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Summary 

 

Regions at which replication is initiated are called origins of replication and the 
fidelity of DNA replication is crucial to genome stability. A number of factors can 
affect the progression of DNA replication and origin firing. In unperturbed cells, 
origins are fired in a fixed temporal manner, a phenomenon known as the DNA 
replication timing program.  

In this thesis, a novel next generation deep sequencing technique was optimised to 
study the progression of DNA replication through repetitive and heterochromatic 
regions in a variety of genetic backgrounds. The loss of Rif1, a protein implicated in 
a number of processes, such as facultative heterochromatin formation, DNA 
damage response and DNA replication timing control, yielded the most unexpected 
results. In addition to local effects in origin firing activity around Rif1 binding sites, 
rif1Δ resulted in a complete loss of the global replication timing program. Based on 
these data, this thesis further explores the relationship between the global 
replication timing program and the landscape of origin firing efficiencies.  

In metazoans, the establishment of the DNA replication timing program was linked 
to the nuclear distribution of chromatin. Here, we describe the role that the 
tethering of chromatin to the nuclear periphery plays in establishing the global 
replication timing program in S. pombe. Finally, we present a model explaining the 
global replication timing program in S. pombe and the role that global origin firing 
plays within it. 
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1.1 General introduction and thesis aims 
 
The genetic information describing the fundamental characteristics of life, known 

as the genome, is stored in each cell in the form of deoxyribonucleic acid (DNA). 

The replication of DNA and its segregation into newly formed daughter cells is the 

basis of growth and reproduction.  

 

The fidelity of DNA replication is crucial to the genomic stability of cells. A number 

of endogenous and exogenous agents can affect the accuracy of DNA replication. 

Cells have, therefore, evolved a complex series of mechanisms to limit the damage 

that can accrue when replication is perturbed. 

 

Cells replicate their DNA in a fixed temporal order, a phenomenon known as DNA 

replication timing. The agents involved in maintaining this order and the 

consequences of affecting it are still elusive. Similarly to other forms of DNA 

replication stress, the loss of the DNA replication timing program has been linked 

to erroneous replication and genome instability diseases, such as cancer.   

The central aim of the work for this thesis was to study the DNA replication 

dynamics in the fission yeast Schizosaccharomyces pombe (S. pombe) using deep-

sequencing techniques. Two main questions were explored. Firstly, do 

heterochromatin and repetitive DNA sequences act as barriers to DNA replication 

and perturb the passage of replication forks? Secondly, what are the mechanisms 

controlling DNA replication timing and firing of replication origins?  

This chapter has been divided into three parts. Part one will introduce and discuss 

DNA replication and the mechanisms that are in place to limit the damage resulting 

from perturbed replication. Part two will focus on the formation and replication of 

heterochromatin. Finally, part three will discuss the DNA replication timing 

program, the current mathematical models describing it and the link between DNA 

replication timing and chromatin organisation.  

The protein names in the text will follow S. pombe nomenclature, unless otherwise 

specified. References to Saccharomyces cerevisiae (S. cerevisiae) and human 

specific names will be made using the sc and h prefixes, respectively.   
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1.2 DNA replication and consequences of replication perturbation  
 
1.2.1 Initiation of DNA replication 
In 1963, Jacob and Brenner proposed the “replicon model” to explain DNA 

replication initiation in bacteria (Jacob and Brenner 1963). In their model, DNA 

replication started at cis-acting DNA sequences that were bound and activated by 

trans-acting factors. Studies have shown that this simple model is not only true for 

bacteria but is also highly conserved in all domains on life (O'Donnell, Langston et 

al. 2013). The complexity of the regulatory proteins and pathways involved in this 

process is greatest in eukaryotes.   

The initiation of eukaryotic DNA replication is two-tiered. First, the trans-acting 

initiation factors recognise and bind to the cis-acting DNA replication origins. This 

step, called ‘origin licensing’, happens in the G1 phase of the cell cycle and marks 

the loci that can act as DNA replication origins. At the onset of S-phase, a number of 

the licensed origins are activated and “fire” to initiate DNA replication.  

1.2.1.1 Origin licensing 
Eukaryotic origins have been shown to correlate with a number of factors but are 

generally not defined by a single DNA sequence (O'Donnell, Langston et al. 2013). 

One notable exception is the budding yeast S. cerevisiae, whose cis-acting 

autonomously replicating sequence (ARS) confers full origin activity, i.e., is capable 

of initiating replication when cloned into plasmids (Dhar, Sehgal et al. 2012). In S. 

pombe, origins tend to correlate with low transcriptional activity, high A-T richness 

and open chromatin (Dai, Chuang et al. 2005). 

Origins of replication are bound in G1 by a six subunit origin recognition complex 

(ORC.) and a related origin binding protein Cdc18 (scCdc6) (Kelly, Martin et al. 

1993, Masai, Matsumoto et al. 2010). This is followed by the loading of two 

hexameric Mcm2-7 (minichromosome maintenance complex) helicases, each 

bound by Cdt1 (Masai, Matsumoto et al. 2010). The Orc6 subunit of the ORC 

complex interacts with Cdt1, allowing the loading of Mcm2-7 onto DNA (Chen, de 

Vries et al. 2007). This interaction triggers ATP hydrolysis by Cdc18 (scCdc6)  

(Randell, Bowers et al. 2006) and the subsequent ejection of Cdc18 (scCdc6) and 

Cdt1 (O'Donnell, Langston et al. 2013). A recent biochemical and cryo-EM study 

proposed an “acrobat” model of Mcm2-7 loading, which involves the consecutive 
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loading of the two Mcm2-7 hexamers and two rounds of Cdc18 (scCdc6)  release 

(Zhai, Li et al. 2017). The resultant Mcm2-7 and ORC complex, called the pre-

replicative complex (pre-RC), remains inactive until the onset of S-phase (Fig. 1.1 

A) (O'Donnell, Langston et al. 2013). 

The formation of the pre-RC is restricted to G1 phase to prevent re-replication, 

often using a number of redundant mechanisms. Cyclin dependent kinase (CDK) 

activity is associated with pre-RC formation in most organisms studied to date 

(O'Donnell, Langston et al. 2013). In higher eukaryotes, outside G1, Cdt1 is tightly 

associated with Geminin. This sequesters Cdt1 away from Mcm2-7, preventing 

origin licencing outside G1 (Wohlschlegel, Dwyer et al. 2000). In S. pombe and 

metazoans, Cdt1 is marked for proteolysis in S-phase by the action of Cul4 

ubiquitin ligase (Zhong, Feng et al. 2003, Nishitani, Sugimoto et al. 2006, Ralph, 

Boye et al. 2006). Additionally, in S. pombe, the expression of Cdt1 (Hofmann and 

Beach 1994) and Cdc18 (Baum, Nishitani et al. 1998) is limited to S-phase through 

the action of G1/S transcription factor Cdc10.  
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Fig. 1.1 - Eukaryotic (S. cerevisiae) DNA replication initiation pathway 

 

  

The initiation of DNA replication has been best described in S. cerevisiae. Although 

some details differ between organisms (differences are discussed in the text) the 

principles of the pathway are highly conserved between eukaryotes (O'Donnell, 

Langston et al. 2013). 

A) In G1, ORC binds origins of replication. This recruits Cdc6 and subsequently, 

Cdt1 bound Mcm2-7 helicase. Two Mcm2-7 helicases bind to each ORC, forming 

the pre-initiation complex (pre-RC).  

B) The pre-RC is activated in S-phase by the DDK dependent phosphorylation of 

Mcm2-7. This allows the association of a number of replication initiation factors 

with the pre-RC, many of them binding in a CDK-dependent manner. GINS, Sld2, 

Dpb11 and polymerase ε are thought to associate together in a pre-loading 

complex (pre-LC). The pre-LC, along with Cdc45, Sld3 and Mcm10 bind the pre-RC 

to form the pre-initiation complex (pre-IC).  

C) After pre-IC formation, Dpb11, Sld2 and Sld3 dissociate and do not travel with 

the replication fork. Polymerases δ and α, Tof1, Csm3, Mrc1, Ctf4, Top1, RFC and 

PCNA bind to form the complete eukaryotic replisome. 

Adapted from (O'Donnell, Langston et al. 2013). 

 



7 
 

1.2.1.2 Origin activation 
The activation of the pre-RC can be divided into two stages - the phosphorylation 

of the Mcm2-7 helicase and the downstream recruitment of replication initiation 

factors. 

The DDK dependent phosphorylation of Mcm2-7 subunits has been linked to the 

activation of the helicase (Fig. 1.1 Bi) (Lei, Kawasaki et al. 1997, Jiang, McDonald et 

al. 1999, Masai, Matsui et al. 2000, Sheu and Stillman 2010). DDK activity is driven 

by the association of Hsk1 kinase with regulatory subunit Dfp1 (scCdc7 and scDbf4, 

respectively) (Larasati and Duncker 2016). The expression of Dfp1 rises at the 

G1/S transition, remains high during S-phase and decreases as the cells enter M-

phase (Brown and Kelly 1999), limiting the activity of DDK to S-phase.  

The exact contribution of the phosphorylation of every Mcm2-7 subunit to the 

activation of helicase has not yet been fully elucidated. The hyper-phosphorylation 

of Mcm4, which is necessary but not sufficient for the onset of replication, is 

thought to relieve the inhibition of Mcm2-7 (Sheu and Stillman 2010). In S. 

cerevisiae, the phosphorylation of Mcm4 was shown to be stimulated by Mcm10 

(Mcm10 is not part of the replicative helicase or related to Mcm2-7) (Perez-Arnaiz, 

Bruck et al. 2016). 

After helicase activation, a number of initiation factors are recruited to form the 

pre-initiation complex (pre-IC) and then, after the loading of DNA polymerases and 

DNA melting, the full eukaryotic replisome (Fig. 1.1 B-C) (O'Donnell, Langston et al. 

2013). The order in which the initiation factors bind and their interactions with 

each other may differ between organisms and are the subject of current research. 

In S. pombe, the DDK dependent binding of Sld3 was proposed to initiate the pre-IC 

assembly. The recruitment of the GINS complex (Sld5, Psf1, Psf2, and Psf3), Rad4 

(scDpb11; hTopBP1) and Cdc45 was shown to be dependent on Sld3 in S. pombe 

(Nakajima and Masukata 2002, Yabuuchi, Yamada et al. 2006). In S. cerevisiae, on 

the other hand, the binding of Sld3 and Cdc45 is simultaneous (Kamimura, Tak et 

al. 2001). In yeast and metazoans, the interaction of Cdc45 with the pre-RC was 

shown to be stimulated by Cdc23 (scMcm10) (Wohlschlegel, Dhar et al. 2002, 

Gregan, Lindner et al. 2003, Sawyer, Cheng et al. 2004, Perez-Arnaiz, Bruck et al. 

2016). 



8 
 

The formation of the pre-IC is also partially controlled by the activity of CDK 

(O'Donnell, Langston et al. 2013). In the case of S. pombe, CDK activity is driven 

throughout the cell cycle by a single kinase (Cdc2). The specificity of CDK 

phosphorylation is controlled by the association of Cdc2 with a number of 

regulatory cyclins, whose expression profiles oscillate throughout the cell cycle 

(Coudreuse and Nurse 2010). CDK phosphorylation of Drc1 (scSld2) in S. pombe 

(Noguchi, Shanahan et al. 2002) and Sld2 and Sld3 in S. cerevisiae (Zegerman and 

Diffley 2007) was shown to control DNA replication by promoting the association 

of Rad4 (scDpb11) with the pre-RC. In S. cerevisiae, it was proposed that Dpb11, 

CDK phosphorylated Sld2, GINS and Polymerase ε form the so-called pre-loading 

complex (pre-LC) and bind the pre-RC together (Muramatsu, Hirai et al. 2010).   

Cdc45, the activated Mcm2-7 helicase and the GINS complex form the 11 subunit 

active CMG replicative helicase, which was first characterised in the fruit fly 

Drosophila melanogaster (D. melanogaster) (Moyer, Lewis et al. 2006). Neither 

human nor D. melanogaster Mcm2-7 displays helicase activity in the absence of 

Cdc45 and GINS (Ilves, Petojevic et al. 2010, Kang, Galal et al. 2012). In S. pombe, 

the deletion of the catalytic subunit of polymerase ε (cdc20Δ) prevents the 

formation of CMG (Handa, Kanke et al. 2012), suggesting that a pre-LC-like 

complex may also form in fission yeast.   

1.2.2 The eukaryotic replisome 
Recently, a partial eukaryotic replisome was reconstituted in vitro using 16 

purified S. cerevisiae proteins (Yeeles, Deegan et al. 2015). This replication system, 

lacked several known replisome associated factors and is, therefore, not fully 

descriptive of eukaryotic DNA replication. It is, however, the most comprehensive 

in vitro study of the eukaryotic stepwise replication initiation process to date. 

(Yeeles, Deegan et al. 2015) showed that after ORC and Mcm2-7 binding, Sld3, Sld7 

and Cdc45 are recruited to the pre-RC in a DDK-dependent manner. This is 

followed by the binding of Sld2, Dpb11, GINS, polymerase ε and Mcm10 and 

requires CDK and DDK activity. This set of factors was sufficient to unwind the 

double helix enough to recruit the single stranded DNA (ssDNA) binding protein 

RPA.  
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It is important to note that despite being necessary for the establishment on the 

pre-IC, Sld2, Sld3 and Dpb11 do not travel with the replisome (Gambus, Jones et al. 

2006). All three proteins have a higher affinity to ssDNA than to Mcm2-7 and upon 

melting of the dsDNA at the origin of replication they dissociate from the pre-IC 

(Bruck and Kaplan 2011, Bruck and Kaplan 2014, Dhingra, Bruck et al. 2015).  

Mass spectrometry analysis of the factors associated with the S. cerevisiae CMG, 

showed that GINS, Ctf4, Tof1, Csm3, Mrc1, Top1, Mcm10, FACT and Pol α all 

associate with and move with the replisome (Gambus, Jones et al. 2006). This 

suggests that the CMG interacts with regulatory proteins, forming a large 

replisome progression complex (RPC) that travels to unwind the dsDNA duplex 

and replicate DNA. While these factors are important for the regulation of DNA 

replication (O'Donnell and Li 2016, Yeeles, Janska et al. 2017), the assembly of 

DNA polymerases at the leading and lagging strands is independent of all auxiliary 

factors other than PCNA (proliferating cell nuclear antigen) and the clamp loader 

RFC (Georgescu, Langston et al. 2014). 

Eukaryotic DNA replication requires three B family DNA polymerases, all of which 

play different roles at the replisome (O'Donnell and Li 2016). Polymerase α has 

RNA primase activity (Conaway and Lehman 1982) and primes replication on both 

the leading and lagging strands (Georgescu, Langston et al. 2014). Polymerase ε is 

a highly processive polymerase, whose interaction with the CMG stabilises it on the 

leading strand (Georgescu, Langston et al. 2014). Polymerase δ, on the other hand, 

has a higher affinity for the lagging strand, when the DNA is associated with PCNA 

and RPA (Georgescu, Langston et al. 2014). This asymmetric assembly of the 

polymerases results in the division of labour at the replication fork, with 

polymerases ε and δ replicating the leading and lagging strands, respectively (Nick 

McElhinny, Gordenin et al. 2008, Miyabe, Kunkel et al. 2011, Daigaku, Keszthelyi et 

al. 2015).  

Recent in vitro work suggests that polymerase δ may also plays a role in 

establishing leading strand synthesis before the association of the leading strand 

with polymerase ε (Yurieva and O'Donnell 2016, Yeeles, Janska et al. 2017). 

Polymerase δ activity on both the leading and lagging strands around origins of 

replication has been reported in S. pombe and S. cerevisiae (Daigaku, Keszthelyi et 
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al. 2015, Garbacz, Lujan et al. 2018). Additionally, an analysis of mutational bias in 

human cells suggested that polymerase δ is active on both strands ~ 1 kb around 

origins of replication (Artem V. Artemov, Maria A. Andrianova et al. 2017). At the 

time of writing this thesis, however, this work has not yet been peer-reviewed.  

1.2.3 Replication fork stalling and collapse 
At each origin of replication, two RFCs move bi-directionally away from each other, 

unwinding the dsDNA ahead of DNA polymerases. This generates two replication 

forks, each with continuous replication on the leading strand and discontinuous 

replication on the lagging strand - shown in Fig. 1.2. 

The progression of replication forks can be stalled by various obstacles, 

collectively referred to here as replication fork barriers (RFBs). The cellular 

response to impeded fork progression depends on the nature of the RFB (Lambert 

and Carr 2013). RFBs can be intrinsic (i.e., caused by an endogenous chromosomal 

features) and exogenous (e.g., caused by DNA damaging agents).  



11 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.2 – Canonical DNA replication bubble 

Two replication forks travel in opposite directions from a single origin of replication. Due to the fact that DNA can only be 

polymerised in a 5’ to 3’ fashion, each replication fork has a lagging and leading strand, replicated by polymerases δ and ε, 

respectively. The newly synthesised strands polymerised by polymerases δ and ε are shown in blue and red, respectively. 
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1.2.3.1 Replication fork stalling at intrinsic RFBs 
Both S. pombe and S. cerevisiae have evolved programmed RFBs that can stall the 

progression of replication forks. The evolutionarily conserved fork protection 

complex (FPC) is critical to this process. The FPC, composed of Swi1 and Swi3 

(scTof1 and scCsm3, respectively; hTimeless and hTipin, respectively) travels with 

the replication fork (Noguchi, Noguchi et al. 2003, Noguchi, Noguchi et al. 2004) 

and directly interacts with Mrc1 (Shimmoto, Matsumoto et al. 2009). 

In S. cerevisiae, a polar rDNA barrier (bound by Fob1) prevents head on collisions 

between replication forks and the transcriptional machinery by pausing fork 

progression in one direction (Kobayashi and Horiuchi 1996). Stalling at this 

programmed RFB does not lead to the disassembly of the replisome, allowing 

replication to restart in an HR-independent fashion (Calzada, Hodgson et al. 2005). 

Pausing at the rDNA barrier is dependent on Tof1 and Csm3 but not Mrc1 (Calzada, 

Hodgson et al. 2005, Tourriere, Versini et al. 2005). Both Tof1 and Csm3 prevent 

the displacement of Fob1, thereby ensuring fork pausing at the barrier (Mohanty, 

Bairwa et al. 2006).  

In S. pombe, Swi1 and Swi3 are involved in stalling replication forks at the 

intergenic spacer regions of rDNA (Krings and Bastia 2004) and at the RTS1 

(replication termination site 1) barrier. The binding of Rtf1 to the RTS1 barrier 

allows the FPC dependent stalling of forks at the mating type (mat) locus, which is 

necessary for mating type switching (Dalgaard and Klar 2001, Eydmann, 

Sommariva et al. 2008).  

The FPC has also been linked to the maintenance of genome stability at repetitive 

regions. In this case, however, instead of allowing stable fork stalling, the FPC 

promotes fork progression. Replication fork stalling at Alu, Friedreich's ataxia GAA 

repeats and CGG repeats inserted into S. cerevisae genome increased in the absence 

of the FPC (Voineagu, Narayanan et al. 2008, Shishkin, Voineagu et al. 2009, 

Voineagu, Surka et al. 2009). It also, however, led to an increase in the deleterious 

expansion of the repeats, suggesting that FPC activity at repeats is involved in 

controlling their expansion. Similarly, the depletion of Timeless and Tipin led to an 

increase in the expansion of repeats associated with myotonic dystrophy type 1 in 

human cells (Liu, Chen et al. 2012).  



13 
 

1.2.3.2 Replication fork stalling in response to DNA replication stress 
In most cases, replication stress results in transient pausing. Lesions formed on the 

lagging strand can be bypassed easily by re-priming replication using a new 

Okazaki fragment downstream of the lesion. Despite leading strand replication 

being mostly continuous, in some cases replication can be re-primed downstream 

of a lesion on the leading strand as well (reviewed in (Guilliam and Doherty 

2017)). Alternatively, replication can be rescued by converging replication forks 

(Lambert and Carr 2013). When these primary rescue mechanisms fail, the intra-S-

phase checkpoint is activated, inhibiting the firing of late origins and stalling DNA 

replication (Lambert and Carr 2005).  

1.2.3.2.1 The intra-S-phase checkpoint 
When RFBs inhibit polymerases (or polymerisation is downregulated, e.g., by 

depleting the deoxyribonucleotide (dNTP) pool by hydroxyurea (HU)), the helicase 

can carry on unwinding the duplex. This generates ssDNA, which subsequently 

associates with RPA (Lambert and Carr 2005). In yeast and humans, the ssDNA-

RPA complex is the signal for PI3-kinase Rad3 (scMec1, hATR), which associates 

with Rad26 (scLcd1; hATRIP) (Edwards, Bentley et al. 1999), to phosphorylate 

downstream substrates and propagate the intra-S-phase checkpoint signal 

(Bakkenist and Kastan 2004). The signal is ultimately relayed to effector kinase 

Cds1 (scRad53; hCHK1) via Mrc1 (hClaspin) (Alcasabas, Osborn et al. 2001, Tanaka 

and Russell 2001, Chini and Chen 2003).  

Collapsed replication forks (in this thesis, a “collapsed replication fork” will be 

used to describe a fork that is no longer associated with DNA synthesis) can be 

processed and lead to aberrant DNA structures (Carr, Paek et al. 2011). These 

structures have been traditionally visualised using 2D gel electrophoresis. An 

increase in stalled replication forks and aberrant DNA structures in the absence of 

the intra-S-phase checkpoint has been extensively documented in S. pombe and S. 

cerevisiae (Carr, Paek et al. 2011). These data led to the hypothesis that intra-S-

phase checkpoint played a direct role in the prevention of RFC disassembly, 

thereby preventing fork collapse (Zegerman and Diffley 2009). Current data, 

however, suggest that this may not be the case. 
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A comprehensive ChIP-Seq study of replisome stability in S. cerevisiae (De Piccoli, 

Katou et al. 2012) showed that the PI-3 kinase Mec1 (Chatre, Fernandes et al.) and 

the effector kinase Rad53 are not responsible for stabilising replisomes that stall in 

HU. Instead, the data suggest that the intra-S-phase checkpoint prevents the sliding 

of the stalled replisome along the DNA at early firing origins (De Piccoli, Katou et 

al. 2012). Consistently with these data, a quantitative mass spectrometry approach 

showed that replisome stability is not directly regulated by ATR in human cells 

(Dungrawala, Rose et al. 2015).     

1.2.3.2.2 The role of the FPC after checkpoint activation 
In S. cerevisiae, the aberrant structures (measured using 2D gel electrophoresis) 

that form in response to HU exposure, do not increase to the same extend in mrc1Δ 

and tof1Δ cells, compared to a checkpoint deficient (rad53-11) background 

(Tourriere, Versini et al. 2005). This suggests that while the FPC is necessary to 

maintain replisome integrity at programmed RFBs (as discussed in 1.2.3.1), the 

FPC and Mrc1 are not required to stabilize replication forks that pause due to 

exogenous replication stress. 

To prevent the generation of long stretches of ssDNA after the activation of the 

intra-S-phase checkpoint, the activity of the helicase must be limited. The FPC-

Mrc1 complex has been shown to couple the activity of the CMG helicase and the 

polymerases when replication forks stall in the presence of HU. A ChIP-on-chip 

analysis of S. cerevisiae replisome components, showed that co-localisation of 

Cdc45 (i.e., CMG) with nascent DNA was uncoupled upon HU treatment in tof1Δ 

and mrc1Δ cells (Katou, Kanoh et al. 2003). A similar, though less severe, 

uncoupling was seen in csm3Δ (Bando, Katou et al. 2009). Taken together, this 

suggests that after polymerase stalling and checkpoint activation, the FPC-Mrc1 

complex acts to prevent excessive unwinding of the duplex by coupling the 

polymerase and helicase activity. 

Despite working as a complex to limit ssDNA accumulation after checkpoint 

activation, the recovery of replication after HU treatment in tof1Δ cells is much 

more efficient than that in mrc1Δ cells (Tourriere, Versini et al. 2005). Unlike tof1Δ, 

however, mrc1Δ cells do not inhibit late firing origins in HU (Tourriere, Versini et 

al. 2005, Hayano, Kanoh et al. 2011). This allows tof1Δ cells to fire the delayed 
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origins and complete replication after the HU block has been removed, thereby 

compensating for the replication fork defect (Tourriere, Versini et al. 2005). This 

highlights the importance of the intra-S-phase checkpoint dependent inhibition of 

late firing origins. It is important to note, however, that the precocious firing of 

origins in mrc1Δ has been recently suggested to be, at least in part, checkpoint 

independent (Matsumoto, Kanoh et al. 2017). This will be discussed in more detail 

in section 6.1.2.     

1.2.3.2.3 Homologous recombination dependent replication fork restart 
Collapsed replication forks can processed to allow restart using a homologous 

recombination (HR) mediated, but double strand break (DSB) independent, 

mechanism (Mizuno, Lambert et al. 2009, Lambert, Mizuno et al. 2010). This re-

establishes a replication fork that can replicate DNA in a semi-conservative 

manner (Miyabe, Mizuno et al. 2015). Unlike canonical replication forks, HR-

restarted forks are more error prone and replicate both leading and lagging 

strands using polymerase δ (Miyabe, Mizuno et al. 2015). Additionally, when HR-

restarts replication it can lead to an increase in chromosomal rearrangements 

caused by non-allelic homologous recombination (Lambert, Mizuno et al. 2010).  

Regions that do not finish DNA replication before mitosis form breaks on 

metaphase chromosomes. Loci that are statistically more likely to exhibit a break 

when the cells are subjected to mild replication stress are called common fragile 

sites (CFS) (Durkin and Glover 2007). In human cells, CFSs tend to associate with 

late replicating, AT-rich, origin-poor regions and large (>500 kb) transcriptional 

units (Glover, Wilson et al. 2017). It is possible that under increased replication 

stress, replication forks at CFSs stall and collapse more often and restart 

replication using error-prone HR-mediated fork restart, which can lead to 

chromosomal rearrangements.   

It is important to note that fork stalling is not always beneficial or possible. When 

the replication fork encounters an RFB that blocks the unwinding activity of the 

CMG, e.g., intra-strand crosslinks (ICLs), replication forks collapse and the lesion is 

excised using a combination of nucleotide excision repair and HR (Zhang and 

Walter 2014). Disruption of the intra-S-phase checkpoint in S. pombe increased 
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resistance to ICLs, suggesting that fork stalling is not beneficial at ICLs and can 

even be detrimental (Lambert, Mason et al. 2003). 

1.3 Heterochromatin formation and its impact on DNA replication  
 

1.3.1 Roles of heterochromatin 
DNA inside eukaryotic cells is wrapped around histone and non-histone proteins, 

forming a complex called chromatin. It was noted in as early as 1928 that certain 

chromosomal regions retain stains throughout the cell cycle, while others lose it 

when the chromosomes unpack in interphase. The differential staining resulted in 

chromosome-specific stripped patterns of “light” and “dark” bands, referred to as 

euchromatin and heterochromatin, respectively (the early cytological work on 

heterochromatin is reviewed in (Passarge 1979)). At a molecular level, 

heterochromatin is associated with various histone modifications (e.g., triple 

methylation of lysine 9 on histone H3, i.e., H3K9me3) and, in higher eukaryotes, 

DNA methylation (Volpe and Martienssen 2011). H3K9 methylation correlates 

strongly with repetitive DNA, low gene density and low transcriptional activity, 

suggesting a link between these chromosomal features and heterochromatin 

(Wang, Jia et al. 2016).  

 

Heterochromatin in all eukaryotes can be subdivided into constitutive and 

facultative. Constitutive heterochromatin usually forms at the repetitive regions 

flanking centromeres (pericentromeric regions) and telomeres. Facultative 

heterochromatin, on the other hand, is cell type specific and has been linked to 

controlling developmentally regulated gene expression (Wang, Jia et al. 2016).   

 

While it is most often associated with transcriptional silencing, heterochromatin 

has also been implicated in chromosome segregation and genome stability. In S. 

pombe, the absence of heterochromatin leads to a loss of sister chromatin cohesion 

and affects mitotic chromosome segregation (Hall, Noma et al. 2003). 

Heterochromatin formation at centromeres drives the incorporation of Cnp1 

(hCENP-A), the centromere specific variant of histone H3 (Folco, Pidoux et al. 

2008). Cnp1 has been shown to be important for the assembly of the kinetochore 
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in metazoans and yeast (Van Hooser, Ouspenski et al. 2001, Collins, Castillo et al. 

2005, Regnier, Vagnarelli et al. 2005).  

Heterochromatin has also been shown to inhibit HR at repetitive regions such as 

the mat locus in S. pombe (Grewal and Klar 1997) and rDNA repeats in S. cerevisiae 

(Guarente 2000). The maintenance of repetitive DNA cold to recombination is key 

to genome stability. It has been well characterised in both S. cerevisiae and S. 

pombe that nearby inverted repeats recombine spontaneously and frequently, 

leading to the formation of dicentric and acentric isochromosomes. Such forms of 

gross chromosomal rearrangements are unstable, do not segregate properly and 

lead to genome instability (Mizuno, Lambert et al. 2009, Paek, Kaochar et al. 2009), 

a hallmark of cancer (Negrini, Gorgoulis et al. 2010).  

1.3.2 Formation and spreading of heterochromatin 
In S. pombe, the formation of heterochromatin is regulated by an RNA interference 

(RNAi.) pathway. RNAi was first described in Caenorhabditis elegans (C. elegans) as 

a process for targeted post-translational silencing of gene expression (Fire, Xu et 

al. 1998). The formation of heterochromatin, relies on the same proteins to target 

the activity of chromatin modification complexes (Volpe, Kidner et al. 2002). This 

section will discuss data derived mainly from experiments done in S. pombe. While 

RNAi and heterochromatin are both conserved, the link between them in higher 

eukaryotes is still elusive (Martienssen and Moazed 2015, Saksouk, Simboeck et al. 

2015).  

The process of heterochromatin formation (Fig. 1.3 A) is initiated by the 

transcription of short repeats by RNA Polymerase II (RNAP II) (Martienssen and 

Moazed 2015). In S. pombe, those repeats are found at the centromeres, telomeres, 

rDNA and mat locus (Cam, Sugiyama et al. 2005).The dsRNA fragments generated 

by RNAP II are cleaved into ~21 nucleotide long small interfering RNAs (siRNAs) 

by the catalytic activity of Dicer (Reinhart and Bartel 2002). The double stranded 

siRNAs are bound by argonaute protein Ago1, which in turn associates with Arb1 

and Arb2 to form the ARC complex (Buker, Iida et al. 2007). Arb1 in the ARC 

complex inhibits the cleavage activity of Ago1, preventing the conversion of double 

stranded siRNAs to single stranded siRNAs (Buker, Iida et al. 2007). Ago1 bound to 

the duplex siRNAs eventually dissociates from ARC and binds to Tas3 and Chp1, 
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forming the RITS complex (Verdel, Jia et al. 2004, Irvine, Zaratiegui et al. 2006, 

Buker, Iida et al. 2007). The cleavage activity of Ago1 is not inhibited in RITS, 

allowing the formation of single stranded siRNAs. The siRNAs direct the RITS 

complex to loci from which they were transcribed by Watson-Crick base pairing 

(Irvine, Zaratiegui et al. 2006, Buker, Iida et al. 2007).The reason for the initial 

inhibition of Ago1 activity by ARC is unclear but it has been shown that 

unregulated Ago1 cleavage leads to the loss of RNAi mediated heterochromatin 

formation in S. pombe (Buker, Iida et al. 2007).  

The RITS complex recruits the histone modification CLRC complex (Fig. 1.3 B) 

(Irvine, Zaratiegui et al. 2006), which consists of the H3K9 methyltransferase Clr4, 

H3K4 demethylase Lid2, ubiquitin E3 ligase Culin4 as well as accessory proteins 

Rik1, Clr7 and Clr8 (Hong, Villen et al. 2005, Horn, Bastie et al. 2005, Jia, Kobayashi 

et al. 2005, Li, Goto et al. 2005, Thon, Hansen et al. 2005). The methyltransferase 

activity of Clr4 methylates histone H3 (Ivanova, Bonaduce et al. 1998, Nakayama, 

Rice et al. 2001, Irvine, Zaratiegui et al. 2006). The H3K9me histone modification 

acts as a binding platform for Swi6 (Nakayama, Rice et al. 2001, Sadaie, Iida et al. 

2004, Verdel, Jia et al. 2004, Cam, Sugiyama et al. 2005) the S. pombe the 

orthologue of heterochromatin protein 1 (HP1) and critical component of 

heterochromatin (Nakayama, Klar et al. 2000). The H3K9me/Swi6 platform 

recruits the SHREC complex, which reorganizes nucleosomes and has been 

proposed to mediate the formation of higher order chromatin structures 

(Sugiyama, Cam et al. 2007). 

The RITS complex also acts to strengthen and spread the heterochromatin signal 

(Fig. 1.3 C). RITS recruits the RDRC (RNA-directed RNA polymerase complex), 

which amplifies the siRNAs, thereby propagating the heterochromatin signal (Halic 

and Moazed 2010). Heterochromatin spreading is driven by the chromodomain 

binding Chp1 component of the RITS complex, which binds directly to H3K9me 

marks (Partridge, Scott et al. 2002). The recruitment of CLRC to the new site of 

RITS binding spreads the heterochromatin signal around the initial H3K9 

nucleation site (Verdel, Jia et al. 2004). In addition to RITS activity, the 

deacetylation of H4K16 by Sir2 was shown to increase nucleosome compaction 
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and proposed to facilitate the spreading of the H3K9 signal by Clr4 (Wang, Tadeo 

et al. 2013). 

In S. pombe, boundaries around constitutive heterochromatin regions are 

established by Bdf2, which protects the H4K16 acetylation from Sir2 activity 

(Wang, Tadeo et al. 2013). Bdf2 is recruited to boundary sites by JmjC domain 

containing protein Epe1 (Zofall and Grewal 2006, Wang, Tadeo et al. 2013). The 

exact mechanism of Epe1 activity is still elusive. Epe1 has been widely described as 

an anti-silencing factor (Ayoub, Noma et al. 2003, Zofall and Grewal 2006, Braun, 

Garcia et al. 2011, Zofall, Yamanaka et al. 2012, Wang, Tadeo et al. 2013) and its 

role dependent on its JmjC domain (Ayoub, Noma et al. 2003), despite it not having 

any histone de-acetylase activity (Tsukada, Fang et al. 2006). The heterochromatin 

destabilizing activity of Epe1 also cannot be fully explained by its interaction with 

Bdf2. While heterochromatin spreading in epe1Δbdf2Δ is similar to that of bdf2Δ, 

the effect of epe1Δ alone is consistently greater than that seen in bdf2Δ (Wang, 

Tadeo et al. 2013). This suggests that while the activity of Bdf2 in boundary 

formation is dependent on Epe1, Epe1 may have additional Bdf2-independent and 

JmjC-dependent boundary formation roles.  
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Fig. 1.3 - Formation and spreading of heterochromatin in S. pombe 

  A) RNA polymerase II (RNAP II) generates long RNA transcripts which are 

cleaved into ~21 bp long siRNA by Dicer. The double stranded siRNAs are 

shuttled to the RITS complex by ARC, where the Ago1 activity is inhibited. 

Ago1 slices the double stranded siRNAs when it is associated with the RITS 

complex. The single stranded siRNAs direct the RITS complex to the repetitive 

region from which they were transcribed.  

B) The RITS complex recruits the CLRC complex, which contains the Clr4 

methyltransferase. Clr4 methylates lysine 9 on histone H3 (nucleosome shown 

as a purple circle). The H3K9 methylation recruits Swi6, which is necessary for 

the formation of heterochromatin. RITS can also associate with H3K9 

modification generated by CLRC, spreading the signal around the initial site of 

nucleation (not shown in the figure for simplicity) 

C) The siRNA signal is amplified by RDRC (RNA-dependent RNA polymerase 

complex), which is recruited by RITS.  

Adapted from (Martienssen and Moazed 2015). 
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1.3.3 Replicating heterochromatin 
Chromatin is disassembled in front of replication forks and the histones are 

recycled into the replicated DNA to maintain the epigenetic marks. The details of 

this complex process may vary between organisms and are the subject of ongoing 

research. 

Analysis of DNA replication foci in live mammalian cells showed that replicating 

chromatin is de-condensed at sites of replication (Kuipers, Stasevich et al. 2011). It 

has been proposed that the phosphorylation of linker histone H1 by CDK can also 

promote chromatin de-compaction in human cells (Alabert and Groth 2012). 

Additionally, a number of histone chaperones, some of which travel with the 

replisome, directly affect the nucleosomes ahead of the replication fork. 

The H2A-H2B histone chaperone complex FACT, which travels with the replisome 

(Gambus, Jones et al. 2006), was shown to promote fork progression by directly 

disassembling nucleosomes (Abe, Sugimura et al. 2011). In human cells, histone 

H3-H4 chaperone Asf1 is linked to Mcm2-7 via a histone bridge and promotes DNA 

unwinding at sites of replication (Groth, Corpet et al. 2007). The current model of 

chromatin reassembly suggests that after depleting nucleosomes ahead of the fork, 

Asf1 and FACT associate with the newly formed naked DNA to deposit the 

nucleosomes and maintain epigenetic information (Rowlands, Dhavarasa et al. 

2017).  

In S. pombe, both FACT (Lejeune, Bortfeld et al. 2007) and Asf1 (Tanae, Horiuchi et 

al. 2012) were implicated in maintaining the integrity of heterochromatin at 

centromeres and overall genome stability. In addition to nucleosome remodellers 

at the replisome, other remodelling complexes are also conserved in S. pombe. One 

example is the chromatin remodeller Ino80, which has been shown to promote the 

exchange of histone H3 for histone H3 variant Cnp1 at the centromere (Choi, 

Cheon et al. 2017). The highly conserved presence of chromatin remodellers 

suggests that histone remodelling and recycling is conserved and acts upstream of 

replication forks in S. pombe. Despite this, heterochromatin in S. pombe has been 

linked to impeding replication fork progression. A study mapping the genome wide 

distribution of phosphorylated histone H2A (ϒH2A, a marker of DNA damage) 
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showed an enrichment of ϒH2A around sites of constitutive heterochromatin 

(Rozenzhak, Mejia-Ramirez et al. 2010), suggesting that it may be a form of an 

endogenous RFB, similarly to RTS1 or rDNA barriers. 

