsychological basis of 
addictive behaviour. Brain Res Brain Res Rev 36:129-138. 

Everitt BJ, Morris KA, O'Brien A, Robbins TW (1991) The basolateral amygdala-
ventral striatal system and conditioned place preference: further evidence of 
limbic-striatal interactions underlying reward-related processes. 
Neuroscience 42:1-18. 

Everitt BJ, Parkinson JA, Olmstead MC, Arroyo M, Robledo P, Robbins TW (1999) 
Associative processes in addiction and reward. The role of amygdala-ventral 
striatal subsystems. Ann N Y Acad Sci 877:412-438. 

Fagni L, Chavis P, Ango F, Bockaert J (2000) Complex interactions between 
mGluRs, intracellular Ca2+ stores and ion channels in neurons. Trends 
Neurosci 23:80-88. 

Famous KR, Kumaresan V, Sadri-Vakili G, Schmidt HD, Mierke DF, Cha JH, 
Pierce RC (2008) Phosphorylation-dependent trafficking of GluR2-
containing AMPA receptors in the nucleus accumbens plays a critical role in 
the reinstatement of cocaine seeking. J Neurosci 28:11061-11070. 



325 
 

Faure A, Haberland U, Conde F, El Massioui N (2005) Lesion to the nigrostriatal 
dopamine system disrupts stimulus-response habit formation. J Neurosci 
25:2771-2780. 

Feder A, Nestler EJ, Charney DS (2009) Psychobiology and molecular genetics of 
resilience. Nat Rev Neurosci 10:446-457. 

Feligioni M, Raiteri L, Pattarini R, Grilli M, Bruzzone S, Cavazzani P, Raiteri M, 
Pittaluga A (2003) The human immunodeficiency virus-1 protein Tat and its 
discrete fragments evoke selective release of acetylcholine from human and 
rat cerebrocortical terminals through species-specific mechanisms. J 
Neurosci 23:6810-6818. 

Fendt M, Schmid S (2002) Metabotropic glutamate receptors are involved in 
amygdaloid plasticity. Eur J Neurosci 15:1535-1541. 

Ferguson SM, Robinson TE (2004) Amphetamine-evoked gene expression in 
striatopallidal neurons: regulation by corticostriatal afferents and the 
ERK/MAPK signaling cascade. J Neurochem 91:337-348. 

Ferguson SM, Fasano S, Yang P, Brambilla R, Robinson TE (2006) Knockout of 
ERK1 enhances cocaine-evoked immediate early gene expression and 
behavioral plasticity. Neuropsychopharmacology 31:2660-2668. 

Ferrario CR, Gorny G, Crombag HS, Li Y, Kolb B, Robinson TE (2005) Neural and 
behavioral plasticity associated with the transition from controlled to 
escalated cocaine use. Biol Psychiatry 58:751-759. 

Finley JC, Maderdrut JL, Petrusz P (1981) The immunocytochemical localization of 
enkephalin in the central nervous system of the rat. J Comp Neurol 198:541-
565. 

Fitzgerald LW, Ortiz J, Hamedani AG, Nestler EJ (1996) Drugs of abuse and stress 
increase the expression of GluR1 and NMDAR1 glutamate receptor 
subunits in the rat ventral tegmental area: common adaptations among 
cross-sensitizing agents. J Neurosci 16:274-282. 

Fitzjohn SM, Irving AJ, Palmer MJ, Harvey J, Lodge D, Collingridge GL (1996) 
Activation of group I mGluRs potentiates NMDA responses in rat 
hippocampal slices. Neurosci Lett 203:211-213. 

Flagel SB, Robinson TE (2007) Quantifying the psychomotor activating effects of 
cocaine in the rat. Behav Pharmacol 18:297-302. 

Flagel SB, Akil H, Robinson TE (2009) Individual differences in the attribution of 
incentive salience to reward-related cues: Implications for addiction. 
Neuropharmacology 56 Suppl 1:139-148. 

Flagel SB, Watson SJ, Akil H, Robinson TE (2008) Individual differences in the 
attribution of incentive salience to a reward-related cue: influence on 
cocaine sensitization. Behav Brain Res 186:48-56. 

Flagel SB, Clark JJ, Robinson TE, Mayo L, Czuj A, Willuhn I, Akers CA, Clinton 
SM, Phillips PE, Akil H (2010) A selective role for dopamine in stimulus-
reward learning. Nature 469:53-57. 

Flinn L, Bretaud S, Lo C, Ingham PW, Bandmann O (2008) Zebrafish as a new 
animal model for movement disorders. J Neurochem 106:1991-1997. 

Floresco SB, Yang CR, Phillips AG, Blaha CD (1998) Basolateral amygdala 
stimulation evokes glutamate receptor-dependent dopamine efflux in the 
nucleus accumbens of the anaesthetized rat. Eur J Neurosci 10:1241-1251. 



326 
 

Fourgeaud L, Mato S, Bouchet D, Hemar A, Worley PF, Manzoni OJ (2004) A 
single in vivo exposure to cocaine abolishes endocannabinoid-mediated 
long-term depression in the nucleus accumbens. J Neurosci 24:6939-6945. 

Franklin KBJ, Paxinos G (2008) The mouse brain in stereotaxic coordinates, 
Compact 3rd ed. / Keith B.J. Franklin, George Paxinos. Edition. Amsterdam 
; London: Elsevier Academic Press. 

Fraser AG, Kamath RS, Zipperlen P, Martinez-Campos M, Sohrmann M, Ahringer 
J (2000) Functional genomic analysis of C. elegans chromosome I by 
systematic RNA interference. Nature 408:325-330. 

Fremeau RT, Jr., Duncan GE, Fornaretto MG, Dearry A, Gingrich JA, Breese GR, 
Caron MG (1991) Localization of D1 dopamine receptor mRNA in brain 
supports a role in cognitive, affective, and neuroendocrine aspects of 
dopaminergic neurotransmission. Proc Natl Acad Sci U S A 88:3772-3776. 

French SJ, Totterdell S (2002) Hippocampal and prefrontal cortical inputs 
monosynaptically converge with individual projection neurons of the nucleus 
accumbens. J Comp Neurol 446:151-165. 

French SJ, Totterdell S (2003) Individual nucleus accumbens-projection neurons 
receive both basolateral amygdala and ventral subicular afferents in rats. 
Neuroscience 119:19-31. 

Freund TF, Powell JF, Smith AD (1984) Tyrosine hydroxylase-immunoreactive 
boutons in synaptic contact with identified striatonigral neurons, with 
particular reference to dendritic spines. Neuroscience 13:1189-1215. 

Fritts ME, Mueller K, Morris L (1997) Amphetamine-induced locomotor stereotypy 
in rats is reduced by a D1 but not a D2 antagonist. Pharmacol Biochem 
Behav 58:1015-1019. 

Fuchs RA, Weber SM, Rice HJ, Neisewander JL (2002) Effects of excitotoxic 
lesions of the basolateral amygdala on cocaine-seeking behavior and 
cocaine conditioned place preference in rats. Brain Res 929:15-25. 

Fudge JL, Haber SN (2000) The central nucleus of the amygdala projection to 
dopamine subpopulations in primates. Neuroscience 97:479-494. 

Galarce EM, Crombag HS, Holland PC (2007) Reinforcer-specificity of appetitive 
and consummatory behavior of rats after Pavlovian conditioning with food 
reinforcers. Physiol Behav 91:95-105. 

Gao X, Zhang P (2007) Transgenic RNA interference in mice. Physiology 
(Bethesda) 22:161-166. 

Garavan H, Pankiewicz J, Bloom A, Cho JK, Sperry L, Ross TJ, Salmeron BJ, 
Risinger R, Kelley D, Stein EA (2000) Cue-induced cocaine craving: 
neuroanatomical specificity for drug users and drug stimuli. Am J Psychiatry 
157:1789-1798. 

Garbett KA, Horvath S, Ebert PJ, Schmidt MJ, Lwin K, Mitchell A, Levitt P, Mirnics 
K (2010) Novel animal models for studying complex brain disorders: BAC-
driven miRNA-mediated in vivo silencing of gene expression. Mol 
Psychiatry. 

Gasparini F, Lingenhohl K, Stoehr N, Flor PJ, Heinrich M, Vranesic I, Biollaz M, 
Allgeier H, Heckendorn R, Urwyler S, Varney MA, Johnson EC, Hess SD, 
Rao SP, Sacaan AI, Santori EM, Velicelebi G, Kuhn R (1999) 2-Methyl-6-



327 
 

(phenylethynyl)-pyridine (MPEP), a potent, selective and systemically active 
mGlu5 receptor antagonist. Neuropharmacology 38:1493-1503. 

Gass JT, Olive MF (2009) Positive allosteric modulation of mGluR5 receptors 
facilitates extinction of a cocaine contextual memory. Biol Psychiatry 
65:717-720. 

Gass JT, Osborne MP, Watson NL, Brown JL, Olive MF (2008) mGluR5 
Antagonism Attenuates Methamphetamine Reinforcement and Prevents 
Reinstatement of Methamphetamine-Seeking Behavior in Rats. 
Neuropsychopharmacology. 

Gass JT, Osborne MP, Watson NL, Brown JL, Olive MF (2009) mGluR5 
antagonism attenuates methamphetamine reinforcement and prevents 
reinstatement of methamphetamine-seeking behavior in rats. 
Neuropsychopharmacology 34:820-833. 

George SA, Hutson PH, Stephens DN (2009) Differential effects of MPEP and 
diazepam in tests of conditioned emotional response and Pavlovian-to-
instrumental transfer suggests 'anxiolytic' effects are mediated by different 
mechanisms. Psychopharmacology (Berl) 204:499-509. 

Gerdeman G, Lovinger DM (2001) CB1 cannabinoid receptor inhibits synaptic 
release of glutamate in rat dorsolateral striatum. J Neurophysiol 85:468-471. 

Gerfen CR (1992) The neostriatal mosaic: multiple levels of compartmental 
organization in the basal ganglia. Annu Rev Neurosci 15:285-320. 

Gerfen CR, Young WS, 3rd (1988) Distribution of striatonigral and striatopallidal 
peptidergic neurons in both patch and matrix compartments: an in situ 
hybridization histochemistry and fluorescent retrograde tracing study. Brain 
Res 460:161-167. 

Gerfen CR, Herkenham M, Thibault J (1987) The neostriatal mosaic: II. Patch- and 
matrix-directed mesostriatal dopaminergic and non-dopaminergic systems. J 
Neurosci 7:3915-3934. 

Gerfen CR, Engber TM, Mahan LC, Susel Z, Chase TN, Monsma FJ, Jr., Sibley 
DR (1990) D1 and D2 dopamine receptor-regulated gene expression of 
striatonigral and striatopallidal neurons. Science 250:1429-1432. 

Gerlai R (1996) Gene-targeting studies of mammalian behavior: is it the mutation 
or the background genotype? Trends Neurosci 19:177-181. 

Ghasemzadeh MB, Mueller C, Vasudevan P (2009a) Behavioral sensitization to 
cocaine is associated with increased glutamate receptor trafficking to the 
postsynaptic density after extended withdrawal period. Neuroscience 
159:414-426. 

Ghasemzadeh MB, Nelson LC, Lu XY, Kalivas PW (1999) Neuroadaptations in 
ionotropic and metabotropic glutamate receptor mRNA produced by cocaine 
treatment. J Neurochem 72:157-165. 

Ghasemzadeh MB, Vasudevan P, Mueller C, Seubert C, Mantsch JR (2009b) 
Neuroadaptations in the cellular and postsynaptic group 1 metabotropic 
glutamate receptor mGluR5 and Homer proteins following extinction of 
cocaine self-administration. Neurosci Lett 452:167-171. 

Girault JA, Valjent E, Caboche J, Herve D (2007) ERK2: a logical AND gate critical 
for drug-induced plasticity? Curr Opin Pharmacol 7:77-85. 



328 
 

Giros B, Jaber M, Jones SR, Wightman RM, Caron MG (1996) Hyperlocomotion 
and indifference to cocaine and amphetamine in mice lacking the dopamine 
transporter. Nature 379:606-612. 

Glanzman DL (2005) Associative learning: Hebbian flies. Curr Biol 15:R416-419. 
Glendinning JI, Gresack J, Spector AC (2002) A high-throughput screening 

procedure for identifying mice with aberrant taste and oromotor function. 
Chem Senses 27:461-474. 

Goldberg SR, Kelleher RT, Goldberg DM (1981) Fixed-ratio responding under 
second-order schedules of food presentation or cocaine injection. J 
Pharmacol Exp Ther 218:271-281. 

Golembiowska K, Konieczny J, Wolfarth S, Ossowska K (2003) Neuroprotective 
action of MPEP, a selective mGluR5 antagonist, in methamphetamine-
induced dopaminergic neurotoxicity is associated with a decrease in 
dopamine outflow and inhibition of hyperthermia in rats. Neuropharmacology 
45:484-492. 

Gordon JW, Ruddle FH (1981) Integration and stable germ line transmission of 
genes injected into mouse pronuclei. Science 214:1244-1246. 

Gossen M, Bujard H (1992) Tight control of gene expression in mammalian cells by 
tetracycline-responsive promoters. Proc Natl Acad Sci U S A 89:5547-5551. 

Goto Y, Grace AA (2008) Limbic and cortical information processing in the nucleus 
accumbens. Trends Neurosci 31:552-558. 

Gourley SL, Wu FJ, Kiraly DD, Ploski JE, Kedves AT, Duman RS, Taylor JR (2008) 
Regionally specific regulation of ERK MAP kinase in a model of 
antidepressant-sensitive chronic depression. Biol Psychiatry 63:353-359. 

Grace AA (2000) Gating of information flow within the limbic system and the 
pathophysiology of schizophrenia. Brain Res Brain Res Rev 31:330-341. 

Gravius A, Barberi C, Schafer D, Schmidt WJ, Danysz W (2006) The role of group I 
metabotropic glutamate receptors in acquisition and expression of 
contextual and auditory fear conditioning in rats - a comparison. 
Neuropharmacology 51:1146-1155. 

Gray L, van den Buuse M, Scarr E, Dean B, Hannan AJ (2009) Clozapine reverses 
schizophrenia-related behaviours in the metabotropic glutamate receptor 5 
knockout mouse: association with N-methyl-D-aspartic acid receptor up-
regulation. Int J Neuropsychopharmacol 12:45-60. 

Graybiel AM, Moratalla R, Robertson HA (1990) Amphetamine and cocaine induce 
drug-specific activation of the c-fos gene in striosome-matrix compartments 
and limbic subdivisions of the striatum. Proc Natl Acad Sci U S A 87:6912-
6916. 

Grewal SS, York RD, Stork PJ (1999) Extracellular-signal-regulated kinase 
signalling in neurons. Curr Opin Neurobiol 9:544-553. 

Grimm D, Streetz KL, Jopling CL, Storm TA, Pandey K, Davis CR, Marion P, 
Salazar F, Kay MA (2006) Fatality in mice due to oversaturation of cellular 
microRNA/short hairpin RNA pathways. Nature 441:537-541. 

Grimm JW, Lu L, Hayashi T, Hope BT, Su TP, Shaham Y (2003) Time-dependent 
increases in brain-derived neurotrophic factor protein levels within the 
mesolimbic dopamine system after withdrawal from cocaine: implications for 
incubation of cocaine craving. J Neurosci 23:742-747. 



329 
 

Groenewegen HJ, Vermeulen-Van der Zee E, te Kortschot A, Witter MP (1987) 
Organization of the projections from the subiculum to the ventral striatum in 
the rat. A study using anterograde transport of Phaseolus vulgaris 
leucoagglutinin. Neuroscience 23:103-120. 

Groenewegen HJ, Wright CI, Beijer AV, Voorn P (1999) Convergence and 
segregation of ventral striatal inputs and outputs. Ann N Y Acad Sci 877:49-
63. 

Gubellini P, Saulle E, Centonze D, Bonsi P, Pisani A, Bernardi G, Conquet F, 
Calabresi P (2001) Selective involvement of mGlu1 receptors in 
corticostriatal LTD. Neuropharmacology 40:839-846. 

Gubellini P, Saulle E, Centonze D, Costa C, Tropepi D, Bernardi G, Conquet F, 
Calabresi P (2003) Corticostriatal LTP requires combined mGluR1 and 
mGluR5 activation. Neuropharmacology 44:8-16. 

Haber SN (2003) The primate basal ganglia: parallel and integrative networks. J 
Chem Neuroanat 26:317-330. 

Haber SN, Fudge JL, McFarland NR (2000) Striatonigrostriatal pathways in 
primates form an ascending spiral from the shell to the dorsolateral striatum. 
J Neurosci 20:2369-2382. 

Halberstadt AL, Lehmann-Masten VD, Geyer MA, Powell SB (2010) Interactive 
effects of mGlu5 and 5-HT(2A) receptors on locomotor activity in mice. 
Psychopharmacology (Berl). 

