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• S. Jäger, S. Kvedaraitė, G. Perez and I. Savoray, “Bounds and prospects for stable
multiply charged particles at the LHC”, published in JHEP 04 (2019) 041, [1]. The
calculations and plots have been done jointly by myself and Inbar, with suggestions
and supervision from Sebastian and Gilad.

Parts of the following publication are included in Chapter 5:

• A. Banfi, B. M. Dillon, W. Ketaiam and S. Kvedaraitė, “Composite Higgs at high
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Summary

While the Standard Model is a great experimental success, it is unsatisfactory as a
theory. For instance, it does not explain the origin of the hierarchies between quark
masses, nor resolve the hierarchy problem or unify couplings in the UV. In this thesis,
we address these shortcomings by performing precision calculations, building BSM models
and studying their collider phenomenology.

We improve the precision for the QCD prediction of the kaon bag parameter, which
enters a dominant short-distance contribution to indirect CP violation. This is achieved
by performing the first conversion between the SMOM and the MS scheme at two-loop
order.

Furthermore, we consider scalar and fermionic top partners that carry exotic charges
and can propagate through the detector independently as well as form a charmonium-like
bound state. The first bounds on the masses of coloured particles up to charge |Q| = 8 are
presented and the prospects of exclusion and discovery at higher luminosities are discussed.

We also consider composite Higgs models as they promise a natural solution to the
hierarchy problem and fermion masses. In particular, we investigate the pT spectra of the
top partners for the Higgs+Jet process and obtain QCD limits for CP-odd contributions.

Moreover, we discuss a specific CH realisation with partial compositeness and pNGB
Higgs in an SO(11)/SO(10) GUT model. We identify many promising parameter points
that are consistent with most of the EW and collider constraints.
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Chapter 1

Introduction

The observation of meson and baryon spectra in the 1960’s led to the idea of quarks as

a building block of hadronic matter [14, 15]. Indeed, it has been found that a meson is a

bound state of a quark and an anti-quark and a baryon is a bound state of three quarks,

held together by the strong force. Thus, the theory of Quantum Chromodynamics (QCD),

characterised by an SU(3)c gauge symmetry, that describes the interactions of quarks via

gluons, was born [16].

Around the same time the Glashow–Weinberg–Salam (GWS) model for the electroweak

(EW) interactions was proposed [17–19]. GWS theory combines electromagnetic and weak

interactions into a single gauge group SU(2)L × U(1)Y which is broken spontaneously by

the Higgs mechanism to U(1)em [20–22]. This provides an explanation for how W and

Z gauge bosons acquire masses. However, introduction of quark and lepton mass terms

becomes non-trivial as the left- and right-handed fermions belong to different weak isospin

multiplets. Instead, the SM introduced Yukawa terms coupling quarks and the Higgs, thus

generating masses via the spontaneous symmetry breaking (SSB).

QCD, GWS and the Higgs sector together form the main pillars of the Standard

Model of Particle Physics (SM). This theory has been very successful at describing many

microscopic phenomena – it contains all elementary particles that have been observed as

well as three fundamental forces of nature. In 2012 the SM has been completed as the

Higgs was discovered [23–25]. However, even today some issues still remain unaddressed

by the Standard Model.

While the SM contains all particle masses, their values are not predicted by it, in-

stead they have to be fixed by measurement. Hence, the origin of the relative hierarchies

between different quark and lepton masses is unclear. Similarly, there is no explanation for

the particle mixing or Charge-conjugation and Parity (CP) violation in the SM. Instead
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these effects are merely parametrised by the Cabibbo-Kobayashi-Maskawa (CKM) [26,27]

and the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) [28, 29] matrices. In addition, the

Higgs mass should be sensitive to the high-energy physics, yet it is relatively small, which

is known as the hierarchy problem. On a different note, there is not much known about

what happens in the high-energy limit. The SM indicates that all gauge interactions ap-

proximately unify, however there is no theoretical framework describing this phenomenon,

often referred to as Grand Unified Theory (GUT). There are many more open issues, such

as a dark matter (DM) candidate or explanations for various flavour anomalies. All of this

suggests that the Standard Model is not the end of the story, but there is new physics to

be discovered.

In this thesis, we address these problems using three complementary approaches. First,

we conduct a precision calculation that can constrain the size of new physics effects. In

particular, we improve the precision of the kaon bag parameter. It parameterises the

dominant short distance contributions to the indirect CP violation, which is sensitive to

new physics. To this end, Section 1.1 discusses the indirect CP violation in more detail.

As the computation of the bag parameter is closely related to the renormalisation of QCD

and its low-energy operators, we review this subject in Chapter 2, as we introduce our

notations and collect necessary literature results. This sets up the two-loop calculation

performed in Chapter 3, where we obtain the matching factors and perform the conversion

for the bag parameter between minimal and momentum subtraction schemes as well as

the translation to the Brod–Gorbahn operator basis. In particular, we find that the two-

loop conversion factors lead to 0.5–4% corrections for the different momentum subtraction

schemes and that the error on the Kaon bag parameter is reduced to around 1%.

Second, we look for specific signatures of physics beyond the Standard Model (BSM) at

particle colliders. To be more precise, in Chapter 4, we recast searches for stable multiply

charged particles and obtain the first bounds on coloured scalars and fermions. We find

that the limits coming from the open searches are flat while the ones from the bound states

increase with charge. This means that both approaches can be used in complimentary

fashion to obtain the prospects of exclusion and discovery of multiply charged particles in

future searches. These particles are predicted by various SM extensions. An introduction

to this type of searches can be found in Section 1.2. Additionally, in Chapter 5, we

investigate top partner signatures for various composite Higgs (CH) models via the pT

spectrum of the Higgs+Jet process and compute the decoupling, soft and collinear limits

to the CP-odd contribution. This allows us to distinguish between the various choices of
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CH models.

Finally, we directly propose SM extensions that address multiple shortcomings in

Chapter 6. For this purpose we consider CH models which resolve the hierarchy problem

and can also explain the heavy top mass. A short review of the hierarchy problem and its

solutions is provided in Section 1.3. In particular, we construct partially composite theor-

ies with pseudo-Nambu-Goldstone (pNGB) Higgs. In addition to aforementioned features,

they include gauge unification, could help resolve flavour anomalies and potentially provide

dark matter candidates. We investigate whether such theories are viable given the cur-

rent collider and EW constraints. In the end we find various promising parameter points,

but the production of sufficiently heavy coloured pNGBs still remains a challenge. After

having introduced all the basic concepts, we provide an outline of the thesis in Section 1.4.

1.1 Indirect CP Violation in Kaon Physics

As there is no manifest flavour symmetry in the SM, the Yukawa couplings may not be

Hermitian and can be diagonalised by unitary transformations into mass eigenstates of

the physical quarks [30]. This introduces the mixing and weak decays of quarks between

different generations in the form of Cabibbo-Kobayashi-Maskawa (CKM) matrix [26, 27].

As not all phases entering CKM matrix are physical, this allows for up to five fields to be

rephased. Due to its unitarity, one can represent the CKM matrix as a unitary triangle

with equal sides, given by the modulus of elements |VudV ∗ub|, |VcdV ∗cb|, |VtdV ∗tb| and angles.

The phase invariance simply translates to rotations of this triangle as all aforementioned

quantities are physical observables. The area of this triangle is then proportional to the

amount of CP (charge conjugation and parity) violation in SM, parametrised by the Jarl-

skog invariant J . Indirect CP violation is proportional to J , which makes it an extremely

important observable in constraining the CKM matrix and the unitary triangle [30, 31].

Due to confinement of the strong interaction CP violation on parton level translates into

effects on mesons and baryons.

For kaons indirect CP violation is parametrised by εK , defined as the ratio between

decay amplitudes of a long-lived and a short-lived kaon, KL and KS , into an isospin zero

state, given by

εK ≡
〈(ππ)I=0|T |KL〉
〈(ππ)I=0|T |KS〉

, (1.1)

where T is the unitary transition matrix related to the S-matrix by S = 1 + iT [30].

If we define the flavour eigenstates as K0 = (s̄d) and K̄0 = (sd̄), which mix via weak
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interactions, as shown in Figure 1.1, we can relate the long-lived and the short-lived kaon

states to flavour states as follows

|KL〉 = pK |K0〉+ qK |K̄0〉, (1.2)

|KS〉 = pK |K0〉 − qK |K̄0〉, (1.3)

where p2
K+q2

K = 1 and pK/qK = (1+ ε̄)/(1− ε̄) with ε̄ being a small complex parameter [4].

As both of the flavour eigenstates can be chosen to be CP odd, via the phase conventions,

we can define CP eigenstates as

K1 =
1√
2

(K0 − K̄0), CP even, (1.4)

K2 =
1√
2

(K0 + K̄0), CP odd. (1.5)

Kaons follow the |∆I| = 1/2 rule, meaning that they predominantly decay into an isospin

zero state, |0〉, rather than into isospin two state, |2〉. This results in |KS〉 decaying

mostly into the 2 pion state and |KL〉 mostly into the 3 pion state, which also explains

the difference in their lifetimes. As a result, the name indirect CP violation comes from

the fact that the decay |KL〉 → 2π occurs indirectly, via the admixture of the CP even

state in the |KL〉 [31].

Generally, εK can be written as

εK =
ei
π
4√

2∆MK

(
ImM12 + 2ReM12

ImA0

ReA0

)
, (1.6)

where the decay amplitude A0 is defined as 〈Iout|T |K0〉 = AIe
iδI with I = 0 [31]. ∆MK

is the mass difference between the mass eigenstates KL and KS . M12 is the off-diagonal

element in the kaon mass matrix, which arises from the mixing box diagrams in Figure 1.1.

These box diagrams can be translated into an effective ∆S = 2 Hamiltonian and in 4

dimensions represented by an operator

Q = (s̄γµ(1− γ5)d)(s̄γµ(1− γ5)d), (1.7)

giving a matrix element

M12 ∝ 〈K0|Q|K̄0〉. (1.8)

Along with various other QCD corrections, it enters the dominant short-distance contri-
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Figure 1.1: K0 - K̄0 mixing diagrams.

bution to the εK , for which the expression is given by

εK = κεK B̂K
G2
F f

2
KMKM

2
W

6
√

2π2∆MK

Im(λt)e
iπ

4

× (Re(λc)(η1S0(xc)− η3S0(xc, xt))− Re(λt)η2S0(xt)),

(1.9)

where κt are subdominant corrections, B̂K is the kaon bag parameter parametrising the

∆S = 2 operator, fK is the leptonic decay constant, λx = VxdV
∗
xs with CKM matrix

elements Vxy, ηi are perturbative QCD corrections and S0 are Inami-Lim functions of

mass ratios xq = m2
q/m

2
W [4].

1.2 Heavy Stable Multiply Charged Particles

While the usual new coloured particles have already been studied extensively and only

constraints on their masses have been put so far at colliders. Hence there is increasing in-

terest in more elusive signatures as well as more exotic scenarios. In particular in [6] scalar

and fermionic top partners that carry such charges have been proposed. These particles

would be stable on collider scales and can propagate through the detector independently

as well as form a charmonium-like bound state. In this section we will introduce both of

the production mechanisms for such particles.

1.2.1 Open Particle Production

To begin with, we consider pair produced particles, which can travel through the detector

independently. This is also known as the open production. In the following, we are going

to provide a brief introduction to the open production mechanism, including the relevant

production processes, showering and hadronisation.

Pair Production

Coloured particles tend to be predominantly produced via gluon fusion. In addition,

they can be produced via Drell-Yan (DY) process, i.e. the quark-anti-quark production

mediated by a gluon. For colourless fermions and coloured particles with relatively large
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charges photon-photon, photon-gluon fusion and DY processes, mediated by a photon and

Z boson, are important. In Figures 1.2-1.3, the diagrams relevant for the production of

scalar and fermionic top partners are presented.

Shower and Hadronisation

Coloured particles hadronise within a time scale of thad ≈ 1/ΛQCD, where ΛQCD is the

energy scale at which QCD becomes strongly coupled. The stable fermion or scalar colour-

triplet partners are expected to form “R-hadrons”, similarly to quarks and squarks [32].

R-hadrons consisting of partners are mesons and baryons of the forms χq̄ and χqq, where

χ is the partner and q is a SM quark. The spin and the electric charge of the heavy partner

are effectively irrelevant to the hadronisation process and can be disregarded.

Since hadronisation takes place almost independently for the rather heavy partner and

the anti-partner, they may hadronise into two differently charged R-hadrons. This should

be taken into account when considering the detection of a pair-production event.
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1.2.2 Bound States and Resonances

In the previous Section we have considered particles that can transverse the detector

independently from each other. However, heavy top partners could also be produced with

the energy just above the threshold and form a bound state. Since the momentum of the

bound state is close to zero, it can be modelled as a non-relativistic system, similar to

hydrogen atom [33]. Here, we will cover all of the important features of the bound state

formalism at the leading order, including potential, wave function, resonances and their

decays.

Potential

Particles forming the bound state are held together by a Coulomb-like potential. For

coloured particles the dominant LO contribution generally comes from the gluon potential

defined as

V QCD(r) = −C ᾱs
r
, (1.10)

where r is the distance between the two particles, C is the Casimir of SU(3)c and ᾱs is the

running strong coupling evaluated at the average distance between the two particles given

by the inverse Bohr radius a−1
0 = Cᾱsµ. Here µ = m1m2/(m1 +m2) is the reduced mass

of the constituent particles [33, 34]. For colour-triplets C3 = 4/3 and for colour-singlets

C0 = 0. Since we consider leptons and coloured particles with large charges, we also have

a significant contribution to their binding potential coming from the EM force

V QED(r) = −Q2α

r
, (1.11)

where Q is the charge of the constituents and α is the electromagnetic coupling evaluated

at mZ [11]. For m = 1 TeV and Q = 8 top partners this contribution could be ∼ 4 times

larger than the one coming from the QCD.

Wave Function

The bound state is essentially a superposition of free particles with position or momentum

weighted by the bound state wave function Ψ(r). This wave function at the origin is only

non-vanishing for S-waves. Thus, the matrix element for the bound state MB is given in

terms of the matrix element for the free states M0 by

MB =
Ψ(0)√

2µ
M0. (1.12)
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The bound state at the origin is given by

|Ψ(0)|2 =
(Cᾱs +Q2α)3M3

8πn
, (1.13)

where n is the radial excitation level. Since the contributions from n ≥ 2 states are

negligible, we keep only the ground state contribution [33].

Resonances

Resonant cross-sections are generally given by Breit-Wigner formula

σ(E) =
2J + 1

(2S1 + 1)(2S2 + 1)

4π

k2

[
Γ2/4

(E − E0)2 + Γ2/4

]
BinBout, (1.14)

where E is the centre-of-mass energy, J is the spin of the resonance, S is the number of

polarization states for each constituent particle, k is the centre-of-mass momentum in the

initial state, E0 centre-of-mass energy at resonance and B is the branching ratio [35]. For

narrow width approximation the expression in the square bracket in Eq.(1.14) becomes

πΓδ(E − E0)/2.

This ansatz allows for the cross section of the resonance and the branching ratio of the

decay to factorise, for instance

σ(e+e− → ff̄) = σ(e+e− → Z)Br(Z→ f̄ f), (1.15)

for the Z resonance and corresponds to producing the particle on-shell.

Resonance Decays

The partnerium is unstable due to the annihilation of its constituents, and can be detected

as a resonance, with invariant-mass peak at M ≈ 2mpartner . The bound state decay rate

to two mass m0 particles is given by

Γ =
|Ψ(0)|2

64πm1m2

√
1− m2

0

(M/2)2

∫ π

0
dθ sin θ

∑
ε1,ε2

|M0(θ)|2,
(
×1

2
for identical particles

)
(1.16)

where m1,m2 are the masses of the constituent particles and the sum is over photon

polarizations ε1 and ε2 [34].
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Figure 1.4: Fermion, gauge bosons and Higgs self-energy diagrams contributing to the
Higgs mass.

1.3 Hierarchy Problem in the Electro-weak Sector

The hierarchy (or naturalness) problem in the SM arises as follows. We can view the SM

as an effective field theory with some large energy cut-off ΛSM, which could potentially be

as large as the GUT scale ΛGUT ∼ 1015 GeV, or even the Planckian energies, ΛPlanck ∼
1019 GeV. The Lagrangian of such a theory contains terms of mass dimension four. Hence,

if we have higher dimensional (D > 4) operators in such Lagrangian, we expect them to

be suppressed by appropriate powers of the cut-off 1/ΛD−4
SM . The Higgs mass, on the

other hand, results from a dimension two operator H†H, therefore we expect it to be

enhanced by Λ2
SM. Since the Higgs mass has been measured to be mH = 126 GeV [23],

the coefficient in front of this term must be very small. Such coefficient could only be

considered natural if setting it to zero would restore a symmetry of the Lagrangian [36].

However, there is no symmetry in the SM protecting the Higgs mass which results in large

quantum corrections. Such corrections to the Higgs mass get contributions from fermions,

gauge bosons and Higgs self interactions, given in Figure 1.4, which can be written as

m2
H =

3y2
t

8π2
Λ2

SM −
2g2
W

8π2

(
1

4
+

1

8 cos2 θW

)
Λ2

SM −
3λ

8π2
Λ2

SM, (1.17)

where yt is the top Yukawa coupling, gW is the EW coupling, θW is the weak angle and λ

is the Higgs quartic coupling [37].

There are two ways to remedy this problem. The first one involves introducing a new

scale of order of a few TeV at which the Higgs mass is protected due to symmetries. Then

the corrections to the Higgs mass depend on this new scale rather then the high UV scale.

This is for instance implemented for composite Higgs models, see Chapter 5. The second

way involves introducing new fields to the theory such that they give contributions that

could cancel these divergent terms, as it is the case for e.g. supersymmetry, or the models

in Chapter 4.
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1.4 Thesis Outline

The thesis comprises of six chapters involving published and unpublished work conducted

during my doctoral studies and is structured as follows:

• Chapter 2: Renormalisation and NNLO Techniques.

This serves a survey chapter for Chapter 3. We introduce basic notions of renorm-

alisation and Greens functions in QCD. In addition, we review operator renormal-

isation in minimal subtraction and momentum subtraction schemes. We also cover

integration by parts method, which will be used for the computation of two-loop

diagrams.

• Chapter 3: NNLO Matching of RI/(S)MOM Schemes to MS for BK.

In this chapter we perform the first two-loop conversion for the kaon bag parameter

BK from symmetric momentum subtraction schemes to the MS scheme.

• Chapter 4: Bounds and Prospects for Stable Multiply Charged Particles

at the LHC.

Here we present our recast of collider searched for scalar and fermionic matter with

exotic charges. This chapter has appeared as [1] in verbatim.

• Chapter 5: Composite Higgs Models.

This serves both as preparation for Chapter 6 and also includes results from our

publication [2]. Here we provide a review of the salient features of composite Higgs

with particular focus on pNGB Higgs. We also discuss the relevant collider and

electro-weak constraints.

• Chapter 6: Gauge and Matter Unification in Composite Higgs Models.

This chapter contains our model building efforts of composite Higgs theories with

gauge and matter unification. We investigate the viability of such models given the

current EW and collider constraints. The work presented in this chapter is part of

an ongoing project.

• Chapter 7 contains the conclusion of the thesis.
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Chapter 2

Renormalisation and NNLO

Techniques

In this thesis, we are going to compute a change of operator renormalisation scheme

from SMOM to MS. An introduction to these schemes will follow later in this chapter.

Specifically, we focus on the ∆S = 2 four-quark operator

Q = (s̄γµPLd)(s̄γµPLd), (2.1)

as given in Eq.(1.7). The operators in the two schemes are related as

QSMOM = CMS→SMOMQMS. (2.2)

This conversion is a key ingredient in for connecting the perturbative loop calculations in

the high-energy regime to non-perturbative lattice results of the strong interaction at low

energies. The one-loop conversion has already been determined in [4]. We will extend this

to two-loop order.

Phenomenologically this allows to determine the CP-violating observables in kaon de-

cays to high precision. They are defined in terms of K → ππ decay amplitudes

〈(ππ)I |T |K0〉 = AIe
iδI , (2.3)

where AI are the isospin amplitudes. The indirect CP violation εK is then given by

εK =
ei
π
4√

2∆MK

(
ImM12 + 2ReM12

ImA0

ReA0

)
, (2.4)
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which we have already introduced in Eq.(1.6). In addition, we can define direct CP

violation as

ε′ =
iei(δ2−δ0)

√
2

ReA2

ReA0

(
ImA2

ReA2
− ImA0

ReA0

)
, (2.5)

taken from [38]. The short-distance contributions to εK involve the matrix element

〈K0|Q|K̄0〉 =
2

3
f2
KM

2
KBK , (2.6)

which is parametrised by the kaon bag parameter BK . Hence, the conversion in Eq.(2.2)

translates to

BSMOM
K = CMS→SMOMBMS

K . (2.7)

Related conversion factors can also be used to convert the matrix element

〈(ππ)I=2|Q∆S=1|K̄0〉, (2.8)

contributing to the ∆I = 3/2 amplitude AI , an ingredient for ε′. Here Q∆S=1 are the

operators of the Nf = 3 and ∆S = 1 Hamiltonian, build purely out of left-handed fields.

The main calculation of radiative corrections to the Green’s function of Q in Eq.(2.1)

up to two-loop order and the matching between perturbation theory and lattice QCD will

be presented in Chapter 3. In this chapter we will review the prior work and technical

ingredients needed to perform this calculation. Moreover, we will define our notation and

conventions. In particular in Section 2.1 we will introduce the basic aspects of QCD,

Green’s functions and their renormalisation. In Section 2.2 we will discuss the operator

renormalisation and their matching between different schemes. Finally, in Section 2.3 we

will review the loop methods needed for the two-loop computation and summarise the

chapter in Section 2.4.

2.1 Renormalisation of QCD

In this section we will cover the aspects of QCD and its renormalisation that are relevant

for this thesis. A more detailed introduction to QCD and renormalisation can be found

in [16,39,40].
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2.1.1 The QCD Lagrangian

The QCD Lagrangian density [41] is given by

LQCD =q̄αi (i/∂ −mq)qiα + gsq̄iT
a
ijγ

µqjA
a
µ

− 1

4
(∂µA

a
ν − ∂νAaµ)(∂µAaν − ∂νAaµ)− 1

2ξ
(∂µAaµ)2

− gs
2
fabc(∂µA

a
ν − ∂νAaµ)AbµAcν − g2

s

4
fabef cdeAaµA

b
νA

cµAdν

+ χa∗∂µ∂µχ
a + gsf

abc(∂µχa∗)χbAcµ,

(2.9)

where q are the quark fields, α count over the Nf flavours and indices i, j denote Nc

colours. Aaµ stands for the gluon field carrying colour in the SU(Nc) adjoint representation

a = 1, ..., N2
c − 1. The strong coupling is denoted by gs and ghost field by χa. The T a

are the generators of the fundamental representation, fabc are the structure constants of

SU(Nc) and ξ is the gauge-fixing parameter.

All of the physical information from this Lagrangian density can be extracted via time-

ordered Green’s functions in either position or momentum space. The two are related via

Fourier transformation. We can define the Green’s functions in momentum space as

Gijk(gs,mq, p
q
i , p

q̄
j , p

A
k , ξ)× (2π)4δ4

(
i∑

n=1

pqn +

j∑
m=1

pq̄m +

k∑
l=1

pAl

)

= 〈0|Tq1(pq1)...qi(p
q
i )q̄1(pq̄1)...q̄j(p

q̄
j)A

µ1
1 (pA1 )...Aµkk (pAk )|0〉,

(2.10)

where i, j, k are labels of the quark, anti-quark and gluon fields respectively, pqi , p
q̄
j , p

A
k are

their momenta and T is the time-ordering operator. Ghost fields are not physical states,

they only remove the unphysical degrees of freedom from the gauge fields. Hence, they

only appear within quantum corrections.

In general, Green’s functions can be computed using non-perturbative methods e.g.

lattice QCD or by employing perturbation theory. This will be addressed in the next

section.

2.1.2 Perturbation Theory

The Lagrangian in Eq.(2.9) can be split into a free action S0, containing kinetic terms of

non-interacting fields, and interaction part Sint, via
∫
d4xLQCD = S0 + Sint. In perturba-

tion theory the Green’s functions in Eq.(2.10) are computed by expanding them in powers
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of interactions Sint as

Gijk(gs,mq, pl, ξ) ∝
∫
DqDq̄DADχDχ∗ Tq1...qiq̄1...q̄jA

µ1
1 ...Aµkk e

iSint , (2.11)

where pl is used to indicate momentum dependence. Diagrammatically, propagators from

S0 and interaction vertices from Sint can be expressed as Feynman rules. The quark, gluon

and ghost propagators are given by

i jp
=

i(/p+m)

p2 −m2 + i0
,

a, µ b, ν

k = −iδab
(

gµν
k2 + i0

− (1− ξ) kµkν
(k2 + i0)2

)
,

a b

p
=

iδab

p2 + i0
,

respectively, where p and k are the momenta, i0 is the Feynman prescription. The quark-

gluon, triple and quartic gluon and ghost-gluon vertices are

i j

a, µ

= igsγ
µT a,

b, νc, ρ

a, µ

p1

p2

p3

= −gsfabc(gµν(p1 − p2)ρ + gνρ(p2 − p3)µ + gρµ(p3 − p1)ν),

b, νa, µ

c, ρ d, σ
= −ig2

s(f
abef cde(gµρgνσ − gµσgνρ)

+facef bde(gµνgρσ − gµσgνρ)
+fadef bce(gµνgρσ − gµρgνσ)),

c a

b, µ

p
= −gsfabcpµ.

In practice, the perturbative expansion generates loops over quantum fluctuations.

This leads to sums over spinor and colour structures as well as integrals over internal loop

momenta. As a consequence two kinds of divergences may arise. UV divergences occur
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when the loop integrals diverge for internal momenta going to infinity. These divergences

can be removed by renormalisation, which will be discussed in the next sections.

In contrast, IR divergences occur due to massless propagators when integrals diverge

as loop momenta go to zero (soft divergence) or become collinear with one of the external

momenta [42]. This is particularly relevant for massless particles, such as gluons and

light quarks. Massive propagators are protected from such divergences by the mass term.

One has to include diagrams containing unresolved or very soft radiation to cancel IR

divergences.

2.1.3 Dimensional Regularisation

In order to remove UV divergences we first have to parametrise them using a regularisation

technique. In this thesis we will employ dimensional regularisation [43], as it is compatible

with the symmetries of QCD. This means that we work in D = 4− 2ε dimensions, where

ε is a small parameter. Hence, the mass dimensions of the fields and couplings become

[q] =
D − 1

2
,

[Aµ] =
D − 2

2
,

[LQCD] = D,

[gs] = ε,

[ξ] = 0.

(2.12)

It is convenient to re-express the coupling gs as a dimensionless quantity

gs → gsν
ε, (2.13)

where ν is an arbitrary scale parameter. This results in an effective shift of each momentum

k integral d4k → ν4−DdDk.

Hence, we can now write Green’s functions G as Laurent series in ε, giving

G =
1

εN
G(−N) +

1

εN−1
G(−N+1) + ...+G(0) +O(ε), (2.14)

where N ≤ L for L-loop integrals with UV divergences. After regularisation we can

proceed to cancel the UV poles using renormalisation, such that Gren = G(0),ren +O(ε).
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2.1.4 Renormalisation

In order to obtain finite Green’s functions we have to renormalise the bare fields and

couplings appearing in the Lagrangian Eq.(2.9) via

A0µ = Z
1/2
A Aµ(µ), q0 = Z

1/2
q q(µ), ξ0 = Zξξ(µ),

g0,s = Zggs(µ)νε, m0,q = Zmmq(µ), χ0 = Zχχ(µ),
(2.15)

where we have indicated the bare fields and couplings with the “0” subscript. The renor-

malised quantities are finite, but depend on a renormalisation scale µ, which is, in general,

not related to the dimensional regularisation scale ν. The renormalisation constants Z

contain poles which cancel the UV divergences. The Z − 1 are also referred to as coun-

terterms.

The Z-factors may contain arbitrary finite parts which correspond to different renor-

malisation schemes. In the following, we will review two types of renormalisation schemes

- minimal subtraction and momentum subtraction.

Minimal Subtraction Schemes

The minimal subtraction (MS) scheme removes only the poles, thus the counterterms

do not contain finite parts [43]. In this thesis we will be using the modified minimal

subtraction (MS) scheme. In this scheme the scale ν is identified as

ν = µ

(
eγE

4π

) 1
2

, (2.16)

prior to performing the minimal subtraction. This is equivalent to defining the renormal-

ised gauge coupling as

g0,s = Zggs(µ)µε
(
eγE

4π

) ε
2

, (2.17)

where γE is the Euler-Mascheroni constant.

The renormalisation scale dependence of the strong coupling is encoded by the βs

function [44,45]

βs(µ) = µ
d

dµ

(
αs(µ)

4π

)
= −2ε

αs(µ)

4π
− 2β0

(
αs(µ)

4π

)2

+O
(
αs(µ)

4π

)3

, (2.18)

where β0 is its one-loop coefficient, given as

β0 =
11

3
Nc −

2

3
Nf , (2.19)
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and αs(µ) = gs(µ)2/(4π) is the fine structure constant of QCD. Nc is the number of colours

and Nf is the number of active quark flavours. Due to β0 > 0 in QCD the coupling becomes

perturbative in the high energy regime (asymptotic freedom) [46, 47]. For low energies,

however, the theory is strongly interacting and confining. Similarly, the mass and field

anomalous dimensions γ can be similarly inferred from Zm and Zq.

For minimal subtraction, renormalisation constants Z(µ) can written as

Z(µ) = 1 + Z(1)α(µ)

4π
+ Z(2)

(
α(µ)

4π

)2

+O
(
α(µ)

4π

)3

, (2.20)

where each perturbative order Z(n) is expanded in powers of ε

Z(n) =
n∑

m=0

Z(n,m) 1

εm
. (2.21)

The particular MS Z-factors, relevant for this thesis, are the wavefunction renormalisation

constants [48], given by

Z(1)
q = −CF

ε
ξ,

Z(2,2)
q =

CF
4Nc

ξ(−ξ + 3N2
c + 2ξN2

c ),

Z(2,1)
q =

CF
8Nc

(−3− 2ξ2 − 22N2
c − 8ξN2

c + ξ2N2
c + 4NcNf )− C2

F

2
ξ2,

(2.22)

where CF = (N2
c − 1)/(2Nc) is the quadratic Casimir invariant for the defining represent-

ation of SU(Nc). In addition, we will need the gauge renormalisation constant [49]

Z(1)
g = −β0

ε
, (2.23)

and the gauge parameter Z-factor

Z
(1)
ξ =

(
Nc

(
5

3
+

1

2
(1− ξ)

)
− 2

3
Nf

)
1

ε
. (2.24)

Before we can discuss the momentum subtraction schemes, we have to introduce the

notion of renormalisation of amputated Green’s functions.
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Renormalised Green’s Functions

In a similar fashion to Eq.(2.10) we can define a renormalised connected Green’s function

in momentum space

Gijkren(gs(µ),mq(µ), pqi , p
q̄
j , p

A
k , ξ(µ), µ)× (2π)4δ4

(
i∑

n=1

pqn +

j∑
m=1

pq̄m +
k∑
l=1

pAl

)

= 〈0|Tq1(pq1)...qi(p
q
i )q̄1(pq̄1)...q̄j(p

q̄
j)A

µ1
1 (pA1 )...Aµkk (pAk )|0〉conn,

(2.25)

where the fields on the right-hand-side are renormalised. The corresponding connected

amputated Green’s function Λijkren, which is known as the scattering amplitude, is given by

Λijkren =
Gijkren∏

i,j G
110
ren

∏
kG

002
ren

. (2.26)

This expression is only schematic, the factors in the denominator mean the (matrix)

inverse of ‘dressed’ propagators which, in general, involve various index contractions. The

equivalent can also be defined for the bare Green’s functions. Both are then related via

Λijkren(gs,mq, pl, ξ, µ) = Z(i+j)/2
q Z

k/2
A Λijk0 (g0,s,m0,q, pl, ξ0). (2.27)

Later, we will also be using the “bracket” notation to denote operator O insertions into

amputated Green’s functions as Λ(O) = 〈O〉. In particular, for our operator Q defined in

Eq.(2.1) the four-point amputated Green’s function is given by

Λijklαβγδ(p1, p2, p3, p4) = 〈diα(p1)s̄jβ(−p2)dkγ(p3)s̄lδ(−p4)Q(p1 + p3 − p2 − p4)〉conn

= 〈Q〉,
(2.28)

where i, j, k, l are colour and α, β, γ, δ are Dirac indices, and p1, p3 are incoming and p2, p4

outgoing momenta, subject to the constraint p1 + p3 = p2 + p4. Once the renormalisation

is performed, we can take the limit ε→ 0 and obtain a finite scattering amplitude.

Momentum Subtraction Schemes

As opposed to minimal subtraction, where the dimensional regularisation scale is trans-

lated into the renormalisation scale, momentum subtraction schemes (MOM) are regular-

isation invariant (RI) and instead the renormalisation scale corresponds to a momentum.

In general, these schemes are specified by renormalisation conditions which are fixed such

that at a subtraction point the renormalised Green’s functions are satisfied by their tree-
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q

p2p1

Figure 2.1: Momentum subtraction point, where q = p1−p2 and the square corresponds to
insertion of an operator. Solid lines denote fermions and dashed line momentum transfer.

level expressions.

The subtraction point is defined through different momentum configurations of an oper-

ator Ô insertion between two external quark lines at fixed gauge, for which the momentum

flow is illustrated in Figure 2.1. There are two choices for the momentum configuration:

exceptional and non-exceptional. The exceptional momentum configuration involves

p2
1 = p2

2 = p2 = −µ2 and q = 0, (2.29)

where µ2 > 0 is the renormalisation scale. This is known as the RI-MOM scheme, which

was introduced in the context of non-perturbative renormalisation of lattice operators

in [50]. On the other hand, the non-exceptional point, which is often called symmetric or

RI-SMOM, is defined with all non-zero channels, as

p2
1 = p2

2 = q2 = p2 = −µ2 and q = p1 − p2. (2.30)

RI-SMOM was introduced in [51]. In both cases p is the Euclidean momentum, hence

p2 < 0. The symmetric configuration is usually preferred, due to better convergence

of the perturbative expansion, decrease in chiral symmetry breaking and other infrared

effects [51].

The renormalisation constants for the RI-MOM and RI-SMOM schemes are obtained

as follows. Consider a Green’s function GÔ, given by

GÔ = i

∫
d4x eipx〈0|TÔ(x)|0〉, (2.31)

which is equivalent to Eq.(2.10). Then the amputated Greens function, as in Eq.(2.26),

can be defined as

ΛÔ = S−1(p2)GÔS
−1(p1), (2.32)
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where S(p) is the ‘dressed’ quark propagator

S(p) = G110 = i

∫
d4x eipx〈0|Tq(x)q̄(0)|0〉. (2.33)

The wavefunction renormalisation constants Zq, defined in Eq.(2.15), can be obtained

from the following conditions

lim
mq→0

1

48
Tr

[
γµ
∂S−1

R (p)

∂pµ

]∣∣∣∣∣
p2=−µ2

= −1, RI-(S)MOM, (2.34)

lim
mq→0

1

12p2
Tr[S−1

R (p)/p]|p2=−µ2 = −1, RI-SMOM, (2.35)

imposed on a renormalised quark propagator S−1
R = Z−1

q S−1
0 , where the bare propagators

is defined as

S0(p) =
−1

p/−m0,q + i0− Σ(p)
, (2.36)

and Σ(p) denotes the higher order corrections to the quark self-energy. The quarks are

treated as massless and the trace is defined over both colour and spin. There are further

renormalisation conditions defined for the quark masses and different operator insertions

into vertex itself, which can be found in [51]. Before we can discuss the renormalisation of

four-quark operators, we have to comment on the non-renormalisable couplings of higher

dimensional operators.

Non-renormalisable Couplings

The renormalisation procedure is applicable to all loop orders in theories containing coup-

lings with non-negative mass dimensions. Generally, higher order operators, giving rise

to couplings with negative mass dimensions, are considered non-renormalisable. However,

they can be renormalised order by order in perturbation theory, provided an increasingly

large set of operators is considered.

2.2 Operator Renormalisation and Matching

In this thesis, we will only consider the four-quark operator which represents the low-

energy approximation to the strong interaction. Hence, these operators are not treated

as independent interactions that would enter loop integrals. Instead, only renormalisable

QCD interactions are considered, as they represent the high-energy formulation of the the-

ory. As a result, the four-fermion operators introduce counterterms and are renormalised
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by dimension four interactions, while operators with even higher mass dimension are not

required. As the light quark mass is neglected, the renormalisation remains proportional

four-quark operators, and a Z factor can be introduced. In general, this will be a matrix

of renormalisation constants.

In this section we will review the renormalisation of four-quark operators in MS NDR

and momentum subtraction schemes. We will also discuss the evanescent operators, the

matching between the two types of schemes and derive the anomalous dimension matrix for

the renormalised operators. The latter allows us to obtain the two-loop renormalisation

constants in terms of one-loop poles and anomalous dimensions. For a comprehensive

introduction to the treatment of four-quark operators we refer to [31, 41] and references

therein.

2.2.1 MS NDR Scheme and Evanescent Operators

MS schemes, within the context of dimensional regularisation, are constructed explicitly

out of the bare operators. In general, the renormalised operators involve several bare

operators, which would lead to a renormalisation

Qren
i (µ) =

∑
j

Zij(µ)Qbare
j , (2.37)

where Zij(µ) is a matrix of renormalisation constants. In our case, we have only one

physical bare operator QB and a single renormalisation constant ZQQ. In dimensional

regularisation there are additional operators EBi , as a consequence of the larger Dirac

algebra in D 6= 4 compared to D = 4. They can be chosen such that they vanish at tree-

level in D = 4 and are known as evanescent operators. For the renormalised four-quark

operator Q defined in Eq.(2.1), we have

QNDR = ZQQQ
B +

∑
i

ZQEiE
B
i , (2.38)

where ‘NDR’ specifies anti-commuting γ5 and ZQQ and ZQEi are renormalisation con-

stants. Defining the renormalised coupling through Eq.(2.15), the Z-factors are defined

such that gs(µ) and 〈QNDR〉 (for renormalised quark fields) have a finite limit ε→ 0. The

Z factors are singular as ε→ 0 and, for MS, are taken equal to the principal parts of their

Laurent expansions (i.e. containing only poles in ε).



22

Up to two-loop order the following basis of evanescent operators suffices:

EF = (s̄iγµPLd
l)(s̄kγµPLd

j)−Q,

E1 = (s̄iγµ1µ2µ3PLd
j)(s̄kγµ1µ2µ3PLd

l)− (16− 4ε− 4ε2)Q,

E2 = (s̄iγµ1µ2µ3PLd
l)(s̄kγµ1µ2µ3PLd

j)− (16− 4ε− 4ε2)(Q+ EF ), (2.39)

E3 = (s̄iγµ1µ2µ3µ4µ5PLd
j)(s̄kγµ1µ2µ3µ4µ5PLd

l)− (256− 224ε− 144ε2)Q,

E4 = (s̄iγµ1µ2µ3µ4µ5PLd
l)(s̄kγµ1µ2µ3µ4µ5PLd

j)− (256− 224ε− 144ε2)(Q+ EF ),

where γµ1µ2µ3 = γµ1γµ2γµ3 etc. We use a different definition from the Brod–Gorbahn

basis [52], which we will explain in more detail in Section 3.7. The Ei are chosen to vanish

at ε = 0 (D = 4) at tree level. At loop level, Ei require renormalisation just like the

physical operators

ENDR
i = ZEiEjE

B
j + ZEiQQ

B. (2.40)

While the ZEiEj can again be chosen to be the principal parts of their Laurent series,

a finite ZEiQ is generally required in order to have 〈ENDR
i 〉 = 0 also at loop level. The

ENDR
i renormalised in such a fashion are known as evanescent operators, and in particular

give vanishing contributions to physical matrix elements. The O(ε) and O(ε2) terms are

chosen for convenience.