Heterochromatin has also been implicated in the DNA replication timing program 

(described in 1.4). Heterochromatin was first shown to replicate late in the 1960s 

(Lima-de-Faria and Jaworska 1968) and has since been corroborated in multiple 

organisms (Gilbert 2002, Zink 2006). An important exception to the late 

replication of heterochromatin is the early replication of the centromeres and mat 

locus in S. pombe (Kim, Dubey et al. 2003). The early replication is driven by the 

interaction between Swi6 and Dfp1, the regulatory subunit of DDK kinase 

(Hayashi, Takahashi et al. 2009), whose activity is needed for the activation of 

Mcm2-7 at the pre-RC and the binding of initiation factors to form the pre-IC 

(discussed in 1.2.1). It is unclear why this effect is not seen at telomeres, which are 

also encompassed in Swi6-dependent heterochromatin (Ekwall, Javerzat et al. 

1995). It has also been shown that Swi6 interacts with Cdc18 (scCdc6) (Li, Chretien 

et al. 2011), suggesting that Swi6 may have more complex DDK independent roles 

in regulating origin firing.  

1.4 DNA replication timing 
 

The process of DNA replication in eukaryotic cells does not start simultaneously at 

every origin during S-phase. Instead, individual origins fire in a defined temporal 

order and are often described as “early” or “late” firing (Rhind and Gilbert 2013). 

These descriptions, misleadingly, suggest that each “early” or “late” origin will fire 

at the same time point in every cell in a population, i.e., that the process of origin 

firing is deterministic. This, however, is not the case. In both yeast and metazoans, 

origin firing has been shown to be stochastic (Lebofsky, Heilig et al. 2006, Patel, 

Arcangioli et al. 2006, Czajkowsky, Liu et al. 2008, Kaykov and Nurse 2015), i.e., in 

a population, the probability that an origin fires during S-phase varies between 

cells. Despite this stochasticity, large genomic segments (replication domains) 

replicate in the same temporal order in a population. The order with which 

replication domains are replicated in a cell is called the global replication timing 

(RT) program. It has been reported that the global RT program is deregulated in 
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cancer (Donley and Thayer 2013), although it has not been established whether it 

is a cause or consequence of it. The exact physiological role of the global RT 

program has yet to be defined.  

The global RT program of a population can be measured using various direct and 

indirect methods and is presented as a global RT profile (Rhind and Gilbert 2013, 

Rivera-Mulia and Gilbert 2016).  

1.4.1 Reconciling stochasticity of origin firing with a defined temporal order  
The stochastic nature of origin firing can be seen as paradoxical with the 

reproducible global RT profiles. The two concepts were described in great detail in 

S. cerevisiae and were reconciled using mathematical models. This section will 

describe these studies, explore the mathematical models built on them and the 

impact of their assumptions. 

A comprehensive single molecule DNA combing study showed that origin firing in 

S. cerevisiae is stochastic (Czajkowsky, Liu et al. 2008). The same study 

recapitulated previously published global RT profiles (Raghuraman, Winzeler et al. 

2001), proving that the intrinsic stochastic nature of origin firing can lead to a 

reproducible RT profile. 

Stochastic origin firing and a constant global RT program were reconciled in a 

simple in silico simulation (Rhind, Yang et al. 2010), which modulated origin firing 

efficiencies during S-phase. This simulation was built on two main assumptions. 

Firstly, origins had different relative probabilities of being fired during S-phase, 

therefore, origins with low probability of firing did not often fire early in S-phase. 

Secondly, the probability of firing of all unreplicated origins increased towards the 

end of S-phase (Yang, Rhind et al. 2010). This assumption was incorporated to 

overcome the so-called “random gap problem” (Rhind 2006), the concept that the 

stochasticity of origin firing can occasionally lead to large unreplicated gaps. 

Increasing the probability of origin firing towards the end of S-phase, allowed all 

origins that had not been already passively replicated to fire and complete DNA 

replication. Biologically, the increase in the relative probability of firing was 

explained by the increase in the concentration of unused limiting factors towards 

the end of replication (Rhind, Yang et al. 2010). As the number of origins that have 
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not fired decreases during S-phase, the relative concentration of the limiting 

factors available increases, allowing more efficient origin firing.      

Later the same year, a more comprehensive model of DNA replication in S. 

cerevisiae allowed the reconstruction of the RT profiles from microarray data 

(Yang, Rhind et al. 2010). The model differentiated between “observed” and 

“potential” efficiencies of origins, where the latter was the predicted efficiency of 

an origin if it had not been passively replicated during S-phase. Both the observed 

and potential efficiencies, however, were extracted from firing-time distributions. 

This causally linked the probability of an origin firing during S-phase with the time 

at which it fired. Unsurprisingly, the model predicted that origins with the lowest 

“potential efficiency” fire late in S-phase. This correlated well with the earlier 

model (Rhind, Yang et al. 2010) whose critical assumption was that inefficient 

origins do not fire in early S-phase.  

The (Yang, Rhind et al. 2010) model accurately reconstructed the temporal pattern 

across all chromosomes in S. cerevisiae (Yang, Rhind et al. 2010). Based on the 

genome wide reconstruction of RT data, it has been proposed that modulating 

origin firing across large domains is the cause of global RT programs. An important 

caveat of the model, however, is that the analysis was limited to the reconstruction 

of RT profiles over ~1.5 Mb (the length of the largest chromosome in S. cerevisiae). 

This is considerably smaller than human chromosomes, where the smallest 

chromosome (Chromosome 21) is over 46 Mb long.  

The connection between firing an origin efficiently and the surrounding loci being 

replicated early in S-phase is clear. In organisms with homogenous RT profiles, i.e., 

one without clear early and late replicating domains on the same short 

chromosome, changes in origin firing efficiency could affect the global RT profile. 

The models described above do well in predicting such patterns It is unclear, 

however, whether this can be extrapolated to explain genome wide RT patterns in 

higher eukaryotes, whose large chromosomes often have replication timing 

domains the size of S. cerevisiae chromosomes. 
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1.4.2 Replication timing domains in the context of genome organisation 
The advent of next generation sequencing (NGS) has allowed high resolution and 

comprehensive analysis of RT profiles. Independently, novel NGS techniques have 

elucidated the 3D nuclear organisation of metazoan and yeast genomes. This 

section will describe the experiments that led to the discovery of replication timing 

and structural chromosomal domains as well as their relationship in metazoans. 

Early RT profiles of mouse embryonic stem cells (mESCs) revealed that the 

genome is replicated in Mb long replication domains, separated by transition zones 

(Hiratani, Ryba et al. 2008). As described in 1.4.1, the average RT across the 

replication domains is constant on a population level, despite the stochastic nature 

of origin firing. The replication domains and transition zones linking them are, 

therefore, often referred to as CTRs (constant timing regions) and TTRs (transition 

timing regions), respectively (Rhind and Gilbert 2013, Pope, Ryba et al. 2014). A 

comparison of mESCs that represented 10 stages of early mouse development 

showed that ~45% of the genome changes its relative replication time in S-phase 

during cell differentiation. These changes were also shown to affect transcription 

(Hiratani, Ryba et al. 2010). The RT profiles across different cells lines showed that 

the regions encompassed in CTRs and TTRs were mostly conserved and only the 

relative time at which the CTRs were replicated was affected (Hiratani, Ryba et al. 

2010). A comparison of RT profiles from human and mouse ESCs showed 

considerable conservation across regions of synteny, suggesting an evolutionarily 

conserved role for replication domains (Ryba, Hiratani et al. 2010). Additionally, 

human and mouse chromosomes with rearrangements and translocations showed 

a divergence from a wild type RT profile only at the position of the rearrangements 

(Yaffe, Farkash-Amar et al. 2010, Pope, Chandra et al. 2012). Taken together, these 

data suggest that replication timing domains are conserved and self-associating 

units and that the relative timing of their replication may be linked to gene 

expression.  

Large regions of human (Guelen, Pagie et al. 2008), C. elegans (Ikegami, Egelhofer 

et al. 2010) and D. melanogaster (Pickersgill, Kalverda et al. 2006) genomes were 

shown to associate with the nuclear lamina (the underlying mesh of the nuclear 

envelope) using DamID methods (van Steensel, Delrow et al. 2001). Briefly, a DNA 
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methyltransferase is fused to a component of the nuclear lamina (Gruenbaum and 

Foisner 2015), methylating any loci that contact it. These regions are subsequently 

isolated, sequenced and mapped to reference genomes (van Steensel, Delrow et al. 

2001). This allows the generation of genome wide maps that describe the lamina 

associated domains (LADs) in a cell. Loci found within LADs correlated with a 

repressive heterochromatin environment and low gene expression (Pickersgill, 

Kalverda et al. 2006, Guelen, Pagie et al. 2008, Ikegami, Egelhofer et al. 2010).  

In recent years, data from genome wide chromosome conformation capture (Hi-C) 

techniques further enhanced our understanding of the roles that the 

compartmentalisation of DNA in the nucleus plays in DNA replication. Hi-C data 

produce contact frequency maps, from which the 3D distribution of the genome 

can be extrapolated (Lieberman-Aiden, van Berkum et al. 2009). Briefly, 

interacting loci are crosslinked, the genome is digested into small fragments and 

the loci are sequenced. An early low resolution study of large scale interactions in 

the human genome revealed a spatial segregation of open and closed chromatin 

(into “A” and “B” domains, respectively) (Lieberman-Aiden, van Berkum et al. 

2009). A related Hi-C method described the spatial organisation of 4.5 Mb region of 

the mouse Chromosome X at a very high resolution (Nora, Lajoie et al. 2012). Both 

active and inactive X Chromosomes were organised into 0.2 - 1 Mb long 

topologically associated domains (TADs), whose boundaries correlated well with 

those of LADs. Expression of genes whose promoters were found within the same 

TAD correlated very strongly with each other (Nora, Lajoie et al. 2012). This 

suggested that TADs, similarly to replication domains, were self-associating 

regions linked to gene expression. High resolution Hi-C of mESCs and hESCs 

revealed genome wide TAD formation, showing that they are key features of 

genome organisation (Dixon, Selvaraj et al. 2012). The organisation of TADs was 

also shown to be highly conserved over regions of synteny between mouse and 

human genomes (Dixon, Selvaraj et al. 2012), which is highly reminiscent of 

replication timing domains (Hiratani, Ryba et al. 2010). The boundaries of a 

number of the TADs identified were shown to correlate well with boundaries of 

LADs, “A” and “B” chromatin and early and late replicating domains (Dixon, 

Selvaraj et al. 2012). This comprehensive analysis showed for the first time that all 
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of these independently identified domains are linked. More recently, TAD and 

replication domain boundaries in 31 different mouse and human cell types were 

mapped with a one-to-one correlation (Pope, Ryba et al. 2014), proving a 

conclusive link between the two. To date, however, no causal relationship between 

these elements has been described. A summary of the relationship between 

chromosomal domains, replication timing domains and LADs is shown in Fig. 1.4. 
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Fig 1.4 - Relationship between metazoan chromosomal domains, replication 
timing domains and LADs 

 

 

 

 

 

 

 

 

A replication timing profile of a 50 Mb region on human Chromosome 10 from 
IMR90 fibroblasts. The segments of chromosomes with uniform replication timing 
(constant timing regions, CTRs) were aligned with Hi-C interaction compartments 
and LaminB1 contact maps.  

Adapted from (Rivera-Mulia and Gilbert 2016). 
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1.4.3 Establishing the replication timing program in metazoans 
The indication that metazoans establish their replication timing program in G1 was 

first reported nearly 20 years ago (Dimitrova and Gilbert 1999). In this study, 

Chinese hamster nuclei were isolated at different stages of G1 and introduced into a 

cell free system (Xenopus egg extracts) to complete replication. G1 nuclei harvested 

after the loading of Mcm2-7 onto origins and at least 1 hour after nuclear envelope 

formation maintained a wild type RT program. This cell cycle point was called the 

replication timing decision point (TDP) (Dimitrova and Gilbert 1999). It was also 

reported that the repositioning of chromosomal domains in G1 was associated with 

the establishment of the RT program (Dimitrova and Gilbert 1999), linking for the 

first time chromosomal structures and replication timing. More recently, a Hi-C 

analysis of a mouse cell line showed that TADs are established in the same time 

frame as the TDP (Dileep, Ay et al. 2015), further demonstrating the connection 

between TAD formation and the RT program. 

It is still unclear what drives the establishment of TADs. TAD formation at the 

mouse Chromosome X inactivation centre was not affected in cell lines lacking 

H3K9 methylation (Nora, Lajoie et al. 2012). Additionally, TADs shared between 

pluripotent and terminally differentiated cells were shown to act as boundaries to 

H3K9 methylation (Dixon, Selvaraj et al. 2012), despite the two types of cells 

having different H3K9me distributions. These data suggest that TAD formation is 

not driven by heterochromatin, rather TADs may act to demarcate potential 

heterochromatin boundaries. TAD boundary regions are enriched for insulator 

binding protein CTCF and cohesin, however, the binding of CTCF and/or cohesin 

alone is not sufficient for boundary formation (Dixon, Selvaraj et al. 2012, Nora, 

Lajoie et al. 2012). In mESCs, Rif1 was shown to associate with large chromosomal 

regions forming RADs (Rif1 associated domains) (Foti, Gnan et al. 2016). RADs 

were shown to be late replicating domains, correlate with LADs and restrict 

interactions between replication timing domains in G1 (Foti, Gnan et al. 2016). This 

suggested a role for Rif1 in establishing the replication timing profile by directly 

affecting nuclear architecture. 
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1.4.4 Genome organisation and global replication timing program in yeast 

Similarly to higher eukaryotes, yeast genomes are organised into replication 

timing domains (Raghuraman, Winzeler et al. 2001, Czajkowsky, Liu et al. 2008, 

Daigaku, Keszthelyi et al. 2015). As discussed in 1.4.1, in S. cerevisiae, replication 

timing domains can span whole chromosomes, due to their relatively small size 

(Yang, Rhind et al. 2010). The S. pombe replication timing domains span ~ 2 Mb 

and timing transition zones are best visible on Chromosomes 1 and 2 (Daigaku, 

Keszthelyi et al. 2015). In comparison to metazoans, however, the correlation 

between self-associating chromosomal domains and replication timing domains 

have not been well described in yeast. 

Initial Hi-C reports suggested that while TADs are highly conserved across 

eukaryotes, they are not present in S. cerevisiae (Duan, Andronescu et al. 2010, 

Sexton and Cavalli 2015). A modified Hi-C approach identified ~5 kb TAD-like 

chromosomal interaction domains (CIDs) which were linked to transcription 

(Hsieh, Weiner et al. 2015). More recent Hi-C analysis identified larger ~200 kb 

long TAD-like domains (Eser, Chandler-Brown et al. 2017), which were enriched 

for origins with similar relative firing times (Eser, Chandler-Brown et al. 2017). 

50 - 100 kb long TAD-like structures (called “globules”) have been identified in S. 

pombe (Mizuguchi, Fudenberg et al. 2014). Similarly to TADs of higher eukaryotes 

(Dixon, Selvaraj et al. 2012, Nora, Lajoie et al. 2012), S. pombe globule formation is 

dependent on cohesin and not on heterochromatin (Mizuguchi, Fudenberg et al. 

2014). No correlation with replication domains was reported but loss of cohesin 

did affect transcription (Mizuguchi, Fudenberg et al. 2014). A polymer model 

incorporating Hi-C and microscopy data from S. pombe revealed a nuclear 

compartmentalisation similar to that seen in higher eukaryotes (Pichugina, 

Sugawara et al. 2016). The model showed that early firing origins cluster in the 

centre of nucleus, while late firing origins are more likely to be associated with the 

nuclear periphery. Interestingly, loci that had euchromatic and heterochromatic 

marks in wild type cells, did not change their nuclear positions in clr4Δ cells 

(Pichugina, Sugawara et al. 2016). This suggests that, similarly to metazoans 

(Dixon, Selvaraj et al. 2012, Nora, Lajoie et al. 2012), where heterochromatin does 
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not drive TAD formation, heterochromatin does not influence the global 

distribution of genomic DNA in S. pombe.   

The global architecture of yeast genomes may be fundamentally different to that of 

mammalian ones. For example, a polymer model predicted that only 30-40% of the 

S. cerevisiae genome is covered in topological loops (Schalbetter, Goloborodko et 

al. 2017), compared to 100% predicted for mammalian chromosomes (Naumova, 

Imakaev et al. 2013). The RT program may, therefore, have different drivers. While 

also implicated in the global RT program in yeast (Hayano, Kanoh et al. 2012, 

Hiraga, Alvino et al. 2014, Kanoh, Matsumoto et al. 2015), in S. pombe, Rif1 is not 

very abundant (Marguerat, Schmidt et al. 2012) and can only be visualised when 

over-expressed (Zaaijer, Shaikh et al. 2016). It is, therefore, unlikely that Rif1 plays 

a role in the structural organisation of the genome, as has been reported for 

metazoans (Foti, Gnan et al. 2015).  

Other factors have been implicated in the regulation of origin firing and replication 

timing in yeast. In S. cerevisiae, the conserved forkhead transcription factors (TF) 

Fkh1 and Fkh2 have been shown to bind early replicating origins and drive their 

clustering in replication factories (Knott, Peace et al. 2012), independently of their 

roles as TFs (Ostrow, Kalhor et al. 2017). The TF activity of S. pombe Fkh2 was 

implicated in both mitosis (Bulmer, Pic-Taylor et al. 2004) and meiosis (Alves-

Rodrigues, Ferreira et al. 2016). There are, however, no reports on the role of Fkh2 

as a regulator of the global RT program. On the other hand, Mrc1, the regulator of 

the intra-S-phase checkpoint described in 1.2.3.2, was reported to bind early 

replication origins and affect the RT profile of S. pombe, in a checkpoint 

independent manner (Hayano, Kanoh et al. 2011, Matsumoto, Kanoh et al. 2017) 

(discussed in more detail in 6.1.2). Taken together, these data suggest that while 

some of the proteins and processes are conserved between yeast and metazoans, 

the pathways determining the global RT program in yeast may not be.   

  



33 
 
 

1.5 Summary and aims 
 

DNA replication is a highly regulated process whose fidelity is crucial to genome 

stability. S. pombe is a well-studied model organism whose DNA replication 

dynamics have been extensively described. Numerous aspects of the DNA 

replication dynamics in S. pombe, however, remain elusive. The work in thesis 

addresses two aspects of DNA replication using novel NGS methods. Firstly, we 

investigated the impact of heterochromatin on replication fork progression. We 

analysed replication forks and origins firing in constitutive and facultative 

heterochromatin in a number of genetic backgrounds. Secondly, we examined the 

mechanism controlling the global RT program in S. pombe by analysing the impact 

of global origin usage, heterochromatin and the nuclear distribution of chromatin. 
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Chapter 2 
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2.1 Materials 
 

2.1.1 Growth media and agar plates 
 

• Yeast Extract (YE) media 

In 1 L - 5 g yeast extract, 30 g glucose, 0.8 g adenine, 0.4 g each of leucine, 

uracil, histidine and arginine. Autoclaved 

 

• YE agar (YEA) plates 

6.25 g Bacto Agar was autoclaved in 500 mL of YE media and poured into 

sterile petri dishes.  

• YE with peptone (YEP..) 

YE media supplemented with 20 g/L peptone. 

• 4X Edinburgh minimal media (EMM) 

In 1 L - 50 mL 20X EMM salts, 25 mL 20% NH4Cl, 25 mL 0.4 M NaHPO4, 50 

mL 40% glucose, 1 mL 1000X vitamins, 100 μl 10,000X trace elements. 

Filter sterilised using a Steritop™ 0.22 μm 1 L filter unit (Merck Millipore). 

20X EMM salts  

In 1 L - 61.2 g C8H5KO4, 20 g KCl, 21.4 g MgCl2.6H2O, 0.2 g Na2SO4, 0.26 g 

CaCl2.2H20 

1000X vitamins 

In 100 mL - 100 mg pantothenic acid, 1 g nicotinic acid, 1 g inositol, 1 mg 

biotin 

10,000X trace elements 

In 100 mL - 500 mg H3BO3, 400 mg MnSO4, 400 mg ZnSO4.7H2O, 200 mg 

FeCl2.6H2O, 150 mg Na2MoO4, 100 mg KI, 40 mg CuSO4.5H2O, 1 g citric acid  
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• EMM  agar plates 

10 g Formedium Bacto Agar was autoclaved in 300 mL ultra-pure water. 

100 mL of 4X EMM was added to molten agar and supplemented with 

adenine, leucine and/or uracil, as needed (final concentration of 

supplements 1 g/L).  

• Lysogeny broth (LB) media 

In 1 L - 10 g tryptone, 5 g yeast extract, 5 g NaCl. Autoclaved 

• LB agar plates 

6 g Bacto Agar was autoclaved in 500 mL of LB media and poured into 

sterile petri dishes.  

• Extremely low nitrogen (ELN.) agar plates 

In 1 L - 27.3 g Formedium EMM Broth (without nitrogen), 0.05 g 

ammonium chloride, 0.2 g adenine, 0.1 g each of leucine, uracil, histidine 

and arginine, 25 g Bacto Agar. Autoclaved and poured into sterile petri 

dishes. 

2.1.2 Drugs used for genetic selection 
 

Drug Final concentration 

Nourseothricin sulphate (NAT) 100 μg/ml 

Geneticin dislulphate (G418) 200 μg/ml 

5-fluoroorotic acid (5-FOA) 1 mg/ml 

Blasticidin (BDS) 15 μg/ml 

Ampicillin sodium salt (AMP) 100 μg/ml 
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2.1.3 Buffers 
 

• NIB 

In 80 mL - 1.05 g MOPS, 1.47 g KAc, 17 mL 100% glycerol, 200 μl MgCl2. Adjust 

to pH 7.2 with 10 M KOH. Filter sterilised using a Steritop™ 0.22 μm 1 L filter 

unit (Merck Millipore). 

• 5X TBE buffer 

In 1 L - 54 g Tris base, 27.2 g boric acid, 20 mL 0.5M EDTA. 

• 10X TE 

In 1 L - 19.7 g Tris HCl, 4.7 g EDTA. Adjust to pH 8.0 with NaOH and autoclave. 

• 50 mM Citrate phosphate buffer  

In 1 L - 7.10 g Na2HPO4 (anhydrous), 11.50 g citric acid. Adjust pH to 5.6 and 

autoclave. 

• CSE 

In 1 L - 218.6 g sorbitol, 80 μl 0.5M EDTA in 50 mM citrate phosphate buffer.  

Filter sterilised using a Steritop™ 0.22 μm 1 L filter unit (Merck Millipore). 
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2.1.4 Strain list 
 
Table 2.1- List of strains used in this study 
 

Name Mating 
type 

Genotype Description Experiments 
used in 

AMC501 h- ade6-704 ura4-D18 leu1-32 Wild-type  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Pu-Seq 

IM655 h- ade6-704 ura4-D18 leu1-32 
rnh201::KanMX cdc20-M630F 

"wild type" Pol ε Pu-
Seq strain - Pol ε 

mutation in rnh201Δ 
background  

IM856 h- ade6-704 ura4-D18 leu1-32 
rnh201::KanMX cdc6-L591G 

"wild type" Pol δ Pu-
Seq strain - Pol δ 

mutation in rnh201Δ 
background 

YKP017 h- ade6-704 ura4-D18 leu1-32 
rif1::BSD rnh201::KAN cdc20-

M630F 

rif1Δ Pol ε Pu-Seq 
strain 

YKP019 h- ade6-704 ura4-D18 leu1-32 
rif1::BSD rnh201::KAN cdc-

6L591G 

rif1Δ Pol δ Pu-Seq 
strain 

PLK053 h+ ura4-D18 leu1-32 
rnh201::KanMX taz1::NAT 

cdc20-M630F 

taz1Δ Pol ε Pu-Seq 
strain 

PLK054 h- ura4-D18 leu1-32 
rnh201::KanMX taz1::NAT 

cdc6-L591G 

taz1Δ Pol δ Pu-Seq 
strain 

PLK073 h-  ura4-D18 leu1-32 man1::NAT 
rnh201::KANMX cdc20-M630F 

man1Δ Pol ε Pu-Seq 
strain 

PLK074 h-  ura4-D18 leu1-32 man1::NAT 
rnh201::KANMX cdc6-L591G 

man1Δ Pol δ Pu-Seq 
strain 

PLK083 h+  ura4-D18 leu1-32 epe1::NAT 
rnh201::KANMX cdc6-L591G 

epe1Δ Pol ε Pu-Seq 
strain 

PLK084 h+  ura4-D18 leu1-32 epe1::NAT 
rnh201::KANMX cdc20-M630F 

epe1Δ Pol δ Pu-Seq 
strain 

YKP038 h- ade6-704 ura4-D18 leu1-32 
rnh201::KanMX rif1-PP1 cdc20-

M630F 

Rif1-PP1 Pol ε Pu-Seq 
strain 

YKP039 h- ade6-704 ura4-D18 leu1-32 
rnh201::KanMX rif1-PP1 cdc6-

L591G 

Rif1-PP1 Pol δ Pu-Seq 
strain 

YKP048 h- ade6-704 ura4-D18 leu1-32  
rnh201::KanMX rif1-7A cdc20-

M630F 

Rif1-7A Pol ε Pu-Seq 
strain 

YKP049 h- ade6-704 ura4-D18 leu1-32 
rnh201::KanMX rif1-7A cdc6-

L591G 

Rif1-7A Pol δ Pu-Seq 
strain 

YKP026 smt0 h- ade6-704 ura4-D18 leu1-32 
smt0 rnh201::KanMX 

swi6::NAT cdc20-M630F 

swi6Δ Pol ε Pu-Seq 
strain 

YKP024 smt0 h- ade6-704 ura4-D18 leu1-32 
smt0 rnh201::KanMX 

swi6::NAT cdc6-L591G 

swi6Δ Pol δ Pu-Seq 
strain 

YKP036 h- ade6-704 ura4-D18 leu1-32 
rnh201::KanMX clr4::NAT 

cdc20-M630F 

clr4Δ Pol ε Pu-Seq 
strain 
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YKP037 h- ade6-704 ura4-D18 leu1-32 
rnh201::KanMX clr4::NAT cdc6-

L591G 

clr4Δ Pol δ Pu-Seq 
strain 

BAF59 h+ ade6-704 ura4-D18 leu1-32 
rif1::BSD 

rif1Δ  
Elutri-Seq 

BAF394 h+ ade6-704 ura4-D18 leu1-32 
his3-D1 rif1-PP1 

Rif1-PP1 

MS253 h- ura4-D18 leu1-32 
mrc1::KanMX 

mrc1Δ 

PLK076 h- ade6-704 ura4-D18 leu1-32 
loxP::rif1-mEOS::loxM3 Gar2-

GFP 

Rif1 tagged with 
mEOS Gar2 tagged 

with GFP 

 
Single 

molecule 
microscopy PLK081 h- ade6-704 ura4-D18 leu1-32 

loxP::rif1PP1-mEOS::loxM3 
Gar2-GFP 

Rif1-PP1 tagged with 
mEOS Gar2 tagged 

with GFP 
 

2.2 Methods 
 

2.2.1 General molecular cloning techniques 
 

2.2.1.1 Polymerase chain reaction (PCR) methods 
 

Colony PCR 

A single colony was mixed into 25 μl double distilled H20 (ddH2O) and boiled at 

95oC. The following master mix was prepared separately: 

Component Volume for 25 μl reaction 

10X Taq buffer 5 μl 

dNTPs (2 mM each) 5 μl 

Forward primer (10 μM) 1 μl 

Reverse primer (10 μM) 1 μl 

ddH2O 12.75 μl 

Super-Therm Taq polymerase 
(Labmaster) 

0.25 μl 

 

 

 

 



40 
 
 

25 μl of the master mix was added to the cells after 10 minutes at 95oC, for a total 

volume of 50 μl. The thermocycling conditions were: 

 
95oC       2 minutes 
95oC      20 seconds 
Primer melting temperature -4oC  10 seconds 
72oC       30 seconds / kb 
72oC      10 minutes 
20oC      Hold 
 

PCR from genomic DNA 

To amplify fragments for cloning, KOD hot start polymerase kit (Novagen) was 

used: 

Component Volume for 50 μl reaction 

10X KOD buffer 5 μl 

dNTPs (2 mM each) 5 μl 

MgSO4 (25 mM) 4 μl 

Forward primer (10 μM) 1 μl 

Reverse primer (10 μM) 1 μl 

DNA*  

ddH2O Make reaction up to 50 μl 

KOD polymerase 1 μl 

 

*100ng and 10ng of DNA was used to amplify fragments from genomic and 

plasmid DNA, respectively. 

The thermocycling conditions were: 

95oC       2 minutes 
95oC      20 seconds 
Primer melting temperature -4oC  10 seconds 
68oC       30 seconds / kb 
68oC      10 minutes 
20oC      Hold 
 

X29 

X29 
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2.2.1.2 Restriction digests 
Restriction enzymes were purchased from New England Biolabs (NEB). Restriction 

digests were performed according to the manufacturer’s conditions. 

2.2.1.3 Cloning 
Cloning was carried out using NEBuilder® HiFi DNA Assembly kits (NEB). The 

vector was linearized using restriction enzymes and ran on 1% TBE agarose gel. 

The linearized fragment was excised using a scalpel and the DNA was extracted 

from the agarose gel using Macherey-Nagel Gel and PCR Clean-up Kit, following 

manufacturer’s instructions. Next, the fragments that were to be cloned into the 

vector were amplified with overhangs, to comply with NEBuilder® HiFi DNA 

Assembly kits recommendations.  

To clone 1 insert into a vector, 0.02 pmoles of vector were mixed with 0.04 pmoles 

of insert. 5 μl of NEBuilder HiFi DNA Assembly Master Mix was added and the total 

volume was taken up to 10 μl using ultra-pure water. The reaction was incubated 

in a thermocycler for 15 minutes at 50oC. 

To clone 3 inserts (where each insert was at least 200 bp long) into a vector, 0.05 

pmoles of each insert was mixed and 5 μl of NEBuilder HiFi DNA Assembly Master 

Mix was added. The total volume was taken up to 10 μl (minus the volume of 0.01 

pmoles of vector) using ultra-pure water. The reaction was incubated in a 

thermocycler for 15 minutes at 50oC and then for a further 15 minutes on ice. 0.01 

pmoles of vector was added and the reaction was incubated in a thermocycler for 1 

hour at 50oC. 

2.2.2 General E. coli cell biology techniques 
 

2.2.2.1 E. coli transformation 
40 μl of competent DH5α E. coli cells were thawed on ice. Cells were incubated 

with 2 μl of NEB HiFi Assembly product for 20 minutes on ice and heat shocked for 

1 minute at 42oC. After heat shocking, the cells were incubated on ice for a further 

5 minutes. 700 μl of LB broth was added, the cells were left to grow for 1 hour at 

37oC and were then plated onto LB agar plates, supplemented with ampicillin for 

selection.  
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2.2.2.2 Extraction of plasmids from E. coli 
Small and large scale plasmid extractions were done using Macherey-Nagel mini 

and midi prep kits, respectively, following manufacturer’s instructions. 

2.2.3 General S. pombe cell biology techniques 
 

2.2.3.1 Crossing S. pombe strains and random spore analysis 
S. pombe h+ and h- strains were mixed in 50 μl of ddH2O on ELN agar plates. The 

patch was left to dry and the plate was incubated at 25oC for 3 days. A patch of 

crossed cells was resuspended in 1 mL of ddH2O. 1 μl of β-galactosidase from Helix 

pomentia (Roche) was added and the cells were left to rotate at room temperature 

overnight. The following day, the spores were counted using a haemocytometer, 

1000 spores were plated onto YEA and incubated at 30oC for 3 days. The resultant 

colonies were replica plated onto YEA supplemented with drugs or EMM to check 

for selection markers. 

2.2.3.2 S. pombe transformation  
Cultures were grown overnight to a final density of 1x107 cells/mL (counted using 

haemocytometer). 1x108 cells were washed with ddH2O, pelleted and resuspended 

in 1 mL of LiAc-TE. 2 μl of boiled salmon sperm DNA (10 mg/mL) and 500 ng of 

plasmid DNA were added and the cells were incubated at room temperature for 10 

minutes. 260 μl of 40% (w/v) PEG (dissolved in LiAc-TE) was added and the cells 

were incubated for 1 hour at 30oC. 43 μl of DMSO was added and the cells were 

mixed and heat shocked for 5 minutes at 42oC. Immediately after, the cells were 

pelleted, washed with 1 mL of ddH2O, pelleted again and resuspended in 500 μl of 

ddH2O. 2 x 250 μl was plated out onto 2 YEA plates, which were incubated at 30oC 

until colonies appeared.  The colonies were restreaked onto fresh YEA plates and 

replica plated onto YEA supplemented with drugs or EMM to check for selection 

markers. 
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2.2.3.3 Recombination mediated cassette exchange (RMCE) 
All strains were made using non-essential gene replacement, as described by 

(Watson, Garcia et al. 2008). 

Base strain construction 

The ura4 marker gene flanked by two incompatible lox sites - loxM3 and loxP 

(collectively referred to as the ‘ura4 cassette’) was amplified from plasmid pAW1 

using primers with 80 bp long overhangs, which were homologous to the regions 

flanking the desired deletion. The linear fragment was used to transform ura- leu- 

S. pombe strains, as described in 2.2.3.2 (using 10 μl of the unpurified PCR 

reaction). Recombination between the regions of homology in the genome and on 

the linear fragment replaced the targeted gene with the ura4 cassette. 

Transformed cells were selected by screening for uracil prototrophy.  

Plasmid construction 

The genes of interest were amplified and cloned into plasmid pAW8 as described 

in 2.2.1.3. Plasmid pAW8 contains the leu1 marker gene and the gene coding for 

the Cre recombinase. 

Strain transformation and selection 

The pAW8 based plasmids were used to transform the base strain, as described in 

2.2.3.2. Transformed cells were selected by screening for uracil and leucine 

prototrophy. A single colony was used to inoculate 10 mL of YEA, which was grown 

overnight to saturation at 30oC. This allowed the recombination (catalysed by Cre) 

of the loxP::gene::loxM3 construct on the plasmid with the loxP::ura4::loxM3 

construct in the base strain. 104 cells were plated out on YEA+5FOA and incubated 

at 30oC for 3 days, to screen for uracil auxotrophy. The resultant colonies were 

streaked out onto YEA and replica plated to check for leucine auxotrophy (loss of 

pAW8). 

2.2.3.4 Genomic DNA extraction (for PCR) 
Strains were grown in 10 mL of YE overnight at 30oC. 1 mL of the saturated culture 

was pelleted, resuspended in 1 mg/mL lyticase (Merrick and Fisher) in CSE and 

incubated at 37oC for 30 minutes. The cells were pelleted again and resuspended in 
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450 μl of 5X TE. 50 μl of 10% SDS was added and the sample was incubated at 

room temperature for 5 minutes. 150 μl of 5 M KAc was added and the sample was 

incubated on ice for 5 minutes. The lysed cells were then centrifuged for 5 minutes 

(13,000 x g at 4oC). The supernatant was added to 650 μl of isopropanol to 

precipitate the DNA. The sample was vortexed and then centrifuged for 10 minutes 

(13,000 x g at 4oC). The supernatant was carefully removed and the pellet was 

washed with 700 μl 70% EtOH. The DNA was centrifuged for a further 10 minutes 

(13,000 x g at 4oC) and the supernatant was removed. The pellet was dried in a 

vacuum centrifuge for 15 minutes. The dry pellet was resuspended in 200 μl 

ddH2O. 5 μl of 10 mg/ml RNase A was added before the DNA was used for PCR.  

2.2.4 Polymerase usage sequencing (Pu-Seq) 
 

2.2.4.1 Strain growth, DNA preparation and Illumina library preparation 
 

2.2.4.1.1 Cell collection and DNA extraction 

Single colonies of rnh201Δ cdc20-M630F (Polɛ) and rnh201Δ cdc6-L591G (Polδ) Pu-

Seq strains were each used to inoculate 10 mL YE. The cultures were grown 

overnight to saturation at 30oC. 1.8x107 cells from the saturated primary culture 

were used to inoculate 1 L of YE. Cells were grown for ~17 hours to mid-log phase 

(concertation between 3x105 and 5x105 cells/mL). Doubling times of Pu-Seq 

strains with additional mutations varied. The amount of primary culture and/or 

growth times were changed accordingly.  

800 mL of the secondary culture was pelleted and the cells were washed in 40 mL 

of ddH20.  The cells were resuspended in 5 mg/mL lyticase (Merrick and Fisher) in 

NIB buffer. The cells were incubated for 30 minutes at 37oC. The lysed cells were 

pelleted, washed in 20 mL ddH2O and resuspended in 2 mL of Qiagen G2 digestion 

buffer. 100 μl of 10 mg/mL RNase A was added and the sample was incubated for 

30 minutes at 37oC. 100 μl of 30% (w/v) N-lauroyl sarcosine and 100 μl of freshly 

prepared 20 mg/ml Proteinase K were added the sample was incubated for a 

further 30 minutes at 55oC.  

The sample was centrifuged (4,000 x g at 4oC) for 15 minutes. The supernatant 

(S1) was removed and stored on ice and the pellet was resuspended in 1 mL 
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Qiagen G2 buffer. 50 μl of 30% (w/v) N-lauroyl sarcosine and 50 μl of freshly 

prepared 20 mg/ml Proteinase K were added to the resuspended pellet. The 

sample was incubated for a further 30 minutes at 55oC. 

The resuspended pellet was centrifuged (4,000 x g at 4oC) for 15 minutes. The 

supernatant (S2) was added to S1 and the pellet was discarded. The pooled 

supernatant was added to Qiagen 100/G Genomic-tip column (equilibrated using 

4 ml of Qiagen buffer QBT). The column was washed using 15 mL of Qiagen 

buffer QC. The DNA was eluted in 5 mL of Qiagen buffer QF (warmed to 55oC).  

The 5 mL elute was split equally between five 2 mL microfuge tubes. 700 μl of 

isopropanol was added to each tube. The tubes were vortexed and then 

centrifuged for 15 minutes (13,000 x g at 4oC). The supernatant was carefully 

removed and the pellets were washed with 700 μl 70% EtOH. The DNA was 

centrifuged for a further 10 minutes (13,000 x g at 4oC) and the supernatant was 

removed. The pellets were dried in a vacuum centrifuge for 15 minutes. The dry 

pellets were resuspended in a total volume of 200 μl ddH2O. The DNA 

concentration was quantified using a Nanodrop spectrophotometer. 

2.2.4.1.2 Alkali treatment and size selection  
20 μg of genomic DNA was incubated with 0.3 M NaOH for 2 hours at 55oC 

(recommended final volume 100 μl). Half of the reaction (10 μg of fragmented 

single stranded DNA) was run on 2% (w/v) TBE agarose gel in 0.5X TBE for 2 

hours at 100 V. The gel was stained for 1 hour with 0.5 μg/ml acridine orange (Life 

Technologies) solution (2,000X dilution in water from 10 mg/ml stock). The gel 

was destained in 300 mL of ultra-pure water for 1 hour and then overnight in 300 

mL of fresh ultra-pure water.  