Hall CS (1934) Emotional behavior in the rat. I. Defecation and urination as 
individual differences in emotionality. J Comp Psychol 18:385-403. 

Hall CS (1936) Emotional behavior in the rat. III. The relationship between 
emotionality and ambulatory activity. J Comp Psychol 22. 

Hall J, Parkinson JA, Connor TM, Dickinson A, Everitt BJ (2001) Involvement of the 
central nucleus of the amygdala and nucleus accumbens core in mediating 
Pavlovian influences on instrumental behaviour. Eur J Neurosci 13:1984-
1992. 

Han JS, McMahan RW, Holland P, Gallagher M (1997) The role of an amygdalo-
nigrostriatal pathway in associative learning. J Neurosci 17:3913-3919. 

Hannon GJ (2002) RNA interference. Nature 418:244-251. 
Hao Y, Martin-Fardon R, Weiss F (2010) Behavioral and functional evidence of 

metabotropic glutamate receptor 2/3 and metabotropic glutamate receptor 5 
dysregulation in cocaine-escalated rats: factor in the transition to 
dependence. Biol Psychiatry 68:240-248. 

Haracz JL, Belanger SA, MacDonall JS, Sircar R (1995) Antagonist of N-methyl-D-
aspartate receptors partially prevent the development of cocaine 
sensitization. Life Sci 57:2347-2357. 

Harmer CJ, Phillips GD (1998) Enhanced appetitive conditioning following 
repeated pretreatment with d-amphetamine. Behav Pharmacol 9:299-308. 

Harmer CJ, Phillips GD (1999) Enhanced dopamine efflux in the amygdala by a 
predictive, but not a non-predictive, stimulus: facilitation by prior repeated D-
amphetamine. Neuroscience 90:119-130. 

Harris GC, Aston-Jones G (2003) Critical role for ventral tegmental glutamate in 
preference for a cocaine-conditioned environment. 
Neuropsychopharmacology 28:73-76. 



330 
 

Hayward MD, Pintar JE, Low MJ (2002) Selective reward deficit in mice lacking 
beta-endorphin and enkephalin. J Neurosci 22:8251-8258. 

Hearst E, Jenkins H (1974) Sign-tracking: The stimulus-reinforcer relation and 
directed action. Proc Psychonomic Soc:1-49. 

Heimer L, Van Hoesen GW (2006) The limbic lobe and its output channels: 
implications for emotional functions and adaptive behavior. Neurosci 
Biobehav Rev 30:126-147. 

Heimer L, Zahm DS, Churchill L, Kalivas PW, Wohltmann C (1991) Specificity in 
the projection patterns of accumbal core and shell in the rat. Neuroscience 
41:89-125. 

Henton WW, Brady JV (1970) Operant acceleration during a pre-reward stimulus. J 
Exp Anal Behav 13:205-209. 

Hernandez PJ, Sadeghian K, Kelley AE (2002) Early consolidation of instrumental 
learning requires protein synthesis in the nucleus accumbens. Nat Neurosci 
5:1327-1331. 

Hernandez PJ, Andrzejewski ME, Sadeghian K, Panksepp JB, Kelley AE (2005) 
AMPA/kainate, NMDA, and dopamine D1 receptor function in the nucleus 
accumbens core: a context-limited role in the encoding and consolidation of 
instrumental memory. Learn Mem 12:285-295. 

Herrero I, Miras-Portugal MT, Sanchez-Prieto J (1992) Positive feedback of 
glutamate exocytosis by metabotropic presynaptic receptor stimulation. 
Nature 360:163-166. 

Herzig V, Schmidt WJ (2004) Effects of MPEP on locomotion, sensitization and 
conditioned reward induced by cocaine or morphine. Neuropharmacology 
47:973-984. 

Herzig V, Capuani EM, Kovar KA, Schmidt WJ (2005) Effects of MPEP on 
expression of food-, MDMA- or amphetamine-conditioned place preference 
in rats. Addict Biol 10:243-249. 

Heusner CL, Palmiter RD (2005) Expression of mutant NMDA receptors in 
dopamine D1 receptor-containing cells prevents cocaine sensitization and 
decreases cocaine preference. J Neurosci 25:6651-6657. 

Heyser CJ (2003) Assessment of developmental milestones in rodents. In: Current 
Protocols in Neuroscience, pp 8.18.11-18.18.15. New York: Wiley. 

Highfield DA, Mead AN, Grimm JW, Rocha BA, Shaham Y (2002) Reinstatement 
of cocaine seeking in 129X1/SvJ mice: effects of cocaine priming, cocaine 
cues and food deprivation. Psychopharmacology (Berl) 161:417-424. 

Hiji Y (1969) Gustatory response and preference behavior in alloxan diabetic rats. 
Kumamoto Med J 22:109-118. 

Hitchcott PK, Phillips GD (1997) Amygdala and hippocampus control dissociable 
aspects of drug-associated conditioned rewards. Psychopharmacology 
(Berl) 131:187-195. 

Hitchcott PK, Phillips GD (1998) Double dissociation of the behavioural effects of 
R(+) 7-OH-DPAT infusions in the central and basolateral amygdala nuclei 
upon Pavlovian and instrumental conditioned appetitive behaviours. 
Psychopharmacology (Berl) 140:458-469. 



331 
 

Hitchcott PK, Bonardi CM, Phillips GD (1997) Enhanced stimulus-reward learning 
by intra-amygdala administration of a D3 dopamine receptor agonist. 
Psychopharmacology (Berl) 133:240-248. 

Hodge CW, Miles MF, Sharko AC, Stevenson RA, Hillmann JR, Lepoutre V, 
Besheer J, Schroeder JP (2006) The mGluR5 antagonist MPEP selectively 
inhibits the onset and maintenance of ethanol self-administration in 
C57BL/6J mice. Psychopharmacology (Berl) 183:429-438. 

Hodgkin J (1998) Seven types of pleiotropy. Int J Dev Biol 42:501-505. 
Hogarth L, Dickinson A, Wright A, Kouvaraki M, Duka T (2007) The role of drug 

expectancy in the control of human drug seeking. J Exp Psychol Anim 
Behav Process 33:484-496. 

Holland PC (1977) Conditioned stimulus as a determinant of the form of the 
Pavlovian conditioned response. J Exp Psychol Anim Behav Process 3:77-
104. 

Holland PC (1980) Influence of visual conditioned stimulus characteristics on the 
form of Pavlovian appetitive conditioned responding in rats. J Exp Psychol 
Anim Behav Process 6:81-97. 

Holland PC (1990) Event representation in Pavlovian conditioning: image and 
action. Cognition 37:105-131. 

Holland PC (2004) Relations between Pavlovian-instrumental transfer and 
reinforcer devaluation. J Exp Psychol Anim Behav Process 30:104-117. 

Holland PC, Gallagher M (2003) Double dissociation of the effects of lesions of 
basolateral and central amygdala on conditioned stimulus-potentiated 
feeding and Pavlovian-instrumental transfer. Eur J Neurosci 17:1680-1694. 

Holland PC, Petrovich GD (2005) A neural systems analysis of the potentiation of 
feeding by conditioned stimuli. Physiol Behav 86:747-761. 

Hollerman JR, Grace AA (1992) Subthalamic nucleus cell firing in the 6-OHDA-
treated rat: basal activity and response to haloperidol. Brain Res 590:291-
299. 

Holmes NM, Marchand AR, Coutureau E (2010) Pavlovian to instrumental transfer: 
a neurobehavioural perspective. Neurosci Biobehav Rev 34:1277-1295. 

Homayoun H, Moghaddam B (2009) Differential representation of Pavlovian-
instrumental transfer by prefrontal cortex subregions and striatum. Eur J 
Neurosci 29:1461-1476. 

Hong JS, Yang HY, Racagni G, Costa E (1977) Projections of substance P 
containing neurons from neostriatum to substantia nigra. Brain Res 
122:541-544. 

Hope B, Kosofsky B, Hyman SE, Nestler EJ (1992) Regulation of immediate early 
gene expression and AP-1 binding in the rat nucleus accumbens by chronic 
cocaine. Proc Natl Acad Sci U S A 89:5764-5768. 

Hope BT, Nye HE, Kelz MB, Self DW, Iadarola MJ, Nakabeppu Y, Duman RS, 
Nestler EJ (1994) Induction of a long-lasting AP-1 complex composed of 
altered Fos-like proteins in brain by chronic cocaine and other chronic 
treatments. Neuron 13:1235-1244. 

Horner KC, Barkway C (1986) Central auditory function in a hearing-impaired white 
mouse. Hear Res 23:71-79. 



332 
 

Hrabetova S, Serrano P, Blace N, Tse HW, Skifter DA, Jane DE, Monaghan DT, 
Sacktor TC (2000) Distinct NMDA receptor subpopulations contribute to 
long-term potentiation and long-term depression induction. J Neurosci 
20:RC81. 

Hsu E, Packard MG (2008) Medial prefrontal cortex infusions of bupivacaine or AP-
5 block extinction of amphetamine conditioned place preference. Neurobiol 
Learn Mem 89:504-512. 

Hu G, Duffy P, Swanson C, Ghasemzadeh MB, Kalivas PW (1999) The regulation 
of dopamine transmission by metabotropic glutamate receptors. J 
Pharmacol Exp Ther 289:412-416. 

Huber KM, Kayser MS, Bear MF (2000) Role for rapid dendritic protein synthesis in 
hippocampal mGluR-dependent long-term depression. Science 288:1254-
1257. 

Hubert GW, Paquet M, Smith Y (2001) Differential subcellular localization of 
mGluR1a and mGluR5 in the rat and monkey Substantia nigra. J Neurosci 
21:1838-1847. 

Hughes RN (1968) Behaviour of male and female rats with free choice of two 
environments differing in novelty. Anim Behav 16:92-96. 

Humphries MD, Prescott TJ (2010) The ventral basal ganglia, a selection 
mechanism at the crossroads of space, strategy, and reward. Prog 
Neurobiol 90:385-417. 

Hyman SE, Malenka RC (2001) Addiction and the brain: the neurobiology of 
compulsion and its persistence. Nat Rev Neurosci 2:695-703. 

Hyman SE, Malenka RC, Nestler EJ (2006) Neural mechanisms of addiction: the 
role of reward-related learning and memory. Annu Rev Neurosci 29:565-
598. 

Ikemoto S (2007) Dopamine reward circuitry: two projection systems from the 
ventral midbrain to the nucleus accumbens-olfactory tubercle complex. 
Brain research reviews 56:27-78. 

Inglis WL, Olmstead MC, Robbins TW (2000) Pedunculopontine tegmental nucleus 
lesions impair stimulus--reward learning in autoshaping and conditioned 
reinforcement paradigms. Behav Neurosci 114:285-294. 

Irwin S (1968) Comprehensive observational assessment: Ia. A systematic, 
quantitative procedure for assessing the behavioral and physiologic state of 
the mouse. Psychopharmacologia 13:222-257. 

Ito R, Robbins TW, Everitt BJ (2004) Differential control over cocaine-seeking 
behavior by nucleus accumbens core and shell. Nat Neurosci 7:389-397. 

Ito R, Robbins TW, McNaughton BL, Everitt BJ (2006) Selective excitotoxic lesions 
of the hippocampus and basolateral amygdala have dissociable effects on 
appetitive cue and place conditioning based on path integration in a novel Y-
maze procedure. Eur J Neurosci 23:3071-3080. 

Ito R, Robbins TW, Pennartz CM, Everitt BJ (2008) Functional interaction between 
the hippocampus and nucleus accumbens shell is necessary for the 
acquisition of appetitive spatial context conditioning. J Neurosci 28:6950-
6959. 

Ito R, Dalley JW, Howes SR, Robbins TW, Everitt BJ (2000) Dissociation in 
conditioned dopamine release in the nucleus accumbens core and shell in 



333 
 

response to cocaine cues and during cocaine-seeking behavior in rats. J 
Neurosci 20:7489-7495. 

Jaenisch R (1976) Germ line integration and Mendelian transmission of the 
exogenous Moloney leukemia virus. Proc Natl Acad Sci U S A 73:1260-
1264. 

Jenkins HM, Moore BR (1973) The form of the auto-shaped response with food or 
water reinforcers. J Exp Anal Behav 20:163-181. 

Jenkins HM, Barrera FJ, Ireland C, Woodside B (1978) Signal-centered action 
patterns of dogs in appetitive classical conditioning. Learning and Motivation 
9:272-296. 

Jo J, Heon S, Kim MJ, Son GH, Park Y, Henley JM, Weiss JL, Sheng M, 
Collingridge GL, Cho K (2008) Metabotropic glutamate receptor-mediated 
LTD involves two interacting Ca(2+) sensors, NCS-1 and PICK1. Neuron 
60:1095-1111. 

Johnson AW, Gallagher M, Holland PC (2009) The basolateral amygdala is critical 
to the expression of pavlovian and instrumental outcome-specific reinforcer 
devaluation effects. J Neurosci 29:696-704. 

Johnson AW, Bannerman D, Rawlins N, Sprengel R, Good MA (2007a) Targeted 
deletion of the GluR-1 AMPA receptor in mice dissociates general and 
outcome-specific influences of appetitive rewards on learning. Behav 
Neurosci 121:1192-1202. 

Johnson AW, Crombag HS, Takamiya K, Baraban JM, Holland PC, Huganir RL, 
Reti IM (2007b) A selective role for neuronal activity regulated pentraxin in 
the processing of sensory-specific incentive value. J Neurosci 27:13430-
13435. 

Kaddis FG, Uretsky NJ, Wallace LJ (1995) DNQX in the nucleus accumbens 
inhibits cocaine-induced conditioned place preference. Brain Res 697:76-82. 

Kalivas PW (2000) A role for glutamate transmission in addiction to 
psychostimulants. Addict Biol 5:325-329. 

Kalivas PW (2004) Glutamate systems in cocaine addiction. Curr Opin Pharmacol 
4:23-29. 

Kalivas PW (2009) The glutamate homeostasis hypothesis of addiction. Nat Rev 
Neurosci 10:561-572. 

Kalivas PW, Alesdatter JE (1993) Involvement of N-methyl-D-aspartate receptor 
stimulation in the ventral tegmental area and amygdala in behavioral 
sensitization to cocaine. J Pharmacol Exp Ther 267:486-495. 

Kalivas PW, Duffy P (1998) Repeated cocaine administration alters extracellular 
glutamate in the ventral tegmental area. J Neurochem 70:1497-1502. 

Kalivas PW, Volkow ND (2005) The neural basis of addiction: a pathology of 
motivation and choice. Am J Psychiatry 162:1403-1413. 

Kalivas PW, O'Brien C (2008) Drug addiction as a pathology of staged 
neuroplasticity. Neuropsychopharmacology 33:166-180. 

Kalivas PW, Duffy P, DuMars LA, Skinner C (1988) Behavioral and neurochemical 
effects of acute and daily cocaine administration in rats. J Pharmacol Exp 
Ther 245:485-492. 



334 
 

Karim F, Wang CC, Gereau RWt (2001) Metabotropic glutamate receptor subtypes 
1 and 5 are activators of extracellular signal-regulated kinase signaling 
required for inflammatory pain in mice. J Neurosci 21:3771-3779. 

Karler R, Calder LD, Turkanis SA (1991) DNQX blockade of amphetamine 
behavioral sensitization. Brain Res 552:295-300. 

Karler R, Calder LD, Chaudhry IA, Turkanis SA (1989) Blockade of "reverse 
tolerance" to cocaine and amphetamine by MK-801. Life Sci 45:599-606. 

Karler R, Chaudhry IA, Calder LD, Turkanis SA (1990) Amphetamine behavioral 
sensitization and the excitatory amino acids. Brain Res 537:76-82. 

Kauer JA, Malenka RC (2007) Synaptic plasticity and addiction. Nat Rev Neurosci 
8:844-858. 

Kawaguchi Y, Wilson CJ, Augood SJ, Emson PC (1995) Striatal interneurones: 
chemical, physiological and morphological characterization. Trends 
Neurosci 18:527-535. 

Kearns DN, Weiss SJ (2004) Sign-tracking (autoshaping) in rats: a comparison of 
cocaine and food as unconditioned stimuli. Learn Behav 32:463-476. 

Kelleher RT (1966) Conditioned reinforcement in second-order schedules. J Exp 
Anal Behav 9:475-485. 

Kelley AE (2004) Memory and Addiction: Shared Neural Circuitry and Molecular 
Mechanisms. 44:161-179. 

Kelley AE, Smith-Roe SL, Holahan MR (1997) Response-reinforcement learning is 
dependent on N-methyl-D-aspartate receptor activation in the nucleus 
accumbens core. Proc Natl Acad Sci U S A 94:12174-12179. 

Kelley AE, Andrzejewski ME, Baldwin AE, Hernandez PJ, Pratt WE (2003) 
Glutamate-mediated plasticity in corticostriatal networks: role in adaptive 
motor learning. Ann N Y Acad Sci 1003:159-168. 