2.2.2 Four-quark Operators in MOM Schemes

Similarly to the QCD renormalisation, operator Z-factors can be alternatively fixed by

momentum space conditions. This is attractive from a lattice perspective. Calculations on

the lattice are done numerically, where the lattice spacing, renormalisation scale and gauge

are fixed and the external states are off-shell (as this is how the non-perturbative lattice

renormalisation scheme is defined, in order to reduce the systematic errors [50]). Once

computed, the bare matrix element is then renormalised in terms of some intermediate

scheme. It has to be possible to implement this scheme both numerically on the lattice as

well as in perturbation theory. This is because we want to combine the matrix element

with the Wilson coefficients, which are usually computed in MS NDR scheme. In order to

achieve that goal, both the matrix elements and the Wilson coefficients are renormalised

in the same scheme. One type of schemes, that are viable for such conversion, are the

RI-(S)MOM schemes.

Originally, RI-MOM and RI-SMOM schemes were applied to four-quark operators

in [53] and [4] respectively. For our operator defined in Eq.(2.1), a typical momentum
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−2q

d(p1)

s̄(p2)

d(p1)

s̄(p2)

1

Figure 2.2: Momentum subtraction point for a four-quark operator: p2
1 = p2

2 = (p1 − p2)2

and q = p1 − p2. The solid black lines with arrows indicate fermion and momentum flow,
the dashed line with arrow indicates momentum flow into the vertex.

flow is shown in Figure 2.2, with the same kinematics as given in Eqs.(2.29, 2.30). The

vertex renormalisation condition is defined such that at the subtraction point the four-

point amputated Green’s function Λ, given in Eq.(2.28), is equal to the tree-level Green’s

function. The projection operators, which facilitate this, can be written as

P ij,kl(γµ),αβ,γδ =
(γν)βα(γν)δγ + (γνγ5)βα(γνγ

5)δγ
256Nc(Nc + 1)

δijδkl, RI-(S)MOM, (2.41)

P ij,kl(q/),αβ,γδ =
(/q)βα(/q)δγ + (/qγ5)βα(/qγ5)δγ

64q2Nc(Nc + 1)
δijδkl, RI-SMOM, (2.42)

where Nc is the number of colours, i, j, k, l colour and α, β, γ, δ spinor indices [4]. These

projection operators are normalised in such a way that Tr(PΛtree) = 1. Having multiple

projectors allows us to assess the systematic uncertainties resulting from the choice of

scheme.

Given the two projectors in Eqs.(2.41, 2.42) and the two conditions on the quark

propagator that specify Z
(γµ)
q in Eq.(2.34) and Z

(q/)
q in Eq.(2.35), we can define four renor-

malisation schemes as

Q
(γµ,γµ)
R = Z

(γµ,γµ)
Q QB, (2.43)

Q
(γµ,q/)
R = Z

(γµ,q/)
Q QB, (2.44)

Q
(q/,γµ)
R = Z

(q/,γµ)
Q QB, (2.45)

Q
(q/,q/)
R = Z

(q/,q/)
Q QB, (2.46)
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where ‘R’ stands for renormalised and ‘B’ for bare. The Z-factors here are given by

Z
(γµ,γµ)
Q =

(
Z

(γµ)
q

)2 1

P(γµ)(ΛB)
, (2.47)

Z
(γµ,q/)
Q =

(
Z(q/)
q

)2 1

P(γµ)(ΛB)
, (2.48)

Z
(q/,γµ)
Q =

(
Z

(γµ)
q

)2 1

P(q/)(ΛB)
, (2.49)

Z
(q/,q/)
Q =

(
Z(q/)
q

)2 1

P(q/)(ΛB)
, (2.50)

where P(X)(Λ) = P ij,kl(X)αβ,γδΛ
ij,kl
αβ,γδ [4]. We can now proceed to derive the conversion factors

for the operators between the MS and RI-(S)MOM schemes.

2.2.3 Matching between MS and RI-(S)MOM schemes

In this thesis we will be matching our operator Q between MS and RI-(S)MOM schemes,

as mentioned in Eq.(2.2). Generally, a relation between two schemes A and B for such

operator is itself a finite renormalisation

QB = CA→BQ QA, (2.51)

where CA→BQ = ZAQ/Z
B
Q . Likewise, for the quark field we have

ψB =
(
CA→Bq

)1/2
ψB, (2.52)

and similar for the gluon field. The Green’s functions in both schemes are related as

ΛB =
(
CA→Bq

)2
CA→BQ ΛA, (2.53)

where dependence on colour, Dirac indices, and momenta has been suppressed. Consider

now any linear functional P (Λ), in practice a combined Lorentz-colour-tensor which con-

tracts with the Green’s function to a scalar. Then, for any kinematics for which P (Λ)

does not vanish, the scheme conversion factor can be evaluated as

CA→BQ =
1(

CA→Bq

)2 P (ΛB)

P (ΛA)
, (2.54)

in terms of the Green’s functions and the wave function conversion factors.

Hence, for the conversion factors defined as the ratio between the four-quark operator
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in the NDR scheme and in the RI-SMOM scheme

QNDR
V V+AA(µ) = CSMOM

BK
(p2/µ2)QSMOM

V V+AA(p), (2.55)

where p is the renormalisation scale of the SMOM scheme and µ is renormalisation scale

of the NDR scheme, the factors are given by

C
(X,Y )
BK

= (C(Y )
q )2P ij,kl(X)αβ,γδΛ

ij,kl
αβ,γδ, (2.56)

where C
(Y )
q = ZMS

q /Z
(Y )
q is the conversion factor for the wave-function renormalisation.

P are the projectors, defined in Eqs.(2.41, 2.42) with (X,Y ) corresponding to different

RI-SMOM schemes. Λij,klαβ,γδ is the amputated four-point Green’s function computed in the

MS-NDR renormalisation and at the RI-SMOM point.

2.2.4 Operator Anomalous Dimensions

In order to perform the conversion between the two schemes at two-loop order, we will

need two-loop MS renormalisation constants. These can usually be extracted from the

computation of the amplitude (or at least its poles). Alternatively, they enter the com-

putation of the two-loop anomalous dimensions. Several such computations have been

performed specifically for operator Q and can be found in [52, 54]. In this section we

provide the derivation of the anomalous dimensions in our conventions.

In general, renormalised operators Qren
i can be expressed in terms of bare operators

Qbare
i , which have a well-defined meaning during the calculation, as defined in Eq.(2.37).

The renormalisation group equations of the operators

µ
d

dµ
Qren
i (µ) = γijQ

ren
j (µ), (2.57)

are determined by the anomalous dimension matrix (ADM) γij , defined via

γij = µ
dZik
dµ

Z−1
kj . (2.58)

Using the beta function of αs Eq.(2.18) together with Eqs.(2.20, 2.21), we can compute
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the ADM as

γ = −2Z(1,1)αs(µ)

4π
+

(
1

ε
(−2β0Z

(1,1) − 4Z(2,2) + 2Z(1,1)Z(1,1))

+(−2β0Z
(1,0) − 4Z(2,1) + 2Z(1,0)Z(1,1) + 2Z(1,1)Z(1,0))

)(αs(µ)

4π

)2

+O
(
αs(µ)

4π

)3

.

(2.59)

Hence, the one-loop ADM is given by

γ(0) = −2Z(1,1). (2.60)

The coefficient in front of the 1/ε pole has to vanish as the ADM has to be finite since it

encodes the change of operators with the renormalisation scale. Hence, one can obtain an

ADM finiteness (or renormalisability) condition as

− 2β0Z
(1,1) − 4Z(2,2) + 2Z(1,1)Z(1,1) = 0. (2.61)

Finally, the two-loop ADM is given by

γ(1) = (−2β0Z
(1,0) − 4Z(2,1) + 2Z(1,0)Z(1,1) + 2Z(1,1)Z(1,0)). (2.62)

As long as γ(0) arises at one-loop, as is the case in our investigation, it is scheme-

independent. The γ(1) generally depend on the renormalisation scheme as Z(1,0) and

Z(2,1) usually depend on the choice of the evanescent operators, conventionally chosen

such that their Green’s functions vanish in four dimensions.

2.3 Technical Aspects of Loop Integrals

In Chapter 3, we will encounter loop integrals when computing the one and two-loop

radiative corrections to the vertex shown in Figure 2.2. A detailed introduction to loop

integrals can be found in [42, 55]. The Feynman rules, defined in Section 2.1.2, can be

used to translate the contributing diagrams into expressions for the amputated Green’s

functions. At two-loop in particular, these expressions contain a large variety of tensor

integrals over internal loop momenta. Contracting with the (S)MOM projectors allows us

to express the tensors in terms of scalar products. Hence we only need to deal with scalar

integrals. A generic scalar one-loop integral In, with pn external momenta, can be defined
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ϑ1 ϑ3

ϑ2 ϑ4

ϑ5

p

Figure 2.3: The massless two-loop bubble with a vertical line, I(ϑ1, ϑ2, ϑ3, ϑ4, ϑ5), with p
external momentum and the ϑ’s corresponding to the powers of the propagators.

as

In(ϑ1, . . . , ϑn) = ν4−D
∫
dDk

iπ
D
2

n∏
i=1

1

(q2
i −m2

i + i0)ϑi
, (2.63)

where ν is the dimensional regularisation scale, k is the loop momentum, iπ
D
2 is a normal-

isation factor, qi = k+
∑i

j=0 pj are the momenta of all the propagators with masses mi, i0

is the Feynman prescription and ϑi are the integer powers of n propagators. The integral

is defined in Minkowski space with D dimensions and metric ηµν follows the Bjorken-Drell

convention. Momentum conservations implies
∑n

i=1 pi = 0. The subscript n is used to

indicate the number of different propagators corresponding to the integral.

Generally, the initial diagrams that we get from the Feynman rules have ϑi = 1 (or 2

depending on gauge). The transition from tensors to scalars as well as any other factors of

loop momenta in the numerator generate a range of integrals with additional positive or

negative powers of propagators |ϑi| > 1. These integrals can be reduced via the integration

by parts (IBP) method [56] to a particular choice of master integrals. An introduction to

the IBP method can be found in [55,57]. To facilitate this reduction at two-loop we have

to define auxiliary topologies. In this section we will review these techniques.

Integration by Parts

One-loop and many two-loop integrals by now are very well known and solutions for all

of them can be found in the literature. Instead of attempting to derive analytic solutions

ourselves, we will focus on expressing the diagrams we want to compute in terms of

integrals that are mostly already known. Hence, integration by parts (IBP) method is an

invaluable tool as it allows us to obtain linear relations between loop integrals.

Take the two-loop two-point function as an example, given in Figure 2.3. This dia-

gram is too complicated to be solved using the standard Feynman parametrisation, hence

we need a more advanced approach. Our aim here is to relate the physical integral

I(1, 1, 1, 1, 1) to simpler integrals, corresponding to the same diagram, but with differ-
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ent powers of propagators. We can write I as

I(ϑ1, ..., ϑ5) =

∫
dDk

iπD/2

∫
dDl

iπD/2
1

(k2)ϑ1((k + p)2)ϑ2(l2)ϑ3((l + p)2)ϑ4((k − l)2)ϑ5
, (2.64)

where k and l are the loop-momenta, p is external momentum, ϑ’s corresponding to

arbitrary powers of the propagators. Next, we can take a total derivative, with respect to

one of the loop momenta, giving us

∫
dDk

iπD/2

∫
dDl

iπD/2
∂

∂kµ

(
vµ

(k2)ϑ1((k + p)2)ϑ2(l2)ϑ3((l + p)2)ϑ4((k − l)2)ϑ5

)
= 0, (2.65)

where vµ is just an arbitrary 4-vector. Taking the derivative gives

∫
dDk

iπD/2

∫
dDl

iπD/2
1

(k2)ϑ1((k + p)2)ϑ2(l2)ϑ3((l + p)2)ϑ4((k − l)2)ϑ5

×
(
∂vµ

∂kµ
− ϑ1

k2
2kµvµ −

ϑ2

(k + p)2
2(k + p)µvµ −

ϑ5

(k − l)2
2(k − l)µvµ

)
= 0.

(2.66)

We can already see that most of the terms come with an extra propagator. In addition,

depending on what vµ is chosen to be, we can get a scalar product that can be expressed

in terms of inverse propagators. For instance, if we take vµ = kµ and the third term, we

can get 2(k + p) · k = 2k2 + 2k · p = (k + p)2 + k2 − p2, which lowers the powers of the

second and the first propagators respectively. We proceed by choosing vµ = (k − l)µ for

convenience. We denote the change in propagator powers by raising or lowering operators

as n±, where n is the index corresponding to the ϑn and ± refers to ϑn ± 1. We get

(D − ϑ1 − ϑ2 − 2ϑ5)I + ϑ11
+(3− − 5−)I + ϑ22

+(4− − 5−)I = 0. (2.67)

Setting ϑn = 1 and using the symmetries of the integrals gives

I(1, 1, 1, 1, 1) =
2

D − 4
[I(2, 1, 1, 1, 0)− I(2, 1, 0, 1, 1)], (2.68)

where the ϑn = 0 refers to an effectively pinched propagator. We have expressed the

integral in terms of the diagrams, shown in Figure 2.4, which are much easier to compute.

We can see that with 2 loop momenta and 1 external momentum, we have two choices

for the derivatives and 3 for vν , giving us 6 coupled linear equations. These can then be

solved, to find the solution in terms of a preferred basis of integrals. It can indeed be very

convenient to reduce all integrals in terms of a small basis, for which we already know the

solutions. Such basis is also known as the master integrals. However, to fully exploit this
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p p

Figure 2.4: Two diagrams corresponding to I(2, 1, 1, 1, 0) and I(2, 1, 0, 1, 1). Dot represents
propagator squared.

at two-loop order, we need to also introduce auxiliary topologies.

IBP at Two-loop Order: Auxiliary Topologies

A two-loop diagram with two independent external momenta can have at most 7 linearly

independent propagators. This number is based on the possible scalar products between

the loop and external momenta. For example, if we have k1, k2 as our loop and p1, p2

as external momenta, we can have 3 combinations of k1, k2 and 4 combinations of k1, k2

with p1, p2. We known how scalar products are related to the propagators from the

previous section. Hence, 7 combinations of scalar products lead to 7 linearly independent

propagators.

The example shown in Figure 2.3 had 2 loop and 1 external momentum. Therefore,

we could have had at most 5 propagators. Hence, during the reduction, we could express

all the scalar products in terms of the propagators. This is, however, not always the case.

For diagrams with fewer than the maximum number of propagators, applying the IBP

method on such diagrams, could result in irreducible numerators. This means that these

numerators can not be expressed in terms of the inverse propagators. This is also the

reason why Passarino-Veltman technique can not be used beyond one loop [55].

The corrections to the aforementioned vertex are going to come with at most 6 propag-

ators. In order to reduce all these diagrams systematically and to not run into irreducible

numerators, we have to define our diagrams in terms of topologies, with a full set of 7

propagators. As shown in Figure 2.5, we can do this by simply adding extra linearly in-

dependent propagator to one of the existing diagrams. This also allows us to express any

other terms in the numerators coming from the propagators in the full Feynman diagrams,

in terms of the inverse propagators of the auxiliary topology. As a result, if we map all

the diagrams onto a small set of topologies, we only need one set of IBP identities per

each topology, and this can be used to reduce all the integrals belonging to that topology

into a small set of masters.
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p2

p1
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1

Figure 2.5: Obtaining an auxiliary topology based on one of the diagrams.

2.4 Summary

In this chapter we have covered the basic aspects of renormalisation in QCD and defined

our notation and conventions. In particular we have reviewed the computation of am-

putated Green’s functions and their renormalisation in minimal subtraction as well as

momentum subtraction schemes. In addition, we have discussed the renormalisation of

four-quark operators in both kinds of schemes along with conversion between them. We

have also derived the anomalous dimensions of the operators in our conventions, which

will be very useful in extracting the two-loop counter-terms in the next chapter. Finally,

we reviewed the integration by parts method and its application at two-loop order, which

is an essential tool in computation of one and two-loop amplitudes.
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Chapter 3

NNLO Matching of RI/(S)MOM

Schemes to MS for BK

In this chapter, we present the first two-loop calculation of the conversion factor for the

kaon bag parameter, required for the matching between lattice RI/SMOM scheme to MS

scheme. In addition, we provide the conversion factors to translate the result to Brod–

Gorbahn scheme. This calculation is an extension to the one-loop conversion factors

obtained in [4].

The chapter is organised as follows. In Section 3.1 we review the diagrams that com-

prise the bare two-loop amputated Greens functions. We discuss the structure of these

diagrams and the issues with tensor reduction and γ5 at two-loop order. This provides

us with the motivation to take a different approach to computing the amplitude to that

of [4], presented in Section 3.2. Our method involves computing only part of the dia-

grams using Greek projections and obtaining the rest by inspecting the aforementioned

structures. We then proceed to validate this technique by computing the the one-loop

amplitude and countertems in Section 3.3 as well as reproduce the one-loop result for

the conversion factors of [4] in Section 3.4. Furthermore, we calculate the additional one-

and two-loop countertems and the renormalised amplitude in Section 3.5. We present the

first results for the two-loop conversion factors in Section 3.6. In Section 3.7 we compute

the conversion factors necessary to translate our results to the Brod–Gorbahn basis of

evanescent operators. This means that our conversion factors can be used in conjunction

with the Wilson coefficients and anomalous dimensions in [52]. Finally, in Section 3.8 we

present a result for BK in the two MS schemes and summarise this chapter in Section 3.9.
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2q

p1, j, β

p2, i, α

p1, l, δ

p2, k, γ
2q

p1, j, β

p2, k, γ

p1, l, δ

p2, i, α

2q

p1, j, β

p2, k, α

p1, l, δ

p2, i, γ
2q

p1, j, β

p2, i, γ

p1, l, δ

p2, k, α

Figure 3.1: The four configurations of the external indices, corresponding to the following
structures described in the text: (Γ⊗Γ 1⊗ 1), (Γ⊗̃Γ 1⊗̃1), (Γ⊗Γ 1⊗̃1), (Γ⊗̃Γ 1⊗ 1) (left
to right, top to bottom). Each dot corresponds to an insertion of a current Γ and arrows
indicate fermion and momentum flow.

3.1 Four-quark Amplitude in Perturbation Theory

The key ingredient in computing the conversion factor in Eq.(2.2) is the perturbative

calculation of projected amplitudes P ij,kl(X)αβ,γδΛ
ij,kl
αβ,γδ, as defined in Eq.(2.56). The amp-

litude corresponds to an insertion of the operator Q in Eq.(2.1) into the vertex of trans-

ition d(p1)s̄(−p2) → d̄(p1)s(−p2) computed at RI-(S)MOM subtraction point, given in

Fig.(2.2).

In this section we will examine the structure of Λij,klαβ,γδ, including the quantum cor-

rections up to two-loop order. We will also discuss the issues with tensor reduction at

two-loop order and the ambiguities arising in traces over γ5 in D dimensions.

3.1.1 Amplitude at Leading Order

Let us explicitly write the tree-level matrix element (four-fermion Green’s functions) cor-

responding to the insertion of operator Q at RI-(S)MOM kinematics as

〈Q〉 ≡ Λijklαβγδ(Q) = 2
(

(γµPL)αβ(γµPL)γδδ
ijδkl − (γµPL)αδ(γµPL)γβδ

ilδkj
)

≡ 2γµPL ⊗ γµPL 1⊗ 1 − 2 γµPL⊗̃γµPL 1⊗̃1

≡ 2Qs 1⊗ 1− 2 Q̃s 1⊗̃1,

(3.1)

where we use the superscript ‘s’ to denote the Dirac structures defined above. The factor

of 2 comes from the fact that we can interchange the two currents. The pictorial repres-

entation of the two structures is given in the top row of Fig.(3.1). A further operator Q̃,
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corresponding the bottom two diagrams in Fig.(3.1) can be defined as

Q̃ = (s̄iγµPLd
l)(s̄kγµPLd

j), (3.2)

with the matrix element given by

〈Q̃〉 = 2Qs 1⊗̃1− 2 Q̃s 1⊗ 1. (3.3)

The Greens functions 〈Q̃〉 differ from those of 〈Q〉 only by interchange of the two colour

structures.

The expressions for the matrix elements can be split into two parts

〈Q〉 = 〈Q〉1 + 〈Q〉2, (3.4)

where 〈Q〉1 = −2(γµPL)αδ(γµPL)γβδ
ilδkj and 〈Q〉2 = 2(γµPL)αβ(γµPL)γδδ

ijδkl. Next, we

recall that our projectors, defined in Eqs.(2.41, 2.42) are of the form

Pαβ,γδ ∝ XβαYδγδijδkl. (3.5)

Projecting the two structures in Eq.(3.4) results in two types of spinor index contractions

P 〈Q〉1 ∝ Tr(XγµPLY γµPL), (3.6)

P 〈Q〉2 ∝ Tr(XγµPL)Tr(Y γµPL). (3.7)

The same traces can be obtained for 〈Q̃〉, but with different colour contractions. In this

thesis, we will be denoting the structures that result in double traces, like in Eq.(3.7)

as “crossed”, corresponding to diagrams on the LHS of Figure 3.1. The structures that

lead to single traced contractions as in Eq.(3.6) and the related diagrams on the RHS of

Figure 3.1 we will call “direct”. We will be referring to this later in this section, when we

talk about tracing over γ5.

3.1.2 Amplitude at Next-to-Leading Order

The one-loop amplitude can be obtained from the sum of the following 6 diagrams and

their permutations of external legs (corresponding to Fig.(3.1)) and exchange of the two

currents:

The computation of this amplitude can be found in [4], where it was done with open
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a1 a2 b1

b2 c1 c2

indices, by employing the Passarino-Veltmann technique and performing the projections

in 4 dimensions. In this thesis, we will reproduce these results using a different technique

as part of the validation.

3.1.3 Amplitude at NNLO

The direct part of the two-loop amplitude is comprised of 103 diagrams. 36 of these

are recursively one-loop, i.e. they involve insertions of self-energies into the propagators

of one-loop diagrams. The remaining 67 diagrams are the true two-loop diagrams. In

Figure 3.2 we give the pictorial representation of the unique 28 diagrams. The rest of the

diagrams can be obtained by exchanging the external legs and the currents.

Two types of exchanges can be performed: exchange of bilinears, i.e. (i, α) ↔ (k, γ)

and (j, β)↔ (l, δ), or exchange of external momenta, meaning (i, α)↔ (j, β) and (k, γ)↔
(l, δ). The number of diagrams corresponding to each diagram given in Figure 3.2 can

be determined from the symmetries of each diagram. For instance diagrams A2, A5

and C2 are symmetric under both types of exchanges, hence only one of these diagrams

enters the two-loop amplitude. Diagrams C1, D1 and OL5 are symmetric under the

exchange of bilinears, hence corresponding diagrams with momentum exchange have to be

computed. Similarly for diagrams A1, A4, D2, D3, OL4 and OL6 only the corresponding

diagrams with exchanged bilinears have to be computed. For the remaining diagrams all

four permutations enter the amplitude. The equivalent holds for the crossed structures as

well.

Tensor Reduction at NNLO

While the one-loop calculation of the conversion factor exists [4], it is not a trivial task

to extend it to two-loop order. The first complication is the reduction of the tensor

integrals in the two-loop amplitude Λij,klαβ,γδ. The Passarino-Veltmann technique cannot

be used for two-loop integrals, as not every scalar product of the external and internal



35

A1 A2 A3 A4

A5 A6 B1 B2

C1 C2 C3 C4

D1 D2 D3 D4

T1 T2 T3 T4

T5 T6 OL1 OL2

OL3 OL4 OL5 OL6

Figure 3.2: 28 classes of diagrams corresponding to the two-loop radiative corrections
to the Λij,klαβ,γδ. The hatched blobs correspond to the sum of one-loop insertions into the
propagators. Kinematics are defined in Figure 2.2.
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momenta can be expressed in terms of the inverse propagators [55]. Hence, more advanced

methods are required, such as dimensional shift [58]. However, this would bring yet another

complication: we would need solutions to these integrals in other than D = 4 dimensions,

which can also be difficult to obtain. A workaround this issue is to apply projectors first,

turning tensors into scalar products and hence allowing us to express these products

in terms of propagators of scalar two-loop integrals. These extra negative powers of

propagators can then be reduced via the IBP relations to a small set of master integrals.

The downside is that special care needs to be taken as tracing over the spinor indices

first means that it has to be done in D instead of 4 dimensions and that can lead to

inconsistencies when evaluating traces with γ5.

Traces over γ5 in D Dimensions

The use of the projectors P(1) and P(2), defined in Eqs.(2.41, 2.42), gives rise to closed

Dirac traces involving γ5. It is well known that such traces cannot in general be continued

away from D = 4 in a manner consistent with γ5 being anti-commuting [59]. This is not

a problem for the renormalisation conditions, which are imposed on renormalised Green’s

functions after the limit D → 4 has been taken. However, it does require care to be taken

in the perturbative evaluation of Λij,klαβ,γδ.

There is no way to define the double traces consistently in this case. For the single

trace, however, as long as the evanescent operators are defined such that their ‘Greek

projections’ [60, 61] ΓγτΓ′ = 0 vanish in D dimensions, we can consistently use anti-

commuting γ5. Together with γµPLγ
τγµPL = (2− d)γτPL, this can be used, for a general

loop diagram, to obtain the coefficient of 〈Q〉tree.

In addition, even though traces such as Tr(/p1/p2
/k1/k2γ5), may be encountered in the

two-loop calculation, where ki are loop momenta, reducing terms like kµ1k
ν
2 will lead to gµν

and pµ1p
ν
2 . This follows from performing tensor reduction via dimensional shift method [58].

Hence, the longest irreducible Dirac structure remaining after the tensor reduction would

be Tr(/p1/p2
γ5), which is consistently equal to zero in 4 and in D dimensions. Therefore, all

direct traces can be evaluated in D dimensions by anti-commuting each γ5 to the right and

dropping the terms containing it without introducing ambiguities. In the following sections

we will present a way to compute the full amplitude using only the direct diagrams.
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Two-loop Calculation and Renormalisation

The final hurdles of this calculation involve computing the projected diagrams themselves

and obtaining the renormalised amplitude, which is finite in D = 4 dimensions. In Sec-

tion 3.1.3, we have noted that the two-loop amplitude consists of 103 diagrams. The gen-

eral procedure for solving loop integrals involves first reducing them into a set of master

integrals, which can then be evaluated. This is achieved using the IBP method, discussed

in Section 2.3. The procedure minimises the overall uncertainty of the amplitude. While

one could apply IBP relations to every single diagram separately, it is more efficient to

consider symmetries and group them into topologies. In the end we will find that all of the

diagrams will reduce to around 30 masters. The resulting diagrams can then in principle

be evaluated numerically, however it is always beneficial to use as many analytic results

as there are available for better precision.

Once the amplitude is computed its poles have to cancel against the countertems. The

computation of countertems themselves involves one-loop calculations as well as extrac-

tions of two-loop renormalisation constants from the anomalous dimensions. All poles

must cancel in the final result, which is non-trivial for the entirety of 103 diagrams. In

the following sections we will give explicit details on the choice of topologies and master

integrals, their evaluation as well as computation of the counterterms and their structure.

3.2 Full Amplitude from Direct Diagrams

In this section, we present a method to obtain the RI-(S)MOM projections of the full

amplitude up to two-loop order by computing only projections of direct diagrams. The

reason for this is that we would like to avoid performing tensor reduction at two-loop order

by contracting spinor indices in the beginning. This means, however, that the γ5 can be

treated without ambiguities only for the direct diagrams.

The section is organised as follows. In Section 3.2.1 we investigate what Lorentz

structures are going to appear in the two-loop calculation. Since we are computing only

direct diagrams, there are additional Lorentz structures involving external momenta that

need to be considered in order to reconstruct the full amplitude. Hence, in Section 3.2.2

we define further tree-level matrix elements corresponding to the additional structures.

We also write down the amplitude in terms of the matrix elements. As we introduce new

operators we need a way to disentangle them, therefore, in Section 3.2.3 we define a new

set of projectors. Along with those, we present an extended basis of evanescent operators.
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In Section 3.2.4, we then proceed to write down the direct amplitude and explain how we

obtain the coefficients in front of the tree-level matrix elements. In Section 3.2.5 we discuss

how to extract the projections P(1) and P(2) of the full amplitude from these coefficients.

Finally, in Section 3.2.6 we present an alternative minimal basis of operators.

3.2.1 Bilinears and Invariants

In a computation with open indices, after carrying out the loop integrals, all our Dirac

strings can be written as a single PL at the right end, preceded by an odd number n of

Dirac matrices, where some of these may be contracted with p1 or p2, with p/1 and p/2

appearing at most once. At one loop, n = 1 or 3, at two loops n = 1, 3 or 5.

A complete set of bilinears can be chosen to be:

p/iPL, γµPL, p/1p/2γ
µPL, p/iγ

µγνPL, γµγνγρPL,

p/1p/2γ
µγνγρPL, p/iγ

µγνγργσPL, γµγνγργσγτPL.

Wherever convenient, the elements in each bilinear can be permuted (except PL), the

difference is always expressible in terms of shorter bilinears (PL can also be moved around,

but may turn into PR).

Out of the bilinears on each of the first five lines, 3 four-fermion-invariants can be con-

structed (6 if also counting colour), noting that invariants can be chosen to be symmetric

under exchange of the two bilinears, because any operator matrix element automatically

is symmetric after summing over all Wick contractions (Feynman diagrams). This gives

16 Lorentz structures, and 32 structures once taking into account colour.

However, most of these are evanescent. By anti-symmetrising in Dirac indices (if

needed after taking pαi outside the bilinears), any structure involving a bilinear of length

three or more can be reduced, in four dimensions, to structures expressible in terms of the

first three bilinears. Consequently, in D dimensions, any Dirac structure can be written

as a linear combination of evanescent structures Esi and the following four structures

Qs = γµPL ⊗ γµPL,

M s
11 = p/1PL ⊗ p/1PL, M s

12 =
1

2
(p/1PL ⊗ p/2PL + p/2PL ⊗ p/1PL) , M s

22 = p/2PL ⊗ p/2PL.
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3.2.2 Matrix Elements Entering the Total Amplitude

Analogously to Section 3.1.1, let us define the tree-level matrix elements (four-fermion

Green’s functions), corresponding to the structures above, at generalised MOM kinematics

as

〈Q1〉 = 2Qs 1⊗ 1− 2 Q̃s 1⊗̃1, (3.8)

〈Q2〉 = 2M s
11 1⊗ 1− 2 M̃ s

11 1⊗̃1, (3.9)

〈Q3〉 = 2M s
12 1⊗ 1− 2 M̃ s

12 1⊗̃1, (3.10)

〈Q4〉 = 2M s
22 1⊗ 1− 2 M̃ s

22 1⊗̃1, (3.11)

We can also define the four further matrix elements 〈Q̃i〉, i = 1, . . . , 4, with identical

Lorentz structures but ⊗ ↔ ⊗̃ for the colour contractions.

The total amplitude up to two loops can then be written in the form

Λ =

4∑
i=1

(Ai〈Qi〉+ Ãi〈Q̃i〉)

+ linear combinations of evanescent Lorentz structures,

(3.12)

where Ai and Ãi denote the coefficients in front of the tree-level matrix elements, obtained

after reducing the structures appearing in the diagrams that make up the amplitude. The

full set of diagrams contains both direct and crossed diagrams, such that the full Λ satisfies

Λijklαβγδ = −Λilkjαδγβ, as required by Fermi statistics, and accounted for by the form of 〈Qi〉
and 〈Q̃i〉.

3.2.3 Projectors and Evanescent Structures

When including all counterterm diagrams the coefficients are all finite, such that the pro-

jectors P(i) can be directly applied to Λ. However, we will not compute all the counterterms

(renormalisation constants) required to obtain finite coefficients for all the evanescent op-

erators and therefore need a method of removing them in the presence of UV poles. In

addition, we would like to use trace techniques to evaluate individual diagrams, which

may be divergent. We are able to achieve both aims by choosing a set of projectors which

are unambiguous in D dimensions and a set of evanescent operators which is projected to

zero by all projectors.
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We choose as projectors

Πµ(Γ1PL ⊗ Γ2PL) = tr γµΓ1γµΓ2, (3.13)

Π11(Γ1PL ⊗ Γ2PL) = tr p/1Γ1p/1Γ2, (3.14)

Π12(Γ1PL ⊗ Γ2PL) = tr p/1Γ1p/2Γ2, (3.15)

Π22(Γ1PL ⊗ Γ2PL) = tr p/2Γ1p/2Γ2, (3.16)

with no trace over colour is understood. We have defined them only for the direct diagrams,

specified in Section 3.1.1, because this is sufficient to reconstruct the entire result. To

evaluate them, any chiral projector or γ5 in any Dirac line should first be moved to the

right end of that line. The traces are unambiguous in D dimensions because no Levi-Civita

symbols are generated by them, nor by the tensor loop integrals we encounter.

We then define evanescent structures Esj such that Πi(E
s
j ) = 0 for all projectors Πi.

In Eq.(2.39) we have previously defined

Es1 = γµγνγρPL ⊗ γµγνγρPL − ((D − 10)D + 8)Qs, (3.17)

Es3 = γµγνγργσγτPL ⊗ γµγνγργσγτPL

− (D − 2)(D((D − 26)D + 152)− 128)Qs,
(3.18)

which project to zero under all Πi. A further independent 10 structures meeting this

condition are

F sij =
1

2
(p/iγ

µγνPL ⊗ p/jγµγνPL + (i↔ j)) + (D − 2)(D − 4)M s
ij

− 4pi · pjQs,
(3.19)

Hs
ij =

1

2
(p/iγ

µγνγργσPL ⊗ γµγνγργσp/jPL + (i↔ j))

− (D(D − 14) + 32)(D − 2)(D − 4)M s
ij + 8(D − 8)(D − 2)pi · pj Qs,

(3.20)

Gs1 =
1

2
(p/1p/2γ

µPL ⊗ γµPL + γµPL ⊗ p/1p/2γµPL)− p1 · p2Q
s, (3.21)

Gs2 = p/1p/2γ
µγνγρPL ⊗ p/1p/2γµγνγρPL

− (D − 4)(D(D − 14) + 32)
(
p2

2M
s
11 + p2

1M
s
22 − 2p1 · p2M

s
12

)
+ (D(D − 10) + 8)p2

1p
2
2Q

s,

(3.22)

Gs3 =
1

2
(p/1p/2γ

µγνγρPL ⊗ γµγνγρPL + γµγνγρPL ⊗ p/1p/2γµγνγρPL)

+ (D(D − 10) + 8)p1 · p2Q
s,

(3.23)
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Gs4 = p/1p/2γ
µPL ⊗ p/1p/2γµPL

+ (D − 4)
(
p2

2M
s
11 + p2

1M
s
22 − 2p1 · p2M

s
12

)
− p2

1p
2
2Q

s.
(3.24)

All 12 evanescent structures (24 when including colour) are symmetric under the exchange

of both bilinears and therefore (upon adding the piece required by Fermi symmetry) are

the matrix elements of suitably chosen operators.

3.2.4 Obtaining Coefficients Ai and Ãi

Similarly to Section 3.1.1, let us split 〈Qi〉 = 〈Qi〉1 +〈Qi〉2, where 〈Qi〉1 denotes the second

term on the r.h.s. of each of (3.8)–(3.11), which is due to the “direct” Feynman diagram.

Moreover, we apply the same procedure to 〈Q̃i〉. The entire amplitude Λ then splits in a

similar manner into a direct and a crossed contribution. The direct contribution is due to

all the direct diagrams, and has the form

Λ1 =
4∑
i=1

(Ai〈Qi〉1 + Ãi〈Q̃i〉1)

+ linear combinations of evanescent Lorentz structures.

(3.25)

Λ1 enjoys the property that our projectors Πi are defined on it, on a diagram-by-diagram

basis. We can therefore compute

Πi(Λ1) =

4∑
j=1

(
AjΠi(〈Qj〉1) + ÃjΠi(〈Q̃j〉1)

)

=
4∑
j=1

Bij

(
Aj1⊗̃1 + Ãj1⊗ 1

)

=

4∑
j=1

(
Ci1⊗̃1 + C̃i1⊗ 1

)
,

(3.26)

wherein contributions proportional to the tree-level matrix elements of the evanescent

operators have disappeared, and the matrix B is readily found by applying the projectors

Πi to the basis Dirac structures Qs, M s
11, M s

12 and M s
22. After summing over diagrams

and counter-diagrams, we should find explicitly that Ci and C̃i are finite, and can compute

Ai and Ãi via the inverse of B. B is nonsingular except for q2 = 0; if we want a result

directly at q2 = 0 we need to redo the procedure with a subset of basis structures and a

2× 2 B-matrix which then should be nonsingular.

Computation of the Bij = ΠiQ
s
j for our choice of projectors and operators in given in

Table 3.1. One can make B dimensionless by rescaling the momentum-dependent basis
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Πµ Π11 Π12 Π22

Qs −2(D − 2)D −2(D − 2)p2
1 −2(D − 2)(p1 · p2) −2(D − 2)p2

2

M s
11 −2(D − 2)p2

1 2p4
1 2p2

1(p1 · p2) 4(p1 · p2)2 − 2p2
1p

2
2

M s
12 −2(D − 2)(p1 · p2) 2p2

1(p1 · p2) 2p2
1p

2
2 2p2

2(p1 · p2)

M s
22 −2(D − 2)p2

2 4(p1 · p2)2 − 2p2
1p

2
2 2p2

2(p1 · p2) 2p2
2

Table 3.1: Bij = ΠiQ
s
j for projectors, defined in Eqs.(2.41-2.42), and the structures, given

in Sec.(3.2.1).

structures and projectors by some scalar product(s) of momenta.

3.2.5 Obtaining the (S)MOM Projections

Once the Ai and Ãi are found, calculating the projections P(γµ)(Λ) and P(q/)(Λ) (or any

other projections) amounts to simply computing

P(i)(Λ) =

4∑
j=1

(∑
AjP(i)(〈Qj〉) +

∑
ÃjP(i)(〈Q̃j〉)

)
, (3.27)

which is a D = 4 exercise. Here one needs to include both direct and crossed part and

colour. The projections of the tree-level basis structures are given by

P(γµ)(〈Qi〉) =

{
1

4
− 3ε

16
+
ε2

32
,−µ

2

16

(
1− ε

4

)
,
µ2

32
(ω − 2)

(
1− ε

4

)
,−µ

2

16

(
1− ε

4

)}
, (3.28)

P(q/)(〈Qi〉) =

{
1

4
− ε

16
,−µ

2

32
(ω + 1),

µ2

64
(3ω − 2),−µ

2

32
(ω + 1)

}
, (3.29)

P(γµ)(〈Q̃i〉) =

{
1

4
− 5ε

16
+

3ε2

32
,−µ

2

16

(
1− 3ε

4

)
,
µ2

32
(ω − 2)

(
1− 3ε

4

)
,

− µ2

16

(
1− 3ε

4

)}
,

(3.30)

P(q/)(〈Q̃i〉) =

{
1

4
− 3ε

16
,
µ2

32
(ω − 3),

µ2

64
(ω − 6),

µ2

32
(ω − 3)

}
. (3.31)

where p2
1 = p2

2 = −µ2, q2 = −ωµ2. For RI-MOM ω = 0 and for RI-SMOM ω = 1. These

expressions are exact, i.e. they include all orders of ε.