The gel was visualized under long-wave UV illumination. The fragments containing 

300-500 bp single stranded DNA (ssDNA) were excised using a scalpel. The DNA 

was extracted from the agarose gel using Macherey-Nagel Gel and PCR Clean-up 

Kit, following manufacturer’s instructions. The concentration of ssDNA was 

quantified using a NanoDrop® spectrophotometer.  
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2.2.4.1.3 Second (complementary) strand synthesis 
100 ng of ssDNA was taken up to a final volume of 30 μl in ultra-pure water. The 

following reaction was set up in a clean PCR tube: 

Component Volume 

ssDNA in ultra-pure water 30 μl 

8N random primers (3 mg/mL) 5 μl 

NEB 2.1 buffer 5 μl 

 

The reaction was incubated at 95oC for 5 minutes in a thermocycler and then for 5 

minutes on ice. Immediately afterwards, 5 μl of dNTPs (where dTTP was 

substituted for dUTP; 2 mM each) and 1 μl of T4 DNA polymerase were added. The 

reaction was incubated at 37oC for 20 minutes in a thermocycler. Following this, 

the reaction was quenched using 5 μl of pH 8.0 EDTA.  

The 55 μl reaction containing the dsDNA fragments was transferred to a fresh 

microfuge tube. 99 μl (1.8X) of AMPure XP beads (Beckman Coulter) were added 

and left at room temperature for 5 minutes. The beads were separated from the 

reaction using a magnetic rack. The supernatant was removed and discarded. The 

beads were washed twice with 200 μl of fresh 80% EtOH. The beads were left to 

dry on the magnetic rack for 5 minutes before being resuspended in 55 μl of ultra-

pure water. The reaction was left at room temperature for 5 minutes and the beads 

were separated from the supernatant using a magnetic rack. 53 μl was carefully 

taken up.  

1 μl was used to assess the size of DNA fragments using a high-sensitivity DNA 

Bioanalyser chip (Agilent). 50 μl was used to prepare the Illumina library. 

2.2.4.1.4 Illumina library preparation 
The libraries were prepared using the NEBNext® Ultra™ II DNA Library Prep Kit 

(NEB). The manufacturer’s protocol was followed with some modifications. The 

final protocol is described below.  
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End repair  

Component Volume 

End Prep Enzyme Mix 3 μl 

End Prep Reaction buffer 7 μl 

dsDNA (from previous step) 50 μl 

 
Reaction was incubated in a thermocycler (with lid heated to 98oC) using the 

following conditions: 

 

20oC   30 minutes 
65oC  30 minutes 
4oC  Hold 
 

Adaptor ligation 

The following reaction was set up and incubated in a thermocycler (with lid heated 

to 30oC) for 20 minutes at 37oC. 

Component Volume 

End repair reaction mixture 60 μl 

Ligation Master Mix 30 μl 

1/10 diluted NEBNext® adaptors 2.5 μl 

Ligation enhancer  1 μl 

 

This allowed the ligation of the hairpin loop-shaped NEBNext adaptors, which 

ligate in a known orientation relative to the 3’ and 5’ ends of the short DNA 

fragments. A directional library created in this manner contained fragments whose 

3’ and 5’ ends are flanked by unique sequences. 

The fragments with the ligated adaptors were size selected using AMPure XP beads 

(Beckman Coulter). The final volume of the reaction was adjusted to 100 μl using 

ultra-pure water in a clean microfuge tube. 35 μl (0.35X) of AMPure XP beads was 

added, mixed with the DNA and left at room temperature for 5 minutes. The beads 

were separated from the supernatant using a magnetic rack. The supernatant was 

carefully removed and added to a clean microfuge tube. 35 μl (0.26X) of AMPure 
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XP beads was added mixed with the DNA and left at room temperature for 5 

minutes. The beads were separated from the supernatant using a magnetic rack. 

The supernatant was removed and discarded. The beads were washed three times 

with 200 μl of fresh 80% EtOH. The beads were left to dry on the magnetic rack for 

5 minutes before being resuspended in 20 μl of ultra-pure water. The reaction was 

left at room temperature for 5 minutes and the beads were separated from the 

supernatant using a magnetic rack. 17 μl was carefully taken up. 

USER digestion and PCR enrichement 

17 μl of size selected dsDNA fragments with ligated adaptors were used to set up 

the following reaction: 

Component Volume 

USER™ Enzyme  3 μl 

Q5 Master Mix 25 μl 

Universal primer (10 μM) 2.5 μl 

Index primer (10 μM) 2.5 μl 

dsDNA 17 μl 

Reaction was incubated in a thermocycler (with lid heated to 98oC) using the 

following conditions: 

37oC   15 minutes 
98oC  30 seconds 
98oC  10 seconds 
65oC   75 seconds 
65oC  5 minutes 
4oC  Hold 
 

50 μl (1X) of AMPure XP beads was added to the 50 μl reaction, mixed with the 

DNA and left at room temperature for 5 minutes. The beads were separated from 

the supernatant using a magnetic rack. The supernatant was removed and 

discarded. The beads were washed twice with 200 μl of fresh 80% EtOH and left to 

dry on the magnetic rack for 5 minutes before being resuspended in 26 μl of ultra-

pure water. The reaction was left at room temperature for 5 minutes and the beads 

were separated from the supernatant using a magnetic rack. 25 μl was carefully 

taken up. 

X9 
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25 μl (1X) of AMPure XP beads was added to the 25 μl sample, mixed with the DNA 

and left at room temperature for 5 minutes. The beads were separated from the 

supernatant using a magnetic rack. The supernatant was removed and discarded. 

The beads were washed twice with 200 μl of fresh 80% EtOH and left to dry on the 

magnetic rack for 5 minutes before being resuspended in 23 μl of ultra-pure water. 

The reaction was left at room temperature for 5 minutes and the beads were 

separated from the supernatant using a magnetic rack. 20 μl was carefully taken 

up. 

1 μl of a 1/5 dilution of the final library was run on the Agilent 2100 Bioanalyser, 

using a high-sensitivity DNA chip. The rest was stored at -20oC. 

2.2.4.2 Illumina library sequencing 
Between 28 and 30 Pu-Seq libraries were multiplexed and sequenced using 

NextSeq 550. The runs typically generated 400 million paired end reads, 101 bp 

long. Each library, therefore, generated ~ 13 million reads. 

2.2.4.3 Data analysis 
The Pu-Seq data analysis can be broadly subdivided into two parts:  

1) The analysis of the raw reads. Briefly, this analysis included the alignment 

of reads and tracking of the 5’ end of the reads, counting the number of 

times they appeared in each bin. 

2) Analysis of the count data to produce tracks of polymerase usage, from 

which origins of replication, local replication timing and polymerase bias 

were calculated.  

Both parts of the analysis are described in detail below. Flowcharts describing the 

steps for parts 1) and 2) are also shown in Figs. 2.1 A and B, respectively. 

2.2.4.3.1 Analysis of the raw reads 
Data from paired end sequencing of each library resulted in two FASTQ files, each 

with R1 or R2 sequencing data. The reads in each file were aligned to the S. pombe 

reference genome SP2 using Bowtie2. In addition to aligning the reads, Bowtie2 

also trimmed 1 bp off the 5’ end of the read (--trim5 1) and 30 bp off the 3’ end of 

the read (--trim3 30). The paired end alignment resulted in a single SAM file for 

each strain.  
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Each SAM file was processed using the pe-sam-to-bincount.pl program 

(https://github.com/yasukasu/sam-to-bincount), written by Dr. Yasukazu Daigaku. 

The program analyses the data in the following way: 

• Concordantly aligned reads (i.e., reads where both of the paired end reads 

were aligned) are selected from the SAM file (by filtering the alignment 

records using the 0x2 flag bit) and sorted. 

• The genome is divided into bins (default bin size is 300 bp). 

• The aligned reads are sorted depending on whether they originated from the 

forward or reverse strand. This was carried out using the directionality 

information that was preserved during library construction (as described in 

2.2.4.1.4). 

• The position of the base directly next to R1-end (compensating for the 1 bp 

5’ trimming carried out by Bowtie2) is assigned to each bin.  

• The number of times the 5’ end was found in each bin is counted and 

returned in CSV format. 

The SAM file analysis produces two CSV files for each library, each containing counts 

for the Watson and Crick strands. The analysis is carried out for the reads from the 

polymerase ε and δ libraries and the four CSV files are used in the next step of the 

analysis. 

2.2.4.3.2 Analysis of the count data 
The raw count data in the CSV files was further analysed using a custom Pu-Seq R 

script (Appendix 9.1), written by Dr. Andrea Keszthelyi. The program analyses the 

data in the following way: 

• Count data for the Watson and Crick strands, from the polymerase ε and δ 

experiments are input (denoted CW δ, CW ε, CC δ, CC ε, respectively). 

• The count data for each dataset in each bin (x) are normalised (N) to the total 

number of counts in each data set, for example : 

NW(x) δ = CW(x) δ / ∑ (CW(x) δ) 

• Assuming that each strand can be synthesised by only polymerase ε or δ, 

the contribution of each polymerase to the synthesis of each strand was 

https://github.com/yasukasu/sam-to-bincount
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calculated at each bin. For example, to calculate the ratio of polymerase δ 

usage on the Watson strand (RW δ): 

RW(x) δ = NW(x) δ / (NW(x) δ + NW(x) ɛ) 

• The data were smoothed using a moving average 3, i.e., the data point for 

each bin (x) is an average of seven bins (bin at position x, three bins 

upstream and three bins downstream).  

The usage of the polymerases at each strand was further used to extract the bias of 

polymerase usage at every position, positions and the firing efficiencies of the 

origins of replication, the progression of the leftward moving replication forks and 

the local replication timing. The details of these calculations are described below. 

Calculating the bias of polymerase usage on both strands 

When calculating the usage of each polymerase on the Watson and Crick strands 

(i.e., the ratios of polymerase usage), it is assumed that only polymerases ε and δ 

replicate the DNA. The contribution of each polymerase at different positions, 

however, may differ and can be calculated.  

Total polymerase usage on both strands can be counted for each polymerase: 

RCW(x) δ = RC(x) δ + RW(x) δ 

Given that the sum of polymerase δ and ε usage at every position is equal to 1, i.e.: 

RC(x) δ= 1−RC(x) ɛ  

RW(x) ɛ =1−RW(x) δ 

Therefore, the sum of the totals must be equal to 2, i.e.: 

R(x) POL = R(x) δ + R(x) ε = 2 

From this, the bias towards the relative contribution of polymerase δ on both 

strands (B) can be counted using: 

B(x) δ = ( RC(x) δ + RW(x) δ ) / 2 
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The expected contribution of each polymerase at every position (x) is 0.5. 

Deviation from B(x) δ above and below 0.5 is therefore considered a bias towards 

the usage polymerases δ and ε, respectively.  

The same calculation can be done for polymerase ε. In the work carried out for 

this thesis, however, B(x) δ was used to calculate polymerase biases.  

Calculating the positions of the origins of replication and their respective firing 

efficiencies 

Given that the sum of polymerase δ and ε usage at every position is equal to one, 

i.e.:  

RC(x) δ= 1−RC(x) ɛ  

RW(x) ɛ =1−RW(x) δ 

The usage of polymerase δ on the Crick (reverse) strand (RC δ) and polymerase ε on 

the Watson (forward) strand (RW ε) contain all of the count information. Origin 

positions and efficiencies were calculated using the steep transitions in the RC δ and 

RW ε datasets separately (marked with yellow circles on Fig. 2.1 B ii).  

To determine which of the transitions would be classed as origins, differentials of 

each data set (smoothed using a moving average of 3, as described for the data 

normalisation) were calculated. In order to reduce noise, only positive peaks in the 

differential data that had a value above the set threshold (marked with a green line 

on Fig. 2.2.2B ii) were further analysed. The default threshold was set to the 30th 

percentile of all peaks. Given the stochastic nature of origin firing in S. pombe, 

peaks within 4 bins were merged and considered as one “origin of replication”. The 

midpoint position of the peaks merged was assigned as the position of the origin. 

The efficiency of each origin was calculated from the difference between the 

maxima and the minima of the steep transition zone (marked with yellow triangles 

on Fig. 2.1 B ii), seen in the original RC δ and RW ε datasets. The difference, 

multiplied by 100 is the probability of the origin firing in a population of cells as a 

percentage. 
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Each of the positions of the origins and their corresponding efficiencies calculated 

from the Watson and Crick datasets were then averaged and a final list of the 

positions of origins of replication and their respective origin firing efficiencies was 

produced. 

   

  

Calculating the progression of leftward moving forks and relative replication 

timing 

The leftward moving forks on the 5’ to 3’ forward (Watson) strand are synthesised 

using polymerase δ. Conversely, on the Crick strand, the leftward moving forks are 

synthesised using polymerase ε. As such, the average progression of leftward 

moving forks at each position (x) was calculated using: 

𝑅𝑅𝑊𝑊    𝛿𝛿 + 𝑅𝑅𝐶𝐶    𝜀𝜀

2
 

Using the average progression of leftward moving forks and assuming a mean 

replication fork velocity of 1.5 kb/min, the relative replication timing (Pu-Seq 

Trep) was calculated for each bin, as described by (Retkute, Nieduszynski et al. 

2012). Trep calculations can be found in the Pu-Seq R script (9.1). 
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 A)  Analysis of raw reads 
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Bi) Analysis of count data - polymerase usage 
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Bii) Analysis of count data - 
Origins of replication 
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Fig. 2.1 - Steps involved in Pu-Seq data analysis  

 

A) Analysis of raw reads. Each Pu-Seq library is sequenced using Illumina paired 

end sequencing. The data sequenced using the forward and reverse primers are 

stored in FASTQ format - files FASTQ1 and FASTQ2, respectively. The data are then 

aligned to the SP2 reference genome using Bowtie2, set to end-to-end alignment 

in mixed mode. Concordantly aligned reads are extracted and the number of reads 

in each 300 bp bin is counted across the genome. This analysis is carried out for 

reads generated by Pu-Seq polymerase ε and δ libraries separately (the flowchart 

shows the analysis for one of the libraries). Raw counts of polymerase usage on 

the forward (Watson) and reverse (Crick) strands are produced. 

B) Analysis of raw counts. 

i) Calculating the polymerase usage ratios. The counts of polymerase usage are 

normalised for each dataset separately. Polymerase usage of each polymerase on 

the forward (Watson) and reverse (Crick) strands is calculated, using the equations 

shown on the figure. The resultant data are smoothed using a moving average. 

ii) Defining the position of the origins of replication and calculating their 

respective firing efficiencies. The differentials of the polymerase usage of 

polymerases δ and ε on the forward (Watson) and reverse (Crick) strands, 

respectively, are calculated. The differential peaks > threshold are marked with 

yellow circles on panel 3. These positions are identified on the ratios of 

polymerase usage (panel 1). The distance between the minimum and maximum 

values (yellow triangles, panel 1) is measured to represent the efficiency of firing 

of that origin. The origin efficiencies calculated from the usage of polymerases δ 

and ε are averaged to produce the final efficiency of firing of each origin of 

replication.  

Adapted from (Keszthelyi, Daigaku et al. 2015). 
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2.2.5 Elutri-Seq 
 

2.2.5.1 Cell collection, DNA and library preparation and sequencing 
 

2.2.5.1.1 Cell collection and synchronisation  

100 mL YEP was inoculated and grown overnight at 30oC. The next morning, the 

concentration of cells was counted using a haemocytometer. The cells were diluted 

to 7.5x105 cells/mL (i.e., between two or three doublings away from mid-log 

phase).  

The mid-log phase sample was used to inoculate 7.8x106 cells into 1 L YEP. Four 1 

L YEP cultures were set up and grown for 8 doublings (20 hours). 4 L of cells 

between 2x106 and 4x106 cells/mL were used for elutriation.  2.5x107 G2 cells were 

collected and resuspended in YE media to a final concentration of 2.5x105 

cells/mL. The cells were allowed to complete one cell cycle at 30oC.  

5 mL samples were taken at 20 minutes and then every 10 minutes between 50 

and 120 minutes after release into YE media, for DNA extraction. The cells were 

collected into 0.05 mM sodium azide and stored on ice until the end of the time 

course. Cells were then pelleted, washed with ddH2O and snap frozen in liquid 

nitrogen. 

2.2.5.1.2 Analyzing cells cycle progression 
The cell cycle was monitored using flow cytometry (FACS) and microscopy, as 

described below.  

For microscopy analysis, 1 mL samples were taken every 10 minutes between 20 

and 120 minutes after release into YE media. The cells were pelleted and 

resuspended in 1 mL methanol. 3 μl of the cells were mounted onto a glass slide, 

allowed to dry, and stained with 1 μg/mL 4′,6′-diamidino-2-phenylindole (DAPI) 

and 2.5% v/v calcofluor-white. At least 100 cells were counted at each time point, 

using an inverted fluorescence microscope (EVOS™ FL). Based on morphology, the 

stage at which each cell was in the cell cycle was scored. 

For FACS analysis, 5 mL samples were taken at 20 minutes and then every 10 

minutes between 50 and 120 minutes after release into YE media. The cells were 

collected into 200 mM ice-cold EDTA and 0.05 mM sodium azide and stored on ice 
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until the end of the time course. Cells were then pelleted, washed with ddH2O, 

resuspended in 1 mL 70% EtOH and stored at 4oC.   

To prepare cells for FACS, the 5 mL aliquots were pelleted, washed and 

resuspended in 500 µl of 50 mM trisodium citrate (pH 7.0) containing 50 µl of 10 

mg/mL RNase. Cells were incubated for 3 hours at 37oC. A master mix containing 

10 µl of 500 µg/mL propidium iodide (PI) (Sigma) and 1 mL of 50 mM tri-sodium 

citrate (pH 7.0) was prepared, per sample. 200 µl of the RNase treated cells was 

added to 1mL of the master mix and the cells were then sonicated for 10 seconds 

at 20% power (Ultra sonic Processor sonicator). Cells were analysed for DNA 

content on BD Accuri™ C6 Plus flow cytometer. 

2.2.5.1.3 Genomic DNA extraction, sonication, library preparation and sequencing  
Genomic DNA was extracted for the S-phase and G2 time points as follows. The 

cells were thawed and resuspended in 1 mg/mL lyticase (Merrick and Fisher) in 

CSE and incubated at 37oC for 30 minutes. The cells were pelleted again and 

resuspended in 450 μl of 5X TE. 50 μl of 10% SDS was added and the sample was 

incubated at room temperature for 5 minutes. 150 μl of 5 M KAc was added and 

the samples were incubated on ice for 5 minutes. The lysed cells were centrifuged 

down for 5 minutes (13,000 x g at 4oC). The supernatant was added to 650 μl of 

isopropanol to precipitate the DNA, vortexed and centrifuged for 10 minutes 

(13,000 x g at 4oC). The supernatant was carefully removed and the pellet was 

washed with 700 μl 70% EtOH. The DNA was centrifuged for a further 10 minutes 

(13,000 x g at 4oC) and the supernatant was removed. The pellet was dried in a 

vacuum centrifuge for 15 minutes. The dry pellet was resuspended in 250 μl ultra-

pure water. 

5 μl of 10 mg/mL RNase was added to the DNA and incubated for 20 minutes at 

37oC. 2 μl of 10% SDS and 10 μl of 10 mg/mL Proteinase K was added and the DNA 

was incubated for 1 hour at 55oC. The volume was taken up to 500 μl using ultra-

pure water. 2 volumes (1 mL) of phenol:chloroform:isoamyl alcohol (25:24:1, 

Sigma, 77617)  was added, the sample was vortexed for 20 seconds and 

centrifuged for 5 minutes (13,000 x g at 4oC). The upper phase (containing the 

DNA) was transferred to a fresh microfuge tube. The DNA was precipitated by 

adding 1/10 volume of 3 M NaAc, 2.5 volumes of 100% EtOH and incubating on ice 
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for 10 minutes. The sample was centrifuged for 15 minutes (13,000 x g at 4oC), the 

supernatant carefully removed and the pellet washed in 1 mL 70% EtOH. The DNA 

was centrifuged for a further 10 minutes (13,000 x g at 4oC) and the supernatant 

was removed. The pellet was dried in a vacuum centrifuge for 15 minutes. The dry 

pellet was resuspended in 100 μl ultra-pure water and transferred to a Covaris 

microTUBE. 

The DNA was sonicated for 6 minutes and 50 seconds using the Covaris M220 

system (duty cycle 20%, peak incident power 50 Watts, 200 cycles per burst, water 

bath temperature 20oC). The sonicated DNA was size selected to enrich for ~250 

bp fragments using AMPure XP beads (Beckman Coulter). 90 μl (0.9X) of AMPure 

XP beads was added, mixed with the DNA and left at room temperature for 5 

minutes. The beads were separated from the supernatant using a magnetic rack. 

The supernatant was carefully removed and added to a clean microfuge tube. 20 μl 

(1.1X) of AMPure XP beads was added mixed with the DNA and left at room 

temperature for 5 minutes. The beads were separated from the supernatant using 

a magnetic rack. The supernatant was removed and discarded. The beads were 

washed twice with 200 μl of fresh 80% EtOH and left to dry on the magnetic rack 

for 5 minutes before being resuspended in 55 μl of ultra-pure water. The reaction 

was left at room temperature for 5 minutes and the beads were separated from the 

supernatant using a magnetic rack. 53 μl was carefully taken up. 

1 μl was run on the Agilent 2100 Bioanalyser, using a high-sensitivity DNA chip. 

50 μl was used to construct an Illumina library which was prepared and 

sequenced, as described in 2.2.4.1.4 The depth of sequencing is specified for each 

Elutri-Seq experiment individually.  

2.2.5.2 Data analysis 
Elutri-Seq RT profiles were generated by calculating the ratio between the number 

of reads that map to each locus (i.e., the copy number) in early S-phase and G2. Loci 

that replicated earlier had a greater copy number than those that replicated late in 

S-phase.  

The FASTQ data were aligned to the SP2 reference genome using Bowtie2, as 

described in 2.2.4.3. In order to calculate these ratios, the following samtools and 
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bedtools commands were used (kindly shared by Prof. Conrad Nieduszyski) on the 

S-phase (FILE1) and G2 (FILE2) data (file names are shown in bold for clarity): 

1) Sort and index reads 

samtools sort FILE1.bam FILE1_sorted 

samtools index -b FILE1_sorted.bam 

2) Retrieve and print the sequence names in the index file.  

samtools idxstats FILE1_sorted.bam | awk 'BEGIN {OFS="\t"} {if ($2>0) 

print ($1,$2)}' > FILE1_genome 

3) Bin the genome into 1 kb windows 

bedtools makewindows -g FILE1_genome -w 1000 > windows.bed 

4) Determine the number of 5’ ends of reads from control sample that map to 

each position in the genome  

samtools view -h -@ 1 -q 30 -F 3840 -f 64 -L windows.bed 

FILE1_sorted.bam | grep -v XS:i: | samtools view -b - | bedtools 

genomecov -5 -d -ibam stdin | awk ‘BEGIN {OFS="\t"} {if ($3>0) print 

$1,$2,$2,"GENOTYPE",$3}' > FILE1.bed 

5) Sum reads in each bin and convert to bed format (done in awk). 

bedtools map -a windows.bed -b FILE1.bed -null 0 -o sum | awk  ‘BEGIN 

{OFS="\t“} {if ($4>0) print $1,$2,$3,"GENOTYPE",$4} > 

FILE1_total_reads_in_bins.bed 

6) Normalise the number of reads in each bin to the total number of reads 

(done in R). 

File1<- read.delim(“FILE1_total_reads_in_bins.bed”, header=FALSE, 

stringsAsFactors=FALSE) 

File1$V5<-(File1[,5]/sum(File1[,5])) 

write.table(File1, “FILE1_total_reads_in_bins_normalised.bed", quote = 

F, col.names = F, row.names = F, sep="\t") 

7) Repeat steps 4-6 for FILE2.  

8) Use bedtools to calculate the ratio between the two files. Windows with less 

than a quarter of the expected number of reads mapping were excluded.  
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bedtools intersect -a FILE1_total_reads_in_bins_normalised.bed -b 

FILE2_total_reads_in_bins_normalised.bed -wb | awk 'BEGIN {OFS="\t"} 

{line[NR] = $0; control+=$5; repl+=$10; count+=1} END { for (r=1; 

r<=NR; ++r) {split(line[r], fields); if(fields[5]>0.25*control/count 

&& fields[10]>0.25*repl/count) print 

fields[1],fields[2],fields[3],fields[4],(fields[10]/fields[5])}}' > 

ElutriSeq_ratio.bed 

2.2.5.3 Calculating the percentage of genome replicated from FACS and septation 
data 
The method for calculating the percentage of the genome replicated was kindly 

carried out and shared by Dr. Carolin Müller from Prof. Nieduszynski’s lab.  

During the preparation of cells for FACS, the post S-phase S. pombe cells separate. 

As a result, the 2N peak can be assigned to post-S-phase G2 cells (2N), G2 cells (2N), 

M-phase cells (2N) and G1 cells (2 x 1N). 

The proportion of cells post-S-phase were determined using cell morphology for 

each time point, described in 2.2.5.1.2. This was low for early time points (e.g., 20-

60 minutes after elutriation). The proportion of S-phase cells increased during the 

time course with the onset and completion of S-phase. 

The fraction of post-S-phase cells (morphology data) were then used to calculate 

how much of the 2N peak (FACS data) could be explained by cells that have 

completed S-phase. Using this, the population average of the percentage of the 

genome replicated was calculated at each time point. 

2.2.6 Imaging S. pombe with mEos3.2 and GFP tagged proteins  
 

Live S. pombe with mEos3.2 tagged proteins were imaged with a custom-built 

microscope similar to that described in (Etheridge, Boulineau et al. 2014). Briefly, 

the microscope was built around an Olympus IX73 inverted microscope body fitted 

with a motorized stage (Prior H117E1I4), 60x objective (Olympus APON-TIRF 

1.45NA) and a 30oC heated chamber (Digital Pixel Ltd). Excitation of fluorescent 

proteins was achieved with a trio of lasers: 561 nm (Cobolt, Jive), 488 nm (Toptica, 

iBeam) and a 405 nm lasers (LaserBoxx, Oxxius). The path of each laser beam was 

expanded and collimated, and entry into the microscope was controlled by 

individual automated shutters (Prior Scientific). A multiband dichroic (405 
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nm/488 nm/561nm/635-25 nm) was used to reflect laser light into the sample 

and the resulting emission from fluorophores was filtered using either a 525-40 

nm or a 593-40 nm (Semrock) bandpass filter for GFP and mEos3.2 respectively. 

Emission fluorescence was directed out of the microscope onto an EMCCD camera 

(Photometrics Evolve Delta). The image was expanded prior to the camera using a 

2.5x photo-eyepiece to achieve a final image pixel size of 104 nm. 

The microscope was automated using custom written scripts in Micro-Manager 

1.4. After focussing into the mid-plane of the sample the sequence of data 

acquisition was as follows. Gar2-GFP was excited using the 488 nm laser at 15% 

power and images were acquired using 100ms exposure time. Rif1-mEos3.2 and 

Rif1PP11-mEos3.2 were excited using dual continuous 405 nm and 561 nm 

excitation (1 W/cm2 and 1 kW/cm2 respectively) for 1000 frames with 50 ms 

exposure time. Multiple fields of view were acquired per experimental repeat.  

Raw mEos3.2 single molecule data was processed using the GDSC SMLM software 

package as described in (Etheridge, Boulineau et al. 2014). 
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Chapter 3
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3.1 Introduction 
 
Genome wide mapping of ϒH2A suggested that repetitive and constitutively 

heterochromatic regions may act as RFBs in S. pombe (Rozenzhak, Mejia-Ramirez 

et al. 2010). The levels of ϒH2A moderately increased at these sites during 

unperturbed S-phase, suggesting that the process of heterochromatin formation or 

the final chromatin structure could impede fork progression. As discussed in 1.3.3, 

chromatin remodellers disassemble chromatin in order to allow replication and 

transcription facttors to access naked DNA (Demeret, Vassetzky et al. 2001). While 

it is possible that not all of the nucleosomes unpack in time and act as endogenous 

RFBs, more studies are necessary to establish a definite link between 

heterochromatin and replication fork stalling. 

 

As discussed in 1.2.3.2, when the burden of replication stress is high, the intra-S-

phase checkpoint is activated to inhibit origin firing and stall replication forks 

(Lambert and Carr 2005). Collapsed replication forks can be restarted during S-

phase using an HR dependent and DSB independent strand invasion mechanism 

(Mizuno, Lambert et al. 2009, Lambert, Mizuno et al. 2010). HR-restarted 

replication forks are not only more error prone (Iraqui, Chekkal et al. 2012) but 

also not canonical (Miyabe, Mizuno et al. 2015). At these forks, both the leading 

and lagging strand replication are carried out by polymerase δ (Miyabe, Mizuno et 

al. 2015). It has, therefore, been proposed that a local bias towards polymerase δ 

usage can act as a marker of fragile sites. 

 

Polymerase usage sequencing (Pu-Seq) is a deep-sequencing method developed in 

S. pombe to track the global usage of polymerases ε and δ on both the forward and 

reverse strands (Daigaku, Keszthelyi et al. 2015). From these data, a bias towards 

the usage of each polymerase genome wide can be calculated (calculations 

described in 2.2.4.3.2). So far, it has not been possible, however, to accurately track 

polymerase usage at repetitive regions. This is due to a limitation of the method - 

the poor coverage of repetitive sequences by short reads.  
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We have, therefore, set out to optimise the Pu-Seq method for repetitive regions, to 

allow a more accurate assessment of polymerase usage and polymerase bias at 

these loci.  

3.1.1 Repetitive regions in S. pombe 
There are four repetitive and constitutively heterochromatic loci in S. pombe - 

centromeres, telomeres, the mat locus and the rDNA. All four are associated with 

dg and dh repeats, whose transcription initiates the RNAi mediated mechanism of 

heterochromatin formation (Cam, Sugiyama et al. 2005) (described in 1.3.2; Fig. 

1.3).  

Using any of these four loci as a representative region to study polymerase usage 

across repetitive DNA has a number of advantages and disadvantages. The mat 

locus contains a 7.5 kb long repetitive region (cenH), which shares 96% sequence 

similarity with the dg and dh repeats from Centromere 2 (Grewal and Klar 1997). 

The repetitive regions at telomeres, centromeres and rDNA all span longer regions 

(Cam, Sugiyama et al. 2005), which would allow polymerase usage to be observed 

over longer distances. The SP2 reference genome, however, also does not contain 

the mat cenH or any telomere and rDNA sequences and the centromeres are not 

fully annotated.  

Despite their relatively poor annotation in the reference genome, a lot is known 

about the organisation of S. pombe centromeres. Although they differ in size, all 

three centromeres are composed of three types of elements organised in the same 

fashion- the outer (otr) region (which contains the dg and dh repeats) flanks the 

imperfect inverted inner (imr) repeats and the central region (cnt). The size of 

centromeres is dictated by the number of repeats present in the otr region. The 

shortest centromere, Centromere 1 (schematic shown in Fig. 3.1), has only one 

copy of each of the repeats (Wood, Gwilliam et al. 2002).  

The cnt regions have over 48% similarity, over a 1,405-bp region, between the 

three centromeres. The otr region contains the 4.4 kb dg, 4.8 kb dh and 0.3 kb 

cen253 repeats. The dg repeats are the most conserved - they share over 97% 

identity, over a 1,405-bp region (Wood, Gwilliam et al. 2002). The conservation of 

repeats between chromosomes poses a problem during alignment. Due to the 
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heuristic nature of the alignment algorithms, reads originating from the repeats 

could be mapped randomly between the chromosomes, if at all.  

Strong conservation, however, is only seen between the dg repeats and only two of 

those repeats are present on Centromere 1. The structure of Centromere 1 and the 

sequence of the repeats in the SP2 reference genome correlate well with data from 

the early Southern Blotting and Sanger sequencing experiments (Nakaseko, Adachi 

et al. 1986, Nakaseko, Kinoshita et al. 1987, Takahashi, Murakami et al. 1992). We 

have, therefore, decided to optimise the Pu-Seq protocol to increasing the coverage 

of Centromere 1 and use it as a representative region of repetitive and 

heterochromatic DNA.     
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Fig. 3.1 - Schematic representation of Centromere 1 

 

  
The central region (cnt) is flanked by the imperfect inverted repeats (imr). 

The otr repeats are composed of the dg, dh and cen 253 repeats. Adapted 

from (Wood, Gwilliam et al. 2002).  
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3.1.2 Overview of the Pu-Seq protocol  
As discussed in 1.2.2, at eukaryotic replication forks the leading and lagging 

strands are replicated by polymerases ε and δ, respectively (Nick McElhinny, 

Gordenin et al. 2008). Pu-Seq utilizes strains with mutations in the steric gates of 

the replicative polymerases ε (cdc20-M630F) and δ (cdc6-L591G) (Daigaku, 

Keszthelyi et al. 2015). These mutations allow the incorporation of a greater than 

average number of ribonucleotides into DNA. As a result, strains carrying the Pu-

Seq mutation in polymerase δ “mark” their lagging strands with a heavy load of 

ribonucleotides. The same is true for the leading strands replicated in strains 

carrying the Pu-Seq mutation in polymerase ε. Ribonucleotides erroneously 

incorporated under wild type conditions are removed by the ribonucleotide 

excision repair pathway, which is initiated by the activity of RNase H2 (Sparks, 

Chon et al. 2012). To avoid ribonucleotide excision, the Pu-Seq strains carry an 

additional deletion of the catalytic subunit of RNase H2 - rnh201Δ. 

A flowchart summarising the Pu-Seq protocol is shown in Fig. 3.2. Genomic DNA is 

extracted from Pu-Seq strains (cdc20-M630F rnh201Δ and cdc6-L591G rnh201Δ) 

and fragmented at the position of ribonucleotide incorporation using alkaline 

treatment. The fragmentation is caused by a hydroxyl attack on the 2’OH group of 

the ribose sugar (Fig. 3.3).  

The protocol includes an optional step of size selecting small (300-500 bp) ssDNA 

fragments, before continuing with the complementary strand synthesis 

(Keszthelyi, Daigaku et al. 2015). The size selection is carried out by separating the 

ssDNA on a 2% agarose gel and excising the fragments of interest. The step is 

optional because dsDNA fragments are size selected during the library preparation 

steps. Despite this downstream size selection for smaller fragments (< 1 kb), a 

substantial population of large fragments is still retained in Pu-Seq libraries made 

from ssDNA fragments that were not size selected. Large fragments in Illumina 

libraries do not cluster and sequence efficiently, which could reduce the quality of 

the data obtained from the library. It was noted that data from libraries that were 

made using size selected ssDNA showed the lowest background and were the most 

reproducible (Keszthelyi, Daigaku et al. 2015). 
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Seeing as the ligation of Illumina adaptors onto ssDNA is inefficient, the ssDNA 

fragments generated by the alkaline treatment are converted to dsDNA. The 

second (complementary) strands are synthesised from an equimolar pool of 

deoxyribonucleotide triphosphate (dNTPs), where deoxythymidine triphosphate 

(dTTP) was replaced with deoxyuridine triphosphate (dUTP), marking the newly 

synthesised strand with dUTPs. During the Illumina library preparation, after 

adaptor ligation step, the fragments are treated with Uracil-Specific Excision 

Reagent (USER) enzyme, which degrades the complementary strand that 

contained dUTPs. This ensured that only the originally isolated ssDNA fragments 

were amplified in the final library. 

The polymerase δ and polymerase ε Pu-Seq libraries are then sequenced to a depth 

of ~10 million reads per library and the data are pooled and analysed together. 

The reads are aligned to a reference genome and binned into 300 bp windows. The 

5’ end of the reads in each bin are counted and normalised to the total number of 

reads. Assuming that each position can only be replicated by either polymerase δ 

or ε, the ratios of polymerase usage are calculated. 

A more detailed protocol of the library preparation steps and subsequent data 

analysis is described in 2.2.4. 
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Fig. 3.2 – Steps involved in the generation of Pu-Seq libraries 

  

The Pu-Seq polymerase δ (cdc6-L591G rnh201Δ) and polymerase ε (cdc20-M603F 

rnh201Δ) strains are each grown to mid-log phase and cells are collected for gDNA 

extraction. Cells with a mutation in the steric gate of polymerase δ, incorporate a 

higher than average amount of rNTPs in the lagging strand. The same is true for the 

leading strand in the polymerase ε mutant. gDNA is extracted from both cultures, 

treated with alkali to fragment at positions of rNTP incorporation and the ssDNA is size 

selected by excision from agarose gels. A complementary strand is synthesised and 

the fragments are used for Illumina library preparation. The libraries are barcoded, 

pooled and sequenced to a depth of ~ 10 million reads / library. Data from the 

polymerase δ and ε libraries are combined and analysed together. 

Steps which have been optimised as part of work for this thesis, are marked with *. 
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Fig. 3.3 – Cleavage of a ribonucleotide incorporated in DNA by alkali  

The ribose sugar of a ribonucleotide has an additional 2’OH group (shown in red), 

compared to the deoxyribose sugars found in deoxyribonucleotides. A hydroxyl 

attack on the 2’OH group generates a cyclic phosphate (shown in blue) and leads 

to strand cleavage. 

Adapted from (Keszthelyi, Daigaku et al. 2015). 
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3.1.3 Chapter aims 
In order to analyse polymerase usage and bias at repetitive regions more 

accurately, we attempted to increase the coverage of repetitive regions. First, we 

optimised the steps leading up to the library preparation to generate higher 

quality libraries. We compared the activity of a number of polymerases at the 

second strand synthesis step, to improve its reproducibility. To analyse the impact 

of changing the polymerase at the second strand synthesis step on the quality of 

the data generated, we constructed Illumina libraries using the optimised protocol 

and compared the generated data to that from previous Pu-Seq experiments. 

Next, we attempted a number of modifications to the original alignment algorithm, 

to directly improve the alignment of short reads across repetitive areas of the 

genome.   

3.2 Results 
 

3.2.1 Optimization of the second strand synthesis 
Originally, the second strand synthesis was carried out using Invitrogen DNA 

Polymerase I, Large (Klenow) Fragment (referred to from now on as ‘Klenow’), a 

polymerase with 3’ to 5’ proofreading activity. The reaction, however, was not very 

reproducible. The range of sizes of the dsDNA fragments produced and the total 

amount of dsDNA synthesized were very variable.  