Kelly L, Farrant M, Cull-Candy SG (2009) Synaptic mGluR activation drives 
plasticity of calcium-permeable AMPA receptors. Nat Neurosci 12:593-601. 

Kelly PH, Seviour PW, Iversen SD (1975) Amphetamine and apomorphine 
responses in the rat following 6-OHDA lesions of the nucleus accumbens 
septi and corpus striatum. Brain Res 94:507-522. 

Kelso SR, Nelson TE, Leonard JP (1992) Protein kinase C-mediated enhancement 
of NMDA currents by metabotropic glutamate receptors in Xenopus oocytes. 
J Physiol 449:705-718. 

Kemp JM, Powell TP (1971) The termination of fibres from the cerebral cortex and 
thalamus upon dendritic spines in the caudate nucleus: a study with the 
Golgi method. Philos Trans R Soc Lond B Biol Sci 262:429-439. 

Kenny PJ, Boutrel B, Gasparini F, Koob GF, Markou A (2005) Metabotropic 
glutamate 5 receptor blockade may attenuate cocaine self-administration by 
decreasing brain reward function in rats. Psychopharmacology (Berl) 
179:247-254. 

Kessels HW, Malinow R (2009) Synaptic AMPA receptor plasticity and behavior. 
Neuron 61:340-350. 

Kew JN, Kemp JA (2005) Ionotropic and metabotropic glutamate receptor structure 
and pharmacology. Psychopharmacology (Berl) 179:4-29. 



335 
 

Khan MA, Shoaib M (1996) Neuroanatomical localization of the effects of (+)-
HA966 on locomotor activity after cocaine injections to the nucleus 
accumbens of rats. Brain Res 719:198-202. 

Killcross S, Coutureau E (2003) Coordination of actions and habits in the medial 
prefrontal cortex of rats. Cereb Cortex 13:400-408. 

Kim HS, Park WK, Jang CG, Oh S (1996) Inhibition by MK-801 of cocaine-induced 
sensitization, conditioned place preference, and dopamine-receptor 
supersensitivity in mice. Brain Res Bull 40:201-207. 

Kim JH, Perugini M, Austin JD, Vezina P (2001) Previous exposure to 
amphetamine enhances the subsequent locomotor response to a D1 
dopamine receptor agonist when glutamate reuptake is inhibited. J Neurosci 
21:RC133. 

Kim Y, Teylan MA, Baron M, Sands A, Nairn AC, Greengard P (2009) 
Methylphenidate-induced dendritic spine formation and DeltaFosB 
expression in nucleus accumbens. Proc Natl Acad Sci U S A 106:2915-
2920. 

Kita H, Kitai ST (1988) Glutamate decarboxylase immunoreactive neurons in rat 
neostriatum: their morphological types and populations. Brain Res 447:346-
352. 

Klodzinska A, Tatarczynska E, Chojnacka-Wojcik E, Nowak G, Cosford ND, Pilc A 
(2004) Anxiolytic-like effects of MTEP, a potent and selective mGlu5 
receptor agonist does not involve GABA(A) signaling. Neuropharmacology 
47:342-350. 

Kolber BJ, Montana MC, Carrasquillo Y, Xu J, Heinemann SF, Muglia LJ, Gereau 
RWt (2010) Activation of metabotropic glutamate receptor 5 in the amygdala 
modulates pain-like behavior. J Neurosci 30:8203-8213. 

Kombian SB, Malenka RC (1994) Simultaneous LTP of non-NMDA- and LTD of 
NMDA-receptor-mediated responses in the nucleus accumbens. Nature 
368:242-246. 

Konorski J (1967) Integrative activity of the brain. Chicago: University of Chicago 
Press. 

Konradi C, Cole RL, Heckers S, Hyman SE (1994) Amphetamine regulates gene 
expression in rat striatum via transcription factor CREB. J Neurosci 14:5623-
5634. 

Koob GF, Le Moal M (1997) Drug abuse: hedonic homeostatic dysregulation. 
Science 278:52-58. 

Koob GF, Le Moal M (2006) Neurobiology of addiction. Amsterdam ; London: 
Elsevier Academic. 

Kotlinska J, Bochenski M (2007) Comparison of the effects of mGluR1 and 
mGluR5 antagonists on the expression of behavioral sensitization to the 
locomotor effect of morphine and the morphine withdrawal jumping in mice. 
Eur J Pharmacol 558:113-118. 

Kotlinska J, Bochenski M (2009) Pretreatment with group I metabotropic glutamate 
receptors antagonists attenuates lethality induced by acute cocaine 
overdose and expression of sensitization to hyperlocomotor effect of 
cocaine in mice. Neurotox Res 19:23-30. 



336 
 

Kozell B, Meshul K (2003) Alterations in nerve terminal glutamate immunoreactivity 
in the nucleus accumbens and ventral tegmental area following single and 
repeated doses of cocaine. Psychopharmacology (Berl) 165:337-345. 

Krank MD (2003) Pavlovian conditioning with ethanol: sign-tracking (autoshaping), 
conditioned incentive, and ethanol self-administration. Alcohol Clin Exp Res 
27:1592-1598. 

Kreitzer AC, Malenka RC (2007) Endocannabinoid-mediated rescue of striatal LTD 
and motor deficits in Parkinson's disease models. Nature 445:643-647. 

Kringelbach ML, Berridge KC (2009) Towards a functional neuroanatomy of 
pleasure and happiness. Trends Cogn Sci 13:479-487. 

Kruse JM, Overmier JB, Konz WA, Rokke E (1983) Pavlovian conditioned stimulus 
effects upon instrumental choice behavior are reinforcer specific. Learning 
and Motivation 14:165-181. 

Kruzich PJ, Congleton KM, See RE (2001) Conditioned reinstatement of drug-
seeking behavior with a discrete compound stimulus classically conditioned 
with intravenous cocaine. Behav Neurosci 115:1086-1092. 

Kumaresan V, Yuan M, Yee J, Famous KR, Anderson SM, Schmidt HD, Pierce RC 
(2009) Metabotropic glutamate receptor 5 (mGluR5) antagonists attenuate 
cocaine priming- and cue-induced reinstatement of cocaine seeking. Behav 
Brain Res 202:238-244. 

Kunath T (2008) Transgenic RNA interference to investigate gene function in the 
mouse. Methods Mol Biol 461:165-186. 

Kuteeva E, Hokfelt T, Ogren SO (2005) Behavioural characterisation of transgenic 
mice overexpressing galanin under the PDGF-B promoter. Neuropeptides 
39:299-304. 

Lafourcade M, Elezgarai I, Mato S, Bakiri Y, Grandes P, Manzoni OJ (2007) 
Molecular components and functions of the endocannabinoid system in 
mouse prefrontal cortex. PLoS ONE 2:e709. 

Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001) Identification of novel 
genes coding for small expressed RNAs. Science 294:853-858. 

Lan JY, Skeberdis VA, Jover T, Grooms SY, Lin Y, Araneda RC, Zheng X, Bennett 
MV, Zukin RS (2001) Protein kinase C modulates NMDA receptor trafficking 
and gating. Nat Neurosci 4:382-390. 

Lander ES, Botstein D (1989) Mapping mendelian factors underlying quantitative 
traits using RFLP linkage maps. Genetics 121:185-199. 

Lander ES et al. (2001) Initial sequencing and analysis of the human genome. 
Nature 409:860-921. 

Lapointe NP, Rouleau P, Ung RV, Guertin PA (2009) Specific role of dopamine D1 
receptors in spinal network activation and rhythmic movement induction in 
vertebrates. J Physiol 587:1499-1511. 

Le Merrer J, Stephens DN (2006) Food-induced behavioral sensitization, its cross-
sensitization to cocaine and morphine, pharmacological blockade, and effect 
on food intake. J Neurosci 26:7163-7171. 

Lee B, Platt DM, Rowlett JK, Adewale AS, Spealman RD (2005) Attenuation of 
behavioral effects of cocaine by the Metabotropic Glutamate Receptor 5 
Antagonist 2-Methyl-6-(phenylethynyl)-pyridine in squirrel monkeys: 
comparison with dizocilpine. J Pharmacol Exp Ther 312:1232-1240. 



337 
 

Lee HK, Takamiya K, Han JS, Man H, Kim CH, Rumbaugh G, Yu S, Ding L, He C, 
Petralia RS, Wenthold RJ, Gallagher M, Huganir RL (2003) Phosphorylation 
of the AMPA receptor GluR1 subunit is required for synaptic plasticity and 
retention of spatial memory. Cell 112:631-643. 

Lee O, Lee CJ, Choi S (2002) Induction mechanisms for L-LTP at thalamic input 
synapses to the lateral amygdala: requirement of mGluR5 activation. 
Neuroreport 13:685-691. 

Lee RC, Ambros V (2001) An extensive class of small RNAs in Caenorhabditis 
elegans. Science 294:862-864. 

Levandis G, Bazzini E, Armentero MT, Nappi G, Blandini F (2008) Systemic 
administration of an mGluR5 antagonist, but not unilateral subthalamic 
lesion, counteracts l-DOPA-induced dyskinesias in a rodent model of 
Parkinson's disease. Neurobiol Dis 29:161-168. 

Lewis SR, Ahmed S, Dym C, Khaimova E, Kest B, Bodnar RJ (2005) Inbred mouse 
strain survey of sucrose intake. Physiol Behav 85:546-556. 

Lex A, Hauber W (2008) Dopamine D1 and D2 receptors in the nucleus 
accumbens core and shell mediate Pavlovian-instrumental transfer. Learn 
Mem 15:483-491. 

Li P, Tong C, Mehrian-Shai R, Jia L, Wu N, Yan Y, Maxson RE, Schulze EN, Song 
H, Hsieh CL, Pera MF, Ying QL (2008) Germline competent embryonic stem 
cells derived from rat blastocysts. Cell 135:1299-1310. 

Li X, Need AB, Baez M, Witkin JM (2006) Metabotropic glutamate 5 receptor 
antagonism is associated with antidepressant-like effects in mice. J 
Pharmacol Exp Ther 319:254-259. 

Liechti ME, Markou A (2007) Interactive effects of the mGlu5 receptor antagonist 
MPEP and the mGlu2/3 receptor antagonist LY341495 on nicotine self-
administration and reward deficits associated with nicotine withdrawal in 
rats. Eur J Pharmacol 554:164-174. 

Lipina T, Weiss K, Roder J (2007) The ampakine CX546 restores the prepulse 
inhibition and latent inhibition deficits in mGluR5-deficient mice. 
Neuropsychopharmacology 32:745-756. 

Lissin DV, Carroll RC, Nicoll RA, Malenka RC, von Zastrow M (1999) Rapid, 
activation-induced redistribution of ionotropic glutamate receptors in cultured 
hippocampal neurons. J Neurosci 19:1263-1272. 

Lister RG (1987) The use of a plus-maze to measure anxiety in the mouse. 
Psychopharmacology (Berl) 92:180-185. 

Liu F et al. (2008) ADX47273 [S-(4-fluoro-phenyl)-{3-[3-(4-fluoro-phenyl)-[1,2,4]-
oxadiazol-5-yl]-piper idin-1-yl}-methanone]: a novel metabotropic glutamate 
receptor 5-selective positive allosteric modulator with preclinical 
antipsychotic-like and procognitive activities. J Pharmacol Exp Ther 
327:827-839. 

Liu J, Merlie JP, Todd RD, O'Malley KL (1997) Identification of cell type-specific 
promoter elements associated with the rat tyrosine hydroxylase gene using 
transgenic founder analysis. Brain Res Mol Brain Res 50:33-42. 

Lobo MK, Covington HE, 3rd, Chaudhury D, Friedman AK, Sun H, Damez-Werno 
D, Dietz DM, Zaman S, Koo JW, Kennedy PJ, Mouzon E, Mogri M, Neve 
RL, Deisseroth K, Han MH, Nestler EJ (2010) Cell type-specific loss of 



338 
 

BDNF signaling mimics optogenetic control of cocaine reward. Science 
330:385-390. 

Logan GD (1998) What is learned during automatization? II. Obligatory encoding of 
spatial location. J Exp Psychol Hum Percept Perform 24:1720-1736. 

Lombroso PJ, Murdoch G, Lerner M (1991) Molecular characterization of a protein-
tyrosine-phosphatase enriched in striatum. Proc Natl Acad Sci U S A 
88:7242-7246. 

Lombroso PJ, Naegele JR, Sharma E, Lerner M (1993) A protein tyrosine 
phosphatase expressed within dopaminoceptive neurons of the basal 
ganglia and related structures. J Neurosci 13:3064-3074. 

Lominac KD, Kapasova Z, Hannun RA, Patterson C, Middaugh LD, Szumlinski KK 
(2006) Behavioral and neurochemical interactions between Group 1 mGluR 
antagonists and ethanol: potential insight into their anti-addictive properties. 
Drug Alcohol Depend 85:142-156. 

Louilot A, Simon H, Taghzouti K, Le Moal M (1985) Modulation of dopaminergic 
activity in the nucleus accumbens following facilitation or blockade of the 
dopaminergic transmission in the amygdala: a study by in vivo differential 
pulse voltammetry. Brain Res 346:141-145. 

Lovibond PF (1983) Facilitation of instrumental behavior by a Pavlovian appetitive 
conditioned stimulus. J Exp Psychol Anim Behav Process 9:225-247. 

Lu L, Koya E, Zhai H, Hope BT, Shaham Y (2006) Role of ERK in cocaine 
addiction. Trends Neurosci 29:695-703. 

Lu L, Hope BT, Dempsey J, Liu SY, Bossert JM, Shaham Y (2005) Central 
amygdala ERK signaling pathway is critical to incubation of cocaine craving. 
Nat Neurosci 8:212-219. 

Lu W, Monteggia LM, Wolf ME (2002) Repeated administration of amphetamine or 
cocaine does not alter AMPA receptor subunit expression in the rat 
midbrain. Neuropsychopharmacology 26:1-13. 

Lu YM, Jia Z, Janus C, Henderson JT, Gerlai R, Wojtowicz JM, Roder JC (1997) 
Mice lacking metabotropic glutamate receptor 5 show impaired learning and 
reduced CA1 long-term potentiation (LTP) but normal CA3 LTP. J Neurosci 
17:5196-5205. 

Luján R, Nusser Z, Roberts JDB, Shigemoto R, Somogyi P (1996) Perisynaptic 
Location of Metabotropic Glutamate Receptors mGluR1 and mGluR5 on 
Dendrites and Dendritic Spines in the Rat Hippocampus. European Journal 
of Neuroscience 8:1488-1500. 

Luscher C, Huber KM (2010) Group 1 mGluR-dependent synaptic long-term 
depression: mechanisms and implications for circuitry and disease. Neuron 
65:445-459. 

Ma L, Ostrovsky H, Miles G, Lipski J, Funk GD, Nicholson LF (2006) Differential 
expression of group I metabotropic glutamate receptors in human 
motoneurons at low and high risk of degeneration in amyotrophic lateral 
sclerosis. Neuroscience 143:95-104. 

Mackintosh NJ (1974) The psychology of animal learning. London: Academic 
Press. 

Mackintosh NJ (1975) A theory of attention: variations in the associability of stimuli 
with reinforcement. Psychol Rev 82:276-298. 



339 
 

Mackintosh NJ (1994) Animal learning and cognition. San Diego ; London: 
Academic Press. 

Maldonado C, Rodriguez-Arias M, Castillo A, Aguilar MA, Minarro J (2007) Effect 
of memantine and CNQX in the acquisition, expression and reinstatement of 
cocaine-induced conditioned place preference. Prog 
Neuropsychopharmacol Biol Psychiatry 31:932-939. 

Malenka RC (2003) Synaptic plasticity and AMPA receptor trafficking. Ann N Y 
Acad Sci 1003:1-11. 

Malenka RC, Bear MF (2004) LTP and LTD: an embarrassment of riches. Neuron 
44:5-21. 

Maller O, Hamilton CL (1968) Sucrose and caloric intake by normal and diabetic 
monkeys. J Comp Physiol Psychol 66:444-449. 

Mameli M, Balland B, Lujan R, Luscher C (2007) Rapid Synthesis and Synaptic 
Insertion of GluR2 for mGluR-LTD in the Ventral Tegmental Area. Science 
317:530-533. 

Mameli M, Halbout B, Creton C, Engblom D, Parkitna JR, Spanagel R, Luscher C 
(2009) Cocaine-evoked synaptic plasticity: persistence in the VTA triggers 
adaptations in the NAc. Nat Neurosci 12:1036-1041. 

Mammen AL, Kameyama K, Roche KW, Huganir RL (1997) Phosphorylation of the 
alpha-amino-3-hydroxy-5-methylisoxazole4-propionic acid receptor GluR1 
subunit by calcium/calmodulin-dependent kinase II. J Biol Chem 272:32528-
32533. 