3.2.6 Fierz-evanescent Operators

One can present the results in a slightly different manner, by trading the Q̃i for Fierz-

evanescent operators such that only a minimal number of operators contribute to the

renormalised Green’s function at D → 4 (and hence to the SMOM projections). We find
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that the following operators are evanescent, including the first one which we already had:

E1F = Q̃1 −Q1, (3.32)

E2F = Q2 + Q̃2 −
p2

1

2
(Q1 + E1F ), (3.33)

E3F = Q3 + Q̃3 −
p1 · p2

2
(Q1 + E1F ), (3.34)

E4F = Q4 + Q̃4 −
p2

2

2
(Q1 + E1F ). (3.35)

One can then rearrange e.g. Eq.(3.12) in terms of the (direct parts of the) matrix elements

of Qi and EiF , which gives the new coefficients

A′1 = A1 + Ã1 +
p2

1

2
Ã2 +

p1 · p2

2
Ã3 +

p2
2

2
Ã4, (3.36)

A′2 = A2 − Ã2, (3.37)

A′3 = A3 − Ã3, (3.38)

A′4 = A4 − Ã4. (3.39)

The second sum in Eq.(3.27) then disappears without replacement, as the evanescent

operators have zero tree-level matrix elements. Both methods give the same result.

3.3 One-loop Amplitude and Counterterms

In order to obtain finite Ci and C̃i we have to renormalise the amplitude Λ1. The procedure

outlined in the previous section is applicable to the computation of both one and two-loop

amplitudes. In this section, we focus on the one-loop amplitude and counterterms, both of

which also enter the two-loop amplitude. The section is organised as follows, we start by

discussing the relations that hold between the different diagrams and projections. Next,

we perform an open-index calculation of the one-loop amplitudes, including amplitudes

with insertions of evanescent operators, in order to obtain the one-loop counterterms.

Finally, we discuss the counterterm structure of the one-loop renormalised amplitude.
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3.3.1 Projected Diagrams

The following relations between the different projections, defined in Eqs.(3.13-3.16), of the

diagrams, given in Section 3.1.2, in SMOM scheme hold:

Πµa1 = Πµa2, Πµb1 = Πµb2, Πµc1 = Πµc2,

Π12ai = Π21aj , i 6= j, Π12bi = Π21bj , Π12ci = Π21cj ,

Π11ai = Π22aj , Π11bi = Π22bj , i 6= j, Π11ci = Π22cj ,

Πkka1 = Πkka2, Πkkc1 = Πkkc2,

(3.40)

where Π21(Γ1PL ⊗ Γ2PL) = tr p/2Γ1p/1Γ2 and i, j, k = 1, 2. We can see from the relations

that it is sufficient to compute one of each a, b, c diagrams and the other ones can be

obtained by interchanging the Π12 with Π21 for a and c diagrams and Π11 with Π22 for b

type diagrams. We will see that similar relations hold between the two-loop diagrams as

well.

3.3.2 Counterterms

Adding all 6 diagrams, for the one-loop amplitude we obtain

〈Q〉1−loop =
αs
4π

1

ε

{(
2CF ξ − 3

(
1− 1

Nc

))
〈Q〉 − 3〈EF 〉+

1

2Nc
〈E1〉 −

1

2
〈E2〉

}
+O(ε0).

(3.41)

From the requirement Z2
q 〈QMS〉 = finite, where Zq = 1 − CF ξαs/(4πε) is the 1-loop MS

field renormalisation constant in a general covariant gauge [4], the αs/(4π) coefficients in

the Z-factors can then be read-off as

Z
(1)
QQ =

3

ε

(
1− 1

Nc

)
, (3.42)

Z
(1)
QEF

=
3

ε
, (3.43)

Z
(1)
QE1

= − 1

2Ncε
, (3.44)

Z
(1)
QE2

=
1

2ε
, (3.45)

Z
(1)
QE3

= 0, (3.46)

Z
(1)
QE4

= 0. (3.47)

3.3.3 Renormalised Amplitude

In order to obtain finite Ci and C̃i we have to renormalise the amplitude Λ1. Renormalised

amplitude is given by

Λren = Z2
q (ZQQ〈Q〉+ ZQEn〈En〉), (3.48)
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where 〈Q〉 and 〈En〉 are the bare matrix elements, which can be expanded in αbare
s as

〈Q〉 = 〈Q〉tree +
αbare
s

4π
〈Q〉1−loop +

(
αbare
s

4π

)2

〈Q〉2−loop, (3.49)

and similarly for 〈En〉. The one-loop renormalised amplitude is given by

Λ(1)
ren = 〈Q〉1−loop + (2Z(1)

q + Z
(1)
QQ)〈Q〉tree + Z

(1)
QEF
〈EF 〉tree. (3.50)

where 〈Q〉1−loop is the one-loop matrix element, obtained from the sum of the six diagrams

and the wave function renormalisation constant is given in Eq.(2.22). The rest of the

evanescent operators do not enter this amplitude as by definition their tree-level matrix

elements project to zero.

3.4 Validation against CBK
at Next-to-Leading Order

We are now in a position to reproduce the one-loop results for the conversion factors CBK

from [4]. This serves as a validation for our way of calculating the amplitude.

The conversion factors are given by Eq.(2.56), which we repeat here

C
(X,Y )
BK

= (C(Y )
q )2P ij,kl(X)αβ,γδΛ

ij,kl
αβ,γδ. (3.51)

The one-loop RI-SMOM conversion factors for the wavefunction are given by

C(q/)
q = 1 +

αs
4π
CF ξ

(
log

(−p2

µ2

)
− 1

)
+O(α2

s), (3.52)

C
(γµ)
q = 1 +

αs
4π
CF

(
1− ξ

2

(
3− 2 log

(−p2

µ2

)
− C0

))
+O(α2

s), (3.53)

which are taken from [4]. Here C0 ' 2.34391 is the coefficient of the one-loop triangle

diagram J(D, 1, 1, 1) = −iπ−D2 C0/(p
2)(1+ε) from [62] and we keep the p2 = p2

1 = p2
2 =

q2 = −µ2 Euclidean.

Next, we compute the projected one-loop amplitudes P(i)(Λ), as outlined in Section 3.2.

Using these amplitudes together with the countertems, given in Section 3.3, we can ob-

tain the projected renormalised four-point amputated Green’s functions P ij,kl(X)αβ,γδΛ
ij,kl
αβ,γδ =
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Scheme ξ = 0 ξ = 1

(γµ, q/) 1 + αs
4π (−2.45482...) +O(α2

s) 1 + αs
4π (−3.51294...) +O(α2

s)

(γµ, γµ) 1 + αs
4π (0.211844...) +O(α2

s) 1 + αs
4π (0.945601...) +O(α2

s)

(q/, q/) 1 + αs
4π (−0.454823...) +O(α2

s) 1 + αs
4π (−0.169035...) +O(α2

s)

(q/, γµ) 1 + αs
4π (2.21184...) +O(α2

s) 1 + αs
4π (4.28951...) +O(α2

s)

Table 3.2: Conversion factors C
(X,Y )
BK

in Landau (ξ = 0) and Feynman (ξ = 1) gauges

from four RI-SMOM schemes, where X = γµ, q/ and Y = γµ, q/, to MS. The factors are in
agreement with [4].

P(i)(Λ
(1)
ren). Hence, combining this with the Cq we get

C
(γµ,q/)
BK

= 1 +
αs
4π

(
2 log

(−p2

µ2

)
+ 8 log 2− 8 + ξ

(
1− 5

3
C0 +

8

3
log 2

))
, (3.54)

C
(γµ,γµ)
BK

= 1 +
αs
4π

(
2 log

(−p2

µ2

)
+ 8 log 2− 16

3
− ξ

(
1 +

1

3
C0 −

8

3
log 2

))
, (3.55)

C
(q/,q/)
BK

= 1 +
αs
4π

(
2 log

(−p2

µ2

)
+ 8 log 2− 6− ξ

(
−2

3
C0 +

8

3
log 2

))
, (3.56)

C
(q/,γµ)
BK

= 1 +
αs
4π

(
2 log

(−p2

µ2

)
+ 8 log 2− 10

3
− ξ

(
−4

3
+

2

3
C0 +

8

3
log 2

))
, (3.57)

where we have set Nc = 3. These conversion factors are in agreement with [4].

The one-loop conversion factors depend on the renormalisation scale only through the

running of the strong coupling. Hence, we provide the numerical results as expansion in

αs for both Landau (ξ = 0) and Feynman (ξ = 1) gauges in Table 3.2. Now that we have

validated our method, we can proceed to compute the two-loop amplitude and conversion

factors.

3.5 Two-loop Amplitude and Counterterms

Similarly to one-loop, the calculation at two-loop order involves renormalisation of the

two-loop amplitude which allows us to obtain finite Ci and C̃i. The section starts with the

discussion of the relations between the projections, defined in Eqs.(2.41-2.42), of two-loop

diagrams, given in Figure 3.2. As the two-loop calculation is much more involved, we give

further details on how we define the topologies and evaluate the master integrals. Next,

we compute further one-loop counterterms which enter the two-loop amplitude in addition

to already computed one-loop counterterms and amplitude. We then show how to obtain

the two-loop counterterms from one-loop poles and the two-loop anomalous dimension.

Finally, we present the counterterm structure of the two-loop renormalised amplitude.
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3.5.1 Projected Diagrams

As detailed in Section 3.1.3, the full list of diagrams entering the amplitude can be obtained

by considering the permutations of external legs for the 28 graphs given in Figure 3.2.

Similar to the one-loop case, we compute all diagrams in SMOM kinematics and find

that certain relations hold between the five projections of them. In particular, bilinear

exchange corresponds to interchanging Π12 and Π21. On the other hand, exchange of

external momenta corresponds to the interchange of Π11 and Π22 projections. Hence, one

can obtain the full direct amplitude from the 28 diagrams, given in Figure 3.2.

3.5.2 Defining Topologies

As detailed before, our tensor integrals can be reduced into scalar ones. Thus, in this

section we focus on the scalar part of our 4-point function Λij,klαβ,γδ. At tree level, this

amplitude can be pictured as shown in Figure 2.2: we have two particles with momentum

p1 going into the vertex and two particles with momentum p2, as well as q = p2− p1, that

ensures momentum conservation in the case of p1 6= p2, going out of the vertex.

In order to compute the NNLO corrections for this diagram, we have to consider all

of the possible two-loop radiative corrections, given in Figure 3.2. The diagrams can be

divided into six groups: A, B, C, D, T and OL. Diagrams A, B and D correspond to

the topologies with the same name, which can be obtained and reduced straightforwardly,

following Section 2.3. The “topology” of the diagrams C has linearly dependent propag-

ators. We will discuss how to express its integrals in terms of proper topologies in the

following section. T stands for the remaining triangle integrals and OL for the integrals

with one-loop insertions, both of which can be expressed in terms of topology A, B, C and

D integrals. These are shown in Figure 3.3 and the propagators are given by

Top A Top B “Top” C Top D

1. k1, k1, k1, k1,
2. k2, k2, k2, k2,
3. k1 − k2, k1 − k2, k1 − k2, k1 − k2,
4. k1 + p1, k1 − p1, k1 + p2, k1 − p1,
5. k2 + p2, k2 + p1, k2 + p1, k1−k2−p2,
6. k1 − q, k1 + q, k1 + 2p1, k1 + q,
7. k2 − q, k2 + q, k2 + 2p1, k2 + p1,

(3.58)

where the numbers correspond to the numbering of propagators in Figure 3.3.
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76

53

−p2
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1 2

4

76

53 p1

p1

−(q + p1)

−p2

Top D

1

3
4

2

7
6

5

Figure 3.3: Topologies A, B, C and D. “Top” indicates that the diagram has linearly de-
pendent propagators. All external momenta are defined as incoming. Numbers correspond
to propagator labels, as defined in Section 3.5.2.

Linearly Dependent Propagators

In the previous section we have introduced “topology” C, displayed in Figure 3.3. It is

obtained in the same manner as topologies A, B and D, however, there is no way to add

an auxiliary propagator such that all of the propagators would be linearly independent.

Not having all of the possible linearly independent propagators in the topology results

in irreducible numerators. These numerators interfere with the IBP algorithm, as they

cannot be expressed in terms of the propagators.

To mitigate this issue, we first have to remove the linear dependences and then map the

resulting integrals onto proper auxiliary topologies. Hence, for “topology” C, we obtain a

linear relationship between the propagators, given by

k2
2 − 2(k2 + p1)2 + (k2 + 2p1)2 = 2p2

1, (3.59)

where k2 is the loop momentum. We can then turn this into an identity operator, written

as

IC =
1

2p2
1

(2− − 2× 5− + 7−), (3.60)

where 2−,5− and 7− correspond to reducing the power of the second, fifth and seventh

propagators by one. In addition, “topology” C integrals always contain at most 6 propag-

ators. Using this together with the identity operator IC , we can express some of the

integrals in terms of topology A and B integrals. For the rest of the integrals we define



49
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−2p1
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Top C3

1 2
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76
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Figure 3.4: Two additional topologies. All external momenta are defined as incoming.
Numbers correspond to propagator labels, as defined in Section 3.5.2.

two additional topologies: C2 and C3, shown in Figure 3.4, with propagators given by

Top C2 Top C3

1. k1, k1,
2. k2, k2,
3. k1 − k2, k1 − k2,
4. k1 + p2, k1 + 2p1,
5. k2 + 2p2, k2 + p1,
6. k1 + 2p1, k1 +p1 +p2,
7. k2 + 2p1, k2 +p1 +p2,

(3.61)

where the numbers correspond to the numbering of propagators in Figure 3.4. The re-

maining triangles and one-loop insertions can be solved using the IC in Eq.(3.60) and

existing topologies. In Figure 3.2 we also have one non-planar triangle D1, which can be

written as topology D integral without the fourth propagator. A different identity can be

used for this integral, given by

k2
1 − (k1 + 2p1)2 − 2(k1 − k2)2 + 2(k2 + p1)2 − 2k2

2 + 2(k1 − k2 + p1)2 = 0, (3.62)

resulting in projection

ID = 1+6− + 2× 1+3− − 2× 1+7− + 2× 1+2− + 2× 1+5−, (3.63)

where the numbers correspond to topology D propagator labels defined in the previous

section.

Example: Mapping Diagrams onto Topologies

We are now going to illustrate, what we mean by mapping diagrams onto topologies and

using the identity projections, in more detail. We can write down diagram C3 in terms of

“topology” C as follows
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−p2

−(q + p1) p1

p1

C[1,1,1,1,1,0,1]

1 2

4

7

5
3

where C[1, 1, 1, 1, 1, 0, 1] refers to “topology” C and the numbers - to the powers of the

propagators. We can see that this diagrams is the same as “topology” C in Figure 3.3

but with 6th propagator pinched. Applying Eq.(3.60) gives us three diagrams: with 2nd,

5th and 7th propagators removed. Hence, we can remove one of the linearly dependent

propagators and map these onto proper topologies. This can be depicted diagrammatically

as

−p2

−(q + p1) p1

p1

C[1,0,1,1,1,0,1]

1

4

7

5
3

−p2

−(q + p1) p1

p1

B[1,0,1,1,1,0,1]

5

7

4

1
3

where the loop momenta has to be shifted by k1 → −k2 − p1 and k2 → −k1 − p1,

−p2

−(q + p1)

2p1

C[1,1,1,1,0,0,1]

1 2

4
7

3

−p2

−(q + p1)

2p1

C2[1,1,1,1,0,0,1]

1 2

4
7

3

which does not require any shifts and

−p2

−q

p1

C[1,1,1,1,1,0,0]

1 2

4
5

3

−p2

−q

p1

A[1,1,1,1,1,0,0]

2 1

5
4

3

where the loop momenta have to be shifted by k1 → k2 and k2 → k1. In some cases the
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Figure 3.5: Two-loop master integrals. Black dots represent squared propagators. All of
the momentum configurations of these diagrams can be found in Table 3.3. Dashed lines
indicate external legs that do not appear in all momentum configurations of a particular
diagram and are chosen such that momentum conservation holds.

propagators have to be remapped as well. This procedure can be carried out for all the C,

T and OL integrals that have linearly dependent propagators. It may even be implemented

iteratively for multiple powers of propagators, until all the propagators in a diagram are

linearly independent. At that point, the diagrams are ready for the IBP reduction.

3.5.3 Master Integrals

After expressing all the integrals in terms of the five topologies we can proceed to calculate

the IBP identities, using Reduze 2 [63, 64]. This framework maps each topology to a

linear combination of master integrals. We can then identify the masters that are the

same for several topologies and simplify the set further. This allows us to express the

results in terms of the minimal set. It is important to note, that the set of the master

integrals is not unique and therefore a different basis can be chosen. In particular, it is

convenient to choose masters for which we have analytic solutions. Moreover, choosing

master integrals with positive powers of the propagators makes it easier to match between

different topologies. We find that our set contains 15 unique two-loop diagrams, shown in

Figure 3.5, with various external momentum configurations for SMOM schemes, given in

Table 3.3. In SMOM schemes, for bubbles and triangles it is sufficient to give the external
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index c. 1 c. 2 c. 3 c. 4 c. 5 c. 6 index c. 1 c. 2 index c. 1 c. 2

1 p2 3p2 4p2 16 p2 31 p2 p2

2 p2 4p2 p2 17 p2 32 p̃2 p2

3 p2 4p2 4p2 18 p2 33 p2 p̃2

4 p2 p2 p2 4p2 p2 4p2 19 p̃2 p2 34 3p2 3p2

5 p2 p2 4p2 p2 p2 p2 20 p2 p2 35 p2

6 p2 3p2 3p2 3p2 4p2 p2 21 3p2 3p2 36 p2

7 p2 p2 p2 4p2 22 p2 p̃2 37 p̃2

8 p2 p2 4p2 p2 23 p2 p2 38 3p2

9 p2 3p2 3p2 3p2 24 p̃2 p2

10 p2 3p2 3p2 25 p2 p̃2

11 p2 p2 p2 26 3p2 3p2

12 p2 p2 4p2 27 p2 p2

13 p2 4p2 28 p̃2 p2

14 p2 p2 29 p2 p̃2

15 p2 p2 30 3p2 3p2

Table 3.3: Momentum configurations, denoted as ‘c. number’, of the diagrams in Figure 3.5
for SMOM scheme. The ‘index’ corresponds to external leg labels in aforementioned figure.
For the box diagrams tilde indicates one of p2 that is linearly independent from the other
two.

legs in terms of p2 as it does not matter how the p2
1, p2

2 and q2 are arranged. Where this

does matter is for the box diagrams as they generally have configurations with p2
1 = p2,

p2
1 = p2, p2

2 = p2 and (q+p1)2 = 3p2, or the same but with p1 ↔ p2 external legs. In these

cases it matters which two of the p2 legs are the same and which one is the different one.

Hence, we use the p̃2 = p2 to indicate this. We also note that some of the diagrams appear

multiple times but with different powers of propagators, meaning that such diagrams are

linearly independent from each other.

Dependence on the Kinematics of the Scheme

The set of the master integrals also depends on the kinematics which differ with the

renormalisation scheme. Hence, when changing from one scheme to another

1. different diagrams may become the same,

2. master integrals can be reduced to simpler diagrams,

3. linearly independent diagrams may become linearly dependent,

or the other way around. For example, let us take two topology A masters
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index 1 2 4 7 10 13 16 19 23 27 31 35

order ε2 ε ε ε 1 ε 1 ε 1 ε ε ε

Table 3.4: Required order of ε for each of the diagrams in Figure 3.5. Diagrams are
indicated by their first index.

p1

q

−(q + p1)

A[1,0,1,1,0,0,1]

q

p1

−(q + p1)

A[0,1,1,1,0,0,1]

where two external legs are interchanged. We recall that our integrals depend on external

momentum squared. Hence, in SMOM schemes we have p2
1 = q2 = p2 and (q+p1)2 = 3p2.

In a MOM scheme we have p2
1 = (q + p1)2 = p2 and q2 = 0 instead. If we consider all

three external momenta to be independent, we have two distinct master integrals which

are the same for SMOM schemes and can be reduced further for MOM scheme.

Evaluation

The computation on the lattice is done at a fixed renormalisation scale, hence it is sufficient

to obtain the matching coefficient numerically at the corresponding scale. From the IBPs

we can obtain the prefactors each master integral comes with and hence determine to

which order in ε we need to evaluate the particular master integral. In Table 3.4 we give

explicitly up to which order in ε each of the diagrams in Figure 3.5 are required for this

calculation.

All of the necessary bubble diagrams are available up to any order in ε. The two-loop

triangle diagrams have been calculated analytically up to finite order in the literature,

whereas the results for the one-loop triangle are available to O(ε) [62, 65]. In addition to

these we also need the one-loop triangle up to O(ε2) for the one-loop matrix elements.

There are no analytic results for the box diagrams with four off-shell legs available.

We calculate the missing pieces and the box diagrams using sector decomposition

method. The formalism works by factorising the integrals in a way that separates out

overlapping divergences into sectors, which are then integrated numerically. The whole

procedure involves various complex algorithms which are possible to implement in a com-

puter program. Hence, we use PySecDec [66] to facilitate the evaluation of two-loop

off-shell box diagrams as well as obtain the missing O(ε) and O(ε2) of triangle diagrams.
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3.5.4 One-loop Counterterms

In addition to the one-loop amplitude and counterterms introduced in the previous section,

for the two-loop renormalisation we also require additional one-loop Z factors correspond-

ing to the evanescent operators EF , E1 and E2. We obtain them via insertions of the

evanescent operators into the vertices of the one-loop diagrams. Inserting EF into the

vertex yields

〈EF 〉1−loop =
αs
4π

1

ε

{(
2CF ξ + 3

(
1 +

1

Nc

))
〈EF 〉

−
(

1

4
+

1

2Nc

)
〈E1〉+

(
1− CF

2
+

1

4Nc

)
〈E2〉

}
+O(ε0),

(3.64)

giving the constants

Z
(1)
EFQ

= 0, (3.65)

Z
(1)
EFEF

= −3

ε

(
1 +

1

Nc

)
, (3.66)

Z
(1)
EFE1

=
1

ε

(
1

4
+

1

2Nc

)
, (3.67)

Z
(1)
EFE2

=
1

ε

(
CF − 1

2
− 1

4Nc

)
, (3.68)

Z
(1)
EFE3

= 0, (3.69)

Z
(1)
EFE4

= 0. (3.70)

Similarly, the remaining Z factors have been obtained from the corresponding insertions

into the one-loop amplitudes

〈E1〉1−loop =
αs
4π

1

ε

{(
2CF ξ −

13

Nc

)
〈E1〉+ 13〈E2〉+

1

2Nc
〈E3〉 −

1

2
〈E4〉

}
+24

(
2CF + 1− 1

Nc

)
〈Q〉+ evanescent,

(3.71)

〈E2〉1−loop =
αs
4π

1

ε

{
5〈E1〉+

(
2CF ξ + 16CF −

5

Nc

)
〈E2〉 −

1

4
〈E3〉

+
1

4

(
1

Nc
− 2CF

)
〈E4〉

}
+ 48

(
1− 1

Nc

)
〈Q〉+ evanescent,

(3.72)

where “evanescent” denotes terms that vanish as D → 4. The renormalisation constants

can then be read-off as

Z
(1)
E1EF

= 0, (3.73)

Z
(1)
E1E1

=
13

Ncε
, (3.74)

Z
(1)
E1E2

= −13

ε
, (3.75)

Z
(1)
E1E3

= − 1

2Ncε
, (3.76)

Z
(1)
E2EF

= 0, (3.77)

Z
(1)
E2E1

= −5

ε
, (3.78)

Z
(1)
E2E2

=
1

ε

(
5

Nc
− 16CF

)
, (3.79)

Z
(1)
E2E3

=
1

4ε
, (3.80)
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Z
(1)
E1E4

=
1

2ε
, (3.81) Z

(1)
E2E4

=
1

4ε

(
2CF −

1

Nc

)
. (3.82)

The properly renormalised evanescent operators also require a subtraction of the finite

constants multiplying 〈Q〉, giving

Z
(1)
E1Q

= 24

(
2CF + 1− 1

Nc

)
, (3.83) Z

(1)
E2Q

= 48

(
1− 1

Nc

)
. (3.84)

3.5.5 Two-loop Counterterms

Two-loop Z factors can be extracted from the 2-loop ADM. The Z factor can be expanded

as

Z(2) =

(
1

ε
Z(2,1) +

1

ε2
Z(2,2)

)
, (3.85)

Recalling the ADM finiteness limit in Eq.(2.61), given by

4Z(2,2) + 2β0Z
(1,1) − 2Z(1,1)Z(1,1) = 0, (3.86)

where β0 = (11Nc − 2Nf )/3, we get

Z
(2,2)
QQ =

1

2
(Z

(1,1)
QQ )2 − 1

2
Z

(1,1)
QQ β0 = −(Nc − 1)(Nc(−2Nf + 11Nc − 9) + 9)

2N2
c

, (3.87)

Z
(2,2)
QEF

=
1

2
(Z

(1,1)
QQ Z

(1,1)
QEF

+ Z
(1,1)
EFEF

Z
(1,1)
QEF

)− 1

2
Z

(1,1)
QEF

β0 = Nf −
11Nc

2
− 9

Nc
. (3.88)

Using Eq.(5.2) of [54], which translated to our conventions is written as

γ
(1)
QQ =

(Nc − 1)

2Nc

(
21− 57

Nc
+

19

3
Nc −

4

3
Nf

)
, (3.89)

and Eq.(2.62), given by

γ
(1)
QQ = −4Z

(2,1)
QQ + 2Z

(1,1)
QE1

Z
(1,0)
E1Q

, (3.90)

we get

Z
(2,1)
QQ =

Nc(−288CF +Nc(19Nc − 4Nf + 44) + 4Nf − 378) + 315

24N2
c

. (3.91)

Technically, Z
(2,1)
QEF

also enters the two-loop amplitude, however, we find that it drops out

of the computation of A′, hence it is not essential.



56

3.5.6 Renormalised Amplitude

The renormalized two-loop amplitude can be written as

Λ(2)
ren = 〈Q〉2−loop + 2Z(1)

q Λ(1)
ren +

(
Z(1)
g + Z

(1)
ξ ξ

∂

∂ξ
+ Z

(1)
QQ

)
〈Q〉1−loop

+ Z
(1)
QEn
〈En〉1−loop + (−3(Z(1)

q )2 + 2Z(2)
q + Z

(2)
QQ)〈Q〉tree + Z

(2)
QEn
〈En〉tree.

(3.92)

where n = {F, 1, 2}. 〈Q〉2−loop is the two-loop matrix element, obtained from the sum

of all diagrams, discussed in Section 3.1.3. Λ
(1)
ren is the renormalised one-loop amplitude,

defined in Eq.(3.50). Z
(1)
QQ is the one-loop counterterm given in Eq.(3.42). The one- and

two-loop wave function renormalisation constants Z
(1)
q and Z

(2)
q are listed in Eq.(2.22).

The gauge and gauge parameter Z-factors Z
(1)
g and Z

(1)
ξ are provided in Eqs.(2.23, 2.24)

respectively.

3.6 CBK
at NNLO

In this section we present the first results for the conversion factor CBK to SMOM schemes

at two-loop order. The computation is analogous to the one given for the one-loop order

result in Section 3.4. We take the NNLO coefficients of the C
(q/)
q and C

(γµ)
q from [67](setting

CA = Nc, TF = 1/2) and [68](setting w = 1, r = 1). In addition, to the one-loop amplitude

and countertems we also use additional one and two-loop Z-factors and compute the NNLO

renormalised Green’s function as discussed in Section 3.5.

The numerical results for the CBK are presented as an expansion in αs

C
(X,Y )
BK

= 1 +
αs
4π
C

(X,Y )
BK ,NLO +

α2
s

16π2
C

(X,Y )
BK ,NNLO + . . . , (3.93)

where the NLO result has been given in Table 3.2. The coefficients CBK ,NNLO are presented

in Table 3.5, where they have been computed for Landau and Feynman gauges, Nc = 3,

Nf = 3 and three scales ν2 = µ2 = −p2 = {2, 3, 4} GeV at SMOM subtraction point.

The main uncertainties in these results arise from the numerical evaluation of the

integrals using Sector Decomposition. We have checked that the coefficients of all of the

poles in the calculation are consistent with zero within the uncertainties, hence they have

been dropped.

We use the world average of αs(MZ) = 0.1180± 0.0007 [38], which is evolved to GeV

scales using 4-loop QCD β function and threshold corrections available in RunDec [69]. We

give the values for the LO+NLO and LO+NLO+NNLO conversion factors (LO=1), as
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Scheme ξ = 0

µ = 2 GeV µ = 3 GeV µ = 4 GeV

(γµ, q/) −36.2± 0.1 −36.2± 0.1 −36.1± 0.1

(γµ, γµ) 16.2± 0.1 16.2± 0.1 16.3± 0.1

(q/, q/) −13.45± 0.02 −13.42± 0.02 −13.31± 0.02

(q/, γµ) 44.35± 0.02 44.38± 0.02 44.48± 0.02

ξ = 1

µ = 2 GeV µ = 3 GeV µ = 4 GeV

(γµ, q/) −40.23± 0.05 −40.20± 0.06 −40.09± 0.07

(γµ, γµ) 31.33± 0.05 31.37± 0.06 31.48± 0.07

(q/, q/) −15.05± 0.03 −15.03± 0.02 −14.93± 0.02

(q/, γµ) 71.42± 0.03 71.45± 0.02 71.55± 0.02

Table 3.5: NNLO coefficient of conversion factors C
(X,Y )
BK

in Landau and Feynman gauges

with ν = µ for four RI-SMOM schemes, where X = γµ, q/ and Y = γµ, q/, to MS. The

prefactor α2
s

16π2 is omitted.

well as the difference between the NNLO and NLO corrections in Table 3.6. We find the

perturbative series exhibits excellent convergence as the NNLO corrections give relative

contributions below 4% for all schemes. For the (γµ, γµ) with ξ = 0 and (q/, q/) with ξ = 1

schemes, the NNLO contributions are larger than the NLO ones. However, the relative

NLO corrections to the series are significantly smaller compared to other schemes, while

the NNLO contributions are of comparable size. Hence we do not consider the perturbative

behaviour in these cases to be abnormal. In addition, there is a mild dependence on the

renormalisation scale (0.5 – 3% between µ = 2 GeV and µ = 4 GeV) as well as a larger

dependence on the gauge choice (ranging between 1 – 5 %). The dominant uncertainty

here comes from the error on αs(µ) at NLO and NNLO respectively.
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Scheme ξ = 0

µ = 2 GeV µ = 3 GeV µ = 4 GeV

NLO NNLO |diff.| NLO NNLO |diff.| NLO NNLO |diff.|
(γµ, q/) 0.9425(9) 0.923(2) 0.0195 0.9523(6) 0.939(1) 0.0133 0.9573(5) 0.9463(7) 0.011

(γµ, γµ) 1.00496(8) 1.0139(4) 0.00894 1.00412(5) 1.0103(2) 0.00618 1.0037(4) 1.0086(2) 0.0049

(q/, q/) 0.9893(2) 0.9820(4) 0.0073 0.9912(1) 0.9861(2) 0.0051 0.99208(9) 0.9880(2) 0.00408

(q/, γµ) 1.0518(8) 1.076(2) 0.0242 1.0430(6) 1.060(1) 0.017 1.0385(4) 1.0520(7) 0.0135

ξ = 1

µ = 2 GeV µ = 3 GeV µ = 4 GeV

NLO NNLO |diff.| NLO NNLO |diff.| NLO NNLO |diff.|
(γµ, q/) 0.917(1) 0.896(2) 0.021 0.9317(9) 0.916(1) 0.0157 0.9388(7) 0.927(1) 0.0118

(γµ, γµ) 1.0222(4) 1.0394(9) 0.0172 1.01839(2) 1.0303(6) 0.01191 1.0165(2) 1.0260(4) 0.0095

(q/, q/) 0.99604(6) 0.9878(3) 0.00824 0.99671(4) 0.9910(2) 0.00571 0.99706(3) 0.9925(1) 0.00456

(q/, γµ) 1.100(2) 1.139(3) 0.039 1.083(1) 1.110(2) 0.027 1.075(9) 1.096(1) 0.021

Table 3.6: Conversion factors C
(X,Y )
BK

evaluated with αs(µ) including NLO (i.e. 1+NLO)
and NNLO (i.e. 1+NLO+NNLO) corrections, as well as the difference |diff.| between the
two (i.e. NNLO) in Landau and Feynman gauges from four RI-SMOM schemes, where
X = γµ, q/ and Y = γµ, q/, to MS. The results are computed at three different scales ν = µ.

3.7 Conversion factors to Brod–Gorbahn Basis

Our choice of evanescent operators differs from the ones used by J. Brod and M. Gor-

bahn [52] for the Wilson coefficients. They are given by

EBG
F = (s̄iγµPLd

l)(s̄kγµPLd
j)−Q,

E
(1),BG
1 = (s̄iγµ1µ2µ3PLd

j)(s̄kγµ1µ2µ3PLd
l)− (16− 4ε− 4ε2)Q,

E
(1),BG
2 = (s̄iγµ1µ2µ3PLd

l)(s̄kγµ1µ2µ3PLd
j)− (16− 4ε− 4ε2)(Q+ EF ), (3.94)

E
(2),BG
1 = (s̄iγµ1µ2µ3µ4µ5PLd

j)(s̄kγµ1µ2µ3µ4µ5PLd
l)−

(
256− 224ε− 108 816

325
ε2
)
Q,

E
(2),BG
2 = (s̄iγµ1µ2µ3µ4µ5PLd

l)(s̄kγµ1µ2µ3µ4µ5PLd
j)−

(
256− 224ε− 108 816

325
ε2
)

(Q+ EF ),

where γµ1µ2µ3 = γµ1γµ2γµ3 etc. Comparing with Eq.(2.39), we can see that the difference

is in the ε2 parts of E3 and E4. Our choice of evanescent operators can be translated to

the ones in which Brod and Gorbahn have obtained the NNLO Wilson coefficients and

anomalous dimension matrices as follows:

E3 = E
(2),BG
1 + κ ε2Q, (3.95)

E4 = E
(2),BG
2 + κ ε2(Q+ EF ), (3.96)
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where κ = −62 016/325. As a result, the renormalised Green’s functions of Q to NNLO

differs between the two schemes as

〈QMS〉 = 〈QMS,BG〉+ κZ
(2,2)
QE3

(
αs(µ)

4π

)2

〈Q〉tree

+ κZ
(2,2)
QE4

(
αs(µ)

4π

)2

(〈Q〉tree + 〈EF 〉tree).

(3.97)

The change of basis can be obtained in terms of 1/ε2 parts of renormalisation con-

stants. To convert to the BG scheme, we require two two-loop 1/ε2 pole coefficients in the

evanescent sector. They can be inferred from the Eq.(2.61) as

Z
(2,2)
QE3

= Z
(1)
QE1

Z
(1)
E1E3

+ Z
(1)
QE2

Z
(1)
E2E3

=
1

4N2
c

+
1

8
, (3.98)

Z
(2,2)
QE4

= Z
(1)
QE1

Z
(1)
E1E4

+ Z
(1)
QE2

Z
(1)
E2E4

=
CF
4
− 3

8Nc
. (3.99)

Hence, we can obtain the conversion of BK from SMOM to BG in two steps, by first

translating to our scheme and then further to BG by means of the Eq.(3.97). The full

expression can be written as

BMS,BG
K = CSMOM→MS

1 CMS→MS,BG
2 BSMOM

K , (3.100)

where C1 corresponds to the CBK we have computed in Sections 3.4 and 3.6. C2 can be

obtained from Eq.(3.97) for Landau gauge as

CMS→MS,BG
2, ξ=0 =

P 〈QMS,BG〉
P 〈QMS〉

= 1 + (0.4± 0.2)α2
s, for P(γµ), (3.101)

= 1 + (0.44± 0.03)α2
s, for P(q/). (3.102)

Similarly, for Feynman gauge we have

CMS→MS,BG
2, ξ=1 = 1 + (0.44± 0.08)α2

s, for P(γµ), (3.103)

= 1 + (0.44± 0.04)α2
s, for P(q/) and µ = 2 GeV, (3.104)

= 1 + (0.44± 0.03)α2
s, for P(q/) and µ > 2 GeV. (3.105)

Where not indicated otherwise the results are the same for all three renormalisation scales.

In Table 3.7 we give C2 evaluated at αs(µ) at the three renormalisation scales. The

dominant uncertainty here comes from the numerical integration of the loop-integrals.
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Proj. ξ = 0 ξ = 1

µ = 2 GeV µ = 3 GeV µ = 4 GeV µ = 2 GeV µ = 3 GeV µ = 4 GeV

P(γµ) 1.04(2) 1.03(1) 1.020(8) 1.038(7) 1.026(5) 1.020(4)

P(q/) 1.038(3) 1.026(2) 1.020(1) 1.038(4) 1.026(2) 1.020(1)

Table 3.7: CMS→MS,BG
2 for the two projectors P(γµ) and P(q/), evaluated at αs(µ).

3.8 BK in MS Scheme

Taking our results for the conversion factors we can perform a matching calculation using

Eq.(3.100) at 3 GeV from the lattice estimate of BK [70]. We quote the lattice result as

well as present our computed values of BK(MS) using one-loop and two-loop matching

in Table 3.8. We also give a combined estimate following the approach outlined in the

aforementioned paper. For comparison, the one-loop matching yields

BK(MS, 3 GeV) = 0.5294(18)(107), (3.106)

which is in agreement with [70]. The first error accounts for the systematic uncertainties,

while the second estimates the error from truncating the αs expansion. The latter is

obtained by taking the difference between the matching results in the two schemes (q/, q/)

and (γµ, γµ), the central value corresponds to the (q/, q/) result. At two-loop we obtain

BK(MS, 3 GeV) = 0.5267(18)(48), (3.107)

BK(MS,BG, 3 GeV) = 0.5404(21)(28), (3.108)

for ours as well as the BG scheme. The increase in the systematic error in the latter result

with respect to [70] is a direct consequence of the uncertainties discussed in the previous

section. The reduction of this error is the subject of future work. We observe that the

two-loop matching yields 2 to 5 times smaller truncation errors and reduces the overall

uncertainties to 1.25% and 0.91% for our and BG scheme respectively.

Scheme Lattice NLO NNLO BG NNLO

BK(q/, q/) 0.5341(18) 0.5294(18) 0.5267(18) 0.5404(21)

BK(γµ, γµ) 0.5166(18) 0.5187(18) 0.5219(18) 0.5376(55)

Table 3.8: Bag parameterBK from the (q/, q/) and (γµ, γµ) schemes for µ = 3 GeV and ξ = 0.
Lattice results are taken from [70]. The remaining columns correspond to the SMOM to
MS one-loop, two-loop and two-loop Brod–Gorbahn (BG) matching respectively.
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3.9 Summary

In this chapter, we have presented the first results for the NNLO conversion factors between

MS and RI-SMOM schemes for the kaon bag parameter. This is an extension to the one-

loop conversion factors in [4]. We found the NNLO contributions lead to 0.4% to 4%

corrections with respect to the tree-level. Furthermore, the perturbative series in αs are

stable. The dominant errors on the results stem from uncertainty in αs. In addition

we have given the conversion factors necessary for translating our results to the Brod–

Gorbahn basis, for which the Wilson coefficients and anomalous dimensions have been

computed. During this calculation, we have developed our technique for obtaining the full

two-loop amplitude from only part of diagrams and circumventing the tensor reduction

and γ5 ambiguities at two-loop order. Furthermore we have validated our method and

correctly reproduced the one-loop results in [4]. Finally, we have performed the matching

for BK at µ = 3 GeV and found roughly a factor of 2 increase in precision, with the

dominant uncertainty still coming from the truncation of the perturbative series.
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Preface to Chapter 4

The Chapter 4 presents a journal paper [1] verbatim. The sections of this chapter map

directly to the ones in the publication and are preceded by the abstract. The appendix of

the paper is included in App.(A).

