DOCUMENT
DOCUMENT
1/1
Forecasting VaR using analytic higher moments for GARCH processes
journal contribution
posted on 2023-06-08, 15:22 authored by Carol AlexanderCarol Alexander, Emese Lazar, Stanescu SilviaIt is widely accepted that some of the most accurate Value-at-Risk (VaR) estimates are based on an appropriately specified GARCH process. But when the forecast horizon is greater than the frequency of the GARCH model, such predictions have typically required time-consuming simulations of the aggregated returns distributions. This paper shows that fast, quasi-analytic GARCH VaR calculations can be based on new formulae for the first four moments of aggregated GARCH returns. Our extensive empirical study compares the Cornish–Fisher expansion with the Johnson SU distribution for fitting distributions to analytic moments of normal and Student t, symmetric and asymmetric (GJR) GARCH processes to returns data on different financial assets, for the purpose of deriving accurate GARCH VaR forecasts over multiple horizons and significance levels.
History
Publication status
- Published
Journal
International Review of Financial AnalysisISSN
1057-5219Publisher
ElsevierExternal DOI
Volume
30Page range
36-45Department affiliated with
- Business and Management Publications
Full text available
- Yes
Peer reviewed?
- Yes