Mangiarini L, Sathasivam K, Seller M, Cozens B, Harper A, Hetherington C, 
Lawton M, Trottier Y, Lehrach H, Davies SW, Bates GP (1996) Exon 1 of 
the HD gene with an expanded CAG repeat is sufficient to cause a 
progressive neurological phenotype in transgenic mice. Cell 87:493-506. 

Mansour A, Meador-Woodruff JH, Zhou Q, Civelli O, Akil H, Watson SJ (1992) A 
comparison of D1 receptor binding and mRNA in rat brain using receptor 
autoradiographic and in situ hybridization techniques. Neuroscience 46:959-
971. 

Mao L, Wang JQ (2002) Glutamate cascade to cAMP response element-binding 
protein phosphorylation in cultured striatal neurons through calcium-coupled 
group I metabotropic glutamate receptors. Mol Pharmacol 62:473-484. 

Mao L, Tang Q, Samdani S, Liu Z, Wang JQ (2004) Regulation of MAPK/ERK 
phosphorylation via ionotropic glutamate receptors in cultured rat striatal 
neurons. Eur J Neurosci 19:1207-1216. 

Mao L, Yang L, Tang Q, Samdani S, Zhang G, Wang JQ (2005) The scaffold 
protein Homer1b/c links metabotropic glutamate receptor 5 to extracellular 
signal-regulated protein kinase cascades in neurons. J Neurosci 25:2741-
2752. 

Marin MT, Berkow A, Golden SA, Koya E, Planeta CS, Hope BT (2009) Context-
specific modulation of cocaine-induced locomotor sensitization and ERK 
and CREB phosphorylation in the rat nucleus accumbens. Eur J Neurosci 
30:1931-1940. 

Marino MJ, Awad-Granko H, Ciombor KJ, Conn PJ (2002) Haloperidol-induced 
alteration in the physiological actions of group I mGlus in the subthalamic 



340 
 

nucleus and the substantia nigra pars reticulata. Neuropharmacology 
43:147-159. 

Markou A (2009) Accruing preclinical evidence about metabotropic glutamate 5 
receptor antagonists as treatments for drug dependence highlights the 
irreplaceable contributions of animal studies to the discovery of new 
medications for human disorders. Neuropsychopharmacology 34:817-819. 

Markou A, Paterson NE, Semenova S (2004) Role of gamma-aminobutyric acid 
(GABA) and metabotropic glutamate receptors in nicotine reinforcement: 
potential pharmacotherapies for smoking cessation. Ann N Y Acad Sci 
1025:491-503. 

Martella G, Tassone A, Sciamanna G, Platania P, Cuomo D, Viscomi MT, Bonsi P, 
Cacci E, Biagioni S, Usiello A, Bernardi G, Sharma N, Standaert DG, Pisani 
A (2009) Impairment of bidirectional synaptic plasticity in the striatum of a 
mouse model of DYT1 dystonia: role of endogenous acetylcholine. Brain 
132:2336-2349. 

Marti M, Paganini F, Stocchi S, Bianchi C, Beani L, Morari M (2001) Presynaptic 
group I and II metabotropic glutamate receptors oppositely modulate striatal 
acetylcholine release. Eur J Neurosci 14:1181-1184. 

Martin-Fardon R, Baptista MA, Dayas CV, Weiss F (2009) Dissociation of the 
effects of MTEP [3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]piperidine] on 
conditioned reinstatement and reinforcement: comparison between cocaine 
and a conventional reinforcer. J Pharmacol Exp Ther 329:1084-1090. 

Martin G, Fabre V, Siggins GR, de Lecea L (2002) Interaction of the hypocretins 
with neurotransmitters in the nucleus accumbens. Regul Pept 104:111-117. 

Martinez J, Patkaniowska A, Urlaub H, Luhrmann R, Tuschl T (2002) Single-
stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 
110:563-574. 

Mathis C, Paul SM, Crawley JN (1994) Characterization of benzodiazepine-
sensitive behaviors in the A/J and C57BL/6J inbred strains of mice. Behav 
Genet 24:171-180. 

Mathis C, Neumann PE, Gershenfeld H, Paul SM, Crawley JN (1995) Genetic 
analysis of anxiety-related behaviors and responses to benzodiazepine-
related drugs in AXB and BXA recombinant inbred mouse strains. Behav 
Genet 25:557-568. 

Mattson BJ, Bossert JM, Simmons DE, Nozaki N, Nagarkar D, Kreuter JD, Hope 
BT (2005) Cocaine-induced CREB phosphorylation in nucleus accumbens 
of cocaine-sensitized rats is enabled by enhanced activation of extracellular 
signal-related kinase, but not protein kinase A. J Neurochem 95:1481-1494. 

Mayer ML, Westbrook GL, Guthrie PB (1984) Voltage-dependent block by Mg2+ of 
NMDA responses in spinal cord neurones. Nature 309:261-263. 

Mayford M, Bach ME, Huang YY, Wang L, Hawkins RD, Kandel ER (1996) Control 
of memory formation through regulated expression of a CaMKII transgene. 
Science 274:1678-1683. 

Mazzucchelli C, Vantaggiato C, Ciamei A, Fasano S, Pakhotin P, Krezel W, Welzl 
H, Wolfer DP, Pages G, Valverde O, Marowsky A, Porrazzo A, Orban PC, 
Maldonado R, Ehrengruber MU, Cestari V, Lipp HP, Chapman PF, 
Pouyssegur J, Brambilla R (2002) Knockout of ERK1 MAP kinase enhances 



341 
 

synaptic plasticity in the striatum and facilitates striatal-mediated learning 
and memory. Neuron 34:807-820. 

McAlonan GM, Robbins TW, Everitt BJ (1993) Effects of medial dorsal thalamic 
and ventral pallidal lesions on the acquisition of a conditioned place 
preference: further evidence for the involvement of the ventral striatopallidal 
system in reward-related processes. Neuroscience 52:605-620. 

McFarland K, Lapish CC, Kalivas PW (2003) Prefrontal glutamate release into the 
core of the nucleus accumbens mediates cocaine-induced reinstatement of 
drug-seeking behavior. J Neurosci 23:3531-3537. 

McGeehan AJ, Olive MF (2003) The mGluR5 antagonist MPEP reduces the 
conditioned rewarding effects of cocaine but not other drugs of abuse. 
Synapse 47:240-242. 

McGeehan AJ, Janak PH, Olive MF (2004) Effect of the mGluR5 antagonist 6-
methyl-2-(phenylethynyl)pyridine (MPEP) on the acute locomotor stimulant 
properties of cocaine, D-amphetamine, and the dopamine reuptake inhibitor 
GBR12909 in mice. Psychopharmacology (Berl) 174:266-273. 

McKee BL, Meshul CK (2005) Time-dependent changes in extracellular glutamate 
in the rat dorsolateral striatum following a single cocaine injection. 
Neuroscience 133:605-613. 

McKee BL, Kelley AE, Moser HR, Andrzejewski ME (2010) Operant learning 
requires NMDA-receptor activation in the anterior cingulate cortex and 
dorsomedial striatum, but not in the orbitofrontal cortex. Behav Neurosci 
124:500-509. 

Mead AN, Stephens DN (1999) CNQX but not NBQX prevents expression of 
amphetamine-induced place preference conditioning: a role for the glycine 
site of the NMDA receptor, but not AMPA receptors. J Pharmacol Exp Ther 
290:9-15. 

Mead AN, Stephens DN (2003a) Involvement of AMPA receptor GluR2 subunits in 
stimulus-reward learning: evidence from glutamate receptor gria2 knock-out 
mice. J Neurosci 23:9500-9507. 

Mead AN, Stephens DN (2003b) Selective disruption of stimulus-reward learning in 
glutamate receptor gria1 knock-out mice. J Neurosci 23:1041-1048. 

Mead AN, Crombag HS, Rocha BA (2004) Sensitization of psychomotor 
stimulation and conditioned reward in mice: differential modulation by 
contextual learning. Neuropsychopharmacology 29:249-258. 

Mead AN, Brown G, Le Merrer J, Stephens DN (2005) Effects of deletion of gria1 
or gria2 genes encoding glutamatergic AMPA-receptor subunits on place 
preference conditioning in mice. Psychopharmacology (Berl) 179:164-171. 

Meeker D, Kim JH, Vezina P (1998) Depletion of dopamine in the nucleus 
accumbens prevents the generation of locomotion by metabotropic 
glutamate receptor activation. Brain Res 812:260-264. 

Mercaldo V, Descalzi G, Zhuo M (2009) Fragile X mental retardation protein in 
learning-related synaptic plasticity. Mol Cells 28:501-507. 

Meredith GE, Baldo BA, Andrezjewski ME, Kelley AE (2008) The structural basis 
for mapping behavior onto the ventral striatum and its subdivisions. Brain 
Struct Funct 213:17-27. 



342 
 

Meredith GE, Agolia R, Arts MP, Groenewegen HJ, Zahm DS (1992) 
Morphological differences between projection neurons of the core and shell 
in the nucleus accumbens of the rat. Neuroscience 50:149-162. 

Meurs E, Chong K, Galabru J, Thomas NS, Kerr IM, Williams BR, Hovanessian AG 
(1990) Molecular cloning and characterization of the human double-
stranded RNA-activated protein kinase induced by interferon. Cell 62:379-
390. 

Meyers RA, Zavala AR, Neisewander JL (2003) Dorsal, but not ventral, 
hippocampal lesions disrupt cocaine place conditioning. Neuroreport 
14:2127-2131. 

Mezey E, Eisenhofer G, Harta G, Hansson S, Gould L, Hunyady B, Hoffman BJ 
(1996) A novel nonneuronal catecholaminergic system: exocrine pancreas 
synthesizes and releases dopamine. Proc Natl Acad Sci U S A 93:10377-
10382. 

Milton AL, Lee JL, Everitt BJ (2008a) Reconsolidation of appetitive memories for 
both natural and drug reinforcement is dependent on {beta}-adrenergic 
receptors. Learn Mem 15:88-92. 

Milton AL, Lee JL, Butler VJ, Gardner R, Everitt BJ (2008b) Intra-amygdala and 
systemic antagonism of NMDA receptors prevents the reconsolidation of 
drug-associated memory and impairs subsequently both novel and 
previously acquired drug-seeking behaviors. J Neurosci 28:8230-8237. 

Min N, Joh TH, Kim KS, Peng C, Son JH (1994) 5' upstream DNA sequence of the 
rat tyrosine hydroxylase gene directs high-level and tissue-specific 
expression to catecholaminergic neurons in the central nervous system of 
transgenic mice. Brain Res Mol Brain Res 27:281-289. 

Misra RP, Duncan SA (2002) Gene targeting in the mouse: advances in 
introduction of transgenes into the genome by homologous recombination. 
Endocrine 19:229-238. 

Mogenson GJ, Jones DL, Yim CY (1980) From motivation to action: functional 
interface between the limbic system and the motor system. Prog Neurobiol 
14:69-97. 

Molina-Hernandez M, Tellez-Alcantara NP, Perez-Garcia J, Olivera-Lopez JI, 
Jaramillo MT (2006) Antidepressant-like and anxiolytic-like actions of the 
mGlu5 receptor antagonist MTEP, microinjected into lateral septal nuclei of 
male Wistar rats. Prog Neuropsychopharmacol Biol Psychiatry 30:1129-
1135. 

Monaghan DT, More JCA, Feng B, Jane DE (2005) Glutamate receptors. In: 
Dopamine and Glutamate in Psychiatric Disorders (Schmidt WJ, Reith ME, 
eds), pp 79-116. New Jersey: Humana Press. 

Monyer H, Burnashev N, Laurie DJ, Sakmann B, Seeburg PH (1994) 
Developmental and regional expression in the rat brain and functional 
properties of four NMDA receptors. Neuron 12:529-540. 

Moratalla R, Xu M, Tonegawa S, Graybiel AM (1996a) Cellular responses to 
psychomotor stimulant and neuroleptic drugs are abnormal in mice lacking 
the D1 dopamine receptor. Proc Natl Acad Sci U S A 93:14928-14933. 



343 
 

Moratalla R, Elibol B, Vallejo M, Graybiel AM (1996b) Network-level changes in 
expression of inducible Fos-Jun proteins in the striatum during chronic 
cocaine treatment and withdrawal. Neuron 17:147-156. 

Moratalla R, Vickers EA, Robertson HA, Cochran BH, Graybiel AM (1993) 
Coordinate expression of c-fos and jun B is induced in the rat striatum by 
cocaine. J Neurosci 13:423-433. 

Morris RG, Anderson E, Lynch GS, Baudry M (1986) Selective impairment of 
learning and blockade of long-term potentiation by an N-methyl-D-aspartate 
receptor antagonist, AP5. Nature 319:774-776. 

Moult PR, Gladding CM, Sanderson TM, Fitzjohn SM, Bashir ZI, Molnar E, 
Collingridge GL (2006) Tyrosine phosphatases regulate AMPA receptor 
trafficking during metabotropic glutamate receptor-mediated long-term 
depression. J Neurosci 26:2544-2554. 

Moussawi K, Pacchioni A, Moran M, Olive MF, Gass JT, Lavin A, Kalivas PW 
(2009) N-Acetylcysteine reverses cocaine-induced metaplasticity. Nat 
Neurosci 12:182-189. 

Mroz EA, Brownstein MJ, Leeman SE (1977) Evidence for substance P in the 
striato-nigral tract. Brain Res 125:305-311. 

Mucha RF, Iversen SD (1984) Reinforcing properties of morphine and naloxone 
revealed by conditioned place preferences: a procedural examination. 
Psychopharmacology (Berl) 82:241-247. 

Murschall A, Hauber W (2005) Effects of a systemic AMPA/KA and NMDA receptor 
blockade on pavlovian-instrumental transfer. Psychopharmacology (Berl) 
182:290-296. 

Murschall A, Hauber W (2006) Inactivation of the ventral tegmental area abolished 
the general excitatory influence of Pavlovian cues on instrumental 
performance. Learn Mem 13:123-126. 

Naie K, Manahan-Vaughan D (2004) Regulation by metabotropic glutamate 
receptor 5 of LTP in the dentate gyrus of freely moving rats: relevance for 
learning and memory formation. Cereb Cortex 14:189-198. 

Nash MS, Young KW, Challiss RA, Nahorski SR (2001) Intracellular signalling. 
Receptor-specific messenger oscillations. Nature 413:381-382. 

Neisewander JL, O'Dell LE, Redmond JC (1995) Localization of dopamine receptor 
subtypes occupied by intra-accumbens antagonists that reverse cocaine-
induced locomotion. Brain Res 671:201-212. 

Nestler EJ (2000) Genes and addiction. Nat Genet 26:277-281. 
Nestler EJ (2001) Molecular basis of long-term plasticity underlying addiction. Nat 

Rev Neurosci 2:119-128. 
Neugebauer V (2002) Metabotropic glutamate receptors--important modulators of 

nociception and pain behavior. Pain 98:1-8. 
Neugebauer V, Li W, Bird GC, Bhave G, Gereau RWt (2003) Synaptic plasticity in 

the amygdala in a model of arthritic pain: differential roles of metabotropic 
glutamate receptors 1 and 5. J Neurosci 23:52-63. 

Nicoll RA, Malenka RC (1999) Expression mechanisms underlying NMDA 
receptor-dependent long-term potentiation. Ann N Y Acad Sci 868:515-525. 



344 
 

Nosyreva ED, Huber KM (2005) Developmental switch in synaptic mechanisms of 
hippocampal metabotropic glutamate receptor-dependent long-term 
depression. J Neurosci 25:2992-3001. 

Novak M, Halbout B, O'Connor EC, Rodriguez Parkitna J, Su T, Chai M, Crombag 
HS, Bilbao A, Spanagel R, Stephens DN, Schutz G, Engblom D (2010) 
Incentive learning underlying cocaine-seeking requires mGluR5 receptors 
located on dopamine D1 receptor-expressing neurons. J Neurosci 
30:11973-11982. 

Nowak L, Bregestovski P, Ascher P, Herbet A, Prochiantz A (1984) Magnesium 
gates glutamate-activated channels in mouse central neurones. Nature 
307:462-465. 

O'Brien RJ, Xu D, Petralia RS, Steward O, Huganir RL, Worley P (1999) Synaptic 
clustering of AMPA receptors by the extracellular immediate-early gene 
product Narp. Neuron 23:309-323. 

O'Connor EC, Stephens DN, Crombag HS (2010) Modeling appetitive Pavlovian-
instrumental interactions in mice. Curr Protoc Neurosci Chapter 8:Unit 8 25. 

O'Donnell P, Grace AA (1995) Synaptic interactions among excitatory afferents to 
nucleus accumbens neurons: hippocampal gating of prefrontal cortical input. 
J Neurosci 15:3622-3639. 

O'Donnell P, Greene J, Pabello N, Lewis BL, Grace AA (1999) Modulation of cell 
firing in the nucleus accumbens. Ann N Y Acad Sci 877:157-175. 