In the previous chapters we have concerned ourselves with precision calculations within

the SM context. These efforts can be utilised to probe observables that are sensitive to

new physics in a “bottom-up” approach. In the same spirit, we can look for BSM physics

at colliders by studying signatures of some generic particles. In the following chapter we

look at the bounds on the masses of stable multiply charged particles. As such particles

are predicted by composite Higgs models, this chapter bridges the gap towards explicit

studies of these models at colliders.
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Chapter 4

Bounds and Prospects for Stable

Multiply Charged Particles at the

LHC

Colored and colorless particles that are stable on collider scales and carry exotic electric

charges, so-called MCHSPs, exist in extensions of the Standard Model, and can include the

top partner(s) in solutions of the hierarchy problem. To obtain bounds on color-triplets and

color-singlets of charges up to |Q| = 8, we recast searches for signatures of two production

channels: the “open” channel – where the particles are pair-produced above threshold,

and are detectable in dedicated LHC searches for stable multiply charged leptons, and

the “closed” channel – where a particle-antiparticle pair is produced as a bound state,

detectable in searches for a diphoton resonance. We recast the open lepton searches by

incorporating the relevant strong-interaction effects for color-triplets. In both open and

closed production, we provide a careful assessment of photon-induced processes using the

accurate LUXqed PDF, resulting in substantially weaker bounds than previously claimed

in the literature for the colorless case. Our bounds for colored MCHSPs are shown for

the first time, as the LHC experiments have not searched for them directly. Generally,

we obtain nearly charge-independent lower mass limits of around 970 GeV (color-triplet

scalar), 1200 GeV (color-triplet fermion), and 880− 900 GeV (color-singlet fermion) from

open production, and strongly charge-dependent limits from closed production. In all cases

there is a cross-over between dominance by open and closed searches at some charge. We

provide prospective bounds for
√
s = 13 TeV LHC searches at integrated luminosities of

39.5 fb−1, 100 fb−1, and 300 fb−1. Moreover, we show that a joint observation in the open

and the closed channels allows to determine the mass, spin, color, and electric charge of
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the particle.

4.1 Introduction

Extensions of the Standard Model (SM) often contain particles that are stable, or suffi-

ciently long-lived to be effectively stable on the time and distance scales relevant to collider

experiments. Examples include the lightest supersymmetric particle if R-parity is approx-

imately or exactly conserved (see [71] for a review) and particles in certain composite

Higgs models [72]. It is possible that such a particle has exotic and possibly large electric

charge; we will refer to this as a Multiply-Charged Heavy Stable Particle (MCHSP).

Within the context of the naturalness problem (see e.g [73]), such MCHSP can cure the

quadratic divergence in the Higgs mass parameter; this has recently been realized in the

framework of Colorful Twisted Top Partners (CTTPs) [6]. The CTTP can take the form of

a spin-0 or spin-1/2 color-triplet of arbitrary electric charge. The divergence cancellation

occurs between the top loop in Fig. 4.1(a), and a scalar CTTP loop (Fig. 4.1(b)) or a

fermion loop (Fig. 4.1(c)). The CTTP is stable either due to an (approximate) accidental

U(1) symmetry, conserving partner-number, or due to an (approximate) Z2 symmetry,

under which the CTTP is odd and all SM particles are even. In fact, CTTPs of charges

different from Q = 2/3 + n or Q = −(1/3 + n), where n is a non-negative integer, are

not allowed to decay to SM particles altogether [33]. Consequently, exotically charged top

partners are likely to be stable or long lived.

Motivated by the above, we will consider color-triplet particles with arbitrary electric

charges, and refer to them as CTTPs, or “partners”, irrespective of whether they are

connected to naturalness or not. An important implication of their long lifetime is the

presence of a near-threshold, positronium-like bound state. In the top partner case, this

is known as the partnerium [6], and we will use this term to denote the bound state

tL

tR

H
−λt −λt

H

(a)

H

−λ2t

t̃L,R

H

(b)

T T c

H

λ2t/mT

H

mT

(c)

Figure 4.1: (a) Divergent top loop correction to the Higgs mass. (b) Loop contribution of
a scalar top-partner. (c) Loop contribution of a fermion top-partner. The diagrams are
taken from [6].
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in the generic case. The colored particle-antiparticle pair is bound by both a Coulomb-

like Quantum Chromodynamics (QCD) potential and by Electromagnetism (EM), with

the latter becoming important for large charges. Since partnerium carries no conserved

charge, it is free to annihilate into SM particles, leaving potentially detectable signatures,

the most relevant of which, for our purposes, is a diphoton resonance.

In addition to the bound-state production (referred to as “closed”), the stable (or

long-lived) partner can be pair-produced above threshold (referred to as “open”), leaving

tracks in all detector layers and eventually escaping without an observed decay. Color-

triplet top partners with charges different than 2/3 have not been directly searched for

at the LHC, and are largely unconstrained. In this work, we obtain current bounds on

exotically-charged scalar and fermion CTTPs, considering both open pair production and

partnerium signatures. We also obtain prospective bounds, for future LHC searches, at

several integrated luminosities and Center of Mass (COM) energy of 13 TeV. We choose

to focus on multiply-charged (|Q| > 1) color-triplet top partners, which are expected to

exhibit an interesting interplay between the two channels, especially given their sizable

partnerium-annihilation to a pair of photons. In addition, we consider color-singlet fermion

MCHSPs, referred to as lepton-like particles. In this case, the bound state is purely EM,

referred to as “leptonium”. We restrict ourselves to SU(2)weak singlets, both for colored

and colorless MCHSPs.

The remainder of the paper is organized as follows. In Section 4.2 we discuss the open-

production signatures of MCHSPs, and consider the existing run-I (
√
s = 8 TeV) LHC

searches for color-neutral stable particles with large electric charges. In order to recast

these searches for colored particles, and to update their results for colorless particles,

we compute the production cross sections and the detection efficiencies for both spinless

and spin-1/2 color-triplets, and for colorless fermions, all with charges Q in the range

1 ≤ |Q| ≤ 8 and masses m in the range 100 GeV ≤ m ≤ 3 TeV. We validate our

methodology against the published efficiencies in the colorless case. We also obtain the

required components for the prospective
√
s = 13 TeV searches. Section 4.3 reviews the

pertinent aspects of the bound state signatures, in particular the resonant-production

cross section of a diphoton final state. Section 4.4 contains our main findings, in the

form of current lower limits on the masses of colored and color-neutral particles. For

the color-neutral case, we obtain weaker constraints than a recent paper, albeit stronger

than the bounds originally obtained by CMS; we trace these discrepancies to the photon-

induced component of the signal and stress the importance of an appropriate choice of the
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photon Parton Distribution Function (PDF). In Section 4.5, we present projected bounds

for LHC searches at
√
s = 13 TeV, for integrated luminosities of 39.5 fb−1, 100 fb−1, and

300 fb−1, taking into account the scaling of pileup. We briefly discuss how by combining an

open-production effective cross section measurement and a diphoton resonance observation

one can determine the mass, spin, electric charge and color charge of the particle. Our

conclusions can be found in Section 4.6.

4.2 Stable Multiply-Charged Particles at the LHC

Our first goal is to obtain constraints on CTTPs from their signatures as stable particles,

produced above threshold. So far, there have been no LHC searches designated for color-

triplet MCHSPs. However, there have been experimental searches for other kinds of heavy

stable charged particles, which could be potentially recast to apply to CTTPs.

The stable fermion and scalar color-triplet partners are expected to hadronize to form

”R-hadrons”, similarly to quarks and squarks [32]. Searches for stable R-hadrons have

been carried out both in ATLAS [74–76], and in CMS [9, 77, 78] for COM energies of 7,

8 and 13 TeV. However, these searches are designated for stops and gluinos, and thus

optimized for unit-charged R-hadrons. Applying such searches for multiply-charged R-

hadrons could bear a significant loss of the discovery potential.

Searches for multiply-charged color-singlet fermions account for the difficulties con-

cerning the detection of MCHSPs. These searches were conducted by ATLAS for particles

with charges of 2-6 [79], and conducted by CMS for particles with charges of 1-8 [9]. Both

searches were analyzed for
√
s = 8 TeV, but have yet to be updated for

√
s = 13 TeV.

Results for a Q = 2 lepton-like particle have been published by CMS for
√
s = 13 TeV,

following an analysis that uses the same discriminators as for R-hadrons [77]. However,

the resulting bound was less stringent than the one derived from the designated search for

multiply-charged lepton-like particles, carried out for
√
s = 8 TeV.

As the aforementioned searches were carried out for colorless fermions only, heavy

stable CTTPs are still essentially unconstrained. While multiply-charged scalar and fer-

mion CTTPs are expected to share a lot of phenomenological traits with multiply-charged

leptons, QCD-induced processes for color-triplets still need to be accounted for. First,

one should consider the appropriate production mechanism, both for cross section and for

efficiency calculations. Second, the hadronization of the colored particle-pair might yield

two differently charged R-hadrons, and thus change the event acceptance. Moreover, nuc-

lear energy loss and charge-changing effects [32] might further reduce the efficiency of the



67

search. Therefore, the existing analyses are not sufficient for obtaining bounds on stable

CTTPs.

Furthermore, the previous analyses for colorless fermions might be lacking. As shown in

the re-analyses of the ATLAS search [79] in [11], the bounds on multiply-charged particles

are sensitive to the treatment of photo-induced processes, which were not included in the

original LHC analyses. However, the PDF used in [11] has been shown to have large

uncertainties for the photon PDF and thus also for the photon luminosity [80–82]. This

translates into large uncertainties on the previously obtained bounds. A more accurate

determination of the photon PDF using ep scattering data was proposed in ref. [80, 83],

resulting in significantly smaller errors, which are at the 1% level over a large range of

momentum fractions. For these reasons, we would like to reanalyze the signatures of

MCHSPs using the resulting LUXqed PDF [80].

This motivates us to recast a search for lepton-like MCHSPs, in order to apply its ob-

servations to fermion and scalar CTTPs, and to update the bounds on lepton-like particles.

The rest of this section is dedicated to describing our recast procedure.

We chose to recast the most recent CMS search for lepton-like particles with charges

of 1-8 [9]1. Since the search is a counting experiment, essentially blind to mass and

charge, it is imposing a universal upper limit on the product of the cross section and the

efficiency, σ ·ε. This “effective cross section” upper limit is then compared to its theoretical

prediction for each signal benchmark, described below, to obtain the upper bounds on the

signal mass. In the next sections, we discuss our calculations of the cross sections and

efficiencies separately, which are later combined to obtain the theoretical effective cross

sections. As the search is only available for
√
s = 7&8 TeV, we calculate the bounds based

on the observed result at
√
s = 8 TeV, and estimate the expected bounds for

√
s = 13 TeV.

For convenience, our signal benchmarks are based on the charges already considered

in the original search. Namely, color-singlets with integer charges |QLLP| = 1 − 8 and

color-triplets that hadronize to acquire such charges, initially charged as: 5/3 ≤ QCTTP ≤
23/3 and −22/3 ≤ QCTTP ≤ −4/3, in increments of one. We did not include charges

of −1/3 and 2/3 in our analysis, as those were better studied in stable R-hadrons searches.

Charges of 26/3 and -25/3 were disregarded due to their sizable hadronization fraction to

|QR-hadron| = 9 particles, that were not included in the original search. It has been shown

in [11,33] that particles with such large charges can still be treated perturbatively as long

as the coupling is sufficiently small and the energy domain is well below the Landau pole.

1The corresponding ATLAS search [79] resulted in similar bounds, and should have the same qualitative
efficiency behavior, however it was only applied to Q ≤ 6.
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This is ensured when αQ2 . O(1). As the theory loses perturbativity for αQ2 & O(1),

our predictions could not be straightforwardly extrapolated for Q & 10. Since both the

observations and the selections of the search are common to all masses and charges, one

can easily interpolate our results for any intermediate charge.

The masses of the signal benchmarks were determined in a similar fashion. Since the

original search considered masses of 100 − 1000 GeV, lepton-like particles of the same

masses were generated in a Monte-Carlo simulation, described in the following, in order

to estimate the accuracy of the efficiency calculation. Bounds were calculated for particles

of masses 500− 3000 GeV.

4.2.1 Recalculating Production Cross Sections

The pair-production cross section of CTTPs is calculated by summing the contributions

from the gg, gγ and γγ Vector Boson Fusion (VBF) production channels, as well as from the

qq̄ Drell-Yan (DY) production channel, mediated by g, γ or Z. The calculation of the pair-

production cross section of lepton-like particles accounts for production both by photon-

fusion and by a DY process mediated by γ or Z. In contrast to both the original search [9]

and to a re-interpretation of the ATLAS search [79] in [11], all cross sections below are

calculated with the LUXqed PDF set (LUXqed17 plus PDF4LHC15 nnlo 100) [80, 83].

We use MadGraph5 [84] to calculate the parton-level cross section at LO. The resulting

cross sections are presented in Appendix A.1.

The relative importance of the different production channels is highly affected by the

PDF of the incoming partons. Photon-induced charge-dependent VBF processes are sup-

pressed by the smallness of the photon PDF, while charge-independent gluon-fusion pro-

cesses benefit from the large PDF of the gluon. Since the ratio between the gluon PDF

and the photon PDF is slightly smaller at higher energies, a large charge-dependent contri-

bution could eventually overcome the PDFs imbalance. Thus, as shown in Fig 4.2, heavier

particles with large charges will mostly be produced by photon-inclusive, highly charge-

dependent processes, and lighter particles with small charges will mostly be produced by

charge-independent processes.

We use Pythia8 [85, 86] to perform showering and hadronization. As can be seen in

Table 4.1, hadronized partners mainly have charges of ±(Q+ 1/3) and ±(Q− 2/3), with

only a negligible fraction of ±(Q + 4/3) R-hadrons. Since hadronization of the heavy

partner and anti-partner takes place mostly independently, they may hadronize into two

differently charged R-hadrons.
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Figure 4.2: Different subprocesses for pair-production of a scalar CTTP with charges of
Q = 1, 4, 8.

4.2.2 Efficiency Calculation

Since we do not have access to the full CMS detector simulation, we defined a set of

selection criteria to account for detection efficiencies. Using our efficiency calculation,

with the production mechanism described in [9], we aim to reproduce the mass bounds

obtained by CMS for lepton-like particles within 15% accuracy. A similar accuracy should

be maintained as we calculate the bounds on the masses of CTTPs, and of lepton-like

particles produced as in Section 4.2.1. We account for the online, offline and final selections

criteria, as will be explained in the following paragraphs. Even though our treatment is

somewhat rough, we will see it is more than satisfactory for obtaining mass bounds, as

they are only weakly affected by efficiencies.

Procedure

The online selection for the search [9] consists of an Emiss
T trigger and/or a muon trigger.

To pass the Emiss
T trigger, an event should be assigned Emiss

T ≥ 150 GeV as measured

R-hadron Fraction (%)

RQ+1/3 28.25

RQ−2/3 21.50

RQ+4/3 0.25

R̄−(Q+1/3) 26.75

R̄−(Q−2/3) 23.00

R̄−(Q+4/3) 0.25

Table 4.1: Fractions of produced R-hadrons with specific charges, obtained using Mad-
Graph and Pythia simulation of partner pair-production and hadronization.
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in the calorimeter. This criterion is useful to some extent for particles that were not

reconstructed as muons, but we expect it to have a negligible contribution to the overall

efficiency, since the offline and final selections essentially require a muon candidate.

We therefore focus on simulating the muon trigger as our online selection. To pass the

muon trigger requirements, an event must have at least one particle reconstructed as a

muon. The muon candidate must have η ≤ 2.1, and pTmeas ≥ 40 GeV as measured in the

Inner Detector (ID). The transverse momentum is measured from the curvature radius of

the particle’s track, r, under a magnetic field, B, which follows

r =
pT

0.3 ·Q ·B . (4.1)

However, the reconstruction algorithm assumes Q = 1, and so the measured pT is pTmeas =

pTtruth
/Q. This effectively requires the truth-level transverse momentum to satisfy pTtruth

≥
Q · (40 GeV), thus reducing the efficiency for large charges and small masses.

In addition, triggering particles must be fast enough to have both their ID and Muon

System (MS) tracks in the same bunch crossing [87]. Since the LHC collisions were planned

to occur every 25 ns, slow particles that reach the MS more than 25 ns after a β =

1 particle, will be associated with the wrong bunch crossing and thus will not have a

matching ID track [5]. An additional Resistive Plate Chamber (RPC) muon trigger was

applied for η ≤ 1.6, allowing candidates to reach the MS up to 50 ns later than a β = 1

particle [88].

RPC-triggered particles must have a minimum of four RPC hits (three if not geomet-

rically possible) within the trigger time window [88,89]. A similar requirement also holds

for particles triggered by the Cathode Strip Chambers (CSCs) positioned at η ≥ 1.6, as

the CSC trigger relies on three different track segments to reconstruct pT [90]. These

constraints effectively define a minimal distance, denoted as xtrigger, that candidates must

travel within the trigger time window, as function of η.

In order to calculate the time required for a candidate to travel the distance necessary

for triggering, denoted as tTOF, one must account for the ionization energy loss in the

Hadronic Calorimeter (HCAL) and in the MS. Following the Bethe-Bloch formula [35],

the ionization energy loss rate decreases with the velocity of the particle and quadratically

increases with its charge. Therefore, the timing requirement is expected to be crucial for

MCHSPs, that are both produced with smaller velocities and significantly slowed down,

or even stopped, by ionization energy loss.

Heavy R-hadrons may also undergo nuclear interactions with matter, causing addi-
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tional energy loss and potentially altering the quark content of the R-hadron, resulting in

a charge change [32]. However, as can be seen in Fig. 4.3, for slow particles with large

charges, nuclear energy loss is quite negligible compared to ionization energy loss, and

hence could be ignored. Since we did not have access to a reliable simulation of charge-

changing processes, we could not account for them in our analysis. As we would expect

these processes to cause some efficiency loss, it would be desirable to include them in a

full experimental study. The calculation of tTOF is further explained in Appendix. A.1.2.

Candidates in events passing the online selection are subject to an offline selection

specified in Tables 1-2 of [9], applied at particle level. Our offline efficiency calculation

is rather limited, and only explicitly includes pT and isolation criteria, as described in

lines 4-5 of Table 4.2. An additional selection requires the particle to be reconstructed

as a global muon [91], filtering out particles that were not identified as muons at the

muon trigger level. Therefore, we replaced the global muon selection by only accepting

candidates that individually satisfy the online muon trigger requirements, as defined above.

This assumption is further justified in Appendix A.1.2. Since we cannot account for the

remaining criteria without a full detector simulation, we use the values quoted in Tables

C1-C16 of [5] as multiplicative factors for the offline efficiency calculation. A factor for

each signal mass and charge is calculated by

εsimoffline =
εoffline

εglobal muon · εpT · εisolation
, (4.2)

where εoffline is the fraction of particles passing the offline selection, out of all particles
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Figure 4.3: Energy loss per distance traveled in iron as a function of γ. Solid - ionization
energy loss for Q = 1, 2, 3 [7]. Dashed - average nuclear energy loss for a hadronized stable
stop [8].
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from events that passed the online selection. The efficiencies εglobal muon, εpT , εisolation

correspond to the fractions of particles passing the global muon, pT and
∑

R≤0.3 pT re-

quirements, respectively, out of the particles passing all selections imposed prior to them

(online selection included). The aforementioned values were given in [5] for lepton-like

particles of charges 1-8 and masses of 100-1000 GeV. Since they vary weakly with mass,

we use m = 1000 GeV efficiencies for all m ≥ 1000 GeV particles.

Lastly, the signal region is determined by the final selection criteria, presented in

Table 3 (line 4) of [9]. We include the 1/β ≥ 1.2 selection in our criteria, designed to

identify slow particles, and calculate it using the Time of Flight (TOF) defined in Eq. A.1.

Since we cannot recreate the Ias selection, we expect our efficiency to be overestimated for

unit-charge particles. However, particles with larger charges are not affected [5].

Our efficiency calculation may require adjustment for
√
s = 13 TeV. In the absence

of MCHSPs searches at
√
s = 13 TeV, we have to make certain assumptions about how

the selection criteria will change. The choice of pT thresholds is taken from the
√
s =

13 TeV search for unit-charged heavy stable charged particles [77], since the corresponding
√
s = 8 TeV searches for multiply-charged and unit-charged particles had the same pT

requirements. We had no reliable estimate of how the offline and the final selections might

be modified for 13 TeV. We therefore kept them the same as in 8 TeV searches, noting

that the offline efficiencies given in [5] for the 7 TeV and the 8 TeV runs show only a weak

dependence on the masses and COM energies.

The efficiency calculation steps and criteria are summarized in Table 4.2. Events

that pass those criteria are assumed 100% efficiency, as our calculation does not account

for trigger inefficiencies and other hardware effects. The final efficiencies for the signal

benchmarks mentioned above are given in Appendix A.1.2.

Validation

We compare the overall efficiencies, obtained by our simplified calculation, to the total

efficiencies given in [5, 9]. For this purpose, we follow the production prescription in

the original analysis by CMS, and generate lepton-like particles by DY processes with

CTEQ6L1 PDFs [92]. The ratio of the efficiencies is presented in Fig. 4.4(a) for 8 TeV,

and a relatively good agreement is established. We find that our efficiency and the results

by CMS are less than 40% apart, for all charges for masses larger than 300 GeV.

As the cross sections for pair-produced MCHSPs drop sharply with their mass, the

final mass bounds are only weakly sensitive to the exact upper limits on the effective cross
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8 TeV 13 TeV

Online

pT ≥ Q · 40 GeV pT ≥ Q · 50 GeV

|η| ≤ 2.1

tTOF −
xtrigger

c
≤ 50 ns (25 ns)

Offline
pT ≥ Q · 45 GeV pT ≥ Q · 55 GeV∑

R≤0.3 pT ≤ 50 GeV

Final c·tTOF
xtrigger

≥ 1.2

Multiplicative Factor
εsimoffline(Q,m) , m ≤ 1000 GeV

εsimoffline(Q, 1000) , m > 1000 GeV

Table 4.2: Simplified efficiency calculation steps and criteria used in this analysis. Each
step is applied only to candidates passing the selections in the steps above it. The online
timing requirement is 50 ns for |η| ≤ 1.6 and 25 ns for |η| > 1.6. The multiplicative factor
accounts for the offline selection criteria, which are not explicitly simulated, and instead
the efficiencies associated with them are taken from [5]. More details in text.
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Figure 4.4: Simplified efficiency calculation validation. (a) The ratio between our resulting
efficiencies and the respective CMS efficiencies for

√
s = 8 TeV [9], [5]. Indicated as well

are the efficiency deviation bands corresponding to less than 5% (red), 10% (light blue)
and 15% (light green) deviation in the mass bound. (b) Reproduced mass bounds for
lepton-like particles, following the production mechanism used by CMS. Dashed – the
bounds published by CMS [9], using a full detector simulation. Solid – our results using
the simplified efficiency calculation. Indicated as well are the 5% (red) and 10% (light
blue) mass deviation bands, around the our final mass bounds plot.

section. Therefore, inaccuracies in the efficiency estimation would result in much smaller

deviations in the mass bounds. The mass bounds resulting from our efficiency calculation

are expected to differ from the corresponding bounds calculated with the full detector
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simulation by less than 10% for smaller masses, and by much less than 5% for masses

larger than 500 GeV. Indeed, as shown in Fig. 4.4(b), we were able to reproduce the mass

bounds for lepton-like particles with excellent accuracy.

When comparing the efficiencies at the muon trigger level with the values given in [5],

we find that other than for m = 100 GeV, we overestimate the intermediate efficiency

by 5% − 40%. There are additional effects, not included in our calculation, that might

reduce the number of events passing the muon trigger selection. One such effect is the

track reconstruction and matching. Heavy particles with large charges experience large

ionization energy loss, and as a result are expected to be less compatible with a global muon

pattern. Second, the trigger response and the gaps in the RPC and CSC coverage may

increase the distance a candidate must travel to have a sufficient number of hits. Moreover,

we do not consider background effects, both from pileup and from hard particles produced

in the interaction, that could affect reconstruction. It may also be that we somewhat

underestimate the material budget. However, the final selection filters out particles that

are too fast, which are favored by the muon trigger. As a result, the overestimation of

the muon trigger efficiency could be compensated, and the total efficiency is therefore in

agreement with CMS. Even had these effects not canceled out, the final error for the mass

bounds would still be smaller than 15% for masses larger than 500 GeV.

4.3 Bound State Signal at the LHC

Our second goal is to obtain mass bounds on CTTPs from their signatures as partnerium

bound states. In this section, we will discuss the salient features of the partnerium reson-

ance, and introduce our recast procedure, which will be centered around diphoton channel.

The partnerium is unstable due to the annihilation of its constituents, and can be de-

tected as a resonance, with invariant-mass peak at M ≈ 2mpartner . A J = 0 or J = 2 part-

nerium state, made of EM-charged constituents, can always decay through annihilation

into γγ, γZ and ZZ. In the case of the color-triplet CTTPs, it may also decay into a pair

of gluons. A J = 1 partnerium, consisting of fermions, can annihilate into W+W− [11], or

to any SM fermion - anti-fermion pair, through s-channel γ/Z exchange [33]. Moreover, if

the constituent is a top partner, its large coupling to the Higgs implies significant annihil-

ation rates into Higgs pairs and longitudinally polarized Electroweak (EW) gauge bosons

(for J = 0 or 2 partnerium made of scalars), or to hZ (for J = 1 fermion bound states) [6].

Out of these search channels, the diphoton signal is by far the most sensitive [6, 33], es-

pecially for the large electric charges we consider. We will thus solely focus on this final
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state.

Several authors have recast LHC resonance searches to obtain bounds on CTTPs.

Mass bounds for scalar and fermion CTTPs of charges −1/3, 2/3,−4/3, 5/3 can be inferred

from the plots presented in ref. [6]. In addition, the authors of [93] obtained bounds for

colored scalars with charges −7/3, 8/3,−10/3 and of different SU(2)weak representations.

However, these analyses attributed the dominant partnerium production, binding and

decay mechanisms to QCD. This is not necessarily the case for partners with larger

charges, as we will see. Ref. [11] contains the only available resonance analysis for charges

1-8, but is limited to colorless fermions bound in a “Leptonium” [11]. As the leptonium

diphoton signal is highly sensitive to the photon PDF, we will also see that a more accurate

PDF choice can lead to significantly different conclusions. Thus, similarly to the open-

production case, the existing analyses of partnerium-like signatures are insufficient for

constraining the parameter space of MCHSPs. We therefore recast a diphoton resonance

search, to obtain bounds on the masses of CTTPs and to update the corresponding bounds

for lepton-like particles.

Our recast is based on the latest diphoton search, at
√
s = 13 TeV and an integrated

luminosity of 35.9 fb−1, published by CMS [10]. As the efficiency of diphoton detection at a

given invariant mass is mostly independent of the signal model, we kept it unmodified. We

therefore only compute the diphoton production cross section, resulting from a partnerium

or a leptonium resonance, accounting for both QCD and EM effects, and using the more

precise LUXqed PDF set [80] (see also Section 4.2). The rest of this section is dedicated

to the cross section calculation method.

The diphoton resonant production cross section is calculated using the full Breit-

Wigner formula [35]. Thus, we are interested in both the production and the decay

channels of the intermediate bound state. The partnerium can be produced by photon-

fusion and gluon-fusion (projected onto a color-singlet), regardless of the partner’s spin.

A leptonium, consisting of color-singlet fermions, can be produced via photon-fusion. A

fermion-based bound state can also be produced via DY processes, mediated by a photon

or a Z boson [33], however it may not decay into a diphoton final state. The allowed decay

channels of a diphoton resonance are those of a J = 0, 2 resonance, discussed above. The

resulting diphoton cross section would therefore follow

σpp→B→γγ = 8π

∫ 1

0

[
1

64
Lgg (τ) ΓB→gg + Lγγ (τ) ΓB→γγ

]
× ΓB→γγ

(ŝ− 4m2)2 + ŝ(ΓB→γγ(1 + 2 tan2 θW + tan4 θW ) + ΓB→gg)2

dτ

τ
,

(4.3)
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where τ = ŝ/s, with
√
ŝ being the total partonic COM energy, and θW is the weak angle.

The parton luminosity for a pair of partons a, b is

Lab(τ) = τ

∫ 1

τ

dx

x
fa (x) fb

(τ
x

)
(4.4)

where x is the fraction of the proton momentum carried by the parton and fa is the PDF

of the parton, which we evaluate at the factorization scale m. For colorless fermions, the

diphoton cross section is the same, excluding QCD contributions [11]. The relevant decay

widths for scalar CTTPs are given by [33,94]

ΓB→γγ =
24πα2Q4

M2
|Ψ(0)|2 (×2 for fermions,×1/3 for color-singlets), (4.5)

ΓB→gg =
16

3

πα2
s

M2
|Ψ(0)|2 (×2 for fermions), (4.6)

where M is the mass of the resonance, and modification factors for fermions and for

color-singlet particles are given in parentheses. The naturalness-enhanced decays of the

partnerium were found to be negligible when calculating the total decay width.

Colored particles of large charges could have a non-negligible contribution to their

binding coming from the EM force

V (r) = −Cᾱs +Q2α

r
, (4.7)

where C is the Casimir of SU(3)c, C3 = 4/3 for a color-triplet and C0 = 0 for a color-

singlet. The wavefunction at the origin is

|ψ(0)|2 =
(Cᾱs +Q2α)3M3

8πn
, (4.8)

where n is the radial excitation level. Since the contributions from n ≥ 2 states are

negligible, we keep only the ground state contribution [33]. In addition, we only consider

the LO effects in the binding potential. The higher order effects have been studied in

[33, 95, 96]. They find a noticeable though not dramatic enhancement of the signal cross

section. Therefore, our bounds are somewhat conservative. One should note that in the

decay rates and in the wavefunction M2 → ŝ, as ŝ is the mass of the resonance [97].

The decay rates of the partnerium and the leptonium grow significantly with the charge

of the constituents. For lepton-like particles, and for CTTPs with large charges, the bound

state annihilation rate approaches a Q10-dependence, as a result of the dominant EM

contributions. Therefore, the diphoton cross section will exhibit high charge sensitivity.
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The signal benchmarks are as described for the open-production channel recast. A

resonance treatment is indeed appropriate for all the charges we consider, since Γ/M .

10−1 for constituents with Q . 8. For CTTPs and lepton-like particles with Q ≤ 4,

we have found that the narrow width approximation is more stable numerically. The

production cross section for a narrow γγ resonance, via the decay of spin-0 partnerium

bound state B, is given by

σpp→B→γγ = σpp→BBrB→γγ

=
π2

m3

[
1

64
Lgg

(
4m2

s

)
ΓB→gg + Lγγ

(
4m2

s

)
ΓB→γγ

]
× ΓB→γγ

ΓB→γγ(1 + 2 tan2 θW + tan4 θW ) + ΓB→gg
,

(4.9)

and in the decay rates and wavefunctions M2 → 4m2, where m is the mass of the partner.

Following the calculation above, using Mathematica package ManeParse 2.0 [98] with

LUXqed PDFs [80] and performing numerical integration using Mathematica, we ob-

tain the diphoton cross sections for differently charged MCHSPs, which can be found

in Appendix A.2. The resulting current and future-projected bounds are discussed in

Sections 4.4 and 4.5.

4.4 Current Status – Recast Bounds

We are now in a position to obtain and compare lower bounds on the masses of Multiply-

Charged Heavy Stable Particles (MCHSPs) from the (recast) searches for their open-

production and closed-production signatures. We begin by describing the current mass

bounds, corresponding to the latest observations. Our bounds from the most recently

published searches are presented in Table 4.3 and compared in Figure 4.5. Conservatively

combining the bounds by taking the stricter one for each signal benchmark, we obtain the

current mass bounds at a minimal CL of 95%, highlighted in the table.

To obtain current constraints on MCHSPs from the open channel, we utilize the most

recent search for above-threshold MCHSPs, conducted by CMS at
√
s = 8 TeV [9]. The

limits on particle masses, in a given signal model, are derived by first obtaining a 95%-

Confidence Level (CL) upper limit on the effective cross section, and then choosing the

mass such that the theoretical effective cross section saturates this limit. Following CMS,

we apply a hybrid Bayesian-frequentist p-value computation [99], with the relevant para-

meters given in the original analysis. Our resulting upper limit is consistent with that

inferred from CMS results. The theoretical effective cross sections are calculated by mul-
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tiplying the cross sections and the efficiencies, as explained in Sections 4.2.1, 4.2.2, and

can be found in Appendix A.1.3.

Analogously to the open channel, we derive mass bounds for MCHSPs from their

bound state signatures as well. For the closed production case, we require the theoretical

diphoton production cross section, induced by the bound state resonance, as explained in

Section 4.3, to saturate the upper limits at 95%-CL. For the current bound, we employ the

CMS limit given in [10] for
√
s = 13 TeV at L = 35.9 fb−1. It should be noted the signal

efficiency in [10] was calculated for gluon-fusion production, and could be slightly different

for photon-produced resonances. The experimental bounds on a diphoton resonance in [10]

were given for three resonance-width benchmarks: Γ/M = 1.4 · 10−4 (narrow), Γ/M =

1.4 · 10−2 (mid-width) and Γ/M = 5.6 · 10−2 (wide). Therefore, when available, we use

narrow resonance bounds for Γ/M . 5 · 10−3 (Q . 5 for color-triplets, Q . 6 for color-

singlets), mid-width resonance bounds for 5 · 10−3 . Γ/M . 3 · 10−2 (5 . Q . 6 for

color-triplets, 6 . Q . 7 for color-singlets) and wide resonance bounds for Γ/M & 3 ·10−2

(6 . Q for color-triplets, 7 . Q for color-singlets).

The diphoton cross section limit observed in the search was given up to resonance

masses of 4500 GeV. However, for colored fermions with Q > 6.9 the corresponding γγ

cross section is larger than the observed limit throughout the available mass range. They

are thus excluded below m = 2250 GeV, but their exact mass bound can not be explicitly

inferred from this search.

4.4.1 Bounds from Open Signatures of MCHSPs

We find that scalar and fermion CTTPs are excluded below masses of roughly 1 TeV and

1.2 TeV, respectively. Interestingly, the bounds are almost charge independent both for

scalar and fermion CTTPs. As can be seen in Fig. 4.6, this is a result of a coincidental

balance between the production cross sections and the efficiencies at which color-triplet

MCHSPs could be directly observed. On the one hand, the search becomes less efficient

as the charge of the particle increases. For smaller masses, this is mainly a result of the

pT /Q selection, while for larger masses, the timing requirement, imposed by the muon

trigger, becomes more important, due to the particle’s large ionization energy loss. On

the other hand, the cross sections grow with the charge of the particle. The production

rate consists of the Q-independent QCD processes, the Q2-dependent gγ-fusion and EW-

mediated Drell-Yan (DY) processes, and the Q4-dependent photon-fusion. As we have

shown in Sec. 4.2.1, each subprocess becomes dominant at a different mass scale, resulting
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Figure 4.5: Lower mass bounds, as given by the most recent searches. Solid – a diphoton
resonance search at

√
s = 13 TeV, L = 35.9 fb−1 [10] (closed-production channel). Round

markers – a search for MCHSP tracks at
√
s = 8 TeV, L = 18.8 fb−1 [9] (open-production

channel). Shaded – regions excluded by each channel. More details in text.
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Q[e] 5/3 8/3 11/3 14/3 17/3 20/3 23/3 channel

color-triplet
scalar

970 980 980 980 970 950 930 open

570 700 970 1180 1460 1800 2250 closed

color-triplet
fermion

1200 1200 1210 1200 1190 1170 1160 open

590 860 1080 1330 1640 2050 2250* closed

Q[e] -4/3 -7/3 -10/3 -13/3 -16/3 -19/3 -22/3 channel

color-triplet
scalar

960 970 980 980 960 950 930 open

430 620 860 1100 1360 1680 2070 closed

color-triplet
fermion

1200 1200 1200 1200 1190 1170 1150 open

480 850 1030 1210 1520 1890 2250* closed

Q[e] 2 3 4 5 6 7 8 channel

color-singlet
fermion

690 780 840 870 890 890 890 open

- - - 570 980 1380 1710 closed

Table 4.3: Current lower bounds on the masses of MCHSPs. The bounds were obtained
from the diphoton resonance signatures at

√
s = 13 TeV, L = 35.9 fb−1 (closed-production

channel) and from the MCHSPs signatures at
√
s = 8 TeV, L = 18.8 fb−1 (open-

production channel). The colored cells are the corresponding combined bounds, given
by naively taking the stricter bound of the two searches. Blue – scalar CTTPs, red – fer-
mion CTTPs and black – lepton-like particles. Mass bounds are given in GeV. *Fermion
CTTPs with Q = 23/3,−22/3, are excluded below 2250 GeV, however the exact bound
could not be inferred from the search. More details in text.

in a rather strong charge-dependence for the production rates of heavy partners. The

bounds on the masses of lepton-like particles are slightly more charge dependent. We find

colorless fermions to be excluded below a mass of 690 GeV for Q = 2, and below 890

GeV for Q = 8. This is a result of the larger charge dependence of the production cross

section of lepton-like particles, in the absence of the charge-independent QCD production.
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Figure 4.6: Detection efficiency, production cross section and the resulting effective cross
section σ · ε for a color-triplet scalar of m = 1000 GeV, at

√
s = 8 TeV. All are presented

relative to their value for a color-triplet scalar of Q = 14/3.
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Due to hadronization, the bounds in the open channel are asymmetric for positively and

negatively charged color-triplets.

4.4.2 Bounds from Closed Signatures of MCHSPs

The diphoton data excludes color-triplet MCHSPs of charges larger than ∼ 4 (∼ 7) at

masses below 1 TeV (2 TeV). Due to the smaller production and decay rates of bound

states consisting of color-singlets, the bounds placed on lepton-like particles are somewhat

weaker. Lepton-like particles of charges larger than 5 (8) are excluded below masses of

0.5 TeV (1.7 TeV). The charge dependence of the mass bounds coming from the closed-

production signatures is understandably large, due to the dominant EM effects contrib-

uting to production, binding and decay, as explained in Section 4.3. These result in a

significant charge dependence of the diphoton resonant cross section, that can be as much

as Q10-dependent for lepton-like particles. In addition, the efficiency for the diphoton

search is not directly related to the bounded constituents charges. The bounds are sym-

metric for negative and positive charges, as the diphoton cross section in the Sec. 4.3 is

an even function of the Q.