We set out to optimise this step by testing the activity of a number of other 

polymerases on both size selected and non size selected ssDNA. All of the 

polymerases tested had 3’ to 5’ proofreading activity and were active between 

30oC and 37oC. The latter was necessary due to the low melting temperature of the 

8N random primers used in the reaction.  

3.2.1.1 Non size selected ssDNA 
100 ng of non-size selected ssDNA was incubated with the polymerases for 40 

minutes. The resultant dsDNA fragments were cleaned with Agencourt AMPure XP 

beads (Beckman Coulter) and analysed using a high sensitivity DNA chip on the 

Agilent 2100 Bioanalyser (Fig. 3.4 – polymerases indicated on the figure).  

Two representative traces of the dsDNA fragments generated by the Klenow 

reaction are shown in Fig. 3.4. In one (Fig. 3.4 D), a moderate amount of dsDNA 



 
74 

 

fragments (~300 pg/μL) was distributed over a broad size range, ranging from 

200 bp to over 1 kb. In the second (Fig. 3.4 E), there were no detectable dsDNA 

peaks. The reaction using NEB DNA Polymerase I, Large (Klenow) Fragment 

(referred to as Klenow (NEB)) generated much smaller fragments (peaking at 

~200 bp), with a narrower distribution. Reactions using T4 and φ29 resulted in 

much higher concentrations of dsDNA fragments - 2 ng/μL and 1.4 ng/μL, 

respectively. Although the average sizes of the fragment generated were much 

larger (peaking at 3 kb and 2.5 kb, for T4 and φ29, respectively), the distribution of 

fragment sizes was much tighter. The reaction with T7 did not produce any 

detectable dsDNA fragments.  

We wanted to determine whether the T4 and φ29 reactions could be modified to 

produce a narrow range of smaller fragments. To decrease the average fragment 

sizes, we repeated the incubation, using shorter polymerisation times (Fig. 3.5 – 

conditions indicated on the figure).  

Decreasing the polymerisation time did not result in a greater population of 

smaller fragment sizes. Instead, all reactions generated lower concentrations of 

large fragments, with the concentrations of the dsDNA peaks decreasing with time. 

This suggests that both T4 and φ29 are most efficient at synthesising larger DNA 

fragments.  

The data suggest that the second strand synthesis reaction using Klenow (NEB) 

produces dsDNA fragments with the most optimal distribution of sizes for Illumina 

library preparation. Replacing Klenow with Klenow (NEB) could, therefore, reduce 

the background in data generated from libraries made from non size selected 

ssDNA.  
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Fig. 3.4 – Double stranded DNA fragments made from non size selected ssDNA 

using various polymerases 

 

 

 

100 ng of ssDNA was incubated for 40 minutes with 0.3 mg/mL (final concentration) 

8N random primers, dNTP mix (where dTTP was substituted with dUTP – 2 mM each 

final concentration) and the polymerases indicated on the figure in appropriate 

buffers, at their respective optimum temperature (30oC for φ29 and 37oC for all 

other polymerases). The resultant dsDNA fragments were cleaned using Agencourt 

AMPure XP beads (1.8X) and 1 µl was loaded onto an Agilent High Sensitivity chip.  

Lower and upper markers peak at 35 bp and 10380 bp, respectively. The peak in 

between the markers represents the size and amount of dsDNA fragments 

polymerised in each reaction. 
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Fig. 3.5 – Double stranded DNA fragments made from non size selected ssDNA 

using T4 and φ29 polymerases at altered conditions 

  

100 ng of ssDNA was incubated for the times indicated with 0.3 mg/mL (final 

concentration) 8N random primers, dNTP mix (where dTTP was substituted with 

dUTP – 2 mM each final concentration) and the polymerases indicated on the 

figure in appropriate buffers, at their respective optimum temperature (30oC for 

φ29 and 37oC for T4). The resultant dsDNA fragments were cleaned using 

Agencourt AMPure XP beads (1.8X) and 1 µl was loaded onto an Agilent High 

Sensitivity chip.  

Lower and upper markers peak at 35 bp and 10380 bp, respectively. The peak in 

between the markers represents the size and amount of dsDNA fragments 

polymerised in each reaction. 
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3.2.1.2 Size selected ssDNA 
100 ng of size selected DNA was incubated with the polymerases for 20 minutes 

and the resultant dsDNA was cleaned and analysed as described in 3.2.1.1 (Fig. 3.6 

- polymerases indicated on the figure). The reaction with Klenow was not very 

efficient, producing a broad dsDNA peak of 100 pg/μL. The dsDNA fragments 

produced, however, were all within the range that could be used for library 

construction (300 bp - 500 bp). Again, the reactions using T4 and φ29 resulted in 

the highest concentration of dsDNA fragments (1 ng/μL and 500 pg/μL, 

respectively) distributed in a narrow range (150 bp - 500 bp). The reaction using 

T7 resulted in a small amount (50 pg/μL) of narrowly distributed dsDNA 

fragments (peak at ~350 bp). Klenow (NEB) did not generate dsDNA fragments 

whose sizes were normally distributed - two peaks were seen at ~ 125 bp and 300 

bp and the fragment sizes extended to over 700 bp. 

The second strand synthesis reaction using T4 and size selected ssDNA resulted in 

the highest concentration of dsDNA fragments in appropriate size ranges for 

Illumina library construction. Given the better efficiency and reproducibility 

compared to those seen when using Klenow, T4 was subsequently used to replace 

Klenow in the second strand synthesis reaction of size selected ssDNA. 
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Fig. 3.6 – Double stranded DNA fragments made from size selected ssDNA 

using various polymerases 

 

  

100 ng of ssDNA was incubated for 20 minutes with 0.3 mg/mL (final concentration) 

8N random primers, dNTP mix (where dTTP was substituted with dUTP – 2 mM each 

final concentration) and the polymerases indicated on the figure in appropriate 

buffers, at their respective optimum temperature (30oC for φ29 and 37oC for all 

other polymerases). The resultant dsDNA fragments were cleaned using Agencourt 

AMPure XP beads (1.8X) and 1 µl was loaded onto an Agilent High Sensitivity chip.  

Lower and upper markers peak at 35 bp and 10380 bp, respectively. The peak in 

between the markers represents the size and amount of dsDNA fragments 

polymerised in each reaction. 
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3.2.2 Constructing and sequencing new wild type T4 Pu-Seq libraries 
To determine whether the new protocol minimized the noise in the data, we 

constructed Pu-Seq libraries using the optimized protocol with T4 and size 

selected ssDNA. The dsDNA generated were subsequently used to generate 

Illumina libraries (Fig. 3.7).  

The libraries were amplified using unique index primers and mixed for multiplex 

paired-end sequencing to generate ~10 million reads per library. The paired-end 

reads were aligned to the SP2 reference genome using Bowtie2, which was set to 

perform end-to-end alignment in mixed mode. The end-to-end alignment option 

ensured that all of the read characteristics were used during the alignment, i.e., it 

did not allow for the clipping of reads to maximise the alignment score. Mixed 

mode allowed for the single-end mapping of reads when a paired-end alignment 

was not possible. Additionally, to improve the average read quality, the 101 bp 

long paired-end reads were trimmed 30 bp at the 3’ end and 1 bp from the 5’end. 

The combination of these Bowtie2 settings will be referred to as the “standard 

alignment”. 

The generated data were compared to those from previously analysed wild type 

Pu-Seq libraries that were made using Klenow at the second strand synthesis step. 
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Fig. 3.7 – Double stranded DNA fragments generated by the optimised second 

strand synthesis reaction and the resultant Illumina libraries  

  

A) Second strand synthesis. 100 ng of ssDNA was incubated for 20 minutes with 

0.3 mg/mL (final concentration) 8N random primers, dNTP mix (where dTTP was 

substituted with dUTP – 2 mM each final concentration) and T4 DNA polymerases 

in NEB 2.1 buffer at 37oC. The resultant dsDNA fragments were cleaned using 

Agencourt AMPure XP beads (1.8X) and 1 µl was loaded onto an Agilent High 

Sensitivity chip. Lower and upper markers peak at 35 bp and 10380 bp, 

respectively.  

B) Illumina libraries. 50 µl of the dsDNA fragments were used to construct an 

Illumina library, using the NEBNext Ultra library prep kit, following manufacturer’s 

instructions. The libraries were diluted 1 in 5 in ultrapure water and 1 µl was 

loaded onto an Agilent High Sensitivity chip. Lower and upper markers peak at 35 

bp and 10380 bp, respectively.  
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3.2.3 Comparison of T4 and Klenow datasets 
The alignment rate and coverage by the reads generated from the Pu-Seq libraries 

made using Klenow and T4 fragments are compared in Table 3.1. The number of 

reads from the Klenow libraries varied between 16 and 25 million reads. This 

difference could have been caused by an error during the quantification and 

pooling of the libraries. The low read number of the Klenow polymerase ε library, 

however, correlates with a low total alignment rate. This suggests that the variable 

read number could have been caused by the overall low quality of the library. 

Reads from the T4 libraries, on the other hand, both generated approximately 12 

million reads each. They also had very similar alignment rates, which were both 

greater than either of the alignment rates of the reads from the Klenow libraries.   

Based on the total numbers of aligned reads, the coverage of the 12.57 Mb haploid 

genome was calculated using the Lander/Waterman equation (Lander and 

Waterman 1988), as recommended by Illumina: 

Coverage = ( read length (bp) * number of reads ) / size of haploid genome (bp) 

Given the varying number of reads and alignment rates, the coverage by the reads 

from the Klenow libraries ranged from between ~58 and ~100 (Table 3.1). The 

coverage by the reads from the T4 libraries was ~70 for both libraries. This was 

higher than that for the Klenow polymerase ε library, despite the Klenow library  

generating over 4 million more reads.  

Table 3.1 – Number of reads obtained and mapped for the libraries made 

using Klenow and T4 fragments  

The overall alignment rate represents the number of mates that aligned in pairs 

(concordantly and discordantly) and single reads that aligned in single end mode. 

 

Polymerase 
used during 
second strand 
synthesis 

Replicative 
polymerase 
mutated in 
the strain 

Total 
number of 
reads 

Overall 
alignment 
rate 

Number of 
reads mapped 
to the 
reference 
genome 

Coverage 

Klenow 
(Invitrogen) 

Polymerase δ 25,655,294 74.48% 19,108,062 121.6 
Polymerase ε 16,349,242 55.84% 9,129,416 58.1 

T4 Polymerase δ 12,801,495 90.14% 11,539,267 73.4 
Polymerase ε 12,482,564 87.07% 10,868,568 69.2 
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The aligned reads were processed using the same pipeline of Perl and R scripts 

(described in detail in 2.2.4.3). The global polymerase usage is calculated as a ratio 

between the normalised counts contributed by each polymerase and the total 

number of normalised counts contributed by both polymerases, at each bin. Given 

that the traces of polymerase usage are based on this ratio, data from both the T4 

and Klenow experiments generated the same global patterns of polymerase usage 

(polymerase usage across Chromosome 3 is shown in Fig. 3.8). The values of the 

ratios generated by the T4 data, however, were higher. For example, the mean 

usage of polymerase δ on the forward strand (on a scale from 0 to 1) ranged from 

0.36 to 0.65 for the Klenow data and 0.31 to 0.71 for the T4 data. This was likely 

caused by the reduced noise in the T4 data.    

The increased reproducibility of the reactions upstream of the library preparation, 

as well as the increased coverage did not, however, remove all of the variability 

between datasets. The progression of leftward moving forks generated by three 

independent wild type T4 Pu-Seq library sets was compared using a Kolmogorov-

Smirnov test (KS). The KS-test measures the cumulative difference between two 

continuous variables (expressed as a D statistic) and the probability that they are 

statistically different. Comparing the data from two of the three datasets showed a 

very low cumulative difference and a high p-value (D = 0.0041042, p-value = 

0.872), suggesting that they are statistically similar. Comparison with the third 

dataset, however, resulted in a much higher cumulative difference and a lower 

corresponding p-value (D = 0.011239, p-value = 0.01005). This variability is one of 

the current limitations of the analysis and has to be taken into account when small 

differences between fork progression and polymerase bias are being considered. 

For future work and more accurate comparisons, it is important to quantify this 

variability and express a range of possible values for all of the parameters in a wild 

type background. This would allow to confidently identify differences when 

comparing data between wild type and mutant backgrounds. 
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Fig. 3.8 – Polymerase usage across Chromosome 3, calculated from data 

generated by libraries that were constructed using polymerases T4 and 

Klenow at the complementarsy strand synthesis stage

Reads generated by the libraries indicated on the figure were trimmed (30 bp at 

the 3’ end and 1 bp at the 5’ end) and aligned to the SP2 reference genome. The 

reads were binned into 300 bp windows and the number of reads in each bin was 

normalised to the total number of reads. Polymerase usage was calculated by 

taking the ratio of the normalised counts contributed by each polymerase to the 

total number of normalised counts contributed by both polymerases. The usage of 

polymerases δ and ε (shown in blue and red, respectively) on the forward and 

reverse strands were visualised using the Integrative Genome Viewer (IGV) genome 

browser.  
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3.2.4 Optimising the alignment algorithm 
In addition to the variability between datasets, the poor alignment of short reads 

to repetitive regions poses another problem to an accurate description of 

polymerase usage at repetitive regions. Due to the heuristic nature of the Bowtie2 

algorithm, if the generated alignment score for a read is the same for a number of 

loci, the read will be mapped to one of those loci at random. This will be reflected 

in a low mapping quality score, which represents the uniqueness of the alignment.  

Genome wide mapping quality of the standard alignment was assessed using 

Qualimap 2 (Okonechnikov, Conesa et al. 2016). All three of the centromeric 

regions had considerably lower mapping quality score compared to the rest of the 

genome (Fig. 3.9). Centromere 1 had the highest mapping quality of all three 

centromeres, suggesting that the imr and cnt regions of Centromere 1 may have 

been aligned accurately and the lower quality was caused by the multiple 

alignment possibilities of the reads originating from the otr repeats. To improve 

the overall alignment to the centromere, we attempted to increase the mapping 

quality around the otr repeats.  

One way to reduce the possibility of multiple mapping is to increase the read 

length. In the standard alignment, reads were trimmed to 80 bp, as their quality 

deteriorated towards the 3’ end. In order to maintain the high quality of reads 

while allowing for reads longer that 80 bp, we adjusted the trimming to each read 

individually. This was done using the trimming algorithm Trimmomatic (Bolger, 

Lohse et al. 2014). Trimmomatic scans each read, trimming bases from the 3’ end 

until the average read quality rises above the set quality value (Q). The same set of 

paired-end reads (FASTQ format) were trimmed to a range of Q values and a 

minimum length of 36 bp. The resultant reads were analysed using FastQC. The 

average quality of the reads, especially towards the 3’ end, increased with 

increasing Q value (Fig. 3.10 A). The number of reads remaining after trimming (as 

a percentage of the total number of reads) is shown in Fig. 3.10 B.  

Next, we aligned the reads, trimmed to different Q values using Bowtie2. To further 

reduce the possibility of multiple mapping we also modified the alignment 

algorithm. Multi-seed algorithms, such as Bowtie2, generate substrings (or seeds) 

of a defined length in each read, which they align to set criteria. The alignment is 
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then extended to the full length of the read. Increasing seed length, reducing the 

number of mismatches allowed per seed, as well as increasing the number of 

attempts to extend a seed (or re-seed a read) can all be employed to increase 

alignment quality across repetitive regions. The Bowtie2 “--very-sensitive” 

parameter, collectively changes all of these running options. 

The trimmed reads were aligned to the SP2 reference genome using Bowtie2 --

very-sensitive end-to-end alignment in mixed mode. The SAM files generated by 

the Bowtie2 alignment were converted into BAM format, sorted and viewed using 

the genome browser IGV (Integrative Genomics Viewer). The coverage for the 

region assigned as Centromere 1 in SP2 (Chr1:3,753,687 - 3,789,421) is shown in 

Fig. 3.11. The coverage was highest at the outer regions of the centromere, 

suggesting that the reads from the dg repeats from the other centromeres may 

have been mapped to Centromere 1. The coverage of the imr and cnt regions of 

Centromere 1 was low for of the individually trimmed reads aligned using the --

very-sensitive option. Overall, there was no visible difference between the 

coverage compared to the original algorithm (80 bp reads aligned using standard 

end-to-end alignment), suggesting that the modification of the read trimming and 

the alignment algorithm does not significantly increase the quality of the data at 

Centromere 1. 

To determine whether the new algorithm resulted in a change in the genome wide 

mapping quality, we compared the alignment of the trimmed reads that were 

aligned using the --very-sensitive option to the standard algorithm using the multi-

sample BAM QC analysis in Qualimap 2. The genome wide mapping quality of the 

trimmed reads was lower, but still comparable to the standard alignment (Fig. 

3.12). 
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Fig. 3.9 - Genome wide mapping quality of reads aligned using Bowtie2, 

generated by Qualimap 

101 bp long paired-end reads were trimmed 30 bp at the 3’ end and 1 bp at the 5’ 

and aligned using Bowtie2 end-to-end alignment in mixed mode. The generated SAM 

file was analysed using Qualimap 2. Dips in mapping quality were seen around 

centromeres and telomeres (centromeres are marked in purple). 
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A) FastQC analysis of reads 
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B) Percentage of reads after trimming 

 

 

 

 

 

 

 
 

Fig. 3.10 - Sequence quality and percentage of reads surviving after trimming to a 

range of Q values 

 

One set of paired end reads was trimmed, using paired end Trimmomatic. A sliding window 

of 4 bp was set to scan and trim each read until the average quality rose above the Q 

values indicated on the figures. A minimum read length of 36 bp was set. Data for one of 

the paired end mates is shown. 

A) FastQC analysis. The resultant reads were analysed using FastQC and the per base 

sequence quality is shown.  

B) Percentage of the number of reads surviving each trimming to the total number of 

reads 
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Fig. 3.11- Coverage of Centromere 1 using the modified and standard alignment algorithms 

One set of paired end reads was trimmed, using paired end Trimmomatic. A sliding window of 4 bp was set to scan and trim each read 

until the average quality rose above the Q values indicated on the figures. A minimum read length of 36 bp was set. The trimmed reads 

were aligned to the SP2 reference genome using Bowtie2 --very-sensitive end-to-end alignment in mixed mode. The same reads were 

also aligned using the standard alignment algorithm. 

The generated SAM files were converted to BAM format, sorted, indexed and viewed on the Integrative Genome Viewer (IGV) genome 

browser. Coverage of the region assigned as Centromere 1 in the SP2 reference genome (Chr1: 3,753,687 - 3,789,421) is shown. A 

schematic of the centromere organisation is shown below to indicate the coverage over the central and outer regions.  
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Fig. 3.12 - Genome wide mapping quality using the modified and standard alignment algorithms

One set of paired end reads was trimmed, using paired end Trimmomatic. A sliding window of 4 bp was set to scan and trim each read 

until the average quality rose above the Q values indicated on the figure. A minimum read length of 36 bp was set.  

The trimmed reads were aligned to the SP2 reference genome using Bowtie2 --very-sensitive end-to-end alignment in mixed mode. The 

same reads were also aligned using the standard alignment. The generated SAM files were converted to BAM format and compared using 

the multi-sample BAM QC analysis in Qualimap 2. The mapping quality histogram is shown. The mapping quality of the reads trimmed 

using Trimmomatic were almost identical and may be difficult to discern on the figure. 
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3.3 Discussion 
 
3.3.1 Optimisation of the library preparation   
The second strand synthesis reaction using non size selected ssDNA was improved 

by using Klenow (NEB) (Fig. 3.4). The reaction generated small fragments that 

peaked at 134 bp and were all in a size range that could be used for Illumina 

library preparation. The reactions using T4 and φ29 produced longer fragments 

(over 1.5 kb) and considerably more dsDNA than the Klenow reaction (Fig. 3.4). 

Deceasing the polymerisation time resulted in lower amounts of long dsDNA 

fragments, instead of shorter fragments (Fig. 3.5), suggesting that T4 and φ29 are 

more efficient than Klenow in the polymerisation of the complementary strand of 

long ssDNA templates. The reactions, however, did not generate fragments in the 

size range (150 - 500 bp) that is required for Illumina library preparation.  

 

In the presence of only short ssDNA templates (size selected ssDNA), all of the 

tested polymerases generated varying amounts of small dsDNA fragments (Fig. 

3.6). The reaction with T4 synthesised the complementary strand with the highest 

efficiency. Overall, despite the optimisation with Klenow (NEB), size selected 

ssDNA is a better substrate for second strand synthesis and has been reported to 

reduce background (Keszthelyi, Daigaku et al. 2015). Size selection was, therefore, 

included as a non-optional step in the preparation of Pu-Seq libraries to study 

repetitive regions. 

 

The dsDNA fragments synthesised by T4 from size selected ssDNA were 

subsequently used to prepare wild type Pu-Seq polymerase δ and ε libraries (Fig. 

3.7). The libraries generated over 12 million reads each, most of which aligned well 

to the SP2 reference genome and resulted in a coverage of ~70 (Table 3.1).  

The wild type polymerase δ and ε Pu-Seq libraries made using fragments 

synthesised by Klenow generated over 25 and 16 million reads, respectively (Table 

3.1). This difference could be explained by an error during the quantification and 

pooling of the libraries before the sequencing. That would, however, not explain 

the very different alignment rates (Table 3.1). It is possible that the variability in 

the number and the sizes of the fragments generated by the Klenow reaction could 

have impacted the quality of the final library.  



 
93 

 

Given that the Pu-Seq polymerase ratios are calculated from normalised data, the 

polymerase usage data generated from the T4 libraries resulted in the same 

pattern of polymerase usage as that from Klenow data. The pattern, however, was 

less noisy in the T4 dataset (Fig. 3.8). Taken together, the data show that 

generating the complementary strands using size selected ssDNA and T4 has a 

considerable impact on the quality of the libraries generated and the data they 

produce. We have, therefore, adapted the protocol to include these modifications. 

3.3.2 Optimisation of the alignment algorithm 
The individual trimming of reads to set Q values by Trimmomatic increased the 

average read quality, compared to untrimmed reads (Fig. 3.10 A). The alignment of 

these reads (using the --very-sensitive option in Bowtie2), however, did not result 

in an increased coverage of Centromere 1 (Fig. 3.11). The genome wide mapping 

quality increased with increasing Q value, but in every case was lower than that for 

the standard alignment (Fig. 3.12). Based on these data, the modification of the 

read trimming and the alignment algorithm does not strikingly improve the 

coverage and mapping quality around Centromere 1. 

 

Future analyses could be improved by using longer reads. Third generation 

sequencing platforms, such as Oxford Nanopore Technologies allow the generation 

of reads up to several hundred kilo bases (Lu, Giordano et al. 2016). This would 

allow an accurate de novo assembly of all of the centromeric and telomeric regions. 

The long reads would also align better with much higher mapping quality to the 

repetitive regions, increasing coverage and mapping quality.  

 

Given the current restrictions to a sub optimal reference genome and short reads, 

we decided not to change the mapping algorithm. The poor coverage of 

Centromere 1 was noted as a caveat to any analyses carried out around that region. 
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4.1 Introduction 
 

Similarly to other eukaryotes, S. pombe heterochromatin can be subdivided into 

constitutive and facultative heterochromatin. The pathways specific to the 

formation of each type of heterochromatin in S. pombe are briefly described below. 

4.1.1 Constitutive heterochromatin in S. pombe 
In S. pombe, constitutive heterochromatin is assembled at centromeres, telomeres, 

rDNA and the mat locus (Cam, Sugiyama et al. 2005). The formation of constitutive 

heterochromatin is driven by an RNAi dependent mechanism, described in 1.3.2 

(Fig. 1.3). Briefly, long RNAs transcribed from dg and dh repeats are processed into 

short siRNAs and associate with the RITS complex. The siRNAs then guide the RITS 

complex back to the loci from which they were transcribed, starting the cascade of 

Clr4 dependent histone H3K9 methylation, which in turn recruits Swi6 to the 

heterochromatin regions (Grewal and Elgin 2007).  

The deletion of the Chp1, the H3K9me binding chromodomain component of RITS 

(Verdel, Jia et al. 2004), decreases histone methylation at heterochromatin regions 

to varying degrees in each of the domains (Sadaie, Iida et al. 2004). This suggests 

that the formation of constitutive heterochromatin at each of these regions has 

additional RNAi independent heterochromatin targeting mechanisms. 

DNA binding proteins have been shown to be involved in nucleating 

heterochromatin at centromeres, telomeres and the mat locus.  The binding of 

ATF/CREB family proteins Atf1 and Pcr1 at the mat locus creates a nucleation site 

for heterochromatin by interacting directly with Clr4 and Swi6 (Jia, Noma et al. 

2004). Similarly, Taz1, can nucleate heterochromatin formation at subtelomeres 

independently of the RNAi pathway (Kanoh, Sadaie et al. 2005). It has also been 

shown that the deletion of Abp1, Cbh1, and Cbh2 (hCENP-B), diminishes 

centromere heterochromatin (Nakagawa, Lee et al. 2002).   

4.1.2 Facultative heterochromatin in S. pombe 
Facultative heterochromatin in S. pombe is found in 21 discreet blocks along the 

genome. These blocks (or islands) of increased H3K9 methylation have been 

subdivided into two classes. The first class of the facultative heterochromatin 

islands are associated with meiotic genes and silence their expression during 
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vegetative growth (Zofall, Yamanaka et al. 2012). The proteins and elements 

involved in the maintenance of facultative heterochromatin at these sites are also 

involved in silencing the expression of the meiotic genes at the transcriptional 

level. RNA-binding protein Mmi1 binds to mRNA transcripts that contain a DSR 

(determinant of selective removal) element, a cis-acting region associated with 

meiotic genes, marking them for degradation by a nuclear exosome (Harigaya, 

Tanaka et al. 2006). Mmi1 also interacts with Erh1, which recruits the MTRC (Mtl1-

Red1 core) complex required for the nucleation of heterochromatin (Sugiyama, 

Thillainadesan et al. 2016). The DSR region has also been reported to interact with 

another cis-acting element associated with the mei4 gene (which codes for a 

meiotic transcription factor), further promoting H3K9me around the gene. 

(Tashiro, Asano et al. 2013). Although this effect was not seen at other meiotic 

genes, it highlights the importance of cis-acting elements in the formation of 

facultative heterochromatin. 

The second class of heterochromatin islands are found at genes that are not 

associated with a DSR element. A number of these islands remain heterochromatic 

during nitrogen starvation, suggesting that they are not all required for meiotic 

gene regulation (Zofall, Yamanaka et al. 2012, Zofall, Smith et al. 2016). Neither the 

pathway of heterochromatin formation nor a non-meiotic role for these 6 non-DSR 

islands has been fully described. It is known that the formation of H3K9me is 

controlled by the binding of Taz1 (Zofall, Smith et al. 2016), which is reminiscent of 

its role in RNAi independent heterochromatin formation at telomeres (Kanoh, 

Sadaie et al. 2005). Taz1 has been shown to recruit Rif1 to these (Taz1 dependent) 

facultative heterochromatin islands (Zofall, Smith et al. 2016). The binding of Taz1 

and Rif1 to these islands is necessary but not sufficient for the formation of 

heterochromatin, as they bind at other loci without this effect. Interestingly, 5 out 

of the 6 Taz1-dependent heterochromatin islands were discovered independently 

as Rif1 and Taz1 dependent cis-acting boundaries between euchromatin and 

heterochromatin (Toteva, Mason et al. 2017). This suggests that while they may 

have some overlapping role in meiotic gene repression with DSR islands, it is 

possible that Taz1 dependent heterochromatin islands may also have a separate 

role in the maintenance of gene expression and genomic stability.     
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Despite the differences, however, both classes of heterochromatin islands are 

affected by heterochromatin destabiliser Epe1. Epe1 is recruited to 

heterochromatin regions via Swi6 (Zofall and Grewal 2006), suggesting that the 

dynamic formation and destabilisation of heterochromatic marks are important for 

the formation of wild type levels of heterochromatin. Overexpression of Epe1 leads 

to an increase in euchromatin specific histone acetylation (Ayoub, Noma et al. 

2003), while its loss increases histone methylation associated with 

heterochromatin (Zofall, Yamanaka et al. 2012). The increase in H3K9 methylation 

manifested in the spreading of the H3K9me3 marks around facultative islands, as 

well as the appearance of over 30 additional peaks of H3K9me (Zofall, Yamanaka 

et al. 2012). Interestingly, in epe1Δ all of the facultative heterochromatin islands 

persist longer in the absence nitrogen (Zofall, Yamanaka et al. 2012), suggesting 

that despite being established using different pathways, the heterochromatin 

formed is the same across all of the islands. 

4.1.3 Chapter aims 
As discussed in Chapter 3, heterochromatin has been suggested to impede fork 

progression (Rozenzhak, Mejia-Ramirez et al. 2010). This chapter will discuss the 

impact of heterochromatin found on replication dynamics measured using Pu-Seq.  

We analysed the effects of both abolishing and increasing the levels of 

heterochromatin genome wide on origin firing and the progression of replication 

forks around Centromere 1. Using a bias towards polymerase δ usage as a marker 

of HR restarted replication, we attempted to identify whether wild type or 

modified levels of heterochromatin can act as RFBs in that region.  

Next, we compared how affecting heterochromatin globally (using swi6Δ, clr4Δ and 

epe1Δ mutants) and only at a subset of facultative heterochromatin islands (using 

rif1Δ and taz1Δ mutants) impacted replication dynamics.   
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4.2 Results  
 
4.2.1 Changes to replication dynamics in constitutive heterochromatin 
To determine the impact of heterochromatin, we analysed replication dynamics in 

swi6Δ and clr4Δ backgrounds using Pu-Seq, assuming that all heterochromatin 

would be lost in these strains. We also analysed the effect of an increased 

heterochromatin load by analysing epe1Δ strains.  

4.2.1.1 Replication dynamics in swi6Δ and clr4Δ  
The number of origins mapped in a wild type background ranged between 999 and 

1122, with an average of 1070 origins (data from 5 wild type Pu-Seq experiments). 

The number of origins mapped in the swi6Δ and clr4Δ strains was within this wild 

type range (swi6Δ – 1018 origins; clr4Δ – 1027 origins). It has been previously 

reported that in wild type S. pombe, the distribution of origin firing efficiencies is 

bimodal, with most origins firing inefficiently (with less than 40% efficiency) 

(Daigaku, Keszthelyi et al. 2015). We did not observe any notable changes to the 

distribution of the origin firing efficiencies in swi6Δ or clr4Δ (Fig. 4.1). 

Despite the lack of an effect on global origin firing activity, we compared the 

progression of replication forks and origin usage around Centromere 1. The 

landscape of origin usage and the pattern of replication fork progression around 

the centromere were reproducible in a wild type background (Fig. 4.2 A).  

Compared to wild type, more origins were mapped to the centromeric region in 

swi6Δ (Fig. 4.2 A) and most of these origins fired inefficiently. As a result of the 

effective decrease in origin firing efficiency within the centromere, fewer leftward 

moving replication forks originated from inside the centromere. A similar effect 

was seen on the right hand side of the centromere (changes in fork progression at 

the centromere are marked in orange on Fig. 4.2 A). Additionally, the decrease in 

the efficiency of firing of an origin at the edge of the right-hand portion of the 

centromere (marked by * on Fig. 4.2 A) correlated with an increase in the number 

of leftward moving forks originating outside the centromere in a region ~30 kb 

downstream of the centromere.  

The changes in the origin landscape and pattern of replication fork progression 

were less pronounced in clr4Δ compared to swi6Δ. This difference in phenotype 
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was unexpected given the previous reports showing that the localisation of Swi6 to 

the outer regions of Centromere 1 is dependent on Clr4 (Ekwall, Nimmo et al. 

1996, Partridge, Borgstrom et al. 2000).  

Given the differences in the landscape of origin usage in the absence of 

heterochromatin (Fig. 4.2 A), another caveat had to be considered when analysing 

the polymerase bias (as a marker of HR restarted replication) around Centromere 

1. As discussed in 1.2.2, recent data suggest that polymerase δ may contribute to 

leading strand replication around origins before polymerase ε replication is 

established (Daigaku, Keszthelyi et al. 2015, Yeeles, Janska et al. 2017, Garbacz, 

Lujan et al. 2018). In S. pombe, a bias of polymerase δ usage has been reported 

around efficiently firing origins of replication (Daigaku, Keszthelyi et al. 2015). In a 

population of cells, the replication of a region where replication forks are prone to 

stalling and collapse is likely to be rescued by a combination of HR restarted 

replication and dormant origin firing. Given that both of these can contribute to a 

bias of polymerase δ usage and Pu-Seq data describe the average usage of 

polymerases in a population, it would be impossible to differentiate between the 

causes of the bias.  

The bias of polymerase δ usage was not reproducible between two wild type 

strains – Fig. 4.2 B, panels 3 and 4. Although swi6Δ and clr4Δ did show some 

differences, compared to either of the wild type data sets and to each other (Fig. 

4.2 B, panels 1 and 2), it was impossible to attribute these differences to any one 

factor.
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Fig. 4.1 – Density distribution of origin firing efficiencies in wild type, swi6Δ, 

clr4Δ and epe1Δ backgrounds 

 

Origins of replication were mapped for each strains using Pu-Seq, applying a 

threshold of 0.3, i.e., positive peaks of the differentials of polymerase usage whose 

heights were above the 30th percentile were mapped as origins. The efficiency of 

firing was normalised to the value of the 99th percentile in each data set.  
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A) Replication fork progression 
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B) Bias towards polymerase δ usage 
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Fig. 4.2 – Landscape of origin usage, the progression of leftward moving forks 

and bias of polymerase usage around Centromere 1 in swi6Δ, clr4Δ and wild 

type backgrounds 

 

 

 

A) The origins of replication and the progression of leftward moving forks.  

Origins of replication were mapped for each strains using Pu-Seq, applying a 

threshold of 0.3, i.e., positive peaks of the differentials of polymerase usage 

whose heights were above the 30th percentile were mapped as origins. The 

efficiency of firing was normalised to the value of the 99th percentile in each 

data set. 

The progression of leftward moving forks (i.e., the average of the usage of 

polymerase δ on the forward strand and polymerase ε on the reverse strand) 

was calculated for each background (two independent biological repeats shown 

in dark and light blue). Deviations from wild type fork progression in the swi6Δ 

are marked in orange. 

B) Bias of polymerase usage. The bias of polymerase δ usage on both strands 

(contribution of polymerase δ at each site / 2) is shown in the range 0.3 - 0.8. 

Values > 0.5 and < 0.5 indicate a bias towards polymerase δ usage (shown in 

blue) and or polymerase ε usage (shown in red), respectively. Data from two 

independent wild type biological repeats are also shown. 
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4.2.1.2 Replication dynamics epe1Δ  
The progression of leftward moving forks at Centromere 1 was affected in epe1Δ 

(Fig. 4.3). Similarly to clr4Δ and swi6Δ, fewer leftward moving forks originating 

from within the centromere replicated the left-hand portion of the centromere in 

epe1Δ (marked in orange on Fig. 4.3). A similar effect, however, was not seen on 

the right-hand portion of the centromere. It is possible that the perturbation was 

the result of an overall less smooth fork progression (seen on the regions flanking 

the centromere on Fig. 4.3). 

In epe1Δ cells, the number of origins mapped was outside the wild type range 

(1146 origins of replication). It is possible that the increase in heterochromatic 

marks across the genome (Zofall, Yamanaka et al. 2012) acted as a direct or 

indirect form of replication stress, resulting in the firing of dormant origins. The 

distribution of origin firing efficiencies remained bimodal (Fig. 4.1), suggesting 

that the newly firing dormant origins were relatively inefficient. 

Polymerase bias around the Centromere 1 in epe1Δ did not result in a noticeably 

different bias towards the usage of polymerase δ than any of the other 

backgrounds shown in Fig. 4.2 B. The bias, therefore, was too variable to draw 

meaningful conclusions about the source.  
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Fig. 4.3 – Landscape of origin usage and the progression of leftward moving forks around Centromere 1 in epe1Δ and wild type 
backgrounds

Origins of replication were mapped for each strains using Pu-Seq, applying a threshold of 0.3, i.e., positive peaks of the differentials of 

polymerase usage whose heights were above the 30th percentile were mapped as origins. The efficiency of firing was normalised to the value 

of the 99th percentile in each data set. 

The progression of leftward moving forks (i.e., the average of the usage of polymerase δ on the forward strand and polymerase ε on the 

reverse strand) was calculated for each background (two independent biological repeats shown in dark and light blue). Deviations from wild 

type fork progression in epe1Δ are marked in orange and discussed in the text. 
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4.2.2 Changes to replication dynamics in facultative heterochromatin 
Next, we compared the effects that abolishing heterochromatin genome wide 

(swi6Δ and clr4Δ) and disrupting it locally (rif1Δ and taz1Δ) had on replication 

dynamics around facultative heterochromatin islands.  

Given that the 21 facultative heterochromatin islands are not all replicated in the 

same direction we did not use changes in fork progression as a readout of 

replication dynamics, so as not to confound the data with directionality. Also, to 

ensure that all changes in origin usage (even those below the standard 30th 

percentile threshold) were being taken into account, we did not analyse the 

normalised origin firing efficiencies. Instead, the differentials of polymerase usage 

were used directly as a measure of origin activity.  

Origin activity around Taz1 dependent and independent facultative 

heterochromatin islands remained unchanged in swi6Δ and clr4Δ (Fig. 4.4). A small 

increase in origin activity was noted in epe1Δ. This, however, was likely due to the 

greater overall number of origins firing in epe1Δ and not an effect of the islands 

themselves.  

A substantial increase in origin activity around the 6 Taz1 dependent 

heterochromatin islands was observed in rif1Δ and taz1Δ, with the effect being 

greater in rif1Δ than taz1Δ (Fig. 4.5 A). The number of origins mapped in rif1Δ and 

taz1Δ was within the wild type range (1108 and 1064 origins of replication for 

taz1Δ and rif1Δ, respectively - average from 2 independent biological repeats) and 

there were no noticeable changes in the distribution of origin firing efficiencies 

(Fig. 4.6). This suggests that the effect was more likely due to an increase in the 

activity of the origins around the Taz1 heterochromatin islands, rather than the 

density of the origins in the region. The wild type origin activity around the 

facultative heterochromatin islands in swi6Δ and clr4Δ (Fig. 4.4) suggests that the 

increased origin activity in rif1Δ and taz1Δ at the Taz1 dependent islands (Fig. 4.5 

A) was heterochromatin independent. 