O'Neill MF, Shaw G (1999) Comparison of dopamine receptor antagonists on 
hyperlocomotion induced by cocaine, amphetamine, MK-801 and the 
dopamine D1 agonist C-APB in mice. Psychopharmacology (Berl) 145:237-
250. 

Olive MF (2009) Metabotropic glutamate receptor ligands as potential therapeutics 
for addiction. Curr Drug Abuse Rev 2:83-989. 

Olsen CM, Childs DS, Stanwood GD, Winder DG (2010) Operant sensation 
seeking requires metabotropic glutamate receptor 5 (mGluR5). PLoS One 
5:e15085. 

Ortiz J, Harris HW, Guitart X, Terwilliger RZ, Haycock JW, Nestler EJ (1995) 
Extracellular signal-regulated protein kinases (ERKs) and ERK kinase 
(MEK) in brain: regional distribution and regulation by chronic morphine. J 
Neurosci 15:1285-1297. 

Osborne MP, Olive MF (2008) A role for mGluR5 receptors in intravenous 
methamphetamine self-administration. Ann N Y Acad Sci 1139:206-211. 

Osikowicz M, Mika J, Makuch W, Przewlocka B (2008) Glutamate receptor ligands 
attenuate allodynia and hyperalgesia and potentiate morphine effects in a 
mouse model of neuropathic pain. Pain 139:117-126. 

Ossowska K (2005) Metabotropic Glutamate receptors. In: Dopamine and 
Glutamate in Psychiatric Disorders (Schmidt WJ, Reith ME, eds), pp 117-
149. New Jersey: Humana Press. 

Ostlund SB, Balleine BW (2005) Lesions of medial prefrontal cortex disrupt the 
acquisition but not the expression of goal-directed learning. J Neurosci 
25:7763-7770. 

Ostlund SB, Balleine BW (2007) Orbitofrontal cortex mediates outcome encoding 
in Pavlovian but not instrumental conditioning. J Neurosci 27:4819-4825. 



345 
 

Overbeek PA, Lai SP, Van Quill KR, Westphal H (1986) Tissue-specific expression 
in transgenic mice of a fused gene containing RSV terminal sequences. 
Science 231:1574-1577. 

Oyama T, Goto S, Nishi T, Sato K, Yamada K, Yoshikawa M, Ushio Y (1995) 
Immunocytochemical localization of the striatal enriched protein tyrosine 
phosphatase in the rat striatum: a light and electron microscopic study with 
a complementary DNA-generated polyclonal antibody. Neuroscience 
69:869-880. 

Page ME, Szeliga P, Gasparini F, Cryan JF (2005) Blockade of the mGlu5 receptor 
decreases basal and stress-induced cortical norepinephrine in rodents. 
Psychopharmacology (Berl) 179:240-246. 

Paigen K (2003a) One hundred years of mouse genetics: an intellectual history. I. 
The classical period (1902-1980). Genetics 163:1-7. 

Paigen K (2003b) One hundred years of mouse genetics: an intellectual history. II. 
The molecular revolution (1981-2002). Genetics 163:1227-1235. 

Palmatier MI, Liu X, Donny EC, Caggiula AR, Sved AF (2008) Metabotropic 
glutamate 5 receptor (mGluR5) antagonists decrease nicotine seeking, but 
do not affect the reinforcement enhancing effects of nicotine. 
Neuropsychopharmacology 33:2139-2147. 

Palmiter RD, Chen HY, Brinster RL (1982) Differential regulation of 
metallothionein-thymidine kinase fusion genes in transgenic mice and their 
offspring. Cell 29:701-710. 

Palmiter RD, Wilkie TM, Chen HY, Brinster RL (1984) Transmission distortion and 
mosaicism in an unusual transgenic mouse pedigree. Cell 36:869-877. 

Pan Y, Siregar E, Carr KD (2006) Striatal cell signaling in chronically food-
restricted rats under basal conditions and in response to brief handling. 
Neurosci Lett 393:243-248. 

Paolillo M, Montecucco A, Zanassi P, Schinelli S (1998) Potentiation of dopamine-
induced cAMP formation by group I metabotropic glutamate receptors via 
protein kinase C in cultured striatal neurons. Eur J Neurosci 10:1937-1945. 

Papp M, Willner P, Muscat R (1991) An animal model of anhedonia: attenuation of 
sucrose consumption and place preference conditioning by chronic 
unpredictable mild stress. Psychopharmacology (Berl) 104:255-259. 

Papp M, Gruca P, Willner P (2002) Selective blockade of drug-induced place 
preference conditioning by ACPC, a functional NDMA-receptor antagonist. 
Neuropsychopharmacology 27:727-743. 

Park S, Park JM, Kim S, Kim JA, Shepherd JD, Smith-Hicks CL, Chowdhury S, 
Kaufmann W, Kuhl D, Ryazanov AG, Huganir RL, Linden DJ, Worley PF 
(2008) Elongation factor 2 and fragile X mental retardation protein control 
the dynamic translation of Arc/Arg3.1 essential for mGluR-LTD. Neuron 
59:70-83. 

Parkinson JA, Robbins TW, Everitt BJ (2000a) Dissociable roles of the central and 
basolateral amygdala in appetitive emotional learning. Eur J Neurosci 
12:405-413. 

Parkinson JA, Willoughby PJ, Robbins TW, Everitt BJ (2000b) Disconnection of the 
anterior cingulate cortex and nucleus accumbens core impairs Pavlovian 



346 
 

approach behavior: further evidence for limbic cortical-ventral striatopallidal 
systems. Behav Neurosci 114:42-63. 

Parkinson JA, Roberts AC, Everitt BJ, Di Ciano P (2005) Acquisition of 
instrumental conditioned reinforcement is resistant to the devaluation of the 
unconditioned stimulus. Q J Exp Psychol B 58:19-30. 

Parkinson JA, Olmstead MC, Burns LH, Robbins TW, Everitt BJ (1999) 
Dissociation in effects of lesions of the nucleus accumbens core and shell 
on appetitive pavlovian approach behavior and the potentiation of 
conditioned reinforcement and locomotor activity by D-amphetamine. J 
Neurosci 19:2401-2411. 

Parkinson JA, Dalley JW, Cardinal RN, Bamford A, Fehnert B, Lachenal G, 
Rudarakanchana N, Halkerston KM, Robbins TW, Everitt BJ (2002) Nucleus 
accumbens dopamine depletion impairs both acquisition and performance of 
appetitive Pavlovian approach behaviour: implications for mesoaccumbens 
dopamine function. Behav Brain Res 137:149-163. 

Parkitna JR, Engblom D, Schutz G (2009) Generation of Cre recombinase-
expressing transgenic mice using bacterial artificial chromosomes. Methods 
Mol Biol 530:325-342. 

Parodi M, Patti L, Grilli M, Raiteri M, Marchi M (2006) Nicotine has a permissive 
role on the activation of metabotropic glutamate 5 receptors coexisting with 
nicotinic receptors on rat hippocampal noradrenergic nerve terminals. 
Neurochem Int 48:138-143. 

Pascoli V, Besnard A, Herve D, Pages C, Heck N, Girault JA, Caboche J, 
Vanhoutte P (2011) Cyclic adenosine monophosphate-independent tyrosine 
phosphorylation of NR2B mediates cocaine-induced extracellular signal-
regulated kinase activation. Biol Psychiatry 69:218-227. 

Paterson NE, Markou A (2005) The metabotropic glutamate receptor 5 antagonist 
MPEP decreased break points for nicotine, cocaine and food in rats. 
Psychopharmacology (Berl) 179:255-261. 

Paterson NE, Semenova S, Gasparini F, Markou A (2003) The mGluR5 antagonist 
MPEP decreased nicotine self-administration in rats and mice. 
Psychopharmacology (Berl) 167:257-264. 

Paterson NE, Iwunze M, Davis SF, Malekiani SA, Hanania T (2010) Comparison of 
the predictive validity of the mirror chamber and elevated plus maze tests in 
mice. J Neurosci Methods 188:62-70. 

Patterson MA, Szatmari EM, Yasuda R (2010) AMPA receptors are exocytosed in 
stimulated spines and adjacent dendrites in a Ras-ERK-dependent manner 
during long-term potentiation. Proc Natl Acad Sci U S A 107:15951-15956. 

Paul S, Nairn AC, Wang P, Lombroso PJ (2003) NMDA-mediated activation of the 
tyrosine phosphatase STEP regulates the duration of ERK signaling. Nat 
Neurosci 6:34-42. 

Paul S, Snyder GL, Yokakura H, Picciotto MR, Nairn AC, Lombroso PJ (2000) The 
Dopamine/D1 receptor mediates the phosphorylation and inactivation of the 
protein tyrosine phosphatase STEP via a PKA-dependent pathway. J 
Neurosci 20:5630-5638. 

Pavlov IP (1927) Conditioned reflexes. Oxford: Oxford University Press. 



347 
 

Pears A, Parkinson JA, Hopewell L, Everitt BJ, Roberts AC (2003) Lesions of the 
orbitofrontal but not medial prefrontal cortex disrupt conditioned 
reinforcement in primates. J Neurosci 23:11189-11201. 

Peavy RD, Conn PJ (1998) Phosphorylation of mitogen-activated protein kinase in 
cultured rat cortical glia by stimulation of metabotropic glutamate receptors. 
J Neurochem 71:603-612. 

Pecina S, Schulkin J, Berridge KC (2006) Nucleus accumbens corticotropin-
releasing factor increases cue-triggered motivation for sucrose reward: 
paradoxical positive incentive effects in stress? BMC Biol 4:8. 

Pelkey KA, Askalan R, Paul S, Kalia LV, Nguyen TH, Pitcher GM, Salter MW, 
Lombroso PJ (2002) Tyrosine phosphatase STEP is a tonic brake on 
induction of long-term potentiation. Neuron 34:127-138. 

Pellicciari R, Luneia R, Costantino G, Marinozzi M, Natalini B, Jakobsen P, 
Kanstrup A, Lombardi G, Moroni F, Thomsen C (1995) 1-Aminoindan-1,5-
dicarboxylic acid: a novel antagonist at phospholipase C-linked 
metabotropic glutamate receptors. J Med Chem 38:3717-3719. 

Pellow S, File SE (1986) Anxiolytic and anxiogenic drug effects on exploratory 
activity in an elevated plus-maze: a novel test of anxiety in the rat. 
Pharmacol Biochem Behav 24:525-529. 

Pellow S, Chopin P, File SE, Briley M (1985) Validation of open:closed arm entries 
in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci 
Methods 14:149-167. 

Peng S, York JP, Zhang P (2006) A transgenic approach for RNA interference-
based genetic screening in mice. Proc Natl Acad Sci U S A 103:2252-2256. 

Pennartz CM, Ameerun RF, Groenewegen HJ, Lopes da Silva FH (1993) Synaptic 
plasticity in an in vitro slice preparation of the rat nucleus accumbens. Eur J 
Neurosci 5:107-117. 

Perez de la Mora M, Lara-Garcia D, Jacobsen KX, Vazquez-Garcia M, Crespo-
Ramirez M, Flores-Gracia C, Escamilla-Marvan E, Fuxe K (2006) Anxiolytic-
like effects of the selective metabotropic glutamate receptor 5 antagonist 
MPEP after its intra-amygdaloid microinjection in three different non-
conditioned rat models of anxiety. Eur J Neurosci 23:2749-2759. 

Pert A, Post R, Weiss SR (1990) Conditioning as a critical determinant of 
sensitization induced by psychomotor stimulants. NIDA Res Monogr 97:208-
241. 

Peters LL, Robledo RF, Bult CJ, Churchill GA, Paigen BJ, Svenson KL (2007) The 
mouse as a model for human biology: a resource guide for complex trait 
analysis. Nat Rev Genet 8:58-69. 

Peterson GB, Ackilt JE, Frommer GP, Hearst ES (1972) Conditioned Approach 
and Contact Behavior toward Signals for Food or Brain-Stimulation 
Reinforcement. Science 177:1009-1011. 

Petralia RS, Wang YX, Zhao HM, Wenthold RJ (1996) Ionotropic and metabotropic 
glutamate receptors show unique postsynaptic, presynaptic, and glial 
localizations in the dorsal cochlear nucleus. J Comp Neurol 372:356-383. 

Peyron C, Tighe DK, van den Pol AN, de Lecea L, Heller HC, Sutcliffe JG, Kilduff 
TS (1998) Neurons containing hypocretin (orexin) project to multiple 
neuronal systems. J Neurosci 18:9996-10015. 



348 
 

Phillips AG, Di Ciano P (1996) Behavioral sensitization is induced by intravenous 
self-administration of cocaine by rats. Psychopharmacology (Berl) 124:279-
281. 

Phillips GD, Salussolia E, Hitchcott PK (2010) Role of the mesoamygdaloid 
dopamine projection in emotional learning. Psychopharmacology (Berl) 
210:303-316. 

Picciotto MR, Wickman K (1998) Using knockout and transgenic mice to study 
neurophysiology and behavior. Physiol Rev 78:1131-1163. 

Pickens CL, Saddoris MP, Gallagher M, Holland PC (2005) Orbitofrontal lesions 
impair use of cue-outcome associations in a devaluation task. Behav 
Neurosci 119:317-322. 

Pickens CL, Saddoris MP, Setlow B, Gallagher M, Holland PC, Schoenbaum G 
(2003) Different roles for orbitofrontal cortex and basolateral amygdala in a 
reinforcer devaluation task. J Neurosci 23:11078-11084. 

Pielock SM, Lex B, Hauber W (2011) The role of dopamine in the dorsomedial 
striatum in general and outcome-selective Pavlovian-instrumental transfer. 
Eur J Neurosci. 

Pierce RC, Bell K, Duffy P, Kalivas PW (1996) Repeated cocaine augments 
excitatory amino acid transmission in the nucleus accumbens only in rats 
having developed behavioral sensitization. J Neurosci 16:1550-1560. 

Pietraszek M, Sukhanov I, Maciejak P, Szyndler J, Gravius A, Wislowska A, 
Plaznik A, Bespalov AY, Danysz W (2005) Anxiolytic-like effects of mGlu1 
and mGlu5 receptor antagonists in rats. Eur J Pharmacol 514:25-34. 

Pinto LH, Enroth-Cugell C (2000) Tests of the mouse visual system. Mamm 
Genome 11:531-536. 

Pisani A, Calabresi P, Centonze D, Bernardi G (1997) Enhancement of NMDA 
responses by group I metabotropic glutamate receptor activation in striatal 
neurones. Br J Pharmacol 120:1007-1014. 

Pisani A, Gubellini P, Bonsi P, Conquet F, Picconi B, Centonze D, Bernardi G, 
Calabresi P (2001) Metabotropic glutamate receptor 5 mediates the 
potentiation of N-methyl-D-aspartate responses in medium spiny striatal 
neurons. Neuroscience 106:579-587. 

Platt DM, Rowlett JK, Spealman RD (2008) Attenuation of cocaine self-
administration in squirrel monkeys following repeated administration of the 
mGluR5 antagonist MPEP: comparison with dizocilpine. 
Psychopharmacology (Berl) 200:167-176. 

Popik P, Wrobel M (2002) Morphine conditioned reward is inhibited by MPEP, the 
mGluR5 antagonist. Neuropharmacology 43:1210-1217. 

Prawitt D, Brixel L, Spangenberg C, Eshkind L, Heck R, Oesch F, Zabel B, 
Bockamp E (2004) RNAi knock-down mice: an emerging technology for 
post-genomic functional genetics. Cytogenet Genome Res 105:412-421. 

Pulido R, Zuniga A, Ullrich A (1998) PTP-SL and STEP protein tyrosine 
phosphatases regulate the activation of the extracellular signal-regulated 
kinases ERK1 and ERK2 by association through a kinase interaction motif. 
EMBO J 17:7337-7350. 



349 
 

Pulvirenti L, Swerdlow NR, Koob GF (1989) Microinjection of a glutamate 
antagonist into the nucleus accumbens reduces psychostimulant locomotion 
in rats. Neurosci Lett 103:213-218. 

Pulvirenti L, Swerdlow NR, Koob GF (1991) Nucleus accumbens NMDA antagonist 
decreases locomotor activity produced by cocaine, heroin or accumbens 
dopamine, but not caffeine. Pharmacol Biochem Behav 40:841-845. 

Radwanska K, Caboche J, Kaczmarek L (2005) Extracellular signal-regulated 
kinases (ERKs) modulate cocaine-induced gene expression in the mouse 
amygdala. Eur J Neurosci 22:939-948. 

Ragsdale CW, Jr., Graybiel AM (1988) Fibers from the basolateral nucleus of the 
amygdala selectively innervate striosomes in the caudate nucleus of the cat. 
J Comp Neurol 269:506-522. 