4.4.3 Combined Bounds

Combining the searches in the open and the closed channels provides powerful constraints

on MCHSPs models. As shown above, the current limits derived from the direct search for

MCHSPs are stronger for charges smaller than ∼ 4 for scalar and fermion color-triplets,

and for charges smaller than ∼ 6 for colorless fermions, while for larger charges the di-

photon exclusion bounds dominate. Therefore, we benefit from considering both searches,

even by naively setting the bound at the larger of the two. Upon further statistical ana-

lysis, one should be able to combine the searches as the two channels must be explained

simultaneously for stable particles, and thus obtain even stronger mass bounds at 95%

CL.

4.4.4 The Leptonic Case – Comparison to the Literature

Since lepton-like particles have been studied in the past, we may now compare our new

bounds for lepton-like particles to those found in the literature. As we will see, the

bounds we have obtained are in disagreement with the existing results. These differences

are mainly a result of our new cross section calculations, which are more exhaustive and

reliable, compared to previous analyses.
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Figure 4.7: Comparing the lower mass bounds on multiply-charged lepton-like particles,
coming from the different analyses of the open-production signature. Dashed – results
published by CMS [9]. Dash-dotted red – bounds for Q = 2, 3 given in [11]. Solid blue
– mass bounds calculated in this study with 5% (Red) and 10% (Light blue) deviation
bands.

As shown in Fig. 4.7, the mass bounds we have obtained from the open-production

signature are stricter than those published by CMS [9]. While the analysis by CMS

considered DY-production exclusively, we also include photon-fusion production. Similarly

to [11], we find that photo-production processes significantly enhance the cross sections

for particles with large charges, and therefore the bounds have strengthened.

The choice of the PDF plays an essential role in calculating the production cross

sections, and is particularly important when considering photo-production processes. This

can be inferred by comparing our mass bounds, obtained using LUXqed PDFs set, to the

bounds presented in [11], derived using NNPDF2.3QED [81], as both analyses considered

the same production processes. As can be seen in Fig. 4.7, the mass bounds for colorless

fermions, derived from our analysis of the open-production channel, are much weaker

than the bounds set by the corresponding analysis in [11]. The same trend emerges when

comparing the closed-production signature analyses, and we find our bounds to be less

stringent than those previously obtained in [11]. The origin of these differences can be

traced to the choice of the photon PDF. As discussed in [80] (see also [82]), the way the

photon PDF is obtained in the NNPDFx.yQED sets is afflicted by large uncertainties. For

the γγ parton luminosity at invariant masses of 1-3 TeV, as relevant to our analysis, the

resultant uncertainty can be more than an order of magnitude. The precise extraction

of the photon PDF via the method of [80, 83], using ep data, implies, via the resulting

LUXqed PDF set, a photon luminosity which is as much as a factor of 60 lower than

that obtained for central values of the NNPDF2.3QED set. As a result, the cross section
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calculations in ref. [11], which are based on those central values, substantially overestimate

the contributions coming from photon fusion (as well as other photon-induced components)

to the cross section. Consequently, the bounds in [11] need to be corrected down to those

derived and presented here.

4.5 Future Scenarios – Discovery and Exclusion

In order to obtain the prospective mass bounds from LHC searches at
√
s = 13 TeV, we

consider integrated luminosities of 36 fb−1, 100fb−1(current – July 2018) and 300 fb−1

(future). Our projected mass bounds from the two kinds of searches are presented in

Figure 4.8.

For the closed-production signatures, projected bounds for integrated luminosities of

100 fb−1 and 300 fb−1, are calculated using the expected upper limits for ATLAS searches

of a photo-produced J = 0 resonance, as given in [13].

Although the LHC has been running in Center of Mass (COM) energy of 13 TeV since

2015, MCHSPs search results have yet to be updated. Therefore, for the open-production

searches, we calculate the expected effective cross section upper limit at 95%-CL, under

the background hypothesis. The expected number of background events is calculated by

scaling the corresponding
√
s = 8 TeV estimate [9] in two ways – by the luminosity ratio

and by the luminosity ratio times the pileup ratio. The latter is more conservative, and

perhaps more realistic, as some of the selections and the backgrounds involved may depend

not only on the luminosity, but also on the amount of pileup in each run.

Following our analysis, we expect the mass bounds from the open-production searches

to improve dramatically with COM energy. For
√
s = 13 TeV, the bounds could reach

about 1-1.5 TeV for lepton-like particles, 1.5 TeV for scalar CTTPs, and just under 2 TeV

for fermion CTTPs, even when only considering an integrated luminosity of 36 fb−1. We

therefore believe that a dedicated experimental search for MCHSPs, accounting for the

additional properties of colored particles, such as nuclear energy loss and charge change,

is very much in need.

We find that the interplay between the searches for MCHSP tracks and the searches

for diphoton resonances leads to an effective way to probe the parameter space of these

models. We will now present how the searches in the open and the closed channels could

be combined to better study MCHSPs in the future.
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Figure 4.8: Expected lower mass bounds at
√
s = 13 TeV, L = 35.9 fb−1

(magenta), 100 fb−1 (blue), and 300 fb−1 (green). Solid – diphoton resonance searches
(closed-production channel). Round markers – searches for MCHSP tracks with
luminosity-scaling (open-production channel). Dashed – searches for MCHSP tracks with
luminosity and pileup scaling (open-production channel).
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In the case where no excess is observed in both channels, one can combine their results

to set upper limits that are significantly stricter than the ones obtained by each search

individually. Comparing the two channels assuming the same energy and luminosity, we

find that open-production searches are expected to become stronger, and dominate up

to charges of about ∼ 6 for CTTPs, and ∼ 7 for lepton-like particles. Therefore, these

searches are also more likely to carry a potential for discovery. However, in the case of a

discovery in the open channel, its analysis might not be able to determine the charge of the

observed MCHSP, as we have already established. In addition, the measured kinematics

of the particle is different from the truth-level kinematics, due to its unknown charge and

ionization energy loss, and will thus be difficult to interpret with good accuracy. On the

other hand, given its strong charge-dependence, the diphoton search, although typically

less sensitive, can be very useful in breaking the charge degeneracy, or at least in narrowing

down the range of allowed charges. The situation could be reversed for very large charges,

and the diphoton search could become the discovery channel. In the transition region,

correlated excesses in both channels, even if insignificant for each one, may be sufficiently

significant to point to a discovery of an MCHSP when combined.

In case of a discovery in both channels, not only would one be able to claim an ob-

servation of an MCHSP with higher significance, but also to better study its properties,

as we will now demonstrate. First, the mass of the particle could be determined from the

diphoton resonance peak. Given the measured mass, one could calculate the theoretical

effective cross section, relevant for the open search, and the theoretical diphoton cross

section, relevant for the closed search, for MCHSPs of different spins, charges and color

representations. As demonstrated for m = 1500 GeV in Fig. 4.9, the measurements in

both channels would mark a specific point, which could then be related to a specific choice

of the particle’s quantum numbers. This is true for most of the parameter space, except

for the crossing point between a highly charged lepton-like particle and a colored scalar,

corresponding to two different choices of quantum numbers. Although measurement un-

certainties could make the model distinction less sharp, the appropriate parameter space

would be substantially narrowed given the combination of the two measurements.
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Figure 4.9: The combined signatures of a hypothetical MCHSP with m = 1500 GeV,
for different choices of its quantum numbers. In case of a discovery in both channels,
combining the observables measured in the two searches could be used to determine the
quantum numbers of the newly discovered particle. The lines correspond to different
spin-color combinations studied in this work. Black – color-singlet fermions. Blue – color-
triplet scalars with positive charges. Cyan – color-triplet scalars with negative charges.
Red – color-triplet spin-1/2 fermions with positive charges. Magenta – color-triplet spin-
1/2 fermions with negative charges. Round markers indicate charges spaced by one unit,
colored labels indicate the charges. The two subplots on the top-left are magnified views.
Top box – negatively-charged and positively-charged color-triplet fermions. Bottom box –
negatively-charged and positively-charged color-triplet scalars.

4.6 Conclusions and Outlook

We have studied the LHC phenomenology of Multiply-Charged Heavy Stable Particles

(MCHSPs). Such particles, that are stable on collider scales and carry exotic electric

charges, exist in various extensions of the SM. We introduced the signatures of color-

triplet MCHSPs, referred to as Colorful Twisted Top Partners (CTTPs), which were

proposed as a solution to the hierarchy problem [6]. In addition, we reanalyzed the sig-

natures of colorless fermion MCHSPs, referred to as lepton-like particles. We considered

both the “closed” channel – where the MCHSP and its anti-particle form a bound state

(partnerium/leptonium), detectable as a diphoton resonance, and the “open” channel –

where each of the MCHSPs propagates approximately independently, detectable in desig-

nated searches. For this purpose, we have recast existing analyses, including QCD effects
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and an updated treatment of EM effects.

For MCHSPs with relatively small charges, the open-production searches are more

important, albeit with only little sensitivity to the charge of the particle. This is in

contrast to the diphoton channel, which is more sensitive to MCHSPs with large charges,

and exhibits a strong charge-dependence. Thus, a combined search is useful both for the

exclusion and for the discovery of MCHSPs. We have obtained bounds on MCHSPs from

both production channels, and combined them by taking the more stringent bound for

each signal model. We find lower bounds on CTTP masses, that are nearly constant at

about 1 TeV for charges |Q| ≤ 4, then raising to 2.3 TeV at |Q| = 8. This behavior is

due to the closed (diphoton resonance) signature becoming more constraining than open

pair production for |Q| ≥ 4. The bounds on lepton-like particles display an analogous

behavior, beginning at about 0.8 TeV and starting to rise at |Q| = 6, to about 1.7 TeV

at |Q| = 8. The bounds we obtained for lepton-like particles are significantly weaker than

those given in [11], but are stronger than the bounds given in [9]. The differences stem

from our cross section calculation, which accounts for photo-production processes using

LUXqed PDFs set, which is more precise for the photon PDF.

In addition, we have presented two future scenarios: exclusion and discovery. In the

exclusion scenario, where no signal is observed, we have projected the bounds to 13 TeV,

three integrated luminosities and with or without the pileup scaling. In all cases we find

that the bounds become stricter. We therefore strongly encourage a dedicated experi-

mental analysis for MCHSPs, which includes colored particles, and which should combine

open production and diphoton resonance signals2. In the event of a discovery, we have

shown how combining the measurements at both channels will allow to determine the

mass, spin, color, and charge of the observed particle.

In light of our findings, let us briefly comment on the future of open-production searches

of MCHSPs. In order to reduce the impact of pileup, both ATLAS and CMS are consider-

ing installing a new timing sub-detector, that is capable of measuring Time of Flight (TOF)

at 30 ps resolution [101]. These timing detectors might improve the discovery reach for

2After completing and posting the manuscript, the results of a Run-II ATLAS search for open-
production lepton-like particles [100] became publicly available. This is the first LHC analysis corres-
ponding to the

√
s = 13 TeV, L = 36 fb−1 data in the context of |Q| > 2 MCHSPs. Similarly to the

run-I CMS analysis [9] discussed above, this new ATLAS analysis did not account for photo-production
processes. A rough estimate of these effects can be given by recalculating the theoretical production cross
sections, as described in our analysis, and comparing them to the cross section upper limits observed by
ATLAS to obtain mass bounds. This leads to mass bounds of 1.02 TeV (Q = 2), 1.36 TeV (Q = 5) and
1.32 TeV (Q = 7), which are in good agreement with our future-projected bounds for the same energy and
luminosity. A more precise treatment requires a dedicated efficiency computation, considering the relevant
aspects of the ATLAS detector and signal selections, and should be addressed through a reanalysis by
ATLAS.
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MCHSPs, by providing an additional, more accurate, discriminator for slow particles.

Moreover, they may be able to measure the TOF of a particle prior to its interactions

with the material in the calorimeters and in the Muon System (MS), which are the main

cause of ionization energy loss, thus improving detection efficiencies. We leave a dedic-

ated study of the implications of incorporating the information collected by the timing

detectors in searches for MCHSPs for future work.
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Chapter 5

Composite Higgs Models

The composite Higgs models are known to be able to solve the hierarchy problem by

generating the Higgs mass and EWSB scale in line with the naturalness paradigm. In the

previous chapter we have studied the collider phenomenology of the multiply charged top

partners that could potentially come from composite Higgs models. In this chapter we

will delve deeper into these theories, with particular focus on pseudo-Nambu-Goldstone

boson Higgs. In Section 5.1 we review the salient features of such models and in particular

look at a few simplified examples in more detail. In Section 5.2 we discuss the existing

collider constraints and present a collider study which aims to look for specific signatures

of CH models that could help differentiate between them. This section contains novel

results from our publication [2]. Finally, to pave way towards the model building efforts

in Chapter 6, we review the electro-weak corrections in Section 5.3 and include a brief

summary of the chapter in Section 5.4.

5.1 The PNGB Higgs

In this section we will cover the salient features of composite Higgs models, with a par-

ticular focus on the ones with pseudo-Nambu-Goldstone Higgs and partial compositeness

in the fermion sector. We will also review the CCWZ formalism and the three versions

of the minimal composite Higgs models. In addition, we will discuss the computation of

mass matrices and the mass spectrum of the composite partners for a set of models with

fully-composite right-handed top. The concepts introduced in this section will be used

extensively in the next chapter. Some of the more comprehensive reviews on the subject

can be found in [37,102–107].
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5.1.1 Salient Features

The main motivation behind composite Higgs models is to address the naturalness prob-

lem. As discussed in the introduction, the issue arises if the Higgs boson is truly an

elementary particle, its mass receives large radiative corrections proportional to the high-

energy cut-off scale ΛUV of the Standard Model. In composite Higgs models the Higgs

arises as a bound state of a new strongly coupled sector. Hence, its mass only receives

corrections of the order of the compositeness scale, where the new strong sector confines.

This allows for a UV cut-off parametrically larger than the weak scale without introducing

an associated large tuning. In order to avoid another naturalness problem the new strong

sector has to be connected to a UV fixed point. Thus, its only scale is the compositeness

one, which is generated dynamically.

The ‘elementary’ sector, which comprises of the remaining SM fields, does not dir-

ectly interact with the composite gauge bosons. Instead, SM fermions may couple to the

composite fields via linear mixing terms. This is known as partial compositeness. The

interaction Lagrangian can take the form

LInt =
λtL

Λ
DL−5/2
UV

q̄LOL +
λtR

Λ
DR−5/2
UV

t̄ROR + ..., (5.1)

where qL and tR are the elementary quarks, OL,R are the strong sector operators with DL,R

scaling dimensions and λtL,R are the corresponding dimensionless couplings. ΛUV is the

UV cut-off of the theory. The hierarchy of scaling dimensions of the composite operators

translates to a hierarchy of the mixings at the composite scale via the renormalisation

group

λtL,R(m∗) = λtL,R(ΛUV)

(
m∗

ΛUV

)DL,R−5/2

, (5.2)

where m∗ � ΛUV is the compositeness scale. Hence, if the operators have DL,R > 5/2,

some of the λ’s can receive a sizeable suppression due to a large scale separation. This,

in turn, can be used to explain why the top quark is much heavier than other quarks as

the top Yukawa yt ∝ λtLλtR . In addition, the small elementary composite mixings along

with the m∗ suppression are sufficient to bring the dimension-six operators that mediate

flavour-changing neutral currents (FCNC) to phenomenologically acceptable values.

Of special interest are models in which the compositeness scale can be large compared

to the electro-weak (EW) scale. That is the case if the Higgs is a pseudo-Nambu-Goldstone

boson (pNGB). This assumes that the gauge group G of the UV theory is spontaneously

broken at the compositeness scale to a symmetry H, which contains the SM gauge group.
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In the next section we will review the CCWZ formalism which provides the standard

parametrisation of such breaking for arbitrary G and H. The hierarchy between the Higgs

mass and m∗ is then generated by a small explicit breaking of the quotient symmetry G/H.

Hence, this reduces the ‘little’ hierarchy problem between the Higgs vacuum expectation

value (VEV) v and m∗ to v and f , where f � m∗ is the pNGB decay constant. Moreover,

pNGB Higgs suppresses the H → γγ coupling [103], because of residual shift symmetry

[37].

Generally, the O(4) = (SU(2)L × SU(2)R) o Z2 symmetry is necessary in CH models

to prevent tree-level contributions to the T -parameter [108], which is one of the oblique

corrections that we will discuss later in this chapter. In addition, the relationship between

the SU(2) fundamental generators T3L = T3R must hold for any sizeable composite admix-

ture to bL, as it forbids the tree-level corrections to the Z → bLbL process [109]. This also

ensures that bL is an eigenstate of the Z2 projections PL,R. Hence, any large admixtures

are allowed only with the Higgs, which transforms as (2,2) of SU(2)L × SU(2)R.

The minimal composite Higgs model (MCHM) provides the smallest sector G which is

compatible with the SM Higgs and can generate a viable electro-weak symmetry breaking

(EWSB). This will be reviewed in the following sections.

5.1.2 CCWZ Formalism

The Callan–Coleman–Wess–Zumino (CCWZ) formalism [110, 111] is one of the ways of

choosing a field basis for the parametrisation of pNGBs. In this section we follow the

presentation of [37]. First, let us explore the idea behind the CCWZ formalism. We would

like to write a general low-energy effective Lagrangian for a strongly (or weakly) coupled

theory, which describes the Goldstone bosons and heavy resonances, for a particular sym-

metry breaking pattern G → H. A group element can be defined as

g = eiωAT
A

= eiηâT
â
eiηaT

a
, (5.3)

where TA are the generators of G. This can then be factorised into unbroken generators

T a, corresponding to H, and the broken generators T â. The CCWZ field can be expressed

in terms of the broken generators as

U [Π] = e
i
√

2
f

ΠâT
â

, (5.4)
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where Πâ are the scalar NGB fields, one for each broken generator. The U [Π] transforms

under G as

U [Π]→ g · U [Π] · h−1(g), (5.5)

where h(g) is the group element of H. As CCWZ fields are non-linear, the group H is said

to be non-linearly realised. If we have two fields that transform as

Ψ→ gΨ, (5.6)

ψ → h(g)ψ, (5.7)

we can write an invariant

Ψ̄Uψ → Ψ̄g†gUh−1(g)h(g)ψ = Ψ̄Uψ. (5.8)

Hence, U [Π] can then be used together with fields that transform under the unbroken

group H to form invariants under G.

5.1.3 Minimal Composite Higgs Models

The starting point in writing down the MCHM is the assumption that the strongly coupled

gauge theory underlying the composite dynamics has a global SO(5)× U(1)X symmetry,

which at the confinement scale f is spontaneously broken to SO(4) × U(1)X . The four

Goldstone bosons arising from this symmetry breaking pattern form an SO(4) fourplet in

the SO(5)/SO(4) coset which we identify with the Higgs field. The fact that this breaking

preserves the custodial symmetry has important consequences for the phenomenological

bounds on the model [109]. The SM fields enter as elementary particles. The gauge

fields are coupled to the strong sector through the gauging of the SU(2)L ×U(1)Y subset

of SO(4) × U(1)X symmetry, with the hypercharge generator being associated with the

diagonal generator of SU(2)R plus the X generator, i.e. Y = T 3
R + X. The SM fermions

are coupled to the strong sector through the partial compositeness mechanism, where

operators containing SM quarks are coupled to operators of the strong sector. The SM

quark doublet cannot fill a complete SO(4) multiplet without the introduction of additional

external states while the states in the strong sector can, thus some of the components of

this multiplet will be spurious and lead to explicit breaking of the SO(5) symmetry.

We use the standard CCWZ toolkit to determine the structure of our top-partner

effective field theory (EFT) given the SO(5)/SO(4) coset. The applications of this form-
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alism in the context of top-partner studies can be found in [104, 105]. The main objects

we require are the Goldstone boson matrix U and the dµ vector used to construct the

kinetic term of the Goldstone boson Lagrangian. Under SO(5) rotations the Goldstone

matrix transforms non-linearly as U → gUh†, with g ∈ SO(5) and h ∈ SO(4), whereas dµ

transforms linearly as a fourplet of SO(4). In unitary gauge the Goldstone boson matrix

can be expressed as

U =



0 0

I3×3 0 0

0 0

0 0 0 ch −sh
0 0 0 sh ch


, (5.9)

where sh = sin h
f and ch = cos hf . When the Higgs is expanded around a vacuum expecta-

tion value 〈h〉 we take h(x) = 〈h〉+ρ(x) and fix f sin 〈h〉f = v, with v ' 246 GeV, such that

the electroweak gauge boson masses are the same as in the SM. We also define ε ≡ 〈h〉
f ,

and use the short-hand notation sin ε ≡ sε and cos ε ≡ cε.

Next, we consider the possible embeddings of the elementary fields in SO(5). For

instance, the SM left-handed quark doublets in the 5 and the 14 of the gauge group can

be written in the form

q5L =
1√
2



ibL

bL

itL

−tL
0


, q14L =

1√
2



0 0 0 0 ibL

0 0 0 0 bL

0 0 0 0 itL

0 0 0 0 −tL
ibL bL itL −tL 0


. (5.10)

The right-handed top quark can be embedded in an SO(5) fiveplet as

t1R =

(
0 0 0 0 tR

)ᵀ

. (5.11)

If we now construct top-partner states ψ in representations of SO(4) we can promote

these to SO(5) representations using the Goldstone boson matrix U . In writing down

the effective Lagrangian for the Higgs field, the top quark, and the top-partners, it is

useful to also write the vector-like top-partners as embeddings in SO(5) multiplets. The
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top-partners in 4 and 1 representations of SO(4) can be embedded in SO(5) fiveplets as

ψ4 =
1√
2



iB − iX5/3

B +X5/3

iT + iX2/3

−T +X2/3

0


, ψ1 =



0

0

0

0

T̃


, (5.12)

respectively. Embeddings in a 14 of SO(5) follow similarly. The embedding of the SM

quarks ensures that the theory includes the SM qL = (bL, tL) doublet with Y = 1/6

hypercharge and a right-handed top quark with Y = X = 2/3. In fact the hypercharge

of the right-handed top quark fixes the U(1)X charge assignments of all the fermionic

fields described above, and the singlet top-partner has the same SM charges as the SM

right-handed top quark. However the quarks from the fourplet form two SU(2)L doublets,

Q = (T,B), has the same SM charge assignment as the SM quark doublet and (X5/3, X2/3)

is an exotic doublet where the subscript denotes the electromagnetic charge.

SO(5)/SO(4) Models for Top Partners

In this section we review the three versions of MCHM, denoted as qL + tR embedding:

the 5+5, 5+1 and 14+1 of SO(5), presented in [37]. In particular, we will be making

comparisons between the former two models and our models in next chapter.

The effective Lagrangian consists of three parts: the elementary sector, the composite

one and the mixing terms

L = Lelem + Lcomp + Lmix, (5.13)

where for the elementary sector we have the standard canonical kinetic terms

Lelem = iq̄L /DqL + it̄R /DtR. (5.14)

Here /D denotes the covariant derivative. The composite sector Lagrangian is given by

Lcomp = iψ̄4 /Dψ4 + iψ̄1 /Dψ1 −m4ψ̄4ψ4 −m1ψ̄1ψ1

−
(
icLψ̄4Lγ

µdµψ1L + icRψ̄4Rγ
µdµψ1R + h.c.

)
−
(
ictψ̄4Rγ

µdµtR + h.c.
)
,

(5.15)

where cL, cR, ct are the coefficients in front of the d-terms. The ct 6= 0 only for models with
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fully-composite tR, i.e. we assume the right-handed top quark to be a chiral bound state

of the strong sector. These couplings are phenomenologically preferred to be non-zero

as they can suppress certain oblique corrections, which we will introduce of the following

sections. Finally, the mixing terms can be written as

L5+5
mix = yL4f q̄

5
LUψ4 + yL1f q̄

5
LUψ1 + yR4f t̄

5
RUψ4 + yR1f t̄

5
RUψ1 + h.c., (5.16)

L5+1
mix = ytf q̄

5
LUt

1
R + yL4f q̄

5
LUψ4 + yL1f q̄

5
LUψ1 + h.c., (5.17)

L14+1
mix =

yLt
2
f(Uᵀq̄14L U)55tR + yL4f(Uᵀq̄14L U)i5ψ

i
4 +

yL1

2
f(Uᵀq̄14L U)55ψ

5
1 + h.c., (5.18)

here y’s are the elementary-composite mixings and i = 1..4. As 14 can be decomposed into

9⊕4⊕1 under SO(4), similar composite and mixing terms can be derived for the nineplet

as well, however these will not be discussed any further in this thesis. The 5+1 and 14+1

cases have a fully-composite top. This means that the top mass is generated directly via

qL-tR coupling as opposed to indirectly through the elementary-composite couplings like

in the 5+5 case. In the next section we examine in more detail simplified versions of the

two models with fully-composite top.

Simplified Models

In this section we employ simplified models, as outlined in [104], which serve to capture

the features of light top-partner states relevant for phenomenological purposes. These

models are not complete realisations and there is not enough structure to compute a finite

Higgs potential or determine the level of fine-tuning present in it. Due to this we will

assume that the Higgs mass takes its observed value and that the fine-tuning in the Higgs

potential is smaller for smaller top-partner masses. We will however be able to calculate

the top quark mass from the mixing between the SM top quark and top-partners and this

will serve as a constraint on the parameters of the Lagrangian.

Composite Higgs models predict many new composite resonances of differing spin with

masses near the compositeness scale, which we define as m∗. If m∗ is sufficiently large

one can write down an effective field theory where states above that mass scale have

been integrated out. However, in order to obtain a natural EWSB scenario we know

that light top-partners are required, therefore it would be natural to suspect that the

lightest top-partners have masses which lay below the scale m∗ and cannot be integrated

out. The approach taken in [104] and in other simplified models, including those used

by the ATLAS and CMS collaborations, assumes that only one top-partner lays below
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the scale m∗. Allowing more than one light top-partner could drastically change the

collider phenomenology as the possibility of additional cascade decays opens up and the

relationship between the top-partner masses, couplings, and f changes.

The effective field theory for the models we use here are constructed using the same

power counting rules as in [104] which in turn follows the ‘SILH’ approach [103]. As

in [104], we will study top-partners in either the 12/3 or 42/3 representations of SO(4)×
U(1)X , while the SM doublet quarks will be embedded in either a 52/3 or 142/3 of SO(5)×
U(1)X . The right-handed top quark will always be defined as a 12/3 of SO(4) × U(1)X ,

since it is being treated as a composite chiral state. Given the choices of top-partner

states and SM quark embeddings we see that there are four top-partner models to study:

M45, M414, M15, and M114.

M45

With a light top-partner transforming as a 42/3 of SO(4) and the SM left-handed top-

bottom doublet embedded in a 5 of SO(5) the relevant effective action for the SM plus

the top-partner, after the states heavier than m∗ have been integrated out, is

LM45 = iq̄L��DqL + it̄R��DtR + iψ̄4��Dψ4 −mψψ̄4ψ4 + ic1ψ̄4Rdµγ
µtR

+ yf q̄5LUψ4R + yfc2q̄
5
LUt

1
R + h.c., (5.19)

where the SO(5) embedding of the top-partner states is assumed. The y in Eq.(5.19) is

the coupling that mixes the elementary and strong sectors, and c1,2 are expected to be

O(1) coefficients arising from integrating out the heavier states. Notice that the coupling

proportional to c1 does not carry a y dependence since tR is treated as a composite state.

Fixing to unitary gauge and expanding the Higgs field around its vacuum expectation

value the following mass matrix is found for the top and top-partners


t̄L

T̄L

X̄2/3,L


ᵀ
−yfc2√

2
sε

y
2f(1 + cε)

y
2f(1− cε)

0 −mψ 0

0 0 −mψ




tR

TR

X2/3,R

 . (5.20)

An orthogonal rotation of the T and X2/3 states reduces the above mass matrix to a mixing

between just one linear combination of the top-partners, and leaves the kinetic and vector-

like mass terms invariant. If we had not performed this rotation now then it would simply

be part of the mass matrix diagonalization required later. This transformation can be
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written as
t

T

X2/3

→ 1

N


N 0 0

0 1 + cε 1− cε
0 −1 + cε 1 + cε




t

T

X2/3

 , N =
√

2 + 2c2
ε , (5.21)

and the resultant mass matrix is t̄L
T̄L


ᵀ−yfc2√

2
sε

y
2f
√

3 + c2ε

0 −mψ


 tR
TR

 , (5.22)

with the X2/3 state now being decoupled from the top quark and the Higgs. Upon di-

agonalising this mass matrix the mass of the T top-partner gets shifted away from the

vector-like mass, however the masses of both the X2/3 and X5/3 state remain degenerate

at mΨ.

M414

The effective action for a light top-partner transforming as a 42/3 of SO(4) and the SM

left-handed top-bottom doublet embedded in a 14 of SO(5) is obtained as

LM414 = iq̄L��DqL + it̄R��DtR + iψ̄4��Dψ4 −mψψ̄4ψ4 + ic1ψ̄4Rdµγ
µtR

+ yfTr
(
q̄14L Uψ

′
4RU

ᵀ
)

+ yfTr
(
q̄14L Ut1

′
RU

ᵀ
)
, (5.23)

where ψ
′
4 is defined as the direct product of the SO(5) breaking VEV, Σ0 = (0, 0, 0, 0, 1),

and ψ4. In this way the invariant in the Lagrangian can be written as

(q̄14L )IJUIMUJNΣN
0 (ψ4)M , (5.24)

in accordance with [104]. We also use an analogous definition of t1
′
R . Because the top-

partners transform in a 4 of SO(4) the particle content here is the same as in the M45

model, however the mass matrix differs slightly due to the embedding of the SM doublet,


t̄L

T̄L

X̄2/3L


ᵀ
−yfc2

2
√

2
s2ε

yf
2 (cε + c2ε)

yf
2 (cε − c2ε)

0 −mψ 0

0 0 −mψ




tR

TR

X2/3R

 . (5.25)
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Analogously to the previous model we can also rotate the top-partner states such that only

one of the top-partners couples to the SM doublet and the Higgs, with the transformation

being


t

T

X2/3

→ 1

N


N 0 0

0 cε + c2ε cε − c2ε

0 −cε + c2ε cε + c2ε




t

T

X2/3

 , N =
√

2 + c2ε + c4ε, (5.26)

leaving the resultant mass matrix as t̄L
T̄L


ᵀ−yfc2

2
√

2
s2ε

yf
2

√
2 + c2ε + c4ε

0 −mψ


 tR
TR

 . (5.27)

The X2/3 state has decoupled in the same way as in the M45 model and has a mass

degenerate with the exotic X5/3 top-partner.

M15

For a light top-partner transforming as a 12/3 of SO(4) and the SM left-handed top-bottom

doublet embedded in a 5 of SO(5) the relevant effective action is

LM15 = iq̄L��DqL + it̄R��DtR + iψ̄1��Dψ1 −mψψ̄1ψ1

+ yf q̄5LUψ1R + yfc2q̄
5
LUt

1
R + h.c. (5.28)

where the term proportional to c1 is now absent. With singlet top-partners we only have

one top-partner state with charges equal to that of the right-handed top quark. The mass

matrix in this case is simpler than with fourplet top-partners, and is written as t̄L
T̄L


ᵀ−yfc2√

2
sε

yf√
2
sε

0 −mψ


 tR
TR

 . (5.29)

M114

For a light top-partner transforming as a 12/3 of SO(4) and the SM left-handed top-bottom

doublet embedded in a 14 of SO(5) the relevant effective action is

LM114 = iq̄L��DqL + it̄R��DtR + iψ̄1��Dψ1 −mψψ̄1ψ1

+ yfTr
(
q̄14L Uψ

′
1RU

ᵀ
)

+ yfc2Tr
(
q̄14L Ut1

′
RU

ᵀ
)

+ h.c. (5.30)
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where the singlet composite states are embedded in 14 representations of SO(5) when

coupled to the SM doublet. The mass matrix is similar to the M15 case, t̄L
T̄L


ᵀ−yfc2

2
√

2
s2ε

yf

2
√

2
s2ε

0 −mψ


 tR
TR

 . (5.31)

Additional light top-partner multiplets

Introducing additional light top-partner multiplets can be done in a straightforward way.

To keep the models simple we will assume that all top-partner states couple to the SM

with the same strength, with their masses determining their influence on the top mass and

Yukawa coupling. We label our top-partner multiplets as ψ4,i and ψ1,i, and their masses

as MΨi , whereas the components of these multiplets are denoted by T i, Bi, Xi
2/3, Xi

5/3.

Introducing additional multiplets in the M15 and M114 is straightforward since we

are dealing with singlet top-partners. For example the mass matrices for these models

with one additional singlet each can be written as


t̄L

T̄ 1
L

T̄ 2
L


ᵀ
−yfc2√

2
sε

yf√
2
sε

yf√
2
sε

0 −mψ1 0

0 0 −mψ2



tR

T 1
R

T 2
R

 for M15 and


t̄L

T̄ 1
L

T̄ 2
L


ᵀ
−yfc2

2
√

2
s2ε

yf

2
√

2
s2ε

yf

2
√

2
s2ε

0 −mψ1 0

0 0 −mψ2



tR

T 1
R

T 2
R

 for M114. (5.32)

When the top partners are in fourplets all we need to do is to rotate each (T i, Xi
2/3) pair

separately such that only one linear combination of quarks from each multiplet couples to

the top quark and the Higgs. For one additional top-partner in the fourplet models this

can be done using the orthogonal transformations

t

T 1

X1
2/3

T 2

X2
2/3


→ 1

N



N 0 0 0 0

0 1 + cε 1− cε 0 0

0 −1 + cε 1 + cε 0 0

0 0 0 1 + cε 1− cε
0 0 0 −1 + cε 1 + cε





t

T 1

X1
2/3

T 2

X2
2/3


(5.33)
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for M45 with N =
√

2 + 2c2
ε , and



t

T 1

X1
2/3

T 2

X2
2/3


→ 1

N



N 0 0 0 0

0 cε + c2ε cε − c2ε 0 0

0 −cε + c2ε cε + c2ε 0 0

0 0 0 cε + c2ε cε − c2ε

0 0 0 −cε + c2ε cε + c2ε





t

T 1

X1
2/3

T 2

X2
2/3


(5.34)

for M414 withN =
√

2 + c2ε + c4ε. Adding more top-partners requires analogous rotations

of the form above. The important point is that we can completely decouple the X2/3 states

from the top quark and the Higgs irrespective of how many top-partners we have. The

mass matrices for these models with one additional light top-partner can then be written

as


t̄L

T̄ 1
L

T̄ 2
L


T 
−yfc2√

2
sε

yf
2

√
3 + c2ε

yf
2

√
3 + c2ε

0 −mψ1 0

0 0 −mψ2



tR

T 1
R

T 2
R

 for M45 and


t̄L

T̄ 1
L

T̄ 2
L


T 
−yfc2

2
√

2
s2ε

yf
2

√
2 + c2ε + c4ε

yf
2

√
2 + c2ε + c4ε

0 −mψ1 0

0 0 −mψ2



tR

T 1
R

T 2
R

 for M414. (5.35)

One can see from this construction that adding an arbitrary number of light top-partners

can be implemented in a straightforward way. There is also no need for the light top-

partners to be in the same SO(4) representation as each other, one could just as well have

a light singlet and fourplet in the spectrum and there would be no extra complication.

5.1.4 Mass spectrum

The purpose of this section is to study how the masses vary with the input parameters

for scenarios with both one and two light top-partner multiplets in each of the simplified

models discussed in the previous section.

The first thing to discuss is the effect of the operators in Eq.(5.19) and Eq.(5.23) which

are preceded by the c1 coefficients. After writing the dµ term in unitary gauge we have

diµ = δi4
√

2
∂µρ

f
+ . . . , (5.36)
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and thus the top-partners have a derivative coupling with the Higgs boson. Via a field

re-definition we can recast this derivative coupling to a CP-odd Yukawa term, which scales

as Im(c1), plus operators that involve higher powers of the Higgs boson field, or different

fermionic fields, and hence are not relevant for single-Higgs production.

The general EFT Lagrangian that contains the interactions between the top quark

tL,R and the charge 2/3 top-partners TL,R mixing with it is

LEFT ⊃−mtt̄t−mbb̄b−mj
T T̄jTj − κt

mt

v
t̄th− κb

mb

v
b̄bh

+ κjT
mj
T

v
T̄jTjh+ iκ̃t

mt

v
t̄γ5th+ iκ̃jT

mj
T

v
T̄jγ5Tjh , (5.37)

where the sums over j indicate sums over top-partner multiplets. In this work we will

consider at most two multiplets. The mixing of the bottom quark with the composite

sector is assumed to be small, therefore we do not include the bottom partners in the

EFT. The κi’s are defined such that in the SM we have κb,t = 1, and κT = κ̃t,T = 0. The

CP-odd couplings in the second line of Eq.(5.37) will only exist for the M45 and M414

models as they arise from the d-terms, and will be functions of the mixing angles and

Im(c1).

One light top-partner multiplet

In the case where we have only one light top-partner multiplet the Yukawa couplings in

the mass eigenbasis can be written down analytically. In general, the mass-mixing matrix

can be written in the form

−

 t̄L
T̄L


T m ∆

0 mψ


 tR
TR

 . (5.38)

diagonalization of the matrix is achieved via a double rotation with left-handed and right-

handed mixing angles θL and θR respectively. This gives us the mass eigenstates with top

mass mt and top-partner mass mT , and consequently a relation between m,∆,mψ and

the parameters mt,mT , θL, θR:

m =
cos θR
cos θL

mt =
sin θR
sin θL

mT , mψ =
sin θL
sin θR

mt =
cos θL
cos θR

mT ,

∆ =
sin2 θL − sin2 θR

sin θL sin θR
tan θLmt =

sin2 θL − sin2 θR
sin θL sin θR

tan θRmT ,

(5.39)
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where the two mixing angles are related through

tan θL =
mT

mt
tan θR . (5.40)

The Yukawa terms derived in a similar fashion along with a discussion on perturbativity

and the relevant limits of these models can be found in [2].

The bottom quark mass is also generated via partial compositeness, although the

mixing of the bottom quark with the composite sector is much milder and the right-handed

bottom is certainly not composite. Given that the CP-odd terms are also proportional to

the mixing with the composite sector, these can also be taken to be absent for the bottom

quark.

Two light top-partner multiplets

In the case of two top partners T 1 and T 2, we take a different approach with respect to

the single top-partner case, in that we study the relationship between the fundamental

parameters of each model (i.e. the vector-like masses, the couplings and the decay con-

stant f) and the physical top-partner masses. In particular, we take as free parameters

y, f,mψ1 ,mψ2 , as well as the CP-odd couplings, with c2 being used to fix the top quark

mass to ∼ 173 GeV.

In Figure 5.1 we plot the masses of T 1 or T 2 as a function of the heavier vector-like

mass for mψ1 = 1200 GeV, y = 1, and f = 600/1000 GeV. We also show the mass of a

single top partner (labelled T 1 only), corresponding to the same values of y and f , and

mψ = mψ1 . We stress that T 1 is the lighter top partner everywhere. The first thing we

notice when looking at Figure 5.1 is that, in the singlet top-partner models, there is almost

a degeneracy between the vector-like mass mψ2 and the mass of the T 2 state. There is also

no difference between the f = 600 GeV and f = 1000 GeV scenarios for the singlet models,

this is because in these models the mass matrix is largely insensitive to f , a feature not

shared by the fourplet models. In fourplet models instead, this occurs only as one of the

vector-like masses is made much larger than the other. Also, when considering fourplet

models, we should keep in mind that mψ1,2 are in fact the masses of the X1,2
2/3 and X1,2

5/3

states. Therefore, for mψ2 � mψ1 , T 2 has the same mass as X2
2/3 and X2

5/3. A further

discussion on the various relationships between couplings, masses and f in these models

is presented in [2].
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Figure 5.1: The masses of the two light top-partners T 1 or T 2 as functions of the heavier
vector-like mass, for mψ1 = 1200 GeV, y = 1, and f = 600/1000 GeV. The figure is taken
from [2].