No change in origin activity was seen around the 15 Taz1 independent 

heterochromatin islands (Fig. 4.5 B) or subtelomeres (Fig. 4.7) in rif1Δ or taz1Δ.  
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Fig. 4.4 – The average origin activity around Taz1 dependent and 

independent facultative heterochromatin islands in clr4Δ, swi6Δ, epe1Δ and 

wild type backgrounds 

 

  

The mean origin activity (i.e., the average of the differentials of the polymerase δ 

usage on the reverse strand and polymerase ε forward strand) in each 300 bp bin is 

shown for 6 kb up and downstream of the midpoint of the heterochromatin island. 

The error bars represent the standard error of the mean in each bin. The origin 

activity shown here were calculated from two independent biological repeats for the 

wild type data only.  

A) The mean activity in each bin averaged across the 6 Taz1 dependent 

heterochromatin islands. 

B) The mean activity in each bin averaged across the 15 Taz1 independent 

heterochromatin islands.  
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Fig. 4.5 – The average origin activity around Taz1 dependent and 

independent facultative heterochromatin islands in rif1Δ, taz1Δ and wild 

type backgrounds 

 

 

  

The mean origin activity (i.e., the average of the differentials of the polymerase δ 

usage on the reverse strand and polymerase ε forward strand) in each 300 bp bin 

is shown for 6 kb up and downstream of the midpoint of the heterochromatin 

island. The error bars represent the standard error of the mean in each bin. The 

origin activity shown here were calculated from two independent biological 

repeats.  

A) The mean activity in each bin averaged across the 6 Taz1 dependent 

heterochromatin islands. 

B) The mean activity in each bin averaged across the 15 Taz1 independent 

heterochromatin islands.  
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Fig. 4.6 – Density distribution of origin firing efficiencies in rif1Δ and taz1Δ backgrounds 

 

  
Origins of replication were mapped for each strains using Pu-Seq, applying a threshold of 0.3, i.e., 

positive peaks of the differentials of polymerase usage whose heights were above the 30th percentile 

were mapped as origins. The efficiency of firing was normalised to the value of the 99th percentile in 

each data set.  
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Fig. 4.7 – The origin activity around subtelomeres in rif1Δ, taz1Δ and wild type backgrounds 

The mean origin activity (i.e., the average of the differentials of the polymerase δ usage on the reverse 

strand and polymerase ε forward strand) in each 300 bp bin is shown for a 200 kb regions of the right 

subtelomeres on Chromosomes 1 and 2.  
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4.2.3 Effects of taz1Δ and rif1Δ on replication dynamics 
The increased origin activity, shown in Fig. 4.5 A, is in line with previous reports on 

Rif1 and Taz1 activity. Both Rif1 and Taz1 have been shown to affect origin firing 

in S. pombe (Hayano, Kanoh et al. 2012, Tazumi, Fukuura et al. 2012). It is also 

known that the two proteins interact and Taz1 recruits Rif1 to telomeres (Kanoh 

and Ishikawa 2001). It is, therefore, possible that the inhibition of origin activity 

was caused by Rif1 or Taz1 alone, with the other acting as a recruiter to the 

binding site.  

To determine whether the increase in origin activity described in 4.2.2 was 

entirely due to the loss of Rif1 and/or Taz1 binding, we analysed the changes in 

origin activity and local RT around other reported Rif1 binding sites (Rif1 BSs). No 

sites other than subtelomeres and the Taz1 dependent heterochromatin islands 

have been reported as binding sites for Taz1. 

4.2.3.1 Effect of taz1Δ and rif1Δ on origin firing 
A ChIP-Seq analysis of Rif1-6×His-10×Flag in G1, in an nda3-KM311 background 

reported 90 Rif1 BSs, from which a consensus sequence for a Rif1 binding motif 

was extracted (Kanoh, Matsumoto et al. 2015). 35 out of the 90 reported sites 

contained two or more repeats of this motif and these 35 sites were described as 

“strong” Rif1 BSs. Rif1 binding to these sites was seen in taz1Δ, suggesting that, 

unlike at Taz1 dependent facultative heterochromatin islands, Rif1 binding to 

strong Rif1 BSs was not Taz1 dependent. Interestingly, Taz1 dependent islands 

were not part of the Rif1 BSs reported by (Kanoh, Matsumoto et al. 2015), even in 

the presence of Taz1. 

Given the ability of strong Rif1 BSs to adopt G-quadruplex structures in vitro and 

the preferential binding of G-quadruplex DNA by purified Rif1 protein, it was 

hypothesised that in S. pombe Rif1 binds G-quadruplexes in vivo (Kanoh, 

Matsumoto et al. 2015). We, therefore, looked at the effect of rif1Δ and taz1Δ at 

strong Rif1 BSs and, independently mapped, G-quadruplexes (Sabouri, Capra et al. 

2014). 

In wild type S. pombe, strong Rif1 BSs appear to be regions where few origins fire 

and replication forks merge, i.e., they are potential termination sites (evidenced by 

the negative value of the differential of polymerase usage) - Fig. 4.8 A. In rif1Δ, we 
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observed an increase in origin firing up to 3 kb either side of the BSs, suggesting 

that Rif1 binding locally inhibits origin firing. We did not see evidence of long-

range effects (>50 kb) on the origin activity (previously reported in (Kanoh, 

Matsumoto et al. 2015)). We also saw a marginal increase in origin activity in 

taz1Δ - Fig. 4.8 A. 

Around G-quadruplex sites, we saw a very small, but reproducible, increase in 

origin activity in rif1Δ (Fig. 4.8 Bi). To determine whether the increased origin 

activity at a small number of strong Rif1 BSs caused this effect, we analysed the G-

quadruplex data where the positions that overlapped strong Rif1 BSs were 

removed. Only 6 (out of 446) of the mapped G-quadruplex positions overlapped 

with the 35 strong Rif1 BSs. The very small increase in origin activity was 

maintained in rif1Δ around these 440 G-quadruplex positions (Fig. 4.8 Bii). This 

suggests that the effect shown in Fig. 4.8 Bi was likely to have been caused by an 

interaction of Rif1 with G-quadruplex DNA. The fact, however, that this effect is so 

small and that only 6 out of the 446 G-quadruplex sites overlap with strong Rif1 

BSs suggest that despite the ability of purified Rif1 to bind G-quadruplex DNA in 

vitro, it may not have a functional role in vivo. No change in origin activity was 

observed in taz1Δ around the G-quadruplexes (Fig. 4.8 B). 

These data also show that the action of Rif1, not Taz1, inhibits origin firing locally. 

This implies that the increased origin activity shown in Fig. 4.5 A was due to the 

loss of Rif1 at these sites- either directly in rif1Δ or due to an abrogated binding of 

Rif1 to these sites in taz1Δ. The increase in origin firing was not as high in taz1Δ 

compared to rif1Δ, suggesting that Rif1 may be able to bind inefficiently to Taz1 

dependent heterochromatin islands in a Taz1 independent manner. The data also 

suggest that Taz1 independent heterochromatin islands may be a subset of Rif1 

BSs, despite not being identified as Rif1 BSs by (Kanoh, Matsumoto et al. 2015).   
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A) Origin activity around Rif1 binding sites 
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B) Origin activity around G-quadruplexes 
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Fig. 4.8 – The average origin activity around strong Rif1 binding sites G 

quadruplexes in rif1Δ, taz1Δ and wild type backgrounds 

 

  

The mean origin activity (i.e., the average of the differentials of the polymerase δ 

usage on the reverse strand and polymerase ε forward strand) in each 300 bp bin is 

shown for 6 kb up and downstream of the midpoint of the heterochromatin island. 

The error bars represent the standard error of the mean in each bin. The origin 

activity shown here were calculated from two independent biological repeats for 

the wild type data only.  

A) The mean activity in each bin averaged across the 35 strong Rif1 binding sites. 

B) The mean activity in each bin averaged across G-quadruplexes. The mean 

activity was counted across all of the 446 G-quadruplexes (i) and the 440 G-

quadruplexes that did not overlap with any strong Rif1 binding sites (ii). 

 



 
119 

 

4.2.3.2 Effect of taz1Δ and rif1Δ on replication timing  
Historically, data describing origin firing and replication timing was derived from 

BrdU incorporation assays. Briefly, S. pombe cultures were synchronised (often 

using cell cycle mutants) and released into BrdU in the presence of HU, which 

blocks cells in early S-phase, ensuring the firing of only early origins. BrdU, an 

analogue of thymidine, is incorporated into the DNA, acting as a marker of nascent 

DNA. Sonicated DNA fragments containing BrdU were be pulled down using an 

anti-BrdU antibody. The nascent DNA was then either hybridised to a tiling array 

or sequenced, giving an estimate of the copy number of each locus (Ryba, Battaglia 

et al. 2011). 

BrdU incorporation techniques reliably identify efficiently firing early origins. They 

are, however, unable to differentiate between origins which fire early and those 

which fire efficiently, if those are fired relatively late in S-phase. Additionally, the 

commonly used mutations for synchronising S. pombe have been reported to have 

affect origin usage (Xu, Yanagisawa et al. 2012). The application of BrdU 

incorporation assays and cell cycle mutants to study origin firing patterns can, 

therefore, lead to false conclusions. 

As described in 2.2.4.3.2, Pu-Seq data can be analysed to generate an RT profile 

(Pu-Seq Trep) of each chromosome. These patterns are not relative, i.e., the data 

cannot be used to compare changes between chromosomes. To determine how the 

changes in origin firing efficiencies around Taz1 dependent heterochromatin 

islands and the Rif1 BSs affected the local replication timing around them, we 

analysed the Pu-Seq Trep around those regions in taz1Δ and rif1Δ. 

4.2.3.2.1 Changes seen in taz1Δ 
The global RT program in S. pombe is biphasic (Daigaku, Keszthelyi et al. 2015). 

Chromosome 3, the left arm of Chromosome 2 and small parts on the right arm of 

Chromosome 1 replicate early in S-phase (marked in green on Fig. 4.9), with the 

rest of the genome replicating later. This pattern is most visible on Chromosome 2 

– replication timing transitions between early and late midway through the 

chromosome (to the right on Centromere 2). 
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The taz1Δ global RT profile was comparable to that of wild type - Fig. 4.10 A. All 

changes in replication timing were limited to Taz1 dependent heterochromatin 

islands and subtelomeres.  

Replication timing changes around the Taz1 dependent heterochromatin islands 

were very pronounced in taz1Δ (Fig. 4.10 B, C and D). On average, across all 6 Taz1 

dependent heterochromatin islands, the relative replication timing spiked around 

the site in taz1Δ and levelled off to wild type levels between 40-50 kb away from 

the site (Fig. 4.11 A). This suggests that local changes to origin firing (Fig. 4.5 A) 

affect the regional replication timing. 

Additionally, changes in Pu-Seq Trep around the island on the right arm of 

Chromosome 1 resulted in a relative replication timing change of an adjacent 

replication timing domain. In taz1Δ, the earlier replication of the region adjacent to 

the island (marked in green on Fig. 4.10 B ii), had a direct effect on decreasing the 

regional replication timing of the ~200 kb domain next to it (marked in red on Fig. 

4.10 B ii). It is unclear why this effect of compensating replication timing was not 

seen at the other Taz1 dependent heterochromatin islands.  

A modest increase in local replication timing around the Rif1 BSs was noted in 

taz1Δ (Fig. 4.11 B), correlating well with the small increase in the origin activity 

(Fig. 4.8 A).  

Subtelomeres in taz1Δ were replicated earlier than wild type, with the exception of 

the right subtelomere of Chromosome 3, which replicated later (Fig. 4.10 A). The 

late replication timing phenotype on Chromosome 3 span approximately 0.5 Mb 

proximal to the right telomere. Given that both ends of Chromosome 3 are 

“capped” by repetitive rDNA units (Uzawa and Yanagida 1992), it is unclear why 

they would have different phenotypes in taz1Δ. Given the long range effect, 

however, it is unlikely that this change is caused by anomalous read alignment in 

the subtelomeric regions. Surprisingly, however, the origin activity around right 

subtelomeric regions of Chromosomes 1 and 2 was almost identical to that of wild 

type (Fig. 4.7), suggesting that the late replicating phenotype was not due to the 

inhibition of origin firing activity in the region.
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Fig. 4.9 – Sort-Seq Trep across all three chromosomes in wild type S. pombe 

 

  

 

 

Cells were sorted by FACS from an asynchronous culture and sequencing data from 

synchronous S-phase and G2 populations were compared to produce a Sort-Seq copy 

number profile. The data were collected, analysed published in (Daigaku, Keszthelyi et al. 

2015).  
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A) Pu-Seq Trep genome wide 
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B-D)   Pu-Seq Trep around Taz1 islands  
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Fig. 4.10 – Pu-Seq Trep across all three chromosomes and around Taz1 

dependent facultative heterochromatin islands in taz1Δ and wild type 

backgrounds 

A) Pu-Seq Trep across all three chromosomes in taz1Δ and wild type. Pu-Seq Trep 

was calculated using the progression of leftward moving forks and assuming a 

constant fork velocity of 1.5 kb/min. It represents when in S-phase each locus is 

replicated. The y-axis was, therefore, inverted to maintain the convention of early 

and late replicating regions being shown on the top and bottom of the graph, 

respectively. Centromeres and Taz1 dependent facultative heterochromatin islands 

are marked in grey and purple, respectively. The wild type Pu-Seq Trep profile is 

derived from an average of data generated by 5 wild type Pu-Seq experiments. 

B-D) Pu-Seq Trep across each of the 6 Taz1 dependent facultative 

heterochromatin islands. Pu-Seq Trep was calculated as explained in A. Late to 

early and early to late changes between wild type and taz1Δ are shown in red and 

green, respectively. Centromeres and Taz1 dependent facultative heterochromatin 

islands are marked in grey and purple, respectively.  

Figures B i and Bii show the relative Pu-Seq Trep around two different Taz1 

dependent heterochromatin islands on the left and right arms of chromosome 1, 

respectively. Both heterochromatin islands are shown on chromosome 1 on Fig. 

4.10 A. 

The wild type Pu-Seq Trep profile is derived from an average of data generated by 5 

wild type Pu-Seq experiments. 
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Fig. 4.11 – Pu-Seq Trep around Taz1 dependent facultative heterochromatin 
islands and strong Rif1 binding sites in taz1Δ and wild type background

Pu-Seq Trep was calculated using the progression of leftward moving forks and 

assuming a constant fork velocity of 1.5 kb/min. It represents when in S-phase 

each locus is replicated. The y-axis was, therefore, inverted to maintain the 

convention of early and late replicating regions being shown on the top and 

bottom of the graph, respectively. Pu-Seq Trep 6 kb up and downstream of the 

midpoint of each site was recorded. The error bars represent the standard error 

of the mean in each bin. The Pu-Seq Trep shown here were calculated from two 

independent biological repeats for both backgrounds.  

A) The Pu-Seq Trep in each bin averaged across the 6 Taz1 dependent 

heterochromatin islands. 

B) The Pu-Seq Trep in each bin averaged across the 35 strong Rif1 binding sites.  
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4.2.3.2.2 Changes seen in rif1Δ 
Unlike in taz1Δ, replication timing changes in rif1Δ were not limited to 

subtelomeres and Taz1 dependent heterochromatin islands. The global program of 

replication timing was affected in rif1Δ - Fig. 4.12.  

Similarly to taz1Δ, an increase in the relative RT was noted around Taz1 

dependent heterochromatin islands and Rif1 BSs in rif1Δ (Figs. 4.13 A and B). This 

increase in Pu-Seq Trep was greater than that seen in taz1Δ but did not span 

regions as large - the increase in relative replication timing levelled off after ~10 

kb. Interestingly, in rif1Δ, subtelomeres also replicated earlier than in wild type 

(Fig. 4.12), without a concomitant increase in the origin activity in the region (Fig. 

4.7).  

While local/ regional changes in replication timing around Rif1 BSs and Taz1 

dependent heterochromatin islands in taz1Δ and rif1Δ can be explained by the 

inhibition of origin firing by Rif1 in those regions (Figs. 4.5 A and 4.8 A), the global 

replication timing pattern in rif1Δ cannot. The global distribution of origin firing 

efficiencies, and the total number of origins fired, in rif1Δ was wild type (Fig. 4.6). 

Similarly the change in the relative RT of subtelomeres (Figs. 4.10 A and 4.12) does 

not correlate with changes in origin activity (Fig. 4.7). This suggests that Rif1 may 

have another role in controlling replication timing in S. pombe, which is 

independent from its origin inhibitory role.
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Fig. 4.12 – Pu-Seq Trep across all three chromosomes in rif1Δ and wild type S. pombe 

 

 

 

 

 

rif1Δ 

Wild type 

Pu-Seq Trep was calculated using the progression of leftward moving forks and assuming a constant fork 

velocity of 1.5 kb/min. It represents when in S-phase each locus is replicated. The y-axis was, therefore, 

inverted to maintain the convention of early and late replicating regions being shown on the top and 

bottom of the graph, respectively. Centromeres and Taz1 dependent facultative heterochromatin islands 

are marked in grey and purple, respectively. The wild type Pu-Seq Trep profile is derived from an average 

of data generated by 5 wild type Pu-Seq experiments. 
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Fig. 4.13 – Pu-Seq Trep around Taz1 dependent facultative heterochromatin 

islands and strong Rif1 binding sites in rif1Δ and wild type backgrounds

The Pu-Seq Trep was calculated using the progression of leftward moving forks and 

assuming a constant fork velocity of 1.5 kb/min. Pu-Seq Trep represents when in S-

phase at which each locus is replicated. The y-axis was, therefore inverted to 

maintain the convention of early and late replicating regions being shown on the 

top and bottom of the graph, respectively. Pu-Seq Trep 6 kb up and downstream 

of the midpoint of the site was recorded. The error bars show the standard error 

of the mean in each bin. The Pu-Seq Trep shown here were calculated from two 

independent biological repeats for all backgrounds.  

A) The Pu-Seq Trep in each bin averaged across the 6 Taz1 dependent 

heterochromatin islands. 

B) The Pu-Seq Trep in each bin averaged across the 35 strong Rif1 binding sites.  
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4.3 Discussion 
 
The wild type pattern of origin firing around Centromere 1 was affected in swi6Δ 

and clr4Δ (Fig. 4.2 A). It is possible that the wild type pattern of origin firing was 

lost due to a change in the regional replication timing of the centromere. Swi6 

interacts with Dfp1, the regulatory subunit of DDK (Bailis, Bernard et al. 2003) and 

DDK phosphorylation stimulates the loading of Sld3 and results in the early 

replication of centromeres (Hayashi, Takahashi et al. 2009). In swi6Δ, where the 

early replication phenotype of the centromere is lost (Hayashi, Takahashi et al. 

2009), the relative decrease in the efficiency of the origins firing within the 

centromere could have been caused by an increase in the passive replication of the 

region. With origins within and around the centromere firing at the same time in S-

phase, the probability of the centromere being passively replicated by rightward 

and leftward moving replication forks originating on the left and right-hand sides 

of the centromere, respectively, increases. This would have affected the pattern of 

leftward moving forks as shown in Fig. 4.2 A.  

It is also possible, and not mutually exclusive, that the repetitive nature of the 

centromere in the absence of heterochromatin caused the stalling and collapsing of 

forks. The perturbed replication shown in Fig. 4.2 A could have been caused, at 

least in part, by more forks collapsing within the repetitive regions and being 

rescued by inefficiently firing dormant origins. This interpretation would suggest 

that on the contrary to acting as an RFB, wild type levels of heterochromatin could 

be important for the maintenance of replication fidelity in repetitive regions. 

The changes in the origin firing and fork progression were less severe in clr4Δ, 

compared to swi6Δ (Fig. 4.2 A). It has been shown, using immune-localisation 

(Ekwall, Nimmo et al. 1996) and ChIP around Centromere 1 (Partridge, Borgstrom 

et al. 2000), that Swi6 is recruitment to centromeres is dependent on Clr4. Given 

that clr4Δ replication did not phenocopy that of swi6Δ, it is possible that in clr4Δ, 

Swi6 is recruited to centromeres via a redundant and less efficient mechanism and 

that the low levels of Swi6 are enough to establish wild type heterochromatin 

and/or early replication timing.    



 
130 

 

Despite origin activity and fork progression being locally affected at Centromere 1 

in the absence of heterochromatin, there was no reproducible bias towards 

polymerase δ (Fig. 4.2 B). This led us to conclude that, given the current level of 

noise in the Pu-Seq data, we cannot use polymerase δ bias as an accurate readout 

of HR restarted at repetitive regions. 

An increased load of heterochromatin affected global fork progression and caused 

an increase in the number of origins fired. The progression of replication forks was 

not as smooth as that seen in wild type or any other mutant background (Fig. 4.3). 

It is, therefore, possible that an increase in heterochromatin marks across the 

genome (as was reported for epe1Δ by (Zofall, Yamanaka et al. 2012)) can act as an 

RFB.  

Interestingly, the changes to fork progression in epe1Δ around Centromere 1 (Fig. 

4.3) were similar to those seen in clr4Δ (Fig. 4.2 A). Due to the globally perturbed 

fork progression in epe1Δ, however, it is impossible to say whether this is a 

centromere specific effect.  It could be speculated, however, that although the 

interaction of Swi6 with Epe1 was not reported to be involved in the ability of Swi6 

to recruit Dfp1 the early replication timing around centromeres may be affected to 

a small extend in epe1Δ. It is also possible that the increased heterochromatic 

marks led to more frequent fork stalling and potentially collapse. The number and 

distribution of the origins fired around the centromere in epe1Δ were comparable 

to wild type, which does not suggest dormant origin firing. It is, however, possible 

that the origins were firing below the noise threshold and not being detected. It is 

important to note that we have not yet carried out an independent biological 

replicate of the epe1Δ Pu-Seq analysis. We cannot, therefore, rule out that the 

unusual progression of forks in epe1Δ was caused by a technical error. 

At facultative heterochromatin islands, loss of heterochromatin did not have any 

effect on origin activity (Fig. 4.4). The deletion of facultative heterochromatin 

factors, Rif1 and Taz1, however, did have a very drastic effect on origin firing at 

Taz1 dependent heterochromatin islands. (Fig. 4.5 A). We, therefore, suggest that 

the origin firing inhibition effect, driven by Rif1 was heterochromatin independent. 

A similar effect of origin inhibition was seen at previously published Rif1 BSs (Fig. 
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4.8 A), suggesting that Taz1 dependent heterochromatin islands are indirect 

binding sites for Rif1. 

The changes in origin firing generally correlated with the changes in Pu-Seq Trep. 

A modest increase in origin activity in taz1Δ around Rif1 BSs (Fig 4.8 A) resulted in 

a small increase in local replication timing around those sites (Fig. 4.10 B). A large 

increase in origin activity in rif1Δ, on the other hand, correlated with a greater 

increase in local RT around the same sites (Figs. 4.8 A and 4.13 B). A similar effect 

was seen at Taz1 dependent heterochromatin islands - an increase in origin firing 

in taz1Δ and rif1Δ (Fig. 4.5 A) led to a spike in RT that persisted several tens of kb 

(Figs. 4.11 A and 4.13 A). It is possible that the long range effects of rif1Δ reported 

by (Kanoh, Matsumoto et al. 2015) were long range consequences of delayed 

timing, not origin inhibition. Interestingly, however, (Kanoh, Matsumoto et al. 

2015), analysed changes around Rif1 BSs, not Taz1 islands and the former did not, 

on average, result in relative RT changes that span >50 kb. 

An interesting exception to the straightforward relationship between origin 

activity and relative RT was the Taz1 dependent island on the right arm of 

Chromosome 1 (Fig. 4.10 B). The increase in the RT around the Taz1 dependent 

island was compensated by a change in the regional timing of the adjacent early 

replicating domain (Fig. 4.10 Bii). We propose that, in wild type cells, the early 

replication of the larger domain was maintained by the inhibition of origin firing 

around the Taz1 dependent island. This inhibition allowed the replication forks 

that originated in the early replicating domain to passively replicate the Taz1 

dependent island adjacent to it. In taz1Δ, origins fired with equal probabilities in 

the red and green regions, decreasing the likelihood of the Taz1 dependent island 

being passively replicated. These changes result in the loss of the two replication 

timing “domains” across the ~250 kb region in taz1Δ.  

This effect was not seen at the other Taz1 dependent islands. It is possible, 

therefore, that this change in timing reflects a genuine biological function that was 

impeded by taz1Δ at that site. As discussed in 4.1.2, the Taz1 dependent facultative 

heterochromatin islands have been independently discovered in two separate 

functional contexts (Zofall, Smith et al. 2016, Toteva, Mason et al. 2017). It is 

possible that they play other roles, which are not yet described.  



 
132 

 

The change in the relative RT of subtelomeres, on the other hand, in both rif1Δ 

(Fig. 4.12) and taz1Δ (Fig. 4.10 A) did not correlate with changes in the origin 

activity in those regions (Fig. 4.7). Another unexpected result of this analysis was 

the observation that the global replication timing program is lost in rif1Δ (Fig. 

4.12). Similarly to the RT changes at subtelomeres, the change in the global 

program cannot be explained by a change in the global distribution of origin firing 

efficiencies of rif1Δ origins (Fig. 4.6). This implies that, unlike the local changes 

seen at Rif1 BSs, the global RT program is not caused exclusively by changes in 

origin firing. Given that the global RT program depends on Rif1, it is possible that 

Rif1 may have another role in controlling S. pombe replication timing, which is 

independent from its role in origin inhibition. We have, therefore, decided to re-

focus our analyses on the factors influencing the global RT program of S. pombe 

and the role Rif1 plays in this pathway.
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5.1 Introduction 
 
Replication timing (RT) profiles across a number of metazoan backgrounds 

revealed that their genomes are organised into replication timing domains, whose 

sizes range from hundreds of kilobases to several megabases (Rhind and Gilbert 

2013). On a population level, the RT across replication timing domains is constant 

(Rivera-Mulia and Gilbert 2016). The temporal order in which these replication 

domains are replicated is referred to as the global RT program.  

 

Similarly to metazoans and other lower eukaryotes (Cornacchia, Dileep et al. 2012, 

Hiraga, Alvino et al. 2014), Rif1 has been implicated as a regulator of global RT 

program in S. pombe (Hayano, Kanoh et al. 2012, Kanoh, Matsumoto et al. 2015).  

While in metazoans Rif1 has been suggested to underpin the nuclear architecture 

responsible for the global RT program (Foti, Gnan et al. 2015) (discussed in 1.4.2), 

no such role of Rif1 has been described in yeast.  

5.1.1 Action of Rif1 in yeast 
Rif1 in S. pombe has been implicated in a number of seemingly disparate cellular 

processes. Similarly to its S. cerevisiae orthologue (Wotton and Shore 1997), Rif1 is 

recruited to telomeres (Kanoh and Ishikawa 2001). In S. pombe, however, this 

recruitment is mediated by Taz1 (Kanoh and Ishikawa 2001) and Rif1 activity is 

not involved in preventing aberrant chromosome fusion by telomere capping 

(Miller, Ferreira et al. 2005). In S. pombe, rif1Δ results in only a mild telomere 

elongation phenotype (Kanoh and Ishikawa 2001). As discussed in 4.1.2, Rif1 in S. 

pombe has been shown to contribute to the formation of heterochromatin at 

facultative heterochromatin islands (Zofall, Smith et al. 2016). Loss of Rif1 has 

been reported to affect spore formation (Kanoh and Ishikawa 2001) and this is 

likely linked to the disruption of the non-DSR islands associated with meiotic 

genes. Unlike in higher eukaryotes, where Rif1 is a crucial effector of 53BP1 

promoting non-homologous end joining (Zimmermann and de Lange 2014), rif1Δ 

in S. pombe was shown to not increase sensitivity when cells were exposed to a 

range of DNA damaging agents (Hayano, Kanoh et al. 2012), suggesting it is may 

not be involved in the DNA damage response.  
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Rif1 was also described as a regulator of global origin firing in S. pombe. Its 

absence led to the apparent suppression of early firing origins and stimulation of 

late and / or dormant origins  (Hayano, Kanoh et al. 2012). The abrogation of Rif1 

binding to a single site, was reported to affect the origin firing as far as 50 kb away 

(Kanoh, Matsumoto et al. 2015).  

It was also noted that rif1Δ was an efficient bypass mutant to hsk1Δ lethality 

(Hayano, Kanoh et al. 2012). In S. cerevisiae, a similar phenotype was noted and 

was shown to be dependent on the Rif1 mediated recruitment of the PP1 (protein 

phosphatase 1) Glc7 (Hiraga, Alvino et al. 2014). Rif1 recruits PP1 phosphatases 

via its conserved SILK/RVxF domains. The interaction between the phosphatases 

and Rif1 alleles that contain point mutations across the SILK/RVxF domains (Rif1-

PP1) are disrupted in S. cerevisiae and S. pombe (Dave, Cooley et al. 2014). S. pombe 

contains two PP1 phosphatases - Dis2 and Sds21, whose simultaneous deletion is 

lethal (Alvarez-Tabares, Grallert et al. 2007) 

In S. cerevisiae, the Rif1-Glc7 interaction was shown to lead to a Glc7 dependent 

decrease in Mcm2-7 phosphorylation (Hiraga, Alvino et al. 2014). In their model, 

(Hiraga, Alvino et al. 2014) propose that this de-phosphorylation leads to the 

inhibition of origin firing in G1. They suggest that the inhibition is lifted in S-phase 

by the abrogated interactions between Rif1 and Glc7, caused by the 

phosphorylation of the Rif1 N-terminus by DDK. This model suggests that a non-

phosphorylatable allele of Rif1 would exhibit stronger interactions with the 

phosphatases than wild type Rif1. This effect, however, was not observed in S. 

pombe (Dave, Cooley et al. 2014). An allele of Rif1 with mutations across seven 

predicted sites of CDK and DDK phosphorylation (Rif1-7A) did not interact more 

strongly with PP1 phosphatase Sds21 than wild type Rif1 (Dave, Cooley et al. 

2014).  

The ability of Rif1 to affect origin firing by the indirect dephosphorylation of 

Mcm2-7, has been suggested as a mechanism for controlling the global RT program 

(Kanoh, Matsumoto et al. 2015). This hypothesis, however, is based on the 

assumption that modulating origin firing efficiencies is responsible for the global 

RT pattern.  
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5.1.2 Application of current mathematical models of replication to S. pombe 
As discussed in 1.4.1, the currently accepted mathematical model (Yang, Rhind et 

al. 2010) explaining global RT in S. cerevisiae is considered to be descriptive of 

global RT in higher eukaryotes (Rhind and Gilbert 2013). The model is built on two 

assumptions. Firstly, origin efficiencies were defined based on firing-time 

distributions, i.e., the firing of efficiently and inefficiently firing origins was 

restricted to early and late S-phase, respectively. Secondly, the efficiency of all 

unreplicated origins increased towards the end of S-phase (Yang, Rhind et al. 

2010). This model was used to simulate DNA replication across all 16 S. cerevisiae 

chromosomes in silico and generated accurate RT profiles for all of them (Yang, 

Rhind et al. 2010). This reconciled the stochasticity of origin firing with the 

constant replication timing profiles (Bechhoefer and Rhind 2012).  

It is important to note, that although the RT profiles generated were global, they 

only spanned the relatively short S. cerevisiae chromosomes (whose largest 

chromosome is 1.5 Mb). In Chapter 4, we showed that a local increase in the origin 

activity around Rif1 BSs and Taz1 dependent heterochromatin islands increased 

locally (Figs. 4.8 A and 4.5 A , respectively) affected the relative RT over 10s-100s 

of kbs around the sites (Fig. 4.13), which is in accordance with the (Yang, Rhind et 

al. 2010) model. We also noted, however, that the increase the relative RT of 

subtelomeres in taz1Δ (Fig. 4.10 A) and rif1Δ (Fig. 4.12), as well as the loss of the 

entire global RT program in rif1Δ (Fig. 4.12), were not correlated with concomitant 

changes in origin firing activity around subtelomeres (Fig. 4.7) or the global 

distribution of origin firing efficiencies (Fig. 4.1). While linking the absolute origin 

firing efficiencies to the temporal order in which the origins fire results in accurate 

RT profiles over relatively short distances (several megabases) (Yang, Rhind et al. 

2010), this may not be the case over larger chromosomes or globally. 

Based on our data, we carried out an analysis to determine whether the global 

replication timing program and origin firing efficiencies are linked in S. pombe. 

Similarly to S. cerevisiae (Czajkowsky, Liu et al. 2008), S. pombe origins also fire 

stochastically (Patel, Arcangioli et al. 2006). The chromosomes are, however, much 

longer, with the shortest chromosome being 3.5 Mb (Wood, Gwilliam et al. 2002) 
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and the replication timing domains spanning over 2 Mb (Fig. 4.9), making them 

more similar to those in higher eukaryotes.  

5.1.3 Current methods to determine global RT in yeast 
The Pu-Seq RT profiles shown in Chapter 4 are an indirect measure of RT and are 

calculated from data that describe the progression of leftward moving replication 

forks (calculations described in 2.2.4.3). To study the global RT program further 

we wanted to generate RT profiles independent of Pu-Seq data.  

A number of deep-sequencing methods have been developed to explore the global 

RT program in S. cerevisiae (Muller, Hawkins et al. 2014). All of these methods are 

based on comparing whole genome sequencing data between exponentially 

growing cells in S-phase and stationary cells, which are mostly in G2. Several 

different ways of obtaining synchronous cultures, some of which do not rely on 

checkpoint mutants, have been compared and the resulting RT profiles were very 

similar (Muller, Hawkins et al. 2014).  

To generate Sort-Seq RT profiles, fixed cells from exponentially growing cultures 

are divided into S-phase and G2 populations using fluorescence-activated cell 

sorting (FACS) (Muller, Hawkins et al. 2014). Cell sorting based on DNA content is 

straightforward in S. cerevisiae, where DNA content per cell increases with the 

progression of the cell cycle, i.e., G2 cells contain twice the amount of DNA 

compared to G1 cells. In S. pombe, however, cytokinesis does not occur until after 

G1. This results in G1 cells with the same DNA content as G2 cells (a schematic of the 

DNA content changes in the S. pombe cell cycle is shown in Fig. 5.1). A more 

complicated method to analyse the S. pombe cell cycle using FACS has been 

developed (Knutsen, Rein et al. 2011) and successfully applied to produce Sort-Seq 

RT profiles for S. pombe (Fig. 4.9). 

Cell collection for marker frequency analysis (MFA) is simpler. MFA RT profiles are 

calculated by comparing sequencing data from asynchronous exponentially 

growing cells to that from cells in stationary cultures. Although MFA data are 

noisier, smoothed MFA RT profiles still reveal the same global RT profiles as Sort-

Seq (Muller, Hawkins et al. 2014).  
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Accuracy of MFA can be increased by using a partially synchronised exponentially 

growing population. S. cerevisiae cultures are routinely synchronised using the 

mating pheromone α-factor, which is naturally secreted by cells to block cell 

division in G1 and induce expression of mating-specific genes (Breeden 1997). 

When G1 cells are released from the α-factor block, they progress synchronously 

through the cell cycle. Their progression can be tracked using FACS to determine 

the time points at which the culture was in S-phase. In this version of MFA, gDNA 

from all S-phase time points is extracted and sequenced. All of the S-phase data 

sets are then separately compared to the sequencing data generated from the G1 

arrested cells, resulting in an RT profile for each of the time points. These RT 

profiles are then analysed together to produce a median replication time profile, 

which is more accurate than the “noisy” MFA profile and compares well with Sort-

Seq data (Muller, Hawkins et al. 2014). 

A modified version of MFA was used to produce an accurate global RT profile of S. 

pombe (Daigaku, Keszthelyi et al. 2015). Instead of α-factor synchronisation, which 

does not work in S. pombe, cells were synchronised using elutriation. Centrifugal 

elutriation separates the cells based on size, allowing the collection of large 

amounts of small G2 cells (Hagan, Grallert et al. 2016). Following elutriation, the G2 

cells were released into a synchronous cell cycle, whose progression was followed 

using FACS and microscopy. gDNA from S-phase time points was subsequently 

extracted, sequenced and analysed following the same methods as those described 

for S. cerevisiae by (Muller, Hawkins et al. 2014). 

Although both Sort-Seq and “accurate” MFA have been modified and used 

successfully in S. pombe, the protocols involved are both expensive and time 

consuming.  
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Fig. 5.1 - S. pombe morphology and DNA content at each stage of the cell 

cycle 

 

  

The small G2 cells contain a single 2N nucleus. The cells then undergo mitosis, 

before cytokinesis, resulting in M-phase cells with two 1N nuclei. Cells in G1 and S-

phase both have a septum and two nuclei (1N in G1 and 2N after S-phase). G2 cells 

directly post-division are still attached but without a visible septum between the 

two small cells. Adapted from (Knutsen, Rein et al. 2011).  
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5.1.4 Chapter aims 
To validate the phenotype of the loss of global RT program in rif1Δ, we developed a 

simplified and more cost effective deep-sequencing technique (Elutri-Seq) to 

generate RT profiles in S. pombe.  

We generated and analysed rif1Δ data to recapitulate the loss of global RT 

phenotype using Elutri-Seq. Simultaneously, we also generated a wild type Elutri-

Seq RT profile using previously published sequencing data, as a proof of concept. 

Next, we explored the effect of the Rif1 mediated PP1 phosphatase recruitment 

and Rif1 phosphorylation on the global RT and origin usage by carrying out Pu-Seq 

and Elutri-Seq analyses on the previously described Rif1-PP1 and Rif1-7A alleles 

(Dave, Cooley et al. 2014).  

Finally, to determine whether global RT is driven by the efficiency of origin firing, 

we analysed the differences between origin usage in early and late replicating 

regions in S. pombe.  

5.2 Results 
 
In order to validate the loss of global RT program seen in rif1Δ using Pu-Seq (Fig. 

4.12), we developed Elutri-Seq, a composite of the Sort-Seq and MFA methods, to 

generate global RT profiles in S. pombe.   

5.2.1 Elutri-Seq RT profiles for rif1Δ and wild type S. pombe 
As was done for S. pombe MFA (Daigaku, Keszthelyi et al. 2015), rif1Δ cells were 

synchronised in G2 using centrifugal elutriation. 2.5x107 G2 cells were harvested 

and re-suspended in rich YE media to a final concentration of 2.5x105 cells/mL. 

The synchronisation 20 minutes after elutriation is shown in Fig. 5.2 A. The 

synchrony with which the cells progressed through the cell cycle was measured by 

the counting percentage of cells in each phase at every time point (Fig. 5.2 B) and 

using FACS (Fig. 5.2 C).  

