University of Sussex
Warnefors,_Anna_Maria_Linnéa.pdf (5.58 MB)

Evolution of human gene expression

Download (5.58 MB)
posted on 2023-06-07, 15:56 authored by Anna Maria Linnéa Warnefors
During evolution, biological differences between species can arise not only due to structural differences between genes, but also following changes in how, where and when genes are active. However, we know much less about this second aspect, because large-scale comparative transcriptomics only became feasible relatively recently. In this thesis, I will therefore investigate several aspects of gene expression evolution, with emphasis on our own species. A first step to understanding regulatory evolution is to determine how variation in gene expression is created. Transposable elements (TEs) are genomic parasites that can affect their host genome in a number of ways, including gene expression. In Chapter 2, I investigate to what extent transposable elements (TEs) have contributed to expression differences between humans and chimpanzees. Once expression variation has been established, a combination of selection and drift will decide which variants are passed on to future generations. It is of particular interest to identify changes that were established through positive selection, as these are adaptive. In Chapter 3, I describe a new method to detect positive selection acting on gene expression and apply it to data from humans and chimpanzees. Human gene expression is regulated through several mechanisms associated with transcription and post-transcriptional processing. In Chapter 4, I consider the long-term evolution of the human genome and investigate whether genes have reached their maximum capacity in terms of regulatory complexity. Finally, in Chapter 5, I explore the relationship between gene regulation and sequence conservation by identifying and analysing extremely conserved elements in the genome of the fruit fly Drosophila melanogaster.


File Version

  • Published version



Department affiliated with

  • Biology and Environmental Science Theses

Qualification level

  • doctoral

Qualification name

  • dphil


  • eng


University of Sussex

Full text available

  • Yes

Legacy Posted Date


Usage metrics

    University of Sussex (Theses)


    No categories selected