5.2 PNGB Higgs at Colliders

The effects of top-partner states on single-Higgs production via gluon fusion have been

studied in detail, however in this case the pNGB nature of the Higgs boson leads to a

cancellation of new physics effects dependent on the top-partner masses in the production

cross-section [112–114]. To probe the top-partners in gluon initiated Higgs production

the produced Higgs must be allowed to recoil off a gluon, and for this the study of Higgs

production in association with a jet is useful. This process has been explored in some

detail already [115–117].

This section is organised as follows. In Section 5.2.1 we cover the relevant experimental

bounds on the masses of top partners and coloured pNGBs. In Section 5.2.2 we aim

to summarise the main results of [2] on the study of Higgs+Jet production. Finally,

in Appendix B.1 we give the expressions for the CP-odd contribution to Higgs+Jet in

decoupling, soft and collinear limits. Section 5.2.2 and Appendix B.1 contain novel results.

5.2.1 Brief Summary of Experimental Bounds

The first experimental constraint to mention is that on the decay constant f , which through

the analysis in [118] is constrained to be larger than ∼ 600 GeV. These bounds are derived
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from Higgs decays to vector bosons and Higgs production. Recent limits on top-partner

masses have been obtained through analyses at
√
s = 13 TeV by the ATLAS collabora-

tion [119–132]. The first point to note is that these analyses only consider the presence

of one light top-partner state, and thus these bounds are relevant to our lightest state.

Including heavier states opens up possibilities for much more intricate signatures involving

cascade decays. The lower mass bounds on the T and X2/3 partners from the fourplet

models are quoted at 1350 GeV, and the lower mass bound on T for singlet models are

1170 GeV. However, the latter assumes that Br(T → Wb) = 100%. These bounds are

weakened if one considers sizeable branching ratios into multiple channels. More inter-

esting and intricate signatures arise in twin Higgs models [133–135] which have QCD-like

dark sectors with Higgs portal couplings to the SM. Much work has been done in devel-

oping these models [136–142] and studying their phenomenology [143–147]. Translating

these collider constraints into bounds on the top-partner models presented in the previous

sections is beyond the scope of this work, and in our analysis we will use a lower limit of

1200 GeV for the lightest vector-like mass.

Constraints on the c1,1 and c1,2 parameters have been derived from electron and neut-

ron Electric Dipole Moment (EDM) experiments [148]. These results indicate that with

the top-partner masses at the TeV scale, the imaginary values of these parameters are con-

strained to . 0.2. It is not the goal of the thesis to study the effects of these parameters on

the EDMs, therefore we will simply constrain Re(c1,1), Re(c1,1), Im(c1,2), Im(c1,2) < 0.2 in

our work. Future electron EDM experiments will introduce much more stringent bounds

on these parameters. The remaining parameter space that we wish to study here is sum-

marised by 1.2 TeV < mT < 2.2 TeV, 600 GeV < f < 1.2 TeV, and y < 3.

In Chapter 6, in addition to the top partners, we will also consider colour-triplet

pNGBs with U(1)X charge of ±1/3. Because of a non-trivial charge and particle number

conservation, these pNGBs can be approximated as heavy stable charged particles. Hence,

its constraints mostly come from long-lived R-hadron (stop) searches at the LHC. The

current bound is 1.34 TeV [149]. The main difference from the long-lived R-hadron (stop)

is minor: there would be a 4-point interaction involving two colour-triplet pNGBs with

either hh† or WW . However, the QCD pair-production via gluons is the dominant channel

in the hadron collider experiments such as LHC
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5.2.2 Higgs plus One Jet

It is well known that the production cross-section of the Higgs boson via gluon fusion

is insensitive to the mass spectrum of top-partners in composite Higgs models [112–114].

This low-energy theorem arises due to the pseudo-Goldstone boson origin of the Higgs

field in composite Higgs models. In [114], the effects from new coloured fermions in

composite Higgs models to gluon fusion Higgs production, along with other less transparent

phenomena from new physics, were studied by means of an effective Lagrangian. These

investigations were conducted by analysing the following higher dimensional operators

constructed from SM fields:

OH = ∂µ(H†H)∂µ(H†H), Oy = H†Hψ̄LHψR, Og = H†HGaµνG
µν
a . (5.41)

Through an explicit calculation, the authors of [114] showed that the gluon fusion pro-

duction rate of the composite Higgs depended only on the decay constant f of the model,

not on the top-partners mass spectrum.

In contrast to the case of single-Higgs production from gluon fusion, Higgs production

with an additional jet pp→ h+ j has been shown to have some dependence on the mass

of a top partner in composite Higgs models. In [115] it was demonstrated how the low-

energy theorem rendering the cross section insensitive to the masses of fermions in the

loop no longer holds when the transverse momentum of one of the final states is large. For

Higgs plus one extra parton (quark or gluons), this happens at high pT , i.e. the transverse

momentum of either the Higgs or the jet. Let us consider one of the partonic subprocesses

contributing to pp→ h+ j, namely gg → h+ g. The gg → h+ g matrix elementMλ1λ2λ3 ,

where λi = ± denotes the helicities of the 3 gluons, for one fermion species in the loop with

mass mf and Yukawa coupling
mf
v κf will have a different behaviour according to the size

of pT . For instance, for the amplitude M+++, in the limit pT � mf ,mH we have [115]

M+++ ∝
m2
fκf

pT

(
A0 +A1 ln

(
p2
T

m2
f

)
+A2 ln2

(
p2
T

m2
f

))
, (5.42)

where A0, A1, A2 are combinations of constants and logarithms that are independent of

mf . On the other hand, for low pT we have [115]

M+++ ∝ κfpT . (5.43)

where there is no dependence on the fermion mass, and the result is proportional to what
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would be obtained for gg → h. If we now consider a top quark, with mass mt and

Yukawa coupling mt
v κt, and a top partner with mass mT and Yukawa coupling mT

v κT ,

the dependencies on the top partner mass will be present if we increase pT further to the

region pT � mt,mH ,mT , where both the top quark and top partner contributions will

approximately be in the high-pT limit form given in Eq.(5.42). This behaviour of the

matrix element was also confirmed numerically [115].

Definition of the pT Spectrum Observable

The difference between the differential cross section dσ/dpT of a SM Higgs and that of a

composite Higgs is certainly a very useful probe of the compositeness of the Higgs. This

was the observable considered in [115]. Here we employ a net Higgs plus jet efficiency, i.e.

the fraction of events for which the Higgs (or at least one jet) has a transverse momentum

larger than pcut
T

ε(pT > pcut
T ) =

1

σ

∫
pcut
T

dpT
dσ

dpT
. (5.44)

In this case, an overall normalisation of the cross section cancels between numerator and

denominator in Eq.(5.44), so that this quantity is most sensitive to the mass of top-

partner and the corresponding Yukawa couplings. We now assess the deviation of the

one-jet efficiency from its SM value using the variable

δ(pcut
T ) ≡ εBSM(pT > pcut

T )

εSM(pT > pcut
T )

− 1 . (5.45)

In the above definition, εSM denotes the SM efficiency, while εBSM is the efficiency of any

of the composite Higgs models studied in this work.

Results

The full presentation and discussion of the results of this study can be found in [2]. In

particular this work highlights how at high transverse momentum the Higgs+Jet process

could be used to study the top-partner spectrum in composite Higgs models, and how the

results could provide insight as to the embedding of these states in the global symmetries

of the strong sector. Here we provide a short summary.

With one top-partner we see a variety of deviations from the SM, reflecting the different

ways in which the Yukawa couplings are modified according to the fundamental parameter

of each model. In Figures 5.2 and 5.3, we show contour plots of δ(pcut
T ) for pcut

T = 200 GeV

and sin2 θL = 0.1 for singlet and fourplet models respectively. The κt ≤ 0.8 here is
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Figure 5.2: The contour plots of δ(pcut
T ) with sin2 θL = 0.1 and pcut

T = 200 GeV for each of
the singlet models with one top partner multiplet. The solid lines correspond to constant
values of the coupling y. The region marked by dashed white lines indicates when κt ≤ 0.8.
The figure is taken from [2].

excluded by the recent observation of Higgs production in association with a top-antitop

pair by the ATLAS experiment [150] at 2σ. First, we observe that the deviation from

the SM is not large. This is due to the fact that the integrated transverse momentum

spectrum is dominated by the lowest values of pT . There, the top still behaves as a heavy

particle in loops, therefore the cancellation between top and top-partner contributions is

still at work. Nevertheless, there is a very different behaviour for singlet (Fig. 5.2) and

fourplet (Fig. 5.3) models. For singlet models, the deviation from the SM mildly increases

as MT is increased. For fourplet models the deviations increases with increasing f . This

behaviour arises since negative contributions from the Yukawa coupling due to sin2 θL and

cos2 θL become smaller as f is increased. Note that, for M414, these negative contributions

dominate for small values of f , and one gets negative interference between the contribution

of the top and the top partner.

We now keep the values sin2 θL,R = 0.1 and increase pcut
T to 600 GeV. The corresponding

contour plots are shown in Figures 5.4 and 5.5, again as a function of MT and f . The

pT values probed here are high enough to break the cancellation between the contribution

of a top and a top-partner in loops. This is why, for singlet models, we observe huge

deviations from the SM. For fourplet models, we note, again, that the deviation decreases

with decreasing f . This is again due to the fact that for smaller f , the negative contribution

to the Yukawa couplings due to sin2 θL and cos2 θL becomes more important, and vanishes

for f → ∞. The most striking feature occurs for M414 at small values of f , where one

sees a large negative interference between top and top-partner contributions.

In addition, we find that for singlet models, even a mild mixing of right-handed fermions
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Figure 5.3: The contour plots of δ(pcut
T ) with sin2 θR = 0.1 and pcut

T = 200 GeV for each of
the fourplet models with one top partner multiplet. The solid lines correspond to constant
values of the coupling y. None of the parameter space on these plots result in κt ≤ 0.8.
The figure is taken from [2].

Figure 5.4: The contour plots of δ(pcut
T ) with sin2 θL = 0.1 and pcut

T = 600 GeV for each
of the singlet models with one top partner multiplet. The corresponding values of y are
indicated by the solid lines. The region marked by dashed white lines indicates when
κt ≤ 0.8. The figure is taken from [2].
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Figure 5.5: The contour plots of δ(pcut
T ) with sin2 θR = 0.1 and pcut

T = 600 GeV for each
of the fourplet models with one top partner multiplet. The corresponding values of y are
indicated by the solid lines. None of the parameter space on these plots result in κt ≤ 0.8.
The figure is taken from [2].

leads to huge deviations from the SM, as can be seen in Figure 5.6. Therefore, the

parameters of these models will be the easiest to access through Higgs production plus

one jet. For fourplet models, the most promising situation occurs for large mixings which

prevent the negative contributions from taking over. Hence, using high values of pcut
T =

600 GeV, and sin2 θR = 0.4, one expects to see sizeable deviations from the SM, as shown

in Figure 5.7.

With an additional light top-partner the deviations from the SM can be much larger

than with just a single top-partner, and the best way to probe the parameter space of

the model using the Higgs+Jet signal would be through a shape analysis of the pT dis-

tribution of the Higgs, or better the corresponding efficiency. In one of the scenarios, we

investigate the effect of increasing the vector-like mass MΨ2 , from the case in which it

is quasi degenerate with MΨ1 to the case in which the second top partner decouples, i.e.

MΨ2 �MΨ1 . The compositeness scale is set to f = 800 GeV, an intermediate value with

respect to the two shown in Figure 5.1. The relative deviation from the SM δ(pcut
T ) is

plotted in Fig. 5.8, as a function of pcut
T , for selected values of MΨ2 (the solid curves),

and for the case with one top partner (the dashed curve), with the same value of y and

MΨ = MΨ1 . This benchmark scenario does not present any unexpected features. For

singlet models we have an enhancement with respect to the SM, and for fourplet models

we have a depletion due to negative interference. We notice that there is an appreciable

dependence on the vector-like quark mass MΨ2 . Also, when MΨ2 gets bigger, the heavier

top-partner decouples, and the deviation tends to that with a single top partner. Again,

this is expected from Fig. 5.1, where we see that the masses of the lighter top-partner



110

δ(%)

-6

-4

-2

0

2

4

6

Figure 5.6: The contour plots of δ(pcut
T ) with sin2 θL = 0.025 and pcut

T = 600 GeV for the
singlet models with one top partner multiplet. The corresponding values of y are indicated
by the solid lines. The region marked by dashed white lines indicates when κt ≤ 0.8. The
figure is taken from [2].

Figure 5.7: The contour plots for δ with sin2 θR = 0.4 and pcut
T = 600 GeV for each of

the fourplet models with one top partner multiplet. The corresponding values of y are
indicated by the solid lines. As indicated by the dashed white lines, all points on these
plots result in κt ≤ 0.8. The figure is taken from [2].
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Figure 5.8: The distribution δ(pcut
T ) for benchmark scenario with y = 1, MΨ1 = 1200 GeV,

1300 GeV < MΨ2 < 3000 GeV, f = 800 GeV (see Figs. 5.1) and the four models considered
in Section 5.1.4. The figure is taken from [2].

approach those of the single top-partner scenario.

In both cases, we find that the contributions of the CP-odd couplings to the Higgs+Jet

rate are typically small. One aspect of the calculation of the CP-odd contribution that

needs to be checked is the certain QCD limits. We present this in the Appendix B.

5.3 Electro-weak Observables

We conclude this chapter by reviewing the main EW observables that constrain composite

Higgs models, namely the Higgs mass and the oblique corrections. In Chapter 6 we will

be deriving the Higgs potential explicitly for our models and computing the contributions

to the T parameter. These along with the bounds on fermion and coloured NGB masses

are some of the tightest phenomenological constraints on a variety of composite Higgs

models, hence it is presented here. A comprehensive review on EW constraints can be

found in [38].
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Figure 5.9: Vacuum-polarization amplitude with two different fermions.

5.3.1 Higgs Potential

In Section 5.1.3 we have introduced the composite sector which is made of SO(4) fields.

We have seen that even though these fields themselves do not transform under SO(5), the

combinations of them along with the NGB matrix can be used to form SO(5) invariants.

Hence, such spontaneous symmetry breaking does not explicitly violate the symmetry,

it is merely realised in a non-linear way. We have also introduced elementary-composite

mixings that break the SO(5) symmetry of the Lagrangian. This breaking generates a

Higgs potential, the minima of which correspond to the VEV of EWSB, giving masses for

gauge bosons and the Higgs itself [37].

The Higgs potential is generated by the Coleman-Weinberg mechanism [151]. The

main contributions come from the top quark and the gauge bosons. The potential can be

expanded in trigonometric functions of Higgs field as

V [H] = −αf2 sin2 H

f
+ βf2 sin4 H

f
, (5.46)

where coefficients α and β contain the strong sector dynamics. Minimising Eq.(5.46) for

a realistic EWSB gives

m2
h = 8ξ(1− ξ)β, (5.47)

α = 2βξ, (5.48)

where the Higgs VEV is ξ = sin2〈H〉/f � 1 and Higgs mass is mh = 126 GeV [37]. We

will be discussing more explicit calculations of the potential in Chapter 3.

5.3.2 Oblique Corrections

The oblique parameters are defined in terms of the gauge boson vacuum-polarisation

function

Πµν
ij (p2) = −igµνAij(p2) + iBij(p

2)pµpν , (5.49)
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Figure 5.10: 1, 2 and 3 σ S − T ellipse comparison of PDG (black) and Gfitter (yellow).

where Aij and Bij are the form factors encoding dynamics of the model. The oblique

parameters are defined as

Ŝ = −16π

mz
(A3Y (m2

Z)−A3Y (0)), (5.50)

T̂ =
4π

m2
Z sin2 θW cos2 θW

(A11(0)−A33(0)), (5.51)

with Y = Q − T3, A11 = A22 = AW+W−/2, Ŝ = αS, T̂ = αT and the fine structure

constant at Z mass α = 1/128 [152,153]. We will discuss the calculation of Aij in the next

subsection. The two more recent constraints on the values of S and T are given by

S = 0.04± 0.08, T = 0.08± 0.07, Gfitter [154], (5.52)

S = 0.02± 0.07, T = 0.06± 0.06, PDG [38]. (5.53)

The correlation coefficients for both PDG and Gfitter parameters are 92%. The resulting

plots of 1, 2 and 3 σ contours can be found in Figure 5.10.

In this thesis, we will focus mostly on the fermion contribution to T , which tends to

be the dominant one, however, S and T can also get contributions coming from IR and

vector resonances. IR corrections are given by

∆ŜIR =
g2

192π2
ξ log

(
m2
ρ

m2
h

)
, (5.54)

∆T̂IR = − 3g′2

64π2
ξ log

(
m2
ρ

m2
h

)
. (5.55)
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Ŝ also receives sizeable contributions from vector resonances, which can be written as

∆ŜV ≈
m2
W

m2
ρ

, (5.56)

and fermions, given by

∆Ŝferm =
g2

8π2
ξ log

(
m2
ρ

m2
Ψ

)
. (5.57)

Here g = 2mW /v and g′ = 2mZ sin θW /v, with v = 246 GeV. All of theses relations have

been taken from [37] and will be valid for our model in Chapter 6.

SU(2)L Amplitudes and Currents

The vacuum polarisation amplitude can be obtained by applying a transverse projector

to Eq.(5.49) as

PµνΠµν
ij (p2) = i(p2gµν − pµpν)Πµν

ij (p2) = (D − 1)p2Aij(p
2), (5.58)

where D is the number of dimensions. The vacuum polarisation is related to the SU(2)L

currents jµi as

iΠµν
ij (p2) = FT 〈0|Tjµi (x)jνj (0)|0〉, (5.59)

where FT stands for the Fourier transform and i, j = 1..3 are the SU(2)L indices. This

is essentially a computation of the diagram in Figure 5.9 with the currents jµi inserted at

the vertices. The SM currents are given by

jµ+SM = (jµ−)† = t̄γµPLb, (5.60)

jµ3,SM =
1

2
(t̄γµPLt− b̄γµPLb), (5.61)

where t and b are the top and bottom quarks respectively and jµ± = jµ1 ± jµ2 . The contri-

butions from the composite sector can be obtained as follows. Using the field definitions

in Section 5.1.3 and denoting Ψ = ψ4 and ψ = ψ1, we can write the relevant terms in the

Lagrangian as

Lcomp = iΨ̄ /DΨ + iψ̄ /Dψ + (icΨ̄γµdµψ + h.c.) + ..., (5.62)

with the covariant derivative for Ψ given by

DµΨ = (∂µ − iAµ + ieµ). (5.63)
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We can perform a field redefinition, such that

ΦT = (UΨ)T

=
1

2
(iX5/3 − iB,−B −X5/3,−iT − iX2/3, (T −X2/3)cξ,−(T −X2/3)sξ),

(5.64)

φT = (Uψ)T = (0, 0, 0, T̃ sξ, T̃ cξ), (5.65)

using cξ = cos ξ and sξ = sin ξ. With this redefinition Lagrangian becomes

Lcomp = iΦ̄ /DΦ + iφ̄ /Dφ = iΨ̄U † /DUΨ + iψ̄U † /DUψ. (5.66)

In the convention U †(i∂µ +Aµ)U = −dµ − eµ we can write

i(Ψ̄U †) /D(UΨ) = iΨ̄γµ∂µΨ− Ψ̄γµ(dµ + eµ)Ψ = iΨ̄(∂µ + ieµ)Ψ, (5.67)

as well as a similar relation for ψ. Hence Eq.(5.67) contains all the terms necessary to

obtain the Noether current, given by

jiµ =
∂L

∂(∂µΦ)
∂iΦ +

∂L
∂(∂µφ)

∂iφ. (5.68)

The singlet field φ will not contribute to the current so we ignore it. In this basis the

current is particularly simple and given by

jiµ = Φ̄γµt
iΦ, (5.69)

where ti are the SU(2) generators of fundamental representation. We can write τ+ =

t1 + it2 and τ− = t1 − it2, which, together with our embeddings in Eqs.(5.64, 5.65), gives

j+
µ = (j−µ )† =

1

2
((1 + cξ)T̄ γµB + (1− cξ)X̄2/3γµB + (1 + cξ)X̄5/3γµX2/3

+ (1− cξ)X̄5/3γµT ),

(5.70)

j3
µ =

1

2
(cξT̄ γµT + X̄5/3γµX5/3 − B̄γµB − cξX̄2/3γµX2/3). (5.71)

If we had instead redefined Φ̃ = (UΨ + Uψ), we would have also obtained a cross term

i√
2

Ψ̄γµdµψ −
i√
2
ψ̄γµ(dµ)TΨ, (5.72)
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which yields the dµ term with c = 1/
√

2. Hence, the additional terms to the current are

given by

j̃+
µ = j+

µ + c(sξ
¯̃TγµB − sξX̄5/3γµT̃ ),

j̃3
µ = j3

µ +
c

2
sξ(

¯̃TγµT + ¯̃TγµX2/3 + T̄ γµT̃ + X̄2/3γµT̃ ).

5.4 Summary

In this chapter we have reviewed models with pNGB Higgs and its QCD as well as EW

observables. In particular, we have discussed the unique features of these theories and

performed diagonalization of the mass matrices for a few simplified cases. We have also

provided an overview of the current EW and collider constraints and discussed how pT

spectra of the Higgs+Jet processes could be used to differentiate various CH models at

colliders. Along with this we have also presented the calculation of CP-odd contributions

to the Higgs+Jet in decoupling, soft and collinear limits. The latter two have appeared in

our publication [2]. Finally, we have reviewed the Higgs potential and the calculation of

oblique corrections including the derivation of the SU(2)L currents. Everything discussed

in this chapter serves as a basis for model building that will be presented in Chapter 6.
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Chapter 6

Gauge and Matter Unification in

Composite Higgs Models

In this chapter, we aim to construct a composite Higgs model consistent with grand

unification. In particular, we focus on partially composite models with custodial symmetry,

which can achieve a natural electroweak scale, are compatible with the oblique corrections,

provide an explanation for the fermion mass hierarchies, satisfy the constraints on the Z

couplings to quarks and leptons and can accommodate current flavour data – constraints

as well as the apparent anomalies in b → cτν and b → s`+`− transitions. The work

presented in this chapter is part of an ongoing project.

This chapter is organised as follows. In Section 6.1 we present the salient features of

our model. We specialise the CCWZ formalism for SO(11)/SO(10) to include coloured

NGBs in Section 6.2. Embeddings into SO(11)/SO(10) are discussed and the Lagrangian

as well as mass matrices are derived in Section 6.3. As it is imperative for any composite

Higgs model to reproduce the correct Higgs mass, we compute the Higgs potential in

Section 6.4. Since our model has a unique fermion embedding, it has to be ensured that

the T parameter adheres to experimental bounds. Therefore, we discuss the computation

of it in Section 6.5. Finally, in Section 6.6 we present how well our models satisfy Higgs

mass, EW constraints and collider.

6.1 The Model Setup

In this section we present the setup for our model. In addition to the various salient

features already mentioned in Chapter 5, our model aims to achieve gauge and matter

unification, hence the MCHM has to be extended. There have been attempts to build
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such models in the past, for which details can be found in [155–157].

We start with a partially composite pNGB Higgs model. The gauge invariance of linear

mixings requires the strong sector symmetry to be at least SU(3)× SU(2)L × SU(2)R ×
U(1)X . The extra U(1) factor is necessary to accommodate the SM hypercharges, with

Q = T3L + T3R + X. The partial compositeness alone cannot achieve gauge unification.

This imposes further restrictions on our composite sector, namely that the corresponding

states must come in complete multiplets of a simple group S with a suitable hypercharge

embedding. We discuss the latter in Section 6.1.1.

With the SU(4) adjoint representation, we can have quarks and leptons coupling

through a single vector leptoquark, which could help explain the RD and RD∗ anom-

alies [158]. More generally, one may attempt to make partially composite quarks and

leptons with a single multiplet of a composite sector. An immediate obstacle any such

attempt must confront is guaranteeing that the proton remains stable on the timescales

of order of inverse GUT scale. Imposing baryon and lepton number conservation prevents

this along with heavy neutrino masses as discussed further in Section 6.1.2.

We have already seen that small elementary-composite mixings are enough to suppress

the FCNCs. However, explicit computations of the vector-meson contributions to the CP-

violating parameter εK require a scale m∗ � 10 TeV if an anarchic, CP-nonsymmetric

strong sector is assumed. If a lower scale is demanded in order to reduce EW fine-tuning

or accommodate B-physics anomalies, then the strong-sector symmetry needs to be en-

hanced. Many authors have considered U(2)n or SU(3)n flavour symmetries [108,159–161].

A more minimal solution may be to impose CP symmetry on the strong sector, as explored

in [162]. The CP violation then originates from the elementary-composite couplings. Re-

producing the large CKM phase, while maintaining consistency with FCNC including εK ,

requires a larger number of composite partners of the elementary quark doublets. Hence,

we are considering a pair of bi-doublets.

Given the mentioned constraints, we attempt to build a composite Higgs model with an

SO(11)→ SO(10)×U(1) ∼= SO(6)×SO(4)×U(1) gauge symmetry. Here SO(6) ∼ SU(4)

and SO(4) ∼ SU(2)L × SU(2)R. We give the most minimal set of viable embeddings for

the elementary and composite fermions in our model in Table 6.1.
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Comp field SM field SU(4)c ∼ SU(3)C × U(1)X SU(2)L SU(2)R

Ψ (u, d)L, (νl, l)L 15 ∼ 32/3, 10, . . . 2 2

Ψ̃ (u, d)L, (νl, l)L 15 ∼ 32/3, 10, . . . 2 2

ψu uR, ν
τ
R 15 ∼ 32/3, 10, . . . 1 1

ψd dR, eR 15 ∼ 32/3, 10, . . . 1 3

H 10 2 2

Table 6.1: Embeddings of {d, s, b}L, {e, µ, τ}L, νe,µ,τR , {u, c, t}R ant the Higgs H for our
partially composite Higgs model with custodial symmetry, which result in full unification
with Y = T3R + X. The subscripts denote the U(1)X charge. The branching rule for
SU(4) ⊃ SU(3)× U(1) relevant here is: (101) = 15 = 10 ⊕ 32/3 ⊕ 3̄−2/3 ⊕ 80.

6.1.1 Embedding of the Hypercharge

The hypercharge Y must be embedded in S such that, for each S-multiplet,

3

5
tr(Y 2) = tr(T 2

W ) = tr(T 2
G), (6.1)

where TW is any of the weak SU(2)L generators, and TG is any gluon generator. If this is

true for one multiplet, then it is true for all multiplets, as all the traces are proportional to

the index of that multiplet, up to universal normalisations. If we have a PL,R symmetry,

then

tr(Y 2) = tr(X2) + tr(T 2
L), (6.2)

follows automatically for each irreducible representation, where we have used tr(XT aR) = 0,

etc. This implies

tr(X2) =
2

3
tr(T 2). (6.3)

The condition is satisfied for the X-generator in SU(4) in the normalisation where the

SU(3) singlet has X = −1/3, i.e.

X
∣∣
SU(4)

=

√
2

3
T15. (6.4)

In this normalisation, the colour-triplet of SU(4) generators has Y = X = 2/3, and the

corresponding Noether currents can annihilate spin-1 (3, 1)2/3 states.

If we embed tR in a (n, 1, 1), then we require n to contain a colour triplet with X = 2/3.

The smallest possible choices are n = 15 (adjoint), n = 45, and n = 84. The left-handed

quarks in (n, 2, 2) require the same n. If the Higgs is a singlet under SU(4) then the right-

handed down-type quarks must also have X = 2/3, i.e. the possible SU(4) representations
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are again the same.

6.1.2 Baryon and Lepton Number

To achieve a baryon number conservation, one needs a generator distinguishing different

components of a candidate unified SU(4) multiplet. This is X, up to a normalisation

and the addition of an arbitrary generator commuting with SU(4) which will act on the

composite partners of the elementary states as a multiple of ‘particle number’ 3B + L.

Remarkably, X coincides with 2B if composite quarks and leptons are in the adjoint

of SU(4). This provides an essentially unique way to achieve quark-lepton unification,

which is generically not possible [155]. Hence we can take the particle number to be a

U(1) factor outside S, with SU(4)×SU(2)×SU(2) ⊂ S. If all composites mixing with the

elementary fields have the same particle number, we have separate B and L conservation,

preventing proton decay and TeV-scale neutrino masses.

6.2 CCWZ for SO(11)/SO(10)

In a first step of our model building efforts we have to choose a basis for the pNGB

fields. Hence, we are specialising the CCWZ formalism, defined in Section 5.1.2, to the

SO(11)→ SO(10)×U(1) ∼= SO(6)×SO(4)×U(1) gauge symmetry, with SO(6) ∼ SU(4)

and SO(4) ∼ SU(2)L × SU(2)R. Let us first define the indices that we use to decompose

fields with respect to these subgroups. With capital letters A,B, .. we denote fundamental

SO(11) indices running between 1 and 11. We choose Greek letters α, β, ... to mark SO(10)

indices in the range 1..10. Small Latin letters a, b... indicate SU(4) indices between 1 and

6. We use i, j, .. for indices 7 to 10 of SO(11) corresponding to SO(4), and x for index 11.

For convenience, this decomposition can be summarised as

A = {α, x} = {a, i, x},

B = {β, x} = {b, j, x},

C = {γ, x} = {c, k, x},

D = {δ, x} = {d, l, x},

E = {ε, x} = {e,m, x}.

(6.5)



121

The symmetry breaking pattern SO(11)→ SO(10) results in 10 broken generators, mean-

ing that we have 10 NGB fields. We can define an NGB vector field as

Π̃ᵀ = (φ̃a, h̃i). (6.6)

Here, in addition to the Higgs NGB h̃, which is the usual SU(2)L × SU(2)R bi-doublet,

we also have 6 coloured NGBs φ̃a. They form a complex triplet T and its conjugate T ∗,
corresponding to 3 + 3̄ of SU(3)c. In unitary gauge (UG), the NGB vector can be

parametrised as

~Πᵀ =

(
1√
2

(T a′ + T ∗a′),− i√
2

(T a′ − T ∗a′), 03, h

)
, (6.7)

where a′, b′ are the SU(3) colour indices. The U matrix is given by

U = e
i
√

2
f

Π̃âX
â

=

1−
(

1− cos Π̃
f

) ~̃
Π
~̃
Πᵀ

Π̃2
sin Π̃

f

~̃
Π

Π̃

− sin Π̃
f

~̃
Πᵀ

Π̃
cos Π̃

f

 , (6.8)

where the broken generators can be written

X â
IJ =

i√
2

(δâI δ
11
J − δâJδ11

I ). (6.9)

Since Π̃ involves both Higgs and coloured NGBs, an expression in UG is rather complic-

ated. Instead, we perform a field redefinition sin(Π̃/f)
~̃
Π/Π̃ = ~Π [163], which allows us to

write U in UG as

U =

1− ~Π~Πᵀ

1+Ω
~Π

−~ΠT Ω

 =



16×6 −
~φ~φᵀ

1+Ω 04×3 − ~φh
1+Ω

~φ

03 13×3 03 03

−h3~φᵀ

1+Ω 0ᵀ3 1− h2

1+Ω h

−~φ 0ᵀ3 h Ω


, (6.10)

where φa = ((T a′ + T ∗a′),−i(T a′ − T ∗a′))T /
√

2 and Ω =
√

1−Π2 =
√

1− h2 − 2|T |2.

With this we can now proceed to derive the Lagrangian.

6.3 Lagrangian and Mass Matrices

Similarly to Section 5.1.3, we are going to derive the Lagrangian and the mass matrices

for our fields, given in Table 6.1. We will use this Lagrangian for calculations of the T -
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parameter, defined in Section 5.3.2. As the SO(6) (colour) does not get broken by the

SSB, the coloured NGBs will not contribute, hence in this derivation we set them to zero.

6.3.1 Embedding into Anti-symmetric Tensors

We are going to embed our elementary and composite fields into anti-symmetric rep-

resentations of SO(11) and SO(10) respectively. We denote an anti-symmetric (AS)

n-index representation of SO(N) as [n]N and the corresponding tensor as TA1A2...An .

Moreover, we fix the tensor by specifying only the A1 < A2 < ... < An components as

TA2A1...An = −TA1A2...An , etc. The product of two such tensors can be written as the sum

T̄ T =
∑

A1,A2,...,An

T̄A1A2...AnTA1A2...An = N
∑

A1<A2<...<An

T̄A1A2...AnTA1A2...An , (6.11)

where N = n! as it corresponds to the number of possible permutations of the indices.

In Table 6.2 we give the embeddings of elementary and composite fields into AS tensors

of SO(11) and SO(10) respectively. Analogously to MCHM the SM fields form incomplete

multiplets of SO(11). We use the indices to indicate this as A,B.. lie in the range 1..6,

K,L... in 7...10 and X stands for 11. These index ranges follow from the embeddings. For

instance, to embed bR in the (15,1,3) of SU(4)× SU(2)L × SU(2)R we need 2 SO(6) and

2 SO(4) indices. Hence we need a tensor with at least four indices to embed this. The

composite fields form complete multiplets of SO(10), however we use the SO(6), SO(4)

and x indices to indicate the relevant parts that contract with the elementary fields.

6.3.2 Mass Terms

The mass terms entering a Lagrangian with an SO(11) symmetry are given by

Lmass = mT T̄ T, (6.12)

where T is a fermion in some SO(11) representation. Let us start by embedding tR in

[2]11. We can decompose the tensor product into SO(10) and then into SO(6) and SO(4)

as

T̄ T = 2
∑
A<B

T̄ABTAB = 2

∑
α<β

T̄αβTαβ +
∑
α,x

T̄αxTαx


= 2

∑
a<b

T̄ abT ab +
∑
a,j

T̄ ajT aj +
∑
a,x

T̄ axT ax +
∑
i<j

T̄ ijT ij +
∑
i,x

T̄ ixT ix

 ,

(6.13)
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Tensor SM field SO(11) field Composite field(s) SO(10) field

[5] qL TABCDM Ψ, Ψ̃ Ψabcdm

TABKLM Ψ, Ψ̃ Ψabklm

tR TABCDX

bR TABKLX

[4] tR TABCD ψu ψabcd

bR TABKL ψd ψabkl

qL TABKX

[3] qL TABK Ψ, Ψ̃ Ψabk

tR TABX

[2] tR TAB ψu ψab

Table 6.2: Elementary and composite fermion embeddings into SO(11) and SO(10) anti-
symmetric tensors (AS) respectively. [n] denotes the n-index AS tensor. A,B.. and a, b..
correspond to indices in range 1..6 and K,L.. with k, l.. - 7..10 of SO(11) and SO(10)
respectively.

where the underline marks the relevant term in our expansion for the embedding of tR.

Therein, we use the components T ab, which are identified as the adjoint representation

15 of SU(4), to embed the tR into the [2]11. By decomposing our fields in this way, the

embedding is straightforward to obtain.

We can follow an analogue of this procedure to embed bR [4]11 as

T̄ T = 4!
∑

A<B<C<D

T̄ABCDTABCD

= 4!

 ∑
α<β<γ<δ

T̄αβγδTαβγδ +
∑

α<β<γ,x

T̄αβγxTαβγx


= 4!

 ∑
a<b<c<d

T̄ abcdT abcd +
∑

a<b<c,l

T̄ abclT abcl +
∑

a<b<c,x

T̄ abcxT abcx

+
∑

a<b,k<l

T̄ abklT abkl +
∑

a<b,k,x

T̄ abkxT abkx

::::::::::::::::

+
∑

a,j<k<l

T̄ ajklT ajkl

+
∑

a,j<k,x

T̄ ajkxT ajkx +
∑

i<j<k<l

T̄ ijklT ijkl +
∑

i<j<k,x

T̄ ijkxT ijkx

 ,

(6.14)

where we have denoted the components of TABCD suitable for embedding bR by dashed

underline. We even find a few more viable embeddings in this representation. The top

quark tR can be embedded into T abcd (marked by solid underline), which is a SO(6)-dual
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of T ab via the relation

T abcd = εabcdefT
ef , (6.15)

where ε is an SO(6) Levi-civita tensor. There is also a viable opportunity to embed qL

(marked by wavy underline), which requires two SO(6) and one SO(4) index. Hence, it

is actually possible to embed all of the elementary quarks into [4]11. As qL and tR with

bR belong to 4 and 3 index representations of SO(10) respectively, they could also have

different masses associated with them.

Following this approach even tensors with a larger number of indices are feasible.

Using the relations between duals we could again find suitable embeddings. In particular,

multiple versions of a single fermion can be embedded into a single SO(11) representation,

as we will see later. Composite partners are embeddable in the same way into appropriate

SO(10) multiplets.

6.3.3 Mixing Terms

Mixing terms can be decomposed in exactly the same way as the mass terms discussed in

the previous section. Generally, they can be written as

Lmix = λTO, (6.16)

where O is the composite operator in an AS tensor representation of SO(N) and λ the

coupling constant. O can be decomposed in terms of SO(N − 1) representations as

(
[k]N
O

)
→
(

[k]N−1

Ψ

)
+

(
[k − 1]N−1

ψ

)
, (6.17)

where we denote the composite in [k]N−1 representation as Ψ and the one in [k − 1]N−1

as ψ. Recalling the invariant in Eq.(5.1.2), the mixing term for the [2]11 can be written as

L[2]
mix ∝ T̄ABUAγ(UBδΨγδ + UBxψγ), (6.18)

where U is our 11 × 11 NGB matrix, given in Eq.(6.10). As before, decomposing this in

terms of SO(10) indices gives

∑
A,B

∑
γ,δ

T̄ABUAγ(UBδΨγδ + UBxψγ) =
∑
α,β

∑
γ,δ

T̄αβUαγ(UβδΨγδ + Uβxψγ)

+
∑
α,x

∑
γ,δ

T̄αxUαγ(UxδΨγδ + Uxxψγ) +
∑
x,β

∑
γ,δ

T̄ xβUxγ(UβδΨγδ + Uβxψγ),

(6.19)
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where we have again marked the relevant term for tR by underline. As mentioned in the

beginning of this section, in this particular derivation of the Lagrangian we set the colour

NGBs to zero, yielding a mostly diagonal U matrix. The SO(10) part of U is completely

diagonal, hence we can proceed to decompose as follows

∑
α,β

∑
γ,δ

T̄αβUαγ(UβδΨγδ + Uβxψγ) =
∑
α,β

T̄αβUαα(UββΨαβ + Uβxψα)

= 2
∑
a<b

T̄ abUaa(U bbΨab + U bxψa) +
∑
a,j

T̄ ajUaa(U jjΨaj + U jxψa)

+
∑
i,b

T̄ ibU ii(U bbΨib + U bxψi) + 2
∑
i<j

T̄ ijU ii(U jjΨij + U jxψi).

(6.20)

This can be simplified further as U is just an identity matrix for SO(6), giving

2
∑
a<b

T̄ abUaa(U bbΨab + U bxψa) = 2
∑
a<b

T̄ abΨab, (6.21)

where the second term vanishes because U bx = 0 for all b = 1..6. Hence, we have simplified

the mixing term to the point where it can be written in terms of 15’s of SO(6).