The cell cycle progression of rif1Δ cells (Fig. 5.2) was similar to that of wild type 

(wild type data reported by (Daigaku, Keszthelyi et al. 2015)). The peak of 

septation (marker of early S-phase) was seen earlier in rif1Δ - 60 minutes after 

release (Figs. 5.2 B and C), compared to 75 minutes for wild type (Daigaku, 

Keszthelyi et al. 2015).  
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Unlike for MFA, we did not analyse all of the S-phase time points. Instead, we took 

the Sort-Seq approach and compared a single S-phase population with the G2 

population. gDNA from the 60 minute (S-phase) and 20 minute (G2) time points 

was extracted, sonicated and used to prepare Illumina libraries (optimised 

protocol in 2.2.5.1). The libraries were paired-end sequenced and the reads 

generated were aligned to the SP2 reference genome. The resultant coverage of the 

S. pombe genome was calculated using the Lander/Waterman equation (Lander 

and Waterman 1988) and is shown in Table 5.1. The coverage of the S. cerevisae 

genome used for Sort-Seq (Muller, Hawkins et al. 2014), was also calculated and is 

shown for comparison in Table 5.1. 

 

Table 5.1 – Number of reads mapped and total coverage for S. pombe rif1Δ 

Elutri-Seq and wild type S. cerevisiae Sort-Seq (the latter carried out by (Muller, 

Hawkins et al. 2014)).  

The total number of mapped reads is the sum of R1 and R2 mates that aligned in pairs 

(concordantly and discordantly) and single reads that aligned in single end mode. 

Experiment 
and organism 

Size of 
haploid 
genome/Mb 

Length of 
reads/bp 

Sample  Total number 
of mapped 
reads 

Coverage 

Elutri-Seq 
(S. pombe) 

12.57 
 

81 S-phase  139,287,892 897.6 
G2  119,210,264 768.2 

Sort-Seq 
(S. cerevisiae) 

12.1 
 

100 S-phase 155,734,122 1287.1 
G2 131,816,351 1089.4 

 

 

The Elutri-Seq coverage was lower than, but still comparable, to that of S. 

cerevisiae Sort-Seq. We continued the analysis without increasing the depth of 

sequencing.  

To validate the Elutri-Seq approach, we generated a wild type Elutri-Seq RT profile 

in parallel. The wild type profile was generated by analysing two time points from 

the S. pombe MFA data (Daigaku, Keszthelyi et al. 2015). The 75 and 125 minute 

time points were chosen as S-phase and G2 samples, respectively. Both were 

chosen to best match the DNA content and number of S-phase/G2 cells seen in the 
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rif1Δ S-phase and G2 samples. The reads from the wild type S-phase and G2 

libraries were mapped to the SP2 reference genome and coverage was calculated 

using the Lander/Waterman equation (Lander and Waterman 1988) (Table 5.2). 

 

Table 5.2 – Number of reads mapped and total coverage for S. pombe MFA 

done by (Daigaku, Keszthelyi et al. 2015) 

 The total number of mapped reads is the sum of R1 and R2 mates that aligned in pairs 

(concordantly and discordantly) and single reads that aligned in single end mode. 

Experiment 
and organism 

Size of 
haploid 
genome/Mb 

Length of 
reads/bp 

Sample  Total number 
of mapped 
reads 

Coverage 

MFA 
(S. pombe) 

12.57 
 

81 S-phase 
(75min) 

107,000,844 689.5 

G2 
(125min) 

102,287,120 659.1 

  

 

Sort-Seq RT profiles are generated by calculating the ratio between the number of 

reads that map to each locus (i.e., the copy number) in early S-phase and G2 

(Muller, Hawkins et al. 2014). In the replicating sample, the copy number of each 

locus is determined by when in S-phase the locus replicates. Loci that replicated 

earlier will generate more reads and therefore result in a greater copy number 

than those that replicate later in S-phase. Fully replicated G2 cells have an equal 

copy number at each locus.    

We generated Elutri-Seq profiles following the same logic, using standard samtools 

commands (shown and described in 2.2.5.2). Briefly, the SAM files containing the 

mapped reads in the S-phase and G2 datasets were converted into BAM format, 

sorted and binned into windows of 1 kb. The 5’ end of each read was assigned to a 

bin and the total number of reads in each bin was counted. The counts in each bin 

were then normalised to the total number of counts in each sample. A ratio 

between the normalised S-phase and G2 counts in each bin was calculated to 

produce the final Elutri-Seq Trep. Density distributions of the Elutri-Seq Trep are 

shown in Fig. 5.3.  
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The distribution of wild type Elutri-Seq Trep was skewed towards late replication, 

with a small population of early replicating loci forming a “bulge” that was skewed 

towards early replication. This is descriptive of wild type S. pombe replication 

where much of the genome is replicated late, with only the smallest chromosome 

and parts of Chromosomes 1 and 2 replicating early (Fig. 4.9). rif1Δ Elutri-Seq 

Trep, on the other hand, was normally distributed, suggesting that in rif1Δ all loci 

had an equal probability of being replicated during early S-phase.  

To compare the distributions directly, the wild type and rif1Δ Elutri-Seq Trep were 

normalised to fraction of the genome replicated in the S-phase sample used 

(method described in 2.2.5.3). The normalised Elutri-Seq Trep was plotted for each 

bin (Fig. 5.4 A), to determine which areas of the genome contributed to early 

replicating “bulge” on the wild type Trep distribution shown in Fig. 5.3. 

Superimposed density distributions of normalised wild type and rif1Δ Elutri-Seq 

Trep are shown in Fig. 5.4 B.  

The wild type Elutri-Seq Trep (Fig. 5.4 A) recapitulated the wild type Sort-Seq data 

(Fig. 4.9). Chromosome 3 and the same parts of Chromosomes 1 and 2 were early 

replicating (Fig. 5.4 A). This global RT program was lost in rif1Δ. Similarly to the 

rif1Δ Pu-Seq RT profile (Fig. 4.12), the Elutri-Seq rif1Δ RT profile was flat (Fig. 5.4 

A). This showed that in rif1Δ, the hierarchy of replication timing is abolished and 

no parts of the genome replicate earlier than others. 

The good correlation between wild type Elutri-Seq and Sort-Seq RT profiles, shows 

that Elutri-Seq is a good substitute to the more expensive and time consuming 

methods described in 5.1.3 for analysing RT in S. pombe. The rif1Δ Elutri-Seq data 

validated the Pu-Seq Trep, which also showed a loss of the global RT program.  
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A) Synchronisation after 20 minutes 

 

 

B) Septation index 
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C) FACS  
 

 

 

 

 

 

 

 

 

 

Fig. 5.2 - Analysis of the cell cycle of rif1Δ cells after elutriation 

 

A) Synchronisation of rif1Δ 20 minutes after elutriation. Cells were stained with 1 

μg/mL 4′,6′-diamidino-2-phenylindole (DAPI) and 2.5% v/v calcofluor-white (which 

stain nucleic acid and the septum, respectively). Cells were visualized using an 

inverted fluorescence microscope (EVOS™ FL).  

B) The synchronous passage of rif1Δ cells through the cell cycle after elutriation. 

Cells were stained and visualised at each time point (as described in A). Cells were 

counted and divided into different phases of the cell cycle based on their 

morphology - cells with one nucleus - G2 ; cells with two nuclei - M-phase  ; cells 

with a septum- S-phase ; two cells joined, without a visible septum, and with one 

nucleus each - post-division. 

C) FACS analysis of cells at each time point. 1.25x106 cells were collected at each 

time point, stained with propidium iodide and analysed for DNA content on BD 

Accuri™ C6 Plus flow cytometer. 
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Fig. 5.3 - Density distribution of Elutri-Seq Trep for wildtype and rif1Δ  

S. pombe 

 

Reads from S-phase and G2 libraries (sequenced in both backgrounds for a coverage 

over 650 X) were aligned to the SP2 reference genome, binned into 1 kb windows, 

the number of 5’ ends of reads was counted in each bin and normalised to the total 

number of counts. The ratio the S-phase and G2 counts in every bin was calculated to 

produce Elutri-Seq Trep. The x-axis represents the relative replication time of each 

locus in the genome, where higher ratio values represent earlier replicating loci.  

Wild type Elutri-Seq Trep (blue) is not normally distributed - large regions of the 

genome replicate earlier than others. rif1Δ Elutri-Seq Trep (pink.) is normally 

distributed, showing that all regions have an equal probability of being replicated at 

any point during S-phase in rif1Δ. The rif1Δ and wildtype histograms were binned into 

1000 and 500 bins, respectively.  

 

rif1Δ 

Wild type 
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A) Elutri-Seq genome wide 
 

  

rif1Δ 

Wild type 
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B) Distribution of Elutri-Seq 
 

 

 
rif1Δ 

Wild type 
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Fig. 5.4 - Wild type and rif1Δ Elutri-Seq Trep, normalised to the fraction of the 

genome replicated 

The wild type and rif1Δ Elutri-Seq RT profiles were normalised to the fraction of the 

genome replicated (as described in 2.2.5.3).  

A) The Elutri-Seq Trep, normalised to the fraction of the genome replicated, plotted 

against each bin.  

B) Superimposed density distributions of wild type and rif1Δ Elutri-Seq Trep 

(normalised to the fraction of the genome replicated). The rif1Δ and wildtype 

histograms were binned into 500 and 250 bins, respectively.  
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5.2.2 The effect of different Rif1 alleles on replication timing and origin firing 
Rif1 has been shown to interact with PP1 phosphatases via its SILK/RVxF domains 

(Dave, Cooley et al. 2014, Hiraga, Alvino et al. 2014). In S. cerevisiae, the 

phosphorylation of Rif1 inhibits the interaction of Rif1 with the phosphatases. 

(Hiraga, Alvino et al. 2014). Rif1-PP1 and Rif1-7A are S. pombe Rif1 alleles that are 

mutated in the SILK/RVxF domains and at putative Rif1 phosphorylation sites, 

respectively (Cooley, Dave et al. 2014). A schematic showing the hypothesised 

effects of each allele is shown in Fig. 5.5 A. To further explore the role of Rif1 in S. 

pombe, we went on to test the effect of these Rif1 alleles on the local inhibitory 

origin firing inhibition around Rif1 BSs and the maintenance of the global RT 

program.  

5.2.2.1 Effect of Rif1-PP1 and Rif1-7A on origin firing and local RT 
The distribution of origin firing efficiencies in both Rif1-7A and Rif1-PP1 remained 

bimodal (Fig. 5.5 B). The numbers of origins detected were within the wild type 

range (1075 and 994 origins of replication for Rif1-7A and Rif1-PP1, respectively; 

Rif1-PP1 data are an average of two independent biological repeats).  

Next, we analysed the origin activity up and downstream of strong Rif1 BSs and 

Taz1 dependent heterochromatin islands in Rif1-PP1 and Rif1-7A. Origin activity 

around both sets of sites increased in Rif1-PP1 (Figs. 5.6 A and B). The origin 

activity around Rif1 BSs was, however, significantly lower in Rif1-PP1 compared to 

rif1Δ. The Rif1-PP1 allele has been previously described as incompletely penetrant 

(with regards to telomere elongation) (Zaaijer, Shaikh et al. 2016). It is, therefore, 

possible that the difference in the origin activation between the Rif1-PP1 and rif1Δ 

is due to residual PP1 interactions. The increase in origin activity resulted in an 

increase in local RT around strong Rif1 BSs and Taz1 dependent heterochromatin 

islands in Rif1-PP1 (Figs. 5.6 C and D). These data show that the interaction of Rif1 

with phosphatases is necessary to inhibit origin firing, supporting the model of 

Mcm2-7 de-phosphorylation (Hiraga, Alvino et al. 2014).  

We saw no increase in origin activity (or related changes in local RT) in Rif1-7A 

(Fig. 5.6). It is important to reiterate that the Rif1-7A allele did not show a 

significantly stronger interaction with the phosphatases, compared to wild type 
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(Dave, Cooley et al. 2014) and may, therefore, not be an accurate model for a 

complete loss of phosphorylation on Rif1. 
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A) Rif1 alleles 
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B)  Origin efficiency in Rif1-PP1 and Rif1-7A 
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Fig. 5.5 - Simplified interactions of the Rif1 alleles with PP1 phosphatases and 

the density distribution of origin firing efficiencies in Rif1-PP1 and Rif1-7A 

 

  

A) Schematic of Rif1 alleles. Wild type Rif1 interacts with phosphatases via its 

RVxF and SILK domains. The Rif1-PP1 allele contains four point mutations (two in 

each domain) that convert four residues to alanine. The resultant Rif1 protein 

cannot interact with PP1 phosphatases Dis2 and Sds21. The phosphorylation of 

Rif1 by CDK and DDK in S-phase has been proposed to inhibit the interaction with 

the phosphatases in S. cerevisiae (Hiraga, Alvino et al. 2014), which would stop 

the de-phosphorylation of Mcm2-7 and allow origins to fire. The mutation of 

seven putative CDK and DDK phosphorylation sites (Rif1-7A) was proposed to 

result in a Rif1 whose interactions with the phosphatases were enhanced.  

B) Density distribution of origin firing efficiencies in Rif1-PP1 and Rif1-7A S. 

pombe. Origins of replication were mapped for each strains using Pu-Seq, 

applying a threshold of 0.3, i.e., positive peaks of the differentials of polymerase 

usage whose heights were above the 30th percentile were mapped as origins. The 

efficiency of firing was normalised to the value of the 99th percentile in each data 

set.  
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Fig. 5.6 – The average origin activity and Pu-Seq Trep around Taz1 dependent 

facultative heterochromatin islands and strong Rif1 BSs in rif1Δ, Rif1-7A, 

Rif1-PP1 and wild type backgrounds 

The mean origin activity (i.e., the average of the differentials of the polymerase δ 

usage on the reverse strand and polymerase ε forward strand) in each 300 bp bin is 

shown for 6 kb up and downstream of the midpoint of each site. The error bars 

represent the standard error of the mean in each bin. The origin activity data shown 

here were calculated from two independent biological repeats for all backgrounds 

except Rif1-7A. 

Pu-Seq Trep was calculated using the progression of leftward moving forks and 

assuming a constant fork velocity of 1.5 kb/min. It represents when in S-phase each 

locus is replicated. The y-axis was, therefore inverted to maintain the convention of 

early and late replicating regions being shown on the top and bottom of the graph, 

respectively. Pu-Seq Trep 6 kb up and downstream of the midpoint of each site was 

recorded. The Pu-Seq Trep data shown here were calculated from two independent 

biological repeats for all backgrounds except Rif1-7A. The error bars represent the 

standard error of the mean in each bin. 

A) The mean activity in each bin averaged across the 6 Taz1 dependent 

heterochromatin islands. The wild type and rif1Δ origin activity data shown here are 

identical to those shown in Fig. 4.5 A and are only shown here for comparison. 

B) The mean activity in each bin averaged across the 35 strong Rif1 binding sites. 

The wild type and rif1Δ origin activity data shown here are identical to those shown 

in Fig. 4.8 A and are only shown here for comparison. 

C) The Pu-Seq Trep in each bin averaged across the 6 Taz1 dependent 

heterochromatin islands. The wild type and rif1Δ origin activity data shown here are 

identical to those shown in Fig. 4.13 A and are only shown here for comparison. 

D) The Pu-Seq Trep in each bin averaged across the 35 strong Rif1 binding sites. 

The wild type and rif1Δ origin activity data shown here are identical to those shown 

in Fig. 4.13 B and are only shown here for comparison. 
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5.2.2.2 Effect of Rif1-PP1 and Rif1-7A on global RT 
The Rif1-PP1 Pu-Seq RT Trep profile showed a loss of global RT (Fig. 5.7), identical 

to that seen in rif1Δ (Fig. 4.12), showing that the maintenance of the global RT 

program is dependent on the interaction of Rif1 with the PP1 phosphatases. The 

Rif1-7A Pu-Seq Trep RT profile was wild type (Fig. 5.7), suggesting that the 

phosphorylation of Rif1 did not affect global RT. The Pu-Seq Trep RT profiles 

shown in Fig. 5.7 show the RT across Chromosome 2, where the loss of wild type 

global RT program is most visible (early and late replicating domains disappear).  

To validate the loss of the global RT program in Rif1-PP1, we carried out Rif1-PP1 

Elutri-Seq, as described for rif1Δ in 5.2.1. Cells were synchronised by elutriation 

and the collected G2 cells were resuspended to a final volume of 2.5x105 cells/mL. 

The synchronisation 20 minutes after elutriation is shown in Fig. 5.8 A. The 

synchrony with which the cells progressed through the cell cycle was measured by 

the counting percentage of cells in each phase at every time point (Fig. 5.8 B) and 

using FACS (Fig. 5.8 C).  

The synchronisation of Rif1-PP1 was successful, but not to the same extend as for 

rif1Δ. 20 minutes after Rif1-PP1 elutriation, over 97% of cells were in G2 (Fig 5.8 

B). While this level of synchronisation is much better than could be achieved using 

other S. pombe methods (such as lactose gradients or even checkpoint mutants), it 

was lower than the 100% synchrony achieved for rif1Δ (Fig. 5.2 B). This difference 

resulted in over 16% of cells being in G2 at the peak of septation (70 minutes after 

elutriation). To avoid confounding the Elutri-Seq S-phase data, we chose the 60 

minute sample instead. Although there were fewer septated cells 60 minutes after 

elutriation, the proportion of G2 cells was also lower (under 10%). Given the lack of 

synchrony at the 20 minute time point, the 120 minute time point was used as the 

Rif1-PP1 G2 sample for Elutri-Seq.  

gDNA from the two samples was extracted, sonicated and used to prepare Illumina 

libraries (as described in 2.2.5.1). Unfortunately, the alignment rate and, therefore, 

the final coverage were very low (Table 5.3). Given that the Elutri-Seq profiles are 

a ratio and the counts in each bin are normalised to the total number of counts per 

sample, we assumed a lower coverage would not significantly affect the results. 
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Table 5.3 – Number of reads mapped and total coverage for Rif1-PP1 Elutri-

Seq  

The total number of mapped reads is the sum of R1 and R2 mates that aligned in pairs 

(concordantly and discordantly) and single reads that aligned in single end mode. 

 

 

The obtained reads were analysed and normalised as described in 5.2.1. The 

Elutri-Seq Trep ratio was normally distributed (Fig. 5.8 D), similarly to that in rif1Δ 

(Fig. 5.3), validating the loss of the global RT program shown by Pu-Seq Trep (Fig. 

5.7). Due to the substantially lower depth of sequencing, however, plotting the 

Eluri-Seq Trep in each bin did not provide any meaningful information (data not 

shown). From this we concluded that low coverage Elutri-Seq data can be used to 

analyse large changes to global RT program. The resolution, however, is not 

sufficient to be able to determine the exact genomic loci that contribute to the 

changes. 

Taken together, the data show that the loss of Rif1 interactions with PP1 

phosphatases increases origin activity locally (Figs. 5.6 A and B), which leads to 

regional change in RT (Figs. 5.6 C and D). Additionally, this interaction is also 

important to maintain the global RT program (Figs. 5.7 and 5.8 D). As was seen in 

rif1Δ (Fig. 4.1), the Rif-PP1 distribution of origin firing efficiencies was wild type 

(Fig. 5.5 B). These data further reinforce the disparity between the local effects of 

modulating origin firing and the maintenance of the global RT program.  

 

 

Length of 
reads/bp 

Sample  Total 
number of 
reads 

Overall 
alignment 
rate 

Number of 
reads mapped 
to the 
reference 
genome 

Coverage 

80 S-phase  124,988,114 0.84% 1,049,900 6.8 
G2  101,143,955 2.86% 2,892,717 18.6 
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Fig. 5.7 - Pu-Seq Trep across Chromosome 2 for Rif1-PP1, Rif1-7A, rif1Δ and 

wild type S. pombe 

 

 

Pu-Seq Trep was calculated using the progression of leftward moving forks and 

assuming a constant fork velocity of 1.5 kb/min. It represents when in S-phase each 

locus is replicated. The y-axis was, therefore, inverted to maintain the convention 

of early and late replicating regions being shown on the top and bottom of the 

graph, respectively. The centromere is marked in gray. The wild type Pu-Seq Trep 

profile is derived from an average of data generated by 5 wild type Pu-Seq 

experiments. 
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A) Synchronisation after 20 minutes 

 

  

B) Septation index 
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C) FACS 
 
 
 
 
 
 
 
 
 
 

D) Elutri-Seq 
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Fig. 5.8 - Analysis of the cell cycle of Rif1-PP1 cells after elutriation and Rif1-

PP1 Elutri-Seq 

 

A) Synchronisation of Rif1-PP1 20 minutes after elutriation. Cells were stained with 

1 μg/mL 4′,6′-diamidino-2-phenylindole (DAPI) and 2.5% v/v calcofluor-white (which 

stain nucleic acid and the septum, respectively). Cells were visualized using an 

inverted fluorescence microscope (EVOS™ FL).  

B) The synchronous passage of Rif1-PP1 cells through the cell cycle after 

elutriation. Cells were stained and visualised at each time point (as described in A). 

Cells were counted and divided into different phases of the cell cycle based on their 

morphology - cells with one nucleus - G2 ; cells with two nuclei - M-phase ; cells with 

a septum- S-phase ; two cells joined, without a visible septum, and with one nucleus 

each - post-division. 

C) FACS analysis of cells at each time point. 1.25x106 cells were collected at each 

time point, stained with propidium iodide and analysed for DNA content on BD 

Accuri™ C6 Plus flow cytometer. 

D) Density distribution of Elutri-Seq Trep for Rif1-PP1 S. pombe. Reads from S-

phase and G2 libraries (sequenced in for a coverage over 6 X) were aligned to the 

reference SP2 genome, binned into 1 kb windows, the number of 5’ ends of reads 

was counted in each bin and normalised to the total number of counts. The ratio the 

S-phase and G2 counts in every bin was calculated to produce Elutri-Seq Trep. Rif1-

PP1 Elutri-Seq Trep (yellow) is normally distributed, showing that all regions have an 

equal probability of being replicated at any point during S-phase in Rif1-PP1 
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5.2.3 Comparing origin activity in late and early replicating regions 
To determine whether efficiently and inefficiently firing origins cluster in early and 

late replicating regions, respectively in S. pombe as would have been predicted by 

the (Yang, Rhind et al. 2010) S. cerevisiae model, and whether that is affected in 

rif1Δ and Rif1-PP1, we compared the origin activity in late and early replicating 

regions. 

First, we compared origin activity in early and late replicating regions that are 

directly adjacent to one another (a timing transition zone) - Fig. 5.9 A. In wild type 

cells, the origin activity in the late region was considerably lower than that in the 

early region (Fig. 5.9 B), which is in line with the S. cerevisiae model (Yang, Rhind 

et al. 2010). Fig. 5.9 C (panel 1) shows the origin activity in the late and early 

replicating regions in wild type. The replication forks originating in the early 

region (marked in green on Fig. 5.9 A) passively replicated the late replicating 

region (marked in red on Fig. 5.9 A) before the origins in the late region could fire.  

Compared to wild type, origins in the late replicating region in rif1Δ and Rif1-PP1 

fired more efficiently (Fig. 5.9 C), increasing the average origin activity in the late 

replicating region (Fig. 5.9 B). This change in the probability of origin firing in the 

late region caused a loss of the RT pattern across the whole region in rif1Δ and 

Rif1-PP1 (Fig. 5.7).  

Next, we tested whether early replicating regions contain more efficiently firing 

origins than late replicating regions globally. We compared the origin firing 

efficiencies in all the early replicating regions (shown in green on Fig. 4.9) to all the 

origin firing efficiencies in the late replicating regions. Firstly, in wild type cells, the 

origin activity in the early replicating regions was only marginally greater than 

that in late replicating regions (Fig. 5.10), suggesting that both late and early 

replicating regions are replicated by efficiently and inefficiently firing origins. The 

origin activity in early replicating regions in rif1Δ and Rif1-PP1 was slightly lower, 

compared to that in wild type (Fig. 5.10). There was, however, no compensatory 

increase of origin firing in the late regions, as was shown in Fig. 5.9 B. 

Taken together, the data suggest that the global RT program in wild type S. pombe 

is not caused by the underlying origin firing efficiencies in the early and late 

replicating domains.   
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A) Timing transition zone 

 
B) Average origin activity in late and 

early regions 

 

rif1Δ 

Rif1-PP1 

Wild type 
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C) Origin activity across transition zone 

 
Fig. 5.9 – Origin activity at an early to late RT transition zone on Chromosome 

2 in rif1Δ, Rif1-PP1 and wild type backgrounds 

 

A) Wild type Sort-Seq RT profile across Chromosome 2. Cells were sorted by FACS 

from an asynchronous culture and sequencing data from synchronous S-phase and 

G2 populations were compared to produce a Sort-Seq copy number profile. The 

data were collected, analysed published in (Daigaku, Keszthelyi et al. 2015). The 

early to late transition used in the analysis is marked in green and red.  

B) The average origin activity in the early (geen) and late (red) replicating region. 

The average origin activity was calculated by averaging the  positive values of the 

differentials of the polymerase δ usage on the reverse strand and polymerase ε 

forward strand in all the bins spanning the late and early regions. The error bars 

represent the standard error of the mean. 

C) The origin activity in the early and late replicating regions. Differentials of the 

polymerase δ usage on the reverse strand (shown in blue) and polymerase ε 

forward strand (shown in red) in all the bins spanning the late and early regions. 
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Fig. 5.10 - The average origin across all late and early replicating regions in 

rif1Δ, Rif1-PP1 and wild type backgrounds 

 

 

 

  

The average origin activity was calculated by averaging the positive values of the 

differentials of the polymerase δ usage on the reverse strand and polymerase ε 

forward strand in all the bins spanning the late and early regions. Early replicating 

regions in S. pombe are marked in green on Fig. 4.9. The error bars represent the 

standard error of the mean.  
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5.3 Discussion 
 
In order to validate the RT phenotype described for rif1Δ in Chapter 4, we used an 

independent deep-sequencing approach, called Elutri-Seq. Elutri-Seq combines 

aspects of Sort-Seq and MFA (discussed in 5.1.3), both of which were used 

successfully to generate S. pombe RT profiles (Daigaku, Keszthelyi et al. 2015). 

Elutri-Seq was used to create accurate RT profiles (Fig. 5.4) in a more cost and time 

effective manner. 

We generated  a wild type Elutri-Seq RT profile from previously published data 

generated for S. pombe MFA (Daigaku, Keszthelyi et al. 2015). The reads from the 

S-phase and G2 libraries were aligned to the SP2 reference genome and a ratio 

between the counts from the two samples was calculated. The wild type Elutri-Seq 

RT profile had a lower resolution than the Sort-Seq profile (Daigaku, Keszthelyi et 

al. 2015) but was still an accurate description of the global RT program (Fig. 5.4 B), 

providing proof of concept. 

Elutriation of rif1Δ resulted in very tight synchrony (Fig. 5.2). The progression 

through the cell cycle (Fig. 5.2) was comparable with that reported for wild type 

(Daigaku, Keszthelyi et al. 2015). Similarly to wild type, rif1Δ S-phase and G2 

samples were collected and used to construct Illumina libraries. The rif1Δ Elutri-

Seq showed a complete loss of the global RT program (Figs. 5.3 and 5.4). No 

regions of the genome replicated earlier or later than others, i.e., all areas of the 

genome had an equal probability of being replicated at any point during S-phase in 

rif1Δ. This conclusively verified the rif1Δ Pu-Seq Trep phenotype shown in Fig. 

4.12.  

In S. cerevisiae, Rif1 has been proposed to inhibit origin firing in G1 by recruiting 

the PP1 phosphatase Glc7 to de-phosphorylate Mcm2-7. It was suggested that this 

effect was alleviated in S-phase by the phosphorylation of Rif1 by CDK and DDK 

(Hiraga, Alvino et al. 2014). To determine whether the role of Rif1 in the 

maintenance of the global RT program in S. pombe relied on its ability to interact 

with phosphatases and/or be phosphorylated, we carried out Pu-Seq analyses in 

Rif1-PP1 and Rif1-7A strains. These alleles of Rif1 cannot recruit PP1 phosphatases 

and cannot be phosphorylated, respectively (Fig. 5.5 A). While both alleles had a 
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wild type distribution of origin firing efficiencies (Fig. 5.5 B), only Rif1-PP1 showed 

a loss of RT program phenotype similar to that seen in rif1Δ (Fig. 5.7). The Rif1-

PP1 RT phenotype was verified using Elutri-Seq (Fig. 5.8).  

Two conclusions about the global RT program in S. pombe can be drawn from these 

data. Firstly, the maintenance of the global pattern is reliant on the action of PP1 

phosphatases recruited by Rif1. Secondly, the global RT program is not caused by 

the underlying origin firing efficiencies in early and late replicating domains, as has 

been hypothesised in S. cerevisiae (Yang, Rhind et al. 2010). Therefore, despite the 

fact that the local effects of Rif1 on origin activity are also driven by its interaction 

with phosphatases (Fig. 5.6), we propose that the global RT program and the global 

origin firing efficiencies are unlinked in S. pombe. 

Instead, we propose a model where Rif1 mediated de-phosphorylation plays a role 

in establishing early and late S-phase. In our model, during early S-phase, origins in 

late replicating regions would be inhibited from firing (possibly through the direct 

action of PP1 phosphatases). In late S-phase, this inhibition would be lifted and 

origins in late regions would fire equally efficiently to their counterparts in early 

replicating regions. This model would explain the change in the relative RT of 

subtelomeres in rif1Δ (Fig. 4.12) and taz1Δ (Fig. 4.10 A) without an increase in the 

origin activity in the region (Fig. 4.7). 

Our data, which compared the origin activity globally in early and late replicating 

regions support this model (Fig. 5.10). These data show that in wild type cells 

origins in both early and late replicating regions fire with very comparable 

efficiencies. Furthermore, in rif1Δ and Rif1-PP1, where the global pattern is lost, 

origins in late replicating regions did not become more efficiently firing, as would 

be expected from a model which dictates that the earlier replication of these 

regions had to be driven by an increase in the underlying origin activity.  

Rif1-PP1 and rif1Δ origin activity in early replicating regions was slightly lower 

than that in wild type (Fig. 5.10). We propose that the lower origin activity is 

caused by a decrease in the availability of limiting factors. Given that in rif1Δ and 

Rif1-PP1, all origins have an equal probability of firing, the relative efficiency with 

which the previously “efficient” origins fired, decreases.  
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We cannot, however, rule out the possibility that the marginal difference between 

origin activity in late and early replicating regions seen in wild type cells (Fig. 5.10) 

could be responsible for generating the global RT program. Similarly, it is also 

possible that the small decrease in origin activity in early replicating regions in 

rif1Δ and Rif1-PP1 (Fig. 5.10) can account for the loss of the global RT. To 

irrefutably assert that the global RT program in S. pombe is not driven by relative 

differences in origin activity, we propose the building of a new forward 

mathematical model of DNA replication, where origin activity and replication 

timing are unlinked. The model could be used to predict in silico the extent to 

which the origin activity in the early and late replicating domains would have to be 

affected to produce a “flat” RT profile, as is seen in rif1Δ and Rif1-PP1 (Fig. 5.7).       

We speculate that the “switch” between early and late S-phase could be caused by 

the phosphorylation of Rif1. Although our data do not show a change in RT for 

Rif1-7A (Fig. 5.7), it has been previously reported that the allele does not show 

stronger interactions with the phosphatases (Dave, Cooley et al. 2014) and, 

therefore, may not completely inhibit Rif1 phosphorylation. We propose that there 

may be a threshold of Rif1 phosphorylation in mid to late S-phase at which the 

interactions between Rif1 and the PP1 phosphatases are inhibited. This would stop 

the de-phosphorylation of Mcm2-7 and allow the efficient firing of origins in late 

replicating regions, during late S-phase.  

A very similar analysis of the effect of Rif1 on the origin activity and global RT 

program in S. cerevisiae has been recently published (Hafner, Lezaja et al. 2018). 

While (Hafner, Lezaja et al. 2018) show a similar Rif1 (and PP1) dependent 

inhibition of origin firing, the global RT profiles (generated using Sort-Seq) were 

unaffected in rif1Δ. Instead, the pattern of Sort-Seq copy number “peaks” around 

origins of replication were flatter. This further reinforces the idea that while the 

global RT program in S. cerevisiae may be driven by changes in origin activity, this 

may not be descriptive of replication dynamics in other eukaryotes.  
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Chapter 6  
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6.1 Introduction 
 
To further explore the underlying mechanisms, we investigated the role played by 

the nuclear distribution of chromatin and effect of Mrc1 on the establishment of 

the global RT program 

Firstly, we analysed to nuclear localisation of Rif1 to determine whether it may 

play a role in the tethering of chromatin to the nuclear periphery. Secondly, to 

establish whether a change in the nuclear localisation of a genomic region could 

impact its relative RT, we generated Pu-Seq RT profiles from cells with an 

abrogated attachment of telomeres to the nuclear periphery.   

Finally, we examined the involvement of Mrc1, whose deletion has been previously 

described to have similar effects on global origin firing to that described for rif1Δ 

(Hayano, Kanoh et al. 2011, Hayano, Kanoh et al. 2012) 

6.1.1 Linking the nuclear distribution of chromatin and the replication 
timing program  
As discussed in 1.4.2, the boundaries of metazoan TADs, LADs and replication 

timing domains are significantly correlated, suggesting a strong link between the 

nuclear distribution of chromatin and the global RT program (Rivera-Mulia and 

Gilbert 2016). Comparison of human and murine RT profiles across regions of 

synteny, showed a considerable conservation of replication timing domains (Ryba, 

Hiratani et al. 2010), suggesting an important evolutionary role. No link between 

nuclear architecture and replication timing domains has been yet reported in S. 

pombe. It is important to note that the genome organisation is different between 

yeast and metazoans, e.g., neither S. cerevisiae nor S. pombe genomes organise into 

metazoan-like TADs (Duan, Andronescu et al. 2010, Mizuguchi, Fudenberg et al. 

2014, Hsieh, Weiner et al. 2015, Eser, Chandler-Brown et al. 2017). S. pombe 

“globules” do, however, share some similarities with TADs. For example, the 

formation of globules is dependent on cohesin and independent of 

heterochromatin (Mizuguchi, Fudenberg et al. 2014, Pichugina, Sugawara et al. 

2016). The molecular conservation suggests that the globules and TADs may be 

related and the nuclear distribution of chromatin in S. pombe may play a role in the 

global RT program. 

It was recently suggested that in mESCs, the nuclear architecture is organised by 

Rif1 (Foti, Gnan et al. 2016). Despite the widespread role of Rif1 in global RT 
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program (Cornacchia, Dileep et al. 2012, Hayano, Kanoh et al. 2012, Peace, Ter-

Zakarian et al. 2014, Kanoh, Matsumoto et al. 2015), no connection between Rif1 

and the organisation of chromatin domains has been suggested in yeast.  

In S. cerevisiae Rif1 requires Pfa4 dependent palmitoylation to associate with the 

nuclear periphery (Park, Patterson et al. 2011). The loss of Rif1 palmitoylation, 

however, does not lead to a change in the global RT program of S. cerevisiae (Peace, 

Ter-Zakarian et al. 2014), suggesting that although Rif1 is located at the nuclear 

periphery and may play some role in tethering chromatin it, the Rif1 dependent 

chromatin distribution is not necessary for the global RT program in S. cerevisiae.  

 

A quantitative analysis of the S. pombe proteome, estimated only ~135 Rif1 

molecules per cell, during vegetative growth (Marguerat, Schmidt et al. 2012). 

It has also been reported that endogenous levels of Myc-GFP tagged Rif1 yield 

insufficient fluorophore signal to detect using wide field fluorescence microscopy 

(Zaaijer, Shaikh et al. 2016). Overexpression of N-terminally tagged Rif1-GFP 

resulted in a “nuclear haze”, with foci co-localising with Taz1. Overexpressed Rif1-

GFP was also reported to localise to anaphase bridges. The action of Rif1 on 

anaphase bridges, however, was shown to be independent of its role in S-phase 

(Zaaijer, Shaikh et al. 2016) and will not be discussed here. Additionally, instead of 

forming extensive Rif1 associated domains (RADs), as was reported in metazoans 

(Foti, Gnan et al. 2016), the binding of Rif1 in S. pombe was detected at only 

discreet 90 sites along the genome (Kanoh, Matsumoto et al. 2015). These data 

suggest that Rif1 may not play a significant role in establishing the nuclear 

distribution of chromatin in S. pombe. 

Nevertheless, a potential Rif1-independent tethering of chromatin to the nuclear 

periphery could be important for the maintenance of the global RT program in 

yeast. When considering the potential nuclear organisation underlying the global 

RT in S. pombe, differences between yeast and metazoan nuclei must be 

considered. For example, nuclear laminas are not formed in yeast and chromatin, 

therefore, does not organise into true metazoan-like LADs. A comparative 

sequence analysis of 28 eukaryotic genomes, however, identified two proteins in S. 

pombe with considerable sequence similarity to the LEM (Lap2, Emerin, Man1) 
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family of LAP (lamina associated polypeptides) proteins (Mans, Anantharaman et 

al. 2004). These two proteins, Lem2 and Man1, have been shown to anchor 

telomeres to the nuclear periphery (Gonzalez, Saito et al. 2012). Unlike Lem2, 

however, Man1 does not play a role in the maintenance of nuclear stability 

(Gonzalez, Saito et al. 2012). This suggests that Man1 may act as a platform to 

allow the binding of chromatin and, potentially other proteins, to the nuclear 

envelope, similarly to the metazoan lamina. Consistent with this, almost a third of 

the S. pombe genome was shown to interact with Man1 (Steglich, Filion et al. 

2012), which is comparable to the 40% of the mouse and human genomes found in 

LADs (Guelen, Pagie et al. 2008, Peric-Hupkes, Meuleman et al. 2010). Similarly to 

loci found in metazoan LADs, Man1 associated loci were significantly enriched in 

weakly expressed genes and low RNA polymerase II levels (Steglich, Filion et al. 

2012). Taken together, these data suggest that Man1 could have a lamin-like 

function in S. pombe and contribute to the distribution of chromatin around the 

nucleus. This chapter will explore the impact of nuclear distribution of chromatin 

on RT in S. pombe, by studying the effect of man1Δ on the global RT program. 

Studying the effects of disrupting the cohesion dependent globules (Mizuguchi, 

Fudenberg et al. 2014) is more complex as cohesion null (rad21Δ) S. pombe 

mutants are inviable.  

6.1.2 Role of Mrc1 in the RT program of S. pombe 
Mrc1 (mediator of replication checkpoint) was originally described in yeast as a 

signal transducer of the DNA replication checkpoint (Alcasabas, Osborn et al. 2001, 

Tanaka and Russell 2001). As discussed in 1.2.3.2, Mrc1 travels with the replisome 

and interacts with the FPC to maintain genome integrity in the presence of 

replication stress (Katou, Kanoh et al. 2003, Tourriere, Versini et al. 2005). 

