DOCUMENT
DOCUMENT
1/1
Encoding of luminance and contrast by linear and nonlinear synapses in the retina
journal contribution
posted on 2023-06-08, 15:59 authored by Benjamin Odermatt, Anton Nikolaev, Leon LagnadoLeon LagnadoUnderstanding how neural circuits transmit information is technically challenging because the neural code is contained in the activity of large numbers of neurons and synapses. Here, we use genetically encoded reporters to image synaptic transmission across a population of sensory neurons-bipolar cells in the retina of live zebrafish. We demonstrate that the luminance sensitivities of these synapses varies over 10(4) with a log-normal distribution. About half the synapses made by ON and OFF cells alter their polarity of transmission as a function of luminance to generate a triphasic tuning curve with distinct maxima and minima. These nonlinear synapses signal temporal contrast with greater sensitivity than linear ones. Triphasic tuning curves increase the dynamic range over which bipolar cells signal light and improve the efficiency with which luminance information is transmitted. The most efficient synapses signaled luminance using just 1 synaptic vesicle per second per distinguishable gray level.
History
Publication status
- Published
Journal
NeuronISSN
0896-6273Publisher
Elsevier (Cell Press)External DOI
Issue
4Volume
73Page range
758-773Department affiliated with
- Neuroscience Publications
Full text available
- Yes
Peer reviewed?
- Yes