We can now follow the same steps and derive the mixing terms for [4]11. It can be

written as

L[4]
mix ∝

∑
A,B,C,D

∑
ε,ζ,η,φ

T̄ABCDUAεUBζUCη(UDφΨεζηφ + UDxψεζη)

=
∑
α,β,γ,δ

∑
ε,ζ,η,φ

T̄αβγδUαεUβζUγη(U δφΨεζηφ + U δxψεζη)

+
∑

α,β,γ,x

∑
ε,ζ,η,φ

T̄αβγxUαεUβζUγη(UxφΨεζηφ + Uxxψεζη)

+
∑
α,β,x,δ

∑
ε,ζ,η,φ

T̄αβxδUαεUβζUxη(U δφΨεζηφ + U δxψεζη)

+
∑
α,x,γ,δ

∑
ε,ζ,η,φ

T̄αxγδUαεUxζUγη(U δφΨεζηφ + U δxψεζη)

+
∑
x,β,γ,δ

∑
ε,ζ,η,φ

T̄ xβγδUxεUβζUγη(U δφΨεζηφ + U δxψεζη).

(6.22)

At this point, all of these terms are relevant for our embeddings, hence we will focus on

each term one at a time. Keeping the same underlines as in the previous section, the first
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term gives

∑
α,β,γ,δ

∑
ε,ζ,η,φ

T̄αβγδUαεUβζUγη(U δφΨεζηφ + U δxψεζη)

=
∑
α,β,γ,δ

T̄αβγδUααUββUγγ(U δδΨαβγδ + U δxψαβγ)

= 4!
∑

a<b<c<d

T̄ abcdUaaU bbU cc(UddΨabcd + Udxψabc)

+ 3!
∑

a<b,k<l

T̄ abklUaaU bbUkk(U llΨabkl + U lxψabk)

+ 3!
∑

a<b,k<l

T̄ klabUkkU llUaa(U bbΨklab + U bxψkla) + ...,

(6.23)

where we have kept only the relevant parts. We can write the underlined sum as

4!
∑

a<b<c<d

T̄ abcdUaaU bbU cc(UddΨabcd + Udxψabc) = 4!
∑

a<b<c<d

T̄ abcdΨabcd, (6.24)

the first dashed term as

3!× 2
∑

a<b,k<l

T̄ abklUaaU bbUkk(U llΨabkl + U lxψabk)

= 3!× 2
∑

a<b,k<l

T̄ abkl

(
U llΨabkl+

1

2
U lxψabk

::::::::::

)
,

(6.25)

where we get coupling to the qL composite counterpart, and the second dashed term as

3!× 2
∑

a<b,k<l

T̄ klabUkkU llUaa(U bbΨklab + U bxψkla) = 3!× 2
∑

a<b,k<l

T̄ abklU llΨabkl. (6.26)

The dashed terms (which are just index permutations of one another) are not equal. The

4-index parts match forming 4! permutations, however the 3-index composite field appears

only when the last index is l, hence we have merely 3! of such terms.
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For the second term keeping in mind that the x is fixed, we can write

∑
α,β,γ,x

∑
ε,ζ,η,φ

T̄αβγxUαεUβζUγη(UxφΨεζηφ + Uxxψεζη)

=
∑

α,β,γ,x

∑
φ

T̄αβγxUααUββUγγ(UxφΨαβγφ + Uxxψαβγ)

= 3!
∑

a<b<c,x

T̄ abcxUaaU bbU cc

(∑
p

UxpΨabcp + Uxxψabc

)

+ 3!
∑

a<b,k,x

T̄ abkxUaaU bbUkk

(∑
p

UxpΨabkp + Uxxψabk

)
::::::::::::::::::::::::::::::::::::::::::::::::

+ 3!
∑

a,j<k,x

T̄ ajkxUaaU jjUkk

(∑
p

UxpΨajkp + Uxxψajk

)

+ 3!
∑

i<j<k,x

T̄ ijkxU iiU jjUkk

(∑
p

UxpΨijkp + Uxxψijk

)
.

(6.27)

For the wavy part we get

3!
∑

a<b,k,x

T̄ abkxUaaU bbUkk

(∑
p

UxpΨabkp + Uxxψabk

)

= 3!
∑

a<b,k,x

T̄ abkxUkk

∑
p

UxpΨabkp + Uxxψabk


::::::::::::::::::::::::::::::::::::::::::

.

(6.28)

The third term in Eq.(6.22) can be simplified as follows

∑
α,β,x,δ

∑
ε,ζ,η,φ

T̄αβxδUαεUβζUxη(U δφΨεζηφ + U δxψεζη)

=
∑
α,β,x,δ

∑
η

T̄αβxδUααUββUxη(U δδΨαβηδ + U δxψαβη)

⇒ 3!
∑
a<b,x,l

∑
o

T̄ abxlUxo
(
U llΨabol +

1

3
U lxψabo

)
::::::::::::::::::::::::::::::::::::::::

,

(6.29)

where we once more retain only the relevant parts. Again, the last index has to be fixed

to l in order to get the 3-index term. The fourth and the fifth terms in Eq.(6.22) are the

same as the third one.
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In summary, our elementary-composite mixing terms read

L[4]
mix ∝ 4!

∑
a<b<c<d

T̄ abcdΨabcd + 4!
∑

a<b,k<l

T̄ abklU llΨabkl + 3!
∑

a<b,k<l

T̄ abklU lxψabk
:::::::

+ 4!
∑

a<b,k,x

∑
p

T̄ abkxUkk
::::::::

UxpΨabkp + 3!
∑

a<b,k,x

T̄ abkxUkkUxxψabk
::::::::::::::::

+ 3!
∑
a<b,x,l

∑
o

T̄ abxlUxoU lxψabo
:::::::::::::::

,

(6.30)

and

L[2]
mix ∝ 2

∑
a<b

T̄ abΨab. (6.31)

The main problem with these embeddings is that there is no way to produce top quark

mass as tR and qL cannot couple via the same composite fermion. We find that an odd

number of indices for the tR representation is required to generate a top mass.

In Table 6.3 we explore more options for the quark and lepton embeddings. As we

have already mentioned the U matrix in Eq.(6.10) is mostly diagonal. The non-diagonal

bits can be written as power series in Higgs fields. This specifies the number of Higgs

bosons coupling to a specific vertex and it contains all higher order terms. We refer to the

vertices containing odd powers of Higgs h+ h3 + ... as odd and to the even 1 + h2 + ... as

even.

The composites that are identical can be used to couple two elementary fermions to

generate quark masses. However, this can only happen if one Higgs coupling is even and

the other one is odd. Hence, we can identify two of the most minimal viable models:

2-3-4-5 and 3-3-5-5, where the numbers n = 2, 3, 4, 5 refer to embedding tR, qL, q′L, bR in

an n-index anti-symmetric representation of SO(11). For both of these we have feasible

qL - tR and qL - bR couplings, which are independent of each other. This can be used to

explain the mass difference between the top and bottom quarks. In addition, we show that

it is also possible to embed the elementary and composite leptons in the SO(11)/SO(10)

GUT group.
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Tensor SM field SO(11) field Composite 1 Composite 2 H1 H2

5 qL TABCDM Ψabcdm ψabcd even odd

TABKLM Ψabklm ψabkl even odd

tR TABCDX Ψabcdm ψabcd odd even

bR TABKLX Ψabklm ψabkl odd even

4 tR TABCD ψabcd even odd

bR TABKL ψabkl Ψabk even odd

qL TABKX ψabkl Ψabk odd even

3 qL TABK Ψabk ψab even odd

tR TABX Ψabk ψab odd even

2 tR TAB ψab even odd

Tensor SM field SO(11) field Composite 1 Composite 2 H1 H2

3 lL TKLM Ψklm ψkl even odd

τR TKLX Ψklm ψkl odd even

2 τR TKL ψkl Ψk even odd

lL TKX ψkl Ψk odd even

1 lL TK Ψk even odd

νR TX Ψk odd even

Table 6.3: Embedding options for elementary and composite quarks and leptons in SO(11).
Composites that are the same can be used to get contributions to the top or bottom mass.
H1 and H2 stand for Higgs coupling at the elementary-composite vertex corresponding to
composite 1 or 2. Even and odd indicate powers of the Higgs. More details are given in
the main text.
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6.3.4 The Two Models: 2-3-4-5 and 3-3-5-5

We will now summarise the two viable models 2-3-4-5 and 3-3-5-5 and derive the mass

matrices. The composite mass terms are the same for both of them, given by

Lmass =−mΨ

∑
a<b,k

Ψ̄abkΨabk −mΨ̃

∑
a<b,k

¯̃ΨabkΨ̃abk

−mψt

∑
a<b

ψ̄abψab −mψb

∑
a<b,k<l

ψ̄abklψabkl.
(6.32)

The mixing terms for the 2-3-4-5 model are

L2345
mix = λψRf

∑
A<B

T̄ABψab + λΨ
Lf

∑
A<B,K

TABKUKkΨabk

+
1√
3
λψLf

∑
A<B,K

TABKUKxψab

+
1

2
λ̃Ψ
Lf

∑
A<B,K,X

T̄ABKX(UKkUXx − UXkUKx)Ψabk

+ λ̃ψLf
∑

A<B,K<L,X

T̄ABKXUXlψabkl + 2λ̃Ψ
Rf

∑
A<B,K<L,X

T̄ABKLXULXΨ̃abk

+
1√
5
λ̃ψRf

∑
A<B,K<L,X

T̄ABKLX
(
ULlUXx − UXlULx

)
ψabkl,

(6.33)

and for the 3-3-5-5 we have

L3355
mix = λΨ

Rf
∑

A<B,K,X

TABXUXkΨabk +
1√
3
λψRf

∑
A<B,X

TABXUXxψab

+ λΨ
Lf

∑
A<B,K

TABKUKkΨabk +
1√
3
λψLf

∑
A<B,K

TABKUKxψab

+ λ̃Ψ
Lf

∑
A<B,K<L<M

T̄ABKLMUMmΨabklm

+
1√
5
λ̃ψLf

∑
A<B,K<L<M

T̄ABKLMUMxψabkl

+ λ̃Ψ
Rf

∑
A<B,K<L<M,X

T̄ABKLXUXmΨabklm

+
1√
5
λ̃ψRf

∑
A<B,K<L,X

T̄ABKLX(ULlUXx − UXlULx)ψabkl.

(6.34)

Here the fields are canonically normalised and we have indicated the SO(11) indices by

capital letters. For colour parts of the U matrix we have UAa = δAa, hence they have been

omitted. The colour contraction leads to
∑

A<B T̄
ABTAB = T̄ 1T 1 + T̄ 2T 2 + T̄ 3T 3, where

1, 2, 3 are colour labels. This contraction is identical for all quarks and their partners,
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therefore a coefficient 3 can be factored out to account for this contraction.

For the remaining SO(4) indices, just like for MCHM in Section 5.1.3, we can write

the elementary and composite fields in terms of their components as

q
SO(4)
L =

1√
2

(−ibL,−bL,−itL, tL)ᵀ, (6.35)

Ψq =
1√
2

(−iB + iX5/3,−B −X5/3,−iT − iX2/3, T −X2/3)ᵀ, (6.36)

t
SO(4)
R = tR, (6.37)

ψt = T̃, (6.38)

where the 4 component vector is the fundamental representation of SO(4). For bR a 6 of

SO(4) is required. Since SO(4) h SU(2)L × SU(2)R, the six generators can be split into

two sets as discussed in [37]. The three generators in the defining representation of SO(4)

and corresponding to SU(2)R are given by

T 1
R = − i

2



0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0


, T 2

R = − i
2



0 0 −1 0

0 0 0 −1

1 0 0 0

0 1 0 0


,

T 3
R = − i

2



0 1 0 0

−1 0 0 0

0 0 0 −1

0 0 1 0


.

(6.39)

We can define these generators in terms of raising and lowering operators using

τ+ = T 1
R + iT 2

R, τ− = T 1
R − iT 2

R, τ0 = T 3. (6.40)

This allows us to write bR in terms of τ−

b
SO(4)
R = bRτ

− =
bR
2



0 0 1 i

0 0 −i 1

−1 i 0 0

−i −1 0 0


, (6.41)
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and embed its composite partners using all three generators as

ψb = X+τ
+ +
√

2X0τ
0 + B̃τ−

=
1

2



0 −i
√

2X0 B̃ −X+ iB̃ + iX+

i
√

2X0 0 −iB̃ − iX+ B̃ −X+

−B̃ +X+ iB̃ + iX+ 0 i
√

2X0

−iB̃ − iX+ −B̃ +X+ −i
√

2X0 0


,

(6.42)

where the triplet is (X+, X0, B̃). The normalisation here is such that
∑

K<L b̄
KL
R b̄KLR =

b̄RbR and so on. We will now proceed to write down the mass matrices.

6.3.5 Mass Matrices: 2-3-4-5 Model

Combining Eq.(6.33) with the field embeddings in the previous section, we can formulate

three mass matrices for each isospin.

Isospin 5/3: 
X̄5/3

X̄ ′5/3

X̄+


T 
−mΨ 0 0

0 −mΨ̃ 0

0 0 −mψb



X5/3

X ′5/3

X+

 (6.43)

Isospin 2/3:



t̄L

t̄′L

T̄L

T̄ ′L

X̄
2/3
L

X̄
′2/3
L

X̄0
L

¯̃TL



T 

0 0 (1+cε)
2

λΨ
Lf 0 (1−cε)

2
λΨ
Lf 0 0 sε√

3!
λψLf

0 0 (1+cε)
4

λ̃Ψ
Lf 0 − (1−cε)

4
λ̃Ψ
Lf 0 sε

2
λ̃ψLf 0

0 0 −mΨ 0 0 0 0 0

0 0 0 −mΨ̃ 0 0 0 0

0 0 0 0 −mΨ 0 0 0

0 0 0 0 0 −mΨ̃ 0 0

0 0 0 0 0 0 −mψb 0

λψRf 0 0 0 0 0 0 −mψt





tR

t′R

TR

T ′R

X
2/3
R

X
′2/3
R

X0
R

T̃R


(6.44)
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Isospin (−1/3):



b̄L

b̄′L

B̄L

B̄′L

¯̃BL



T 

0 0 λΨ
Lf 0 0

0 0 cε
2 λ̃

Ψ
Lf 0 sε√

2
λ̃ψLf

0 0 −mΨ 0 0

sε√
2
λ̃Ψ
Rf 0 0 −mΨ̃ 0

(1+cε)

2
√

5
λ̃ψRf 0 0 0 −mψb





bR

b′R

BR

B′R

B̃R


(6.45)

The t′R and b′R fields are completely decoupled, inserted to maintain a square matrix shape.

In this model the top mass is generated via a single composite fermion T̃ .

6.3.6 Mass Matrices: 3-3-5-5 Model

In the 3-3-5-5 case mass matrices are obtained from Eq.(6.34) in the same way.

Isospin 5/3: 
X̄5/3

X̄ ′5/3

X̄+


T 
−mΨ 0 0

0 −mΨ̃ 0

0 0 −mψb



X5/3

X ′5/3

X+

 (6.46)

Isospin 2/3:



t̄L

t̄′L

T̄L

T̄ ′L

X̄
2/3
L

X̄
′2/3
L

X̄0
L

¯̃TL



T 

0 0
(1+cε)

2
λΨ
Lf 0

(1−cε)
2

λΨ
Lf 0 0 sε√

3!
λ
ψ
L
f

0 0 0
(1+cε)

2
λ̃Ψ
Lf 0 − (1−cε)

2
λ̃Ψ
Lf − sε

2
√

5
λ̃
ψ
L
f 0

− sε√
2
λΨ
Rf 0 −mΨ 0 0 0 0 0

0 0 0 −m
Ψ̃

0 0 0 0

sε√
2
λΨ
Rf 0 0 0 −mΨ 0 0 0

0 0 0 0 0 −m
Ψ̃

0 0

0 0 0 0 0 0 −mψb 0

cε√
3
λ
ψ
R
f 0 0 0 0 0 0 −mψt





tR

t′R

TR

T ′R

X
2/3
R

X
′2/3
R

X0
R

T̃R


(6.47)

Isospin (−1/3):



b̄L

b̄′L

B̄L

B̄′L

¯̃BL



T 

0 0 λΨ
Lf 0 0

0 0 0 cελ̃
Ψ
Lf − sε√

10
λ̃ψLf

0 0 −mΨ 0 0

sε√
2
λ̃Ψ
Rf 0 0 −mΨ̃ 0

(1+cε)

2
√

5
λ̃ψRf 0 0 0 −mψb





bR

b′R

BR

B′R

B̃R


(6.48)
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6.3.7 Simplified Mass Matrices

We have shown that one can successfully embed the elementary and composite fields into

a SO(11)/SO(10) gauge group and write down the mass matrices for them. As such it

has been demonstrated that we can have two separate doublets coupling primarily to tR

and bR respectively. This means the mixings corresponding to the latter could be smaller,

in order to facilitate the smaller bottom quark mass. Moving onwards, we are going to

neglect the contributions coming from bR and the second bi-doublet for this reason. Thus,

we will present the mass matrices simplified under this assumption.

Mass Matrices: 2-3 Model

Isospin 5/3: (
X̄5/3

)T (
−mΨ

)(
X5/3

)
. (6.49)

Isospin 2/3:



t̄L

T̄L

X̄
2/3
L

¯̃TL



T 

0 1
2
(1 + cε)λ

Ψ
Lf

1
2
(1− cε)λΨ

Lf
1√
3!
sελ

ψ
Lf

0 −mΨ 0 0

0 0 −mΨ 0

λψRf 0 0 −mψt





tR

TR

X
2/3
R

T̃R


. (6.50)

Isospin (−1/3):  b̄L

B̄L


T 0 λΨ

Lf

0 −mΨ


 b′R

BR

 . (6.51)

This is similar to the MCHM 5+1 model with fully composite tR.

Mass Matrices: 3-3 Model

Isospin 5/3: (
X̄5/3

)T (
−mΨ

)(
X5/3

)
. (6.52)

Isospin 2/3:


t̄L

T̄L

X̄
2/3
L

¯̃TL


T 

0 1
2
(1 + cε)λ

Ψ
Lf

1
2
(1− cε)λΨ

Lf
1√
3!
sελ

ψ
Lf

− 1√
2
sελ

Ψ
Rf −mΨ 0 0

1√
2
sελ

Ψ
Rf 0 −mΨ 0

1√
3
cελ

ψ
Rf 0 0 −mψt




tR

TR

X
2/3
R

T̃R

 . (6.53)
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Isospin (−1/3):  b̄L

B̄L


T 0 λΨ

Lf

0 −mΨ


 b′R

BR

 . (6.54)

In this case, the model corresponds to the MCHM 5+5 model. We can obtain the MCHM

5+5 model by λψL →
√

3λψL and λψR →
√

3λψR.

6.3.8 Mass Matrix Diagonalization

In Section 5.1.3 we gave several examples of mass diagonalization for simplified models.

In comparison our isospin 2/3 matrices for the 2-3 and 3-3 models, given in the previous

section, cannot be analytically diagonalised without making any approximations. Hence,

we employ bi-unitary diagonalization numerically.

We can perform a bi-unitary transformation on a complex asymmetric square matrix

M as

D = U †MV, (6.55)

where U and V are unitary matrices and D is diagonal. We can then write

DD† = U †MM †U, (6.56)

D†D = V †M †MV, (6.57)

where MM † and M †M are Hermitian. Then U and V can be obtained by diagonalising

the corresponding products of M .

Once we have diagonalised our mass matrices we can read-off the masses of top t as

well as the five composite fields: T̃, T,B,X2/3 and X5/3. Requirement to generate the

correct top mass gives a constraint on the masses mψ, mΨ and couplings λψ, λΨ. For

ξ � 1 this can be written as

m2
t =

(λψLλ
ψ
RmΨ − λΨ

Lλ
Ψ
Rmψ)2f4ξ

2(m2
Ψ + (λΨ

L )2f2)(m2
ψ + (λψR)2f2)

+O(ξ2), (6.58)

which has been obtained in [37]. If we set λΨ
R = λψR = λR and λΨ

L = λψL = λL this can be

put in the form

a = (1− x2)(x− x0)2, (6.59)
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where x = mψ/(m
2
ψ + (λR)2f2), x0 = mΨ/(m

2
ψ + (λR)2f2) and

a =
2m2

t (m
2
Ψ + (λL)2f2)

(λL)2f2(m2
ψ + (λR)2f2)

. (6.60)

This is a quartic polynomial for x. As we will see in the results, for the 3-3 model this

will give at most two distinct solutions for mψ.

As all these masses and mixings also enter the Higgs potential, it is generally not true

that most combinations of these parameters can generate a realistic EWSB and correct

Higgs mass. As a result we have to compute the Higgs potential in order to obtain a

second constraint on our parameter space. We will discuss this in the next section.

6.4 Higgs Potential

The Higgs potential receives two main contributions: from gauge bosons and from fermi-

ons. In this section, we will derive the potential for our 2-3-4-5 and 3-3-5-5 models. Since

we are interested in the coloured NGB mass, we will not neglect them this time.

6.4.1 Gauge Contribution

Following [102, 164], we can integrate out the vector resonances at tree level and write

down the effective Lagrangian Leff for the elementary gauge bosons Aµ as

Lgeff =
1

2

(
gµν −

pµpν
p2

)
(Π0(p)Tr(AµAν) + Π1(p)ΣAµAνΣᵀ), (6.61)

where p is Euclidean momentum and Σ = UΣ0, with Σ0 = (0, ..., 0, 1)ᵀ. Π0(p) and Π1(p)

are the non-perturbative form factors that encode the strong sector dynamics. The gauge

bosons generate the Higgs potential, for which at one-loop we have

Vgauge(h) =
9

2

∫ m2
∗

0

dp2

(4π)2
p2 log

(
Π0(p) +

h2

4
Π1(p)

)
+ 8

3

2

∫ m2
∗

0

dp2

(4π)2
p2 log

(
Π0(p) +

T 2

2
Π1(p)

)
.

(6.62)

The form factors are given by

Π0 =
p2

g2
+ Πa, (6.63)

Πa = p2
f2
ρ

p2 +m2
ρ

, (6.64)

Π1 = 2(Πâ −Πa), (6.65)

Πâ = p2 f2
a

p2 +m2
a

+
f2

2
, (6.66)
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where g is the weak coupling, while a and ρ are the vector resonances from the broken and

unbroken sectors respectively. The SM contribution, for subtraction of the IR divergence,

is obtained by setting Π0 = p2/g2 and Π1 = f2.

6.4.2 Fermion Contribution

Integrating out the composite states and using the mixings and mass terms given in

Eqs.(6.32-6.34), we can write down the effective Lagrangian as

Leff = t̄L/pMt
LLtL + t̄R/pMt

RRtR + (t̄LMt
LRtR + h.c.). (6.67)

The fermion contribution to the Higgs potential is given by

V = −g
2

∫
d4p

(2π)4
(log detMt), (6.68)

where g = 4 counts the degrees of freedom (as we treat tL etc. as Dirac fermions), p is an

euclidean momentum,Mt is the two-point functions appearing in the effective Lagrangian

for top quark and the overall minus sign comes from the fermion statistics. We neglect

the bottom part, as we expect it to be suppressed by the elementary-composite mixings,

and focus on the 2-3 and 3-3 parts of the model. Keeping terms with up to three powers

in the NGBs for the 2-3 case we get

(Mt
LL)ij = δij − δij |λ

Ψ
L |2f2

(p2 −m2
Ψ)

+

(
h2

2
δij + |T |2δij − T iT ∗j

)( |λΨ
L |2f2

(p2 −m2
Ψ)
− |λψL|2f2

3(p2 −m2
ψ)

)
,

(6.69)

(Mt
RR)ij = δij − δij |λ

ψ
R|2f2

(p2 −m2
ψ)

+ (|T |2δij − T iT ∗j)
(
|λψR|2f2

(p2 −m2
ψ)
− |λψ̂R|2f2

2(p2 −m2
ψ̂

)

)
,

(6.70)

(Mt
LR)ij = −δij h√

2

mψλ
∗ψ
R λψLf

2

√
3(p2 −m2

ψ)
, (6.71)



138

where we have introduced an additional one-index composite partner ψ̂, which results in

contribution to colour pNGBs only. In the 3-3 model we obtain

(Mt
LL)ij = δij − δij |λ

Ψ
L |2f2

(p2 −m2
Ψ)

+

(
h2

2
δij + |T |2δij − T iT ∗j

)( |λΨ
L |2f2

(p2 −m2
Ψ)
− |λψL|2f2

3(p2 −m2
ψ)

)
,

(6.72)

(Mt
RR)ij = δij − δij |λ

ψ
R|2f2

3(p2 −m2
ψ)

+ (h2δij + |T |2δij + T iT ∗j)
(
|λψR|2f2

3(p2 −m2
ψ)
− |λΨ

R|2f2

(p2 −m2
Ψ)

)
,

(6.73)

(Mt
LR)ij = −δij (h− h3/2− h|T |2)√

2

(
mψλ

∗ψ
R λψLf

2

3(p2 −m2
ψ)
− mΨλ

∗Ψ
R λΨ

Lf
2

(p2 −m2
Ψ)

)
. (6.74)

The relative factors of 1/3 and 1/2 between the different composite fermion contributions

are due to combinatorics. Moving forward we will redefine λψR →
√

3λψR for the 3-3 model,

λψ̂L →
√

2λψ̂L for the 2-3 model and λψL →
√

3λψL for both models.

Form Factors

In order to compute the integrand of Eq.(6.67), it is convenient to introduce form factors.

For the 2-3 model we have

(Mt
LL)ij = Πq

0δ
ij + Πq

1

(
h2

2
δij + |T |2δij − T iT ∗j

)
, (6.75)

(Mt
RR)ij = Πt

0δ
ij + Πt

1(|T |2δij − T iT ∗j), (6.76)

(Mt
LR)ij =

M t
0√
2
δijh, (6.77)

and in the 3-3 case they read

(Mt
LL)ij = Πq

0δ
ij + Πq

1

(
h2

2
δij + |T |2δij − T iT ∗j

)
, (6.78)

(Mt
RR)ij = Πt

0δ
ij + Πt

1(h2δij + |T |2δij + T iT ∗j), (6.79)

(Mt
LR)ij =

M t
0√
2

(
h− h3

2
− h|T |2

)
δij , (6.80)

where the h3 dependence in (Mt
LR)ij is retained, as it contributes to the quartic Higgs

coupling. The form factors for the 2-3 model are given by
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Πq
0 = 1 +

|λΨ
L |2f2

(p2 +m2
Ψ)
, (6.81)

Πt
0 = 1 +

|λψR|2f2

(p2 +m2
ψ)
, (6.82)

M t
0 =

mψλ
∗ψ
R λψLf

2

(p2 +m2
ψ)

, (6.83)

Πq
1 =

|λψL|2f2

(p2 +m2
ψ)
− |λΨ

L |2f2

(p2 +m2
Ψ)
, (6.84)

Πt
1 =

|λψ̂R|2f2

(p2 +m2
ψ̂

)
− |λψR|2f2

(p2 +m2
ψ)
, (6.85)

and for the 3-3 model we have

Πq
0 = 1 +

|λΨ
L |2f2

(p2 +m2
Ψ)
, (6.86)

Πt
0 = 1 +

|λψR|2f2

(p2 +m2
ψ)
, (6.87)

M t
0 =

mψλ
∗ψ
R λψLf

2

(p2 +m2
ψ)
− mΨλ

∗Ψ
R λΨ

Lf
2

(p2 +m2
Ψ)

, (6.88)

Πq
1 =

|λψL|2f2

(p2 +m2
ψ)
− |λΨ

L |2f2

(p2 +m2
Ψ)
, (6.89)

Πt
1 =

|λΨ
R|2f2

(p2 +m2
Ψ)
− |λψR|2f2

(p2 +m2
ψ)
, (6.90)

after Wick rotation.

The Integrand

Next, we expand the integrand of Eq.(6.67) we around h = 0 and |T | = 0. Keeping only

the leading h2, |T |2, h4 and |T |4 terms, for the 2-3 model we obtain

log detMt = 3
((M t

0)2 + p2Πq
1Πt

0)

2p2Πq
0Πt

0

h2 − 3

8

((M t
0)2 + p2Πq

1Πt
0)2

p4(Πq
0)2(Πt

0)2
h4

+ 2
(Πq

0Πt
1 + Πq

1Πt
0)

Πq
0Πt

0

|T |2 − ((Πq
0)2(Πt

1)2 + (Πq
1)2(Πt

0)2)

(Πq
0)2(Πt

0)2
|T |4

− (((M t
0)2(Πq

0Πt
1 + Πq

1Πt
0) + p2(Πq

1)2(Πt
0)2))

p2(Πq
0)2(Πt

0)2
h2|T |2 + ...,

(6.91)

and for the 3-3 model we find

log detMt = 3
((M t

0)2 + p2(2Πq
0Πt

1 + Πq
1Πt

0))

2p2Πq
0Πt

0

h2

− 3

8

((M t
0)4 + 2(M t

0)2p2(2Πq
0Πt

1 + Πq
1Πt

0 + 2Πq
0Πt

0)

p4(Πq
0)2(Πt

0)2
h4

− 3

8

4p4((Πq
0)2(Πt

1)2 + (Πq
1)2(Πt

0)2))

p4(Πq
0)2(Πt

0)2
h4

+ 2
(2Πq

0Πt
1 + Πq

1Πt
0)

Πq
0Πt

0

|T |2 − (3(Πq
0)2(Πt

1)2 + (Πq
1)2(Πt

0)2)

(Πq
0)2(Πt

0)2
|T |4

− ((M t
0)2(2Πq

0Πt
1 + Πq

1Πt
0 + 3Πq

0Πt
0)

p2(Πq
0)2(Πt

0)2
h2|T |2

− p2(4(Πt
1)2(Πq

0)2 + (Πq
1)2(Πt

0)2))

p2(Πq
0)2(Πt

0)2
h2|T |2 + ....

(6.92)
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By comparing to [37], we can see that our h2 and h4 terms for the 3-3 model agree with

5+5 MCHM.

Higgs Potential

We can now extend the expression for Higgs potential, given in Eq.(5.46), to include the

coloured NGBs, with additional coefficients γ, δ and ε, as

V = − 4

32π2

∫ ∞
0

dp2p2(log detMt) = αh2 + βh4 + γ|T |2 + δ|T |4 + εh2|T |2 + ... . (6.93)

Contribution from the gauge can also be expanded in this way. Each term can be integrated

in the logarithm of the determinant separately. The coefficient β contains logarithmic UV

divergences, some of which are cancelled by imposing λΨ
L = λψL, λΨ

R = λψR and f2
a =

f2
ρ − f2/2, which are equivalent to Weinberg sum rules in QCD [37]. This also takes care

of the quadratic divergences in the α. The remaining divergences are regularised using a

cut-off equal to the gauge boson mass m∗ = 2.5 TeV. We also evolve the quartic from m∗

to mtop by adding an SM contribution obtained by setting p2 → 0 in the form factors and

p2Π1 → 0 in the logarithm of the determinant and integrated between mtop and m∗.

Coloured PNGB Mass

We can obtain the mass of the coloured pNGB from Eq.(6.93). It is simply given by

m2
NGB =

∂2V

f2(∂T ∂T ∗)

∣∣∣∣
h=

v
f ,T =0

= γ/f2 + εv2/f4, (6.94)

which is taken from [163].

6.5 T Parameter

In addition to reproducing the correct top mass and EWSB, composite Higgs models

also have to pass the constraints on the oblique parameters, defined in Section 5.3.2.

In particular, we focus on the fermion contribution to the T parameter as it is the most

sensitive to the field content of our models. The expressions in Eqs.(5.54-5.57) that involve

the remaining contributions to S and T hold for our models as well.

To compute the fermion contribution to the T parameter we first diagonalise (Sec-

tion 6.3.8) the mass matrices, given in Section 6.3.7. We then take the currents we derived

in Eqs.(5.70, 5.71) and rotate them to the physical mass basis using the diagonalising
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matrices U and V . As discussed in 5.3.2 we insert the currents into the vertices of the va-

cuum polarisation diagram and integrate over the loop. For Eq.(5.58) we can then obtain

the amplitudes Aij , which go directly into the expression for the T parameter in Eq.(5.51).

6.6 Results

In this section we present results for our 3-3 and 2-3 models computed with the Weinberg

sum rules imposed, i.e. λΨ
L = λψL = λL, λΨ

R = λψR = λR and f2
a = f2

ρ − f2/2. Our 3-3

model has a priori six complex parameters: four elementary-composite mixing terms and

two composite masses. A universal rephasing of all six chiral fermion fields leaves them

unchanged, such that the remaining five phases can be chosen to eliminate some of the

parameter degrees of freedom. Hence, we allow mψ to take negative values, while the

remaining masses and mixings are real and positive. The parameter scan is generated

with ξ = 0.05 ± 10%, mΨ ∈ [1, 3] TeV, mψ ∈ [−3, 3] TeV for 3-3 and mψ ∈ [0, 3] TeV for

2-3 models, as well as λL ∈ [0, 2] and λR ∈ [0, 2]. For the gauge contribution, we have

fρ ∈ [550, 1550] GeV and ma ∈ [1.5, 3] TeV with mρ = 2.5 TeV, g = 0.6 and f = v/
√
ξ,

where v = 246 GeV. Moreover, we take m∗ = 5 TeV. Each parameter point of the models is

required to reproduce correct top (Section 6.3.8) and Higgs masses mt = 150 GeV± 10%

and mh = 126 GeV ± 10%. We note that for the 3-3 model the mt constraint can be

satisfied for up to two values of mψ, as discussed in Section 6.3.8. Hence, we will be

denoting the points corresponding to the two solutions by different shades of blue.

We start by comparing the gauge and fermion contributions. Then we investigate

what effect the Higgs and top mass constraints have on our parameter space. We also

look at how the Higgs mass and T depend on the parameter space. Finally, we compare

our models with available experimental bounds on fermion masses, S and T parameters

as well as compute the coloured pNGB mass.

6.6.1 Gauge versus Fermion Contribution

In Figure 6.1 we present the gauge and fermion contributions to the coefficients α and β

of the Higgs potential. Here we use the Higgs field basis from [37], which is also given in

Eq.(5.46). The potential has the form

V [H] = −α′f2 sin2 H

f
+ β′f2 sin4 H

f
. (6.95)
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Figure 6.1: Gauge vs. fermion contribution to α′ = −α/f2 (above) and β′ = −β/f2

(below) for the 3-3 model (blue and light blue) and the 2-3 model (yellow).
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This can be obtained by setting the coloured NGB fields to zero and h2 = sin2(H/f) =

v2/f2 = ξ with v = 246 GeV. Hence, α′ = −α/f2 and β′ = β/f2.

We find that the fermion contribution to the Higgs potential dominates due to the

large elementary-composite mixings required to reproduce the mass of the top quark as in

the MCHM. Furthermore, the gauge sector alone cannot generate the EWSB as αgauge is

positive [102,164]. Figure 6.1 implies that the gauge contribution to α can be just as big as

the fermionic one, hence it is important to include it. This strong correlation is necessary

to reproduce the value of α required for correct EWSB and Higgs mass. We accept a

large range of values for both contributions. As a result a certain degree of fine-tuning

is introduced by requiring the two contributions to cancel precisely. For β on the other

hand, the gauge contribution is comparably smaller and could be neglected. This also

leads to a smaller range for the accepted values of β′ferm. In addition, we notice that 2-3

models tend to give larger values for α than the 3-3 model. As we will see in the following

sections, this is due to the smaller range of allowed values for the elementary-composite

mixings in the 2-3 model as opposed to the 3-3 one.

6.6.2 Higgs and Top Mass Constraints

Requiring that our models give the correct Higgs and top masses imposes two constraints

on our variables. In Figure 6.2, we show how the two composite masses and the two

elementary-composite mixings are correlated. We see that for the 2-3 model we have

mψ ∼ mΨ. On the other hand, for the 3-3 they do not seem to be correlated at all for the

heavier mψ solution (Section 6.3.8). For lighter mψ, we see a smaller correlation with mΨ

compared to the 2-3 model.

For the mixings we observe an even larger difference between the two models. In the

2-3 case the top mass is generated only via ψ, hence both elementary-composite mixing

parameters have to be sufficiently sizeable. In combination with approximately equal

composite masses the larger values and more narrow ranges for αferm and βferm in the

2-3 model are explained. In the 3-3 model, both Ψ and ψ contribute to the top mass in

Eq.(6.58), which depends on both mixings as well as the mass difference between the two

composite partners. Hence, for smaller masses we see that both mixings can be sizeable

simultaneously. On the other hand, for larger mψ solutions, the top mass constraint

enforces that only one of the two mixings can be large at a time, while the other one has

to be smaller.
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Figure 6.2: mψ vs. mΨ (above) and λR vs. λL (below) for the 3-3 model (blue and light
blue) and the 2-3 model (yellow).



145

1000 1200 1400 1600 1800 2000 2200 2400

115

120

125

130

135

140

mΨ (GeV)

m
h
(G
eV

)

-3000 -2000 -1000 0 1000 2000 3000

115

120

125

130

135

140

mψ (GeV)

m
h
(G
eV

)

Figure 6.3: Higgs mass vs. mΨ, mψ (above and below respectively). Red dashed line
marks the mh = 126 GeV. The 3-3 model is blue and light blue and the 2-3 model is
yellow.

6.6.3 Higgs Mass versus Composite Masses and Mixings

We have seen in the previous sections that Higgs and top mass constraints tend to favour

larger mixings for the 2-3 model, while also forcing the ratio of the composite partner

masses to remain relatively constant. This has resulted in larger values for αferm and βferm

as compared to the 3-3 model. As m2
h ∝ β ∝ α, similar dependences hold for the Higgs

mass as well. In particular, Figures 6.3 and 6.4 suggest a slight correlation in mh for larger

values of mψ, mΨ, λL or λR. On the other hand, for the 3-3 model we do not observe

any strong correlation between the Higgs mass and these parameters. This is due to the

fact that either of the two composite partners can give the dominant contribution to the

Higgs and the top masses. In the end, only the difference between the two masses matters,
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Figure 6.4: Higgs mass vs. λL and λR (above and below respectively). Red dashed line
marks the mh = 126 GeV. The 3-3 model is blue and light blue and the 2-3 model is
yellow.
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Figure 6.5: Fermion contribution to T̂ × 103 vs. mΨ, mψ (above and below respectively)
for the 3-3 model (blue and light blue) and the 2-3 model (yellow).

which allows for a wider range of the parameter space to satisfy these constraints.

6.6.4 T Parameter versus Composite Masses and Mixings

The T parameter is an important observable to constrain CH models. In this section we

solely focus on the fermion corrections as they give the dominant contributions. Since

custodial symmetry prevents such terms from being generated at tree-level, the main

contribution stems from fermion loops [37]. We have seen in Section 5.3.2 the phenomeno-

logically preferred values for the T parameter are mostly positive. This is always the case

in the 2-3 model, but not necessarily in the 3-3 one, according to Figures 6.5 and 6.6. In

particular, the contributions to the T parameter are inversely proportional to the lighter

of the two composite resonances [37]. Hence, for the heavier mψ solution in the 3-3 model

we find contributions close to zero, while for the lighter mψ they range between 1 and 5.
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As the masses in the 2-3 model lie in-between the two, so do the contributions to the T

parameter range between 2 and 3.

In Figure 6.6 we observe a strong scaling behaviour of T with respect to λL. It has been

shown in [37], that each elementary composite mixing can be viewed as a spurion insertion.

Moreover, for the composite partner in the (2,2) representation of SU(2)L×SU(2)R, one

requires four insertions of λL to generate contributions to T . These four insertions also

ensure that the T is finite. The distributions of λR follow from the constraints on mtop

and mh outlined earlier.

The lighter singlet ψ tends to give positive contributions to T , while the ones coming

from the lighter bi-doublet Ψ are usually negative. In the 3-3 models either one of these

contributions could dominate, hence we see both signs of the T parameter. In the 2-3 case

both types of contributions are typically positive [37].