Additionally to its role in genome stability, Mrc1 was suggested to play a role in the 

regulation of origin firing (Hayano, Kanoh et al. 2011).  

In S. pombe, Mrc1 binds to a number of origins, many of which have been reported 

to be early/efficiently firing, in a Cdc45 and Hsk1 independent manner (Hayano, 

Kanoh et al. 2011). Given that Mrc1 interacts directly with Hsk1 (Shimmoto, 

Matsumoto et al. 2009), it was speculated that Mrc1 could recruit Hsk1 to 

efficiently firing origins (Hayano, Kanoh et al. 2011). Interestingly, however, the 



175 
 

firing of the origins bound by Mrc1 is stimulated in mrc1Δ (Hayano, Kanoh et al. 

2011), suggesting that Mrc1 has an inhibitory effect on origin firing. 

It has been recently shown that an intramolecular interaction of Mrc1 (regulated 

by Hsk1 phosphorylation) drives the inhibitory effect of Mrc1 on origin firing 

(Matsumoto, Kanoh et al. 2017) (Fig. 6.1). Mrc1 interacts directly with Hsk1 via its 

Hsk1 bypass segment (HBS). The intramolecular interaction between the HBS and 

the N-terminal target of HBS (NTHBS) induces an Mrc1 conformation in which it 

can bind to early firing origins and inhibit their firing (“brake-on” conformation). 

Upon interacting with Hsk1, Mrc1 can be phosphorylated on a region adjacent to 

the NTHBS, which interrupts the intramolecular interaction and induces a “brake-

off” conformation, which does not inhibit origin firing (Matsumoto, Kanoh et al. 

2017).  

An allele of Mrc1 that cannot form the intramolecular interaction with NTHBS, 

resulting in constitutive “break off” configuration (Mrc1ΔHBS) was shown to 

advance the firing of late/inefficient origin ars1, similarly to mrc1Δ. Unlike mrc1Δ, 

however, Mrc1ΔHBS was not sensitive to genotoxic agents (Matsumoto, Kanoh et 

al. 2017). Conversely, a checkpoint deficient mutant of Mrc1 (Mrc1-3A) was 

sensitive to HU but did not stimulate origin firing (Hayano, Kanoh et al. 2012, 

Matsumoto, Kanoh et al. 2017). These data show that the inhibition of origin firing 

at Mrc1 bound origins is independent of its role in the intra-S-phase checkpoint 

(Hayano, Kanoh et al. 2011, Matsumoto, Kanoh et al. 2017). 

A model has been proposed where Mrc1 acts in concert with Rif1 to inhibit origin 

firing in early and late replicating regions, respectively, setting up the global RT 

program (Masai, Yang et al. 2017). In this model, Mrc1 binds to early/efficiently 

firing origins in the “break on” configuration, preventing their precocious firing in 

a checkpoint independent manner. Upon binding of Hsk1, Mrc1 is phosphorylated 

and changes configuration to “break off”. As a result of Mrc1-Hsk1 binding, the 

early/efficiently firing origins are brought into close proximity of Hsk1, which 

allows their early/efficient firing. The model also proposes that, independently of 

Mrc1 action at early firing origins, Rif1 mediated de-phosphorylation of Mcm2-7 

inhibits the firing of late/inefficient origins. Rif1 and Mrc1 were proposed to be 

“dual regulators” of origin firing in S. pombe (Masai, Yang et al. 2017). Given that 
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the authors do not distinguish between the efficiency and timing of origin firing, it 

was proposed that both Mrc1 and Rif1 regulated “origin firing timing” (Masai, Yang 

et al. 2017), suggesting a possibility that Mrc1 may be involved in the global RT 

program in S. pombe. 

Similarly to rif1Δ, mrc1Δ bypasses the lethality of hsk1Δ (Hayano, Kanoh et al. 

2011, Hayano, Kanoh et al. 2012). Both Mrc1ΔHBS and Mrc1-3A partially restore 

viability to hsk1Δ (Matsumoto, Kanoh et al. 2017), suggesting that, in the case of 

mrc1Δ, the lethality bypass is reliant on both the checkpoint and non-checkpoint 

roles of Mrc1. The effects of mrc1Δ and rif1Δ on hsk1Δ lethality bypass are additive, 

(Hayano, Kanoh et al. 2012), showing that they work in independent pathways.  
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Fig. 6.1 - Regulation of Mrc1 by Hsk1 phosphorylation  

The HBS (Hsk1 bypass segment) interacts with the N-terminal 

target of HBS (NTHBS) inducing a “break on” Mrc1 conformation. 

In this conformation, Mrc1 binds to early origins and inhibits 

their firing. Upon interaction with Hsk1 (via its HBS segment) 

Mrc1 is phosphorylated on a region adjacent to the NTHBS. This 

disrupts the interaction between the HBS and NTHBS, inducing a 

“break off” Mrc1 conformation.  

Adapted from (Masai, Yang et al. 2017). 
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6.1.3 Aims  
To determine the localisation of endogenously expressed Rif1, we tagged Rif1 with 

photoactivatable mEOS 3.2 tag and analysed the nuclear distribution using photo-

activated localization microscopy. To determine whether the interaction of Rif1 

with PP1 phosphatases affects this distribution, we also analysed the localisation 

of Rif1-PP1. 

To assess the impact of disrupting the nuclear distribution of chromatin in the 

nucleus on the global RT program and/or the relative RT of the subtelomeric 

regions, we carried out a Pu-Seq analysis of man1Δ. We compared the effects of 

man1Δ on global RT to those seen in rif1Δ. 

Next, to determine whether heterochromatin affects the global RT program, we 

analysed the RT profiles of heterochromatin null mutants (clr4Δ and swi6Δ). 

Finally, we generated an Elutri-Seq RT profile for mrc1Δ to determine whether 

Mrc1 acts synergistically with Rif1 to establish the global RT program. 

6.2 Results 
 
To determine whether Rif1, expressed at endogenous levels, localises to the 

periphery and whether this localisation is dependent on the interaction with PP1 

phosphatases we tagged Rif1 and Rif1-PP1 with photoactivatable mEos3.2. The 

cells were imaged using photo-activated localization microscopy (PALM.), a super-

resolution technique that allows the visualisation of single molecules and has been 

previously used to image DNA bound proteins in S. pombe (Etheridge, Boulineau et 

al. 2014). Unfortunately, there is no single direct orthologue of Pfa4 in S. pombe 

(pers. com. Ulrich Rass). We were, therefore, unable to directly assess whether the 

localisation of Rif1 in S. pombe is dependent on palmitoylation  

6.2.1 Distribution of Rif1 and Rif1-PP1 in the nucleus 
The Rif1 and Rif1-PP1 tagged strains were constructed using recombination 

mediated cassette exchange (RMCE - described in 2.2.3.3) (Watson, Garcia et al. 

2008) and crossed with Gar2-GFP (kindly shared by Dr. Jo Murray). Gar2 is a non-

ribosomal protein (Sicard, Faubladier et al. 1998) whose fluorescence marks the 

nucleolus. The strains were grown to OD 0.5 in EMM and prepared for imaging as 
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described in (Etheridge, Boulineau et al. 2014). The visualisation and the image 

processing was carried out by Dr. Thomas Etheridge, as described in 2.2.6. 

Surprisingly, only ~20 localisations were seen for both Rif1 and Rif1-PP1 (Fig. 6.2), 

suggesting that the endogenous levels of Rif1 may not be sufficient to visualise 

even using super-resolution microscopy. It is possible, however, that the tagging of 

Rif1 with mEos3.2 affected the expression levels of Rif1 and the levels observed 

were not truly endogenous. Regardless, due to the low levels of foci observed, Rif1-

specific localisation could not be reliably distinguished from false localisations 

caused by cellular auto-fluorescence. A quantitative comparison of the 

distributions was, therefore, not possible. It was noted, however, that many 

localisation in Rif1 and Rif1-PP1 cells, were seen at the nuclear and nucleolar 

peripheries (Fig. 6.2), suggesting that Rif1 may localise to the periphery, similarly 

to what has been reported for S. cerevisiae (Park, Patterson et al. 2011) and that 

this localisation does not appear to be driven by the interaction with PP1 

phosphatases.  
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Fig. 6.2 - Localisation of endogenously expressing mEos3.2 tagged Rif1 and 

Rif1-PP1 in live S. pombe 

 

  

Gar2-GFP was excited using the 488 nm laser at 15% power and images were acquired 

using 100 ms exposure time. Rif1-mEos3.2 and Rif1PP1-mEos3.2 were excited using 

dual continuous 405 nm and 561 nm excitation (1 W/cm2 and 1 kW/cm2, respectively) 

for 1000 frames with 50 ms exposure time. Multiple fields of view were acquired per 

experimental repeat. A representative frame with a white light image of the same 

field of view is shown on the right. 

A) Overlay image of Gar2-GFP (blue) and mEos3.2-Rif1 localisations (orange).  

B) Overlay image of Gar2-GFP (blue) and mEos3.2-Rif1-PP1 localisations (orange). 

White arrows point to representative Rif1-mEos3.2 and Rif1PP1-mEos3.2 

localisations. 
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6.2.2 Impact of the nuclear distribution of chromatin on global RT pattern 
Next, we went on to determine whether a Rif1-independent disruption of the 

chromatin tethering to the nuclear periphery affects the global RT program and/or 

the relative RT of the subtelomeric regions by carrying out a Pu-Seq analysis of 

man1Δ cells.  

The polymerase usage data for man1Δ was different to the wild type data (Fig. 6.3 

A). The range of polymerase usage (on a scale of 0 to 1) was narrower in man1Δ 

compared to wild type (Fig. 6.3 A). The mean usage of polymerase δ on the forward 

strand ranged from 0.31 to 0.72 for wild type and 0.41 to 0.60 for man1Δ. This 

narrow range was reminiscent of that seen in data from libraries made using 

Klenow polymerase (polymerase δ usage ranged between 0.36 and 0.65- discussed 

in 3.2.3, shown on Fig. 3.8). To determine whether the narrow range of polymerase 

usage seen could have been caused by a lower coverage of the genome in man1Δ, 

we calculated the coverage (using the Lander/Waterman equation (Lander and 

Waterman 1988)) and compared it to that of wild type (Table 6.1).   

 

Table 6.1 – Number of reads obtained and mapped for the wild type and 

man1Δ Pu-Seq libraries  

The data shown here were derived from libraries that were pooled and sequenced 

together on one Illumina flow cell lane. The overall alignment rate represents the 

number of R1 and R2 mates that aligned in pairs (concordantly and discordantly) and 

single reads that aligned in single end mode. 

 

The deviation between the coverage of the polymerase δ and ε libraries was 

marginally greater than that seen in the wild type T4 libraries described in Chapter 

3 (Table 3.1). The overall coverage, however, was comparable both within and 

Experiment Replicative 
polymerase mutated 
in the strain 

Number of reads 
mapped to the 
reference genome 

Coverage 

Wild type Polymerase δ 13,890,735 55 
Polymerase ε 17,713,962 70 

man1Δ Polymerase δ 15,032,380 60 
Polymerase ε 13,208,267 52 
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between the experiments. It is, therefore, possible that the differences in 

polymerase usage seen in man1Δ (Fig. 6.3 A) are the result of a biological 

phenomenon. Given, however, that we have not yet repeated the man1Δ Pu-Seq 

experiment, it is impossible to rule out a technical issue.  

The man1Δ global RT profile was different from that of both wild type and rif1Δ 

(Fig. 6.3 B). In man1Δ, the wild type transition zone between early and late 

replication in the middle of Chromosome 2 and the dip in the regional RT on the 

right arm of Chromosome 1 were present. The transitions were, however, less 

pronounced than in wild type. It is possible that the sharpness of the transitions 

were masked by the potential technical error that caused the low polymerase 

usage ratios. We, therefore, compared the man1Δ Pu-Seq Trep profile to a Pu-Seq 

Trep profile derived from the Klenow data described in Table 3.1. The narrow 

range of polymerase usage values affects the Pu-Seq Trep profile but cannot fully 

account for the changes seen in man1Δ (Fig. 6.3 C). A comparison with the Klenow 

wild type data suggests that only the relative replication timing of  the 

subtelomeres and ~1 Mb long region on the right arm Chromosome 1 were 

affected in man1Δ (Fig. 6.3 C). The region on Chromosome 1 replicated later in 

man1Δ (6.3 C), compared to wild type. In contrast, subtelomeres replicated early in 

man1Δ (6.3 C), a phenotype reminiscent of taz1Δ (Fig. 4.10 A) and rif1Δ (Fig. 4.12).  

The distribution of the normalised origin firing efficiencies in man1Δ was not 

bimodal (Fig. 6.4 A). Compared to wild type (including a distribution of origin 

firing efficiencies derived from wild type Klenow data), substantially more origins 

fired inefficiently (i.e., with 10% to 40% firing efficiency). The few efficiently firing 

origins did not cluster in late or early replicating regions- there was no difference 

between the average origin activity in man1Δ in regions that replicated early and 

late in wild type (Fig. 6.4 B). The absolute levels of the average origin activity 

shown in Fig. 6.4 B were lower for man1Δ than wild type or rif1Δ. The low ratios of 

polymerase usage, however, would directly affect these values. Given that they 

could be the result of a technical error, we cannot analyse the difference in the 

absolute values of the origin activities between wild type and man1Δ. 
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A) Polymerase usage in man1Δ 
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B-C)   Pu-Seq Trep in man1Δ 

 

 

  

rif1Δ 

man1Δ 

Wild type 
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C) 
rif1Δ 

Wild type (Klenow) 
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Fig. 6.3 – Polymerase usage and Pu-Seq Trep in man1Δ and wild type S. pombe 

A) Polymerase usage across chromosome 3 in man1Δ and wild type S. pombe. 

Reads from all libraries were trimmed (30 bp at the 3’ end and 1 bp at the 5’ end) and 

aligned to the SP2 reference genome. The reads were binned and the number of 

reads in each bin was normalised to the total number of reads. Polymerase usage was 

calculated by taking the ratio of the normalised counts contributed by each 

polymerase to the total number of normalised counts contributed by both 

polymerases. The usage of polymerases δ and ε (shown in blue and red, respectively) 

on the forward and reverse strands were visualised using the Integrative Genome 

Viewer (IGV) genome browser. The wild type data shown here were generated from 

libraries that were constructed and sequenced alongside man1Δ libraries. 

B) Pu-Seq Trep in man1Δ and wild type S. pombe. Pu-Seq Trep was calculated using 

the progression of leftward moving forks and assuming a constant fork velocity of 1.5 

kb/min. It represents when in S-phase each locus is replicated. The y-axis was, 

therefore, inverted to maintain the convention of early and late replicating regions 

being shown on the top and bottom of the graph, respectively. The centromere is 

marked in grey. The wild type Pu-Seq Trep profile is derived from an average of data 

generated by 5 wild type Pu-Seq experiments.  

The rif1Δ and wild type Pu-Seq Trep profiles are identical to those in Fig. 4.12 and are 

shown here only for comparison. 

C) Pu-Seq Trep in man1Δ and wild type Klenow S. pombe. Pu-Seq Trep was 

calculated as described in B. The wild type Pu-Seq Trep profile was derived from a 

wild type Klenow experiment.   
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A) Density distributions of origin firing efficiencies  
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B) man1Δ origin activity genome wide 
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Fig. 6.4 – Origin activity in man1Δ and wild type S. pombe 

 

 

  

A) Density distribution of origin firing efficiencies in wild type and man1Δ S. 

pombe. Origins of replication were mapped for each strains using Pu-Seq, 

applying a threshold of 0.3, i.e., positive peaks of the differentials of 

polymerase usage whose heights were above the 30th percentile were 

mapped as origins. The efficiency of firing was normalised to the value of the 

99th percentile in each data set. 

The wild type distribution (shown in dark bluw) is identical to that in Fig. 4.1 

and is shown here only for comparison 

B) The average origin across all late and early replicating regions in rif1Δ, 

man1Δ and wild type S. pombe. The average origin activity was calculated by 

averaging the differentials of the polymerase δ usage on the reverse strand 

and polymerase ε forward strand in all the bins spanning the late and early 

regions. Early replicating regions in S. pombe are marked in green on Fig. 4.9. 

The wild type and rif1Δ data are identical to those in Fig. 5.10 B and are 

shown here only for comparison.   
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6.2.3 Impact of man1Δ on local origin activity and replication timing 
To determine whether the binding of Rif1 to DNA, and the subsequent local 

inhibition of origin firing, were a consequence of the Man1 dependent chromatin 

distribution, we analysed the origin activity around Taz1 dependent 

heterochromatin islands and strong Rif1 binding sites in man1Δ. 

The origin activity up and downstream of Taz1 dependent heterochromatin islands 

and strong Rif1 BSs is shown in Figs. 6.5 A and B. In man1Δ, the origin activity 

around these sites was comparably low to that of wild type. Around strong Rif1 

BSs, the origin activity decreased more sharply than it did in wild type - origin 

activity ~1.5 kb around the sites was affected, compared to 3 kb in wild type (Fig. 

6.5 B). The local RT around the Taz1 dependent heterochromatin islands and Rif1 

BSs followed an approximately wild type pattern (Figs. 6.5 C and D). Although the 

average RT around Rif1 BSs in man1Δ was greater than that in wild type (Fig. 6.5 

D), there was a wild type “dip” in local RT at the positions of the binding site. These 

data show that the recruitment of Rif1 to Taz1 dependent heterochromatin islands 

and other Rif1 BSs is mostly independent on their position in the nucleus. 

Assuming that Rif1 localises to the nuclear periphery and associates with DNA in a 

Man1 independent manner, it is possible that Rif1 may play a minor role in the 

tethering of chromatin to the nuclear periphery. 
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Fig. 6.5 – The average origin activity and Pu-Seq Trep around Taz1 dependent 

facultative heterochromatin islands and strong Rif1 BSs in man1Δ and wild 

type backgrounds 

 

  

The mean origin activity (i.e., the average of the differentials of the polymerase δ 

usage on the reverse strand and polymerase ε forward strand) in each 300 bp bin 

is shown for 6 kb up and downstream of the midpoint of each site.  

Pu-Seq Trep was calculated using the progression of leftward moving forks and 

assuming a constant fork velocity of 1.5 kb/min. It represents when in S-phase at 

which each locus is replicated. The y-axis was, therefore inverted to maintain the 

convention of early and late replicating regions being shown on the top and 

bottom of the graph, respectively. Pu-Seq Trep 6 kb up and downstream of the 

midpoint of each site was recorded.  

The error bars represent the standard error of the mean in each bin. The origin 

activity and Pu-Seq Trep shown here were calculated from two independent 

biological repeats for all backgrounds except man1Δ. The rif1Δ, Rif1-PP1 and wild 

type origin activity and Pu-Seq Trep data are identical to those shown in Fig. 5.6 

and are only shown here for comparison. 

A) The mean activity in each bin averaged across the 6 Taz1 dependent 

heterochromatin islands. 

B) The mean activity in each bin averaged across the 35 strong Rif1 binding sites.  

C) Pu-Seq Trep in each bin averaged across the 6 Taz1 dependent 

heterochromatin islands. 

D) Pu-Seq Trep in each bin averaged across the 35 strong Rif1 binding sites.  
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6.2.4 Impact of heterochromatin on global RT program 
As discussed in 1.4.3, heterochromatin does not to drive the formation of TADs, 

and therefore, the global RT program in metazoans (Dixon, Selvaraj et al. 2012, 

Nora, Lajoie et al. 2012). In S. pombe, clr4Δ does not impact the global distribution 

of chromatin and only tenuous links between the timing of origin firing and 

heterochromatin have been reported (Mizuguchi, Fudenberg et al. 2014, Pichugina, 

Sugawara et al. 2016).  

To determine whether heterochromatin impacts the global RT program, we 

analysed swi6Δ and clr4Δ Pu-Seq Trep RT profiles. We did not observe a loss of the 

global RT in clr4Δ or swi6Δ (Fig. 6.6), suggesting that heterochromatin does not 

drive the formation of the nuclear distribution of chromosomal regions. The RT 

profile was only slightly distorted in late replicating regions in clr4Δ. It has been 

reported that clr4Δ may have some effect on the relative timing of firing of some 

origins (Mizuguchi, Fudenberg et al. 2014). It is possible that the small deviations 

in the clr4Δ RT profile are a result of these changes. 
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Fig. 6.6 - Pu-Seq Trep across Chromosome 2 for clr4Δ, swi6Δ and wild type  

S. pombe 

Pu-Seq Trep was calculated using the progression of leftward moving forks and 

assuming a constant fork velocity of 1.5 kb/min. It represents when in S-phase each 

locus is replicated. The y-axis was, therefore, inverted to maintain the convention 

of early and late replicating regions being shown on the top and bottom of the 

graph, respectively. The centromere is marked in grey. 
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6.2.5 mrc1Δ Elutri-Seq 
We were unable to carry out a Pu-Seq analysis on mrc1Δ as the combination of 

mrc1Δ with the Pu-Seq background (rnh201Δ cdc20-M630F and rnh201Δ cdc6-

L591G) was lethal. To test whether mrc1Δ has an impact on the global RT program, 

we carried out mrc1Δ Elutri-Seq. 

mrc1Δ cells were synchronised in G2 using centrifugal elutriation. 2.5x107 G2 cells 

were harvested and resuspended in rich YE media to a final concentration of 

2.5x105 cells/mL. The synchronisation 20 minutes after elutriation is shown in Fig. 

6.7 A. The synchrony with which the cells progressed through the cell cycle was 

measured by the counting percentage of cells in each phase at every time point 

(Fig. 6.7 B) and using FACS (Fig. 6.7 C).  

The synchronisation of mrc1Δ cells was successful - over 98% of cells were in G2 

20 minutes after elutriation. The cells cycle, however, did not progress with wild 

type dynamics (Fig 6.7 B). More cells persisted in M-phase and S-phase over longer 

time periods (Fig. 6.7 B) compared to rif1Δ (Fig. 5.2 B) or wild type cells (Daigaku, 

Keszthelyi et al. 2015). Despite the cells being at different stages of the cell cycle, 

the cells at each time point were of a similar size (Fig. 6.7). These data suggest that 

the progression of mrc1Δ cells through the cell cycle is not strictly length-

independent.  

The peak of septation was seen 80 minutes after elutriation (69% of cells in S-

phase and 29% of cells in G2). The 80 minute and 20 minute time points were 

taken as S-phase and G2 samples, respectively, for mrc1Δ Elutri-Seq. The DNA was 

extracted, sonicated and used to prepare Illumina libraries as described in 2.2.5.1.  

Despite the large number of reads generated by the libraries, very few reads 

aligned to the SP2 reference genome (Table 6.2), suggesting that the DNA 

fragments amplified for the Illumina library were predominantly not of S. pombe 

origin. A relatively low alignment rate was previously noted for Rif1-PP1 Elutri-

Seq libraries (Table 5.3). The resultant coverage for Rif1-PP1 Elutri-Seq was 

sufficient for analysis and we did not investigate the cause of the low alignment 

rate further at the time. Taken together with the mrc1Δ Elutri-Seq data, it is 

possible that the process of elutriation introduces a contaminant whose genomic 

DNA is preferentially amplified during Illumina library preparation.  
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Table 6.2 – Number of reads mapped and total coverage for mrc1Δ Elutri-Seq 

The total number of mapped reads is the sum of R1 and R2 mates that aligned in pairs 

(concordantly and discordantly) and single reads in single end mode. To maximise the 

coverage, untrimmed 80 bp reads were aligned.  

 

 

Despite the low coverage, the aligned data were processed using the standard 

Elutri-Seq pipeline, as described in 2.2.5.2. The distribution of the mrc1Δ Elutri-Seq 

data is shown in Fig. 6.7. Given the very low coverage, the data are difficult to 

compare to that of wild type, rif1Δ (Fig. 5.3) or Rif1-PP1 (Fig. 5.8 D). The right 

slope of the histogram does resemble the “bulge” of early replicating regions (Fig. 

6.8) seen in wild type Elutri-Seq distributions (Fig. 5.3). The data, however, are 

very noisy and correspond to different values on the x-axis.  

To better determine the impact of mrc1Δ on global RT program, we directly 

compared the timing data between the early and late replicating regions on 

Chromosome 2 (as shown in Fig. 4.9). To do that, we calculated a ratio between the 

mean Elutri-Seq timing across the early and the late replicating regions. A similar 

ratio was calculated for the normalised number of reads scored in each bin from 

the S-phase sample (Reads S-phase norm). The loss of the global RT program in S. 

pombe produces a flat RT profile across Chromosome 2 (Fig. 5.7), which would 

result in a ratio value of 1. Relative differences between the early and late 

replicating domains would result in a value > 1. Both ratios were calculate for wild 

type, rif1Δ, Rif1-PP1 and mrc1Δ Elutri-Seq data and are shown in Table 6.3.      

 

  

Length of 
reads/bp 

Sample  Total number of 
reads 

Overall 
alignment 
rate 

Number of reads 
mapped to the 
reference 
genome 

Coverage 

80 S-phase  
(80 min) 

14,167,649 2.00% 283,353 1.8 

G2  
(20 min) 

11,132,707 10.07% 1,121,064 7.1 
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Table 6.3 - Timing data ratios between early and late replicating regions on 

Chromosome 2 

Elutri-Seq ratios and ratios between the normalised number of reads scored in each 

bin from the S-phase sample were calculated from wild type, rif1Δ, Rif1-PP1 and mrc1Δ 

Elutri-Seq data 

 

 

The ratios between the early and late replicating regions suggest that the global RT 

program in mrc1Δ cells is wild type. It is, however, possible that the small 

proportion of G2 cells in the mrc1Δ S-phase sample contributed to the increase in 

the number of reads across the early replicating regions.  

  

Elutri-Seq experiment  Elutri-Seq Early / Elutri-
Seq Late 

Reads S-phase norm Early /  
 Reads S-phase norm Late 

Wild type 1.1 1.1 
rif1Δ 1.0 1.0 
Rif1-PP1 1.0 1.0 
mrc1Δ 1.2 1.1 
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A) Synchronisation after 20 minutes 
 

 
 

B) Septation index 
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C) FACS 
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D) Synchronisation after 20  and 80 minutes

50 minutes after elutriation 80 minutes after elutriation 
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Fig. 6.7 - Analysis of the cell cycle of mrc1Δ cells after elutriation 

  
A) Synchronisation of mrc1Δ 20 minutes after elutriation. Cells were 

stained with 1 μg/mL 4′,6′-diamidino-2-phenylindole (DAPI) and 2.5% v/v 

calcofluor-white (which stain nucleic acid and the septum, respectively). 

Cells were visualized using an inverted fluorescence microscope (EVOS™ 

FL).  

B) The synchronous passage of Rif1-PP1 cells through the cell cycle after 

elutriation. Cells were stained and visualised at each time point (as 

described in A). Cells were counted and divided into different phases of 

the cell cycle based on their morphology - cells with one nucleus - G2 ; cells 

with two nuclei - M-phase  ; cells with a septum- S-phase ; two cells joined, 

without a visible septum, and with one nucleus each - post-division. 

C) FACS analysis of cells at each time point. 1.25x106 cells were collected 

at each time point, stained with propidium iodide and analysed for DNA 

content on BD Accuri™ C6 Plus flow cytometer. 

D) Synchronisation of mrc1Δ 50 and 80 minutes after elutriation. Cells 

were stained with 1 μg/mL 4′,6′-diamidino-2-phenylindole (DAPI) and 2.5% 

v/v calcofluor-white (which stain nucleic acid and the septum, 

respectively). Cells were visualized using an inverted fluorescence 

microscope (EVOS™ FL).  
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Fig. 6.8 - Density distribution of Elutri-Seq Trep for mrc1Δ S. pombe 

 

 

 

  

Density distribution of Elutri-Seq Trep for mrc1Δ1 S. pombe. Reads from S-

phase and G2 libraries (sequenced in for a coverage over 1 X) were aligned to 

the reference SP2 reference genome, binned into 1 kb windows, the number 

of 5’ ends of reads was counted in each bin and normalised to the total 

number of counts. The ratio the S-phase and G2 counts in every bin was 

calculated to produce Elutri-Seq Trep.  
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6.3 Discussion 
 
6.3.1 Effect of nuclear distribution of chromatin on global RT program 
Our data suggest that the Man1 dependent tethering of chromatin to the nuclear 

periphery is necessary, but not sufficient, to establish the global RT program in S. 

pombe. The data also hint that nuclear distribution of chromatin may regulate the 

global origin firing landscape.  

When considering the consequences of man1Δ on origin firing and the global RT 

program, it is important to note that although the man1Δ polymerase usage ratios 

followed the same pattern as wild type, they were not as pronounced (Fig. 6.3 A). 

The narrow range of polymerase usage was similar to that described from the 

lower quality Klenow libraries (discussed in Chapter 3; Fig. 3.8). Unlike for the 

Klenow data, however, the genome coverage from the polymerase ε and δ libraries 

was very comparable (Table 6.1). While the Klenow wild type Pu-Seq Trep was the 

different to that calculated from T4 wild type data (Fig. 6.3 C), these variations did 

not explain all of the differences between wild type and man1Δ Pu-Seq Trep 

profiles. Additionally, more origins were mapped in man1Δ compared to wild type 

and the distribution of their normalised efficiencies was not bimodal (Fig. 6.4 A), 

with the majority of the origins having fired inefficiently (10% to 40% firing 

efficiency) in man1Δ  It is, therefore, possible that the narrow range of polymerase 

usage is caused by a biological phenomenon in man1Δ. We cannot, however, 

exclude the possibility of a technical error without an independent biological 

repeat.   

We propose that the tethering of chromatin to the nuclear periphery may regulate 

the landscape of origin firing. When the anchoring of chromatin is affect, the new 

nuclear positions of a subset of loci allow more regions to act as origins of 

replication. Given that origins fire stochastically, a large number of the new origins 

would fire inefficiently, explaining the distribution of global firing efficiencies (Fig. 

6.4 A). 

Regardless of the source, the narrow range of polymerase usage ratios in man1Δ 

resulted in a flatter global RT profile (Figs. 6.3 B and C) and lower absolute values 

of origin activity (Fig. 6.4 B). In comparison with a wild type Klenow Pu-Seq Trep 

RT profile (Fig. 6.3 C), the relative replication timing of subtelomeres and a ~1 Mb 
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region on the right arm of Chromosome 1 were affected in man1Δ. The delay in the 

regional RT on the arm of Chromosome 1 was most likely related to a decrease in 

the average origin firing activity in that region. Due to the global differences in the 

absolute values of origin activities between man1Δ and wild type, a meaningful 

comparison of the origin activity in that region was not possible. 

Interestingly, subtelomeres replicated early in man1Δ (Fig. 6.3 C), a phenotype 

reminiscent of that described for taz1Δ (Fig. 4.10 A) and rif1Δ (Fig. 4.12). The 

relative increase in the regional RT of the subtelomeres in rif1Δ and taz1Δ did not 

correlate with an increase in the origin activity in those regions (Fig. 4.7). In 

Chapter 5 we suggested that the change in RT can be explained by a model of 

replication where Rif1 mediated de-phosphorylation acts to set up late and early 

replicating regions of the genome, in addition to the local effects on origin 

inhibition. Based on the man1Δ Pu-Seq RT profile (Figs. 6.3 B and C), we propose 

that the Rif1 mediated inhibition of origin firing around subtelomeres may be 

driven by the Man1 dependent tethering of telomeres to the nuclear periphery.  

We speculate that loss of chromatin tethering in man1Δ would result in different 

areas of the chromatin interacting with the nuclear periphery, which would, in 

turn, affect the regions acted on by Rif1 mediated PP1 phosphatases (i.e., regions 

“marked” for late replication). This would result in a global RT profile where only 

the parts of the genome not tethered to the periphery by Man1 would retain the 

late replicating phenotype in man1Δ (Fig. 6.9). The binding profiles of subtelomeric 

regions have been reported to be enriched in Man1 interactions (Steglich, Filion et 

al. 2012). Assuming that the loss of these interactions leads to changes in RT, this 

enrichment could account for a lot of the RT changes seen in man1Δ (Figs. 6.3 B 

and C).  

Our data also show, however, that binding of Rif1 to its genomic binding sites 

(strong Rif1 BSs and Taz1 dependent heterochromatin islands) is not a 

consequence of the Man1 dependent nuclear distribution of chromatin (Fig. 6.5). 

Assuming that in S-phase most of Rif1 is tethered to the nuclear periphery, Rif1 

may play a minor role in tethering chromatin to the nucleus. The effect of rif1Δ on 

global RT program, however, is unlikely to be caused by the loss of this tethering.  
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Our attempt to determine the localisation of endogenously expressed Rif1 using 

PALM was inconclusive. It is possible that the endogenous levels of Rif1 are lower 

than previously reported (Marguerat, Schmidt et al. 2012). It is also likely, 

however, that tagging Rif1 effects its expression and/or stability, resulting in very 

low levels of Rif1. The few nuclear localisation that were recorded, however, 

indicate that Rif1 (and Rif1-PP1) may localise to the nuclear and periphery (Fig. 

6.2). It has been previously reported that the overexpression of Rif1-GFP results in 

a “nuclear haze” with distinct foci that co-localise with Taz1 (Zaaijer, Shaikh et al. 

2016), indicating that Rif1 may exist in two populations - tethered to the nuclear 

periphery and freely diffusing in the nucleus. On the other hand, given its low 

endogenous levels of Rif1, it is unlikely that it exists in two separate pools and 

suggest that the reported “haze” may be an artefact of overexpression.  

Despite not affecting the global distribution of chromatin in S. pombe, changes in 

the nuclear distribution of some origins of replication have been reported for clr4Δ 

(Mizuguchi, Fudenberg et al. 2014, Pichugina, Sugawara et al. 2016). Our data 

show no change in the global RT of clr4Δ and swi6Δ (Fig. 6.6). The RT profiles for 

clr4Δ did, however, show some small deviations from wild type. It is not clear 

whether these differences could be explained by experimental noise or whether 

they could be the consequence of the repositioning of some origins of replication. 

Regardless, the clr4Δ and swi6Δ global RT profiles support the idea that in S. 

pombe, similarly to metazoans (Dixon, Selvaraj et al. 2012, Nora, Lajoie et al. 2012), 

the nuclear distribution of chromatin is not driven by heterochromatin. 
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Fig. 6.9 - Proposed model of the effect of man1Δ on the global RT program 

  

In a wildtype background, chromatin is tethered to the nuclear periphery by Man1 

(purple circles) and, to a smaller extent, by Rif1 (pink circles). The Rif1 mediated 

PP1 de-phosphorylation of Mcm2-7 is increased at the periphery, around Rif1. This 

de-phosphorylation establishes zones of late replication (shown in red) around the 

nuclear periphery. We propose that in these zones, replication is inhibited during 

the early S-phase (as discussed in Chapter 5). As a result, the origins in these 

regions will fire in late S-phase and the region will replicated later. Origins found on 

DNA located closer to the centre of the nucleus (i.e., in an early replicating zone - 

marked in green) fire in early S-phase. The regions in the red and green zones 

would correspond to late and early replicating regions on an RT profile, as 

indicated. 

In man1Δ the tethering of chromatin to the nuclear periphery is affected. Rif1 

mediated de-phosphorylation of Mcm2-7 still creates zones of early and late 

replicating regions. Different chromosomal regions, however, are present in these 

zones in man1Δ. In some cases, Rif1 can bind DNA (directly or via Taz1) and tether 

it to the nuclear periphery. These regions remain late replicating in man1Δ. In cases 

where Man1 acted to tether chromatin to late replicating zones created by Rif1, 

the late replicating phenotype is lost.     
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6.3.1 Role of Mrc1 in the global RT program of S. pombe 
The mrc1Δ Elutri-Seq data are inconclusive. The synchronisation of the S-phase 

sample (Fig. 6.8) and the overall alignment rate of the reads from the S-phase and 

G2 Elutri-Seq libraries were all sub-par. The low alignment rate of the mrc1Δ 

Elutri-Seq data (Table 6.2) was likely caused by a contaminant introduced to the S. 

pombe culture during elutriation. The contaminant was not visible when the cells 

were visualised and stained with DAPI (Figs. 5.2, 5.8 and 6.7). It is possible, 

however, that the low levels of genomic DNA introduced by the contaminant were 

preferentially amplified during Illumina library preparation.  

The distribution of mrc1Δ Elutri-Seq (Fig. 6.8) shared some similarities with that of 

wild type S. pombe (Fig. 5.3). The data were not normally distributed - the bins on 

the right side of the x-axis formed a small hump, suggesting that some regions of 

the mrc1Δ genome replicate earlier than others. To determine whether this may be 

the case, we compared the mean Elutri-Seq and the mean number of reads in bins 

from the S-phase sample across early and late replicating regions on Chromosome 

2 (Table 6.3). The ratios for both rif1Δ and Rif1-PP1, which exhibit a complete loss 

of the global RT program, were 1. On the other hand, ratios for mrc1Δ were > 1, 

which was similar to wild type, suggesting that the mean RT across the early and 

late regions of Chromosome 2 is not the same in mrc1Δ.  

Given the presence of G2 cells in the mrc1Δ S-phase sample (Fig. 6.8), the data need 

to be interpreted with caution. It is possible that the G2 cells contributed to the 

increased number of reads across the early replicating regions and confounded the 

results. To conclusively determine the impact of mrc1Δ on the global RT program 

in S. pombe, the mrc1Δ Elutri-Seq RT profile needs to be repeated. While it is not 

necessary for standard elutriation, for future Elutri-Seq experiments we 

recommend using only sterilised equipment and working in a laminar flow cabinet. 

If the eradication of the contaminant is not possible, RT profiles can also be 

generated by standard marker frequency analysis using asynchronous cultures 

(method explained in 5.1.3). 
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7.1 Conclusion 
 
A number of proteins including, but no limited to LAP proteins Lem2 and Man1, act 

to tether chromatin to the nuclear periphery. We suggest that the overall nuclear 

distribution of chromatin driven by these proteins is necessary but sufficient to 

establish the genome wide RT program in S. pombe. Additionally, we propose that 

the nuclear distribution may be important for the regulation of the global origin 

firing landscape.  

 

Our data also show that Rif1 may play a minor role in establishing some contacts 

between the chromatin and the nuclear periphery, either directly or via Taz1. One 

consequence of this is that Rif1 locally de-phosphorylates Mcm2-7 at a small 

number of origins that lie in regions adjacent to Rif1 binding sites. This inhibits 

origins from firing in the regions surrounding the Rif1 binding site, impacting the 

local RT around the site.  

 

7.1 Maintenance of the global RT program by Rif1 
The local effects of Rif1 described above are different to its role in the maintenance 

of the global RT program. The Rif1 mediated PP1 de-phosphorylation of Mcm2-7 in 

regions adjacent to Rif1 binding creates late replicating zones (shown in red on Fig. 