Rajadhyaksha A, Husson I, Satpute SS, Kuppenbender KD, Ren JQ, Guerriero 
RM, Standaert DG, Kosofsky BE (2004) L-type Ca2+ channels mediate 
adaptation of extracellular signal-regulated kinase 1/2 phosphorylation in the 
ventral tegmental area after chronic amphetamine treatment. J Neurosci 
24:7464-7476. 

Ramirez I, Fuller JL (1976) Genetic influence on water and sweetened water 
consumption in mice. Physiol Behav 16:163-168. 

Ramón y Cajal S (1911) Histologie du Système Nerveux de l'Homme et des 
Vertèbres. . Marloine, Paris. 

Rao MK, Pham J, Imam JS, MacLean JA, Murali D, Furuta Y, Sinha-Hikim AP, 
Wilkinson MF (2006) Tissue-specific RNAi reveals that WT1 expression in 
nurse cells controls germ cell survival and spermatogenesis. Genes Dev 
20:147-152. 

Reid MS, Berger SP (1996) Evidence for sensitization of cocaine-induced nucleus 
accumbens glutamate release. Neuroreport 7:1325-1329. 

Reid MS, Hsu K, Jr., Berger SP (1997) Cocaine and amphetamine preferentially 
stimulate glutamate release in the limbic system: studies on the involvement 
of dopamine. Synapse 27:95-105. 

Reith ME, Meisler BE, Sershen H, Lajtha A (1986) Structural requirements for 
cocaine congeners to interact with dopamine and serotonin uptake sites in 
mouse brain and to induce stereotyped behavior. Biochem Pharmacol 
35:1123-1129. 

Ren Z, Sun WL, Jiao H, Zhang D, Kong H, Wang X, Xu M (2010) Dopamine D1 
and N-methyl-D-aspartate receptors and extracellular signal-regulated 
kinase mediate neuronal morphological changes induced by repeated 
cocaine administration. Neuroscience 168:48-60. 

Rescorla RA (1967) Pavlovian conditioning and its proper control procedures. 
Psychol Rev 74:71-80. 

Rescorla RA (1988) Pavlovian conditioning. It's not what you think it is. Am Psychol 
43:151-160. 

Ringwald M, Eppig JT (2010) Mouse mutants and phenotypes: Accessing 
information for the study of mammalian gene function. Methods. 

Robbe D, Alonso G, Duchamp F, Bockaert J, Manzoni OJ (2001) Localization and 
mechanisms of action of cannabinoid receptors at the glutamatergic 
synapses of the mouse nucleus accumbens. J Neurosci 21:109-116. 



350 
 

Robbe D, Kopf M, Remaury A, Bockaert J, Manzoni OJ (2002) Endogenous 
cannabinoids mediate long-term synaptic depression in the nucleus 
accumbens. Proc Natl Acad Sci U S A 99:8384-8388. 

Robbins TW (1978) The acquisition of responding with conditioned reinforcement: 
effects of pipradrol, methylphenidate, d-amphetamine, and nomifensine. 
Psychopharmacology (Berl) 58:79-87. 

Robbins TW, Everitt BJ (1996) Neurobehavioural mechanisms of reward and 
motivation. Curr Opin Neurobiol 6:228-236. 

Robbins TW, Everitt BJ (2002) Limbic-striatal memory systems and drug addiction. 
Neurobiol Learn Mem 78:625-636. 

Robbins TW, Watson BA, Gaskin M, Ennis C (1983) Contrasting interactions of 
pipradrol, d-amphetamine, cocaine, cocaine analogues, apomorphine and 
other drugs with conditioned reinforcement. Psychopharmacology (Berl) 
80:113-119. 

Robinson TE, Becker JB (1986) Enduring changes in brain and behavior produced 
by chronic amphetamine administration: a review and evaluation of animal 
models of amphetamine psychosis. Brain Res 396:157-198. 

Robinson TE, Berridge KC (1993) The neural basis of drug craving: an incentive-
sensitization theory of addiction. Brain Res Brain Res Rev 18:247-291. 

Robinson TE, Berridge KC (2000) The psychology and neurobiology of addiction: 
an incentive-sensitization view. Addiction 95 Suppl 2:S91-117. 

Robinson TE, Berridge KC (2001) Incentive-sensitization and addiction. Addiction 
96:103-114. 

Robinson TE, Berridge KC (2003) Addiction. Annu Rev Psychol 54:25-53. 
Robinson TE, Kolb B (2004) Structural plasticity associated with exposure to drugs 

of abuse. Neuropharmacology 47 Suppl 1:33-46. 
Robinson TE, Berridge KC (2008) Review. The incentive sensitization theory of 

addiction: some current issues. Philos Trans R Soc Lond B Biol Sci 
363:3137-3146. 

Robinson TE, Flagel SB (2009) Dissociating the predictive and incentive 
motivational properties of reward-related cues through the study of 
individual differences. Biol Psychiatry 65:869-873. 

Robinson TE, Browman KE, Crombag HS, Badiani A (1998) Modulation of the 
induction or expression of psychostimulant sensitization by the 
circumstances surrounding drug administration. Neurosci Biobehav Rev 
22:347-354. 

Robledo P, Robbins TW, Everitt BJ (1996) Effects of excitotoxic lesions of the 
central amygdaloid nucleus on the potentiation of reward-related stimuli by 
intra-accumbens amphetamine. Behav Neurosci 110:981-990. 

Roche KW, O'Brien RJ, Mammen AL, Bernhardt J, Huganir RL (1996) 
Characterization of multiple phosphorylation sites on the AMPA receptor 
GluR1 subunit. Neuron 16:1179-1188. 

Rodrigues SM, Bauer EP, Farb CR, Schafe GE, LeDoux JE (2002) The group I 
metabotropic glutamate receptor mGluR5 is required for fear memory 
formation and long-term potentiation in the lateral amygdala. J Neurosci 
22:5219-5229. 



351 
 

Roesch MR, Calu DJ, Esber GR, Schoenbaum G (2010) All that glitters ... 
dissociating attention and outcome expectancy from prediction errors 
signals. J Neurophysiol 104:587-595. 

Rogers DC, Fisher EM, Brown SD, Peters J, Hunter AJ, Martin JE (1997) 
Behavioral and functional analysis of mouse phenotype: SHIRPA, a 
proposed protocol for comprehensive phenotype assessment. Mamm 
Genome 8:711-713. 

Romano C, Sesma MA, McDonald CT, O'Malley K, Van den Pol AN, Olney JW 
(1995) Distribution of metabotropic glutamate receptor mGluR5 
immunoreactivity in rat brain. J Comp Neurol 355:455-469. 

Rouach N, Nicoll RA (2003) Endocannabinoids contribute to short-term but not 
long-term mGluR-induced depression in the hippocampus. Eur J Neurosci 
18:1017-1020. 

Rozeboom WW (1958) What is learned? An empirical enigma. Psychol Rev 65:22-
33. 

Rubi B, Ljubicic S, Pournourmohammadi S, Carobbio S, Armanet M, Bartley C, 
Maechler P (2005) Dopamine D2-like receptors are expressed in pancreatic 
beta cells and mediate inhibition of insulin secretion. J Biol Chem 
280:36824-36832. 

Rutten K, Van Der Kam EL, De Vry J, Bruckmann W, Tzschentke TM (2010) The 
mGluR5 antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP) potentiates 
conditioned place preference induced by various addictive and non-
addictive drugs in rats. Addict Biol 16:108-115. 

Salzmann J, Marie-Claire C, Le Guen S, Roques BP, Noble F (2003) Importance of 
ERK activation in behavioral and biochemical effects induced by MDMA in 
mice. Br J Pharmacol 140:831-838. 

Sanchis-Segura C, Spanagel R (2006) Behavioural assessment of drug 
reinforcement and addictive features in rodents: an overview. Addict Biol 
11:2-38. 

Santos SD, Carvalho AL, Caldeira MV, Duarte CB (2009) Regulation of AMPA 
receptors and synaptic plasticity. Neuroscience 158:105-125. 

Schenk S, Ellison F, Hunt T, Amit Z (1985) An examination of heroin conditioning 
in preferred and nonpreferred environments and in differentially housed 
mature and immature rats. Pharmacol Biochem Behav 22:215-220. 

Schindler CW, Panlilio LV, Goldberg SR (2002) Second-order schedules of drug 
self-administration in animals. Psychopharmacology (Berl) 163:327-344. 

Schmidt E, Seifert M, Baumeister R (2007) Caenorhabditis elegans as a model 
system for Parkinson's disease. Neurodegener Dis 4:199-217. 

Schmidt HD, Pierce RC (2010) Cocaine-induced neuroadaptations in glutamate 
transmission: potential therapeutic targets for craving and addiction. Ann N 
Y Acad Sci 1187:35-75. 

Schoenbaum G, Setlow B (2005) Cocaine makes actions insensitive to outcomes 
but not extinction: implications for altered orbitofrontal-amygdalar function. 
Cereb Cortex 15:1162-1169. 

Schoenbaum G, Chiba AA, Gallagher M (1998) Orbitofrontal cortex and basolateral 
amygdala encode expected outcomes during learning. Nat Neurosci 1:155-
159. 



352 
 

Schoenbaum G, Roesch MR, Stalnaker TA, Takahashi YK (2009) A new 
perspective on the role of the orbitofrontal cortex in adaptive behaviour. Nat 
Rev Neurosci 10:885-892. 

Schoepp DD, Jane DE, Monn JA (1999) Pharmacological agents acting at 
subtypes of metabotropic glutamate receptors. Neuropharmacology 
38:1431-1476. 

Schotanus SM, Chergui K (2008) Dopamine D1 receptors and group I 
metabotropic glutamate receptors contribute to the induction of long-term 
potentiation in the nucleus accumbens. Neuropharmacology 54:837-844. 

Schroeder JP, Overstreet DH, Hodge CW (2005) The mGluR5 antagonist MPEP 
decreases operant ethanol self-administration during maintenance and after 
repeated alcohol deprivations in alcohol-preferring (P) rats. 
Psychopharmacology (Berl) 179:262-270. 

Schroeder JP, Spanos M, Stevenson JR, Besheer J, Salling M, Hodge CW (2008) 
Cue-induced reinstatement of alcohol-seeking behavior is associated with 
increased ERK1/2 phosphorylation in specific limbic brain regions: blockade 
by the mGluR5 antagonist MPEP. Neuropharmacology 55:546-554. 

Schultz W (1997) Dopamine neurons and their role in reward mechanisms. Curr 
Opin Neurobiol 7:191-197. 

Schultz W (2006) Behavioral theories and the neurophysiology of reward. Annu 
Rev Psychol 57:87-115. 

Schultz W, Dayan P, Montague PR (1997) A neural substrate of prediction and 
reward. Science 275:1593-1599. 

Schulz B, Fendt M, Gasparini F, Lingenhohl K, Kuhn R, Koch M (2001) The 
metabotropic glutamate receptor antagonist 2-methyl-6-(phenylethynyl)-
pyridine (MPEP) blocks fear conditioning in rats. Neuropharmacology 41:1-
7. 

Schwenk F, Baron U, Rajewsky K (1995) A cre-transgenic mouse strain for the 
ubiquitous deletion of loxP-flanked gene segments including deletion in 
germ cells. Nucleic Acids Res 23:5080-5081. 

Sclafani A (1995) How food preferences are learned: laboratory animal models. 
Proc Nutr Soc 54:419-427. 

Segal DS, Weinberger SB, Cahill J, McCunney SJ (1980) Multiple daily 
amphetamine administration: behavioral and neurochemical alterations. 
Science 207:904-907. 

Selcher JC, Weeber EJ, Varga AW, Sweatt JD, Swank M (2002) Protein kinase 
signal transduction cascades in mammalian associative conditioning. 
Neuroscientist 8:122-131. 

Serulle Y, Zhang S, Ninan I, Puzzo D, McCarthy M, Khatri L, Arancio O, Ziff EB 
(2007) A GluR1-cGKII interaction regulates AMPA receptor trafficking. 
Neuron 56:670-688. 

Sesack SR, Grace AA (2010) Cortico-Basal Ganglia reward network: 
microcircuitry. Neuropsychopharmacology 35:27-47. 

Setlow B, Gallagher M, Holland PC (2002) The basolateral complex of the 
amygdala is necessary for acquisition but not expression of CS motivational 
value in appetitive Pavlovian second-order conditioning. Eur J Neurosci 
15:1841-1853. 



353 
 

Sgambato V, Pages C, Rogard M, Besson MJ, Caboche J (1998) Extracellular 
signal-regulated kinase (ERK) controls immediate early gene induction on 
corticostriatal stimulation. J Neurosci 18:8814-8825. 

Shaham Y, Shalev U, Lu L, De Wit H, Stewart J (2003) The reinstatement model of 
drug relapse: history, methodology and major findings. 
Psychopharmacology (Berl) 168:3-20. 

Shalev U, Grimm JW, Shaham Y (2002) Neurobiology of relapse to heroin and 
cocaine seeking: a review. Pharmacol Rev 54:1-42. 

Sharma E, Zhao F, Bult A, Lombroso PJ (1995) Identification of two alternatively 
spliced transcripts of STEP: a subfamily of brain-enriched protein tyrosine 
phosphatases. Brain Res Mol Brain Res 32:87-93. 

Sheehan TP, Chambers RA, Russell DS (2004) Regulation of affect by the lateral 
septum: implications for neuropsychiatry. Brain Res Brain Res Rev 46:71-
117. 

Shen CP, Tsimberg Y, Salvadore C, Meller E (2004) Activation of Erk and JNK 
MAPK pathways by acute swim stress in rat brain regions. BMC Neurosci 
5:36. 

Shen W, Flajolet M, Greengard P, Surmeier DJ (2008) Dichotomous dopaminergic 
control of striatal synaptic plasticity. Science 321:848-851. 

Shepherd JD, Huganir RL (2007) The cell biology of synaptic plasticity: AMPA 
receptor trafficking. Annu Rev Cell Dev Biol 23:613-643. 

Shiflett MW, Balleine BW (2010) At the limbic-motor interface: disconnection of 
basolateral amygdala from nucleus accumbens core and shell reveals 
dissociable components of incentive motivation. Eur J Neurosci 32:1735-
1743. 

Shiflett MW, Balleine BW (2011) Contributions of ERK signaling in the striatum to 
instrumental learning and performance. Behav Brain Res 218:240-247. 

Shigemoto R, Nomura S, Ohishi H, Sugihara H, Nakanishi S, Mizuno N (1993) 
Immunohistochemical localization of a metabotropic glutamate receptor, 
mGluR5, in the rat brain. Neurosci Lett 163:53-57. 

Shigemoto R, Kinoshita A, Wada E, Nomura S, Ohishi H, Takada M, Flor PJ, Neki 
A, Abe T, Nakanishi S, Mizuno N (1997) Differential presynaptic localization 
of metabotropic glutamate receptor subtypes in the rat hippocampus. J 
Neurosci 17:7503-7522. 

Shimosato K, Ohkuma S (2000) Simultaneous monitoring of conditioned place 
preference and locomotor sensitization following repeated administration of 
cocaine and methamphetamine. Pharmacol Biochem Behav 66:285-292. 

Sidman M, Fletcher FG (1968) A demonstration of auto-shaping with monkeys. J 
Exp Anal Behav 11:307-309. 

Silva JM, Li MZ, Chang K, Ge W, Golding MC, Rickles RJ, Siolas D, Hu G, 
Paddison PJ, Schlabach MR, Sheth N, Bradshaw J, Burchard J, Kulkarni A, 
Cavet G, Sachidanandam R, McCombie WR, Cleary MA, Elledge SJ, 
Hannon GJ (2005) Second-generation shRNA libraries covering the mouse 
and human genomes. Nat Genet 37:1281-1288. 

Simon H, Taghzouti K, Gozlan H, Studler JM, Louilot A, Herve D, Glowinski J, 
Tassin JP, Le Moal M (1988) Lesion of dopaminergic terminals in the 
amygdala produces enhanced locomotor response to D-amphetamine and 



354 
 

opposite changes in dopaminergic activity in prefrontal cortex and nucleus 
accumbens. Brain Res 447:335-340. 

Sison M, Gerlai R (2010) Associative learning in zebrafish (Danio rerio) in the plus 
maze. Behav Brain Res 207:99-104. 

Skeberdis VA, Lan J, Opitz T, Zheng X, Bennett MV, Zukin RS (2001) mGluR1-
mediated potentiation of NMDA receptors involves a rise in intracellular 
calcium and activation of protein kinase C. Neuropharmacology 40:856-865. 

Smith-Roe SL, Kelley AE (2000) Coincident activation of NMDA and dopamine D1 
receptors within the nucleus accumbens core is required for appetitive 
instrumental learning. J Neurosci 20:7737-7742. 

Smith JA, Mo Q, Guo H, Kunko PM, Robinson SE (1995) Cocaine increases 
extraneuronal levels of aspartate and glutamate in the nucleus accumbens. 
Brain Res 683:264-269. 