6.6.5 Collider, S and T Parameter Constraints

Next we assess the constraints imposed on our models by the electroweak precision ob-

servables S and T . To that end, five new fields are introduced via our 2-3 and 3-3 models:

T̃, T,B,X2/3 and X5/3. Their physical masses are going to be roughly the same as the

ones obtained after the diagonalization of the mass matrices. As discussed in Section 5.2.1

the lower bound on these masses coming from collider searches is around 1.3 TeV.

In Figure 6.7 we show the S-T constraints along with our model points. In this section

we include both our calculation of fermion contributions to T as well as the remaining

IR, vector boson and fermion corrections to S and T given in Eqs.(5.54-5.57). In order

to compare with the results in the previous section recall that T̂ = αT . In addition

to the fermion contribution to T , shown previously, this results in an additional shift

∆T × 103 = −0.17, as well as a positive shift in S, which can be seen in the plots. The

grey colour indicates the points with the lightest fermion mass being less than 1.3 TeV,

while the red shades denote larger masses. We see that for the 3-3 model there are points

that both agree with the experimental S-T bounds and pass the collider constraints for

the heavier of the two mψ solutions. For the 2-3 model, the points with heavier masses are

also more likely to satisfy the S-T bounds. In Figure 6.8 the analogous plots are shown

but in the fermion mass plane. We see that both models can satisfy the constraints for

composite masses in the TeV range and ξ = 0.05, which is what we prefer for a natural

model.
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6.6.6 Coloured NGB Mass

Finally, we present results for our coloured NGB mass as given in Eq.(6.94). For the 2-3

model and the 3-3 model with heavier mψ the gauge and fermion contributions are roughly

the same. For the lighter 3-3 model points the fermion contribution is larger. As given in

Section 5.2.1 the collider constraints on NGB mass are around 1.3 TeV. Hence, both of the

models as formulated here fail to satisfy these constraints for ξ = 0.05. It also appears to

be difficult to evade this problem by increasing f beyond 1.1 TeV. In addition, it has been

argued in [105] that since α contains logarithmic divergences it could be fixed by additional

UV contributions. The same could be the case for γ as well, which renders the NGB mass

unpredictable by the model. From the status of the current investigation it is not clear

whether these models are ruled out. Hence, we conclude that further modifications to our

2-3 and 3-3 models are necessary.

6.7 Summary

In this chapter we have attempted to build two partially composite pNGB Higgs models

consistent with unification and passing all collider and EW constraints. These efforts

are part of an ongoing project. We have considered two models with SO(11) → SO(10)

symmetry. In particular, we have identified various parameter points that can reproduce

the correct top mass, have heavy enough top partner masses to pass collider constraints,

are within bounds on the oblique corrections and produce a correct EWSB. However, this

requires relatively small ξ = 0.05, particularly for the 3-3 model. Furthermore, having the
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scale f large enough to accommodate the aforementioned bounds, does not allow for the

coloured pNGB mass to be > 1 TeV, which is in tension with the collider constraints. We

expect that introduction of further UV contributions to α and γ could resolve the issue.

Hence, this problem will be addressed in future efforts.
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Chapter 7

Conclusion

With this thesis, we have made several steps towards constraining and studying new

physics solutions to the various open problems of the Standard Model. This includes

improving precision observables, constraining BSM collider signatures and constructing

SM extensions that resolve multiple issues simultaneously.

In this spirit, we have computed two-loop conversion factors that link high-energy QCD

corrections to non-perturbative lattice results. This has led to an increase in precision for

the SM prediction of the kaon bag parameter, which parametrises the dominant short-

distance contributions to indirect CP violation. Our result exhibits good perturbative

behaviour with respect to the one-loop conversion factor. In particular, we find that

the NNLO contributions give corrections between 0.4% to 4% with respect to the tree-

level, depending on renormalisation scale, gauge fixing and SMOM scheme. In addition,

this calculation can be extended to include direct CP violation, BSM operators or QED

corrections in future works. Hence, this result is important for constraining new physics

contributing to CP violation.

Furthermore, we have studied collider signatures of stable multiply charged particles

which are predicted by various extensions of the SM such as SUSY, composite Higgs and

Grand Unified theories. For multiply charged coloured particles we find that the mass

limits for
√
s = 8 TeV are in the TeV range and nearly charge independent for |Q| < 4.

For |Q| > 4 the bounds are strongly charge dependent. For multiply charged colourless

fields the accuracy of existing collider bounds has been improved by the inclusion of photo-

production processes. In particular, we have found that the combination of open (pair-

production) and closed (resonance production) channels provides complimentary bounds

and could be used to determine the particles mass, spin, colour and charge.

We have also studied composite Higgs models, as they promise a natural solution to
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the hierarchy problem and explain the heaviness of the top with respect to other quarks.

We have found that the pT spectra of the Higgs+Jet process could be used to distinguish

between different top partner signatures. In addition, we obtain the QCD limits for CP-

odd contributions to this process.

Moreover, we have constructed two candidate theories that are compatible with real-

istic Higgs and top masses as well as SM electro-weak symmetry breaking in the IR, while

allowing for Grand Unification in the UV and satisfying collider constraints on the top

partners. We have found many promising parameter points fulfilling these criteria for

ξ = 0.05. However, they cannot feature a coloured pNGB heavy enough to satisfy collider

constraints. We expect this to be achievable with further modifications to the models.

These models are of particular interest as they also have the potential to explain the R
(∗)
D

and R
(∗)
K flavour anomalies and could be extended to include dark matter candidates.
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Appendix A

Appendix for Chapter 4

A.1 Open-Production Signatures

A.1.1 Cross Sections

The cross sections for above-threshold pair-production of MCHSPs are presented for
√
s =

8 TeV and
√
s = 13 TeV in Figs. A.1 and A.2.

A.1.2 Simplified Efficiency Calculation

TOF Calculation

To determine whether a candidate particle is accepted by the muon trigger, we calculate

its corresponding TOF by

c · tTOF =
γ0√
γ2

0 − 1
· x0

HCAL +

∫ xfHCAL−x
0
HCAL

0

γBrass√
γ2

Brass − 1
dx+ (A.1)

γBrass(x
f
HCAL)√

γBrass(x
f
HCAL)2 − 1

· (xtrigger − xfHCAL −∆xIY) +

∫ ∆xIY

0

γIron√
γ2

Iron − 1
dx ,

where xtrigger is the minimal distance a particle must travel, within the trigger time win-

dow, in order to be triggered as a muon. As explained in Section 4.2.2, xtrigger is η-

dependent and it is presented in Figure. A.3(a). x0
HCAL, xfHCAL are, respectively – the

distance a particle would travel to the entrance and to the exit of the Hadronic Calori-

meter (HCAL). The minimal distance a triggering particle would travel in the brass ab-

sorber of the HCAL, xfHCAL−x0
HCAL, and in the iron absorber of the iron yoke, ∆xIY, are

also η-dependent and are shown in Fig. A.3(b). γ(x) is the Lorentz factor γ = 1/
√

1− β2,
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Figure A.1: Open-production cross sections at
√
s = 8 TeV.
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Figure A.2: Open-production cross sections at
√
s = 13 TeV.
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Figure A.3: (a) Minimal distance traveled within the muon trigger time window for
high momentum tracks as a function of η. (b) Distance traveled in matter, relevant for
ionization energy loss, within the muon trigger time window as a function of η. Both (a)
and (b) are based on the layout given in [12].

and it is calculated by numerically solving

dγBrass

dx
(x) =

Q2

m

dE

dx Brass
(γ), γBrass(0) = γ0 (A.2)

dγIron

dx
(x) =

Q2

m

dE

dx Iron
(γ), γIron(0) = γBrass(x

f
HCAL − x0

HCAL) , (A.3)

where γ0 is γ at production, Q is the charge of the particle and m is the mass of the

particle. dE/dx is the energy loss function in the appropriate material for Q = 1, and is

taken from [165] (brass) and [7] (iron).

Straight Tracks Approximation

We treat candidates as moving in straight lines, since the bending due to the magnetic

field is negligible for particles passing the pT /Q ≥ 40 selection. A particle tracing a curved

track of radius R would travel a distance l in the r − θ plane before propagating ∆r in

the radial direction, where

l = R arcsin
∆r

R
, (A.4)

R =
pT

Q ·B · 0.303
. (A.5)

The magnetic field in the CMS detector is about 2 T in the MS and 3.8 T in the Inner

Detector (ID) [166]. Assuming a maximal 4 T magnetic field, the pT cut allows minimal

R of

Rmin =
40

4 · 0.303
≈ 33.00 . (A.6)
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Consider the maximal possible ∆r distance, which is from the interaction point to the

furthest RPC at ∆rmax ≈ 7 m,

l

∆r

∣∣∣
max

=
arcsin ∆r

R

∣∣∣
max

∆r

R

∣∣∣
max

≈ 1.0077 , (A.7)

which is indeed a negligible correction to the distance traveled in a straight track.

Global Muon Offline Selection

In the analysis by CMS, the fraction of particles passing the global-muon selection, relative

to the total number of particles produced, is given by

εCMS
particlesglobal-muon

= εCMS
online · εCMS

offlineglobal-muon

=
EventsCMS(muon-trigger ∪ Emiss

T )

Events
· εCMS

offlineglobal-muon
, (A.8)

where εCMS
online is the fraction of events passing the online selection, relative to the total

number of events. εCMS
offlineglobal-muon

is the fraction of particles passing the global-muon

criterion, out of the particles passing the online selection. Events is the total number of

events and EventsCMS(selection) is the number of events passing a selection. We claim

that the particle-level global-muon efficiency can be written as

εCMS
particlesglobal-muon

=
EventsCMS(muon-trigger)

Events
·
εCMS
online · εCMS

offlineglobal-muon

εCMS
eventsmuon-trigger

≡ αCMS(m, q) · εCMS
eventsmuon-trigger

= f(m, q) · εCMS
particlesmuon-trigger

, (A.9)

where εCMS
eventsmuon-trigger

is the fraction of events passing the muon-trigger selection, relative

to the total number of events. εCMS
particlesmuon-trigger

is the fraction of particles satisfying the

muon-trigger requirements, relative to the total number of particles produced, and we

hypothesize f(m, q) ≈ 1.

In our simplified efficiency calculation, we accept only particles that individually satisfy

the muon trigger requirements, and omit the global muon selection. So

εsimparticlesglobal-muon
=

Particlessim(muon-trigger)

Particles

=
Eventssim(muon-trigger)

Events
·
εsimparticlesmuon-trigger

εsimeventsmuon-trigger

≡ αsim(m, q) · εsimeventsmuon-trigger .
(A.10)
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To check the validity of our assumption, independently of our muon-trigger simulation,

we calculate the ratio between αsim(m, q) and αCMS(m, q)

r =
αsim(m, q)

αCMS(m, q)
=

εsimparticlesmuon-trigger

εsimeventsmuon-trigger

εCMS
online·ε

CMS
offlineglobal-muon

εCMS
eventsmuon-trigger

. (A.11)

where the εCMS efficiencies are taken from [5], and εsim efficiencies are obtained from our

calculation. Indeed, as seen in Fig. A.4, r ≈ 1 for all masses and charges for
√
s = 8 TeV.

Therefore, we conclude that accepting only particles passing the muon-trigger requirements

to be subject for further selection is a reasonable approximation for
√
s = 8 TeV.
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Figure A.4: r = αsim(m, q)/αCMS(m, q), the ratio of multiplicative factors required to
convert the muon trigger event efficiency into the global-muon offline particle efficiency
for our procedure, and for CMS.

Efficiency Values

Here we list the final efficiencies, resulting from our simplified calculation described in

Section 4.2.2. The values for a
√
s = 8 TeV search are given for color-triplet scalars,

color-triplet fermions and color-singlet fermions in Tables A.1, A.2 and A.3, respectively.

The values for a future search at
√
s = 13 TeV are given in Tables A.4, A.5 and A.6,

respectively. Masses are in units of GeV.



175

m/Q −22
3 −19

3 −16
3 −13

3 −10
3 −7

3 −4
3

5
3

8
3

11
3

14
3

17
3

20
3

23
3

500 0.043 0.071 0.13 0.22 0.34 0.46 0.55 0.55 0.44 0.32 0.20 0.12 0.072 0.038

600 0.055 0.091 0.16 0.25 0.39 0.50 0.59 0.58 0.50 0.36 0.23 0.14 0.084 0.049

700 0.065 0.11 0.17 0.28 0.41 0.54 0.61 0.60 0.52 0.39 0.26 0.17 0.097 0.059

800 0.071 0.11 0.19 0.30 0.43 0.55 0.63 0.62 0.53 0.41 0.28 0.17 0.10 0.067

900 0.076 0.12 0.20 0.31 0.44 0.56 0.65 0.64 0.54 0.42 0.29 0.18 0.11 0.069

1000 0.074 0.12 0.20 0.32 0.45 0.56 0.63 0.63 0.54 0.42 0.29 0.18 0.11 0.068

1100 0.073 0.12 0.20 0.31 0.45 0.57 0.65 0.64 0.56 0.43 0.30 0.19 0.11 0.065

1200 0.074 0.12 0.20 0.31 0.45 0.57 0.65 0.65 0.55 0.43 0.29 0.18 0.11 0.066

1300 0.070 0.12 0.19 0.31 0.45 0.56 0.66 0.64 0.55 0.42 0.29 0.18 0.11 0.062

1400 0.067 0.11 0.19 0.31 0.45 0.57 0.66 0.65 0.55 0.43 0.28 0.17 0.099 0.058

1500 0.059 0.10 0.18 0.29 0.44 0.56 0.65 0.63 0.54 0.40 0.28 0.16 0.090 0.055

1600 0.054 0.094 0.17 0.28 0.42 0.56 0.65 0.63 0.53 0.40 0.26 0.15 0.087 0.048

1700 0.047 0.087 0.16 0.27 0.41 0.55 0.64 0.63 0.52 0.39 0.25 0.14 0.079 0.041

1800 0.040 0.079 0.15 0.26 0.40 0.53 0.64 0.61 0.52 0.38 0.24 0.13 0.071 0.040

1900 0.039 0.072 0.13 0.25 0.39 0.52 0.63 0.61 0.50 0.37 0.23 0.12 0.062 0.035

Table A.1: Efficiencies for color-triplet scalars at
√
s = 8 TeV.

m/Q −22
3 −19

3 −16
3 −13

3 −10
3 −7

3 −4
3

5
3

8
3

11
3

14
3

17
3

20
3

23
3

500 0.049 0.084 0.15 0.24 0.36 0.47 0.55 0.54 0.46 0.34 0.23 0.14 0.077 0.045

600 0.067 0.11 0.17 0.27 0.40 0.51 0.59 0.58 0.49 0.38 0.26 0.16 0.099 0.058

700 0.076 0.12 0.19 0.29 0.42 0.54 0.61 0.60 0.52 0.41 0.28 0.18 0.12 0.075

800 0.084 0.13 0.21 0.32 0.44 0.55 0.62 0.61 0.53 0.43 0.30 0.20 0.12 0.081

900 0.092 0.15 0.22 0.33 0.46 0.55 0.63 0.63 0.55 0.43 0.31 0.21 0.13 0.086

1000 0.094 0.14 0.22 0.33 0.45 0.55 0.62 0.61 0.53 0.44 0.31 0.21 0.14 0.087

1100 0.094 0.14 0.23 0.33 0.46 0.55 0.63 0.62 0.55 0.44 0.32 0.21 0.14 0.085

1200 0.089 0.14 0.23 0.34 0.46 0.56 0.62 0.62 0.55 0.45 0.32 0.21 0.13 0.087

1300 0.088 0.14 0.21 0.33 0.46 0.55 0.63 0.62 0.55 0.44 0.32 0.21 0.14 0.083

1400 0.085 0.13 0.22 0.33 0.46 0.55 0.62 0.60 0.54 0.43 0.31 0.21 0.12 0.081

1500 0.079 0.13 0.21 0.32 0.44 0.55 0.61 0.61 0.54 0.43 0.30 0.20 0.12 0.075

1600 0.074 0.12 0.20 0.31 0.44 0.53 0.61 0.60 0.52 0.41 0.30 0.19 0.11 0.070

1700 0.069 0.11 0.19 0.30 0.43 0.53 0.59 0.59 0.51 0.40 0.28 0.18 0.11 0.062

1800 0.062 0.11 0.18 0.29 0.41 0.51 0.58 0.57 0.50 0.40 0.27 0.16 0.10 0.054

1900 0.055 0.10 0.17 0.27 0.40 0.50 0.56 0.57 0.49 0.38 0.26 0.15 0.089 0.049

Table A.2: Efficiencies for color-triplet fermions at
√
s = 8 TeV.

m/Q 1 2 3 4 5 6 7 8

500 0.61 0.53 0.42 0.28 0.18 0.11 0.061 0.039

600 0.65 0.58 0.47 0.33 0.21 0.13 0.080 0.049

700 0.67 0.60 0.50 0.36 0.23 0.15 0.095 0.061

800 0.69 0.62 0.52 0.39 0.26 0.16 0.11 0.067

900 0.69 0.62 0.53 0.40 0.27 0.17 0.11 0.071

1000 0.68 0.60 0.53 0.41 0.28 0.17 0.11 0.072

Table A.3: Efficiencies for color-singlet fermions at
√
s = 8 TeV.
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m/Q −22
3 −19

3 −16
3 −13

3 −10
3 −7

3 −4
3

5
3

8
3

11
3

14
3

17
3

20
3

23
3

500 0.041 0.069 0.12 0.19 0.28 0.40 0.48 0.47 0.38 0.27 0.18 0.10 0.061 0.036

600 0.058 0.088 0.14 0.22 0.33 0.43 0.50 0.50 0.42 0.31 0.21 0.13 0.083 0.054

700 0.072 0.11 0.17 0.25 0.36 0.46 0.52 0.52 0.45 0.34 0.24 0.16 0.10 0.067

800 0.084 0.12 0.19 0.28 0.39 0.47 0.54 0.54 0.47 0.37 0.27 0.18 0.11 0.077

900 0.094 0.14 0.21 0.31 0.42 0.50 0.55 0.55 0.49 0.41 0.29 0.19 0.13 0.091

1000 0.10 0.15 0.22 0.31 0.43 0.50 0.56 0.56 0.50 0.40 0.30 0.21 0.14 0.096

1100 0.11 0.15 0.23 0.34 0.45 0.53 0.58 0.57 0.51 0.43 0.31 0.22 0.14 0.10

1200 0.12 0.17 0.25 0.35 0.47 0.55 0.60 0.59 0.53 0.45 0.33 0.23 0.16 0.11

1300 0.12 0.17 0.25 0.37 0.47 0.55 0.61 0.60 0.54 0.45 0.34 0.24 0.16 0.12

1400 0.13 0.18 0.26 0.38 0.49 0.56 0.62 0.61 0.56 0.47 0.36 0.24 0.17 0.12

1500 0.13 0.18 0.27 0.38 0.50 0.58 0.64 0.63 0.57 0.48 0.35 0.25 0.17 0.12

1600 0.13 0.18 0.27 0.39 0.51 0.58 0.65 0.64 0.58 0.48 0.37 0.26 0.18 0.12

1700 0.14 0.19 0.27 0.39 0.51 0.60 0.66 0.64 0.59 0.50 0.37 0.26 0.18 0.12

1800 0.13 0.19 0.27 0.39 0.51 0.60 0.66 0.65 0.58 0.49 0.37 0.26 0.18 0.13

1900 0.13 0.18 0.28 0.39 0.51 0.60 0.66 0.66 0.58 0.49 0.37 0.26 0.17 0.13

2000 0.13 0.18 0.27 0.39 0.52 0.60 0.66 0.65 0.59 0.49 0.37 0.25 0.18 0.12

2100 0.13 0.18 0.26 0.39 0.51 0.60 0.67 0.66 0.58 0.49 0.37 0.25 0.17 0.12

2200 0.12 0.17 0.27 0.39 0.51 0.60 0.66 0.66 0.58 0.49 0.37 0.25 0.16 0.12

2300 0.11 0.17 0.26 0.38 0.51 0.60 0.66 0.65 0.58 0.49 0.35 0.24 0.16 0.11

2400 0.11 0.17 0.25 0.37 0.50 0.59 0.66 0.65 0.58 0.49 0.36 0.24 0.16 0.11

2500 0.11 0.16 0.25 0.37 0.50 0.58 0.66 0.65 0.57 0.48 0.35 0.23 0.15 0.10

2600 0.10 0.15 0.23 0.36 0.49 0.58 0.65 0.64 0.57 0.48 0.35 0.23 0.15 0.099

2700 0.097 0.15 0.23 0.35 0.49 0.57 0.65 0.64 0.55 0.46 0.34 0.21 0.14 0.094

2800 0.094 0.14 0.22 0.34 0.47 0.57 0.65 0.63 0.55 0.45 0.33 0.21 0.14 0.089

2900 0.089 0.14 0.22 0.34 0.46 0.56 0.64 0.63 0.54 0.45 0.32 0.20 0.13 0.085

3000 0.083 0.13 0.21 0.33 0.46 0.55 0.64 0.62 0.54 0.43 0.31 0.20 0.12 0.075

Table A.4: Efficiencies for color-triplet scalars at
√
s = 13 TeV.
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m/Q −22
3 −19

3 −16
3 −13

3 −10
3 −7

3 −4
3

5
3

8
3

11
3

14
3

17
3

20
3

23
3

500 0.046 0.077 0.13 0.21 0.31 0.40 0.47 0.47 0.40 0.29 0.20 0.12 0.073 0.043

600 0.067 0.10 0.16 0.25 0.35 0.45 0.51 0.50 0.43 0.34 0.23 0.15 0.10 0.063

700 0.083 0.12 0.19 0.28 0.38 0.46 0.52 0.52 0.45 0.36 0.26 0.18 0.12 0.078

800 0.10 0.14 0.21 0.30 0.41 0.49 0.54 0.54 0.48 0.39 0.29 0.20 0.14 0.094

900 0.12 0.16 0.23 0.33 0.42 0.51 0.55 0.55 0.48 0.42 0.31 0.22 0.15 0.11

1000 0.12 0.16 0.24 0.34 0.44 0.50 0.56 0.56 0.50 0.43 0.33 0.23 0.16 0.12

1100 0.14 0.17 0.25 0.36 0.45 0.51 0.58 0.57 0.52 0.45 0.34 0.24 0.18 0.13

1200 0.14 0.19 0.27 0.37 0.48 0.54 0.59 0.58 0.53 0.46 0.35 0.26 0.18 0.13

1300 0.15 0.20 0.28 0.38 0.49 0.55 0.60 0.59 0.55 0.48 0.37 0.27 0.19 0.14

1400 0.15 0.21 0.29 0.39 0.49 0.56 0.61 0.60 0.55 0.48 0.38 0.27 0.20 0.14

1500 0.16 0.21 0.29 0.40 0.50 0.57 0.61 0.61 0.56 0.49 0.39 0.28 0.20 0.15

1600 0.16 0.22 0.30 0.41 0.52 0.58 0.62 0.62 0.57 0.50 0.39 0.29 0.21 0.15

1700 0.16 0.22 0.31 0.41 0.52 0.59 0.63 0.63 0.58 0.51 0.39 0.29 0.21 0.16

1800 0.16 0.22 0.30 0.41 0.52 0.59 0.63 0.63 0.58 0.51 0.40 0.29 0.21 0.16

1900 0.17 0.22 0.31 0.42 0.52 0.59 0.63 0.62 0.57 0.50 0.39 0.29 0.21 0.15

2000 0.16 0.22 0.31 0.42 0.52 0.58 0.64 0.63 0.58 0.52 0.40 0.29 0.21 0.16

2100 0.16 0.22 0.30 0.42 0.51 0.58 0.63 0.63 0.58 0.51 0.40 0.29 0.20 0.15

2200 0.16 0.22 0.31 0.41 0.53 0.59 0.63 0.62 0.58 0.51 0.40 0.28 0.20 0.15

2300 0.15 0.21 0.29 0.41 0.52 0.58 0.63 0.62 0.57 0.50 0.39 0.28 0.20 0.15

2400 0.15 0.20 0.29 0.40 0.52 0.57 0.62 0.61 0.57 0.50 0.38 0.27 0.20 0.14

2500 0.14 0.19 0.28 0.40 0.51 0.58 0.62 0.61 0.56 0.50 0.38 0.27 0.19 0.14

2600 0.14 0.20 0.28 0.39 0.50 0.57 0.62 0.60 0.56 0.49 0.37 0.26 0.19 0.13

2700 0.14 0.19 0.27 0.39 0.50 0.55 0.60 0.59 0.56 0.49 0.37 0.26 0.18 0.13

2800 0.13 0.18 0.26 0.38 0.49 0.55 0.59 0.60 0.54 0.47 0.36 0.25 0.17 0.12

2900 0.12 0.17 0.26 0.37 0.48 0.54 0.58 0.58 0.54 0.47 0.36 0.25 0.17 0.11

3000 0.11 0.17 0.26 0.36 0.48 0.53 0.57 0.57 0.53 0.46 0.35 0.24 0.16 0.11

Table A.5: Efficiencies for color-triplet fermions at
√
s = 13 TeV.

m/Q 1 2 3 4 5 6 7 8

500 0.49 0.44 0.35 0.25 0.16 0.10 0.067 0.041

600 0.54 0.49 0.40 0.29 0.19 0.13 0.086 0.055

700 0.56 0.52 0.44 0.32 0.22 0.15 0.10 0.066

800 0.59 0.53 0.46 0.36 0.26 0.17 0.12 0.082

900 0.61 0.55 0.49 0.38 0.28 0.19 0.13 0.095

1000 0.61 0.55 0.51 0.41 0.29 0.20 0.14 0.10

1100 0.64 0.57 0.53 0.42 0.31 0.21 0.15 0.11

1200 0.65 0.58 0.55 0.44 0.33 0.23 0.16 0.12

1300 0.66 0.60 0.56 0.45 0.33 0.24 0.17 0.13

1400 0.67 0.60 0.57 0.46 0.34 0.24 0.18 0.13

1500 0.68 0.61 0.59 0.48 0.35 0.25 0.18 0.14

1600 0.66 0.60 0.56 0.45 0.35 0.26 0.19 0.15

1700 0.66 0.60 0.57 0.47 0.36 0.26 0.19 0.15

1800 0.66 0.61 0.57 0.47 0.36 0.25 0.19 0.15

1900 0.67 0.61 0.57 0.47 0.36 0.26 0.20 0.15

Table A.6: Efficiencies for color-singlet fermions at
√
s = 13 TeV.
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A.1.3 Effective Cross Sections

The effective cross sections for MCHSPs, obtained as a product of the cross sections and

the efficiencies corresponding to open-production searches, are presented together with the

observed upper limit for
√
s = 8 TeV, and the projected upper limits for

√
s = 13 TeV, in

Figs. A.5 and A.6.
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Figure A.5: Open-production channel signatures. Effective cross sections σ · ε for CMS
search [9] at

√
s = 8 TeV, together with the observed upper bound. Solid – theoretical

effective cross sections, dashed – observed limit.
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(d) Negatively-charged colored fermions.
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(e) Colorless fermions.

Figure A.6: Open-production channel signatures. Effective cross sections σ · ε for future
CMS searches at

√
s = 13 TeV, together with expected upper bounds. Solid – theoretical

effective cross sections. Round markers – luminosity scaling. Dashed – luminosity scaling
and pileup scaling. Magenta – L = 35.9 fb−1, blue –L = 100 fb−1 , green – L = 300 fb−1.



181

A.2 Closed-Production Signatures – Diphoton Cross Sec-

tions

The diphoton production cross sections, from a bound state resonance, with observed and

future-projected upper limits at
√
s = 13 TeV are presented in Fig. A.7.
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(b) Negatively-charged colored scalars.
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(d) Negatively-charged colored fermions.
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Figure A.7: Diphoton resonant production cross sections, given by a bound state of mass
2m at

√
s = 13 TeV. Magenta – upper-limits observed at L = 35.9 fb−1 [10], (solid –

narrow , dashed – mid-width, dash-dotted – wide). Dashed blue – upper limits expected
at L = 100 fb−1 [13]. Dashed green – upper-limits expected at L = 300 fb−1 [13].
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Appendix B

Appendix for Chapter 5

B.1 CP-odd Contribution to Higgs plus One Jet in Relevant

Limits

In this appendix we report the expression for the CP-odd contribution to Higgs+Jet

production and perform checks in three relevant limits, following the strategy of [167].

This information constitutes an important validation tool for our implementation of the

calculation of [116]. This section is structured as follows. We first review the expressions

for relevant Higgs production amplitudes. We then discuss the limit in which the mass of

the fermion running in the loop is the largest scale. In addition, we consider the limit in

which the outgoing gluon is soft. Finally, we study the case in which the outgoing parton

is collinear to the beam direction.

B.1.1 Higgs+Jet Production Amplitudes

We first need the expression of the Born matrix element. Due to conservation of angular

momentum, the amplitude for the process gg → h is non-zero only if the two gluons have

opposite helicities. The un-averaged matrix element squared for this process is

|Mgg→h|2 =
(N2

c − 1)α2
sκ̃

2m4
H

4π2v2

∣∣∣∣∣∣
∑

i=t,T 1,T 2

Mi
+−

∣∣∣∣∣∣
2

. (B.1)

The index i here refers to the particle running in the loop needed to couple the gluons to

the Higgs. The top quark contribution to the above equation is

Mi
+− = m2

iC0(m2
H) . (B.2)
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With this we can report the expression for the matrix element squared for Higgs+Jet

production in the various partonic channels contributing to this process: gg → hg, qq̄ →
hg, qg → hq, qh.

The gg → hg amplitude can be expressed in terms of eight primitive helicity amplitudes

Mh1h2h3 corresponding to the possible choices for each gluon helicity hi = ±. We use the

convention that the momenta of gluons p1 and p2 are incoming, and that of gluon p3 is

outgoing, so that the Mandelstam variables, in the convention of [116], are defined as

s = (p1 + p2)2 , t = (p1 − p3)2 , u = (p1 − p4)2 . (B.3)

The helicity amplitudes are then related to the full, un-averaged amplitude squared via

|Mgg→Hg|2 =
Nc(N

2
c − 1)α3

sκ̃
2

8πv2

∑
h1,h2,h3=±

∣∣∣∣∣∣
∑

i=t,T 1,T 2

Mi
h1h2h3

∣∣∣∣∣∣
2

. (B.4)

After applying parity and crossing symmetry, only four of the helicity amplitudes are

independent, which we take to be Mi
+++,Mi

++−,Mi
−+−,Mi

−++.

The contributions to the helicity amplitudes due to loops containing a fermion with

mass m and coupling to the Higgs κ̃, are:

Mi
+++ = m2

iF1(s, t, u) ,

Mi
++− = m2

iF1(s, u, t) ,

Mi
−+− = m2

iF2(s, t, u) ,

Mi
−++ = m2

iF3(s, t, u) ,

(B.5)

where

F1(s, t, u) =

√
t

su
[G(s, t)−G(s, u) +G(t, u)] , (B.6)

F2(s, t, u) = − m2
H√
stu

[G(s, t) +G(s, u) +G(t, u)] , (B.7)

F3(s, t, u) =

√
s

tu
[G(s, t) +G(s, u)−G(t, u)] , (B.8)

and

G(x, y) = xyD0(x, y) + 2xC1(y) + 2yC1(x) . (B.9)

The functions B1, C1, D0 are 1-loop basic scalar integrals. They are functions of

(s, t, u), the mass of the particle in the loop, and the Higgs mass; their definitions can
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be found in [168].

The other pp → hj subprocesses (qq̄ → hg, qg → hq, q̄g → hq̄) are controlled by a

third function, the un-averaged amplitude squared

∑
|Mqq̄→Hg|2(s, t, u) =

2(N2
c − 1)α3

sκ̃
2

πv2

t2 + u2

s

∣∣∣∣∣∣
∑

i=t,T 1,T 2

Mi(qq̄ → hg)

∣∣∣∣∣∣
2

. (B.10)

The amplitude for one fermion in the loop is given by

Mi(qq̄ → hg) = m2
iC1(s) . (B.11)

We can get the amplitudes for the subprocesses qg → hq and gq → hq from the above

expression by swapping the Mandelstam variable s and t, and s and u respectively.

B.1.2 Decoupling limit

Here we give analytical expressions for the helicity amplitudes introduced in the previous

section in the “decoupling” limit (m2 � m2
H , s, |t|, |u|) where m is the mass of the fermion

running in the loops. First, we give the expansion of the scalar integrals appearing in the

amplitudes:

B1(q2) ' q2 −m2
H

6m2
, C1(q2) ' − 1

2m2
− q2 +m2

H

24m4
, D0(s, t) ' 1

6m4
. (B.12)

This gives

M i
+++ ' −2t

√
t

su
, M i

++− ' −2u

√
u

st
,

M i
−+− ' 2

m4
H√
stu

, M i
−++ ' −2s

√
s

tu
.

(B.13)

Similarly,

Mi(qq̄ → hg) ' (N2
c − 1)α3

sκ̃
2

2πv2

t2 + u2

s
, (B.14)

Mi(qg → hq) ' −(N2
c − 1)α3

sκ̃
2

2πv2

s2 + u2

t
, (B.15)

Mi(gq → hq) ' −(N2
c − 1)α3

sκ̃
2

2πv2

t2 + s2

u
. (B.16)
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B.1.3 Soft limit

The soft limit p3 → 0 corresponds to

s→ m2
H , t, u→ 0 . (B.17)

In the soft limit amplitudes are proportional to the tree-level amplitude M−+, therefore

we get a non-zero contribution only from M−+− and M−++. Keeping the most relevant

terms in this limit, Eq.(B.5) gives

Mi
−+− ' −

m2
im

2
H√

stu
(stD0(s, t) + suD0(s, u) + tuD0(t, u) + 2sC1(t) + 2sC1(u)) . (B.18)

In the soft limit the relevant integral limits are

tC0(t)→ 0 , uC0(u)→ 0 , stD0(s, t)→ 0 , usD0(u, s)→ 0 , utD0(u, t)→ 0 , (B.19)

which yields

Mi
−+− ' −4m2

im
2
H

√
s

tu
C0(m2

H) ' −(
√

2)3

√
s

tu
Mi

+− . (B.20)

Similarly, the other helicity amplitude Eq.(B.5) becomes

Mi
−++ ' m2

i

√
s

tu
(stD0(s, t) + suD0(s, u)− tuD0(t, u) + 2sC1(t) + 2sC1(u)) . (B.21)

Evaluating again all scalar integrals in this limit we obtain

Mi
−++ ' 4m2

im
2
H

√
s

tu
C0(m2

H) ' (
√

2)3

√
s

tu
Mi

+− . (B.22)

These expressions have to be compared with the universal behaviour of helicity amplitudes

[169,170]1,

Mi
−+− = −(

√
2)3 [p1p2]

[p1p3][p3p2]
Mi

+− ,

Mi
−++ = (

√
2)3 〈p1p2〉
〈p1p3〉〈p3p2〉

Mi
+− .

(B.23)

1The
√

2 factors comes from the differing normalisation of gauge group generators tr[T aT b] = δab in
the spinor helicity formalism, compared to the usual tr[T aT b] = 1

2
δab. This is compensated by a relative√

2 factor associated to the gauge coupling.
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Since we have not used the spinor-helicity formalism, it is not immediate to rephrase our

expressions in terms of helicity products. However, for real momenta, spinor products

are simply equal to the square root of the relevant momentum invariant, up to a phase.

The universal soft factor has an implicit helicity set by the soft gluon, and hence the

choice of translating to angle or square bracket spinor products is fixed. We then obtain

from Eq.(B.20) and Eq.(B.22) that Mi
−+− and Mi

−++ have the correct behaviour (i.e.

Eq.(B.23)) in the soft limit, modulo an overall phase that depends on the gluon helicity.

This phase is universal for all the particles running in the loop, and therefore can be

factored out of each helicity amplitude and will not contribute to the amplitude squared.

B.1.4 Collinear limits

We now consider the limit t → 0 where p1 becomes collinear to p3. Introducing the

splitting fraction z =
m2
H
s , the invariants take the values

t→ 0 , s =
m2
H

z
, u→ −1− z

z
m2
H . (B.24)

In this limit tC0(t)→ 0, whereas sC0(s) and uC0(u) do not vanish. For the box integrals,

we have

suD0(s, u)→ 2
[
sC0(s) + uC0(u)−m2

HC0(m2
H)
]
,

stD0(s, t)→ 0 , tuD0(t, u)→ 0 .
(B.25)

In this limit we get

Mi
−+− ' −

2m2
im

2
H(m2

H + s+ u)√
stu

C0(m2
H) ' 4m2

im
2
Hz√

(1− z)√−t
C0(m2

H) . (B.26)

Similarly, for the other helicity configuration we obtain

Mi
−++ '

2m2
i

√
s(m2

H + s− u)√
tu

C0(m2
H) ' − 4m2

im
2
H

z
√

(1− z)√−t
C0(m2

H) . (B.27)

Now in the collinear case the limit depends on the helicity of each collinear leg. This

means that there are two more possibilities to consider, and therefore we should also look

at the limit of the two helicity amplitudes Mi
++− and Mi

+++. For the first we have

Mi
++− '

2m2
i

√
u(m2

H − s+ u)√
st

C0(m2
H) ' −4m2

im
2
H(1− z)3/2

z
√−t C0(m2

H) (B.28)
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while the second reads

Mi
+++ '

2m2
i

√
t(−m2

H + s+ u)√
su

C0(m2
H) ' 0 . (B.29)

Collecting all results yields

Mi
−++ '

−(
√

2)3

z
√

(1− z)√−t
Mi

+− ,

Mi
−+− '

z(
√

2)3√
(1− z)√−t

Mi
+− ,

Mi
++− '

−(1− z)2(
√

2)3

z
√

(1− z)√−t
Mi

+− ,

Mi
+++ ' 0 .

(B.30)

To check the correctness of the above limits, we have to translate our conventions for

the helicity and the splitting fraction into those available in the literature, in which all

momenta are considered to be outgoing. First, we need to flip the helicity of each incoming

particle. Additionally, the relation of z to the momenta is different when the collinear

gluons are outgoing. One can switch between the two cases by making the replacement

z → 1
z . Adopting the usual convention of associating negative momentum signs to angle

spinors we expect the behaviour [169,170]

Mi
−++

Mi
+−
' Split+

(
−1−, 3+;

1

z

)
=

−(
√

2)3

z
√

1− z〈p1p3〉
,

Mi
−+−
Mi

+−
' Split+

(
−1−, 3−;

1

z

)
=

z(
√

2)3

√
1− z[p1p3]

,

Mi
++−
Mi

+−
' Split+

(
−1+, 3−;

1

z

)
=
−(1− z)2(

√
2)3

z
√

1− z〈p1p3〉
,

Mi
+++

Mi
+−
' Split+

(
−1+, 3+;

1

z

)
= 0 .

(B.31)

We must now translate Eq.(B.30) to helicity language. The translation from Mandelstam

variables to spinor invariants is similar to the soft case, although the helicity consideration

is slightly more subtle. As the three legs of the splitting amplitude are collinear, we no

longer have information about the contribution from each individual one, since the helicity

spinors become proportional. Instead what matters is the overall (outgoing) helicity of

the three, which governs whether it is appropriate to translate to angle or square brackets,

and with this consideration we indeed find the correct momentum dependence. However,

this is not relevant in the end because, up to an overall phase, [p1p3] ∼ 〈p1p3〉 ∼
√−t.
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