7.1 Ai). We propose that in these zones, replication is inhibited in a PP1 dependant 

manner during early S-phase. At mid to late S-phase a signal (possibly a threshold 

phosphorylation of Rif1) is relayed to lift this inhibition. In our model we assume 

that most of Rif1 is bound to the nuclear periphery in G1/S-phase. The late 

replicating zones are, therefore, concentrated around the nuclear periphery. Rif1, 

to a small extent, tethers some chromatin into the vicinity of the late replicating 

zones. Much of the chromatin found in the peripheral regions, and by extension in 

late replicating zones, is brought in by other proteins, e.g., Man1. 

Origins in early replicating zones (shown in green on Fig. 7.1 Ai) are not inhibited 

from firing. In these zones, located towards the centre of the nucleus, the effective 

activity of CDK and DDK is greater than around the nuclear periphery (Fig. 7.1 Aii), 

as their targets are not being de-phosphorylated by Rif1 mediated PP1 

phosphatases. 
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The establishment of the early and late replicating zones (Fig. 7.1 Ai), which are 

connected to the relative levels of Mcm2-7 phosphorylation (Fig. 7.1 Aii), results in 

the biphasic global RT program. During early S-phase, origins fire stochastically 

but only in the early replicating zones. In mid to late S-phase, when the Rif1 

mediated de-phosphorylation is lifted, the effective concentration of kinase activity 

is increased around the nuclear periphery. Origin firing then proceeds with 

kinetics identical to those in early S-phase. This results in efficiently and 

inefficiently firing origins in both early and late replicating zones. Altogether, the 

global efficiency of origin firing in wild type S. pombe is distributed in a bimodal 

manner.   

In rif1Δ and Rif1-PP1 cells, the distribution of chromatin around the nucleus is 

largely wild type. The early and late replicating zones, however, do not form given 

the lack of Rif1 and PP1 phosphatase interactions (Fig. 7.1 Bi) abolishing the 

gradient of effective kinase activity (Fig. 7.1 Bii). As a result of the interrupted 

interactions between Rif1 and PP1 phosphatases, Mcm2-7 hexamers at origins 

found in regions adjacent to the nuclear periphery are not de-phosphorylated. 

Consequently, no regions are preferentially replicated or inhibited from replicating 

during early S-phase. Instead, all origins have an equal probability of being 

replicated at any point (shown in orange in Fig. 7.1 Bi) in S-phase, resulting in a flat 

RT profile. Given that the distribution of chromatin in rif1Δ and Rif1-PP1 is largely 

unaffected, the global landscape of origin firing does not change, i.e., the same 

number of origins fire. Altogether, the global RT program is lost in rif1Δ and Rif1-

PP1 but the global efficiencies of origin firing is distributed in a bimodal manner, 

similar to that of wild type.   

7.2 Effects of Man1 and Mrc1 on global RT 
In man1Δ, the Rif1 mediated early and late replication zones (Fig. 7.1 Ci) and the 

gradient of kinase activity (Fig. 7.1 Cii) are established in a wild type manner. Only 

the tethering of chromatin to the nuclear periphery is affected in man1Δ. Given, 

however, that not all of the interactions of chromatin with the nuclear periphery 

are driven by Man1, many of the same regions remain in close proximity to the 

nuclear periphery. This results in an intermediate loss of the global RT profile in 

man1Δ (Fig. 6.9). Origins in regions that are brought into the proximity of Rif1 in a 

Man1-independent manner are inhibited from firing during early S-phase and the 
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region maintains a late replicating phenotype in man1Δ. Regions tethered to the 

periphery by Man1 (e.g., subtelomeres) lose this association and can move into an 

early replicating zone which would affect their regional RT.  

We propose that the increase in the number of origins fired seen in man1Δ was 

caused by the movement of chromosomal regions into areas of the nucleus that 

were more permissive to origin firing. In a wild type cells these loci would not have 

origin activity, possibly due to the local chromatin environment at the nuclear 

periphery. It is not clear what could lead to this inhibition. Given a wild type 

number of origins fired in swi6Δ and clr4Δ, it is unlikely that heterochromatin 

would play a role.  

Alternatively, it is possible that the change in the global RT program in man1Δ is a 

consequence of the change in the landscape of origin firing. In this case, the change 

in the nuclear distribution of chromatin relative to a (Rif1 independent) limiting 

factor could impact the origin firing efficiencies and result in more inefficiently 

firing origins. The global change in origin firing could be a separate, Rif1-

independent, way of modulating the global RT program.  

This analysis and model do not address the role of cohesin dependent TAD-like 

globules in the global RT program or origin firing. Although no correlation 

between timing and globules has been reported, they do form and persist in G1 

(Mizuguchi, Fudenberg et al. 2014). The repositioning of chromosomal domains in 

G1 is concomitant with the timing decision point (TDP) in metazoans (Dimitrova 

and Gilbert 1999). To further elucidate the role of chromatin on replication 

dynamics, the impact of cohesin loss on the maintenance of the global RT and 

origin firing should be studied.   

Although our data are preliminary and need to be repeated, we did not find 

evidence that Mrc1 acts in parallel with Rif1 to establish the global RT program. 

We suggest that Mrc1 may act regulate the origins locally by recruiting Hsk1. It is 

also possible that the binding of Mrc1 to early firing origins in the early replicating 

zones could contribute to the increase of the effective kinase activity in the centre 

of the nucleus. 
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Fig. 7.1 - Proposed model of global replication timing and origin firing in  

S. pombe 

  

A) In wild type cells (i) Man1 (purple circles) tethers chromatin to the nuclear 

periphery. Rif1 (pink circles) may contribute to the nuclear distribution of chromatin 

in a minor way. Rif1 interactions with phosphatases affect the relative distribution of 

kinase activity, creating zones of early and late DNA replication (marked in green and 

red, respectively). The effective kinase activity (shown in green in ii) is concentrated 

towards the centre of the nucleus. At the nuclear periphery, Rif1 mediated PP1 

phosphatases dephosphorylate Mcm2-7, decreasing the effective kinase activity. 

This distribution in early S-phase inhibits origins in late zones from firing. When this 

inhibition is lifted in mid to late S-phase, the origins in late replicating zones fire 

stochastically. This allows efficient and inefficient firing of origins in late and early 

replicating regions and creates a biphasic global RT program. 

B) When the interactions of Rif1 with the phosphatases are disrupted (Rif1-PP1) or 

in the absence of Rif1 (rif1Δ) the regions of early and late DNA replication disappear 

(i). The effective kinase activity is no longer limited to the peripheries in early S-

phase (ii) and origins in all parts of the nucleus have an equal probability of firing at 

any point during S-phase. This results in a loss of the global biphasic RT profile. The 

global landscape of origin firing does not change, i.e., the global origin efficiencies 

are distributed in a bimodal manner.  

C) In man1Δ the Rif1 dependent early and late replicating zones are established, 

similarly to wild type (i). The effective kinase activity is concentrated towards the 

centre of the nucleus and depleted around the periphery by PP1 phosphatases (ii). In 

man1Δ the nuclear distribution of chromatin is altered, affecting the loci located in 

the late and early replicating zones. This results in a biphasic global RT program but 

with different regions being replicated late and early, compared to wild type (see 

Fig. 6.9 for more detail). When not tethered to the periphery, more loci can act as 

origins of replication, increasing the total number of origins fired in man1Δ. Due to 

the stochastic nature of origin firing, most of the origins fire inefficiently.    
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9.1 Pu-Seq R script  
 

Script was written by Dr. Andrea Keszthelyi. Thresholds used are indicated in bold 
sample<-"NAME" 
 
dat_df<- read.csv ("path/rNTP-pol-d-",sample,".e1.f-w300.count.csv", sep=""))  
dat_dr<- read.csv ("path/rNTP-pol-d-",sample,".e1.r-w300.count.csv", sep="")) 
dat_ef<- read.csv ("path/rNTP-pol-e-",sample,".e1.f-w300.count.csv", sep="")) 
dat_er<- read.csv ("path/rNTP-pol-e-",sample,".e1.r-w300.count.csv", sep="")) 
 
N<-3 
NN<-3 
p<-0.3 
name<-sample 
chromoname_in<-"Chromosome_" 
outpath<-"" 
##################################################  Functions 
################################################################## 
 
moving.ave.v2 <- function(data, n){ # subroutine to calculate moving averages 
   
  dataN <- length(data) 
   
  start <- c(rep(1,n), 1:(dataN-n)) 
  end   <- c((n+1):dataN, rep(dataN,n)) 
  se <- cbind(start, end)  
   
  average.se <- function(n)mean(data[n[1]:n[2]][!is.nan(data[n[1]:n[2]])]) 
  r <- apply(se, 1, average.se) 
   
  (r) 
} 
 
diff.sequence <- function(vec){ 
  diff <-c() 
  diff[1]=0; 
  for(i in 2:length(vec)){ 
    diff[i] = vec[i]-vec[i-1] 
  } 
  return(diff) 
} 
 
Findlocalmax<-function(diffdata,position,percentile){ 
   
  max<-c(which(diff(c(TRUE,diff(diffdata)>=0,FALSE))<0 & diffdata>0) ) 
  tableall<-cbind(position[max], diffdata[max]) 
  perc<-quantile(tableall[,2],percentile) 
  per<-which(tableall[,2]<=perc) 
  table<-tableall[-per,] 
  return(table) 
} 
 
Closeori<-function(pos, bin){ 
   
  x<-c(1:length(pos))  
  remove<-c() 
  replace<-c() 
  for(i in 1:(length(pos)-1)){ 
    if (abs(pos[i]-pos[i+1])==bin)   
    {remove<-c(remove,x[i]) 
    next 
    }else if 
    (abs(pos[i]-pos[i+1])==2*bin)  
    {remove<-c(remove,x[i],x[i+1]) 
    replace<-c(replace,(pos[x[i]]+bin)) 
    next 
    }else if 
    (abs(pos[i]-pos[i+1])==3*bin)  
    {remove<-c(remove,x[i],x[i+1]) 
    replace<-c(replace,(pos[x[i]]+bin)) 
    next 
    }else if 
    (abs(pos[i]-pos[i+1])==4*bin)  
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    {remove<-c(remove,x[i],x[i+1]) 
    replace<-c(replace,(pos[x[i]]+2*bin)) 
    } 
     
  } 
  if(length(remove>0)){ 
    posremove<-c(pos[-remove])}else 
      posremove<-pos 
  posreplace<-sort(unique(c(posremove,replace))) 
  return(posreplace) 
   
   
} 
 
 
#tableclose=peak positions from diff, ratio=pol usage ratio, pos=all position) 
orieff<-function(close, ratio, pos){ 
   
  maxpos<-c(match(close,pos)) 
   
  ratiomin<-c(tail((which(diff(c(FALSE,diff(ratio[1:maxpos[1]])>0,TRUE))>0)),n=1)) 
   
  for (i in 1:(length(maxpos)-1)){ 
     
    ratiomin<-c(ratiomin,(-
1+maxpos[i]+tail((which(diff(c(FALSE,diff(ratio[maxpos[i]:maxpos[i+1]])>0,TRUE))>0)),n=1
))) 
  } 
   
  ratiomax<-c() 
   
  for (i in 1:(length(maxpos)-1)){ 
    ratiomax<-c(ratiomax,(-
1+maxpos[i]+head((which(diff(c(TRUE,diff(ratio[maxpos[i]:maxpos[i+1]])>=0,FALSE))<0)),n=
1))) 
  } 
  ratiomax<-c(ratiomax, (-
1+maxpos[length(maxpos)]+head((which(diff(c(TRUE,diff(ratio[maxpos[length(maxpos)]:lengt
h(ratio)])>=0,FALSE))<0)),n=1))) 
  #which(diff(c(TRUE,diff(x)>=0,FALSE))<0) 
   
  orieff<-c((ratio[ratiomax]-ratio[ratiomin])*100) 
  oriefftable<-cbind(close,orieff) 
   
  return(oriefftable) 
} 
 
 
orieff_merge<-function(orieff_ef, orieff_ef_pos, orieff_dr, orieff_dr_pos,chro,bin){ 
   
  value<-c() 
  valuepos<-c() 
  drpaired<-c() 
  efpaired<-c() 
  for (i in 1:length(orieff_ef_pos)){ 
    if  
    (orieff_ef_pos[i] %in% orieff_dr_pos){ 
      value<-c(value, mean(c(orieff_ef[i], 
orieff_dr[match(orieff_ef_pos[i],orieff_dr_pos)]))) 
      valuepos<-c(valuepos, orieff_ef_pos[i]) 
      drpaired<-c(drpaired, orieff_dr_pos[match(orieff_ef_pos[i],orieff_dr_pos)] ) 
      efpaired<-c(efpaired, orieff_ef_pos[i]) 
      next 
    }else if 
    ((orieff_ef_pos[i]+bin) %in% orieff_dr_pos){ 
      value<-c(value, mean(c(orieff_ef[i], 
orieff_dr[(match((orieff_ef_pos[i]+bin),orieff_dr_pos))]))) 
      valuepos<-c(valuepos, orieff_ef_pos[i]) 
      drpaired<-c(drpaired, (orieff_dr_pos[match((orieff_ef_pos[i]+bin),orieff_dr_pos)] 
)) 
      efpaired<-c(efpaired, orieff_ef_pos[i])    
      next 
       
    }else if 
    ((orieff_ef_pos[i]-bin) %in% orieff_dr_pos){ 
      value<-c(value, mean(c(orieff_ef[i], orieff_dr[(match((orieff_ef_pos[i]-
bin),orieff_dr_pos))]))) 
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      valuepos<-c(valuepos, orieff_ef_pos[i]) 
      drpaired<-c(drpaired, (orieff_dr_pos[match((orieff_ef_pos[i]-bin),orieff_dr_pos)] 
)) 
      efpaired<-c(efpaired, orieff_ef_pos[i])    
      next 
    }else if 
    ((orieff_ef_pos[i]+2*bin) %in% orieff_dr_pos){ 
      value<-c(value, mean(c(orieff_ef[i], 
orieff_dr[(match((orieff_ef_pos[i]+2*bin),orieff_dr_pos))]))) 
      valuepos<-c(valuepos, (orieff_ef_pos[i]+bin)) 
      drpaired<-c(drpaired, 
(orieff_dr_pos[match((orieff_ef_pos[i]+2*bin),orieff_dr_pos)] )) 
      efpaired<-c(efpaired, orieff_ef_pos[i])  
      next 
    }else if 
    ((orieff_ef_pos[i]-2*bin) %in% orieff_dr_pos){ 
      value<-c(value, mean(c(orieff_ef[i], orieff_dr[(match((orieff_ef_pos[i]-
2*bin),orieff_dr_pos))]))) 
      valuepos<-c(valuepos, (orieff_ef_pos[i]-bin)) 
      drpaired<-c(drpaired, (orieff_dr_pos[match((orieff_ef_pos[i]-
2*bin),orieff_dr_pos)] )) 
      efpaired<-c(efpaired, orieff_ef_pos[i])  
      next 
    }else if 
    ((orieff_ef_pos[i]+3*bin) %in% orieff_dr_pos){ 
      value<-c(value, mean(c(orieff_ef[i], 
orieff_dr[(match((orieff_ef_pos[i]+3*bin),orieff_dr_pos))]))) 
      valuepos<-c(valuepos, (orieff_ef_pos[i]+2*bin)) 
      drpaired<-c(drpaired, 
(orieff_dr_pos[match((orieff_ef_pos[i]+3*bin),orieff_dr_pos)] )) 
      efpaired<-c(efpaired, orieff_ef_pos[i]) 
      next 
       
    }else if 
    ((orieff_ef_pos[i]-3*bin) %in% orieff_dr_pos){ 
      value<-c(value, mean(c(orieff_ef[i], orieff_dr[(match((orieff_ef_pos[i]-
3*bin),orieff_dr_pos))]))) 
      valuepos<-c(valuepos, (orieff_ef_pos[i]-2*bin)) 
      drpaired<-c(drpaired, (orieff_dr_pos[match((orieff_ef_pos[i]-
3*bin),orieff_dr_pos)] )) 
      efpaired<-c(efpaired, orieff_ef_pos[i]) 
      next 
    }else if 
    ((orieff_ef_pos[i]+4*bin) %in% orieff_dr_pos){ 
      value<-c(value, mean(c(orieff_ef[i], 
orieff_dr[(match((orieff_ef_pos[i]+4*bin),orieff_dr_pos))]))) 
      valuepos<-c(valuepos, (orieff_ef_pos[i]+2*bin)) 
      drpaired<-c(drpaired, 
(orieff_dr_pos[match((orieff_ef_pos[i]+4*bin),orieff_dr_pos)] )) 
      efpaired<-c(efpaired, orieff_ef_pos[i]) 
      next 
       
    }else if 
    ((orieff_ef_pos[i]-4*bin) %in% orieff_dr_pos){ 
      value<-c(value, mean(c(orieff_ef[i], orieff_dr[(match((orieff_ef_pos[i]-
4*bin),orieff_dr_pos))]))) 
      valuepos<-c(valuepos, (orieff_ef_pos[i]-2*bin)) 
      drpaired<-c(drpaired, (orieff_dr_pos[match((orieff_ef_pos[i]-
4*bin),orieff_dr_pos)] )) 
      efpaired<-c(efpaired, orieff_ef_pos[i]) 
       
    } 
  } 
   
  efpairedno<-match(efpaired,orieff_ef_pos) 
  drpairedno<-match(drpaired,orieff_dr_pos) 
  efunpaired<-orieff_ef_pos[-efpairedno] 
  drunpaired<-orieff_dr_pos[-drpairedno] 
   
  if((length(efunpaired) != 0) & (length(drunpaired) != 0)){ 
     
     
     
    for (i in 1:length(drunpaired)){  
      if  
      (drunpaired[i] %in% efunpaired){ 
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        value<-c(value, mean(c(orieff_dr[match(drunpaired[i],orieff_dr_pos)], 
orieff_ef[match(drunpaired[i],orieff_ef_pos)]))) 
        valuepos<-c(valuepos, drunpaired[i]) 
        next 
      }else if 
      ((drunpaired[i]+bin) %in% efunpaired){ 
        value<-c(value, mean(c(orieff_dr[match(drunpaired[i],orieff_dr_pos)], 
orieff_ef[match((drunpaired[i]+bin),orieff_ef_pos)]))) 
        valuepos<-c(valuepos, drunpaired[i]) 
        next 
         
      }else if 
      ((drunpaired[i]-bin) %in% efunpaired){ 
        value<-c(value, mean(c(orieff_dr[match(drunpaired[i],orieff_dr_pos)], 
orieff_ef[match((drunpaired[i]-bin),orieff_ef_pos)]))) 
        valuepos<-c(valuepos, drunpaired[i]) 
        next 
         
      }else if 
      ((drunpaired[i]+2*bin) %in% efunpaired){ 
        value<-c(value, mean(c(orieff_dr[match(drunpaired[i],orieff_dr_pos)], 
orieff_ef[match((drunpaired[i]+2*bin),orieff_ef_pos)]))) 
        valuepos<-c(valuepos, (drunpaired[i]+bin)) 
        next 
         
      }else if 
      ((drunpaired[i]-2*bin) %in% efunpaired){ 
        value<-c(value, mean(c(orieff_dr[match(drunpaired[i],orieff_dr_pos)], 
orieff_ef[match((drunpaired[i]-2*bin),orieff_ef_pos)]))) 
        valuepos<-c(valuepos, (drunpaired[i]-bin)) 
        next 
         
      }else if 
      ((drunpaired[i]+3*bin) %in% efunpaired){ 
        value<-c(value, mean(c(orieff_dr[match(drunpaired[i],orieff_dr_pos)], 
orieff_ef[match((drunpaired[i]+3*bin),orieff_ef_pos)]))) 
        valuepos<-c(valuepos, (drunpaired[i]+2*bin)) 
        next 
         
      }else if 
      ((drunpaired[i]-3*bin) %in% efunpaired){ 
        value<-c(value, mean(c(orieff_dr[match(drunpaired[i],orieff_dr_pos)], 
orieff_ef[match((drunpaired[i]-3*bin),orieff_ef_pos)]))) 
        valuepos<-c(valuepos, (drunpaired[i]-2*bin)) 
        next 
      }else if 
      ((drunpaired[i]+4*bin) %in% efunpaired){ 
        value<-c(value, mean(c(orieff_dr[match(drunpaired[i],orieff_dr_pos)], 
orieff_ef[match((drunpaired[i]+4*bin),orieff_ef_pos)]))) 
        valuepos<-c(valuepos, (drunpaired[i]+2*bin)) 
        next 
         
      }else if 
      ((drunpaired[i]-4*bin) %in% efunpaired){ 
        value<-c(value, mean(c(orieff_dr[match(drunpaired[i],orieff_dr_pos)], 
orieff_ef[match((drunpaired[i]-4*bin),orieff_ef_pos)]))) 
        valuepos<-c(valuepos, (drunpaired[i]-2*bin)) 
         
      }}  
    chromosome<-rep(chro,length(valuepos)) 
    orilist<-as.data.frame(cbind(chromosome,valuepos,value)) 
    colnames(orilist)<-c("chromosome","maxpos","efficiency") 
     
    #### Remove duplicates and zero values #### 
     
    orilist_dupl<-which(duplicated(orilist$maxpos)) 
    if (length(orilist_dupl)>0){ 
      a<-c() 
      for (i in 1:length(orilist_dupl)){ 
        a<-
c(a,(as.numeric(as.vector(orilist$efficiency[orilist_dupl[i]]))+as.numeric(as.vector(ori
list$efficiency[orilist_dupl[i]-1])))/2) 
        levels(orilist$efficiency)<-c(levels(orilist$efficiency),a)} 
      orilist$efficiency[orilist_dupl-1]<-a 
      orilist<-orilist[-orilist_dupl,] 
      orilist<-orilist[orilist$efficiency !=0,]} 
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  }else if(length(efunpaired)==0 | length(drunpaired)==0){ 
     
    chromosome<-rep(chro,length(valuepos)) 
    orilist<-as.data.frame(cbind(chromosome,valuepos,value)) 
    colnames(orilist)<-c("chromosome","maxpos","efficiency") 
     
    #### Remove duplicates and zero values #### 
     
    orilist_dupl<-which(duplicated(orilist$maxpos)) 
    if (length(orilist_dupl)>0){ 
      a<-c() 
      for (i in 1:length(orilist_dupl)){ 
        a<-
c(a,(as.numeric(as.vector(orilist$efficiency[orilist_dupl[i]]))+as.numeric(as.vector(ori
list$efficiency[orilist_dupl[i]-1])))/2) 
        levels(orilist$efficiency)<-c(levels(orilist$efficiency),a)} 
      orilist$efficiency[orilist_dupl-1]<-a 
      orilist<-orilist[-orilist_dupl,] 
      orilist<-orilist[orilist$efficiency !=0,]}} 
   
   
   
  return(orilist)  
} 
 
 
Wigdata <- function(name, ratio.table, row,  bin, color, h.line,chro,chromoname_in){ 
   
   
  header0 = paste('track type=wiggle_0 name="', name, 
                  '" description="generated by Puseq_deltadelta_50_50_general.R A. 
Keszthelyi & Y. Daigaku, 2015', date(),  
                  '" visibility=full autoScale=off color=', color, 
                  ' yLineOnOff=on yLineMark=', h.line,  
                  ' priority=10', sep="") 
  wiglist<- list() 
  wiglist<-c(wiglist, header0) 
   
  for(chromo in chro[1:length(chro)]){  
     
     
    header = paste('fixedStep chrom=',paste(chromoname_in,gsub("[^0-9]", 
"",chromo),sep=""), 
                   ' step=', bin, ' span=', bin, sep="") 
     
    ratio.table.chr = ratio.table[ratio.table$chromosome==chromo,] 
    data.chr<-as.numeric(as.vector(ratio.table.chr[,row])) 
    data.chr[is.na(data.chr)]<- 0 
    wiglist<-c(wiglist,header,list(data.chr))} 
   
  return(wiglist) 
   
} 
 
 
########################################  Calculations 
########################################################### 
 
bin<-dat_df$pos[2]-dat_df$pos[1] 
 
### normalization to all counts 
 
dat_df.norm <- dat_df[,3]/sum(dat_df[,3]) 
dat_dr.norm <- dat_dr[,3]/sum(dat_dr[,3]) 
dat_ef.norm <- dat_ef[,3]/sum(dat_ef[,3]) 
dat_er.norm <- dat_er[,3]/sum(dat_er[,3]) 
 
### normalization using delta and epsilon both 
 
dat_df.ratio <- dat_df.norm/(dat_df.norm+dat_ef.norm) 
dat_dr.ratio <- dat_dr.norm/(dat_dr.norm+dat_er.norm) 
dat_ef.ratio <- dat_ef.norm/(dat_df.norm+dat_ef.norm) 
dat_er.ratio <- dat_er.norm/(dat_dr.norm+dat_er.norm) 
 
 
### adjust using the mean of delta & epsilon ration 
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dat_df.ratio.mean <- dat_df.ratio*0.5/mean(dat_df.ratio,na.rm=TRUE) 
dat_dr.ratio.mean <- dat_dr.ratio*0.5/mean(dat_dr.ratio,na.rm=TRUE) 
dat_ef.ratio.mean <- dat_ef.ratio*0.5/mean(dat_ef.ratio,na.rm=TRUE) 
dat_er.ratio.mean <- dat_er.ratio*0.5/mean(dat_er.ratio,na.rm=TRUE) 
 
### usage in both strands #### 
 
delta.both   <- (dat_df.ratio.mean + dat_dr.ratio.mean)/2 
epsilon.both <- (dat_ef.ratio.mean + dat_er.ratio.mean)/2 
 
 
table.ratio_1<-
cbind(as.character(dat_df[,1]),dat_df[,2],dat_df.ratio.mean,dat_dr.ratio.mean,dat_ef.rat
io.mean,dat_er.ratio.mean, delta.both,epsilon.both) 
colnames(table.ratio_1)<-(c("chromosome","position","delta on forward","delta on 
reverse","epsilon on forward","epsilon on reverse","delta both strand","epsilon both 
strand")) 
 
 
 
table.ratio<-data.frame() 
chro<-unique(dat_df$chro) 
for(chromo in chro[1:length(chro)]){  
   
  table.ratio.chr<-table.ratio_1[table.ratio_1[,1]==chromo,] 
   
   
   
  # N = input$N.ratio.num   # the parameter for moving ave (2N+1) 
   
  dat_df.chr.ratio.mean.ma <- moving.ave.v2(as.numeric(as.vector(table.ratio.chr[,3])), 
N) 
  dat_dr.chr.ratio.mean.ma <- moving.ave.v2(as.numeric(as.vector(table.ratio.chr[,4])), 
N) 
  dat_ef.chr.ratio.mean.ma <- moving.ave.v2(as.numeric(as.vector(table.ratio.chr[,5])), 
N) 
  dat_er.chr.ratio.mean.ma <- moving.ave.v2(as.numeric(as.vector(table.ratio.chr[,6])), 
N) 
  delta.both.ma <- moving.ave.v2(as.numeric(as.vector(table.ratio.chr[,7])), N) 
  epsilon.both.ma <- moving.ave.v2(as.numeric(as.vector(table.ratio.chr[,8])), N) 
   
   
   
  ####### repl timing 
  leftfork_table<-rbind(dat_er.chr.ratio.mean.ma,dat_df.chr.ratio.mean.ma) 
  leftfork<-colMeans(leftfork_table) 
   
   
  Trep<-c(43) 
  for (i in 1:length(leftfork)-1){ 
    if (is.na(leftfork[i+1])){ 
    Trep<-c(Trep,(Trep[i]))   
    }else{ 
    Trep<-c(Trep,(bin*(1-(2*leftfork[i+1]))/1500)+Trep[i]) 
  }} 
   
  Trep_norm<-Trep/mean(Trep) 
   
   
  ####### differencial ### 
   
  dat_ef.chr.diff<-
moving.ave.v2(diff.sequence(as.numeric(as.vector(dat_ef.chr.ratio.mean.ma))),NN) 
  dat_dr.chr.diff<-
moving.ave.v2(diff.sequence(as.numeric(as.vector(dat_dr.chr.ratio.mean.ma))),NN) 
     
  table.ratio.chro<-
as.data.frame(cbind(as.character(table.ratio.chr[,1]),table.ratio.chr[,2],dat_df.chr.rat
io.mean.ma,dat_dr.chr.ratio.mean.ma,dat_ef.chr.ratio.mean.ma,dat_er.chr.ratio.mean.ma, 
delta.both.ma,epsilon.both.ma,Trep,leftfork,Trep_norm,dat_ef.chr.diff,dat_dr.chr.diff)) 
  table.ratio<-rbind(table.ratio,table.ratio.chro) 
} 
colnames(table.ratio)<-(c("chromosome","position","delta on forward","delta on 
reverse","epsilon on forward","epsilon on reverse","delta both strand","epsilon both 
strand","Trep","leftward fork","Trep_norm","diff_ef","diff_dr")) 
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orilist<-data.frame() 
 
for(chromo in chro[1:length(chro)]){   
   
  ratio.table.chr = table.ratio[table.ratio$chromosome==chromo,] 
   
  dat_ef.chr.diff<-
moving.ave.v2(diff.sequence(as.numeric(as.vector(ratio.table.chr[,5]))),NN) 
  dat_dr.chr.diff<-
moving.ave.v2(diff.sequence(as.numeric(as.vector(ratio.table.chr[,4]))),NN) 
   
  #find local maxima - p= percentile treshold 
   
   
  dat_ef.chr.table<-
Findlocalmax(dat_ef.chr.diff,(as.numeric(as.vector(ratio.table.chr[,2]))),p) 
  dat_dr.chr.table<-
Findlocalmax(dat_dr.chr.diff,(as.numeric(as.vector(ratio.table.chr[,2]))),p) 
   
   
  #merge peaks within 4 bins 
   
  dat_ef.chr.table.merged<-Closeori(as.numeric(as.vector(dat_ef.chr.table[,1])),bin) 
  dat_dr.chr.table.merged<-Closeori(as.numeric(as.vector(dat_dr.chr.table[,1])),bin) 
   
  #calculate efficiency 
   
  dat_ef.chr.orieff<-
orieff(dat_ef.chr.table.merged,as.numeric(as.vector(ratio.table.chr[,5])),as.numeric(as.
vector(ratio.table.chr[,2]))) 
  dat_dr.chr.orieff<-
orieff(dat_dr.chr.table.merged,as.numeric(as.vector(ratio.table.chr[,4])),as.numeric(as.
vector(ratio.table.chr[,2]))) 
   
  #find peaks that are in both within plusminus 4 bins 
   
  orilist.chr<-
orieff_merge(dat_ef.chr.orieff[,2],dat_ef.chr.orieff[,1],dat_dr.chr.orieff[,2],dat_dr.ch
r.orieff[,1],chromo,bin) 
  orilist.chr_upper<-quantile(as.numeric(as.vector(orilist.chr[,3])),0.999) 
  orilist.chr[,3]<-as.numeric(as.vector(orilist.chr[,3]))*100/orilist.chr_upper 
   
   
  orilist<-rbind(orilist,orilist.chr) 
   
} 
 
 
############################################# File output 
################################################## 
 
##### histograms 
fs = 2 
 
ppi <- 300 
png(paste(sample,"_",p,"_","orihist_100.png",sep=""), width=10*ppi, height=10*ppi, 
res=ppi) 
 
 
par(mfrow=c(1,1), omd=c(0, 1, 0.2, 0.9), plt=c(0.15, 0.95, 0, 1),lwd=2) 
hist(orilist[,3],100,main="",yaxt = "n", xaxt = "n", ylim=c(0,120), xlim=c(0,110) , 
ylab="", xlab="",  xaxs="i") 
axis(1, at=c(0, 20, 40, 60, 80, 100),labels=c(0, 20, 40, 60, 80, 100), las=1, 
cex.axis=fs, lwd=2) 
axis(2, at=c(0, 20, 40, 60, 80,100,120),labels=c(0, 20, 40, 60, 80, 100,120), las=1, 
cex.axis=fs, lwd=2) 
mtext(paste(name,", treshold:",p*100,", no of oris: ",length(orilist$maxpos), sep=""), 
side=3, cex=2, line = 0) 
mtext("Efficiency", side=1, cex=2, line = 3) 
#mtext(paste(name), side=3, cex=2, line = 0) 
mtext("Frequency", side=2, cex=2, line = 4) 
dev.off() 
 
png(paste(sample,"_",p,"_","orihist_5.png",sep=""), width=10*ppi, height=10*ppi, 
res=ppi) 
par(mfrow=c(1,1), omd=c(0, 1, 0.2, 0.9), plt=c(0.15, 0.95, 0, 1),lwd=2) 
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hist(orilist[,3],5,main="",yaxt = "n", xaxt = "n", ylim=c(0,1200), xlim=c(0,120) , 
ylab="", xlab="",  xaxs="i") 
axis(1, at=c(0, 20, 40, 60, 80, 100, 120),labels=c(0, 20, 40, 60, 80, 100, 120), las=1, 
cex.axis=fs, lwd=2) 
axis(2, at=c(0, 200, 400, 600, 800,1000, 1200),labels=c(0, 200, 400, 600, 800,1000, 
1200), las=1, cex.axis=fs, lwd=2) 
mtext(paste(name,", treshold:",p*100,", no of oris: ",length(orilist$maxpos), sep=""), 
side=3, cex=2, line = 0) 
mtext("Efficiency", side=1, cex=2, line = 3) 
#mtext(paste(name), side=3, cex=2, line = 0) 
mtext("Frequency", side=2, cex=2, line = 5) 
dev.off() 
 
##### bedgraph and csv 
 
orieff_bedgraph<-data.frame() 
 
for(chromo in chro[1:length(chro)]){   
   
  table.ori.bedgraph.chr = orilist[orilist$chromosome==chromo,] 
   
  chromoname=paste(chromoname_in,gsub("[^0-9]", "",chromo),sep="") 
   
   
  pos1<-table.ori.bedgraph.chr$maxpos 
  pos2<-as.numeric(as.vector(pos1))+bin 
  value<-table.ori.bedgraph.chr$efficiency 
  Chromosome<-rep(chromoname, length(table.ori.bedgraph.chr$maxpos)) 
  orieff_bedgraph.chr<-data.frame(chro=Chromosome, start=pos1, end=pos2, value=value) 
  colnames(orieff_bedgraph.chr) <-c("chro", "start", "end", "value") 
  orieff_bedgraph<-rbind(orieff_bedgraph,orieff_bedgraph.chr) 
} 
 
df_wig<-Wigdata(paste(name,"_delta_forward",sep=""), 
table.ratio,3,bin,"blue",0.5,chro,chromoname_in) 
dr_wig<-Wigdata(paste(name,"_delta_reverse",sep=""), 
table.ratio,4,bin,"blue",0.5,chro,chromoname_in) 
ef_wig<-Wigdata(paste(name,"_epsilon_forward",sep=""), 
table.ratio,5,bin,"red",0.5,chro,chromoname_in) 
er_wig<-Wigdata(paste(name,"_epsilon_reverse",sep=""), 
table.ratio,6,bin,"red",0.5,chro,chromoname_in) 
dd_wig<-Wigdata(paste(name,"_delta on both strand",sep=""), 
table.ratio,7,bin,"blue",0.5,chro,chromoname_in)   
Trep_wig<-Wigdata(paste(name,"_Trep",sep=""), 
table.ratio,9,bin,"blue",0.5,chro,chromoname_in)  
leftfork_wig<-Wigdata(paste(name,"_leftward_moving_fork",sep=""), 
table.ratio,10,bin,"blue",0.5,chro,chromoname_in)  
Trep_norm_wig<-Wigdata(paste(name,"_Trep_norm_ave",sep=""), 
table.ratio,11,bin,"blue",0.5,chro,chromoname_in) 
diff_ef_wig<-Wigdata(paste(name,"_diff_ef",sep=""), table.ratio,12, bin, "black",0.5, 
chro, chromoname_in) 
diff_dr_wig<-Wigdata(paste(name,"_diff_dr",sep=""), table.ratio,13, bin, "black",0.5, 
chro, chromoname_in) 
 
 
write.csv(table.ratio, file=paste(outpath,name,"_","all_ratios", '.csv', sep=''),  
row.names = FALSE) 
write.csv(orilist, file=paste(outpath,name,"_",p,"_","ori_table_perc", '.csv', sep=''),  
row.names = FALSE) 
write.table(orieff_bedgraph, file=paste(outpath,name,"_",p,"_","origins_perc", 
'.bedgraph', sep=''), append = F, quote=F, col.names=F, row.names=F) 
 
 
out_df<- file(paste(outpath,name,"_","delta_forward_wig", '.wig', sep=''), "w") 
writeLines(unlist(df_wig),out_df,sep="\n") 
close(out_df) 
 
 
out_dr<- file(paste(outpath,name,"_","delta_reverse", '.wig', sep=''), "w") 
writeLines(unlist(dr_wig),out_dr,sep="\n") 
close(out_dr) 
 
out_ef<- file(paste(outpath,name,"_","epsilon_forward", '.wig', sep=''), "w") 
writeLines(unlist(ef_wig),out_ef,sep="\n") 
close(out_ef) 
 
out_er<- file(paste(outpath,name,"_","epsilon_reverse", '.wig', sep=''), "w") 
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writeLines(unlist(er_wig),out_er,sep="\n") 
close(out_er) 
 
out_dd<- file(paste(outpath,name,"_","delta_delta", '.wig', sep=''), "w") 
writeLines(unlist(dd_wig),out_dd,sep="\n") 
close(out_dd) 
 
 
out_Trep<- file(paste(outpath,name,"_","Trep", '.wig', sep=''), "w") 
writeLines(unlist(Trep_wig),out_Trep,sep="\n") 
close(out_Trep) 
 
out_leftfork<- file(paste(outpath,name,"_","leftward moving fork", '.wig', sep=''), "w") 
writeLines(unlist(leftfork_wig),out_leftfork,sep="\n") 
close(out_leftfork) 
 
out_Trep_norm<- file(paste(outpath,name,"_","Trep_norm_ave", '.wig', sep=''), "w") 
writeLines(unlist(Trep_norm_wig),out_Trep_norm,sep="\n") 
close(out_Trep_norm) 
 
out_diff_ef<- file(paste(outpath,name,"_","diff_ef", '.wig', sep=''), "w") 
writeLines(unlist(diff_ef_wig),out_diff_ef,sep="\n") 
close(out_diff_ef) 
 
out_diff_dr<- file(paste(outpath,name,"_","diff_dr", '.wig', sep=''), "w") 
writeLines(unlist(diff_dr_wig),out_diff_dr,sep="\n") 
close(out_diff_dr) 
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