Smith Y, Kieval JZ (2000) Anatomy of the dopamine system in the basal ganglia. 
Trends Neurosci 23:S28-33. 

Smith Y, Villalba R (2008) Striatal and extrastriatal dopamine in the basal ganglia: 
an overview of its anatomical organization in normal and Parkinsonian 
brains. Mov Disord 23 Suppl 3:S534-547. 

Smith Y, Charara A, Paquet M, Kieval JZ, Pare JF, Hanson JE, Hubert GW, 
Kuwajima M, Levey AI (2001) Ionotropic and metabotropic GABA and 
glutamate receptors in primate basal ganglia. J Chem Neuroanat 22:13-42. 

Snyder EM, Philpot BD, Huber KM, Dong X, Fallon JR, Bear MF (2001) 
Internalization of ionotropic glutamate receptors in response to mGluR 
activation. Nat Neurosci 4:1079-1085. 

Snyder EM, Nong Y, Almeida CG, Paul S, Moran T, Choi EY, Nairn AC, Salter 
MW, Lombroso PJ, Gouras GK, Greengard P (2005) Regulation of NMDA 
receptor trafficking by amyloid-beta. Nat Neurosci 8:1051-1058. 

Snyder GL, Allen PB, Fienberg AA, Valle CG, Huganir RL, Nairn AC, Greengard P 
(2000) Regulation of phosphorylation of the GluR1 AMPA receptor in the 
neostriatum by dopamine and psychostimulants in vivo. J Neurosci 20:4480-
4488. 

Song I, Huganir RL (2002) Regulation of AMPA receptors during synaptic plasticity. 
Trends Neurosci 25:578-588. 

Spooren WP, Gasparini F, Bergmann R, Kuhn R (2000a) Effects of the prototypical 
mGlu(5) receptor antagonist 2-methyl-6-(phenylethynyl)-pyridine on rotarod, 
locomotor activity and rotational responses in unilateral 6-OHDA-lesioned 
rats. Eur J Pharmacol 406:403-410. 

Spooren WP, Gasparini F, Salt TE, Kuhn R (2001) Novel allosteric antagonists 
shed light on mglu(5) receptors and CNS disorders. Trends Pharmacol Sci 
22:331-337. 

Spooren WP, Vassout A, Neijt HC, Kuhn R, Gasparini F, Roux S, Porsolt RD, 
Gentsch C (2000b) Anxiolytic-like effects of the prototypical metabotropic 
glutamate receptor 5 antagonist 2-methyl-6-(phenylethynyl)pyridine in 
rodents. J Pharmacol Exp Ther 295:1267-1275. 

Spyraki C, Fibiger HC, Phillips AG (1982a) Attenuation by haloperidol of place 
preference conditioning using food reinforcement. Psychopharmacology 
(Berl) 77:379-382. 



355 
 

Spyraki C, Fibiger HC, Phillips AG (1982b) Cocaine-induced place preference 
conditioning: lack of effects of neuroleptics and 6-hydroxydopamine lesions. 
Brain Res 253:195-203. 

Stachowicz K, Golembiowska K, Sowa M, Nowak G, Chojnacka-Wojcik E, Pilc A 
(2007) Anxiolytic-like action of MTEP expressed in the conflict drinking 
Vogel test in rats is serotonin dependent. Neuropharmacology 53:741-748. 

Stamp JA, Mashoodh R, van Kampen JM, Robertson HA (2008) Food restriction 
enhances peak corticosterone levels, cocaine-induced locomotor activity, 
and DeltaFosB expression in the nucleus accumbens of the rat. Brain Res 
1204:94-101. 

Steiner RA, Hohmann JG, Holmes A, Wrenn CC, Cadd G, Jureus A, Clifton DK, 
Luo M, Gutshall M, Ma SY, Mufson EJ, Crawley JN (2001) Galanin 
transgenic mice display cognitive and neurochemical deficits characteristic 
of Alzheimer's disease. Proc Natl Acad Sci U S A 98:4184-4189. 

Stephens DN (2006) Animal models/tests of drug addiction: a quest for the holy 
grail, or the pursuit of wild geese? Addict Biol 11:39-42. 

Stephens DN, Elliman TD, Dunworth SJ (2000) State-dependent behavioural 
sensitization: evidence from a chlordiazepoxide state. Behav Pharmacol 
11:161-167. 

Stephens DN, Meldrum BS, Weidmann R, Schneider C, Grutzner M (1986) Does 
the excitatory amino acid receptor antagonist 2-APH exhibit anxiolytic 
activity? Psychopharmacology (Berl) 90:166-169. 

Stephens DN, Duka T, Crombag HS, Cunningham CL, Heilig M, Crabbe JC (2010) 
Reward sensitivity: issues of measurement, and achieving consilience 
between human and animal phenotypes. Addict Biol 15:145-168. 

Stewart J (1983) Conditioned and unconditioned drug effects in relapse to opiate 
and stimulant drug self-adminstration. Prog Neuropsychopharmacol Biol 
Psychiatry 7:591-597. 

Stewart J, Druhan JP (1993) Development of both conditioning and sensitization of 
the behavioral activating effects of amphetamine is blocked by the non-
competitive NMDA receptor antagonist, MK-801. Psychopharmacology 
(Berl) 110:125-132. 

Stewart J, de Wit H, Eikelboom R (1984) Role of unconditioned and conditioned 
drug effects in the self-administration of opiates and stimulants. Psychol Rev 
91:251-268. 

Stiers M, Silberberg A (1974) Lever-contact responses in rats: automaintenance 
with and without a negative response-reinforcer dependency. J Exp Anal 
Behav 22:497-506. 

Stockton MD, Whitney G (1974) Effects of genotype, sugar, and concentration on 
sugar preference of laboratory mice (Mus musculus). J Comp Physiol 
Psychol 86:62-68. 

Storto M, Capobianco L, Battaglia G, Molinaro G, Gradini R, Riozzi B, Di Mambro 
A, Mitchell KJ, Bruno V, Vairetti MP, Rutter GA, Nicoletti F (2006) Insulin 
secretion is controlled by mGlu5 metabotropic glutamate receptors. 
Molecular pharmacology 69:1234-1241. 



356 
 

Stuber GD, Evans SB, Higgins MS, Pu Y, Figlewicz DP (2002) Food restriction 
modulates amphetamine-conditioned place preference and nucleus 
accumbens dopamine release in the rat. Synapse 46:83-90. 

Sun WL, Zhou L, Hazim R, Quinones-Jenab V, Jenab S (2007) Effects of acute 
cocaine on ERK and DARPP-32 phosphorylation pathways in the caudate-
putamen of Fischer rats. Brain Res 1178:12-19. 

Sung KW, Choi S, Lovinger DM (2001) Activation of group I mGluRs is necessary 
for induction of long-term depression at striatal synapses. J Neurophysiol 
86:2405-2412. 

Surmeier DJ, Plotkin J, Shen W (2009) Dopamine and synaptic plasticity in dorsal 
striatal circuits controlling action selection. Curr Opin Neurobiol 19:621-628. 

Surmeier DJ, Ding J, Day M, Wang Z, Shen W (2007) D1 and D2 dopamine-
receptor modulation of striatal glutamatergic signaling in striatal medium 
spiny neurons. Trends Neurosci 30:228-235. 

Surmeier DJ, Eberwine J, Wilson CJ, Cao Y, Stefani A, Kitai ST (1992) Dopamine 
receptor subtypes colocalize in rat striatonigral neurons. Proc Natl Acad Sci 
U S A 89:10178-10182. 

Sutton MA, Schmidt EF, Choi KH, Schad CA, Whisler K, Simmons D, Karanian DA, 
Monteggia LM, Neve RL, Self DW (2003) Extinction-induced upregulation in 
AMPA receptors reduces cocaine-seeking behaviour. Nature 421:70-75. 

Svenningsson P, Nishi A, Fisone G, Girault JA, Nairn AC, Greengard P (2004) 
DARPP-32: an integrator of neurotransmission. Annu Rev Pharmacol 
Toxicol 44:269-296. 

Swanson CJ, Kalivas PW (2000) Regulation of locomotor activity by metabotropic 
glutamate receptors in the nucleus accumbens and ventral tegmental area. 
J Pharmacol Exp Ther 292:406-414. 

Swanson LW, Petrovich GD (1998) What is the amygdala? Trends Neurosci 
21:323-331. 

Sweatt JD (2004) Mitogen-activated protein kinases in synaptic plasticity and 
memory. Curr Opin Neurobiol 14:311-317. 

Swerdlow NR, Vaccarino FJ, Amalric M, Koob GF (1986) The neural substrates for 
the motor-activating properties of psychostimulants: a review of recent 
findings. Pharmacol Biochem Behav 25:233-248. 

Takahashi Y, Roesch MR, Stalnaker TA, Schoenbaum G (2007) Cocaine exposure 
shifts the balance of associative encoding from ventral to dorsolateral 
striatum. Front Integr Neurosci 1. 

Tallaksen-Greene SJ, Kaatz KW, Romano C, Albin RL (1998) Localization of 
mGluR1a-like immunoreactivity and mGluR5-like immunoreactivity in 
identified populations of striatal neurons. Brain Res 780:210-217. 

Talmi D, Seymour B, Dayan P, Dolan RJ (2008) Human pavlovian-instrumental 
transfer. J Neurosci 28:360-368. 

Tashev R, Moura PJ, Venkitaramani DV, Prosperetti C, Centonze D, Paul S, 
Lombroso PJ (2009) A substrate trapping mutant form of striatal-enriched 
protein tyrosine phosphatase prevents amphetamine-induced stereotypies 
and long-term potentiation in the striatum. Biol Psychiatry 65:637-645. 

Tatarczynska E, Klodzinska A, Chojnacka-Wojcik E, Palucha A, Gasparini F, Kuhn 
R, Pilc A (2001) Potential anxiolytic- and antidepressant-like effects of 



357 
 

MPEP, a potent, selective and systemically active mGlu5 receptor 
antagonist. Br J Pharmacol 132:1423-1430. 

Taverna S, Canciani B, Pennartz CM (2005) Dopamine D1-receptors modulate 
lateral inhibition between principal cells of the nucleus accumbens. J 
Neurophysiol 93:1816-1819. 

Taverna S, Ilijic E, Surmeier DJ (2008) Recurrent collateral connections of striatal 
medium spiny neurons are disrupted in models of Parkinson's disease. J 
Neurosci 28:5504-5512. 

Taylor JR, Robbins TW (1984) Enhanced behavioural control by conditioned 
reinforcers following microinjections of d-amphetamine into the nucleus 
accumbens. Psychopharmacology (Berl) 84:405-412. 

Taylor JR, Robbins TW (1986) 6-Hydroxydopamine lesions of the nucleus 
accumbens, but not of the caudate nucleus, attenuate enhanced responding 
with reward-related stimuli produced by intra-accumbens d-amphetamine. 
Psychopharmacology (Berl) 90:390-397. 

Tepper BJ, Friedman MI (1991) Altered acceptability of and preference for sugar 
solutions by diabetic rats is normalized by high-fat diet. Appetite 16:25-38. 

Tessari M, Pilla M, Andreoli M, Hutcheson DM, Heidbreder CA (2004) Antagonism 
at metabotropic glutamate 5 receptors inhibits nicotine- and cocaine-taking 
behaviours and prevents nicotine-triggered relapse to nicotine-seeking. Eur 
J Pharmacol 499:121-133. 

Testa CM, Standaert DG, Young AB, Penney JB, Jr. (1994) Metabotropic 
glutamate receptor mRNA expression in the basal ganglia of the rat. J 
Neurosci 14:3005-3018. 

Thandi S, Blank JL, Challiss RA (2002) Group-I metabotropic glutamate receptors, 
mGlu1a and mGlu5a, couple to extracellular signal-regulated kinase (ERK) 
activation via distinct, but overlapping, signalling pathways. J Neurochem 
83:1139-1153. 

Theberge FR, Milton AL, Belin D, Lee JL, Everitt BJ (2010) The basolateral 
amygdala and nucleus accumbens core mediate dissociable aspects of drug 
memory reconsolidation. Learn Mem 17:444-453. 

Thomas GM, Huganir RL (2004) MAPK cascade signalling and synaptic plasticity. 
Nat Rev Neurosci 5:173-183. 

Thomas KL, Arroyo M, Everitt BJ (2003) Induction of the learning and plasticity-
associated gene Zif268 following exposure to a discrete cocaine-associated 
stimulus. Eur J Neurosci 17:1964-1972. 

Thomas KR, Capecchi MR (1987) Site-directed mutagenesis by gene targeting in 
mouse embryo-derived stem cells. Cell 51:503-512. 

Thomas LS, Jane DE, Harris JR, Croucher MJ (2000) Metabotropic glutamate 
autoreceptors of the mGlu(5) subtype positively modulate neuronal 
glutamate release in the rat forebrain in vitro. Neuropharmacology 39:1554-
1566. 

Thomas LS, Jane DE, Gasparini F, Croucher MJ (2001a) Glutamate release 
inhibiting properties of the novel mGlu(5) receptor antagonist 2-methyl-6-
(phenylethynyl)-pyridine (MPEP): complementary in vitro and in vivo 
evidence. Neuropharmacology 41:523-527. 



358 
 

Thomas MJ, Kalivas PW, Shaham Y (2008) Neuroplasticity in the mesolimbic 
dopamine system and cocaine addiction. Br J Pharmacol 154:327-342. 

Thomas MJ, Beurrier C, Bonci A, Malenka RC (2001b) Long-term depression in 
the nucleus accumbens: a neural correlate of behavioral sensitization to 
cocaine. Nat Neurosci 4:1217-1223. 

Tiffany ST (1990) A cognitive model of drug urges and drug-use behavior: role of 
automatic and nonautomatic processes. Psychol Rev 97:147-168. 

Tijsterman M, Plasterk RH (2004) Dicers at RISC; the mechanism of RNAi. Cell 
117:1-3. 

Timberlake W, Grant DL (1975) Auto-shaping in rats to the presentation of another 
rat predicting food. Science 190:690-692. 

Toates FM (1986) Motivational systems. Cambridge (MA): Cambridge University 
Press. 

Tolliver BK, Carney JM (1994) Sensitization to stereotypy in DBA/2J but not 
C57BL/6J mice with repeated cocaine. Pharmacol Biochem Behav 48:169-
173. 

Tomie A (1996) Locating reward cue at response manipulandum (CAM) induces 
symptoms of drug abuse. Neurosci Biobehav Rev 20:505-535. 

Tomiyama M, Kimura T, Maeda T, Tanaka H, Furusawa K, Kurahashi K, 
Matsunaga M (2001) Expression of metabotropic glutamate receptor 
mRNAs in the human spinal cord: implications for selective vulnerability of 
spinal motor neurons in amyotrophic lateral sclerosis. J Neurol Sci 189:65-
69. 

Tordoff MG, Bachmanov AA (2002) Influence of test duration on the sensitivity of 
the two-bottle choice test. Chem Senses 27:759-768. 

Tronci V, Balfour DJ (2011) The effects of the mGluR5 receptor antagonist 6-
methyl-2-(phenylethynyl)-pyridine (MPEP) on the stimulation of dopamine 
release evoked by nicotine in the rat brain. Behav Brain Res. 

Tronson NC, Guzman YF, Guedea AL, Huh KH, Gao C, Schwarz MK, Radulovic J 
(2010) Metabotropic glutamate receptor 5/Homer interactions underlie 
stress effects on fear. Biol Psychiatry 68:1007-1015. 

Tsankova N, Renthal W, Kumar A, Nestler EJ (2007) Epigenetic regulation in 
psychiatric disorders. Nat Rev Neurosci 8:355-367. 

Tu JC, Xiao B, Yuan JP, Lanahan AA, Leoffert K, Li M, Linden DJ, Worley PF 
(1998) Homer binds a novel proline-rich motif and links group 1 
metabotropic glutamate receptors with IP3 receptors. Neuron 21:717-726. 

Tzschentke TM (2007) Measuring reward with the conditioned place preference 
(CPP) paradigm: update of the last decade. Addict Biol 12:227-462. 

Uchigashima M, Narushima M, Fukaya M, Katona I, Kano M, Watanabe M (2007) 
Subcellular arrangement of molecules for 2-arachidonoyl-glycerol-mediated 
retrograde signaling and its physiological contribution to synaptic modulation 
in the striatum. J Neurosci 27:3663-3676. 

Ungless MA, Whistler JL, Malenka RC, Bonci A (2001) Single cocaine exposure in 
vivo induces long-term potentiation in dopamine neurons. Nature 411:583-
587. 



359 
 

Uslaner JM, Acerbo MJ, Jones SA, Robinson TE (2006) The attribution of incentive 
salience to a stimulus that signals an intravenous injection of cocaine. 
Behav Brain Res 169:320-324. 

Uslaner JM, Dell'Orco JM, Pevzner A, Robinson TE (2008) The influence of 
subthalamic nucleus lesions on sign-tracking to stimuli paired with food and 
drug rewards: facilitation of incentive salience attribution? 
Neuropsychopharmacology 33:2352-2361. 

Valjent E, Caboche J, Vanhoutte P (2001) Mitogen-activated protein 
kinase/extracellular signal-regulated kinase induced gene regulation in 
brain: a molecular substrate for learning and memory? Mol Neurobiol 23:83-
99. 

Valjent E, Pages C, Herve D, Girault JA, Caboche J (2004) Addictive and non-
addictive drugs induce distinct and specific patterns of ERK activation in 
mouse brain. Eur J Neurosci 19:1826-1836. 

Valjent E, Corvol JC, Trzaskos JM, Girault JA, Herve D (2006) Role of the ERK 
pathway in psychostimulant-induced locomotor sensitization. BMC Neurosci 
7:20. 

Valjent E, Corvol JC, Pages C, Besson MJ, Maldonado R, Caboche J (2000) 
Involvement of the extracellular signal-regulated kinase cascade for 
cocaine-rewarding properties. J Neurosci 20:8701-8709. 

Valjent E, Pascoli V, Svenningsson P, Paul S, Enslen H, Corvol JC, Stipanovich A, 
Caboche J, Lombroso PJ, Nairn AC, Greengard P, Herve D, Girault JA 
(2005) Regulation of a protein phosphatase cascade allows convergent 
dopamine and glutamate signals to activate ERK in the striatum. Proc Natl 
Acad Sci U S A 102:491-496. 

van der Kam EL, de Vry J, Tzschentke TM (2007) Effect of 2-methyl-6-
(phenylethynyl) pyridine on intravenous self-administration of ketamine and 
heroin in the rat. Behav Pharmacol 18:717-724. 

van der Kam EL, De Vry J, Tzschentke TM (2009a) 2-Methyl-6-(phenylethynyl)-
pyridine (MPEP) potentiates ketamine and heroin reward as assessed by 
acquisition, extinction, and reinstatement of conditioned place preference in 
the rat. Eur J Pharmacol 606:94-101. 

van der Kam EL, De Vry J, Tzschentke TM (2009b) The mGlu(5) receptor 
antagonist 2-methyl-6-(phenylethynyl)pyridine (MPEP) supports intravenous 
self-administration and induces conditioned place preference in the rat. Eur 
J Pharmacol. 

Vanderschuren LJ, Kalivas PW (2000) Alterations in dopaminergic and 
glutamatergic transmission in the induction and expression of behavioral 
sensitization: a critical review of preclinical studies. Psychopharmacology 
(Berl) 151:99-120. 

Vanhoutte P, Barnier JV, Guibert B, Pages C, Besson MJ, Hipskind RA, Caboche J 
(1999) Glutamate induces phosphorylation of Elk-1 and CREB, along with c-
fos activation, via an extracellular signal-regulated kinase-dependent 
pathway in brain slices. Mol Cell Biol 19:136-146. 

Varty GB, Grilli M, Forlani A, Fredduzzi S, Grzelak ME, Guthrie DH, Hodgson RA, 
Lu SX, Nicolussi E, Pond AJ, Parker EM, Hunter JC, Higgins GA, Reggiani 
A, Bertorelli R (2005) The antinociceptive and anxiolytic-like effects of the 



360 
 

metabotropic glutamate receptor 5 (mGluR5) antagonists, MPEP and 
MTEP, and the mGluR1 antagonist, LY456236, in rodents: a comparison of 
efficacy and side-effect profiles. Psychopharmacology (Berl) 179:207-217. 

Veeneman MM, Boleij H, Broekhoven MH, Snoeren EM, Guitart Masip M, Cousijn 
J, Spooren W, Vanderschuren LJ (2010) Dissociable roles of mGlu5 and 
dopamine receptors in the rewarding and sensitizing properties of morphine 
and cocaine. Psychopharmacology (Berl). 

Verkerk AJ, Pieretti M, Sutcliffe JS, Fu YH, Kuhl DP, Pizzuti A, Reiner O, Richards 
S, Victoria MF, Zhang FP, et al. (1991) Identification of a gene (FMR-1) 
containing a CGG repeat coincident with a breakpoint cluster region 
exhibiting length variation in fragile X syndrome. Cell 65:905-914. 

Verma A, Moghaddam B (1998) Regulation of striatal dopamine release by 
metabotropic glutamate receptors. Synapse 28:220-226. 

Vogt MB, Rudy JW (1984) Ontogenesis of learning: IV. Dissociation of memory 
and perceptual-altering processes mediating taste neophobia in the rat. Dev 
Psychobiol 17:601-611. 

Voigt B, Serikawa T (2009) Pluripotent stem cells and other technologies will 
eventually open the door for straightforward gene targeting in the rat. Dis 
Model Mech 2:341-343. 

Volkow ND, Wang GJ, Fowler JS, Telang F (2008) Overlapping neuronal circuits in 
addiction and obesity: evidence of systems pathology. Philos Trans R Soc 
Lond B Biol Sci 363:3191-3200. 

Volkow ND, Wang GJ, Telang F, Fowler JS, Logan J, Childress AR, Jayne M, Ma 
Y, Wong C (2006) Cocaine cues and dopamine in dorsal striatum: 
mechanism of craving in cocaine addiction. J Neurosci 26:6583-6588. 

Voorn P, Jorritsma-Byham B, Van Dijk C, Buijs RM (1986) The dopaminergic 
innervation of the ventral striatum in the rat: a light- and electron-
microscopical study with antibodies against dopamine. J Comp Neurol 
251:84-99. 

Voorn P, Vanderschuren LJ, Groenewegen HJ, Robbins TW, Pennartz CM (2004) 
Putting a spin on the dorsal-ventral divide of the striatum. Trends Neurosci 
27:468-474. 

Voulalas PJ, Holtzclaw L, Wolstenholme J, Russell JT, Hyman SE (2005) 
Metabotropic glutamate receptors and dopamine receptors cooperate to 
enhance extracellular signal-regulated kinase phosphorylation in striatal 
neurons. J Neurosci 25:3763-3773. 

Wagner AR, Brandon SE (1989) Evolution of a structured connectionist model of 
Pavlovian conditioning (AESOP). In: Contemporary learning theories (Klein 
SB, Mowrer RR, eds), pp 149-189. Hillsdale, N.J.: L. Erlbaum. 

Wagner TE, Hoppe PC, Jollick JD, Scholl DR, Hodinka RL, Gault JB (1981) 
Microinjection of a rabbit beta-globin gene into zygotes and its subsequent 
expression in adult mice and their offspring. Proc Natl Acad Sci U S A 
78:6376-6380. 

Walsh RN, Cummins RA (1976) The Open-Field Test: a critical review. Psychol 
Bull 83:482-504. 



361 
 

Wang JQ, Arora A, Yang L, Parelkar NK, Zhang G, Liu X, Choe ES, Mao L (2005) 
Phosphorylation of AMPA receptors: mechanisms and synaptic plasticity. 
Mol Neurobiol 32:237-249. 

Wang LP, Li F, Shen X, Tsien JZ (2010) Conditional knockout of NMDA receptors 
in dopamine neurons prevents nicotine-conditioned place preference. PLoS 
One 5:e8616. 

Waterston RH et al. (2002) Initial sequencing and comparative analysis of the 
mouse genome. Nature 420:520-562. 

Waung MW, Pfeiffer BE, Nosyreva ED, Ronesi JA, Huber KM (2008) Rapid 
translation of Arc/Arg3.1 selectively mediates mGluR-dependent LTD 
through persistent increases in AMPAR endocytosis rate. Neuron 59:84-97. 

Weingarten HP (1983) Conditioned cues elicit feeding in sated rats: a role for 
learning in meal initiation. Science 220:431-433. 

White FJ, Kalivas PW (1998) Neuroadaptations involved in amphetamine and 
cocaine addiction. Drug Alcohol Depend 51:141-153. 

White FJ, Hu XT, Zhang XF, Wolf ME (1995) Repeated administration of cocaine 
or amphetamine alters neuronal responses to glutamate in the 
mesoaccumbens dopamine system. J Pharmacol Exp Ther 273:445-454. 

White NM (1989) Reward or reinforcement: what's the difference? Neurosci 
Biobehav Rev 13:181-186. 

Whitelaw RB, Markou A, Robbins TW, Everitt BJ (1996) Excitotoxic lesions of the 
basolateral amygdala impair the acquisition of cocaine-seeking behaviour 
under a second-order schedule of reinforcement. Psychopharmacology 
(Berl) 127:213-224. 

Wilcove WG, Miller JC (1974) CS-USC presentations and a lever: human 
autoshaping. J Exp Psychol 103:868-877. 

Williams DR, Williams H (1969) Auto-maintenance in the pigeon: sustained 
pecking despite contingent non-reinforcement. J Exp Anal Behav 12:511-
520. 

Wilson DI, Bowman EM (2004) Second-order stimuli do not always increase overall 
response rates in second-order schedules of reinforcement in the rat. 
Psychopharmacology (Berl) 174:430-437. 

Winterbauer NE, Balleine BW (2007) The influence of amphetamine on sensory 
and conditioned reinforcement: evidence for the re-selection hypothesis of 
dopamine function. Front Integr Neurosci 1:9. 

Wise RA (2004) Dopamine, learning and motivation. Nat Rev Neurosci 5:483-494. 
Wise RA, Bozarth MA (1987) A psychomotor stimulant theory of addiction. Psychol 

Rev 94:469-492. 
Witkin JM (1993) Blockade of the locomotor stimulant effects of cocaine and 

methamphetamine by glutamate antagonists. Life Sci 53:PL405-410. 
Wolf ME (1998) The role of excitatory amino acids in behavioral sensitization to 

psychomotor stimulants. Prog Neurobiol 54:679-720. 
Wolf ME, Jeziorski M (1993) Coadministration of MK-801 with amphetamine, 

cocaine or morphine prevents rather than transiently masks the 
development of behavioral sensitization. Brain Res 613:291-294. 

Wolf ME, Ferrario CR (2010) AMPA receptor plasticity in the nucleus accumbens 
after repeated exposure to cocaine. Neurosci Biobehav Rev 35:185-211. 



362 
 

Wolf ME, Sun X, Mangiavacchi S, Chao SZ (2004) Psychomotor stimulants and 
neuronal plasticity. Neuropharmacology 47 Suppl 1:61-79. 

Wolin BR (1968) In: Contemporary research in operant behavior (Catania CA, ed), 
p 286. [Glenview, Ill.]: Scott, Foresman. 

Wolterink G, Phillips G, Cador M, Donselaar-Wolterink I, Robbins TW, Everitt BJ 
(1993) Relative roles of ventral striatal D1 and D2 dopamine receptors in 
responding with conditioned reinforcement. Psychopharmacology (Berl) 
110:355-364. 

Wright CI, Beijer AV, Groenewegen HJ (1996) Basal amygdaloid complex afferents 
to the rat nucleus accumbens are compartmentally organized. J Neurosci 
16:1877-1893. 

Wyvell CL, Berridge KC (2000) Intra-accumbens amphetamine increases the 
conditioned incentive salience of sucrose reward: enhancement of reward 
"wanting" without enhanced "liking" or response reinforcement. J Neurosci 
20:8122-8130. 

Wyvell CL, Berridge KC (2001) Incentive sensitization by previous amphetamine 
exposure: increased cue-triggered "wanting" for sucrose reward. J Neurosci 
21:7831-7840. 

Yang L, Mao L, Tang Q, Samdani S, Liu Z, Wang JQ (2004) A novel Ca2+-
independent signaling pathway to extracellular signal-regulated protein 
kinase by coactivation of NMDA receptors and metabotropic glutamate 
receptor 5 in neurons. J Neurosci 24:10846-10857. 

Yararbas G, Keser A, Kanit L, Pogun S (2010) Nicotine-induced conditioned place 
preference in rats: sex differences and the role of mGluR5 receptors. 
Neuropharmacology 58:374-382. 

Yin HH, Knowlton BJ, Balleine BW (2004) Lesions of dorsolateral striatum preserve 
outcome expectancy but disrupt habit formation in instrumental learning. Eur 
J Neurosci 19:181-189. 

Yin HH, Knowlton BJ, Balleine BW (2005) Blockade of NMDA receptors in the 
dorsomedial striatum prevents action-outcome learning in instrumental 
conditioning. Eur J Neurosci 22:505-512. 

Yin HH, Zhuang X, Balleine BW (2006a) Instrumental learning in 
hyperdopaminergic mice. Neurobiol Learn Mem 85:283-288. 

Yin HH, Knowlton BJ, Balleine BW (2006b) Inactivation of dorsolateral striatum 
enhances sensitivity to changes in the action-outcome contingency in 
instrumental conditioning. Behav Brain Res 166:189-196. 

Yin HH, Ostlund SB, Balleine BW (2008) Reward-guided learning beyond 
dopamine in the nucleus accumbens: the integrative functions of cortico-
basal ganglia networks. Eur J Neurosci 28:1437-1448. 

Yin J, Li G, Ren X, Herrler G (2007) Select what you need: a comparative 
evaluation of the advantages and limitations of frequently used expression 
systems for foreign genes. J Biotechnol 127:335-347. 

Yoshiki A, Ike F, Mekada K, Kitaura Y, Nakata H, Hiraiwa N, Mochida K, Ijuin M, 
Kadota M, Murakami A, Ogura A, Abe K, Moriwaki K, Obata Y (2009) The 
mouse resources at the RIKEN BioResource center. Exp Anim 58:85-96. 



363 
 

Young ST, Porrino LJ, Iadarola MJ (1991) Cocaine induces striatal c-fos-
immunoreactive proteins via dopaminergic D1 receptors. Proc Natl Acad Sci 
U S A 88:1291-1295. 

Zaborszky L, Alheid GF, Beinfeld MC, Eiden LE, Heimer L, Palkovits M (1985) 
Cholecystokinin innervation of the ventral striatum: a morphological and 
radioimmunological study. Neuroscience 14:427-453. 

Zahm DS (1992) An electron microscopic morphometric comparison of tyrosine 
hydroxylase immunoreactive innervation in the neostriatum and the nucleus 
accumbens core and shell. Brain Res 575:341-346. 

Zakharova ES, Danysz W, Bespalov AY (2005) Drug discrimination analysis of 
NMDA receptor channel blockers as nicotinic receptor antagonists in rats. 
Psychopharmacology (Berl) 179:128-135. 

Zambie E (1973) Augmentation of eating following a signal for feeding in rats. 
Learning and Motivation 4:138-147. 

Zavala AR, Weber SM, Rice HJ, Alleweireldt AT, Neisewander JL (2003) Role of 
the prelimbic subregion of the medial prefrontal cortex in acquisition, 
extinction, and reinstatement of cocaine-conditioned place preference. Brain 
Res 990:157-164. 

Zhang H, Sulzer D (2003) Glutamate spillover in the striatum depresses 
dopaminergic transmission by activating group I metabotropic glutamate 
receptors. J Neurosci 23:10585-10592. 

Zhang L, Lou D, Jiao H, Zhang D, Wang X, Xia Y, Zhang J, Xu M (2004) Cocaine-
induced intracellular signaling and gene expression are oppositely regulated 
by the dopamine D1 and D3 receptors. J Neurosci 24:3344-3354. 

Zhang Y, Loonam TM, Noailles PA, Angulo JA (2001) Comparison of cocaine- and 
methamphetamine-evoked dopamine and glutamate overflow in 
somatodendritic and terminal field regions of the rat brain during acute, 
chronic, and early withdrawal conditions. Ann N Y Acad Sci 937:93-120. 

Zhang Y, Venkitaramani DV, Gladding CM, Zhang Y, Kurup P, Molnar E, 
Collingridge GL, Lombroso PJ (2008) The Tyrosine Phosphatase STEP 
Mediates AMPA Receptor Endocytosis after Metabotropic Glutamate 
Receptor Stimulation. J Neurosci 28:10561-10566. 

Zhu CZ, Hsieh G, Ei-Kouhen O, Wilson SG, Mikusa JP, Hollingsworth PR, Chang 
R, Moreland RB, Brioni J, Decker MW, Honore P (2005) Role of central and 
peripheral mGluR5 receptors in post-operative pain in rats. Pain 114:195-
202. 

Zhu H, Clemens S, Sawchuk M, Hochman S (2007) Expression and distribution of 
all dopamine receptor subtypes (D(1)-D(5)) in the mouse lumbar spinal cord: 
a real-time polymerase chain reaction and non-autoradiographic in situ 
hybridization study. Neuroscience 149:885-897. 

Zhu PJ, Lovinger DM (2005) Retrograde endocannabinoid signaling in a 
postsynaptic neuron/synaptic bouton preparation from basolateral 
amygdala. J Neurosci 25:6199-6207. 

 
 


	Coversheet
	O'Connor, Eoin Cornelius

